

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

Compressing color-indexed images with an

adaptive palette reordering method

Lui Ka-Chun

A thesis submitted in partial fulfillment of the requirements for

the Degree of Master of Philosophy

September 2007

 ii

To my parents

 iii

Abstract

Color-indexed images are widely found in various image applications nowadays. An

efficient compression algorithm for coding color-indexed images can help to reduce their data

size for saving both transmission bandwidth and data storage requirement.

A color-indexed image is represented with a color index map each element of which

serves as an index to select a color from a predefined set of colors called palette to represent

the color of a pixel in the image. Two completely different colors can be of similar index

values in a palette. Hence, it is always a challenging task to compress a color-indexed image

as the compression must be lossless and predictive coding techniques are generally not

effective to predict an index based on the spatial correlation of the index map.

Palette reordering is a remedial process aiming at finding a permutation of the color

palette to make the resulting color index map more suitable for predictive coding.

Conventional palette reordering methods generally reorder palette colors to form a static

palette whose index assignment is common to all pixels for making the reordering transparent

to the decoder.

In this thesis, an adaptive palette reordering method is proposed. Unlike those

conventional palette reordering methods, this method adaptively reorders the palette to make

the index assignment pixel-dependent. By so doing, the reordering is no longer transparent to

the decoder. However, the resultant index map of the original color-indexed image can be of

much lower zero-order entropy, smaller index variance and less spatial correlation, which

makes the index map much easier to be encoded efficiently with a typical lossless codec such

as JPEG-LS.

 iv

Various lossless coding algorithms for color-indexed images can then be developed

based on the proposed adaptive palette reordering algorithm. Simulation results show that

their coding performance is better than state-of-art lossless compression algorithms including

those are not based on palette reordering technique. In particular, when an index map was

separated into binary bit planes with our suggested approach and then encoded with a

context-based binary arithmetic coding scheme, an average compression ratio of 2.44:1 could

be achieved.

Index prediction, color reordering and DF-Table merging are some of the key functional

components carried out in the proposed adaptive palette reordering algorithms. In practice,

each one of them can be realized in different ways. Some of their realizations were evaluated

and the result is also reported in this thesis.

 v

Author’s Publications

(List of publications of the author on which this thesis is based)

International Journal Paper

1. Ka-Chun Lui, Yuk-Hee Chan and P.K. Lun, "Compressing color-indexed images with an

adaptive palette reordering method," submitted for possible publication in IEEE

transactions on Image Processing

International Conference Papers

1. Ka-Chun Lui and Yuk-Hee Chan, "An adaptive palette reordering method for

compressing color-indexed image", Proceedings, IEEE TENCON'06, Hong Kong, 14-17

Nov 2006, pp.1-4

2. Ka-Chun Lui and Yuk-Hee Chan, "A lossless compression algorithm for color-indexed

images using adaptive palette reordering," Proceedings, 15th European Signal Processing

Conference (EUSIPCO 2007), Sep 3-7, 2007, Poznan, Poland, pp.812-815

 vi

Acknowledgements

First of all, I would like to take this opportunity to express my honest gratitude to my

supervisor, Dr. Chris Yuk-Hee Chan, for his guidance and tutorial throughout the course of

this research effort. I believe that this knowledge will be much helpful to my future career.

I also wish to thank my friends and colleagues for their encouragement. Their expert

knowledge has helped me to resolve a lot of difficult problems in my study. Thanks are also

extended to Mr. W. H. Wong who have worked with me.

I should also not be miserly to send my acknowledgements to all classmates. The helpful

discussions with them have proved to be beneficial and inspiring. I would not grow faster

without their experience sharing.

Last, but not least, I must express my feeling of thankfulness and appreciation to my

parents, my brothers, my wife, my sons and my daughter for their never-ending support.

Without their backing, this study would not have the chance to be completed.

 vii

Table of Contents

CERTIFICATE OF ORIGINALITY ... i

Abstract .. iii

Author’s Publications .. v

Acknowledgements .. vi

Table of Contents .. vii

List of Figures .. ix

Statement of Originality ... xiv

Chapter 1 – Introduction .. 1

1.1 The addressed problems ... 1

1.2 Organization of this thesis .. 3

Chapter 2 – Literature Reviews ... 5

2.1 Introduction ... 5

2.2 Lossless image coding standards .. 5

2.3 Palette reordering ... 7

2.3.1 Palette-based palette reordering methods .. 8

2.3.2 Index-map-based palette reordering methods 9

2.4 Coding methods which are not based on palette reordering12

Chapter 3 – A framework of adaptive palette reordering ...14

3.1 Introduction ..14

3.2 Adaptive palette reordering ...15

3.3 Properties of the reindexed output ...19

3.4 A generalized framework ..30

3.5 Summary...31

Chapter 4 – Impact of prediction to adaptive palette reordering32

4.1 Introduction ..32

4.2 MED vs GAP in prediction..33

4.3 Prediction in index domain ..35

4.4 Prediction in color intensity domain ..40

4.5 Impact to the overall reordering performance ..44

4.6 Summary...50

 viii

Chapter 5 – Impact of color reordering to adaptive palette reordering51

5.1 Introduction ..51

5.2 Distance-oriented sorting ..52

5.3 History-oriented sorting ..55

5.4 Hybrid mode sorting ...57

5.5 Performance Study ..59

5.6 Summary...64

Chapter 6 – DF table merging ...65

6.1 Introduction ..65

6.2 Absorbing pre-clustered colors ..66

6.3 Absorbing the nearest colors ...71

6.4 Performance study...76

6.5 Summary...80

Chapter 7 – Compression performance ...81

7.1 Introduction ..81

7.2 Encoding index maps with JPEG-LS/Lossless JPEG-200082

7.3 Encoding index maps with significance-based bit-plane coding83

7.4 Encoding index maps with value-based bit-plane coding86

7.5 Simulation Results ..89

7.6 Summary...96

Chapter 8 – Conclusions ...98

8.1 Summary of the work ..98

8.2 Future research directions.. 100

Bibliography .. 102

 ix

List of Figures

Figure 3.1 MED estimation scheme used in JPEG-LS .. 16

Figure 3.2 Example of how to assign indices to a dynamic palette when),(jiv
v

, 4c
v

and 3c
v

 are, respectively, the predicted, the quantized predicted and the

real colors: (a) current status of the DF-Table, (b) given prediction error

2||),(|| jivck

vv
− in the example, (c) index assignment of the proposed

method .. 17

Figure 3.3 Pseudo code of the proposed adaptive palette reordering method 19

Figure 3.4 Original Kodak full-color images (Refers as image 1 to image 24, from

top-to-bottom and left-to-right) .. 20

Figure 3.5 Processing result of the proposed adaptive reordering method 21

Figure 3.6 Histograms of color index maps of Kodak-05 .. 22

Figure 3.7 Reduction in zero-order entropy when the proposed reordering method is

used ... 22

Figure 3.8 Correlation between pixel (m,n) and pixel (m+x,n+y) in (a) our

reindexed output, and (b) the reference index map .. 23

Figure 3.9 Reordered index-maps of Kodak-05 obtained with different methods 25

Figure 3.10 Histograms of different reordering results (Kodak-05) 26

Figure 3.11 Performance of different algorithms in terms of correlation among pixels

in their reindexed results (Kodak-05) ... 26

Figure 3.12 Structure of a codec using adaptive palette reordering method 31

Figure 4.1 Structure of adaptive palette reordering .. 33

Figure 4.2 MED estimation scheme used in JPEG-LS .. 34

Figure 4.3 The causal context template used in CALIC for pixel x 34

Figure 4.4 Pseudo code for classifying an edge with Gradient Adjusted Predictor

(GAP) to predict a pixel value .. 35

Figure 4.5 Color-quantized image Kodak-05 and some of its index maps: (a)

color-quantized image, (b) the index map generated with Matlab’s

RGB2IND function, (c) luminance plane of (a), and (d) the index map

associated with the palette sorted by luminance. .. 36

Figure 4.6 Index residue planes of Kodak-05 when the prediction is done is the

index plane directly (a) MED and (b) GAP .. 37

Figure 4.7 Histograms of Figure 4.6 (in log scale) .. 38

Figure 4.8 Index residue planes of Kodak-05 when the prediction is done is

individual color planes (a) MED and (b) GAP ... 41

 x

Figure 4.9 Histograms of Figure 4.8 (in log scale) .. 42

Figure 4.10 Pseudo code of an adaptive palette reordering method in which

prediction is carried out in the index plane. .. 45

Figure 4.11 Pseudo code of an adaptive palette reordering method in which

prediction is carried out in individual color intensity planes. 46

Figure 4.12 Kodak-05’s reindexed index-maps obtained with different methods 47

Figure 4.13 Histograms of Figure 4.12 (in log scale) .. 47

Figure 4.14 Performance of different algorithms in terms of correlation among pixels

in their reindexed results ... 48

Figure 5.1 Examples showing how palette colors are sorted in (a) APR-D-PC and (b)

APR-D-QPC ... 53

Figure 5.2 Output of APR-D-PC: (a) reindexed index map of Kodak-05 and (b)

histogram .. 54

Figure 5.3 Output of APR-D-QPC: (a) reindexed index map of Kodak-05 and (b)

histogram .. 54

Figure 5.4 Output of APR-H: (a) reindexed index map of Kodak-05 and (b)

histogram. ... 56

Figure 5.5 Output of APR-H-D-PC: (a) reindexed index map of Kodak-05 and (b)

histogram .. 58

Figure 5.6 Output of APR-H-D-QPC: (a) reindexed index map of Kodak-05 and (b)

histogram .. 59

Figure 5.7 Histograms of outputs of different adaptive palette reordering methods.......... 60

Figure 5.8 Performance of different adaptive palette reordering methods in terms of

correlation among pixels... 61

Figure 6.1 Example of how to assign indices to a dynamic palette when (i)),(jiv
v

,

4c
v

 and 3c
v

 are, respectively, the predicted, the quantized predicted and

the real colors and (ii) Absorbing pre-clustered colors is used in

DF-Table merging: (a) current status of the DF-Table, (b) given

prediction error 2||),(|| jivck

vv
− in the example, (c) index assignment

with DF-Table merging ... 67

Figure 6.2 Pseudo code of an adaptive palette reordering method which uses

Absorbing pre-clustered colors to merge the DF table 68

Figure 6.3 Clustering results of LBG algorithm: (a) original palette of 8 colors; (b) 4

clusters and (c) 2 clusters .. 70

Figure 6.4 Redivide the color space according to the clustering results of LBG

algorithm: (a) partition result associated with the original palette; (b)

4-cluster case and (c) 2-cluster case ... 70

 xi

Figure 6.5 A set of three DF-Tables associated with (a) the original palette, (b) the

4-cluster color space and (c) the 2-cluster color space 71

Figure 6.6 Example of how to assign indices to a dynamic palette when (i)),(jiv
v

,

4c
v

 and 3c
v

 are, respectively, the predicted, the quantized predicted and

the real colors and (ii) Absorbing the nearest colors is used in DF-Table

merging: (a) current status of the DF-Table, (b) given additional

information in the example, (c) index assignment with DF-Table merging 73

Figure 6.7 Merging steps of absorbing the nearest colors: (a) partition result

associated with the original palette; (b) after absorbing the nearest palette

color; (c) after absorbing 2 nearest palette colors; (d) after absorbing 3

nearest palette colors; (e) after absorbing 4 nearest palette colors; (f) after

absorbing 5 nearest palette colors; (g) after absorbing 6 nearest palette

colors; (h) after absorbing all other palette colors .. 74

Figure 6.8 A set of eight DF-Tables each of which is associated with one of the

merging results shown in Figure 6.7a-h .. 75

Figure 6.9 Reduction in accumulated sum of square values of indices with respect to

the case without DF-Table merging when DF-Table merging is used 77

Figure 6.10 Focused portions of the plot shown in Figure 6.9... 78

Figure 7.1 The focus of Chapter 7 is on the realization of the index encoding

module .. 82

Figure 7.2 The 8 bit planes of the reindexed index map produced with adaptive

palette reordering .. 84

Figure 7.3 A context template used in context-based binary arithmetic codecs 86

Figure 7.4 An example showing how a 4x4 index map is split into bit planes: (a)

index map; (b) the bit planes obtained with SBS and (c) the bit planes

obtained with VBS .. 88

Figure 7.5 The context template used in VBS ... 88

Figure 7.6 Pseudo code of the adaptive palette reordering method used in APR+Jls,

APR+J00, APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2. 91

 xii

List of Tables

Table 3.1 Mean square values of the indices in different reindexed index maps

produced with different palette reordering methods ... 27

Table 3.2 Variances of the indices in different reindexed index maps produced with

different palette reordering methods ... 28

Table 3.3 The computational complexity of the proposed dynamic palette

reordering algorithm (Pre-Processing) ... 29

Table 3.4 The computational complexity of the proposed dynamic palette

reordering algorithm (Post-Processing) .. 29

Table 4.1 Prediction performance of MED and GAP when the prediction is carried

out in the index domain .. 39

Table 4.2 Prediction performance of MED and GAP when the prediction is carried

out in the color intensity domain .. 43

Table 4.3 Variance of the indices in a reindexed index map produced with adaptive

palette reordering using a particular prediction scheme (with mapping

(3.1)) ... 48

Table 4.4 Zero-order entropy of the indices in a reindexed index map produced

with adaptive palette reordering using a particular prediction scheme 49

Table 5.1 Summary of the sorting criteria and rules adopted in different adaptive

palette reordering methods ... 60

Table 5.2 Performance comparison of APR-D-PC, APR-D-QPC, APR-H,

APR-H-D- PC and APR-H-D-QPC in terms of variance of the indices in

a reindexed index map .. 62

Table 5.3 Performance comparison of APR-D-PC, APR-D-QPC, APR-H,

APR-H-D- PC and APR-H-D-QPC in terms of zero-order entropy of the

indices in a reindexed index map.. 63

Table 6.1 Sum of square index values of the pixels which involve DF-Table

merging when they are handled .. 79

Table 7.1 Performance of different palette reordering methods when working with

JPEG-LS ... 92

Table 7.2 Performance of different palette reordering methods when working with

Lossless JPEG-2000 ... 94

Table 7.3 Performance of various lossless image coding methods for coding

color-indexed images .. 95

Table 7.4 The actual processing time of compressing color-indexed images with

the proposed dynamic palette reordering algorithm ... 96

 xiii

 xiv

Statement of Originality

The following contributions reported in this thesis are claimed to be original.

1. An adaptive palette reordering method which scans pixels of a color-indexed image and,

on the fly, reassigns indices to palette colors pixel by pixel adaptively based on an

updated statistical study of the processed image pixels and the predicted color of the

current pixel.

2. A detailed study on how the proposed adaptive palette reordering method reduces the

zero-order entropy, the variance and the spatial correlation of the index map of a

color-indexed image to make the index map easier to be encoded.

3. A framework of how to realize lossless compression of color-indexed images based on

adaptive palette reordering.

4. A detailed study on how the actual realization of different functional components such

as color reordering, index prediction and DF-Table merging affect the overall

performance of adaptive palette reordering and hence the coding performance.

5. Various lossless coding algorithms based on the proposed adaptive palette reordering

algorithm.

� Encoding the index map with JPEG-LS/Lossless JPEG-2000

� Encoding the index map with significance-based bit-plane coding as presented in

Section 7.3

� Encoding the index map with value-based bit-plane coding as presented in

Section 7.4

 1

Chapter 1 – Introduction

1.1 The addressed problems

Color-quantized images [Orchard91] are widely used in various applications especially

Internet applications nowadays to reduce communication bandwidth and storage requirement.

A color-quantized image is generally represented with a color index map each element of

which serves as an index to select a color from a predefined set of colors to represent the color

of a pixel in the image. The predefined set of colors is called a palette. Color-quantize image

can be generated with common color quantization algorithms such as median-cut

[Heckbert82], center-cut [Gervautz90], octree [Joy93] and 3D frequency diffusion [Lo03].

They are also referred to as color-indexed images.

To reduce the size of a color-indexed image further, lossless compression techniques are

generally used because the index used to pick a particular palette color must be exact in

decoding. A minor difference between two index values may result in a serious color shift.

Predictive coding technique is widely used in lossless compression. In fact, most

lossless coding algorithms such as CALIC [Wu97] and JPEG-LS [Weinberger00] are based

on predictive coding and entropy coding techniques. CALIC and JPEG-LS raster-scan an

image and use the intensity values of some encoded local pixels to predict the intensity value

of the pixel being encoded. The estimation error between the actual value and the estimated

value is then encoded with entropy coding algorithms [Moffat95] to compress the image. In

general, the smaller the average prediction error over the image, the higher compression ratio

can be achieved.

 2

However, predictive coding techniques do not perform well when they are used to

encode a color-quantized image. Encoding a color-quantized image implies encoding its color

index map. In general, a palette is generated in a way without concerning the order of the

colors in the resultant palette. Accordingly, the numerical values of two indices that point to

similar colors may be very different. Most predictors assume that neighboring pixels have

similar attributes and, when these attributes are quantitatively measured, their values are

similar. This assumption is valid for the intensity values of an image, but not for the index

values in a color index map due to the aforementioned reason.

Palette reordering is a remedial process aiming at finding a permutation of the color

palette to make the resulting color index map more suitable for predictive coding. In general,

palette reordering attempts to minimize the index difference between adjacent pixels such that

the prediction error would be as small as possible [Hadenfeldt94]. Various reordering methods

were proposed for this purpose. Some of them assign indices to palette colors based on the

attributes of the palette colors [Zaccarin93] or the distance among the palette colors [Po94].

Some of them assign indices to palette colors based on the number of occurrences of having

two particular palette colors in two spatially adjacent pixels [Memon97, Zeng00, Pinho04,

Battiato01]. All of them can effectively improve the compression rate when their outputs are

encoded with JPEG-LS.

Inspired by these palette reordering methods, we proposed a new reordering method in

this work. This reordering method is named as adaptive palette reordering as it raster scans

the image and adaptively reorders the palette based on both the palette and the index map. As

a result, it is able to produce an index map of very low zero-order entropy and little spatial

correlation. The index map can then be encoded with well-developed JPEG-LS or any other

standard lossless coding techniques such as JBIG and JPEG-2000 efficiently.

 3

The index map can also be encoded by some other non-standard coding schemes. A

coding scheme was developed in this work based on the idea of bit-plane coding and

context-based arithmetic coding to encode the output index map. The resultant coding

performance is superior to those achieved by other state-of-art lossless image compression

methods including those using techniques other than palette reordering [Po94, Spira01,

Zaccarin93, Memon97, Zeng00, Pinho04, Battiato01].

1.2 Organization of this thesis

The proposed adaptive palette reordering technique is composed of two basic functional

components including index prediction and color reordering. These two components can be

realized with different schemes and, accordingly, their different combinations result in

different adaptive palette reordering methods. Chapter 3 shows one of the realizations of

adaptive palette reordering. Simulation results are provided to show its outstanding

performance in producing a new index map of lower variance, lower zero-order entropy and

lower spatial correlation as compared with other conventional palette reordering methods.

Chapter 4 puts its focus on the realization of index prediction in adaptive palette

reordering. Besides the one used in the example presented in Chapter 3, index prediction can

be realized with different schemes. In Chapter 4, four of them are studied and their prediction

performance is evaluated. These schemes exploits MED[Weinberger00] or GAP[Wu97] to

carry out the prediction in either the index plane or individual color intensity planes.

Performance is evaluated in terms of various measures such as the entropy and the variance of

their resultant reindexed index maps.

 4

The focus of Chapter 5 is on the realization of color reordering in adaptive palette

reordering. Five color reordering schemes are evaluated in Chapter 5 to see how well they can

support adaptive palette reordering. In particular, we have two distance-oriented sorting

schemes, one history-oriented scheme and two hybrid mode sorting schemes in our evaluation.

Simulation results are presented. Performance is again evaluated in terms of both zero-order

entropy and variance of the reindexed index maps.

In adaptive palette reordering, it collects statistical information in the course and uses it

as supporting information to improve the performance of color reordering at a later stage. The

information is stored in a data structure called DF-Table in our study. The DF-Table is

immature when it contains a lot of zero entries, and this happens when the number of

processed pixels is too small. Two solutions are proposed in Chapter 6 to solve this problem.

Their performance is also compared and reported in Chapter 6.

Adaptive palette reordering produces a reindexed index map of low entropy, low

variance and little spatial correlation. This index map can be encoded with various index

encoding schemes easily. In Chapter 7, six different index encoding schemes are proposed to

encode the output of adaptive palette reordering. Simulation results are presented to compare

the compression performance of various lossless image coding methods including those

exploit palette reordering and those do not. In other words, this chapter presents a direct

comparison between the proposed adaptive-palette-reordering-based image coding methods

and state-of-art lossless coding methods in terms of output bit rate.

Chapter 8 provides a brief summary of the work we have done. Some possible

directions of the extension of the work are also suggested in this final chapter.

 5

Chapter 2 – Literature Reviews

2.1 Introduction

This chapter provides reviews on some existing work that is relevant to our work. In

particular, Section 2.2 provides a review on lossless image coding standards. In general, a

color-indexed image is composed of an index map and a palette. The index map can be treated

as a grey level image and then encoded with any lossless image coding techniques. A

off-the-shelf lossless image coding standard is a natural choice for coding a color-indexed

image.

In Section 2.3, some palette reordering algorithms are introduced. These algorithms

reorder the palette of a color-indexed image such that the output index map associated with

the reordered palette can be encoded with standard lossless image codecs such as JPEG-LS

[JPEG99] and lossless JPEG-2000 [JPEG00] more effectively.

Color-indexed images can be encoded directly without reordering their palettes. In that

case, off-the-shelf image coding standards may not work effectively and dedicated coding

techniques have to be used for removing the redundancy. Section 2.4 presents a review on

some state-of-art lossless image coding methods which do not solely or even do not rely on

palette reordering.

2.2 Lossless image coding standards

The Joint Photographic Experts Group (JPEG) is a joint ISO/ITU committee

responsible for developing standards for continuous-tone still-picture coding. It deals with

both lossy and lossless standards for image compression. There are two standards for lossless

image coding and both of them are based on predictive coding.

 6

Predictive coding makes use of the property of natural images to achieve compression.

The basic idea of predictive coding is to predict a pixel’s intensity value with its neighbors’

and then encode the prediction error with entropy coding. In general, intensity values of

neighboring pixels are similar and hence the prediction error can be very small. This removes

the redundancy of the image.

The old lossless standard of JPEG is referred to as “JPEG lossless” [Wallace91]. It

provides eight different predictive schemes for a user to select. The new standard is referred

to as JPEG-LS [JPEG99]. Medium Edge Detector (MED) is employed in its predictor to

handle both edge and smooth regions. In particular, neighboring processed pixels are used to

determine the current pixel value. An error compensation scheme is then applied to refine the

predicted value. Finally, the prediction error is encoded with Golomb code [Elias75,

Golomb66].

JPEG 2000 is a wavelet-based image compression standard [JPEG00]. It was created

with the intention of replacing the previous DCT-based JPEG standard. It can operate at a

higher compression ratio without generating the blocky and blurry artifacts introduced by the

DCT-based JPEG standard. It provides both lossless and lossy compression in a single

compression architecture. Lossless compression is provided by the use of a reversible integer

wavelet transform and a quantization step size of 1. All bit planes have to be encoded by the

Embedded Block Coding with Optimized Truncation (EBCOT) scheme [Taubman00] in

lossless JPEG-2000.

 7

Besides international coding standards like JPEG-LS and lossless JPEG-2000, there are

some other defacto lossless image coding standards such as GIF and PNG. CompuServe

introduced the GIF format in 1987 to provide a color image format [GIF87], and it is now one

of the most popular formats on the Internet. The LZW compression scheme [Ziv78, Welch84]

is used by GIF to compress an image. The most updated format version is GIF89a [GIF89a].

It supports transparency and interlacing.

Portable Network Graphics (PNG) format is an image format for storing bitmapped

images on computers [PNG95]. It was designed to replace the GIF format in 1995 when

royalties were required for Unisys' patent on the LZW compression method used in GIF. The

compression scheme used in the PNG format is again based on predictive coding.

One can see that all these image coding standards were basically designed for encoding

natural gray level images or color images. There is spatial correlation among the intensity

values of neighboring pixels in a natural image and hence one can make use it to remove the

redundancy with a predictive coding technique. In general, in the index map of a

color-indexed image, the index values among neighboring pixels do not bear a similar extent

of spatial correlation. The compression performance is generally not attractive when these

coding standards are exploited to encode the index map directly.

2.3 Palette reordering

Palette reordering is a remedial process aiming at finding a permutation of the color

palette to make the resulting color index map more suitable for predictive coding. In general,

palette reordering attempts to minimize the index difference between adjacent pixels such that

the prediction error would be as small as possible.

 8

Various reordering methods were proposed for this purpose. Basically they can be

divided into two major categories. The first category is palette-based. They assign indices to

palette colors based on the attributes of the palette colors [Zaccarin93, Po94] or the distance

among the palette colors [Spira01]. The second category is index-map-based. They assign

indices to palette colors based on the number of occurrences of having two particular palette

colors in two spatially adjacent pixels [Battiato01, Memon96, Pinho04, Zeng00]. All of them

can effectively improve the compression rate when their outputs are encoded with lossless

image coding standards such as JPEG-LS and lossless JPEG-2000.

2.3.1 Palette-based palette reordering methods

Palette-based reordering methods extract information from the palette and then make

use of it to reorder the palette. They may consider the luminance intensity values of the palette

colors, or the Euclidean distance between the palette colors. The index map is not taken into

account when they reorder the palette. Accordingly, it is not necessary to scan the index map

for the reordering. As compared with index-map-based reordering methods, they are fast and

the complexity is much lower, but the performance is generally poorer.

Zaccarin and Liu’s method [Zaccarin93] adopts a straightforward approach to permute a

given color palette. It is developed based on the assumption that pixels in a local region have

similar luminance value and hence colors of similar luminance values should have similar

indices. In their work, the luminance is defined as Y=0.299R + 0.587G + 0.114B, where R, G

and B denote the intensity values of the red, the green and the blue components respectively.

Palette colors are sorted by their luminance values. This method is simple and fast.

 9

The development of Po and Tan’s method [Po94] is based on an observation that pixels

of similar colors are generally close to each other in natural images. In other words, it

considers the similarity of colors instead of the similarity of the luminance of colors. The

method assigns index value zero to the palette color of the lowest energy. The remaining

indices are then assigned to the remaining palette colors one by one. In practice, it assigns

index value j to the color which is the closest to the color assigned index value j-1 in terms of

Euclidean distance in the color space.

Spira and Malah’s method [Spira01] is based on a similar assumption that objects in an

image are constructed with similar colors. Accordingly, the method tries to reorder the palette

colors in a way that, when one visits the palette colors sequentially in the color space

according to the index values and then goes back to the starting palette color, the path he

travels is the shortest. This turns a palette reordering problem into a traveling salesman

problem (TSP). The complexity for reaching an optimal solution is considerably high, and

hence a suboptimal solution is pursued instead by making use of the Farthest Insertion

Algorithm (FIA) [Lawler85].

2.3.2 Index-map-based palette reordering methods

Index-map-based reordering methods extract statistical information from the index map

to reorder the palette. The exact colors in the palette itself are seldom taken into account in

these methods.

The main idea behind index-map-based reordering methods is that colors that occur

frequently close to each other should have close indices. If one can reorder the colors to

minimize the average index difference between adjacent pixels in the index map, there will

automatically be a gain in compression performance when predictive coding is used.

 10

To achieve this, index-map-based reordering methods scan the index map to collect

corresponding data before reordering the palette. The data collected can be the frequency of

the occurrence that a pixel with color i is spatially adjacent to a pixel with color j in the index

map, or the frequency of the occurrence that a pixel with color i is used to predict the color of

a pixel with color j. Without losing generality, these data are denoted as C(i,j) in this section

for elaborating how these reordering methods work.

As a matter of fact, by defining the cost as a function of C(i,j), an optimal reordering

solution for achieving the minimum cost can be found with a full search. However, it is

generally impractical because the number of possible permutations of N objects is N! and

hence the computation complexity is extremely high. Many sub-optimal solutions with much

lower complexity were proposed by different researchers accordingly.

Memon and Venkateswaran [Memon96] proposed two methods to reassign indices to

palette colors by trying to minimize objective function ()

−= ∑∑
= =

jijiCJ
N

i

N

j1 1

, , where N

is the palette size. One of them is based on Simulated Annealing (SA) while the other is based

on a heuristic approach named as Pairwise Merge (PM) heuristic.

In the SA-based approach, the indices of two randomly selected palette colors are

interchanged and the cost is reevaluated to check if the exchange is justified. The exchange

will be confirmed if it is. Otherwise it will be rejected conditionally. The likeliness of being

rejected increases as the number of attempts of interchange increases. Attempts are repeated

until a particular termination criterion is satisfied. The realization complexity is huge.

 11

The PM heuristic approach was proposed to reduce the complexity. The idea behind this

approach is to merge two selected ordered sets of colors in a limited number of ways and then

pick the merge that minimizes cost function () jijiC
M

i

M

j

−∑∑
= =1 1

, , where i, j are the indices in

the resultant ordered set and M is the total number of the colors in the resultant ordered result.

The realization complexity is significantly reduced but its performance is not significantly

lowered.

Zeng, Li and Lei [Zeng00] proposed a palette reordering method of even lower

complexity. Palette colors are selected one by one to construct an ordered list. The list is

initialized to be the pair of palette colors which are most frequently located adjacent to each

other. The list grows by attaching one of those palette colors not in the list to either the left or

the right end of the list. The picked color and the picked end should maximize

() ()∑
∈

⋅+
Lc

jiccd

j

ji
ccC ,1log

),(
1

2 for all Lci ∉ , where ()
ji ccC , is the number of

occurrences that palette colors ic and jc are neighbors in the image, L is the current

ordered list, and),(ji ccd is the position displacement between palette colors ic and jc

in the expanded list after ic is attached to list L. Indices are assigned to the ordered list

accordingly after all palette colors are included in the list. This method tries to reduce the

overall index difference of adjacent pixels in the resultant index map.

Pinho and Neves [Pinho04] made a theoretical analysis on Zeng et al.’s Method [Zeng00]

for the case of Laplacian distributed differences of neighboring pixels. The way how to select

a color to build the ordered list was then modified. It was found that, under the Laplacian

model, the picked color should maximize ()∑
∈Lc

ji

j

ccC , for all Lci ∉ and the picked end

 12

should be determined by the sign of () ()∑
∈

⋅−+=∆
Lc

jic

j

j
ccCpM ,21 , where

}...2,1{ Mp
jc ∈ is the position of jc in list L, and M is the number of palette colors in list

L. The selected ic should be attached to the left end of list L if ∆>0. Otherwise it should be

attached to the right end.

Battiato, Gallo, Impoco and Stanco’s method [Battiato01] constructs a weighted graph

based on ()
ji ccC , and then reformulates the reordering problem as a problem of finding the

Hamiltonian path of maximum weight in the weighted graph. To solve this problem, they

proposed a greedy strategy to find a sub-optimal solution by sequentially adding the heaviest

nonvisited edges to the path. The growth of the path starts with the edge of the largest weight.

2.4 Coding methods which are not based on palette reordering

Kuroki, Yamane and Numa’s method [Kuroki04] is actually a preliminary version of

adaptive palette reordering. For a particular pixel, the palette colors are sorted by their

distance to the color of one of the pixel’s neighbors, and the position of the pixel’s color in the

sorted queue determines the new index of the pixel’s color. In this method, the probability of

encountering a particular palette color is not taken into account in the adaptation of the palette

and hence the performance is limited.

Natale, Desoli, Giusto and Vemazza’s method [Natale89] was originally proposed for

coding vector-quantized images but the same idea can be applied in compressing

color-quantized images. To handle color-indexed images, this method predicts the color of a

pixel with its four neighboring pixels and then selects a subset of palette colors based on the

prediction result to form a small palette. The pixel’s color can be encoded with either the

small dynamic palette or the original static palette to save bits.

 13

Arnavut and Sahin adopted an approach [Arnavut06] similar to Battiato et al.’s method

[Battiato01] to reindex the palette with a sub-optimal solution for traveling salesman problem.

Unlike Battiato et al.’s approach, a block-sorting transformation (e.g. Burrows-Wheeler

transformation (BWT) [Burrows94] or the linear order transformation (LOT) [Arnavut99])

using inversion ranks [Arnavut05] is further applied to the reindexed output before entropy

coding is performed.

In Chen, Kwong and Feng’s method [Chen02], a binary-tree structure of colors is

constructed. The tree is traversed in a specific order during encoding. At each node, the colors

of its child nodes and the locations of the pixels associated with the child nodes are encoded.

The encoding of these pixel locations is performed by a context-based arithmetic encoder

with variable size contexts. Pinho and Neves’s method [Pinho05] is an improved version of

[Chen02] in which the context adaptation model is modified. Both methods can provide an

average output bit rate lower than 4 bpp. This implies a compression ratio higher than 2:1.

Ratnakar’s method [Ratnakar98] classifies patterns of neighborhood pixels to predict

and code a pixel. The prediction rules are adaptively learned during the coding process itself.

An average output bit rate close to 4 bpp can be achieved.

The methods presented so far were mainly proposed or developed for handling

color-indexed images. Recently, Robinson proposed a universal codec for coding images of

various kinds [Robinson06]. This codec exploits the correlation among different color

channels during compression and the achieved output bit rate is around 4.5 bpp when coding

color-indexed images. Being a recently-proposed state-of-art codec, it is also included in our

simulation study as a reference for comparison.

 14

Chapter 3 – A framework of adaptive palette reordering

3.1 Introduction

As mentioned in Chapter 2, various reordering methods have been proposed to make

the resulting color index map more suitable for predictive coding. Some of them assign

indices to palette colors based on the attributes of the palette colors [Zaccarin93] or the

distance among the palette colors [Po94]. Some of them assign indices to palette colors

based on the number of occurrences of having two particular palette colors in two spatially

adjacent pixels [Memon97, Zeng00, Pinho04, Battiato01]. In practice, all of them can

effectively improve the compression rate when their outputs are encoded with JPEG-LS

[Weinberger00].

In general, when a palette reordering method is exploited, it is required that the

resultant palette is a static palette shared by all elements in the resultant index map such that

the index map can be viewed as the original color image directly with the help of the palette.

The resultant property is obviously good for convenience and transparency. However, from

the compression point of view, this constraint is an additional burden to the codec and lowers

the coding efficiency to a certain extent. For example, the zero-order entropy of the resultant

index map cannot be reduced under this constraint as a bijective mapping has to be used in the

reordering process.

By considering this, an adaptive palette reordering method is proposed in this chapter.

This method does not take the aforementioned constraint into account and hence gets rid of

the burden. It raster scans the image and adaptively reorders the palette to produce an index

map of lower zero-order entropy. By so doing, the entropy of the resulting index map can be

significantly reduced, and can then be easily encoded with a number of standard lossless

coding techniques such as JPEG-LS and JPEG-2000 efficiently. In terms of zero-order

 15

entropy, the resultant coding performance achieved by the proposed method is much lower as

compared with other conventional lossless color-indexed image compression methods [Po94,

Spira01, Zaccarin93, Memon96, Memon97, Zeng00, Pinho04, Battiato01].

3.2 Adaptive palette reordering

The proposed method processes a given color index map and its associated palette to

generate a dynamic palette and a reindexed index map. The palette is dynamic in a way that

the indices assigned to the palette colors are pixel position dependent and the assignment

changes in the course of the processing. Accordingly, each element in the resultant index map

is used as an index to find a color in the palette corresponding to the current pixel position. As

a consequence, the resultant index map cannot be viewed as the original color image directly

with the help of any static palette in our case.

Since the palette is reordered adaptively, the proposed reordering method is referred to

as adaptive palette reordering method so as to discriminate it from the conventional palette

reordering method in which a fixed palette is designed for all pixels to share.

Let the input color-indexed image be X and the associated palette be Ω={ kc
v

|k=0,1…N-1}, where N is the size of the palette. Without lose of generality, we assume all kc
v

in Ω are sorted according to their luminance and 0c
v

 (i.e. k=0) is the one of the minimum

luminance. Note that this criterion can be easily satisfied through an initialization process.

This sorted palette is used as a reference palette in the codec.

Based on the index map of X, a full-color image can be constructed with palette Ω. The

image is raster scanned and processed. For each pixel, the intensity values of its three color

components are individually predicted with their own corresponding color planes by

 16

Figure 3.1 MED estimation scheme used in JPEG-LS

using a MED predictor. MED is used in JPEG-LS [Weinberger00] and its operation can be

summarized as in Figure 3.1.

Suppose the prediction results of the red, green and blue color components of the

current pixel (i,j) are, respectively, r(i,j), g(i,j) and b(i,j). In vector form, the prediction result

of pixel (i,j) is)),(),,(),,((),(jibjigjirjiv =
v

.),(jiv
v

 is then quantized with palette Ω. Let

the quantization result be pc
v

, the p
th
 palette color in Ω. pc

v
 could be different from the

original color-indexed color of the pixel, rc
v

, which is assumed to be the r
th
 palette color in Ω

without losing the generality.

In the proposed scheme, the occurrence of this discrepancy is recorded and cumulated

for improving the prediction performance in the future. In particular, a table is constructed for

storing the values of {H(m,n)|m,n=0,1…N-1}, where H(m,n) is defined as the number of

occurrences when the quantized predicted color and the original color of a pixel are,

respectively, mc
v

 and nc
v

. All H(m,n) values are initialized to zero at the very beginning and

the table is updated after a pixel is processed. For reference, this table is referred to as

discrepancy frequency table (DF-Table) hereafter.

NW

W

N

X

If NW ≥ max(W,N)
 X’ = min(W,N)
else

 If NW ≤ min(W,N)
 X’ = max(W,N)
 else

 X’ = W+N-NW
X’ is the estimate of
the current pixel X.

 17

Table of {H(m,n)}

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

k 0 1 2 3 4 5 6 7

H(0,k) 29 7 6 5 4 3 2 1

H(1,k) 0 88 1 2 0 0 0 1

H(2,k) 0 2 65 1 2 1 0 0

H(3,k) 0 2 10 56 1 1 0 1

H(4,k) 3 1 0 8 8 8 0 0

H(5,k) 0 0 3 2 3 23 5 1

H(6,k) 0 0 0 1 1 2 23 2

H(7,k) 0 2 0 3 0 2 6 9

(a)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

Prediction Error,
2||),(|| jivck

vv
− 0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1

(b)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

New index 3 4 7 2 1 0 6 5

(c)

Figure 3.2 Example of how to assign indices to a dynamic palette when),(jiv
v

, 4c
v

 and

3c
v

 are, respectively, the predicted, the quantized predicted and the real colors:

(a) current status of the DF-Table, (b) given prediction error
2||),(|| jivck

vv
−

in the example, (c) index assignment of the proposed method

After),(jiv
v

 and its quantization result pc
v

 are determined, the colors in palette Ω are

adaptively reordered based on H(p,k) and 2||),(|| jivck

vv
− for k=0,1…N-1. In particular,

kc
v

’s are sorted according to the values of {H(p,k)|k=0,1…N-1} in descending order. If there

exist two different colors lc
v

 and dc
v

 such that H(p,l)=H(p,d), lc
v

 and dc
v

 will be sorted

according to their Euclidean distances to),(jiv
v

. The closer one is put in front of the other. If

they are still not distinguishable, their order will be determined by their ranking in reference

palette Ω.

 18

The position of rc
v

 in the newly reordered queue can be used as an index to the queue

and is used to represent the pixel in the output of the reordering method. Note the queue

forms a transient version of palette Ω. After processing this pixel, H(p,r) is incremented by 1

to update the frequency count of this event.

For each pixel, 3 MED prediction processes, an N-codeword VQ process and a sorting

process are required. In practice, the sorting effort can be neglected as a sequence of kc
v

’s

which are sorted by {H(p,k)| k=0,1…N-1} can be easily updated when H(p,r) is updated after

processing a pixel. As all we need is the position of rc
v

 in the queue, in most cases it is not

necessary to sort kc
v

’s by 2||),(|| jivck

vv
− .

Figure 3.2 shows an example of how an index is adaptively determined for a pixel when

the current status of H(m,n) is shown in Figure 3.2a. In this example, the palette Ω is of size 8.

Assume that the predicted color, the quantized predicted color and the real color of the pixel

are, respectively,),(jiv
v

, 4c
v

 and 3c
v

. In such a case, { kc
v

|k=0,1…7} are sorted by H(4,k)

and then by 2||),(|| jivck

vv
− . It results in { 26710345 ,,,,,,, cccccccc

vvvvvvvv
}. The position of 3c

v
 in

the sorted sequence is 2 and hence the output index for 3c
v

 is 2. We note that the sequence

order, and hence the index, is counted from 0 here.

In the decoder, to decode a pixel, the same process is carried out to determine the same

transient version of palette Ω. As soon as the index for the pixel is received, it can be used to

fetch the corresponding color in the transient version of palette Ω to reconstruct (i) a color

index map all elements of which use a fixed common palette such as Ω to generate a

full-color image, or even (ii) the full-color image directly.

Figure 3.3 summaries the flow of the proposed adaptive palette reordering method in

pseudo code.

 19

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1.

Raster scan the image

FOR each pixel (i,j)

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j).

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j).

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j).

Quantize)),(),,(),,((),(jibjigjirjiv =
v

 with the reference palette Ω.

% Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
− and then by k.

% The sorted palette colors forms the transient version of the palette

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

.

Update {H(m,n)} by H(p,r)++.

END

Figure 3.3 Pseudo code of the proposed adaptive palette reordering method

3.3 Properties of the reindexed output

Simulations were carried out to evaluate the performance of the proposed reordering

method. A set of 24 standard full-color testing images as shown in Figure 3.4 were

color-quantized to 256-color images with MATLAB function RGB2IND. No dithering was

performed in the quantization. The color-quantized images were then processed to produce

their corresponding reindexed index maps with the proposed adaptive palette reordering

method for analysis.

As an example, Figure 3.5a shows the color quantization result of one of the testing

natural full-color images. Figure 3.5b shows a typical color index map of Figure 3.5a. This

index map is associated with a palette whose colors are sorted by luminance (i.e. palette Ω,

the reference palette in our method). For reference, we refer to this index map as the reference

index map of the color-quantized image. Figure 3.5c is the processing result of the proposed

adaptive palette reordering method. One can see that very few indices are of large values in

the reindexed index map.

 20

Figure 3.4 Original Kodak full-color images (Refers as image 1 to image 24, from

top-to-bottom and left-to-right)

Figure 3.6 shows the histograms of Figure 3.5b and Figure 3.5c. One can see that the

peak of the histogram of our reindexed output is very sharp while that of the reference index

map is not. As a matter of fact, the index histogram of our processing result, approximately,

appears as a monotonic decreasing function and drops sharply from the order of 105 to the

order of 10
3
 in 33 indices. Consequently, the zero-order entropy of our result is significantly

reduced as compared with that of the reference. In particular, the zero-order entropy values of

the reference index map and our processing result are, respectively, 7.176 and 4.238 bpp (bits

per pixel).

 21

(a) Color-quantized image

(c) Our processing output

(b) Reference index map (colors are sorted by

luminance)

(d) Mapping result of (c) using mapping (3.1)

Figure 3.5 Processing result of the proposed adaptive reordering method

As making the resultant reindexed index map directly displayable is not the concern in

our case, the proposed reordering method does not exploit a bijective mapping as in

conventional reordering methods [Po94, Spira01, Zaccarin93, Memon96, Memon97, Zeng00,

Pinho04, Battiato01] to reindex the palette colors, which allows it to change the sorted index

distribution and reduce the zero-order entropy remarkably. Figure 3.7 shows the reduction in

zero-order entropy that the proposed method can achieve when processing the color

quantization results of the testing images shown in Figure 3.4. As a bijective mapping

function is used to reindex palette colors in conventional palette reindexing algorithms such

as [Po94, Spira01, Zaccarin93, Memon96, Memon97, Zeng00, Pinho04, Battiato01], the

zero-order entropy values of their reindexed results are exactly identical to the zero-order

entropy value of the reference.

 22

Figure 3.6 Histograms of color index maps of Kodak-05

Figure 3.7 Reduction in zero-order entropy when the proposed reordering method is used

 23

(a) (b)

Figure 3.8 Correlation between pixel (m,n) and pixel (m+x,n+y) in (a) our reindexed

output, and (b) the reference index map

In general, a significant number of indices in our processing result are of zero values. It

drags the mean value of the indices to the zero side significantly, and hence large index values

(e.g. those close to N) derivate from the mean very much. This results in a large variance of

the indices. To solve this problem, the indices of the index map are further mapped to other

values with a bijective mapping M(•) as follows.

 2/)1(12/)(iNiM
i−−−= for i =0,1…N-1 (3.1)

This mapping shifts the peak of the index distribution from 0 to 2/N -1. Accordingly,

the maximum derivation of an index from the mean is more or less N/2, which reduces the

variance of the indices. Note that this bijective mapping does not alter the lowered zero-order

entropy of the resultant index map. The segmented curve in Figure 3.6 shows the histogram of

the new mapping result and Figure 3.5d shows the mapping result of Figure 3.5c.

 24

Another analysis was carried out to study the effectiveness of the proposed reordering

method in eliminating the spatial statistical redundancy of indices. Figure 3.8 shows the

correlation coefficient of the index values of two pixels which are (x,y) apart in an index map.

It was evaluated with the results shown in Figures 3.5b and 3.5d. One can see that the

remapped indices in the output of our approach are highly uncorrelated after mapping. This

implies that most redundancy is removed by our reordering method. This removal helps a lot

for one to encode the resultant index map efficiently.

This analysis shows that the proposed method can remove a lot of spatial correlation in

the reindexed index map. In data compression, effectiveness in removing redundancy usually

implies compression performance.

For comparison, Figure 3.9 shows some reindexed index maps generated with some

conventional palette reordering methods. As shown in Figure 3.9, the energy retained in our

reindexed index map is much lower as compared with that in the others. Table 3.1 shows the

mean square values of the indices in different reindexed index maps while Table 3.2 shows

the variances of the indices in different reindexed index maps. Here we note that our results

presented in Table 3.2 are obtained with the help of the bijective mapping defined in eqn.

(3.1). The small variance of the data in our outputs is a compression-friendly feature

introduced by the proposed dynamic palette reordering method.

Figure 3.10 shows the histograms of the index map shown in Figure 3.9. Unlike other

reindexed index maps, the histogram of our reindexed index map is very unequalized, which

results in a low zero-order entropy.

Figure 3.11 shows the correlation among adjacent pixels in these reindexed index maps.

One can see that a significant amount of correlation is retained in the outputs of the

conventional static palette reordering algorithms while it is almost removed completely in our

result.

 25

(a) Result of Matlab’s RGB2IND function (b) Po [Po94]

(c) Spira [Spira01] (e) Battiato [Battiato01]

(f) Zeng [Zeng00] (g) Pinho [Pinho04]

(h) Memon [Memon96] (i) Ours

Figure 3.9 Reordered index-maps of Kodak-05 obtained with different methods

 26

0 50 100 150 200 250

10
1

10
2

10
3

10
4

10
5

10
6

index value

fr
e
q
 c

o
u
n
t

Histogram

Ours

Zeng

Pinho

Battiato

Memon

Figure 3.10 Histograms of different reordering results (Kodak-05)

Figure 3.11 Performance of different algorithms in terms of correlation among pixels in

their reindexed results (Kodak-05)

 27

Group Image
Size
(pixel2)

Palette reordering method

Po94 Spira01 Zeng00 Pinho04 Memon96 Battiato01 Ours

C
G
 im

ag
e pool 510x383 3264.9 32086.0 16474.0 13505.0 16945.0 24862.0 49.8

watch 1024x768 13651.0 27129.0 17420.0 16440.0 15871.0 24258.0 129.4

water 1024x768 16546.0 20401.0 17892.0 20114.0 24342.0 23028.0 735.5

N
at
ur
al
 im

ag
e

Kodak 01 768x512 17403.0 23951.0 12358.0 16780.0 23743.0 23729.0 509.4

Kodak 02 768x512 17321.0 13722.0 22765.0 24967.0 17174.0 6561.2 193.9

Kodak 03 768x512 13244.0 18683.0 13119.0 12943.0 19484.0 18459.0 53.9

Kodak 04 768x512 19439.0 21966.0 20053.0 19330.0 18565.0 16875.0 92.9

Kodak 05 768x512 14958.0 22761.0 20570.0 17827.0 19141.0 22489.0 585.1

Kodak 06 768x512 22120.0 24824.0 15255.0 15247.0 25367.0 23393.0 360.1

Kodak 07 768x512 11375.0 13548.0 21687.0 11919.0 23470.0 16878.0 197.1

Kodak 08 768x512 17796.0 20235.0 19384.0 20621.0 23641.0 22154.0 555.7

Kodak 09 768x512 9956.7 29466.0 20969.0 10791.0 15770.0 17224.0 135.1

Kodak 10 768x512 12723.0 20369.0 20861.0 22242.0 15459.0 18815.0 224.5

Kodak 11 768x512 16342.0 18570.0 25170.0 28440.0 23991.0 23249.0 315.4

Kodak 12 768x512 12779.0 34198.0 17183.0 23043.0 18752.0 18134.0 110.0

Kodak 13 768x512 16249.0 22470.0 21638.0 15837.0 22619.0 20463.0 1202.8

Kodak 14 768x512 13962.0 15828.0 20256.0 13425.0 28530.0 18215.0 278.2

Kodak 15 768x512 12755.0 23743.0 16177.0 16249.0 24012.0 16501.0 77.9

Kodak 16 768x512 16830.0 23727.0 14993.0 17500.0 27255.0 18552.0 181.4

Kodak 17 768x512 13334.0 16882.0 17185.0 22560.0 12743.0 12204.0 232.1

Kodak 18 768x512 16275.0 17694.0 30762.0 31107.0 27989.0 21631.0 468.4

Kodak 19 768x512 15501.0 19188.0 28991.0 29021.0 15689.0 26163.0 208.0

Kodak 20 768x512 22053.0 34122.0 9182.3 9170.1 12763.0 18871.0 210.2

Kodak 21 768x512 22372.0 18671.0 12707.0 12944.0 14479.0 16616.0 344.4

Kodak 22 768x512 16639.0 24568.0 27912.0 14674.0 16555.0 20351.0 272.8

Kodak 23 768x512 17252.0 17698.0 17937.0 19620.0 20278.0 17556.0 64.8

Kodak 24 768x512 14573.0 19360.0 20551.0 16003.0 23452.0 21593.0 581.0

Average 15433.8 22068.9 19238.9 18234.0 20299.2 19586.1 310.0

Table 3.1 Mean square values of the indices in different reindexed index maps produced

with different palette reordering methods

 28

Group Image
Size
(pixel2)

Palette reordering method

Po94 Spira01 Zeng00 Pinho04 Memon96 Battiato01 Ours

C
G
 im

ag
e pool 510x383 1800.3 1277.5 504.7 494.0 631.5 1477.5 48.6

watch 1024x768 4064.8 3645.7 1350.2 1300.3 1473.1 2234.9 122.4

water 1024x768 5536.3 4225.4 3547.4 3270.8 4948.3 6323.8 609.3

N
at
ur
al
 im

ag
e

Kodak 01 768x512 3873.5 3692.6 2515.3 2477.8 3814.3 5800.6 403.3

Kodak 02 768x512 3817.1 2991.9 861.9 941.4 1212.2 3479.0 171.6

Kodak 03 768x512 4465.6 3984.6 3225.5 3284.6 3531.3 5493.1 49.8

Kodak 04 768x512 5412.5 4837.0 3082.2 3297.0 4375.8 4799.3 79.2

Kodak 05 768x512 5906.3 3487.0 2353.9 2302.2 2656.0 4084.0 496.8

Kodak 06 768x512 6008.0 4257.9 2887.3 3708.1 5475.4 6009.6 300.8

Kodak 07 768x512 4283.8 4699.1 2647.6 2490.6 2834.3 4371.8 183.5

Kodak 08 768x512 5206.9 4972.0 3801.6 3966.8 4820.7 4723.0 472.4

Kodak 09 768x512 3100.6 2960.8 1352.0 1745.0 1812.2 3415.8 119.8

Kodak 10 768x512 3765.6 3394.2 2271.4 2046.4 3381.8 5718.1 202.1

Kodak 11 768x512 4600.6 4313.5 3076.1 3108.7 5838.7 5087.8 281.5

Kodak 12 768x512 3902.2 5258.3 2297.5 2546.1 2677.0 4381.5 98.3

Kodak 13 768x512 4837.1 4532.3 3352.8 3835.9 4240.7 4586.9 916.7

Kodak 14 768x512 4914.5 3921.4 2354.9 2893.3 4083.9 5373.8 240.9

Kodak 15 768x512 5058.8 5371.6 3156.9 2850.7 5356.5 5022.9 69.8

Kodak 16 768x512 5250.9 5841.5 2695.5 3660.2 3552.3 5234.4 157.2

Kodak 17 768x512 4883.1 3188.6 1856.6 1758.7 3344.8 4631.6 206.8

Kodak 18 768x512 5878.9 3069.6 3506.7 3336.6 4311.4 4273.2 399.6

Kodak 19 768x512 3671.0 4729.0 3327.6 4061.5 4363.4 6759.0 177.8

Kodak 20 768x512 4541.1 6282.9 3206.5 3306.6 2560.0 2217.5 191.2

Kodak 21 768x512 4596.6 3809.8 3904.8 4511.7 4122.6 4469.8 302.7

Kodak 22 768x512 4538.4 3921.1 3554.8 3520.4 4206.3 5495.5 234.4

Kodak 23 768x512 6104.8 3931.5 3771.6 3851.6 4080.7 6167.1 61.2

Kodak 24 768x512 5304.2 3759.6 2726.0 2625.0 3176.3 5793.2 509.1

Average 4641.6 4087.3 2710.7 2859.0 3588.2 4719.4 263.2

Table 3.2 Variances of the indices in different reindexed index maps produced with

different palette reordering methods

 29

Table 3.3 and table 3.4 show the upper bound of computational complexity of the

proposed dynamic palette reordering algorithm in pre-processing stage and post-processing

stage, respectively. There are 3 stages processes: Color Prediction, Color Quantization and

Palette reordering. N is the size of palette Ω. The complexity is proportional to the number of

colors in palette.

Operation Stage Operations / pixel

CMP
Color Prediction

6

ADD 6

CMP
Color Quantization

N

ADD 2N

CMP Reordering N

Table 3.3 The computational complexity of the proposed dynamic palette reordering

algorithm (Pre-Processing)

Operation Stage Operations / pixel

CMP
Color Prediction

6

ADD 6

CMP
Color Quantization

N

ADD 2N

CMP Reordering N(N+1)/2

Table 3.4 The computational complexity of the proposed dynamic palette reordering

algorithm (Post-Processing)

 30

3.4 A generalized framework

An adaptive palette reordering method is proposed in Section 3.3. Unlike those

conventional palette reordering methods [Po94, Spira01, Zaccarin93, Memon97, Zeng00,

Pinho04, Battiato01], it reorders the palette on the fly when accessing the pixels in an image

such that the indices to the colors in the palette is spatial variant. To complete the compression,

an encoder is required to encode the indices in the end. The index encoder works with the

proposed adaptive palette reordering method to form a coding system for compressing a

color-quantized image.

Figure 3.12 shows the basic structure of such a coding system. Though a number of

details of the proposed adaptive palette reordering method have been provided in the previous

section, the whole system can be generalized with the simplified model shown in Figure 3.12.

In particular, pixels are processed one by one. For each pixel, a prediction is performed to

estimate its color. The prediction error and, if necessary, some other available information as

well, is then exploited to reorder the color in the palette. The index to the color in the

reordered palette is encoded after all.

The generalized structure shown in Figure 3.12 forms a framework for coding

color-quantized images. As a matter of fact, based on this structure, a number of variants of

the proposed palette reordering methods can be developed by varying the actual

implementation of a particular functional block. In the following chapters, we will investigate

some of these variants and evaluate the impacts of different factors.

 31

),(jiv
v

),(jix
vΩ∈),(jix

v

Figure 3.12 Structure of a codec using adaptive palette reordering method

3.5 Summary

An adaptive palette reordering method is proposed in this Chapter to reshape the

statistical properties of a color index map. This method uses the color planes instead of the

index plane to do prediction such that the color spatial property can be exploited. Unlike other

reordering methods, this method adaptively reorders the palette based on both the palette and

the index map to produce a new index map of low variance, low zero-order entropy and little

spatial correlation.

Based on this proposed palette reordering method, a coding system for compressing

color-quantized images is proposed. It forms a framework for one to develop other coding

schemes by modifying the actual realization of its functional blocks. In the following chapters,

we are going to investigate some of these variants and evaluate the impacts of different factors

in the realization of this coding system.

 32

Chapter 4 – Impact of prediction to adaptive palette reordering

4.1 Introduction

The proposed adaptive palette reordering method presented in Chapter 3 can be

generalized with the model shown in Figure 4.1. This model forms a framework for carrying

out adaptive palette reordering. In other words, one can just treat the method proposed in

Chapter 3 as a particular example of the realization of adaptive palette reordering method. By

using different approaches to realize the prediction module or the color reordering module in

the framework, one can develop a number of variants of the proposed adaptive palette

reordering method.

The MED predictor is exploited to realize the prediction module in the method proposed

in Chapter 3. In particular, the prediction is carried out in the red, the green and the blue color

intensity planes separately. In this chapter, we are going to explore some other variants for the

realization of the prediction module. In particular, we will investigate the impact of (1) using

Gradient Adjusted Predictor (GAP), the predictor used in CALIC codec [Wu97], instead of

the MED predictor used in JPEG-LS [Weinberger00] and (2) carrying out the prediction in the

index plane directly instead of individual color intensity planes.

This chapter is organized as follows. First, a brief introduction of the difference between

MED and GAP is given in Section 4.2. An evaluation is then made in Section 4.3 to compare

the prediction performance of MED and GAP in the case when the prediction is carried out in

the index domain directly. In Section 4.4, we show their prediction performance in the case

when the prediction is carried out in the intensity domain. The actual impact of these different

prediction schemes to the performance of adaptive palette reordering is discussed in Section

4.5. A summary is finally given in Section 4.6.

 33

),(jiv
v

),(jix
vΩ∈),(jix

v

Figure 4.1 Structure of adaptive palette reordering

4.2 MED vs GAP in prediction

Median Edge Detection (MED) is a simple edge detector originally proposed for

JPEG-LS. It tries to classify a pixel by detecting whether it is in a smooth region or on a

vertical or horizontal edge. The detection is based on 3 neighboring pixels of the pixel of

interest as shown in Figure 4.2. The detection result then determines the prediction result of

pixel X.

The MED predictor is designed to be simple so as to reduce the realization complexity.

It is used in the adaptive palette reordering method proposed in Chapter 3 to realize the

prediction module.

As compared with MED, Gradient Adjusted Predictor (GAP) is a more complicated

predictor in which a more sophisticated edge detection scheme is performed in the prediction.

A larger support region of the pixel of interest is used to classify the edge that the pixel is on

into more classes according to its nature.

Figure 4.3 shows the causal context template used for predicting the value of pixel x.

The pseudo code shown in Figure 4.4 summaries the working principle of GAP. The predictor

coefficients and the thresholds involved in the pseudo code were determined empirically

[Wu97]. As compared with MED, the number of pixels covered by the support

 34

Figure 4.2 MED estimation scheme used in JPEG-LS

region increases from 3 to 7 to collect more information of the neighborhood of the predicted

pixel. Besides, its edge detector is not only able to classify the orientation of an edge, but tell

if it is a sharp edge, a strong edge or a weak edge as well.

GAP is the predictor used in CALIC. One can see that more effort is required to realize

GAP than MED. This is expected as GAP is designed for a better performance. As a

consequence, its prediction performance is expected to be higher in return.

 NN NNE

 NW N NE

WW W x

Figure 4.3 The causal context template used in CALIC for pixel x

As a matter of fact, the pseudo code presented in Figure 4.4 is only the core part of GAP.

The original version of GAP[Wu07] exploits some error feedback and compensation schemes

to refine the prediction result so as to improve the performance. This refinement step is

dropped when GAP is used in our study as the marginal improvement does not justify the

required realization complexity of the refinement step. Accordingly, in this work, GAP is

referred to as the version without refinement as it is presented in Figure 4.4.

NW

W

N

X

If NW ≥ max(W,N)
 X’ = min(W,N)
else

 If NW ≤ min(W,N)
 X’ = max(W,N)
 else

 X’ = W+N-NW
X’ is the estimate of
the current pixel X.

 35

Pseudo Code Remarks

NNENENNNNWWv IIIIIId −+−+−= Criteria for vertical direction edge

NNENWNWWWh IIIIIId −+−+−= Criteria for horizontal direction edge

4/)(2/)(NWNENW IIIIJ −++=

IF (hv dd − > 80), WII =ˆ CASE: Sharp Horizontal Edge

ELSEIF (hv dd − < -80), NII =ˆ CASE: Sharp Vertical Edge

ELSEIF (hv dd − > 32), 2/)(ˆ
WIJI += CASE: Strong Horizontal Edge

ELSEIF (hv dd − < -32), 2/)(ˆ
NIJI += CASE: Strong Vertical Edge

ELSEIF (hv dd − > 8), 4/)3(ˆ
WIJI += CASE: Weak Horizontal Edge

ELSE (hv dd − < -8), 4/)3(ˆ
NIJI += CASE: Weak Vertical Edge

END

Figure 4.4 Pseudo code for classifying an edge with Gradient Adjusted Predictor (GAP) to

predict a pixel value

4.3 Prediction in index domain

As mentioned in Chapter 1, it is difficult to make a prediction in the index plane of a

color-quantized image as two similar colors can be of completely different index values in a

palette. At the same time, two completely different colors can be of similar index values in a

palette. Figure 4.5b shows a typical index plane for representing the color quantized image

shown in Figure 4.5a. It is generated with Matlab’s RGB2IND function. One can see that the

spatial correlation among pixels that exists in the color intensity planes can hardly be found in

the index plane. Accordingly, it makes prediction meaningless in the index plane to a certain

extent.

To solve this problem, one can reorder the colors in the palette to establish a connection

between the color luminance value and the index value. Since there is correlation among

adjacent pixels in their luminance values, this reordering in palette colors is able to introduce

a correlation among the indices of adjacent pixels.

 36

(a) Color-quantized image (b) Result of Matlab’s RGB2IND function

(c) Luminance plane of (a) (d) Reference index map (colors are sorted by

luminance)

Figure 4.5 Color-quantized image Kodak-05 and some of its index maps: (a)

color-quantized image, (b) the index map generated with Matlab’s RGB2IND

function, (c) luminance plane of (a), and (d) the index map associated with the

palette sorted by luminance.

In our study, palette colors are sorted by their luminance values

Y=0.299R+0.587G+0.114B, where R, G and B are, respectively, the intensity values of the

red, the green and the blue color components. The sorted palette is then used as a reference

palette to update the index map. Figure 4.5d shows the index map associated with the

reference palette. As mentioned in Chapter 3, this index map is referred to as the reference

index map.

The reference index map appears as a grey-level image and the pixels are now highly

correlated. Figure 4.5c shows the luminance plane of Figure 4.5a for comparison. With this

spatial correlation, prediction can be performed in the reference index plane.

 37

(a) MED (b) GAP

Figure 4.6 Index residue planes of Kodak-05 when the prediction is done is the index

plane directly (a) MED and (b) GAP

As a remark, we note that GAP may produce a floating-point prediction result. When a

prediction is carried out in the index plane with GAP, the prediction result is actually the

rounding result of the prediction result as an index must be an integer.

Simulation was carried out to evaluate the prediction performance of MED and GAP in

predicting an index in the index plane. Figure 4.6a and Figure 4.6b show, respectively, MED’s

and GAP’s prediction residue planes of Kodak-05. Here, the residue means the difference

between the predicted index p and the real index r of a pixel. Apparently, the two residue

planes are more are less the same.

Figure 4.7 shows the histograms of the residue planes shown in Figure 4.6. One can see

that there are more pixels whose indices are exactly estimated in MED’s prediction result. In

particular, 29.3% of pixels are accurately predicted with MED while only 13.8% of pixels are

accurately predicted with GAP. However, the variances of MED’s and GAP’s residue planes

are, respectively, 705.17 and 694.58. In other words, the average performance of GAP is a bit

better but the superiority is not that obvious. Similar observations were obtained in the

simulation results when using other testing images. By considering these findings and the

lower complexity of MED, MED seems better to be used when handling the index plane.

 38

 (a) MED (b) GAP

Figure 4.7 Histograms of Figure 4.6 (in log scale)

Table 4.1 shows some more data for comparing the prediction performance of MED and

GAP in predicting a pixel in the index plane. Their performance is compared in three aspects

including the energy of the index prediction error (EI), the entropy of the index prediction

error (EntropyI) and the energy of the color prediction error (EC). In particular, they are

defined as follows.

()

−= ∑

),(

2
10),(),(log10

ji

I jipjirE in dB (4.1)

∑
−

=

=

1

0

2log

N

k all

k

all

k
I

n

n

n

n
Entropy in bpp (bits per pixel) (4.2)

−= ∑

),(

2

10),(),(log10

ji

prC jicjicE
vv

 in dB (4.3)

where r(i,j) and p(i,j) are, respectively, the real index and the predicted index of pixel (i,j),

alln is the total number of pixels in an image and kn is the number of pixels whose

predicted indices are different from whose real indices by k.),(jicr

v
 and),(jic p

v
 are,

respectively, the real color and the predicted color of pixel (i,j). They are determined by the

real index r(i,j) and the predicted index p(i,j) of pixel (i,j). As a remark, all three color

components of a color is normalized such that their intensity values are bounded in [0,1].

 39

Group Image
Size
(pixel2)

Energy of the index prediction
error, EI (dB)

Entropy of the index prediction
error, EntropyI (bpp)

Energy of the color prediction
error, EC (dB)

MED GAP MED GAP MED GAP
C
G

im
ag
e pool 510x383 71.095 70.273 2.149 2.816 29.278 37.275

watch 1024x768 81.366 81.357 2.831 3.440 35.096 37.783

water 1024x768 85.881 85.760 5.617 6.020 39.889 41.728

N
at
ur
al
 im

ag
e

Kodak 01 768x512 83.022 83.140 5.879 6.216 36.218 37.761

Kodak 02 768x512 80.851 80.682 4.982 5.702 32.213 35.958

Kodak 03 768x512 77.570 77.421 3.654 4.521 35.295 42.714

Kodak 04 768x512 79.518 79.105 4.668 5.305 33.959 39.020

Kodak 05 768x512 84.429 84.364 5.665 6.113 39.186 41.457

Kodak 06 768x512 80.966 80.936 5.244 5.559 35.249 36.898

Kodak 07 768x512 79.560 79.292 4.139 4.822 34.320 39.304

Kodak 08 768x512 81.738 81.817 5.359 5.731 37.215 38.795

Kodak 09 768x512 76.711 76.373 4.400 4.856 33.686 39.730

Kodak 10 768x512 78.146 77.993 4.508 5.018 33.679 38.007

Kodak 11 768x512 82.111 82.085 5.042 5.595 35.856 39.148

Kodak 12 768x512 76.467 76.261 4.194 4.912 31.687 36.527

Kodak 13 768x512 86.077 86.083 6.573 6.750 40.239 40.917

Kodak 14 768x512 81.638 81.535 5.324 5.756 38.373 42.629

Kodak 15 768x512 77.611 77.016 4.182 4.706 34.911 40.108

Kodak 16 768x512 78.514 78.423 4.706 5.197 31.626 34.261

Kodak 17 768x512 78.160 77.765 4.593 4.927 33.461 36.378

Kodak 18 768x512 83.193 83.072 5.789 6.169 37.414 39.411

Kodak 19 768x512 78.996 78.728 4.941 5.320 34.580 39.058

Kodak 20 768x512 77.642 77.481 3.810 4.004 33.447 36.638

Kodak 21 768x512 82.035 82.003 5.254 5.721 35.699 38.619

Kodak 22 768x512 80.875 80.600 5.131 5.647 35.086 39.465

Kodak 23 768x512 77.307 76.870 3.380 4.365 34.696 43.497

Kodak 24 768x512 83.056 82.999 5.099 5.616 38.184 39.206

Average 80.168 79.979 4.708 5.215 35.205 38.974

Table 4.1 Prediction performance of MED and GAP when the prediction is carried out in

the index domain

From Table 4.1, one can see that the performance of MED and GAP is similar in terms

of EI. In terms of EC, MED is better than GAP. The gap between MED and GAP is much

larger in the EC as compared with that in EI because smaller difference in two indices does not

imply smaller Euclidean distance between their associated colors. There is no linear

relationship between index difference and color difference, and it is not even monotonic.

MED’s prediction performance is better than GAP’s in terms of the entropy of index

prediction error. This measure describes the distribution of the prediction error in the index

 40

plane and reflects its statistical property. In case the prediction residue of MED is directly

encoded with entropy coding at this point, the achievable average compression rate is around

4.7 bpp.

The focus of this section is put on the prediction performance of GAP and MED when

the prediction is carried out in an index plane. Evaluation of their performance is directly

carried out in their prediction results. The impact of their prediction results to the overall

performance of adaptive palette reordering has still not yet been discussed. This issue will be

addressed in Section 4.5.

4.4 Prediction in color intensity domain

Prediction can also be done in each of the three color planes. For each pixel (i,j), its

three predicted color components form a vector denoted as),(jiv
v

 which defines the

predicted color of the pixel. After color quantizing),(jiv
v

 with the palette associated with

the image, the predicted index, say p(i,j), can be determined as the index of the quantized

predicted color in the palette.

Both MED and GAP can be used for the prediction. As a matter of fact, the adaptive

palette reordering method presented in Chapter 3 exploits MED to predict the intensity values

of individual color components of (i,j). This section presents some simulation results showing

the performance of MED and GAP when the prediction is carried out in individual color

planes.

Figure 4.8a and Figure 4.8b show, respectively, MED’s and GAP’s index prediction

error planes of Kodak-05. Figure 4.9 shows their corresponding histograms. 30.8% of pixels

are accurately predicted with MED while only 27.4% of pixels are accurately predicted with

 41

(a) MED (b) GAP

Figure 4.8 Index residue planes of Kodak-05 when the prediction is done is individual

color planes (a) MED and (b) GAP

GAP. The variances of MED’s and GAP’s residue planes are, respectively, 677.72 and 675.34.

Their performance is actually more or less the same when the prediction is done in individual

color planes. Similar observations were obtained when the simulation was done with other

testing images.

Table 4.2 shows the prediction performance of MED and GAP in terms of the energy of

the index prediction error (EI), the entropy of the index prediction error (EntropyI) and the

energy of the color prediction error (EC). The definition of EI and EntropyI is exactly the same

as that in eqn. (4.1) and (4.2), while EC is defined as

−= ∑

),(

2

10),(),(log10

ji

rC jivjicE
vv

 in dB (4.4)

where),(jicr

v
 and),(jiv

v
 are, respectively, the real color and the predicted color of pixel

(i,j). Unlike the case where the prediction is preformed in the index plane, the predicted color

may not be a color in the palette and hence the definition of EC is different in the two cases.

 42

 (a) MED (b) GAP

Figure 4.9 Histograms of Figure 4.8 (in log scale)

The prediction performance of MED is a bit better than that of GAP in all three

measures. The achievable average compression rate is around 4.6 bpp when the index

prediction residue of MED is directly encoded with entropy coding, which is around 0.2 bpp

lower than when GAP is used.

By comparing Table 4.1 and Table 4.2, one can find that the performance gap between

GAP and MED is narrowed when the prediction is done in individual color planes. To a

certain extent, it implies that the prediction is more robust to the predictor to be used when it

is done in individual color planes. Another observation we have is that MED is a bit better

than GAP in reducing the prediction error and lowering the zero-order entropy of the index

prediction error.

Like the discussion we have in section 4.2, the focus of this section is put on the

prediction performance of GAP and MED only. In the following section, their actual impact to

the overall performance of adaptive palette reordering will be discussed.

 43

Group Image
Size
(pixel2)

Energy of the index
prediction error, EI (dB)

Entropy of the index
prediction error, EntropyI

(bpp)

Energy of the color
prediction error, EC (dB)

MED GAP MED GAP MED GAP

C
G

im
ag
e pool 510x383 71.195 70.902 2.114 2.160 24.696 24.537

watch 1024x768 81.174 81.809 2.748 3.071 33.073 33.408

water 1024x768 85.929 85.848 5.555 5.718 38.899 38.713

N
at
ur
al
 im

ag
e

Kodak 01 768x512 83.010 84.345 5.806 6.224 35.275 36.507

Kodak 02 768x512 80.848 81.545 4.881 5.098 30.034 30.448

Kodak 03 768x512 77.451 78.090 3.574 3.738 30.199 30.436

Kodak 04 768x512 79.491 79.481 4.586 4.687 30.947 30.604

Kodak 05 768x512 84.259 84.242 5.560 5.715 37.589 37.483

Kodak 06 768x512 80.955 82.391 5.189 5.551 34.134 35.280

Kodak 07 768x512 79.426 79.981 4.056 4.461 31.026 31.361

Kodak 08 768x512 81.762 83.290 5.297 5.923 36.579 38.057

Kodak 09 768x512 76.657 78.000 4.357 4.511 30.065 31.142

Kodak 10 768x512 77.945 78.445 4.451 4.590 31.198 31.528

Kodak 11 768x512 82.033 82.626 4.962 5.282 33.613 33.981

Kodak 12 768x512 76.382 77.513 4.135 4.429 29.459 30.415

Kodak 13 768x512 86.082 85.886 6.516 6.565 39.866 39.569

Kodak 14 768x512 81.594 81.878 5.224 5.419 34.660 34.678

Kodak 15 768x512 77.605 78.148 4.125 4.160 31.619 31.687

Kodak 16 768x512 78.488 79.875 4.646 5.024 30.459 31.744

Kodak 17 768x512 78.174 78.301 4.548 4.620 32.105 31.879

Kodak 18 768x512 83.171 82.892 5.707 5.698 36.308 35.753

Kodak 19 768x512 78.936 80.808 4.884 5.145 32.470 34.433

Kodak 20 768x512 77.566 78.047 3.773 3.829 32.044 32.898

Kodak 21 768x512 81.981 82.481 5.194 5.296 34.393 34.875

Kodak 22 768x512 80.886 81.207 5.059 5.109 33.070 33.144

Kodak 23 768x512 77.062 77.133 3.331 3.263 30.793 30.346

Kodak 24 768x512 82.876 82.838 5.033 5.200 37.495 37.418

Average 80.109 80.667 4.641 4.833 33.040 33.419

Table 4.2 Prediction performance of MED and GAP when the prediction is carried out in

the color intensity domain

 44

4.5 Impact to the overall reordering performance

In Sections 4.3 and 4.4, the prediction performance of MED and GAP in different

scenarios is evaluated. Specifically, the following four schemes are evaluated:

(i) Using MED in the index plane;

(ii) Using GAP in the index plane;

(iii) Using MED in individual color planes and

(iv) Using GAP in individual color planes.

The evaluation is directly made on the prediction error in either the index plane or the

color plane. As shown in Figure 4.1, prediction is only one of the components in our proposed

adaptive palette reordering framework. The actual impact of the four prediction schemes to

the overall adaptive palette reordering performance has to be investigated and the

investigation result is presented in this section.

Figure 4.10 shows the pseudo code for realizing adaptive palette reordering with either

prediction scheme (i) or prediction scheme (ii), while Figure 4.11 shows the pseudo code for

realizing adaptive palette reordering with prediction scheme (iii) or prediction scheme (iv).

The lines in blue highlight the difference between the four corresponding adaptive palette

reordering methods.

For reference, the adaptive palette reordering methods using prediction schemes (i), (ii),

(iii) and (iv) are, respectively, referred to as APR-I-MED, APR-I-GAP, APR-C-MED and

APR-C-GAP hereafter. Here, ‘APR’ stands for adaptive palette reordering. ‘I’ and ‘C’ are used

to specify whether the prediction is carried out in the index plane or individual color intensity

planes. ‘MED’ and ’GAP’ specify the prediction scheme used in the prediction.

 45

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1.

Raster scan the image

FOR each pixel (i,j)

Predict index at (i,j) with MED/GAP† in the index map.

% Assume the predicted index value is p

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2||),(|| jivck

vv
− and then by k.

% The sorted palette colors forms the transient version of the palette

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

.

Update {H(m,n)} by H(p,r)++.

END

† MED is used in prediction scheme (i) while GAP is used in scheme (ii).

Figure 4.10 Pseudo code of an adaptive palette reordering method in which prediction is

carried out in the index plane.

As a remark, we note that APR-C-MED is actually the adaptive palette reordering

method presented in Chapter 3.

Unlike the approach presented in Sections 4.3 and 4.4, to evaluate the contribution of the

four prediction schemes to the overall adaptive palette reordering performance, we compare

the reindexed index maps obtained with APR-I-MED, APR-I-GAP, APR-C-MED and

APR-C-GAP directly. Figure 4.12 shows the corresponding reindexed index maps of

Kodak-05 and Figure 4.13 shows their histograms. Bijective mapping (3.1) was used in the

final stage of the production of the index maps shown in Figure 4.12. From Figure 4.13, one

can see that the performance of APR-C-MED and APR-C-GAP is comparatively better in the

four evaluated adaptive palette reordering methods. Specifically, the zero-order entropy

values of the results provided by APR-I-MED, APR-I-GAP, APR-C-MED and APR-C-GAP

are, respectively, 4.766, 5.620, 4.237 and 4.238 bpp.

 46

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1.

Raster scan the image

FOR each pixel (i,j)

Predict the red component of pixel (i,j) with MED/GAP
†
 in the red color plane to get r(i,j).

Predict the green component of pixel (i,j) with MED/GAP† in the green color plane to get g(i,j).

Predict the blue component of pixel (i,j) with MED/GAP
†
 in the blue color plane to get b(i,j).

Quantize)),(),,(),,((),(jibjigjirjiv =
v

 with the reference palette Ω.

% Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
− and then by k.

% The sorted palette colors forms the transient version of the palette

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

.

Update {H(m,n)} by H(p,r)++.

END

†
 MED is used in prediction scheme (iii) while GAP is used in scheme (iv).

Figure 4.11 Pseudo code of an adaptive palette reordering method in which prediction is

carried out in individual color intensity planes.

Figure 4.14 shows the correlation among adjacent pixels in the reindexed index maps

shown in Figure 4.12. One can see that little correlation is retained in all four reindexed index

maps. Among the four adaptive palette reordering methods, the decorrelation performance of

APR-C-MED is the best.

Tables 4.3 and 4.4 summarize the performance of APR-I-MED, APR-I-GAP,

APR-C-MED and APR-C-GAP when they were used to process a set of testing images. In

particular, Table 4.3 shows the variance of the indices in a reindexed index map while Table

4.4 shows the zero-order entropy of the indices in a reindexed index map. On average,

performing prediction in individual color intensity planes provides a reindexed index map of

lower entropy and smaller variance as compared with performing prediction in the index

plane. Another observation is that the performance of APR-C-MED and APR-C-GAP is more

or less the same. By considering that MED is of lower complexity, it seems that APR-C-MED

is the best one of the four evaluated adaptive palette reordering methods.

 47

(a) APR-I-MED (b) APR-I-GAP

(c) APR-C-MED (d) APR-C-GAP

Figure 4.12 Kodak-05’s reindexed index-maps obtained with different methods

Figure 4.13 Histograms of Figure 4.12 (in log scale)

 48

Figure 4.14 Performance of different algorithms in terms of correlation among pixels in

their reindexed results

Group Image Size (pixel2)
Variance of the reindexed index map

APR-I-MED APR-I-GAP APR-C-MED APR-C-GAP

C
G

im
ag
e pool 510x383 36.91 74.57 12.76 10.82

watch 1024x768 72.50 97.25 33.06 32.10

water 1024x768 306.47 383.90 186.74 177.09

N
at
ur
al
 im

ag
e

Kodak 01 768x512 206.00 255.11 129.98 153.07

Kodak 02 768x512 113.22 146.06 49.72 52.41

Kodak 03 768x512 59.86 121.74 14.03 12.34

Kodak 04 768x512 96.74 172.98 24.21 20.68

Kodak 05 768x512 319.14 452.60 148.68 127.00

Kodak 06 768x512 174.72 219.64 92.01 96.92

Kodak 07 768x512 106.62 168.87 50.25 43.29

Kodak 08 768x512 234.81 300.84 141.27 150.25

Kodak 09 768x512 58.25 78.25 34.81 43.90

Kodak 10 768x512 94.83 117.49 57.35 55.37

Kodak 11 768x512 199.52 280.62 80.36 77.20

Kodak 12 768x512 50.93 75.36 28.41 28.81

Kodak 13 768x512 530.03 705.67 304.99 261.29

Kodak 14 768x512 182.79 273.23 71.15 63.33

Kodak 15 768x512 66.30 120.01 20.24 15.58

Kodak 16 768x512 80.59 105.67 46.63 51.14

Kodak 17 768x512 95.64 120.17 59.34 51.72

Kodak 18 768x512 269.42 406.00 119.23 102.70

Kodak 19 768x512 90.81 124.10 53.42 71.30

Kodak 20 768x512 84.61 110.39 53.68 56.56

Kodak 21 768x512 181.59 254.30 87.79 86.51

Kodak 22 768x512 148.49 234.77 69.82 63.02

Kodak 23 768x512 68.38 138.64 16.73 15.42

Kodak 24 768x512 279.48 348.72 147.42 124.79

Average 155.88 218.03 79.04 75.73

Table 4.3 Variance of the indices in a reindexed index map produced with adaptive palette

reordering using a particular prediction scheme (with mapping (3.1))

 49

Group Image Size (pixel2)
Zero-order entropy of the reindexed index map (bpp)

APR-I-MED APR-I-GAP APR-C-MED APR-C-GAP

C
G

im
ag
e pool 510x383 1.516 1.824 1.401 1.376

watch 1024x768 2.380 2.880 2.094 2.266

water 1024x768 4.945 5.691 4.499 4.558

N
at
ur
al
 im

ag
e

Kodak 01 768x512 4.921 5.333 4.564 4.787

Kodak 02 768x512 3.792 4.306 3.404 3.462

Kodak 03 768x512 2.750 3.791 2.403 2.428

Kodak 04 768x512 3.723 4.817 3.238 3.200

Kodak 05 768x512 4.766 5.620 4.237 4.238

Kodak 06 768x512 4.479 4.999 4.070 4.241

Kodak 07 768x512 3.270 4.036 2.882 3.011

Kodak 08 768x512 4.658 5.426 4.202 4.541

Kodak 09 768x512 3.431 3.802 3.244 3.275

Kodak 10 768x512 3.662 4.465 3.380 3.354

Kodak 11 768x512 4.096 4.965 3.599 3.739

Kodak 12 768x512 3.350 4.234 3.054 3.146

Kodak 13 768x512 5.776 6.355 5.277 5.202

Kodak 14 768x512 4.355 5.090 3.807 3.866

Kodak 15 768x512 3.215 4.120 2.859 2.773

Kodak 16 768x512 3.793 4.326 3.484 3.642

Kodak 17 768x512 3.777 4.251 3.480 3.416

Kodak 18 768x512 4.809 5.792 4.191 4.090

Kodak 19 768x512 4.036 4.651 3.704 3.888

Kodak 20 768x512 3.224 3.587 3.020 3.044

Kodak 21 768x512 4.235 5.028 3.796 3.831

Kodak 22 768x512 4.251 5.249 3.783 3.725

Kodak 23 768x512 2.520 4.085 2.260 2.182

Kodak 24 768x512 4.323 5.161 3.927 3.951

Average 3.854 4.588 3.476 3.527

Table 4.4 Zero-order entropy of the indices in a reindexed index map produced with

adaptive palette reordering using a particular prediction scheme

 50

4.6 Summary

Index prediction is one of the critical components of adaptive palette reordering, and it

can be realized with different schemes. Four schemes are studied and their prediction

performance is evaluated in this chapter. These schemes exploits MED or GAP to carry out

the prediction in either the index plane or individual color intensity planes. In terms of various

measures related to prediction error, the scheme which exploits MED to predict individual

color components appears to be better.

The actual impact of these prediction schemes to the overall adaptive palette reordering

performance is then evaluated. Again it is found that the scheme which exploits MED to

predict individual color components is the best as it can provide reindexed index maps of

lower variance and lower entropy on average at a lower complexity cost.

 51

Chapter 5 – Impact of color reordering to adaptive palette reordering

5.1 Introduction

There are two functional components in adaptive palette reordering. One is index

prediction and the other is color reordering. Each one of them can be realized with different

schemes and, accordingly, results in different palette reordering outputs. In Chapter 4, we

investigates four different schemes for realizing index prediction, and their impact to the

overall performance of adaptive palette reordering is reported. In this chapter, we put our

focus on the realization of color reordering. Several color reordering schemes will be

introduced, and their contribution to the overall palette reordering performance will be

evaluated.

The actual implementation of color reordering can be done with different approaches. In

conventional palette reordering methods, the resultant palette is static and the palette colors

can be sorted by a measure which is not pixel-dependent. For example, one can sort the colors

by luminance to obtain the reference palette used in this thesis. However, in adaptive palette

reordering, palette colors are sorted by a measure of some pixel-dependent properties such

that the resultant palette is pixel dependent as well.

Since performing MED prediction in individual color intensity planes is found to be the

best prediction scheme in the schemes evaluated in Chapter 4, it is used in our study of the

performance of various color reordering schemes to produce prediction results for the

evaluated color reordering schemes.

This chapter is organized as follows. Two distance-oriented sorting schemes and one

history-oriented sorting schemes are, respectively, introduced in Section 5.2 and Section 5.3

for realizing color reordering. Then, two hybrid sorting schemes which combine

distance-oriented and history-oriented sorting schemes together are proposed in Section 5.4.

 52

In Section 5.5, simulation results are presented for comparing the performance of using

various color sorting schemes in realizing adaptive palette reordering. Finally, a brief

summary is given in Section 5.6.

5.2 Distance-oriented sorting

For each pixel (i,j), the prediction module in adaptive palette reordering provides a

predicted color),(jiv
v

 as its output. One can sort the palette colors by their Euclidean

distances to),(jiv
v

. The closer one is put in the front. As),(jiv
v

 is pixel-dependent, the

resultant palette is also pixel dependent, and it can be considered as a transient version of the

original palette. It is possible that some palette colors are equally distant away form),(jiv
v

.

In that case, these colors are sorted by their luminance and then by their original index values

in the original palette. The sorting is done in ascending order.

The position of rc
v

 in the newly reordered queue can be used as an index to the queue

and is used to represent the pixel in the output of the reordering method. The newly sorted

color sequence forms a transient version of palette Ω.

For reference, the adaptive palette reordering method using this color reordering scheme

is referred to as APR-D-PC, where ‘D-PC’ means palette colors are sorted by their distances

to the predicted color of pixel (i,j).

To reduce the realization complexity of APR-D-PC, one can quantize),(jiv
v

 with the

original palette and then sort the palette colors by their distances to the quantized),(jiv
v

. In

that case, as the quantized),(jiv
v

 is one of the palette colors and the distances among palette

colors can be presorted, all possible reordered palettes are well ready and the one for pixel (i,j)

can be determined as soon as the quantized),(jiv
v

 is determined. For reference, this

simplified version of APR-D-PC is referred to as APR-D-QPC, which implies palette colors

are sorted by their distances to the quantized predicted color of pixel (i,j).

 53

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

(a) APR-D-PC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

1

2 3

4
5

6 7

8

9

10

11

12

13

14

15

(b) APR-D-QPC

Figure 5.1 Examples showing how palette colors are sorted in (a) APR-D-PC and (b)

APR-D-QPC

Figure 5.1 graphically shows an example showing how palette colors are sorted in

APR-D-PC and APR-D-QPC. To make the example simple enough to understand, the color

space is condensed to a two-dimensional space. The red dots denote the palette colors and the

blue lines shows the boundary of their Voronoi regions. The asterisks in Figure 5.1a and

Figure 5.1b respectively show),(jiv
v

 and the quantized),(jiv
v

. In either case, palette

colors are sorted by their distances to the asterisk and the number associated with a particular

dot specifies the dot’s position in the sorted result.

Figure 5.2 shows a reindexed index map produced with APR-D-PC and its

corresponding histogram. The red curve shows the histogram of the index-map of the original

testing image whose palette was generated with MATLAB function RGB2IND. This

histogram serves as a reference for comparison. As expected, APR-D-PC changes the index

distribution and turns it into a highly unequalized one. This action significantly reduces the

zero order entropy of the index map. As a matter of fact, the entropy of the reindexed index

map is only 4.722 while that of the original index map is 7.469.

 54

(a) Reindexed index map (b) Histogram

Figure 5.2 Output of APR-D-PC: (a) reindexed index map of Kodak-05 and (b) histogram

Figure 5.3 shows the processing result of APR-D-QPC. Again, the histogram in red

serves as a reference for comparison. APR-D-QPC also changes the index distribution and

significantly reduces the zero order entropy of the index map. Specifically, the entropy of the

reindexed index map produced by APR-D-QPC is 4.740. The performance of APR-D-QPC

and APR-D-PC is more or less the same in terms of entropy. A more detailed comparison is

carried out in Section 5.5.

(a) Reindexed index map (b) Histogram

Figure 5.3 Output of APR-D-QPC: (a) reindexed index map of Kodak-05 and (b)

histogram

 55

5.3 History-oriented sorting

In practice, we learn from our experience. Similar idea can be applied to color

reordering. Let the quantized predicted error of pixel (i,j) be pc
v

, the p
th color in reference

palette Ω. In general, pc
v

 is different from the real color of pixel (i,j). The occurrence of this

discrepancy is a valuable experience. It can be recorded and cumulated for improving the

prediction performance in the future.

To achieve this objective, a table is constructed to store the values of

{H(m,n)|m,n=0,1…N-1}, where H(m,n) is defined as the number of occurrences when the

quantized predicted color and the original color of a pixel are, respectively, mc
v

 and nc
v

. All

H(m,n) values are initialized to zero at the very beginning and the table is updated after a

pixel is processed. As mentioned in Chapter 3, this table is referred to as discrepancy

frequency table (DF-Table).

After pc
v

 is determined, palette colors { kc
v

|k=0,1…N-1} are sorted according to the

values of {H(p,k)|k=0,1…N-1} in descending order. When there exist two different palette

colors lc
v

 and dc
v

 such that H(p,l)=H(p,d), they are sorted by their luminance and then by

their original index values in the original palette. The sorting is done in ascending order.

The newly sorted queue forms a transient version of palette Ω. The position of rc
v

 in

the newly sorted queue can be used as an index to the queue and is used to represent the pixel

in the reindexed index map. After processing this pixel, H(p,r) is incremented by 1 to update

the frequency count of this event.

For reference, the adaptive palette reordering method using this color reordering scheme

is referred to as APR-H, where ‘H’ means palette colors are sorted according to the frequency

of occurrence of a particular pair of predicted color and real color so far in the history.

 56

(a) Reindexed index map (b) Histogram

Figure 5.4 Output of APR-H: (a) reindexed index map of Kodak-05 and (b) histogram.

Figure 5.4a shows the resultant reindexed index map of APR-H and Figure 5.4b shows

its corresponding histogram. One can see that, as compared with the histogram of

APR-D-PC’s result, the histogram of APR-H’s result provides a sharper peak but a flatter tail.

A sharper peak implies the distribution is more unequalized in the range of indices which are

more likely to happen. This is good from entropy point of view. At the same time, a flatter tail

means the entropy of the indices which are unlikely to happen is higher.

The existence of the flat tail in APR-H’s result can be explained by the fact that color

sorting in APR-H is actually based on the likeliness of the occurrence of a particular color

when the quantized predicted color pc
v

 is given and it is in turn estimated based on the

history. For indices which are unlikely to happen, their occurrences in the history are too few

to provide any useful information for APR-H to guess which one of them is more likely to

happen. When guess does not work, all possible indices are equally likely to happen. This

results in a flat tail.

It happens that the effect of the sharper peak is stronger than that of the flatter tail, and

hence the overall performance of APR-H is better. In particular, the entropy of Figure 5.4a is

4.315 bpp, which is lower than the entropy of Figure 5.3a.

 57

5.4 Hybrid mode sorting

When APR-H is used, if the likeliness of the occurrence of a particular palette color

cannot be guessed effectively with the quantized predicted color pc
v

 based on the history,

color cannot be sorted effectively and all possible indices will be considered equally likely to

happen. This makes APR-H do not work properly.

In APR-H, when there exist two different palette colors lc
v

 and dc
v

 such that

H(p,l)=H(p,d), lc
v

 and dc
v

 are sorted by their luminance. Luminance is solely

color-dependent and it is nothing related to the predicted color),(jiv
v

. In such a case, history

and the prediction color),(jiv
v

 do not contribute to the decision of the final color reordering

result any more at this stage.

To solve this problem, one can adopt a hybrid color reordering scheme which is both

history- and distance-oriented. Basically, this hybrid scheme follows the same steps of APR-H

excepts that, when there exist two different palette colors lc
v

 and dc
v

 such that

H(p,l)=H(p,d), lc
v

 and dc
v

 are sorted by their Euclidean distances to the predicted color

),(jiv
v

. The closer is put in the front. They are only sorted by their luminance and then by

their original index values in the original palette when they are still not distinguishable. By

doing so,),(jiv
v

 may still contribute to color reordering when history cannot be used.

For reference, the adaptive palette reordering method using this color reordering scheme

is referred to as APR-H-D-PC, where ‘H-D-PC’ means palette colors are sorted according to

the history and then their distances to the predicted color of pixel (i,j). Note that

APR-H-D-PC is actually the adaptive palette reordering method presented in Chapter 3.

The complexity of APR-H-D-PC can be reduced by sorting lc
v

 and dc
v

 according to

their Euclidean distances to the quantized predicted color pc
v

 instead of the predicted color

),(jiv
v

 whenever H(p,l)=H(p,d) happens. As
2|||| kp cc

vv
− for all k can be presorted, the

 58

(a) Reindexed index map (b) Histogram

Figure 5.5 Output of APR-H-D-PC: (a) reindexed index map of Kodak-05 and (b)

histogram

final color reordering result can be determined by table lookup as soon as pc
v

 is ready. This

saves an amount of its realization effort. For reference, this simplified version of

APR-H-D-PC is referred to as APR-H-D-QPC, which implies palette colors are sorted

according to the history and then their distances to the quantized predicted color of pixel (i,j).

Figure 5.5 shows the output of APR-H-D-PC. The red curve is the histogram of the

index-map of the original testing image. The histogram of Figure 5.5a is highly unequalized.

The shape of the distribution is something in the middle of that of APR-D-QPC shown in

Figure 5.3b and that of APR-H shown in Figure 5.4b. Its waist is slimmer as compared with

the histogram of APR-D-QPC while its tail is not as flat as the histogram of APR-H. The

zero-order entropy of Figure 5.5a is 4.237.

Figure 5.6 shows the result of APR-H-D-QPC. By comparing the histograms of APR-H

and APR-H-D-PC, one can expect that their performance should be more or less the same. In

particular, the zero-order entropy of Figure 5.6a is 4.239. A more detailed comparison among

various color sorting schemes will be presented in Section 5.5.

 59

(a) Reindexed index map (b) Histogram

Figure 5.6 Output of APR-H-D-QPC: (a) reindexed index map of Kodak-05 and (b)

histogram

5.5 Performance Study

This section presents a more detailed study of the performance of the five adaptive

palette reordering methods introduced in Sections 5.3, 5.4 and 5.5. For convenience, Table 5.1

summaries the sorting criteria and the rules adopted in the color reordering schemes exploited

in these five adaptive palette reordering methods. Again, we note that APR-H-D-PC is

actually the adaptive palette reordering method presented in Chapter 3.

For an easier comparison of the histograms of their reindexed index maps of Kodak-05,

Figure 5.7 groups the plots shown in Figures 5.2b, 5.3b, 5.4b, 5.5b and 5.6b together. From

Figure 5.7, one can easily see that the histograms of the results of APR-H-D-PC and

APR-H-D-QPC are more unequalized. Figure 5.8 shows the correlation among adjacent

pixels in their reindexed index maps of Kodak-05. All of them can successfully remove the

spatial correlation of the indices.

 60

Adaptive palette reordering method Color sorting criteria/order used

APR-D-PC (1) 2
||),(|| jivck

vv
− , (2) luminance of kc

v
, (3) k

APR-D-QPC (1) 2
|||| pk cc

vv
− , (2) luminance of kc

v
, (3) k

APR-H (1) H(p,k), (2) luminance of kc
v

, (3) k

APR-H-D-PC (1) H(p,k), (2) 2||),(|| jivck

vv
− , (3) luminance of kc

v
, (4) k

APR-H-D-QPC (1) H(p,k), (2) 2
|||| pk cc

vv
− , (3) luminance of kc

v
, (4) k

Table 5.1 Summary of the sorting criteria and rules adopted in different adaptive palette

reordering methods

Table 5.2 shows the performance of the five adaptive reordering methods in terms of the

index variance of their reindexed index maps. Bijective mapping (3.1) was used in the final

stage to remap the reindexed index maps in the simulation and Table 5.2 shows the data

obtained with this final mapping results. One can see that the adaptive palette reordering

methods using hybrid schemes provide the best average performance among the evaluated

adaptive palette reordering methods. The one using history-oriented scheme is the poorest one

in terms of this measure.

Figure 5.7 Histograms of outputs of different adaptive palette reordering methods

 61

Figure 5.8 Performance of different adaptive palette reordering methods in terms of

correlation among pixels

Table 5.3 shows the performance of the evaluated adaptive reordering methods in terms

of the zero-order entropy of their reindexed index maps. Again, the adaptive palette

reordering methods using hybrid schemes in color reordering provide the best performance.

Though APR-H provides a reindexed index map of larger variance on average as compared

with APR-D-X (X can be either PC or QPC.), it provides a reindexed index map of lower

entropy on average. Since entropy is a measure more directly related to the compression

performance, one may consider that APR-H is actually better than APR-D-X and hence

history-oriented scheme performs better than distance-oriented schemes in supporting

adaptive palette reordering.

The performance of APR-H-D-PC and APR-H-D-QPC is more or less the same in both

measures. By considering that the realization complexity of APR-H-D-QPC is lower, it seems

that APR-H-D-QPC is the best option at this stage.

 62

Group Image
Size
(pixel2)

Adaptive reordering method

APR-D-PC APR-D-QPC APR-H APR-H-D-PC APR-H-D-QPC

C
G

im
ag
e pool 510x383 20.44 20.90 97.28 12.76 13.08

watch 1024x768 81.82 82.49 83.84 33.06 33.24

water 1024x768 252.92 255.71 299.19 186.74 187.27

N
at
ur
al
 im

ag
e

Kodak 01 768x512 344.40 345.17 297.62 129.98 130.23

Kodak 02 768x512 106.16 106.90 156.67 49.72 49.99

Kodak 03 768x512 27.90 28.62 89.81 14.03 14.38

Kodak 04 768x512 43.46 44.44 110.41 24.21 24.63

Kodak 05 768x512 327.73 330.52 269.68 148.68 149.52

Kodak 06 768x512 188.41 189.83 253.17 92.01 92.49

Kodak 07 768x512 84.33 85.41 147.00 50.25 50.70

Kodak 08 768x512 246.31 248.06 286.78 141.27 141.68

Kodak 09 768x512 50.14 50.71 153.16 34.81 35.06

Kodak 10 768x512 81.27 82.18 190.14 57.35 57.66

Kodak 11 768x512 150.48 151.84 193.88 80.36 80.84

Kodak 12 768x512 42.47 43.14 139.01 28.41 28.69

Kodak 13 768x512 686.17 689.36 479.74 304.99 305.77

Kodak 14 768x512 116.67 118.14 185.97 71.15 71.74

Kodak 15 768x512 33.74 34.45 123.05 20.24 20.57

Kodak 16 768x512 97.30 97.97 154.44 46.63 46.84

Kodak 17 768x512 92.30 92.98 180.34 59.34 59.57

Kodak 18 768x512 254.32 258.36 260.19 119.23 120.29

Kodak 19 768x512 92.80 93.60 171.28 53.42 53.70

Kodak 20 768x512 84.30 84.78 154.93 53.68 53.89

Kodak 21 768x512 186.70 187.75 197.21 87.79 88.13

Kodak 22 768x512 124.31 126.89 191.60 69.82 70.56

Kodak 23 768x512 27.32 28.04 90.13 16.73 17.03

Kodak 24 768x512 330.91 333.73 296.88 147.42 148.24

Average 154.63 156.00 194.57 79.04 79.47

Table 5.2 Performance comparison of APR-D-PC, APR-D-QPC, APR-H, APR-H-D- PC

and APR-H-D-QPC in terms of variance of the indices in a reindexed index map

 63

Group Image
Size
(pixel2)

Adaptive reordering method

APR-D-PC APR-D-QPC APR-H APR-H-D-PC APR-H-D-QPC

C
G

im
ag
e pool 510x383 1.647 1.653 1.477 1.401 1.403

watch 1024x768 2.397 2.400 2.129 2.094 2.095

water 1024x768 4.859 4.878 4.560 4.499 4.500

N
at
ur
al
 im

ag
e

Kodak 01 768x512 5.421 5.421 4.658 4.564 4.565

Kodak 02 768x512 4.108 4.109 3.478 3.404 3.405

Kodak 03 768x512 2.684 2.698 2.466 2.403 2.404

Kodak 04 768x512 3.577 3.593 3.326 3.238 3.240

Kodak 05 768x512 4.722 4.740 4.315 4.237 4.239

Kodak 06 768x512 4.648 4.660 4.158 4.070 4.071

Kodak 07 768x512 3.136 3.159 2.954 2.882 2.884

Kodak 08 768x512 4.675 4.694 4.290 4.202 4.204

Kodak 09 768x512 3.684 3.694 3.326 3.244 3.246

Kodak 10 768x512 3.722 3.743 3.459 3.380 3.381

Kodak 11 768x512 4.028 4.043 3.680 3.599 3.601

Kodak 12 768x512 3.422 3.439 3.133 3.054 3.055

Kodak 13 768x512 6.072 6.080 5.360 5.277 5.279

Kodak 14 768x512 4.186 4.205 3.895 3.807 3.809

Kodak 15 768x512 3.122 3.142 2.939 2.859 2.861

Kodak 16 768x512 4.069 4.076 3.564 3.484 3.485

Kodak 17 768x512 3.926 3.939 3.563 3.480 3.481

Kodak 18 768x512 4.715 4.747 4.278 4.191 4.194

Kodak 19 768x512 4.198 4.212 3.788 3.704 3.705

Kodak 20 768x512 3.335 3.345 3.091 3.020 3.020

Kodak 21 768x512 4.356 4.372 3.873 3.796 3.797

Kodak 22 768x512 4.110 4.149 3.872 3.783 3.786

Kodak 23 768x512 2.367 2.390 2.330 2.260 2.262

Kodak 24 768x512 4.436 4.453 3.997 3.927 3.928

Average 3.912 3.927 3.554 3.476 3.478

Table 5.3 Performance comparison of APR-D-PC, APR-D-QPC, APR-H, APR-H-D- PC

and APR-H-D-QPC in terms of zero-order entropy of the indices in a reindexed

index map

 64

5.6 Summary

Five color reordering schemes were evaluated to see how well they can support adaptive

palette reordering. In particular, we have two distance-oriented sorting schemes, one

history-oriented scheme and two hybrid mode sorting schemes in our evaluation. These five

color reordering schemes work with the prediction scheme that uses MED to predict

individual color planes to form five adaptive palette reordering methods. The details of each

of them are summarized in Table 5.1.

Simulation results show that hybrid mode sorting schemes are better than

history-oriented and distance-oriented sorting schemes in terms of both zero-order entropy

and variance of the reindexed indices.

 65

Chapter 6 – DF table merging

6.1 Introduction

As shown in Chapters 3 and 5, the DF-Table plays a significant role in adaptive palette

reordering. Based on the values of {H(m,n)|n=0,1..N-1}, the table shows how likely that nc
v

is the real color when mc
v

 is the quantized predicted color. With a given prediction result

based on the neighboring pixels of pixel (i,j), the DF-Table helps one to predict the likeliness

of the occurrence of a particular color in pixel (i,j). One can then assign an index of smaller

value to a color which is more likely to happen. Eventually, the reindexed index map contains

a number of indices of small values. This makes the histogram of the reindexed index map

very unequalized and hence reduces the entropy of the reindexed index map significantly.

At the early stage of adaptive palette reordering, most of H(m,n) entries are of zero value.

A DF-Table of such a property is immature as it provides no or little statistical information.

From another point of view, when most of the values in {H(m,n)|n=0,1..N-1} are zero, one

cannot sort nc
v

 by H(m,n) for n=0,1..N-1. In such a case, the DF-Table cannot contribute to

the reordering performance.

One of the solutions to solve this problem is to reduce the size of the DF-Table by

merging some of its entries. Each entry of the DF-Table records the frequency count of a

particular event. The more events it takes care of, the more entries it has. Obviously, at any

particular instant of the construction of the DF-Table, the sum of all entry values, L, equals to

the total number of pixels already processed. At the early stage, only a few pixels have been

processed. When L is shared by the entries of a large DF-Table, most of the entries are of zero

value. However, when the same L is shared by the entries of a small DF-Table, there would be

fewer zero entries and hence it would be easier for one to discriminate palette colors with

{H(m,n)|n=0,1..N-1}. That qualitatively explains why merging DF-Table can improve the

situation.

 66

In this chapter, two DF-Table merging schemes are proposed to solve this problem. The

rest of this chapter is organized as follows. Section 6.2 and Section 6.3 introduce the two

proposed DF-Table merging schemes. In particular, we will show how these two DF-Table

merging schemes work with the adaptive palette reordering method proposed in Chapter 3.

Their performance is then evaluated in Section 6.4. A summary is finally provided in Section

6.5.

6.2 Absorbing pre-clustered colors

In this DF-Table merging scheme, palette colors are pre-clustered before carrying out

adaptive palette reordering. When the DF-Table is found to be not mature, palette colors in the

same cluster are merged to form a smaller palette. A smaller DF-Table is then generated based

on the frequency count of the occurrence that nc
v

 is the real color when the quantized

predicted color belongs to a particular cluster. Accordingly, this DF-Table merging scheme is

referred to as Absorbing-preclustered-colors. The details of the scheme are as follows.

In the proposed scheme, by making use of LBG algorithm[Linde80], a palette of a size

smaller than the original palette Ω is generated with all colors in Ω as the training vectors. All

colors in Ω are then color quantized with this smaller palette. In consequence, all kc
v

 in Ω

are clustered into a few groups.

When the quantized predicted color pc
v

 is determined, ∑
−

=
=

1

0
),(H

N

kp kpH is checked

against a predefined threshold value T. If it is smaller than T, which implies insufficient

samples were collected for predicting the real color rc
v

 based on pc
v

, the

 67

Table of {H(m,n)}

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

k 0 1 2 3 4 5 6 7

H(0,k) 29 7 6 5 4 3 2 1

H(1,k) 0 88 1 2 0 0 0 1

H(2,k) 0 2 65 1 2 1 0 0

H(3,k) 0 2 10 56 1 1 0 1

H(4,k) 3 1 0 8 8 8 0 0

H(5,k) 0 0 3 2 3 23 5 1

H(6,k) 0 0 0 1 1 2 23 2

H(7,k) 0 2 0 3 0 2 6 9

(a)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

Prediction Error, 2||),(|| jivck

vv
− 0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1

(b)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

*

H(4,k)+H(7,k) 3 3 0 11 8 10 6 9

New index 6 5 7 0 3 1 4 2
*
Assume that 4c

v
 and 7c

v
 are in the same group.

(c)

Figure 6.1 Example of how to assign indices to a dynamic palette when (i)),(jiv
v

, 4c
v

and 3c
v

 are, respectively, the predicted, the quantized predicted and the real

colors and (ii) Absorbing pre-clustered colors is used in DF-Table merging: (a)

current status of the DF-Table, (b) given prediction error 2
||),(|| jivck

vv
− in the

example, (c) index assignment with DF-Table merging

statistics of all colors in the same group with pc
v

 will be merged to determine the new index

of rc
v

.

Without loss of generality, let us assume that pc
v

 belongs to cluster Ω⊂Φ p . In

that case, { kc
v

 | k = 0, 1… N-1} are sorted according to the values of {∑ Φ∈ plc
klv),(H |

k = 0,1…N-1} in descending order. If there exist two different colors uc
v

 and vc
v

such that ∑∑ Φ∈Φ∈
=

plpl cc
vlul vv),(H),(H , uc

v
 and vc

v
 will be sorted according to

their Euclidean distance to),(jiv
v

, the predicted color of pixel (i,j). If they are still not

distinguishable, their order will be determined by their ranking in Ω.

 68

Partition all palette colors in reference palette Ω ≡{ kc
v

|k=0,1…N-1} into N/2 groups with

LBG algorithm.

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1.

Raster scan the image
FOR each pixel (i,j)

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j).

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j).

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j).

Quantize)),(),,(),,((),(jibjigjirjiv =
v

 with the reference palette Ω.

% Assume the quantization result is pc
v

, the p
th
 palette color in reference palette Ω

IF ∑
−

=
=

1

0
),(H

N

k
p kpH ≥ threshold T

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
−

and then by k.

ELSE

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by ∑ Φ∈ plc
klv),(H , where Ω⊂Φ p is

the group to which pc
v

 belongs, and then by 2||),(|| jivck

vv
− and then by k.

END
% The sorted palette colors forms the transient version of the palette

% Assume the real color of pixel (i,j) is rc
v

, the r
th
 palette color in reference palette Ω

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of

rc
v

.

Update {H(m,n)} by H(p,r)++.

END

Figure 6.2 Pseudo code of an adaptive palette reordering method which uses Absorbing

pre-clustered colors to merge the DF table

Let’s consider the example shown in Figure 3.2 of Chapter 3 again. Figure 6.1 shows

how index is assigned when Absorbing-preclustered-colors is used to merge the DF-Table.

Assume that 4c
v

 and 7c
v

 belong to the same group and H4 is now smaller than the threshold.

After sorting { kc
v

|k=0,1…7} by H(4,k)+H(7,k) and then by 2||),(|| jivck

vv
− , the new queue is

{ 20164753 ,,,,,,, cccccccc
vvvvvvvv

} and the new index of 3c
v

 is 0. One can compare Figure 3.2 and

Figure 6.1 to contrast their difference in determining the index of the real color.

Figure 6.2 summaries the flow of an adaptive palette reordering method which uses

Absorbing-preclustered-colors to merge a DF-Table. The pseudo code provided in Figure 6.2

shows the case when the method supports a DF-Table merging scheme in which N palette

colors are divided into N/2 groups.

 69

A merged DF-Table can further be merged into an even smaller DF-Table in the same

manner when it is necessary. Figures 6.3, 6.4 and 6.5 show how this can be done with an

example in which three DF-tables are constructed such that one can use the most appropriate

one whenever it is necessary. Note that the color space is reduced to a two-dimensional space

for simplicity here. In this example, a palette of 8 palette colors is clustered into 4 clusters and

2 clusters with LBG algorithms separately as shown in Figure 6.3. Based on the clustering

results shown in Figure 6.3, palette colors belong to the same cluster are grouped together and

the color space is then redivided according to the grouping results as shown in Figure 6.4.

Assume that the current status of the full-size DF-table is given as in Figure 6.5a and the

quantized predicted color is 7c
v

. Entries in the DF-Table shown in Figure 6.5a are merged

according to the clustering results or, to be more precise, the partition results shown in Figure

6.4 to produce two smaller DF-Tables. Figures 6.5b and 6.5c show the DF-Tables

corresponding to the partition in Figure 6.4b and the partition in Figure 6.4c respectively.

Whenever 7c
v

 is determined, the following steps are executed to sort the palette color.

IF ∑
−

=
=

1

07),7(H
N

k
kH >T

Use the DF-Table shown in Figure 6.5(a). (i.e. Sort Ω∈kc
v

 by H(7,k) and then by

2||),(|| jivck

vv
− and then by k.)

ELSEIF)},7(H),4(H),2({H
1

0742 kkkHHH
N

k
++=++ ∑

−

=
>T

Use the DF-Table shown in Figure 6.5(b). (i.e. Sort Ω∈kc
v

 by {H(2,k)+H(4,k)+

H(7,k)} and then by 2
||),(|| jivck

vv
− and then by k.)

ELSE

Use the DF-Table shown in Figure 6.5(c) (i.e. Sort Ω∈kc
v

 by {H(0,k)+H(2,k)+

H(4,k)+H(5,k)+H(7,k)} and then by 2||),(|| jivck

vv
− and then by k.)

END

 70

(a) (b) (c)

Figure 6.3 Clustering results of LBG algorithm: (a) original palette of 8 colors; (b) 4

clusters and (c) 2 clusters

By doing so, the codec can use a smaller DF-Table whenever a large DF-Table has not

yet been mature. As it needs fewer samples to make a smaller DF-Table mature, the proposed

palette reordering method can provide a reasonable and steady performance after processing a

few samples. Its advantage can be seen even at a very early stage of the index reordering

process.

(a) (b) (c)

Figure 6.4 Redivide the color space according to the clustering results of LBG algorithm:
(a) partition result associated with the original palette; (b) 4-cluster case and (c)

2-cluster case

 71

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

k 0 1 2 3 4 5 6 7

H(0,k) 2 0 0 0 0 0 0 0

H(1,k) 1 1 0 0 0 0 0 0

H(2,k) 0 1 3 1 0 1 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(4,k) 0 0 0 1 0 2 0 0

H(5,k) 0 0 0 0 0 1 0 0

H(6,k) 0 0 0 0 1 0 0 0

H(7,k) 0 0 0 0 0 2 1 1

(a)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

k 0 1 2 3 4 5 6 7

H(0,k)+ H(5,k) 2 0 0 0 0 1 0 0

H(1,k)+H(6,k) 1 1 0 0 1 0 0 0

H(2,k)+ H(4,k)+ H(7,k) 0 1 3 2 0 5 1 1

H(3,k) 0 0 0 1 0 0 0 0

(b)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

k 0 1 2 3 4 5 6 7

F(0,k)+ H(2,k)+ H(4,k)+ H(5,k)+ H(7,k) 2 1 3 2 0 6 1 1

H(1,k)+ H(3,k)+ H(6,k) 1 1 0 1 1 0 0 0

(c)

Figure 6.5 A set of three DF-Tables associated with (a) the original palette, (b) the

4-cluster color space and (c) the 2-cluster color space

6.3 Absorbing the nearest colors

In the DF-Table merging scheme presented in Section 6.2, a pre-clustering process has

to be carried out to determine which palette colors should be merged when a DF-Table of

small size is required. Once the clusters are determined, how to merge a DF-Table is

well-defined and fixed. The merging is independent of the quantized predicted color pc
v

.

The pre-clustering process could be time-consuming especially when many DF-Tables

of different sizes are required. One can get rid of this pre-clustering process by using another

merging scheme as follows.

When the quantized predicted color pc
v

 is determined, ∑
−

=
=

1

0
),(H

N

kp kpH is checked

against a predefined threshold value T. The DF-Table will be considered to be not mature if it

is smaller than T. In such a case, the nearest s palette colors to pc
v

 are grouped with pc
v

 72

together, where s is a predefined integer. The corresponding DF-Table entries associated with

these grouped palette colors are then merged. Accordingly, this DF-Table merging scheme is

referred to as Absorbing-the-nearest-colors. After merging, each of the resultant entries

specifies the frequency count of the occurrence that nc
v

 is the real color when pc
v

 is one of

the members in the merged group of palette colors. Unlike the case in the merging scheme

presented in Section 6.2, the merging is now pc
v

-dependent.

Assume that pc
v

 and its nearest s palette colors form a set denoted as Ω⊂Ψp . In that

case, { kc
v

 | k = 0, 1… N-1} are sorted according to the values of {∑ Ψ∈ plc
klv),(H | k =

0,1…N-1} in descending order. If there exist two different colors uc
v

 and vc
v

 such that

∑∑ Ψ∈Ψ∈
=

plpl cc
vlul vv),(H),(H , uc

v
 and vc

v
 will be sorted according to their Euclidean

distance to),(jiv
v

. If they are still not distinguishable, their order will be determined by their

ranking in Ω.

Figure 6.6 shows how index is assigned when Absorbing-the-nearest-colors instead of

Absorbing-preclustered-colors is used to handle the example shown in Figure 6.1. Assume

that H4 is now smaller than the threshold and s is predefined to be 2. It is given in Figure 6.6b

that 3c
v

 and 7c
v

 are the nearest two colors to 4c
v

 and, hence, we have },,{ 743 cccp

vvv
=Ψ .

After sorting { kc
v

|k=0,1…7} by H(3,k)+H(4,k)+H(7,k) and then by 2||),(|| jivck

vv
− , the new

queue is { 01642753 ,,,,,,, cccccccc
vvvvvvvv

} and the new index of 3c
v

 is 0. One can compare Figure

6.6 with Figures 6.1 and 3.2 to contrast their difference in determining the index of the real

color.

Like the case presented in Section 6.2, a merged DF-Table can further be merged into an

even smaller DF-Table when it is necessary. An example is given in Figures 6.7 and 6.8 to

show how Absorbing-the-nearest-colors can be used to provide a set of DF-tables of

 73

Table of {H(m,n)}

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(0,k) 29 7 6 5 4 3 2 1

H(1,k) 0 88 1 2 0 0 0 1

H(2,k) 0 2 65 1 2 1 0 0

H(3,k) 0 2 10 56 1 1 0 1

H(4,k) 3 1 0 8 8 8 0 0

H(5,k) 0 0 3 2 3 23 5 1

H(6,k) 0 0 0 1 1 2 23 2

H(7,k) 0 2 0 3 0 2 6 9

(a)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

Prediction Error, 2||),(|| jivck

vv
− 0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1

Distance to 4c
v

, 2
4 |||| cck

vv
− 0.3 0.7 0.5 0.2 0.0 0.9 0.6 0.1

(b)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

* H(3,k)+H(4,k)+H(7,k) 3 5 10 67 9 11 6 10

New index 7 6 3 0 4 1 5 2
*

7c
v

 and 3c
v

 are the nearest 2 colors to 4c
v

.

(c)

Figure 6.6 Example of how to assign indices to a dynamic palette when (i)),(jiv
v

, 4c
v

and 3c
v

 are, respectively, the predicted, the quantized predicted and the real

colors and (ii) Absorbing the nearest colors is used in DF-Table merging: (a)

current status of the DF-Table, (b) given additional information in the example,

(c) index assignment with DF-Table merging

different sizes. In this example, the palette shown in Figure 6.3a is used and the current status

of the full-size DF-Table is given as in Figure 6.5a for consistency with the example shown in

Figures 6.4 and 6.5. The full-size DF-table shown in Figure 6.8a is only a sorted version of

that shown in Figure 6.5a.

Assume that the quantized predicted color is 7c
v

 again. To derive a DF-Table of

appropriate size, palette colors are grouped with pc
v

 one by one according to their distance to

pc
v

 until ∑ Ψ∈ plc lv H >T or Ω=Ψp is satisfied. The nearest palette colors are grouped with

pc
v

 first. Figure 6.7 shows how the color space is divided according to the grouping results as

 74

the palette colors are grouped one by one in seven steps until Ω=Ψp . In each step,

corresponding entries in the DF-Table are merged and the resultant DF-Table is shown in

Figure 6.8.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.7 Merging steps of absorbing the nearest colors: (a) partition result associated

with the original palette; (b) after absorbing the nearest palette color; (c) after

absorbing 2 nearest palette colors; (d) after absorbing 3 nearest palette colors;

(e) after absorbing 4 nearest palette colors; (f) after absorbing 5 nearest palette

colors; (g) after absorbing 6 nearest palette colors; (h) after absorbing all other

palette colors

 75

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k) 0 0 0 0 0 2 1 1

H(2,k) 0 1 3 1 0 1 0 0

H(5,k) 0 0 0 0 0 1 0 0

H(4,k) 0 0 0 1 0 2 0 0

H(6,k) 0 0 0 0 1 0 0 0

H(1,k) 1 1 0 0 0 0 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(a)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k) 0 1 3 1 0 3 1 1

H(5,k) 0 0 0 0 0 1 0 0

H(4,k) 0 0 0 1 0 2 0 0

H(6,k) 0 0 0 0 1 0 0 0

H(1,k) 1 1 0 0 0 0 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(b)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k) 0 1 3 1 0 4 1 1

H(4,k) 0 0 0 1 0 2 0 0

H(6,k) 0 0 0 0 1 0 0 0

H(1,k) 1 1 0 0 0 0 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(c)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k)+H(4,k) 0 1 3 2 0 6 1 1

H(6,k) 0 0 0 0 1 0 0 0

H(1,k) 1 1 0 0 0 0 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(d)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k)+H(4,k)+H(6,k) 0 1 3 2 1 6 1 1

H(1,k) 1 1 0 0 0 0 0 0

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(e)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k)+H(4,k) + H(6,k)+H(1,k) 1 2 3 2 1 6 1 1

H(3,k) 0 0 0 1 0 0 0 0

H(0,k) 2 0 0 0 0 0 0 0

(f)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k)+H(4,k) +

H(6,k)+H(1,k)+H(3,k)
1 2 3 3 1 6 1 1

H(0,k) 2 0 0 0 0 0 0 0

(g)

kc
v

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

K 0 1 2 3 4 5 6 7

H(7,k)+H(2,k)+H(5,k)+H(4,k) +

H(6,k)+H(1,k)+H(3,k)+H(0,k)
3 2 3 3 1 6 1 1

(h)

Figure 6.8 A set of eight DF-Tables each of which is associated with one of the merging

results shown in Figure 6.7a-h

 76

Obviously, when the predicted color is a color very different from pc
v

, the probability

that the real color is rc
v

 is different from the case when the predicted color is pc
v

. Hence, it

is meaningless to merge the DF-Table by grouping two palette colors which are distant from

each other in the color space. In practice, one can bound the size of pΨ or the distance of

the colors in pΨ such that the merging process can be terminated in the course to avoid

merging two distant palette colors.

6.4 Performance study

Simulations were carried out to evaluate the performance of the two proposed DF-Table

merging schemes in supporting the adaptive palette reordering method proposed in Chapter 3.

In the simulations, the value of threshold T was set to be 0.1N and the merging terminated

when the number of merged colors in the group containing the quantized predicted color was

equal to or larger than 8.

Figure 6.9 shows the difference between using DF-Table merging and not using

DF-Table merging in the realization of the adaptive palette reordering method proposed in

Chapter 3. It shows their difference in the so-far accumulated sum of square index values after

processing i pixels. A positive value in the measure means that DF-Table merging provides

more indices of small index values. It helps to reduce the overall variance of the indices.

Theoretically, the more significant the reduction in the accumulated sum of square index

values, the more indices are packed into a range of small values. In view of this, DF-Table

merging helps to produce more small indices, and Absorbing-preclustered-colors behaves

better than Absorbing-the-nearest-colors.

 77

Figure 6.9 Reduction in accumulated sum of square values of indices with respect to the

case without DF-Table merging when DF-Table merging is used

From Figure 6.9, one can see that DF-Table merging only happens in the early stage of

adaptive palette reordering. As more pixels are processed, the DF-Table gets more mature and

it is no longer necessary to merge the DF-Table. When no merging is necessary,

Absorbing-preclustered-colors and Absorbing-the-nearest-colors behave in the same way as in

the case without DF-Table merging. Processing a pixel in such a case does not result in any

difference in the index value by using a DF-Table merging scheme and hence there is no

further reduction in the accumulated sum of square index values. Accordingly, the

corresponding portions of the curves in Figure 6.9 remain level whenever no merging is

necessary.

In contrast to the plot shown in Figure 6.9, the plot shown in Figure 6.10 does not take

all processed pixels into account but only those involve DF-Table merging when they are

processed. Pixels which do not involve DF-Table merging when they are processed are

removed in the plot as they do not contribute to the reduction or addition in the accumulated

sum of square index values.

 78

Figure 6.10 Focused portions of the plot shown in Figure 6.9

Table 6.1 shows the simulation results for all testing images in terms of SSIVe. SSIVe is

defined to be the sum of the square index values of all effective pixels. Here, effective pixels

means the pixels which involve DF-Table merging when they are processed.

Form Table 6.1, one can see that DF-Table merging helps to produce more small indices.

The performance of the two proposed DF-Table merging schemes are more or less the same in

terms of the average reduction in SSIVe. Absorbing-preclustered-colors is slightly better than

Absorbing-the-nearest-colors. This can be observed by comparing the absolute difference

between their SSIVe values.

 79

Group Image Size (pixel2)
SSIVe

No merging
Absorbing-

the-nearest- colors
Absorbing-

preclustered-colors

C
G

im
ag
e pool 510x383 3069875 2675324 (87.1%) 2799979 (91.2%)

watch 1024x768 9215808 7880299 (85.5%) 7674466 (83.3%)

water 1024x768 21302066 20909971 (98.2%) 20858138 (97.9%)

N
at
ur
al
 im

ag
e

Kodak 01 768x512 6938379 6101089 (87.9%) 6039125 (87.0%)

Kodak 02 768x512 7124694 6379827 (89.5%) 6338480 (89.0%)

Kodak 03 768x512 5523060 5127955 (92.8%) 4725953 (85.6%)

Kodak 04 768x512 3359119 3046236 (90.7%) 3067039 (91.3%)

Kodak 05 768x512 7887582 7525028 (95.4%) 7345004 (93.1%)

Kodak 06 768x512 16201335 12557494 (77.5%) 12516702 (77.3%)

Kodak 07 768x512 3640236 3320252 (91.2%) 3321282 (91.2%)

Kodak 08 768x512 8559655 8027324 (93.8%) 8082672 (94.4%)

Kodak 09 768x512 3314721 3141663 (94.8%) 3243908 (97.9%)

Kodak 10 768x512 9375159 7921324 (84.5%) 8106321 (86.5%)

Kodak 11 768x512 6149399 5586054 (90.8%) 5488017 (89.2%)

Kodak 12 768x512 6394072 5948635 (93.0%) 5698833 (89.1%)

Kodak 13 768x512 21243252 18263697 (86.0%) 18509351 (87.1%)

Kodak 14 768x512 4992044 4190197 (83.9%) 4204705 (84.2%)

Kodak 15 768x512 3090025 2553231 (82.6%) 2628302 (85.1%)

Kodak 16 768x512 10871548 9412486 (86.6%) 9135033 (84.0%)

Kodak 17 768x512 7480895 6666806 (89.1%) 6729078 (90.0%)

Kodak 18 768x512 8381187 7650564 (91.3%) 7745990 (92.4%)

Kodak 19 768x512 5671096 5326916 (93.9%) 5374973 (94.8%)

Kodak 20 768x512 11561203 10279368 (88.9%) 10382971 (89.8%)

Kodak 21 768x512 11113901 10213911 (91.9%) 9986989 (89.9%)

Kodak 22 768x512 8730668 7657395 (87.7%) 7612550 (87.2%)

Kodak 23 768x512 908785 866923 (95.4%) 864153 (95.1%)

Kodak 24 768x512 25911883 20980268 (81.0%) 21140460 (81.6%)

Average 8815246.2 7785564.3 (88.3%) 7763721.3 (88.1%)

The figure in the bracket is the percentage w.r.t to case of no merging

Table 6.1 Sum of square index values of the pixels which involve DF-Table merging when
they are handled

 80

6.5 Summary

The DF-Table plays a significant role in adaptive palette reordering. It helps one to

predict the likeliness of the occurrence of a particular color in pixel (i,j) such that an index of

smaller value can be assigned to a color which is more likely to happen. This results in a

reindexed index map having a number of small indices.

An immature DF-Table cannot provide sufficient statistic information for one to

estimate the likeliness of the occurrence of a particular color in pixel (i,j) with its predicted

color. To solve this problem, two DF-Table merging schemes are proposed to build DF-Tables

of smaller sizes such that the resultant DF-Tables contains fewer zero entries. Eventually, one

can have a DF-Table of appropriate size in which there is sufficient statistical information for

one to sort the palette colors.

In Absorting-preclustered-colors, palette colors are preclustered before processing the

image. Based on the clustering result, palette colors are grouped and corresponding DF-Table

entries merges together when the DF-Table is found to be immature. As for

Absorting-the-nearest-colors, no preclustering is required. When the DF-Table is found to be

immature, the entries associated with the quantized predicted color pc
v

 and pc
v

’s nearest

palette colors are merged together.

The DF-Table merging schemes improve adaptive palette reordering at its early stage.

However, as more and more pixels are processed, the DF-Table gets more and more mature

and no merging is required any more. Accordingly, when the image being processed is very

large, the effect of DF-Table merging can be insignificant.

 81

Chapter 7 – Compression performance

7.1 Introduction

One can see form the previous chapters that adaptive palette reordering can effectively

turn the index map of an color indexed image into another index map of little spatial

correlation, low variance and low zero-order entropy. An index map of such properties is

suitable for being compressed and good compression performance can be easily achieved with

different coding techniques. In this chapter, we present several approaches to encode the

reindexed index map and show how adaptive palette reordering can easily work with different

coding schemes to achieve high compression ratios. In other words, the focus of this chapter

is on the index encoding module of the lossless coding system proposed in this work. Figure

7.1 highlights this module in the proposed coding system.

This chapter is organized as follows. In Section 7.2, coders which compile with

international coding standards such as JPEG-LS and Lossless JPEG-2000 are used to encode

the reindexed index map. This approach makes adaptive palette reordering a preprocessing

step and then allows one to use adaptive palette reordering to improve the performance of

popular standard coders or off-the-shelf coding systems without modifying their structure.

In Sections 7.3 and 7.4, the constraint of being compatible with international coding

standards is released. Bit-plane coding and context-based entropy coding techniques are used

to encode reindexed index maps. Simulation results are provided in Section 7.5 to comapre

the performance of the proposed coding system and some other conventional lossless coding

algorithms. A brief summary is provided in Section 7.6.

 82

),(jiv
v

),(jix
vΩ∈),(jix

v

Figure 7.1 The focus of Chapter 7 is on the realization of the index encoding module

7.2 Encoding index maps with JPEG-LS/Lossless JPEG-2000

Since most of the spatial correlation is removed and indices are highly biased in our

reordering result, our reindexed output can be easily compressed with a lot of well-developed

lossless compression algorithms such as JPEG-LS and JPEG-2000.

JPEG-LS and lossless JPEG-2000 are well-developed lossless image coding standards

and hence sometimes it would be convenient for one to make use of them to compress an

image directly. Adaptive palette reordering can be used as a pre-/post-processing step. It

pre-processes a given color index map to generate an input to a JPEG-LS/JPEG-2000 codec

and, at the receiver, post-processes the output from a JPEG-LS/JPEG-2000 decoder to

reconstruct the original color-quantized image. To the JPEG-LS/JPEG-2000 codec, the

reindexed index map just appears as a grey-level image and it is encoded directly as if it were

a grey-level image.

Adaptive palette reordering is fully compatible with JPEG-LS and JPEG-2000 in a way

that no modification to these codecs is required to compress an image when the proposed

method is exploited.

 83

7.3 Encoding index maps with significance-based bit-plane coding

If being compatible with JPEG-LS/JPEG-2000 is not the concern, an even higher

compression ratio can be achieved with some other means such as bit-plane coding. The index

values of the reindexed index map are bounded by N, the total number of palette colors. By

abandoning the use of bijective mapping (3.1) at the final stage of adaptive palette reordering

so as not to shift the peak of the index distribution to N/2, most of the index values of the

reindexed index map are of values equal or close to zero. This reindexed index map can be

directly separated into N2log bit planes each of which carries the jth most significant bits

of the binary representation of the indices in the reindexed output, where j=1,2… N2log .

Figure 7.2 shows the 8 bit-planes extracted from the adaptive palette reordering result of

testing image Kodak-05.

In Chapter 3, we show that there is little correlation among the indices of neighboring

pixels. However, it can be found from Figure 7.2 that there is still some spatial correlation

among the pixels in individual bit planes. Another important finding is that the bits in the

significant bit planes are highly biased to be zero. The entropies of these bit planes are very

low. Comparatively, the entropies of insignificant bit planes are much higher but they are

bounded by 1 bpp in practice. This bound is based on the fact that the bit plane can be

represented without any compression at a bit rate of 1 bit per pixel.

The bit planes can be separately encoded with any bit-plane coding techniques. In this

section, two approaches for encoding the bit planes are presented for examples.

 84

8

th
 bit plane (MSB)

7th bit plane

6th bit plane

5th bit plane

4th bit plane

3rd bit plane

2nd bit plane

1st bit plane (LSB)

Figure 7.2 The 8 bit planes of the reindexed index map produced with adaptive palette

reordering

 85

A. Coding with JBIG

JBIG [JBIG1993] is a popular international coding standard for encoding binary images.

To make use of it, each of the bit planes can be encoded with JBIG individually. Our

simulation results shown that this approach would provide a better compression result as

compared with the approach working with JPEG-LS or JPEG-2000.

B. Coding with a context-based binary arithmetic codec

A QM-coder [Pennebaker88] is used in JBIG to code a binary bit-plane. In approach B,

a general context-based binary arithmetic coder is used instead to code a binary bit-plane.

Figure 7.3 shows the context template used in this approach. The forgetting factor α and the

biasing constant ∆ for updating the conditional probability for having bit ‘1’, P(1|context), are,

respectively, 0.985 and 0.006. In particular, the probability for having bit ‘1’ when the context

is binary pattern i again is updated by

)2/()()|1(∆+∆+== ii sripatternbinarycontextP for i=0,1…4095 (7.1)

where ir and is are updated whenever a context of binary pattern i is encountered using

 +

=
elser

isvaluepixelcurrenttheifr
r

i

i
i

α

α 11
: (7.2)

and

ii ss α+=1: (7.3)

 86

The initial values of ir and is are, respectively, 1 and 2 for all context patterns i. The

suggested values of parameters α and ∆ were selected based on Reavy et al.’s work on binary

image compression [Reavy01].

O O O O O O : pixels included in the context template

O O O O O X : the pixel of interest

O O X

Figure 7.3 A context template used in context-based binary arithmetic codecs

7.4 Encoding index maps with value-based bit-plane coding

In Section 7.3, bit planes are constructed with particular bits of the binary representation

of indices according to their bit significance. When the palette is of size 2m, where m is a

positive number, we have m bit planes. Otherwise, the bit planes cannot be fully utilized and

redundancy exists in the bit planes.

As most indices are of values identical or close to zero and the distribution of the index

values can be modeled with an exponential function, one can construct bit planes with another

approach as

<

=

>

=

kjiIif

kjiIif

kjiIif

jiBk

),(caret don'

),(0

),(1

),(for k=0,1,… N-2 (7.4)

where),(jiBk is the (i,j)
th
 element of the k

th
 bit plane and),(jiI is the index value of

pixel (i,j). Totally, there are N-1 bit planes, which is different from the approach used in

 87

Section 7.3. For reference, this approach of bit-plane separation is referred to as value-based

bit-plane separation (VBS) while the approach presented in Section 7.3 is referred to as

significance-based bit-plane separation (SBS). Figure 7.4 shows an example which highlights

the difference between VBS and SBS in constructing their bit planes.

Starting from k=0, bit planes are gradually constructed as k increases. Once a bit plane is

defined, its bits are raster scanned and encoded with context-based entropy coding. As bit

planes of lower k values are encoded first, don’t care),(jiBk bits can be skipped. There

must be),(jiBl =0 for some l<k and it must be encoded already. The values of),(jiI are

well-defined at the moment.

Though apparently VBS results in more bit planes as compared with SBS, the total

number of bits to be encoded in VBS can be even less. For the example shown in Figure 7.4,

the total number of bits to be encoded in VBS is 38 instead of 48 as in SBS.

The context-based entropy coding is carried out as it is in the second approach presented

in Section 7.3 (Approach B) except that its context template is different. It is possible that the

context of),(jiBk contains some don’t care pixel bits when),(jiBk is encoded with

context-based entropy coding. In that case, the don’t care bits can be filled with either 0 or 1.

In our realization, it is filled with 0 for simplicity.

As the value of k gets larger, there are more don’t care bits in bit plane kB and,

accordingly, the context template covers more don’t care bits when it moves around. To

achieve better performance and avoid context dilution problem, a context template of variable

size is used.

 88

(a)

(b)

(c)

Figure 7.4 An example showing how a 4x4 index map is split into bit planes: (a) index

map; (b) the bit planes obtained with SBS and (c) the bit planes obtained with

VBS

11 8 6 9 12

7 3 2 4 10 X : the pixel of interest

5 1 X

Figure 7.5 The context template used in VBS

Figure 7.5 shows a context template whose pixel positions are numbered. Instead of

using all template locations, only first L positions are used, where L is a function of k. Two

functions are used in our study. The first function)(1 kf is defined as

 89

+
= 12,

1

2
logmin)(21

k

N
kf

bn
o for k=0,1,… N-2 (7.5)

where No is the total number of pixels of the image, n=0.671 and b= -0.859. The values of n

and b are selected based on Pinho’s work [Pinho05]. The second function)(2 kf is defined

as

)1(log9)(22 +−= kkf , for k=0,1,… N-2 (7.6)

For the purpose of reference, the index coding scheme using VBS to construct bit planes

and function)(1 kf to define the context template for entropy coding is referred to as VBS1

hereafter. Accordingly, the index coding scheme using VBS to construct bit planes and

function)(2 kf to define the context template for entropy coding is referred to as VBS2.

7.5 Simulation Results

When working with adaptive palette reordering, the various coding schemes presented

earlier in this chapter form corresponding lossless coding methods for coding color-indexed

images. Simulations were carried out to evaluate the performance of these coding schemes in

coding the resultant reindexed index maps of adaptive palette reordering. Besides, a

comparison among various conventional and the proposed lossless image coding methods

were done. This section presents the evaluation results and the comparison results in our

simulations.

 90

For the purpose of reference, the corresponding lossless coding methods of the six index

coding schemes presented in Sections 7.2, 7.3 and 7.4 are, respectively, referred to as

 APR+Jls : Encoding adaptive palette reordering output with JPEG-LS

 APR+J00 : Encoding adaptive palette reordering output with lossless

JPEG-2000

 APR+SBSa : Encoding adaptive palette reordering output with Approach A

presented in Chapter 7.3

 APR+SBSb : Encoding adaptive palette reordering output with Approach B

presented in Chapter 7.3

 APR+VBS1 : Encoding adaptive palette reordering output with VBS1

presented in Chapter 7.4

 APR+VBS2 : Encoding adaptive palette reordering output with VBS2

presented in Chapter 7.4

As discussed in Chapters 4, 5 and 6, various prediction schemes and color reordering

schemes can be used to realize adaptive palette reordering. In the study we reported in this

chapter, adaptive palette reordering was realized in a way similar to the method proposed in

Chapter 3. The only difference was that DF-Table merging was on in this study. Starting from

256, the number of groups into which all palette colors were clustered was halved

progressively until either it reached 8 or Tkl
plc

N

k
>∑ ∑Φ∈

−

=
v

1

0
),(H , where Ω⊂Φ p is the

group to which pc
v

 belongs, was satisfied. The threshold T was selected to be 0.1N. Figure

7.6 shows the pseudo code for realizing adaptive palette ordering in this study.

A set of testing color-indexed images were generated as mentioned in Chapter 3. They

were used for comparing the proposed coding methods with various lossless coding methods.

The evaluated coding methods cover both methods which exploit palette reordering [Po94,

Spira01, Zaccarin93, Memon97, Zeng00, Pinho04, Battiato01] and methods which do not

[Natale89, Ratnakar98, Chen02, Kuroki04, Pinho05, Robinson06, Arnavut06].

 91

Partition all palette colors in reference palette Ω ≡{ kc
v

|k=0,1…N-1} into N/2 groups with LBG

algorithm.

% The N/2 groups are denoted as Ω⊂Ψ 2/N
v for v=0,1…N/2-1

Partition all palette colors in reference palette Ω into N/4 groups with LBG algorithm.

% The N/4 groups are denoted as Ω⊂Ψ 4/N
v for v=0,1…N/4-1

 …

Partition all palette colors in reference palette Ω into 8 groups with LBG algorithm.

% The 8 groups are denoted as Ω⊂Ψ8
v for v=0,1…7

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1.

Raster scan the image

FOR each pixel (i,j)

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j).

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j).

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j).

Quantize)),(),,(),,((),(jibjigjirjiv =
v

 with the reference palette Ω.

% Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω, and

% Ω⊂Ψ g
p , for g∈{N/2,N/4…8}, are the groups to which pc

v
 belongs.

IF ∑
−

=
=

1

0
),(H

N

k
p kpH ≥ threshold T

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
− and

then by k.

ELSE

IF ∑ ∑Ψ∈

−

=
2/

1

0
),(H

N
plc

N

k
klv ≥ threshold T; 2/N

pp Ψ=Φ

ELSEIF ∑ ∑Ψ∈

−

=
4/

1

0
),(H

N
plc

N

k
klv ≥ threshold T; 4/N

pp Ψ=Φ

ELSEIF …

ELSEIF ∑ ∑Ψ∈

−

=
16

1

0
),(H

plc

N

k
klv ≥ threshold T; 16

pp Ψ=Φ

ELSE 8
pp Ψ=Φ

END

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by ∑ Φ∈ plc
klv),(H and then by

2||),(|| jivck

vv
− and then by k.

END

% The sorted palette colors forms the transient version of the palette

% Assume the real color of pixel (i,j) is rc
v

, the rth palette color in reference palette Ω

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

.

Update {H(m,n)} by H(p,r)++.

END

Figure 7.6 Pseudo code of the adaptive palette reordering method used in APR+Jls,

APR+J00, APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2.

 92

Group Image Size (pixel2)
Bits per pixel

Zaccarin93 Po94 Spira01 Pinho04 Zeng00 Battiato01 Memon96 Memon97 Lai07 APR+Jls

C
G
 im

ag
e pool 510x383 1.965 1.540 2.270 1.462 1.560 1.786 1.464 1.559 1.422 1.370

watch 1024x768 2.436 2.658 2.432 2.169 2.273 2.632 2.093 2.269 2.085 1.956

water 1024x768 5.673 6.287 5.641 5.621 6.207 7.089 5.487 5.350 5.291 4.878

N
at
ur
al
 im

ag
e

Kodak 01 768x512 5.956 6.481 6.000 5.599 5.969 7.055 5.403 5.346 5.375 4.911

Kodak 02 768x512 5.277 6.581 6.311 4.383 4.605 5.418 4.234 4.252 4.208 3.734

Kodak 03 768x512 3.587 3.361 3.264 2.742 2.875 3.548 2.723 2.836 2.731 2.509

Kodak 04 768x512 4.765 5.139 5.801 4.312 4.953 5.447 3.920 4.010 3.879 3.451

Kodak 05 768x512 5.669 6.332 5.710 5.204 5.390 6.408 5.029 5.108 4.962 4.469

Kodak 06 768x512 4.997 5.633 5.405 5.153 5.413 5.921 4.976 5.079 4.853 4.232

Kodak 07 768x512 4.208 4.339 4.421 3.857 4.069 4.698 3.667 3.450 3.627 3.065

Kodak 08 768x512 5.554 6.242 5.872 5.852 5.965 6.404 5.797 5.545 5.518 4.587

Kodak 09 768x512 4.423 4.720 4.484 4.100 4.514 5.506 3.952 4.131 3.712 3.481

Kodak 10 768x512 4.551 4.870 4.840 4.826 5.339 5.969 4.505 4.580 4.389 3.652

Kodak 11 768x512 5.024 5.177 4.786 4.458 4.890 4.799 4.334 4.347 4.294 3.771

Kodak 12 768x512 4.316 5.118 4.934 3.960 4.403 5.329 3.868 3.786 3.740 3.302

Kodak 13 768x512 6.482 6.976 6.585 6.203 6.509 7.016 5.968 6.381 5.881 5.592

Kodak 14 768x512 5.369 5.629 5.345 4.717 5.140 6.482 4.497 4.406 4.454 4.090

Kodak 15 768x512 4.089 4.629 4.350 3.636 3.883 4.332 3.537 3.374 3.526 3.046

Kodak 16 768x512 4.558 4.977 5.032 4.386 4.817 5.995 4.254 4.282 4.132 3.645

Kodak 17 768x512 4.510 5.252 4.371 4.818 5.526 5.763 4.335 4.321 4.074 3.717

Kodak 18 768x512 5.906 6.674 6.149 5.220 5.777 6.762 5.276 5.276 4.991 4.568

Kodak 19 768x512 5.018 5.363 5.824 4.845 5.104 5.987 4.656 4.661 4.466 3.972

Kodak 20 768x512 3.201 3.465 3.726 3.053 3.326 3.690 3.144 3.118 3.039 2.897

Kodak 21 768x512 5.231 5.622 4.747 4.544 4.916 5.563 4.422 4.697 4.297 3.995

Kodak 22 768x512 5.242 5.869 5.327 5.119 5.708 5.969 4.990 4.865 4.838 4.081

Kodak 23 768x512 3.489 3.578 3.228 2.890 3.252 3.297 3.091 3.165 2.835 2.432

Kodak 24 768x512 5.084 6.122 5.525 5.017 5.367 5.951 4.830 4.921 4.712 4.224

Average 4.688 5.135 4.903 4.376 4.731 5.364 4.239 4.264 4.123 3.690

Table 7.1 Performance of different palette reordering methods when working with

JPEG-LS

Tables 7.1 and 7.2 list the compression performance of various coding methods which

exploit palette reordering. They are common in a way that the palette associated with the

image being encoded is reordered to generate a new index map for being encoded. The

resultant index map will be treated as a grey level image and hence can be encoded with any

lossless gray-level image coding standards such as JPEG-LS and JPEG-2000. Table 7.1 and

Table 7.2 show, respectively, the case using JPEG-LS and the case using JPEG-2000.

 93

Specifically, the last column of Table 7.1 shows the performance of APR-Jls while the last

column of Table 7.2 show the performance of APR-J00.

We have two observations from the Tables. First, the performance of the adaptive palette

reordering is the best among the evaluated palette reordering methods. No matter JPEG-LS or

JPEG-2000 is used, its palette reordering results can be encoded with minimum number of

bits as compared with the others. Second, JPEG-LS is more suitable than JPEG-2000 to

encode palette reordering results whatever palette reordering methods are used. JPEG-LS

generally provides a better performance than JPEG-2000 in coding the reordering results in

terms of bit rate of the output.

Table 7.3 compares the compression performance of the proposed coding methods

(APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2) with various state-of-art lossless

coding methods which are not bounded to exploit palette reordering. One can see that

APR+SBSb, APR+VBS1 and APR+VBS2 are the best three in terms of compression ratio

while APR+SBSa is the fifth best. Without the constraint of being compatible with JPEG-LS

or JPEG-2000, the output of adaptive palette reordering can be encoded at an even lower bit

rate. This can be revealed by comparing the performance of APR-Jls and APR-J00 with

APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2. Among the six lossless image coding

methods, APR+VBS2 provides the best bit rate. This implies that VBS2 is more effective in

encoding the output of adaptive palette reordering.

 94

Group Image Size (pixel2)
Bits per pixel

Zaccarin93 Po94 Spira01 Pinho04 Zeng00 Battiato01 Memon96 Memon97 Lai07 APR+J00

C
G
 im

ag
e pool 510x383 2.701 2.031 3.150 1.860 1.985 2.234 1.894 2.021 1.880 1.626

watch 1024x768 3.287 3.568 3.360 2.620 2.760 3.432 2.770 2.971 2.777 2.316

water 1024x768 6.112 7.128 6.477 6.023 6.563 7.735 5.976 5.840 5.881 5.170

N
at
ur
al
 im

ag
e

Kodak 01 768x512 6.257 6.972 6.373 5.529 5.846 7.500 5.712 5.683 5.764 5.144

Kodak 02 768x512 5.764 7.150 6.824 4.704 5.094 6.435 4.679 4.746 4.684 4.008

Kodak 03 768x512 4.449 4.000 4.002 2.996 3.118 4.139 3.318 3.495 3.338 2.756

Kodak 04 768x512 5.242 5.946 6.156 4.685 5.359 6.042 4.466 4.616 4.368 3.654

Kodak 05 768x512 6.136 7.285 6.451 5.721 5.750 6.969 5.658 5.744 5.575 4.839

Kodak 06 768x512 5.274 5.996 5.898 5.207 5.579 6.581 5.400 5.498 5.292 4.450

Kodak 07 768x512 4.872 5.075 5.193 4.197 4.494 5.491 4.267 4.062 4.210 3.372

Kodak 08 768x512 5.917 6.654 6.703 6.351 6.254 6.792 6.386 6.117 6.082 4.896

Kodak 09 768x512 4.824 5.098 4.862 4.136 4.474 5.958 4.347 4.560 4.091 3.658

Kodak 10 768x512 5.043 5.624 5.379 4.962 5.236 6.661 5.062 5.159 4.957 3.891

Kodak 11 768x512 5.511 5.664 5.309 4.809 5.003 5.281 4.756 4.819 4.718 3.999

Kodak 12 768x512 4.841 5.706 5.506 3.995 4.328 5.943 4.330 4.250 4.259 3.532

Kodak 13 768x512 6.679 7.196 7.062 6.374 6.579 7.539 6.279 6.784 6.248 5.773

Kodak 14 768x512 5.741 6.237 5.798 5.195 5.500 7.252 4.849 4.757 4.882 4.323

Kodak 15 768x512 4.458 5.255 4.876 3.911 4.156 4.787 3.963 3.888 4.017 3.249

Kodak 16 768x512 5.028 5.502 6.061 4.567 5.109 6.900 4.737 4.827 4.648 3.875

Kodak 17 768x512 4.831 5.749 4.804 4.679 4.881 6.075 4.735 4.732 4.488 3.929

Kodak 18 768x512 6.157 7.387 6.619 5.808 6.421 7.200 5.614 5.625 5.301 4.740

Kodak 19 768x512 5.313 5.859 6.282 4.945 5.099 6.407 5.013 5.051 4.830 4.104

Kodak 20 768x512 3.469 3.926 4.102 3.267 3.477 4.049 3.535 3.484 3.418 3.109

Kodak 21 768x512 5.652 6.003 5.478 4.978 5.241 6.163 4.695 5.134 4.630 4.184

Kodak 22 768x512 5.605 6.339 5.900 5.693 5.838 6.504 5.483 5.300 5.338 4.286

Kodak 23 768x512 4.467 4.386 4.380 3.727 3.941 4.203 3.865 3.968 3.579 2.722

Kodak 24 768x512 6.780 6.215 5.592 5.923 6.945 5.343 5.474 5.558 5.325 4.568

 Average 5.200 5.702 5.504 4.699 5.001 5.912 4.713 4.766 4.614 3.932

Table 7.2 Performance of different palette reordering methods when working with Lossless

JPEG-2000

9
5

Group Image Size (pixel2)

Bits per pixel

GIF PNG Natale89* Ratnakar98 Chen02 Pinho05 Robinson06 Kuroki04 Arnavut06

Adaptive palette reordering

+SBS +VBS

+SBSa +SBSb +VBS1 +VBS2

C
G

im
ag
e pool 510x383 1.724 1.591 3.455 1.657 1.288 1.235 1.451 1.919 1.309 1.258 1.255 1.148 1.129

watch 1024x768 2.619 2.036 3.986 2.221 1.936 1.913 2.238 2.590 1.674 1.880 1.803 1.661 1.625

water 1024x768 6.571 5.696 5.211 5.244 4.943 4.923 5.731 4.926 4.484 4.801 4.505 4.493 4.360

N
at
ur
al
 im
ag
e

Kodak 01 768x512 6.365 5.491 5.433 5.393 4.905 4.870 5.757 5.776 4.750 4.831 4.574 4.591 4.430

Kodak 02 768x512 4.967 4.433 4.588 4.229 3.952 3.939 4.602 4.433 3.611 3.591 3.412 3.365 3.274

Kodak 03 768x512 3.328 2.858 3.727 2.745 2.580 2.507 2.845 2.695 2.161 2.317 2.267 2.176 2.139

Kodak 04 768x512 4.967 4.285 4.441 3.997 3.817 3.741 4.386 3.873 3.309 3.355 3.198 3.136 3.063

Kodak 05 768x512 6.203 5.244 5.396 4.921 4.776 4.725 5.229 5.026 4.372 4.424 4.192 4.169 4.024

Kodak 06 768x512 5.284 4.644 4.673 4.686 4.410 4.377 5.154 4.599 3.817 4.154 3.955 3.972 3.829

Kodak 07 768x512 4.403 3.733 4.321 3.423 3.353 3.263 3.778 3.376 2.843 2.932 2.797 2.725 2.659

Kodak 08 768x512 6.750 5.680 5.479 5.298 5.051 5.010 5.798 5.549 4.785 4.513 4.244 4.216 4.068

Kodak 09 768x512 4.933 4.265 4.293 3.880 3.593 3.517 4.289 4.111 3.345 3.369 3.207 3.159 3.091

Kodak 10 768x512 5.196 4.487 4.454 4.009 3.870 3.773 4.671 4.131 3.552 3.553 3.376 3.331 3.240

Kodak 11 768x512 4.790 4.291 4.517 4.235 3.959 3.900 4.683 4.253 3.556 3.659 3.486 3.460 3.349

Kodak 12 768x512 4.073 3.626 3.826 3.510 3.340 3.272 4.058 3.423 2.904 3.174 3.025 2.962 2.892

Kodak 13 768x512 7.143 6.131 5.861 5.978 5.683 5.659 6.312 6.188 5.268 5.557 5.265 5.383 5.168

Kodak 14 768x512 5.560 4.851 4.766 4.639 4.483 4.429 4.963 4.356 3.873 4.002 3.806 3.790 3.677

Kodak 15 768x512 4.537 3.880 4.206 3.499 3.371 3.294 3.642 3.519 2.908 2.904 2.771 2.702 2.653

Kodak 16 768x512 4.305 3.895 4.222 3.988 3.682 3.639 4.614 3.943 3.210 3.548 3.385 3.365 3.257

Kodak 17 768x512 5.486 4.774 4.695 4.283 3.918 3.817 4.742 4.278 3.644 3.616 3.441 3.416 3.321

Kodak 18 768x512 6.335 5.593 5.077 5.133 5.110 5.051 5.435 4.965 4.275 4.467 4.232 4.245 4.108

Kodak 19 768x512 5.857 5.099 4.780 4.656 4.235 4.171 4.827 4.595 3.867 3.881 3.683 3.670 3.569

Kodak 20 768x512 3.522 3.185 3.968 3.365 2.892 2.833 3.383 3.404 2.669 2.785 2.681 2.647 2.547

Kodak 21 768x512 4.818 4.385 4.371 4.383 4.043 3.979 4.922 4.385 3.620 3.898 3.714 3.716 3.583

Kodak 22 768x512 5.505 4.916 4.710 4.460 4.347 4.274 5.182 4.577 3.975 3.954 3.765 3.747 3.624

Kodak 23 768x512 3.640 3.017 3.934 2.517 2.589 2.478 2.855 2.609 2.333 2.267 2.176 2.084 2.048

Kodak 24 768x512 5.767 4.939 4.963 4.573 4.4632 4.3927 6.452 4.956 4.125 4.107 3.903 3.837 3.690

 Average 4.987 4.334 4.553 4.090 3.874 3.814 4.518 4.292 3.490 3.585 3.412 3.376 3.275

* Sub-codebook size = 8

Table 7.3 Performance of various lossless image coding methods for coding color-indexed images

 96

Table 7.4 shows the actual processing time of compressing color-indexed images with

the proposed dynamic palette reordering algorithm. The simulation results were done on a

2.4GHz Celeron PC with 512MB RAM. The average processing time per pixel is about 2.83

microseconds. Palettes of the testing images are of size 256.

Group Image Size (pixel2)
Time

Seconds µs/pixel

C
G
 im
ag
e pool 510x383 0.640 3.28

watch 1024x768 1.296 1.65

water 1024x768 2.453 3.12

N
at
ur
al
 im
ag
e

Kodak 01 768x512 1.235 3.14

Kodak 02 768x512 1.156 2.94

Kodak 03 768x512 0.890 2.26

Kodak 04 768x512 0.641 1.63

Kodak 05 768x512 0.844 2.15

Kodak 06 768x512 1.047 2.66

Kodak 07 768x512 1.000 2.54

Kodak 08 768x512 1.109 2.82

Kodak 09 768x512 0.875 2.23

Kodak 10 768x512 1.546 3.93

Kodak 11 768x512 0.953 2.42

Kodak 12 768x512 0.844 2.15

Kodak 13 768x512 1.375 3.50

Kodak 14 768x512 1.172 2.98

Kodak 15 768x512 0.985 2.50

Kodak 16 768x512 0.937 2.38

Kodak 17 768x512 1.484 3.77

Kodak 18 768x512 1.266 3.22

Kodak 19 768x512 1.813 4.61

Kodak 20 768x512 0.875 2.23

Kodak 21 768x512 1.391 3.54

Kodak 22 768x512 0.922 2.34

Kodak 23 768x512 1.062 2.70

Kodak 24 768x512 1.500 3.81

 Average 1.160 2.83

Table 7.4 The actual processing time of compressing color-indexed images with the

proposed dynamic palette reordering algorithm

 97

7.6 Summary

After adaptive palette reordering, the output can be encoded with various index

encoding schemes. Different index encoding schemes provide different compression

performance in terms of bit rate. Six different index encoding schemes were studied and their

performance in encoding reindexed index maps are presented in this chapter. It was found that

the performance of VBS2 is the best among the six evaluated index encoding schemes.

Simulation was also carried out to compare the compression performance of various

lossless image coding methods including those exploited palette reordering and those did not.

Results reported in this chapter shows that APR-VBS2 is superior to all other coding methods

in terms of bit rate.

There are some other interesting findings in the simulation results. First, JPEG-LS

generally performs better that JPEG-2000 to encode palette reordering results. Second,

adaptive palette ordering can significantly reduce the output bit rate when it is used to process

a color-indexed image before compressing the image. Third, without concerning the

constraint of being compatible with JPEG-LS/JPEG-2000, one can use an even better

encoding scheme such as VBS2 to lower the output bit rate further.

 98

Chapter 8 – Conclusions

8.1 Summary of the work

A lossless image coding technique for coding color-indexed images is proposed in this

work. The core of the technique relies on a palette reordering technique which adaptively

reorders the palette associated with a color-indexed image such that the resultant index map

can be encoded more effectively. Unlike other conventional palette reordering techniques, the

proposed adaptive palette reordering technique does not produce a directly-displayable index

map. However, it is able to effectively reshape the statistical properties of a given color index

map to produce a new index map of low variance, low zero-order entropy and low spatial

correlation. As a result, this allows one to encode the index map at a very low bit rate easily.

The proposed adaptive palette reordering technique is composed of two basic functional

components including index prediction and color reordering. These two components can be

realized with different schemes and, accordingly, their different combinations result in

different adaptive palette reordering methods. Chapter 3 shows one of the realizations of

adaptive palette reordering. Simulation results show that, as compared with the other

evaluated palette reordering methods, it is able to produce a new index map of lower variance,

lower zero-order entropy and less spatial correlation.

Index prediction is one of the critical components of adaptive palette reordering, and it

can be realized with different schemes. Four schemes are studied and their prediction

performance is evaluated in Chapter 4. These schemes exploits MED or GAP to carry out the

prediction in either the index plane or individual color intensity planes. In terms of various

measures related to prediction error, the scheme which exploits MED to predict individual

color components appears to be better. The same scheme is the winner when we inspect the

entropy and the variance of their resultant reindexed index maps.

 99

Color reordering is another critical component of adaptive palette reordering. Five color

reordering schemes were evaluated in Chapter 5 to see how well they can support adaptive

palette reordering. In particular, we have two distance-oriented sorting schemes, one

history-oriented scheme and two hybrid mode sorting schemes in our evaluation. Simulation

results show that hybrid mode sorting schemes are better than history-oriented sorting

schemes and distance-oriented sorting schemes in terms of both zero-order entropy and

variance of the reindexed index maps.

In adaptive palette reordering, when color reordering is realized with the proposed

history-oriented sorting scheme or one of the hybrid mode sorting schemes, a DF-Table plays

a significant role to provide some supporting information learnt from the history. It helps one

to assign an index of smaller value to a color which is more likely to happen and hence

produce a reindexed index map of a number of small indices.

The DF-Table is immature when it contains a lot of zero entries, and this happens when

the number of processed pixels is too small. To solve this problem, two DF-Table merging

schemes, namely, Absorting-preclustered-colors and Absorting-the-nearest-colors, are

proposed in Chapter 6 to build DF-Tables of smaller sizes such that the resultant DF-Tables

contains fewer zero entries. It allows one to select a DF-Table of appropriate size whenever it

is necessary. This helps at the early stage of adaptive palette reordering. However, as more

and more pixels are processed, the DF-Table gets mature and DF-Table merging is no longer

required.

 100

Adaptive palette reordering produces a reindexed index map of low entropy, low

variance and little spatial correlation. This index map can be encoded with various index

encoding schemes easily. In Chapter 7, we proposed six index encoding schemes to encode

the output of adaptive palette reordering. It was found that the performance of VBS2 is the

best among the six index encoding schemes in terms of output bit rate.

Simulation was also carried out to compare the compression performance of various

lossless image coding methods including those exploited palette reordering and those did not.

Results shows that APR-VBS2, which adaptively reorders the palette with DF-Table merging

and then encodes the output of adaptive palette reordering with index encoding scheme VBS2,

is superior to all other coding methods in terms of output bit rate. It achieves an average

compression ratio of 2.44:1.

There are some other interesting findings in the simulation results. First, JPEG-LS

generally performs better than JPEG-2000 to encode palette reordering results. Second,

adaptive palette reordering can significantly reduce the output bit rate when it is used to

process a color-indexed image before compressing the image. Third, without concerning the

constraint of being compatible with JPEG-LS/JPEG-2000, one can pick a better encoding

scheme such as VBS2 to achieve an even lower output bit rate.

8.2 Future research directions

As we mentioned in this thesis, dynamic palette reordering is composed of two critical

components involving index prediction and color reordering. There are unlimited possible

ways to realize index prediction and color reordering. After having the output of adaptive

palette reordering, there are also unlimited possible ways to encode the index map. In this

 101

work, we investigated some possible schemes for realizing index prediction, color reordering

and index encoding. They were combined flexibly to form different lossless coding methods

for coding color-indexed images, and it was found that APR-VBS2 could achieve an average

output bit rate as low as 3.275bpp. However, we cannot exclude the possibility that there exist

some other combinations of some other realizations of index prediction, color reordering and

index encoding to provide an even better compression performance. To explore this

possibility forms a direction for the extension of the present work.

In our study, the evaluation of the performance of various lossless coding methods was

based on a set of testing color-indexed images. These color-indexed images were generated by

color-quantizing a set of standard 24-bit full-color images. No halftoning [Floyd76] was

performed in the color quantization. From our evaluation results, it can be find that the

proposed lossless coding methods perform outstandingly for this kind of images. The question

is whether the proposed methods perform equally remarkable when the input images are

halftoned images. For halftoned images, there is little spatial correlation in the color intensity

planes, and hence index prediction is not that easy. Dedicated solutions are required to take

care of these images. It would be another interesting extension of the present work to sort out

this problem.

All coding methods proposed in this work support lossless image compression. In

Internet communications, sometimes it is advantageous to transmit an image progressively.

This allows the receiver to have a lower quality version of the image and quit before the

transmission is completed. It would be another meaningful direction for one to modify the

proposed coding methods to support both near-lossless compression and progressive mode

compression.

 102

Bibliography

[Arnavut99] Z. Arnavut, “Lossless compression of pseudo-color images,” Optical

Engineering, vol. 38, no. 6, 1999, pp.1001-1005.

[Arnavut05] Z. Arnavut and F. Sahin, “Inversion ranks for lossless compression of

palette images,” in Proc IEEE International Conf. on Electro Information

Technology, 22-25 M ay 2005.

[Arnavut06] Z. Arnavut and F. Sahin, “Lossless compression of color palette images

with 1-dimensional techniques,” Journal of Electronic Imaging, vol. 15,

no. 2, 023014, Apr-Jun 2006.

[Battiato01] S. Battiato, G. Gallo, G. Impoco, and F. Stanco, “A color reindexing

algorithm for lossless compression of digital images,” in Proc. IEEE

Spring Conf. Computer Graphics Budmerice, Slovakia, Apr. 2001, pp.

104-108.

[Burrows94] M. Burrows and D. J. Wheeler, “A block-sorting lossless data

compression algorithm,” SRC Research Report 124 (1994)

(ftp site: ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/

SRC-124.ps.Z).

[Chen02] X. Chen, S. Kwong, and J. Feng, “A New Compression Scheme for

Color-Quantized Images,” IEEE Trans. On Ciruits and Systems for video

technology, Vol 12, No 10, Oct 2002, pp. 904-908.

[Elias75] P. Elias, “Universal Codeword Sets and Representations of the Integers,”

IEEE Trans. on Information Theory, vol. 21, 1975, pp. 192-203

[Floyd76] R.W. Floyd and L. Steinberg, “An adaptive algorithm for spatial

greyscale,” Proceedings of Society for Information Display, Vol. 17, No.

2, 1976, pp. 75-77

[Gervautz90] M. Gervautz , W. Purgathofer, A simple method for color quantization:

octree quantization, Graphics gems, Academic Press Professional, Inc.,

San Diego, CA, 1990

[GIF87] http://www.w3.org/Graphics/GIF/spec-gif87.txt

[GIF89a] http://www.w3.org/Graphics/GIF/spec-gif89a.txt

[Golomb66] S.W. Golomb, “Run-Lengrh Encodings,” IEEE Trans. on Information

Theory, IT-12, July 1966, pp. 399-401

[Hadenfeldt94] A.C. Hadenfeldt and K. Sayood, “Compression of Color-Mapped

Images,” IEEE Trans. on Geoscience and Remote Sensing, Vol. 32, No. 3,

May 1994, pp. 534-541

[Heckbert82] P. Heckbert, “Color Image Quantization for Frame Buffer Display,”

Computer Graphics, vol. 16, No. 3, 1982, pp. 297-307.

[JBIG93] Information technology — Coded representation of picture and audio

information — Progressive bi-level image compression, Int. Std.

ISO/IEC 11 544:1993 and ITU-T Recommendation T.82 (1993), Mar.

1993.

 103

[Joy93] G. Joy and Z. Xiang, “Center-cut for color-image quantization,” The

Visual Computer: International Journal of Computer Graphics, Vol. 10.

No.1, 1993, pp. 62-66

[JPEG00] Information technology — JPEG 2000 image coding system: Core

coding system, ISO/IEC 15444-1 and -2, 2000.

[JPEG99] Information technology — Lossless and near-lossless compression of

continuous-tone still images: Baseline, ISO/IEC 14495-1:1999.

[Kuroki04] N. Kuroki, T. Yamane, and M. Numa, “Lossless Coding of Color

Quantized Images Based on Pseudo Distance,” in Proc. the 47th IEEE

International Midwest Symposium on Circuits and Systems, Vol.1, 25-28

Jul 2004, pp. 245-247.

[Lai07] J. Z. C. Lai and Y. C. Liaw, “A Novel Approach of Reordering Color

Palette for Indexed Image Compression,” IEEE Signal Processing Letters,

Vol.14, No.2, Feb 2007, pp. 117-120

[Lawler85] E.L. Lawler et al., ed., The Traveling Salesman Problem: A Guided Tour

of Combinatorial Optimization, Interscience Series in Discrete

Mathematics. New York: Wiley, 1985.

[Linde80] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer

design,” IEEE Trans. Commun., vol. COM-28, Jan. 1980, pp. 84-95.

[Lo03] K. C. Lo, Y. H. Chan and M. P. Yu, “Colour quantization by

3-dimensional frequency diffusion,” Pattern Recognition Letters, Vol. 24,

July 2003, pp. 2325-34

[Memon96] N. D. Memon and A. Venkateswaran, “On ordering color maps for

lossless predictive coding,” IEEE Trans. Image Processing, vol. 5, Nov.

1996, pp. 1522-1527.

[Memon97] N. D. Memon and R. Rodila, “Transcoding GIF images to JPEG-LS,”

IEEE Trans. on Consumer Electronics, Vol.43, No.3, Aug 1997, pp.

423-429.

[Moffat95] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” in Proc.

Data Compression Conf., J. A. Storer and M. C. Cohn, Eds., 1995, pp.

202–211.

[Natale89] F. G. B. De Natale, G. S. Desoli, D. D. Giusto, and G. Vernazza, “A

framework for high-compression coding of color images,” Visual

Commun. Image Process. '89 and in Proc. SPIE, vol. 1199, Nov. 1989,

pp. 1430-1439.

[Orchard91] M. T. Orchard, and C. A. Bouman, “Color quantization of images,” IEEE

Trans. On signal Processing, Vol.39, No.12, Dec 1991, pp.2677-2690.

[Pennebaker88] W. B. Pennebaker, J. L.Mitchell, G. G.Langdon, and R. B.Arps, “An

overview of the basic principles of the q-coder adaptive binary arithmetic

coder,” IBM J. Res. Develop., vol. 32, Nov. 1988, pp. 717-726.

[Pinho04] A. J. Pinho and A. J. R. Neves, “A note on Zeng’s technique for color

reindexing of palette-based images,” IEEE Signal Processing Letter, vol.

11, Feb. 2004, pp. 232-234.

[Pinho04A] A. J. Pinho and A. J. R. Neves, “A survey on palette recording methods

for improving the compression of color-indexed images,” IEEE Trans.

On Image Processing, Vol.13, No.11, Nov 2004, pp. 1411-1418.

 104

[Pinho05] A. J. Pinho, and A. J. R. Neves, “A Context Adaptation Model for the

Compression of Images with a Reduced Number of Colors,” Proceedings,

IEEE ICIP’05, Vol.2, Sep. 2005, pp. 738-741.

[PNG95] http://www.libpng.org/pub/png/

[Po94] L. M. Po and W. T. Tan, “Block address predictive colour quantisation

image compression,” E.Letter, vol.30, no.2, Jan. 1994, pp.120-121.

[Ratnakar98] V. Ratnakar, “RAPP - lossless image compression with runs of adaptive

pixel patterns,” Signals, Systems & Computers, 1998. Conference Record

of the Thirty-Second Asilomar Conference on. Vol 2, Nov. 1998, pp.

1251-1255

[Reavy01] M. D. Reavy, and C. G. Boncelet, “An algorithm for compression of

bilevel images,”, Image Processing, Vol. 10, Iss. 5, May 2001, pp.

669-676.

[Robinson06] J. A. Robinson, “Adaptive Prediction Trees for Image Compression,”

IEEE Trans. on Image Processing, vol. 15, no 8, Aug. 2006, pp.

2131-2145.

[Spira01] A. Spira and D. Malah, “Improved lossless compression of color-mapped

images by an approximate solution of the traveling salesman problem,”

Proc. IEEE ICASSP’01, vol. III, May 2001, pp. 1797-1800.

[Taubman00] D. Taubman, “High performance scalable image compression with

EBCOT,” IEEE Trans. on Image Processing, Vol. 9, Jul. 2000, pp.

1158-1170.

[Wallace91] G. K. Wallace, "The JPEG still Picture Compression Standard,"

Communications of the ACM, vol. 34, no. 4, 1991, pp. 30-44.

[Weinberger00] M. Weinberger, G. Seroussi and G. Sapiro, “The LOCO-I Lossless Image

Compression Algorithm: Principles and Standardization into JPEG-LS,”

Hewlett-Packard Laboratories Technical Report No. HPL-98-193R1,

IEEE Trans. Image Processing, vol. 9, Aug. 2000, pp. 1309-1324.

[Welch84] T. A. Welch, “A technique for high-performance data compression,”

Computer, Vol. 17, Jun. 1984, pp. 8-19.

[Wu97] X. Wu and N. D. Memon, “Context-based adaptive lossless image

coding,” IEEE Trans. Commun., vol. 45, Apr. 1997, pp. 437-444.

[Zaccarin93] A. Zaccarin and B. Liu, “A novel approach for coding color quantized

images,” IEEE Trans. Image Processing, vol. 2, Oct. 1993, pp. 442-453.

[Zeng00] W. Zeng, J. Li and S. Lei, “An efficient color re-indexing scheme for

palette-based compression,” in Proc. 7
th
 IEEE Int. Conf. Image

Processing Vancouver, BC, Canada, vol. III, Sep. 2000, pp. 476-479.

[Ziv78] J. Ziv and A. Lempel, "Compression of Individual Sequences Via

Variable-Rate Coding," IEEE Trans. on Information Theory, vol24, no. 5,

Sep. 1978, pp. 530-536.

	theses_copyright_undertaking
	b22329456

