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Abstract 
Biometrics (or biometric recognition) refers to the technology recognizing 

individuals based on their physiological and/or behavioral characteristics. It has 

advantages over token-based and knowledge-based personal recognition 

technologies. The important biometric systems including face, fingerprint, iris and 

palmprint are in fact image-based recognition systems. For identification purpose, 

these systems can be regarded as Content-Based Image Retrieval (CBIR) systems. 

The storage and retrieval requirements of image-based biometric systems, 

nevertheless, make them to be a special type of CBIR systems. First, personal 

physiological characteristics cannot be properly described by traditional text-based 

methods. Second, there is no generally accepted indexing and classification methods 

being used in common biometrics systems. Third, the captured biometric images 

always contain noise and variations due to change in capture environments and user 

habit. Fourth, in real world applications, they should be scalable for large databases 

and should provide relevant security mechanisms. Finally, they may make its own 

decision or provide help to make decision on whether a claim is accepted or rejected. 

In this research, we focus on the storage and retrieval of some image-based 

biometric systems supported by personal physiological characteristics. We have 

considered the storage and retrieval of biometric templates as an application of target 

and category search in narrow domain. We have incorporated some primitive 

visual-based image features including texture, lines and points, as content descriptors 

of biometric images. Various intelligent system techniques, e.g. machine learning 

and fuzzy, have been used to extract and represent the visual-based image features of 

palmprint and face images. We have developed methods that can compactly 
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represent and effectively retrieve palmprint and face templates and we are the first to 

consider retrieval in large palmprint databases. We originally identify and study three 

design issues of cancelable biometrics, which is a security and privacy enhancement 

method proposed for template protection. We are among the first to consider the 

three issues integrally when designing and evaluating cancelable biometrics. 
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Chapter 1 Introduction 
Biometrics offers greater security and convenience than traditional methods of 

personal recognition. In some applications, biometrics can replace or 

supplement the existing technology. In others, it is the only viable approach. 

(Prabhakar et al. 2003) 

Biometrics (or biometric recognition) refers to the technology recognizing 

individuals based on their physiological and/or behavioral characteristics. It has 

advantages over token-based and knowledge-based personal recognition 

technologies. 

Biometric data is fundamentally one form of multimedia data. The nature and 

volume of biometric data (and information) are beyond the reach of traditional data 

management approaches. Traditional data management approaches (databases) are 

designed for structured data, i.e. precise data type (Narasimhalu et al. 1997): 

numerical or alphanumerical attributes. Precise query result (exact match) is 

expected, in addition. Owing to the nature of biometric data, which is unstructured 

and multidimensional and, the demands of non-exact match queries, traditional 

database technology is unable to keep up with these ever demanding requirements. 

Thus, there is a surge of effective and yet efficient methods for the management of 

ever growing biometric data. Storage and retrieval is the core of biometric data 

management and is a multidisciplinary subject including but not limited to pattern 

recognition, computer vision, signal processing, machine learning, database 

management and information retrieval. 

Content-based approach is a promising way to multimedia data storage and 

retrieval. For content-based retrieval, there are two types of methods proposed for 
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this subject, text-based and audiovisual-based which complement each other. 

Text-based methods support the retrieval, as in Information Retrieval, using text 

attributes that are high-level (logical) content descriptors. Multimedia data stored for 

retrieval are usually annotated manually. Audiovisual-based methods support the use 

of high- and middle- level (logical) as well as low-level (primitive) content 

descriptors for retrieval. Content descriptors are automatically or semi-automatically 

extracted, from multimedia data, for retrieval. Image (Smeulders et al. 2000; Chen 

1998) and video processing (Chen 1998) together with audio (Lu 2001) and speech 

processing (Juang and Chen 1998; Rudnicky et al. 1997) provides cues to automatic 

extraction of information/features in multimedia data. For a large volume of 

multimedia data, it is inefficient to manually annotate all data items. Although 

manual annotation is usually done by professions, it is subjective yet inconsistent 

and is hardly a complete set of descriptions that answer a wide range of queries. 

Audiovisual based methods, on the contrary, are comparatively consistent and 

usually designed to be automated. Thus, they are the more viable way to handle large 

volume of multimedia data automatically and semi-automatically. (Gorsky and 

Mehrotra 1989; Gudivada and Raghavan 1995; Gupta and Jain 1997; Chang et al. 

1997; Smeulders et al. 2000) Much research has been conducted on various forms of 

indexing trees in attempting to support the storage and retrieval of multimedia data. 

(Chávez et al. 2001; Böhm et al. 2001) As an alterative approach, intelligent system 

techniques operating on one or multiple features have been studied. 

The important biometric systems including face, fingerprint, iris and palmprint 

are in fact image-based recognition systems. These systems for identification 

purpose can be regarded as Content-Based Image Retrieval (CBIR) systems. 
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The storage and retrieval requirements of image-based biometric systems, 

nonetheless, are substantially different from traditional CBIR systems. First, they are 

visual-based CBIR systems because personal physiological characteristics are 

inappropriate to be described using text-based methods. Second, they have to 

manage noise and variations of input images because an input image of a person, 

which is presented at a different time and perhaps in a different environment, can be 

considerably different from the analogous templates stored in the database of 

image-based biometric systems. Third, in real world application, they should be 

scalable for large databases and should provide relevant security mechanisms. 

Finally, they may make its own decision or provide help to make decision on 

whether a claim is accepted or rejected. 

In the course of study, we focus in the storage and retrieval of some image-based 

biometric systems that support personal physiological characteristics. We have 

considered the storage and retrieval of biometric image templates as an application 

of target and category search in narrow image domain retrieval. We have 

incorporated some primitive visual-based image features, texture, lines and points, as 

content descriptors of biometric images. Various intelligent system techniques, e.g. 

machine learning and fuzzy, have been used to extract and represent the visual-based 

image features of palmprint and face images. We have developed methods that can 

compactly represent and effectively retrieve palmprint and face image templates and 

we are the first to consider retrieval in large palmprint databases. We originally 

identify and study three design issues of cancelable biometrics, which is a security 

and privacy enhancement method proposed for the protection of user templates in a 

biometric system, and their relations. We are among the first to propose the 
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consideration of the three issues integrally when designing and evaluating cancelable 

biometrics. 

The rest of this thesis is organized as follows. Chapter 2 provides the background 

and a review of the literature of image retrieval, especially the content-based 

approach and its relating issues. Chapter 3 introduces some tools that will be come 

across in the course of study. Chapter 4 and 5 give studies on biometrics image 

databases, palmprint and face correspondingly. Chapter 6 discusses some design 

issues regarding the storage security evolved from biometrics image databases. 

Chapter 7 presents an analysis of BioHashing and its variants that raises the issue of 

using “safe” tokens and it supplements the discussion in Chapter 6. Finally, Chapter 

8 gives our conclusion, contributions and some future research directions. 
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Chapter 2 Background Research 

2.1 Introduction to Biometrics 

In every day’s life, there are questions about someone’s identity. These questions 

become more acute in today’s networked society as any operations and processes 

have gone online, operate remotely and performed in an unattended environment. 

Traditional recognition approaches: token-based and knowledge-based cannot meet 

the ever demanding requirements of the applications that require personal 

authentication. Biometrics is an alternative that can replace or supplement the 

traditional recognition approaches. (Jain et al. 2004; Prabhakar et al. 2003) 

To qualify as a measurement for personal recognition, a biometric should posses 

the following characteristics. (Jain et al. 2004; Prabhakar et al. 2003) 

Universality: each person should have the characteristic; 

Distinctiveness: any two persons should be sufficiently different in terms of 

the characteristic; 

Permanence: the characteristic should be sufficiently invariant (with respect to 

the matching criterion) over a period of time; 

Collectability: the characteristic can be measured quantitatively. 

Biometric systems operate in one of the two modes: verification or identification. 

In verification mode, the system validates a person’s identity by comparing the 

acquired biometric data against that person’s biometric data stored in the database of 

the biometric system, so-called 1-to-1 matching. In identification mode, the system 

searches the entire database of the biometric system for a match, so-called 1-to-many 

matching. A practical system should consider, in a whole, the following issues.  

(Jain et al. 2004; Prabhakar et al. 2003) 
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Performance: the achievable recognition accuracy and speed, the resources 

required to achieve the desired recognition accuracy and speed, as well as the 

operational and environmental factors that affect the accuracy and speed; 

Acceptability: the extent to which people are willing to accept the use of a 

particular biometric identifier (characteristic) in their daily lives; 

Circumvention: how easily the system can be fooled using fraudulent 

methods. 

Every biometric system commits two types of errors. (Jain et al. 2004;  

Prabhakar et al. 2003) 

False Match/Accept Error (Type I): Mistaking biometric measurements from 

two different persons to be from the same person; 

False Non-Match/Reject Error (Type II): Mistaking two biometric 

measurements from the same person to be from two different persons. 

An operational biometric system regulates the trade-offs of these two types of 

recognition errors using a threshold. (see Chapter 3.3 also and Figure 3.5 for an 

illustration) Besides the two recognition error, there are two system errors, namely 

Failure To Capture (FTC) and Failure To Enroll (FTE). FTC occurs when an 

automatic biometric data capture device fails to capture a valid sample from a user 

while FTE occurs when a user fails to enroll a biometric system. 

Some popular biometrics include DeoxyriboNucleic Acid (DNA), face, 

fingerprint, hand geometry, iris, palmprint and voice. A detailed introduction is given 

by Jain et al. (2004) and a discussion on security and privacy concerns is given by 

Prabhakar et al. (2003). 
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2.2 Content-Based Image Retrieval (CBIR) 

Images are being generated at an ever-increasing rate by sources such as 

defense and civilian satellites, military reconnaissance and surveillance flights, 

fingerprinting and mug shot capturing devices, scientific experiments, 

biomedical imaging, and home entertainment systems. (Gudivada and 

Raghavan 1995) 

Accompanying the growth of the World Wide Web (WWW) and multimedia 

information, boost in hardware, software and communication technology, and many 

activities, e.g. advertising and promotion, have gone online, there is also a demand 

for online accessible image retrieval or database systems. 

An effective and yet efficient image retrieval or database system is needed to 

manage this huge amount of image data is needed. There are five types of image data 

(Gorsky and Mehrotra 1989): Iconic data, Image-related data, Information extracted 

from images, Image-world relationships and World-related data. Iconic data is raw 

data in an encoding format used for storage. Image-related data are generally content 

independent data and are also known as metadata. The remaining three types of data 

are content dependent and in ascending order with respect to level of abstraction. 

Using content dependent data to index or search for a similar image in an image 

database is generally referred to Content-based Image Retrieval. 

Image retrieval has since the 1970s been a focus of interest in two research 

communities, computer vision and database management. (Gorsky and Mehrotra 

1989; Gudivada and Raghavan 1995; Gupta and Jain 1997) They look at image 

retrieval, nonetheless, from two different angles. The computer vision community 

has taken a visual-based approach while the database management community has 

used a text-based approach. The visual-based approach identifies visual 



 

- 8 - 

characteristics through series of computations and searches images based on these 

characteristics. The text-based approach first annotates images manually and then 

searches images using text-based attributes in database management systems (Rui et 

al. 1999). Following the success of Information Retrieval (IR) and Natural Language 

Processing (NLP) techniques, they are introduced and incorporated in order to build 

better image retrieval systems. It is worth to point out that visual- and text-based 

approaches are complementing each other instead of opposing. It is expected, 

moreover, a better integration of the two approaches to bridge the semantic gap 

(Smeulders et al. 2000). 

Content-based Image Retrieval (CBIR), in general, refers the use of content 

dependent data to index or search for a similar image in an image database (Gorsky 

and Mehrotra 1989). CBIR, which incorporates and text-based visual-based features, 

consists of three processes: image feature extraction and representation, similarity 

measure and, access or retrieval. Some well known CBIR systems are QBIC 

(Flickner et al. 1995), Photobook (Pentland et al. 1996), PicHunter (Cox et al. 2000), 

and for more, please refer to Rui et al. (1999). 

Image feature extraction and representation 
In developing CBIR systems, there is an inherent tradeoff between the degree 

of automation desired for feature extraction and the level of domain 

independence realized in the system. (Gudivada and Raghavan 1995) 

An ambitious approach, dynamic feature extraction, to build CBIR systems is to 

develop an automatic and dynamic feature extraction mechanism that computes 

required features (determined a priori or not) dynamically and synthesizes those 

computed features to logical ones under guidance of domain expert(s). This favours 
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applications deal with comparatively small image collections and retrieval of images 

is performed by domain experts. 

CBIR systems that are not dynamic in feature extraction, i.e. a priori feature 

extraction, provide reasonable degree of domain independence. Predefined set of 

low-level features are extracted from an image and logical features are determined at 

the time the image is inserted into the database. 

Similarity Measures 
Since the revolution in retrieval bought about by IR, researchers begin to think of 

using best match instead of exact match to fulfill the search for something similar 

and provide some relevant entries in case no indexed entries match exactly. Use of 

similarity measures distinguishes multimedia retrieval, or one of its specifications: 

image retrieval, from traditional database retrieval. 

A ranked-order list of entries is returned based on the similarity measured 

between the query and entries in the databases according to a measurement, e.g. a 

metric. Various metrics may be used to define a similarity measurement of various 

image features. 

Access or retrieval 
Access or retrieval of images in a CBIR system is generally conducted through 

specifying a query. A query can be specified by values, such as text (e.g. keyword), 

numerical values for features, or by examples, i.e. providing an image in a query. 

Query by examples differs from Query by values that, instead of providing values of 

image features directly, they are extracted from the query image by the feature 

extraction mechanism of that system. 

Relevant entries, based on user preferences and similarity measure results, are 

returned and formatted to display. Some relevance feedback mechanisms can be 
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introduced to improve the effectiveness of the image retrieval systems. (Gudivada 

and Raghavan 1995; Rui et al. 1997a; Rui et al. 1997b) 

2.2.1 User aims in CBIR 

User aims specified are boarder than the presence or absence of visual characteristics. 

Three broad categories of user aims (Cox et al. 2000) are identified and summarized 

by (Smeulders et al. 2000). They are briefly described and a comprehensive 

comparison is shown in Table 2.1. 

Target search. User intends to search for a specific image, such as searching a 

catalogue, finding other images containing objects desired within the image(s) 

at hand. Systems providing this search method are suitable for catalogue 

searching of art and industrial items. 

Category search. User intends to retrieve an arbitrary representative of a 

particular grouping. Example(s) of a certain group is/are provided for 

searching other members of the same group. Systems providing this search 

method usually have domain dependent similarity measure. 

Association search. User does not have any intention at first but finds 

something interesting. Iteratively refining the search intention is expected. 

From viewpoints other than the functional aspects of CBIR, user aims may cover 

a wider scope (Smeulders et al. 2000). It is worth to point out that the query interface, 

e.g. linguistic (text) vs. visual (Enser 1995) can constraint the specification of user 

aims and thus their category. 
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Table 2.1 The three user aims in image retrieval: Target-, Category- and 
Association-search. 

 Target Category Association 
Object code 1 specific object An arbitrary object Not defined at start

Query by example 1…N objects 1…N objects with 
class labels 

N objects plus 
association 

Similarity Feature-based Class driven Session-specific 
Events in F-space Proximity to query Class membership Clusters 

Feedback Rank ordered on 
proximity 

Likelihood on class 
membership 

Relevance feedback 
on association value

Interactive update 
of     

Images of query — Expand query Refine on the way
Features of query Refine on the way Refine on the way Alter on the way 

Similarity measure — Adapt to group Reshape to goal 

Builds on 
Pattern matching in 

computer vision 
Object recognition

Object recognition
Statistical pattern 

recognition 

Feature sets and 
similarity function 
of computer vision

Nature — — 
Iterative 

Interactive 
Explicative 

Challenges 

Huge amount of 
objects to search 

among 
Incomplete query 

specification 
Incomplete image 

description 
Variability of 

sensing conditions 
and object states 

Interactive 
manipulation of 

results 
Usually very large 
number of object 

classes 
Absence of an 

explicit training 
phase for feature 

and classifier tuning

Semantic gap 
Understandable 

display and 
relevance feedback

Examples 
Search catalogue, 

e.g. Cox et al. 2000
 

Search catalogue of 
variety, e.g. 

Huet and Hancock 
1999 

Jain and Vailaya 
1998 

Kato et al. 1992; 
With relevance 
feedback, e.g. 

Hiroike et al. 1999 
Frederix et al. 2000

 

2.2.2 The image domain in CBIR 

The image domain of image retrieval systems can be thought of as a 

one-dimensional space with the narrow domain at one end while the board domain at 

the other end. The narrow domain and board domain are defined as follows. 

(Smeulders et al. 1998) 
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A narrow domain has a limited and predictable variability in all relevant 

aspects of its appearance. 

A board domain has an unlimited and unpredictable variability in its 

appearance even for the same semantic meaning. 

In narrow domain, content of images are of limited variability and the recording 

circumstances are usually the same within the same domain. The semantic 

descriptions about images are generally well defined and unique. Criminal 

photograph database is an example of this domain. 

In board domain, images can be interpreted in various contexts, usually not in full. 

A generic photograph archive is one typical example of this domain; the World Wide 

Web is perhaps the broadest one available. 

Table 2.2 Narrow versus Broad domain in image retrieval 

 Narrow Broad 
Variance of content Low High 

Sources of knowledge Specific Generic 
Semantics Homogeneous Heterogeneous 

Ground truth Likely Unlikely 
Content description Objective Subjective 

Scene and sensor Possibly controlled Unknown 
Aimed application Specific Generic 
Type of application Professional Public 

Tools 
Model-driven 

 
Specific invariants 

Perceptual 
Cultural 

General invariants 

Interactivity Limited Pervasive 
Iterative 

Evaluation Quantitative Qualitative 
System architecture Tailored database-driven Modular interaction-driven

Size Medium Large to very large 
A source of inspiration Object recognition Information retrieval  
The semantic gap (see Chapter 2.2.3 for the definition) between features and 

semantic interpretations is small for the narrow domain but large for the broad 

domain. Characteristics of the narrow and the broad domain in CBIR are listed in 

Table 2.2. 
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2.2.3 Semantic gap and sensory gap in CBIR 

The semantic gap and sensory gap is defined as follows (Smeulders et al. 2000). 

The semantic gap is the lack of coincidence between the information that one 

can extract form the visual data and the interpretation that the same data have 

for a user in a given situation. 

The sensory gap is the gap between the object in the world and the information 

in a (computational) description derived from a recording of that scene. 

The pivotal point in content-based retrieval is that the user seeks semantic 

similarity, but the database can only provide similarity by data processing. 

Associating a complete semantic system with image data can solve the general object 

recognition problem from a single image but it does not succeed till now. Research is, 

therefore, concentrated in linking semantics to sets of data values. (Smeulders et al. 

2000) 

The sensory gap poses problems for describing the content of images, especially 

when recording conditions are not known. Referencing a mixture of interpretations 

of an image may help in eliminating disambiguation. (Smeulders et al. 2000) 

2.3 Image Processing Fundamentals 

CBIR is realized through the use of image processing techniques. We are going to 

look at some of the concepts and techniques in the following subsections. 

2.3.1 A general process flow of image processing 

Gonzalez and Woods (Gonzalez and Woods 1992) have outlined the fundamental 

steps in digital image processing (Figure 2.1). 



 

- 14 - 

Figure 2.1 Fundamental Steps in Image Processing 

Image acquisition 
The first step in image processing is acquisition of the target image. Two physical 

devices are required for image acquisition. One is a sensing device which is sensitive 

to certain band(s) in the electromagnetic energy spectrum and produces electrical 

signal output proportional to the level of energy sensed, e.g. a Charged Coupled 

Device (CCD). Another device is a digitizer which is used to convert the electrical 

signal output of the sensing device to digital output. More information may be found 

in Chen (1998). 

Image preprocessing 
Once a target image is obtained, it may not in the desired form for further processing 

because of some practical constraints such as hardware limitations and environment 

settings during acquisition. So the target image needs to be preprocessed in 
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facilitating the latter steps. Image enhancements, restoration, compression and 

denoising are some common preprocessing techniques. 

Image Segmentation 
Image segmentation divides the target image into its constituent parts. This is one of 

the most difficult tasks in image processing. 

Image Representation and Description 
Image representation is a process of transforming raw data into a form suitable for 

subsequent computer processing, that is to encode the raw data. The purpose of 

image description, also known as feature extraction and/or selection, is to select a set 

of features that can be used to discriminate images. 

Image Recognition and Interpretation 
Image recognition labels a part of the image based on its descriptor information. 

Image interpretation is to assigns meanings to recognized objects which are viewed 

as a whole, integrated part. 

Knowledge Base 
Knowledge base is a place that stores prior or domain specific knowledge. 

2.4 Image Features: the content descriptors 

Image features generally refer to the meaningful and discriminant information 

extracted, either manually, semi-automatically, or automatically from images. It is 

worth to note that there is not any generally accepted (logical) categorization of 

image features. Here we briefly introduce some common image features and the 

categorization presented below may be named by their nature, by the object to be 

represented or by the extraction method. 
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Color 
Colour plays a key role in two ways: one, colour provides important evidence 

about surfaces and materials, and two, colour vision is an integral part of the 

higher vertebrate foveal visual system. (McCabe 1997) 

Until now, nonetheless, many processes of our visual system are still mysteries but 

the physical nature of color can be specified in some standard way, color 

models/spaces. (Gonzalez and Woods 1992; McCabe 1997) 

RGB model. Each color appears to be a combination of its primary spectral 

components, i.e. the three primary colors: Red, Green and Blue. This is the 

color model used in color monitors and many video cameras. (Gonzalez and 

Woods 1992) 

CMY(K) model. The primary colors of pigments, also known as secondary 

colors: Cyan, Magenta, Yellow and (Black) are used instead to serve as bases 

to represent colors. This model is used when hardcopy output is of interest. 

(Gonzalez and Woods 1992; Rubner 1999) 

YIQ model. YIQ stands for Luminance, Inphase and Quadrature respectively 

and IQ are decoupled color information. This model is used in commercial 

color TV broadcasting. (Gonzalez and Woods 1992) 

HSI model. HSI stands for Hue, Saturation and Intensity respectively. Hue and 

Saturation together form Chromaticity. (Gonzalez and Woods 1992) 

Munsell HSV model. HSV stands for Hue, Saturation and Value (Gonzalez 

and Woods 1992). Hue is invariant under orientation of the object with respect 

to illumination and camera direction and hence more suited for object retrieval 

(Smeulders et al. 2000). It is mainly used in User Interface designs which 

provide designers a uniform way to easily manipulate colors. 
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CIE XYZ space. Luminance (Y) is represented independently from 

Chrominance (X, Z). A CIE xy chromaticity diagram can be derived from 

normalized values but the resultant diagram shows an uneven distribution of 

colors. (McCabe 1997) 

CIE Yuv and Yu’v' space. Yuv partially solve the uneven distribution of 

colors in chromaticity diagram while Yu’v' is standardized to be a uniform 

chromaticity space.(McCabe 1997) 

CIE Lab space. Lab space models the human perception in Euclidean distance. 

(Smeulders et al. 2000) 

Color, which is an image content descriptor by itself, is often a criterion in the 

determination of other image features, e.g. edge, salient point, structure, histogram, 

etc. 

Edge, Boundary and Region, Surface 
Image edges(/lines) are generally regarded as discontinuities, which can arise from 

texture and color, between neighbourhoods. Related edges form a boundary and the 

area bounded is called region in a two dimensional plane (2D) and is called surface 

in a three dimensional space (3D). Regions and surfaces conforming to some 

geometrical constraints are known as shapes. 

Previous works have been done on edge detection (Wu and Li 1997) in specific of 

straight lines (Burns et al. 1986), on 2D (Gonzalez and Woods 1992), on 3D 

(Wallace and Mitchell 1981; Zucker and Hummel 1981), on color (Trémeau and 

Colantoni 2000; Mojsilovic et al. 2000) and on texture (Ma and Manjunath 2000). 

Point/Spot 
A point or spot within an image is a small area. Point or spot whose magnitude 

differs significantly from its neighborhood catches visual focus. Therefore, they can 
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be used to characterize an image. (Sebe et al. 2000) This is regarded as an extreme 

form of weak segmentation (Smeulders et al. 2000). 

Description of Structure and Layout (Spatial and Color) 
Spatial relationships are the spatial ordering among spatial objects such as points, 

lines, regions and objects. Spatial relationships can be classified into three aspects: 

topological, directional and distance/metric relationships. Topological relationships 

include disjoint, adjacent, overlap, contain, etc. Directional relationships can be 

expressed as 4–(above, below, left and right) or 8–direction (north, northeast, east, 

southeast, south, southwest, west and northwest) or an even more complex 

description model. Distance/metric relationships are those physical measurements of 

the space between two entities. (Borowski et al. 2000; Vazirgiannis et al. 1998) 

Color can add a new constraint on the discrimination of objects or by itself forms 

another layout, e.g. Trémeau and Colantoni (2000) and Garcia and Tziritas (1999). 

Texture 
There is no formal definition of textures. In computer vision, texture is defined as all 

what is left after color and local shape have been considered or it is defined by such 

terms as structure and randomness (Smeulders et al. 2000). Textures refer to the 

visual patterns that have properties of homogeneity that do not result from the 

presence of only a single color or intensity (Smith and Chang 1996). Texture 

descriptors provide measures of properties such as smoothness, coarseness, and 

regularity. It contains important information about the structural arrangement of 

surfaces and their relationship to the surrounding environment (Haralick et al. 1973). 

Please see Chapter 2.4.2 for more discussion on different methods and their 

categorization. 
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Transform Coefficients 
Transform Coefficients are the resultant information of image content that has 

undergone image transforms. Transform coefficients provide us with a different view 

of the image content such that some manipulations can be performed more effective 

and efficient than in the input space. One of the well-known applications is in image 

compression that high frequency components, which are insensitive to human visual 

perception, are removed while image quality can be retained. Another example is the 

use of Fourier Transform in texture feature extraction. 

Histogram and Moments 
In image processing and retrieval, the underlying frequency distribution of image 

pixels is what we are interested in. A histogram is a visualization of a frequency 

distribution in the form of a bar graph. The computational complexity of histograms 

is relatively low but that of the similarity measure between histograms is high 

because of the usually high dimensionality of histograms. 

Moments have been broadly used to describe geometric properties of an object or 

a distribution (curve) (You and Bhattacharya 2000). It has been suggested that the 

computational complexity of measuring similarity of histograms can be reduced by 

modeling the histograms using their first few moments (Stricker and Orengo 1995). 

Histogram and Moments bear the low sensitivity to camera and object motion 

because distribution of image content is invariant to image rotation and changes 

gradually under image translation (Mandal et al. 1996; Sebe et al. 2000). 

Nevertheless, they lack spatial distribution information about color (Ma and Zhang 

1998) as they capture the global information of the image. 

Concepts, Domain Knowledge 
(Domain) Knowledge is modeled, in (Yoshitaka et al. 1994; Chua et al. 1994), as a 

set of concepts that contain descriptions, relationships with other concepts and rules 
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for their recognition in the contents of nodes. Actually, this is the reconsideration of 

the knowledge representation, conceptual/cognitive modeling. 

The source of general knowledge has been identified in Smeulders et al. (2000) to 

be the following six classes. 

Literal. Laws of syntactic equality and similarity define the relation between 

image pixels or image features regardless of its physical or perceptual causes. 

Perceptual. Laws describing the human perception of equality and similarity 

are that they define equality on the same basis as the user experiences it. 

Physical. Physical laws describing equality and difference of images under 

differences in sensing and object surface properties. 

Geometric. Geometric and topological rules describe equality and differences 

of patterns in space. Although two objects are geometrically equal, the physical 

properties of their surfaces or the physical conditions of the sensing may be 

different. 

Categorical. Category-based rules encode the characteristics common to class 

z of the space of all notions Z. Categories are almost exclusively used in 

narrow domains 

Cultural. Man-made customs or man-related patterns introduce rules of 

culture-based equality and difference. Language is collected under culture. 

Text Annotation (Keyword, Description) 
Text appears more natural to people when formulating a query. It can represent our 

concepts, feelings, ideas, etc. So this is one way, and the most direct one, that we can 

think of, to describe an image and formulate a query. There are several ways to index 

images based on text (Chua et al. 1994): one is to use keywords; another is to use 

descriptions, e.g. captions; third is to use free-text. 
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Several image feature classification schemes are given in 2.4.1. The image 

processing method of image features are selectively described in 2.4.2. 

2.4.1 Classification of image features 

Gong (1998) classifies image features into five classes: Pixel-level, Global, Textural, 

Object and Conceptual. More generally, we can classify features based on their level 

of abstraction (Ahuja and Schachter 1981), complexity (Gudivada and Raghavan 

1995) and level of segmentation (Smeulders et al. 2000). 

Level of abstraction 
We can categorize features into high-, middle- and low-level features. High- and 

middle-level features and, low-level features are equivalent to logical features and 

primitive features in Gudivada and Raghavan (1995). 

High-level (Logical). High-level features are semantically rich information 

that is close to human perception. They are usually extracted manually or, 

highly intervened through the synthesis of low-level and/or middle-level 

features. Consequently, domain experts are required to accomplish the task. 

Domain concepts and text annotation are categorized as high-level features. 

Middle-level (Logical). Middle-level features are one step further compared to 

low-level features while less domain knowledge but some general knowledge 

is required. Shape matching and object recognition are members of this type. 

Low-level (Primitive). Low-level features are usually referred to features 

extracted at the signal processing level. They are totally machine extractable or 

minimum human intervention is required. Therefore, they can be processed 

automatically or semi-automatically. Color content, point, texture and 

transform coefficients belong to this class. Text information extracted from 

images (Jung et al. 2004) is also in this category. 
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Gong’s classification (Gong 1998) is in ascending order of level of abstraction. 

Pixel-level, Global and Textural features are low-level features while Conceptual 

features are high-level features. Object features are in between high-level and 

low-level features, so we may call them middle-level ones. 

Chang et al. (1997) classifies features in four level of abstraction, in ascending 

order: feature-, object-, syntax- and semantic-level. Feature-level corresponds to 

low-level while semantic-level corresponds to high-level. Object- and syntax-level 

are middle-level features. 

Complexity 
Features taxonomy can be considered in another dimension, complexity, i.e. features 

can be divided into complex and generic features (Gudivada and Raghavan 1995). 

Complex. The only feature considered to be complex is (domain) concepts 

because it is the only class that can be synthesized from any of the 

compositions of generic features. 

Generic. Generic features include all features except (domain) concepts. Some 

of the features may be generated based fully or partially from some other 

features but not any compositions of generic features. 

Level of Segmentation 
Segmentation is vital to image retrieval because several features, e.g. edge and shape, 

salient and, layout, depend on good segmentation. The following feature 

classification scheme is given in Smeulders et al. (2000). 

Strong segmentation: (segmented) object features. Strong segmentation is a 

division of the image into regions T that contain exactly the pixels of the 

silhouette of objects O in the real world, such that T = O. It should be noted 

that object segmentation for broad domains of general images is not likely to 
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succeed, with a possible exception for sophisticated techniques in very narrow 

domains. 

Weak segmentation: salient features (region). Weak segmentation is a 

grouping of the image data in conspicuous regions T, which are internally 

homogenous according to criterion, hopefully T ⊂ O. Since T ⊂ O, it cannot be 

guaranteed that T fully covers O. Homogeneity criterion can be color (Forsyth 

and Fleck 1999; Pauwels and Frederix 2000), color and texture (Carson et al. 

1997; Mirmehdi and Petrou 2000). Isolated Points (Schmid and Mohr 1997; 

Gevers and Smueulders 2000), which are the limit case of weak segmentation, 

do not require homogeneity but the effectiveness is subject to selection of the 

points. 

Sign location: sign probabilities. Localizing signs is finding an object with a 

fixed shape and semantic meaning, T = xcenter. Signs are helpful in 

content-based retrieval as they deliver an immediate and unique semantic 

interpretation. 

Partitioning: global features. A partitioning is a division of the data array 

regardless of the data, T ≠ O. T may equal to the whole image or fixed 

partitioning, e.g. dividing image into equal size tile and summarizing dominant 

feature values from each tile (Picard and Minka 1995). 

Semantic and Perceptual 
Image content can be classified as semantic content and perceptual content. Objects, 

events, and their relations are classified as semantic content. Color/Intensity, shape 

and texture are classified as perceptual content. (Jung et al. 2004; Kim 1996) 



 

- 24 - 

2.4.2 Image processing methods 

Since our focus lies in primitive image features, we will review two widely studied 

primitive image features, color and texture (often represented by various transforms). 

Choosing an image processing method or a collection of them depends heavily on 

the characteristics of images in target application domain. Methods that work well in 

one domain can perform disappointingly in others (Tuceryan and Jain 1998). 

Color 
Colors in an image are represented using a color model, one of those reviewed above 

in Chapter 2.4. Some of the color models imitate the human perception, e.g. Munsell 

HSV and CIE Lab, that can be manipulated directly to represent color differences 

using proper distance measure. Color histogram is a popular method representing an 

image for retrieval that aggregates directly from the raw representation of an image 

or just part of an image. (Rui et al. 1999; Smeulders et al. 2000; Stricker and Orengo 

1995; Swain and Ballard 1991) 

Two physiological characteristics of human vision, color opponency and 

constancy have been considered. Color opponency (McCabe 1997; Smeulders et al. 

2000), which can be derived from RGB model, is useful in saving storage and 

transmission bandwidth as well as in CBIR. Color constancy (McCabe 1997; 

Smeulders et al. 2000), which can also be derived from RGB model, is useful in 

eliminating the effects of illumination variation on an apparent color. 

Invariant color representation has been explored for shape and object recognition. 

Texture 
In earlier times, textures are modeled in a statistical sense or a structural sense 

(Haralick 1979). Ahuja and Schachter (1981) later suggested, instead of using 

Haralick’s (1979) classification. Two low-level texture models: pixel-based and 
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Region-based. Tuceryan and Jain (1998) refine Haralick’s (1979) classification of 

texture models to four categories: statistical, geometrical, model-based, signal 

processing methods. 

Statistical methods measure the spatial distribution of pixels in an image. One 

well-known method is co-occurrence matrices. Several statistics can be obtained 

from co-occurrence matrix including energy, entropy, contrast, homogeneity and 

correlation to describe the texture in an image. Another recognized method is 

autocoorelation that can measure the regularity and fineness/coarseness of the texture 

in an image. 

Geometrical methods include the previously known structural methods modeling 

structural primitives and placement rules. Local properties and shape are examples of 

structural primitives. Spatial relationships are common illustration of placement 

rules. 

Model-based methods include Random Field models (e.g. Markov, MRF) and 

Fractals are based on the building of an image model such that their parameters 

represent some characteristics of texture. 

Signal processing methods are adopted for texture analysis because human 

perform frequency analysis on images in the brain. Spatial domain filters and 

spectral (or Fourier) domain filters have been extensively studied. Recently advances 

use multiresolution methods, such as wavelets and Gabor filters, to extract texture 

features. Please see also Chapter 3.1 for more details. 

2.4.3 Similarity measure 

Similarity of images is a measure of how much one image resembles or differs from 

another. Each feature type has its own characteristics and thus different similarity 

measures fit for different feature types. It is worth to notice that hierarchically 
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ordered features may help staying away from problems arisen from segmentation. 

(Smeulders et al. 2000) We will state some well-known similarity measures. 

Similarity measures can be a metric or non-metric. Metric-based (dis)similarity 

measures have been widely used in computer vision, pattern recognition 

communities. Metric-based techniques satisfy the following constraints. 

Minimality: D(a, b) ≥ D(a, a) = D(b, b) = 0 (2.1) 
Symmetry: D(a, b) = D(b, a) (2.2) 

The Triangle Inequality: D(a, b) + D(b, c) ≥ D(a, c) for all b (2.3) 
Distance measures are one of the metric-based techniques. One family of distance 

measures, Lp-norm or Lp-metric, is generally known as Minkowski distance (Eq. 2.4). 

L1-norm is generally known as Manhattan distance or City Block distance (Eq. 2.5) 

and L2-norm is generally known as Euclidean distance (Eq. 2.6). 

pn

i

p
iip babaL

1

1

||),( 







−= ∑

=

 (2.4) 

∑
=

−=
n

i
ii babaL

1
1 ||),(  (2.5) 

∑
=

−=
n

i
ii babaL

1

2
2 ||),(  (2.6) 

Another often used distance measure is angular or angle-based distance (Eq. 2.7). 
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2.5 Recapitulation 

In this chapter, we have first made an introduction to biometrics. We have reviewed, 

especially the content-based domain, some of the basic concepts and issues in image 

retrieval in image processing and in image features. 
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Chapter 3 Tools for Content-Based Retrieval 

3.1 Transform-based Methods 

Transform-based methods are some mathematical transformations that have been 

introduced because of some of their nice properties. We briefly describe the 

mathematical formulation of Fourier Transform, Wavelets and Gabor Filters in the 

following subsections. 

3.1.1 Fourier Transform (FT) 

Fourier Transform, also known as Fourier analysis, breaks down a signal into 

constituent sinusoids (of unlimited duration) of different frequencies (Misiti et al. 

1996). In mathematical sense, it is a technique that transforms a signal into a 

time-based one to a frequency-based one. It is a mathematical tool introduced to the 

signal processing field and afterwards, introduced to image processing in its discrete, 

2-D form. In the following equations, 1−=j . 

1D forward and inverse Continuous Fourier Transform are defined as follows. 
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2D forward and inverse Continuous Fourier Transform are defined as follows. 
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1D forward and inverse Discrete Fourier Transform is defined as follows. 
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where x = 0, 1, 2, …, N-1 
(3.6) 

2D forward and inverse Discrete Fourier Transform is defined as follows. 
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where u = 0, 1, 2, …, M-1 and v = 0, 1, 2, …, N-1 
(3.7) 
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where x = 0, 1, 2, …, M-1 and y = 0, 1, 2, …, N-1 
(3.8) 

FT has a serious drawback in that time information is lost during the 

transformation from the time domain to the frequency domain. When it is extended 

to image processing, the spatial information is lost during the transformation from 

the spatial domain to the frequency domain. 

Fourier Mellin Transform (FMT) 
Fourier Mellin Transform (Casasent and Psaltis 1976; Sheng and Arsenault 1986) is 

translation, in-plane rotation (referred as Z-plane rotation in Lai et al. 2001) and 

scale invariant transformation. FMT was first described in Casasent and Psaltis 

(1976) for optical systems. It was introduced into pattern recognition in Sheng and 

Arsenault (1986), into image registration in Srinivasa Reddy and Chatterji (1996) 

and into face recognition in Lai et al. (2001). 

By the properties of FT, the magnitude of FT, |F(u, v)|, is invariant to translations 

in spatial domain but it is variant to in-plane rotation and scale in the spatial domain. 

A polar (coordinate) transform on the centralized magnitude of FT can separate the 

effect of in-plane rotation and scale in spatial domain |F(r, θ)|. The Mellin Transform 

is applied on r and FT is applied on θ. In implementation, it is a logarithmic scaling 

of r followed by a 2D FT. (Casasent and Psaltis 1976) A process flow diagram of 

FMT is depicted in Figure 3.1. 
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Figure 3.1 Process flow of Fourier Mellin Transform 

A detailed discussion of the invariant properties of FMT can be found in Casasent 

and Psaltis (1976), Srinivasa Reddy and Chatterji (1996) and, Lai et al. (2001). The 

implementation of FMT has been considered in Srinivasa Reddy and Chatterji 

(1996). 

Holistic Fourier Invariant Features (HFIF) 
Holistic Fourier Invariant Features (Lai et al. 2001) are features extracted through an 

integration of wavelet transform (WT, see Chapter 3.1.2 for details) and FMT (see 

above for details). FMT is applied on the low frequency subband that results from 

WT. The process flow is shown in Figure 3.2. 

 
Figure 3.2 Process flow of Holistic Fourier Invariant Features extraction 

3.1.2 Wavelets and Wavelet Transform (WT) 

Wavelet Transform, also known as Wavelet analysis, produces a time-scale view of a 

signal (Misiti et al. 1996). It offers the promise of compact representation and 

efficient detection of image components that match the wave-shape of the chosen 

(mother) wavelet. A wavelet is a waveform of limited support, i.e. effectively limited 

duration, and has an average value of zero. 

Wavelets are a new way to see and represent signal. It is an alternative to the 

Fourier Transform but not a replacement (Strang and Nguyen 1996). Wavelet 

analysis and synthesis have been applied in signal processing to deal with audio, 

image and video processing and there is an increasing interest in how to utilize this 

tool. 
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Much research on image compression, storage and retrieval has been done with 

the use of wavelets in image for (Albanesi and Bertoluzza 1995; Albanesi et al. 1999; 

Liang and Kuo 1999; Saha and Vemuri 1999; Strang and Nguyen 1996; Yang and 

Mitra 1998; Zamora et al. 2000). Some research, instead of working in the spatial 

domain, has worked on the wavelet coefficients of images after being decomposed 

using wavelet transform, (Albuz et al. 1999; Liang and Kuo 1997; Liang and Kuo 

1999; Servetto et al. 1997; You and Bhattacharya 2000). This research, usually, 

extracted features from the wavelet coefficients and features extracted were indexed 

for fast searching based on similarity. Similarly, some researchers utilized the 

properties of wavelet analysis to perform shape/region detection, e.g. finding faces in 

images (Garcia and Tziritas 1999; Karlekar and Desai 2000). 

Wavelet transform is the process that connects a function f(t) and its wavelet 

coefficients. The function f(t) can be represented by the combination of basis 

functions as follows. 
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Eq. 3.9 represents the wavelet analysis while Eq. 3.10 represents the wavelet 

synthesis. There is connection between filter bank and wavelets, “lowpass filter” 

leads to scaling functions, Eq. 3.11, while “highpass filter” leads to wavelets Eq. 

3.12. 
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Figure 3.3 illustrates the 1D wavelet decomposition and reconstruction of an input 

signal X0 that uses a two-channel filter bank. Input signal X0 goes through the 

highpass filter and the lowpass filter for decomposition and then are downsampled, 
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the resultant (shaded area) is wavelet coefficients. They can be reconstructed, i.e. get 

back to original, by being upsampled and then going through the synthesis highpass 

and lowpass filters. 

Restruction or SynthesisDecomposition or Analysis

Lowpass
Filter
(LA)

Highpass
Filter
(HA)

Highpass
Filter
(HS)

Lowpass
Filter
(LS)

2

22

2

Input X0 Output X1

Figure 3.3 Wavelet analysis and synthesis: Two-channel filter banks 

Multiresolution 
The simultaneous appearance of multiple scales is known as multiresolution. 

Multiresolution can be presented as follows; subspace Vj–1 and its complementary 

subspace Wj–1 together form the higher or finer space Vj. 

11 −− ⊕= jjj WVV  (3.13) 
In other words, V0 ⊂ V1 ⊂ V2 ⊂⋯. A realization of the direct sum of coarser 

subspaces to become finer subspace is shown as follows. 

∑∑∑ −−−− +=
k

kjkj
k

kjkj
k

jkjk tbtata )()()( ,1,1,1,1 ωφφ  (3.14) 

Figure 3.4 presents the decomposition of an input signal X0 in the multiresolution 

manner implemented as two-channel filter bank. 

Input X0

2 HA

2 LA

2 HA

2 LA

2 HA

2 LA

 
Figure 3.4 Wavelet multiresolution decomposition: Two-channel filter banks 
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3.1.3 Gabor Filters 

2D Gabor filters proposed by Daugman (1985) extended from the original (generally 

referred to as 1D version) proposed by D. Gabor (1946) in communication 

engineering has shown its capability in modeling the receptive-field profiles of 

simple cells in mammalian visual cortex. Simple cells in mammalian visual cortex 

are organized roughly in the polar Orientation-Frequency plane to form a 

receptive-field such that with their specific 2D locations in visual space, preferred 

orientations and spatial frequencies, localized 2D spectral information is captured. 

(Daugman 1985) A set of 2D Gabor filters, which are of various spatial dimensions 

and, spatial-frequency and orientation bandwidths to imitate those empirical 

characteristics of receptive-field, can be used to extract different kinds of 

information from images. 

2D Gabor filters have been shown to be effective for texture analysis on 

monochromatic images. They optimally achieve joint resolution in space and spatial 

frequency; their orientations, radial frequency bandwidths and center frequencies are 

all tunable. Thereby, it is adopted to perform texture analysis. (Bovic et al. 1990; Liu 

and Wechsler 2003) 

2D Gabor filters, in general, are of the following functional form: 

h(x, y) = g(x’, y’) exp[2πi(Ux + Vy)] (3.15) 
where (x’, y’) = (x cosφ + y sinφ, -x sinφ + y cosφ) and 
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where σ = σx = σy is the standard deviation of the Gaussian envelope 

The corresponding Fourier transform is 

H(u, v) = exp{–2π2σ 2 [(u’ – U’)2λ2+ (v’ – V’)2]} (3.17) 
where (u’, v’) = (u cosφ + v sinφ, -u sinφ + v cosφ) and  

(U’, V’) = (U cosφ + V sinφ, -U sinφ + V cosφ) 
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Circular Gabor Filters 
If modulating Gaussians of 2D Gabor filters have the same orientation as the 

complex sine grating, i.e. φ = θ and aspect ratio is 1 (i.e. λ = 1), a family of circular 

2D Gabor filters is of the following form in the spatial domain: 

h(x, y) = g(x’, y’) exp(2πiFx’) (3.18) 
The corresponding Fourier transform of Eq. 3.18 is 

H(u, v) = exp{–2π2σ 2 [(u’ – F)2λ2+ (v’)2]} (3.19) 

with radial central frequency F = 
22 VU + cycles/image and orientation, 

θ = tan-1(V/U) degrees or radians (measured from u-axis). 

The expanded form of the family of circular Gabor filters in spatial domain is 
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Elliptical Gabor Filters 
The expanded form of the family of elliptical Gabor filters in spatial domain is 
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κω = , i = 1− , u is the sinusoidal wave 

frequency in spatial domain, θ is the orientation of the filter and δ is the 

half-amplitude bandwidth of the frequency response (Lee 1996). 

Applying Gabor filter to a monochromatic texture image t(x, y) yields 

k(x, y) = kc(x, y) + iks(x, y) (3.22) 
where 

kc(x, y) = Re{k(x, y)} = hc(x, y) * t(x, y), 
ks(x, y) = Im{k(x, y)} = hs(x, y) * t(x, y) 

(3.23) 
(3.24) 

The amplitude and phase (envelopes) of k(x, y) are, respectively, 

m(x, y) = [kc
2(x, y) + ks

2(x, y)]1/2, 
ψ(x, y) = tan-1[ks (x, y)/kc (x, y)] 

(3.25) 
(3.26) 
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3.2 Learning Methods 

In this subsection, we will briefly describe two types of learning methods, linear 

subspace methods and self organizing map. They are widely used in many 

applications across various disciplines (Haykin 1999; Kohonen et al. 1996) 

3.2.1 Linear subspace methods 

Linear subspace methods are used to transform the original sample space into its 

subspace through a linear transformation with certain objective in order that the 

original sample space can be better separated and represented more compactly. 

Principal Component Analysis (PCA) is an unsupervised learning method while 

Linear Discriminant Analysis (LDA) is a supervised learning method. Before we go 

into the details, we would like to define three scatter/covariance matrices, with-in 

class SW, between-class SB and total ST, that will be used below. Suppose there are L 

(pattern) classes and ci samples in class Ci where i = 1…L and, altogether M samples 

Moreover, µ is the mean of all samples while µi is the mean of all samples of class Ci, 

i.e. ∑
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The three scatter matrices are symmetric. 

Principal Component Analysis (PCA) 
Principal Component Analysis (Gonzalez and Woods 1992; Halici and Ongun 1996; 

Haykin 1999), which is also known as (discrete) Karhunen-Loève Transform or 

Hotelling Transform, is a statistical method that linearly maps the data space 
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(original distribution) to feature space (usually a subspace of the original) with 

minimal mean square (approximation) error. Transforming from original space 

(Analysis), data can be effectively represented by a subspace of fewer dimensions, 

i.e. Principal Components, with the essential information retained such that 

mean-squared error is optimized and is equal to the sum of variances of truncated 

elements. It is well known for feature extraction/selection in pattern recognition, 

noise reduction in signal processing and de-correlation. 

PCA can be formulated as the maximization of the criterion in Eq. 3.30 and the 

maximization of the criterion corresponds to an eigenvalue problem given in Eq. 

3.31(Yang et al. 2004). 

J(w) = wT ST w (3.30) 
To solve the eigenvalue problem, Eigenvalue Decomposition (EVD) is applied on 

the covariance matrix of (training) samples. Eigenvectors of the covariance matrix, 

which are orthonormal bases, are found and sorted in descending order according to 

their importance, i.e. the magnitude of corresponding eigenvalues. The method is as 

follows (Gonzalez and Woods 1992; Haykin 1999). 

Suppose there are M real valued vectors {Xj ∈ Rn| Xj = [x1, x2,…, xn,]}, where  

j = 1…M. The covariance matrix, also known as the total scatter matrix ST, is 

calculated as in Eq. 3.29. 

ST W = W λ (3.31) 
where W is a n × n matrix containing eigenvectors of ST such that WT W = I, i.e. 

each vector is orthogonal to the others and is normalized, and λ is a n × n 

diagonal matrix, {λ = diag [λ1,…, λn] | λ1 = λmax>λ2>…>λn}, containing 

eigenvalues as diagonal elements. 

Since the columns of W are ordered in descending order of the magnitude of 

their eigenvalues, by truncating (n – m) columns of W, the columns of the 
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resulting matrix P (of m dimension) are known as the Principal Components 

and the space spanned by P is known as the Principal Subspace, i.e. the feature 

space. Through the use of Principal Components, the Principal Subspace can 

effectively represent the data space. Thus the important features are selected or 

the dimension of data space is reduced. 

Linear Discriminant Analysis (LDA) 
Linear Discriminant Analysis is a widely used classification method (Webb 1999). It 

is also known as Fisher Discriminant Analysis (FDA), Fisher Linear Discriminant 

(FLD) (Liu and Wechsler 2002). It is to maximize the Fisher’s Criterion J(w), that is 

the ratio of the variance of between-class samples to the variance of within-class 

samples, as shown below in Eq. 3.33. This maximization, however, does not directly 

link to the classification error, i.e. usually the system performance index (Lu et al. 

2003). 

wSw
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=)(  (3.33) 

The following criterion is sometimes used as an alternative to Eq. 3.33 (Yang et al. 

2003; Lu et al. 2003) 
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=)(  (3.34) 

The maximization of the Fisher’s Criterion J(w), which is a Rayleigh Quotient, 

corresponds to a generalized eigenvalue problem (Melzer 2004). For the 

mathematical derivations, please refer to Melzer (2004). 

SBW = SW W Λ (3.35) 
There are two generally used LDA implementations, Foley-Sammon LDA 

(FSLDA, Foley and Sammon Jr. 1975; Duchene and Leclercq 1988) and 

Uncorrelated LDA (ULDA, Jin et al. 2001a, 2001b). They differ by satisfying 

different orthogonality constraints during the maximization of the Fisher’s Criterion. 
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FSLDA satisfies the constraint in Eq. 3.36 while ULDA satisfies the constraint in Eq. 

3.37 (Jin et al. 2001a, 2001b; Yang et al. 2002) 

wi
T wj = 0 ∀i ≠ j (3.36) 

wi
T ST wj = 0 ∀i ≠ j (3.37) 

The discriminant vectors of FSLDA need to be determined one by one. The 

discriminant vectors of ULDA, in contrast, can be determined in a whole. In general, 

LDA uses the following algorithm that produces uncorrelated discriminant vectors 

similar to ULDA. 

Suppose we have the scatter matrices, SW and SB, of training samples in hand. 

We first apply EVD on SW  

SW = V D VT (3.38) 
Discarding all zero eigenvalues di (= 0) of D (in implementation, eigenvalues 

of extremely small magnitude) and their associating eigenvectors vi of V, a 

whitening matrix B is formed by 

B = (V’)(D’)-1/2 (3.39) 
where D’ = {diag(dj) > 0} and V’= {vj}. SB is transformed into S’

B by 

S’
B = B SB BT (3.40) 

We then apply EVD on SB 

S’
B = U Λ UT (3.41) 

The associated eigenvectors U’ of the m biggest eigenvalues λ1,⋯, λm of Λ are 

selected to form the transformation matrix W. 

W = B (U’) (3.42) 
In case the with-in class scatter matrix SW becomes singular owing to the high 

feature dimensionality and the small sample size (SSS) problem (Lu et al. 2003; 

Yang et al. 2005), PCA has been applied to the input and feature space respectively 

before performing LDA (Swets and Weng 1996; Belhumeur et al. 1997; Liu and 

Wechsler 2002; Lu et al. 2003) which is known as PCA plus LDA approach 

(PCA+LDA). Yang and Yang (2003) give theoretical support to the PCA+LDA 

approach. 
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3.2.2 Self-Organizing Map (SOM) 

The Self Organizing Map or Self-Organizing Feature Map (Haykin 1999; Kohonen 

1997; Mitra and Pal 1994), proposed by T. Kohonen, is a well-known unsupervised 

learning algorithms in the field of artificial neural networks. It models the 

neurobiological behaviour of the human brain. SOM is basically a kind of 

competitive learning that only one neuron will fire after mutual competition of 

neurons, i.e. winner-takes-all. Its aim is to adaptively generate, based on the input 

patterns (of arbitrary dimension), a lower dimensional (usually one- or 

two-dimension) topologically ordered discrete map. Although, in general, it can be 

extended to higher dimension, one- or two-dimensional SOM is commonly adopted 

because of its simplicity and expressiveness. 

SOM has been used in industrial monitoring and analysis, statistical pattern 

recognition including texture analysis and classification and other areas such as 

image compression and encoding, robotics and telecommunication (Haykin 1999; 

Kohonen 1997; Kohonen et al. 1996). It is capable of clustering the training data 

without any pre-classification of the training data. Nevertheless, for practical reasons, 

primary data is seldom used directly in the application of artificial neural network 

(e.g. SOM); thus, feature extraction is usually performed before applying artificial 

neural network, e.g. clustering (Kohonen et al. 1996). 

There are two stages of operation in SOM: Formation of SOM and Calibration of 

SOM. Formation of SOM has four phases: first is initialization (of synaptic weights), 

second is competition, third is cooperation and the final stage is synaptic adaptation. 

(Haykin 1999) 

Suppose an SOM consisting of, in total, l2 neurons. Let the input space is of m 

dimension. An input vector randomly chosen from the input space is denoted by 
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x = [x1, x2,…, xm]T (3.43) 
The major steps of the generation of the self-organizing map are summarized as 

follows: 

Step 1 Initialization (of synaptic weights). The synaptic weight vector (wi) of 

each neuron is of the same dimension as the input space. Each synaptic weight 

(wij) can be initialized randomly within the range of the domain or by picking 

small values from a random number generator. 

wi = [wi1, wi2,…, wim]T for i = 1, 2,…, l2 (3.44) 
Step 2 Competition. A discriminant function, d(x, wi), set the basis for 

neurons’ competition and each neuron computes its resulting value using the 

discriminant function. The neuron with the most distinct value is chosen as the 

winner. Since only one winning neuron is selected for each input pattern, if 

more than one neuron have same distinct value, one of them will be selected 

randomly to be the winner. The winning neuron nw is defined as 

nw = arg mini d(x, wi) for i = 1, 2,…, l2 (3.45) 
Step 3 Cooperation. The winning neuron nw becomes the center for 

determining the spatial position of topological neighboring neurons through a 

neighborhood function N(nw, ni, t) that defines neighborhood members with 

respect to the central element, based on the distance h(nw, ni) between the 

center (i.e. winning neuron, nw) and surrounding elements (ni) and, training 

time (t). 

h(nw, ni) = || c(ni) – c(nw) || for i = 1, 2,…, l2 (3.46) 
where ||·|| denotes the Euclidean norm and c(ni) determine the spatial location, 

i.e. coordinate, of neuron ni in the topographic map. 

A neighborhood function can be stated in discrete form or continuous form. 

Neighborhood function, N(nw, ni, t), can be represented as a step function for 

discrete case, while it may be expressed, in continuous case, as a Guassian 
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function. For 2D topology, rectangular, 2D Guassian (Eq. 3.47) or Mexican hat 

is commonly chosen to define neighborhood. Both the winning neuron and its 

neighboring neurons, unlike in general competitive learning, learn from the 

input pattern; nearer neurons are adjusted more. The size of neighborhood 

decreases with training time. 

N(nw, ni, t) = )
)(2
),(

exp( 2 t
nnh iw

σ
 (3.47) 

Step 4 Synaptic Adaptation. The synaptic weight of neuron j being adjusted 

in relation to the input vector x at time t can be expressed as follows. This 

adjustment is applied to the winning neuron nw and its neighboring neurons 

determined by N(nw, ni, t). There are two phases of Synaptic Adaptation, 

Ordering and Convergence/Tuning. The size of neighborhood N(nw, ni, t) and 

learning rate η(t) of SOM at two phases are different. At the early ordering 

phase, we would like the whole SOM to learn quickly about the input patterns, 

so the neighborhood may include all neurons and the learning rate is relatively 

large, e.g. 0.1. The two parameters are expected to decrease gradually with 

time in the ordering phase. At the convergence/tuning phase, we would like to 

fine tune the feature map so as to provide an accurate statistical quantification 

of the input space, so the neighborhood may only include the nearest ones and 

the learning rate is small, e.g. 0.01, but, to avoid the occurrence of metastable 

state, not zero. The update of the synaptic weight vector is defined as 

wi(t+1) = wi(t) + η(t) N(nw, ni, t) (x – wi(t)) for i = 1, 2,…, l2 (3.48) 
where η(t) is the learning rate 

More specifically the formation of SOM includes the following basic operations 

(Haykin 1999; Halici and Ongun 1996): 
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Step 1 Initialization. Randomly choose values to initialize weight vectors wi(0) 

for i = 1, 2,…, l2; or randomly select from the available input vectors as weight 

vectors wi(0). 

Step 2 Sampling. Randomly draw one from the available input vectors as x 

Step 3 Similarity matching. Apply d(x, wi) on all neurons and determine nw 

Step 4 Updating. Adjust wi(t) to wi(t+1) as described above 

Step 5 Continuation. Continue with steps 2 to 5 until no observable changes 

in the feature map 

Calibration of SOM (Mitra and Pal 1994) is actually labeling the training 

samples/input patterns with a corresponding (winning) class/node number that is 

computed using the same discriminant function, d(x, wi), in the Formation stage of 

SOM. This can provide some qualitative information about the topological ordering 

between the input and output space. 

3.3 Benchmarking Methods 

Retrieval performance is a vital index that helps the design of CBIR, including the 

choice of image features, similarity measures and retrieval methods. In this section, 

we would like to review some benchmarking methods that have been used to 

evaluate the retrieval performance of CBIR. (Ma and Zhang 1998; Smeulders et al. 

2000) 

Accuracy and Error 
Accuracy is one of the most generally used and accepted performance indexes for 

retrieval systems. It is often used in reporting the performance of retrievals in top 

few matches, e.g. k-NN. Suppose C corrected matches out of Q queries is measured 

from a retrieval system. Accuracy and Error, which may be reported in percentage, 

are defined by 
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Q
C

=Accuracy  (3.49) 

Q
C

−= 1Error  (3.50) 

Precision and Recall 
Precision and Recall are two performance indexes introduced from information 

retrieval community (Narasimhalu et al. 1997; Smeulders et al. 2000). Suppose, with 

respect to a query, R relevant images are in the database and, r relevant images and N 

images are returned. Precision and recall are defined as follows. 

N
r

=Prescision  (3.50) 

R
r

=Recall  (3.51) 

However, precision and recall neglect the ordering of the list of returned images. 

Variants of performance indexes based on precision and recall have been proposed 

(Ma and Zhang 1998; Heczko et al. 2004). Precision and recall (or other measures 

derived form them) are useful measurements only when the image database relies on 

the strong semantics provided by label or other textual description (Smith and Li 

1998). 

False Accept Rate (FAR), False Reject Rate (FRR) and 
Equal Error Rates (EER) 

The distribution of scores generated from mate pairs is called genuine distribution. 

The distribution of scores generated from nonmate pairs is called impostor 

distribution. False Accept(ance) Rate (FAR) and False Reject(ion) Rate (FRR) are 

occurred in pairs as a function of a particular operating point, threshold t, that 

regulates the decision of a biometric system. (Prabhakar et al. 2003; Jain et al. 2004) 

Please see Figure 3.5 (a) for a graphical illustration. 
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Figure 3.5 (a) FAR and FRR for a given threshold display over the genuine and 
impostor distribution and (b) ROC curve with EER and typical operating points 
marked 

FAR, which is also known as False Match Rate (FMR), refers the rate of 

mistaking biometric measurements from two different persons to be from the same 

person. FRR, which is also known as False NonMatch Rate (FNMR), refers the rate 

of mistaking biometric measurements from the same person to be from two different 

persons. (Prabhakar et al. 2003; Jain et al. 2004) Genuine Accept(ance) Rate (GAR) 
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is the complement of FRR. Equal Error Rate (EER) is the error rate (probability) 

where FAR and FRR curves cross (crossover rate) (Dawson 2003). Receiver 

Operating Characteristic (ROC) curve is a plot of GAR/FRR against FAR for all 

possible operating points. Please see Figure 3.5 (a) and (b) for an illustration. 

3.4 Recapitulation 

In this chapter, we have reviewed some tools for content-based storage and retrieval. 

They include some transformed based methods, learning methods and benchmarking 

methods. 

For transformed based methods, we have described three popular transforms in 

the image processing community, namely, Fourier transform, Wavelet transform and 

Gabor filters. 

We consider two unsupervised learning methods, Principle Component Analysis 

and Self Organizing Map, and one supervised learning method, Linear Discriminant 

Analysis. 

We finally describe several benchmarking methods for performance evaluation of 

retrieval/recognition. 
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Chapter 4 A Study of Palmprint Images 
Hand-based biometrics is always prevailing since they generally have relatively high 

user acceptance. Fingerprint and hand geometry are two well studied hand-based 

approaches (Baltscheffsky and Anderson 1986; Bhanu and Tan 2003; Clancy et al. 

2003; Halici and Ongun 1996; Hong et al. 1998; Jain et al. 1997, 1999, 2000b; Lee 

and Wang 1999; Miller 1994; Ratha et al. 1996; Sanchez-Reillo et al. 2000). Current 

fingerprint systems cannot support real-time application in large databases in the 

absence of special computation assistance units (Ratha et al. 1996; Jain et al. 1997). 

They also cannot handle some fingerprints provided by, e.g. subjects with genetic 

problems (Jain et al. 1999). Hand geometry cannot provide high accuracy because 

geometric features, such as length and width of fingers, are of limited discriminating 

power. 

Palmprint is emerging as an alternative hand-based biometrics (Zhang 2000, 2002; 

Zhang et al. 2003) with user friendliness, flexibility in adapting the environment and 

power of discrimination. Table 4.1 compares, in terms of public acceptance, accuracy 

and feature complexity, some biometrics that can be collected from hands, such as 

fingerprints, hand geometry and palmprints. 

Table 4.1 Comparison of biometrics obtained from hands 

 Public Acceptance Accuracy Features 
Fingerprint Medium High Minutiae Points 

Hand Geometry High Low 3-D Geometry 
Palmprint High High Line & texture  
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4.1 Introduction to Palmprint Retrieval 

A palmprint is made up of principal lines, wrinkles and ridges on a palm. Like 

fingerprints, palmprints can be used as a powerful means in law enforcement for 

criminal identification because of its stability and uniqueness (Zhang 2000, 2003). 

Palmprint and fingerprint patterns appear to resemble each other in some ways. 

Both consist of a large amount of ridges. Although the minutiae based matching 

which utilizes terminations and bifurcations of the ridges is successful for fingerprint 

recognition, such an approach is not suitable for palmprint patterns because of the 

change in orientations. 

Palmprint capture and retrieval can be distinguished as on-line and off-line. An 

on-line system (e.g. Zhang et al. 2003) equips a palmprint capture sensor connected 

to the system that takes the palmprint image in a real-time fashion. An off-line 

palmprint system (e.g. You et al. 2002) acquires palmprint images through digitizing 

inked palmprints images. 

Several types of image-based techniques have been proposed for palmprint 

representation. They include point-based (Zhang and Shu 1999; Duta et al. 2001), 

line-based (Duta et al. 2001; Han et al. 2002) and texture-based (Zhang et al. 2003). 

Principal lines, wrinkles, ridges, minutiae points, singular points and texture are 

regarded as useful features for palmprint representation (Shu and Zhang 1998). 

Various features can be extracted at different image resolutions. For features such as 

minutiae points, ridges and singular points, a high-resolution image, with at least 400 

dpi (dots per inch), is required for feature extraction (Shi et al. 2001). However, 

features like principal lines and wrinkles, which are defined in Figure 4.1, can be 

obtained from a low-resolution palmprint image with less than 100 dpi (Zhang and 

Shu 1999; Shu and Zhang 1998). 
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Figure 4.1 Wrinkles and principal lines in a palmprint 

In general, high-resolution images are essential for some applications such as law 

enforcement, where ridges, singular points and minutiae points are extracted and 

matched in latent prints for identification and verification. Some companies, 

including NEC and PRINTRAK, have developed automatic palmprint identification 

and verification systems for law enforcement applications (NEC 2003; Printrak 

2003). For civil and commercial applications, low-resolution palmprint images are 

more suitable than high-resolution images because of their smaller file sizes, which 

results in shorter computation times during preprocessing and feature extraction. 

Therefore, they are useful for many real-time palmprint applications. 

4.2 Palmprint Database 

We use the palmprint database constructed by Biometric Research Centre, The Hong 

Kong Polytechnic University. The database contains inkless digital palmprint images 

collected from 193 individuals using a CCD-based palmprint camera and an A/D 

converter. The resolution of images is 75 dpi. 

The subjects are mainly volunteers from The Hong Kong Polytechnic University, 

i.e. students and staff. In the database, 131 of the subjects are male and 62 are female. 
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The age distribution of the subjects is as follows: about 86% of them are between 18 

to 30 years old, 3% are older than 50 and the remainders are between 30 and 50. 

The database contains palmprint images of two sessions collected at an interval of 

around two months. For each subject, about 10 images of each palm/hand have been 

collected in each of the two sessions. In total, the database contained 7,752 palmprint 

images from 386 palms of 193 individuals. 

4.2.1 Palmprint preprocessing 

Usually the central part of the palm is of interest and will be used for further 

processing. Images are preprocessed to crop out the area of interest. This is done 

through five steps with reference to those gaps between fingers depicted in Kong 

(2002; also in Zhang et al. 2003) and recapitulated as follows. 

Step 1: Apply a lowpass filter, L(u, v), such as Gaussian smoothing, to the 

original image, O(x, y), see Figure 4.2 (a). A threshold, Tp, is used to convert 

the convolved image to a binary image, B(x, y), see Figure 4.2(b). 

Step 2: Obtain the boundaries of the gaps, (Fixj, Fiyj) (i=1, 2), between the 

fingers using a boundary tracking algorithm (see Figure 4.2(c)). The boundary 

of the gap between the ring and middle fingers is not extracted since it is not 

useful in the subsequent processing. 

Step 3: Compute the tangent of the two gaps. Let (x1, y1) and (x2, y2) be any 

points on (F1xj, F1yj) and (F2xj, F2yj), respectively. If the line (y = mx + c) 

passing though these two points satisfies the inequality, Fiyj ≤ mFixj + c, for all 

i and j (see Figure 4.2(d)), then the line (y = mx + c) is considered to be the 

tangent of the two gaps. 

Step 4: Line up (x1, y1) and (x2, y2) to get the Y-axis of the palmprint coordinate 

system, and use a line passing through the midpoint of these two points, which 
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is perpendicular to the Y-axis, to determine the origin of the coordinate system 

(see Figure 4.2(d)). 

Step 5: Extract fixed size area of interest based on the coordinate system. The 

area of interest is located within the palmprint image (see Figure. 4.2(e)). Then 

the palmprint subimage is cropped for feature extraction (see Figure. 4.2(f)). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.2 Preprocessing of palmprint images 

4.3 A PCA + SOM Approach 

We have preprocessed monochrome palmprint images of size s×s as input. In the 

training phase, as the training set first undergoes PCA (analysis), which is a 

noise-sensitive process, we have set a threshold to filter noisy images out of the 

candidate training samples to form the training set. The training set will form a 
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matrix T of dimension s2×M (M is the number of images in the training set). Each 

training image in the training set is deformed column-wisely into a column vector v 

of size s2×1 of T. T will then undergo PCA (see Chapter 3.2.2). We do this in our 

proposed method for two reasons. One is to generate feature values: coefficients of 

chosen Principal Components are used as global line and texture features to represent 

images; another is to perform dimensionality reduction, or more commonly referred 

to as feature selection. The system flow of our proposed PCA + SOM system is 

illustrated in Figure 4.3 

Training
Images

Query
Image

Training
Matrix

16384 x M
PCA SOM

Query
vector

16384 x 1

Image Database

Identification

Identification

Training

Result

Searching
Sequence

Figure 4.3 A system flowchart of PCA + SOM palmprint image retrieval system 

Assume the first m Principal Components are chosen. By projecting each sample 

image in the training set onto the space spanned by the first m Principal Components, 

we obtained the m coefficients for each sample. They are then used as the training 

data to train the SOM. After training, SOM is calibrated and majority voting 

mechanism may be employed to resolve conflicts. 

In the retrieval phase, query image is projected onto the principal subspace. The 

principal subspace coefficients obtained are passed into the trained SOM to generate 

a search sequence that guides the search of the Image Database. The trained SOM is 
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used as the engine to guide the searching by arranging, according to the query input 

for identification, the order of searching. 

As an illustration, suppose the query input for identification is from Person 30 and 

the winning node of the SOM is the one containing Persons 5, 30, and 34. In Figure 

4.4, the one on the left is the sequential searching sequence while the one on the right 

is generated by our PCA + SOM method that presents earlier to the identification 

engine the potential matching images in correspondence to the input. 

sub-image 1 
sub-image 2 Person 1 …

 
sub-image 1 
sub-image 2 Person 2 …

 

sub-image 1 
sub-image 2 Person3 …

 

sub-image 1 
sub-image 2 …

 …
 

sub-image 1 
sub-image 2 Person 50 …

 

Sequential Search 

sub-image 1 
sub-image 2 Person 5 …

 

sub-image 1 
sub-image 2 Person 30 …

 

sub-image 1 
sub-image 2 Person 34 …

 

sub-image 1 
sub-image 2 …

 …
 

sub-image 1 
sub-image 2 Person 2 …

 

PCA+SOM approach 
Figure 4.4 Searching sequence generated by Sequential Search and PCA+SOM 
approach 

 

4.3.1 Details of Experiment 

Palmprint images of 50 different people are used in our experiment. Each subject has 

registered 10 palmprint images of his/her left hand by putting the hand on the 

palmprint capturing device. The image is then preprocessed to a size of 128×128 (see 
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Section 4.2.1 above for details); each subject has registered twice on two different 

dates (Zhang et al. 2003); therefore, there are 1,000 images in the database for this 

experiment. Three images of each set of images are selected as candidate training 

samples (300 images) and the remainders are used as the testing set. 

Table 4.2 The accumulated variance explained by first m principal components 

Feature Subspace Dimension (m) Accumulated Variance (%) 
5 99.42% 
10 99.55% 
20 99.68% 
30 99.75% 
40 99.79% 
50 99.82%  

According to Table 4.2, Principal Components of 5 dimensions can already 

preserve 99.42% of the original energy. However, the increase of the number of 

Principal Components used does not help the increase of Energy Preservation much, 

only 0.13%, 0.26%, 0.33%, 0.37% and 0.4% for the increase of 5, 15, 25, 35 and 45 

dimensions used respectively. Thus, we choose to use 10 dimensions, which can 

preserve more than 99.5% of energy with a smaller number of dimensions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.5 (a) a sample left hand sub-image in Palmprint Database, (b)–(f) first 5 
Principal Components acquired after PCA 
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Figure 4.5 (a) shows a left hand palmprint sub-image from the Palmprint 

Database and Figure 4.5 (b)–(f) show respectively the first 5 Principal Components 

resulted from the PCA. It can be observed that the first Principal Component has 

captured the information of the three principal lines and the other Principal 

Components have captured texture information of various parts of the palm. 

Table 4.3 SOM Training Parameters 

 Ordering Phase Tuning Phase 
Learning Rate 0.1 0.01 

Size of Neighborhood ALL 1  
Since there are at most 50 categories (50 different people), we choose SOMs of 

sizes 3×3 and 5×5 for experiments. SOMs of all sizes are trained for 3,000, 5,000 

and 10,000 epochs respectively and the training parameters are shown in Table 4.3. 

4.3.2 Experimental Results and Performance 

Table 4.4 Average number of persons and images searched for PCA+SOM (3 Trails 
of 2 Sizes and 3 Training Times) and Sequential approaches 

PCA+SOM approach 
Training Time (epochs)  3000 5000 10000 

Trails SOM 
size Person Image Person Image Person Image 

3×3 12.1167 67.2833 11.5233 63.97 11.7467 65.2467Trail 1 
5×5 10.2133 56.7867 10.0033 55.3233 9.9267 54.84 
3×3 11.9967 66.6633 11.6067 64.43 11.39 63.1933Trail 2 
5×5 10.4 55.44 9.8233 54.72 10.0767 55.6067

Trail 3 3×3 11.4733 63.6733 11.29 63.04 11.3267 62.9867

Sequential approach 
Total number of persons in Training Set (P) = 50 

Average number of persons searched for Sequential Searching = P/2 = 25 
Total number of images in Training Set (M) = 280 

Average number of images searched for Sequential Searching = M/2 = 140 
Total number of images in training set, i.e. discarding noisy ones, is 280. Therefore, 

the average number of persons searched for Sequential Searching is equal to half of 

the size of training set (50), i.e. 25 and the average number of images searched for 
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Sequential Searching is equal to half of the size of training set (280), i.e. 140.Our 

PCA + SOM method, under all experimental conditions: 3 trails of 2 SOM sizes and 

3 different training times for each network size, performs much better than the 

sequential search by reducing the search space to 25%–30% of the original space 

(see Table 4.4). 

Table 4.5 depicted distributions of persons and images over the 3 trails of SOM of 

sizes 3×3. 

Table 4.5 Node distribution for 3×3 SOM: No. of Person and Image classified 
under each node 

Training Time (epochs)  
3000 5000 10000 

Trails Node Person Image Person Image Person Image
1 7 41 8 39 8 47 
2 7 41 5 27 6 33 
3 6 36 8 47 9 45 
4 5 27 4 24 5 30 
5 4 20 5 26 4 20 
6 3 16 4 24 5 30 
7 9 45 3 18 7 41 
8 5 30 5 28 3 16 

Trail 1 

9 4 24 8 47 3 18 
1 6 36 9 45 7 42 
2 8 47 4 24 6 34 
3 8 47 2 12 2 12 
4 5 27 4 21 6 35 
5 4 20 5 26 5 26 
6 4 22 7 40 5 30 
7 8 39 6 36 6 36 
8 4 24 7 41 4 21 

Trail 2 

9 3 18 6 35 9 44 
1 8 39 9 52 6 36 
2 5 27 6 36 5 28 
3 8 47 6 36 1 6 
4 4 24 4 21 5 30 
5 5 26 7 42 7 38 
6 4 24 5 28 6 36 
7 3 18 7 30 5 30 
8 5 28 5 29 6 32 

Trail 3 

9 8 47 1 6 9 44  
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Table 4.6 depicted distributions of persons and images over the 3 trails of SOM of 

sizes 5×5. 

Table 4.6 Node distribution for 5×5 SOM: No. of Person and Image classified 
under each node (a) Trail 1, (b) Trail 2 and (c) Trail 3 

(a) 
Training Time (epochs)  

3000 5000 10000 
Trails Node Person Image Person Image Person Image

1 4 24 5 30 5 30 
2 2 12 3 17 0 0 
3 1 6 3 18 1 6 
4 3 17 1 2 3 18 
5 3 10 3 10 2 12 
6 0 0 0 0 3 18 
7 2 12 3 18 1 6 
8 0 0 2 12 3 17 
9 2 9 3 14 1 6 
10 4 23 1 6 2 11 
11 2 12 2 12 1 6 
12 3 17 1 6 1 6 
13 3 14 0 0 4 20 
14 1 6 2 12 3 18 
15 2 12 4 24 4 22 
16 4 24 3 18 3 14 
17 0 0 2 12 1 6 
18 3 18 1 6 1 6 
19 2 12 2 12 1 6 
20 0 0 0 0 1 6 
21 1 6 2 11 4 16 
22 2 12 1 6 2 12 
23 3 16 2 10 2 12 
24 0 0 1 6 0 0 

Trail 1 

25 3 18 3 18 1 6  
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(b) 

Training Time (epochs)  3000 5000 10000 
Trails Node Person Image Person Image Person Image

1 5 30 4 24 4 24 
2 1 6 0 0 1 6 
3 1 6 2 12 1 6 
4 3 18 3 18 2 12 
5 2 12 1 6 1 6 
6 3 17 2 12 2 12 
7 1 6 1 6 2 12 
8 2 12 3 17 3 17 
9 0 0 1 6 1 6 
10 2 12 4 23 2 12 
11 3 18 1 6 4 24 
12 0 0 2 12 0 0 
13 3 14 1 6 3 14 
14 3 18 0 0 3 18 
15 4 22 4 22 2 10 
16 2 8 4 15 2 12 
17 2 7 5 26 3 14 
18 2 12 1 6 1 6 
19 3 18 1 6 2 12 
20 0 0 1 6 0 0 
21 3 14 2 12 4 16 
22 2 12 2 9 3 17 
23 2 12 3 18 2 12 
24 0 0 0 0 0 0 

Trail 2 

25 1 6 2 12 2 12  
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(c) 

Training Time (epochs)  3000 5000 10000 
Trails Node Person Image Person Image Person Image

1 5 30 6 36 2 12 
2 0 0 0 0 1 6 
3 1 6 1 6 2 12 
4 4 24 4 24 4 24 
5 2 12 1 6 1 6 
6 1 6 2 12 1 6 
7 3 18 1 6 2 12 
8 3 17 3 17 3 17 
9 1 6 0 0 1 6 
10 1 6 3 17 1 6 
11 1 6 3 18 3 18 
12 2 9 0 0 1 6 
13 2 8 3 14 3 14 
14 3 18 1 6 2 12 
15 4 22 3 16 3 16 
16 2 11 4 20 3 15 
17 0 0 0 0 2 11 
18 2 12 2 12 1 6 
19 2 12 1 6 2 12 
20 0 0 1 6 0 0 
21 3 10 5 22 3 10 
22 2 11 2 12 4 23 
23 3 18 2 12 3 18 
24 0 0 0 0 0 0 

Trail 3 

25 3 18 2 12 2 12  
Table 4.7 recorded the minimum, maximum and mean search depth, which is in 

terms of node visited, of all experimental conditions. 

Table 4.7 Minimum, Maximum and Mean Search Depth (in terms of Node) for 3 
Trails of 2 Sizes and 3 Training Times 

Training Time (epochs)  3000 5000 10000 

Trails SOM 
size Min Max Mean Min Max Mean Min Max Mean

3×3 1 5 2.6033 1 5 2.4933 1 5 2.5233Trail 
1 5×5 1 12.5 5.3167 1 13.6667 5.6 1 12.5 5.3167

3×3 1 5 2.53 1 5 2.48 1 5 2.4433Trail 
2 5×5 1 12.5 5.3633 1 13 5.3 1 13.6667 5.3467

Trail 3×3 1 5 2.4833 1 5 2.4033 1 5 2.3733
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It is observed that the more evenly the persons/classes are distributed over the 

nodes of SOM, the better the retrieval performance. Adequate nodes and training for 

SOM may make the SOM more evenly spread over the input space/training samples 

and thus improve the retrieval performance. 

4.4 A Hierarchical Approach 

We propose a hierarchical palmprint coding scheme to facilitate coarse-to-fine 

matching for effectively and efficiently identifying a palmprint in a large database. 

More specifically, we extract different palmprint features at different levels. 

Level-1. Global geometry based key point distance; 

Level–2. Global texture energy; 

Level–3. Fuzzy “interest’’ line; 

Level–4. Local directional texture energy vector. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.6 Palmprint samples of distinctive texture differences (a) strong principal 
lines (b) less wrinkle (c) strong wrinkle 

We start with the global geometry feature to localize the region of interest of 

palmprint sample at coarse level and apply a distance measurement of the palm 

boundary to guide the dynamic selection of a small set of similar candidates from the 

database for further processing. We also use the global texture energy (GTE) for fast 

search for the best match. Such a mask-based texture feature representation is 

characterized with high convergence of inner-palm similarities and good dispersion 

of inter-palm discrimination. We then adopt fuzzy set theory to detect “interest” 
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feature lines to guide the search for the best match at fine level. Finally, we apply 

local texture measurement to establish a feature vector for palmprint matching. 

Figure 4.7 illustrates the general structure of our system. 

 
Figure 4.7 System diagram of hierarchical palmprint system 

4.4.1 Level-1: Global geometry based key point distance 

As detailed in 4.2.1, the points (x1, y1) and (x2, y2) defined in the preprocessing of 

palmprint images are regarded as key points and the distance (d) between the points 

is used as Level-1 feature. The similarity measure used at this level is as follows. 

ji ddD −=1  (4.1) 
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4.4.2 Level–2: Global texture energy (GTE) 

Global texture energy constitutes the averages of each of the four directional texture 

energies (TE). Directional TE at position (i, j) is obtained from summing, within a 

test window of size Wx×Wy centered at (i, j), the square of values after convolution of 

preprocessed palmprint images (I) against the corresponding directional “tuned” 

mask (Ak) (You and Cohen 1993; Laws 1980) and then normalizing with P2 = ∑ 

(Ak)2. 
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Directional TE approximates the local variance after convolution. GTE is 

insensitive to noise and shifting, easy to compute and good for discrimination among 

different classes. The four directional “tuned” masks, horizontal, vertical, 45° and 

-45°, shown in Figure 4.8, are zero sum and of size 5×5. 

-1 -2 -4 -2 -1 
0 0 0 0 0 
2 4 8 4 2 
0 0 0 0 0 
-1 -2 -4 -2 -1 

(a) 

-1 0 2 0 -1 
-2 0 4 0 -2 
-4 0 8 0 -4 
-2 0 4 0 -2 
-1 0 2 0 -1 

(b) 
0 -1 -4 0 2 
-1 -6 0 8 0 
-4 0 12 0 -4 
0 8 0 -6 -1 
2 0 -4 -1 0 

(c) 

2 0 -4 -1 0 
0 8 0 -6 -1 
-4 0 12 0 -4 
-1 -6 0 8 0 
0 -1 -4 0 2 

(d) 
Figure 4.8 Four directional “tuned” masks for global texture energy extraction. 
(a) Horizontal (b) Vertical, (c) 45° and (d) -45° 

The similarity measure used at this level is as follows. 

∑
=
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0
2

k
kjki vvD  (4.3) 

Figure 4.9 depicts the distribution of GTE of 10 palms, in total 80 images. It can 

be seen that GTE is an effective tool to distinguish similar palms from dissimilar 

ones. Two sets of images from similar palms are shown in Figure 4.10. 
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Figure 4.9 Comparison of palmprint GTE distribution (80 palmprint images of 10 
palms): inter-palm dispersion vs. inner-palm convergence. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.10 Two sets of similar palmprints. 1st Column (a) (c) and (e) Set one and 
2nd Column (b), (d) and (f) Set two 
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4.4.3 Level–3: Fuzzy “interest’’ line 

Dominant feature lines in palmprint, e.g. principal lines, wrinkles, are extracted as 

follows: 

Step 1. Convert the pre-processed images into a feature image as described in 

You and Bhattacharya (2000). 

Step 2. Apply the fuzzy rule to extract the “interest” lines. Let IT be a feature 

image. The fuzzy output is given by the following piecewise linear 

membership function with a = µ and b =µ + σ, where µ and σ are respectively 

the sample mean and standard deviation of all pixels in IT. 
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A sample of fuzzy “interest” lines is shown in Figure 4.11. 

 
(a) 

 
(b) 

Figure 4.11 The detection of “interest” lines based on fuzzy theory. 
(a) Original image and (b) its “interest” lines 

Step 3. Take the mean of the fuzzy output in a window of size M×N to 

represent the local interest lines such as 

)),((1)( ∑∑=
x y

TT yxIS
MN

Iv
 

(4.5) 

In our experiments, both M and N are set to 20. Thus, the “interest” lines can be 

represented by a 64 dimension feature vector obtained from 64 overlapped blocks. 

The similarity measure used at this level measuring the distance between the feature 

vectors X and Y is an angular distance as follows. 
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(4.6) 

4.4.4 Level–4: Local directional texture energy vector 

In achieving high accuracy, a long feature vector formed from local directional 

texture energy is utilized. The local directional texture energy within a window of 

size X×Y is defined as follows. 
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(4.7) 

The size of the window is set to 20×20 that strike the balance between the size of 

a feature vector and the accuracy of the system. Therefore, each block is overlapped 

with the adjacent blocks. The similarity measure used at this level measuring the 

distance between the feature vectors {yki} and {ykj} is a local angular distance as 

follows. 

∑
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(4.8) 

where yki = {uc} and uc is defined in Eq. 4.7 with k = {1,…, 64} and  

c = {0,…, 3} 

4.4.5 Experimental Results and Performance 

Due to some inappropriately placed palms at the stage of acquisition, only 5437 out 

of 7,752 palmprint images are used for the results reported below. In Figure 4.12, the 

effectiveness of the four level features is reported in the form of genuine and 

impostor distributions and, ROC curves. From Figure 4.12, we can observe that the 

discriminative power increases from Level-1 feature to Level-4 feature. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

(e) 
 

(f) 

(g) 
 

(h) 
Figure 4.12 Performance of Level-1 to Level-4 features. (a) (c) (e) and (g) the 
genuine and imposter distributions and (b) (d) (f) and (h) ROC curves of the four 
level features respectively 
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We then have to determine the thresholds at each of the first three levels and 

evaluate the performance of the hierarchical approach. Three sets of tests, 

Hierarchical 1, 2 and 3, are formed with different thresholds selected for each of the 

first three levels, T1 to T3 respectively (see Table 4.8 for details). 

Table 4.8 Thresholds for tests of hierarchical approach 

 Hierarchical 1 Hierarchical 2 Hierarchical 3 
T1 20 23 25 
T2 0.0194 0.0216 0.0250 
T3 0.764 0.73 0.68  

Retaining more candidates after the first two levels while restricting more at 

Level-3, the performance (of Hierarchical 3) is found to be the best (lower false and 

correct rejection rate) among tested (see Table 4.9 for details). 

Table 4.9 Retrieval performance of tests of hierarchical approach 

 Hierarchical 1 Hierarchical 2 Hierarchical 3
False Rejection Rate 6.13% 3.89% 1.98% 

Correct Rejection Rate 88.23% 78.19% 60.51%  
The performance of the three tests with comparison to using Level-4 feature only, 

i.e. without hierarchical approach, is plotted as ROC curves in Figure 4.13. We can 

observe the performance of using Level-4 feature only is significantly better than 

those with hierarchical approach only when the FAR is large, e.g. 1%. They perform 

more or less the same at the usual biometric system operating points, i.e. lower FAR. 

 
Figure 4.13 The ROC curves of hierarchical approach with different parameters 
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Our hierarchical method was tested on an embedded Intel Pentium III 500MHz 

processor PC and implemented with Visual C++ 6.0. The measured execution times 

of preprocessing, feature extraction, Level-1 to Level-4 matching for the database 

under test are presented in Table 4.10. The total execution time was around 0.75s. 

Table 4.10 Execution time of each procedures considered 

Operations Time used (ms) 
Preprocessing 538 

Feature Extraction 215 
Level-1 matching 4.7×10-5 
Level-2 matching 3.4×10-4 
Level-3 matching 0.009 
Level-4 matching 0.059  

Based on the execution times measured, we can model the execution time of a 

large database as follows. Let D be the size of the database and P1, P2 and P3 be the 

percentages of the total number of discarded palmprint samples in the database 

respectively after Level-1, Level-2 and Level-3 matching, which are controlled by 

the thresholds T1, T2 and T3 accordingly. Let Sp, Sf, and, S1, S2, S3 and S4 respectively 

be the execution time for preprocessing, feature extraction and, Level-1, Level-2, 

Level-3 and Level-4 matching. For a sequential search in a palmprint image database, 

the total execution time required (TS) is 

TS = Sp + Sf + D × S4 (4.9) 
For searching the same palmprint image database with hierarchical approach, the 

total execution time required (TH) is 

TH = Sp + Sf + D × S1 + D × (1-P1) × S2 + D × (1-P1-P2) × S3  
+ D × (1-P1-P2-P3) × S4 

(4.10) 

The total execution time required (TS for sequential approach and TH for 

hierarchical approach) is plotted against the size of the database D in Figure 4.14. 

The thresholds are set as listed in Table 4.8. 
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Figure 4.14 Computation time of hierarchical approach for large database 

The modeled execution time of our hierarchical approach for a large database 

with 105 palmprint images is 2.8s while the traditional sequential approach requires 

6.7s with EER of 4.5%. It is obvious that the hierarchical approach is much more 

effective than sequential method when the database is large. 

A comparison of different palmprint retrieval systems is summarized in Table 4.11 

Table 4.11 Comparison of different palmprint retrieval systems 

 
Feature Point  

Based Matching 
(Duta et al. 2001) 

Line based Matching
(Zhang and Shu 1999)

Hierarchical 
Approach 

Database 
Size 30 samples 200 samples 7,752 samples 

Feature 
Extraction 

Feature points 
(single feature) 

Lines 
(single feature) 

Texture, geometry 
 and lines 

(multiple features) 

Matching 
Criteria 

Distance measurement 
(fixed measurement)

Euclidian distance 
(fixed measurement)

Energy difference, 
angular difference 

(flexible measurement)
Search 
Method 

1-to-1 comparison 
(sequential) 

1-to-1 comparison 
(sequential) 

Guided search 
(hierarchical) 

Retrieval 
Accuracy good limited good 

 

4.5 Recapitulation 

In this chapter, we have, first, given an introduction to palmprint and issues related to 

palmprint retrieval. A comprehensive description of one of the largest palmprint 
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databases available and its preprocessing operations are then given. We have 

presented two proposed palmprint image retrieval methods which have been tested 

on the described palmprint database. The PCA+SOM method addresses the 

inefficiency of sequential search which is a usual practice in biometric systems. The 

hierarchical method proposed is an initiative to deal with palmprint retrieval in large 

databases. 
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Chapter 5 A Study of Face Images 
Many automated systems need to confirm the identity of an individual, whom is 

requesting services, in a reliable manner because the rendered service should only be 

accessed by a legitimate user. Biometric recognition, or simply Biometrics (Miller 

1994), is concerned with the automatic recognition of individuals based on their 

biological/physiological or behavioral characteristics. Although no single biometric 

is expected to satisfy all identification requirements, the use of such unique, reliable 

and stable personal features has attracted considerable interest in the development of 

biometrics identification systems for civilian, military, and forensic applications. 

They have attained certain level of maturity. (Jain et al. 2004) 

Among many body characteristics that have been used, face is one of the most 

commonly used characteristics (Jain et al. 1999, 2004; Zhang 2000, 2002) and has 

been studied (Heisele et al. 2003; Liu and Wechsler 2003; Wu et al. 2002; Zhang et 

al. 2002) across a number of research fields, e.g. computer vision and pattern 

recognition. 

5.1 Introduction to Face Retrieval 

Face recognition is a non-intrusive method that captures still images and/or video 

sequences, from controlled, static to uncontrolled, cluttered environment; recognition 

can be performed using 2D images and/or 3D models with Holistic/Global 

approaches, Feature-based/Structural approaches or Hybrid approaches. (Zhao et al. 

2003; Chellappa et al. 1995; Jain et al. 2004) 

Holistic/Global approaches generally include those methods that take the whole 

face region as the input to a face recognition system. (Zhao et al. 2003) One well 
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known holistic/global approach to face recognition is applying Principal Component 

Analysis (PCA) on preprocessed, or even transformed, face training images. A subset 

of principal components forms the global representation of face for recognition with 

a suitable (dis)similarity measure. (Turk and Pentland 1991; Draper et al. 2003; 

Martinez and Kak 2001; Liu and Wechsler 2003) Another common holistic/global 

approach is the introduction of artificial neural networks (Heisele et al. 2003) as the 

classifier for face recognition. 

Feature-based/Structural approaches first locate feature points/regions of interest, 

such as eyes, noses and mouth. Then features are extracted with the use of various 

operators or transforms based on their geometric properties or appearance 

characteristics. (Zhao et al. 2003) Wiskott et al. (1997) is one of the designs using 

this approach. They locate a set of fiducial points as nodes of the elastic bunch graph. 

A small set of Gabor jets (i.e. filters responses) from an individual is stored at the 

relevant nodes of the elastic bunch graph for face recognition. 

Hybrid approaches take the global (whole face) and local features into 

consideration, which is arguably to be potentially the best approach. Heisele et al. 

(2003) adopt this approach. They allocate each local feature region a Support Vector 

Machine (SVM, Vapnik 1995) detector to decompose the face into a set of facial 

components. There are 10 dominant components used. After normalization, they are 

formed into a single vector which is the input to SVMs for personal identification. 

5.2 Face Databases 

In this subsection, we will briefly introduce some commonly referred public face 

databases. We have made used some of those described below in our studies. 
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5.2.1 The AR database 

The AR face database (Martinez and Benavente 1998) from Purdue University is 

used in our experiments. After careful examination of the database, we found that 

there are images from 135 subjects (76 men and 59 women) instead of the stated 126. 

We also found that only 120 subjects (65 men and 55 women) out of the 135 subjects 

have been taken images in the two sessions. Therefore, we used only those images 

from the 120 subjects who have been taken photographs in two sessions (with 14 

days apart between the two sessions). As there are 13 images are taken in each 

session, the testing set we used contains 3,120 images (1,560 in each session); each 

of the 13 images is taken under various conditions: different facial expressions, 

illumination settings and occlusions (sunglasses and scarf). There is no limitation on 

the participant’s clothes, make-up, ornaments, hair styles, etc. (Martinez and 

Benavente 1998; Liu and Wechsler 2003) 

The AR face database provides still images of two different sessions. It has been 

used to study the effect of matching “duplicate” (Martinez and Kak 2001). It has also 

been used to test on the effect of facial expressions, illumination settings and 

occlusions (Martinez 2002). 

5.2.2 The ORL database 

The ORL face database (Samaria and Harter 1994), which contains 10 different 

images for each of 40 distinct subjects, is created by the Olivetti Research 

Laboratory, Cambridge, UK. For some of the subjects, the images were taken at 

different times, varying lighting slightly, facial expressions (open/closed eyes, 

smiling/non-smiling) and facial details (glasses/no-glasses). All the images are taken 

against a dark homogeneous background and the subjects are in up-right, frontal 
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position (with tolerance for some side movement). The size of each image is 92×112 

of 8-bit grey levels. 

The ORL database has been used for face detection and recognition studies. It has 

been used to test for the effect of pose variations. (Zhao et al. 2003) 

5.3 An Aggregated 2D Gabor Features-based Approach 

In many commercial/civilian systems, since the environment is static and under 

control, full elasticity of the automatic face recognition system may not be required, 

i.e. with cooperative subjects, proper 2D frontal image can be obtained. In such a 

case, the automatic face recognition problem can be simplified to the classical 

pattern recognition/image retrieval problem, which deals mainly with feature 

extraction and identification/verification. 

We proposed a holistic approach with lower feature dimension to deal with the 

transformed face recognition problem; our aggregated Gabor approach uses the mean 

and standard deviation of Gabor filters responses, which is the result of the 

convolution of Gabor filters with grayscale face images, as features. Since Gabor 

filters of 3 scales and 6 orientations are adopted for feature extraction, for the mean 

and the standard deviation of filter responses, each is of 36 dimensions (18 each for 

real and imaginary part of filter’s responses); that is there are totally 72 

dimensions/features. Feature vector of a lower dimensional space can reduce the 

computation complexity, i.e. increasing speed, as well as the storage required for 

face recognition process. 

Based on Eq. 3.20, Eq. 3.23 and Eq. 3.24, the mean (M) of the real part (Eq. 5.1) 

and the imaginary (Eq. 5.2) part of filter responses are 

∑∑=
x y

cc yxkM ),,,(),( θωθω  (5.1) 
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∑∑=
x y

ss yxkM ),,,(),( θωθω  (5.2) 

Correspondingly, the standard deviation (SD) of the real part (Eq. 5.3) and the 

imaginary part (Eq. 5.4) of filter responses are as follows. 

∑∑=
x y

cc yxkSD ),,,(),( θωθω  (5.3) 

∑∑=
x y

ss yxkSD ),,,(),( θωθω  (5.4) 

The feature vector (FV) of a face image is of the following form 

FV = [Mc(ω1,θ1),…, Mc(ω3,θ6), Ms(ω1,θ1),…, Ms(ω3,θ6), 
SDc(ω1,θ1), ,…, SDc(ω3,θ6), SDs(ω1,θ1),…, SDs(ω3,θ6)] 

(5.5) 

L1- and L2-norm are adopted as the (dis)similarity measures to define how similar 

is one image, in our testing databases, when it is compared to another. Based on the 

query face image, the N nearest neighbour rule with majority voting scheme helps to 

determine the best matched individual within the database. 

We have converted the color images in The AR database into gray scale images of 

size 192×144 as images of our testing database. Since there is only one face per 

image and the face is roughly located at the center of the image, no face detection is 

performed. 

5.3.1 Experimental results 

Phase 1 
Face subimages for processing are cropped from the center part of the image in our 

testing database using two strategies: 1) the testing set (64): images in our testing 

database are first resized from 192×144 to 128×128 using bicubic interpolation. 

Then, the central canvas, of size 64×64, of each interpolated image is used to extract 

features; 2) the testing set (96): the central canvas, of size 96×96, of each image in 

our testing database is cropped for feature extraction. A set of sample images of a 

subject in the testing database is shown in Figure 5.1, (a)–(z); images taken from 1st 

session are (a)–(m) and images taken from 1st session are (n)–(z). One sample from 
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each of the two testing sets is also shown along in Figure 5.1, marked as (64) and 

(96), for reference; the one marked with (64) is from the 1st session being resized and 

cropped using strategy one and image marked with (96) is from the 2nd session being 

cropped using strategy two. 

 
(a) 

 
(b) (c) (d) (e) 

 
(f) (g) 

 
(h) 

 
(i) (j) (k) (l) 

 
(m) (n) 

 
(o) 

 
(p) (q) (r) (s) 

 
(t) (u) 

 
(v) 

 
(w) (x) (y) (z) 

 
(64) (96)  

Figure 5.1 A set of images of one subject in the testing database: images taken from
1st session (a)-(m) and 2nd session (n)-(z); image marked (64) is from 1st session 
being preprocessed to be of size 64×64 as the testing set (64) and image marked (96) 
is from 2nd session being preprocessed to be of size 96×96 as the testing set (96). 

Elliptical Gabor filters of 3 scales and 6 orientations, as derived in Chapter 3.1.3 

Eq. 3.21, directly convolve with all images of the two testing sets; the mean and 

standard deviation of the real and imaginary parts of all filters responses are 

extracted as features, i.e. in total 72 dimensions (36 each for real and imaginary parts, 

18 each for mean and standard deviation of each part of the filter response), to 

represent each image in our testing database for the first experiment. L1- and L2-norm 

are used to measure (dis)similarity across our experiments. 

We experimented with our method under five situations: (1) the whole database, 

(2) 1st session match against 1st session (S1 vs. S1), (3) 1st session match against 2nd 

session (S1 vs. S2), (4) 2nd session match against 1st session (S2 vs. S1) and (5) 2nd 
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session match against 2nd session (S2 vs. S2). For case (1), images of the whole 

testing database are treated as registered images, i.e. no unseen image is expected. 

For cases (2) and (5), they are similar to case (1) except that only images of 1st 

session or 2nd session is used. For cases (3) and (4), however, either 1st or 2nd session 

is the registered set while the other one is the query set, i.e. matching “duplicates” 

(Martinez and Kak 2001). 
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Figure 5.2 The Accumulated Variance Explained by Principle Components 

Another test uses the first 72 principle components, which is associated with the 

largest variances, trained with all images obtained in one session, i.e. either S1 or S2, 

of the two testing sets (64) and (96). Since we use PCA as a reference for 

performance comparison, only case (2) to (5) described above are tested such that 

images in the training sets are from the same session. Moreover, we choose, for PCA, 

the same feature dimension as that of Aggregated 2D Gabor features because we can 

determine the effectiveness of aggregated Gabor method directly from the system 



 

- 76 - 

performance; we only use one feature dimensionality for experiment as it already 

captures 97.968%-98.823% of the total variability of the training sets (either session 

of the two testing sets). The accumulated variances explained by principle 

components of each training set are shown in Figure 5.2. 
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(j)  

Figure 5.3 The effect of using L1- and L2-norm on the performance of aggregated 
Gabor method for testing sets (64) and (96) 

The ROC curves depicting system performance of aggregated Gabor method 

under the five evaluation cases using L1- and L2-norm on the testing set (64) are 

shown in Figure 5.3 (a)-(e). The ROC curves depicting system performance of 

aggregated Gabor method under the five evaluation cases using L1- and L2-norm on 



 

- 77 - 

the testing sets (96) are shown in Figure 5.3 (f)-(j). It can be observed that the 

L1-norm is performing slightly better than L2-norm in all cases of experiments done 

on both testing sets. 
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(j)  

Figure 5.4 The effect of testing sets on the performance of aggregated Gabor method 
using L1-norm and L2-norm 

The ROC curves depicting system performance of aggregated Gabor method 

under the five evaluation cases using L1-norm on the testing sets (64) and (96) is 

shown in Figure 5.4 (a)-(e) while using L2-norm is shown in Figure 5.4 (f)-(j). Based 

on the ROC curves in Figure 5.4, it is observed that the performance of our method 
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applied on the testing set (96) is better than the testing set (64) if a predefined 

threshold is used to decide whether it is a match or not. 

Table 5.1 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on the testing sets (64) and (96) based on the (a) 10, (b) 25 and (c) 50 
nearest neighbours. 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
Whole (64) 0.46154 0.74776 0.96154 0.26923 0.65705 0.88462

S1 vs. S1 (64) 0.30769 0.76026 1 0.30769 0.66346 1 
S1 vs. S2 (64) 0 0.28397 0.84615 0 0.24679 0.61538
S2 vs. S1 (64) 0 0.32179 0.84615 0 0.27115 0.76923
S2 vs. S2 (64) 0.38462 0.72179 1 0.15385 0.66731 1 

       
Whole (96) 0.46154 0.75673 1 0.30769 0.63558 0.96154

S1 vs. S1 (96) 0.30769 0.77564 1 0.15385 0.6609 1 
S1 vs. S2 (96) 0 0.25064 0.76923 0 0.18462 0.69231
S2 vs. S1 (96) 0 0.26667 0.92308 0 0.19038 0.69231
S2 vs. S2 (96) 0.23077 0.76538 1 0.15385 0.64231 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
Whole (64) 0.19231 0.60321 0.92308 0.076923 0.46763 0.76923

S1 vs. S1 (64) 0.15385 0.63462 1 0 0.47628 0.92308
S1 vs. S2 (64) 0 0.23846 0.69231 0 0.19808 0.69231
S2 vs. S1 (64) 0 0.24103 0.76923 0 0.20385 0.76923
S2 vs. S2 (64) 0.15385 0.5891 1 0 0.49872 1 

       
Whole (96) 0.15385 0.60417 0.96154 0.11538 0.47628 0.92308

S1 vs. S1 (96) 0.15385 0.63782 1 0.076923 0.49936 0.92308
S1 vs. S2 (96) 0 0.21923 0.84615 0 0.15321 0.69231
S2 vs. S1 (96) 0 0.21474 0.92308 0 0.15897 0.84615
S2 vs. S2 (96) 0 0.6359 1 0 0.49808 1  
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(c) 

(Dis)Similarity Measure  L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
Whole (64) 0.038462 0.48109 0.84615 0 0.35769 0.80769

S1 vs. S1 (64) 0 0.51987 1 0 0.36923 0.92308
S1 vs. S2 (64) 0 0.20192 0.76923 0 0.17115 0.69231
S2 vs. S1 (64) 0 0.20577 0.84615 0 0.15705 0.76923
S2 vs. S2 (64) 0.076923 0.48141 1 0 0.38654 1 

       
Whole (96) 0.076923 0.48462 0.92308 0.038462 0.36635 0.84615

S1 vs. S1 (96) 0 0.49615 1 0 0.37436 0.92308
S1 vs. S2 (96) 0 0.18718 0.84615 0 0.12692 0.84615
S2 vs. S1 (96) 0 0.19487 0.92308 0 0.14359 0.92308
S2 vs. S2 (96) 0 0.51987 1 0 0.38462 1  

Table 5.1 shows the recognition rates based on the 1st rank of (a) Top 10, (b) Top 

25 and (c) Top 50 retrieved images of aggregated Gabor method under the five 

evaluation cases using L1- and L2-norm on the testing sets (64) and (96). Table 5.2 

shows the recognition rates using the same determinant based on PCA for 

comparison. 

Table 5.2 Recognition rates using PCA and, L1- and L2-norm on the testing sets 
(64) and (96) based on the (a) 10, (b) 25 and (c) 50 nearest neighbours. 

(a) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

S1 vs. S1 (64) 0.53846 0.92372 1 0.38462 0.88269 1 
S1 vs. S2 (64) 0 0.3359 1 0 0.32244 1 
S2 vs. S1 (64) 0 0.14872 1 0 0.15769 1 
S2 vs. S2 (64) 0.69231 0.94487 1 0.53846 0.91474 1 

       
S1 vs. S1 (96) 0.53846 0.95064 1 0.53846 0.93462 1 
S1 vs. S2 (96) 0 0.35833 1 0 0.34423 1 
S2 vs. S1 (96) 0 0.16987 0.92308 0 0.17372 1 
S2 vs. S2 (96) 0.69231 0.96603 1 0.76923 0.94808 1  
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(b) 

(Dis)Similarity Measure  L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

S1 vs. S1 (64) 0.46154 0.85256 1 0.23077 0.79295 1 
S1 vs. S2 (64) 0 0.30513 1 0 0.26474 1 
S2 vs. S1 (64) 0 0.13974 1 0 0.13654 1 
S2 vs. S2 (64) 0.23077 0.86154 1 0.076923 0.81282 1 

       
S1 vs. S1 (96) 0.38462 0.86923 1 0.23077 0.8359 1 
S1 vs. S2 (96) 0 0.34295 1 0 0.30385 1 
S2 vs. S1 (96) 0 0.15064 0.92308 0 0.14615 0.92308
S2 vs. S2 (96) 0.38462 0.90385 1 0.15385 0.85641 1  

(c) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
S1 vs. S1 (64) 0.30769 0.77564 1 0.076923 0.68141 1 
S1 vs. S2 (64) 0 0.28846 1 0 0.25 1 
S2 vs. S1 (64) 0 0.12564 1 0 0.12308 1 
S2 vs. S2 (64) 0.30769 0.79038 1 0 0.72372 1 

       
S1 vs. S1 (96) 0.15385 0.78269 1 0.15385 0.70577 1 
S1 vs. S2 (96) 0 0.32821 1 0 0.27244 1 
S2 vs. S1 (96) 0 0.13846 0.92308 0 0.11987 0.92308
S2 vs. S2 (96) 0.38462 0.83013 1 0.076923 0.76538 1  

From Table 5.1 and 5.2, it is observed that under cases (2) and (5), the 

performance of PCA is better that aggregated Gabor method. Nonetheless, under 

cases (3) and (4), i.e. matching “duplicates”, the performance of aggregated Gabor 

method is better or comparable to that of PCA in terms of not only figures but also 

milder performance degradation caused by “duplicates”. In addition, the 

performance of case (3), S1 vs. S2, is always significantly better than that of case (4), 

S2 vs. S1; this reveals that the performance of PCA heavily depends on the training 

samples selected (registered images) while aggregated Gabor method is not affected 

by the selection of registered images. 
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Phase 2 
In Phase 2; images of 50 randomly chosen subjects, which consisted of 25 males and 

25 females, in our testing database are used. For the image sets used in Phase 2, the 

facial features (Martinez and Kak 2001), such as the center of eyes, in each of the 

image are first localized. Then each face is aligned upright based on the center of 

eyes (Martinez 2002) and the region containing the face is cropped to be of size 

55×71; this is analogous to the planar transform suggested by Beymer (1995). They 

are finally warped to a “standard” face (Beymer 1995); the warping procedure, 

which is designed to normalize the face and to align the facial features to 

approximately the same pixels, has been shown to improve recognition results 

(Martinez 2002; Martinez and Kak 2001). Afterwards, an oval mask is applied to 

remove the highly probable background area so as to extract only responses (for 

Aggregated 2D Gabor Features) or pixels (for PCA) that are within the mask for 

feature extraction (Martinez and Kak 2001). 

 
(a) 

 
(b) (c) (d) (e) 

 
(f) (g) 

 
(h) 

 
(i) (j) (k) (l) 

 
(m) (n)  

Figure 5.5 A set of warped images of one subject in our testing set for Phase 2. (a)-(g) 
are from 1st session while (h)-(n) are from 2nd session. 

A sample set of the fourteen preprocessed (warped) images used in Phase 2 is 

shown in Figure 5.5. In Figure 5.5, the first row, i.e. (a)-(g), are images obtained in 

the 1st session (s1) and the second row, i.e. (h)-(n), are those obtained in the 2nd 

session (s2). In stage one of Phase 2, images of Figure 5.5 (a), (e)-(g) and (h), (l)-(n) 
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(corresponding to Figure 5.1 (a), (e)-(g) and (n), (r)-(t) and, 400 images in total) are 

used to test against aggregated Gabor method and PCA similarly as described in 

Phase 1. In stage two of Phase 2; images of Figure 5.5 (a)-(g) and (h)-(n) 

(corresponding to Figure 5.1 (a)-(g) and (n)-(t) and, 700 images in total) are used to 

test against the two methods. 

We conduct the experiments of Phase 2 in two stages: First, only the four images 

of the neutral expression (under various illumination conditions) from both sessions 

(s1n and s2n) are used in stage one; Second, the seven images without occlusion (i.e. 

s1 and s2, the four images used in stage one plus the three with various facial 

expressions, s1f and s2f other than neutral) are used in stage two. 

Since PCA are sensitive to pixel-wise variations, the warping (that aligns the 

features), the oval mask (that removes the noisy background) and the testing images 

(only the neutral expression is used, i.e. no variation introduced by facial expression) 

are all more favourable to PCA; it is expected that PCA will outperform aggregated 

Gabor method in stage one of the experiment. Both of the methods are expected to 

attain high accuracy rate, normally over 90 percent with a testing image set at this 

scale (Martinez 2002). 

The results of stage one are summarized in Table 5.3 and Table 5.4 while the 

results of stage two are summed up in Table 5.5 and Table 5.6. Table 5.3 and Table 

5.5 shows the recognition rates based on the (a) 5, (b) 10 and (c) 20 nearest 

neighbours of aggregated Gabor method under the four evaluation cases (i.e. cases (2) 

to (5) in Phase 1 described above) using L1- and L2-norm on the preprocessed 

(warped) image set. Table 5.4 and Table 5.6 show the recognition rates using the 

same determinant based on PCA for comparison. 
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Table 5.3 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images with neutral expressions, s1n and s2n, based on the (a) 
5, (b) 10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 0.5 0.97 1 0.5 .975 1 
s1n vs. s2n 0.25 0.895 1 0 0.875 1 
s2n vs. s1n 0.5 0.915 1 0.25 0.88 1 
s2n vs. s2n 0.25 0.97 1 0.5 0.975 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 0.5 0.945 1 0.25 0.96 1 
s1n vs. s2n 0.25 0.89 1 0.25 0.85 1 
s2n vs. s1n 0.5 0.915 1 0.25 0.885 1 
s2n vs. s2n 0.5 0.945 1 0.25 0.955 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 0.5 0.86 1 0.5 0.895 1 
s1n vs. s2n 0.25 0.81 1 0 0.85 1 
s2n vs. s1n 0.25 0.835 1 0.25 0.835 1 
s2n vs. s2n 0.25 0.855 1 0.5 0.86 1  
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Table 5.4 Recognition rates using PCA and, L1- and L2-norm on warped images 
with neutral expressions, s1n and s2n, based on the (a) 5, (b) 10 and (c) 20 nearest 
neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 1 1 1 1 1 1 
s1n vs. s2n 0.75 0.985 1 0.25 0.955 1 
s2n vs. s1n 0 0.96 1 0.25 0.94 1 
s2n vs. s2n 1 1 1 1 1 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 0.75 0.99 1 1 1 1 
s1n vs. s2n 0.5 0.95 1 0.25 0.965 1 
s2n vs. s1n 0.5 0.95 1 0.5 0.975 1 
s2n vs. s2n 0.75 0.995 1 0.5 0.99 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1n vs. s1n 0.75 0.985 1 0.25 0.945 1 
s1n vs. s2n 0.25 0.93 1 0 0.9 1 
s2n vs. s1n 0.25 0.915 1 0.5 0.935 1 
s2n vs. s2n 0.75 0.995 1 0.5 0.95 1  
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Table 5.5 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images, s1 and s2, based on the (a) 5, (b) 10 and (c) 20 nearest 
neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.42857 0.88571 1 0.42857 0.87714 1 
s1 vs. s2 0.14286 0.78 1 0.14286 0.71143 1 
s2 vs. s1 0.28571 0.79143 1 0.14286 0.585 1 
s2 vs. s2 0.57143 0.92286 1 0.42857 0.88 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.42857 0.82286 1 0.14286 0.77429 1 
s1 vs. s2 0.14286 0.70857 1 0 0.61429 1 
s2 vs. s1 0.28571 0.72286 1 0 0.51 1 
s2 vs. s2 0.42857 0.82571 1 0 0.79714 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.14286 0.7 1 0.14286 0.66857 1 
s1 vs. s2 0 0.61714 1 0.14286 0.58571 1 
s2 vs. s1 0 0.58857 1 0.14286 0.395 1 
s2 vs. s2 0 0.70571 1 0 0.66286 1  
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Table 5.6 Recognition rates using PCA and, L1- and L2-norm on warped images, s1 
and s2, based on the (a) 5, (b) 10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.71429 0.96571 1 0.71429 0.95714 1 
s1 vs. s2 0.42857 0.87143 1 0.28571 0.85429 1 
s2 vs. s1 0.28571 0.82571 1 0.14286 0.79714 1 
s2 vs. s2 0.85714 0.98571 1 0.71429 0.96857 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.57143 0.92286 1 0.42857 0.92 1 
s1 vs. s2 0.42857 0.82 1 0.14286 0.81714 1 
s2 vs. s1 0.28571 0.74571 1 0.14286 0.76571 1 
s2 vs. s2 0.71429 0.94286 1 0.57143 0.91714 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.42857 0.88571 1 0.42857 0.87714 1 
s1 vs. s2 0.14286 0.75143 1 0.42857 0.78 1 
s2 vs. s1 0 0.68571 1 0.14286 0.71714 1 
s2 vs. s2 0.42857 0.91143 1 0.42857 0.88286 1  

From the tables, it can be observed that the performances of both methods are 

greatly improved, especially in matching the “duplicates”, after suitable processing is 

introduced. This suggested that proper preprocessing that minimizes the differences 

aroused, such as alignment and normalization, from capturing face images in 

different sessions is necessary. From Table 5.3 and Table 5.4, it is confirmed that our 

presumption about the performance of aggregated Gabor method and PCA is correct; 

PCA outperforms aggregated Gabor method in stage one of this experiment. 

Nonetheless, with the introduction of variations in facial expression, a larger drop 

in performance of matching “duplicates” using PCA is observed by comparing Table 
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5.4 and Table 5.6 while a relatively mild degradation in performance is recorded for 

aggregated Gabor method by contrasting Table 5.3 and Table 5.5. 

The overall performance of PCA is better, which is mainly attributed to the 

composition of the testing image set. In the testing image set, there are more than 

half (four out of seven) of the images are of neutral facial expression. 

Robustness to Variations in Facial Expression 
The high recognition rate of PCA for neutral faces (see Table 5.4 and Table 5.6) 

dominates the performance evaluation. This can be confirmed by a test using only 

faces with facial expressions other than neutral, i.e. s1f: Figure 5.5 (b)-(d) or s2f: 

Figure 5.5 (i)-(k), as query images to match against a database that contains the 

seven images from either s1 or s2. 

The results of aggregated Gabor method and PCA are shown in Table 5.7 and 

Table 5.8 respectively. It can be noted that aggregated Gabor method is more robust 

than PCA against variations in facial expression. 
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Table 5.7 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images, s1f/s2f vs. s1/s2, based on the (a) 5, (b) 10 and (c) 20 
nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0.33333 0.79333 1 0.33333 0.78 1 
s1f vs. s2 0 0.68 1 0 0.6 1 
s2f vs. s1 0 0.66 1 0 0.60667 1 
s2f vs. s2 0.33333 0.88667 1 0.33333 0.81333 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0 0.68667 1 0 0.60667 1 
s1f vs. s2 0 0.55333 1 0 0.44 1 
s2f vs. s1 0 0.54 1 0 0.47333 1 
s2f vs. s2 0.33333 0.7 1 0 0.69333 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0 0.54 1 0 0.48667 1 
s1f vs. s2 0 0.44667 1 0 0.40667 1 
s2f vs. s1 0 0.39333 1 0 0.42 1 
s2f vs. s2 0 0.58 1 0 0.49333 1  
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Table 5.8 Recognition rates using PCA and, L1- and L2-norm on warped images, 
s1f/s2f vs. s1/s2, based on the (a) 5, (b) 10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0 0.53333 1 0 0.55333 1 
s1f vs. s2 0 0.45333 1 0 0.45333 1 
s2f vs. s1 0 0.46667 1 0 0.46667 1 
s2f vs. s2 0 0.53333 1 0 0.54667 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0 0.51333 1 0 0.51333 1 
s1f vs. s2 0 0.38667 1 0 0.43333 1 
s2f vs. s1 0 0.37333 1 0 0.4 1 
s2f vs. s2 0 0.52 1 0 0.53333 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1 0 0.52667 1 0 0.49333 1 
s1f vs. s2 0 0.39333 1 0 0.34667 1 
s2f vs. s1 0 0.35333 1 0 0.40667 1 
s2f vs. s2 0 0.52 1 0 0.46667 1  

We can further shown that aggregated Gabor method is more robust to variations 

in facial expression by a test using faces with facial expressions other than neutral as 

query images to match against a database that contains only faces with neutral facial 

expression. Since the database does not contain any faces with facial expression 

other than neutral, they are unseen to PCA, i.e. not trained. 



 

- 90 - 

 

Table 5.9 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images, s1f/s2f vs. s1n/s2n, based on the (a) 5, (b) 10 and (c) 
20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.59333 1 0 0.5 1 
s1f vs. s2n 0 0.49333 1 0 0.46 1 
s2f vs. s1n 0 0.5 1 0 0.41333 1 
s2f vs. s2n 0 0.62667 1 0 0.56667 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.61333 1 0 0.51333 1 
s1f vs. s2n 0 0.54 1 0 0.52667 1 
s2f vs. s1n 0 0.51333 1 0 0.47333 1 
s2f vs. s2n 0 0.63333 1 0 0.6 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.45333 1 0 0.41333 1 
s1f vs. s2n 0 0.42 1 0 0.47333 1 
s2f vs. s1n 0 0.41333 1 0 0.48 1 
s2f vs. s2n 0 0.52 1 0 0.59333 1  
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Table 5.10 Recognition rates using PCA and, L1- and L2-norm on warped images, 
s1f/s2f vs. s1n/s2n, based on the (a) 5, (b) 10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.26667 1 0 0.25333 1 
s1f vs. s2n 0 0.23333 1 0 0.25333 1 
s2f vs. s1n 0 0.22 1 0 0.2 1 
s2f vs. s2n 0 0.26 1 0 0.26667 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.23333 1 0 0.26 1 
s1f vs. s2n 0 0.25333 1 0 0.25333 1 
s2f vs. s1n 0 0.22667 1 0 0.20667 1 
s2f vs. s2n 0 0.22667 1 0 0.24 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1f vs. s1n 0 0.24 1 0 0.23333 1 
s1f vs. s2n 0 0.26 1 0 0.22 1 
s2f vs. s1n 0 0.23333 1 0 0.2 1 
s2f vs. s2n 0 0.21333 1 0 0.2 1  
Table 5.9 and Table 5.10 show the performance of aggregated Gabor method and 

PCA accordingly. PCA is ineffective to adapt variations in facial expression provided 

that no faces with similar facial expression are presented in training whereas 

aggregated Gabor method can still achieve a moderate accuracy. 

Curse of dimensionality and Gender 
In addition, we have considered the curse of dimensionality (Jain et al. 2000a). A 

test is conducted using only the images from male or female to test against the two 

methods but no significant difference in performance is spotted between using only 

male (Table 5.11 and Table 5.12) or female (Table 5.13 and Table 5.14) and using all 

50 subjects (Table 5.5 and Table 5.6), i.e. the peaking phenomena does not emerge 
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with the present number of classes. It can also be noticed that the gender of subjects 

does not possess noticeable effect on the matching performance of both methods. 

Table 5.11 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images of male subjects only, s1 and s2, based on the (a) 5, (b) 
10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.42857 0.85714 1 0.42857 0.85143 1 
s1 vs. s2 0.42857 0.81714 1 0.42857 0.77143 1 
s2 vs. s1 0.28571 0.76571 1 0.14286 0.70286 1 
s2 vs. s2 0.57143 0.85714 1 0.42857 0.85714 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.42857 0.77143 1 0.42857 0.75429 1 
s1 vs. s2 0.14286 0.68571 1 0 0.60571 1 
s2 vs. s1 0.28571 0.64 1 0.14286 0.62857 1 
s2 vs. s2 0.42857 0.79429 1 0 0.74857 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.14286 0.66286 1 0.28571 0.55429 0.85714
s1 vs. s2 0 0.45143 0.85714 0.14286 0.43429 0.85714
s2 vs. s1 0 0.46857 1 0.14286 0.42857 1 
s2 vs. s2 0 0.6 1 0 0.53714 1  
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Table 5.12 Recognition rates using PCA and, L1- and L2-norm on warped images of 
male subjects only, s1 and s2, based on the (a) 5, (b) 10 and (c) 20 nearest 
neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.71429 0.98286 1 0.57143 0.94857 1 
s1 vs. s2 0.42857 0.83429 1 0.28571 0.78857 1 
s2 vs. s1 0.42857 0.90286 1 0.28571 0.83429 1 
s2 vs. s2 0.71429 0.92571 1 0.71429 0.93143 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.71429 0.93714 1 0.57143 0.92571 1 
s1 vs. s2 0.42857 0.71429 1 0.42857 0.75429 1 
s2 vs. s1 0.42857 0.83429 1 0.14286 0.78857 1 
s2 vs. s2 0.71429 0.87429 1 0.57143 0.89714 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.42857 0.88 1 0.42857 0.74286 1 
s1 vs. s2 0.14286 0.63429 1 0.14286 0.57143 1 
s2 vs. s1 0.28571 0.76571 1 0.28571 0.62286 1 
s2 vs. s2 0.14286 0.78857 1 0.28571 0.75429 1  
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Table 5.13 Recognition rates using aggregated 2D Gabor features and, L1- and 
L2-norm on warped images of female subjects only, s1 and s2, based on the (a) 5, 
(b) 10 and (c) 20 nearest neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.57143 0.88571 1 0.57143 0.90286 1 
s1 vs. s2 0.28571 0.74286 1 0.14286 0.69143 1 
s2 vs. s1 0.28571 0.84 1 0.57143 0.81714 1 
s2 vs. s2 0.57143 0.89143 1 0.57143 0.89143 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.42857 0.77714 1 0.42857 0.75429 1 
s1 vs. s2 0.42857 0.70286 1 0.14286 0.66286 1 
s2 vs. s1 0.42857 0.77143 1 0.42857 0.79429 1 
s2 vs. s2 0.57143 0.86286 1 0.42857 0.74857 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.28571 0.63429 1 0.28571 0.6 1 
s1 vs. s2 0.14286 0.50857 0.85714 0.14286 0.54286 1 
s2 vs. s1 0.28571 0.60571 0.85714 0.42857 0.59429 0.85714
s2 vs. s2 0.28571 0.67429 1 0.14286 0.6 1  
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Table 5.14 Recognition rates using PCA and, L1- and L2-norm on warped images of 
female subjects only, s1 and s2, based on the (a) 5, (b) 10 and (c) 20 nearest 
neighbours 

(a) 
(Dis)Similarity Measure  L1-norm L2-norm 

Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.71429 0.98286 1 0.71429 0.97714 1 
s1 vs. s2 0.28571 0.83429 1 0.42857 0.81714 1 
s2 vs. s1 0.42857 0.86857 1 0.28571 0.85143 1 
s2 vs. s2 0.85714 0.97714 1 0.85714 0.97714 1  

(b) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 

s1 vs. s1 0.57143 0.94286 1 0.57143 0.92 1 
s1 vs. s2 0.28571 0.78857 1 0.28571 0.81143 1 
s2 vs. s1 0.14286 0.83429 1 0.42857 0.86857 1 
s2 vs. s2 0.85714 0.95429 1 0.71429 0.95429 1  

(c) 
(Dis)Similarity Measure  

L1-norm L2-norm 
Image Sets Worst Average Best Worst Average Best 
s1 vs. s1 0.57143 0.92571 1 0.42857 0.72 1 
s1 vs. s2 0 0.77143 1 0.14286 0.63429 1 
s2 vs. s1 0.14286 0.72571 1 0.28571 0.73714 1 
s2 vs. s2 0.85714 0.96 1 0.57143 0.78857 1  

5.4 Recapitulation 

In this chapter, we have briefly introduced the background of face image retrieval. 

Two publicly available face image databases are presented. A series of experiments 

on the proposed low dimensional, holistic appearance-based face image features, 

with reference to a benchmarking method, are reported and discussed. 
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Chapter 6 Some Design Issues in Storage Security of 
Biometric Databases 

6.1 Overview of Cancelable Biometrics 

Biometric authentications, nonetheless, is not without its challenges. Authentications 

are increasingly performed in unattended and/or over networked environments. 

Intruders have more time and opportunity to attack via the exposed communication 

channels. Ratha et al. (2001, 2003) pointed out eight potential points of threats in a 

generic biometric authentication system and one potential point of threat in the 

enrollment process as shown in Figure 6.1 numbered with 1 to 8 and 9 respectively. 

Schneier (1999); Tuyls and Goseling (2004) and Uludag et al. (2004) also address 

the importance of the threats. 

Vulnerable points in a generic biometrics-based system 
The presentation of a fake biometric at the Sensor (A) is Threat 1. Channel 

attack between the Sensor (A) and the biometric system (B) is Threat 2. Being 

taken over the process of the Template Extractor (B) is Threat 3. Channel 

attack between the Template Extractor (B) and the Matcher (C) is Threat 4. 

Being taken over the process of the Matcher (C) is Threat 5. Unauthorized 

modification made to the Template Databases (F) is Threat 6. Channel attack 

between the Template Database (F) and the Matcher (C) is Threat 7. Channel 

attack between the Matcher (C) and the Application (D) is Threat 8. Gaining 

unauthorized access to the enrollment office is Threat 9. 
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Figure 6.1 A biometric system and its potential points of threat 

There is a growing concern from public (Ratha et al., 2001; Braithwaite et al., 

2002) about the sharing of biometric templates obtained from different organizations 

and different applications. Since biometrics are not secrets and are limited, once they 

are compromised, they are compromised forever and perhaps everywhere they are 

adopted. They, moreover, cannot be changed, canceled/destroyed and 

reissued/updated. Sensitive personal information associated with biometrics may 

therefore be uncovered. The strengths of biometrics become their weaknesses as well. 

(Note: Cancelable biometric cannot help safeguarding the sharing of biometric 

databases of raw templates, e.g. raw image.) 

Ratha et al. (2001) introduce the concept of cancelable biometrics (referred as 

private template by Uludag et al., 2004). This provides a mean to protect privacy in 

biometric authentication systems. Cancelable biometrics is achieved through 
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applying intentional and repeatable distortions (or transformations) on biometrics in 

either the signal domain (the raw/preprocessed information obtained from capture 

devices and before feature extractor is applied) or the feature domain (the 

information obtained after feature extraction is performed). The transformations for 

cancelable biometrics are ideally noninvertible. In practice, nevertheless, the 

transformation can be invertible. Alternatively, templates protection can be 

preformed by other methods, such as encryption (Uludag et al., 2004) that has to be 

implemented by invertible transforms. Cancelable biometrics may be easily confused 

with encryption. The major difference is that cancelable biometrics performs 

matching in the transformed domain while encryption does not. Ratha et al. (2001) 

have given some example transforms for cancelable biometrics. As invertible 

examples, grid morphing and block permutation are offered and as a noninvertible 

example, high order polynomial is offered. 

Cancelable biometric templates are essential for biometric authentication systems, 

especially for those operated under unattended and/or over networked environments. 

(Schneier, 1999; Ratha et al., 2001, 2003; Tuyls and Goseling, 2004; Uludag et al., 

2004) In addition to the previous concerns, cancelable biometrics can be extended 

for biometric cryptosystems. (Clancy et al., 2003; Juels and Sudan, 2002; Juels and 

Wattenberg, 1999; Soutar et al., 1999; Tuyls and Goseling, 2004). 

6.2 Issues to be considered in Cancelable Biometrics 

Cancelable biometrics can provide the means to enhance biometric authentication 

systems but involve tradeoffs between the System Security, System Requirements 

and System Performance. Figure 6.2 shows the relations among them. In the 

following subsections, we are going to take a deeper look at the three aspects, 
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System Security, System Requirements and System Performance and, the tradeoffs 

between them. 

System Security

System Performance

Invertibility

Recognition
Accuracy

Trade-offs

System Requirement

Cancelability

Tr
ad

e-o
ffs

Trade-offs
 

Figure 6.2 The mutual relationship among accuracy, cancelability and invertibility in 
a biometric system 

6.2.1 System performance — Recognition Accuracy 

A biometric system is useful only if the recognition accuracy is high enough for 

certain application. In cancelable biometrics, however, the transforms are preferably 

noninvertible implying possible loss of information. Thus, noninvertible transforms 

can lead to loss of discriminating ability resulting in deterioration of accuracy. This 

argument applies to the noninvertible transforms for both signal and feature domains. 

To preserve information, invertible transforms may be used to replace 

noninvertible ones. We, nevertheless, have to choose transforms that preserve some 

meaningful relationships for feature extraction (for signal domain transforms) and 

similarity measure (for both domain) afterwards. Alternatively, we may have to 

define a suitable feature extraction as well as similarity measure in the transformed 

domain. Otherwise, the accuracy may not be guaranteed. For example, if a 

monotonically increasing function is the transform and L2-norm is the similarity 
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measure, it will be inaccurate to measure the similarity in the transformed domain 

using L2-norm. To sustain cancelability, certain transforms are still adopted even 

though we are not able to define a suitable feature extraction and/or similarity 

measure in the transformed domains to maintain the original recognition accuracy. 

6.2.2 System requirement — Cancelability 

Cancelable biometrics have the ability to produce cancelable templates, i.e. 

cancelability. They are designed for preventing templates sharing and for templates 

re-issuances. Any templates from two different transforms should be regarded as two 

different templates as from two different persons. In the sense of recognition, they 

will be treated as unmatched, and therefore, cancelable. Thus, if someone presents a 

compromised template to the biometric system, it will be classified as an impostor. 

It should be noted that the possible number of reissued templates is limited. 

Ideally, transforms are issued randomly by the system and we do not memorize the 

previously issued transforms. We may use the following probability model to 

describe the situation of cancelability. 

Suppose that X is a biometric template obtained from a registered person Y. The 

probability of two different cancelable templates of a person Y being unmatched is 

Pr(D(Ti(X),Tj(X)) > t) = α where D(⋅) is a distance/dissimilarity measure, Ti and Tj are 

two different transforms for the cancelable templates and t is the threshold that 

determines a match. The false acceptance rate, therefore, is Pr(D(Ti(X),Tj(X)) ≤ t) = 

1–α. Assume an attacker has n compromised templates of the registered person Y in 

hand to attack the system. The probability of breaking in the system is 1–αn. 

Using real numbers to see the effect, suppose α = 0.99, the probability of breaking 

in for n = 10, 50, 100 are 0.09562 (9.562%), 0.3950 (39.50%), 0.6340 (63.40%) 

respectively. Thus, the system is more vulnerable to attack as the number of 
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compromised templates increases. This demonstrates that we may not have unlimited, 

number of templates for re-issuance, which depends on α. 

6.2.3 System security — Invertibility 

For any invertible transform y = f(x), we can derive x = f-1(y) where f-1 is the inverse 

of f. From the security point of view, invertible transforms will collapse easily if 

attackers know all the details about the transform. 

The exact inverse g-1 of any noninvertible transform y = g(x) does not exist. 

Noninvertible transforms, therefore, are more secure than invertible transforms but 

they do not completely free from attacks. We can, still, approximate x from y by the 

approximated inverse g* of g, i.e. x’ = g*(y). If x’ is close enough to x, it can be used 

to fake the biometric system to break in because (dis)similarity measure, i.e. inexact 

match, is adopted. This is a potential risk that we should pay attention. 

6.3 Discussion on Existing Cancelable Biometrics 

We have discussed the three issues in cancelable biometrics, System Security, 

System Requirements and System Performance and, the tradeoffs between them. We 

are going to review some proposed solutions to cancelable biometrics to illustrate 

further the issues discussed above. 

Braithwaite et al. (2002) have outlined the concept of application 

(/transaction)-specific transforms to protect biometric templates from unauthorized 

exchange. An authorized central management of application-specific transforms is 

suggested to establish. Setting up such management center is expensive and it 

requires connecting all the (iris) devices via internets/ land but this can facilitate the 

reuse of templates by authorized conversion of application-specific biometric 

templates for one application to others without re-enrollment, Their proposed 
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transform is invertible and operates in the feature domain. Since the transform is 

invertible, there is potential risk that the raw templates can be recovered. 

Savvides et al. (2004) have integrated minimum average correlation energy 

(MACE) filter and random kernel to provide cancelable biometrics. It has been 

proven to be of no degradation in accuracy of matching the transformed features 

because the MACE filter possesses a nice property that eliminates the effect of the 

random kernel. The transform (random kernel) used is invertible and operates in 

feature domain. 

Connie et al. (2004b), Pang et al. (2004) and, Teoh and Ngo (2005) presented 

prototypes of cancelable biometrics for palmprint and face based on BioHashing 

(Teoh et al. 2004c). BioHashing consists of two major steps, feature domain random 

transformation, and discretization (a two level quantization). Their transform is 

noninvertible and operates in feature domain. As the transform is noninvertible, the 

raw template can be better protected. Random transform can provide excellent 

cancelabiltiy (see Chapter 6.4.3). Nonetheless, we believe that noninvertible random 

transformations will destroy the optimality of most feature representations and thus 

the recognition accuracy deteriorates (see Chapter 6.4.2). There is a tradeoff between 

optimality and cancelability in representation and similarity matching in the feature 

domain of cancelable biometrics, i.e. increase in error rate of the authentication 

(Uludag et al., 2004). 

6.4 A Case Study 

We use BioHashing (Teoh et al. 2004c) and its variants (Connie et al. 2004; Pang et 

al. 2004; Teoh and Ngo 2005), which is a random transformed feature-based 

cancelable biometrics, as a case study to highlight some possible situations. 

BioHashing and its variants are chosen because they are, in existing approaches, the 
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closest, i.e. using noninvertible transform, to cancelable biometrics established by 

Ratha et al. (2001). They, also, have been tested on several biometrics, including face, 

fingerprint and palmprint. 

Figure 6.3 Comparison of process flow of Holistic Fourier Invariant Features (HFIF) 
extraction (Lai et al. 2001) and Integrated Wavelet and Fourier-Mellin Transform 
(Teoh et al. 2004) 

We have re-implemented the experiments in Teoh and Ngo (2005) for our case 

study because face recognition is a well-known problem and public databases are 

available and the experimental details are given as follows. 

Transform integrating wavelet transform (WT) and Fourier-Mellin Transform 

(FMT) has been exploited by Lai et al. (2001, see also Chapter 3.1.1 for more) and 

Teoh and Ngo (2005) for face recognition and, Teoh et al. (2004c) for fingerprint 

recognition. The flowchart in Figure 6.3 shows the flow of HFIF and WFMT. Teoh 

and Ngo (2005) and Teoh et al. (2004c) differ from Lai et al. (2001) by undergoing a 

highpass filter (Srinivasa Reddy and Chatterji, 1996) between the first and the 

second Fourier transforms. 

We note down the details of the WFMT that we implemented based on Teoh and 

Ngo (2005) and Lai et al. (2001) in Table 6.1 and the details of BioHashing in Table 

2. We would like, also, to make a note of how Teoh and Ngo (2004c) determine the 

genuine and impostor distribution. They match all images among the same person to 

determine the genuine distribution; while, they match only the nth image of one 

person to the nth image of other persons to determine the impostor distribution where 
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n = 1…10. We will present the performance based on both criteria, Teoh and Ngo 

(2005) and the usual practice, which matches one image against all images of the 

same person and of others persons in the database to determine the genuine and 

impostor distributions respectively. 

Table 6.1 The details of WFMT implementation 

Processes/Variables/Parameters Values/Descriptions 
Raw image sizes 92×112, no preprocessing 

Wavelet db7 
Level of Wavelet Decomposition 1 

Wavelet transformed image sizes (LL band) 52×62 

Log-polar transformation 
Largest inscribed circle, 

bicubic interpolation, 
62 logarithmic levels 

Highpass Filter 
same as Teoh and Ngo (2004) 
H(x,y) = (1-cos(πx)cos(πy)) × 

(2-cos(πx)cos(πy))  
 

Table 6.2 Thresholds used for various dimensions of BioCode 

Dimension Threshold(τ) 
20 0 
40 0 
60 0 
80 0  

6.4.1 Overview of BioHashing and its variants 

In Figure 6.4, the two major processes, feature domain random transformation and 

discretization, of BioHashing are shown. Different biometric signals exploit different 

signal acquisition, preprocessing and feature extraction techniques. The feature 

domain random transformation process includes the generation of random matrix, 

orthonormalization and feature transformation. Discretization is performed 

afterwards based on a threshold, τ. Feature domain random transformation and 

discretization is conducted as detailed below. 
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Figure 6.4 A schematic diagram of BioHashing 

Step 1. Employ the input token to generate a set of pseudo-random vectors, 

},.....,1|{ mir M
i =ℜ∈  based on a seed. 

Step 2. Apply the Gram-Schmidt process to },.....,1|{ mir M
i =ℜ∈  to obtain, 

a set of orthonormal vectors },.....,1|{ mip M
i =ℜ∈ . 

Step 3. Calculate the dot product of v, the feature vector obtained from Step 1 

and each orthonormal vector, pi, such that ipv, . 

Step 4. Use a threshold τ to obtain BioCode, b whose elements are defined as 
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where i is between 1 and m, the dimensionality of b. Two BioCodes (or 

BioHash in Teoh et al. 2004c) are compared by hamming distance. 

6.4.2 Recognition Accuracy 

In order to ensure cancelable biometrics is practical, we have to look at the system 

performance. We understand there is tradeoff between cancelability and recognition 

accuracy. So, we now look at the amount of recognition accuracy traded for 

cancelability. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.5 Test on accuracy of BioCodes. 
ROC curves of Wavelet Fourier Mellin Transform using L2-norm (a) Teoh and Ngo’s 
matching scheme and (c) whole database and, their corresponding genuine and 
impostor distributions (b) and (d) 

Using WFMT and Euclidean distance (L2-norm), the ROC curves, which is a plot 

of the genuine acceptance rates (GAR) against the impostor/false acceptance rates 

(FAR), and their corresponding genuine and impostor distributions based on Teoh 
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and Ngo’s matching scheme and the usual practice are plotted in Figure 6.5. This 

will be used as the reference for the performance comparisons to cancelable 

biometrics thereafter. The number of matching for estimating the genuine and 

impostor distributions based on the usual practice are 1,800 and 78,000 respectively 

and the number of matching for estimating the genuine and impostor distribution 

based on the Teoh and Ngo’s matching scheme are 1800 and 7800, respectively. We, 

however, cannot reproduce their result (case wfm) reported in Teoh and Ngo (2005). 

We, therefore, have simulated the experiments in Lai et al. (2001) and confirmed the 

correctness of our implementation of WFMT by producing similar performance. 

The genuine and impostor distributions of various dimensions of BioCode, which 

are based on Teoh and Ngo’s matching scheme and the usual practice, are shown in 

Figure 6.6. The number of matching producing genuine and impostor distributions 

based on Teoh and Ngo (2005) are 1,800 and 7,800 respectively. The number of 

matching producing genuine and impostor distributions based on the usual practice 

are 1,800 and 78,000 respectively. Their corresponding ROC curves with comparison 

to WFMT and Euclidean distance (L2-norm) are shown in Figure 6.7. It is obvious 

that our hypothesis is correct. The optimality of feature representation is destroyed 

by the noninvertible random transform and quantization and thus the recognition 

accuracy deteriorates. The performance of BioHashing is even worse than that of 

using WFMT and Euclidean distance (L2-norm). 

It may be noticed that the performance of BioHashing is different from those 

given in (Teoh et al. 2004c; Connie et al. 2004; Pang et al. 2004; Teoh and Ngo 

2005). Their performances reported here are their true performances. The detail 

explanation to this issue is given as an analysis of BioHashing and its variants in 

Chapter 7. 
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(a) 

 
(b) 

Figure 6.7 Test on accuracy of BioCodes. 
(a) ROC curves of distributions in Fig. 5 (b) and Fig 6 (a), (c), (e), (g). 
(b) ROC curves of distributions in Fig. 5 (d) and Fig 6 (b), (d), (f), (h). 
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Since the 

Bi = Q(Ti⋅F) and, 
Bj = Q(Tj⋅F) 

(6.1) 
(6.2) 

where, F is the biometric feature and )(⋅Q  is the quantization function depicted 

in Chapter 6.4.1 Step 4. The estimation is done as follows. 

))((ˆ 1
iijj BTTQB ′⋅= −  (6.3) 

where jB̂  is the estimated feature vector for matching, 
1−

iT  is the pseudo 

inverse of Ti and iB′  is the resultant vector of the mapping {Bi → B’i: [1] → [1] and 

[0] → [-1]} 

We have used the first image of each subject in ORL database as the biometric 

feature. For each of them, one hundred random transform is applied. The threshold, τ 

is set to 0. The acceptance rate of impostors and distribution of impostors due to 

Insider Attack are plotted with dotted lines in Figure 6.8 and Figure 6.9 respectively 

for BioCode of dimension 20, 40, 60 and 80. It can be observed that the acceptance 

rate of impostors and distribution of impostors both shift to the left if Insider attack 

is adopted. This indicates the biometric system collapse more easily when the details 

of transformation are known by attackers even if noninvertible transforms are used. 

6.4.5 Discussion on the case study 

Cancelable biometrics via feature domain transformation, e.g. BioHashing, uses a 

noninvertible random projection, which does not serve for any objective function. 

Thus, there is certainly loss of information after the random transform is applied. 

Although cancelability is achieved, recognition accuracy is traded. If information has 

to be preserved, invertible transformation, e.g. square random (invertible) 

transformation matrix, is required. The raw biometric template, however, may be 

recovered if any of the cancelable templates is compromised. 
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Noninvertible transformation can provide better security. Yet, we still need to 

keep the details of the transformation as secrets. Otherwise, the system may be 

breaking in more easily. In our case study, it is noted that the FAR due to impostors 

is much larger than that due to insider attack. That is to say the accuracy is sacrifices 

too much in achieving cancelability. The problem of insider attack exists but it is less 

critical, compared to accuracy sacrificed in BioHashing. 

6.5 Recapitulation 

In this chapter, a security concept and its realization evolved initially from the 

research of biometrics systems known as cancelable biometrics is first introduced. 

Three issues concerning cancelable biometrics: accuracy, cancelability and 

invertibility, which have not been addressed before, are then discussed and a case 

study for better illustrating the issues is given. 
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Chapter 7 An Analysis of BioHashing and Its 
Variants 
This analysis is motivated by identifying an implicit false assumption that is used for 

designing a biometric verification system. It has recently been reported that, along 

with its variants, BioHashing, a new technique that combines biometric features and 

a tokenized (pseudo-) random number (TRN), has achieved perfect accuracy, having 

zero equal error rates (EER) for faces, fingerprints and palmprints. There are, 

however, anomalies in this approach. 

There are two classical personal authentication approaches (Jain et al. 1999; Jain 

et al. 2004): token based approach, which relies on physical items such as smart 

cards, physical keys and passports and knowledge based approach which replies on 

private knowledge such as passwords. Both of these approaches have their 

limitations: it is possible for both “tokens” and “knowledge” to be forgotten, lost, 

stolen, or duplicated. Further, authorized users may share their “knowledge” and 

“tokens” with unauthorized users. These limitations do not apply to biometric means 

of authentication, which identify a person based on physiological characteristics, 

such as the iris, fingerprint, face or palmprint, and/or by behavioral characteristics, 

such as a person’s signature or gait (Jain et al. 1999). 

Although biometric authentication has several inherent advantages over the 

classical approaches, all of biometric verification systems make two types of errors 

(Jain et al. 2004): 1) misrecognizing measurements from two different persons to be 

from the same person, called false acceptance and 2) misrecognizing measurements 

from the same person to be from two different persons, called false rejection. The 

performance of a biometric system is commonly described by its false acceptance 
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rate (FAR) and false rejection rate (FRR). These two measurements can be controlled 

by adjusting a threshold, but it is not possible to exploit this threshold by 

simultaneously reducing FAR and FRR. FAR and FRR must be traded-off, as 

reducing FAR increases FRR and vice versa. Another important performance index 

of a biometric system is its equal error rate (EER) defined as at the point where FAR 

and FRR are equal. A perfect system in terms of accuracy would have EER of zero. 

Unfortunately, however, over thirty years’ investigation, a perfect biometric 

verification system has not been developed. Numerous biometric researchers thus 

continue to work in this area, looking for new biometrics, developing new feature 

representations and matching methods and combining the existing techniques 

(Chellappa et al. 1995; Bhanu and Tan 2003; Jain et al. 1997; Zhang et al. 2003; Kim 

et al. 2004; Ross and Jain 2003; Israel et al. 2005). 

7.1 An Overview of Biometric Verification System 

We focus on biometric systems for verification tasks in which BioHashing and its 

variants are operated. Figure 7.1 illustrates the operation flow of such biometric 

systems. To validate the user’s claimed identity, verification systems conduct 

one-to-one comparison using two pieces of information: a claimed identity and 

biometric data. The input biometric data is compared with biometric templates 

associated with the claimed identity in a given database. Generally speaking, user 

identities can be inputted via various devices such as keypads and smart card readers 

and should be unique to each person, like a primary key in a database. It should be 

noted that user identities in such forms can be shared, lost, forgotten and duplicated, 

just like the keys/cards of token-based and the PINs/passwords of knowledge-based 

authentication systems. Nonetheless, because biometric authentication is also 

required, to pass through the verification system requires more than the mere 
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possession of a valid user identity i.e. an impostor cannot gain access unless the 

input biometric data matches the template of the claimed identity. We have to 

emphasize here that the performance of a biometric verification system should not 

depend solely on user identity or its equivalent and therefore, many biometric 

systems accept obvious user identities such as personal names. 

User ID
and

templates

Does the input
user ID exist in the

Database?

Feature extraction for
the input biometric data

No
Reject

Retrieve user ID

from the database

Yes

Matching score
> Threshold?

No

Retrieve templates

from the database

Yes

Accept

Reject

Matching

Input biometricsInput User ID

 
Figure 7.1 Operation flow of a biometric verification system 

A biometric verification system has five possible input combinations. For the sake 

of convenience, we use the notation {I, B} to represent the pair-wise information, a 

claimed user identity I and its associated biometric data B. A registered user X stores 
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his/her user identity and biometric template, {IX, BXD}, in a database after enrollment. 

Suppose user X provides his/her user identity and biometric data, {IX, BXV} at the 

time of verification. Even though BXD and BXV are from the same person, because of 

various noises, they are not identical. We also assume that an impostor Y, an 

unregistered person has an invalid user identity IY (which may have been obtained by, 

for example guessing) and biometric data BYV. 

Case 1 {IX, BXV} vs. {IX, BXD}. User X inputs his/her user identity and 

biometric data {IX, BXV} to the system to compare {IX, BXD} in the database. 

The system would compare BXD and BXV and give a matching score. From this 

matching score, there are two possible responses: either “correct acceptance” 

or “false rejection”. 

Case 2 {IX, BYV} vs. {IX, BXD}. Assume an impostor Y has the user identity of X 

and inputs X’s identity together with his/her biometric {IX, BYV} to the system. 

The input will then be compared with {IX, BXD} in the database. As Case 1, we 

have two possible responses, “false acceptance” and “correct rejection”. 

Case 3{IY, BYV}. An impostor Y provides his/her user (invalid) identity and 

biometric data to the system. Since the user identity, IY, does not match any 

identity in the system, the system simply rejects the user without error and will 

not attempt to match any biometric information. 

Case 4 {I~X, BXV}. A registered user X inputs a wrong user identity I~X, i.e. not 

his/her valid user identity, IX. If I~X. is a valid user identity, the system would 

output its decision based on matching the biometric information and the 

threshold, {I~X, BXV} vs. {I~X, B~XD}, as in Case 2. If I~X is an invalid user 

identity, the system would simply reject the user, as in Case 3. 
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Case 5 {NULL, BXV} OR {NULL, BYV}. No matter who operates the 

verification system, a registered user or an unregistered user, a user identity is 

required. A biometric verification system cannot operate without user identities, 

i.e. NULL. It would also be unreasonable to assign a temporary user identity to 

any user who did not provide a user identity at the time of verification. 

From these analyses, we conclude the following: Case 5 is invalid; and testing a 

verification system on Case 3 produces trivial rejection; and Case 4 can be resolved 

to be either Case 2 or Case 3 depending on the user identity provided. As it happens, 

to evaluate the performance of a verification system, all biometric researchers 

assume a situation in which impostors have obtained a valid user identity. 

Performance evaluations for genuine distributions are estimated using the matching 

scores from Case 1, for impostor distributions, those from Case 2. 

If “knowledge” or “token” representing the user identity in verification would not 

be forgotten, lost or stolen, it made the introduction of biometric system less 

meaningful except for guarding against multiple users using the same identity 

through sharing or duplicating “knowledge” or “token”. If, further, “knowledge” or 

“token” would not be shared or duplicated, introducing biometrics became 

meaningless. 

7.2 Details of Experiment 

We have re-implemented FaceHashing, one of the variants of BioHashing, to show 

the anomaly. Publicly available face database, the AR face database (Martinez and 

Benavente 1998) and The ORL database (Samaria and Harter, 1994), and a well 

known feature extraction technique, Principal Component Analysis (PCA), also 

called Eigenface for face recognition (Turk and Pentland 1991; Martinez and Kak 

2001; see also Chapter 3.2.1) are chosen for this demonstration so that all the results 
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reported in this paper are reproducible. We do not employ other effective face 

recognition algorithms and other accurate biometrics such as fingerprint in order that 

the performance differences due to the unrealistic assumption can be clearly 

observed. Although we demonstrate here only FaceHashing, it does not lose any 

generality to analyze BioHashing and its variants. For a summary of BioHashing, 

please refer to Chapter 6.4.1. For details of face databases, the AR database and the 

ORL database, please refer to Chapter 5.2.1 and Chapter 5.2.2 respectively. 

The face subimages of the AR database for feature extraction are 96×96 in size 

and were cropped from the central canvas of a gray scale face image. Since we are 

only doing a demonstration to facilitate our analysis and discussion, 50 subjects were 

randomly selected from the face database. Eight images of each subject were 

selected, four from each session. The facial expression in the four images from each 

session is neutral but the illuminations vary (see Figure 5.1 (a), (e)-(g), (n), (r)-(t) for 

sample images and Chapter 5.3.1 Phase 1 for image preparation details).The face 

images of the ORL database are used directly for feature extraction, i.e. no 

preparation or preprocessing is done. Sample face images from the ORL database is 

shown in Figure 7.2. 

 
(a) (b) (c) 

 
(d) (e) 

 
(e) (f) (g) 

 
(h) (i) 

Figure 7.2 Sample face images in the ORL database. 
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All ten images of all subjects within the ORL database are used to determine the 

principal components, i.e. treating as same session matching. While for the AR 

database, the four images from the first session are used to determine the principal 

components. The four images from second session are matched against those from 

first session, i.e. matching “duplicate” (Martinez and Kak 2001). 

Table 7.1 Thresholds used for various dimensions of BioCode tested on the AR 
database 

BioCode dimension Threshold for BioCode (τ) 
10 0 
50 0 
100 0 
150 0 
200 0  

Table 7.1 and Table 7.2 list the dimensions of the BioCode and the corresponding 

thresholds (τ) according to the deduction of made in (Connie et al. 2004a; Teoh et al. 

2004b) tested on the AR database and the ORL database respectively. 

Table 7.2 Thresholds used for various dimensions of BioCode tested on the ORL 
database 

BioCode dimension Threshold for BioCode (τ) 
10 0 
25 0 
50 0 
75 0 
100 0  

7.3 Analysis of BioHashing and Its Variants 

In our demonstration below, we are able to obtain a zero EER by applying only a 

simple feature extraction approach, PCA, but in general, even with advanced 

classifiers, such as support vector machines, PCA is impossible to yield 100% 

accuracy along with zero EER. Obviously, the high performance of BioHashing is 

not from the biometric features. 
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Figure 7.3 Comparison of ROC curves of various dimensions of BioCode under 
different assumptions tested on the AR database 

We simulated FaceHashing (Ngo et al. 2004; Teoh and Ngo 2005; Teoh et al. 

2004a, 2004b) with different dimensions of BioCode and their performances are 

reported in the form of ROC curves in Figure 7.3 and Figure 7.4 respectively for 

tests on the AR database and the ORL database. 
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Figure 7.4 Comparison of ROC curves of various dimensions of BioCode under 
different assumptions tested on the ORL database 
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7.3.1 The secret of BioHashing and its variants 

The authors (Connie et al. 2004a; Ngo et al. 2004; Teoh et al. 2004a, 2004b, 2004c) 

mentioned that a unique seed among different persons and applications is used to 

generate a set of pseudo random numbers, called Tokenized Random Number (TRN). 

It is followed that 1) the seed and thus the TRN for each user used in enrollment and 

verification is the same; 2) different users (and applications) have different seeds and 

thus different TRNs. In other words, the seed and TRN are unique across users as 

well as applications. They also pointed out that the seed for generating the TRN can 

be stored in a USB token or smart card. Comparing the properties of the seed in 

BioHashing (and its variants) and the user identity of a biometric verification system 

as described in Chapter 7.1 above, it is obvious that the seed, and thus the TRN can 

serve as a user identity. As the seed is stored in a physical media, TRN also suffers 

from the problems of “token” in traditional authentication methods (Jain et al. 2004), 

e.g. they can be lost, stolen, shared and duplicated. 

The TRN has a central role in BioHashing and its variants and is requisite for 

achieving zero EER. The authors assume that no impostor has the valid seed/TRN. 

That is, they assume that the “token” will not be lost, stolen, shared and duplicated. 

If their assumption is true, introducing any biometric becomes meaningless since the 

system can rely solely on the “tokens” without any risk. Undoubtedly, their 

assumption does not hold in general. In their experiments (Connie et al. 2004a, 

2004b; Ngo et al. 2004; Pang et al. 2004; Teoh and Ngo 2005; Teoh et al. 2004a, 

2004b, 2004c), they determine the genuine distribution using, in our notation, Case 1. 

However, they determine the impostor distribution using Case 3 in which no 

biometric should be involved because of the mismatch of with the “pseudo user 

identity”, the seed/TRN. 
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7.3.2 Performance analysis of BioHashing and its variants 

Based on their invalid assumption, it is possible to achieve zero EER provided that 

the BioCode is long enough, i.e. 75 bits or above for test on the ORL database (same 

session matching) and 100 bits or above for the test on the AR database (“duplicate” 

matching). This is shown in Figure 7.3 and Figure 7.4, for all possible operating 

points, as dashed lines with markers. 

In Figure 7.3 and Figure 7.4, the dotted lines with markers are the ROC curves 

using the general assumption for evaluating a biometric verification system. The 

solid line without any marker is the ROC curve using PCA and Euclidean distance. It 

can be observed that the true performance of BioCode can even be worse than that of 

using PCA and Euclidean distance. This is possibly because BioHashing uses a 

random projection, which does not serve for any objective function. 

7.4 Recapitulation 

We have revealed that the outstanding achievements of BioHashing and its variants, 

zero EER are under a hidden and unpractical assumption — that the TRN would 

never be lost, stolen, shared or duplicated that does not hold generally. We also point 

out that if this assumption held, there would be no need for biometrics to combine 

the TRN since the TRN could serve as a perfect token. To further support our 

argument, we used a public face database and PCA to simulate their experiments. It 

is possible to achieve a zero EER by using the combination of a TRN and a 

biometric under their assumption. Adopting an assumption generally used in the 

biometric community, our experimental results show that the true performance of 

BioHashing is far from perfect. 
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Chapter 8 Conclusion and Future Works 

8.1 Conclusion 

We have investigated the storage and retrieval of two image-based biometric systems, 

i.e. the image databases in a narrow domain. Two image domains that have been 

investigated are palmprint and face. 

Regarding palmprint images, we have integrated Principle Component Analysis 

and Self Organizing Map to generate a better searching sequence. The technique has 

been tested on the palmprint image database. It is found to be capable of reducing the 

searching scope and thus saving searching time. We have formulated, moreover, a 

hierarchical searching scheme based on four different image features and similarity 

measures that is tested on the palmprint database and found to be effective and yet 

efficient. 

Concerning face images, we have developed a holistic appearance-based feature 

representation of low dimensionality based on aggregated information extracted by 

Gabor filters. It has been tested on a publicly available database and demonstrated to 

be more robust to facial expression variations in comparison to the benchmarking 

technique, Principle Component Analysis. Of its low feature dimensionality, it is 

efficient to be computed. 

Information security of some systems like biometric systems is vital. Cancelable 

Biometrics is a newly proposed approach to fight against potential information 

security threats in the biometric system. Following the idea of Cancelable Biometrics, 

we raise three issues, that worth discussion and have not been addressed before. The 

three issues: accuracy, cancelability and invertibility have been illustrated further 

through a case study of an existing approach to cancelable biometrics. 
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8.1.1 Major Contributions of This Thesis 

The major contributions of this thesis are summarized as follows. 

1. We have considered the storage and retrieval of biometric templates and 

incorporated some primitive visual-based image features, texture, lines and 

points, as content descriptors of biometric images. Various intelligent system 

techniques, including learning and fuzzy methods, have been used to extract 

and represent the visual-based image features of palmprint and face images; 

2. We are among the first to consider the retrieval in large palmprint databases 

and have developed methods that can compactly represent and effectively 

retrieve palmprint image templates; 

3. We originally identify and study three design issues of cancelable biometrics 

and we are among the first to propose the consideration of the three issues 

integrally when designing and evaluating cancelable biometrics; 

4. We have identified, in the biometrics research community, that a group of 

researchers have proposed the use of “safe” token. We have given a thorough 

analysis of their method, BioHashing and its variants, revealing that their 

assumption is wrong. We have raised the issue so as to avoid the use “safe” 

token for biometric systems. 

8.2 Future Works 

Multimodal biometric systems, which incorporate more than one biometric, with 

appropriate security measures are underway. Storage and retrieval of data in those 

systems poses challenging requirements on the system design, the choice of features 

and representations, and the choice of similarity measure and retrieval/recognition 

method. 
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Incorporating protective measures on user template for privacy and security in all 

future biometrics systems is a must. Public are increasingly concern the use of 

biometrics in daily activities. Protection of such personal information poses new 

requirements that should be pursued seriously before the systems can be put into 

practical use. 
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