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Abstract 

 

Color-indexed images are widely found in various image applications nowadays. An 

efficient compression algorithm for coding color-indexed images can help to reduce their data 

size for saving both transmission bandwidth and data storage requirement.  

A color-indexed image is represented with a color index map each element of which 

serves as an index to select a color from a predefined set of colors called palette to represent 

the color of a pixel in the image. Two completely different colors can be of similar index 

values in a palette. Hence, it is always a challenging task to compress a color-indexed image 

as the compression must be lossless and predictive coding techniques are generally not 

effective to predict an index based on the spatial correlation of the index map.  

Palette reordering is a remedial process aiming at finding a permutation of the color 

palette to make the resulting color index map more suitable for predictive coding. 

Conventional palette reordering methods generally reorder palette colors to form a static 

palette whose index assignment is common to all pixels for making the reordering transparent 

to the decoder.  

In this thesis, an adaptive palette reordering method is proposed. Unlike those 

conventional palette reordering methods, this method adaptively reorders the palette to make 

the index assignment pixel-dependent. By so doing, the reordering is no longer transparent to 

the decoder. However, the resultant index map of the original color-indexed image can be of 

much lower zero-order entropy, smaller index variance and less spatial correlation, which 

makes the index map much easier to be encoded efficiently with a typical lossless codec such 

as JPEG-LS.  
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Various lossless coding algorithms for color-indexed images can then be developed 

based on the proposed adaptive palette reordering algorithm. Simulation results show that 

their coding performance is better than state-of-art lossless compression algorithms including 

those are not based on palette reordering technique. In particular, when an index map was 

separated into binary bit planes with our suggested approach and then encoded with a 

context-based binary arithmetic coding scheme, an average compression ratio of 2.44:1 could 

be achieved. 

Index prediction, color reordering and DF-Table merging are some of the key functional 

components carried out in the proposed adaptive palette reordering algorithms. In practice, 

each one of them can be realized in different ways. Some of their realizations were evaluated 

and the result is also reported in this thesis. 
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Statement of Originality 

 

The following contributions reported in this thesis are claimed to be original. 

 

1. An adaptive palette reordering method which scans pixels of a color-indexed image and, 

on the fly, reassigns indices to palette colors pixel by pixel adaptively based on an 

updated statistical study of the processed image pixels and the predicted color of the 

current pixel. 

2. A detailed study on how the proposed adaptive palette reordering method reduces the 

zero-order entropy, the variance and the spatial correlation of the index map of a 

color-indexed image to make the index map easier to be encoded. 

3. A framework of how to realize lossless compression of color-indexed images based on 

adaptive palette reordering. 

4. A detailed study on how the actual realization of different functional components such 

as color reordering, index prediction and DF-Table merging affect the overall 

performance of adaptive palette reordering and hence the coding performance. 

5. Various lossless coding algorithms based on the proposed adaptive palette reordering 

algorithm. 

� Encoding the index map with JPEG-LS/Lossless JPEG-2000 

� Encoding the index map with significance-based bit-plane coding as presented in 

Section 7.3 

� Encoding the index map with value-based bit-plane coding as presented in 

Section 7.4 
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Chapter 1 – Introduction 

 

1.1 The addressed problems 

Color-quantized images [Orchard91] are widely used in various applications especially 

Internet applications nowadays to reduce communication bandwidth and storage requirement. 

A color-quantized image is generally represented with a color index map each element of 

which serves as an index to select a color from a predefined set of colors to represent the color 

of a pixel in the image. The predefined set of colors is called a palette. Color-quantize image 

can be generated with common color quantization algorithms such as median-cut 

[Heckbert82], center-cut [Gervautz90], octree [Joy93] and 3D frequency diffusion [Lo03]. 

They are also referred to as color-indexed images. 

To reduce the size of a color-indexed image further, lossless compression techniques are 

generally used because the index used to pick a particular palette color must be exact in 

decoding. A minor difference between two index values may result in a serious color shift. 

Predictive coding technique is widely used in lossless compression. In fact, most 

lossless coding algorithms such as CALIC [Wu97] and JPEG-LS [Weinberger00] are based 

on predictive coding and entropy coding techniques. CALIC and JPEG-LS raster-scan an 

image and use the intensity values of some encoded local pixels to predict the intensity value 

of the pixel being encoded. The estimation error between the actual value and the estimated 

value is then encoded with entropy coding algorithms [Moffat95] to compress the image. In 

general, the smaller the average prediction error over the image, the higher compression ratio 

can be achieved. 
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However, predictive coding techniques do not perform well when they are used to 

encode a color-quantized image. Encoding a color-quantized image implies encoding its color 

index map. In general, a palette is generated in a way without concerning the order of the 

colors in the resultant palette. Accordingly, the numerical values of two indices that point to 

similar colors may be very different. Most predictors assume that neighboring pixels have 

similar attributes and, when these attributes are quantitatively measured, their values are 

similar. This assumption is valid for the intensity values of an image, but not for the index 

values in a color index map due to the aforementioned reason. 

Palette reordering is a remedial process aiming at finding a permutation of the color 

palette to make the resulting color index map more suitable for predictive coding. In general, 

palette reordering attempts to minimize the index difference between adjacent pixels such that 

the prediction error would be as small as possible [Hadenfeldt94]. Various reordering methods 

were proposed for this purpose. Some of them assign indices to palette colors based on the 

attributes of the palette colors [Zaccarin93] or the distance among the palette colors [Po94]. 

Some of them assign indices to palette colors based on the number of occurrences of having 

two particular palette colors in two spatially adjacent pixels [Memon97, Zeng00, Pinho04, 

Battiato01]. All of them can effectively improve the compression rate when their outputs are 

encoded with JPEG-LS. 

Inspired by these palette reordering methods, we proposed a new reordering method in 

this work. This reordering method is named as adaptive palette reordering as it raster scans 

the image and adaptively reorders the palette based on both the palette and the index map. As 

a result, it is able to produce an index map of very low zero-order entropy and little spatial 

correlation. The index map can then be encoded with well-developed JPEG-LS or any other 

standard lossless coding techniques such as JBIG and JPEG-2000 efficiently.  
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The index map can also be encoded by some other non-standard coding schemes. A 

coding scheme was developed in this work based on the idea of bit-plane coding and 

context-based arithmetic coding to encode the output index map. The resultant coding 

performance is superior to those achieved by other state-of-art lossless image compression 

methods including those using techniques other than palette reordering [Po94, Spira01, 

Zaccarin93, Memon97, Zeng00, Pinho04, Battiato01]. 

 

1.2 Organization of this thesis 

The proposed adaptive palette reordering technique is composed of two basic functional 

components including index prediction and color reordering. These two components can be 

realized with different schemes and, accordingly, their different combinations result in 

different adaptive palette reordering methods. Chapter 3 shows one of the realizations of 

adaptive palette reordering. Simulation results are provided to show its outstanding 

performance in producing a new index map of lower variance, lower zero-order entropy and 

lower spatial correlation as compared with other conventional palette reordering methods. 

Chapter 4 puts its focus on the realization of index prediction in adaptive palette 

reordering. Besides the one used in the example presented in Chapter 3, index prediction can 

be realized with different schemes. In Chapter 4, four of them are studied and their prediction 

performance is evaluated. These schemes exploits MED[Weinberger00] or GAP[Wu97] to 

carry out the prediction in either the index plane or individual color intensity planes. 

Performance is evaluated in terms of various measures such as the entropy and the variance of 

their resultant reindexed index maps. 
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The focus of Chapter 5 is on the realization of color reordering in adaptive palette 

reordering. Five color reordering schemes are evaluated in Chapter 5 to see how well they can 

support adaptive palette reordering. In particular, we have two distance-oriented sorting 

schemes, one history-oriented scheme and two hybrid mode sorting schemes in our evaluation. 

Simulation results are presented. Performance is again evaluated in terms of both zero-order 

entropy and variance of the reindexed index maps.  

In adaptive palette reordering, it collects statistical information in the course and uses it 

as supporting information to improve the performance of color reordering at a later stage. The 

information is stored in a data structure called DF-Table in our study. The DF-Table is 

immature when it contains a lot of zero entries, and this happens when the number of 

processed pixels is too small. Two solutions are proposed in Chapter 6 to solve this problem. 

Their performance is also compared and reported in Chapter 6.   

Adaptive palette reordering produces a reindexed index map of low entropy, low 

variance and little spatial correlation. This index map can be encoded with various index 

encoding schemes easily. In Chapter 7, six different index encoding schemes are proposed to 

encode the output of adaptive palette reordering. Simulation results are presented to compare 

the compression performance of various lossless image coding methods including those 

exploit palette reordering and those do not. In other words, this chapter presents a direct 

comparison between the proposed adaptive-palette-reordering-based image coding methods 

and state-of-art lossless coding methods in terms of output bit rate.  

Chapter 8 provides a brief summary of the work we have done. Some possible 

directions of the extension of the work are also suggested in this final chapter. 
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Chapter 2 – Literature Reviews 

 

2.1 Introduction 

This chapter provides reviews on some existing work that is relevant to our work. In 

particular, Section 2.2 provides a review on lossless image coding standards. In general, a 

color-indexed image is composed of an index map and a palette. The index map can be treated 

as a grey level image and then encoded with any lossless image coding techniques. A 

off-the-shelf lossless image coding standard is a natural choice for coding a color-indexed 

image.  

In Section 2.3, some palette reordering algorithms are introduced. These algorithms 

reorder the palette of a color-indexed image such that the output index map associated with 

the reordered palette can be encoded with standard lossless image codecs such as JPEG-LS 

[JPEG99] and lossless JPEG-2000 [JPEG00] more effectively.   

Color-indexed images can be encoded directly without reordering their palettes. In that 

case, off-the-shelf image coding standards may not work effectively and dedicated coding 

techniques have to be used for removing the redundancy. Section 2.4 presents a review on 

some state-of-art lossless image coding methods which do not solely or even do not rely on 

palette reordering. 

 

2.2 Lossless image coding standards 

The Joint Photographic Experts Group (JPEG) is a joint ISO/ITU committee 

responsible for developing standards for continuous-tone still-picture coding. It deals with 

both lossy and lossless standards for image compression. There are two standards for lossless 

image coding and both of them are based on predictive coding.  
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Predictive coding makes use of the property of natural images to achieve compression. 

The basic idea of predictive coding is to predict a pixel’s intensity value with its neighbors’ 

and then encode the prediction error with entropy coding. In general, intensity values of 

neighboring pixels are similar and hence the prediction error can be very small. This removes 

the redundancy of the image.  

The old lossless standard of JPEG is referred to as “JPEG lossless” [Wallace91]. It 

provides eight different predictive schemes for a user to select. The new standard is referred 

to as JPEG-LS [JPEG99]. Medium Edge Detector (MED) is employed in its predictor to 

handle both edge and smooth regions. In particular, neighboring processed pixels are used to 

determine the current pixel value. An error compensation scheme is then applied to refine the 

predicted value. Finally, the prediction error is encoded with Golomb code [Elias75, 

Golomb66]. 

JPEG 2000 is a wavelet-based image compression standard [JPEG00]. It was created 

with the intention of replacing the previous DCT-based JPEG standard. It can operate at a 

higher compression ratio without generating the blocky and blurry artifacts introduced by the 

DCT-based JPEG standard. It provides both lossless and lossy compression in a single 

compression architecture. Lossless compression is provided by the use of a reversible integer 

wavelet transform and a quantization step size of 1. All bit planes have to be encoded by the 

Embedded Block Coding with Optimized Truncation (EBCOT) scheme [Taubman00] in 

lossless JPEG-2000. 



 7

Besides international coding standards like JPEG-LS and lossless JPEG-2000, there are 

some other defacto lossless image coding standards such as GIF and PNG. CompuServe 

introduced the GIF format in 1987 to provide a color image format [GIF87], and it is now one 

of the most popular formats on the Internet. The LZW compression scheme [Ziv78, Welch84] 

is used by GIF to compress an image. The most updated format version is GIF89a [GIF89a]. 

It supports transparency and interlacing.  

Portable Network Graphics (PNG) format is an image format for storing bitmapped 

images on computers [PNG95]. It was designed to replace the GIF format in 1995 when 

royalties were required for Unisys' patent on the LZW compression method used in GIF. The 

compression scheme used in the PNG format is again based on predictive coding. 

One can see that all these image coding standards were basically designed for encoding 

natural gray level images or color images. There is spatial correlation among the intensity 

values of neighboring pixels in a natural image and hence one can make use it to remove the 

redundancy with a predictive coding technique. In general, in the index map of a 

color-indexed image, the index values among neighboring pixels do not bear a similar extent 

of spatial correlation. The compression performance is generally not attractive when these 

coding standards are exploited to encode the index map directly.   

 

2.3 Palette reordering 

Palette reordering is a remedial process aiming at finding a permutation of the color 

palette to make the resulting color index map more suitable for predictive coding. In general, 

palette reordering attempts to minimize the index difference between adjacent pixels such that 

the prediction error would be as small as possible.  
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Various reordering methods were proposed for this purpose. Basically they can be 

divided into two major categories. The first category is palette-based. They assign indices to 

palette colors based on the attributes of the palette colors [Zaccarin93, Po94] or the distance 

among the palette colors [Spira01]. The second category is index-map-based. They assign 

indices to palette colors based on the number of occurrences of having two particular palette 

colors in two spatially adjacent pixels [Battiato01, Memon96, Pinho04, Zeng00]. All of them 

can effectively improve the compression rate when their outputs are encoded with lossless 

image coding standards such as JPEG-LS and lossless JPEG-2000. 

 

2.3.1  Palette-based palette reordering methods 

Palette-based reordering methods extract information from the palette and then make 

use of it to reorder the palette. They may consider the luminance intensity values of the palette 

colors, or the Euclidean distance between the palette colors. The index map is not taken into 

account when they reorder the palette. Accordingly, it is not necessary to scan the index map 

for the reordering. As compared with index-map-based reordering methods, they are fast and 

the complexity is much lower, but the performance is generally poorer. 

Zaccarin and Liu’s method [Zaccarin93] adopts a straightforward approach to permute a 

given color palette. It is developed based on the assumption that pixels in a local region have 

similar luminance value and hence colors of similar luminance values should have similar 

indices. In their work, the luminance is defined as Y=0.299R + 0.587G + 0.114B, where R, G 

and B denote the intensity values of the red, the green and the blue components respectively. 

Palette colors are sorted by their luminance values. This method is simple and fast. 
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The development of Po and Tan’s method [Po94] is based on an observation that pixels 

of similar colors are generally close to each other in natural images. In other words, it 

considers the similarity of colors instead of the similarity of the luminance of colors. The 

method assigns index value zero to the palette color of the lowest energy. The remaining 

indices are then assigned to the remaining palette colors one by one. In practice, it assigns 

index value j to the color which is the closest to the color assigned index value j-1 in terms of 

Euclidean distance in the color space. 

Spira and Malah’s method [Spira01] is based on a similar assumption that objects in an 

image are constructed with similar colors. Accordingly, the method tries to reorder the palette 

colors in a way that, when one visits the palette colors sequentially in the color space 

according to the index values and then goes back to the starting palette color, the path he 

travels is the shortest. This turns a palette reordering problem into a traveling salesman 

problem (TSP). The complexity for reaching an optimal solution is considerably high, and 

hence a suboptimal solution is pursued instead by making use of the Farthest Insertion 

Algorithm (FIA) [Lawler85]. 

 

2.3.2  Index-map-based palette reordering methods 

Index-map-based reordering methods extract statistical information from the index map 

to reorder the palette. The exact colors in the palette itself are seldom taken into account in 

these methods.  

The main idea behind index-map-based reordering methods is that colors that occur 

frequently close to each other should have close indices. If one can reorder the colors to 

minimize the average index difference between adjacent pixels in the index map, there will 

automatically be a gain in compression performance when predictive coding is used.  
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To achieve this, index-map-based reordering methods scan the index map to collect 

corresponding data before reordering the palette. The data collected can be the frequency of 

the occurrence that a pixel with color i is spatially adjacent to a pixel with color j in the index 

map, or the frequency of the occurrence that a pixel with color i is used to predict the color of 

a pixel with color j. Without losing generality, these data are denoted as C(i,j) in this section 

for elaborating how these reordering methods work. 

As a matter of fact, by defining the cost as a function of C(i,j), an optimal reordering 

solution for achieving the minimum cost can be found with a full search. However, it is 

generally impractical because the number of possible permutations of N objects is N! and 

hence the computation complexity is extremely high. Many sub-optimal solutions with much 

lower complexity were proposed by different researchers accordingly. 

Memon and Venkateswaran [Memon96] proposed two methods to reassign indices to 

palette colors by trying to minimize objective function ( )








−= ∑∑
= =

jijiCJ
N

i

N

j1 1

, , where N 

is the palette size. One of them is based on Simulated Annealing (SA) while the other is based 

on a heuristic approach named as Pairwise Merge (PM) heuristic.  

In the SA-based approach, the indices of two randomly selected palette colors are 

interchanged and the cost is reevaluated to check if the exchange is justified. The exchange 

will be confirmed if it is. Otherwise it will be rejected conditionally. The likeliness of being 

rejected increases as the number of attempts of interchange increases. Attempts are repeated 

until a particular termination criterion is satisfied. The realization complexity is huge.  
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The PM heuristic approach was proposed to reduce the complexity. The idea behind this 

approach is to merge two selected ordered sets of colors in a limited number of ways and then 

pick the merge that minimizes cost function ( ) jijiC
M

i

M

j

−∑∑
= =1 1

, , where i, j are the indices in 

the resultant ordered set and M is the total number of the colors in the resultant ordered result. 

The realization complexity is significantly reduced but its performance is not significantly 

lowered. 

Zeng, Li and Lei [Zeng00] proposed a palette reordering method of even lower 

complexity. Palette colors are selected one by one to construct an ordered list. The list is 

initialized to be the pair of palette colors which are most frequently located adjacent to each 

other. The list grows by attaching one of those palette colors not in the list to either the left or 

the right end of the list. The picked color and the picked end should maximize 

( ) ( )∑
∈

⋅+
Lc

jiccd

j

ji
ccC ,1log

),(
1

2  for all Lci ∉ , where ( )
ji ccC ,  is the number of 

occurrences that palette colors ic  and jc  are neighbors in the image, L is the current 

ordered list, and ),( ji ccd  is the position displacement between palette colors ic  and jc  

in the expanded list after ic  is attached to list L. Indices are assigned to the ordered list 

accordingly after all palette colors are included in the list. This method tries to reduce the 

overall index difference of adjacent pixels in the resultant index map.   

Pinho and Neves [Pinho04] made a theoretical analysis on Zeng et al.’s Method [Zeng00] 

for the case of Laplacian distributed differences of neighboring pixels. The way how to select 

a color to build the ordered list was then modified. It was found that, under the Laplacian 

model, the picked color should maximize ( )∑
∈Lc

ji

j

ccC ,  for all Lci ∉  and the picked end 
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should be determined by the sign of ( ) ( )∑
∈

⋅−+=∆
Lc

jic

j

j
ccCpM ,21 , where 

}...2,1{ Mp
jc ∈  is the position of jc  in list L, and M is the number of palette colors in list 

L. The selected ic  should be attached to the left end of list L if ∆>0. Otherwise it should be 

attached to the right end. 

Battiato, Gallo, Impoco and Stanco’s method [Battiato01] constructs a weighted graph 

based on ( )
ji ccC ,  and then reformulates the reordering problem as a problem of finding the 

Hamiltonian path of maximum weight in the weighted graph. To solve this problem, they 

proposed a greedy strategy to find a sub-optimal solution by sequentially adding the heaviest 

nonvisited edges to the path. The growth of the path starts with the edge of the largest weight. 

 

2.4 Coding methods which are not based on palette reordering 

Kuroki, Yamane and Numa’s method [Kuroki04] is actually a preliminary version of 

adaptive palette reordering. For a particular pixel, the palette colors are sorted by their 

distance to the color of one of the pixel’s neighbors, and the position of the pixel’s color in the 

sorted queue determines the new index of the pixel’s color. In this method, the probability of 

encountering a particular palette color is not taken into account in the adaptation of the palette 

and hence the performance is limited.   

Natale, Desoli, Giusto and Vemazza’s method [Natale89] was originally proposed for 

coding vector-quantized images but the same idea can be applied in compressing 

color-quantized images. To handle color-indexed images, this method predicts the color of a 

pixel with its four neighboring pixels and then selects a subset of palette colors based on the 

prediction result to form a small palette. The pixel’s color can be encoded with either the 

small dynamic palette or the original static palette to save bits.   
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Arnavut and Sahin adopted an approach [Arnavut06] similar to Battiato et al.’s method 

[Battiato01] to reindex the palette with a sub-optimal solution for traveling salesman problem. 

Unlike Battiato et al.’s approach, a block-sorting transformation (e.g. Burrows-Wheeler 

transformation (BWT) [Burrows94] or the linear order transformation (LOT) [Arnavut99]) 

using inversion ranks [Arnavut05] is further applied to the reindexed output before entropy 

coding is performed. 

In Chen, Kwong and Feng’s method [Chen02], a binary-tree structure of colors is 

constructed. The tree is traversed in a specific order during encoding. At each node, the colors 

of its child nodes and the locations of the pixels associated with the child nodes are encoded. 

The encoding of these pixel locations is performed by a context-based arithmetic encoder 

with variable size contexts. Pinho and Neves’s method [Pinho05] is an improved version of 

[Chen02] in which the context adaptation model is modified. Both methods can provide an 

average output bit rate lower than 4 bpp. This implies a compression ratio higher than 2:1. 

Ratnakar’s method [Ratnakar98] classifies patterns of neighborhood pixels to predict 

and code a pixel. The prediction rules are adaptively learned during the coding process itself. 

An average output bit rate close to 4 bpp can be achieved.  

The methods presented so far were mainly proposed or developed for handling 

color-indexed images. Recently, Robinson proposed a universal codec for coding images of 

various kinds [Robinson06]. This codec exploits the correlation among different color 

channels during compression and the achieved output bit rate is around 4.5 bpp when coding 

color-indexed images. Being a recently-proposed state-of-art codec, it is also included in our 

simulation study as a reference for comparison. 
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Chapter 3 – A framework of adaptive palette reordering 

 

3.1 Introduction 

As mentioned in Chapter 2, various reordering methods have been proposed to make 

the resulting color index map more suitable for predictive coding. Some of them assign 

indices to palette colors based on the attributes of the palette colors [Zaccarin93] or the 

distance among the palette colors [Po94].  Some of them assign indices to palette colors 

based on the number of occurrences of having two particular palette colors in two spatially 

adjacent pixels [Memon97, Zeng00, Pinho04, Battiato01]. In practice, all of them can 

effectively improve the compression rate when their outputs are encoded with JPEG-LS 

[Weinberger00]. 

In general, when a palette reordering method is exploited, it is required that the 

resultant palette is a static palette shared by all elements in the resultant index map such that 

the index map can be viewed as the original color image directly with the help of the palette. 

The resultant property is obviously good for convenience and transparency. However, from 

the compression point of view, this constraint is an additional burden to the codec and lowers 

the coding efficiency to a certain extent. For example, the zero-order entropy of the resultant 

index map cannot be reduced under this constraint as a bijective mapping has to be used in the 

reordering process. 

By considering this, an adaptive palette reordering method is proposed in this chapter. 

This method does not take the aforementioned constraint into account and hence gets rid of 

the burden. It raster scans the image and adaptively reorders the palette to produce an index 

map of lower zero-order entropy. By so doing, the entropy of the resulting index map can be 

significantly reduced, and can then be easily encoded with a number of standard lossless 

coding techniques such as JPEG-LS and JPEG-2000 efficiently. In terms of zero-order 
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entropy, the resultant coding performance achieved by the proposed method is much lower as 

compared with other conventional lossless color-indexed image compression methods [Po94, 

Spira01, Zaccarin93, Memon96, Memon97, Zeng00, Pinho04, Battiato01]. 

 

 

3.2 Adaptive palette reordering 

The proposed method processes a given color index map and its associated palette to 

generate a dynamic palette and a reindexed index map. The palette is dynamic in a way that 

the indices assigned to the palette colors are pixel position dependent and the assignment 

changes in the course of the processing. Accordingly, each element in the resultant index map 

is used as an index to find a color in the palette corresponding to the current pixel position. As 

a consequence, the resultant index map cannot be viewed as the original color image directly 

with the help of any static palette in our case.   

Since the palette is reordered adaptively, the proposed reordering method is referred to 

as adaptive palette reordering method so as to discriminate it from the conventional palette 

reordering method in which a fixed palette is designed for all pixels to share. 

Let the input color-indexed image be X and the associated palette be Ω={ kc
v

 

|k=0,1…N-1}, where N is the size of the palette. Without lose of generality, we assume all kc
v

 

in Ω are sorted according to their luminance and 0c
v

 (i.e. k=0) is the one of the minimum 

luminance. Note that this criterion can be easily satisfied through an initialization process. 

This sorted palette is used as a reference palette in the codec. 

Based on the index map of X, a full-color image can be constructed with palette Ω. The 

image is raster scanned and processed. For each pixel, the intensity values of its three color 

components are individually predicted with their own corresponding color planes by 
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Figure 3.1  MED estimation scheme used in JPEG-LS 

 

 

using a MED predictor. MED is used in JPEG-LS [Weinberger00] and its operation can be 

summarized as in Figure 3.1. 

Suppose the prediction results of the red, green and blue color components of the 

current pixel (i,j) are, respectively, r(i,j), g(i,j) and b(i,j). In vector form, the prediction result 

of pixel (i,j) is )),(),,(),,((),( jibjigjirjiv =
v

. ),( jiv
v

 is then quantized with palette Ω. Let 

the quantization result be pc
v

, the p
th
 palette color in Ω. pc

v
 could be different from the 

original color-indexed color of the pixel, rc
v

, which is assumed to be the r
th
 palette color in Ω 

without losing the generality. 

In the proposed scheme, the occurrence of this discrepancy is recorded and cumulated 

for improving the prediction performance in the future. In particular, a table is constructed for 

storing the values of {H(m,n)|m,n=0,1…N-1}, where H(m,n) is defined as the number of 

occurrences when the quantized predicted color and the original color of a pixel are, 

respectively, mc
v

 and nc
v

. All H(m,n) values are initialized to zero at the very beginning and 

the table is updated after a pixel is processed. For reference, this table is referred to as 

discrepancy frequency table (DF-Table) hereafter. 

NW 

W 

N 

X 

If NW ≥ max(W,N) 
 X’ = min(W,N) 
else 

 If NW ≤ min(W,N) 
  X’ = max(W,N) 
 else 

  X’ = W+N-NW 
X’ is the estimate of 
the current pixel X. 



 17

Table of {H(m,n)} 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

k 0 1 2 3 4 5 6 7 

H(0,k) 29 7 6 5 4 3 2 1 

H(1,k) 0 88 1 2 0 0 0 1 

H(2,k) 0 2 65 1 2 1 0 0 

H(3,k) 0 2 10 56 1 1 0 1 

H(4,k) 3 1 0 8 8 8 0 0 

H(5,k) 0 0 3 2 3 23 5 1 

H(6,k) 0 0 0 1 1 2 23 2 

H(7,k) 0 2 0 3 0 2 6 9 

(a) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

Prediction Error, 
2||),(|| jivck

vv
−  0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1 

(b) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

New index 3 4 7 2 1 0 6 5 

(c) 

Figure 3.2 Example of how to assign indices to a dynamic palette when ),( jiv
v

, 4c
v

 and 

3c
v

 are, respectively, the predicted, the quantized predicted and the real colors: 

(a) current status of the DF-Table, (b) given prediction error 
2||),(|| jivck

vv
−  

in the example, (c) index assignment of the proposed method 

 

 

 

After ),( jiv
v

 and its quantization result pc
v

 are determined, the colors in palette Ω are 

adaptively reordered based on H(p,k) and 2||),(|| jivck

vv
−  for k=0,1…N-1. In particular, 

kc
v

’s are sorted according to the values of {H(p,k)|k=0,1…N-1} in descending order. If there 

exist two different colors lc
v

 and dc
v

 such that H(p,l)=H(p,d), lc
v

 and dc
v

 will be sorted 

according to their Euclidean distances to ),( jiv
v

. The closer one is put in front of the other. If 

they are still not distinguishable, their order will be determined by their ranking in reference 

palette Ω. 
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The position of rc
v

 in the newly reordered queue can be used as an index to the queue 

and is used to represent the pixel in the output of the reordering method.  Note the queue 

forms a transient version of palette Ω. After processing this pixel, H(p,r) is incremented by 1 

to update the frequency count of this event. 

For each pixel, 3 MED prediction processes, an N-codeword VQ process and a sorting 

process are required. In practice, the sorting effort can be neglected as a sequence of kc
v

’s 

which are sorted by {H(p,k)| k=0,1…N-1} can be easily updated when H(p,r) is updated after 

processing a pixel. As all we need is the position of rc
v

 in the queue, in most cases it is not 

necessary to sort kc
v

’s by 2||),(|| jivck

vv
− . 

Figure 3.2 shows an example of how an index is adaptively determined for a pixel when 

the current status of H(m,n) is shown in Figure 3.2a. In this example, the palette Ω is of size 8. 

Assume that the predicted color, the quantized predicted color and the real color of the pixel 

are, respectively, ),( jiv
v

, 4c
v

 and 3c
v

. In such a case, { kc
v

|k=0,1…7} are sorted by H(4,k) 

and then by 2||),(|| jivck

vv
− . It results in { 26710345 ,,,,,,, cccccccc

vvvvvvvv
}. The position of 3c

v
 in 

the sorted sequence is 2 and hence the output index for 3c
v

 is 2. We note that the sequence 

order, and hence the index, is counted from 0 here. 

In the decoder, to decode a pixel, the same process is carried out to determine the same 

transient version of palette Ω. As soon as the index for the pixel is received, it can be used to 

fetch the corresponding color in the transient version of palette Ω to reconstruct (i) a color 

index map all elements of which use a fixed common palette such as Ω to generate a 

full-color image, or even (ii) the full-color image directly. 

Figure 3.3 summaries the flow of the proposed adaptive palette reordering method in 

pseudo code. 
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Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1. 

Raster scan the image 

FOR each pixel (i,j) 

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j). 

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j). 

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j). 

Quantize )),(),,(),,((),( jibjigjirjiv =
v

 with the reference palette Ω.   

% Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω 

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
−  and then by k. 

% The sorted palette colors forms the transient version of the palette  

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω 

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

. 

Update {H(m,n)} by H(p,r)++. 

END 

 

Figure 3.3  Pseudo code of the proposed adaptive palette reordering method  

 

 

3.3 Properties of the reindexed output 

Simulations were carried out to evaluate the performance of the proposed reordering 

method. A set of 24 standard full-color testing images as shown in Figure 3.4 were 

color-quantized to 256-color images with MATLAB function RGB2IND. No dithering was 

performed in the quantization. The color-quantized images were then processed to produce 

their corresponding reindexed index maps with the proposed adaptive palette reordering 

method for analysis. 

As an example, Figure 3.5a shows the color quantization result of one of the testing 

natural full-color images. Figure 3.5b shows a typical color index map of Figure 3.5a. This 

index map is associated with a palette whose colors are sorted by luminance (i.e. palette Ω, 

the reference palette in our method). For reference, we refer to this index map as the reference 

index map of the color-quantized image. Figure 3.5c is the processing result of the proposed 

adaptive palette reordering method. One can see that very few indices are of large values in 

the reindexed index map. 
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Figure 3.4 Original Kodak full-color images (Refers as image 1 to image 24, from 

top-to-bottom and left-to-right) 

 

 

 

Figure 3.6 shows the histograms of Figure 3.5b and Figure 3.5c. One can see that the 

peak of the histogram of our reindexed output is very sharp while that of the reference index 

map is not. As a matter of fact, the index histogram of our processing result, approximately, 

appears as a monotonic decreasing function and drops sharply from the order of 105 to the 

order of 10
3
 in 33 indices. Consequently, the zero-order entropy of our result is significantly 

reduced as compared with that of the reference. In particular, the zero-order entropy values of 

the reference index map and our processing result are, respectively, 7.176 and 4.238 bpp (bits 

per pixel). 
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(a) Color-quantized image 

 

 
(c) Our processing output 

 
(b) Reference index map (colors are sorted by 

luminance) 

 
(d) Mapping result of (c) using mapping (3.1)

Figure 3.5  Processing result of the proposed adaptive reordering method 

 

As making the resultant reindexed index map directly displayable is not the concern in 

our case, the proposed reordering method does not exploit a bijective mapping as in 

conventional reordering methods [Po94, Spira01, Zaccarin93, Memon96, Memon97, Zeng00, 

Pinho04, Battiato01] to reindex the palette colors, which allows it to change the sorted index 

distribution and reduce the zero-order entropy remarkably. Figure 3.7 shows the reduction in 

zero-order entropy that the proposed method can achieve when processing the color 

quantization results of the testing images shown in Figure 3.4. As a bijective mapping 

function is used to reindex palette colors in conventional palette reindexing algorithms such 

as [Po94, Spira01, Zaccarin93, Memon96, Memon97, Zeng00, Pinho04, Battiato01], the 

zero-order entropy values of their reindexed results are exactly identical to the zero-order 

entropy value of the reference. 
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Figure 3.6  Histograms of color index maps of Kodak-05 

 

 

 

 

Figure 3.7  Reduction in zero-order entropy when the proposed reordering method is used 
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(a)         (b) 

Figure 3.8 Correlation between pixel (m,n) and pixel (m+x,n+y) in (a) our reindexed 

output, and (b) the reference index map 

 

In general, a significant number of indices in our processing result are of zero values. It 

drags the mean value of the indices to the zero side significantly, and hence large index values 

(e.g. those close to N) derivate from the mean very much. This results in a large variance of 

the indices. To solve this problem, the indices of the index map are further mapped to other 

values with a bijective mapping M(•) as follows. 

 

   2/)1(12/)( iNiM
i−−−=  for i =0,1…N-1 (3.1) 

 

This mapping shifts the peak of the index distribution from 0 to  2/N -1. Accordingly, 

the maximum derivation of an index from the mean is more or less N/2, which reduces the 

variance of the indices. Note that this bijective mapping does not alter the lowered zero-order 

entropy of the resultant index map. The segmented curve in Figure 3.6 shows the histogram of 

the new mapping result and Figure 3.5d shows the mapping result of Figure 3.5c.  
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Another analysis was carried out to study the effectiveness of the proposed reordering 

method in eliminating the spatial statistical redundancy of indices. Figure 3.8 shows the 

correlation coefficient of the index values of two pixels which are (x,y) apart in an index map. 

It was evaluated with the results shown in Figures 3.5b and 3.5d. One can see that the 

remapped indices in the output of our approach are highly uncorrelated after mapping. This 

implies that most redundancy is removed by our reordering method. This removal helps a lot 

for one to encode the resultant index map efficiently. 

This analysis shows that the proposed method can remove a lot of spatial correlation in 

the reindexed index map. In data compression, effectiveness in removing redundancy usually 

implies compression performance. 

For comparison, Figure 3.9 shows some reindexed index maps generated with some 

conventional palette reordering methods. As shown in Figure 3.9, the energy retained in our 

reindexed index map is much lower as compared with that in the others. Table 3.1 shows the 

mean square values of the indices in different reindexed index maps while Table 3.2 shows 

the variances of the indices in different reindexed index maps. Here we note that our results 

presented in Table 3.2 are obtained with the help of the bijective mapping defined in eqn. 

(3.1). The small variance of the data in our outputs is a compression-friendly feature 

introduced by the proposed dynamic palette reordering method. 

Figure 3.10 shows the histograms of the index map shown in Figure 3.9. Unlike other 

reindexed index maps, the histogram of our reindexed index map is very unequalized, which 

results in a low zero-order entropy. 

Figure 3.11 shows the correlation among adjacent pixels in these reindexed index maps. 

One can see that a significant amount of correlation is retained in the outputs of the 

conventional static palette reordering algorithms while it is almost removed completely in our 

result. 
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(a) Result of Matlab’s RGB2IND function (b) Po [Po94] 

  
(c) Spira  [Spira01] (e) Battiato [Battiato01] 

  
(f) Zeng [Zeng00] (g) Pinho [Pinho04] 

  
(h) Memon [Memon96] (i) Ours 

Figure 3.9  Reordered index-maps of Kodak-05 obtained with different methods 

 



 26 

0 50 100 150 200 250

10
1

10
2

10
3

10
4

10
5

10
6

index value

fr
e
q
 c

o
u
n
t

Histogram

Ours

Zeng

Pinho

Battiato

Memon

 

Figure 3.10  Histograms of different reordering results (Kodak-05) 

 

 

 

 

 

 

Figure 3.11 Performance of different algorithms in terms of correlation among pixels in 

their reindexed results (Kodak-05) 
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Group Image 
Size 
(pixel2) 

Palette reordering method 

Po94 Spira01 Zeng00 Pinho04 Memon96 Battiato01 Ours 

C
G
 im

ag
e pool 510x383 3264.9 32086.0 16474.0 13505.0 16945.0 24862.0 49.8 

watch 1024x768 13651.0 27129.0 17420.0 16440.0 15871.0 24258.0 129.4 

water 1024x768 16546.0 20401.0 17892.0 20114.0 24342.0 23028.0 735.5 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 17403.0 23951.0 12358.0 16780.0 23743.0 23729.0 509.4 

Kodak 02 768x512 17321.0 13722.0 22765.0 24967.0 17174.0 6561.2 193.9 

Kodak 03 768x512 13244.0 18683.0 13119.0 12943.0 19484.0 18459.0 53.9 

Kodak 04 768x512 19439.0 21966.0 20053.0 19330.0 18565.0 16875.0 92.9 

Kodak 05 768x512 14958.0 22761.0 20570.0 17827.0 19141.0 22489.0 585.1 

Kodak 06 768x512 22120.0 24824.0 15255.0 15247.0 25367.0 23393.0 360.1 

Kodak 07 768x512 11375.0 13548.0 21687.0 11919.0 23470.0 16878.0 197.1 

Kodak 08 768x512 17796.0 20235.0 19384.0 20621.0 23641.0 22154.0 555.7 

Kodak 09 768x512 9956.7 29466.0 20969.0 10791.0 15770.0 17224.0 135.1 

Kodak 10 768x512 12723.0 20369.0 20861.0 22242.0 15459.0 18815.0 224.5 

Kodak 11 768x512 16342.0 18570.0 25170.0 28440.0 23991.0 23249.0 315.4 

Kodak 12 768x512 12779.0 34198.0 17183.0 23043.0 18752.0 18134.0 110.0 

Kodak 13 768x512 16249.0 22470.0 21638.0 15837.0 22619.0 20463.0 1202.8 

Kodak 14 768x512 13962.0 15828.0 20256.0 13425.0 28530.0 18215.0 278.2 

Kodak 15 768x512 12755.0 23743.0 16177.0 16249.0 24012.0 16501.0 77.9 

Kodak 16 768x512 16830.0 23727.0 14993.0 17500.0 27255.0 18552.0 181.4 

Kodak 17 768x512 13334.0 16882.0 17185.0 22560.0 12743.0 12204.0 232.1 

Kodak 18 768x512 16275.0 17694.0 30762.0 31107.0 27989.0 21631.0 468.4 

Kodak 19 768x512 15501.0 19188.0 28991.0 29021.0 15689.0 26163.0 208.0 

Kodak 20 768x512 22053.0 34122.0 9182.3 9170.1 12763.0 18871.0 210.2 

Kodak 21 768x512 22372.0 18671.0 12707.0 12944.0 14479.0 16616.0 344.4 

Kodak 22 768x512 16639.0 24568.0 27912.0 14674.0 16555.0 20351.0 272.8 

Kodak 23 768x512 17252.0 17698.0 17937.0 19620.0 20278.0 17556.0 64.8 

Kodak 24 768x512 14573.0 19360.0 20551.0 16003.0 23452.0 21593.0 581.0 

Average 15433.8 22068.9 19238.9 18234.0 20299.2 19586.1 310.0 

Table 3.1 Mean square values of the indices in different reindexed index maps produced 

with different palette reordering methods 
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Group Image 
Size 
(pixel2) 

Palette reordering method 

Po94 Spira01 Zeng00 Pinho04 Memon96 Battiato01 Ours 

C
G
 im

ag
e pool 510x383 1800.3 1277.5 504.7 494.0 631.5 1477.5 48.6 

watch 1024x768 4064.8 3645.7 1350.2 1300.3 1473.1 2234.9 122.4 

water 1024x768 5536.3 4225.4 3547.4 3270.8 4948.3 6323.8 609.3 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 3873.5 3692.6 2515.3 2477.8 3814.3 5800.6 403.3 

Kodak 02 768x512 3817.1 2991.9 861.9 941.4 1212.2 3479.0 171.6 

Kodak 03 768x512 4465.6 3984.6 3225.5 3284.6 3531.3 5493.1 49.8 

Kodak 04 768x512 5412.5 4837.0 3082.2 3297.0 4375.8 4799.3 79.2 

Kodak 05 768x512 5906.3 3487.0 2353.9 2302.2 2656.0 4084.0 496.8 

Kodak 06 768x512 6008.0 4257.9 2887.3 3708.1 5475.4 6009.6 300.8 

Kodak 07 768x512 4283.8 4699.1 2647.6 2490.6 2834.3 4371.8 183.5 

Kodak 08 768x512 5206.9 4972.0 3801.6 3966.8 4820.7 4723.0 472.4 

Kodak 09 768x512 3100.6 2960.8 1352.0 1745.0 1812.2 3415.8 119.8 

Kodak 10 768x512 3765.6 3394.2 2271.4 2046.4 3381.8 5718.1 202.1 

Kodak 11 768x512 4600.6 4313.5 3076.1 3108.7 5838.7 5087.8 281.5 

Kodak 12 768x512 3902.2 5258.3 2297.5 2546.1 2677.0 4381.5 98.3 

Kodak 13 768x512 4837.1 4532.3 3352.8 3835.9 4240.7 4586.9 916.7 

Kodak 14 768x512 4914.5 3921.4 2354.9 2893.3 4083.9 5373.8 240.9 

Kodak 15 768x512 5058.8 5371.6 3156.9 2850.7 5356.5 5022.9 69.8 

Kodak 16 768x512 5250.9 5841.5 2695.5 3660.2 3552.3 5234.4 157.2 

Kodak 17 768x512 4883.1 3188.6 1856.6 1758.7 3344.8 4631.6 206.8 

Kodak 18 768x512 5878.9 3069.6 3506.7 3336.6 4311.4 4273.2 399.6 

Kodak 19 768x512 3671.0 4729.0 3327.6 4061.5 4363.4 6759.0 177.8 

Kodak 20 768x512 4541.1 6282.9 3206.5 3306.6 2560.0 2217.5 191.2 

Kodak 21 768x512 4596.6 3809.8 3904.8 4511.7 4122.6 4469.8 302.7 

Kodak 22 768x512 4538.4 3921.1 3554.8 3520.4 4206.3 5495.5 234.4 

Kodak 23 768x512 6104.8 3931.5 3771.6 3851.6 4080.7 6167.1 61.2 

Kodak 24 768x512 5304.2 3759.6 2726.0 2625.0 3176.3 5793.2 509.1 

Average 4641.6 4087.3 2710.7 2859.0 3588.2 4719.4 263.2 

Table 3.2 Variances of the indices in different reindexed index maps produced with 

different palette reordering methods 
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Table 3.3 and table 3.4 show the upper bound of computational complexity of the 

proposed dynamic palette reordering algorithm in pre-processing stage and post-processing 

stage, respectively. There are 3 stages processes: Color Prediction, Color Quantization and 

Palette reordering. N is the size of palette Ω. The complexity is proportional to the number of 

colors in palette. 

 

Operation Stage Operations / pixel 

CMP 
Color Prediction 

6 

ADD 6 

CMP 
Color Quantization 

N 

ADD 2N 

CMP Reordering N 

Table 3.3 The computational complexity of the proposed dynamic palette reordering 

algorithm (Pre-Processing) 

 

 

Operation Stage Operations / pixel 

CMP 
Color Prediction 

6 

ADD 6 

CMP 
Color Quantization 

N 

ADD 2N 

CMP Reordering N(N+1)/2 

Table 3.4 The computational complexity of the proposed dynamic palette reordering 

algorithm (Post-Processing) 
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3.4 A generalized framework 

An adaptive palette reordering method is proposed in Section 3.3. Unlike those 

conventional palette reordering methods [Po94, Spira01, Zaccarin93, Memon97, Zeng00, 

Pinho04, Battiato01], it reorders the palette on the fly when accessing the pixels in an image 

such that the indices to the colors in the palette is spatial variant. To complete the compression, 

an encoder is required to encode the indices in the end. The index encoder works with the 

proposed adaptive palette reordering method to form a coding system for compressing a 

color-quantized image. 

Figure 3.12 shows the basic structure of such a coding system. Though a number of 

details of the proposed adaptive palette reordering method have been provided in the previous 

section, the whole system can be generalized with the simplified model shown in Figure 3.12. 

In particular, pixels are processed one by one. For each pixel, a prediction is performed to 

estimate its color. The prediction error and, if necessary, some other available information as 

well, is then exploited to reorder the color in the palette. The index to the color in the 

reordered palette is encoded after all. 

The generalized structure shown in Figure 3.12 forms a framework for coding 

color-quantized images. As a matter of fact, based on this structure, a number of variants of 

the proposed palette reordering methods can be developed by varying the actual 

implementation of a particular functional block. In the following chapters, we will investigate 

some of these variants and evaluate the impacts of different factors. 
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Figure 3.12  Structure of a codec using adaptive palette reordering method 

 

 

3.5 Summary 

An adaptive palette reordering method is proposed in this Chapter to reshape the 

statistical properties of a color index map. This method uses the color planes instead of the 

index plane to do prediction such that the color spatial property can be exploited. Unlike other 

reordering methods, this method adaptively reorders the palette based on both the palette and 

the index map to produce a new index map of low variance, low zero-order entropy and little 

spatial correlation.  

Based on this proposed palette reordering method, a coding system for compressing 

color-quantized images is proposed. It forms a framework for one to develop other coding 

schemes by modifying the actual realization of its functional blocks. In the following chapters, 

we are going to investigate some of these variants and evaluate the impacts of different factors 

in the realization of this coding system. 
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Chapter 4 – Impact of prediction to adaptive palette reordering 

 

4.1 Introduction 

The proposed adaptive palette reordering method presented in Chapter 3 can be 

generalized with the model shown in Figure 4.1. This model forms a framework for carrying 

out adaptive palette reordering. In other words, one can just treat the method proposed in 

Chapter 3 as a particular example of the realization of adaptive palette reordering method. By 

using different approaches to realize the prediction module or the color reordering module in 

the framework, one can develop a number of variants of the proposed adaptive palette 

reordering method. 

The MED predictor is exploited to realize the prediction module in the method proposed 

in Chapter 3. In particular, the prediction is carried out in the red, the green and the blue color 

intensity planes separately. In this chapter, we are going to explore some other variants for the 

realization of the prediction module. In particular, we will investigate the impact of (1) using 

Gradient Adjusted Predictor (GAP), the predictor used in CALIC codec [Wu97], instead of 

the MED predictor used in JPEG-LS [Weinberger00] and (2) carrying out the prediction in the 

index plane directly instead of individual color intensity planes. 

This chapter is organized as follows. First, a brief introduction of the difference between 

MED and GAP is given in Section 4.2. An evaluation is then made in Section 4.3 to compare 

the prediction performance of MED and GAP in the case when the prediction is carried out in 

the index domain directly. In Section 4.4, we show their prediction performance in the case 

when the prediction is carried out in the intensity domain. The actual impact of these different 

prediction schemes to the performance of adaptive palette reordering is discussed in Section 

4.5. A summary is finally given in Section 4.6. 
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Figure 4.1  Structure of adaptive palette reordering 

 

4.2 MED vs GAP in prediction 

Median Edge Detection (MED) is a simple edge detector originally proposed for 

JPEG-LS. It tries to classify a pixel by detecting whether it is in a smooth region or on a 

vertical or horizontal edge. The detection is based on 3 neighboring pixels of the pixel of 

interest as shown in Figure 4.2. The detection result then determines the prediction result of 

pixel X.  

The MED predictor is designed to be simple so as to reduce the realization complexity. 

It is used in the adaptive palette reordering method proposed in Chapter 3 to realize the 

prediction module. 

As compared with MED, Gradient Adjusted Predictor (GAP) is a more complicated 

predictor in which a more sophisticated edge detection scheme is performed in the prediction. 

A larger support region of the pixel of interest is used to classify the edge that the pixel is on 

into more classes according to its nature.  

Figure 4.3 shows the causal context template used for predicting the value of pixel x. 

The pseudo code shown in Figure 4.4 summaries the working principle of GAP. The predictor 

coefficients and the thresholds involved in the pseudo code were determined empirically 

[Wu97]. As compared with MED, the number of pixels covered by the support 
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Figure 4.2  MED estimation scheme used in JPEG-LS 

 

 

region increases from 3 to 7 to collect more information of the neighborhood of the predicted 

pixel. Besides, its edge detector is not only able to classify the orientation of an edge, but tell 

if it is a sharp edge, a strong edge or a weak edge as well.  

GAP is the predictor used in CALIC. One can see that more effort is required to realize 

GAP than MED. This is expected as GAP is designed for a better performance. As a 

consequence, its prediction performance is expected to be higher in return.  

 

  NN NNE 

 NW N NE 

WW W x  

Figure 4.3  The causal context template used in CALIC for pixel x 

 

As a matter of fact, the pseudo code presented in Figure 4.4 is only the core part of GAP. 

The original version of GAP[Wu07] exploits some error feedback and compensation schemes 

to refine the prediction result so as to improve the performance. This refinement step is 

dropped when GAP is used in our study as the marginal improvement does not justify the 

required realization complexity of the refinement step. Accordingly, in this work, GAP is 

referred to as the version without refinement as it is presented in Figure 4.4.  

 

NW 

W 

N 

X 

If NW ≥ max(W,N) 
 X’ = min(W,N) 
else 

 If NW ≤ min(W,N) 
  X’ = max(W,N) 
 else 

  X’ = W+N-NW 
X’ is the estimate of 
the current pixel X. 
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Pseudo Code Remarks 

NNENENNNNWWv IIIIIId −+−+−=  Criteria for vertical direction edge 

NNENWNWWWh IIIIIId −+−+−=  Criteria for horizontal direction edge 

4/)(2/)( NWNENW IIIIJ −++=   

IF  ( hv dd − > 80), WII =ˆ  CASE: Sharp Horizontal Edge 

ELSEIF  ( hv dd − < -80), NII =ˆ  CASE: Sharp Vertical Edge 

ELSEIF  ( hv dd − > 32), 2/)(ˆ
WIJI +=  CASE: Strong Horizontal Edge 

ELSEIF  ( hv dd − < -32), 2/)(ˆ
NIJI +=  CASE: Strong Vertical Edge 

ELSEIF  ( hv dd − > 8), 4/)3(ˆ
WIJI +=  CASE: Weak Horizontal Edge 

ELSE  ( hv dd − < -8), 4/)3(ˆ
NIJI +=  CASE: Weak Vertical Edge 

END  

Figure 4.4 Pseudo code for classifying an edge with Gradient Adjusted Predictor (GAP) to 

predict a pixel value 

 

 

4.3 Prediction in index domain 

As mentioned in Chapter 1, it is difficult to make a prediction in the index plane of a 

color-quantized image as two similar colors can be of completely different index values in a 

palette. At the same time, two completely different colors can be of similar index values in a 

palette. Figure 4.5b shows a typical index plane for representing the color quantized image 

shown in Figure 4.5a. It is generated with Matlab’s RGB2IND function. One can see that the 

spatial correlation among pixels that exists in the color intensity planes can hardly be found in 

the index plane. Accordingly, it makes prediction meaningless in the index plane to a certain 

extent. 

To solve this problem, one can reorder the colors in the palette to establish a connection 

between the color luminance value and the index value. Since there is correlation among 

adjacent pixels in their luminance values, this reordering in palette colors is able to introduce 

a correlation among the indices of adjacent pixels. 
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(a) Color-quantized image (b) Result of Matlab’s RGB2IND function 

 
(c) Luminance plane of (a) (d) Reference index map (colors are sorted by 

luminance)  

Figure 4.5 Color-quantized image Kodak-05 and some of its index maps: (a) 

color-quantized image, (b) the index map generated with Matlab’s RGB2IND 

function, (c) luminance plane of (a), and (d) the index map associated with the 

palette sorted by luminance. 

 

In our study, palette colors are sorted by their luminance values 

Y=0.299R+0.587G+0.114B, where R, G and B are, respectively, the intensity values of the 

red, the green and the blue color components. The sorted palette is then used as a reference 

palette to update the index map. Figure 4.5d shows the index map associated with the 

reference palette. As mentioned in Chapter 3, this index map is referred to as the reference 

index map. 

The reference index map appears as a grey-level image and the pixels are now highly 

correlated. Figure 4.5c shows the luminance plane of Figure 4.5a for comparison. With this 

spatial correlation, prediction can be performed in the reference index plane.  
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(a) MED (b) GAP 

Figure 4.6 Index residue planes of Kodak-05 when the prediction is done is the index 

plane directly (a) MED and (b) GAP 

 

As a remark, we note that GAP may produce a floating-point prediction result. When a 

prediction is carried out in the index plane with GAP, the prediction result is actually the 

rounding result of the prediction result as an index must be an integer. 

Simulation was carried out to evaluate the prediction performance of MED and GAP in 

predicting an index in the index plane. Figure 4.6a and Figure 4.6b show, respectively, MED’s 

and GAP’s prediction residue planes of Kodak-05. Here, the residue means the difference 

between the predicted index p and the real index r of a pixel. Apparently, the two residue 

planes are more are less the same. 

Figure 4.7 shows the histograms of the residue planes shown in Figure 4.6. One can see 

that there are more pixels whose indices are exactly estimated in MED’s prediction result. In 

particular, 29.3% of pixels are accurately predicted with MED while only 13.8% of pixels are 

accurately predicted with GAP. However, the variances of MED’s and GAP’s residue planes 

are, respectively, 705.17 and 694.58. In other words, the average performance of GAP is a bit 

better but the superiority is not that obvious. Similar observations were obtained in the 

simulation results when using other testing images. By considering these findings and the 

lower complexity of MED, MED seems better to be used when handling the index plane.  
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 (a) MED (b) GAP 

Figure 4.7  Histograms of Figure 4.6 (in log scale) 

 

Table 4.1 shows some more data for comparing the prediction performance of MED and 

GAP in predicting a pixel in the index plane. Their performance is compared in three aspects 

including the energy of the index prediction error (EI), the entropy of the index prediction 

error (EntropyI) and the energy of the color prediction error (EC). In particular, they are 

defined as follows. 
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where r(i,j) and p(i,j) are, respectively, the real index and the predicted index of pixel (i,j), 

alln  is the total number of pixels in an image and kn  is the number of pixels whose 

predicted indices are different from whose real indices by k. ),( jicr

v
 and ),( jic p

v
 are, 

respectively, the real color and the predicted color of pixel (i,j). They are determined by the 

real index r(i,j) and the predicted index p(i,j) of pixel (i,j). As a remark, all three color 

components of a color is normalized such that their intensity values are bounded in [0,1]. 
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Group Image 
Size 
(pixel2) 

Energy of the index prediction 
error, EI (dB) 

Entropy of the index prediction 
error, EntropyI (bpp) 

Energy of the color prediction 
error, EC (dB) 

MED GAP MED GAP MED GAP 
C
G
 

im
ag
e pool 510x383 71.095 70.273 2.149 2.816 29.278 37.275 

watch 1024x768 81.366 81.357 2.831 3.440 35.096 37.783 

water 1024x768 85.881 85.760 5.617 6.020 39.889 41.728 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 83.022 83.140 5.879 6.216 36.218 37.761 

Kodak 02 768x512 80.851 80.682 4.982 5.702 32.213 35.958 

Kodak 03 768x512 77.570 77.421 3.654 4.521 35.295 42.714 

Kodak 04 768x512 79.518 79.105 4.668 5.305 33.959 39.020 

Kodak 05 768x512 84.429 84.364 5.665 6.113 39.186 41.457 

Kodak 06 768x512 80.966 80.936 5.244 5.559 35.249 36.898 

Kodak 07 768x512 79.560 79.292 4.139 4.822 34.320 39.304 

Kodak 08 768x512 81.738 81.817 5.359 5.731 37.215 38.795 

Kodak 09 768x512 76.711 76.373 4.400 4.856 33.686 39.730 

Kodak 10 768x512 78.146 77.993 4.508 5.018 33.679 38.007 

Kodak 11 768x512 82.111 82.085 5.042 5.595 35.856 39.148 

Kodak 12 768x512 76.467 76.261 4.194 4.912 31.687 36.527 

Kodak 13 768x512 86.077 86.083 6.573 6.750 40.239 40.917 

Kodak 14 768x512 81.638 81.535 5.324 5.756 38.373 42.629 

Kodak 15 768x512 77.611 77.016 4.182 4.706 34.911 40.108 

Kodak 16 768x512 78.514 78.423 4.706 5.197 31.626 34.261 

Kodak 17 768x512 78.160 77.765 4.593 4.927 33.461 36.378 

Kodak 18 768x512 83.193 83.072 5.789 6.169 37.414 39.411 

Kodak 19 768x512 78.996 78.728 4.941 5.320 34.580 39.058 

Kodak 20 768x512 77.642 77.481 3.810 4.004 33.447 36.638 

Kodak 21 768x512 82.035 82.003 5.254 5.721 35.699 38.619 

Kodak 22 768x512 80.875 80.600 5.131 5.647 35.086 39.465 

Kodak 23 768x512 77.307 76.870 3.380 4.365 34.696 43.497 

Kodak 24 768x512 83.056 82.999 5.099 5.616 38.184 39.206 

Average 80.168 79.979 4.708 5.215 35.205 38.974 

Table 4.1  Prediction performance of MED and GAP when the prediction is carried out in 

the index domain  

 

From Table 4.1, one can see that the performance of MED and GAP is similar in terms 

of EI. In terms of EC, MED is better than GAP. The gap between MED and GAP is much 

larger in the EC as compared with that in EI because smaller difference in two indices does not 

imply smaller Euclidean distance between their associated colors. There is no linear 

relationship between index difference and color difference, and it is not even monotonic. 

MED’s prediction performance is better than GAP’s in terms of the entropy of index 

prediction error. This measure describes the distribution of the prediction error in the index 
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plane and reflects its statistical property. In case the prediction residue of MED is directly 

encoded with entropy coding at this point, the achievable average compression rate is around 

4.7 bpp. 

The focus of this section is put on the prediction performance of GAP and MED when 

the prediction is carried out in an index plane. Evaluation of their performance is directly 

carried out in their prediction results. The impact of their prediction results to the overall 

performance of adaptive palette reordering has still not yet been discussed. This issue will be 

addressed in Section 4.5. 

 

 

4.4 Prediction in color intensity domain 

Prediction can also be done in each of the three color planes. For each pixel (i,j), its 

three predicted color components form a vector denoted as ),( jiv
v

 which defines the 

predicted color of the pixel. After color quantizing ),( jiv
v

 with the palette associated with 

the image, the predicted index, say p(i,j), can be determined as the index of the quantized 

predicted color in the palette. 

Both MED and GAP can be used for the prediction. As a matter of fact, the adaptive 

palette reordering method presented in Chapter 3 exploits MED to predict the intensity values 

of individual color components of (i,j). This section presents some simulation results showing 

the performance of MED and GAP when the prediction is carried out in individual color 

planes. 

Figure 4.8a and Figure 4.8b show, respectively, MED’s and GAP’s index prediction 

error planes of Kodak-05. Figure 4.9 shows their corresponding histograms. 30.8% of pixels 

are accurately predicted with MED while only 27.4% of pixels are accurately predicted with 
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(a) MED   (b) GAP  

Figure 4.8 Index residue planes of Kodak-05 when the prediction is done is individual 

color planes (a) MED and (b) GAP 

 

 

GAP. The variances of MED’s and GAP’s residue planes are, respectively, 677.72 and 675.34. 

Their performance is actually more or less the same when the prediction is done in individual 

color planes. Similar observations were obtained when the simulation was done with other 

testing images. 

Table 4.2 shows the prediction performance of MED and GAP in terms of the energy of 

the index prediction error (EI), the entropy of the index prediction error (EntropyI) and the 

energy of the color prediction error (EC). The definition of EI and EntropyI is exactly the same 

as that in eqn. (4.1) and (4.2), while EC is defined as 
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where ),( jicr

v
 and ),( jiv

v
 are, respectively, the real color and the predicted color of pixel 

(i,j). Unlike the case where the prediction is preformed in the index plane, the predicted color 

may not be a color in the palette and hence the definition of EC is different in the two cases.  
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 (a) MED  (b) GAP 

Figure 4.9  Histograms of Figure 4.8 (in log scale) 

 

 

The prediction performance of MED is a bit better than that of GAP in all three 

measures. The achievable average compression rate is around 4.6 bpp when the index 

prediction residue of MED is directly encoded with entropy coding, which is around 0.2 bpp 

lower than when GAP is used. 

By comparing Table 4.1 and Table 4.2, one can find that the performance gap between 

GAP and MED is narrowed when the prediction is done in individual color planes. To a 

certain extent, it implies that the prediction is more robust to the predictor to be used when it 

is done in individual color planes. Another observation we have is that MED is a bit better 

than GAP in reducing the prediction error and lowering the zero-order entropy of the index 

prediction error. 

Like the discussion we have in section 4.2, the focus of this section is put on the 

prediction performance of GAP and MED only. In the following section, their actual impact to 

the overall performance of adaptive palette reordering will be discussed. 
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Group Image 
Size 
(pixel2) 

Energy of the index 
prediction error, EI (dB) 

Entropy of the index 
prediction error, EntropyI 

(bpp) 

Energy of the color 
prediction error, EC (dB) 

MED GAP MED GAP MED GAP 

C
G
 

im
ag
e pool 510x383 71.195 70.902 2.114 2.160 24.696 24.537 

watch 1024x768 81.174 81.809 2.748 3.071 33.073 33.408 

water 1024x768 85.929 85.848 5.555 5.718 38.899 38.713 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 83.010 84.345 5.806 6.224 35.275 36.507 

Kodak 02 768x512 80.848 81.545 4.881 5.098 30.034 30.448 

Kodak 03 768x512 77.451 78.090 3.574 3.738 30.199 30.436 

Kodak 04 768x512 79.491 79.481 4.586 4.687 30.947 30.604 

Kodak 05 768x512 84.259 84.242 5.560 5.715 37.589 37.483 

Kodak 06 768x512 80.955 82.391 5.189 5.551 34.134 35.280 

Kodak 07 768x512 79.426 79.981 4.056 4.461 31.026 31.361 

Kodak 08 768x512 81.762 83.290 5.297 5.923 36.579 38.057 

Kodak 09 768x512 76.657 78.000 4.357 4.511 30.065 31.142 

Kodak 10 768x512 77.945 78.445 4.451 4.590 31.198 31.528 

Kodak 11 768x512 82.033 82.626 4.962 5.282 33.613 33.981 

Kodak 12 768x512 76.382 77.513 4.135 4.429 29.459 30.415 

Kodak 13 768x512 86.082 85.886 6.516 6.565 39.866 39.569 

Kodak 14 768x512 81.594 81.878 5.224 5.419 34.660 34.678 

Kodak 15 768x512 77.605 78.148 4.125 4.160 31.619 31.687 

Kodak 16 768x512 78.488 79.875 4.646 5.024 30.459 31.744 

Kodak 17 768x512 78.174 78.301 4.548 4.620 32.105 31.879 

Kodak 18 768x512 83.171 82.892 5.707 5.698 36.308 35.753 

Kodak 19 768x512 78.936 80.808 4.884 5.145 32.470 34.433 

Kodak 20 768x512 77.566 78.047 3.773 3.829 32.044 32.898 

Kodak 21 768x512 81.981 82.481 5.194 5.296 34.393 34.875 

Kodak 22 768x512 80.886 81.207 5.059 5.109 33.070 33.144 

Kodak 23 768x512 77.062 77.133 3.331 3.263 30.793 30.346 

Kodak 24 768x512 82.876 82.838 5.033 5.200 37.495 37.418 

Average 80.109 80.667 4.641 4.833 33.040 33.419 

Table 4.2 Prediction performance of MED and GAP when the prediction is carried out in 

the color intensity domain 
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4.5 Impact to the overall reordering performance 

In Sections 4.3 and 4.4, the prediction performance of MED and GAP in different 

scenarios is evaluated. Specifically, the following four schemes are evaluated: 

(i) Using MED in the index plane; 

(ii) Using GAP in the index plane; 

(iii) Using MED in individual color planes and  

(iv) Using GAP in individual color planes. 

The evaluation is directly made on the prediction error in either the index plane or the 

color plane. As shown in Figure 4.1, prediction is only one of the components in our proposed 

adaptive palette reordering framework. The actual impact of the four prediction schemes to 

the overall adaptive palette reordering performance has to be investigated and the 

investigation result is presented in this section.  

Figure 4.10 shows the pseudo code for realizing adaptive palette reordering with either 

prediction scheme (i) or prediction scheme (ii), while Figure 4.11 shows the pseudo code for 

realizing adaptive palette reordering with prediction scheme (iii) or prediction scheme (iv). 

The lines in blue highlight the difference between the four corresponding adaptive palette 

reordering methods.  

For reference, the adaptive palette reordering methods using prediction schemes (i), (ii), 

(iii) and (iv) are, respectively, referred to as APR-I-MED, APR-I-GAP, APR-C-MED and 

APR-C-GAP hereafter. Here, ‘APR’ stands for adaptive palette reordering. ‘I’ and ‘C’ are used 

to specify whether the prediction is carried out in the index plane or individual color intensity 

planes. ‘MED’ and ’GAP’ specify the prediction scheme used in the prediction. 
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Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1. 

Raster scan the image 

FOR each pixel (i,j) 

Predict index at (i,j) with MED/GAP† in the index map. 

% Assume the predicted index value is p 

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2||),(|| jivck

vv
−  and then by k. 

% The sorted palette colors forms the transient version of the palette  

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω 

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

. 

Update {H(m,n)} by H(p,r)++. 

END 
 

† MED is used in prediction scheme (i) while GAP is used in scheme (ii). 

Figure 4.10 Pseudo code of an adaptive palette reordering method in which prediction is 

carried out in the index plane. 

 

 

As a remark, we note that APR-C-MED is actually the adaptive palette reordering 

method presented in Chapter 3.  

Unlike the approach presented in Sections 4.3 and 4.4, to evaluate the contribution of the 

four prediction schemes to the overall adaptive palette reordering performance, we compare 

the reindexed index maps obtained with APR-I-MED, APR-I-GAP, APR-C-MED and 

APR-C-GAP directly. Figure 4.12 shows the corresponding reindexed index maps of 

Kodak-05 and Figure 4.13 shows their histograms. Bijective mapping (3.1) was used in the 

final stage of the production of the index maps shown in Figure 4.12. From Figure 4.13, one 

can see that the performance of APR-C-MED and APR-C-GAP is comparatively better in the 

four evaluated adaptive palette reordering methods. Specifically, the zero-order entropy 

values of the results provided by APR-I-MED, APR-I-GAP, APR-C-MED and APR-C-GAP 

are, respectively, 4.766, 5.620, 4.237 and 4.238 bpp. 

 



 46 

 

 

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1. 

Raster scan the image 

FOR each pixel (i,j) 

Predict the red component of pixel (i,j) with MED/GAP
†
 in the red color plane to get r(i,j). 

Predict the green component of pixel (i,j) with MED/GAP† in the green color plane to get g(i,j). 

Predict the blue component of pixel (i,j) with MED/GAP
†
 in the blue color plane to get b(i,j). 

Quantize )),(),,(),,((),( jibjigjirjiv =
v

 with the reference palette Ω.   

% Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω 

Sort palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
−  and then by k. 

% The sorted palette colors forms the transient version of the palette  

% Assume the real color of pixel (i,j) is rc
v

, the r
th

 palette color in reference palette Ω 

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

. 

Update {H(m,n)} by H(p,r)++. 

END 

 

†
 MED is used in prediction scheme (iii) while GAP is used in scheme (iv). 

Figure 4.11 Pseudo code of an adaptive palette reordering method in which prediction is 

carried out in individual color intensity planes. 

 

 

Figure 4.14 shows the correlation among adjacent pixels in the reindexed index maps 

shown in Figure 4.12. One can see that little correlation is retained in all four reindexed index 

maps. Among the four adaptive palette reordering methods, the decorrelation performance of 

APR-C-MED is the best. 

Tables 4.3 and 4.4 summarize the performance of APR-I-MED, APR-I-GAP, 

APR-C-MED and APR-C-GAP when they were used to process a set of testing images. In 

particular, Table 4.3 shows the variance of the indices in a reindexed index map while Table 

4.4 shows the zero-order entropy of the indices in a reindexed index map. On average, 

performing prediction in individual color intensity planes provides a reindexed index map of 

lower entropy and smaller variance as compared with performing prediction in the index 

plane. Another observation is that the performance of APR-C-MED and APR-C-GAP is more 

or less the same. By considering that MED is of lower complexity, it seems that APR-C-MED 

is the best one of the four evaluated adaptive palette reordering methods. 
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(a) APR-I-MED (b) APR-I-GAP 

  

(c) APR-C-MED (d) APR-C-GAP 

Figure 4.12  Kodak-05’s reindexed index-maps obtained with different methods 

 

 

 

 

Figure 4.13  Histograms of Figure 4.12 (in log scale) 
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Figure 4.14 Performance of different algorithms in terms of correlation among pixels in 

their reindexed results 

 

 

Group Image Size (pixel2) 
Variance of the reindexed index map 

APR-I-MED APR-I-GAP APR-C-MED APR-C-GAP 

C
G
 

im
ag
e pool 510x383 36.91 74.57 12.76 10.82 

watch 1024x768 72.50 97.25 33.06 32.10 

water 1024x768 306.47 383.90 186.74 177.09 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 206.00 255.11 129.98 153.07 

Kodak 02 768x512 113.22 146.06 49.72 52.41 

Kodak 03 768x512 59.86 121.74 14.03 12.34 

Kodak 04 768x512 96.74 172.98 24.21 20.68 

Kodak 05 768x512 319.14 452.60 148.68 127.00 

Kodak 06 768x512 174.72 219.64 92.01 96.92 

Kodak 07 768x512 106.62 168.87 50.25 43.29 

Kodak 08 768x512 234.81 300.84 141.27 150.25 

Kodak 09 768x512 58.25 78.25 34.81 43.90 

Kodak 10 768x512 94.83 117.49 57.35 55.37 

Kodak 11 768x512 199.52 280.62 80.36 77.20 

Kodak 12 768x512 50.93 75.36 28.41 28.81 

Kodak 13 768x512 530.03 705.67 304.99 261.29 

Kodak 14 768x512 182.79 273.23 71.15 63.33 

Kodak 15 768x512 66.30 120.01 20.24 15.58 

Kodak 16 768x512 80.59 105.67 46.63 51.14 

Kodak 17 768x512 95.64 120.17 59.34 51.72 

Kodak 18 768x512 269.42 406.00 119.23 102.70 

Kodak 19 768x512 90.81 124.10 53.42 71.30 

Kodak 20 768x512 84.61 110.39 53.68 56.56 

Kodak 21 768x512 181.59 254.30 87.79 86.51 

Kodak 22 768x512 148.49 234.77 69.82 63.02 

Kodak 23 768x512 68.38 138.64 16.73 15.42 

Kodak 24 768x512 279.48 348.72 147.42 124.79 

Average 155.88 218.03 79.04 75.73 

Table 4.3 Variance of the indices in a reindexed index map produced with adaptive palette 

reordering using a particular prediction scheme (with mapping (3.1)) 
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Group Image Size (pixel2) 
Zero-order entropy of the reindexed index map (bpp) 

APR-I-MED APR-I-GAP APR-C-MED APR-C-GAP 

C
G
 

im
ag
e pool 510x383 1.516 1.824 1.401 1.376 

watch 1024x768 2.380 2.880 2.094 2.266 

water 1024x768 4.945 5.691 4.499 4.558 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 4.921 5.333 4.564 4.787 

Kodak 02 768x512 3.792 4.306 3.404 3.462 

Kodak 03 768x512 2.750 3.791 2.403 2.428 

Kodak 04 768x512 3.723 4.817 3.238 3.200 

Kodak 05 768x512 4.766 5.620 4.237 4.238 

Kodak 06 768x512 4.479 4.999 4.070 4.241 

Kodak 07 768x512 3.270 4.036 2.882 3.011 

Kodak 08 768x512 4.658 5.426 4.202 4.541 

Kodak 09 768x512 3.431 3.802 3.244 3.275 

Kodak 10 768x512 3.662 4.465 3.380 3.354 

Kodak 11 768x512 4.096 4.965 3.599 3.739 

Kodak 12 768x512 3.350 4.234 3.054 3.146 

Kodak 13 768x512 5.776 6.355 5.277 5.202 

Kodak 14 768x512 4.355 5.090 3.807 3.866 

Kodak 15 768x512 3.215 4.120 2.859 2.773 

Kodak 16 768x512 3.793 4.326 3.484 3.642 

Kodak 17 768x512 3.777 4.251 3.480 3.416 

Kodak 18 768x512 4.809 5.792 4.191 4.090 

Kodak 19 768x512 4.036 4.651 3.704 3.888 

Kodak 20 768x512 3.224 3.587 3.020 3.044 

Kodak 21 768x512 4.235 5.028 3.796 3.831 

Kodak 22 768x512 4.251 5.249 3.783 3.725 

Kodak 23 768x512 2.520 4.085 2.260 2.182 

Kodak 24 768x512 4.323 5.161 3.927 3.951 

Average 3.854 4.588 3.476 3.527 

Table 4.4 Zero-order entropy of the indices in a reindexed index map produced with 

adaptive palette reordering using a particular prediction scheme 
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4.6 Summary 

Index prediction is one of the critical components of adaptive palette reordering, and it 

can be realized with different schemes. Four schemes are studied and their prediction 

performance is evaluated in this chapter. These schemes exploits MED or GAP to carry out 

the prediction in either the index plane or individual color intensity planes. In terms of various 

measures related to prediction error, the scheme which exploits MED to predict individual 

color components appears to be better.  

The actual impact of these prediction schemes to the overall adaptive palette reordering 

performance is then evaluated. Again it is found that the scheme which exploits MED to 

predict individual color components is the best as it can provide reindexed index maps of 

lower variance and lower entropy on average at a lower complexity cost.  
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Chapter 5 – Impact of color reordering to adaptive palette reordering 

 

5.1 Introduction 

There are two functional components in adaptive palette reordering. One is index 

prediction and the other is color reordering. Each one of them can be realized with different 

schemes and, accordingly, results in different palette reordering outputs. In Chapter 4, we 

investigates four different schemes for realizing index prediction, and their impact to the 

overall performance of adaptive palette reordering is reported. In this chapter, we put our 

focus on the realization of color reordering. Several color reordering schemes will be 

introduced, and their contribution to the overall palette reordering performance will be 

evaluated. 

The actual implementation of color reordering can be done with different approaches. In 

conventional palette reordering methods, the resultant palette is static and the palette colors 

can be sorted by a measure which is not pixel-dependent. For example, one can sort the colors 

by luminance to obtain the reference palette used in this thesis. However, in adaptive palette 

reordering, palette colors are sorted by a measure of some pixel-dependent properties such 

that the resultant palette is pixel dependent as well. 

Since performing MED prediction in individual color intensity planes is found to be the 

best prediction scheme in the schemes evaluated in Chapter 4, it is used in our study of the 

performance of various color reordering schemes to produce prediction results for the 

evaluated color reordering schemes. 

This chapter is organized as follows. Two distance-oriented sorting schemes and one 

history-oriented sorting schemes are, respectively, introduced in Section 5.2 and Section 5.3 

for realizing color reordering. Then, two hybrid sorting schemes which combine 

distance-oriented and history-oriented sorting schemes together are proposed in Section 5.4. 
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In Section 5.5, simulation results are presented for comparing the performance of using 

various color sorting schemes in realizing adaptive palette reordering. Finally, a brief 

summary is given in Section 5.6. 

 

5.2 Distance-oriented sorting 

For each pixel (i,j), the prediction module in adaptive palette reordering provides a 

predicted color ),( jiv
v

 as its output. One can sort the palette colors by their Euclidean 

distances to ),( jiv
v

. The closer one is put in the front. As ),( jiv
v

 is pixel-dependent, the 

resultant palette is also pixel dependent, and it can be considered as a transient version of the 

original palette. It is possible that some palette colors are equally distant away form ),( jiv
v

. 

In that case, these colors are sorted by their luminance and then by their original index values 

in the original palette. The sorting is done in ascending order. 

The position of rc
v

 in the newly reordered queue can be used as an index to the queue 

and is used to represent the pixel in the output of the reordering method. The newly sorted 

color sequence forms a transient version of palette Ω. 

For reference, the adaptive palette reordering method using this color reordering scheme 

is referred to as APR-D-PC, where ‘D-PC’ means palette colors are sorted by their distances 

to the predicted color of pixel (i,j). 

To reduce the realization complexity of APR-D-PC, one can quantize ),( jiv
v

 with the 

original palette and then sort the palette colors by their distances to the quantized ),( jiv
v

. In 

that case, as the quantized ),( jiv
v

 is one of the palette colors and the distances among palette 

colors can be presorted, all possible reordered palettes are well ready and the one for pixel (i,j) 

can be determined as soon as the quantized ),( jiv
v

 is determined. For reference, this 

simplified version of APR-D-PC is referred to as APR-D-QPC, which implies palette colors 

are sorted by their distances to the quantized predicted color of pixel (i,j). 
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(a) APR-D-PC 
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(b) APR-D-QPC 

Figure 5.1 Examples showing how palette colors are sorted in (a) APR-D-PC and (b) 

APR-D-QPC  

 

 

Figure 5.1 graphically shows an example showing how palette colors are sorted in 

APR-D-PC and APR-D-QPC. To make the example simple enough to understand, the color 

space is condensed to a two-dimensional space. The red dots denote the palette colors and the 

blue lines shows the boundary of their Voronoi regions. The asterisks in Figure 5.1a and 

Figure 5.1b respectively show ),( jiv
v

 and the quantized ),( jiv
v

. In either case, palette 

colors are sorted by their distances to the asterisk and the number associated with a particular 

dot specifies the dot’s position in the sorted result. 

Figure 5.2 shows a reindexed index map produced with APR-D-PC and its 

corresponding histogram. The red curve shows the histogram of the index-map of the original 

testing image whose palette was generated with MATLAB function RGB2IND. This 

histogram serves as a reference for comparison. As expected, APR-D-PC changes the index 

distribution and turns it into a highly unequalized one. This action significantly reduces the 

zero order entropy of the index map. As a matter of fact, the entropy of the reindexed index 

map is only 4.722 while that of the original index map is 7.469. 
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(a) Reindexed index map (b) Histogram 

Figure 5.2  Output of APR-D-PC: (a) reindexed index map of Kodak-05 and (b) histogram 

 

 

Figure 5.3 shows the processing result of APR-D-QPC. Again, the histogram in red 

serves as a reference for comparison. APR-D-QPC also changes the index distribution and 

significantly reduces the zero order entropy of the index map. Specifically, the entropy of the 

reindexed index map produced by APR-D-QPC is 4.740. The performance of APR-D-QPC 

and APR-D-PC is more or less the same in terms of entropy. A more detailed comparison is 

carried out in Section 5.5. 

 

 

 
 

(a) Reindexed index map (b) Histogram 

Figure 5.3 Output of APR-D-QPC: (a) reindexed index map of Kodak-05 and (b) 

histogram 
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5.3 History-oriented sorting 

In practice, we learn from our experience. Similar idea can be applied to color 

reordering. Let the quantized predicted error of pixel (i,j) be pc
v

, the p
th color in reference 

palette Ω. In general, pc
v

 is different from the real color of pixel (i,j). The occurrence of this 

discrepancy is a valuable experience. It can be recorded and cumulated for improving the 

prediction performance in the future. 

To achieve this objective, a table is constructed to store the values of 

{H(m,n)|m,n=0,1…N-1}, where H(m,n) is defined as the number of occurrences when the 

quantized predicted color and the original color of a pixel are, respectively, mc
v

 and nc
v

. All 

H(m,n) values are initialized to zero at the very beginning and the table is updated after a 

pixel is processed. As mentioned in Chapter 3, this table is referred to as discrepancy 

frequency table (DF-Table). 

After pc
v

 is determined, palette colors { kc
v

|k=0,1…N-1} are sorted according to the 

values of {H(p,k)|k=0,1…N-1} in descending order. When there exist two different palette 

colors lc
v

 and dc
v

 such that H(p,l)=H(p,d), they are sorted by their luminance and then by 

their original index values in the original palette. The sorting is done in ascending order. 

The newly sorted queue forms a transient version of palette Ω. The position of rc
v

 in 

the newly sorted queue can be used as an index to the queue and is used to represent the pixel 

in the reindexed index map. After processing this pixel, H(p,r) is incremented by 1 to update 

the frequency count of this event. 

For reference, the adaptive palette reordering method using this color reordering scheme 

is referred to as APR-H, where ‘H’ means palette colors are sorted according to the frequency 

of occurrence of a particular pair of predicted color and real color so far in the history. 
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(a) Reindexed index map (b) Histogram 

Figure 5.4 Output of APR-H: (a) reindexed index map of Kodak-05 and (b) histogram. 

 

Figure 5.4a shows the resultant reindexed index map of APR-H and Figure 5.4b shows 

its corresponding histogram. One can see that, as compared with the histogram of 

APR-D-PC’s result, the histogram of APR-H’s result provides a sharper peak but a flatter tail. 

A sharper peak implies the distribution is more unequalized in the range of indices which are 

more likely to happen. This is good from entropy point of view. At the same time, a flatter tail 

means the entropy of the indices which are unlikely to happen is higher. 

The existence of the flat tail in APR-H’s result can be explained by the fact that color 

sorting in APR-H is actually based on the likeliness of the occurrence of a particular color 

when the quantized predicted color pc
v

 is given and it is in turn estimated based on the 

history. For indices which are unlikely to happen, their occurrences in the history are too few 

to provide any useful information for APR-H to guess which one of them is more likely to 

happen. When guess does not work, all possible indices are equally likely to happen. This 

results in a flat tail. 

It happens that the effect of the sharper peak is stronger than that of the flatter tail, and 

hence the overall performance of APR-H is better. In particular, the entropy of Figure 5.4a is 

4.315 bpp, which is lower than the entropy of Figure 5.3a. 
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5.4 Hybrid mode sorting 

When APR-H is used, if the likeliness of the occurrence of a particular palette color 

cannot be guessed effectively with the quantized predicted color pc
v

 based on the history, 

color cannot be sorted effectively and all possible indices will be considered equally likely to 

happen. This makes APR-H do not work properly. 

In APR-H, when there exist two different palette colors lc
v

 and dc
v

 such that 

H(p,l)=H(p,d), lc
v

 and dc
v

 are sorted by their luminance. Luminance is solely 

color-dependent and it is nothing related to the predicted color ),( jiv
v

. In such a case, history 

and the prediction color ),( jiv
v

 do not contribute to the decision of the final color reordering 

result any more at this stage. 

To solve this problem, one can adopt a hybrid color reordering scheme which is both 

history- and distance-oriented. Basically, this hybrid scheme follows the same steps of APR-H 

excepts that, when there exist two different palette colors lc
v

 and dc
v

 such that 

H(p,l)=H(p,d), lc
v

 and dc
v

 are sorted by their Euclidean distances to the predicted color 

),( jiv
v

. The closer is put in the front. They are only sorted by their luminance and then by 

their original index values in the original palette when they are still not distinguishable. By 

doing so, ),( jiv
v

 may still contribute to color reordering when history cannot be used. 

For reference, the adaptive palette reordering method using this color reordering scheme 

is referred to as APR-H-D-PC, where ‘H-D-PC’ means palette colors are sorted according to 

the history and then their distances to the predicted color of pixel (i,j). Note that 

APR-H-D-PC is actually the adaptive palette reordering method presented in Chapter 3. 

The complexity of APR-H-D-PC can be reduced by sorting lc
v

 and dc
v

 according to 

their Euclidean distances to the quantized predicted color pc
v

 instead of the predicted color 

),( jiv
v

 whenever H(p,l)=H(p,d) happens. As 
2|||| kp cc

vv
−  for all k can be presorted, the  
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(a) Reindexed index map (b) Histogram 

Figure 5.5 Output of APR-H-D-PC: (a) reindexed index map of Kodak-05 and (b) 

histogram 

 

 

final color reordering result can be determined by table lookup as soon as pc
v

 is ready. This 

saves an amount of its realization effort. For reference, this simplified version of 

APR-H-D-PC is referred to as APR-H-D-QPC, which implies palette colors are sorted 

according to the history and then their distances to the quantized predicted color of pixel (i,j). 

Figure 5.5 shows the output of APR-H-D-PC. The red curve is the histogram of the 

index-map of the original testing image. The histogram of Figure 5.5a is highly unequalized. 

The shape of the distribution is something in the middle of that of APR-D-QPC shown in 

Figure 5.3b and that of APR-H shown in Figure 5.4b. Its waist is slimmer as compared with 

the histogram of APR-D-QPC while its tail is not as flat as the histogram of APR-H. The 

zero-order entropy of Figure 5.5a is 4.237. 

Figure 5.6 shows the result of APR-H-D-QPC. By comparing the histograms of APR-H 

and APR-H-D-PC, one can expect that their performance should be more or less the same. In 

particular, the zero-order entropy of Figure 5.6a is 4.239. A more detailed comparison among 

various color sorting schemes will be presented in Section 5.5. 
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(a) Reindexed index map (b) Histogram 

Figure 5.6 Output of APR-H-D-QPC: (a) reindexed index map of Kodak-05 and (b) 

histogram 

 

 

 

5.5 Performance Study 

This section presents a more detailed study of the performance of the five adaptive 

palette reordering methods introduced in Sections 5.3, 5.4 and 5.5. For convenience, Table 5.1 

summaries the sorting criteria and the rules adopted in the color reordering schemes exploited 

in these five adaptive palette reordering methods. Again, we note that APR-H-D-PC is 

actually the adaptive palette reordering method presented in Chapter 3. 

For an easier comparison of the histograms of their reindexed index maps of Kodak-05, 

Figure 5.7 groups the plots shown in Figures 5.2b, 5.3b, 5.4b, 5.5b and 5.6b together. From 

Figure 5.7, one can easily see that the histograms of the results of APR-H-D-PC and 

APR-H-D-QPC are more unequalized. Figure 5.8 shows the correlation among adjacent 

pixels in their reindexed index maps of Kodak-05. All of them can successfully remove the 

spatial correlation of the indices. 
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Adaptive palette reordering method Color sorting criteria/order used 

APR-D-PC (1) 2
||),(|| jivck

vv
− , (2) luminance of kc

v
, (3) k 

APR-D-QPC (1) 2
|||| pk cc

vv
− , (2) luminance of kc

v
, (3) k 

APR-H (1) H(p,k), (2) luminance of kc
v

, (3) k 

APR-H-D-PC (1) H(p,k), (2) 2||),(|| jivck

vv
− , (3) luminance of kc

v
, (4) k 

APR-H-D-QPC (1) H(p,k), (2) 2
|||| pk cc

vv
− , (3) luminance of kc

v
, (4) k 

Table 5.1 Summary of the sorting criteria and rules adopted in different adaptive palette 

reordering methods 

 

 

Table 5.2 shows the performance of the five adaptive reordering methods in terms of the 

index variance of their reindexed index maps. Bijective mapping (3.1) was used in the final 

stage to remap the reindexed index maps in the simulation and Table 5.2 shows the data 

obtained with this final mapping results. One can see that the adaptive palette reordering 

methods using hybrid schemes provide the best average performance among the evaluated 

adaptive palette reordering methods. The one using history-oriented scheme is the poorest one 

in terms of this measure. 

 

 

 

Figure 5.7  Histograms of outputs of different adaptive palette reordering methods 
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Figure 5.8 Performance of different adaptive palette reordering methods in terms of 

correlation among pixels 

 

 

Table 5.3 shows the performance of the evaluated adaptive reordering methods in terms 

of the zero-order entropy of their reindexed index maps. Again, the adaptive palette 

reordering methods using hybrid schemes in color reordering provide the best performance. 

Though APR-H provides a reindexed index map of larger variance on average as compared 

with APR-D-X (X can be either PC or QPC.), it provides a reindexed index map of lower 

entropy on average. Since entropy is a measure more directly related to the compression 

performance, one may consider that APR-H is actually better than APR-D-X and hence 

history-oriented scheme performs better than distance-oriented schemes in supporting 

adaptive palette reordering. 

The performance of APR-H-D-PC and APR-H-D-QPC is more or less the same in both 

measures. By considering that the realization complexity of APR-H-D-QPC is lower, it seems 

that APR-H-D-QPC is the best option at this stage. 
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Group Image 
Size 
(pixel2) 

Adaptive reordering method 

APR-D-PC APR-D-QPC APR-H APR-H-D-PC APR-H-D-QPC 

C
G
 

im
ag
e pool 510x383 20.44 20.90 97.28 12.76 13.08 

watch 1024x768 81.82 82.49 83.84 33.06 33.24 

water 1024x768 252.92 255.71 299.19 186.74 187.27 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 344.40 345.17 297.62 129.98 130.23 

Kodak 02 768x512 106.16 106.90 156.67 49.72 49.99 

Kodak 03 768x512 27.90 28.62 89.81 14.03 14.38 

Kodak 04 768x512 43.46 44.44 110.41 24.21 24.63 

Kodak 05 768x512 327.73 330.52 269.68 148.68 149.52 

Kodak 06 768x512 188.41 189.83 253.17 92.01 92.49 

Kodak 07 768x512 84.33 85.41 147.00 50.25 50.70 

Kodak 08 768x512 246.31 248.06 286.78 141.27 141.68 

Kodak 09 768x512 50.14 50.71 153.16 34.81 35.06 

Kodak 10 768x512 81.27 82.18 190.14 57.35 57.66 

Kodak 11 768x512 150.48 151.84 193.88 80.36 80.84 

Kodak 12 768x512 42.47 43.14 139.01 28.41 28.69 

Kodak 13 768x512 686.17 689.36 479.74 304.99 305.77 

Kodak 14 768x512 116.67 118.14 185.97 71.15 71.74 

Kodak 15 768x512 33.74 34.45 123.05 20.24 20.57 

Kodak 16 768x512 97.30 97.97 154.44 46.63 46.84 

Kodak 17 768x512 92.30 92.98 180.34 59.34 59.57 

Kodak 18 768x512 254.32 258.36 260.19 119.23 120.29 

Kodak 19 768x512 92.80 93.60 171.28 53.42 53.70 

Kodak 20 768x512 84.30 84.78 154.93 53.68 53.89 

Kodak 21 768x512 186.70 187.75 197.21 87.79 88.13 

Kodak 22 768x512 124.31 126.89 191.60 69.82 70.56 

Kodak 23 768x512 27.32 28.04 90.13 16.73 17.03 

Kodak 24 768x512 330.91 333.73 296.88 147.42 148.24 

Average 154.63 156.00 194.57 79.04 79.47 

Table 5.2 Performance comparison of APR-D-PC, APR-D-QPC, APR-H, APR-H-D- PC 

and APR-H-D-QPC in terms of variance of the indices in a reindexed index map 
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Group Image 
Size 
(pixel2) 

Adaptive reordering method 

APR-D-PC APR-D-QPC APR-H APR-H-D-PC APR-H-D-QPC 

C
G
 

im
ag
e pool 510x383 1.647 1.653 1.477 1.401 1.403 

watch 1024x768 2.397 2.400 2.129 2.094 2.095 

water 1024x768 4.859 4.878 4.560 4.499 4.500 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 5.421 5.421 4.658 4.564 4.565 

Kodak 02 768x512 4.108 4.109 3.478 3.404 3.405 

Kodak 03 768x512 2.684 2.698 2.466 2.403 2.404 

Kodak 04 768x512 3.577 3.593 3.326 3.238 3.240 

Kodak 05 768x512 4.722 4.740 4.315 4.237 4.239 

Kodak 06 768x512 4.648 4.660 4.158 4.070 4.071 

Kodak 07 768x512 3.136 3.159 2.954 2.882 2.884 

Kodak 08 768x512 4.675 4.694 4.290 4.202 4.204 

Kodak 09 768x512 3.684 3.694 3.326 3.244 3.246 

Kodak 10 768x512 3.722 3.743 3.459 3.380 3.381 

Kodak 11 768x512 4.028 4.043 3.680 3.599 3.601 

Kodak 12 768x512 3.422 3.439 3.133 3.054 3.055 

Kodak 13 768x512 6.072 6.080 5.360 5.277 5.279 

Kodak 14 768x512 4.186 4.205 3.895 3.807 3.809 

Kodak 15 768x512 3.122 3.142 2.939 2.859 2.861 

Kodak 16 768x512 4.069 4.076 3.564 3.484 3.485 

Kodak 17 768x512 3.926 3.939 3.563 3.480 3.481 

Kodak 18 768x512 4.715 4.747 4.278 4.191 4.194 

Kodak 19 768x512 4.198 4.212 3.788 3.704 3.705 

Kodak 20 768x512 3.335 3.345 3.091 3.020 3.020 

Kodak 21 768x512 4.356 4.372 3.873 3.796 3.797 

Kodak 22 768x512 4.110 4.149 3.872 3.783 3.786 

Kodak 23 768x512 2.367 2.390 2.330 2.260 2.262 

Kodak 24 768x512 4.436 4.453 3.997 3.927 3.928 

Average 3.912 3.927 3.554 3.476 3.478 

Table 5.3 Performance comparison of APR-D-PC, APR-D-QPC, APR-H, APR-H-D- PC 

and APR-H-D-QPC in terms of zero-order entropy of the indices in a reindexed 

index map 
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5.6 Summary 

Five color reordering schemes were evaluated to see how well they can support adaptive 

palette reordering. In particular, we have two distance-oriented sorting schemes, one 

history-oriented scheme and two hybrid mode sorting schemes in our evaluation. These five 

color reordering schemes work with the prediction scheme that uses MED to predict 

individual color planes to form five adaptive palette reordering methods. The details of each 

of them are summarized in Table 5.1. 

Simulation results show that hybrid mode sorting schemes are better than 

history-oriented and distance-oriented sorting schemes in terms of both zero-order entropy 

and variance of the reindexed indices. 
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Chapter 6 – DF table merging 
 

6.1 Introduction 

As shown in Chapters 3 and 5, the DF-Table plays a significant role in adaptive palette 

reordering. Based on the values of {H(m,n)|n=0,1..N-1}, the table shows how likely that nc
v

 

is the real color when mc
v

 is the quantized predicted color. With a given prediction result 

based on the neighboring pixels of pixel (i,j), the DF-Table helps one to predict the likeliness 

of the occurrence of a particular color in pixel (i,j). One can then assign an index of smaller 

value to a color which is more likely to happen. Eventually, the reindexed index map contains 

a number of indices of small values. This makes the histogram of the reindexed index map 

very unequalized and hence reduces the entropy of the reindexed index map significantly. 

At the early stage of adaptive palette reordering, most of H(m,n) entries are of zero value. 

A DF-Table of such a property is immature as it provides no or little statistical information. 

From another point of view, when most of the values in {H(m,n)|n=0,1..N-1} are zero, one 

cannot sort nc
v

 by H(m,n) for n=0,1..N-1. In such a case, the DF-Table cannot contribute to 

the reordering performance. 

One of the solutions to solve this problem is to reduce the size of the DF-Table by 

merging some of its entries. Each entry of the DF-Table records the frequency count of a 

particular event. The more events it takes care of, the more entries it has. Obviously, at any 

particular instant of the construction of the DF-Table, the sum of all entry values, L, equals to 

the total number of pixels already processed. At the early stage, only a few pixels have been 

processed. When L is shared by the entries of a large DF-Table, most of the entries are of zero 

value. However, when the same L is shared by the entries of a small DF-Table, there would be 

fewer zero entries and hence it would be easier for one to discriminate palette colors with 

{H(m,n)|n=0,1..N-1}. That qualitatively explains why merging DF-Table can improve the 

situation. 
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In this chapter, two DF-Table merging schemes are proposed to solve this problem. The 

rest of this chapter is organized as follows. Section 6.2 and Section 6.3 introduce the two 

proposed DF-Table merging schemes. In particular, we will show how these two DF-Table 

merging schemes work with the adaptive palette reordering method proposed in Chapter 3. 

Their performance is then evaluated in Section 6.4. A summary is finally provided in Section 

6.5. 

 

 

6.2 Absorbing pre-clustered colors 

In this DF-Table merging scheme, palette colors are pre-clustered before carrying out 

adaptive palette reordering. When the DF-Table is found to be not mature, palette colors in the 

same cluster are merged to form a smaller palette. A smaller DF-Table is then generated based 

on the frequency count of the occurrence that nc
v

 is the real color when the quantized 

predicted color belongs to a particular cluster. Accordingly, this DF-Table merging scheme is 

referred to as Absorbing-preclustered-colors. The details of the scheme are as follows. 

In the proposed scheme, by making use of LBG algorithm[Linde80], a palette of a size 

smaller than the original palette Ω is generated with all colors in Ω as the training vectors. All 

colors in Ω are then color quantized with this smaller palette. In consequence, all kc
v

 in Ω 

are clustered into a few groups. 

When the quantized predicted color pc
v

 is determined, ∑
−

=
=

1

0
),(H

N

kp kpH  is checked 

against a predefined threshold value T. If it is smaller than T, which implies insufficient 

samples were collected for  predicting the real  color  rc
v

 based on pc
v

,  the 
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Table of {H(m,n)} 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

k 0 1 2 3 4 5 6 7 

H(0,k) 29 7 6 5 4 3 2 1 

H(1,k) 0 88 1 2 0 0 0 1 

H(2,k) 0 2 65 1 2 1 0 0 

H(3,k) 0 2 10 56 1 1 0 1 

H(4,k) 3 1 0 8 8 8 0 0 

H(5,k) 0 0 3 2 3 23 5 1 

H(6,k) 0 0 0 1 1 2 23 2 

H(7,k) 0 2 0 3 0 2 6 9 

(a) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

Prediction Error, 2||),(|| jivck

vv
−  0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1 

(b) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 
* 

H(4,k)+H(7,k) 3 3 0 11 8 10 6 9 

New index 6 5 7 0 3 1 4 2 
* 
Assume that 4c

v
 and 7c

v
 are in the same group. 

(c) 

Figure 6.1 Example of how to assign indices to a dynamic palette when (i) ),( jiv
v

, 4c
v

 

and 3c
v

 are, respectively, the predicted, the quantized predicted and the real 

colors and (ii) Absorbing pre-clustered colors is used in DF-Table merging: (a) 

current status of the DF-Table, (b) given prediction error 2
||),(|| jivck

vv
−  in the 

example, (c) index assignment with DF-Table merging 

 

 

statistics of all colors in the same group with pc
v

 will be merged to determine the new index 

of rc
v

.  

Without loss of generality, let us assume that pc
v

 belongs to cluster Ω⊂Φ p . In 

that case, { kc
v

 | k = 0, 1… N-1} are sorted according to the values of {∑ Φ∈ plc
klv ),(H | 

k = 0,1…N-1} in descending order. If there exist two different colors uc
v

 and vc
v

 

such that ∑∑ Φ∈Φ∈
=

plpl cc
vlul vv ),(H),(H , uc

v
 and vc

v
 will be sorted according to 

their Euclidean distance to ),( jiv
v

, the predicted color of pixel (i,j). If they are still not 

distinguishable, their order will be determined by their ranking in Ω.  
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Partition all palette colors in reference palette Ω ≡{ kc
v

|k=0,1…N-1} into N/2 groups with 

LBG algorithm. 

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1. 

Raster scan the image 
FOR each pixel (i,j) 

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j). 

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j). 

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j). 

Quantize )),(),,(),,((),( jibjigjirjiv =
v

 with the reference palette Ω.   

% Assume the quantization result is pc
v

, the p
th
 palette color in reference palette Ω 

IF  ∑
−

=
=

1

0
),(H

N

k
p kpH ≥ threshold T 

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
−  

and then by k. 

ELSE 

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by ∑ Φ∈ plc
klv ),(H , where Ω⊂Φ p  is 

the group to which pc
v

 belongs, and then by 2||),(|| jivck

vv
−  and then by k. 

END 
% The sorted palette colors forms the transient version of the palette  

% Assume the real color of pixel (i,j) is rc
v

, the r
th
 palette color in reference palette Ω 

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of 

rc
v

. 

Update {H(m,n)} by H(p,r)++. 

END 

Figure 6.2 Pseudo code of an adaptive palette reordering method which uses Absorbing 

pre-clustered colors to merge the DF table 

 

Let’s consider the example shown in Figure 3.2 of Chapter 3 again. Figure 6.1 shows 

how index is assigned when Absorbing-preclustered-colors is used to merge the DF-Table. 

Assume that 4c
v

 and 7c
v

 belong to the same group and H4 is now smaller than the threshold. 

After sorting { kc
v

|k=0,1…7} by H(4,k)+H(7,k) and then by 2||),(|| jivck

vv
− , the new queue is 

{ 20164753 ,,,,,,, cccccccc
vvvvvvvv

} and the new index of 3c
v

 is 0. One can compare Figure 3.2 and 

Figure 6.1 to contrast their difference in determining the index of the real color. 

Figure 6.2 summaries the flow of an adaptive palette reordering method which uses 

Absorbing-preclustered-colors to merge a DF-Table. The pseudo code provided in Figure 6.2 

shows the case when the method supports a DF-Table merging scheme in which N palette 

colors are divided into N/2 groups. 
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A merged DF-Table can further be merged into an even smaller DF-Table in the same 

manner when it is necessary. Figures 6.3, 6.4 and 6.5 show how this can be done with an 

example in which three DF-tables are constructed such that one can use the most appropriate 

one whenever it is necessary. Note that the color space is reduced to a two-dimensional space 

for simplicity here. In this example, a palette of 8 palette colors is clustered into 4 clusters and 

2 clusters with LBG algorithms separately as shown in Figure 6.3. Based on the clustering 

results shown in Figure 6.3, palette colors belong to the same cluster are grouped together and 

the color space is then redivided according to the grouping results as shown in Figure 6.4. 

Assume that the current status of the full-size DF-table is given as in Figure 6.5a and the 

quantized predicted color is 7c
v

. Entries in the DF-Table shown in Figure 6.5a are merged 

according to the clustering results or, to be more precise, the partition results shown in Figure 

6.4 to produce two smaller DF-Tables. Figures 6.5b and 6.5c show the DF-Tables 

corresponding to the partition in Figure 6.4b and the partition in Figure 6.4c respectively. 

Whenever 7c
v

 is determined, the following steps are executed to sort the palette color. 

 

 

IF  ∑
−

=
=

1

07 ),7(H
N

k
kH >T 

Use the DF-Table shown in Figure 6.5(a). (i.e. Sort Ω∈kc
v

 by H(7,k) and then by 

2||),(|| jivck

vv
−  and then by k.) 

ELSEIF  )},7(H),4(H),2({H
1

0742 kkkHHH
N

k
++=++ ∑

−

=
>T 

Use the DF-Table shown in Figure 6.5(b). (i.e. Sort Ω∈kc
v

 by {H(2,k)+H(4,k)+ 

H(7,k)} and then by 2
||),(|| jivck

vv
−  and then by k.) 

ELSE 

Use the DF-Table shown in Figure 6.5(c) (i.e. Sort Ω∈kc
v

 by {H(0,k)+H(2,k)+ 

H(4,k)+H(5,k)+H(7,k)} and then by 2||),(|| jivck

vv
−  and then by k.) 

END 
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(a) (b) (c) 

Figure 6.3 Clustering results of LBG algorithm: (a) original palette of 8 colors; (b) 4 

clusters and (c) 2 clusters  

 

 

By doing so, the codec can use a smaller DF-Table whenever a large DF-Table has not 

yet been mature. As it needs fewer samples to make a smaller DF-Table mature, the proposed 

palette reordering method can provide a reasonable and steady performance after processing a 

few samples. Its advantage can be seen even at a very early stage of the index reordering 

process. 

 

 

   
(a) (b) (c) 

Figure 6.4 Redivide the color space according to the clustering results of LBG algorithm: 
(a) partition result associated with the original palette; (b) 4-cluster case and (c) 

2-cluster case 

 



 71 

 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

k 0 1 2 3 4 5 6 7 

H(0,k) 2 0 0 0 0 0 0 0 

H(1,k) 1 1 0 0 0 0 0 0 

H(2,k) 0 1 3 1 0 1 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(4,k) 0 0 0 1 0 2 0 0 

H(5,k) 0 0 0 0 0 1 0 0 

H(6,k) 0 0 0 0 1 0 0 0 

H(7,k) 0 0 0 0 0 2 1 1 

(a) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

k 0 1 2 3 4 5 6 7 

H(0,k)+ H(5,k) 2 0 0 0 0 1 0 0 

H(1,k)+H(6,k) 1 1 0 0 1 0 0 0 

H(2,k)+ H(4,k)+ H(7,k) 0 1 3 2 0 5 1 1 

H(3,k) 0 0 0 1 0 0 0 0 

(b) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

k 0 1 2 3 4 5 6 7 

F(0,k)+ H(2,k)+ H(4,k)+ H(5,k)+ H(7,k) 2 1 3 2 0 6 1 1 

H(1,k)+ H(3,k)+ H(6,k) 1 1 0 1 1 0 0 0 

(c) 

Figure 6.5 A set of three DF-Tables associated with (a) the original palette, (b) the 

4-cluster color space and (c) the 2-cluster color space 

 

6.3 Absorbing the nearest colors 

In the DF-Table merging scheme presented in Section 6.2, a pre-clustering process has 

to be carried out to determine which palette colors should be merged when a DF-Table of 

small size is required. Once the clusters are determined, how to merge a DF-Table is 

well-defined and fixed. The merging is independent of the quantized predicted color pc
v

. 

The pre-clustering process could be time-consuming especially when many DF-Tables 

of different sizes are required. One can get rid of this pre-clustering process by using another 

merging scheme as follows. 

When the quantized predicted color pc
v

 is determined, ∑
−

=
=

1

0
),(H

N

kp kpH  is checked 

against a predefined threshold value T. The DF-Table will be considered to be not mature if it 

is smaller than T. In such a case, the nearest s palette colors to pc
v

 are grouped with pc
v
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together, where s is a predefined integer. The corresponding DF-Table entries associated with 

these grouped palette colors are then merged. Accordingly, this DF-Table merging scheme is 

referred to as Absorbing-the-nearest-colors. After merging, each of the resultant entries 

specifies the frequency count of the occurrence that nc
v

 is the real color when pc
v

 is one of 

the members in the merged group of palette colors. Unlike the case in the merging scheme 

presented in Section 6.2, the merging is now pc
v

-dependent. 

Assume that pc
v

 and its nearest s palette colors form a set denoted as Ω⊂Ψp . In that 

case, { kc
v

 | k = 0, 1… N-1} are sorted according to the values of {∑ Ψ∈ plc
klv ),(H | k = 

0,1…N-1} in descending order. If there exist two different colors uc
v

 and vc
v

 such that 

∑∑ Ψ∈Ψ∈
=

plpl cc
vlul vv ),(H),(H , uc

v
 and vc

v
 will be sorted according to their Euclidean 

distance to ),( jiv
v

. If they are still not distinguishable, their order will be determined by their 

ranking in Ω. 

Figure 6.6 shows how index is assigned when Absorbing-the-nearest-colors instead of 

Absorbing-preclustered-colors is used to handle the example shown in Figure 6.1. Assume 

that H4 is now smaller than the threshold and s is predefined to be 2. It is given in Figure 6.6b 

that 3c
v

 and 7c
v

 are the nearest two colors to 4c
v

 and, hence, we have },,{ 743 cccp

vvv
=Ψ . 

After sorting { kc
v

|k=0,1…7} by H(3,k)+H(4,k)+H(7,k) and then by 2||),(|| jivck

vv
− , the new 

queue is { 01642753 ,,,,,,, cccccccc
vvvvvvvv

} and the new index of 3c
v

 is 0. One can compare Figure 

6.6 with Figures 6.1 and 3.2 to contrast their difference in determining the index of the real 

color. 

Like the case presented in Section 6.2, a merged DF-Table can further be merged into an 

even smaller DF-Table when it is necessary. An example is given in Figures 6.7 and 6.8 to 

show how Absorbing-the-nearest-colors can be used to provide a set of DF-tables of 



 73 

Table of {H(m,n)} 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

K 0 1 2 3 4 5 6 7 

H(0,k) 29 7 6 5 4 3 2 1 

H(1,k) 0 88 1 2 0 0 0 1 

H(2,k) 0 2 65 1 2 1 0 0 

H(3,k) 0 2 10 56 1 1 0 1 

H(4,k) 3 1 0 8 8 8 0 0 

H(5,k) 0 0 3 2 3 23 5 1 

H(6,k) 0 0 0 1 1 2 23 2 

H(7,k) 0 2 0 3 0 2 6 9 

(a) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 

Prediction Error, 2||),(|| jivck

vv
−  0.6 0.2 0.3 0.3 0.2 0.1 0.2 0.1 

Distance to 4c
v

, 2
4 |||| cck

vv
−  0.3 0.7 0.5 0.2 0.0 0.9 0.6 0.1 

(b) 

kc
v  

0c
v

 1c
v

 2c
v

 3c
v

 4c
v

 5c
v

 6c
v

 7c
v

 
* H(3,k)+H(4,k)+H(7,k) 3 5 10 67 9 11 6 10 

New index 7 6 3 0 4 1 5 2 
*

7c
v

 and 3c
v

 are the nearest 2 colors to 4c
v

. 

(c) 

Figure 6.6 Example of how to assign indices to a dynamic palette when (i) ),( jiv
v

, 4c
v

 

and 3c
v

 are, respectively, the predicted, the quantized predicted and the real 

colors and (ii) Absorbing the nearest colors is used in DF-Table merging: (a) 

current status of the DF-Table, (b) given additional information in the example, 

(c) index assignment with DF-Table merging 

 

 

 

 

different sizes. In this example, the palette shown in Figure 6.3a is used and the current status 

of the full-size DF-Table is given as in Figure 6.5a for consistency with the example shown in 

Figures 6.4 and 6.5. The full-size DF-table shown in Figure 6.8a is only a sorted version of 

that shown in Figure 6.5a. 

Assume that the quantized predicted color is 7c
v

 again. To derive a DF-Table of 

appropriate size, palette colors are grouped with pc
v

 one by one according to their distance to 

pc
v

 until ∑ Ψ∈ plc lv H >T or Ω=Ψp  is satisfied. The nearest palette colors are grouped with 

pc
v

 first. Figure 6.7 shows how the color space is divided according to the grouping results as 
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the palette colors are grouped one by one in seven steps until Ω=Ψp . In each step, 

corresponding entries in the DF-Table are merged and the resultant DF-Table is shown in 

Figure 6.8. 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  

Figure 6.7 Merging steps of absorbing the nearest colors: (a) partition result associated 

with the original palette; (b) after absorbing the nearest palette color; (c) after 

absorbing 2 nearest palette colors; (d) after absorbing 3 nearest palette colors; 

(e) after absorbing 4 nearest palette colors; (f) after absorbing 5 nearest palette 

colors; (g) after absorbing 6 nearest palette colors; (h) after absorbing all other 

palette colors 
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K 0 1 2 3 4 5 6 7 

H(7,k) 0 0 0 0 0 2 1 1 

H(2,k) 0 1 3 1 0 1 0 0 

H(5,k) 0 0 0 0 0 1 0 0 

H(4,k) 0 0 0 1 0 2 0 0 

H(6,k) 0 0 0 0 1 0 0 0 

H(1,k) 1 1 0 0 0 0 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k) 0 1 3 1 0 3 1 1 

H(5,k) 0 0 0 0 0 1 0 0 

H(4,k) 0 0 0 1 0 2 0 0 

H(6,k) 0 0 0 0 1 0 0 0 

H(1,k) 1 1 0 0 0 0 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k) 0 1 3 1 0 4 1 1 

H(4,k) 0 0 0 1 0 2 0 0 

H(6,k) 0 0 0 0 1 0 0 0 

H(1,k) 1 1 0 0 0 0 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k)+H(4,k) 0 1 3 2 0 6 1 1 

H(6,k) 0 0 0 0 1 0 0 0 

H(1,k) 1 1 0 0 0 0 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k)+H(4,k)+H(6,k) 0 1 3 2 1 6 1 1 

H(1,k) 1 1 0 0 0 0 0 0 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k)+H(4,k) + H(6,k)+H(1,k) 1 2 3 2 1 6 1 1 

H(3,k) 0 0 0 1 0 0 0 0 

H(0,k) 2 0 0 0 0 0 0 0 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k)+H(4,k) + 

H(6,k)+H(1,k)+H(3,k) 
1 2 3 3 1 6 1 1 

H(0,k) 2 0 0 0 0 0 0 0 

(g) 
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K 0 1 2 3 4 5 6 7 

H(7,k)+H(2,k)+H(5,k)+H(4,k) + 

H(6,k)+H(1,k)+H(3,k)+H(0,k) 
3 2 3 3 1 6 1 1 

(h) 

Figure 6.8 A set of eight DF-Tables each of which is associated with one of the merging 

results shown in Figure 6.7a-h 
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Obviously, when the predicted color is a color very different from pc
v

, the probability 

that the real color is rc
v

 is different from the case when the predicted color is pc
v

. Hence, it 

is meaningless to merge the DF-Table by grouping two palette colors which are distant from 

each other in the color space. In practice, one can bound the size of pΨ  or the distance of 

the colors in pΨ  such that the merging process can be terminated in the course to avoid 

merging two distant palette colors.  

 

 

6.4 Performance study 

Simulations were carried out to evaluate the performance of the two proposed DF-Table 

merging schemes in supporting the adaptive palette reordering method proposed in Chapter 3. 

In the simulations, the value of threshold T was set to be 0.1N and the merging terminated 

when the number of merged colors in the group containing the quantized predicted color was 

equal to or larger than 8. 

Figure 6.9 shows the difference between using DF-Table merging and not using 

DF-Table merging in the realization of the adaptive palette reordering method proposed in 

Chapter 3. It shows their difference in the so-far accumulated sum of square index values after 

processing i pixels. A positive value in the measure means that DF-Table merging provides 

more indices of small index values. It helps to reduce the overall variance of the indices. 

Theoretically, the more significant the reduction in the accumulated sum of square index 

values, the more indices are packed into a range of small values. In view of this, DF-Table 

merging helps to produce more small indices, and Absorbing-preclustered-colors behaves 

better than Absorbing-the-nearest-colors. 
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Figure 6.9 Reduction in accumulated sum of square values of indices with respect to the 

case without DF-Table merging when DF-Table merging is used  

 

 

From Figure 6.9, one can see that DF-Table merging only happens in the early stage of 

adaptive palette reordering. As more pixels are processed, the DF-Table gets more mature and 

it is no longer necessary to merge the DF-Table. When no merging is necessary, 

Absorbing-preclustered-colors and Absorbing-the-nearest-colors behave in the same way as in 

the case without DF-Table merging. Processing a pixel in such a case does not result in any 

difference in the index value by using a DF-Table merging scheme and hence there is no 

further reduction in the accumulated sum of square index values. Accordingly, the 

corresponding portions of the curves in Figure 6.9 remain level whenever no merging is 

necessary.  

In contrast to the plot shown in Figure 6.9, the plot shown in Figure 6.10 does not take 

all processed pixels into account but only those involve DF-Table merging when they are 

processed. Pixels which do not involve DF-Table merging when they are processed are 

removed in the plot as they do not contribute to the reduction or addition in the accumulated 

sum of square index values.  
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Figure 6.10  Focused portions of the plot shown in Figure 6.9 

 

 

Table 6.1 shows the simulation results for all testing images in terms of SSIVe. SSIVe is 

defined to be the sum of the square index values of all effective pixels. Here, effective pixels 

means the pixels which involve DF-Table merging when they are processed. 

Form Table 6.1, one can see that DF-Table merging helps to produce more small indices. 

The performance of the two proposed DF-Table merging schemes are more or less the same in 

terms of the average reduction in SSIVe. Absorbing-preclustered-colors is slightly better than 

Absorbing-the-nearest-colors. This can be observed by comparing the absolute difference 

between their SSIVe values. 
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Group Image Size (pixel2) 
SSIVe 

No merging 
Absorbing- 

the-nearest- colors 
Absorbing- 

preclustered-colors 

C
G
 

im
ag
e pool 510x383 3069875 2675324 (87.1%) 2799979 (91.2%) 

watch 1024x768 9215808 7880299 (85.5%) 7674466 (83.3%) 

water 1024x768 21302066 20909971 (98.2%) 20858138 (97.9%) 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 6938379 6101089 (87.9%) 6039125 (87.0%) 

Kodak 02 768x512 7124694 6379827 (89.5%) 6338480 (89.0%) 

Kodak 03 768x512 5523060 5127955 (92.8%) 4725953 (85.6%) 

Kodak 04 768x512 3359119 3046236 (90.7%) 3067039 (91.3%) 

Kodak 05 768x512 7887582 7525028 (95.4%) 7345004 (93.1%) 

Kodak 06 768x512 16201335 12557494 (77.5%) 12516702 (77.3%) 

Kodak 07 768x512 3640236 3320252 (91.2%) 3321282 (91.2%) 

Kodak 08 768x512 8559655 8027324 (93.8%) 8082672 (94.4%) 

Kodak 09 768x512 3314721 3141663 (94.8%) 3243908 (97.9%) 

Kodak 10 768x512 9375159 7921324 (84.5%) 8106321 (86.5%) 

Kodak 11 768x512 6149399 5586054 (90.8%) 5488017 (89.2%) 

Kodak 12 768x512 6394072 5948635 (93.0%) 5698833 (89.1%) 

Kodak 13 768x512 21243252 18263697 (86.0%) 18509351 (87.1%) 

Kodak 14 768x512 4992044 4190197 (83.9%) 4204705 (84.2%) 

Kodak 15 768x512 3090025 2553231 (82.6%) 2628302 (85.1%) 

Kodak 16 768x512 10871548 9412486 (86.6%) 9135033 (84.0%) 

Kodak 17 768x512 7480895 6666806 (89.1%) 6729078 (90.0%) 

Kodak 18 768x512 8381187 7650564 (91.3%) 7745990 (92.4%) 

Kodak 19 768x512 5671096 5326916 (93.9%) 5374973 (94.8%) 

Kodak 20 768x512 11561203 10279368 (88.9%) 10382971 (89.8%) 

Kodak 21 768x512 11113901 10213911 (91.9%) 9986989 (89.9%) 

Kodak 22 768x512 8730668 7657395 (87.7%) 7612550 (87.2%) 

Kodak 23 768x512 908785 866923 (95.4%) 864153 (95.1%) 

Kodak 24 768x512 25911883 20980268 (81.0%) 21140460 (81.6%) 

Average 8815246.2 7785564.3 (88.3%) 7763721.3 (88.1%) 

The figure in the bracket is the percentage w.r.t to case of no merging 

Table 6.1 Sum of square index values of the pixels which involve DF-Table merging when 
they are handled 
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6.5 Summary 

The DF-Table plays a significant role in adaptive palette reordering. It helps one to 

predict the likeliness of the occurrence of a particular color in pixel (i,j) such that an index of 

smaller value can be assigned to a color which is more likely to happen. This results in a 

reindexed index map having a number of small indices.  

An immature DF-Table cannot provide sufficient statistic information for one to 

estimate the likeliness of the occurrence of a particular color in pixel (i,j) with its predicted 

color. To solve this problem, two DF-Table merging schemes are proposed to build DF-Tables 

of smaller sizes such that the resultant DF-Tables contains fewer zero entries. Eventually, one 

can have a DF-Table of appropriate size in which there is sufficient statistical information for 

one to sort the palette colors.  

In Absorting-preclustered-colors, palette colors are preclustered before processing the 

image. Based on the clustering result, palette colors are grouped and corresponding DF-Table 

entries merges together when the DF-Table is found to be immature. As for 

Absorting-the-nearest-colors, no preclustering is required. When the DF-Table is found to be 

immature, the entries associated with the quantized predicted color pc
v

 and pc
v

’s nearest 

palette colors are merged together. 

The DF-Table merging schemes improve adaptive palette reordering at its early stage. 

However, as more and more pixels are processed, the DF-Table gets more and more mature 

and no merging is required any more. Accordingly, when the image being processed is very 

large, the effect of DF-Table merging can be insignificant. 
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Chapter 7 – Compression performance 

 

7.1 Introduction 

One can see form the previous chapters that adaptive palette reordering can effectively 

turn the index map of an color indexed image into another index map of little spatial 

correlation, low variance and low zero-order entropy. An index map of such properties is 

suitable for being compressed and good compression performance can be easily achieved with 

different coding techniques. In this chapter, we present several approaches to encode the 

reindexed index map and show how adaptive palette reordering can easily work with different 

coding schemes to achieve high compression ratios. In other words, the focus of this chapter 

is on the index encoding module of the lossless coding system proposed in this work. Figure 

7.1 highlights this module in the proposed coding system. 

This chapter is organized as follows. In Section 7.2, coders which compile with 

international coding standards such as JPEG-LS and Lossless JPEG-2000 are used to encode 

the reindexed index map. This approach makes adaptive palette reordering a preprocessing 

step and then allows one to use adaptive palette reordering to improve the performance of 

popular standard coders or off-the-shelf coding systems without modifying their structure. 

In Sections 7.3 and 7.4, the constraint of being compatible with international coding 

standards is released. Bit-plane coding and context-based entropy coding techniques are used 

to encode reindexed index maps. Simulation results are provided in Section 7.5 to comapre 

the performance of the proposed coding system and some other conventional lossless coding 

algorithms. A brief summary is provided in Section 7.6. 
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Figure 7.1  The focus of Chapter 7 is on the realization of the index encoding module 

 

 

 

7.2 Encoding index maps with JPEG-LS/Lossless JPEG-2000 

Since most of the spatial correlation is removed and indices are highly biased in our 

reordering result, our reindexed output can be easily compressed with a lot of well-developed 

lossless compression algorithms such as JPEG-LS and JPEG-2000.  

JPEG-LS and lossless JPEG-2000 are well-developed lossless image coding standards 

and hence sometimes it would be convenient for one to make use of them to compress an 

image directly. Adaptive palette reordering can be used as a pre-/post-processing step. It 

pre-processes a given color index map to generate an input to a JPEG-LS/JPEG-2000 codec 

and, at the receiver, post-processes the output from a JPEG-LS/JPEG-2000 decoder to 

reconstruct the original color-quantized image. To the JPEG-LS/JPEG-2000 codec, the 

reindexed index map just appears as a grey-level image and it is encoded directly as if it were 

a grey-level image.  

Adaptive palette reordering is fully compatible with JPEG-LS and JPEG-2000 in a way 

that no modification to these codecs is required to compress an image when the proposed 

method is exploited. 
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7.3 Encoding index maps with significance-based bit-plane coding 

If being compatible with JPEG-LS/JPEG-2000 is not the concern, an even higher 

compression ratio can be achieved with some other means such as bit-plane coding. The index 

values of the reindexed index map are bounded by N, the total number of palette colors. By 

abandoning the use of bijective mapping (3.1) at the final stage of adaptive palette reordering 

so as not to shift the peak of the index distribution to N/2, most of the index values of the 

reindexed index map are of values equal or close to zero. This reindexed index map can be 

directly separated into  N2log  bit planes each of which carries the jth most significant bits 

of the binary representation of the indices in the reindexed output, where j=1,2…  N2log . 

Figure 7.2 shows the 8 bit-planes extracted from the adaptive palette reordering result of 

testing image Kodak-05. 

In Chapter 3, we show that there is little correlation among the indices of neighboring 

pixels. However, it can be found from Figure 7.2 that there is still some spatial correlation 

among the pixels in individual bit planes. Another important finding is that the bits in the 

significant bit planes are highly biased to be zero. The entropies of these bit planes are very 

low. Comparatively, the entropies of insignificant bit planes are much higher but they are 

bounded by 1 bpp in practice. This bound is based on the fact that the bit plane can be 

represented without any compression at a bit rate of 1 bit per pixel. 

The bit planes can be separately encoded with any bit-plane coding techniques. In this 

section, two approaches for encoding the bit planes are presented for examples. 
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8

th
 bit plane (MSB) 

 
7th bit plane 

 
6th bit plane 

 
5th bit plane 

 
4th bit plane 

 
3rd bit plane 

 
2nd bit plane 

 
1st bit plane (LSB) 

Figure 7.2 The 8 bit planes of the reindexed index map produced with adaptive palette 

reordering 
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A. Coding with JBIG 

JBIG [JBIG1993] is a popular international coding standard for encoding binary images. 

To make use of it, each of the bit planes can be encoded with JBIG individually. Our 

simulation results shown that this approach would provide a better compression result as 

compared with the approach working with JPEG-LS or JPEG-2000. 

 

B. Coding with a context-based binary arithmetic codec 

A QM-coder [Pennebaker88] is used in JBIG to code a binary bit-plane. In approach B, 

a general context-based binary arithmetic coder is used instead to code a binary bit-plane. 

Figure 7.3 shows the context template used in this approach. The forgetting factor α and the 

biasing constant ∆ for updating the conditional probability for having bit ‘1’, P(1|context), are, 

respectively, 0.985 and 0.006. In particular, the probability for having bit ‘1’ when the context 

is binary pattern i again is updated by 

 

)2/()()|1( ∆+∆+== ii sripatternbinarycontextP  for i=0,1…4095 (7.1) 

 

where ir  and is  are updated whenever a context of binary pattern i is encountered using  
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α 11
:   (7.2) 

and 

ii ss α+=1:   (7.3) 

 



 86 

The initial values of ir  and is  are, respectively, 1 and 2 for all context patterns i. The 

suggested values of parameters α and ∆ were selected based on Reavy et al.’s work on binary 

image compression [Reavy01]. 

 

O O O O O O : pixels included in the context template 

O O O O O X : the pixel of interest 

O O X    

Figure 7.3  A context template used in context-based binary arithmetic codecs 

 

 

7.4 Encoding index maps with value-based bit-plane coding 

In Section 7.3, bit planes are constructed with particular bits of the binary representation 

of indices according to their bit significance. When the palette is of size 2m, where m is a 

positive number, we have m bit planes. Otherwise, the bit planes cannot be fully utilized and 

redundancy exists in the bit planes. 

As most indices are of values identical or close to zero and the distribution of the index 

values can be modeled with an exponential function, one can construct bit planes with another 

approach as 

 









<

=

>

=

kjiIif

kjiIif

kjiIif

jiBk

),(caret don'

),(0

),(1

),(  for k=0,1,… N-2 (7.4) 

 

where ),( jiBk  is the (i,j)
th
 element of the k

th
 bit plane and ),( jiI  is the index value of 

pixel (i,j). Totally, there are N-1 bit planes, which is different from the approach used in 
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Section 7.3. For reference, this approach of bit-plane separation is referred to as value-based 

bit-plane separation (VBS) while the approach presented in Section 7.3 is referred to as 

significance-based bit-plane separation (SBS). Figure 7.4 shows an example which highlights 

the difference between VBS and SBS in constructing their bit planes. 

Starting from k=0, bit planes are gradually constructed as k increases. Once a bit plane is 

defined, its bits are raster scanned and encoded with context-based entropy coding. As bit 

planes of lower k values are encoded first, don’t care ),( jiBk  bits can be skipped. There 

must be ),( jiBl =0 for some l<k and it must be encoded already. The values of ),( jiI  are 

well-defined at the moment.  

Though apparently VBS results in more bit planes as compared with SBS, the total 

number of bits to be encoded in VBS can be even less. For the example shown in Figure 7.4, 

the total number of bits to be encoded in VBS is 38 instead of 48 as in SBS. 

The context-based entropy coding is carried out as it is in the second approach presented 

in Section 7.3 (Approach B) except that its context template is different. It is possible that the 

context of ),( jiBk  contains some don’t care pixel bits when ),( jiBk  is encoded with 

context-based entropy coding. In that case, the don’t care bits can be filled with either 0 or 1. 

In our realization, it is filled with 0 for simplicity. 

As the value of k gets larger, there are more don’t care bits in bit plane kB  and, 

accordingly, the context template covers more don’t care bits when it moves around. To 

achieve better performance and avoid context dilution problem, a context template of variable 

size is used.  
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(a) 

 
(b) 

 

 
(c) 

Figure 7.4 An example showing how a 4x4 index map is split into bit planes: (a) index 

map; (b) the bit planes obtained with SBS and (c) the bit planes obtained with 

VBS 

 

 

 

 

11 8 6 9 12   

7 3 2 4 10  X : the pixel of interest 

5 1 X     

Figure 7.5  The context template used in VBS 

 

 

Figure 7.5 shows a context template whose pixel positions are numbered. Instead of 

using all template locations, only first L positions are used, where L is a function of k. Two 

functions are used in our study. The first function )(1 kf  is defined as 
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o  for k=0,1,… N-2 (7.5) 

 

where No is the total number of pixels of the image, n=0.671 and b= -0.859. The values of n 

and b are selected based on Pinho’s work [Pinho05]. The second function )(2 kf  is defined 

as 

 

 )1(log9)( 22 +−= kkf ,  for k=0,1,… N-2 (7.6) 

 

For the purpose of reference, the index coding scheme using VBS to construct bit planes 

and function )(1 kf to define the context template for entropy coding is referred to as VBS1 

hereafter. Accordingly, the index coding scheme using VBS to construct bit planes and 

function )(2 kf to define the context template for entropy coding is referred to as VBS2. 

 

 

7.5 Simulation Results 

When working with adaptive palette reordering, the various coding schemes presented 

earlier in this chapter form corresponding lossless coding methods for coding color-indexed 

images. Simulations were carried out to evaluate the performance of these coding schemes in 

coding the resultant reindexed index maps of adaptive palette reordering. Besides, a 

comparison among various conventional and the proposed lossless image coding methods 

were done. This section presents the evaluation results and the comparison results in our 

simulations. 
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For the purpose of reference, the corresponding lossless coding methods of the six index 

coding schemes presented in Sections 7.2, 7.3 and 7.4 are, respectively, referred to as 

 APR+Jls : Encoding adaptive palette reordering output with JPEG-LS 

 APR+J00 : Encoding adaptive palette reordering output with lossless 

JPEG-2000 

 APR+SBSa : Encoding adaptive palette reordering output with Approach A 

presented in Chapter 7.3  

 APR+SBSb : Encoding adaptive palette reordering output with Approach B 

presented in Chapter 7.3  

 APR+VBS1 : Encoding adaptive palette reordering output with VBS1 

presented in Chapter 7.4  

 APR+VBS2 : Encoding adaptive palette reordering output with VBS2 

presented in Chapter 7.4  

 

As discussed in Chapters 4, 5 and 6, various prediction schemes and color reordering 

schemes can be used to realize adaptive palette reordering. In the study we reported in this 

chapter, adaptive palette reordering was realized in a way similar to the method proposed in 

Chapter 3. The only difference was that DF-Table merging was on in this study. Starting from 

256, the number of groups into which all palette colors were clustered was halved 

progressively until either it reached 8 or Tkl
plc

N

k
>∑ ∑Φ∈

−

=
v

1

0
),(H , where Ω⊂Φ p  is the 

group to which pc
v

 belongs, was satisfied. The threshold T was selected to be 0.1N. Figure 

7.6 shows the pseudo code for realizing adaptive palette ordering in this study. 

A set of testing color-indexed images were generated as mentioned in Chapter 3. They 

were used for comparing the proposed coding methods with various lossless coding methods. 

The evaluated coding methods cover both methods which exploit palette reordering [Po94, 

Spira01, Zaccarin93, Memon97, Zeng00, Pinho04, Battiato01] and methods which do not 

[Natale89, Ratnakar98, Chen02, Kuroki04, Pinho05, Robinson06, Arnavut06]. 
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Partition all palette colors in reference palette Ω ≡{ kc
v

|k=0,1…N-1} into N/2 groups with LBG 

algorithm. 

% The N/2 groups are denoted as Ω⊂Ψ 2/N
v  for v=0,1…N/2-1  

Partition all palette colors in reference palette Ω into N/4 groups with LBG algorithm. 

% The N/4 groups are denoted as Ω⊂Ψ 4/N
v  for v=0,1…N/4-1  

 … 

Partition all palette colors in reference palette Ω into 8 groups with LBG algorithm. 

% The 8 groups are denoted as Ω⊂Ψ8
v  for v=0,1…7  

Initialize DF-Table {H(m,n)} by H(m,n)=0 for m,n=0,1…N-1. 

Raster scan the image 

FOR each pixel (i,j) 

Predict the red component of pixel (i,j) with MED in the red color plane to get r(i,j). 

Predict the green component of pixel (i,j) with MED in the green color plane to get g(i,j). 

Predict the blue component of pixel (i,j) with MED in the blue color plane to get b(i,j). 

Quantize )),(),,(),,((),( jibjigjirjiv =
v

 with the reference palette Ω.   

%  Assume the quantization result is pc
v

, the p
th

 palette color in reference palette Ω, and 

% Ω⊂Ψ g
p , for g∈{N/2,N/4…8}, are the groups to which pc

v
 belongs. 

 

IF  ∑
−

=
=

1

0
),(H

N

k
p kpH ≥ threshold T 

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by H(p,k) and then by 2
||),(|| jivck

vv
−  and 

then by k. 

ELSE 

IF  ∑ ∑Ψ∈

−

=
2/

1

0
),(H

N
plc

N

k
klv ≥ threshold T; 2/N

pp Ψ=Φ  

ELSEIF  ∑ ∑Ψ∈

−

=
4/

1

0
),(H

N
plc

N

k
klv ≥ threshold T; 4/N

pp Ψ=Φ  

ELSEIF  … 

ELSEIF  ∑ ∑Ψ∈

−

=
16

1

0
),(H

plc

N

k
klv ≥ threshold T; 16

pp Ψ=Φ  

ELSE  8
pp Ψ=Φ  

END 

 

Sort all palette colors in Ω ≡{ kc
v

|k=0,1…N-1} by ∑ Φ∈ plc
klv ),(H  and then by 

2||),(|| jivck

vv
−  and then by k. 

END 

% The sorted palette colors forms the transient version of the palette  

% Assume the real color of pixel (i,j) is rc
v

, the rth palette color in reference palette Ω 

Assign the position of rc
v

 in the current sorted palette color queue to be the new index of rc
v

. 

Update {H(m,n)} by H(p,r)++. 

END 

Figure 7.6 Pseudo code of the adaptive palette reordering method used in APR+Jls, 

APR+J00, APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2. 
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Group Image Size (pixel2) 
Bits per pixel 

Zaccarin93 Po94 Spira01 Pinho04 Zeng00 Battiato01 Memon96 Memon97 Lai07 APR+Jls 

C
G
 im

ag
e pool 510x383 1.965 1.540 2.270 1.462 1.560 1.786 1.464 1.559 1.422 1.370 

watch 1024x768 2.436 2.658 2.432 2.169 2.273 2.632 2.093 2.269 2.085 1.956 

water 1024x768 5.673 6.287 5.641 5.621 6.207 7.089 5.487 5.350 5.291 4.878 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 5.956 6.481 6.000 5.599 5.969 7.055 5.403 5.346 5.375 4.911 

Kodak 02 768x512 5.277 6.581 6.311 4.383 4.605 5.418 4.234 4.252 4.208 3.734 

Kodak 03 768x512 3.587 3.361 3.264 2.742 2.875 3.548 2.723 2.836 2.731 2.509 

Kodak 04 768x512 4.765 5.139 5.801 4.312 4.953 5.447 3.920 4.010 3.879 3.451 

Kodak 05 768x512 5.669 6.332 5.710 5.204 5.390 6.408 5.029 5.108 4.962 4.469 

Kodak 06 768x512 4.997 5.633 5.405 5.153 5.413 5.921 4.976 5.079 4.853 4.232 

Kodak 07 768x512 4.208 4.339 4.421 3.857 4.069 4.698 3.667 3.450 3.627 3.065 

Kodak 08 768x512 5.554 6.242 5.872 5.852 5.965 6.404 5.797 5.545 5.518 4.587 

Kodak 09 768x512 4.423 4.720 4.484 4.100 4.514 5.506 3.952 4.131 3.712 3.481 

Kodak 10 768x512 4.551 4.870 4.840 4.826 5.339 5.969 4.505 4.580 4.389 3.652 

Kodak 11 768x512 5.024 5.177 4.786 4.458 4.890 4.799 4.334 4.347 4.294 3.771 

Kodak 12 768x512 4.316 5.118 4.934 3.960 4.403 5.329 3.868 3.786 3.740 3.302 

Kodak 13 768x512 6.482 6.976 6.585 6.203 6.509 7.016 5.968 6.381 5.881 5.592 

Kodak 14 768x512 5.369 5.629 5.345 4.717 5.140 6.482 4.497 4.406 4.454 4.090 

Kodak 15 768x512 4.089 4.629 4.350 3.636 3.883 4.332 3.537 3.374 3.526 3.046 

Kodak 16 768x512 4.558 4.977 5.032 4.386 4.817 5.995 4.254 4.282 4.132 3.645 

Kodak 17 768x512 4.510 5.252 4.371 4.818 5.526 5.763 4.335 4.321 4.074 3.717 

Kodak 18 768x512 5.906 6.674 6.149 5.220 5.777 6.762 5.276 5.276 4.991 4.568 

Kodak 19 768x512 5.018 5.363 5.824 4.845 5.104 5.987 4.656 4.661 4.466 3.972 

Kodak 20 768x512 3.201 3.465 3.726 3.053 3.326 3.690 3.144 3.118 3.039 2.897 

Kodak 21 768x512 5.231 5.622 4.747 4.544 4.916 5.563 4.422 4.697 4.297 3.995 

Kodak 22 768x512 5.242 5.869 5.327 5.119 5.708 5.969 4.990 4.865 4.838 4.081 

Kodak 23 768x512 3.489 3.578 3.228 2.890 3.252 3.297 3.091 3.165 2.835 2.432 

Kodak 24 768x512 5.084 6.122 5.525 5.017 5.367 5.951 4.830 4.921 4.712 4.224 

Average 4.688 5.135 4.903 4.376 4.731 5.364 4.239 4.264 4.123 3.690 

Table 7.1 Performance of different palette reordering methods when working with 

JPEG-LS 

 

 

Tables 7.1 and 7.2 list the compression performance of various coding methods which 

exploit palette reordering. They are common in a way that the palette associated with the 

image being encoded is reordered to generate a new index map for being encoded. The 

resultant index map will be treated as a grey level image and hence can be encoded with any 

lossless gray-level image coding standards such as JPEG-LS and JPEG-2000. Table 7.1 and 

Table 7.2 show, respectively, the case using JPEG-LS and the case using JPEG-2000. 
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Specifically, the last column of Table 7.1 shows the performance of APR-Jls while the last 

column of Table 7.2 show the performance of APR-J00. 

We have two observations from the Tables. First, the performance of the adaptive palette 

reordering is the best among the evaluated palette reordering methods. No matter JPEG-LS or 

JPEG-2000 is used, its palette reordering results can be encoded with minimum number of 

bits as compared with the others. Second, JPEG-LS is more suitable than JPEG-2000 to 

encode palette reordering results whatever palette reordering methods are used. JPEG-LS 

generally provides a better performance than JPEG-2000 in coding the reordering results in 

terms of bit rate of the output. 

Table 7.3 compares the compression performance of the proposed coding methods 

(APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2) with various state-of-art lossless 

coding methods which are not bounded to exploit palette reordering. One can see that 

APR+SBSb, APR+VBS1 and APR+VBS2 are the best three in terms of compression ratio 

while APR+SBSa is the fifth best. Without the constraint of being compatible with JPEG-LS 

or JPEG-2000, the output of adaptive palette reordering can be encoded at an even lower bit 

rate. This can be revealed by comparing the performance of APR-Jls and APR-J00 with 

APR+SBSa, APR+SBSb, APR+VBS1 and APR+VBS2. Among the six lossless image coding 

methods, APR+VBS2 provides the best bit rate. This implies that VBS2 is more effective in 

encoding the output of adaptive palette reordering. 
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Group Image Size (pixel2) 
Bits per pixel 

Zaccarin93 Po94 Spira01 Pinho04 Zeng00 Battiato01 Memon96 Memon97 Lai07 APR+J00 

C
G
 im

ag
e pool 510x383 2.701 2.031 3.150 1.860 1.985 2.234 1.894 2.021 1.880 1.626 

watch 1024x768 3.287 3.568 3.360 2.620 2.760 3.432 2.770 2.971 2.777 2.316 

water 1024x768 6.112 7.128 6.477 6.023 6.563 7.735 5.976 5.840 5.881 5.170 

N
at
ur
al
 im

ag
e 

Kodak 01 768x512 6.257 6.972 6.373 5.529 5.846 7.500 5.712 5.683 5.764 5.144 

Kodak 02 768x512 5.764 7.150 6.824 4.704 5.094 6.435 4.679 4.746 4.684 4.008 

Kodak 03 768x512 4.449 4.000 4.002 2.996 3.118 4.139 3.318 3.495 3.338 2.756 

Kodak 04 768x512 5.242 5.946 6.156 4.685 5.359 6.042 4.466 4.616 4.368 3.654 

Kodak 05 768x512 6.136 7.285 6.451 5.721 5.750 6.969 5.658 5.744 5.575 4.839 

Kodak 06 768x512 5.274 5.996 5.898 5.207 5.579 6.581 5.400 5.498 5.292 4.450 

Kodak 07 768x512 4.872 5.075 5.193 4.197 4.494 5.491 4.267 4.062 4.210 3.372 

Kodak 08 768x512 5.917 6.654 6.703 6.351 6.254 6.792 6.386 6.117 6.082 4.896 

Kodak 09 768x512 4.824 5.098 4.862 4.136 4.474 5.958 4.347 4.560 4.091 3.658 

Kodak 10 768x512 5.043 5.624 5.379 4.962 5.236 6.661 5.062 5.159 4.957 3.891 

Kodak 11 768x512 5.511 5.664 5.309 4.809 5.003 5.281 4.756 4.819 4.718 3.999 

Kodak 12 768x512 4.841 5.706 5.506 3.995 4.328 5.943 4.330 4.250 4.259 3.532 

Kodak 13 768x512 6.679 7.196 7.062 6.374 6.579 7.539 6.279 6.784 6.248 5.773 

Kodak 14 768x512 5.741 6.237 5.798 5.195 5.500 7.252 4.849 4.757 4.882 4.323 

Kodak 15 768x512 4.458 5.255 4.876 3.911 4.156 4.787 3.963 3.888 4.017 3.249 

Kodak 16 768x512 5.028 5.502 6.061 4.567 5.109 6.900 4.737 4.827 4.648 3.875 

Kodak 17 768x512 4.831 5.749 4.804 4.679 4.881 6.075 4.735 4.732 4.488 3.929 

Kodak 18 768x512 6.157 7.387 6.619 5.808 6.421 7.200 5.614 5.625 5.301 4.740 

Kodak 19 768x512 5.313 5.859 6.282 4.945 5.099 6.407 5.013 5.051 4.830 4.104 

Kodak 20 768x512 3.469 3.926 4.102 3.267 3.477 4.049 3.535 3.484 3.418 3.109 

Kodak 21 768x512 5.652 6.003 5.478 4.978 5.241 6.163 4.695 5.134 4.630 4.184 

Kodak 22 768x512 5.605 6.339 5.900 5.693 5.838 6.504 5.483 5.300 5.338 4.286 

Kodak 23 768x512 4.467 4.386 4.380 3.727 3.941 4.203 3.865 3.968 3.579 2.722 

Kodak 24 768x512 6.780 6.215 5.592 5.923 6.945 5.343 5.474 5.558 5.325 4.568 

  Average 5.200 5.702 5.504 4.699 5.001 5.912 4.713 4.766 4.614 3.932 

Table 7.2 Performance of different palette reordering methods when working with Lossless 

JPEG-2000 

 

 



 

9
5

Group Image Size (pixel2) 

Bits per pixel 

GIF PNG Natale89* Ratnakar98 Chen02 Pinho05 Robinson06 Kuroki04 Arnavut06 

Adaptive palette reordering 

+SBS +VBS 

+SBSa +SBSb +VBS1 +VBS2 

C
G
 

im
ag
e pool 510x383 1.724 1.591 3.455 1.657 1.288 1.235 1.451 1.919 1.309 1.258 1.255 1.148 1.129 

watch 1024x768 2.619 2.036 3.986 2.221 1.936 1.913 2.238 2.590 1.674 1.880 1.803 1.661 1.625 

water 1024x768 6.571 5.696 5.211 5.244 4.943 4.923 5.731 4.926 4.484 4.801 4.505 4.493 4.360 

N
at
ur
al
 im
ag
e 

Kodak 01 768x512 6.365 5.491 5.433 5.393 4.905 4.870 5.757 5.776 4.750 4.831 4.574 4.591 4.430 

Kodak 02 768x512 4.967 4.433 4.588 4.229 3.952 3.939 4.602 4.433 3.611 3.591 3.412 3.365 3.274 

Kodak 03 768x512 3.328 2.858 3.727 2.745 2.580 2.507 2.845 2.695 2.161 2.317 2.267 2.176 2.139 

Kodak 04 768x512 4.967 4.285 4.441 3.997 3.817 3.741 4.386 3.873 3.309 3.355 3.198 3.136 3.063 

Kodak 05 768x512 6.203 5.244 5.396 4.921 4.776 4.725 5.229 5.026 4.372 4.424 4.192 4.169 4.024 

Kodak 06 768x512 5.284 4.644 4.673 4.686 4.410 4.377 5.154 4.599 3.817 4.154 3.955 3.972 3.829 

Kodak 07 768x512 4.403 3.733 4.321 3.423 3.353 3.263 3.778 3.376 2.843 2.932 2.797 2.725 2.659 

Kodak 08 768x512 6.750 5.680 5.479 5.298 5.051 5.010 5.798 5.549 4.785 4.513 4.244 4.216 4.068 

Kodak 09 768x512 4.933 4.265 4.293 3.880 3.593 3.517 4.289 4.111 3.345 3.369 3.207 3.159 3.091 

Kodak 10 768x512 5.196 4.487 4.454 4.009 3.870 3.773 4.671 4.131 3.552 3.553 3.376 3.331 3.240 

Kodak 11 768x512 4.790 4.291 4.517 4.235 3.959 3.900 4.683 4.253 3.556 3.659 3.486 3.460 3.349 

Kodak 12 768x512 4.073 3.626 3.826 3.510 3.340 3.272 4.058 3.423 2.904 3.174 3.025 2.962 2.892 

Kodak 13 768x512 7.143 6.131 5.861 5.978 5.683 5.659 6.312 6.188 5.268 5.557 5.265 5.383 5.168 

Kodak 14 768x512 5.560 4.851 4.766 4.639 4.483 4.429 4.963 4.356 3.873 4.002 3.806 3.790 3.677 

Kodak 15 768x512 4.537 3.880 4.206 3.499 3.371 3.294 3.642 3.519 2.908 2.904 2.771 2.702 2.653 

Kodak 16 768x512 4.305 3.895 4.222 3.988 3.682 3.639 4.614 3.943 3.210 3.548 3.385 3.365 3.257 

Kodak 17 768x512 5.486 4.774 4.695 4.283 3.918 3.817 4.742 4.278 3.644 3.616 3.441 3.416 3.321 

Kodak 18 768x512 6.335 5.593 5.077 5.133 5.110 5.051 5.435 4.965 4.275 4.467 4.232 4.245 4.108 

Kodak 19 768x512 5.857 5.099 4.780 4.656 4.235 4.171 4.827 4.595 3.867 3.881 3.683 3.670 3.569 

Kodak 20 768x512 3.522 3.185 3.968 3.365 2.892 2.833 3.383 3.404 2.669 2.785 2.681 2.647 2.547 

Kodak 21 768x512 4.818 4.385 4.371 4.383 4.043 3.979 4.922 4.385 3.620 3.898 3.714 3.716 3.583 

Kodak 22 768x512 5.505 4.916 4.710 4.460 4.347 4.274 5.182 4.577 3.975 3.954 3.765 3.747 3.624 

Kodak 23 768x512 3.640 3.017 3.934 2.517 2.589 2.478 2.855 2.609 2.333 2.267 2.176 2.084 2.048 

Kodak 24 768x512 5.767 4.939 4.963 4.573 4.4632 4.3927 6.452 4.956 4.125 4.107 3.903 3.837 3.690 

  Average 4.987 4.334 4.553 4.090 3.874 3.814 4.518 4.292 3.490 3.585 3.412 3.376 3.275 

* Sub-codebook size = 8 

Table 7.3  Performance of various lossless image coding methods for coding color-indexed images 
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Table 7.4 shows the actual processing time of compressing color-indexed images with 

the proposed dynamic palette reordering algorithm. The simulation results were done on a 

2.4GHz Celeron PC with 512MB RAM. The average processing time per pixel is about 2.83 

microseconds. Palettes of the testing images are of size 256.  

 

Group Image Size (pixel2) 
Time 

Seconds µs/pixel 

C
G
 im
ag
e pool 510x383 0.640  3.28  

watch 1024x768 1.296  1.65  

water 1024x768 2.453  3.12  

N
at
ur
al
 im
ag
e 

Kodak 01 768x512 1.235  3.14  

Kodak 02 768x512 1.156  2.94  

Kodak 03 768x512 0.890  2.26  

Kodak 04 768x512 0.641  1.63  

Kodak 05 768x512 0.844  2.15  

Kodak 06 768x512 1.047  2.66  

Kodak 07 768x512 1.000  2.54  

Kodak 08 768x512 1.109  2.82  

Kodak 09 768x512 0.875  2.23  

Kodak 10 768x512 1.546  3.93  

Kodak 11 768x512 0.953  2.42  

Kodak 12 768x512 0.844  2.15  

Kodak 13 768x512 1.375  3.50  

Kodak 14 768x512 1.172  2.98  

Kodak 15 768x512 0.985  2.50  

Kodak 16 768x512 0.937  2.38  

Kodak 17 768x512 1.484  3.77  

Kodak 18 768x512 1.266  3.22  

Kodak 19 768x512 1.813  4.61  

Kodak 20 768x512 0.875  2.23  

Kodak 21 768x512 1.391  3.54  

Kodak 22 768x512 0.922  2.34  

Kodak 23 768x512 1.062  2.70  

Kodak 24 768x512 1.500  3.81  

  Average 1.160  2.83  

Table 7.4 The actual processing time of compressing color-indexed images with the 

proposed dynamic palette reordering algorithm 
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7.6 Summary 

After adaptive palette reordering, the output can be encoded with various index 

encoding schemes. Different index encoding schemes provide different compression 

performance in terms of bit rate. Six different index encoding schemes were studied and their 

performance in encoding reindexed index maps are presented in this chapter. It was found that 

the performance of VBS2 is the best among the six evaluated index encoding schemes. 

Simulation was also carried out to compare the compression performance of various 

lossless image coding methods including those exploited palette reordering and those did not. 

Results reported in this chapter shows that APR-VBS2 is superior to all other coding methods 

in terms of bit rate.  

There are some other interesting findings in the simulation results. First, JPEG-LS 

generally performs better that JPEG-2000 to encode palette reordering results. Second, 

adaptive palette ordering can significantly reduce the output bit rate when it is used to process 

a color-indexed image before compressing the image. Third, without concerning the 

constraint of being compatible with JPEG-LS/JPEG-2000, one can use an even better 

encoding scheme such as VBS2 to lower the output bit rate further. 
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Chapter 8 – Conclusions 

 

8.1 Summary of the work 

A lossless image coding technique for coding color-indexed images is proposed in this 

work. The core of the technique relies on a palette reordering technique which adaptively 

reorders the palette associated with a color-indexed image such that the resultant index map 

can be encoded more effectively. Unlike other conventional palette reordering techniques, the 

proposed adaptive palette reordering technique does not produce a directly-displayable index 

map. However, it is able to effectively reshape the statistical properties of a given color index 

map to produce a new index map of low variance, low zero-order entropy and low spatial 

correlation. As a result, this allows one to encode the index map at a very low bit rate easily. 

The proposed adaptive palette reordering technique is composed of two basic functional 

components including index prediction and color reordering. These two components can be 

realized with different schemes and, accordingly, their different combinations result in 

different adaptive palette reordering methods. Chapter 3 shows one of the realizations of 

adaptive palette reordering. Simulation results show that, as compared with the other 

evaluated palette reordering methods, it is able to produce a new index map of lower variance, 

lower zero-order entropy and less spatial correlation.  

Index prediction is one of the critical components of adaptive palette reordering, and it 

can be realized with different schemes. Four schemes are studied and their prediction 

performance is evaluated in Chapter 4. These schemes exploits MED or GAP to carry out the 

prediction in either the index plane or individual color intensity planes. In terms of various 

measures related to prediction error, the scheme which exploits MED to predict individual 

color components appears to be better. The same scheme is the winner when we inspect the 

entropy and the variance of their resultant reindexed index maps. 
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Color reordering is another critical component of adaptive palette reordering. Five color 

reordering schemes were evaluated in Chapter 5 to see how well they can support adaptive 

palette reordering. In particular, we have two distance-oriented sorting schemes, one 

history-oriented scheme and two hybrid mode sorting schemes in our evaluation. Simulation 

results show that hybrid mode sorting schemes are better than history-oriented sorting 

schemes and distance-oriented sorting schemes in terms of both zero-order entropy and 

variance of the reindexed index maps. 

In adaptive palette reordering, when color reordering is realized with the proposed 

history-oriented sorting scheme or one of the hybrid mode sorting schemes, a DF-Table plays 

a significant role to provide some supporting information learnt from the history. It helps one 

to assign an index of smaller value to a color which is more likely to happen and hence 

produce a reindexed index map of a number of small indices. 

The DF-Table is immature when it contains a lot of zero entries, and this happens when 

the number of processed pixels is too small. To solve this problem, two DF-Table merging 

schemes, namely, Absorting-preclustered-colors and Absorting-the-nearest-colors, are 

proposed in Chapter 6 to build DF-Tables of smaller sizes such that the resultant DF-Tables 

contains fewer zero entries. It allows one to select a DF-Table of appropriate size whenever it 

is necessary. This helps at the early stage of adaptive palette reordering. However, as more 

and more pixels are processed, the DF-Table gets mature and DF-Table merging is no longer 

required. 
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Adaptive palette reordering produces a reindexed index map of low entropy, low 

variance and little spatial correlation. This index map can be encoded with various index 

encoding schemes easily. In Chapter 7, we proposed six index encoding schemes to encode 

the output of adaptive palette reordering. It was found that the performance of VBS2 is the 

best among the six index encoding schemes in terms of output bit rate. 

Simulation was also carried out to compare the compression performance of various 

lossless image coding methods including those exploited palette reordering and those did not. 

Results shows that APR-VBS2, which adaptively reorders the palette with DF-Table merging 

and then encodes the output of adaptive palette reordering with index encoding scheme VBS2, 

is superior to all other coding methods in terms of output bit rate. It achieves an average 

compression ratio of 2.44:1. 

There are some other interesting findings in the simulation results. First, JPEG-LS 

generally performs better than JPEG-2000 to encode palette reordering results. Second, 

adaptive palette reordering can significantly reduce the output bit rate when it is used to 

process a color-indexed image before compressing the image. Third, without concerning the 

constraint of being compatible with JPEG-LS/JPEG-2000, one can pick a better encoding 

scheme such as VBS2 to achieve an even lower output bit rate. 

 

 

8.2 Future research directions 

As we mentioned in this thesis, dynamic palette reordering is composed of two critical 

components involving index prediction and color reordering. There are unlimited possible 

ways to realize index prediction and color reordering. After having the output of adaptive 

palette reordering, there are also unlimited possible ways to encode the index map. In this 
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work, we investigated some possible schemes for realizing index prediction, color reordering 

and index encoding. They were combined flexibly to form different lossless coding methods 

for coding color-indexed images, and it was found that APR-VBS2 could achieve an average 

output bit rate as low as 3.275bpp. However, we cannot exclude the possibility that there exist 

some other combinations of some other realizations of index prediction, color reordering and 

index encoding to provide an even better compression performance. To explore this 

possibility forms a direction for the extension of the present work. 

In our study, the evaluation of the performance of various lossless coding methods was 

based on a set of testing color-indexed images. These color-indexed images were generated by 

color-quantizing a set of standard 24-bit full-color images. No halftoning [Floyd76] was 

performed in the color quantization. From our evaluation results, it can be find that the 

proposed lossless coding methods perform outstandingly for this kind of images. The question 

is whether the proposed methods perform equally remarkable when the input images are 

halftoned images. For halftoned images, there is little spatial correlation in the color intensity 

planes, and hence index prediction is not that easy. Dedicated solutions are required to take 

care of these images. It would be another interesting extension of the present work to sort out 

this problem. 

All coding methods proposed in this work support lossless image compression. In 

Internet communications, sometimes it is advantageous to transmit an image progressively. 

This allows the receiver to have a lower quality version of the image and quit before the 

transmission is completed. It would be another meaningful direction for one to modify the 

proposed coding methods to support both near-lossless compression and progressive mode 

compression. 
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