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Abstract

The Preisach model [Preisaéh, 1935] has been successfully employed to study
magnetic materials in which the phenomenon of hysteresis needs to be taken into account.
Ferroelectric materials, the electric analog of magnetic materials, likewise exhibit
hysteresis and field history dependence. The Preisach model is a mathematical model
whfch provides a means for determining the highly nonlinear relationship between
polarization and applied field. In this study, the Preisach model was used as a tool for
modeling nonlinear behavior in ferroelectrics and ferroelectric composites.

In addition, a model of ferroelectric behavior based on a combination of the
Preisach model and the Landau theory for the second order phase transition was
developed so as to allow discussion on the effect of temperature on physical properties,
which the Preisach model could not tackle. The Preisach model considers a material to be
a collection of hysteretic units with square hysteresis loops having two polarization states
(called Pretsach hysterons). A Preisach hysteroh is only endowed with electrical
properties so that it cannot take into account other effects, such as temperature. On the
other hand, the Landau theory [Lines and Glass, 1977] for ferroelectrics has been

successful in explaining the thermodynamic properties of ferroelectrics near phase




transition temperatures, but it cannot describe minor loops. In this study, a new approach
which combines the two models was suggested. In essence, Preisach hysterons were
modified to become hysterons whose characteristics were described by the Landau
theory, i.e. square-looped hysterons were replaced by hysteresis loops of the Landau
theory. Thus, broad features of the Landau theory were included in the new model. This.
hybrid, Preisach-Landau model, allows discussion on phase transition, major and minor
loops, and the effect of temperature on physical properties. Using this model, the D-£
major and minor loops at different. temperatures can be simulated. Also, the coercive
field, remanent polarization and permittivity as a function of temperature may be
calculated. In this model, the deletion property and the prop'erty of equal vertical chords
of the classical Preisach model hold, but not the congruency property [Mayergoyz, 1991],
the latter is nevertheless not so commonly observed in many real materials.

Some ferroelectric materials, such as triglycine sulfate ({TGS), has a finite dielectric
constant at the ferroelectric-paraelectric phase transition temperature T,, which is in
contra-distinction to the expectation of the Landau theory of (second order} phase
transition. A more refined Preisach-Landau model was proposed to tackle features such

as finite dielectric constant at 7, . Comparing with experimental results on TGS [Gaffar
et al., 1989], this modification produced a finite reciprocal dielectric constant at phase

transition temperature as observed in experiments but the earlier Preisach-Landau model
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could not. Also, this modification was able to account for finer features of the
experimental 1/¢,-T curve while the general feature of the remanent polarization versus
temperature curve was not affected.

We used the Preisach model to study the nonlinear dielectricity of the ferroelectric
polymer polyvinylidene fluoride (PVDF) as an example. The electric displacement D in
the matertal when subjected to a sinusoidal electric field of a given frequency was
calculated. Both the in-phase and out-of-phase components as well as higher harmonics
emerged naturally from the model calculation. D-E loops at different field amplitudes
were simulated and Fourier analyzed. The Fourier coefficients obtained were compared
with the experimental data of Furukawa et al. [Furukawa et al., 1987]. Almost all the
broad expenmental features were reproduced by the simulations. A Preisach-Landau
model was also used in this work, and the simulated results were compared with the
results obtained from the Preisach model. Both simulations gave similar answers. It is
remarkable that the power of the Preisach model was preserved in a Preisach-Landau
model.

In the study of ferroelectric composites, first a multi-layered ferroelectric composite
was studied by using the concepts of the Preisach model to describe each constituent
material. Under the assumption that the free charge on each interface was constant, the

theory for muiti-layered ferroelectric composites was analyzed. The results obtained
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were compared to D-E measurements made in the poling of polyvinylidenefluoride-
triflucroethylene (P(VDF-TrFE)) copolymer film sandwiched between ferroelectric
Uigiycine sulfate crystal (TGS) electrodes [Ploss and Ploss, 1996]. In general, the
computer simulations were in good agreement with experimental results. The D-E
histories of the copolymer and the electrode material during poling were also obtained.
A; Preisach-Landau model was also applied to tackle the 0-3 composite problem. We
considered a composite comprising spherical ferroelectric inclusions in a linear dielectric
matrix. A D.C. electric field E, "was applied to polarize a virgin TGS/polymer
composite. Under this poling process, we considered different conditions to discuss the
vanation of physical behavior of the composite and its constituents. These included the
effect of the poling field £, poling temperature 7, and conductivity &, of the matrix.

We showed that the remanent polarization of the composite could be enhanced by

increasing £,, T, and o,




Chapter 1

Introduction

1.1 Background

Dielectric materials exhibiting hysteresis effect are known as ferroelectric materials,
because their polarization versus electric field curves are so much like the magnetization
versus magnetic field curves of ferromagnetic materials. All ferroelectric materials
possess piezoelectricity, in which the polarization may be changed when it is
mechanically strained, and pyroelectricity, in which the polarization may be changed
when it is thermally strained.

In most virgin ferroelectric materials, the piezoelectric and pyroelectric effects are
not appreciable so that they cannot be directly used in many applications. One common
method for solving this is to polarize the materials as highly as possible to magnify the
effects. In many applications, such as precision machining, the ferroelectrics are required
to operate under high stress and high electric field. However, pronounced nonlinear
dielectric properties and hysteresis behavior are evident in these conditions. For many
materials, another problem is caused by the fact that the coercive field strength is only

slightly lower than the electrical breakdown field strength. In addition, most ferroelectric




Chapter 1 Introduction

ceramic materials are brittle and possess cracks, and many exhibit brittle fracture. Many
applications desire materials properties, which often are not obtained in single materials.
Therefore, different materials are proposed to be combined to form a composite, taking
the advantage of the favorable properties and limiting the detrimental properties of
constituent materials. Thus the question of how to accurately predict the behavior of
composites (in our case, ferroelectric composites) becomes important.

In the literature, a traditional approach is to analyze the properties of a ferroelectric
composite based on the assumption that the nonlinear behavior of the constituents is not
apparent, in other words, the electric fields in the constituents are small. For higher fields,
the nonlinear dielectric properties and hysteresis behavior of ferroelectrics are evident.
One approach 1s to write the electric displacement or polarization of a ferroelectric as a
Taylor series of electric field. To discuss the properties of ferroelectrics under arbitrary
fields, hysteresis models are needed.

Hysteresis effect has been observed in many different areas of science, e.g.
ferromagnets, ferroelectrics, plastic materials, economics, chemistry and others.
Hysteresis 1s a “history” dependent effect. “History” dependent effect implies that the
output of a system cannot be expressed in terms of a single-valued function of the input
to the system and 1s influenced by the history of the input. As illustrated in Figure 1.1(a),

when the input of the system increases from zero, the output increases along the path A.
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The path A is called the virgin curve. When the input of the system reaches u,, the system
becomes (positively) saturated. When the input is gradually. reduced from %, the output
decreases but along a path different from the one followed during the increase. As the
input is reduced to u,, the system becomes (negatively) saturated. Thus, a new curve,
path C, is traced out. If this cycle of operation is repeated, the curve eventually closes
upon itself, 1.e. if the input is then increased again to u,, the system returns to positive
saturation, and so on. The closed curve is called the major (or saturated) hysteresis loop.
The size of this hysteresis loop is unchanged if the range of the input becomes larger. The
paths B and C are called the major ascending curve and major descending curve
respectively. In general, all hysteresis loops traceable by the system, such as the. closed
curve formed by the paths D and &, must lie inside the major hysteresis loop of the

system and are called minor hysteresis loops. Paths such as D and & are called reversal

curves.
D
Path A~—_ | . 1
B
Path C ! P,
T~ I a &

s / | .
\Path & ) H © / E.

! Path D ¢

! D

(a) Path B (b)

FIG. 1.1 (a) General character of hysteresis loop. (b} A ferroelectric D-E hysteresis loop.
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In ferroelectric materials, hysteresis effect occurs in the relation between the
applied electric field £ and the electric displacement D (or polarization P), as shown in
Figure 1.1(b). From Figure 1.1(b), when a field E is applied to polarize a virgin
ferroelectric, the corresponding displacement D changes along the segment OB. If E is
small enough, the relation between E and D is reversible because the field £ is not large
enough to switch any ferroelectric domains in the material. The material behaves as a
linear dielectric material, i.e. the D-E relation is linear (i.e. segment OA). When the field
E further increases, the D-E relation becomes nonliﬁear (i.e. segment AB), and the rate of
change of D in this segment is larger than that in the segment OA. At the same time,
domains in the material grow until all domains are combined to form a single domain.
Thus, the material becomes positively saturated (i.e. point B). As the field £ is gradually
reduced from the point B, the single domain decomposes, and the displacement D is
reduced simultaneously but along the segment BCD. This is because the motion of
domains is irreversible. At zero field, the displacement D has a non-zero value P,, called
the remanent polarization. Since a greater portion of domains 1s still aligned in the

positive direction, the remanent polarization is positive. The field at which the

displacement D is reduced to zero is — £, . £, is called the coercive field. Below this point,
the corresponding D of the material changes sign (from positive to negative). At point D,

the material is polarized to negative saturation. Here, all domains are combined again as
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in the case of positive saturation, but the sign of D is negative, If the field E increases
again, the profile of D is the segment DEB. The closed segment BCDEB forms a major
(or saturated) D-E hysteresis loop of the material.

Hysteresis effect in ferroelectric materials is only exhibited below a certain
temperature 7,,. When the temperature of the material is above 7T, , the remanent
polarization of the material disappears and the material becomes paraelectric. If a
ferroelectric material exhibits a hysteresis behavior (i.e. below T, ), the material is in the
ferroelectric phase. The phase transition between the ferroelectric phase and paraelectric

phase is called a ferroelectric-paraelectric phase transition.

1.2 Scope and outline of this thesis

The present work involves the theoretical study of the hysteresis behavior in
ferroelectrics and ferroelectric composites by using the concepts of the Preisach model.
This chapter serves to introduce the modeling of hysteresis and the ideas behind several
useful models.

In Chapter 2, a model of ferroelectric behavior based on a combination of the
Preisach model and the Landau theory is developed so as to allow discussion on the
effect of temperature on physical properties, which the Preisach model alone cannot

tackle. We prefer to call this kind of a hybrid model a Preisach-Landau model, which, as
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will become clear in later chapters, can have many variants.

In our study, the nonlinear dielectricity of the electric displacement of a ferroelectric
is simulated by using the moving Preisach model and a Preisach-Landau quel, as
shown in Chapter 3. The results simulated are compared with the experimental data
given by Furukawa et al. [Furukawa et al., 1987]. This is indicative of the usefulness of
the Preisach model and the Preisach-Landau mode! in studying ferroelectric (nonlinear)
behavior.

Based on the foregoing experience with Preisach models, we analyze the D-E
response of ferroelectric composites by using Preisach models (or Preisach-Landau
models) to describe each constituent ferroelectric material. The study of ferroelectric
composites is discussed in Chapter 4. The Preisach model is applied to study the D-E
measurements made in the poling of a multi-layered composite and the simulations are
compared with experimental results [Ploss and Ploss, 1996]. In addition, a Preisach-
Landau model is used to study the poling of ferroelectric 0-3 composites. Under different
conditions of poling, the electric displacements in the composite and in the constituent
materials are studied with regard to the effect of the matrix conductivity, the poling field
and the poling temperature. These processes in poling can be understood more succinctly
in the light of the new model. This study seeks to establish a pioneering investigation of

the hysteresis and other history dependent behaviors of ferroelectric composites.
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1.3 Literature Review of Hysteresis Modeling

This section outlines some past research works on hysteresis modeling. We will
introduce several popular mathematical hysteresis models, including the Preisach model,
the Stoner-Wohlfarth (S-W) model and the Miller model. Moreover, we will introduce

the Landau theory for phase transition of ferroelectrics.

1.3.1 Preisach model

Ferromagnetic hysteresis has long been studied. In 1887, Lord Rayleigh first
proposed a model of ferromagnetic hysteresis. Another model was developed by Duhem
at the turn of the century. One of the most successful mathematical models is the Preisach
model first proposed by Preisach [Preisach, 1935] in 1935. It is able to describe major
and minor loops. This model is limited by its deletion property and congruency property.
However, many magnetic materials generally do not follow these properties exactly. For
this reason, many modifications of the Preisach model have been suggested. The moving
mgdel [Mayergoyz, 1991; Bertotti, 1998] and the product model [Mayergoyz, 1991;
Bertotti, 1998; Kadar, 2000] can remove the congruency property. Accommodation
[Bertotti, 1998; Della Torre, 1994] and aftereffect [Bertotti, 1998] remove the deletion

property. In addition, the complete moving Preisach model [Bertotti, 1998] is developed
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to obtain more accurate hysteretic behavior.

In ferroelectric hysteresis studies, the earliest work making use of the Preisach
mociel seems to be due to Turik [Tunk, 1963, 1964a, 1964b]. For example, Turik in 1963
[Turik, 1963] applied the Preisach model to ferroelectrics under weak field. The Preisach
function was expressed in a Maclaurin series, and the branches of minor loops and the
dielectric loss were written in analytical expressions. A handful of papers seeking new
applications of the Preisach model were published more recently. For instance, Huo [Huo,
1989] combined the Preisach model with the Landau theory of the first order phase
transition to simulate the stress-strain curve and the strain-temperature curve of shape
memory alloys. Freeman and Joshi [Freeman and Joshi, 1996] simulated the PZT
electromechanical behavior based on the extended Preisach model in which the Preisach
hysteron was modified in order to allow its polarization to vary with stress. Hughes and
Wen [Hughes and Wen, 1997] applied the Preisach model to research hysteretic behavior
of piezoceramics and shape memory alloys. Bartic et al. [Bartic‘et al., 2001] developed a
model based on a ferroelectric interpretation of the Preisach model and proposed an
experimental method to determine the Preisach function.

A; mentioned earlier, the Preisach model was proposed in 1935 [Preisach, 1935]. In
the 1970s and 1980s, the mathematical properties of the Preisach model were examined

and developed by the Russian mathematician Krasnoselskii [Krasnoselskii and
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Pokrovskii, 1989]. The Preisach model, transcribed for use in ferroelectrics, considers a
material to be a collection of square-loop hysterons having two normalized spontaneous
polarization states: p =-1 and p = +1, as shown in Figure 1.2(a). Each hysteron is
switched up if the external field E is increased to a value greater than the switch-up field
U of the hysteron, and ié switched down if the field is decreased to smaller than the
switch-down field ¥ of the hysteron.

An isolated hysteron has a well-defined coercive field, i.e. its P-E loop 1is
symmetrically placed about E =0 (thus U = -V ). Since hysterons would be subjected
to interaction fields due to other hysterons inside the material, individual P-E hysteresis
loops are shifted along the E-axis. As a result, the magnitudes of the switching fields U

and V¥ may not be equal. Mathematically, U/ and ¥ of each hysteron can be expressed as

U=E_, +E,, and V=-E_+E,, (1.1)

crit

where E_, is the critical (or coercive) field of the hysteron when isolated and E,, is the

interaction field acting on the hysteron due to others. Thus £_. and E_, are altemative

crit int

coordinates for labeling a Preisach hysteron with switching fields U and V.

P 4
F 3 r
+1 - U=V
-~ e \ K U=+OO
\ M \
> E » U
v U P
<> &
(a) ! (b)

FIG. 1.2 (a) A single Preisach hysteron. (b) Preisach plane.
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For an aggregation of hysterons, both E_, and £, of individual hysterons may be

crit int

distributed, the latter depend on their environment, leading to a distribution of U/ and V.
This distribution represents therefore the distribution of hysterons, which characterizes a
ferroelectric material, and is described by the Preisach function 2(U, V). This function
is defined over the Preisach plane, which is the U-V plane with U 2V, as shown in
Figure 1.2(b). With this definition, all hysterons are switched up if a sufficiently large
field £ is applied to the material. Hence, the saturation polarization P, equals the sum of

the “switch-up” state of hysterons and is given by

P, = [[ow.v.Ey P, v)avav = | [ P, ¥)dvdv. (1.2)

uzy

The polanization of a ferroelectric material generally is the sum of the integral of
PU ,V) weighted by p = +1 and p=-1 depending on the field history. To explain the
polarization change in the hysterons, constructions on the Preisach plane is found to be
convénient. A poling process in Figure 1.3(a) is shown as an example. First, a material is
poled by an applied field S, such that its polarization becomes negative saturation. Then,
a sequence of field is applied to the material and the corresponding P-£ curve is shown in
Figure 1.3(b). Figure 1.4 shows the behavior on the Preisach plane in each step of the
process. The field £ is initially decreased to 5, (in the Figure 1.4(a) 8, may be imagined

to be —w), switching all hysterons down. As E increases to a, (Figure 1.4(b)), a vertical

10
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line (conveniently representing an increasing field) sweeps along the U-axis changing
the hysteron p’s to +1. E is then decreased to f, (Figure 1.4(c)), a horizontal line
(representing a decreasing field) s‘weeps down the V-axis changing the p’s to—1. When E
is increased to @, again (see Figure 1.4(d)), the o’s change to +1 again. It follows that the
Preisach plane is divided into two parts §* where each hysteron has p =+1, and §-
where each hysteron has p = —1. Mathematically, the polarization is given by

P(E)= [ . p(U.V,E) P(U,V)dUdV

= [[,. Pw.navav - || _»Pw,v)avav (1.3)

(2) (b)

time : : E
B B a,
FIG. 1.3 (a) A field history is applied to a material in a poling process. (b) The solid line denotes

the P-E history during the poling process. The dashed line denotes the major toop of the material.
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A

B

FIG. 1.4 The corresponding status of the Preisach plane after applying (a) 8, (b) &, (¢c) 3, and (d)

a,. The gray and white regions in the U-V plane (or E_,-E,, plane) denote regions in which
p =-1and p = +1 respectively.

The Preisach model is characterized by the deletion property and congruency
property. It has been shown that the necessary and sufficient condition for the validity of
this model is that the deletion property and congruency property hold [Mayergoyz, 1991].
The deletion property [Mayergoyz, 1991] is that the output of a model is only affected by
the alternating series of dominant input extrema. The effects of all other inputs are wiped
out. As illustrated in Figure 1.4(d), when £ increases from S, to «,, the distribution of
§" and § ~ in the Preisach plane is the same as the distribution at ¢, , thus the two outputs
of the model are the same. In other words, the final output of the model is the output at

a, after the whole field history is applied, and the field S, does not affect the final

12
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output of the model, i.e. f, is wiped out. The congruency property {Mayergoyz, 1991] is
that all minor loops between the same pair of external ﬁeldls are congruent.

Since the hysteretic behavior of ferroelectrics is defined by the Preisach function, a
very important question associated with the modeling is the “identification” problem.
The aim is to find the “shape” of the Preisach function. The identification strategies are
divided into two classes: (i) parametric identification and (ii) interpolation identification.

(i) Parametric identifications [Oti ef al., 1991; Della Torre and Vajda, 1994; Della
Torre, 1999;] use knowledge about physical processes to determine the Preisach
functions, which characterize the process, and use experimental data to find the
parameters of these functions. Common distribution functions can be found in the
literature [Basso and Bertotti, 1994; Cornejo et al., 1997; Andrei and Stancu, 2000].

(i1) Interpolation identifications [Bate, 1962; Chen and Lync.h, 1998; Della Torre,
1999] interpolate experimental data. In the Preisach model, this kind of identifications is
very difficult to use because the Preisach function is the second partial derivative of the
polanization (see Equation (1.3)). For example, one method [Della Torre, 1999] requires
taking the second partial derivative of the polarization resulting from first-order reversal

curves. This method is very sensitive to experimental error.

13
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1.3.2 Stoner-Wohlfarth model

The Stoner-Wohlfarth (S-W) model [Bertotti, 1998; Della Torre, 1999; Mayergoyz,
1991] is also quite successful in ferromagnetic hysteresis modeling,. In the S-W model, a
magnetic material is considered as a collection of single-domain uniaxial magnetic
particles, called S-W particles. Since a S-W particle is amenable to a formal physical

description, the S-W model is popular in magnetic hysteresis research and is usually

regarded as a physical model.

4
é
O™

FIG. 1.5 A single §-W particle

In the S-W model, the S-W particle is an ellipsoid (see Figure 1.5). Its long axis is
assumed to align with the easy magnetization direction. When the applied magnetic field
H changes, the magnetization / of the particle changes. Note that = is aligned with the
easy axis under zero field. Since a S-W particle is assumed to be single domain, the
magnitude of 7 is constant, say m,. The free energy G of the particle is divided into two
parts: anisotropy energy K sin’ @ and the energy of interaction between & and i, i.e.

G=Ksin*6-m-H (1.4)

where @ is the angle between the easy axis and /, and K > 0 is the anisotropy constant.

14
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The equilibrium magnetization corresponds to minimum free energy G, i.e.

g-——ﬂ(sinﬁcos@+m,Hx sin@ —m, H cos@=0 (1.5)

where H, and H, are the x- and y-components of # . H is parallel to the easy axis. Let

a= 2K . Then, Equation (1.5) becomes
m -

5

H H
L t——=g. (1.6)
cosfd sind

¥y

+e

AN U e e

N\
/

L’
G

FIG. 1.6 The G-8graphs on the side give the profile of the free energy G(#) (see Equation 1.4) at
point (£, H,) in the H,-H, plane. The dotted line denotes the astroid curve described by Equation
(1.8).

From Figure 1.6, we see that, in the interior of some region (bounded by an astroid
curve), & has two or more minima. G has only one minimum outside the region. So, the
condition for only one minimum of G is 8*°G/8°@ = 0. Thus, by differentiating Equation

(1.6) with respect to €, we have

H, H,

ks

=0. 1.7
cos’@ sin’é@ 1.7

Solving Equations (1.6) and (1.7), we get
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H +H =a™ (1.8)

* ¥y

which is the equation of the astroid curve. Using this curve, the magnetization m,, of the

particle along the applied field direction can be calculated for any given 8,, (Figure 1.7).

Ir RE BaRoter: e 7
IS ’——::‘I.
";: 8,=0 —> S ‘I‘r
B [ . S :
& |G —is |
— o L
il )
3 0 6,= 90" —1—> .1 I
8 H : /s ,':
S le=45 w1y
v F YH o 4
3 K4 ’
I' E: -
1} e=c==z=c - -7 L i
-2 -1 0 1 2
H

FIG. 1.7 The magnitude of the magnetization of S-W particle, m,, = m, cos(8(H)—-6,,), at

different 8,, (Here m, and « are assumed to be 1).

The S-W model considers an infinite set of the S-W particles in 2a material. Since the
hysteresis loop of the S-W particle depends on a and &, the distribution of S-W particles
is thus defined by a function &£(«, @) . Therefore, the magnetization M of a S-W material
is given by

M(H) = ”m,, (a,8, H)é(a,0) dadf (1.9)
where #,, is the magnetization of a S-W particle parallel to A . As the S-W model do
not consider the interaction among the particles, the model can describe symmetric loops,

but not asymmetric loops. A modification of the model is to incorporate an interaction
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field H, to the S-W particle. Thus, the magnetization A of a S-W material becomes

M(H) = ([, (,0,H,0)(a,0) dadbdd, . (1.10)

1.3.3 Miller model

The Miller model was proposed by Miller et al. [Miller et al., 1990, 1991] a decade
ago. In the Miller model, the electric displacement D of a ferroelectric is written as

IXE)=¢,6, E+ P, (E) (1.11)
where E is an applied electric field, and P, is the polarization due to switching dipoles
only. £, =1+ x, is the linear dielectric constant of the ferroelectric, where y , isthe
susceptibility. The polarization P, at the field £ must lie on or within the major (or
saturated) hysteresis loop, whose branches (i.e. ascending major curve and descending

major curve) are assumed to be anti-symmetric. The latter relationship between the

ascending major curve P, and descending major curve P

sat sat

may be written as

P (E)=-P_(-E) (1.12)

Iﬁ the absence of a physical theory for predictipg dipole switching properties as a
function of E, a convenient expression for P. (E) which can approximate a major

branch is

E-E
P (E) = P, tanh : 1.13
sai (E) ,an[za] (1.13)

-1
where ¢ = Ec[ln[%‘:—:‘-ﬂ ,and E,, P. and P are the coercive field, remanent
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polanization and saturation polarization of the material respectively. In the Miller model,
the derivative of P, with respect to £ on a polarization curve is confined to a value
between those of the major ascending and descending curves at the same E. In other

words, all polarization curves are modeled by some scaling of the major ascending (or

descending) polarization curve. Thus, mathematically, the derivative of P, is given by

0P, (E) _ 0Py (E)

1.14
oF oE (1.14)

where P, (E) is the polarization on the major hysteresis loop at the applied field E; here

P, (E) =P, (E) for anincreasing field and P, (E) = P_,(E) for a decreasing field. I"is

at

a scaling function with value between 0 and 1, and is taken as

1/2
1"=1-tanh[[%) } (1.15)
s 4d

where £ = +1 for an increasing field and £ = -1 for a decreasing field.

1.3.4 Landau theory for phase transition
In the Landau theory, the fundamental assumption is that, in the vicinity of the
critical (transition) point, the free energy G of a ferroelectric material is an analytic
function of the electric displacement D of the material. Therefore, we can express G as
the Taylor senies of D, i.e.
1, 1 . 1
G=Go+§aD +ZﬂD +EJ/D + - (116)

Here o« 1s frequently expressed as a function of temperature T in the form of
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a=ay(T-T,) where @, >0 and T, is the Curie temperature. In a ferroelectric, the
transition can be first or second order. The order of the transition is determined by the
sign of . We start the discussion by considering second order transition. Here f is
positive, and the free energy G is

| A

G=G,+—aD* +-fD (1.17)

2 4

where the sixth and higher order terms are ignored. The conditions for a minimum G are

8G/aD =0 and 3*G/8D* >0 which imply

D=1t\-a/B =+\Ja,(T. -T)/B (1.18)
and 8°G/aD’ = +38D* =a,(T-T,)+38D* > 0. (1.19)

In the ferroelectric phase (7 <T.), the remanent polarization of the material is
m (from Equation (1.18)). The reciprocal permittivity ¢™' is calculated
from &°G/oD?. Using Equations (1.18) and (1.19), &' =2q,(T,-T). In the

paraelectric phase (T >7,),6” =a,(T -T,). We see that the slope of the reciprocal

permittivity curve in the ferroelectric phase is twice that in the paraelectric phase.
In the first order transition, the free energy G is written as
1 o, 1. 1
G=G,+—aD”" +=pD" +—yD (1.20)
2 4 6
where fis negative and y is positive. At the first order phase transition temperature 7, ,
the free energy G in the ferroelectric phase and in the paraelectric phase are the same.

From Equation (1.20}, we have
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%ao(T,, -T.)D} +%[3D," +%yD,° =0 (1.21)

where D, is the remanent polarization at T = T, . Also, the condition for a minimum G is
8G/eD =0, i.e.
a,(T, -T.)D, + D, +yD,° = 0. (1.22)

Solving Equations (1.21) and (1.22),

p:=_38

. 1.23
P (1.23)
Substituting Equation (1.23) into (1.21), we have
2
T =T +-F (1.24)

16a,y

In the ferroelectric phase (T < T, ), the remanent polarization of the material is

-\/ -8+ 1/ B’ —day )/2y . It is clear that the remanent polarization at T, is ,/— 38/4y .

The reciprocal permittivity &' is

4 _0°G
£ =
eD?

2
=8a,(T, -T)+ 3 . (1.25)
4y

D=D,

r

In the paraelectric phase (T > T, ), the reciprocal permittivity £~ is

4 9%G
& =
oD?

2
=au(T—7:,)+3ﬁ . (1.26)
16y

D=0

We see that, at T =T, the reciprocal permittivity in the ferroelectric phase is four times

that in the paraelectric phase. And, the slope of the reciprocal permittivity curve in the

ferroelectric phase is eight times that in the paraelectric phase.
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Chapter 2
A model of ferroelectric behavior based on a
combination of the Preisach model and the

Landau theory

2.1 Introduction

- The Landau theory is a popular phenomenological theory for describing the
thermodynamic properties of ferroelectrics near phase transition temperatures. It
provides a basis for explaining the broad features of the thermodynamic properties, such
as spontaneous polarization, coercive field and dielectric constant; but the predictions do
not necessarily agree quantitatively with experimental observations. For example, in the
study of coercive field, many experiments indicate that the experimental values are
several orders of magnitude lower than the values calculated from the Landau theory
[Jona and Shirane, 1962; Kim ef al., 2002]. In the study of tri glycin‘e sulfate (TGS), it is
observed in many investigations that the dielectric constant ¢, has a finite value at the
phase transitit.)n temperature 7, [Chincholkar and Unruh, 1968; Mansingh and Eswar

Prasad, 1977]. Also, the ratio of the slope of the 1/ &, -T plot below 7, to that above T,

is not exactly two [Triebwasser, 1958; Gonzalo, 1970], in slight disagreement with the
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Chapter 2 A Model of Ferroelectric Behavior

Landau prediction for a second order ferroelectric material. Many more experimental
observations show deviations from the Landau theory. On the other hand, the Preisach
model [Preisach, 1935], quite widely used in studies of ferroelectric hysteresis research,
provides a means for determining the highly nonlinear relationship between polarization
and applied field in a ferroelectric material. In the Preisach model, a material is
considered to be a collection of square-loops with two normalized polarization states,
called hysterons. A “Preisach” hysteron is only endowed with electrical properties so
that it can react to electrical excitations. It is not clear how a variation in temperature or
mechanical stress can affect a system of hysterons.

In this chapter, we modify the “Preisach” hysterons to hysterons whose
characteristics are described by the Landau theory of the second order phase transition
for ferroelectrics. In this way, the effect of temperature on major and minor loops can be
taken into account. Since “Landau” hysterons display the characteristics of ferroelectrics,
a better connection with the physics of ferroelectrics is achiéved. Using this model, the
D-E major loops at different temperatures are calculated. Coercive field, remanent
polarization and reciprocal dielectric constant are studied as a function of temperature,
and are found to agree with the features calculated with the La.mdau theory. The deletion
property, an elegant result of the classical Preisach model, can be proved in our model,;

however, the congruency property is not preserved. Also, our model preserves the
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Chapter 2 A Model of Ferroelectric Behavior

preperty of equal vertical chords of the nonlinear Preisach model. The following section

introduces the ideas and formulation of a Preisach-Landau model.

2.2 Preisach-Landau model
2.2.1 “Landau” hysteron

To benefit from both theories (i.e. Preisach’s and Landau’s), we replace, in our
model, Preisach hysterons by ones whose characteristics are described by the Landau
theory, i.e. square-loops are to become Landau hysteresis loops. Thus, the broad features
of both the Landau theory and the Preisach model are included in the new model. This
hybrid, “Preisach-Landau” model, allows the discussion of field history dependence as
well as temperature dependence of ferroelectric behavior.

In the Landau theory, the free energy G of a hysteron is written in terms of the
electric displacement i and temperature T as, for second order phase transition,

G(u.T) =Gy — s aus* + By, @)
where a = (T, — T} and T is the Curie temperature apd a,, 3 > 0. The applied field £
is given by

E=§=—a;u+ﬁy3. (2.2)

ou

We call a hysteron whose hysteresis behavior is described by Equation (2.2) simply

a “Landau” hysteron. Using Cardano’s formula, the roots of Equation (2.2) are given by
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2 E
H(a, B,E) = £ cos[-;:cos"[

i ]+5], j=1,2,3 2.3)

crit

where Ecn'.r = 2(1) 2""_, H = g and 6 = —-—2(‘] Uﬂ .
3) B B 3

When the temperature T is below the Curie temperature T, the electric
displacement u(E) is hysteretic. Otherwise,. H(E) is non-hysteretic. Every Landau
hysteron has therefore two forms (see Figure 2.1).

(i) For I'<T,,itisclear that the critical field of the hysteron is £, and the remanent

polarization is 4, . Analyzing Equation (2.3), the electric displacement corresponding to

the “switch-up” state is

2u 1 E
E)=~-=cos| —cos” | — ||, 24
u(E) N L ( . ]] (2.4)
and for the “switch-down” state is
2u 1 L E 2r
E)=—=cos] —cos™'| —— [+ —]. 2.5
#( ) '\[5 l73 ( crit) 3 jl ( )

(i) For T >T,, we note that u(E) is non-hysteresis, so £

crit

and g, do not have the
meanings of critical field and remanent polarization respectively. They are complex

numbers (pure imaginary). Analyzing Equation (2.3), the electric displacement is

H(E) = i/_};’ cos[écos"[ E )+4T’r} (2.6)

crit
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H H

>
P
>

v
=

/\E > £

int

V\iju

@ — (b)

"

FIG. 2.1 A single “Landau” hysteron under an interaction field £, at temperature (2) T < 7,
and(b) T>T, Notethat U=E,,+E, and ¥V =—-E,, + E,,.

2.2.2 The electric displacement of a Preisach-Landau material at a fixed
temperature

In the Preisach model, the Preisach function represents the distribution of hysterons,
and its parameters are coercive field and interaction field. We follow this line of thinking
to discuss parameters in the distribution of Landau hysterons and to formulate the

calculation of electric displacement of a ferroelectric material described by a Preisach-

Landau model.

The hysteresis loop of a Landau hysteron depends on & and f. Interactions among
hysterons inside a material result in hysteresis loops that are shifted along the £-axis (see

Figure 2.1) as in the Preisach model. The interaction is modeled as an interaction field

£, . Therefore, the net field applied on the hysteron should be E ~ E,_, when a field £ is

int

applied on the ferroelectric material. In other words, £ is replaced by £-£., in

int
Equation (2.2). As a result, the hysteresis loop of the Landau hysteron depends on a, 8

and £, . The distribution of Landau hysterons is thus defined by a function L(a, 8,E,,)
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and its parameter space is three-dimensional. We assume the three variables are
independent of each other, thus the distribution can be written as
L(a, B, Ey) = L (@)L 3 (B) L () 2.7

(1) | For T <T,, the electric displacement D(E) of a Preisach-Landau material is given
by

DE)= [ [ @, B.E-E,) £L(@)Ly(B)LE,,) dE,dfda. (2.8)

In Equation (2.8), the expression of D(F) contains three parameters, , fand £, It
is very inconvenient to determine the region S* where each hysteron is switched up and

the region S~ where each hysteron is switched down. It is useful to transform from the

a-B-E,, space to the E_,-E,, plane (see Chapter 1). By the definitions of £, and 4., &

and f are expressed in terms of E_, and u, as
W3E,, .
a=u>0 and ﬁ:iE‘:’ﬂ,)O. (29)
2u, 2u,

It follows that

L)L ,(f) dpda = 22715%,,., [0[3«/;5”,-, }zﬁ({iJ dudE,,. (2.10)

r r

Let £ ,(E .n1)= 27E¢;‘" L, 3J§E""‘ Ly 3\6}33"”" . The range of each of the
- 24, 2u, 24,

variables £, and g, is from 0 to w. Using Equations {2.3), (2.8) and (2.10), the electric

displacement D(E) becomes
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@)= [} [ 7% °°S[§ °°S"(E;, Ei’”]*‘s}

crit

X [aﬁ (Ecn‘r ’yr) [inr (Ea‘m) d#rdE

it

dE_,

o2 |1 (E-E,
= | J._Q-J_—a-cos[gcos [ - ']-{-5} L i (E)L o (E,) dE, dE,,

crit

(2.11)
where £ (E, )= I: H, L 5(E, 1) du, , and & depends on the state of hysteron
(see Equations (2.4)-(2.6)). The parameter space of D(E) is now the E,-E,, plane.

(i) For T>T,, a=a,(T,-T) is negative, and E_, and u, are complex numbers

crit
(pure imaginary). Then, Equation (2.11) contains complex variables. Let & = ~a,
E,, =-iE_, and 4, =iu,, where i=+/—1. Then &, E_, and Ji, are positive real
numbers. Using these variables, the expression of D(E) does not contain complex
variables. It becomes

DEY= [ [ 7 w8, B,E~E,) £o@L y(B)L (E,,) dE, dPdE (2.12)
By the definitions of fc,,., and 4, , & and fare

3\/55 crit

3—1!-_@5‘—>0 and f="—"T%>0, (2.13)
2u, 2u

r

a=

Now, D(E) is given by

(e 2 1 a| L E-E,, ar ~ ~
D(E) - Io J‘-mj_i- COSI:ECOS [1 E J+ T] 'é‘crir (Ecrir)[im (Er'nl) dEinrdEcri.'

erit

(2.14)
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where £, (E.,) = I : TRA (E,.,.H,) dfi, . The parameter space of D(E) is again the

E,, -E,plane.

2.2.3 Dielectric permittivity at a fixed temperature

The dielectric permittivity of a material is defined as the slope of D(E), i.e. 8D/0E .
When the temperature T is below the Curie temperature T, the D(E) curve of the
material is hysteretic. Otherwise, it is non-hysteretic. The dielectric permittivity has
therefore two forms.
(i) For T <T,, the change in electric displacement in a Preisach-Landau material due
to an increment in applied field is the sum of two contributions: one from “switching”
hysterons and th¢ other from “non-switching” hysterons. The reason is that the
characteristics of Landau hysterons are different from Preisach hysterons. A Preisach
hysteron is a bistable unit with z equal to either +1 or —1, A Landau hysteron is also a
bistéble unit, but its g in either the up or down state depends on applied field £ (see
Equations (2.4) and (2.5)). When a field increment is applied to the material, some
hysterons are switched. The remainder do not change their states; however, their electric
displacements change. This leads to the distinction between “switching” permittivity &,
contributed from switched hysterons and “non-switching” permittivity &, from non-

switched hysterons. The expression for the “non-switching” permittivity is
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8 ( ) = I I-& aE {_ Cos[% cos ( E; Ein‘ ) + 5]} crit (ECI‘II )-ZIIH (E"lf ) dEl’f![dECrﬂ

- s,—{— cos[écos [E o m i Eo) £ (B B E 1, +

a 2 1 -1 E"'E 27[
o R 8 —CO |+ — E it [ f Einr dEidecri.r
IS'BE{.JECOL S[ o ] 3]} it )L it (Einy)

(2.15)
The expression for “switching” permittivity depends on the applied field history in
the material. Assume that £, and E, are two successive extrema of the field history and
E, <E,. If the applied field £ is an increasing field and E, < E<E,, then the

“switching” permittivity of the material is

P (E)_—j [,,,,(EZV)JM,[E;’VJW. | (2.16)

Now, assume that £, and E, are two successive extrema of the field history and £, > £ )
If the applied field £ is a decreasing field and E, 2 E > E,, then the “switching”

permittivity is

3 ¢s U~E U+E |
e (E) ="~ |, z(—z-jz( . ]dU. @.17)

Now, consider a virgin material on which a field £ is applied. Since it starts from a
state of zero polarization, we assume its initial state is well represented by the
conﬁgﬁration shown in Figure 2.2(a) on the Preisach plane, in which half of the
hysterons are “up” and half “down”. Figures 2.2(b) and (c) show the 'corrcsponding

status of the Preisach plane after applying E. If the applied field £ is positive, then the
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“switching” permittivity is (see Figure 2.2(b))

E-V E+V
(E)-—I z( 7 )z[ : JdV. (2.18)

Otherwise, the “switching™ permittivity is (see Figure 2.2(c))

(E)*‘/- [ 4,,,(” EJJIH,(U;EJdU. (2.19)

(ii) For T >T,, the u-E relation of each hysteron is non-hysteretic. The permittivity of a

hysteron only contains the “non-switching” part. The permittivity of the material is given

by

e(Ey=¢,(E)= I I {T cos[%cos [ EIE‘"—EJ-F%]}

% L iy (B L iy (Er) dE, dE ;. (2.20)

FIG. 2.2 (a) The status of the Preisach plane for a virgin material. The corresponding status of the
Preisach plane for a virgin material after applying (b) an increasing field E and (c) a decreasing
field £. The gray and white regions in the £_,,-£,,, plane (or U-v plane) denote regions in which
p#=-1and u=+1 respectively.

2.2.4 Distribution of “Landau” hysterons

In our model, the distnbution of “Landau” hysterons is described by a function

L)L, (B)L, (E,). Here we discuss the characteristics of £, (a), £ ,(f) and
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La(Eny)-

Recall @, and § are positive. Also, a is taken as (T, — T) in the Landau theory.
Thﬁs, ain £, (a) and g in £ ;(f) may range between 0 and co. We assume £ (@)
and £ ;(f) are functions with a single peak, such as log-normal functions. Their means
may be taken as the Landau parameters «, and f calculated from experiment in the
usual way, and their standard deviations by fitting the experimental D-E curves. From
observations of real materials, the D-E hysteresis major ascending and descending

curves are anti-symmetric about the origin of the D-E plane. Since the electric

displacement of the material is the sum of the 4 ’s of hysterons, .£ . (E,

int

) should be an
even function with a single peak and zero mean, such as a normal distribution function.

Based on the Landau theory, « in a Landau hysteron changes with temperature, so
the distribution of a is temperature dependent. From experiments, temperature 7 linearly
affects «. Consider a reference temperature @ <7, and let a,=q,(7.-8) and
<L {a,) be the distribution of & at & When the temperature changes to 7 <T,, let
ar =a,(7,-T) and £, '(a,) be the distribution of a at T. We define J to be the

absolute value of the ratio of a, to @,, i.c.

dr
Q,

J= (2.21)

T.-T
T.-6|

The relation between £, (a,) and £ _'(a,) is given by
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Chapter 2
L@ ) =L, (a )—-—d% iy (——-a’") (2.22)
@ T a [ / , J a J : :

ForT>T ,a, =a,T, —-T)<0.Similar to the case of temperature greater than T,

J is |(Tc -T)/(T, - )|. The relation between .£, (a,) and £, '(&,) is given by

- da, 1 a,
&)= el RS R ) 2.23
‘é‘a (a?‘) [a(at?)d&ur J‘é‘a[ J ] ( )

We conclude that if the temperature changes from & to T, the distribution of a is

changed from £, (a,;) to £, '(a;) for T<T, orto £,'(&;) for T>T,, and the
relation between these two functions are shown in Equations (2.22) and (2.23). Figure
2.3(a) shows an example of the distnibution of ¢ with different J’s. A larger J means a

T,-T].

larger

- —=J=05 - = =J=05
XY LA
iy 4= (a) — =10 1y (b)
[ RN N Y. S T J=15 [}
' ~ | —= =20 1
5 | W' o
% | "-’i.
N : G
i
!
]
' — -
A a . _
ini

FIG. 2.3 (a) An example of a distribution of « at different J. (b) An example of a distribution of
Ei,,, at different J. The distribution of & shown is a log-normal function (see Equations (2.22) and
(2.26)), and the distribution of E,, is a normal distribution function (see Equations (2.25) and

(2.28)).

On the other hand, a change in the distribution of ¢ will lead to a change in the
distribution of hysterons (see Equation (2.7)). The interactions among hysterons

therefore change with temperature because the electric displacement of hysterons
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changes with temperature. Ploss and Heiler [Ploss and Heiler, 1992] reported that a small
bias field was observed in the paraclectric phase of triglycine sulfate (TGS) from
nonlinear dielectric measurements and the bias field is linearly dependent on temperature.
Thus in the present paper, the interaction field £,, is assumed to depend linearly on
temperature, or more specifically E,, is linearly proportional to 7-T,. Following a

similar method as for the case of a, the absolute value of the ratio of interaction fields

E, atT and @ is
[Eu@)|_|7-1,|_ (2.24)
|E..(0)] |6-T.
The relation between £, (E,,(0)) and £, '(E,, (T)) is given by
dE_(0) 1 E_(T)
L' (Ef(TN=£L,,(E, @) ——=—r, |-l 2.25
mr( mr( )) lnl( ml( )) dE‘-M(T) J ml[ J ( )

For a reference temperature &, the distribution of E,, is changed from
L (E,(0)) to £,,'(E,, (T)) if temperature changes to T . Also, the relation between
these two functions is shown in Equation (2.25). We remark that the “J” for & and the
“J” for E,, turn out to be identical functions of T as a result of our simple choice for the
temperature dependence of £,,. Figure 2.3(b) shows an example of the distribution of

E,, with different J ’s. Again a larger J means a larger [T, - 7).

2.3 Deletion and Other Properties of Preisach-Landau model

Since our model encompasses the key concepts of the Preisach model, it can
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describe minor loops of a ferroelectric which the Landau theory cannot. As stated earlier,
the deletion property and the congruency property characterize the classical Preisach
model (see Chapter 1). This section will discuss whether such properties are retained in
our model for temperature T <T,. Also, the pfoperty of equal vertical chords of the

classical Preisach model is introduced.

2.3.1 Deletion property

To show the deletion property, it is necessary to consider a field history as shown in
Figure 2.4. In Figure 2.4(a), applied fields a,, a,, b, are extrema. If the electric
displacement of the model at time ¢, is the same as at time ¢,, then the deletion property
exists because the effect of local extrema a, and b, are wiped out, i.e. local extrema a, and
b, may be omitted from the sequence of the applied fields. It is also true if the roles of
minima and maxima are interchanged.

Figure 2.4(b) shows that after applying the field 4,, the E_,,-E,,, plane (or U-¥ plane)
is divided into three parts: §, §~ and O. Each hysterqn in §7 is at the “switch-up” state,
and each hysteron in S~ is at the “switch-down” state. Note that the state of hysterons in
O is not changed after applying the fields @, and b,. In Figure 2.4(c), the plane after

applying the field a, is divided into four parts: R, §*, S~ and O. Comparing with Figure

2.4(b), §" is reduced by R after applying a,, and R is a triangular region where each
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hysteron in §7 is at the “switch-down” state. After that, the applied field increases again.
When the time is ¢,, the applied field will be equal to &,. The distribution of §*, $ ~and O
in the plane (Figure 2.4(d)) is the same as that in Figure 2.4(b). Thus, the electric
displacement at ¢, and at ¢, should be the same. It means that the effect of a, is wiped out.

Therefore, the deletion property exits.

time

(b)

FIG. 2.4 (a) Sequence of applied fields. The corresponding status of the Preisach plane at time (b)
f5, (c) t; and (d) ¢,. The white, gray and shaded regions in the £,,,-E,,, plane denote the regions S °,
S and O respectively.

2.3.2 Congruency property

In our model, the congruency property does not exist. The following illustrates this

fact. Consider distributions of &, fand £,

mnt

given by

35



Chapter 2 A Mode! of Ferroelectric Behavior

4fa(a)=L——J§¥-—exp[—iﬂigﬁﬁil]; . (2.26)
aa

__ B _w'g/B | -
£ 4(B) \/ﬂﬂaﬁ exPI: Z(Gﬁ/ﬁ)z_ ’ (2.27)

-
Ln(E,)= \/ﬁcr exp{—%(i‘"’} . (2.28)

int

Table 2.1 shows the values of the parameters used. Three simulated minor loops

between the same pair of fields are generated by applied fields shown in Figure 2.5. The

first minor loop is traced from points 1 to 3, the second from points 4 to 6 and the third

from points 7 to 9. Figure 2.6(a) displays the corresponding D-E minor loops. It is seen

from Figure 2.6(b) that these minor loops are not congruent. This means the model does

not have the congruency property of the classical Preisach.

TABLE 2.1 The parameters of the distributions of e, 5, and £,,, used in the simulation.

a T, B- aﬂ T int
(10° Vm/C) (10°Vm/C) (10 Vm*/C’) (10" Vm*/C?) (10 V/em)
312.3 20 91.43 40 300

applied field £

= T S -

applied field £

applicd field £

-2

00 05 1.0 1.5 20 25 30 00 05 10 15 20 25 30 8005 1075 20 2530
time ¢

time ¢ time ¢

FIG. 2.5 The sequence of applied fields for tracing (a) an upper loop, (b) a middle loop and (c) a
lower loop.
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FIG. 2.6 (-——-),( Jand ( ——-— ) denote upper, middle and lower loops respectively.

(a) The D-E curves and (b) the change of D curves when the sequence of fields as shown in

Figure 2.5 is applied. The three loops are not congruent. Also shown in (a) is the major loop of
the matenial. '

2.3.3 Property of equal vertical chords
In many modifications of the classical Preisach model [Mayergoyz, 1991], the
congruency property does not hold. However, in some of these, such as the moving

Preisach model, the deletion property as well as the property of equal vertical chords are
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still preserved. The property of equal vertical chords may be stated as foliows. Consider
a minor loop between a pair of external fields E, and E, (Figure 2.7(a)). For an applied

field £ within the range E, and E,, let D__(E) and D, (£) be the electric

upper lower

displacement corresponding to the upper and lower branches of this minor loop.
D,,..(E)-D,,,, (E) is the vertical chord at E for the minor loop. The property of equal

vertical chords states that the chords D, (E)-D

wpper (E) evaluated at E are the same

lower

for all minor loops between fields E, and E,. In the following, this property is proved in

our model.

D upper (E)

D lo wer(E)

FIG. 2.7 (a) A minor loop formed between E, and E,. The distribution of hysterons on the
Preisach plane corresponding to an applied field £ and efectric displacement (b) D,,...(E) and (c)

Diper(E). The white, gray and shaded regions in the Ecrf,-E,,,, plane denote the regions $*, S “and
O respectively.
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From Figures 2.7(b) and (c), it is seen that the E_,-E,, plane (or U-V plane) is
divided into four parts: R, §*, §~ and O. Each hysteron in §” is at the “switch-up” state,
and each hysteron in S~ is at the “switch-down” state. Note that the state of hysterons in
O is not changed after applying the fields £, and E,. In the region R, the state of
hysterons is in the “up” or “down” state if the applied field E (E,<E<E))is a

decreasing field or increasing field respectively. Thus,

int int crit

Eu ]] L., L, dE, dE

erit

D pper (E} = Do, (E) = I I% COS[% cos™ ( E-

E-E
H cos{—cos ( 5 E‘"‘J ][ ot it AE i dE .,
crit

(2.29)

Since the region R is bounded by the fields £, E, and E, only, D, (E)-D,,., (E) is

upper tower

not affected by the past field history. This proves that all minor loops between £, and E|

have equal vertical chords at the same field E.

2.4 Comparison of the model with Landau theory
The Landau theory has been successful in explaining the thermodynamic properties

of ferroelectrics near 7,. In our model, all the broad features of the thermodynamic
properties of the Landau theory are retained. To illustrate this claim, we use an example

to discuss remanent polarization, coercive field and dielectric constant of a “second

39



Chapter 2 A Model of Ferroelectric Behavior

order” material by our model.

The material chosen is triglycine sulfate (TGS), with Curie temperature
T, =49.5°C. Gaffar et al. [Gaffar et al., 1989] measured the dielectric constant &, and
the remanent polarization P. at different temperatures. Using these results, the Landau
parameter «, is determined by the slope of the 1/¢£,(T) curve, which gives
@, =32.87x10° Vm/C/K. By a least squares fitting of the P.(T) curve, the Landau
parameter f is found to be 91.43x10" YmS/CJ. The distributions of &, f and E,, at
reference temperature & = 40°C are assumed to be the distributions shown in Equations
(2.26)-(2.28), with parameters given in Table 2.1. Using these parameters, the D-E major
loops at different temperatures are simulated (Figure 2.8). It is seen that as the
temperature increases, the major loop becomes thinner, and the coercive field and
remanent polarization decrease in magnitude. When the temperature increases to a value
larger than T, the D;E relation becomes non-hysteretic. Here, in the low field region, a
linear D-E relation exists. As the temperature continues to increase, the D-E curve
becomes flatter, and the linear D-£ region expands. When temperature is large enough,
the whole D-E curve almost becomes a straight line. Compared with the Landau theory,
our n";odel can produce more realistic D-E loops than Landau’s, because now there is no

discontinuous jump between the up and down states.

Figures 2.9-2.11 show the variation of remanent polarization, coercive field and
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reciprocal dielectric constant with temperature. The Landau theory shows that remanent
polarization is directly proportional to /7.-7, and coercive field is directly

372

proportional to (7, ~T)""", and reciprocal dielectric constant is a V-shaped curve. These
broad features are reproduced by our model. In fact that the Landau theory is a special
case of our model without the distribution of hysterons. In our model, a matenal is
considered to be a collection of hysterons so that all properties of the material are
dependent on the properties and the distribution of the hysterons. Hysterons with
different critical fields and remanent polarizations combine to give the properties of the
whole material. Thus it is remarkable to see that the temperature dependence of these two
properties as well as dielectric constant can still come out close to that of the Landau
theory, preserving the power of the latter.

Comparing with the experimental results [Gaffar er al., 1989], the Landau theory
and simulations based on our model give remanent polarizations very close to the
measured data (Figure 2.9). In Figure 2.10, the temperature dependence of the coercive
field is simulated. Although the simulation of the present model is very close to the result
obtained from the Landau theory, these predictions are two order of magnitude larger
than the experimental values (which is well known for the Landau theory). For the

reciprocal dielectric constant (Figure 2.11) in the paraelectric phase (7 > T, ), both of the

predictions are in good agreement with the experiment. In the ferroclectric phase
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(T <T.), both of the predictions show the broad feature of the experimental curve, i.e.
more or less a straight line. But, in vicinity of T, both predictions cannot reproduce the
fine features. In particular, a finite value of the reciprocal dielectric constant at 7, is not

obtained. (A modification of the model presented in this section, which can produce a

finite value of 1/¢,(7,), will be introduced in next section).

—_ W
LR AL

electric displacement
D (pC/em’)
<

L L " L i L i i " L A i A 1 ol A [l A 1

-10 -8 -6 -4 -2 0 2 4 6 8 10
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electric displacement
D (uClem’)
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-0 -8 -6 -4 -2 0 2 4 6 8 10

applied field E (10" V/em) |
FIG. 2.8 The D-E relation at different temperatures T of TGS (Section 2.4). (a) (-++==), (—),
( - = )and ( = . ) denote the D-E loops at 7=35 °C, 6,45 °C and T, respectively. (b) (------ ),

(=), (=== )and (=) denote the D-E curves at T = 65 °C, 60 °C, 55 °C and T,
respectively.
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FIG. 2.9 The variation of remanent polarization P, with temperature T <7, of TGS (Section
2.4). The solid and dash-dotted lines are calculated from our model and the Landau theory

respectively. The circles denote the experimental results [Gaffar ef al., 1989)].
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FIG. 2.10 The variation of coercive field £, with temperature 7 < 7, of TGS (Section 2.4). The

solid and dash-dotted lines are calculated from our model and the Landau theory respectively.
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FIG. 2.11 The variation of the reciprocal dielectric constant with temperature T of TGS (Section
2.4). The solid and dash-dotted lines are calculated from our model and the Landau theory

respectively. The circles denote the experimental results [Gaffar et al., 1989].

2.5 Modified Preisach-Landau model

In the study of triglycine sulfate (TGS), it is observed in many investigations that
the dielectric constant ¢, has a finite value at the phase transition temperature T [Craig,
1966; Chincholkar and Unruh, 1968; Mansingh and Eswar Prasad, 1977]. In this section,
a more refined Preisach-Landau model is proposed to tackle features such as finite
dielectric constant at 7,. A Preisach-Landau material (see Section 2.2) consists of a
collection of Landau hysterons. Each hysteron is described by three parameters: o, B
and £, . Thus the distribution of hysterons (or the distributions of a, 8 and E.)

characterizes the ferroelectric material. Here we propose to express the interaction field
E,. as E,, =k(T.-T)+k, where k, and k,, are real numbers with a distribution (in

Section 2.2, &, = 0) so that £, may not be zero at 7, and a finite dielectric constant at
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T, is obtained. Comparing with the experimental results of Gaffar et al. [Gaffar et al.,
1989], this modification produces a finite reciprocal dielectric constant at the phase

transition temperature but the model in Section 2.2 cannot. Also, this modification is able

to account for finer features of the experimental 1/¢,-T curve.

2.5.1 The modified model

Ploss and Heiler {Ploss and Heiler, 1992] reported that a small bias field was
observed in the paraelectric phase of triglycine sulfate (TGS) from nonlinear dielectric
measurements and the bias field is linearly dependent on temperature. The interaction
field £,, is therefore wntten as E,, =k, + &, where k, =k, (T -T.). k, and &, may
range between —w and + (in Section 2.2, we only assumed £,, = k,,(T~7.) in the
interest of simplicity). Thus, for T # T, the distribution of E"W s

LBy = [ L4 (B~ k)L (k)

= {7 £, (B —ko(T =)L, (g)dbyg (2.30)

where £, (k,) and £, (k) are the distribution functions for k, and k, respectively. At
=T, E, =k, and the distribution of £, is given by

LolEy) =L, (k). (2.31)

According to a=a,(T.-T), a=0. Thus, the g of a hysteron becomes

((E—E,.,,,)/,B)’” and the distribution of Landau hysterons becomes
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LB, E,) =L ;(B)L . (E,,) . The electric displacement of the material at T, is

int

ﬂE J £ o\E,)L ,(B) dE,,dp. (2.32)

ORI

Since u(E) is non-hysteretic at T, the permittivity of the material is

s(E)= | Iwap:[(

From experimental observations of real materials, the D-E hysteresis major

] ] z:‘nr(Einr)[ﬂ(ﬁ) dEinrdﬂ (233)

ascending and descending curves are anti-symmetric about the origin of the D-E plane.
Since the electric displacement of the material is the sum of the u’s of hysterons,
Ly, (ko) and £, (k) (or £, (k,,))should be an even function with a single peak (say)

and zero mean, such as a normal distribution function. £, ) is then an even

mt m!

function with a single peak and zero mean (using Equations (2.30) and (2.31)).

Following a similar method as for the case of «, the distribution of k,atT T is

. &®) _1 . (kD)
v (1) =L, (K (0)——— 2 (T) J[l:,( v, ) (2.34)
and the distnbutionof £,, at T # T, is
Lo Eu @ = [ L4 (B (D) =k (D)L, K (T, (T). (235)

We conclude that after modifying the Preisach-Landau model of Section 2.2, the
distribution of E,, at different temperature 7 is now described by Equations (2.31) and
(2.35) (1.e. Equation (2.25) is replaced by Equations (2.31) at T =7, and (2.35) at

T=T).
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2.5.2 Comparison with experimental data

Gaffar et al. [Gaffar e al., 1989] measured the dielectric constant ¢, at zero ﬁeld
and the remanent polarization P, of triglycine sulfate (TGS) at temperatures around its
Curie temperature T, of 49.5°C. In Section 2.4, the data from Gaffar et a/. were chosen
as an example to demonstrate the viability of the Preisach-Landau model with &, =0.
The Curie temperature T, in the model was taken as 49.5°C. The distributions of a and
f atreference temperature 8 = 40°C were assumed to be given by Equations (2.26) and

(2.27) respectively. The distribution of £, at & was assumed to be Equation (2.28). The

int
parameters of these distributions are shown in Table 2.2. Figures 2,12 and 2.13 show the
simulated reciprocal dielectric constant 1/ ¢, and simulated remanent polarization P, at
different temperatures. In the refined model (k, # 0) described in this section, we take
the Cune temperature T, as 49.8°C, and the distributions of o and f at reference

temperature 8 =40°C are assumed to be given by Equations (2.26) and (2:27)

respectively while the distributions of k, and &, at 8 are given by

2
1 1{ &
L, (k)= exp| —=1 —1 |; (2.36)
ku( 0) J_Q_Jr__o'ko p Q{JkDJ
! i kY |
[k’(k1)=-\/_2;a €Xp —;('o—_I—J . (23?)
% 2\ 9

The parameters used for the present calculations are shown in Table 2.2. Using
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these parameters the reciprocal dielectric constant 1/¢, and the remanent polarization
P, at different temperatures are calculated and compared, in Figures 2.12 and 2.13, with

the results simulated by the Preisach-Landau model in Section 2.2 and the experimental

results [Gaffar et al., 1989].

TABLE 2.2 The Curie temperature 7, and the parameters of the distributions of &, 3, &, and
k, at 8 = 40°C used in the model in Section 2.2 and the present model.

a . g, B_ aﬂ
(106 Vm/C) (106 Vm/C) (1010 VmS/CJ) (1010 VmSICB)
model in Section 2.2 3123 20 91.43 40
present model 334.1 20 99.64 70
Cine oy, gy T,
(10 V/em) (10 V/cm) (10 V/icm) (°C)
model in Section 2.2 300 — — 49.5
present model - 50 400 49.8
2.5 ) v T ¥ T
20F \ .
o 1.5}
=3 s
=]
< 1.0t
0.5}
0.0

temperature T (°C)

FIG. 2.12 The variation of the reciprocal dielectric constant with temperature T of TGS. The
solid and dash-dotted lines are calculated from the present model and a Preisach-Landau model

in Section 2.2 respectively. The circles denote the experimental results [Gaffar et al., 1989].
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FIG. 2.13 (a) The variation of the remanent polarization with temperature 7 of TGS. (b) The
P2-T curve in the vicinity of T, . The solid and dash-dotted lines are calculated from the present

model and the Preisach-Landau model in Section 2.2 respectively. The circles denote the
experimental results [Gaffar et al., 1989].

From Figure 2.12, it is seen that the 1/¢,-T curve simulated by the Preisach-
Landau model in Section 2.2 is V-shaped. This matches the broad features of the

experimental curve and the prediction of the Landau theory. However, the simulated

£,(T,) has an infinite value (same result obtains from Landau theory), which contradicts

the experimental observation. This discrepancy is related to the limitation that, at the
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Curie point, all hysterons do not shift along the E-axis (£,, =0 at T,). Therefore, the
~ electric displacement of each hysteron has the form (£/8)"* at T,. It is clear that its
reciprocal dielectric constant at zero ﬁ;ld is zero. Since the permittivity of the whole
material is the sum of the permittivity of each hysteron (see Equation (2.33)), the
reciprocal dielectric constant of the whole material is zero.

On the other hand, the present model obtains a finite £, (7). The reason is that the
interaction field is wnittenas £, = k,,(T, ~T) + k, so that the dielectric constant at 7, is
finite according to Equations (2.31) and (2.33). In addition, Figure 2.12 shows that, in the
region near T, the slope of the experimental 1/&,-T curve decreases gradually as the

temperature T tends to T, . This profile can be reproduced by the present model, and a

good agreement with the experiment is obtained. We know that the distribution of
Landau hysterons changes with temperature. According to Equations (2.22), (2.23) and
(2.35), the change in the distribution of Landau hysterons decreases gradually as
temperature 7 tends to 7, . Therefore, from Equations (2.15), (2.17), (2.20) and (2.33),
the simulated 1/¢,-T curve can cope with the experimental curve.

Figure 2.13(a) shows the variation pf the remanent polarization P with
température T calculated by both models. The two simulated curves agree well with the

experiment. We see that, in Figure 2.13(b), the P.’-T curve simulated by the present

model has a tail in the vicinity of T,, while the curve simulated by the model of Section
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2.2 has not noticeable tail. In the experimental literature, this tail had been observed

[Deguchi and Nakamura, 1972; Ehses and Schmitt, 1978].
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Chapter 3

Nonlinear dielectricity of ferroelectrics

3.1 Introduction

Due to the property that the polarization is non-zero at zero field in a ferroelectric,
ferroelectric materials become useful as switchable devices, especially computer
memories. However, because of nonlinear and “history” dependent effects a ferroelectric
material does not exhibit “well-defined” behavior so that care must taken in more
delicate applications. For example, in ferroelectric memories [Scott and Paz de Araujo,
1989], a transistor is added to each ferroelectric cell for isolation from one another to
avoid the influence of “history” effect. Many applications, such as precision machining,
require that ferroelectrics can be operated in high stress and high electric field. However,
pronounced nonlinear dielectric properties and hysteresis behavior are evident in these
conditions. For these and other reasons, there havg been maﬁy researches on the
nonlinear dielectricity of ferroelectric materials. One traditional approach is to write the
electric displacement or polarization as a Taylor series of electric field. The disadvantage
is that this approximation is only adequate in the low field range. For instance, Taylor

and Damjanovic [Taylor and Damjanovic, 1998] reported that the amplitude and phase
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angle of the first and third harmonic determined from minor polarization loops could not
be predicted adequately by this approach, one reason being that the maximum field
amplitudes considered were quite close to the coercive field of the material.

In another approach, some investigators use the Preisach model in the study of
nonlinearity and hysteresis of ferroelectrics. Hughes and Wen [Hughes and Wen, 1997]
applied the Preisach model to research hysteretic behavior of piezoceramics and shape
memory alloys. Hall [Hall, 2001] mentioned that the Preisach model have been
successfully employed in piezoelectric ceramics. In this chapter, we attempt to study the
D-E loops of a ferroelectric material, measured under sinusoidal electric field excitation,
by two models, Preisach model and Preisach-Landau model, and analyze both the in-
phase and out-of-phase components of D by Fourier transform to obtain nonlinear
dielectricity information. Polyvinylidene fluoride (PVDF) is chosen as an example for
this study. The resulting Fourier coefficients are compared to the experimental data given
by Furukawa e al. [Furukawa et al., 1987]. The predictions of both models are able to

reproduce almost all the essential experimental features, and are close to each other.

3.2 Methodology

3.2.1 Methodology based on the Preisach model

In this work, the electric displacement D(E) of a ferroelectric is written as P+gE,
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where P, & E are polarization, permittivity and field respectively. Clearly, £ may be
determined from the slope of the D-E relation in the “saturation” region where P=P, (see

Figure 3.1).

polarization P electric displacement D

, (®)

y
/ / > field E // , + field £
‘L//“saturation" region D=P+eE

FIG. 3.1 (a) A major (or saturated) P-£ hysteresis loop of a ferroelectric. (b) A major D-E
hysteresis loop of a ferroelectric with D = P,+eE.

&

(2)

Suppose a sinusoidal field E(t} = E, cos(ax) is applied on this nonlinear matenal.

Using the Fourier transform techniques, the polarization P and the electric displacement
D of a nonlinear dielectric can be expressed as

P(t)=P, + i[Pn 'cos(nar) + P,"sin(nax)) (3.1

n=}

D(t)=D, + Y [D, cos(nat) + D,"sin(net)] (3.2)
n=l1
where P, and D, are constants, and P,' and P," are the n-th order Fourier coefficients of
P(t), and D,' and D," are the n-th order Fourier coefficients of D(f). Since

D(1) = P(¢) + 6E(t), the electric displacement is

D(t) = P, +(&E, + P,')cos(at) + P,"sin(wt) + i[P,, ‘cos(nwt) + P,"sin(nat)).

n=2
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(3.3)
Comparing Equation (3.3) with Equation (3.2), we have
D, =P
D'=¢E, + A’ and D'=P' (3.4)
Dj n = ‘Pj r

where i 2 2 and j > 1. Note that the Preisach model can describe major as well as minor
loops [Della Torre, 1999]. So, the P-E loops of the material corresponding to sinusoidal
excitations of different amplitudes can be calculated by using the Preisach model, and the
Fourier coefficients of D(f) can be analyzed by using Equation (3.4). The D,'(E,) and

D, "(E,) curves therefore can be simulated.

In this work, the Preisach function is divided into two components: irreversible and

reversible components, i.e.

P(Ecrii’Eim)=pirr(Ecrif’Eint)+Prev(Ecr1':’Eim)' (35)

The irreversible Preisach function #Z, (E_,,E

rr

) is assumed to be the product of a

int

distribution of E__ and a distribution of E,, and is given by [Andrei and Stancu, 2000]

E NE  |E E. 2
P, (E,..E,)=SP, 0 exp|- In“(E_,/ coz) y 1 exp| — 2
v zno—critEch'I z(acrir/EcU) 27r0',-m 20',-,”

(3.6)
where S is the weight of the irreversible component in the total polarization of the

material, o, is the standard deviation of the interaction field, o, describes the

int

dispersion of the critical field, and E is related to the maximum position of the
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distribution of E_,,. The reversible Preisach function 2, (E), which is only defined on

the £, axis, is given by [Andrei and Stancu, 2000]
- E
P (E)y= mx exp{—u] (3.7
20, o,

where E is the applied field, and o, describes the dispersion of the exponential function.
In the calculation of the polarization P, we use the Everett integral [Krasnoselskii and
Pokrovskii, 1989] defined as

{(x-y}2 px-E
I E"’ pirr(E

crit?

¥(x )= |

0

E,)dE,dE, + [ P, (E)E (3.8)
¥y .

crit
YLy

Consider a minor loop between the same pair of fields E,, —E,. The polarization of the
loop at E, is
P(E,) =Y(E, + aP(E,),~E, — aP(E,)). (3.9)
The descending (P,,,,) and the ascending (P,,) branches of the minor loop are given by
P,..(E) = P(E,))-2¥P(E, + aP(E,),E +aP,,, (E)) - (3.10)

and P, (E)=-P(E,))+2¥(E +aP, (E),-E, - aP(E,)). (3.11)

3.2.2 Methodology based on the Preisach-Landau model

In Section 2.5, a Preisach-Landau model has been introduced. Since this model
simulate§ the D-E relation of a ferroelectric, we can directly and conveniently use the
Fourier transform to decompose D(f) to find the D,'(£,) and D,"(E,). In this

simulation, the distribution of Landau hysterons is L, (a)L;(B)L, {k,)L, (k). The
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distribution of «, 3, k, and &, are assumed to be Equations (2.26), (2.27), (2.36) and

(2.37) respectively. The electric displacement D(E) of a minor loop is calculated from

Equations (2.11) and (2.30).

3.3 Experimental nonlinear dielectricity of PVDF

In the article of Furukawa et al. [Furukawa et al., 1987], Furukawa et al.
investigated the nonlinear dielectricity of PVDF at 20 °C. Minor loops were traced using
an electric field with frequency 0.8 Hz. When the field amplitude E, was less than 20
MV/m, the D-E relation tended to be linear. As the amplitude was increased to values
greater than 40 MV/m, the nonlinearity of the D-E relation grew, as shown in Figure 3.2
(solid lines). The coercive field E, of the PVDF was 75 MV/m and its remanent
* polarization P, was 60 mC/m?. Then, these experimental D(¢) curves qorresponding to
different field amplitudes were analyzed by using digital Fourier transforms. The results
are shown in Figure 3.3 (open and closed circles).

Furukawa et al. proposed a model to explain this behavior. They considered an ideal
square D-£ relation for the material. The displacement D was switched up if the field £
was increased to a value greater than the coercive field E., and was switched down if the
field was decreased to lesser than — E_. Their method is as follows. The phase angle of

the electric displacement &, is defined as
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E,siné, =—E (3.12)

where E 1s the amplitude of E. Using the Fourier transforms, the Fourier coefficients are

given by

Dy, =0 _
D,'=(P. [n)cos(nd,), nzl, (3.13)

D."=(P.[n)sin(nd,), n=1.
The D,'(E,) and D,"(E,) curves are calculated by using Equations (3.12) and (3.13)

with £,=75 MV/m and P, = 60 mC/m?, as shown in Figure 3.3 (solid and dashed lines)..

3.4 Simulations of nonlinear dielectricity of PVDF

The model considered in Furukawa et al.’s paper is a square D-£ hysteresis loop
with coercive fields + £, and remanent polarization P,, where £, and P, are obtained
from the experimental major loop of the PVDF material. When the amplitude of the
applied field, E;, is vaned, the phase angle & D| of D changes. Using the technique of
Fourier analysis, both the in-phase and out-of-phase components of the Fourier
coefficients of D are obtained and depend on £, . Although the predictions of this model
are more or less consistent with experiment in the high field range, it cannot déscribe the
nonlinearity behavior at low field, especially £, < E, . It is because the coercive field of
the square D-E hysteresis loop in the model is a constant. If E, < E., then the appiied

field £ is .impossible to switch the material and thus &, is not well-defined. In the region
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Chapter 3 Nonlinear Dielectricity of Ferroelectrics

near E,, a sharp change in the Fourier coefficients of D occurs due to the sudden dipolar
switch in the model; however, this is not the case in the experiment. Experimentally, a
different D-E hysteresis loop is formed for any given amplitude of the applied field,
leading to field-dependent P, and E_. As a finer point, a fixed P, value limits D,"(£,)
to values smalier than 2., so that in the high field range the predicted D,'(E,) comes out
to be much smaller than the experimental value.

To understand the behavi(;r of a ferroelectric material under arbitrary field
magnitudes it is important to have a model which can describe its major loop as well as
D-E histoﬁes within. In our simulations, we use the moving Preisach model to simulate
D-E loops with different field amplitudes. Table 3.1 shows ;rhe Preisach parameters for
PVDF fitted from the steady-state major hysteresis loop [Furukawa et al., 1987]. Using
these parameters, the simulated D-E curves for the PVDF are compared with the
experimental results [Furukawa et al., 1987]; as show’n in Figure 3.2. From Figure 3.2,
we see that for large E, the simulated D(E;) of minor loops are larger than the
experimental D(E,). In the Preisach model, every minor loop generated with field
amplitude E, must lie inside the major loop, but this is not so strictly true with the

experimental data here.
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TABLE 3.1 The Preisach parameters and permittivity of PVDF used in the simulation.

Eq v Oy g a S P, £
MV/m) (MV/m) (MV/m) (MV/m) (mC/m%)  (10°F/m)
69.8 29.9 32.2 67 0.38 0.73 77 0.11°

* from Furukawa, T., Nakajima, K., Koizumi, T. and Date, M. “Measurements of Nonlinear

Dielectricity in Ferroelectric Polymers™. Japanese Journal of Applied Physics, Part 1 Vol. 26,
pp.1039-1045 (1987)
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FIG. 3.2 D-E loops of PVDF at 20 °C. The simulation results (open symbols) are compared with

experimental results in Furukawa ef al. [Furukawa et al., 1987] (solid lines).
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FIG. 3.3 Plot of in-phase, D,', and out-of-phase, D", components of the 1¥, 3, 5® and 7"-order
of D against E, for PVDF. ( @ )and ( 0 ) denote the experimental D,'(£,) and D, "(£,)
respectively, ( == ) and (= =) denote D,'(E,) and D,"(E,) simulated by using the

Preisach model. (—— }Yand ( ------ ) denote D,'(E,) and D,"(E,) calculated from Equations

(3.12) and (3.13).
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D,'(E;) and D,"(E,) may then be calculated from the simulated loops, as
explained earlier. The D,'(E,) aﬁd D "(E,) curves are shown in Figure 3.3. For the
first-order, third-order and fifth-order components, the broad experimental features are
essentially reproduced by the simulations. However, this is not the case with the
seventh-order curves. This is because it is quite impoésib]e to find an accurate analytic
Preisach function which can reproduce all the fine structures of the experimental curves.
From Figure 3.3, it is seen that the experimental curve for the first-order in-phase
ions were in good agreement with experimental results. The D-E hjstorie§ of the
copolymer and the electrode material during poling were also obtained.

A Prdiidigure 3.3, by comparing our simulation results with results calculated from the
original model used in Furukawa et al. [Furukawa et al., 1987], it is seen that the Preisach
model gives reasonable D, '(E,) and D,"(E,) curves with £, < E, (75 MV/m), but the
original model cannot. The sudden changes in the original mode! are missing in the
Preisach model. Sudden changes in the calculated D,'(£,;) and D, "(EQ) are avoided
because of the gradual growth of hysteresis loops. Also, the curves based on the Preisach

model are able to account for finer features than the original model.
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TABLE 3.2 The parameters of the distributions of @, £, &, and &, at reference temperature
@ = 20°C used in the Preisach-Landau model.

a o, B o O, Ty,
(107Vm/C) (10" vin/C) (10" Vmn’/C’) (107 Vm*/C®) (M V/im) (M V/m)
533 33 530 200 20 15
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FIG. 3.4 D-E loops of PVDF at 20 °C. (a) The Preisach-Landau simulation results (open symbols)
are compared with the results obtained from the Preisach model (solid lines). (b) The same

simulation results (open symbols) are compared with experimental results in Furukawa et al.
[Furukawa et al., 1987] (solid lines).
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FIG. 3.5 Plot of in-phase, D, ', and out-of-phase, D,", components of the 1*, 3, 5* and 7"-order
of D against £, for PVDF. ( @ Yand ( 0 )} denote the experimental D,'(£,) and D "(E,)
respectively. (== )and (= =~) denote D, '(£,) and D,"(E,) simulated by using the
Preisach-Landau model. ( — )and ( ------ ydenote D,'(E,) and D,"(£,) simulated by using

the Preisach model.
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Also, a Preisach-Landau model is used for the simulation of nonlinear dielectricity
of PVDF. The parameters of the distribution of Landau hysterons for PVDF fitted from
the steady-state major hysteresis loop [Furukawa et al., 1987] is shown in Table 3.2.
Using these parameters, the D-E curves and the curves of the Fourier coefficients, i.e.
D,'(E,) and D,"(E,) curves, for PVDF are calculated and compared with the results
from the moving Preisach model.

From Figure 3.4(a) we see that for large E, the simulated D-E loops are close to the
loops obtained from the Preisach model. For small E,, the difference between the loops
produced by the two models becomes obvious. In Figure 3.4(b), the simplated D(Ey)
minor loops are larger than the experimental D(E,) for large E,, again because every
minor loop must lie inside the major loop in a Preisach-Landau model.

For the first-order, third-order and ﬁﬁh-grder components of the D '(E,) and
D "(E,) curves (Figure 3.5), both of the simulation results are very close to each other
with slightly larger discrepancies in the seventh-order curves. Comparing the Preisach-
Landau simulation with the experimental results (Figure 3.5), again almost all key
features of the experimental D '(£,) and D,"(£,) curves are captured in very much the
same manner as the Preisach model can. In comparison with the latter, the Preisach-
Landau model is superior with regard to the all-important D,' and D," coefficients

(linear permittivity), which fits the measured data very well up to 70 MV/m, near £,.
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However, in the case of the seventh order curves, noted discrepancy between the
simulation and the experimental data occurs. One reason is that the hysteresis loop (or
more accurately the u-E relation) of Landau hysterons in our model is only described up
to third powers of x4 as E = —au+ fu’, neglecting terms of higher order components

(i.e. Equation (2.2)). This affects predictions of the fifth and higher orders of the

D '(E,) and D "(E,).
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Chapter 4
Study of poling of ferroelectric composites based on

Preisach models

4.1 Introduction

In most virgin ferroelectric materials, the piezoelectric and pyroelectric effects are
not appreciable so that they cannot be directly used in many applications. A common
remedy is to polarize (or to “pole”) the materials as highly as possible to magnify the
effects and is called poling. Most ferroelectric ceramic matenals are brittle and possess
cracks, and many exhibit brittle fracture. On the other hand, polymers have high
flexibility. Good synergy of ferroelectric ceramic and polymer is achieved by combining
the two to form composites. Then, there is the question of how the properties of
ferro&lalectric composites may be predicted accurately. This chapter is a report of an
attempt to use the Preisach model and the Preisach-Landau model to study the behavior

of multi-layered and 0-3 composites respectively.

4.2 Multi-layered composite system

We analyze the D-E response of a multi-layered ferroclectric composite by using
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Chapter 4 Poling of ferroelectric composites

the concepts of the Preisach model to describe each constituent material. Under the
assumption that the free charge on each int.erface 1s constant, the theory for multi-layered
ferroelectric composites is analyzed. The results obtained are compared to D-E
measurements made in the poling of polyvinylidenefluoride-trifluoroethylene (P(VDEF-
TrFE)) with ferroelectric triglycine sulfate (TGS) crystal electrodes [Ploss and Ploss,

1996].

4.2.1 Theory

In this work, the electric displacement D(E) of a ferroelectric is written as P+&E,
where P, g, E are switchable polarizatioﬁ, permittivity and field respectively. Clearly, ¢
may be determined from the slope of the D-£ relation in the “saturation” region where
P = P, (see Figure 3.1). Consider a multi-layered composite with n ferroelectric layers,
as shown in Figure 4.1. Each constituent material is representable by the Preisach model.
Let the field in the i-th constituent material of thickness d; be E, if an external field £ is
applied to the composite and assume that the compensaging free charge on each interface

remains constant during a D-E measurement. When £ changes by a small amount AE, we

have

AE = iv,.AE,. where v, =d, id;‘ : (4.1)

i=l i=!

The boundary condition AD, = AD,, for each interface gives
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AP +&,0E = AP, +¢,,AE,, (4.2)

where D, P, and ¢ represent the electric displacement, the polarization and the
permittivity of the i-th constituent material respectively. The susceptibility y(E) is
defined by dP/dE. Then Equation (4.2) may be rewritten as

Xi (E:')AE:' +EAE =y, (Ei+l)AEi+l +EL,AF . (4.3)

|__—— constituent

E 4 4| material
7 7
E1E ¢ G*) voltage
s P 4
|__—— metal

E 4
* electrode

FIG. 4.1 The diagram for multi-layered composite.

Solving Equations (4.1) and (4.3), we can find

fI[ZJ(Ef)+5j]AE

AE. = d=1ge

b MiEo-al

i=l k=l k= }

(4.4)

Since the change of the electric displacement of the composite AD is equal to AD,, so

Z(AP H}HAE

=1 J=lj=i

il ) -

isb | jelj=i

AD =

Noting that the effective properties of the composite are defined by AD = AP + éAE ,

69



Chapter 4 Poling of ferroelectric composites

where P and ¢ represent the polarization and the permittivity of the composite

respectively, we have from Equation (4.5)

1l S |
=93 L 4.6
- Zg (4.6)
and AP=EZ"11AP,.=52—E-'¥[H(E,.+AE,.)—R(E‘.)]. (4.7)
&

i=1 i =1 i

Hence, using Equations (1.3), (4.4) and (4.7), AD can be calculated if £ is changed
by AE. Thus, the D-E curve can be calculated for a given field history. In this work, the
Preisach function is assumed to be given by a Gaussian-Gaussian distribution {Della

Torre, 1999]:

P —E )} . E’
it E‘_m) = —:exp _ (Ecr!! E;co) v 1 CXP _ int - (48)
V2ro, 20, 2ro, 20, '

.03

P(E

erit

where ¢, 1s the standard deviation in the critical field, o, the standard deviation in the

interaction field and £, the average critical field of the Preisach hysterons.

4.2.2 Application to the poling of P(VDF-TrFE) with ferroelectric electrodes
In the article of Ploss and Ploss [Ploss and Ploss, 1996], a ferroelectric electrode
poling procedure for P(VDF-TrFE) copolymer of composition 70/30 mol-% by TGS is

developed. In this poling technique (Figure 4.2), the initial conditions for the TGS-

P(VDF-TrFE)-TGS  composite  sandwich are  E, .. = E pme =0  and

Doeerote (@) ==F, , and D, (0)=0, where P, is the remanent polarization of the

previously poled TGS electrodes. Using Equations (4.4) and (4.7), the D-£ curves of the
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TGS-P(VDF-TrFE)-TGS stack during poling (Figure 4.2) and of the electrode stack in a

subsequent measurement (Figure 4.3) can be simulated.

copolymer

ferroelectric

applied field

electrodes

(b) T e
FIG. 4.2 The two identical ferroelectric TGS electrodes are first poled to -P,,,, and are
separated. In this process, compensating charge is developed on the interfaces. Then, the
unpoled copolymer is inserted between the electrodes, shown in (a), to form a triple-layered

composite. The composite is poled by applying an external field, shown in (b).

ferroelectric

applied field

electrodes

(a) (b)

time

FIG. 4.3 After the poling, the copolymer is removed and the ferroelectric electrodes are
stacked together, as shown in (a). A field, shown in (b), is applied to the stack.

4.2.3 Comparison of simulation with experiment

Table 4.1 shows the Preisach parameters and permittivity & for TGS and P(VDF-
TrFE) calculated from the steady-state major hysteresis loops and reversal curves. Using
these parameters, the simulated D-£ curve for the poling of P(VDF-TrFE) with TGS

electrodes, i.e. the D-E curve of TGS-P(VDF-TrFE)-TGS, is compared with the
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experimental result {Ploss and Ploss, 1996], shown in Figure 4.4(a). The D-E curve of
the electrode stack, i.e. TGS-TGS, after removing the copolymer, is also simulated with
result shown in Figure 4.4(b). Essentially, all the broad experimental features are
reproduced by the simulations. From Figure 4.4(a), it is seen that the experimental curve
is slightly wider than the simulated curve. This discrepancy is most likely due to the
experimental fact [Furukawa et al., 1983] that a virgin copolymer sample when first
ramped by an electric field can support a slightly higher field before noticeable switching
is observed, i.e. higher than the coercive field determined from the steady-state
hysteresis loop.

The D-E behavior calculated for each constituent material in the poling process is
shown in Figure 4.5. The change of D in TGS-P(VDF-TrFE)-TGS is limited by the
change of D in TGS. In Figure 4.4(a), the Greek alphabets represent some reference
points on the calculated D-E curve of TGS-P(VDF-TrFE)-TGS during poling. The
corresponding points in the two constituent materials are also shown in Figure 4.5. At A,
the D of the three materials are at turning points because the sign of AE, and AE are the
same (see Equation (4.4)). At ¢, the field applied to TGS-P(VDF-TrFE)-TGS is zero;
howe\.rer, the field in TGS is negative and that in the copolymer is positive.

In brief, all the broad experimental features are reproduced by the simulations. The

D-E histories of the copolymer and the electrode material during poling are also obtained.
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It is seen that the change of displacement in TGS is limiting the change of the

displacement of TGS-P(VDF-TrFE)-TGS.

TABLE 4.1 The Preisach parameters, permittivity and thickness of TGS and P(VDF-TrFE) used

in the simulation.

C.. Ot E, P, £ d,

(V/um) (V/um) (Vium)  (uClem®)  (10°F/m) (um)

TGS 0.024 0.03023 0.212 2.865 0.036 1000 °
P(VDF-TtFE) 6.2 4.8959 43.48 5.72 0.0109 7%

* from Ploss, Bernd and Ploss, Beatrix “Poling of P(VDF-TrFE) with Ferroelectrically Applied
Dielectric Displacement”. Ferroelectrics, Vol. 184, pp. 107-116 (1996)
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FIG. 4.4 The simulation results (squares) are compared with experimental results [Ploss and
Ploss, 1996] (solid line). (a) Change of D in the TGS-P(VDF-TIFE)-TGS composite during
poling under conditions shown in Figure 4.2. (b) Change of D in the TGS-TGS stack after

removing the copolymer, i.e., under conditions shown in Figure 4.3,
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FIG. 4.5 The squares denote the simulated D-E history in a constituent material during poling of
TGS-P(VDF-TrFE)-TGS. Corresponding points in the two materials are labeled by Greek
alphabets; they are in unison with points in Figure 4.4(a). The dotted and solid lines denote the
simulated and experimental major loops respectively of the constituent material. (2) TGS, (b)
P(VDF-TtFE).

4.3 0-3 composite system

We consider a composite comprising spherical ferroelectric inclusions in a linear
dielectric matrix. The ferroelectric composite is analyzed by using the concepts of a
Preisach-Landau model to describe the ceramic inclusions. In the previous section, the
modeling study of the multi-layered composite is based on the assumption that the free
charge on each interface remains constant. In this section, the charge is allowed to evolve
with time. The modeling is used to study several questions of the D.C. poling of 0-3
composite. These include the effects of the poling field magnitude, the poling

temperature and the conductivity of the matrix. In this work, we can conclude that the
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remanent polarization of the composite can be raised by increasing the poling field or, for

the same poling field, by increasing the conductivity of the matrix.

4.3.1 Theory

Again, the electric displacement of a ferroelectric D(E) is written as P+¢E, where P,
& E are switchable polarization, permittivity and field respectively (see Figure 3.1).
Consider a ferroelectric composite comprising a dilute suspension of spherical
ferroelectric inclusions, of a material representable by a Preisach-Landau model, in a
linear dielectric matrix with permittivity ¢, , under a uniform electric applied field along
the polarization direction. The derivative of the average electric field £ in the composite

can be written as

dE _ dE, . dE,
- (4.9)

d

where the subscripts i and m denote “inclusion” and “matrix” respectively and ¢ is the

volume fraction of the inclusion phase. The average electric displacement D in the
composite is
D=¢D, +(1-¢)D_ (4.10)
The boﬁndary condition for the inclusion-matrix interface is given by [Wong et al., 2002]
D,+2¢,(E,~E,)=D, +0 (4.11)

where Q is the surface charge density on the interface at the pole along the polarization

75



Chapter 4 Poling of ferrcelectric composites

direction. Since the compensating charge Q is allowed to evolve with time, the electrical
conductivities of the materials need to be taken into account. The conduction current
densities j in the constituents are

Ji =0k, and Jm=0 E (4.12)

m - m

where o, and o, are electric conductivities of the inclusion and matrix materials

respectively. Since the equations governing the conductivity problem are similar to those
used in the dielectrics problem, we have a relation between conduction current densities

and electric fields in the constituents similar to Equation (4.11) [Wong et al., 2002]:

j,-+2a,,,(E,-—E,,.)=j,,,—%?—. @.13)

Then, Equation (4.11) can be rewritten as

dD, dE, (dE,. dE dE, dQ
———+2, =
dt dt

i =g, —m 4+ 22 | (4.14)
dE, dt dr  dt

Note that &, is a constant because the matrix is a linear dielectric material. By solving

Equations (4.9) and (4.14), we have

dE dQ
iE, 38”§?+(1_¢)Tz
—-= D (4.15)
2+ +(1-¢)—=
(2+¢)e, +(1-9) i,
d [25”%]%" %
and Ey _ d . (4.16)

dt ab,

dE.

r

2+p)e, +(1-9)
When ¢ changes by a small amount Ar, AE,, AE,_ and AQ can be calculated by

using Equations (4.12) and (4.14)-(4.16). Then, AD, and AD,_ can be found. Using
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Equation (4.10), the AD -E curve can be calculated for a given field history.

4.3.i Application to the D.C. poling of 0-3 composite

In this study of poling, a D.C. electric field E , 15 applied to a virgin composite,
which comprises spherical ferroelectric inclusions in a linear dielectric matrix with
¢ =0.1. The field £, is applied for a sufficiently long time until a steady state is reached,
after which the field is released. Under this poling process, we consider different
conditions to discuss the variation of the electric displacement of the composite and its
constituents. These include (i) the effect of the poling field £ , (Figures 4.7 and 4.8), (ii)
the effect of the poling temperature T, (Figures 4.9 and 4.10) and (iii) the effect of the
conductivity o, (Figures 4.11 and 4.12). TGS is chosen as an example of the inclusion
material in the composite because we already have a Preisach-Landau model for TGS
from a previous chapter. We take the Curie temperature T, as 49.8°C, and the
distributions of &, 3, k, and k, (at reference temperature 8 = 30 °C ) are assumed to be

given by Equations (2.27), (2.28), (2.36) and (2.37) respectively. The parameters of these

distributions are shown in Table 4.2. The electrical conductivity o, and permittivity £,
of the matrix are 10™° 1/Qm (at room temperature, o, is usually less than o, for

ceramic/polymer composites [Chan et al., 1995]) and 3.7x10™"" F/m (this is a typical

value of polymeric materials, such as PVC and epoxy) respectively.
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Figure 4.6 shows the major loop of the inclusion material of the 0-3 composite with
the parameters of the distribution of Landau hysterons, given in Table 4.2. It is seen that
the coercive field E,of the material is 71680 V/cm, which is two orders of magnitudes
larger than the experimental value (410 V/em [Triebwasser, 1958]). Indeed, many
experiments indicate that the experimental values are several orders of magnitude lower
than the values calculated from the Landau theory [Jona and Shir‘;me, 1962; Kim et al.,
2002]. This discrepancy is due to the mechanism of motion of domain walls in
polarization growth rather than dipole switching. To enable a Preisach-Landau model to
study real situations such as the poling of composites, we (at least tentatively) describe
the hysteresis loop of a Landau hysteron by “reduced” parameters, the net effect of which

is to scale the calculated E fields to realistic values, that s,

E(real)  E(calculated)
E (real) E_(calculated)

(4.17)

The advantage is that the formulation of the model does not become more difficult but

can describe “real” hysteresis loops of materials, which is what is needed here.
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Poling of ferroelectric composites

TABLE 4.2 The Curie temperature 7, and electrical conductivity o; and parameters of the
distributions of &, B, k, and %, for TGS at 8= 30 °C used in the simulation.

a o, ] o,
(10° Vm/C) (10° Vi/C) (10° Vm’/C?) (10° Vm*/C?)
685.7 41.05 99.64 70
T, Oy, o; T,
(10 V/em) (10 V/em) (1/Qm) (°C)
50 821.1 10° 49.8
4 T T T T
|5
£ 21 .
> BN
s g
[=% Q
=z 0 0
| 7
Q - “saturation” 1
E Q
§ 2F region A
)
_4 1 1 " 1 1
-3 -2 -1 0 1 2 3
Ei / Eci

FIG. 4.6 The major loop of the ferroelectric inclusion in the 0-3 composite at 30 °C.
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FIG. 4.7 (a) The variation of the remanent polarization P, of the composite after poling with
poling field £,. (— ), (---) and (-) denote E, = 14E,, E, = 7E_ and E, = 2.8F, respectively.
The cormresponding time variation of the electric displacement of (b) the composite, (c) the
inclusion and (d) the matrix under different £,. (€) The variation of the interfacial charge density
Q after poling with poling field E,. (f) The corresponding time variation of the interfacial charge
density Q.
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Chapter 4 : Poling of ferroelectric composites

4.3.2.1 Effect of poling field
After poling, a steady state for the composite is reached with sufficiently long time.

Figure 4.7(a) shows the variation of the remanent polarization P, of the composite after

r

r

poling with poling field £, . The remanent polarization P, increases as £ , increases; and'
thetr relationship is nonlinear. Also, it is seen that when E , is large enough, the
increment of P, becomes small. This is because the poling process induces the saturation
behavior of the ferroelectric inclusion material. The increment of the electric
displacement D, of the inclusion in the “saturation” region is small with respective to an
increment of field £, (see Figures 3.1 and 4.6). From Figure 4.6, the field strength around
the saturation region is about 2.65 E_;, and the corresponding D, is 3.6 pC/cm?. This
effect, i.e. saturation behavior of the inclusion, can be observed in Figure 4.7(c).

In Figure 4.7(c), at the steady state region with the poling field on, the inclusion is
poled to near saturation as £, is greater than 7 £, and the increment in D, with a larger
E, is small, unlike the case of E, <7E,,. Simultaneously_, in Figure 4.7(b), the
increment of D is also small because the matrix is a linear dielectric material which has
no saturation behavior (see Figure 7(d)), so that the D of the composite behaves as the D,
of the inclusion.

Noting that the fields in the two constituents must eventually go to zero after the

poling field is released, thus D, D,, and therefore D drop when the poling field E , 18
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released, as shown in Figures 4.7(b), (c) and (d). The sudden drop is due to the dE/dt
term in Equations (4.15) and (4.16). After the poling process is finished, P,, is close to the

remanent polarization of the inclusion since the inclusion is poled to near saturation

under £, >7E . Based on this effect, P, is also close to ¢P,

r rEr

which is the maximum
value of the remanent polarization of the composite after poling (see Figure 4.7(b)).

From Figures 4.7(¢) and (f), we see that the time variation of the interfacial charge

density O after poling with poling field E, is nonlinear. Since £, and E,, would go to zero

after poling, by Equation (4.11) Q after poling is equal to D, (see Figure 4.7(c)). From the

above observations of the variation of D, with £ »» We know that this effect is also due to

the saturation behavior of the inclusion.
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FIG. 4.8 (a) The variation of the remanent polarization P, of the composite at temperature T after
poling with poling temperature T,. The upper, middle and lower dash dotted lines denote T, = 40
°C, T,=30°Cand 7, =20 °C respectively. ( — ), (--- ) and (-~ ) denote T, =40 °C, T, = 30
°C and T, = 20 °C. The corresponding time variation of the electric displacement of (b) the
composite, (c) the inclusion and (d) the matrix at temperature 7, with poling temperature T,. (€)
The variation of the interfacial charge density O at temperature T after poling with poling

temperature T,,. (f) The corresponding time variation of the interfacial charge density Q.
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4.3.2.2 Effect of poling temperature

ADC. field £, =7E, is applied to the composite at different temperatures T .
Based on the definitions of &, f and E,, .(see Sections 2.2.4 and 2.5.1), the parameters
of the distributions of & and E,, change as 7, changes. In this simulation, the electrical
conductivities of the constituent materials of the composite are assumed to be constants
since a relatively narrow temperature variation (20-40 °C) is considered here. Let
P (T,T,) denote the remanent polarization of the composite at temperature T after
poling at temperature T,. Figure 4.8(a) (solid circles) shows the variation of the
remanent polarization F,(7,,T,) of the composite at temperature 7, after poling at
temperature 7, and Figure 4.8(b) shows the time variation of the electric displacement of
the composite during poling at temperature 7. We see that, under the same poling field
£, the relation between P, (T »21,) and T, is not monotonic, due to the intrinsic
properties of Landau hysterons of the inclusions. The critical field and electric
displacement of Landau hysterons decrease as temperature increases (see Figure 2.7).
Hence, the poling field £, for fully polarizing the inclusion at bigh 7, is smaller than
that for low 7,. This can bé observed in Figure 4.8(c). At T , =40 °C, the inclusion is
polarizedA to saturation. At 7, =30°C, the inclusion is also near saturation, but the
inclusion is unsaturated when poled at T, =20 °C. However, the remanent polarization

of the inclusion at high 7, is smaller than that at low T , (see Figure 2.7). Based on these
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two effects, the variation of 7,(7,,7,) with poling temperature 7, may not be
monotonic.

In the Landau theory for the second order phase transition, the remanent

polarization P,(T) of a material at temperature T is ja (T, - T)/B (from Equation

(1.18)). We define 7(7,T,) as the ratio of P,(T) to F(T,),ie.

mT,T,)

_B(T) _ o, (T.-T)/B _JTC-T (4.18)

R Ja@-T)/B LT,

which is greater than one if T < T, <T,. After poling, E, and E,, would eventually go to
zero and therefore the remanent polar.'ization F.(T,,T,) of the composite should only
depend on the remanent polarization £,(7,,T,) of the inclusion because the matrix is a
linear dielectric.

Now consider bringing the samples polarized at different T,’s to the same
temperature 7. Assume that the remanent polanization P,(7,T,) of the inclusion at
temperature 7" equals 7(7,T,)F, (T,,T,) asin the above analysis. (This assumption only
provides an approximate P.(T,T,)). Since P(T,,T,)= ¢FP.(T,,T,) after poling,
P,(T,T,) is monotonic increasing with T, as shown in Figure 4.8(a). This means that
the remanent polarization F,(7,7T,) of the composite becomes higher if 7, is higher.

Figures 4.8(¢) and (f) show the vanation of the interfacial charge density O after
poling at 7, and the time variation of the interfacial charge density respectively. Similar

to the case of the Q in the previous section, Q is equal to P, (7,,T,) after poling.
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FIG. 4.9 (a) The variation of the remanent polarization P, of the composite with the electric
conductivity of the matrix o,. (=), (---), (—), {---) and () denote g, = 10® 1/Qm, g, =
10° 1/Qm, o, = 10" 1/Om, &, = 10" 1/Qm and g, = 10" 1/QOm respectively. The
corresponding time variation of the electric displacement of (b) the composite, (c) the inclusion

and (d) the matrix under different o,,. (e) The variation of the interfacial charge density ¢ with
G,
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4.3.2.3 Effect of the conductivity of the matrix in 0-3 composite

A D.C. field £, =7E, is applied to the composite. Figure 4.9(a) shows the
variation of the remanent polarization P, of the composite with the conductivity of the

r

matrix o, after poling. The remanent polarization P. of the composite increases as the
con?ductivity of the matrix o, increases. Also, P, is almost zero if &, is too small. The
reason is that the field £, in the matrix decreases when o increases. As a result, the
field E; in the inclusion becomes larger. Therefore, the value of D, and D can be raised
(see Figures 4.9(b) and (c)).

Figure 4.9(¢) shows the variation of the interfacial charge density O with o,,. We see

that the behavior of Q is similar to that of D, after poling.
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Conclusions

The Preisach model is used for modeling nonlinear behavior in ferroelectrics and
ferroelectric composites. In addition, a new model, the “Preisach-Landau” model, of
ferroelectric behavior based on a combination of the Preisach model and the Landau
theory for the second order phase transition of ferroelectrics is developed. This is the first
of such an attempt to replace Preisach hysterons by Landau hysterons. The new model
allows discussion on phase transition and the effect of temperature on physical properties,
which the Preisach model cannot tackle. Also, minor loops which the Landau theory
cannot describe are now produced by the model.

For a fixed temperature below the Curie temperature, a Preisach-Landau model
retains the deletion property and the property of equal vertical chords of the classical
Preisach model, but not the congruency property. The latter should not be taken as a
complaint because many real matenals do not exhibit the congruency property. Broad
features of the temperature dependence of ferroelectric properties such as coercive field,
remanent polarization and dielectric constant are reproduced by this model in agreement

with the Landau theory. The Landau model is a special case of this model without the
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distribution of hysterons. The power of the present model, or a model combining
Preisach’s ideas with ferroelectric transitioqs, lies in its ability to discuss the behavior of
a ferroelectric material subjected to arbitrary field history. Notwithstanding a fair amount
of success made possible by this approach, the variation of coercive field of TGS
material as a function of temperature calculated as an example in this work, although
agreeing with the Landau theory, do not describe real TGS material well.

The Preisach-Landau model of Section 2.2 assumes the interaction field
E, =k,(T,—T). Although this can simulate the well-known characteristic V-shaped
1/¢,-T curve of a second order ferroelectric (see Figure 2.9), the dielectric constant has
an infinite value at 7, which is not the case in TGS, for instance. In Section 2.5, a more
refined Preisach-Landau model is proposed to tackle features such as finite dielectric
constant at 7, . Here the interaction field is written as E,, = k,,(T, —T) + k, where k,
and k,, are real numbers with a distribution. This model thus reproduces a finite
reciprocal dielectric constant at the transition and a rounded V-shape around the

transition temperature. Comparing with the experimental results [Gaffar ef al., 1989],
this modification is able to account for finer features of the experimental 1/£,-T curve.

The nonlinear dielectricity of the electric displacement of a ferroelectric is studied.
Using the concepts of the Preisach model, the D-E loops of different field amplitudes are

simulated and Fourier analyzed. Both in-phase and out-of-phase components of the
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Fourier coefficients obtained are compared with the experimental data for PVDF
[Furukawa et.al., 1987]. Essentially, the simulations reproduce almost all the broad
experimental features of the lower harmonics. As a finer point, in the region near £,, this
model avoids a sharp change of the Fourier coefficients of D occurring in the model of
the original paper.

On the other hand, a Preisach-Landau model is also used for the simulation of
nonlinear dielectricity of PVDFE. Comparipg the Preisach-Landau simulation with the
experimental results, almost all key features of the experimental curves are captured in
very much the same manner as the Preisach mode! can. However, in comparison with the
latter, the Preisach-Landau model is superior with regard to the all-important D,’ and

D," coefhcients (linear permittivity), which fits the measured data very well up to near

E..

In the studies of the poling of ferroelectric composites, a multi-layered ferroelectric
composite is first étudied by using the classical Preisach model to describe each
constituent matertal. Under the assumption that the free charge on each interface is
constant, the theory for multi-layered ferroelectric composites is analyzed. The theory is
then applied to study the poling of P(VDF-TrFE) with TGS electrodes [Ploss and Ploss,

1996]. All the essential experimental features are reproduced by the simulations. It 1s -~

seen that the change of electric displacement in TGS is limiting the change of the
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displacement of the TGS-P(VDF-TrFE)-TGS sandwich. The D-E histories of the
copolymer and the electrode material durjng poling are also obtained.

For 0-3 composites, we consider the poling of a composite comprising spherical
ferroelectric inclusions in a linear dielectric matrix. The ferroelectric composite is
analyzed by using a Preisach-Landau model to describe each constituent material. The
free charge on the inclusion-matrix interface is allowed to evolve with time. In this work,
a D.C. electric field E, is applied to a virgin composite of TGS/polymer with ¢ =0.1
until a steady state is reached, then the field £ , 15 released. Under this poling process,
we consider different conditions to discuss the variation of electric displacement of the
composite and its constituents. These include the effect of (i) the poling field E ,» (1) the
poling temperature T, and (iii) the conductivity of the matrix .

In the study of the effect of E,, after poling, the remanent polarization P. of the
composite increases with the poling field E,. The relation between P, and E , 18
nonlinear because of the saturation behavior of the electric displacement of the inclusion.
In the study of the effect of poling temperature T’ ,» after poling with a fixed poling field
£, the remanent polarization of the composite at temperature T, » as a function of poling
temperature 7, is not monotonic. It is shown that when the poled samples are brought

back to the same temperature 7, then P,(7,T,) at temperature T'is larger as T, increases.

Finally, in the study of the effect of o, , a small o_ implies a small value of D after
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poling. It is because‘the field in the matrix increases as o, decreases. In brief, the
remanent polarization P,(T,T,) of the composite can be raised by increasing the poling
field, the poling temperature and the matrix conductivity.

In this project, a Preisach-Landau mode! is applied to study the nonlinear behavior
of ferroelectrics. However, the simulated coercive field of ferroelectric is two orders of
magnitudes larger than the experimental value since we use Landau hysterons together
with the Preisach idea. Due to this discrepancy, the application of the Preisach-Landau
model is hampered because it does not describe very well a “real” hysterésis for
ferroelectrics. Therefore, further theoretical investigation in avoiding this discrepancy
would seem to be essential. In the literature, one approach to give a more realistic free
energy for a “Landau” material (in our case, the free energy of Landau hysteron) is to
incorporate terms for considering the effect of domain walls and interaction among
dipoles in the material [Lines and Glass, 1977; Kim et al., 2002].

On the other hand, many ferroelectric materials undergo a first order ferroelectric-
paraelectric phase transition. In our project, the Preisaqh-Landau model only discusses
the case for the second order phase transition. An extension of the model to “first order”
materials is valuable. In the studies of the properties of ferroelectrics, such as
piezoelectric and pyroelectric properties and the effect of frequency on the hysteresis

loop, the use of the Preisach-Landau model would seem attractive and valuable; here a
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modification of the Landau hysteron in the model is envisaged. In the literature, several
apprqaches are helpful for this modification. Freeman and Joshi [Freeman and Joshi,
1996] suggested to modify the Preisach hysteron in a ferroelectric to take into account
the effect of applied stress. Briefly, the “shape” of the Preisach hysteron changes as stress
is applied to the material so that the Preisach model can discuss the variation of the
hysteresis loop due to the effect of stress and strain. Further, the Landau-Khalatnikov
theory is also suitable to describe the hysteresis loop of Landau hysterons with variation
in frequency. Thus the hysterons méy better describe the coercive field of a. “real”

ferroelectric and allow realistic discussion on the effect of frequency on hysteresis loop.
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