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Abstract

The thesis consists of four chapters and two appendixes. In the first chapter,
background of the Dam Overflow problem, the Sobolev spaces, the Finite Element
Method as well as other basic PDE concepts are introduced. This chapter also
includes an extensive review of the existing related materials. In Chapter 2, the
proposed algorithm of the potential function model is presented. Furthermore, a
relaxation factor method is adopted in the thesis to achieve a better algorithm for
running faster and more stably. In Chapter 3, some theoretical results as well as
numerical results are obtained for the stream function model. In Chapter 4, the
two methods using the potential function model and the stream function model
are compared. Chapter 2, Chapter 3 and Chapter 4 are my major work on the
field of the Dam Overflow Problem. In Chapter 5 some reviews on my work are
given and some possible directions for future research are indicated. In Appendix
A, all the theorems used in this thesis are listed, and in Appendix B, a powerful
software called “Finite Element Program Generator {FEPG)” is briefly introdnced.
The FEPG provides a powerful and convenient tool for coding my programs for

the present work.
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Chapter 1

Introduction

1.1 Historical Background

Dams are constructed for economic development, and their construction involves
large investments of money, and natural and human resources. Of the various types
of dams constructed aronnd the globe, earth dams are the most common type and
constitute a vast majority of dams. Dams are used to store enormous amount of
water. When a dam fails, it causes a sudden release of water which is a potential
threat to virtually everything downstream. The dam failure may result in loss
of life and property. So programs of dam research have been developed in most
countries of the world and the dam overflow problem is one of them.

Following the development of electronic technology and compnter hardware,
more and more large scale scientific computing, which consumed much CPU time
before, have become practically possible.

In the flnid compnting, one can obtain varions parameters of flow using math-
ematical models combined with physical models. Meanwhile, computing the flow
field by the finite element method has been developing rapidly. The method not.
only allows us to obtain data satisfying various needs in engineering, but also is
economical in the sense that it saves machine time and manpower.

The Dam Overflow Problem have been developed since 1970's and many related
results can be found from hoth mathematical and engineering journals. For example

Ding Dao Yang proposed a method to compute potential function model in 1982
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and Jiang Li Shang constructed the stream function model in 1986.

1.2 Sobolev Spaces

The Sobolev spaces, i.e. the classes of functions with generalized derivatives in

L

numerical solutions of PDE using finite elements. During the last two decades,

»» occupy an outstanding place in functional analysis, for its important use in
a substantial contribution to the study of these spaces has been made; so now

solutions to many important problems connected with them are known. For details

please refer to [24]-[25].

1.2.1 Motivation of Introducing Sobolev Spaces

As an independent subject, the study of PDE can be dated to the eighteen century.
After two centuries of development, classical research has achieved fruitfully in both
theory and application. Until the twentieth century, following the development of
functional analysis and other subjects, people have gradually recognized that the
classical PDE theory has many limitations. For instance, consider the following
Dirichlet problem on a plain open set {2.
{ U i%_ {mlg(?.: (1.1)

In the classical theory the solution % of (1.1) is unique in C?(Q2). In other word,
under the classical theory, the domain of definition of the differential operator A is
D(A) = {v e CHNC(Q) : v]ano} and the range of A, R(A) € C(Q2). Obviously,
D{A) is a dense subset of C(£2) with respect of the co-norm. The drawback of the
classical theory comes from the fact that A : D(A) — C() is not a surjection,
i.e. it is not true that (1.1) has a solution for every continuons function f € C(€).
Here a counter example is constructed to illnstrate this.

Assume € is the unit circle in the zy-plane. Snppose that for each f € C(Q).
(1.1) has a solution » € D(A). Then f +— D,D,u is a mapping from C({2) to
itself.
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Regarding D,D,u(0,0) as a linear functional, there exists a measure j on ¢,
such that

D.D,u(0,0) = [Q fdp. (1.2)

To prove this, we see that the functional P : f — f(0,0) is a linear functional on

C(f) in the sense of L®-norm. In light of the Hahn-Banach theorem (see A.5), P

can be extended to the linear functional P* on L*(f2) such that
P*(x) = P(z) forall z e C(Q)

Then there is g € L'(Q) satisfying

= | f@)g(x)ds

Introduce a new measure ;{ B) = [, g(z)dz, where B is a Borel-set. Then for any

feC)
10.0)= ()= P'(N) = [ f@gl)dz = [ f(x)dp

Therefore 4. is the required measure.

Meanwhile,
(v,9) = [ Glar, i mMA(E m)déeln (1)
where G(2,y;€,m) is the Green function of the Laplace operator on unit circle and
1s given by

Glzy:&n) = 2—,10"— + é—;logp,

where

1
p=(&+n")e,
. 2
§ 0 URY)
== S 4
o= -2

Therefore D,D,G(0,0;&,n) = %&}l—;:;’—‘l. From (1.3},

D, D,u(0,0) = lim /(Pd ;r.fn(l—;f—)-lf(f n)dEdn, (1.4)

r—0
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which is infinite for some f and hence contradicts (1.2).

From the theory of functional, the contradiction arises from the fact that the
classical differential operator is not a close operator.

Since D(A) is a dense subset of C(€), there always exists a close extension of A,
By this close extension, the classical derivatives is substituted by the generalized

derivatives.

1.2.2 Definitions and Basic Properties

We define a functional || - ||, Where m is a nonnegative integer and 1 < p < cc,

as follows:

. 1
[elimp = { > ||D°uI|§} if 1<p<oo, (1.5)

0<]a|<m
= o 1.6
_ lallm oo =  max || D%lleo (1.6)
for any function u for which the right side makes sense, || - ||, being the LP(Q)-

norm. {In situations where confusion of domains may occur we shall write [Ju||mp o
in place of ||t|m ). It is clear that (1.5) or (1.6) defines a norm on any vector space
of functions for which the right side takes finite values provided that functions are
identified in the space if they are equal almost everywhere in 2. We consider three
such spaces corresponding to any given values m and p:

H™P(Q)) = the completion of {u € C™(Q) : |[tfimp < oo} with respect of the
o |-

Wmr(Q) = {u € LP(QY) : D*u € LP(Q) for 0 < |a| < m}, where D* is the
generalized partial derivative, and

WoP(§2) = the closure of C§(Q) in the space W™r(Q2).
Equipped with the appropriate norm (1.5) or (1.6}, these are called Sobolev spaces
over . Clearly W = LP(Q). and if 1 < p < oo, Wy"(Q) = LP(Q) by Theorem
2.19 in [24]. For any m the chain of imbeddings

W (Q) — W (Q) — LP(Q)

is also clear. Theorem 3.16 in [24] shows that H™P(Q}) = W™r((}).
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In the following, we detail one of the most important theorems of Soholev space,
the Sobolev imbedding theorem. Before stating the theorem, the definition of the
cone property is given as follows:

Definition We say that € has the cone property if there exists a bounded open
cone K such that each z% € 90 is the vertex of a cone K (%) C 2 and K(z°) is

congruent to K.

THEOREM ( The Sobolev imbedding theorem) Let §2 be a domain in R and let
2* be the k-dimensional domain obtained by intersecting € with a k-dimensional
plane in B*, 1 < %k < n. (Thus Q" = Q.) Let j and m be nonnegative integers and

let p satisty 1 < p < 0.
PART I  If Q has the cone property, then we have the following imbeddings:
Case A Suppose mp < n and n — mp < k < n, then

WHmR(Q) - WIQY), p < g < kp/(n— mp), (1.7)
and in particular,

W) — WH(Q),  p < q < np/(n—mp), (1.8)

or
va,p(Q) N I/VP(Q), p<g< np/(??, — mp). (1-9)

Moreover, if p = 1, so that m < n, imbedding (1.7) also exists for k = n — m.

Case B Suppose mp =n, Then for each &, 1 < k < n,
WITmP(Q) — WI(QF), p < g < oo, (1.10)
so that in particular
W™P(Q) — LIOF), p<q< oo (1.11)

Moreover, if p = 1 so that m = n, imbedding (1.10} and (1.11) exist with ¢ = oo

as well; in fact,

WIHRHQY) s CE(). (1.12)
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Case C  Suppose mp > n. Then

Witme(0y - C3(Q) (1.13)

PART II  If  has the strong local Lipschitz property, then Case C of Part I

can be refined as follows:

Case C'  Suppose mp > n > (m ~ 1)p. Then

Wime(Q) o MDY, 0< A< m— (n/p). (1.14)

Case C"  Suppose n = (m — 1)p. Then
WIrmP() — C7(8), 0< A<l (1.15)

Also, if n =m — 1 and p = 1, then (1.15) holds for A = 1 as well. For the proof of

this theorem please refer to [24].

1.3 Free Boundary Problem, Variational Princi-
ple and the Finite Element Method

1.3.1 Free Boundary Problem

[mportant developments in the study of free boundary problems have been achieved
in recent years by introducing variational approach wherever possible. This enables
one to conclude without great effort that a solution to the free-boundary problem
exists in some “weak” sense. One can proceed to establish the regularity of the
solution and then, hopefully, stndy the smoothness of the free boundary itself. In
fact, within the last few years. significant new methods have been developed for
analyzing the free boundary and the theory has now reached a certain stage of
maturity: its futnre looks even more exciting.  An increasing munber of physical
and engineering problems are becoming accessible to this erowing bodv of methods.

[n the following we use an example to illustrate what a free bonndary problem
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The Dirichlet problem for the Laplace operator A seeks a solution u of Au = f
in a given domain { satisfving u = ¢ on the boundary 9§2. Suppose that only a
portion S of 8 is given whereas the remaining portion I' is not prescribed, and
an additional condition is imposed on the unknown part of the boundary, such as

V(u—¢) = 0 on T (here ¢ is a given function in the entire domain ). Thus we

seek to determine u and I' satisfying

Au=f in Q, (1.16)
v=¢ on O, (1.17)
Viu—-¢)=0 on T (1.18)

where  is bounded by the given S and the unknown I'. This problem is an example

of a free boundary problem. (1.18) is the free boundary condition and (1.17) is the

ordinary boundary condition.

For a two-dimensional ideal fluid, the density function u satisfies, on the inter-

face I between the fluid and the air, the free houndary conditions
u=C), |Vu|=Cy (C),C; constants)

where normally either O or Cy is not nnknown; I' is also not prescribed.

1.3.2 Variational Principles

The classical variational method is the Ritz-Galerkin method which relates directly
to the finite element method in mathematical sense. We briefly introdnce these
methods respectively as follows.

The Ritz Method The method is derived from the theorem of the minimmm
cnergy. For instance, through theorem of the mininm energy, the solution « of the

equations
—Au=f in{l
w=1{0 on dJi?

st sarisfy

J(u) = minJ(v). v € H(Q) (1.19)
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where
1
J(v) = 5/;2 Vv Vudrdy — ‘/ﬂfvdﬂ?dy.

Assume H is a separable Hilbert space and let

N

Sy = {wN|wN = ZCl-go,-, where (Cy,---,Cn)} € RN} (1.20)
i=1

being expanded by N linear independent, vectors 1, - - -, o, be a finite dimensional

subset of H. We replace H by Sy and find the extreme valie of the functional

J(w) on Sy. te. find uy € Sy satisfying

J(uy} = min J(wy). (1.21)

Wy ESN

This 1s the Ritz Method.

In fact uy can be obtained by solving linear equations. Since J(w) is
1
Jw) = ED(w,w) — F(w) (1.22)
where D is a bilinear form and F is a linear functional. And in (1.19)

Dlu,v) = /QVU.-Vvdmdy

Flv) = ./vadn:dy

Af
Ifwy = Z Citi,
i=1
1 N N N
Hwy) = *D (Z CitPis Z C;%:) - F(Z Citpi)
1
= 3 Z D((PH(IOJ Gcy — ZF (PI)C'
.'j 1
Therefore, J{wy) 1s a quadratic polynomial j(c, -+, cx) of variable ¢;,---,cn. If
the coefficient matrix of the second degree terms, [D(w;, ¢;)]i =i & i$ positive
definite, then J(wy) has a unique extremnm point (c?,-- -, %) such that
j(c(l);“'zcjo\') = min j(cla"':cr\’) (123)

CrytN
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From {1.23) and the necessary condition for an extremum, we have

5i
a«f- =0 (i=1,---,N) (1.24)
T (0 CR)
le.c=|cd,---,c}] satisfies
Ke=F

where I = [F'(p1),- -+, Flon)]" and K = [D(@;, 0;)i j=1,-.n-

The Galerkin Method The method is derived from the principle of virtual
energy. Here we find uy € Sy such that

D(’LLN,WN) = F(WN); VLV'N S SN, (125)

where };Vhe definition 0\{ D and F are the same as in the Ritz Method. Assuimne
!
Uy = Y Cpp, Wy = Y _cip;, then

i=1 i=1
N N
0 = > D{pipciei— Y eF(p)
ij=1 =1

N

N
= Z Z (i, 05)¢) — Fl3)| e

Because ¢; are arbitrary,

Y. Dlpigy)) = Flpi) (i=1,---,N)

=1

It is the same as the linear equations deduced in the Ritz Method
Ke=F.

This also indicates that the theorem of minimum energy and the principle of virtual

energy are equivalent.

1.3.3 The Finite Element Method

Perhaps no other family of approximation methods has had such a great impact on

the theory and practice of nnmerical methods during the twentieth centnury as the
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finite element method. The method has been used in virtually every conceivable
area of engineering that can make use of models of nature characterized by partial
differential equations. There are dozens of textbooks, monographs, handbooks,
memoirs, and journals devoted to the method. Further studies, numerous confer-
ences, symposia, and workshops on various aspects of the finite element method-
ology are held regularly throughout the world. There exist easily over thousands
of references on finite element today, and this is growing exponentially with fur-
ther revelations of the power and versatility of the method. Today finite element
methodology is making significant inroads into fields in which many thought were
outside its realm; for example, computation fluid dynamics. In time, finite element
methods may assume a position in this area of comparable or great importance
rather than classical difference schemes which have long dominated the subject.
The finite element method is the development and modification of Ritz-Galerkin
method. Its key is choosing piece-wise polynomial functions as the basis function
for the subset Sy. In the method, we decompose the domain £ into a series of
elements first, then we construct interpolating polynomial on every element, which
satisfy some continuous conditions on the line (surface) of intersection between two
neighboring element. This ensure that the Sy is the subset of A. In this sense,
the basis of the finite element method is the variational principle and interpolation
of piece-wise polynomial. Here we use an example to illustrate the finite element.

algorithm. For simplicity we consider the Dirichlet problem of the Poisson equation.

Au=f in ,
{ u=_0 on ) (1.26)

For simplicity and without loss of generality, assume {2 is a polygonal domain. The
generalized solution of (1.26) is the function w € H}(§2) satisfving
D(n,w) = (frw) V€ HI(Q)
(fiw)= / fwdady
S0
Decompose Q into triangles and denote the triangles by ey, -+, ey, The nodes
inside {2 are denoted by Py, -, Py, and the nodes on the boundary by Py, i1,

o Pyvigare The maximm line length of e; 15 h.



CHAPTER 1. INTRODUCTION ' 11

Linear interpolation is used for every element e = AP, P;P,, so that the values
at the nodes F;, P;, P, are equal to known values w;, w;, w,, respectively. If a node
is on the boundary 52, the corresponding known value is 0. Through this way, we
construct a piecewise linear function wy(x,y) (the subscript A is associated with
the decomposition). While (wy,---,wy,) going through all the vectors of space
Rn, we can obtain an Np-dimensional space S, consisting of all such wy(z, y).

Obviously, S is a linear space and is a subset of H}((2).

Since S, is a Np-dimensional subset of H} (), there must exist Np basis func-

tion 1 ('T: y)a Ty I}DNP(.’L‘, U)
Np
wa(m,y) = ) wipi(e,y)
i=1
where the @;(x,y) satisfies
L wi(F) = 6
2. @i(m,y) is a linear function on every element.

Obviously, ¢;(z,y) € H}(Q), ¢:(x,y) # 0 inside the triangle including node P:
and g;(z,y) = 0 elsewhere. Therefore the support of @;(x, y) is a polygonal domain
containing F; as its interior point.

The finite element method consists of finding wy, - -, un, such that

Np
un(7,Y) = Y vaPalr,y)

a=1
satisfying
D(u;,,,w;r) — (f wh) ={0 Vw, €5, (1.27)
Np
Assume wy, = Y W (7,y) and (1.27) is
a=]
N'p ivp
Z wauﬁD(‘ipa:@,ﬁ) - Z(f: wa) =0,
0,‘8=l =1

where

SE 1 (09 Ops | Opa Do
Dlvavs) = Z/ (5‘.7: o dy Oy )‘d:r:dy

n=] " €n

(f00) = 3 [ Foudndy

n=1"¢n
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Introduce

Dy (o, @8)

(f, @aln

/ (3% s n

Opa O
dr dr = Oy Oy ) drdy

/ f o drdy

and assume the element e, = AP,P;F,. Therefore there are only three basis

functions ;. ¢; and ¢,,, which do not equal 0 over the element ¢,. Then

Np Ng
Z ’LUQ’U.‘@D 500190,3 Z Wallg Z D (pa: (Pﬁ
o, f=1 o, 3=1 n=1
Ng Np Ng
= Z Z wauﬁDn(‘Pm ‘Pﬁ) = E Z wauﬁDn((PQ:Soﬂ)
n=1 a,3=1 n=1q =i jm
T
Ne | wi Dn(pi,0i)  Dnlpi, ;) Dalwi, om) u;
= > | w Dol i) Dulj,05)  Dul@jiom) | [ w5 |-
n=1 Wen Dn ((Pm.r ‘101) Dn (‘Pm; ‘Pg) D (‘Pmu (pm) Um
Let
wy U;
{6*}511 = w ? {6}371 = uJ
W U
and
Dn(‘ﬂi:‘ﬂﬁ) Dn(‘P-i:‘Pj) Dn(@i:@m)
[k]en = Dn((pj!{pi) Dn({pjaﬁaj) Dﬂ-(ﬁpjagom)
Dn ((Pm, (P:) Dn ((Pm; (;OJ) Dn (ﬂomg ‘Pm.)

The [£]., is the element stiff matrix. Then

.'\"E
D(uh-iwh) = Z{éi}i[k]en {6}311' (128)
n=|
Meanwhile,
Np
(f: 'lUf,_) Z We (f {)00)
a=1l
Np Ng

anz (f.©a)n

n=1

Ng | W (fv ‘Pf)n
> | wi (frgidn |-

n=1 Wy, (f (pm)n
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Let
(fpi)n
{F}eu = (fa‘pj)n
(f: (loﬂ’l)n
The {F}., is the element load. Then
Ng
(frun) = {8 }e {Fle, (1.29)
n=1
After putting (1.28) and (1.29) into {1.27), we have
Ng Ng
S {6} [Ken{6Yen — D {6} {F}e. =0. (1.30)
n=1 n=1

After superimposing [k].., {8}, {6}e,, and {F}. to [K], {6*}, {6} and {F}
respectively, we obtain

{8} [K){6} = (&'} F.
Since {6*} is arbitrary, we can get a linear system

(K]{6} = F.

1.4 Current Work on the Dam Overflow Problem

Based on (4] and [14], Chapter 2, Chapter 3 and Chapter 4 of this thesis will
expose the author’s work on the dam overflow problem. Two mathematical models
are adopted in Chapter 2 and Chapter 3 in which numerical results as well as
theoretical results are presented. The work, divided into three parts, is detailed in

the following.

L. In Chapter 2, the equations of the potential function model,

—Ad(z,y) =0 in Q (1.31)
w = _% (1.32)
o7y, =0 (1.33)
W = 0 (1.34)
d“bg) y) L, =0 o (L3D)

Ao,
é( 'y)L,; = /29(Ey - y) (1.36)

s
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is presented, the ready-made algorithm of (1.31 — 1.36) (see 2.2 of this thesis)
usually preferred by engineers will be adopted. As the original algorithm be-
comes unstable when iterating and consumes relatively long time, we modify
the original algorithm so that it runs faster and be more stable by introducing
the relaxation factor method. Moreover the programs are developed on the
FEPG (Finite Element Program Generator) platform aiming at verifying the

effectiveness of the relaxation factor and its practical use as well.

2. Since the free boundary condition (1.36) of the potential function model is
given with tangential derivative, it is difficult to transform the potential func-
tion model into the variational form. We naturally think about using the
stream function, which is the conjugate function of the potential function.
Because the tangential derivative of the potential function is exactly the mi-
nus of the normal derivative of the stream function, the obstacle of using the
potential function for transforming into variational form can be averted. The
stream function model constructed in {14] is considered in Chapter 3. The

equations for the stream function model are:

—Ag(e,y) =0 (1.37)
W), = (e )+ 3 (139
(=, y)

T 2 - 0 (139)
Way)|  =c—q (1.40)
i), =c (1.41)
% =" 2(A — gy). (1.42)

From the stream function model we get

(a) the existence of the solution to the original equations (1.31)-(1.36);

(b) the existence of the discrete solution to the corresponding numerical

scheme;
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(c) the convergence of the discrete solutions to the exact solution of (1.31)-

(1.36).

In the meantime, we develop the programs for computing the stream function

model.

3. In Chapter 4, after getting the computational outputs of the potential func-
tion model and the stream function model, we compare the advantages or

disadvantages between the two algorithms.



Chapter 2
The Potential Function Model

In this chapter, we focus on improving the original algorithm and developing pro-
grams to obtain the numerical results of the potential function model. Section 1
and section 2 consist of the preliminary work. We deduce the mathematical model
in section 1 and depict in detail the original algorithm in section 2. Section 3 and
section 4 consist of my major work. In section 3 we introduce how to use the relax-
ation factor and its advantage and the implementation in modifying the original
algorithm. Moreover, to demonstrate the advantage of using relaxation factor, we
compare a series of data taken from computation of the modified algorithm with
the relaxation factor adding in and the original algorithm withont the relaxation

factor. In the last section, we show the numerical results by graphics.

2.1 Mathematical Model

The potential function model describes how the water is flowing over a vertical
dam. In Figure 2.1, we depict the cross-section of the river water and the dam.
The water is assumed flowing from left to right and passing over the vertical dam
of height AH. The height of the water level h at a great distance k1l from the
dam is assumed known. All the data used in the computation in this thesis are in

consistent units,

16
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2.1.1 The Diagram for the Dam Overflow Problem

a
A |8l
§3
—_—
b Al x
Figure 2.1
In the figure, we use the following notations:

s1 — entrance 82 — exit
$3 — the body of the dam 54 — free boundary (the water flow surface)
H — height of the dam h — height of the water

The unknown parameters are the flux {¢), the flow velocity (V), the flow energy

(£} and the free boundary (s4). To obtain these, mathematical model should be

constructed.

2.1.2 Construction of the Mathematical Model

Since the water flow is a very complicated problem, for simplicity we assume that
the water flow is a incompressible and irrotational here. Hence one can introduce

the potential function ¢(x,y) with the property

vV = (Vi{(z,y), Va(z,y))

= Vé(z,y)
A (%(frr,y) 99z, y))
N ox ’ 31;

where V' is the flow velocity, which is a vector consisting of two components, V)

and V5.



CHAPTER 2. THE POTENTIAL FUNCTION MODEL 18

As the water is incompressible, the divergence of the potential function is zero,
giving
Ad(z,y) = div(Ve(z,y)) = divV = 0. (2.1)
The boundary conditions are given as follows:
(1) On sl
From Figure 2.1, one can assume that £l is large enough, which means the flow

entrance is far away from the dam. So the hypothesis that the water around the

entrance sl flows at average speed is reasonable, which means V.i= —% = const.
That is to say, |

—B‘bgz y) a= (2.2)
where 71 is the outward normal direction and ¢ is the flux.

(2) On s2

The shape of exit can be made arbitrarily and is insignificant in the model. For
simplicity, s2 can be considered as an equi-potential line. On the other hand, the
value of equi-potential line is relative, therefore, for convenience, its value is set to

Zero, l.e.

() =0 (2.3)
(3) On s3
Since 83 is the fixed boundary, it is easy to know that there is no variation of

the fluid along the normal direction of 53, i.e.

dé(r,y)y
5, =0 (2.4)

(4) On s4

Because s4 is the free boundary. it needs two conditions, the ordinary bonndary
condition and the free bonndary condition. As the same reason given in (3) that

there is no variation of the fluid along the normal direction of s4,

do(x, y) _
IR = 9 r
5 =0 (2.5)
Meanwhile, by the Bernoulli-Energy Equation {see A.1).
v Py

LU | B -
2q oY Ny
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where V is the flow velocity, Ey the initial energy, y the vertical coordinate, Fy the
air pressure, g the gravity and p the water density.

Since Ejy and f‘; are constant, we merge them into one term and for simplicity
denote £y — ’fg by Ey. Let s be the length parameter such that s is increasing as

we traverse along the boundary in the counter-clockwise sense. Then, along s4,

= () oy -

ds o
- \/nvu?— (2Hnulye
= VIiv|?

VB ) 29

By combining all equations from (2.1) to (2.6), the potential function model is

—Ad(z,y) =0 in 0 1)
9z y)) _ 4

on st A 22
¢z, y)| ,=0 - @3
0z, y)|  _
| =0 (2.4)
9¢(x,y)

on lsa 29)
aqb(a:; y) = 29(Es— ) (2.6)

where ¢ is the unknown flux and s4 is the unknown free houndary to be determined.
The above equations are non-linear due to its free bonndary which brings more

difficulty in either developing theoretical results or getting numerical solutions.

2.2 The Algorithm

2.2.1 Outline of the Algorithm

The algorithm for the iteration processes are briefly described in the following steps:

1. Consider only the equations (2.1) — (2.5) and form the following boundary
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value problem:
-Ad(z,y)=0 in Q
()| _ %
On la h
#(r.9),, =0 (2.7)

Oz, y)

dn
I¢(z, y)

on 'Fo -

33"

2. Give gg and I'g (here Ty in place of s4 in Figure 2.1) initial values;

3. Solve (2.7) by the finite element method to get a numerical solution ¢(z, y).

4. Obtain the new flux ¢ and new boundary I using the algorithm provided in
[4}.

5. Repeat step 2, step 3 and step 4 until convergence is reached (it means the
errors of the free boundary and the flux between the two consecutive iterating

process are less than the tolerance € given in advance).

2.2.2 Anatomy of the Algorithm

1. The displacement feature of the free boundary

Figure 2.2
In Figure 2.2, H, (water pressure) of the ith point is changing with the normal

displacement, w (outward is positive). Consider

Hp(w) = f(w) — F(w) (2.8)
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where

flw) = Ey—y—wcosh, (2.9)
Flw) = [ulw)]?/2e. 2.10)

In (2.10) u(w) is the speed of the ith point and is a function of w. In (2.9) @ is
the angle between y-axis and i7. In general, H,(0) # 0 along an arbitrary surface.
However, using the Bernoulli-Energy Equation, if ab is the actual free boundary

surface, we know that
H,(0)= f(0)— F(0)=0 (2.11)

The linear parts of the Taylor expansion of {2.8) and (2.9) are

flw) = f(0)+ f(O)w (2.12)
F(w) = F(0)+ F(O)w. (2.13)

And after substituting into (2.8) with (2.12) and (2.13),
Hy(w) = (f'(0) — F'(0)w, (2.14)
which is a property of the free surface. Generally, for a free surface,

F(0) < 0,
(o) < o

Therefore, due to the inequality relation between F’(0) and f(0), the free surface

can be classified into three types below:
L F(0)>[(0) ie |F(O) <|/(0)
2 FO)<f(0) ie |F(0)]> ()l
3. F(O)=f(0) ie |F(O)]=]/0)

Type 1, type 2 and type 3 are called slow flow, rapid flow and critical flow respec-

tively.
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Understanding the property of the free surface is most important for adjusting
the free surface. Still referring to Figure 2.2, we assume ab is the nth iterating free

surface. Meanwhile, if Hp(0) # 0, a small value of w should be found to satisfy

If w is very smaill, through Taylor’s expansion,
F(0) - f1(0)  F'(0) - f(0)
The following list is the detail of the free surface feature.

H,(0)>0| H,(0) <0
Slow flow F7(0) > f'(0) w >0 w < 0
Rapid flow F/(0) < f'(0) | w <0 w >0

The above list indicates that the adjusting directions for slow flow and the rapid

flow are exactly opposite.

2. Computation of the flux

—¢

Figure 2.3
The method is to find the approximate flux for the next iteration and to adjust
the free surface. In Figure 2.3, after obtaining the nth flow, the speed ug (0) of ¢th
point can be calculated (since speed is the gradient of the potential function). From
the ith point one can draw an equi-potential line 77 which is a curve throughout

the whole flow field. The length of 77 can be computed using interpolation. Now
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a small displacement w; along the normal is given. Under the condition that the

flow velocity along 7,7 is similar to that along 77, we have

ug; (0) _ uOi(wi)___ _

20 = B - K, (2.16)
(0) = Li (2.17)
) = o (2.18)

where K a proportional constant.

By combining (2.16), (2.17) and (2.18),

K;
i (w;) = I +w (2.19)

Since %f = ug;(w;) in (2.6), and using (2.9)-(2.10),

Hy(wi) = f(w;) ~ F(w;)
g kiq®

= ht+ 505 — ¥ —wicosth — —————
T oaghE YT s )

The requirement that ab is the real free surface is Hy(w;) = 0, from which the

equation to reveal the relation between ¢ and w;,

p k2q?
ht — =y ;cosd; + ————— 2.20
+29h2 Y; + w; cos '+29(Li+wi)2 (2.20)
is achieved.
For convenience, now introduce the following non-dimensional numbers:
- &
Gis e
h,i* — L'i + W
h
B, = cosb,
h — Ui + L,‘ cos 9,‘
Zix =
hcos
Consequently, (2.20) is changed to
2h2 6. (hiy — 2,
_ bl — 2) (2.21)




CHAPTER 2. THE POTENTIAL FUNCTION MODEL 24

When g¢;, reaches its maximum,

dqi*
dh’it =90
re.
b3, — 3K2hi, + 2K?2;, = 0. (2.22)

It can be proved that the condition that the equation (2.22) in h;, has a positive
root b, € (0,K;) is
Zin < K;. (2.23)

In other word, on each point of the free surface satisfying (2.23), there must have

an extremum g, which is the extreme flux. Since A, < K,

d2 ix gi*h'm-
1 = Ot — < 0
dzh"‘-‘ hie=hm; h%l.'. - Ki

Hence ¢y,,, is a maximum.

The hp,, can be obtained from (2.22) through either iteration (2.22) or analytic

solution as
hon.. = 2K; cos(60° — %) where cosa = z""f
Therefore 3
e = afg? (2.24)
and

G = /GG B2, (2.25)
through substituting A, to k. in (2.21), where g,,, is the extremum corresponding
to ¢ in {2.20),

From (2.25), one can get the maximum flux of each point suitable to (2.23). Since
the actual flux must be less than or equal to the maximum finx of every point,
the minimum of all these maximnm flux is the possible maximum flux, denoted by

g"*D for the next iteration. That is

q(n+lJ = I'Illln Gm; = G,
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where k is the number of point at which the possible maximum flux reaches.

Since
f'(Wm,) = —cosby = 6. from (2.9),
K?ql’ K2q2
Flwg,) = - Eime T RIme pom (9, d (2.19).
(Wn,, ) oL + 0 N om (2.10} and (2.19)

And from (2.24),
f(wmy) = F'(wp,).
So kth point is the critical point of (n + 1)th flow and its adjustment of the free

surface, wn,, , can be taken through (2.24).

3. Adjustment of the free boundary

After getting nth flow field, the flux ¢ of the next iteration, critical point number
k and the adjustment of the critical point wy, we can adjust the free surface for
both slow flow and rapid flow. The method is described below.

For the discrete flow field, consider an arbitrary point 7 on the free surface. The

equation (2.20) can be expressed in the form

flw) = F(w;) (2.26)
(¢n+D)?

flw;)) = h+ ok Yi — w; cos f; (2.27)
B Kf(q(n-i-l))‘z

where ¢, can be obtained in the above section. So one can solve (2.26) for w;.

(2.26} is a cubic equation,

f(ws)

0 wis W4 W
Figure 2.4
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and in Figure 2.4, it is known that (2.26) has two kinds of solutions, slow flow
solution and rapid flow solution. To get them, one need to adopt different iteration
strategies. For the points above the critical point, since |F'(0)] > | f'(0)|, the slow
flow form

F(w]) = f(w[*™) (2.29)
is adopted. And for the points below the critical point, since |F'(0)] < |f/(0}|, the
rapid flow form

F(w™) = f(u]) (2.30)

is adopted, r and r + 1 being iteration numbers.

2.3 Relaxation Factor Method

2.3.1 Introduction

We now use an example to explain how to use relaxation factor method. Suppose

we want to obtain the solution of the equation
X = f{X) (2.31)

where the X is a vector. The usnal simple iteration X, ., = f(X,) can be put in

the form

AXog = (X)) — X,
{ Xpr1 = Xa +AX 0. (2.32)

To improve the convergence, instead of the above form we use

AXn.-{-l - f(Xn) - X,m
{ Xy = X+ 59D X, (2.33)

where ry4 is a scalar and kg = x(8); 8 is the angle between AX,, and AX,,, (see

Figure 2.5).

AXYI+]

AX,
Figure 2.5
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The function (8} is a monotone decreasing function. The formula in (2.33) de-
scribed a relaxation factor method and g is called the relaxation factor.

Using a good relaxation factor does improve the speed of convergence. In (2.33),
when @ is large, which means that the trends of the two consecutive iterations differ
considerably. In this case, we need to decrease x(8) to slow down these trends.
Inversely, we need to increase x(#) when @ is small. Through using relaxation factor,
we slow down the iterating speed when instability appears whereas we accelerate

the iterating speed when the iteration is considerable stable.

2.3.2 Implementation

"The purpose of introducing relaxation factor method is to speed up the convergence
and stabilize the iteration. It is used in step 4 in 2.2.1 of this thesis to improve the
original algorithm. And the following gives the details of the implementation.

We use the vectors ['g, I'; and 'y to represent the discrete forms of the former
free boundary, the current free boundary and the next free boundary respectively.
The elements of Ty, I'y and I'y are coordinates. And use vectors AT, and AT, to

represent the increments from I'; to 'y and from [ to [y, where
AFQ = (.’E.@z), /_\Fl = (.'n,;l),

and ;, and x; are the increments of ¢th point along the normal direction of T,

and [y respectively (see Figure 2.6).

AT
AI‘l 2 PZ
I'y
Ly
Figure 2.6

The angle between AT’y and AT, (see Figure 2.7) is

AT, - AT,
IAT [[lJAT||
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n
i=1 Ty " Tip

\/2?=1 7 \/Z?:l Ty

ATy

0 >
AT
Figure 2.7

In the process of iteration, when @ is large, the trend of the iteration is not

beneficial to convergence, whereas the trend speeds up convergence when 8 is small.
The question is how to avert the drawback caused by large @ and to make use of
the good effect due to the small #. For that, we introduce a scalar T called the
relaxation factor associated with 6. Using relaxation factor by the approach of
replacing AI'y; by TAT; in the next, iteration will achieve this goal. In general, the
relaxation factor would be much less than 1 when the trend is disadvantage with
¢ being large as well as it would be more than 1 when the trend is advantage with
# being small.

The relation of T and é in the computing process is presented by a monotone

increasing and piecewise constant function such that

c, a3 <cosf <as
cy, Gy < cosf < ag
T=f(f)=< ¢c3, a3<cosb <ay (2.34)
Cnel  Gnoq S cOs6 < a,,
where -1 <0y <a3 <~ <@, <land 0 < ¢y < ¢ < -+ < ¢p_;. Under such
relaxation factor, the new free boundary is I'y = I'; + f(8)AT;.

The function is constant over each interval [@:,0:401], 2 = 1,..,n — 1. The
reason why choosing such a function as a relaxation factor is that it is easy for
programming. Since one don’t know previously how to choose a series of data as
relaxation factor to reach the optimal in the sense of convergence, we may change

the relaxation factor many times by medifying the program to meet the optimal.
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Choosing such function is convenient for modification.

29

In the following we give a subroutine written with algorithm language to demon-

strate how to use the relaxation factor method in our actual computation.

RX=2
IF cos <= 0.8 RX=RX*0.5
IF cos@ <= 0.6 RX=RX*0.5
IF cos @ <= (0.4 RX=RX*0.5
IF cosf® <= 0.2 RX=RX*0.5
IF cosf <= 0.0 RX=RX*0.5
IF cosf <= —0.5 RX=RX*0.5
where RX is relaxation factor and # is the angle between AI'; and Al';. The sub-

routine is the process of assigning value to T according to (2.34) with ¢; and a;

given as follows:

a; = "1,

as = —0.5, ¢ =2x0.5°
az = 0.0, ¢ =2x05°
ag =02, ¢3=2x05"

as =04, ¢ =2x05

3

ag =06, c¢5=2x0.52
7 = 08 Cg = 2x05

ag = 10, Cr = 2

In the above subroutine, the relaxation factor RX= 2, if cosf > 0.8, RX= 1, if

0.6 <cosf <=0.8, RX=0.5,if 0.4 < cos8 <= 0.6 and so on.

2.3.3 Advantage of Using Relaxation Factor

For explaining the advantage of using relaxation factor, we list the CPU time

and iterating number of the iteration added in relaxation factor and the iteration

without any relaxation factor.

Iterating number

Error Iteration with | Iteration withont
relaxation factor | relaxation factor
e < 0.001 74 102
e <01 32 46
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CPU time

Error Iteration with | Iteration without
relaxation factor | relaxation factor
e < 0.001 47 seconds 65 seconds
e<0.1 20 seconds 29 seconds

Note: the CPU time is taken from DX486 computer.

30

The above two lists obviously indicate that using relaxation factor can save time

and overcome oscillation, consequently, speed up the iteration to convergence.
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2.4 Numerical and Graphical Results

a. Free Boundary

Initial case {gy = 85.0)

RN

= 208.39947)

Final case (¢
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b. Equi-potential lines

8.3

B

]

(W]




Chapter 3
The Stream Function Model

3.1 Mathematical Model

In Chapter 2, the potential function model was established. Considering the draw-
back of the potential function model for developing theoretical results due to the
presence of tangential derivatives in the boundary conditions, the stream function,
which is the conjugate function of the potential function ¢(z,y), will be used in

this section for theoretical results.

Let the stream function be 9(z,y), and by the Cauchy-Riemann Condition, we

have
0¢(w,y) _ OP(my)  0d(ny) _  OY(z,y) (3.1)
dr dy dy O '
Therefore
Od(x,y) _ Olx,y)
5 = PR (3.2)
Oo(r,y)  Blr.y)
ds T an (3.3)

In the following, we transform (2.1)-(2.6) one by one by utilizing (3.1)-(3.3).
From (2.1} and (3.1)

Plz,y) | p(z,y)
522 T ay?
g\ dr By
%) O, y) aé(-’ﬁ, Y)
5 (= o) + (25

Ap(ny) =
(. y)
(2

33
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_BQQS(.?:, y) + o(z,y)
dz.0y Oz dy

= {

i.e.
—Ag(7,y) =0 (3.4)

From (2.2} and (3.2),
oy(r,y) _08ny) g

s on h’

Since along s,

N(z,y) M(zx,y)

O(z,y) _
s _( dr Oy )'(O’_l)
_ _%y(zy)
dy
we have, referring to Figure 2.1,
v gz,
P yla = 1!f(b)+_/0 '—éyﬁld?;

¥ du{r
%b(b)+./0 —%S’—mdy
ORI

_ 9y

I

fl

Let ¢(a} = ¢, then

?ub(m:y)lsl = (C - Q') + ghg (35)

From (2.3), aﬂ;;—’ylls? = 0, since ¢(7,y){s2 = 0. Then through (3.3)

M(x,y)
=0, (3.6)
From (2.4) and (3.2),
0#}(%?}), _ qu(m,y)l
gs * T T gn

= 0
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S0 (7, y)|s3 must be constant and by the continuity of ¥(z,y) and using W(b) =
¢ — q, we can get

Yyl =c—q (3.7)

For the same reason of getting (3.7) and ¥(a) = ¢,

w(g‘.:y)lstl =cC (38)
from (2.5).
By (3.2), (3.3) and putting A in place of gEj, it is easy to get
Mz, y)
o = VA -9) (3.9)
from (2.6).
Overall, the stream function model is
—A%b(?” y) =0 (34)
Wy, =(c-q+2 (35)
M(r,y)
B 2 (3.6)
Wa,y)| ,=c—g (3.7)
Yimy) = (3.8)
(. y)
>, = V20— gy) (3.9)
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3.2 Variational Form

To facilitate further discussion, we depict the cross-section of the water flowing

over vertical dam in Figure 3.1.

Figure 3.1
In Figure 3.1, T = abUae Ubfd and I = ed,
Let,
J{v,r) = / [EIV'UP + (A — gy)] dz dy
’ Jo, L2
K= {?:I'u € H'(D),vl, = ¢,v|a = (c — ¢) + ki V|, = c—(}
1 T b nb q h’ 1 bfd 1

Z = {r| the smooth lines connecting a to de}

€2, is the domain bounded by r € Z and n.l;ffip.

From [14] we know that i(x,y) and 9 € Z form the solution of (3.4)—(3.9) if

¥(x,y) and ry form the solution of the variational problem:

J(u,m9) = min_J(v,7). (3.10)

vel(,reZ
From the extremum principle, ¥(z,y) is less than ¢ within Q. After heing

extended from (2. to D such that ¢(z,y) = 0, (x,y) € D —Q,, ¢(z,y) satisfies
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the following variational problem:

J(u) = min J* (v) (3.11)

where

7@ = [ 519007 + (A~ guix(e - v)] dedy

K" = {ul € H'(D),vlr = G(z,y), vl < c}

G2, y)ee = c

G o)l = (e = q)+

Gz Yl =c—q
and

0, =<0
1, otherwise

3.3 Theoretical Results

This section is the major content of Chapter 3, where we will prove some theoretical

results based on the stream function model given in [14].

3.3.1 Existence of the Variational Form

- Theorem 3.1 If+) is the solution of (8.11) and there exists a smooth curve r such

that ¥ = c ebove r or on v, and ¥ < c below r, then v and r must be the solution
of (3.10).

Proof We prove the theorem by contradiction. If there exist w and satisfying
J(w, 7"y < J(3,7)
then extend u from domain Q. to D with u = ¢ ontside .. By assumption,
J () < J*(u).
On the other hand,

Ju) = J(u,r) and  J(¥) = J(,7)
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So
J(@,r) = J* () < J*(u) = J(u,7') < J(¥,7)
This is a contradiction, so the theorem is prbved. O
Theorem 3.1 not only indicates that (3.10) and (3.11) are equivalent but also
give how to get the free boundary. In fact, we see that r satisfying the conditions

in the theorem is exactly the free boundary.

/‘n

v

X<(2)

Figure 3.2
Next, we prove that the solution of (3.11) exists. To do this, x in (3.11) need
smoothing first as follows (see Figure 3.2): Choose a smoothed sequence {y.}
satisfying
liné x{r) = x(#)
Xe(x) <
X (%)

Xe, (1) < xop () A € > €

"“[.xs”“'”

%]

A

Snubsequently, for each ¢ > 0, we introduce the following new variational problem

corresponding to (3.11)
. * 7 — . L ’ f)
J() = i J7 () (3.12)
where

. 1 - ‘
Jw) = [D (5190 + (O = gu)x. (¢ = v)] dady
K" = folo € H'(D), ]y = G(ay), vl < c}
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Lemma 3.2 The solution of (3.12) exists.

Proof Since J; > 0, the infimum o = g}(f J?(v) exists and is nonnegative. Also,
there exists a sequence {v,} C K* that satisfies J:(v,) = a (n — o). Hence
there exists a bound M > 0 such that |J*(v,)] < M for all n. Then |V are

bounded as (A — gy)x.(c — v,) > 0.
Let v € H'(D), ulr = G(z,v), then (v, — u)|r = 0. From Poincare-inequality

(see Appendix A),
l[u —vnlly < ClIV(u = )| < Cl[Vul| + C||Vvali.
This indicates that |ju — wy|; has a bound. And from
lonlls < Nully + fva — ull,

we know |[|v,||; are bounded. Therefore, there must exist v € H Y(D) and a subse-

quence {u, } C {v,} such that

vy, —5 v in HY(D) (3.13)
Vnop =2 vlgp  in HZ(8D) (3.14)

Also because H %(E")D) is compéctly imbedded into L2(0D),
Unilop — vlap  in L*(3D) (3.15)
U, — v for each @ € 8D (in the sense of subsequence)  (3.16)
For simplicity, we still denote {v,,} by {v,}. Then owing to (3.13),
lim inf Vo2 > || Vo (3.17)
Since H'(D) imbeds into L(D) compactly,

U, — ¥ in LQ(D) (3.18)

Un — v for each x € D (in the sense of subsequence). (3.19)

Since (A — gy)x.(c — u,) < mgx(/\ — gy) < +o0o, from the Lebesgue dominated

convergence theorem (see Appendix A),

lim [ (A - gy)x.(c — v, )drdy = /D (A = gy)x.(c — v)dudy.

n—0d JD
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And from {3.17)

lim nf J? (u,) > J7 (). (3.20)
Since v € K* known from (3.16) and (3.19), and J*(v) = o from (3.20), v is the
solution of (3.12). O

Based on Lemma 3.2, the following theorem can be established.

Theorem 3.3 Let ¢, be a decreasing sequence such that e, — 0. Let v, be the
solution of (5.12) corresponding to €,. Then there must exist a subsequence {v,,} C

{vn} such that v,, — v in D and v is the solution of (3.11).

Proof Since J; (vn) > 0, let @ = inf J7, (v,) and there exists a subsequence {v,,_},
and J; (vn,) — a (¢ — oo). Therefore ||Vu,,|| have a bound. For simplicity, we
denote {v,,} with {v,}. By the same method used in the proof of Lemma 3.2,

there exists v € K*

Un 5 v in H'(D)
vy — v in L*(D)

vn — v lor each £ € D (in the sense of subsequence)

Here we prove that v is the solution of (3.11). ie Vu € K= J'(u) > J*(v).

Through the monotonicity of x.,
limsup J? (vn) > imsup J? (v,) > T (v)  V¥ng
n—00 T n—00 -no 2id1)

Through the arbitrariness of 79 and the Lebesgue dominated convergence theorem,

lim J7 (v)=J"(v),

ng—o0

Therefore,
limsup J; (v,) > J*(v)

TT— 00

Through minimum property of #,,

JHu) = lim J? (u) > limsup(v,) > J*(v)

n—oo
So v is the solution of {3.11). O

From Theorem 3.3 the existence of the solution for (3.11) follows.
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3.3.2 Equivalent Form

Theorem 3.4 If u is the solution of (3.12), then u satisfies following equations

—Au—(A—gy)x{c—u)=0 inD (3.21)
r=_G(r,y) (3.22)

ur <o, 250, (e—ule) 2 =0 (3.23)
on I

U

an
Proof For each v € K*, because K* is a convex set (tv + (1 — t)u € K*, for each
t>0), J}(tv + (1 — t)u) reaches a minimum when ¢ = 0. Hence

dJ} {tv+ (1 - t)u)
dt

t=0

le.

0 < [ [Vuv{u-u) - (- gyhxile - u)w — w)] dudy

= /D [ Au(v —w) — (A = gy)xele — u)(v — u)] drdy

Ou
+./r" EZ(U — u) dz dy (3.24)

Select v arbitrarily such that v|p = u|r, then
| 19690 — ) — (A = gy)xi e — w)(v - w)] dady > 0
D

Due to the arbitrariness of », (3.21) is obtained. And (3.24) is changed to

I8 %(v — u)ds > 0. (3.25)

Let (x,y) € T".
(1) Suppose that u(z,y} = c.
After multipling both sides of (3.21) by (¢ — u)~ and integrating,

/D [V(c - u)_]Qd:::dy - /D(c —u) (A — gy)x.(c — w)drdy = 0.

Because / (e —u) (A = gy)x,(c —u)dady = 0, V(c—w)” = 0. Then (¢ —u)” is
D
constant. As ulr = G(x,y) < ¢, (c—u)7|r = 0. So

(c—u)y" =0
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i.e. © > ¢. Therefore
ouwy)| o,
on -

!

(ii) Suppose that u(z,y) < c.
From (3.25) and the arbitrariness of v,

Gu(z, y)
on

l"l

So, on I, u satisfies

%l Sy
Bnr,

c—ulr >0
Ou
on |,
In both cases we see that u is the solution of (3.21) - (3.23). O

Condition {3.23) is a two-possibility condition, introduce the penalty function

(¢ —ulr) =0.

- 0, t>0
s ={ % 12 (3.26)
then (3.23) is substituted by
du
(% +68(c-u)), =0 (3.27)

Lemma 3.5 If u satisfies (3.27), then u also satisfies (9.23).

Proof From (3.27) and the definition of 3(#), we know
’ Ju

onr
And if there is a (z9, yo) € I such that u(zg,40) > ¢, hence Ble—u(ry, yp)) = —c0.
The equality (3.27) cannot be true, since %g—iﬂ’llr' is finite. Therefore

=—fc—u)|r <0

ulrr <c

For each (7, y5) € I, if u(mg, yo) = ¢, then al(é%@(c — u(mo, yg)) = 0 is obviously

true. And if u(zg, 79) < c, then

ul0,0) _ _ e — u(un, o)) = 0.
on.

It follows that M{;g—""l(c — u(zy, o)) = 0. This completes the proof. O

From Lemma 3.5, it is easy to obtain the following theorem.
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Theorem 3.6 If u is the solution of

—Au—(A—gy) - x(c—u)=0

%LE = G(z,y) (3.28)
Gl = ~Ble =)

then u must satisfy (3.21)-(3.23).

3.3.3 Numerical Form

The penalty function 5(t) in (3.26) is a jump function. We smooth it out with
Bs(t) € C(R) (see Figure 3.3) satisfying

lim Bs(t) = 5(¢).

§—0

S
¥
Bs ()
7
1
N
Figure 3.3
Replace B8(c — u|r) by 85(c — u|r) in (3.28), we get

—Au—(A—gy) —x.(c~u)=0 (3.29)
ulr = G(z,y) (3.30)
du
% . = —ﬁg(c - 'U,ll'v) (331)

Its variational form is:

Find the solution « € H}(D) such that for all v € H}(D), we have
(Y, Vo) — (A = gy) (3¢ w) + /1 Bslc —uler) wds = 0 (3.32)

where

HMD) = {v(z)] v(x) € HY(D), {2} = Gz, y)}
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and
HY(D) = {v(x)] () € H'(D), v(x)]r = 0}.
Let
V = {v(z) € C(D)| v(z) is a piecewise polynomial}
Vor = {v(z) € V| v(z)|r = 0}
’U.()(.’E, y) € H (D)a U’O,F = G(TJ y)
ugr = Iy (interpolation of ug)

Vi = uon + Vor

The numerical form corresponding to (3.32) is:

Find the solution us € V;, such that for all v, € Vy, we have

(Ven, Von) = (A = gy)(xile = wn), ) + [ Bolc — ) -unds =0

44

(3.33)

To prove the existence of the solution u, to (3.33), we need the following lemma:

Lemma 3.7 For w € L*(D), the variational form:
(Vun, Vup) — (A — gy) (i {c —w),v) + /r" Bs(c—w) -vds =0

for all vy, € Vi, has a unique solution.
Proof In (3.34) let up = Uy + ugn, Uy € Vi, then
(VUi Vuw) = (A = gy)(xilc — w) — uon, vs) — /l_ Bs(c — w)vnds
Let a{u,v) = (Vu, Vv), wu,v € Vg, be a bilinear form, then
a(Un, Un) = [IVURI* < | Ual;
From Poincare-Ineqnality we can get
al|lUnlly £ IVUL| = a(Un, Uy)

where o > (.

(3.34)

(3.35)

Since Vg, is complete and a(-,-) is symmetric, Lemma 3.7 is proved by using the

Lax-Milgram lemma. O
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By Lemma 3.7, we get the following theorem for the existence of the solution to

(3.33):
Theorem 3.8 The solution of the variational form (3.33) exists.
Proof Let u, = Tw, w € V,,, w, € V4, and
(Van, Vor) — (A — gy) (Xo{c —w),v) + /r' Bs(c —wvds = 0, Yu, € V.

By Lemma 3.7, T is a mapping of V}, into itself. In the following we will prove that
the mapping 7" suits other conditions of the Schaulder theorem (refer to Appendix
B). ie.

(i) T is continuous

Let wy,wq € Vi, uy = Tun,uy = Tws, then Vv € Vj,
(Vuy, Vo) — (A = gy) (e (c — wr), v) + /r Bs(c —wijvds =0 (3.36)
(Vuz, V0) = (0 = gu)(xi(e = wa),v) + [ Bslc—waluds =0 (3.37)
We get

(V(ur —u2), Vv) = (A = gy)(xi(c = wi) — Xi(c —wp),v)
_ '/F,(gd(c —wn) — Bs(c — wy))vds (3.38)

by (3.36)-(3.37). Substitute u, — u; for v in (3.38)
[ 19(w = w)fdzdy < C [ e = w1) = Xife — wa)lhn — uz] e dy
+ /F’ |Bs(c — wy) — Bs(c — wa)||ug — ualds.

Using Poincare inequality,

flur = usty < ClV(w; — wp)|?
C
< 6_2”‘“1 — wo|llur — uall + max |B5(t)[flw — wallrflur — wolly
< Cllwy = wollllur — usl|

Le. Jlur — ual| < Cllwn — wsl, which shows the continuity of 7.

(ii) TV, is compact.
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Since V}, is a finite dimensional space, TV}, is finite dimensional. It follows that
T'Vy, is compact if we can prove that TV, is bounded. Indeed by (3.35) in the proof

of Lemma 3.7, we can get

< CillUnllh + C: M| Up))s.

IUIE < ColUnll + M|[Unlo,

That is to say
Ukl < Cy + Co M.

where M = max|Bs5(c — w)|. Then |jus); < Cy + CoM + lluonlli. Hence TV, is
bound.

From the Schaulder theorem (see Appendix A), we know that T has a fixed point
up which is the solution of (3.33). O

Remark. We compute (3.33) with relatively small § as the approximation of
the stream function model (3.4)-(3.9) on the platform of FEPG (Finite Element

Generator Program, see Appendix B).



Chapter 4

Comparison of the Two Models

In this chapter, we will tersely compare the two algorithms of the potential function
model and the stream function model mentioned in Chapter 2 and Chapter 3
respectively. First we explain the advantage and drawback of these two algorithms.
Secondarily, from the previous two chapters, we know that the potential function
model and the stream function are equivalent. So the numerical results must be
the same in theoretical sense. A list of speed of the points on the free boundary is
used to demonstrate the equivalence of these two models.

The algorithm of the potential function model is an iterating process based on
the flux and the free boundary, with which one can achieve more accurate free
boundary shape and flux. Moreover this algorithm is verified many times by phys-
ical experiments. It is a pretty mature algorithm among fluid computation. Its
drawback is that there is no exact theoretical proof and we can’t prove the conver-
gence of the iteration. Meanwhile, it needs much computing work and consumes
much CPU time.

The algorithm of the stream function model is computing a variational problem
obtained through variational method for variational domain by the finite element
method. In Chapter 3, we give all theoretical bases needed by this algorithm. So
there is no doubt in theory. Since there is no iteration in computing, it just needs
less computing work and consumes less CPU time. Its drawback is that we can
only get the narrow lace in which the free boundary may locate rather than the

definite free boundary obtained from the algorithm of the potential function model.

47
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Before giving the list in the following, we need to do some explain. In Chapter
2 and Chapter 3 we know the relation between the potential function ¢(z,y) and

the stream function ¥(z,y) is:

Ob(z,y) _ 9¢(z.y)
ox dy

we denote the flow velocity in x-direction by S, and in y-direction by S,. We

IY(z, y)

__9¢(z,y)
dy

or

use the subscript p and ¢ to distinguish the velocity obtained from the potential

function model and the stream function model respectively. Then

Sz,, = ¢I1
Syp = ¢’y
S’rq = %by:
Syq = _T;'I):r
Let.
e = IS:I',‘p - S:z:q‘:-
€y = ISyp - Syq[~

In theory, if the parameters nsed in the compntation by the potential function
model and the stream function model are the same, then e, = e, = 0. However,

practically there are some deviations in the actual computation. The deviations e,

and e, are shown in the following table.

X v S, Sa, S, Sy e, e,
-80.00 | 85.00 | 3.402004 | 3.227526 | 0.293793 | 0.0000 | 0.17448 | 0.29379
-68.31 | 84.93 | 3.591063 | 4.433717 | -0.01815 | 0.0000 | 0.84265 | 0.01815
-53.70 | 84.77 | 3.958116 | 4.660282 | -0.02415 0.000 0.70217 | 0.02415
-39.08 | 84.53 | 4.494598 | 5.038917 | -0.08686 0.000 (.54432 | 0.08686
-24.45 | 83.97 | 5.484186 | 5.273575 | -0.27868 | -0.271039 | 0.21061 | 0.00764
-9.06 | 82.15 | 6.787702 | 6.33834 | -1.52473 | -0.478973 | 0.44936 | 1.04576

5.44 | 78.05 | 11.26501 | 11.0309 | -4.67419 | -3.74226 | 0.2341 | 0.9319
16.73 | 71.49 | 14.66012 | 15.45273 | -10.9882 | -8.312456 | 0.79260 | 2.67576
29.21 | 58.94 | 15.40882 | 17.01303 | -18.7186 | -14.20831 | 1.60421 | 4.51030
40.60 | 41.95 | 14.92616 | 17.04092 | -25.0021 | -19.5310 | 2.2148 | 5.4710R
52.58 | 21.75 | 18.47039 | 21.90899 | -29.8465 | -23.80349 | 3.43860 | 6.05303
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In the above table, the values S,,, S,_, S,, and S, are computed using the following

parameters. Referring to Figure 2.1 the parameters being using are:

h = 85.0,
hl = 80.0,
H = 620,

and s3 is depicted by the following discrete points:

Number | z-coordinate | y-coordinate
1 0.0000000 62.0000000
2 2.0000000 61.7340500
3 4.0000000 61.4680900
4 6.0000000 60.7752900
5 8.0000000 60.0824800
6 10.0000000 59.0113200
7 12.0000600 57.9401600
8 14.0000000 56.5137500
9 16.0000000 55.0873400

10 18.0006000 53.3209300
11 20.0000000 51.5545100
12 22.0000000 49.4594000
13 24.0000000 47.3642800
14 26.0000000 44.9493900
15 28.0000000 42.5345000
16 30.0000000 39.8071700
17 32.0000000 37.0798500
18 34.0000000 34.0463000
19 36.0000000 31.0127500
20 38.0000000 28.0643200
21 4(3.0000000 25.1158800
22 42.0000000 22.2587400
23 44.0000000 19.4015900
24 46.0000000 16.5444500
25 48.0000000 13.6873100
26 50.0000000 10.8301600
27 52.0000000 7.9730210
28 54.0000000 5.1158780
29 56.0000000 2.2587350
30 58.0000000 | -5.984082E-001
31 60.0000000 -3.4555510




Chapter 5

Conclusions

The Dam Overflow Problem is an old problem involved in physics, mechanics, ap-
plied mathematics and engineering science. Mathematics has contributed much in
this area. Especially following the modern electronic development which makes
computers faster and cheaper, large scale computation in low cost now becomes
viable. The advantage of using mathematical models to analyze engineering prob-
lems is that its cost is low, but the results sometimes are very satisfactory. So
using mathematical model is becoming more common in engineering. The Dam
Overflow Problem is not exceptional. Further application of mathematics in the
Dam Overflow Problem will surely be very promising if more working principles
are discovered and more major factors are considered.

The finite element method developed in the seventies is so far one of the most
powerful methods to obtain numerical solutions of PDE. With its theory completing
increasingly and plenty of practical experience of application accumnlated, many
large scale computations including fluid computation, which nsed the traditional
finite difference method before, has switched to the finite element method. The
finite element method has the advantage that it can be effective over domatns of
any shape, regular or irregular. Whereas, the finite difference method is difficnlt.
to be applied over a relatively irregular domain. Althongh using the finite element
method consnmes a little more CPU time than using the finite difference method,
it does not. matter much since following the swift development of the computer

hardware. the speed of the CPU is no longer a bottleneck in many aspects. Based
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on the above reasons, the finite element method is an option for either numerical
solutions or theoretical results in this thesis.

The main contributions of the present research to the dam overflow problem
are described in details in Chapter 2 and Chapter 3. In Chapter 2, the focus is on
improving the original algorithm and developing programs to obtain the numerical
results of the potential function model. Section 2.1 and section 2.2 consist of
the preliminary work. The author deduced the mathematical model in section
2.1 and depicted in details the original algorithm in section 2.2. Section 2.3 and
section 2.4 consist of the author’s major work. In section 2.3 the author introduced
the relaxation factor method and illustrated its advantage and implementation
in modifying the original algorithm. Moreover, to demonstrate the advantage of
using relaxation factors, the author compared the numerical results of computation
based on the modified algorithm with relaxation factors adding in and the original
algorithm without the relaxation factor. In the last section, the author showed the
numerical results by graphics.

In Chapter 3, the focus is on the theoretical results of the stream function model.
Considering the drawback of the potential function model for developing theoretical
results due to the presence of tangential derivatives in the boundary conditions,
the stream function, which is the conjugate function of the potential function, was
used in this chapter. As a byproduct of the theory, the algorithm corresponding to
the stream function model was obtained. In section 3.1 the mathematical model
based on the stream function was developed. In section 3.2 the variational form of
the stream function model was derived. The author’s major works for the stream

function model included in sect_ion 3.3 are listed as follows:

1. The author established the existence of the solution to the variational form

of the stream function model.

2. The author established the existence of the discrete solution to the corre-

sponding numerical scheme.

3. The anthor obtained some numerical results for the stream function model.



CHAPTER 5. CONCLUSIONS 52

The deficiency is that the author cannot prove the solution uniqueness for the
stream function model. If the solution uniqueness can be proved, more interesting
results such as the error estimation between the discrete form and the original form

can be established.

The contents of the Dam Overflow Problem are by far richer than what I have
mentioned in this thesis. More work has to be done in order to understand it

thoroughly.
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Appendix A

Some Theorems used in the
Thesis

A.1 Bernoulli-Energy Equation

Since the Bernoulli-Energy Equation plays an important role in the potential func-
tion model and the stream function model. Hence we give a brief derivation of the
Bernoulli-Energy Equation for a ease of reference.

The Euler’s equation of incompressible flow along the streamline under stream-

lire coordinate system is

Op _ 0z oV _
pos gas ds

(A.1)
where p is the air pressure, z is vertical coordinate, V is velocity field, ¢ is the
gravity, and p is the density.

Since g and p are constants, (1) can be written as

d p Vi
—(£ L) = A.
ds ([) Fozt 2 ) 0 (A2)
Therefore -
1% 2
P + gz + V] = constant (A.3)
2

along the streamline.

After replacing z and p with y and B, respectively, the Bernoulli-Energy Equa-

tion is obtained.
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A.2 Schauder’s Second Theorem

The following theorem is known as Schauder’s Second Theorem.

Theorem Let (& be a non-empty convex subset of a normed space B. Let T be
a continuous mapping of ;1 into a compact set k C u. Then T has a fixed point.

Schauder (1930) proved this result in the case where B is complete and y closed.
The following proof for the above theorem is from [27].

Definition Let T map a set ¢ into a topological space X. If T'¢ is contained
in compact subset of X, we say that T is compact.

Notation We write co(X) for the smallest convex set containing X, and ¢o(X)
for the closure of co(X).

Lemma A (Schauder’s Projections) If « is a compact subset of normed space
V and € > 0, there is a finite subset = of x and a continuous mapping P of x into

co(X) such that
|Px —z|| <€ (x€ k)

Proof Choose =y, ---, z, in & such that the sets N(z;,¢) with 1 < ¢ < n cover .

Put X = {zy,---,z,}. For 1 <i < put
Ji(m) = max(0, ¢  flz — zl).

Then fi(x) # 0 if and only if x € N(z;,€). Thus at each = in &, some fi(z) # 0.
Now put,
Pz =" flz)r:/ > filx) (v € x)

Clearly P is continuous. Also, since Pz is a convex combination of those points x;
which lie in N(z;,€), we have Pz € N(z,¢). O

Proof of Schauder’s Second Theorem. Forn = 1,3, - consider P,T where P, is
the mapping given as in the previous Lemma A with € = 1/n. Since X C & C ;1 we
have co(X) C s.. Thus P,T gives a continuous mapping of the finite-dimensional
compact convex set co(X) into itself. A fixed point. ,, exists by Brouwer’s theorem
(see A.7). From P,Tm, = x, we get | Tz, — x,|| < 1/n. By contraction mapping

theorem, 7" has a fixed point. O
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The following special case of Schauder’s Second Theorem is useful for applica-
tions.

Corollary Let T be a compact continuous mapping of a normed space B into
B, Then T has a fixed point.

For finite-dimensional spaces the above results become:

Theorem (a) Any continnous mapping of a convex subset i of R® into a
bounded closed set inside p has a fixed point.

(b) Any continuous mapping of R into a bounded subset of R™ has a fixed

point.

A.3 Poincare’s Inequality

Let 2 be a bounded domain. Suppose I is of class C! and such that Hy?(QUT),

where 1 < ¢ < oo, does not contain any nonzero constant. Then
|ulp,ﬂ < C(E)Vul,q

holds whenever u € Hy*(QUT).

A.4 Lebesgue Dominated Convergence Theorem

Let A be a bounded Measurable subset of R and let f, be a sequence of measurable
functions on A such that Jim falx) = f(x) for every z € A. If there exists a
function g € E(A) i.e. g is summable] such that |f,(z)] < g(z) for n. = 1,2,3,...
and all 7 € A, then lim [A fodm = /A fdm.

-A.5 Hahn-Banach Theorem

Let £ be a real linear space and let M be a linear subspace of E. Suppose P s
a sublinear functional defined on E and f a linear functional defined on M such
that f(x) < p(x) for every = € M. Then there is a linear functional g defined on £
such that g is an extension of f (i.e., g(z) = f(=) for all z € M) and g(#) < p(z)
forall € F.
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A.6 Lax-Milgram Theorem

Let B be a bounded, coercive bilinear form on a Hilbert Space £. Then for every

bounded linear functional F' € E*, there exists a unique element f € E such that

Bz, f)=F(x) VrekF.

A.7 Brouwer’s theorem

Let B™ be the closed n-ball.
(i) B™ has the fixed point property.

(ii} Every compact convex non-empty subset X of R™ has the fixed point property.



Appendix B
The FEPG

This appendix is devoted to introducing the software FEPG (Finite Element Pro-
gram Generator). Nearly all who have experience of developing FE (Finite Ele-
ment )programs said FE programs are very complicated and involved. Albeit the
existed FE packages can solve various problem depend on corresponding libraries.
Nevertheless, all these packages are not user-friendly and difficult to master. Dif-
ferent from the conventional FE packages, the FEPG, which generates Fortran FE
programs by computer directly, break through the limits with which most finite el-
ement program systems are restricted to specific finite element problems or specific
fields.

In the following, the FEPG and its ability are first introduced. Next, the
structure of FEPG is explain briefly. In the third section, an example of using
FEPG in Chapter 2 is illustrated. For details of the FEPG, please see [18]-[20].
And in the last. part, we give the details of how to compute the potential function

model through FEPG.

B.1 Introduction of FEPG

During 1950s and 1960s, FEM in its early stage achieved great success in structural
mechanics. During the following thirty years, FEM has developed into a mature
computational technique, and engineers and scientists in varions fields have grad-
nally understood and accepted FEM. With the rapid advances and popularization

of computer science. the cost of compntation is greatly reduced. However. by and
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large FEM is still used by only a small group of specialists. The reason comes from
the complexity of FE programs.

The generality of FEM brings about the extensive applications of FEM, as well
as the difficulties in FE programming. Any fairly consummate FE programs must
contain well above 10,000 lines of codes, which must.cost several manyears. This
is unbearable to most people. To overcome the difficulties, many research faculties
and software companies offer various FE packages. But most of them are limited
to some specific fields. In order to solve problems as extensively as possible, some
FE package have to resort to huge program libraries. Despite of this strategy,
they still can't cover all problems. For a new problem, the subroutines are usually
unavailable in the existing program libraries. The user must rewrite part of the
codes to achieve his aims. Without the help of the developers of the FE packages,
this task is unlikely to succeed. Moreover, such libraries are voluminous, poor in
readability and inconvenient in maintenance and modification. It often takes much
time for an engineer to customize and master such software. That is why people
prefer the old, even obsolete, but familiar FE packages to new and advanced ones.

On the other hand, theoretically FE programs are canonical. The procedures
in all FE programs can be divided into the following steps: first, preprocessing,
including grid generation and data preparation; second, compnte element stiffness
matrices and loads with treating constraints; next, form the global stiffness matrix
and right-hand-side terms, and then solve this algebraic system; at last, postpro-
cessing, such as outputting results and visualizing them. Consequently, some FE
program codes keep invariant when the problem vary. This examination brings the
hope of designing a general FE software.

The FEPG is the very software that is applicable to extremely wide range of FE
problems. It has been successfully applied to many fields, such as multi-body me-
chanics, super-conductivity, multi-phase and the phase control, fluid computation,
shape memory alloys and earth dynamic mechanics. The basic idea of designing
the FEPG is to separator FE programs into fixed parts and variable parts. The

First parts keep unchanged for different problems and are written in advance. The
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computer generates the variable parts according to the specific problems. Then,
again by computer, a complete FE program is ready after inserting the variable
parts into right places of the fixed parts. This design frees FE programs from being
constrained to specific kinds of problems and fields.

The FEPG can handle problems from on-dimensional to three dimensional, no
matter they are linear or nonlinear, ready-state or time-dependent, parabolic or
hyperbolic, a single equation or system of equations. Whenever the order of the
PDE (Partial Differential Equation) is not more than four and the weak-formulation
is available, the FE programs can be generated quickly. The user can also choose
arbitrary finite elements. Even different elements in different subdomains.

The key to make a computer generate the variable parts is how to explain an
FE program to a computer. The FEPG in effect provides a kind of FE language,
which is very close to the description manner of FE problems. The user needs only
to fill in some files describing various expressions and formulae that FEM requires.
No more work is necessary, the computer can then produce the desired codes of
the variable parts. The work of filling the files, which are very comprehensible to
ordinary scientist, is much less that writing a whole FE program. Thus not only
the user can save much time, but also the files are of excellent readability, easy
to be maintained and modified. For simple problems, such as the example at the
end of this chapter, a skillful FEPG user can get the FE program in less than one
hour. Even for extremely difficult problems, such as those afore-mentioned, it is
estimated that the efficiency of programming can be improved by at least twenty
times.

In some sense, the FEPG is a software platform. Users can apply it to develop

their own FE software.

B.2 Structures of the FEPG and Files Needed

The FEPG consists of six subsystems: the element subroutine generator (ESG),
the data generator (DG), the dynamic memory allocation generator (DMAG), the

batch file generator (BFG), the algorithm generator (AG) and the atomic programs
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and solvers (APS).

The ESG generates the elements subroutines that compute the element stiff-
ness matrices, the element mass matrices and element load matrices. The element
computation is one of the variable parts in FE programs. The user need only input
the transforms between the original coordinates and the reference coordinate, the
shape functions in the reference coordinate, the weak-formulation of the problem
and so on. The files supplying these information are of extended name * GES.

The DG prepares the mesh, initial values and Dirichlet boundary values of
the functions to be solved. The programs fulfilling this task are surely variable
parts. The file giving the relations of the required date is a tree-structured and of
extended name * MTI The system needs another file to instruct the computer how
to prepare these data wanted. The file name of this file is the same as the * MTI
file, but with different and arbitrary extended name.

The DMAG helps the user to realize dynamic memory allocation in Fortran
programs. At first, the user may write programs using static arrays, without being
troubled by their dynamic allocation. Next, the user modify the program by re-
placing the static array with the dynamic arrays. These files are of extended name
* EPG. Then the user write the memory allocation information files. which are of
extended name *.GPG.

The BFG usually does not require any further input form the user. It can gen-
erate several batch files that create the Fortran programs, assemble them, compile
them, execute the .EXE programs and show the final results graphically.

The AG produces the source code of the solving algorithm that the nser de-
signed. The extended name of the input is *. NFE. for instance, if the user wants to
apply Grank-Nichoson scheme to solve a parabolic PDE, he may tell the compute
the scheme in the * NFE file.

The APS provides some program hate quite common in FE programs, such as
the solvers SOL.FOR, the preprocessor START.FOR and boundary data modifier
BFT.FOR which is used in evolution equations. Indeed, for simple problems the

user nsually need only to modify the example files attached to FEPG and quickly
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obtain the files indeed by the FEPG.

B.3 An Example

For instance, consider the elliptic equation

Au=4 in
ulon = 7° + 4.

The solution is u(x,y) = =% + y?. The following files can describe this problem

sufficiently under FEPG.

1. .GES File defi
disp u
var ul,u2,u3,u4
refc p,q
COOT X,y
dord 1

node 4

shap
u=((1-p)*(1-q)/4Jul+[(1+p)}*(1-q)/4]u2
+{(1+p)*(1+q)/4]ud+([(1-p)*(1+q)/4]us

tran
x={(1-p)*(1-q)/4]x(1)+[(1+p)*(1-q) /4]x(2)
+[(1+p)*(1+q)/4]x(3)+[(1-p)*(1+q) /4]x(4)

y=[(1-p)*(1-q) /4]y (1)+[(1+p)*(1-q)/4]y(2)
F[(1+p)*(1+a) /4y (3)+[(1-p)*(1+aq) /4)y(4)

gaus=4 -1.-1.1;1.-1..1.;1.,1..1.,; -1.,1.,1;
stif
dist={u/xu/x]+[n/v;n/y|
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load=-[u]*4.

end

. .MTI File

bili 5000
COOR;ELEM;ID;DISP

ELEM F
ENOD

table

ENOD 4000
N;NODI1;NOD2;NOD3;NOD4;
15;15;15;15;15;
IDF

N:IDU;

15;13;

DISP F

N;U

15;F10.5
COOR F
N:XGY;
15;F10.5;F10.5;

DECLAR
COMMON/NXY/NX NY,NRnc

. DATA File

BILI 4

COOR
Br ENXENY; EXMAXEYMAX;
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&DX=XMAX/NX; &DY=YMAX/NY;
[(L-1)*(NX+1)+J;DX*(J-1);DY*(I-1);J=1 NX+1);I=1,NY+1]

ID

[[1:I=1,(NX+1)*(NY+1))

[I;-1;1=1,NX+1]

[L-11= (NX4 15 (NY+1)-NX,(NX+1)*(NY+1)]

[(NX-+1)5(I-1)+1;-1;1=1,NY-+1]
[(NX41)¥T-1i1=1, NY+1]

ELEM 1

ENGD

(INX*(I-1)+ J{L-D)*(NX+ D)+ J;{I- 1) (NX+ 1)+ J+ LI (NX+1)+J+1;
I*(NX+1)+J; J=1,NX];I=1,NY]

DISP

$c6 DIMENSION R(2)

$c6 COMMON /coor/X(5000),Y (5000)

(L,0.0;I=1,(NX+1)*(NY+1)]
[L&R(1)=X(1);&R(2)=Y(I);BOUND(R,0.0,1);I=1,NX+1]
[L&R(1)=X(I);&R(2)=Y(I);BOUND(R,0.0,1);I=(NX+1)*(NY+1)-NX,
(NX+1)*(NY+1)]

[N=(NX+1)*(I-1)4+1;&R(1)=X(N);&R(2)=Y(N);
U=BOUND(R,0.0,1);]=1,NY+1]

[N=(NX41)*L&R{1)=X(N);&R(2)=Y (N);U=BOUND(R,0.0,1);I=1,NY+1]

4. .NFE File

defi

stif S
mass M
load F
type e



APPENDIX B. THE FEPG
mdty 1
step 0

equation
matrix = [9]

FORC=[F|
SOLUTION U

write(s,unod) U

end

As Q =0,1] x [0, 1], the graph of solution is below
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B.4 Implementation

In this section, we list the major files needed in computation of potential function
model in Chapter 2, with which we can develop the programs through FEPG to

get numerical results in Chapter 2.

1. Element Information File
.GES File: BILI.GES

defi

disp u

var ul, u2, u3, u4, ub, u6 ,u7, ud
refc p, q

CoOr X, y

dord 1

node 8

shape

u=[-(1-p)*(1+q)*(1-q+p)/4Jul + [(1-p**2)*(1+q)/2]u2
+ F+p)*(149)*(1-p-q) /4]u3 + [(1-q**2)*(1+p)/2Jud
+ [-(14+p)*(1-0)*(1-p+q)/4]u5 + [(1-p**2)¥(1-q)/2]u6
+ [(1-p}*(L-a)*(1+p+q) /4u7 + [(1-g**2)*(1-p)/2]n8

tran
x=[-(1-p)*(1+a)*(1-q+p)/4)xL + [(1-p**2)*(1+q)/2]x2
+ F(1+p)*(14+a)*(1-p-q) /4]x3 + [(1-q**2)*(14+p)/2]x4
+ [F(14p)*(1-a)*(1-p+a) /4jx5 + [(1-p**2)*(1-q)/2]x6
+ F(1-p)*(1-a)*(T+p+a)/4]xT + [(1-q**2)*(1-p)/2]x8

y=[-{1-p)*(1-+q)*(1-q+p) /4]yl + [(1-p**2)*(L1+q)/2]y2
+ [F(Lp) " (1+a)*(1-p-q)/4]y3 + [(1-q**2)*(1-+p)/2]v4
+ [—(l-f-p)*(1—§1)*(1-p+(l)/4])f5 + [(1-p**2)*(1-q)/2)y6
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+ [(1-p)*(1-a)*(1+p+a)/4ly7 + [(1-9**2)*(1-p) /2]y8
gaus=8 -1.0,-1.0,0.5;0.0,-1.0,0.5;1.0,-1.0,0.5;1.0,0.0,0.5;
1.0,1.0,0.5;0.0,1.0,0.5;-1.0,1.0,0.5;-1.0,0.0,0.5

stif
dist=[u/x;u/x]+[u/y;u/y]
load=[u]*0.0 |

end

LINE.GES (Neumann Boundary Condition)

LINE

defi

disp u

var u(3)

refc sl

coor y

dord 1

node 3

shap
u=[(s1-1)*{s1-0.5}*2ul+[-4*s1*(s1-1)Ju2+[2*s1*(s1-0.5)|u3

tran
y=[(s1-1)%(s1-0.5)* 2]y (1)+[-4*s1*(s1-1}]y(2)+[2*s1*(s1-0.5)]y(3)
gaus=3 0.0.0.333333;0.5,0.333333;1.0,0.333333;

stif

$c6 vO=prmt{1)

dist=[n;u]*0.0

load=[u]*v0

end
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2. Tree Structural File
MTI File: BILI.MTI

bili 5000
COOR;ELEM:NODUVID:DISP;

ELEM F
NODS8,NOD3

table

NODS8
N;NOD1;NOD2;NOD3;NOD4;NOD5;NOD6;NOD7:NODS;
15:15;15:15;15;15;15;15;15;

NOD3

N;NOD1;NOD2;NOD3;
15;15;15;15;

NODUV F
N;NOD1;NOD2;NOD3;NOD4;
15;15:15;15;15;

IDF

N;IDU;-

I5;13;

DISP F

N;U

I5;F10.5

COOR F

N; XY,

15;F10.5;F10.5;

DECLAR
COMMON/NXY/NX.NY ,NR,nc
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3. Data File
BILI. File: bili.rec
BILI 5

COOR

$C6 DIMENSION A1(100),A2(100),B1(100),B2(100)

$C6 DIMENSION C1(100),C2(100),D1(100),D2(100)

$c6 OPEN(1,FILE="FREE' FORM="FORMATTED’,STATUS='OLD’)
$C6 READ(1,*) N1,M1

$C6 K=(M1-1}/2

$C6 DO 1000 I=1,N1

$C0 1000 READ(1,*) A1(I),A2(I)

$C6 CLOSE(1)

$C6 OPEN(1,FILE="SIDE’ FORM="FORMATTED’,STATUS="OLD’)
$C6 READ(1,*) N2

$C6 DO 1200 I=1,N2/2

$C6 READ(1,*) C1(I),C2(I)

$C0 1200 CONTINUE

$C6 CLOSE(1)

$C6 OPEN(1,FILE="start’, FORM="FORMATTED’,STATUS="0LD")
$C6 READ(1,*) NNN1,NNN2 NNN3 NNN3

$C6 READ(1,*) HHHO,XXX1 YYY1 XXX2

$c6 along=xxx2*0.22

$eb xxx2=xxx1+xxx2

$c6 close(1)

$c6 open(l file="start’ form="formatted’ stains="old’)

$¢6 read(1.*) nunl.nnn2, nnn3.nnn4

$c6 close(l)

8¢6 nnnl=nnnl-1

$e6 nnn2=nnn2+1

$C6 CLOSE(1)
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$C6 DO 1210 I=N2/2+1,N2
$C6 C1(I)=A1(M1)+(XXX1-A1(M1))/(N2/2+1)*(I-N2/2)

$C6 C2(I)=A2(M1)+(YYY1-A2(M1))/(N2/2+1)*(1-N2/2)

$C0 1210 CONTINUE

$Ce OPEN(I,FILE=’SIDE’,FORM=’FORMATTED’,STATUSz’OLD’)
$C6 WRITE(L,*) N2

$C6 DO 1220 I=1,N2

$C6 WRITE(1,*) C1(1),C2(I)

$C0 1220 CONTINUE

$C6 CLOSE(1)

$C6 OPEN( 1,FILE=’SIDE’,FORM=’FORMATTED’,STATUS=’OLD’)
$C6 READ(1,*) N2

$C6 DO 1001 I=1,N2

$C0 1001 READ(1,*) C1(I),C2(1)

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 DO 1002 I=1,N3

$C6 D1(1)=C1(1+N3)

$C6 D2(I)=C2(I+N3)

$C0 1002 CONTINUE

5C6 OPEN(l,FILE=’DOWN’,FORM:’FORMATTED’,STATUSz’OLD‘)
$C6 DO 1003 I=1,N1

$C0 1003 READ(1,*) B1(I),B2(1)

$C6 CLOSE(1)

$C6 N6=N1+(N1-1)/2+1

$C6 N5=(N3+1)*N6

[LAL(I);A2(1);1=1,N1]

[;BL(I-N5); B2(I-N5);I=N5+1,N5+N1 |

[ [(*N6+2*J+1;& M=2*J+1;
&U=SL1(AL(M),A2(M),BL(M),B2(M),C1(1),C2(1),D1(1).D2(1));
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SL1{A1(M),A2(M),B1(M),B2(M),C1(I),C2(1},D1(1),D2(I}));
SL2(C1(1),C2(1),D1(I),D2(I),U);J=0,K];I=1,N3]
[I*NG-+2*J;&M=T1*N6+2*J; (X (M+1)+X(M-1))/2;
(M+1)+Y(M-1))/2;J=1,K];I=1,N3]
([N14+(I-1)*N6+J+1;&M=(I-1}*N64+2*J+1;(X(M)+X(M+N6))/2;
(M)+Y(M+N6))/2;J=0,K];

I=1,N3+1]
[I*N6+2*(J+K)+1;&M=2*(J+K)+1;A1(M)+I*(B1(M)-A1(M))/{n3+1);
A2(M)+I*(B2(M)-A2(M))/(n3+41);J=0,(n1-1) /2-k];I=1,N3]
[[T*N6+2%(K4J); &M=T*N6+2*(K+J);(X(M-1)+X(M+1))/2;
(Y(M+1)+Y(M-1))/2;J=0,(N1-1)/2-K];I=1,N3]

[IN14+(I-1 N6+ (J+K)+1;&M=(I-1)*N6+2* (J+K) +1;
(X(M)+X(M+n6))/2; (Y(M)+Y(M+N6))/2;]=0,(n1-1)/2-K];
[=1,N3+1]

&N=N5+N1;

ID

$c6 OPEN(1,FILE="FREE’ FORM="FORMATTED’,STATUS="OLD’)
$C6 READ(1,*) N1,M1

$C6 CLOSE(1)

$C6 K=(M1-1)/2

$C6 OPEN(1,FILE="SIDE’ FORM="FORMATTED’,STATUS="0OLD’)
$C6 READ(1,*) N2

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 N6=NI1+(N1-1)/2+1

$c6 N5=(N3+1)*N6

[I;1;1=1,N5+N1]

[[*N6+N1:-1;.I=1.N3-+1]

[[*N6+N6:-1;1=0.N3]

&N=N5+N1:
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ELEM 2

NODS8

$c6 OPEN(1,FILE="FREE' , FORM="FORMATTED',STATUS="0LD’)
$C6 READ(1,*) N1,M1

$C6 CLOSE(1)

$C6 K=(M1-1)/2

$C6 OPEN(1,FILE="SIDE’, FORM="FORMATTED',STATUS="OLD’)
$C6 READ(1,*) N2

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 N6=N1+(N1-1)/2+1

$c6 N5=(N341)*N6

([I*(N1-1)/24+7;2%(J-1)+ 14+ 1*N6;2* J+ [*N6;
2¥J+14+T¥NG; ¥ N6+ N1+J+1;(I+1)* N6+ 2% J+1;
(I4+1)*N6+2*J;(I+1)*N6+2*(J-1)+ L I*N6+N1+-J;J=1,(N1-1)/2],1=0,N3]

NOD3

$c6 OPEN(1,FILE="FREE’ FORM="FORMATTED’ STATUS="OLD’}
$C6 READ(1,*) N1,M1

$C6 CLOSE(1)

$C6 K=(M1-1)/2

$C6 OPEN(1,FILE="SIDE’, FORM="FORMATTED’,STATUS="OLD’})
$C6 READ(1,*) N2

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 N6=N1+(N1-1)/2-1

$c6 N5=(N3+1)*N6

[L{L-1)*N6+1;(I-1)*N64+N14+1,I*N6+1;1=1,N3+1]

NODUV

$c6 OPEN(1,FILE="FREE FORM="FORMATTED’ STATUS="0OLD’)
$C6 READ(1,*) N1,M1
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$C6 CLOSE(1)

$C6 K=(M1-1)/2 |

$C6 OPEN(1,FILE="SIDE’,FORM="FORMATTED’,STATUS="0OLD’)
$C6 READ(1,*) N2

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 N6=N1+(N1-1)/2+1

$c6 N5=(N3+1)*N6
[I*(N1-1)/24J;2*(J-1)+1+I*N6;2* J+ 1+1*N6; (1+1)*N6+2* J+1;
(I4+1)*N6+2*(j-1)+1;1=1,(N1-1)/2],I=0,N3]
&N=(N3+1)*N6+2*(N1-1)/2+1;

DISP

$¢6 OPEN(1,FILE="FREE’,FORM="FORMATTED’, STATUS="OLD")
$C6 READ(1,*) N1,M1

$C6 CLOSE(1)

$C6 K=(M1-1)/2

$C6 OPEN(1,FILE="SIDE’,FORM="FORMATTED’, STATUS="OLD")
$C6 READ(1,*) N2

$C6 CLOSE(1)

$C6 N3=N2/2

$C6 N6=N1+(N1-1)/2+1

$c6 No=(N3+1)*N6

[1;0.0;1=1,N5+N1]

. Main File

.NFE File: dam.nfe

defi
stif S
mass M

load F
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APPENDIX B. THE FEPG

type e

mdty |

step 0
equation
matrix = [S]
FORC=[F]
SOLUTION U

write(s,unod) U

end
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