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Abstract

We analyze the error char.acteristics of a Chinese character recognizer and
developed two approaches to improve Chinese character recognition system.

We first develop a non-contiguous context dependent language model as a post
proéessing module. The model makes use of far away context to predict the
interested character. The model is only as good as the traditional bigram model in
terms of accuracy.

Secondly, we developed a method to detect errors in language model. The method
employs pattern recognition technique. It combines both dictionary and statistical
features to predict whether a block of character is correct or contains error. This
detection scheme as demonstrated in our experiment is effective. The performance

is 80%, 91% and 75% of precision, recall and skip ratio respectively.
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Chapter 1

Introduction

1.1 The need for Chinese character recognition

Computers are invented in the wéstern countries. The internal code and input
devices‘arc designed to facilitate the representation and input of English text. In
order to enable processing of Chinese text in the existing compﬁter systems,
several coding standards have been designed such as Big5, Guobiao (GB) and
Unicode to encode Chinese characters. For the input of Chinese characters,
numerous input methods such as changjei have been designed for users to input
Chinese characters with the standard input device i.e. the keyboard. However
these keystroice based input methods are too complicated for the average
computer users to master. As a result, new input devices are invented to make the
input of Chinese characters more convenient and natural. The most successful
product is the pen-based input device, which allows users to input characters as if
they are writing on a paper. Unfortunately, this on-line means of input method
cannot cope with all the Chinese text input problems. For instance, it is time
consuming to “write” pages of Chinese text into the computer using pen—bz;sed
devices. Therefore, an off-line means to enter bulks of text from printed material
or handwritten text is required. This approach works by scanning the text into the
_compuier as an image and the image is analyzed to extract the characters. There
are many potential applications with this input approach. For example, it can be

applied in a post office to automatically recognizé addresses on the mail




envelopes and sort mails accordingly. Another important application is to

automatically extract the information, which is manually filled in, from paper

forms.

1.2 Difficulties of offline Chinese character recognition

Both of the above mentioned input strategies requiré sophisticated pattern
recolgnition technology. Offline handwritten Chinese character fecognition 1S one
of the most challenging fields in pattern recognition because of the visual
complexity and the large number of characters in the alphabet. (over 50,000, from
which about 5,000 are commonly used). The problem is generally easier for
on-line recognition than the off-line counterpart because stroke sequence is
available and timing information of each stroke is provided. Without the timiﬁg
information, spatially overlapping characters may cause segmentation problems.
In addition, on-line recognition constrains users to write inside a predefined area |
which automatically acts as the boundary box of a character, whereas in the case
of off-line recognition, this boundary information needs to be extracted by the
recognizer, The extraction process is easier for printed character text because the
characters have approximately the same size and the separation between
characters is well defined. Handwritten characters, on the other hand, may have
different size and style; the boundary between characters is not that obvious. In
addition, Chinese characters can be components to other characters. Thus finding

boundaries of characters are non-trivial.

1.3 Language model

Due to the above-mentioned difficulties, it is almost imbossible to obtain high




recognition accuracy by analyzing the individual character bitmap alone. The
contemporary offline Chinese character recognition systems have accuracy around
75% [1][2][3]. This level of accuracy is still not good enough for real world
applications such as mail address sorting and form processing. To increase the
recognition rate, the nearby context can be utilized to correct any mis-recognized
characters. In fact, the same strategy is often applied by human beings when
reading a blurred text or listening to a piece of speech in a noisy environment.

The contextual information is described by a language model, which is either
incorporated into the recognizer or used as a standalone post-processing module.
The application of language model is not limited to offline handwritten character
recognition; many other domains such as speech recognition, machine translation

and spelling correction can be benefited by incorporating a language model.

1.4 Objective

The aim of this research is to improve the performance, in term of accuracy, of

language modeling for (offline) Chinese character recognition.

1.5 Scope of study

Figure 1.1 shows the architecture of a character recognition system. Our works
will focus on the post-processing part of the system. We tried two approaches to
improve the post-processing of a character recognition system. The first one is to
use an alternative non-contiguous language model to replace the traditional model
(bigram model) and the second one is to add an additional error detection module

to detect the error from the output of the traditional language model
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Figure 1.1  The architecture of the proposed system

1.6 Outline of the thesis

The thesis is organized into seven chapters. We give a brief introduction to
Chinese character recognition in Chapter 1. This is followed by a literature review
of language modeling in Chapter 2. We studied different approaches for language
modeling and contrast their strengths and weaknesses. We claim that the
knowledge of error characteristic of a character recognizer can help us design a
better language model. Therefore, in Chapter 3, we run experiments to determine
and analyze the error occurrence characteristics of a Chinese character recognizer.
In Chapter 4, we determine the context window size for Chinese language. Based
on the results in chapters 3 and 4, we proposed a non-contiguous context
dependent language model in Chapter 5. We run experiments based on the
proposed model, but the obtained performance is comparable to our baseline
bigram model only. In Chapter 6, we develop a method to detect language model

errors and in Chapter 7, we give a conclusion of this thesis and suggest some

future works.




Chapter 2

Literature Review

The language models that utilize contextual information to improve the accuracy
of character recognizers can mainly be classified either as dictionary based,

statistical-based or hybrid approach.

2.1 The dictionary approach

This approach uses a dictionary to correct the mistakes made by the recognizer.
The sequence of characters O recognized are compared with entries in the
dictionary and the entry E, which is most similar to O, is selected as the intended
word. The distance (i.e. a measure of dissimilarity) between (@ and an entry E is
the number of edit operations to transform O to E, and this distance can be
computed by dynamic programming [4].

Dictionary based approach has the advantage that existing linguistic knowledge
can be incorporated into the system with small parameter space and low
computational cost. Also, some of the unrecognized characters can be recovered
by contextual approximate word matching.

The major problem faced by the dictionary approach is unknown words. It is not
possible to obtain a complete Chinese dictionary because, (1) domain dependency,
some strings may be words in some domain while not in others, (2) proper names,
there are countless names for people, countries, mountains etc, (3) authors have

the flexibility to create new words by some combination of characters or words
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(compounds and acronyms).

Another problem is the abundance of single-character word in Chinese. About
30% of Chinese words consist of only one character. This makes the use of
approximate string matching ineffective. Dictionary approach also faces the word
segmentation problem which will be described in section 2.3.1.

Pak-Kwong Wong and Chorkin Chan [5] used'dictionary approach as the baseline
language. model to improve an off-line hand-wﬁtten Chinese character recognizer
[l]..Basically, it employs the maximum matching algorithm to match words with
the entries in the dictionary. An improvement of 6.8% in recognition rate is

achieved.

2.2 The statistical approach |

This approach is based on statistics gathered from a training corpus. The statistics
may include the individual character occurrence frequencies, the character
co-occurrence frequencies, the ciepcndency probabilities etc. The language model
uses these statistics to select the most plausible candidate sequence among those
proposed by the.recognizer.

The most widely used statistical language model is the »-gram model. It works
under the Markovian assumption that the occurrence probability of a symbol is
only strongly dependent on its previous n-1 symbols. In this model, each character
isolated by the recognizer produces several candidates at a particular position.

Let I =1y, iy, ..., i, represents the character images of a sentence with » characters
* where iy 1s the first character and i, is- the last character in the sentence. Fach
character image is recognized as m candidate characters. For instance, the first

character image i, has a set of candidates cy;, ¢, ..., ¢/, A sentence hypothesis §




= ¢y, €3 ..., ¢y is formed by selecting one candidate at each position. As a result,
there are m" sentence hypotheses. The task of the language model is to determine
a sentence hypothesis Sy, that has the maximum likelihood among all sentence

hypotheses.
S, = argmax P(S | 1)
5

The probability that i; will be recognized as ¢; is

P(c; i)
and the probability that the character at position j is ¢; provided that its preceding
sequence of character is ¢;,¢3, ...c;.; is given by

P(c;lec; € 5-€)

The probability that a sentence hypothesis .S will be obtained given an image / is

then the multiplation of the above conditional probabilities from c;tocp. e

P(S1I)=P(c, [})}- P(c, | ¢))P(c, |iz)'P(Cs.Iczc|)P(Cs |i;) Pe, |C,,—lc - 6)P(c, |1,)

or,

PSID =T TP, ;46,5 c)] T P ie)
k=1

Jel

It is infeasible to directly estimate and store the contextual probability for an
arbitrary n. Many researches restrict the character sequence to two or three. The
resulting model is a bigram and trigram language model respectively. For a

trigram model, the representation can be simplified as,

PESID =T P, eae, )] 1 Ples 1)

k=l

For Indo-European languages, thc‘word-bigram language model is used in speech
recognition [6] and handwriting recognition [7]). Various ways to improve
language models were reported. First, the model has been extended with longer

dependencies (e.g. trigram) [8] and using non-contiguous dependencies, like

7



trigger pairs [9] or long distance n-gram language models [10]. For better
probability estimation, the model was extended to work with (hidden) word
classes [10][11]. A more error-driven approach is the use of hybrid language

models, in which some detection mechanism (e.g. perplexity measures [12] or
topic detection [13]) selects or combines with a more appropriate language model.

For Asian languages (e.g. Chinese, Japanese and Korean) represented by
ideographic characters, language models are widely used in computer entry
because these Asian languages have a large set of characters (in thousands) that
the conventional keyboard is not designed for. Apart from using speech and
handwriting recognition for computer entry, language models for Asian languages
can be used for sentence-based keyboard input [14], as well as detecting improper
writing (e.g. dialect-specific words or expressions).

Unlike Indo-European languages, words in these Asian languages are not
delimited by space and conventional approximate string matching techniques

[4]1[15] in handwriting recognition are seldom used in Asian language models..
Instead, a widely used and reported Asian language model is the character-bigram

language model [16][17] because it (1) achieves high recognition accuracy

(around 90-96%) (2) is easy to estimate model parameters (3) can be processed

quickly and (4) is relatively easy to implement.

Improvement of these language models for Indo-European languages can be

applied to Asian languages but words need to be identified. For Asian languages,

the model was integrated with syntactic rules [18]. Class based language model

[19] was also examined but the classes are based on semantically related words. A

new approach [20] is reported using segments expressed by prefix and suffix trees

‘but the comparison is based on perplexity measures, which may not correlate well

with recognition improvement [21].




2.3 The hybrid approach

The advantage of the dictionary approach is the recent development in
approximate string matching that allows correction of mis-identifications and
segmentation erroré, and the adaptation of edit operations and distances to a
particular recognizer for better performance. Furthermore, the dictionary approach
incorporates the language aspect. For words that exist in the dictionary, correction
can be made with high confidence. On the other hand, the n-gram approach can
select the appropriate single-character words (which are difficult for the dictionary
approach) and detect new words that do not exist in the dictionary based on
finding the most likely sequence of characters. This provides a gloi)al
optimization criterion which the dictionary approach lacks.

Since the two approaches complement each other, a hybrid approach combining
both the dictionary and n-gram approaches is promising. The idea is to use word
instead of character as the basic unit to build an #-gram model and we call this a

word-based n-gram approach.

2.3.1 Word segmentation

The hybrid approach is not without its deficiency. In particular, to use words as
the basic units introduce the word segmentation problem. Unlike English and
other Western languages, which has explicit word boundary, there exists
ambiguities to convert a sequence of character candidates to a sequence of words.
In general, there are two types of ambiguities; grouping ambiguities and
 overlapping ambiguities.

The former occurs when there are two or more different segmentations of a phrase




that are all meaningful but some words identified by one segmentation enclose the
other word in a different segmentation, for example the sentence A I1%
can be segmented as

FEA IO or ¥ | A O,
where Z#E A in the first segmentation enclose F#E and A_ in the second
segmentation. | |
The latter occurs when there exits two or more different segmentations of a phrase
that are all meaningful but some words identified by different segmentations
overlap. For example, the above sentence can be segmented as

FE | AO | % or BHEA | O%.
In this case, the consequence is more serious as wrong segmentation will produce
a different meaning.
Word segmentation has long been a research topic in the area of Chinese language
processing. Many recent papers [5][20][22][23][24] addressed the issue and
proposed some solutions. All of the solutions were to incorporate some statistical

information to correct the mis-segmented sequence generated by the dictionary

alone.

232 Word class

Another problem of the hybrid approach is that, the number of parameters is too
large. There are over 80,000 words in a typical Chinese lexicon. The parameters
for the model are the conditional probabilities between words. The number of
probabilities is astronomical even for a bigram or trigram model. Therefore, most
word-based #-gram model will group the words into classes first using their
syntactic or semantic information. There are a great many grouping strategies. A

common method is to group the words according to their part of speech [19][2].

10



Another approach is to use both semantic information and statistical data [5][19]
as the basts for grouping. Currently, a word-class based bigram or trigram model

can boost the recognition rate by about 10%.

2.4 Summary

The table in Table 2.1 shows the summarized recognition rates of current Chinese
character recognition system and the improvement that a particular language
model can make to the recognition rate. The figure is only an approximation,

which may be varied if the testing conditions have changed.

o

' Handwnuen character

Without language model

Dictiqnary model

Character-based bigram

Word-based bigram POS

Word-based trigram POS

Table 2.1 A table summarizing the recognition rate of recognizer and the improvement that

language model can achieve




Chapter 3

Error Characteristics

In this section, we attempt to observe and analyze the error occurrence
characteristics of a Chinese character recognizer. We believe that, with the
knowledge of error pattern, we can develop a better language model. The
recognizer we used can only support printed character recognition. If handwritten
characters are presented to the recognizer, the resuiting text will contain too many
errors to be analyzed meaningfully. For that reason, we only analyze the error

characteristics of printed character recognition.

3.1 The experiment

The first step is to compile a Chinese text for the experiment. Ten news articles

are- randomly selected from a local online newspaper. From each of these articles,

we randomly extract one paragraph to constitute the text. The Chinese text is then

printed with seven different fonts. Some of these fénts are supported by the

recognizer while some are not. To simulate the effect of handwritten characters,

we have included xingshu font type, which is a cursive Chinese font. Next, the

printed text is scanned into images and presented to the recognizer. Finally, the |
string distance between the recogniied text and the original text is computed using

dynamic programming [25] to determine any errors occurred. The following

shows an example of the algorithm.




H# B B B 7T E X E
0J1 2 3 4 5 6 7 8
#1001 2 3 4 5 6 7
# | 2 1\2 3 4 5 6 7 8
132 3\2 3 4 5 6 7
4|3 4 3\2\3 4 5 6
754 5 4 3 2—-3\4 5
B|6|5 6 5 4 3 4 '5_6
B|7]6 7 6 5 4 5 6\2
- 187 8 7 6 5 6 7

Figure 3.1  An example of computing string distance using dynamic programming,.

Figure 3.1 is a matrix of costs computed by the algorithm. The first column shows
the original string x while the first row shows the recognized string y. The distance
between x and y is defined in terms of elementary edit operations (see below)
which are required in order to transform x into y. Different edit operations are
used to .handIe the errors detected in the string recognition process.. There are
three different types of edit operations:

1. Substitution of a symbol in x by a symbol in y. This is represented by a
diagonal step-in the matrix. A special case of this is the substitution of a
symbol by itself, which corresponds to a correctly recognized symbol.

2. Insertion of a symbol in y. This is represented by a horizontal transition in the
matrix.

3. Deletion of a symbol in x. This is represented by a vertical transition in the
matrix.

We assigned a cost of 1 for a substitution, insertion or deletion operation and 0 for

a correct. Then the distance between x and y is obtained by summing up the costs

of all the elementary operations of the sequence with minimum total costs among

all sequences which transform x into y. This is represented by the path of line

segments shown in Figure 3.1.




3.1.1 Edit operation and error

We randomly examine some sample outputs from dynamic programming. We
observed that the edit operations ide_ntiﬁed to transform the original string to the
recognized string correspond well with the errors that occur in the recognized
string. That is, a substitution, deletion or insertion operation identified indicates

that there is respectively a substitution, deletion or insertion error in the

recognized string.

Original string

Edit operation — % % % ' - % L ég %

— T T
Recognized string | H | g5 |- FE ,;gg QST ) N IR OO S

Original string At i, T .

Edit operation

Recognized string

Figure 3.2  Sample results fromu dyn;mic- programming

Figure 3.2 shows two sample results from dynamic programming. Arrows with a
character S, I and D indicate respectively that a substitution, insertion and deletion
is needed to transform the original string to the recognized string. We observed
that all substitution and deletion errors can be identified correctly. Although the
insertion error identified may be wrong in position, the error is still within the
contiguous error block.

- As we can interpret the edit operations as errors, we can analyze the error

characteristics or patterns of a recognizer.
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3.2 Result and observation

3.21

The number of correctly recognized symbols (characters or punctuation marks)

and the number of errors with their corresponding types (insertion, substitution

The aggregate statistics

and deletion) determined for the seven fonts are tabulated in Table 3.1:

Hei 2 Kai f Li &4 Ming BH Song & |Weibei BB | Xingshu 17
Correct 1075 1403 965 1400 1132 776 17
Insertion 1 0 4 0 5 12 169
Substitution 422 95 533 97 366 722 781
Deletion 1 0 0 1 0 0 0
Accuracy (%) 11.76 93.66 64.25 93.46 75.32 5139 43.01
Table 3.1 A table summarizing the recognition results for different fonts

The total number of symbols (including characters and punctuation marks) in the
experiment text is 1498 and the accuracy percentages are calculated by dividing
the number of correct symbols over this number times one hundred. The results.
reflect that most of the recognition errors are substitution errors. Deletion errors
seldom occur in printed character recognition. By examining the accuracy

percentages and the occurrence of insertion errors, we can group the fonts into

three categories as follow:

Accuracy Insertion errors Fonts

Accurate (> 90%) None Kai and Ming
Medium (between 60% & 90%) Few (< 10) Hei, Li and Song
Inaccurate (< 60%) Mare (>10) Weibei and Xing

Table 3.2

Fonts classified into three categories according to recognition rate

15



3.2.2 The distribution of errors

The error pattern whether the errors occurred in burst or randomly is determined
by compiling the occurrence frequency over a statistics on the burst error length.
The sequences of edit operations, i.e. errors, are investigated to obtain the

statistics of burst error length. The result is tabulated below:

Burst Hei B Kai B L & Ming B Song K Weilbei e | Xingshu 1T
length
0 1075 1403 865 1400 1132 776 717
1 280 94 281 95 266 296 233
2 75 1 125 3 69 150 156
2 20 o 35 0 14 68 110
4 7 0 9 0 4 32 56
5 5 0 6 0 o) 18 K}
6 0 0 3 0 0 10 14
7 0 0 3 0 0 1 3
8 0 0 1 0 0 0 5
9 0 0 o] 0 0 0 6
10 o 0 0 0 0 0 4
" 0 0 0 0 0 g 2
Table 3.3 A table showing the occurrence frequency of different burst error length in various

fonts

The frequency versus burst length curve is plotted for each font type and is shown

in Figure 3.3.
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] —e—heij —— Kkai
09 & N .
08 \ —a—i —¢— ming
07 \ —»—song —e—weibei
g 0.6 .
§ 05 ——xing
[+]
5 04
03
0.2
0.1
0 el 4 } 4
0 1 2 3 4 5 6 7 8 9 10 11
Eror run (k)

Figure 3.3 The histogram of burst error length.

The shape of the curves resemble that of an exponential curve, to make it more

clear, we plot the curves again with the y-axis in log scale as in Figure 3.4.

1 . R
2 3 4 5 [ 7 8 9 10 11
—&—hei - —W—kai
0.1 —r— i ¥ ming
= —#—szgong -—@—weibei
£ —+—2xing
| o
Fel
o
Q,
0.001
[ Y
0.0001

Error run {k}
Figure 3.4  The statistics of burst error in log scale

The curves are approximate straight lines except for some variations in high value
of k. The fluctuations are due to inadequate occurrence counts at these points
(refer to Table 3.3). We need to set a threshold to cut the low occurrence cases.
This value is arbitrary and from Table 3.3, the occurrence count for burst length
longer than six drops to a low value, we decided that a threshold of six is

appropriate. Figure 3.5 shows the curves after eliminating low occurrence cases.

17



0.1

0.01

probability (log scale)

0.001
Error run (k)

Figure 3.5  The burst error curves after cutting low occurrence cases

3.3 The error model

If we consider the errors occur like a sequence of binomial trials in which the
probability of an error is B and a correct is o, where B = 1 — a. The recognizer can
then be \-riewed as a process that generate a character, either correct or wrong, at a
time. To model the burst errors, we let the state of the process at trial k£ be the

number of uninterrupted errors that have been generated at this point (the error
run). Figure 3.6 and Figure 3.7 shows the state transition diagra.fn and the

transition probability of the Markov chain respectively.

Figure 3.6  The state transition diagram




Figure 3.7  The transition probability matrix

The state 0 can be reached in one transition from any state while the state k+1 can
only be reached from state k in one transition. It can be proved that the probability

of the model being at a state k is P(Sy) = aB*.

3.4 Test the fithess of the error model

In this section, we tested the fitness of the observed state occupancy distribution
obtained in section 3.2.2 with our proposed error model in section 3.3. We used
the mean of the observed distribution to determine the expected line and applied
chi-square test (with 0.01 significant level) to verify the goodness of fit. Since
there is only one parameter o (f = 1-a), we can use the mean only to completely
specify the distribution.

Let m be the mean of the observed distribution and 7 be the number of state, then
m=3 n(l-pB)p"
n=0

It can be proved that when n tends to infinity,

m

Tl4m

The results are tabulated in Table 3.4.




Font type m B 7 ' v *ss
Hei & (.35431 0.73838 0.82628143 4 13.3 Accepted
Kai # 0.06275 0.94095 1.42485 1 6.63 Accepted
Li &% 047059 0.68 12.218 5 15.1 Accepted
Ming BH 0.06342 ©0.94036 1.49182 1 6.63 Accepted
Song ® 0.3(1)34- 0.76903 1.17805 3 11.3 Accepted
Weibei Bi5 0.79793 0.5562 10.544 6 16.8 Accepted
Xing {7 1.00075 049981 54.1444 6 16.8 Rejected

Table 3.4  Chi-square test results (v is the degree of freedom)

Figure 3.8 shows the graph of the curve fitting result for Hei type font. From the
figure, it can be observed that the expected line fit very well with the observed
distribution. From .the result, it can be concluded that the recognition errors for
printed character text can be modeled using a Markov chain with state occupancy

probability at a state & equal to ap*.

et
=

probability (log scale)

ool —&— observed distribution \
—i— expected line

0.001

Error run (k)

Figure 3.8  Curve fitting using distribution mean for Hei type font

3.5 Summary

From the experiment, we observed that for texts with medium and inaccurate

recognized results (76% or below), significant amount of errors occur in burst.
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Therefore, it is not justify using only the nearby context to correct recognition
errors because the characters within this context may itself be incorrectly
recognized. In view of this, we claim that the traditional language model
approaches, dictionary and n-gram, which utilized only the nearby contextual
information, will not be effective for these cases.

We propose to use a non-contiguous and context-dependent language model to
solve the problem. To be non-contiguous means that the associations may not
necessarily be formed by adjacent characters and the language model considers
the characters in the context as independent units. This avoids the propagation of

errors, which result in incorrect prediction.

21



Chapter 4

Context Window Size

The language model we proposed is context-dependent. An important parameter
for this model is the context window size, which is measured by the number of
linguistic units (characters in our case) that the context includes before and after

the interested unit. For example, the following concordance,

HIE|H|T|X|2|E | T|eHH|2

has 5 characters before and 5 characters after the interested character £2. The size
of the context is usuaily defined either a prior or derivéd after a fewl
experimentation. If the size is too small, irhportant information would be missed
and the performance of the task at hand would suffer. On the other hand, if the
size is too large, unnecessary computational costs would be incurred and
unwanted information (which may be regarded as noise) might interfere and

degrade performance. Therefore, a tradeoff exists between performance and

context size.

4.1 Previous work

Lucassen and Mercer [26] discovered a method to determine the size of the
context for English pronunciation. The main idea is to measure the degree of
association between the interested character (phoneme in this case) and the

following or preceding character (English character or orthographic symbol) at a
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fixed relative distance. As the distance increases, the degree of association
decreases (Figure 4.1). Up to some distance, the degree of association would be
too small or decreasing too slowly to justify the size of the context.

The measure of association used in [26] is the mutual information:

MI(X,Y)= ,y)log, 2% 2)_
@0 xezx;p(x »ioe p(x)p(y)

which is the mean of the information content of the two random variables X" and Y.
The measure is symmetric so that MI(X Y} = MI(YX). Lucassen and Mercer
extended .the mutual information to variables X and Y separated by a fixed
distance d so that: |

MI(X,Y,d)= y,d)log, 25:2:4)
T D= 2 2 Dl )

where p(x,),d} is the probability that x occurs before y at a fixed distance 4.

15

2 [\
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. i .
F——O"‘-/

“+ 3 2 -t 0 t 2 3
distance from the intersested character.
{Positive means right context, negative means left context)

Mutual Information

Figure 4.1  Mutual information measured for determining the context window size for English

spelling to phoneme conversion (after Lucassen and Mercer [26]).

In computational linguistics, measurements of the degree of association are used
to find collocations [27] and word compounds [28]. Instead of mutual information,
Church [29] proposed an association score, which is very similar to mutual

‘information. The association score A(x, y) tests whether the joint occurrence of x

23



and y is much larger than if x and y occurred by chance. The comparison of joint
and by chance occurrence is expressed as a ratio, which is made symmetric over
the origin, when the joint occurrence is the same as the by-chance occurrence, by
taking the logarithm of the ratio.

Tﬁe association score differs from mutual information in two noticeable ways.
First, the association score A(x, y) effectively measures the information content

between two values instead of taking the average of the information content

between two random variables. Second, A(x, y} is asymmetric, i.e. A(x, y} # A(y, x).

This suggested that the association score has a direction component.

Since the association score is a widely used measure in computational linguistic
and natural language processing, it is not known whether context window sizes
should be determined by mutual information or association score or other
measures. Here, we address this problem by developing the basic model to
determine the context window size. Based on the model, we show that the
association score is the preferred measure and we demonstrated how to obtain the

context window size in practice.

4.2 Association score approach

A context window, wfl-L..I+R], is a substring of a text w{], where [ is the unit (eg.
A character) of interest and L and R are its left and right context. The size of the
context window is the number of units in the window, which is L+R+1. Figure 4.2
shows an example of a context window of size // (i.e. L+R+1 = 5+5+). Within
the context window, some units (characters) in the context have high association
scores with the interested unit (i.e. /). These are useful to many applications as the

presence of those units could predict the presence (co-occurring) of the interested

24
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unit (i.e. /). Therefore, the context window size should be large enough to include
all the significant associations’ scores.

Prediction or association

/NN

Figure 4.2  An example of a context window of size 11. The window should contain most of the

prediction or association so that the application could use the information in the

context to make appropriate predictions.

421 Prediction versus association

In many applications, it is the prediction ability rather than the degree of
association that is important. The conditional probability p(x|y, d) can be used as a
statistical prediction measure because it expresses the likelihood that x occurs
given that y is present at relative distance d. Similar to the association score, the
prediction of x by y can be compared with the case if y has no prediction ability
(i.e. where x and y occur independently). Thus, a measure of the prediction ability
is

pxly.d)
p(x)

To make the ratio symmetric over the origin, we define the prediction score as:

P(x|y,d) = log, 2X12:4)
p(x)

It turns out that the prediction score is equals to the association score:
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A s ,d =l 2 p(x’ y’ d)
oy d)=lot  p ()

p(x,y,d)
? p(x)p(y.d)

= log, 22124 _ py | a)
p(x)

if the probability that y occurs is the same for all the different relative distance d.
We regard prediction and association as synonymous unless it is not clear in the

context.
Obviously, the prediction score is asymmetric similar to the association score but

both scores are symmetric over the relative distance d (i.e. P(x,y,d) = P(y,x,-d)).

For example,
p(&, &, d)
P(E)p(E)

P(i‘%, é:_d)
* p(B) p(HE)
= POV | &.~d)

P(E |3, d) = log,

=log

Therefore, the prediction score can be computed for only one of the two contexts.

422 Mutual Information versus Association Score

Mutual information simply takes the average of the association scores over the
different units that can occur in the context. This may result in discarding many
significant associations. For instance, if the association score is syﬁunetricélly
distributed with 2 mutual information value of zero (i.e. on average the association
are spurious), then half of the signiﬁcrant association scores (i.e. larger than 0)
would be discarded. Thus, mutual information is not an appropriate measure to
decide the context window size because the mutual information value would drop

steeper than desired. Figure 4.3 shows the mutual information at various distance
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d for a Chinese corpus [30). The mutual information values do not decrease

significantly when d > 6.

4 i
5 3.5 \ :
g 3 ,
8 2s :
m 1
E 2¢- A W - R i R
£ . |
= g :
é 1 S |
E 05 \__.________ i [

0 i ; :

0 1 2 3 4 5 6 7 8 9 10
d (no. of characters' separation)

Figure 43  Mutual information over different distance values.

The alternative to mutual information is to use the association score 4(x,y). Unlike
mutual information in which the degree of association is already summarized to a
numerical value for each distance d, there is a set of association scores {A(x,y,d)}
for every distance d and these association scéres must be summarized to a
numerical value to represent the amount of significant associations at distance d.
Since the context window size includes all the significant associations, the
méximum association score (i.e. an extremum) value for a particular distance d
can be considered as a representative (or upper bound) of the set of associations,
i.e.:

max {A(x, y,d)}

xeX,yet
Figure 4.4 shows the maximum association score for different values of d. The
maximum association score is much larger than mutual information and it is
unclear whether the maximum association score would decrease any further for

larger values of d.
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Figure 4.4 Variation of the maximum association score with distance d.

Unfortunately, the maximum association score usually does not vary smoothly
with the distance d because any individual spurious but strong association would
distort the curve. To visualize whether there are spurious but strong associations,
the distribution of the ranked association scores is plotted as in Figure 4.5. The
largest association score has the top rank (i.e. 1) and second largest has the second
etc. According to Figure 4.5, great changes of the associaﬁon score values and the
ranks occur in the top 25 ranked association scores. For the rest of the ranks, the
association score values decrease gradually. Instead of using the maximum
association score (i.€. the top rank), we use the N% quartile such that the spurious

but strong associations in the top ranks are neglected.
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Figure 4.5  The distribution of the ranked association score values.

Figure 4.6 shows the variation of the association score at the top 99.99% quartile.
As expected, the assqciation score varies more smoothly with the distance d. In
acidition, the position (i.e. 9) where the amount of association score decreases
insignificantly occurred further than that (i.e. 6) for the mutual information

measure (Figure 4.3).

Association score for the 99,99%
Quartila
o

9 R
g8 \______‘\- P
6 - : P
5 N i H R N . i

0 1 2 3 4 5 [ 7 8 9 10

d (no. of characters' separaticn)

Figure 4.6  Variation of the association score at the 99.99% quartile with the distance d.

423 Spurious associations

It is well known that spurious strong associations occur when f{x,y.d) is low,
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where f{x,3,d) is the frequency of x co-occurring with y at a distance 4. Previous
work has used a threshold of 5 [29] or 8 [28] to limit the amount of spurious
associations. To examine the effect of this threshold, we have plotted the
association score values for the 99.99% quartile at various distances 4 in Figure
4.7. Clearly, as the threshold is lowered, the association scores at large distance
(i.e. between S and 10) increases. For threshold values larger than 1, the position
where the decrease in association score values are more or less the same (at

approximately 9). This confirms setting the threshold value to 5 or 10 are

acceptable.
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Figure 4.7  Effect of varying the threshold to limit spurious associations on the association

scores at the 99.99% quartile.

4.2.4 Text-type dependence

The results in the previous figures were obtained using the PH corpus [30], which
1s a collection of newswire stories published by Xinhua news agency. However, it
is not known whether the variation of the association score with the distance d is
similar for text written in different geographical regions, since there are regional

variations in writing, influenced by the local language communities.
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Figure 4.8  Association score variation with distance d for three different text collections from

Hua Xia Wen Zhai, Ming pao and Xinhua news agency.

Figure 4.8 shows the variation 6f the association score at the 99.99% quartile for
text in Ming Pao (a Hong Kong newspaper), Xinhua news agency (an official
newspaper) and Hua Xia Wen Zhai. (an on-line magazine). The association score
variations for the three collections of text were very similar. Surprisingly, Ming
Pao text was more similar to text from Xinhua news agency than Hua xia wen
zhai. Above the value of 9, the association scores for all the text collections do not

make much significant drop and we conclude that a context window of 9 is

adequate,

425 Different units

The figures obtained before were character-based (i.e. the interested unit is a
single character and the length of the contexts is also in terms of characters).
However, many applications require a word-based context, where a word is
usually a string. For example, The target in word sense determination is a word.

For word-based context, there is a problem to define the relative distance 4.
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Usually, there is a consensus that counting the distance begins from the interested
character and ends by the word in the context. For example, the counting starts
from the character on the right of the interested word Zr#E and ends at the word
& in the context.
<EFRE>FRHTE &

However, the distance d could be in terms of the number of characters or words.
In this example, d could be 4 characters or 2 words. Here, we examine d in terms
of characters only since (1) the number of words depends on the available word

list and (2) we can compare the result with the character-based context.

12

(Top 10%) Association Score Value

Number of characters between two words

Figure 4.9  The top 10% association score value for the different distances 4 between two words,
measured in terms of the number of characters. When & > 9, there is no long-term

decline of the association score.

Figure 4.9 shows the variation of the association score value at the top 10% rank
for the different distances d between two words, measured in terms of number of
characters. The association scores were measured from the PH corpus, which was
manually segmented. There is a geﬁeral trend of association score decline as the
distance increases. When d > 9, the decline of the association scores stopped. This
context window size agrees with the context window size defined by the

association score using character-based context.
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Figure 4.10 shows the mutual information values for different distances between
two words, measured by the number of characters. Again, there is a general trend
of decline in mutual information value with increasing values of distance.
However, the estimation of the mutual information value becomes less reliable as

distance d is large because there are fewer samples to estimate.

RN I
N/
| VL,
L/'/\\/

Mutual Informaton

0 5 10 15 0 5 0
distance d

Figure 4.10  Mutual information value for different distances between two words, measured in

terms of the number of characters.

4.3 Nonparametric statistic approach

An alternative approach to the association score approach is to use a
nonparametric statistics that summarizes the associations between units at a fixed
relative distance 4. Although mutual information can be considered as a candidate,
it was found to be unsuitable for this task because it summarizes the association
scores by taking the average.

For categorical data, Lambda statistic Lg developed by Goodman and Kruskal [31]
is a suitable nonparametric statistic to measure the associations between two
random variables. The statistic Lg(X]Y) is asymmetric because it measures the

ability of the random variable Y predicting the other random variable X. The
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statistic ranges between 0 and 1 and it can be considered as the percentage of

prediction error reduced when Y is known. To be precise, the association measure

A, which estimates Lg, is:

P(error) - P(error|Y)
Perror)

MX|Y)=
where Pferror) is the prediction error probability for X and P(error|Y) is the
conditional probability of the prediction error for X given Y is known. If AX(Y) is
large, then the prediction error with and without ¥ differs significantly and

therefore Y is associated with X,

The statistic L is obtained by computing:

Z rﬂ?\,x {nx.y }_ ‘ﬁi"{z By }
LB - yef ye¥
Z an,.v - rllf}x{znx,y}

xeX ye¥ ye¥

where 7, is the number of times that x and y co-occurred. For a large sample, L
is normally distributed and its variance can be determined and used as an indicator

of the reliability of reducing errors at the specified amount.
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Figure 4.11  Estimated lambda statistics of the PH corpus and the HXWZ on-line magazine.
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Figure 4.11 shows the lambda statistics estimated from the PH corpus and the
on-line magazine Hua Xia Wen Zhai (HXWZ) for character-based contexts. Since
the statistics is asymmetric over the relative distance d, statistics for both the left
and right contexts are estimated. Negative and positive distances indicate the
interested character is on the left and right respectively, of the candidate character.
The highest statistics value obtained is just under 0.2, which means that knowing
thg character at the specified distance can reduce the error of predicting the
candidate character by (just below) 20%. Notice that characters in the right
context appear lto have slightly higher prediction ability than those in the left

context.
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15
distance
Figure 4.12  The number of samples for different relative distances.

The lambda statistics in Figure 4.11 for both the Pﬁ corpus and HXWZ magazine
are {/ery similar except that the statistics increase when the magnitude of the
relative distance is larger than 10 for the PH corpus and 5 for HXWZ magazine.
We plét the number of samples against the relative distance in Figure 4.12. We
observe from the figure that the number of samples drops as the relative distance

increases. We believe that this account for the abnormal sharp increase at both end
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of the chart in Figure 4.11.

As the distance increases, the number of samples decrez;lses and the validity of the
lambda statistics estimate decreases. A rough estimate of the number of samples
for valid results can be found as follows. There are about 5,000 different
.characters in the text collection. Therefore, there are 25 million different
combinations of prediction of one character by another. Assuming that only 1% of
the character combination would be collected in the sample, theén the number of
samples should be at least 250,000. This implies that valid results are obtainéd
(Figure 4.12) when the magnitude of the relative distances is below 17 for the PH

corpus and 7 for the HXWZ magazine.

4.4 Summary

Context windows are important in a variety of natural language processing and
analysis. If the size is too small, important information would be missed. On the
other hand, if the size is too large, computational cost and interference would be
high. Context window size is determined by observing whether there are any
strong associations between the interested character/word with another
character/word in the nearby context. We argued that mutual information is not a
suitable association measure because of its averaging effect. Instead association
scores, by Church [29], are used. The association score was found to be related to
the prediction ability of the character/word in context over the interested
character/word. Since there are spurious strong associations even after discarding
associations with low support (frequency < 5), the top N% quartile association
score is used as a representative. The result of determining the context window

size by the association score was found to be not significantly dependent on the
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text types. A window size of 9 (for one direction) characters was found to be large
enough for most associations between characters, and between words.

An alternative to the association score is to use the (nonparametric) lambda
statistics, which measures the reduction of error in the prediction of the
characters/words, which are at some fixed distance from the interested
character/word. The lambda statistics aggregate the predictions from individual
character/word prediction, not by averaging. It has a more stable and smooth
change in reducing prediction error than mutual information. For large distances
(i.e. > 10) between the character in context and the interested character, the
number of samples is too small to draw valid conclusions. We measured the
lambda statistics for both the PH corpus and the HXWZ on-line magazine. We
found that the reduction of error became almost insignificant when the window
size is about 4. This is substantially different from the window size determined
using association score (i.e. 9). The reason is that the association score obtains
only one representative instead of aggregating all the significant association score
like Lambda statistics. Thus, the association score is suitable to contextﬁal models
that do not exhaustively use all the association score for analysis or processing,
For example, the discovery of collocations is interested if there exist one or more
significant associations in the context. The discovery is not interested in all the
associations in the context. The lambda statistics is an aggregate of the
associations. Therefore, it is more suitable to contextual models that make use of
all associations. For example, hidden Markov models use all the n-gram
probabilities to define the optimal path. Since all the n-gram probabilities are used
in order to determine the optimal path, the Lambda statistics give a better measure

of the longest history of the n-gram probabilities.
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Chapter 5

Non-Contiguous Model

In this chapter, we implement a character based non-contiguous context dependent
language model. It predicts a character in position P from the characters inside its
context window. As determined in the last chapter, the window size for each
context is 9. Therefore the context window refers to those characters that lie
within 9 characters on the left and 9 character on the right of P. The predictions
are based on data gathered from PH corpus. The associations between two
characters with a number of characters apart are stored. It is non—contiguous
because the associations may not necessarily be formed by adjacent characters.
This contrasts with the traditional dictionary approach and n-gram approach,

which depend on a continuous block of characters to correct errors.

5.1 Why non-contiguous?

In Chapter 3, we obtained the error characteristics of a recognizer. The results
reflected that for accurately recognized texts, errors appear quite randomly; while
for the partial-accurately or inaccurately recognized texts, significant amount of
errors occur in burst or close to each other. The burst errors deeply decrease the
performance of the traditional language models, which use contiguous contextual
information. For instance, the n-gram language model depends on the previous n
characters to predict the current one. However, if the current character is an error,

then there is a significant chance that its previous characters are also erroneous in
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the case of partial-accurately or inaccurately recognized texts. Thus, a wrong

prediction would be made from the wrong context leading to further decrease in

recognition rate.

5.2 The architecture

Cn-L ...... Cn.z Cn.1 le sz cnsans CmR

Generation sub-rode!
@ )

Salection sub-madel =g o

Figure 5.1  The architecture of the proposed mode!

The model works using a sliding window approach (See Figure 5.1). The symbol
C,,n—-L<i<n+R is aset of candidate characters at position i. The aim of the
model is to pick the rnight candidate character from the candidate set C,,.

The model consists of two parts. The first part, namely the generation sub-model,
retrieves all associations between the characters in the candidate set C, and the
characters in the context candidate sets. Each character in<C,, will have a set of
associations supporting it; we denote the set as O;, where j run from 1 to the total
number of characters in the candidate set. All O; are combined to form the
superset (,. The second part, referred to as the selection model, selects the output

character d, from the set O,.

52.1 Generation model

This part of system generates a set of candidate characters for each character
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within the context window C;, where n~L < j<n+R. In actual recognition
system, the candidates are provided by the recognizer. In our case, we do
simulation without using an actual recognizer, thus we need to include candidate
generation in this part.

Let f{C, d) = {X;} be the set of associations with C, which are d characters from C,
in the context. Positive value of d denotes that C is on the right of C, and negative

value of d means that C is on the left of C,.

f(Cn-L, -L)

f(Cn+2, 1)

Cn-L ------ . Cn-2 Cn-1 Cn Cn+1 Cn+2 ------ ‘ Cn+R

f(Cn-2, -2)\—/ '\_/

Figure 5.2  Prediction of the current character by the context

Refer to Figure 5.2, entire set of associations are defined as follows:
O={X|Xef(C,i—nyh—-L<i<n+R},
where 7 is position of the unit of interest and L and R are its left and right

context size.

522 Selection Model

Based on the similarity or distance selection model, we can pick one association
from the extrema function:

x = argmax{similarity(X,C,) | n— L <i<n+R,i # n}
XeO

and the output character d, can be extracted from the association x.

The similarity function could be related to the generation model (e.g. A(x,y)) or .
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has some probabilistic sense (e.g. Naive Baysan model) or has some vector-space
interpretation. However, such simplistic model does not take into account of the
fact that the output character could be predicted by more than one character in the
left and right context. The similarity function must be able to combine the various
predictions by different characters within the same left and right contexts. For a

probabilistic model, Dempster-Shafer theory [32] of combining evidence could be

used.

5.3 Feasibility

A potential problem of the proposed model is the high demand for storage space.
The model makes prediction of an interested character using every character
inside its context window. That means the model needs to store the association for
any two-character combination of every position in the context window. Consider
the Big5 character set C, which has about 13,000 charécters. There would be
13,000 items in the set P={a,blacC,beC}, which contains all the
combinations of any two characters. If the context window size is set at 9, 9
association scores would need to be stored for each item in the set P. Assume that
a computer use 4 bytes to store one floating point number. The total storage
requirement would be 13,000°#9*4 bytes, or about 5.7 gigabytes. Although the
price of a hard disk is very low nowaday (eg. 10 gigabytes disk costs under one
thousand Hong Kong dollars), an application that requires several gigabyte space
is still unreasonable.

Our proposed model seems to be infeasible due to heavy storage requirement. In’
fact, the storage demand is not that high if we consider that not every character

has association with all the characters in C within the defined window size. In
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practice, the storage requirement depends on the size and the number of distinct
characters of the training corpus. Data obtained from the PH corpus [29], which
has over three million characters, occupies about 50 megabytes of storage. Storage
requirement may increase if we use a'larger training corpus to gather the data, But
it c'an be reduced. As stated in Chapter four, for reliable prediction, we can
exclude associations which appear fewer than a threshold count T i.e. count(q, b,
dist) < T. Much storage could be saved if we use a higher value of 7. In this way,
however, we may risk the reduction in coverage of the prediction data. We

performed an experiment to determine an appropriate value of 7.

5.3.1 The threshold count

In determining the value of 7, there is a tradeoff between coverage and storage. In
our model, the candidate, which has the highest association with the context, will
be selected as the correct one. If this association pair exists in a particular context
window, we say that this window is covered. As we increase the threshold 7, more
association pairs will be eliminated and eventually, some context windows will
have their highest association pair removed and thus become uncovered.

In the experiment, the PH corpus was run through with different value of T and
the number of context windows covered was counted. The counting is converted
into fraction and plotted against different threshold values 7 in Figure 5.3. For
each run, the storage requirements were also recorded. The fraction of storage

saved, as compared with the storage requirement when 7=0 is plotted on the same

graph.
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Figure 5.3  The coverage and storage saving versus threshold curve

The curve representing “storage saved” increases sharply as 7 moves from 0 to 4.
That means a dramatic save in storage requirement can be achieved even we use a
small value of 7. We have arbitrarily selected 5 as the threshold value in‘ :
determining the context window size in Chapter 4 and claim that this is an
appropriate value. From Figure 5.3, when T is set at 5, about 85% of storage can

be cut and the coverage remains around 98%.

5.4 Experiment

In this section, we examine the performance of the proposed non-contiguous
model and compare it with the baseline. Throughout the experiment, PH corpus is
used as the training corpus and Ming Pao news mentioned in section 4.2.4 is used
as the testing corpus. Ten candidate characters are randomly generated for each
character in the testing corpus and the language model is applied to select the
most plausible characters from the candidate sets. We use random candidates
because it gives highest entropy, not bias for a particular model and thus serve
better for comparison. The accuracy of the model is measured in terms of the

number of correctly selected characters over the total number of characters in the
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corpus.

541 Baseline model

We use the bigram mode! as the baseline for comparison. We chose bigram model
because it is simple, widely used and gives good performance. Bi-grams statistics
were extracted from the PH corpus. We recorded a correct recognition rate of 78%.-
This result deviated a lot from that reported in the literature (96%). However, the

high accuracy reported in the literature was based on closed tests.

542 Non-contiguous model

In Section 5.2, we have introduced the architecture of the non-contiguous model.

We now go to the implementation detail of the model.

Cowt Cha Coent
Coiz Cn2 Cosn 2
cn-L,m > C"'m - CmR,m
KEY:
L: left context size
Cois Crs Crons R: Right context size
S: candidate set size

Figure 5.4  The non-contiguous model

Suppose the model is going to determine the nth character C, from the candidate
set {Cns ... Cys}. The first step is to generate evidences for each of the S

characters in the candidate set. The evidence is measured in terms of the
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association probabilities with the characters in the context candidate sets. For left
context, the evidence is the probability that a character C,, will occur if a
character C,.;; occurred i characters before it, where 1<i<L and 1< jm<S§.
For right context, the evidence is equal to the probability that a character Cy4y ;
will occur after i characters from C, . Each candidate character will have Sx L
evidences from the left context and Sx R evidences from the right context. As
determined in Chapter 4, the context window size is 9 for each context, ie.
L=R=9and the candidate size S=10. There will be a maximum of
10x9+10x9 =180 evidences for each candidate character. We let E; as a set that
contains all the evidence values for candidate C.

The second step is to combine, all the evidences from E; that support each C,; in
the candidate set. The character with the highest combined probability will be
selected. The main concern in this part is how do we combine the evidences. The
simplest method is to select the highest evidence value from E;. However this
method does not utilize all the evidences and can be affected by spurious high
association. Two methods that utilize all evidences are experimented. One is to
apply Dempster-Shafer (DS) theory, which in its simplest form is just to multiply
all the probabilities. Another method is Confidence Factor (CF) which combine

the probabilities using the formula a,,, = px(1-a,,)+a,, .

54.3 Result and evaluation

The results are tabulated below:

Bigram non-contiguous modetl
Maximum DS theory CF
Accuracy . 78% 52% 73% 74.6%

Table 5.2  Performance of the non-contiguous model
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Table 5.2 shows that the result of our proposed model is not that promising. If we
use the first approach to combine evidences i.e. select the highest evidence, the
accuracy is only 52%. Even the best result, using confident factor to combine
evidences, achieve only 74.6% accuracy, which is still poorer than the baseline.
The poor result may due to the noise introduced from far away context. To reduce
this effect, we introduce a distance factor before combining the evidence. We
multiple a factor of 1/d, where d is the distance between the two characters, to
their association probability. The accuracy improved to about 79% in the
confidence factor case.

The performance of the non-contiguous model is just 1% improved over the
bigram model. However, we can utilize both models and combine their prediction
results if their prediction is not the same. To show whether our non-contiguous
model could complefnent the bigram model, we run the two models in parallel .ar.ld
compare their prediction output. We discover that the two models made the same
decision in most of the time (Around 89 out of 100 cases of time). This result
implies that it is not worth combining the two models as it only gives extra
information only in about 10% of the time.

We run the non-contiguous model (use Confidence factor to combine evidence

with distance factor) for context size of 0 to 9. The results are tabulated in Table

5.3.
Context size 0 1 2 3 4
Accuracy 51% 80.2% 79.6% 79.4% 79.1%
5 6 7 8 9
78.9% 78.9% 78.7% 78.6% 78.6%
Table 5.3  Performance of the non-contiguous model for context size up to 9

We observed that the accuracy of the non-contiguous model in fact decrease as the
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context size increase. This finding disagree with our belief that increase in context
size will provide more information for the model to make a better prediction.

The main reason for the poor performance using large context size may be the
sparseness of training data. The PH corpus we use to gather association statistic is
not large enough. The associations thus obtained may not be statistically valid and
they introduce noise instead of information to the model. We believe that a much
larger training corpus must be used if we want to obtain meaningful and valid far
away associations. Due to limitation in resource, we cannot perform the

experiment at this moment.
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Chapter 6

Error Detection Approach

While attempts to improve the (bigram) language models were (quite) successful,
the high recognition accuracy (about 96% [1]) is still inadequate for professional
data entry services, which typically require an error rate lower than 1 in 1,000. For
quality control, these services often estimate the error rate by sampling. They then
identify and correct the errors manually in order to achieve the required quality.
For a large volume of text, automatic error identiﬁcation is perhaps rﬁore
important than automatic error correction. This is because (1) manual correction is
more reliable than automatic correction, (2) manual error sanipling is simple and
(3) more manual efforts are required in error identification than correction. For
example, if after applying language model, the accuracy of a recognition system is
96%, there remains 4% of error in the output. If the error identification is 97% and
there is no error in manual correction. Then 97% of the errors will be corrected
which improve the accuracy from 96% to 99.9%.

In typical applications, the accuracy of the bigram language model may not be as
high as those reported in the literature because the data may be in a different genre
than that of the training data. For evaluation, we tested a bigram lﬁnguagc model
with text from a novel domain and its accuracy dropped significantly from 96% to
78%, which is similar to English [13]. Improvement in the robustness of the
bigram language model across different genre is necessary and several approaches

are available, based on detecting errors of the ]anguage. model.
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The adéptive approach is to automatically identify the errors and manually
correcting them. The information about the correction of errors is used to improve
the bigram language model. For example, the bigram probabilities of the language
model may be estimated and updated with the corrected data. In this way, future
occurrences of these errors are reduced.

The hybrid approach uses a different language model to correct the identified
errors. This additional language modei could be computatibnally more expensive
than the bigram language model because it would only be used on the identified
errors. Also, topic detection [13] followed by language model selection [12] could
be employed to find an appropriate language model for a specific topic. This is
because topic-dependent words are main source of errors and depending on the
topic, different language model gives different performance.

The integrative approach improves the language model accuracy by using more
sophisticated recognizers, instead of a corﬂpiementary language model. The more
sophisticated recognizer would simply give the correctly recognized character or a
set of different results. The bigram language model could than be re-applied to
this set. This integrates well with the coarse-fine grain recognition architecture
proposed by Nagy [33] back in the 1960s. Coarse grain recognition provides the
candidates for the language model to select. Fine grain recognition, which is
expensive, is carried out only where the language models failed. Finally, it is
possible to combine all the different approaches (i.e. adaptive, hybrid and
integrative).

Although error detection in language models is significant, there is only very little
research work in this area. Perhaps, these errors were considered random and
therefore hard to detect. However, usefs can detect errors quickly. We suspect that

some of these errors are systematic due to the properties of the underlying
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language model or due to the properties of the language.

We adopt a pattern recognition approach to detect errors in the bigram language
model for Chinese. Each output is assigned to either the class of correct output or
the class of errors. The assignment of a class to an output is based on a set of
features. We explore a number of features to detect errors, which are classified
into model-based features and language-specific features.

The proposed approach can work with Indo-European languages at the
word-bigram level. However, language-specific features have to be identified. In
addition, this approach could be adopted by the n-gram language models. In
principal, the model-based features can be found or evaluated similar to the
bigram language model. For example, if the trigram probability (instead of bigram

probability) is low, then the likelihood of a language model error is high.

6.1 Features

We evaluate individual features for error detection. Articles from Yazhou Zhoukan
(YZZK) magazine (4+ Mbytes)/PH corpus (Guo and Liu, 1992) (7+ Mbytes) are
used for evaluation. We use the recall and precision measurements for evaluation.
The recall is the number of errors identified by a particular feature divided by the
total number of errors. The precision is the number of errors identified by a
particular feature divided by the total number of times the feature indicate that
there are errors. In the first subsection, we describe some model-based features.
Next, we describe the language-based features. In the last subsection, we discuss

the combined use of both types of features.
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6.1.1 Model-based features

The bigram language model selects the most likely path Ppma out of a set S. The
probability of a path s in S is simply the product of the conditional probabilities of
one character ¢; after the other c;; where s = co.c1..cys, after making the Markov

assumption. Formally,

P =arg max{p(s)}

se§

=arg max{P(co )H plc e eoecq = S}

38

The set s is generated by the set of candidate characters for each recognition
output. The recognizer may supply the set of candidate characters. Alternatively, a
coarse grain recogniser may simply identify the best-matched group or class ;)f
characters. Then, members of this class are the candidate characters. Formally, we
use a function A(), that maps the recognition position to a set of candidate

characters, i.e. h(i) = {ci;}. We can also define the set of sentences in terms of (),

ie.S={s|s=coci..caVi ci € hfi)}.

6.1.1.1 Features based on zero probabilities (F) 1)

One feature to detect errors is to count the number of conditional probabilities
p(c,-lc,-_;) that are zero, between 2 consecutive positions. Zero conditional
probabilities may be due to insufficient training data or may be because they
represent the language properties. Figure 6.1 shows the likelihood of an error
occurring against occurring against the percentage Z(i) of the conditional
probabilities over two consecutive positions (i.e. i — [ and i) that are zero,

estimated based on the YZZK and PH data. Formally,

card({c, ¢, € h(i-1)x h(i)| p(c;|c, ) =0}) % 100%
card({c,..c; € h(i —1)x h(i)})

il

Z(@)=

where card() is the cardinality of the argument.
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Figure 6.1 The language model output errors against percentages of zero conditional

probabilities between the candidate sets.

6.1.1.2 Features based on low probability (F1 )

When there are insufficient data, the conditional probabilities that are small are
not reliable. If P,.q. have selected some conditional probabilities that are low, then
probably there are no other choices from the candidate sets. Hence, the
insufficient data problem may occur in that particular Pn.. Specifically, these
conditional probabilities p(c; | ¢..;) are along the maximum likelihood path Pp.x
and they are defined as {p(ci|ci.;) | Pmax = p(co) T1 p(ci | ci.i)}.

In Figure 6.2, we plot the likelihood of errors identified against the different
logarithmic conditional probability values (i.e. {log pfcilci.))})- When the recail

increases, unfortunately, the precision drops.
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Figure 6.2  The precision, recall and accuracy (i.e. recall x precision) of detecting language
model errors by examining the logarithm of conditional probabilities, log p(cilc; ),

on the maximum likelihood path P.

6.1.2 Language-specific features

The language-specific features are based on applying the word segmentation
algorithm [34] to the maximum likelihood path. The ROCLING [35] word list

used for segmentation has 78,000+ entries.

6.1.2.1 Features based on word length (Fy,)

If the matched word in the maximum likelihood path is long, then we expect the
likelihood of an error is low because long words are specific. Figure 6.3 shows the
precision of detecting the matched word is correct and the recall of errors in
multi-character words. In general, the longer the matched words, the more likely

that they are correct and the likelihood of missing undetected long words is small.

53



L/
7

70%

precision

€0%

50%
4 5
word length

Figure 6.3  The precision of correct matched words against word lengths.

6.1.2.2 Features based on single-character sequences (Fa3)

In word segmentation, when there are no entries in the dictionary, the input is
segmented into single characters. Thus, Lin ef al [36] noted that single-character
sequences after word segmentation might indicate segmentation broblems. Here, .

we apply the same technique for the detection of errors. If we count on the per
character basis, the recall of error is 80% and the precision in error identiﬁcation
is 35%. If we count multi-character words and a sequence of single-characters as

blocks, then the recall of errors is 79% and the precision in finding one or more

errors in the block is increased to 51%.
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Figure 6.4  The precision and recall of single-character sequences of different lengths.

Similar to matched words in the maximum likelihood path, the error detection
performance of single-character sequences may depend on their length. Therefore,
we plotted the recall and precision of detecting errors against the length of the
single-character sequences. According to Figure 6.4, as the length of the
single-character sequence is large, the likelihood of an error is larger. The recall of
errors is particularly low for single-character sequences that have 2 characters.
The other single-character sequences (i.e. its length is not equals to 2) have almost
100% recall. One possible reason why 2 single-character sequences achieved low

precision is that there are many spurious bigrams and therefore false match.

6.1.3 Combined use of features

We carried out a preliminary study using a single classifier to detect errors using
features mentioned in subsection 1.1 and 1.2. The error detection follows
Algorithm A, which accepts a set of confusion character sets from position 1 to k
“and returns the error array indicating whether the positions between 1 and k have
errors or not. Algorithm A first produces the maximum likelihood path P, using

the language model, represented as the function LM(.). The next step segment
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P, into a sequence W of words, wy. w;...w,, based on fc;rward maximal matching,
FMM(.). For each identified word w;, the classifier decides whether an error is
found or no.t based on the classifier(.) in Step 7. Step 5 resets the default error
array values to false. The classifier(.) function deriv;e feature values for w; since
the position pos in Pn. is known and whether the identified word is a

single-character or not is also known (i.e. whether |w;| = 1).

Input: A¢1), -, h(k)

Output: boclean array errorf/..£]

Step 1:  string Ru « IM(A(I), -, A(k)),;

Step 2: string array #M1l..m] = wi-'wa & FMM(Pas);
Step 3: integer pos « 0;

Step4: for i « 1 tomdo

Step 3: for / « pos+] to pos+lwi! do error[j] « false;
Step 6: pos « pos + lwi/;
Step 7: classifier{pos, w:);

Algorithm A: The error detection scheme using a single classifier.

Algorithm A is the error detection scheme using a single classifier. LM(.) returns
the maximum likelihood path P, given a sequence of confusion character sets,
h(l)...h(k}). FMM(.) returns the segmented word sequence of the argument using
the forward maximal matching algorithm and the segmented word sequence is
stored in the string array W.

Our preliminary study used the Bayesian classifier for Algorithm A, with features
discussed in subsection 2 as input. Algorithm A achieved 83% recall but 35%
precision, which can be achieved using language specific features only (i.e. £,
with 80% recall and 35% precision in error identification). These results are
comparable with existing n-gram detection methods [37] for Japanese optical
character recognition error detection, in which the recall is 85% and the

corresponding precision is about 30%. However, if a morphological analyzer is
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used with the n-gram statistics as in [38], the recall is 97% and the precision is
about 34%.

To further improve our detection performance, we try to combine the use of these
features in a more careful ménner. We divided the error detection into 3 general
cases: (1) single character (feature F;,); (2) single-character sequence of length 2
(feature F5,) and (3) 2 character words (feature F;;). Each case is assigned a
classifier to detect errors and for each case, additional features are considered in
the following _subsections. Single-character sequences longer than 2 are
considered as having errors (Figure 6.4). Words of length longer than 2 are

considered correct (Figure 6.3).

Input: A¢l), -, h(k)

Qutput: boolean array error[/..k]

Step 1: string Bu « IM(A(1), ---,ﬁ(k));

Step 2:  string array #1..m] = wi--wa < FMM(Pu:);

Step 3: integer pos « O;

Step 4: .strin.g T « A; {reset single character sequence}

Step 5: for 1 « 1 to m do begin

Step 6: for / « pos+l to postlwil do error[j) « false;

Step 7: if lwil =1 then T« T & w;

Step &: else begin

Step 9: if IT =1 then classifierl(error, pos, T);
Step 10: ¢lse if ITI = 2 then classifier2(error, pos, T):
Step 11: else if ITI > 2 then

Step 12: for j « pos-ITI+l to pos do error[j] <« true;
Step 13: T « A; {reset single character sequence}

Step 14: if Iwil = 2 then classifier3(error, pos, wi);
Step 15: end; {i1f-else)

Step 16: pos « pos + lwi/;

" Step 17: end;, {for-leop}

Algorithm B: The error detection scheme using multiple classifiers.

Algonithm B shows the basic detection scheme using separate classifiers for the

identified 3 cases discussed above. The variable T stores the single character
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_ seqliences and it is initially set to the emptsz strihg h_at step 4. By defauit“'-'the

error ﬂags are false (Step 6) unless the class1ﬁers 1dent1ﬁed errors. At step 9
class1ﬁer1( ) sets the error ﬂag at pos:tlon pos for smgle characters (1 e |T| = 1) ‘
At step 10 cla531fier2() sets the error ﬂags at. posmon pos and pos - 1 for’

smgle character sequences of length 2 (1 e. lTl 2) and at step 14 classnﬁer3() '

B sets the error flags at posxtron pos - 1 and pos for two, character words (1 e. |w,|—-2).»" e

For srng]e character sequences of length larger than two, thelr correspondmg error'_

- ﬂags are set to true at step 12
6.1. 31 o Sirrgle charactei's
In word segmentatxon a strlng, which does not math w1th any. d1ct10nary entry,'_
‘ ,_results as smgle character Smgle characters ¢ can have dlfferent part-of-speech.';-

tags. - -

. 100%

. 80% |

60% |-

accuracy -

40%

20%

0%

Part of speech

Figure 6.5 Single characters and their corresponding language model output accuracy for

different part-of-speech tags. -
- Figure 6.5 shows that the accuracy of the language model for the single characters
with part-of-speech tags related to exclamations are-low. For error detection; a

feature is assiéned to each part-of-speech tag.
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The language model accuracy for single characters may depend on the availability
of the left and right context to form high probability bigrams. Therefore, we
expect that language model accuracies of single character at the beginning (70%)
and end (70%) of a sentence are lower than those in the middle (85%) of the
sentence. The worst case occurs when the sentence has only one single character,

where the measured accuracy is only 8.75% (this is because it has no bigram

context).

6.1.3.2 Two-single-characters sequences
Figure 6.6 shows that language model output accuracy increases as the bigram
probability of single-character sequences of length 2 increases. Hence, the bigram

probabilities can be used as a feature for detection.

accuracy

Bigram log probability

Figure 6.6  The bigram (logarithm) probability of the single-character sequence of length 2.

Similar to single characters, the language model accuracy for 2-single-characters
sequences at the start, middle and end of a sentence are 48%, 47% and 30%,

respectively. The accuracy is 33% if the sentence is the 2-single-characters

sequence.
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Figure 6.7  Language model accuracy against different number of hidden words (see text).

Another feature for 2-single-character sequences is to examine whether the
characters in the two candidate sets can form words that match with the dictionary.
These matched words are called hidden words. Figure 6.7 shows that if there are
hidden words, the language model accuracy dropped from 60% to 25%. Since

there are not many cases with 6-8 hidden words, the accuracy for these cases are

not reliable.

6.1.3.3 Two-character words

For 2 character words, the bigram probability (Figure 6.8) can be used as a feature
similar to the single-character sequences. The position of these 2 character words
in the sentence does not relate to the language model accuracy. Our measured
accuracies are 91%, 89% and 91% for the beginning, the end and the middle of
the sentence, respectively. Even sentences with a single 2-character word achieved
90% accuracy. Hence, there is no need to assign features for the position of the 2
character words in a sentence. Similar to 2-single-characters sequences, the
language model accuracy (Figure 6.9) decreases as the number of hidden words

increase in the corresponding 2 sets of candidate characters.
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Figure 6.8  The language model accuracy of 2 character words against the bigram probability.
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Figure 6.9  The language model accuracy against different number of hidden words.

6.2 Classifiers

One of the problems with using individual features is that the recall and precision

are not very high, except the language-specific features. It 1s also difficult to set

 the threshold for detection because of the precision-recall trade-off. In addition,

there may be some improvement in detection performance if features are

combined for detection. Therefore, we adopt a pattern recognition approach to
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detect errors.

Several classifiers are used for error identification because we do not know which
features work well with which classifiers. Three types of classifiers will be

examined: Bayesian, decision tree and neural network.

6.2.1 Bayesian classifier

The Bayesian classifier is simple to implement and is compatible with the
model-based features. Given the feature vector x, the Bayesian detection scheme
assigns the correct class w, and the error class w,, using the following rule:

8(X) > ge(X) assign we

Otherwise assign w,

where g.() and g.(,) are:

g.)=—"x-p) T (x- u.)-log| T, | +2log p(w,)
g () =-(—p ) T, (x-pn,)-log|Z, | +21og p(w,)

1 and . are the mean vectors of the class w, and w,, respectively, Z. and Z, are

the covariance matrices of the class w, and w,, respectively, and |.| is the

determinant.

6.2.2 Decision tree

Originally, we tried to use the support vector machine (SVM) [39] but it could not
converge. Instead, we used the deciston tree algorithm C4.5 by Quinlan [40].
Decision trees are known to produce good classification if clusters can be

bounded by some hyper-rectilinear regions. We trained C4.5 with a set of feature

vectors, described in sub section 1.3.

6.2.3 Neural network

We use the multi-layer perceptron (MLP) because it can perform non-linear
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classification. The MLP has 3 layers of nodes: input, hidden and output. Nodes in
the input layer are fully connected with those in the hidden layer. Likewise nodes
in the hidden layer are fully connected to the output layer. For our application, one
input node corresponds to a feature in sub section 1.3. The value of the feature is
the input value of the node. Two output nodes indicate whether the current
character is correct or erroneous. The number of hidden nodes is 2-4, calculated
according to Fujita [41].

The output of each node in the MLP is the weighted sum of its input, which is
transformed by a sigmoid function. Initially, the weights are assigned with small
random numbers, which are adjusted by the gradient descend method with

learning rate 0.05 and momentum 0.1.

6.3 Evaluation

In the evaluation, the training data is the PH corpus and the testing data is lthe
YZZK magazine articles. (4+ Mbytes), downloaded from the Internet. In
handwritten character recognition, the optimal size of the number of candidates is
6 [5]. For robustness, each recognized character in our evaluation is selected fror_n
10 candidates.

Error detection is performed only on language model output that based on
out-of-domain test data. The recognition rate of bigram model for in-domain test
data is already very high, over 95% in our experiment. So, we concentrate only on
out-of-domain test data. Much works have been done on topic detection [42][43),
we may employ the technique to identify the d-omain/topic of the test corpus. We
do error detection only for out-of-domain test data.

We measured the performance in terms of recall, precision and the manual effort
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reduction in scanning the text for errors. The recall is the number of identified
errors over the total number of errors. The precision is the number of identified
errors over the total number of cases classified as errors. The amount of saving in
manual scanning for errors is called the skip ratio, which is the number of blocks
classified as correct over the total number of blocks. The recall and the skip ratio -
are more important than the precision because post error correction {(manual or
automatic) can improve the recognition accuracy. It is possible to combine the
recall and precision into one, using the F measures [44] but the value for rating

the relative importance is subjective.

Cases Distribution Measure Random candidate Visually similar
candidate
Bayes C45 MLP C4.5
Recall 71% 56% 28% 50%
Single character 15%
Precision 40% 75% 71% 74%
Recall 60% 84% 83% 93%
2 single characters 10%
Precision 88% 82% 80% 92%
Recall 60% 27% 9% 85%
2-character words 54%
Precision 29% 70% 62% 92%
Recal) 100%
> 2 single character 16%
Precision 0%
> 2 character words 5% Accuracy' 78%
Recall 79% 73% 75% 80%
Overall Precision 60% 81% 80'% 91%
Skip Ratio 65% 76% 66% 75%

Table 6.1  The performances of the 3 types of classifiers in detecting language model errors.

! Since we predict all word block with length longer than two as all correct, we cannot measure

the recall or precision for error prediction. We measure the accuracy for correct prediction instead.
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Table 6.1 shows the classification performance of the Bayesian classifier. The
recall of errors by the Bayesian classifier has reduced slightly from 83% using a
single classifier to 79% using 3 classifiers but the precision improved from 51%
to 60%. Also, the skip ratio is 65%, which is much higher than the skip ratio of
0.1% if we did not use the classifier. Although the MLP has a higher precision
(80%), its recall is slightly lower than the Bayesian classifier. The skip ratio of the
both Bayesian and MLP classifiers are about the same. The column “Distribution”
represent the relative quantity that each of the five case contributed. Over half of

the block identified are 2 character word block.

6.3.1 . Using visually similar candidate sets

The previous experiments on bigram model are based on randomly generated
candidate set. However, for real character recognizer, candidate character sets are
generated based on similarity measure: a character ¢ bitrnépI inputted to the
recognizer is converted to a feature vector v, the vector is compared to a list of
feature vectors representing characters in the whole character set. Those
characters that have feature vector similar to v will be extracted as candidate
characters for ¢. To ensure our experiment results apply to real world situation, we
find a method to extract candidate characters.

To measure the similarity amongst fhe characters, we render all the characters in
the Big5 character set from a Chinese True type font file and convert them to
bitmaps. We use freetype 2, a free true type font engine from freetype.org [45], to

generate the bitmaps. The bitmaps are 64 pixels by 64 pixels. We match the

bitmaps pixel by pixel and count the number of unmatched pixels. The matching

, where

ratio or similarity between two characters will be calculated as 1~
X
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n is the nﬁmber of unmatched pixels between the two characters. We select ten
characters with the highest matching ratio with the interested character as its
candidates. Table 6.2 shows some of the sample candidate sets. These samples are
randomly picked and we can observe that the candidate characters are visually

similar to the interested character.

Visually similar characters
JL JULILAE R T L — A

T FTTFTFTFTYF
fh PUAIL A BT (0 TR 3K £ 170
ik o 1R R AR AL AR P9 UH 5%

4 BB IR GBS RS G I
B HERRARKEREER
]

m

HiE T2 1 0 A B R EE

Table 6.2  Samples of candidates generated using pixel difference

We run bigram model on the generated visual similar candidates and detect errors
with our error detection approach. The result is tabulated in Table 6.1. The overall
error detection recall and precision is 80% and 91% respectively, which are much
improved over the case when random candidates are used. The improvement is

mainly due to fewer confusing words from the candidate sets for the 2-character

word case,

6.3.2 Detection speed

Besides the ability to detect error, the speed of execution is also an important issue.
We run the on a Sun UltraSPARC 200MHz machine with 256 Megabytes memory.

The speed of error detection is 139.7 characters per second. As a reference, the
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speed of applying the bigram model is 147.1 characters per second. The execution
speed of error detection is comparable to that of bigram model. That means we
need twofold the time if we apply error detection after running the language

model. The extra time is justified as much human effort can be saved to scan for

CITOTS.

6.4 Summary

We have evaluated both model-based and language-specific features for detecting
‘lal_lguage model errors. Individual model-based features did not yield good
detection accuracy as it suffers from the precision-recall trade-off. The
Ianguagc-sﬁeciﬁc features detect errors better. In particular, matched
m_ulti-charactér words are wusually correct. If the model-based and
language-specific features are combined as a single fcaturg vector, the recall and
precision of errors are 83% and 35%, respectively, which are the same as the use
of the language-specific features alone. Therefore, instead of a single classifier,
we separated 3 situations identified by the language-specific features and 3
classifiers were used to detect these errors individually. The Bayesian classifier
(simplest) achieved an overall 79% recall, 60% precision and 65% skip ratio and
the MLP achieved an overall 75% recall, 80% precision and a 66% skip ratio.
Similar recall and precision performances were achieved using decision trees.
Since the skip ratio is higher (i.e. 76%), the decision tree approach is preferred.
Although thé precision (so far) is not high (60% - 80%), it is not the most
important result because (1) this only represents a minor waste of checking effort,
compared with scanning the entire text, and (2) the identified errors will be

checked further or corrected either manually or automatically. In order to simulate
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real world environment, we generate visual similar candidate sets instead of
random candidate. We input them to the bigram model and detect the error from
the output. The result is recall: 80%, precision: 91% and skip ratio: 75% and the

error detection speed is 139.7 character per second on a Sun UltraSPARC

machine.
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Chapter 7

Conclusion and Future Work

We run experiments to obtain the error characteristics of an offline Chinese
character recogniser. We observed that nearly all errors are substitution and occur
randomly for text that can be segmented easily into characters (common for
printed characters). However for text that cannot be easily segmented (common
for handwritten characters), insertion errors are frequent and the errors usually
“occur in burst.

To tackle the problem of burst errors, we proposed a non-co'ntiguous language
model. The model uses both the left and right context information and treats the .
characters in the context as independent units. The performance of the model is
79% in terms of accuracy to extract the right candidate character. The result is
prémising but not a significant improvement over our baseline bigram model.

We claim that bigram model is already a very good language model. It achieves

high accuracy with low storage and computation cost.

We proposed a pattern recognition approach to detect errors in language model

which combine both dictionary and statistical language modelling approach. The

first step is to segment the language model output into blocks of characters. The |
character blocks are classified irifo 5 categories: single character block, two

characters sequence block, double characters word block, character sequence

block with more than two characters, word block with more than two characters.

The second step is to extract some statistically features for the block to form a
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feature vector. For each category of character block, we extract some statistical

features like the bigram probability between the boundary characters with that of

the neighbouring block, the part of speech of the singe character block etc. The

feature vector is feed into a classifier, which makes a prediction of whether the

block is correct, or not. This detection scheme as demonstrated in our experiment

is effective. The performance is 80%, 91% and 75% of precision, recall and skip

ratio respectively.

The major contributions of this research work are summarized below:

1.

We run experiments to discover the error characteristics of an offline Chinese
character recognizer and developed an error model. With the knowledge of the
error pattern, researcher can design a better pro-processing technique or
fine-tune the existing one.

We determine the context window size for Chinese language [P1] . The
context window size is an essential parameter for context dependent language
processing techniques. We developed a non-contiguous language model based
on the context window size determined which achieved accuracy cofnparable
to the bigram model.

We developed a pattern recognition approach to detect language model error
[P2] . This error detection method can help to improve a language model in
different ways:

a. Automatically identify the errors and ask the user to correct them
manually. The information about the correction is used to improve the
language model to reduce future occurrences of these errors.

b. Use another language model to correct the identified errors. The
language model can be computationally more expensive because it is

applied only to the character blocks that have been identified as
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incorrect.
c. Use a more sophisticated recognizer to recognize again the character
blocks that have been identified as incorrect.

We believe that detecting errors of language models is an effective way to

improve language modelling and is worth to devote more research effort. The

error detection approach we proposed gives promising performance but there is
still much room for improvement. Below are some suggested future works:

1. From Table 6.1, the classification performance for the case of siﬁgle character
and double character word block is not very good. One way to improve it is to
discover more useful features for the two cases. The additional features can
provide more information for the classifier to make better decision.

2. Due to the time constraint, we only examined three classifiers in our
experiments. There exist many other good classifiers, which may give better
performance in our application. We suggest doing a comprehensive research
on classifier to pick a best suited one or consider combining the classifiers to

contribute a final prediction.
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Processing of Oriental Languages (IJCPOL) pp. 71-80.

Hmé,K.Y., R.W.P. Luk, D.Yeung, K.Chung, W.Shu (2000) "Detection of
language (model) errors”, Proceedings of the 2000 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora. pp. 87-94.
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