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Abstract

Feature and Model Transformation Techniques for Robust Speaker
Verification

Speaker verification is to verify the identify of a speaker based on his or her own
voice. It has potential ‘applications in securing remote access services such as phone-
banking and mobile-commerce. While today’s speaker verification systems perform
reasonably well under controlled conditions, their performance is often compromised
upder real-world environments. In particular, variations in handset characteristics are
known to be the major cause of performance degradation. This dissertation addresses
the robustness issue of speaker verification systems in three different angles: speaker
modeling, feature transformation, and model transformation.

This dissertation begins with an invest;'gation on the effectiveness of three kernel-
based neural networks for speaker\‘.;lddeling. These networks include probabilistic
decision-based neural networks (PDBNNs), Gaussian mixture models (GMMs), and
elliptical basis function networks (EBFNs). Based on the thresholding mechanism of
PDBNN, the original training algorithm of PDBNNs was modified to make PDBNNS
appropriate for speaker verification. Experimental results show that GMM- and
" PDBNN-based speaker models outperform the EBFN ones in both clean and noisy en-
vironments. It was also found that the modified learning algorithm of PDBNN is able
to find decision thresholds that.reduce the variation in false acceptance rates, whereas

the ad hoc threshold-determination approach used by the EBFNs and GMMs causes



a large variation in the false acceptance rates. This property makes the performance
of PDBNN-based systems more predictable.

The effect of handset variation can be suppressed by transforming clean speech

models to fit the handset-distorted speech. To this end, this dissertation proposes
a model-based transformation technique that combines handset-dependent model
transformation -and reinforced learning. Specifically, the approach transforms the
clean speaker model and clean_ba.ckgfouqd model to fit the distorted speech by us-
ing maximum-likelihood linear regression. (MLLR), which is followed by adapting the
transformed models vi_a PDBNN’s reinforcéd learning. It was found that MLLR is
able to bring the clean Ir;odels to a region close to the distorted speech and that
reinforced learning is a good means of fine-tuning the transformed models to enhance
the distinction between client speakers and impostors.

In addition to model-based agproa.ch;s,- handset variation can also be suppressed
by feature-based approaches. Cur;;nt‘ feature-based approaches typically identify the
handset being used as one of the known handsets in a handset database and use the a
priori knowledge about the identified handset to modify the features. However, it will
bt_a much more practical and cost effective if handset detector-free systems are adopted.
To this end, this dissertation proposes a blind compensation algorithm to handle
the situation in which no a priori knowledge about the handset is available (i.e., a
handset model which is not in the handset database is used). Specifically, a composite
statistical model formed by the fusion of a speaker mode! and a background model

is used to represent the characteristics of enrollment speech. Based on the difference



between the claimant’s speech and the composite model, a stochastic matching type
of approach is proposed to transform the claimant’s speech to a region close to the
enrollment _sbeech. Therefore, the algorithm can now estimate the transformation
online without the necessity of detecting the handset types. Experimental results
based on the 2001 NIST Speaker Recognition evaluation set show that the proposed
approach achieves significant improvement in both equal error rate and-minimum
detection cost as compared to cepstral mean subtraction, Znorm, and short-time

Gaussianization.
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STATEMENTS OF ORIGINALITY

The major contributions of this dissertation are summarised below.

o This dissertation demonstrates that the GMM- and PDBNN- based speaker

models outperform the EBFN ones under both clean and noisy environments.

¢ This dissertation proposes three modifications to the original training algorithm
of PDBNNs, which make PDBNNs more appropriate for speaker verification.
The modified algorithm is able to find decision thresholds that minimize the
variation in false acceptance rate, whereas the ad hoc threshold-determination
approach used by the EBFNs and GMMSs causes a large variation in the false
acceptance error rate. Thisé'j’roperty makes the performance of PDBNN-based

systems more predictable.

s This dissertation proposes a model-based channel compensation algorithm that
combines a handset selector with (1) handset-specific transformations, (2) rein-
forced learning, and (3) stochastic feature transformation to reduce the effect
caused by the acoustic distortion. Results show that the proposed algorithm is
su_perior to a number of classical techniques, including CMS, stochastic feature

transformation, Hnorm, and speaker model sy'nthesis.



o This dissertation proposes a blind feature-based transformation approach to
channel robust speaker verification. The transformation parameters are deter;
mined online without any a priori kndwledge of channel characteristics. Results
show that the proposed transformation approach achieves significant improve-
ment in both equal error rate and minimum detection cost as compared to

cepstral mean subtraction, Znorm, and short-time Gaussianization.
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Chapter 1

INTRODUCTION TO SPEAKER RECOGNITION

Automatic speaker recognition (29,42} is to recognize a speaker from his or her
voice. Speaker recognition can be divided into speaker identification and speaker ver-
ification. Speaker identification is to determine the identity of an unknown speaker
from a group of known speakers. Speaker verification is to verify a speaker’s claimed
identity based on his or her voice. A speaker claiming an identity is called a claimant,
and an unregistered speaker posing as a registered speaker is an imposter. An ideal
speaker verification system should not ag__cept impostors as claimants (false accep-
tances) or reject registered speakers as impbstors (false rejections).

Speaker recognition can also be divided into text-dependent and text-independent.
In text-dependent systems, the same set of keywords is used for enrollment and recog-
nition. In text-independent systems, on the other hand, the phrases or sentences used
in verification could be different from those in enrollment. Text-dependent systems
require user cooperation and typically use hidden Markov models to represent speak-
ers’ speech. Text-dependent systems usually outperform text-independent systems

because precise and reliable alignment between the unknown speech and reference

templates can be made. However, text-independent systems are more appropriate



for forensic and surveillance applications where predefined keywords are not available

and users are usually not cooperative or unaware of the recognition task.

1.1 Components of Speaker Verification Systems

Typically, a speaker verification system is composed of a front-end feature extractor,
é set of client speaker models, a sef of background speaker models, and a decision
unit. Figure 1.1 illustrates the architecture of a typic_al speaker verification system.
The feature extractor derives speaker-specific information from speech signals. It
is well known from the source-filter theory of speech production that speech spectra
implicitly encode the vocal-tract shape information (e.g., length and cross-section
area) of a speaker and that pitch harmonics encode the glottal source information.
Speaker models are trained from the features extracted from clients’ utterances. A set
of backg;-"ound models are also trained usiri’g the speech of a large number of speakers
to represent spéaker-independent sﬁéech. Basically, the background models are used
to normalize the scores of the speaker models in order to minimize non-speaker related
variability such as acoustic noise and channel effect. To verify a claimant, speaker
scores are normalized by the background scores and the resulting normalized score is
compared with a decision threshold. The claimant is accepted (rejected) if the score

is larger (smaller) than the threshold.

1.2 Speaker-Dependent Features

Although speech signals are nonstationary, their short-term segments can be consid-

ered quasi-stationary. Therefore, short-term spectral analysis can be applied to short
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Figure 1.1: The architecture of a typical speaker verification system.

speech segments (typically 20-30ms), which results in a sequence of short-time spec-
tra. In speech and speaker recognition, the short-time spectra are further transformed
into features vectors.

In addition to spectral analysis, many speech and speaker recognition systems use
linear prediction (LP) analysis [59] to extract feature vectors (known as LP coeffi-
cients) from short segments of speech waveforms. One advantage of LP coefficients is
that they can be computed efficiently. Moré importantly, the LP coefficients represent
the spectral envelopes of speech siéiials (information about the formant frequencies
and their bandwidth). The spectral envelopes are characterized by the resonance fre-
quencies, length, and spatially varied cross-section areas of the vocal-tract. Because
all of these entities are known to be speaker-dependent, the LP coefficients are one of
the candidate features for speaker recognition.

Several sets of features (e.g., LP coefficients, impulse responses, autocorrelation
coefﬁcients, cross-section areas, and cepstral coefficients) can be derived from LP
analysis. Of particular interest is that a simple and unique relationship exists among
these features. It has been shown that the cepstral coefficients are the most effective

feature for speaker recognition [8].



1.3 Speaker Modeling

Over the years, a variety of speaker modeling techniques have been proposed [79).

This section describes four approaches to speaker modeling.

1.8.1 Template Matching

In template matching, reference templates are used as speaker models [23]. A template
is composed of a sequence of feature vectors extracted from a set of fixed sentences
- uttered by a registered speaker. During recognition, an input utterance is dynamically
aligned with the reference templates, and match scores are obtained by measuring
the similarity between the aligned utterance and the templates. The use of fixed

templates, however, cannot model the wide variability present in the speech signals.

1.8.2 Nearest Neighbors

Vector quantiza;tion is a coding techl;iqile typically used in transmitting signals at low
bit rate. To use VQ for speaker recognitio-n; a pefsonalized codebook is created for
each speaker. During recognition, an unknown speaker is identified by selecting the
codebook whose code vectors are closest to the input vectors. Since its introduction
by Soong [14] in 1985, VQ has been a benchmark method for speaker recognition
systems [64], and improvement in the standard VQ approach has also been made [14].
The advantage of VQ is that the problem of segmenting speech into phonetic units
can be avoided. Additionally, VQ is more computationally efficient than template
matching. The disadvantage of VQ, however, lies in its crude approximation of the

features’ distribution.



1.8.83 Hidden Markov Models and Gaussian Mizture Models

Hidden Markov models (HMMs) encode both the temporal structure of feature se-
quences and the statistical variation of the features. Therefore, HMMs can be used as
speaker models in text-dependent speaker recognition. The earliest attempt of using
HMMs in speaker recognition was reported by Poritz [75]. After Portiz’s work, several
improved methods such as the mixture autoregressive HMMs [100], sub-word HMMSs
[34], and semi-continuous HMMs [27] have been proposed. HMMs parameters can
be estimated based on maximum-likelihood (ML) or maximum a posteriori (MAP)
criteria. Criteria that use discriminative training such as minimum classification error
(MCE) [44,.66] or maximum mutual information (MMI) [73, 103] can also be adopted.
Multi-state, left-to-right HMMSs can be used as speaker- and utterance-specific mod-
els.

The HMM approach is similar to the \/1Q one in that the HMM states are found
by a VQ-like pr’()cedure. However, urllif«e VQ, the probabilities of transition between
states are encoded, and the order of presentation of the speech data is important.
This may cause problems in text-independent speaker recognition where no temporal
correlation exists between the training data and the test data. On the other hand,
single-state HMMs (also known as Gaussian mixture models (GMMs)) [80,87] can
be applied to text-indeﬁendent speaker recognition. Like VQ, the feature space of
speakers is divided into a number of clusters. -However, the likelihood function is
continuous rather than discrete and the cluster membership is soft rather than hard.
GMMs provide a probabilistic model for each speaker; but unlike HMMs, there is no

Markov constraint among the sound classes. Therefore, the order of presentation of



speech data will not affect recognition decisions.

1.3.4 Neural Networks

Neural Networks can be considered as supervised classifiers that learn the complex
mappings between data in the input space and the output decision space. This capa-
bility is particularly useful when the statistical distributions of data are not known.
Neural network-based speaker models can have many forms, including multi-layer
perceptrons (MLP) [54, 55, radical basis function (RBF) network {54-56, 74], hybrid
MLP-RBF models [6], multi-expert connectionist models [11], and the modified neural
tree networks [26].

To apply neural networks for speaker recognition, each speaker is assigned a per-
sonalized network that is trained to output a ‘1’ for the voices associated with that

H

speaker and a ‘0’ otherwise. One advantage of using neural networks for speaker
recognition is that discriminative information can be easily incorporated into the
speaker models by means of supervised learning (See Section 2.1.1). This informa-

tion can usually improve recognition performance but at the expense of computation

resources.

1.4 Performance Evaluations

The Performance of speaker verification systems is usually specified by two types of

€ITOors:

1. Miss rate (Pmissnarget)_the chance of misclassifying a true speaker as an im-

postor.



2. False Alarm Rate (Ppynontarget)—the chance of falsely identifying an impostor

as a true speaker.

The miss rate and false alarm rate are also known as the false rejection rate (FRR)
and the false acceptance rate (FAR), respectively. In addition to these two error
rates, it is also common to repﬁrt the equal error rate (EER)—the error rate at which
P missjtarget — P fanontarget-

Because the miss rate and false alarm rate depend on the decision threshold, a
{ Priss|target> Plajnontarget} Pair represents one operating point of the system under
evalua,tion.' To provide more information about system performance, it is necessary
to evaluate the system for a range of thregholds. This results in a recetver operating
characteristic (ROC) curve, whei'e the miss probability is plotted against the prob-
ability of a false alarm, similar to the one used by the face recognition community.
However, the speaker verification co_glmunity has chosen to use a variant of the ROC
plots called det;zction error tradeoff (DﬁT) plots [62]. In a DET plot, the axes’ scales
are normally deviated so that Gaussian distributed scores result in a straight line; the
advantage is that systems with almost perfect performance can be compared easily.

In addition to DET curves, speaker verification systems are also compared based

on the detection cost:

Cdet = Cmiss % P miss|target < A target + Cfa x P} famontarget < A nontarget

where Cp;q and Cy, are the cost of making a false rejection error and false acceptance
error, respectively, and where Parget and Ppontarget are, respectively, the chance of

having a true speaker and an impostor. Typical values of these figures are Criss =



10, Cty = 1, Piarget = 0.01, and Ppontarget = 0.99 [63]. These values give an
expected detection cost of approximately 1.0 for a system without any knowledge of
the speakers. The operating point at which the detection cost Cjgy is at a minimum
can be plotted on top of the DET curve (See Figure 7.4 for an example).

Because the performance of speaker verification systems depends on the amount of
training data,‘a,coustic environment, and the length of test segments, it is very impor-
tant to report this information in -any performance evaluations so that performance
of different systems and techniques can be compared. Thus, the NIST established a
common set of evaluation data and protocols [38] in 1956. Although only focusing on
conversational speech, the NIST speaker recognition evaluations are one of the most

important benchmark tests for speaker verification techniques.

1.5 Threshold Determination

Determination of decision thresholci.s is a very important problem in speaker verifi-
cation. A large threshold could make the system annoying to users, while a small
one could result in a vulnerable system. Co;wentiona.l threshold determination meth-
ods typically compute the distribution of inter- and intra-speaker distances and tﬁen
choose a threshold to equalize the overlapping area of the distributions [15, 28], i.e.,
to equalize the false acceptance rate (FAR) and the false rejection rate (FRR). The
* success of this approach, however, relies on whether the estimated distributions match
the speaker- and impostor-class distributions. Another approach derives the thresh-
old of a speaker solely from his or her own voice and speaker model {70]. Session-to-

session speaker variability, however, could contribute significant bias to the threshold,



rendering the verification system unusable.

Due to the difficulty in determining a reliable threshold, researchers often report
the equal error rate (ERR) of verification systems based on the assumption that an
a posterior: threshold can be adjusted during verification. Real-world applications,
however, are only realistic with a priori thresholds that should be determined before
verification.

In recent years, research effort has focused on the normalization of speaker scores
both to minimize error rates and to determine a reliable threshold. This includes
the likelihood-ratio scoring proposed by Higgins et al. [36], where verification de-
cisions are based on the ratio of the likelihood that the oﬁserved speech is uttered
by the true speaker to the likelihood that it is spoken by an imposter. The a priori
threshold is then set to 1, with the claimant being accepted (reject) if the ratio is
greater (less) than the threshold; _Subseqdént work based on likelihood normalization
[52, 65, cobort' normalized scoring A'[QO], and minimum verification error training [92]
also shows that including an impostor model during verification not only improves
speaker separability, but also allows decision thresholds to be easily set. Rosenberg
and Parthasarathy [91] established some principles for constructing impostor models
" and showed that those with speech closest to the reference speaker’s model perform

fhe best. Their result, however, differs from that of Reynolds [88], who found that a

~+ gender-balanced, randomly selected impostor model performs better, suggesting that

more work is required in this area.
Although these previous approaches help select an appropriate threshold, they

may cause the system to favor rejecting true speakers, resulting in a high FRR. For
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example, _Higgins et al. [36] reported that the FRR is more thaﬁ 10 times larger than
the FAR. A recent report {24] based on a similar normalization technique but different
threshold setting procedure also found that the average of FAR and FRR is about 3
to 5 times larger than the EER, suggesting that the EER could be an over optimistic

estimate of the true system performance.

1.8 Speaker Recognition in Adverse Environments

It is well known that variation in acoustic environments seriously degrades the perfor-
mance of speaker recognition systems. In particular, the performance of most systems
deg'radés rapidly under adverse conditions such as in the presence of background noise,
channel interference, handset variation, intersession variability, and long-term vari-
ability of speakers’ voice. Speech signals can be affected by many sources of distortion.
Among these sources, additive noise and c;nvolutive distortion are the.most COmmon.

Additive noise can be classified ﬂmb different categories according to their proper-
ties. For example, stationary noisé such as air conditioners or fans has a time-invariant
power spectral density, while nonstationary noise such as car passing, keyboard clicks,
door slam, and the audio output of radios and TV sets has time-varying properties.
Additive noise can also be short-live or continuous depending on their time duration
relative to the speech signals.

In addition to additive noise, distortion could also be convolutional. For exam-
ple, micropholnes and transmission channels can be considered as digital filters with

which the speech signals are convolved. In particular, telephone channels exhibit a

bandpass filtering effect on speech signals, where different degrees of attenuation are
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exerted on different spectral bands. Reverberation of speech signals is another source
of convolutive distortion. This type of distortion results in the addition of a noise
component to the speech signals in the log-spectral domain.

Speakers may alter the way they speak under stress or a high level of background
noise (known as the Lombard effect). During articulation, speakers may also produce
breath noise and lip smacks. All of these distortions can cause severe performance
degradation in speaker recognition systems.

This thesis addresses the problems caused by additive noise and convolutive dis-
tortion, which can be combined into a composite source of distortion. Specifically,

the acquired signal y(t) is expressed as
y(t) = s(t) * h(t) + n(t) (1.1)

where s(t) is the clean speech signal and h(t), n(t), and ‘' represent the channel’s

impulse response, additive noise, and-convolution operator, respectively.

1.7 Overview of the Dissertation

1.7.1 Motwations and Research Objectives

Blind deconvolution such as cepstral mean subtraction (28] has been extensively
used for overcoming the problem of channel distortion. In this method, the long-
term average of cepstral vectors is subtracted from each of the cepstral vectors in an
utterance. However, the assumptions that the long-term average is a good estimate
of channel characteristics and that the channel is linear are generally invalid. This is

because telephone handsets typically exhibit energy-dependent frequency responses
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[88], which suggests that linear filtering can only sollve part of the problem.

This work aims to develop channel compensation algorithms for telephone-based
speaker verification. The main objective is to circumvent the problem of handset
variability by estimating and eliminating the nonlinear handset effects in telephone

speech. Different channel compensation techniques will be studied in detail.

1.7.2 Organization of the Dissertation

This thesis is organized as follows. Chapter 2 explains and compares three dif-
ferent types of kernel-based probabilistic neural networks. The networks will be
used as speaker models in a series of speaker verification experiments. Chapter 3
provides a brief account of the techniques that have been used extensively in ad-
dressing the problems of transducer mismatches and robustness in telephone-based
speaker recognition. Chapter 4 focuses oh model-based compensation and describes
the state-of-the-art techniques in.aétajl. Chapter 5 investigates two model adapta-
tion/transformation techniques—reinforced/anti-reinforced learning of probabilistic
decision-based neural networks (PDBNNs) and maximum-likelihood linear regression
(MLLR)—in the context of telephone-based speaker verification. Chapter 6 focuses
on feature-based compensation and highlights the state-of-the-art techniques that are
related to this thesis. Chapter 7 proposes a blind compensation algorithm for solving
the channel distortion problem. The algorithm is designed to handle the situation in
which no a priori knowledge about the channel is available. Finally, a summary of

the major findings is provided in Chapter 8.
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Chapter 2

KERNEL-BASED NEURAL NETWORKS

FOR SPEAKER VERIFICATION

Kernel-based neural networks such as probabilistic decision-based neural networks
(PDBNNs), Gaussian mixture models (GMMs), and elliptical basis function networks
(EBFNs) have been extensively used in speaker recognition. A common property of
these networks is that they capture speaker characteristics via their kernel parame-
ters. This chapter explains how these networks can be applied to speakef verification
and compares their performance in terms of verification error rates and robustness
against ﬁdditix:e noise. It was fouﬁd.tbat GMM- and PDBNN-based speaker models
outperform the EBFN ones in both clean and noisy environments . It was also found
that the globally supervised learning of PDBNNs is able to find decision thresholds
that Iﬁinimize the variation in FAR, whereas the ad hoc threshold-determination ap-
proach used by the EBFNs and GMMs causes a large variation in FAR. This property

makes the performance of PDBNN-based systems more predictable.
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2.1 Kernel-Based Probabilistic Neural Networks

2.1.1 Incorporation of Nontarget Information

Early work on text-independent speaker verification used data from target speakers
exclusively to train speaker models. One problem of this approach is that information
from nontarget speakers (alsé known as antispeakers or background speakers) is not
embedded in the speaker models, which may lead to suboptimal performance. A
study in 1991 {36] showed that using nontarget information during verification can
greatly enhance speaker verification performance. Nontarget information can be used
during model training and recognition. For the former, supervised learning algorithms
are used to train a speaker model that discriminates within-class data from out-of-
class data. For the latter, likelihood ratio [36] or scoring normalization [90] is applied
during recognition. .

Neural networks are one of the -tgec?niques that can embed nontarget information
in the speaker models. For example, the elliptical basis function networks (EBFNs)
proposed in Mak and Kung [56] include the cluster centers of antispeakers’ speech
in their hidden layer. It was shown that EBFNs outperform radial basis function
networks (RBFNs) and VQ. The neural tree networks (NTNs) are another type of
network that use discriminative training, and research has shown that NTNSI are
superior to VQ in speaker recognition tasks [25].

Likelihood ratio [36] and scoring normalization that use cohort speakers [90] or the
combination of cohort speakers and background speakers [107] have been applied to

improve the performance of speaker verification systems. These scoring approaches
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Figure 2.1: Architecture of a GMM-based classifier. Note that the classifier consists
of K GMMs for a K-class classification task and that the Maxnet selects the GMM
with the largest output as the identified class.

achieve high performance by constructing background models and/or cohort mod- -
els, which should accurately represent the characteristics of all possible impostors.
Typically, the background models and speaker models are trained separately, which

means that discriminative information is used during recognition rather than during

training,.
2.1.2 Gaussian Mizture Models

Figure 2.1 depicts the architecture of a classifier in which each class is represented by
a Gaussian mixture model (GMM). GMMs make use of semi-parametric techniques
for approximating probability density functions (pdf). As shown in Figure 2.1, the

output of a GMM is the weighted sum of R component densities. Given a set of N
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independent and identically distributed patterns X® = {x,;t = 1,2,..., N} asso-
ciated with class w;, we assume that the class likelihood function p(x;|w;) for class
w; is a mixture of Gaussian distributions. More precisely, the likelihood function is

expressed as

. R ’
pxilws) =Y P (Orpslwi)p(xeles, Or), (2.1)

r=1

where ©,; represents the parameters of the rth mixture component, R is the total
number of mixture components, p(X¢|w;, ©y;) = N (s, Zrps) is the probal-)ility density
function of the rth component, and P(©,;|w;) is the prior probability (also called
mixture coefficients) of the vth component. Typically, N(pr:, Eri) is a Gaussian
distribution with mean p.; and covariance %, ;.

The training of GMMs can be formulated as a maximum-likelihood problem
where the mean vectors {u,;}, covariance matrices {Z,;}, and mixture coefficients
{P(Byi}w;)} are typically estiméted by th(; expectation-maximization (EM) algorithm

[19]. More precisely, the parameters of a GMM are estimated iteratively by’

. et PO (Brplxe)xs (2.2)
i N POOux)

_ . ) T
Sy PO(Onilxe) [x — uG™) [x— uG]

E(.‘fj'l) — _ - ,and (23)
! Zi\;l P(J)(er|i|xt)
N -
1 = P(J)(er‘L'x)
pon(e,) — = PO Ou), 24)

where, T denotes matrix transpose, j denotes the iteration index, and P (8,|x,)

is the posterior probability of the rth mixture (r = 1,...,R). The latter can be

1To simplify the notation, w; in Eqgs. 2.2 though 2.6 has been dropped.
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obtained by Bayes’ theorem, yielding

p(j)(@ [‘|Xt) _ P(j)(@rli)p(j)(}q‘@r[i) (2'5)
" ZkRzl P(j)(@kli)p(j)(xt|9k1i)

in which

1 1 MY -1 @)
(2m) %18} e"p{"a e = 2] 7 e ] 29)

PU)(Xﬂ@ru)
where D is the input dimension.

During recognition, a test vector x; of an unknown class is fed to the GMMs, and

the class index k is determined by the Maxnet:
B .
k = arg max p(xi|w;). (2.7)

To apply GMMs to speaker verification, each registered speaker in the system is
represented by a GMM. To enhance the diﬁcrimination between the client speakers and
‘impostOrs, it is common practige to comﬁute the ratio between the client likelihood
and impostor lrikelihood, where the f01:mer is the output of the client’s GMM and the -
latter is the output of a Background model [36]. The background model is a GMM
trained from the speech of a large number of speakers, who should accurately represent
the characteristics of all possible impostors. Alternatively, a set of background models
is formed during verification by selecting the GMMs of a small set of client speakers
(cohort) whose acoustic characteristics are close to those of the lcléimant [90].

During verification, a sequence of feature vectors X from the claimant is extracted

and the following normalized score is computed:

S(X) = log p(X|w,) — log p(Xw,), ' (2.8)
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where p(X|w,) and p(X|ws) are the GMMs’ outputs (Eq. 2.1) corresponding to the
speaker class w, and impostor class wy, respectively. The normalized score is then

compared with a decision threshold to make a decision:

> ( accept the claimant
If S(X) (2.9)
< (¢ reject the claimant.
That is, to adopt the GMM-based classifier shown in Figure 2.1 to speaker verification,

K is set to 2 and Maxnet is changed to compute the log-likelihood difference.

2.1.8 Elliptical Basis Function Networks

Elliptical basis function (EBF) networks [56] are a type of feedforward neural network
in which the hidden units evaluate the Mahalanobis distance between the input vectors
and a set of vectors called function cenfers or kernel centers, and the outputs are a
linear cqmbination of the hidden nodes’ dutp.uts‘ More specifically, the k-th network

output has the form

. ,
(%) = wio+ ) wiy®i(xs), (2.10)
i=1
where'
1 _
D;(x:) = exp {—~2—:Y- (x¢ — ,uj)T 37 L x, — ,uj)} , (2.11)
N

where p; and X; are the function center (mean vector) and covariance matrix of the
j~th basis function, respective}y, Wyo is a bias term, and ; is a smoothing parameter
controlling the spread of the j-th basis function.

Figure 2.2 illustrates the architecture of an EBF network with D inputs, M func-

tion centers, and K outputs. It clearly shows that EBF networks have a three-layer
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Figure 2.2: Architecture of a K-output EBF network.
architecfure: input, hidden, and oﬁtput layers. The input layer distributes the input
patterns x; to the hidden layer. Each hidden unit is a Gaussian basis function with
shape and location defined by a center p; and a covariance matrix ¥;. The number
of -basis functions (M) is typically much less than that of training vectors.

The three-layer architecture with linear output units leads to a two-stage training
procedure. In the first stage, the kernel parameters {x;, £;}, in the hidden layer are
determined by fast unsupervised learning (such as K-means clustering and sample co-
variance). -In the second stage, the output weights {we;;6=1,...,K,7=0,..., M}
are determined by least-squares techniques. Because of this two-stage training ap-

proach, EBF networks have a shorter training time than the backpropagation net-
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works. -

The kernel parameters can also be detérmined in an iterative fashion using the EM
algorithm [19]. For each iteration of EM, the mean vectors, covariance matrices, and
mixture coefficients are updated according to Egs. 2.2 through 2.6. It has been shown
that using the EM algorithm to estimate the kernel parameters can produce networks
that are superior to those using the K _means alg_orithm and sample covariance {56].

We can observe the similarity between GMM-based and EBFN-based classifiers
from their architecture (Figures 2.1 and 2.2). For example, both of them combute the
Mahalanobis distance (Egs. 2.6 and 2.11) between the input vectors and the kernel
centers in the hidden layer. However, there are two important differences. First,
a GMM computes the likelihood of observing the input vector x;, whereas an EBF
network maps data from the input space to the output space. Second, the kernel
parameters of a GMM must be ejstimatea from data derived from its corresponding
class. On the other hand, data derived from all known classes (K classes in the case
of Figure 2.2) are applied to estimate the kernel parameters of an EBF network. Even
if the EBF kernels are divided into K groups and the K sets of kernel pararhéters are
estimated independently using the data derived from the K classes,‘ EBF networks
are still different from GMMs in that each of the EBF network’s outputs depends
on the kernel outputs of the corresponding class as well as those from other classes.
The output of a GMM (p(x:|w;)), on the other hand, depends on the kernel outputs
of its own class only. The consequent of this difference is that, for EBF networks,
discrimination among all the known classes is considered during the training phrase,

but for GMMSs, class discrimination is introduced during the recognition phase.
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To apply EBFNs to speaker verification, one EBFN is trained for each registered
speaker. Specifically, each network is trained to recognize speech patterns from two
classes: speaker class and antispeaker class. To achieve this, the hidden nodes are
divided into two groups: one corresponds fo the speaker class and the other to the
antispeaker class. The former is denoted as the speaker kernels and the latter as the
antispeaker kernels. The EM algorithm is applied iﬁdependently to the speaker data
and antispeaker data to obtain the speaker kernels and antispeaker kernels, respec-
tively. Then least-squares techniques are applied to detérmine the output weights.
Each network contains two outputs (i.e., K = 2 in Figure 2.2), with y,(x) giving a
desired output of 1 and y,(x) giving a desired output of 0 for speaker’s data, and vice
versa for antispeakers’ data.

During verification, speech patterns X = {x;;t = 1,...,T} are extracted from the

claimant’s utterance, and the following score is computed:

T z exp{yl xt)/2P( s)} — EXP{yz(xt)/gp(wb)} (2.12)

7 expiun (Xe)/2P(ws)} + exp{ya(x1) /2P (wp) }

where P(w,} and P(wy) are the prior probabilities of the épeaker class and antispeaker
class, respectively, and y(x) is the k-th output of the network. P(w;) and P(w;) can
be easily computed by counting the number of speaker and antispeaker patterns in
the training set. Note that dividing the network outputs by the prior probabilities is
to rescale the network outputs so that the scaled averages (over the training set X’
containing both speaker data and antispeaker data) are approximately equal to 0.5
(e, 3¢ D oxex Ye(x)/2P(w) = 0.5, w € {w,,ws}). The softmaz function inside the

summation of Eq. 2.12 is intended to prevent any extreme value of y;(x)/2P(w) from
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dominating the average outputs. Verification decisions are based on the criterion:

> ( accept the claimant
If S(X) (2.13)
< ( reject the claimant,
where ¢ € [—1,1] is a speaker-dependent threshold.

k

I
MAXNET
k= argmax; {¢(x¢, w;) } if p(x, w;)~T;>0 Vi=1,...,K
unknown class if ¢(x;,w;)=T; <0 Vj=1,...,K

¢(Xt, Wa‘) -1 ¢(Xt, W«;)

Figure 2.3: Structure of a PDBNN. Each class is modeled by a subnet. The subnet
discriminant functions are designed to model the log-likelihood functions given by Eq.
2.14.
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2.1.4 Probabilistic Decision-Based Neural Networks

Probabilistic decision-based neural networks (PDBNNs) {51] are a probabilistic vari-
ant of their predecessor—decision-based neural networks (DBNNs) [46]. Like DBNNS,
PDBNNs employ a modular network structure shown in Figure 2.3. However, unlike
DBNNs, they follow a probabilistic constraint. The subnet discriminant functions of

a PDBNN are designed to model some log-likelihood functions of the form

¢(x:, W) = log pxe|w;)

R
= log | Y P(Oslws)p(xe|ws, ©,) | (2.14)

r=1
where w; = {p,h-,il,h;,P(@,.lilwi),?}} and T; is the decision threshold of the i-th
subnet.

Learning in PDBNNs is divided into two phases: locally unsupervised (LU) and
globally supervised {GS). In the LU,learnin;, phase, PDBNNs adopt the EM algorithm

to maximize the likelihood function V‘
N
Uwis X)) = > " log p(acefws)
t=1

N R '
= Z log Z P(Oyilwi)p(x¢|ws, By} (2.15)
t=1 r=1

with respect to the parameters fi.;, 2,;, and P(@T|i|w.i),‘ where X9 = {x,;t =
1,2,...,N} denotes the set of N independent and identically distributed training
patterns from class i. The EM algorithm leads to an iterative update procedure
identical to Eqs. 2.2 through 2.6.

After the maximum-likelihood estimation, the PDBNN has one more learning

phase—the GS learning, which minimizes the classification error. Specifically, when
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misclassification occurs, reinforced learning and anti-reinforced learning will be per--
formed oﬁ_ the target class and unduly class.

Assume that we have a set of training patterns X = {x,;t =1,2,... ,M }. Now
further divide the data set X into (1) “the positive training se_t” Xt = {x;x €
wi,t=1,2,...,N} and (2) “the negative training set” X~ = {x;;x; ¢ w;,t = N +

1,N+2,...,M}. In PDBNN, an energy function is defined as

£ =3 ), (216)

where

T — d(xe, wi) i x, € wy

d(t) = (2.17)

d(xe,wi) =T if x¢ & wy,

where T is the threshold value and its initial value is set to zero. The penalty function

. can be either a piecewise linear function

|l d ifd>0
I(d) = (2.18)
0 ifd<o0 '
or a sigmoidal function
1

The use of sigmoidal function ensures that the energy function is not dominated by
a single error.

In the globally supervised (GS) training phase, target values a,ré used to ﬁne—tune
the decision boundaries. Specifically, for any patterns x; not belong to the i-th class
but are misclassified to the i-th class, or for any patterns belong to the i-th class

but are misclassified to another class, reinforced and/or anti-reinforced learning are
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applied to update the mean vectors and covariance matrices of subnet 2. Thus, we

have

G+ o 0 () —1(5) ()
-u’r‘:lrz - 'u"r";'t + T Z hrlgt (t)zrii ’ [ p’r‘iz]

t,xt ED'
e 3 T -]
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G+1) _ ¢l ) ( ) {5 —17)
Erlz - Erjh 2770’ Z hr:fz (Hrfa, (t) T i J)
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where Hffi)( ) = E:I: ) [ ;.Lffi'z)] [ »“1(-3:?] E:hl(’) hEJI%) (t) is the posterior proba-
bility identical to Eq. 2.5, and 7, and 7, are user-assigned (positive) learning rates.
The false rejection Set D; and the false acceptance éet Di are defined as follows:

o Di={x;% €w; X is misclassified to another class w; }

o Di={x;x ¢w, X is c_Iassiﬁecli to w;}

An adapti;fe learning rule is emi)lo_‘yed to train the threshold T of subnet ¢. Specif-

ically, the threshold T; at iteration j is updated according to

TG _ T — g (TY — ¢(x,, w;)) if x, €w; (reinforced learning)

T.i(j Yl (d(xe, wi) —TY) ifx, ¢ w; (anti-reinforced learning),
(2.21)

where 7 is a positive learning parameter, I{(d) = Ti_t; is a penalty function, and I'{d)
is the derivative of the penalty function. The PDBNN algorithm tries to minimize
the classification error at each epoch and is not guaranteed to converge.

In this work, three modifications were made to the PDBNN’s training algorithm to

make PDBNNs appropriate for speaker verification. First, the original PDBNNs used
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one threshold per network. However, in this work, one network was used to model
the speaker class and another one to model the antispeaker class (ie., ¢ = 1 or 2
in Eq. 2.14 and L = 2 in Figure 2.3). To make PDBNNs applicable to speaker
verification, the likelihood computation was modified such that only one threshold is
required. Specifically, instead of comparing the network’s log-likelihood against its
corresponding threshold, as in the original PDBNNs, a normalized score was compared
against a single decision threshold, as in Eqs. 2.8 and 2.9.

The second modification changes the frequency of updating the decision threshold.
The original PDBNN adopts the batch-mode supervised learning (see Eq. 2.20). In
this work, a sequential update mode was adopted. Specifically, the GS training was
modified as follows: Let X, be the n-th segment extractéd from the speaker’s speech
patterns X() or from antispeakers’ speech patterns X, the normalized segmental

N

score is computed by evaluating
S(Xn) = SS(Xn) - Sb(Xn)

= = Y800 - a0}, (2.22)

XEXn

where ¢,(x) and ¢,(x) are the log-likelihood function (Eq. 2.14) of the speaker class
and antispeaker (background) class, respectively. For the n-th segment, the following

criteria were used to determine whether to update the decision threshold C,(;j ),

r *
> Cf;ﬂ , and X, € X X, is correctly classified, no need to update

< ¢ and X, € X® X, is correctly classified, no need to update
It (%)

> C,(f_)l and X,, € X® false acceptance, need to update

| < (;,(321 and X,, € X® false rejection, need to update
(2.23)
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" where ( ("’31 is the decision threshold of the PDBNN speaker model after learning from
segment X,_, at epoch j. Therefore, whenever misclassification occurs, the threshold

C,EJEI is updated according to

(4) oG A (®) (4)
_ (G, - 8(X,)) i X, € X and S(X,) < (2

@={ " 1 | T (229)
D 4l (S(X.) = ¢9)) if X, € X® and S(X,) 2 ¢,

n—1

where 1, and 7, are reinforced and anti-reinforced learning parameters, respectively
(more on this in the next paragraph), [(d) = 1—+l:3 is a benalty function, and I’ (d) is
the derivative of I(-).

In the third modification, a new method was introduced to compute learning rates.
In the original PDBNNSs, the learning rates for optimizing the thresholds are identical
for both reinforced and antireinforced learning. However, in some situations, there
may be many false acceptances and only a few false rejections (or vice versa), which
means anti-reinforced learning will occur ;nore frequently than reinforced learning (or
vice versa). To reduce the imbalal;;:e‘in the learning frequency, the reinforced (anti-

reinforced) learning rate 7. (7,) is made proportional to the rate of false rejections

(acceptance) weighted by the total number of impostor (speaker) segments:

FRRU-V Nimp
= : : 2.25
"= FARGD 4 FRROD Nimp + Nopic (2:25)
(-1} N.
T FAR opk (2.26)

~ FARGD 4 FRROD Nomp + Negk
where FRRY™Y and FARYU™Y represent the false rejection rate and false acceptance
- rate at epoch j — 1, respectively; and Niy, and Ny represent the total number of
training segments from the impostors and the registered speaker, respectively; and 7

is a positive learning parameter. The first term of Egs. 2.25 and 2.26 increases the
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learning rate if the corresponding error rate is large, which has the effect of rapidly
reducing the corresponding error rate. The second term weights the learning rate
according to the proportion of training segments in the opposite class, which has the
effect of reducing the learning rate of the frequent learner and increasing the learning
rate of the nonfrequent learner. This arrangement can prevent reinforced learning or
anti-reinforced learning from dominating the learning process and aims to increase

the convergence speed of the decision threshold.

2.2 Applications to Speaker Verification

2.2.1 Speech Corpus and Feature Extraction

The YOHO corpus [41], collected by ITT Defense Communication Division, was used
in this work. Yoho is a large-scale, scientifically controlled speech corpus for testing
speakef verification systems at high confidence level. The corpus features “combina-
tion lock” phrases, 138 speakers (108 male, 30 female), intersession variability, apd
high-quality telephone spegch sampled at 8kHz with 16 bits per sample. The record-
ing sjstem of YOHO was set up in the corner of a large office. Low level noise could
be heard from adjoining offices. A handset containing an omnidirectional electret
microphone without noise-canceling features was used for recordings. There are four
enrollment sessions for each speakers. Each of these sessions contains 24 utterances.
Likewise, there are ten verification sessions for each speaker, with each session con-
taining four utterances. Each utterance is composed of three 2-digit numbers (e.g.

34-52-67). The combination-lock phrases together with intersession variability make



29

YOHO ideal for speaker verification research.

In this work, all of the 138 speakers in the YOHO corpus have been used for
experimental evaluations. Gaussian white noise with different noise power was also
added to the clean YOHO corpus. Both the clean and noisy YOHO corpora were
used in the evaluations.

The feature extraction procedure is as follows. For each utterance, the silent
regions were removed by a silent detection algorithm based on the energy and zero
crossing rate of the signals. The remaining signals were preemphasized by a filter
with transfer function 1 — 0.95z7!. Twelfth-order LP-derived cepstral coefficients

were computed using a 28ms Hamming window at a frame rate of 71Hz.

222 FEnrollment Procedures

In the yeriﬁcation experiments, each regiétered speaker was represented by three dif-
ferént speaker- models (GMM', EBFN, and PDBNN). A GMM-based speaker model
consists of two GMMSs, one representing the individual speaker and the other rep-
resenting all other speakers (called antispeakers hereafter). An EBFN- or PDBNN-
based speaker model consists of a single EBFN or PDBNN representing the corre-
sponding registered speaker as well as all antispeakers. F(.)r each registered speaker, all -
utterances in the four enrollment sessions corresponding to the speaker and a prede-
fined set of antispeakers (each speaker has his/her own set of antispeakers) were used
to train a speaker model. The speaker model was trained to recognize the speech de-
rived from two classes: speaker class and antispeaker class. To this end, two groups of

kernel functions (one group representing the client speaker and the other representing
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the speakers in the antispeaker class) were assigned to each speaker model. Hereafter, .
we denote the group corresponding to the speaker class as the speaker kernels and
the one corresponding to the antispeaker class as the antispeaker kernels. For each
registered speaker, a unique antispeaker set containing 16 antispeakers was created.
The 16 antispeakers were randomly selected from the speaker set excluding the true
speaker. Speech features derived from this set were subsequently used to esi;imate the
antispeaker kernels by using the EM algorithm. The antispeaker kernels enable us
to integrate scoring normalization [63] into the speaker models, which enhances the
models’ capability in discriminating the true speakers from the impostors.

Each of the GMMs and PDBNNs is composed of 12 inputs (12th-order cepstral
coefficients were used as features), a predefined number of kernels, and one output.
On the other hand, the EBFNs contain 12 inputs, a predefined number of kernels,
and 2 outputs with each output represeniiing one class (speaker class and antispeaker
class).

We applied the K-means algorithm to initialize the initial positions of the speaker
kernels. Then, the kernels’ covariance matrices were initialized by the K-nearest
neighbors algorithm (K = 2). In other words, all off-diagonal elements were zero and
the diagonal elements (being equal) of'each matrix were set to the average Euclidean
distance between the corresponding center and its K-nearest centers. The EM algo-
rithm was subsequently used to fine-tune the mean vectors, covariance matrices, and
mixture coefficients (see Eqs. 2.2 through 2.6). All of the covariance matrices are
diagonal. The same procedure was also appliedlto determine the mean vectors and

covariance matrices of the antispeaker kernels, using the speech data derived from the
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antispeaker set. It was found that initializing the mean vectors by K-means and the
covariance matrices by K-NN reduces the number of EM iterations required to deter-
mine the maximum-likelihood solution. Because the K-means and K-NN algorithms
run much faster than the EM algorithm, this approach can reduce the training time
considerably.

The process for constructing a PDBNN-based speaker model involves two phases:
locally unsupervised (LU) training and globally supervised (GS) training. The LU
training i)hase is identical to the GMM training described in Section 2.1.2. In the
GS training phase, the speaker’g enrollment utterances and the utterances from all
enrollment sessions of the antispeakers were used to determine a decision threshold
(see Section 2.2.4).

For EBFN-based speaker models, the speaker kernels and antispeaker kernels ob-
tained from GMM training were combine;l to form a hidden layer. In this work, «; in

Eq. 2.11 was determined heuristically by

5
9
% =% > ek = ngll (2.27)
k=1

where p; denotes the k-th nearest neighbor of yu; in the Euclidean sense. We have
empirically found that using five nearest centers and multiplying the resulting average
distance by 9 give reasonably good results. However, no attempts have been made to
optimize these values. Finally, singular value decomposition was applied to determine
the output weights. Details of the enrollment procedure for EBFNs can be found in

[56].
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2.2.3 Verification Procedures

Verification was performed using each speaker in the YOHO corpus as a claimant,
with 64 impostors being randomly selected from the remaining speakers (excluding the
antispeakers and the claimant) and rotating through all speakers. For each claimant,
the feature vectors of the claimant’s utterances from his or her 10 verification sessions
in YOHO were concatenated to form a claimant sequence. Likewise, the feature

vectors of the impostor’s utterances were concatenated to form an impostor sequence.

Verification Procedures for PDBNNs and GMMs

For PDBNNs and GMMs, the following steps were performed during verification. The
feature vectors from the claimant’s speech 7° = {x;,Xs,...,%r, } was divided into a

number of overlapping segments containing 7(< T.) consecutive vectors as shown

T,

below!

1st segnient, 7

X1,X2,X3,X4,X5,Xg," """ ,X']:,XT+1,XT+2,“‘ » XT,
2nd segment, 7
X1,Xp,X3,Xq,X5,Xgy """ 1 X745, XT46; "+, XT,

For the t-th segment (7; C 7°), the average normalized log-likelihood

2= o {85() — 8a()) (228)

xeTy

of the PDBNN-based and GMM-based speaker models was computed, where ¢g(x)

and ¢4(x) represent the log-likelihood function (Eq. 2.15) of the speaker model and

!The claimant can be the true speaker (in which case T° represents a claimant sequence) or
he/she can be an impostor (in which case 7° represents an impostor sequence).
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antispeaker model, respectively. Verification decisions were based on the criterion:

> ( accept the claimant
If z (2.29)

< (¢ reject the claimant

where ( is a speaker-dependent decision threshold (see Section 2.2.4 for the procedure
of determining ¢). A verification decision was made for each segment, with the error
rate (either false acceptance or false rejection) being the proportion of incprrect ver-
ification decisions to the total number of decisions. In this work, 7" in Eq. 2.28 was
set to 500 (i.e., 7 seconds of speech}, and each segment was separated l:;y five vector

positions. More specifically, the {-th segment contains the vectors

T = {xs(t—1)+1, XKo(t=1)+2y - - - ,Xs(t—1)+500}, (2-30)

where 5(t — 1) + 500 < T,. Note that dividing the vector sequence into a number
of segments has also been successfully used in [56,87] for increasing the number of

decisions.

Verification Procedures for EBFNs

For the EBF-based speaker models, verification decisions were based on the differ-
ence between the scaled network outputs [56]. Because the ratio of training vectors
between the speaker class and antispeaker class is about 1 to 16, the networks favor
the antispeaker class during verification by always giving an output close to 1 for the
antispeaker class and close to 0 for the speaker class. This problem ca'n be solved by
écaling the outputs during verification so that the new average outputs are approx-

imately equal to 0.5 for both classes. This can be achieved by dividing the output
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ye(x) by 2P(wk), where P(wy) is the prior probability of class wy. Specifically, we
compute the scaled output §x(x) = é”—}:'f((‘% with £ = 1,2 so that & > %k(x) = 0.5,
where N is the number of training vectors in the training set X. A simple way to
estimate the prior probability P{wy) is to divide the number of patterns in class wy
by the total number of patterns in the training set.

Similar to the PDBNN-based and GMM-based speaker models, we divided the
claimant’s utterance 7° into a number of overlapping segments. For each segment 7;

(with segment length 77), the scores

exp{yk
, k=12 (2.31)
kT ,;:r PR exp{yr (X)}

corresponding to the spea.ker and antispeaker classes were computed. Note that we
have made use of the softmax function inside the summation of Eq. 2.31. Its purpose
is to ensure that zx is in the range [0, f] and that ), z 4 = 1, thereby preventing
any extreme value of §x(x) from dominating the average outputs.

Verification decisions were based on the criterion:

> ( accept the claimant
If Zt1 — 22 (232)

< ¢ reject the claimant

where ¢ € [—1, 1] is a speaker-dependent threshold (see Section 2.2.4) controlling-the
false rejection rate (FRR) and the false acceptance rate (FAR). Again, a verification
decision was made for each segment (as defined in Eq. 2.30) at a rate of one decision
per five feature vectors. Computing the difference between the two outputs is equiva-
lent to normalizing the score in.GMMs. Thus, scoring normalization was intergrated

into the network architecture.
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In this work, equal error rate (EER)—false acceptance rate being equal to false
rejection rate—was used as a performance index to compare the verification perfor-
mance among different speaker models. Because the speaker models remain fixed
once they have been trained, EER can be used to compare the models’ ability in

discriminating speaker features from impostor features.

2.2.4 Determination of Decision Thresholds

As mentioned before, it is necessary to determine a decision threshold for each speaker
model during enrollment. These thresholds will be used during verification.

The procedures for determining the decision thresholds of PDBNNs, GMMs, and
EBFNs are different. For the GMM and EBFN speaker models, the utterances from
all enrollment sessions of 16 randomly selected antispeakers were used for threshold
determination. Specifically, these utterances were concatenated and the verification
procedﬁres were applied. The thresholds (’s in Egs. 2.29 and 2.32 were adjusted
until the corresﬁonding FAR fell below a pfedeﬁned level; in this work, the level was
set to 0.5%. Antispeakers’ ufterances, rather than a speaker’s utterances, were used
because it is easier to collect the speech of a large number of antispeakers. Hence, the
thresholds obtained are more reliable than those that would have been obtained from
the speaker’s speech. In addition, using a predefined FAR to determine the decision
thresholds makes it easier to predict the robustness of the verification system against
impostor attacks [108].

- The modified threshold determination prbcedure described in Section 2.1.4 was

used to determine PDBNNs’ decision thresholds. To keep the mean vectors and
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covariance matrices the same as the maximum-likelihood estimates, only the decision

thresholds were adjusted during globally supervised training, with the mean vectors

and covariance matrices remain unchanged.

2.2.5 Pilot Experiments

The architecture of GMMs, EBFNs, and PDBNNs depends on several free parameters,
including the number of speaker kernels, the number of antispeaker kernels, and
the number of antispeskers for finding the antispeaker kernels. To determine these
parameters, a series of pilot experiments involving 30 speakers from the YOHO corpus
were performed. Equal error rates (EERs) were used as the performance indicator.
To determine an appropriate number of speaker kernels, speaker models with different
numbers of speaker kernels were constructed, and the numbers of antispeaker kernels
and antispeakers were fixed to 160 and 16, respectively. Table 2.1(a) shows the average
EERs obtained by the GMM-based-"s'peaker models. Evidently, the EER decreases as
the number of kernels increases. The decrease in EER becomes less significant after
the number of speaker kernels reaches 40.

To determine an appropriate number of antispeakers for determining the anti-
speaker kernels, we varied the number of antispea.ker_s while fixing the number of
speaker kernels and antispeaker kernels to 40 and 160, respectively. Table 2.1(b)
shows the average EER obtained by the GMM-based speaker models. Optimal per-
formance is obtained when the number of antispeakers is 32. In order to reduce
processing time, we used 16 antispeakers in the rest of the experiments.

We have also varied the number of antispeaker kernels while fixing the number



Number of Speaker’s Kernels EER. (%)
10 2.78
20 1.51
40 0.77
80 0.57
160 0.48
(a)
Number of Antispeakers EER (%)
4. 2.02
8 1.30
16 - 0.77
32 0.48
64 0.81
(b)
Number of Antispeaker Kernels EER (%)
40 0.83
80 0.83
160 0.77
320 0.75
640 0.79

()

37

Table 2.1: Average equal error rates based on 30 GMM-based speaker models with
different numbers of (a) speaker kernels, where the number of antispeakers and the
number of antispeaker kernels were set to 16 and 160, respectively; (b} antispeakers,
where the number of speaker kernels and antispeaker kernels were set to 40 and 160,
respectively; and (c) antispeaker kernels, where the number of speaker kernels and

antispeakers were set to 40 and 16, respectively.
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Figure 2.4: EER surfaces plot.

of speaker kernels and the number of antispeakers to 40 and 16, respectively. Table
2.1(c) shows the average EER obtained by the GMM-based speaker _models. The
results show that no significant reduction in error rate can be achieved when the
number of antispeaker kernels reaches 1@0. Therefore, 160 antispeaker kernels were
used in subsequent experiments.

Table 2.1(;:) shows that the errord rate is fairly insensitive to the number of an-
tispeaker kernels provided that the number is sufficiently large. To determine the
sensitivity with respect to the number of speakers’s kernels and the number of anti-
speakers, we plot the error surface in Figure 2.4. This Figure suggests that the larger
the number of speaker’s kernels and antispeakers, the better the performance.

Information criterion such as Bayesian Information Criterion (BIC) {94] can also
be used to determine the model order. To use BIC, a regularization term is added to
the log-likelihood function t-o penalize the complexity of the model.

Because the EBFNs, GMMs, and PDBNNs use the same set of kernels, it is not

necessary to repeat the above experiments for EBFNs and PDBNNs.
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2.2.6 Large-Scale Experiments

Based on the results in Section 2.2.5, we set the number of speaker kernels and
the number of antispeaker kernels to 40 and 160, respectively; and for each speaker
model, we used 16 antispeakers fér determining the parameters in the antispeaker
- kernels. Note that we have selected a suboptimal number of ahtispeakers to reduce
the computg,tion time in creating. the speaker models.

All speakers (108 male, 30 female) in the YOHO corpus were used to evaluate the
performance of EBFNs, GMMs, and PDBNNs in close-set text-independent speaker
verification. To demonstrate the robustness of these classifiers, speech from the en-
rollment sessions of the YOHQ corpus was used for training while speech from the
verification sessions was used for testing.

Table 2.2 summarizes the average FAR, FRR, and EER obtained by the PDBNN-,
GMM- and EBFN—based speaker 'moqels. All results are based on the average of 138
speakers in the YOHQ corpus. The results, in particular the EERs, demonstrate
the superiority of the GMMs and PDBNNs over the EBFNs. The EER of GMMs
and PDBNNS are the same because their kernel parameters are identical. Table 2.2
shows that the EER obtained by the EBFNs ‘is greater than that of the GMMs and
PDBNNS.

In terms of FAR and FRR, Table 2.2 demonstrates the superiority of the threshold
determination procedure of PDBNNs. In particular, Table 2.2 clearly shows that the
globally supervised learning of PDBNNs can maintain the average FAR at a very low
level during verification, whereas the ad hoc a.pproach used by the EBFNs and GMMs

produces a much larger average FAR. Recall from our previous discussion that the



Speaker Model | FAR (%) | FRR (%) | EER (%)
GMMs 8.01 | 0.08 0.33
EBFs 15.24 0.50 0.48

PDBNNs 1.10 1.87 0.33

40

Table 2.2: Average error rates achieved by the GMMs, EBFNs, and PDBNNs based on
138 speakers in the YOHO corpus. The decision thresholds for GMMs and PDBNNs
were determined by setting the predefined FAR to 0.5%; whereas, the thresholds for
PDBNNs were determined by reinforced learning (see Section 2.2.4).

predeﬁned. FAR for determining the decision thresholds of EBFNs and GMMs was set
to 0.5%. The average FAR. of EBFNs and GMMs are, however, very different from
this value. This suggests that it may be difficult to predict the performance of the
EBFNs and GMMs in detecting impostor attacks.

Figure 2.5 depicts the FAR and FRR Bf individual speakers in the GMM-, EBFN-
and PDBNN-based speaker veriﬁcé.tion systems. Evidently, most of the speakers in
the PDBNN-based system exhibit a low FAR. On the other hand, the GMMs and
EBFNs exhibit a much larger variation in FAR. We conjecture that the globally
supervised learning in PDBNNS is able to find decision thresholds that minimize the
variation in FAR.

Figure 2.6 shows the DET curves [62] corresponding to Speaker 164 for different
types of speaker models. In the DET plots, we use a nonlinear scale for both axes so
that systems producing Gaussian distributed scores will be represented by straight
lines. This property helps spread out the receiver operating characteristics (ROCs),

making comparison of well-performed systems much easier. Note that the DET curves
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for the GMM and PDBNN are identical in this experiment because the globally
supervised training updates the decision thresholds only. It is evident from Figure

2.6 that the GMM- and PDBNN-based speaker models outperform the EBFN one.

2.2.7 Compared with Related Work

There are several speaker verification evaluations based on the YOHO corpus in the
literature. For examples, Reynolds et al. {81} obtained a 0.51% EER and Higgins
ot al. {36] achieved a 1.7% EER. Both systems are based on GMMs. Note that

| the performance of our system (0.33% EER) is better that of [81] and [36]. However,
these error rates can only be loosely compared with each other because the evaluations
were not performed under identical conditions (different tréining/testihg paradigms
and background speaker sets).

'To compare with a more classical appr(;ach, we have repeated the same experiment
using Vector Quantization (VQ) éﬁéaker models [96]. Using 64-center VQ speaker
codebooks,? we obtained an EER of 1.20%. When the number of code vectors per
VQ codebook reduces to 32, the EER increases to 1.61%. These EERs are much
higher than that of the PDBNNs and GMMs. |

It is also important to point out that EER is not the only criterion for judging
speaker verification performance. In practical situations, we also need to consider
the tradeoff between false acceptance and false rejection. The key finding of this
work is that the PDBNNs can effectively control this tradeoff through their threshold

determination mechanism.

>The number of centers in VQ codebooks must be a power of 2.
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PDBNN/GMM EBFN
Train | Test | Train | Test

[EER(%) | 4.12 | 2461 | 6.86 | 27.17 |

Table 2.3: Performance of the PDBNN, GMM, and EBFN in the 2-D speaker verifi-
cation problem.

2.3 Comparison of Decision Boundaries

To further illustrate the difference among the three kernel-based probabilistic neural
networks, let us compare the decision boundaries in a speaker verification problem
using 2-D speech features. Details of the speaker verification experiments can be
found in Section 2'.2. We extracted the first and second cepstral coefficients of Speaker
162 and those of his antispeakers and impostors from the YOHO corpus to create a
set of two-dimensional (2-D) speech data. Similar to the enrollment procedure in
the speaker verification experiments, a PDBNN, a GMM, and an EBFN (all with 2
inputs énd 6 centers) were trained‘ to classify the patterns into two classes. Therefore,
e}.(cept for the reduction in feature dimension, the training methods, learning rate, and
verification methods are identical to the speaker verification experiments described in
Sectic;n 2.2.

Table 2.3 compares the performance of the three speaker models, and Figure 2.7
shows the test data, decision boundaries, function centers, and contours of basis
function outputs formed by these models. The decision b‘oundaries are based on the
equal error thresholds obtained from the data set. It is evident from Figure 2.7(a)
that the decision boundaries formed by thé EBFN enclose two regions, which belong

to the speaker class, with a large amount of test data, whereas, the complement
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Figure 2.5: FRRs versus FARs (during verification) of 138 speakers using (a) GMMs,
(b) PDBNNs, and (c¢) EBFNs as speaker models.
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Figure 2.6: DET curves corresponding to Speaker 164. Thick curve: EBFN-based
speaker model. Thin curve: GMM-based and PDBNN-based speaker models.

region, which belongs to the impostor class, extends to inﬁﬁity. On the other hands,
the decision boundaries created by the GMM and PDBNN extend to infinity in the
feature space for both speaker clas's_;'and impostor class. Both the decision boundaries
(Figure 2.7) and the EER (Table 2.3), suggest that the GMM and PDBNN provide
better generalization than the EBFN. These results also agree with what we have
found in Table 2.2. The poor performance in EBFNs may be caused by the least
squares approach to finding the output weights. Because the EBFNs formulate the
classification problem as a function interpolation problem (mapping from the feature
space to 0 or 1), overfitting will easily occur if there are too many hidden nodes but
too few training samples.

The aim of this Section is to illustrate the decision boundaries on a 2-dimensional

space. We have used 6 speaker kernels and 6 anti-speaker kernels for the speaker mod-
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els. No attempts have been made to optimize these parameters. Hence, a sub-optimal
performance for elliptical basic' function networks and Gaussian mixture models is
possible. The inferior performance of the RBFNs may be caused by their inherent
characteristics—attempt to minimize the desired outputs and actual outputs. This
can easily lead to overfitting. To illustrate this situation, we have trained an RBFN
;.xrith 30 centers and 2 GMMs, each which 15 centers, to solve a binary classifica-
tion problem. As shown in Figure 2.8, the decision boundaries created by RBFN
attempt to fit most of the data, whereas those created by the GMMs exhibit better
generalization.

To achieve the best generalization, it is necessary to optimize the complexity of the
model. The concept of bias-variance trade-off [12] can provide considerable insight
into this phenomenon. In bias-variance decomposition, the generalization error is
decomposed into bias and variance compo'nents. A too simple, or too inflexible model
will have a larée bias. On the other‘. hz;.nd, a too flexible mociel (too flexible in relation

to a particular training data) will have a large variance. The best generalization is

obtained when optimum balance between the bias and variance can be established.

2.4 Robustness Against Noise

One of the main challenges in speaker recognition is to recognize speakers in adverse
conditions. Noise is commonly considered as an additive component to the speech
signals. Speaker models trained by using clean speech signals are usually subject to
performance degradation in noisy environments. This section compares the speaker

verification performance of the kernel-based speaker models described in Section 2.1
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Figure 2.7: Speaker verification problem using 2-D speech features. The figures depict
the decision boundaries, function centers, and contours of constant basis function
outputs (thin ellipses) produced by (a) EBFNs and (b) GMMs and PDBNNs. The x
and + signs represent the speaker’s data and impostors’ data, respectively.
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Figure 2.8: Decision boundary created by RBFNs (black) and GMMs (green).

under clean and noisy environments.

To test the robustness of different speaker models against additive noise, zero-
mean Gaussian noise was added to the YOHO speech so that the resulting corrupted
speech has an SNR of 10dB, 6dB, and 3dB. Segmentation files® derived from the
clean YOHO corpus were used to specify the silence/speech regions of the corrupted
YOHO speech. In practice, the same speech detector that we applied to YOHO
speech should also be used to segment the corrupted YOHO speech. Our objective,
however, is to compare the robustness of different speaker models against additive
noise. Therefore, using the same segmentation files to define the speech regions of
both clean and corrupted speech prevents the error introduced by the speech detector

from interfering our comparison.

Tables 2.4 shows the average FAR, FRR, and EER obtained by the GMM-,

3These files only specify the silence and speech regions of the utterances. A speech detection
algorithm based on zero-crossing rate and average amplitude was used to determine the speech
regions.
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FDBNN- and EBFN-based speaker models under different SNRs. The results show
that the error rates of all models increase as the noise power increases. Such per-
formance degradation is mainly caused ‘by the mismatches in training and tfasting
environments. Additive white noise contaminates the speech signals and therefore
changes their acoustic characteristics. The_spea,ker models, which were trained with
clean speech, p;oduced a reasonably low error rate for speech with a high SNR. How-
ever, their performance degraded rapidly when they were applied to noisy speech.
Evidently, the EERs of PDBNNS and GMMSs are smaller than that of the EBFNs
under all SNRs. Although PDBNNs and GMMs provide better generalization, the
performance of PDBNNs and GMMs are still unacceptable at low SNRs. In addition
to additive noise, telephone speech may also be distorted by handsets and telephone
channels. These issues. are addressed in Chapters 5 and 7.

In order to investigate the effect of int;rmittent noise, machine-gun noise from the
noisex-92 corpus was added to thé-.-‘\’OHO corpus to produce corrupted speech with

signal-to-noise ratio (SNR) of 10dB, 7dB, 4dB, and 1dB. The SNR is defined by

2 |
SNR = 101ong—;, (2.33)

where o2 and o2 represent the average energy of signal and noise, respectively.

In the experiment, GMMs were used as speaker and background models. The
EERs corresponding to the machine-gun noise experiments (see Table 2.5) are much
lower than those corresponding to the white-noise experiments. Because machine-gun
noise is a kind of intermittent noise, not the whole utterance was corrupted by the

noise. On the other hand, the white noise corrupted the whole utterance and caused



SNR FAR (%) | FRR (%) | EER (%)

3dB 43.52 54.91 27.30

6 dB 42.51 53.59 20.32

10 dB 41.20 50.70 12.79

clean 8.01 0.08 0.33
(a)

SNR. FAR (%) | FRR (%) | EER (%)

3 dB 19.52 77.53 27.30

6 dB 17.03 77.53 20.32

10 dB 13.67 76.38 12.79

clean 1.10 1.87 0.33
(b)

SNR FAR (%) | FRR (%) | EER (%)

3 dB 30.48 65.91 30.32

6 dB 29.97 65.16 22.45

10 dB 29.22 61.06 14.58

clean 15.24 0.50 0.48
(c)

Table 2.4: Average error rates obtained by (a) GMMs, (b) PDBNNs, and (¢) EBFNs
at different signal-to-noise ratios in the white-noise experiments.
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Figure 2.9: (a) Original clean speech signals. (b) Speech signals corrupted by white
noise. (c) Speech signals corrupted by machine-gun noise.



‘SNR FAR (%) | FRR (%) | EER (%)
1dB 2.49 28.65 2.00
4 dB 2.39 22.17 1.89
7 dB 2.36 16.19 1.77
iO dB 2.43 11.41 1.63
clean 15.24 0.50 0.48

ol

Table 2.5: Average error rates obtained by GMMs at different signal-to-noise ratios
in the machine-gun noise experiments.

a more severe distortion (cf. Figure 2.9(b) and Figure 2.9(c)).

2.5 Conclusions

This chapter addresses the problem of building a speaker verification system using

kernel-based probabilistic neural networks. The modeling capability and robustness

of these pattern classifiers are compared. Experimental results based on 138 speakers

and the visualization of decision boundaries suggest that GMM- and PDBNN-based

speaker models outperform the EBFN ones. Results also show that the proposed mod-

ifications to the PDBNN’s supervised learning algorithm not only make PDBNNs

amenable to speaker verification tasks but also make their performance more pre-

dictable. This work also found that PDBNNs and GMMs are more robust than

EBFNs in recognizing speakers in noisy environments.
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Chapter 3

TECHNIQUES FOR ROBUST SPEAKER VERIFICATION

In recent years, a great deal of effort has been spent on the problems of transducer
mismatches and robustness in telephone-based speaker recognition. These efforts
have resulted in five types of techniques: channel equalization, feature transforma-
tion, model transformation, background noise compensation, and score normalization.
Channel equalization estimates undistorted features or features that are insensitive
to channel variation from channel-distorted speech signals. Feature-based compensa-
tion transforms channel-distorted speech features to fit clean speaker models, whereas
model—Based compensation adapts or transforms the parameters of clean models to fit
new acoustic environments. Background noise compensation aims to reduce the back-
ground noise in noisy speech or to minimize the effect of additive noise on the feature
vectors. Score-based compensation aims to minimize environment-dependent bias by
normalizing the distribution of speaker scores. This chapter provides a brief account
of these techniques. Further details of individual techniques will be elaborated in

subsequent chapters.
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3.1 Channel Equalization

Channel equalization aims to derive noise-resistant feature parameters rather than to
remove the noise. Typically, weak or no assumptions are made on the noise and the
clean models can be used directly without retraining. However, it is impossible to use
the characteristics specific to a particular noise type because noise statistics are not
explicitly estimated. |

There are two main schools of thought in channel equalization: intraframe process-

ing and interframe processing.

3.1.1 Intraframe Processing

This school of thought looks at the local spectral characteristics of a given frame
of speech. This has led to some influential methods such as cepstral weighting [101],
bandpass liftering [43), and more recently adaptive component weighting (ACW) [7]
and pole-zero postfiltering [110).

Cepstral weighting emphasizes the reliable components in feature vectors and sup-
pressés the components that are susceptible to noise and channel variation. ACW
emphasizes the formant regioﬁs, which are more resistance to environmental changes,
and attenuates the broad bandwidth spectral components. The major difference be-
tween cepstral weighting and ACW is that the former assumes that all speech frames
are subject to the same distortion, whereas the latter does not require this assump-
tion. Pole-zero postfiltering is based on the postfiltering technique commonly used in.
speech enhancement {78]. Although it can be considered as a special kind of cepstral

weighting, the weighting procedure is defined in terms of a transfer function.
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It has been shown that ACW performs significantly better than cepstral weighting
in a telephone-based speaker identification task {7} and that the performance of ACW
and pole-zero postfiltering are comparable [110]. However, these experiments have
limitations, as the speech corpora (KING and TIMIT With channel simulators) they
used (io not allow for proper examination of handset variability. Effort must therefore

be made to investigate whether these approaches are robust to handset variation. = -

3.1.2 Interframe Processing

This school of thought exploits the temporal variability of a sequence of feature
vectors. It makes use of the fact that the temporal characteristics of communication
channels are different from those of speech. Typical exainples of this approach include
cepstral mean subtraction (CMS) {8|, pole-filtered cepstral mean subtraction [69],
delta cepstrum [28], and ‘relative spectral (RASTA) processing {35].

In cepstral mean subtraction, tiié stationary channel effects are compensated for by
subtracting the long-term a\}era.ge of the cepstra,l.vectors from the channel-distorted
cepstrum. Pole-filtered cepstral meé.n subtraction extends this idea one step further.
Instead of subtracting the cepstral mean, this method subtracts the average of a
cepstral sequence whose broad-bandwidth components are further broadened. This
is accomplished by moving the broad-bandwidth poles radially away from the unit
circle. It has been shown that the average of these modified LP filters is a better
estimate of the channel as compared to the long-term average of the cepstral vectors
[69]. |

Although the mean-subtraction approaches can significantly improve performance
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in “mismatched” conditions, considerable loss of recognition accuracy is experienced
when they are used in “matched” conditions. This is due to the implicit assumption
of the mean-subtraction approaches: the long-term cepstral mean of clean speech is
zero. The requirement of long-term averages suggests that cepstral subtraction is not
appropriate for real-time implementation.

Delta cepstrum is a polynomial approximation of the time-derivative of a cepstral
sequence, which has been shown to be able to alleviate convolutional distortion [28].
However, delta cepstra do not perform well by themselves; they must be used in
conjunction with other static features.

In RASTA processing, a bandpass filter with a spectral zero at zero frequency is
applied to a sequence of feature vectors. This has the effect of suppressing the slowly
varying cdmponents and therefore minimizing convolutional distortion.

All of the above methods are similar in that they have a bandpass filtering effect
on the time trajectory of the spectfél ‘components. However, their filtering character-
istics are different. For example, the bandpass filter resulting from delta processing
exhibits a sharp peak at a small range of frequencies, while that resulting from RASTA
processing exhibits a.broa,_d passband. Therefore, delta processing introduces more
modification to the linguistic components of speech than RASTA processing. While
cepstral mean subtraction is nothing more than removing the DC component of a vec-
tor sequence, RASTA procéssing recursively removes the temporal average, making

the current output depends on its past.
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3.1.8 Limatations of Interframe and Intraframe Processing

Although the preceding methods have been successfully applied to reduce channel
mismatches, they have their own limitations. For example, all of them assume that
the channel can be approximated by a linear filter. Most telephone handsets, however,
exhibit energy-dependent frequency responses [88] for which linear filtering may be
a poor approximation. Reynolds [82] also found tha.t'current techniques can only
compensate for part of the mismatches. Therefore, a more complex representation of

handset characteristics is required.

3.2 Feature Transformation

This approach aims to make the classifiers more rob.ust by compensating the dis-
tortion in the feature domain during the c?llassiﬁcation stage. This is typically achieved
by applying an affine transformation to bring the test data closer to the training data
(60). The merit of this method is thatl speaker models can be trained on clean speech
and operated on environmental distorted speech without any retraining. Additional
coinpiltation, however, is required during verification to compute the transfqrma.tion
matrices. This approach has the advantage that both convolutional distortion and
additive noise can be compensated simultaneously. Interestingly, the cepstral mean
subtraction, pole-filtered cepstral subtraction, and cepstral weighting are special cases
of affine transformation [60].

Codeword-dependent cepstral normalization (CDCN) [1] is another feature-based

approach that can handle both channel distortion and background noise. In CDCN,
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additive noise and convolutive distortion are modeled as codeword-dependent cepstral
biases. The CDCN, however, only works well when the background noise level is low.

When stereo corpora are available, channel distortion can be estimated directly
by comparing the clean features against their corresponding distorted features. For
example, in SNR-dependent cepstral normalization (SDCN) [1], cepstral biases fof
different signal-to-noise .ratios are estimated in a maximum-likelihood framework. In
probabilistic optimum filtering [71], transformation is performed by combining the
outputs of a set of multi-dimensional least-square filters. These methods, however,
rely on the availability of stereo corpora, which could be difficult to obtain.

The requirement of stereo corpora can be avoided by making use of the informa-
tion embedded in clean speech.models. For example, in stochastic matching {93], the
cepstral biases and affine transformation matrices are determined by maximizing the.
likelihood function of the clean models gi;en the transformed data. The linear trans-
formation in [93] can be replaced by & neural network to compensate for non-linear
 distortion [98]. However, closed form solutions can no longer be obtained and the

generalized EM algorithm is required.

3.3 Model Adaptation and Transformation

Model-based approaches attempt to modify the clean speech models such that the
density functions of the resulting models fit the distorted data better. The édv&n—
tage of this approach is thét no assumption about the speech signals is required and
that modifying the testing data.is not necessary. Influential model-based approaches

include (1) stochastic matching [93] and stochastic additive transforms [89), where
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the models’ means and variances é.re adjusted by stochastic biases; (2) maximum-
likelihood linear regression (MLLR) [49], where the mean vectors of clean speech
models are linearly transformed; and (3) the constrained reestimation of Gaussian
mixtures (21], where both mean vectors and covariance matrices are transformed.
Recently, MLLR has been extended to maximum-likelihood linear transformation
[32}, in which the transformation matrices for the variances can be different from
those for the mean vectors. Meanwhile, the constrained transformation in [21] has
been extended to piecewise-linear stochastic transformation {20], where a collection of
linear transformations are shared by all the Gaussians in each mixture. The random
bias in [93] has also been replaced by a neural network to compensate for nonlinear
distortion [98]. All of these extensions show improvement in recognition accuracy.
Because the preceding methods “indirectly” adjust the model parameters via a
small number of transformations, they m'éy not be able to capture the fine structure.
of the distortion. While this limitation can be overcome by the Bayesian techniques
[39, 48], where model parameters are adjusted “directly”, the Bayesian approach re-
. quires a large among of adaptation data to be effective. Because both direct and
indirect adaptations have their own strengths and weaknesses, a natural extension is

to combine them so that the two approaches can complement each other [67,95].

3.4 Background Noise Compensation

It has been shown that about 40% of telephone conversations contain competing
speech, music, or traffic noise {22]. This figure suggests the importance of background

noise compensation in telephone-based speaker recognition. Early approaches include
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spectral subtraction {13] aﬁd projection-based distortion measure [61). More recently,
statistical-based mefhods such as noise integration model {89] and signal bias removal
[77] have been proposed. The advantage of using statistical methods is that clean
reference templates are no longer required. This property is particularly important

to telephone-based applications because clean speech is usually not available.

3.5 Joint Additive and Convolutional Noise Compensation

There have been several proposals aimed at addressing the problem of convolutional.
distortion and additive noise simultaneously. In addition to the affine transformation
and CDCN mentioned before, these proposals include stochastic pattern matching
(93], parallel model combination [33], state-based compensation for continuous-dénsity
hidden-Markov models [4], and maximum-likelihood ‘estimation of channels’ autocor-
relation functions and noise [109]. Althclugh these techniques have been successful
in improving speech recognition p.é]i:fdrma.nce, caution must be taken when they are
applied to speaker recognition. This is because adapting a speaker model to new

environments will affect its capability in recognizing speakers [10].

3.6 Score Normalization

In speaker verification, the distributions of client scores and impostor scores could
have large variation. Score normalization techniques have been proposed to reduce
score variation. The basis idea is to normalize the verification scores by using mean
and variance that are estimated from impostor-score distribution. The three common

ways to compute the impostor-score distribution are Znorm, Hnorm, and Tnorm.
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Znorm

In Znorm [50], each speaker model is tested against a set of impostors utterances,
resulting in an impostor-score distribution. The speaker-dependent normalization
parameters—mean g and variance 52—are estimated from the impostor-score distri-
bution. During recognition, these parameters are then applied to the log-likelihood

ratio score A(X) as follows:

AX)—p

Achrrm(x) — -

(8.1)

Hnorm

Handset-score normalization (Hnorm) [83] estimates the handset-dependent normal-
ization parameters (biases and scales) by testing a claimant model against handset-
dependent utterances produced by impostors. This can avoid collecting a large
amount of speaker-specific utterahg_es because test utterances from impostors can be
easily obtained. The resulting nor.ma.lization parameters are speaker- and handset-
specific. During recognition, the handset type HS(X) of the test utterance X is
detected by a handset detector. Hnorm is then applied to the log-likelihood ratio

score A(X) as follows:

AMX) — n(HS(X))

M) = T oms)

(3.2)

where u(HS(X)) and o (H.S(X)) represents the handset-dependent normalization pa-
rameters. To avoid bimodal distributions due to different genders, the parameters
were derived using utterances of impostors, which are of the same gender as the

claimant.
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Tnorm.

Another score normalization technique, namely, test normalization (Tnormj [9], uses
impostor models instead of impostors’ utterances to calculate the normalization pa-
rameters duriﬁg verification. For a given test utterances, impostors models are used
to calculate impostors’ log-likelihood scores and the normalization parameters are es-
timated. Unlike Hnorm, the same utterance is used for computing speaker scores and
for estimating normalization parameters; as a result, acoustic mismatches between

the speaker scores and normalization parameters can be avoided.
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Chapter 4

MODEL ADAPTATION AND TRANSFORMATION

Environmental robustness is an important issue in telephone-based speaker veri-
fication because users of speaker verification systems tend to use different handsets
in different situations. Different handsets may introduce different degrees of distor-
tion to the speech signals. It has been noticed that recognition accuracy degrades
dramatically when users use different handsets for enrollment and verification. This
lack of robustness with respect to handset variability makes spe;'a,ker verification over
telephone networks a challenging task. ,

This chapter focuses on model—_based compensation and describes the state-of-

the-art techniques in detail. Techniques that are related to this thesis will also be

emphasized.

4.1 Maximum a Posteriori Adaptation

With some modifications, standard speaker adaptation methods, such as maximum
a posteriori (MAP) [48}, can be used to adapt clean speaker models to suit a new
acoustic environment. Specifically, given observation data X = {x;,...,xr}, the

MAP estimate is expressed as follows:

& = argmaxp(¢|X) = arg maxp(X|¢)p(9), (41)
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where p(¢) is a probability density function of parameter vectors ¢’s.

In most practical situations, only a limited amount of adaptation data is available
for adaptation. The MAP approach can deal with this data-sparsity problem effec-
‘tively by making use of the prior distribution of clean models. The parameters of
the clean models are adjust';ed to fit the adaptation data subject to the constraint im;
posed by the prior density of the model’s parameters. The prior information prevents
inappropriate parameters modification unless the adaptation data provide strong ev-
idence.

The MAP re-estimation formula for the means of Ia GMM A = {w;, ps, T}, is

given by

n o Tk + Z’{:l Yi()xe
n+ 30, %t

i=1,...,M, (4.2)

where ;(¢) is the posterior probability of mixture 7 and 7 is a metaparameter con-
trolliné the contribution of the prior mean p; and the adaptation data x; on the
adapted mean f;. When the adaptation data is sparse, the prior medn has a strong
influence on the adapted mean. On the other hand, when the amount of adaptation
data increases, the MAP estimate converges to the m_axjmum—likeliilood estimate, a
phenomenon known as asymptotic convergence.

The disadvantage of MAP adaptation is that its rate of convergence is slow, espe-
cially when the clean models have a large number of free parameters. The effectiveness
- of MAP adaptation depends on whether adaptation data are available for most (if not
all) model parameters. This is because MAP is an unconstrained adaptation method,

i.e., adaptation is performed only on those model parameters who have “seen” the
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adaptation data. If there is no adaptation data for mixture ¢, the sum EZ—J ¥(t) in
Eq. 4.2 will become zero. As a result, MAP will not adapt the parameters of the
mixture.

The problem of unobserved mixture components can be addressed by exploit-
ing the correlation between model parameters. For example,. the linear regression
relationship among different mixture components can be used to adapt the unob-
served mixture components [17]. Other examples include the extended MAP (EMAP)
method [97] and the quasi-Bayes technique with correlated mean vectors [40]. These
techniques use the correlation between the parameters of different speech units to
estimate the mean vectors of the unobserved speech units.

Another problem of MAP adaptation is that estimating the prior disfribution ()
is often difficult. Typically, the prior can be obtained by clustering the training data
based on similarity measures. One modél can be derived for each ;:luster, and each

model is regarded as an observation drawn from the prior distribution p(¢). Then,

the hyperparameters of the prior are estimated based on sampled moments [95].

4.2 Maximum-Likelihood Linear Regression

Another popular model-based technique is maximum-likelihood linear regression
(MLLR) [49]. In MLLR, a set of transférmation matrices is used to transform the
Gaussian parameﬁers (i.e., the means and possibly covariances) of the clean models
{or speaker-independent models) to maximize the likelihood of the adaptation data.
MLLR is very effective for rapid adaptation l:;eca.use the transformations can be esti-

mated from a small amount of adaptation data. Specifically, denote pi,; as the j-th
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mean vector of the clean speaker model, the adapted mean vector p,q.s; is given by
Had.s,j = Wklls,j = Akmu‘s,j + bk:

where fi,; = [ts 57, 1}7 is the extended mean vector of u,;. The k-th adaptation ma-
trix W* = [A*,b¥] is composed of a translation vector b* € ®” and a transformation
‘matrix A* € R? x R, where D is the dimensionality of the feature vectors.

It is possible to estimate a separate transformation matrix for each mixture compo-
nent. This will probably provide sufficient flexibility to compensate for any nonlinear
distortion. However, this will also increase the number of parameters to be estimated,
which in turn requires more adaptation data to estimate the parameters robustly. In
another extreme, a single global transformation can be used for all components. This
global tying enables MLLR to adapt parameters that have not been observed in the
adaptation data. A better approach is to“tie mixture components with similar prop-
erties together to from a regression class [31]. The members of the same regression
class use the same transformation. The more components we tie together, the fewer
parameters we need to estimate; however, the transformation will also be coarser. A
regression class tree can be used to decide which components should be tied together.
The regression classes can be generated dynamically according to a binary decision
tree to deal with the tradeoff between specificity and robustness. Specifically, at every
node in the tree, a transformation matrix is estimated and shared for all Gaussian
components beneath the node. New regression classes can be incrementally created
when sufficient data become available.

When the number of regression classes is equal to the number of Gaussian compo-
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nents, the convergence characteristic of MLLR is similar to that of MAP adaptation
because in that case each Gaussian component is adapted independently just like
MAP adaptation. The number of parameters to be estimated in MLLR is usually
larger than that of MAP adaptation. To shorten computation time, a small number
of regression classes should be used; however, the performance will quickly saturate
when the amount of adaptation data increases. To address this problem, researchers
proposed to combine MLLR. with MAP [5,95]. This approach guarantees rapid MLLR
adaptation for small amount of data and asymptotic convergence with large amount

of adaptation data.

4.3 Maximum a Posteriori Linear Regression

There are several methods to combine MLLR and MAP in order to take advantages
of both methods. For example, we ca,n" firstly use MLLR to transform the model
parameters and then use MAP to "elxd‘apt the transformed models. It is also possible
to incorporate the MAP concept into MLLR. One well known approach of this type
is called maximum a posteriori linear regression (MAPLR).

When compensating environmental variation in speaker recognition, the transfor-
mation parameters, 7, are assumed to be fixed but unknown. These parameters are
usually determined by using maximum-likelihood formulations. More specifically, the

maximum-likelihood estimates of the transformation parameters are given by

s, = arg m,;axp(Yle, n) (4.3)
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and the transformed model is
A?/JLLR = fﬁML (AX):

where Y is a distorted speech sequence, Ax is a GMM representing the clean speech,
Ay LLR i5 5 GMM that fits the distorted speech Y in a maximum-likelihood sense,
p(Y|Ax,n) is the likelihood function of the transformed GMM f;(Ax) given the dis-
torted speech sequence Y, and f;,,,(-) is a transformation function with parameters
fiarr- Maximum likelihood is used because it is computationally attractive and an-
alytical solutions for the affine transformation family can be obtained easily. How-
ever, maximum-likelihood estimation only uses the information in the adaptation data
and does not constrain the transformation parameters or incorporate into them any
prior knowledge. Constraining the transformation parameters is beneficial when the
amount of adaptation data is limited or prior information about the density of the
transformation parameters is know_I_l.

By assuming the transformation parameters 7 to be a set of random variables,
the prior information can be characterized by a probability density function (pdf),
(). This function constrains the values that the parameters 77 can take. The prior
density p(n) can be combined with the likelihood function p{Y'|Ax,n) by using the

MAP formulation:

MAp = argm,gxp(nlY,Ax)
= argmaxp(Y|Ax, n)p(n) (4.4)

and

A{L’JAP = fﬁ'MAP(AX):
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where Aiyap is the MAP estimate of the transformation parameters, AM4F is the
MAP-transformed speech model, and f;,,,.(-) is a transformation function. This
technique is referred to as MAPLR in the literature [16]. If the prior distribution
reflects the the actual plausibility of the transformation parameters, then the MAP-
estimated parameters should be more robust because incorrect transformation can be

avoided.

4.4 FEigenvoice

One drawback of MAP and MLLR is that they require a large amount of adaptation
data to estimate the free parameters robustly. In recent years, model-based algo-
rithms that allow rapid adaptation have been proposed. For example, the eigenvoice

approach [45] constrains the adapted models to be a linear combination of a small set

3

of basis vectors, which greatly reduces the number of f.ree parameters to be estimated.
As a result, rapid adaptation can be achieved with a small amount of adaptation data.
The basis vectors are derived offline from a set of reference speakers. These basis vec-
tors form an orthogonél basis and guarantee to represent most of the interspeaker
variations among the reference speakers.

In the eigenvoice approach, T' speaker-dependent models are trained using the
speech of T speakers in the reference set. For each speaker model, the mean vec-
tors are étacked to from a supervector of dimension M D), where M is the number
of Gaussian components in the speaker model_ and D is the dimensionality of the
feature vectors. For a system with T reference speakers, T suppervectors will be

formed. The order of the parameters in the supervectors is unimportant as long as
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the order is identical across all supervectors. Dimension reduction techniques such
as principle component analysis (PCA) is applied to the T" supervectors to yield T
eigenvectors, each of dimension MD. The first K eigenvectors (K < T <« MD)
capture most of the variations in the speaker models. These vectors are referred to
as eigenvoices. These K eigenvoices span a space called K-space, and any adapted
models are constrained to be located in this space. For each client speaker, K eigen-
voice coefficients (w(1),...,w(K)) are estimated using an EM-based algorithm called
maximal-likelihood eigenvoice dec.omposition (MLED) [45]. Given the eigenvoice co-
efficients for a client speaker, his or her model is represented by a point P in the

K-space, i.e.,
P =e(0) +w(l)e(l) + - +w(K)e(K). (4.5)

Figure 4.1 illustrates the eigenvoice adaptation process.

PCA creates a set of orthogonél'basis and guarantees that truncating the expan-
sion after the K-th eigenvector gives minimum mean-squared error. The eigenvoice
apprchh uses these K eigenvectors to capture speaker variations. The approach con-
strains the adapted models to be a linear combination of these K eigenvectors. As K
is usually small, the degree of freedom for the speaker models is also small.

Because the adapted models are highly constrained, their performance quickly
saturates when large amount of adaptation data become available. To improve per-
formance, the eigenvoice approach can be combined with MAP or MLLR [72]. Specif-
ically, an eigenvoice model is trained and used as an initial model for MLLR or MAP

adaptation. This approach allows the adapted models to characterize new speakers
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not belonging to any reference speakers.

4.5 Parallel Model Combination

Parallel model combination (PMC) [30] is a model-based compensation technique that
approximates the distribution of noisy speech by combining clean speech models with
noise models in the log-spectral domain. Unlike conventional model retraining, where
the clean speech data must be available online, PMC uses clean speech models to
represent the statistics of clean speech data so that putting clean speech data online is
unnecessary. Another advantage of PMC is its low computational complexity because
it is not necessary to retrain the speaker models when background noise changes.
Figure 4.2 illustrates the PMC process. The process starts with é, set. of clean
speech models and a noise model. For additive noise, it is simpler to model the
noise effects in the linear- or log~spectr;l domain. Because feature vectors are of-
ten composed of cepstrum, delta c;ép'strum, and delta-delta cepstrum, they must be
transformed to the linear- or log-spectral domain. This can be achieved by applying
inverse discrete cosine transform (DCT) to the cepstral vectors. For noise vectors
with mean p& and covariance maﬁrix ¥¢ in the cepstral domain, the mapping to the

log-spectral domain is given by

fn = C7luy, (4.6)

o = CTIZHCTYT (4.7)

where C is the DCT matrix and !, and T}, represent the mean and covariance of the

noise in the log-spectral domain, respectively. Similarly, the clean speech parameters,



71

pS and T, can also be mapped to x!, and T} using Eqs. 4.6 and 4.7.
In the linear-spectral domain, the distribution of noise is log-normal, with mean

i and covariance matrix Xy given by

pnli] = exp{uhli] + £4[1,1]/2}

Enlid] = onllenli)(exp{Z,f, 41} - 1),

where ¢ and j are the indexes to the corresponding vectors and matrices. Assuming
that the noise power and speech power are independent and additive, the combined

mean and covariance in the linear-spectral domain are given by

Ky = gix + un

EY 92):){ + EN)

where g is a gain matching term introduced to compensate for (1) the level difference
between the observed speech and -rfc-)is‘e and (2) the energy mismatch between training
- and testing speech.

In the popular log-normal approximation, it is assumed that the sum of two log-
normal distributions is also log-normal. Using inverse formulae, the mean and covari-

ance of the corrupt speech in the log-spectral domain can be written as:

p,i,[z'] = In py i) - %ln {ﬁ% + 1} | (4.8)
br. - = In EY[Z:J]
gl =1 {w[i]w[ﬂ " 1} |

Finally, the parameters are transformed back to the cepstral domain using the follow-
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ing equations:

py = Cuy
e = CIiCT.

There are thre_e main variants of PMC: log-normal, data-driven, and numerical
integration. The log-normal approximation is popular but it cannot be used directly
for delta and delta-delta cepstra. A more accurate variant is the data-driven PMC
(DPMC) [30], which uses Monte Carlo simulations to éompute the means and covari-

ance matrices. Numerical integration [30} is the most accurate PMC method, but it

is also the most computationally expensive.

4.6 Vector Taylor Series

The vector Taylor series (VTS) approach: assumes that the clean speech signal z[m]
is corrupted by additive noise njm]-and channel distortion. Specifically, the distorted

speech y[m] is expressed as
ylm] = z[m] * hlm] + n[m], (4.9)

where # denotes convolution and h[m] is the channel’s impulse response. In the

cepétra.l domain, Eq. 4.9 becomes
y=x+h+gn-x—h), (4.10)

where y, X, n and h are the cepstrum of noisy speech, clean speech, noise, and the

channel, respectively, and g(z) is a nonlinear function given by

g(z) = Cln(1 4+ exp® %), (4.11)
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where C is the DCT matrix. By substituting Eq. 4.11 into Eq. 4.10, we can obtain
the cepstrum of noisy speech if the cepstrum of noise and the cepstrum of channel’s
impulse response are known.

It is reasonable to assume that the distribution of x is a mixture of Gaussians and
that of n is a single Gaussian. Even if these assumptions are valid, the cepstrum of
the corrupted speech y in Eq. 4.10 is not Gaussian because of the nonlinearity in Eq.
4.11. However, we can assumne that a nonlinear function of Gaussian is also Gaussian;
therefore the same decoder that is used for decoding x can also be ﬁsed for decoding
Y. |

Moreno et al. [68] suggested to approximate the nonlinearity in Eq. 4.11 by a
first-order Taylor series. Acero et al. [2] extended the work of Moreno et al. to
compute the mean and covariance matrix of y in the cepstral domain. In 2], x, h,
and n are assumed to be independent Gliussian vectors with means gy, tn, and iy,
and covari'c;ncé matrices Xy, X, éﬁd‘En, respectively. With these assumptions, Eq.
4.10 can be approximated by a first-order Taylor series expansion around (gn, fix, h ),

that is,

Y = ttx+ ftn+ Z(pa — iix — i) + A(x — px) + Ath — pp)

+(I — A)(n — pn),
where the matrix A is given by
A=CFC™ . (4.12)

and F is a diagonal matrix whose elements are given by vector f{u)

1

flp) = —————.
(1) 1+ exp@ s

(4.13)
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The mean of y, py, is given by

thy = pox + tn + B(tn — pix — Kn) (4.14)

and its covariance matrix X, is given by
Ty~ AT AT + AT AT + (1 - AT, (1 - AT (4.15)

It was found that the performance of VIS is close to that of a well-matched system
and the Taylor series approximation appears to be more accurate than the log-normal

approximation in PMC [2].

4.7 Probabilistic Decision-Based Neural Networks

Probabilistic decision-based neural networks (PDBNNs) were proposed by Lin, Kung,
and Lin for face detection and recognition [51], and r-ecently PDBNNs have shown
promise in text-independent spegker verification [105]. One unique feature of
PDBNNs is tileir two-phase leaming‘ rule: locally unsupervised (LU) and globally
‘supervised (GS). In the LU phase, PDBNNs adopt the maximum-likelihood principle
to estimate the network parameters. In the globally supervised (GS) phase, discrimi-
native training based on gradient descent and reinforced learning is used to fine-tune
the network parameters.

The following training strategy can be adopted to make PDBNNs appropriate
for environment adaptation [105]. The strategy begins with the training of a clean
speaker model and a clean background model using the LU training of PDBNNs. This
step aims to maximize the likelihood of the training data. The clean models are then

adapted to a channel-dependent speaker model and a channel-dependent background
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model using GS training. While clean speech data are used in the LU training,
distorted training data derived from the target channel are used in the GS training.
The GS training uses gradient descent and reinforced learning to update the models’
parameters so that the classification error of the adapted models on the distorted
data is minimized. Hence, the resulting models will be speaker- and channel-specific.

By using the distorted data derived from H channels, the above training strategy
will produce H channel-dependent speaker models for each client speaker. Likewise,
H channel-dependent background models will also be created, and they are shared
among all of the client speakers. Figure 5.1 (left portion} illustrates the idea of

PDBNN-based adaptation for robust speaker verification.

4.8 Speaker Model Synthesis

Recently, Teunen et al. [99] proposed a new model-based compensation technique
called speaker model synthesis (SMS)-to address the channel mismatch problem. SMS
begins with using maximum a posteriori (MAP) adaptation to adapt a channel- and
gender-independent background model (also called root model) to obtain a number of
channel-dependent background models, one for each known channel. The transforma-
tions among these channel-dependent background models are then computed offline.

Specifically, the transformation T,(-} from channel a to channel b are computed as
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follows:

Tuw) = o 22) (416

wa,i

Ta(ps) = i+ (o5 — Hayi) (4.17)
Ut?i

Tab(af) = O',iz (;@L), (418)

where {wq, fa i, aii} and {wh:, U4, agﬂ;} are the mixing coefficients, means and vari-
ances éf the i-th mixture component in the background models corresponding to
channels a and b, respectively. The transformation is valid because the models for
both channél a and channel b are adapted from the same root model. Note that the
transformation ensures that T,(A,) = As.

During enrollment, the channel used by the client is detected; the correspond-
ing background model is then adapted to create a channel-dependent speaker model.
During verification, the handset used by the claimant is detected. If the detected
handset matches the channel of the speaker model, then the corresponding channel-
dependent speaker and background models are used for verification. However, if the
detected handset does not correspond to the speaker model (i.e., a mismatch occufs),
then a new speaker model corresponding to the detected channel is synthesized By
using the transformation that maps the enrollment channel to the detected channel
(see Figure 4.3). The synthesized speaker model and the background model corre-
sponding to the detected channel are then used for computing the log-likelihood ratio
for decision making. Because all speaker and background models are adapted from
the root model, a one-to-one correspondence between individual Gaﬁssia.ns in these

models can be preserved. Figure 4.3 illustrates the idea of SMS.
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Research [99] has shown that SMS achieves performance that matches the best
result reported in the 1998 NIST evaluation set; in particular, its performance is
similar to that of Hnorm but only requires a fraction of Hnorm’s training time.

The idea of mapping speaker models from one channel to another in SMS has
been extended to feature-domain channel compensation. In {85], Reynolds suggests
a technique called feature mapping (see also Section 6.5) in which feature vectors
from different channels are transformed to a channel-independent feature space by
a mapping function whose parameters are learned from a set of channel-dependent

models.

4.9 Summary

Table 4.1 summarizes the characteristics of the model-based compensation techniques
discussed in this chapter, and Table 4.2 compares these techniques in terms of train-

ing methods, .requirement on the amount of adaptation data, and computational

complexity.
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.............................. OFFLINESTEPS P
Train SD models for R : Data from new speaker
speakers (+ 1 SI model) + eigenvoices + SI model

From SD models, get Iterate Estimate K weights:
R supervectors w(l), w(2),...,w(K)
Apply DRT to get R Construct supervector
eigenvectors (eigenvoices): ] for new speaker:
e(0),e(l),...,e{R— 1)} e(0) + w(lle(l) +... + w(K)e(K)
Keep first K + 1 eigenvoices: Adapted model for
e(0),e(1),...,e(K) i new speaker

Figure 4.1: The process of eigenvoice speaker adaptation. (Adapted from: R. Kuhn,
et al. Rapid Speaker Adaptation in Eigenvoice Space, IEEE Trans. on Speech and
Audio Processing, vol. 8, no. 6, pp. 695-707, 2000.)
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Figure 4.2: The PMC process. (Adapted from: G. J. Gales, Model Based Tech-
nigues for Noise Robust Speaker Recognition, Engineering Department, PhD Thesis,
Cambridge University, 1995.) '
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Figure 4.3: The idea of speaker model synthesis. (Adapted from: R. Teunen, B.
Shahshahani and, L. Heck, A Model-Based Transformational Approach to Robust
Speaker Recognition, in Proc. ICSLP 2000, vol. 2, pp. 495-498, 2000.)
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Compensation || Characteristics
Method
MAP - Constraint and prior information can be incorporated into adaptation via
prior density functions.
- Reduce to the maximum-likelihood approach when the amount of adaptation
data increases (i.e., asymptotic convergence).
- Slow convergence for large models.
- Adaptation is unconstrained in that unobserved mixture components will
not be adapted.
- The parameters of prior distributions are difficult to estimate.
MLLR. - Use a set of transformation matrices to transform speaker-independent models
to speaker-dependent models.
- Able to achieve rapid adaptation using a small amount of adaptation data.
- Use a regression tree to tie mixtures into groups.
- Performance can be saturated quickly when the amount of adaptation data
increases.
MAPLR - Incorporate the Bayesian concept into MLLR.
- Transformation parameters are treated as random variables with prior
distributions.
- More robust than MLLR because incorrect transformations can be avoided.
Eigenvoice - Constrain the adapted models to be a linear combination of eigenvectors.
- Can perform rapid adaptation using a small amount of adaptation data.
- The eigenvectors form orthogonal bases and guarantee to represent most of
the interspeaker variations.
- Performance can be saturated quickly the large amount of adaptation data
increases.
PMC - Approximate noisy speech models by combining clean speech models with
noise models in the log-spectral domain.
- Three variants of PMC: log-normal, data-driven, and numerical integration.
- Log-normal PMC cannot be used directly for delta and delta-delta cepstra.
- Accuracy: numerical integration > data-driven > log-normal
VTS - Approximate the nonlinearity between the noisy speech models, clean speech
models, and the channel models using a first-order Taylor series expansion.
- Performance is close to that of well-matched system.
- Appears to be more accurate than the log-normal PMC.
PDBNNs - Apply discriminative training to perform adaptation.
- Channel-dependent speech data are required.
- The adapted models will be speaker- and channel-specific.
SMS - Based on MAP adaptation.
- Make use of the one-to-one correspondence between individual Gaussians.
to compute transformation between different channels.

Table 4.1: Summary of the state-of-the-art model-based compensation techniques
discussed in this chapter.
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Model-based Training Requirement on the Computation |

Compensation Methods Amount of Adaptation Data | Complexity

MAP Bayesian Large Low
(EM-based) —

MLLR Maximum-Likelihood Moderate High
(EM-based) .

MAPLR Bayesian Small High
(EM-based)

Eigenvoice Maximum-Likelihood Very small Low
(EM-based)

PMC Models are combined Large High

using mismatch functions
VTS EM-hased Large High
PDBNN Reinforced Learning Small High
(Discriminative)

5MS Bayesian Small Low

(EM-based)

Table 4.2: Comparison of model-based compensation techniques in terms of training
methods, requirement on the amount of adaptation data, and computation complex-

ity.
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Chapter 5

MODEL ADAPTATION AND TRANSFORMATION FOR

CHANNEL COMPENSATION

As mentioned in Chapter 4, with some modifications, MLLR and the learning
algorithm of PDBNNs can be applied to model ad&ptation. One of the positive
properties of PDBNNSs is their supervised training procedure. However, the procedure
will change the model parameters only if the adaptation data are sufficiently close
to the model centers. MLLR, on the other hand, applies a transformation matrix
to a group of acoustic centers so that all centers will be transformed even if the
a,dapta’.cion' data are far away from.the model centers. As a result, MLLR provides a
quick improvement, but its performance quickly saturates as the amount of adaptation
data increases. This chapter proposes a model adaptation/transformation technique .
that (;ombines the advantage of PDBNNs’ supervised training procedure and MLLR
transformation. Experimental results show that the proposed techniques outperforms

several classical ones, including CMS, Hnorm, Tnorm, and speaker model synthesis.

5.1 Cascading MLLR Transformation and PDBNN Adaptation

Although PDBNN'’s reinforced learning uses handset- and speaker-dependent patterns

to adapt the model parameters, a previous study {106] showed that its performance
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Figure 5.1: The combination of handset identification and model adaptation for robust
speaker verification. Note: adaptation is applied to both the speaker and background

models.
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is inferior to that of MLLR adaptation. A possible reason is that PDBNN’s discrim-
inative training is sensitive to the centers’ locations of the “initial model”. .Beca.use
the adaptation data may be far away from the centers of the clean speaker mod-
-els, PDBNN’s reinforced learning can only adapt some of the model centers in the
clean speaker models. This phenomenon is very similar to that of MAP adaptation
in v.vhich adaptation is performed only on those model parameters who have “éeen”
the adaptation data. If a mixture component is far away from all of the adaptation
data, MAP will not adapt the parameters of that mixture. To overcome this obstacle,
we propose ﬁsing MLLR to ﬁra.nsform the clean speaker models to a region close to
the handset-distorted speech. These MLLR-transformed models are then used as the
initial models for PDBNN’s reinfdrced learning. Figure 5.1 (right portion without the
bypass) shows how the cascade of MLLR transformation and PDBNN adaptation can

be integrated into a composite speaker verification system.

5.2 Cascading MLLR Transformation and PDBNN Adaptation Using

Transformed Features

Although cascading MLLR transformation and PDBNN adaptation should be bet-
ter than using MLLR transformation or PDBNN adaptation alone, this approach
is not very practical. This is because PDBNN’s reinforced learning requires client-
dependent speech data to be collected from each of the environments that the client
may encounter during verification. A possible solution is to use stochastic feature
transformation (SFT) [57] to transform the .clea.n speech data to environment-specific

speech data. Figure 5.2 illustrates the idea of the proposed method.
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Figure 5.2: The process of fine-tunning MLLR-adapted models using transformed
features. For each known handset, a precomputed MLLR adaptation matrix is
used to transform the clean models to handset-dependent MLLR-adapted models.
Then, PDBNN adaptation is performed on the MLLR~adapted models using handset-
dependent, stochastically-transformed patterns to obtain the final adapted models.

For each l;nown handset, a pgec;)mputed MLLR matrix is used to transform
the clean models to handset-dependent MLLR-adapted models. Then, PDBNN
adaptation is performed on the MLLR-adapted models using handset-dependent,
stochastically-transformed patterns t;) obtain the final adapted models. Because
handset-specific, client-dependent speech patterns are difficult to obtain, stochas-
tic feature transformation is applied to transform the clean client patterns, asil-
lustrated in Figure 5.2, to handset-dependent client patterns. The key idea is that
SFT-transformed client patterns are artificially generated to provide the PDBNN

adaptation with the required data in the handset-distorted space for fine-tuning the



87

MLLR-adapted models. For the background speakers’ data, transforming the features

is not hecessary because plenty of environment-dependent data are available.

5.3 A Two-Dimensional Example

Figure 5.3 illustrates the idea of environment adaptation in a two-class pr.oblem.
Figure 5.3(a) plots the clean and distorted patterns of Class 1 and Class 2. The upper
right (respectively, lower left) clusters represent the clean (respectively, distorted)
patterns. The ellipses show the corresponding equal density contours. The decision
bouﬁdary in Figure 5.3(a) was derived from the clean GMMs that were trained using
the clean patterns. As can be observed from the lower left portion of Figure 5.3(a),
this decision boundary is ﬁot appropriate for separating the distorted patterns.

The clean models were adapted using the methods explained in Sections 4.2, 4.7,
and 5.1 and the results are shown in Figures 5.3(b) through 5.3(d). In Figures 5.3(b),
5.3(c), and ‘5.3(d), markers ¢ and M represent the centers of the clean models and e
and A represent the centers of the adapted models. The arrows indicate the adapta-
tion of model centers and the thick curves show the equal-error decisio.n boundaries
derived from the adapted models. For PDBNN-adaptation (Figure 5.3(b)), two clean
GMMs were trained independently using the clean patterns of each class. The dis-
torted patterns of both classes were used to adapt the clean models using PDBNN’s
reinforced learning. For MLLR-adaptation (Figure 5.3(c)), a GMM was trained using
the clean patterns of both classes, which was followed by the estimation of MLLR
parameters using the clean GMM and the distorted patterns of both classes. The

two clean GMMs corresponding to the two classes were then transformed using the
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Figure 5.3: (a) Scatter plots of the clean and distorted patterns in a 2-class problem. The
thick and thin ellipses represent the equal density contour of Class 1 and Class 2, respectively. The
upper right (respectively lower left) clusters contain the clean (respectively distorted) patterns. The
decision boundary (thick curve) was derived from the clean GMMs which were trained using the
clean patterns. (b) Centers of the clean models and the PDBNN-adapted models. The thick curve is
the decision boundary created by the PDBNN-adapted models. {(c¢) Centers of the clean models and
MLLR-adapted models. The thick curve is the decision boundary created by the MLLR-adapted
models. {d) Centers of the clean models and MLLR+PDBNN adapted models. (The clean models
were firstly transformed by MLLR,; then the transformed models were further adapted by PDBNN
adaptation to obtain the final model.) In {b), (¢}, and (d), only the distorted patterns are plotted
for clarity. The arrows indicate the displacement of the original centers and the adapted centers.
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estimated MLLR parameters. For the cascaded MLLR-PDBNN adaptation (Figure
5.3(d)), the clean models were firstly transformed by MLLR and then PDBNN adap-
tation was performed on the adapted models to obtain the final model.

A comparison between Figure 5.3(b) and Figure 5.3(c) reveals that while PDBNN-
adaptation can only transform some of the model centers to the region of the distorted
clusters, MLLR-based adaptation can transform all of the centers of the clean GMMs
to a region around the distorted clusters. By cascading MLLR transformation and
PDBNN adaptation, all of the centers of the clean GMMs can be transformed to a
region withiﬁ the distorted clusters before the decision boundary is fine-tuned. The
adaptation capability of cascading MLLR and PDBNN is also demonstrated in the

speaker verification evaluation described in Section 5.5.

5.4 Handset Selector

Unlike spea,ke} adaptation in spee.c.h‘recognition where the adapted system will be
used by the same speaker in subsequent sessions, in speaker verification, the claimant
in each verification session ma,y.be a ciifferent person. Therefore, one cannot use
~ the claimant’s speech for adaptation, because by doing so the client’s speaker model
will be transformed to fit the claimant’s speech regardless of the genuineness of the
claimant. This will result in high false acceptance error if the claimant turns out
to be an impostor. Therefore, instead of using the cl_aimant speeéh for determining
the transformation parameters or adapting the clieni; model directly, it can be used
indirectly as follows. Before verification takes place, one set of transformation para-

meters (or fxdapted speaker models) is obtained for each of the handsets (or handset
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types) that the clients are likely to use. Then, during verification, the most likely
handset (or handset type) that is used by the claimant is identified and the best set
of transformation parameters (or the best adapted model) is selected accordingly.

A recently proposed handset selector [57,58,102] can be adopted to identify the
most likely handset given an utterance. Speciﬁcally, H GMMs, {T\}{,, as shown
in Figure 5.1, are independently trained using the distorted speech recorded from
the corresponding telephone handsets. During recognition, the claimant’s features
y(t),t=1,...,T, are fed to all GMMs. The most likely handset £* is selected by the
Maxnet as illustrated in Figure 5.1.

For PDBNN adaptation, the precomputed PDBNN-adapted speaker model
(MPmEY and background model (MES}™) corresponding to the k*-th handset
are used for verification. For MLLR adaptation, the precomputed MLLR adaptation
matrix (W*") for the k*-th handset is used to transform the clean speaker model
(M) to the MLLR-adapted speaker model (MT¥"*"}. The same matrix is also used
to transform the clean background model (M,) to the MLLR-adapted background
model (M™7%") For MLLR+PDBNN adaptation, the precomputed MLLR adapta-
tion matrix (W*") for the k*-th handset is firstly used to transform the clean models
(M,, My) to the MLLR-adapted model (MTy7*", MT7#*"). Then, PDBNN adap-
tation is performed on the MLLR-adapted models to obtain the MLLR+1:_’DBNN
adapted models (MTrpdnnk® - pgriltpdbnnk™y - These models will be used for veri-

fying the claimant.
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5.5 Experiments

5.5.1 Speech Corpus

The HTIMIT corpus [84], which contains the speech of 384 speakers, was used to
evaluate the adaptation approaches. HTIMIT was collected with the objective of
minimizing confoundjng factors so that the recorded speech differs predominately in
handset transducer effects. This was achieved by playing a gender-balanced subset of
the TIMIT corpus through nine telephone handsets and a Sennheizer head-mounted
microphone. Therefore, unlike other telephone speech database where 'no handset
labels are given, every utterance in HTIMIT is labeled with a handset name (cbl-
cb4, ell-el4, ptl, or senh). The SA sentences (i.e., the rainbow sentences) spoken by
all speakers also provide the best case scenario for discriminative training techﬁiques
such as PDBNN adaptation. Because of these special characteristics, HTIMIT has
been uéed in several speaker recognition studies, including Quartieri et al. [76] and
Mak and Kung [57].

Speakers in the corpus were divided into a speaker set {consisting of 100 speakers)
and an impostor set (consisting of 50 speakers). Each speaker in the corpus spoke
two dialectal sentences (the SA sentence set), five phonetically-compact sentences (the
SX sentence set) and three phonetically-diverse sentences (the SI sentence set). Bach .
speaker spoke the same set of sentences in the SA sentence set. In the SX sentence set,
some speakers spoke the same sentences. However, all sentences in the SI sentence set
are different. Therefore, the HTIMIT corpus allows us to perform text-independent

~ speaker verification by using SA and SX sentence sets as the training set and the SI
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sentence set as the test set.

5.5.2 Training the Handset Selector

A handset selector consisting of 10 handset-dependent GMMs was trained using the
speech of all client speakers. Specifically, for each handset, the utterances from the
SA and SX sentence sets of 100 clients speakers were used to train the corresponding

handset-dependent GMM.

5.5.3 Enrollment Procedures

Utterances from the head-mounted microphone (senh) were considered to be clean and
were used for creating the speaker models and background models. A Pilot experiment
was performed to compare the performance of using maximum-likelihood estimation
(MLE) and MAP adaptation [86] to cfea)ce speaker models. Different combination of
features (MFCCs, delta MFCCs, and.delta-delta MFCCs) and interframe processing
techniques (CMS [8] and RASTA [35]) were also investigated. For MAP adaptation,
the number of speaker centers was equal to the number of background centers because
" the speaker models were adapted from the background model. For MLE, we used
fewer speaker centers for the speaker models that use both static and dynamic features
{delta MFCCs and delta-delta MFCCs) as inputs, because when the feature dimension
increases, more parameters are required to be estimated. We reduced the number of
speaker centers so that the parameters can be estimated robustly.

Table 5.1 shows the equal error rates (EERs) of different features and model cre-

ation methods. The EERs were based on the avérage of 100 target speakers and
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50 impostors without any channel compensation; hence, they represent the inherent
channel-robustness of the features. Evidently, all feature combinations and train-
ing approaches achieve a similar level of performance. However, MFCCs with MLE
training achieves the lowest EER. RASTA processing, which is equivalent to bandpass
filtering the MFCC sequences, will smooth out the sequences and make the speakers
less distinguishable; as a result, its performance is poorer than that of CMS.

We chose to use MFCCs as features and Mt;E as the training method in the rest
of the experiments ’beca,use the time to estimate the MLLR transformation matrices
depends on t-he feature dimension. By keeping the dimension small, the time required
to estimate the transformation matrices can be greatly reduced. To demonstrate
this phenomenon, we performed another experiment to compare the time used for
computing the MLLR parameters with feature dimensions set to 12 and 36. The
number of training patterns is the sa,mn; in both casés. The time to compute the
MLLR parameters for 12-dimensiané,1 features is 1,310 seconds while that for 36-
dimensional features is 94,530 seconds. This suggests that the feature dimension is a

predominant factor in determining the computation time.

Feature Interframe MAP MLE
Processing | Equal Error | Equal Error | No. of Speaker
Method Rate (%) Rate (%) Centers
MFCC CMS 11.86 11.23 32
MFCC+AMFCC CMS 1201 14.36 16
MFCC+AMFCC+AAMFCC CMS 11.39 15.85 8
MFCC RASTA - 1261 12.91 32

Table 5.1: EER (in %) of different features combination and training approaches.
The number of centers in the background models was set to 64 in all cases.
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Based on the results in the pilot experiment, we assigned a 32-center GMM (M,)
for each client speaker to characterize his or her voice. For each speaker model, the
training vectors were derived from the SA and SX utterances of the corresponding
speaker. A 64-center GMM universal background model (M), which was trained
using all of the SA and SX utterances from all speakers in the speaker set, was used
to normalized the speaker scores (see Eq. 5.1).

The feature vectors were 12-th order mel-frequency cepstral coefficients (MFCCs)
computed every 14ms using a Hamming window of 28ms. To remove silence frames,
the phonetic transcription files (.phn) in the corpus were used. All silence regions, as
specified in the transcription files, were excluded from the feature extraction process.

Therefore, all frames are based on the speech regions of the utterances.

5.5.4 Model Adaptation Procedures

For PDBNN-based adaptation, thé clean speaker model (M,) and the clean back-
ground model (M;) described before were used as the initial models for globally
supervised training. The SA and SX utterances of the target speaker and background
speakers from a telephone handset were used as positive and negative training pat-
terns, respectively. Hence, for each target speaker, a handset-dependent speaker
model and a handset-dependent background model were created for each handset (in-
cluding the head-mounted microphone used for enrollment). As shown in Figure 5.1,
the PDBNN-adapted models are denoted as M?{"™* and MPp™¥,

For MLLR-based adaptation, we used a single, full transformation matrix to com-

pensate for the mismatch between two environments. Specifically, a clean background
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model (M,) was trained using the clean speech of all speakers in the speaker set.
Then, the speech data from another handset were used to estimate a transformation
matrix W* corresponding to that handset using MLLR. This procedure was repeated
for all handsets in the HTIMIT corpus. As illustrated in Figure 5.1, the MLLR-
adapted models are denoted as MT47* and MTF.

For MLLR+PDBNN adaptation, both MLLR transformation and PDBNN glob- |
ally supervised training were applied to compensate for the acoustic mismatch. First,
MLLR was used to transform the clean speaker model (M) and the clean background
model (M,) to handset-dependent models. PDBNN globally supervised training were
then applied to the handset-dependent models. The handset-dependent SA and SX
utterances of the target speaker and background speakers were used as the training
patterns in the PDBNN supervised training. The resulting models are denoted as
MTIrtpdnnk gnd MITHPEIE as illustrated in Figure 5.1.

The MLLR+PDBNN+SFT adaptation is identical to MLLR+PDBNN adapta-
tion except that the former uses st.ochastically transformed speaker features in the
PDBNN globally supervised training. Specifically, the clean speaker patterns from
the senh handset were transformed using SFT to obtain a set of artificial, handset-
dependent patterns for PDBNN adaptation. Because handset-dependent patterns for
the background speakers can be easily obtained, it is not necessary to perform SFT
on background speakers’ speech. Although HTIMIT provides training data for all
speakers and handsets, not all of these data were used in this part of the experiments.

This is because in practical implementation of speaker verification systems, each client

speaker typically provides a few utterances from a single handset only. The experi-
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ments reported here aim to simulate a more realistic environment than HTIMIT can
provide by -artificially generating environment-dependent data for PDBNN adapta-
tion. Therefore, the implementation constraints o_f MLLR+PDBNN adaptation—the
necessity of handset-dependent speaker patterns—can be relaxed.

The‘ SFT parameters were obtained as follows. The clean utterances (SA and SX
utterances from handset senh) of 20 speakers were used to create a 2-center GMM
clean model Ay. Using this clean model and the handset-dependent utterances (SA
and SX) of these 20 speakers, a set of feature transformation parameters was computed
for each handset. Further details on SFT can be found in Section 6.4.

A preliminary evaluation was performed to compare the performance of MLLR
transformation using 5, 20 and 100 speakers to estimate the adaptation matrices
W*s. While the performance improves with the number of speakers, the computation
time also increases with the tota} number of training patterns. However, because
this is a one-time (offline) computation, the training cost is not as critical as that of
the enrollment computation (see Section 5.6.2 for more discussions). Therefore, 20
and 100 speakers were used to estimate the MLLR transformation matrices in the
experiments.

We have also conducted experiments using Hnorm [83}, Tnorm [9], stochastic
feature transformation (SFT) (57, and speaker model synthesis (SMS) [99] for com-
parison. Hnorm aims to make the scores derived from different handset types more
comparable, which is an important step for ensuring consistency across handsets.
Tnorm does not make explicit use of handset types; its main purpose is to reduce

the miss rate at low false-alarm rate instead of reducing the EERs. SMS is a model-
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based compensation approach that combines handset selector and handset-dependent
transformations to overcome the handset mismatch problem.

For Hnorm, the speech patterns derived from handset-dependent utterances of
49 same-gender (same as the client speaker), nontarget speakers were used to com-
pute the handset-dependent score meéans and standard deviations. As a result, each
client speaker model is associated with 10 handset-dependent score means and stan-
dard deviations. These parameters were used during verification to normalize the
claimant’s scores. For Tnorm (9], verification utterances were fed to all of the 99
nontarget spéaker models to calculate the score mean and standard deviation. These
parameters were then used fo normalize the claimant’s scores. The SFT parameters
were estimated using the same 20 and 100 speakers, as in PDBNN model adaptation
and MLLR model transférmation. For SMS, the transformations between different
handsets were derived from the p_aramete:rs of the corresponding handset-dependent
background models, which were trained using all of the SA and SX utterances of the

corresponding handsets from all speakers in the speaker set.

5.5.5 Verification Procedures

During verification, a pattern sequence Y derived from each of the SI sentences of the
claimant was fed to the GMM-based handset selector {I';}}2,. Handset-dependent
speaker and background models or adaptation matrix were selected according to the

handset selector’s output (see Figure 5.1). The test utterance was then fed to an

vk
ad_s

k*

adapted speaker model M and an adapted background model M:’&_b to obtain
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the score

S(Y) =logp(Y ML) — log p(Y|IMLE), (5.1)

where ¥ € {PDBNN, MLLR, PDBNN+MLLR, PDBNN+MLLR+SFT} represents
the type of adaptation used for obtaining the adapted models. S(Y’) was compared
with a global, speaker-independent threshold to make a verification decision. In this
work, the threshold was adjusted to determine the equal error rates (EERs).

For each handset and adaptation method, a set of client scores and a set of im-
postor scores were collected as follows. Each of the 100 adapted speaker models was
tested by the SI utterances of the corresponding speaker and 50 impostors to produce
a set of client scores and impostor scores corresponding to that speaker.! For each
handset in an experimental setting, there were 300 client speaker trials (100 client
speakers x 3 sentences per speaker) and 15,000 -impostor trials (50 impostors per
client speaker x 100 client speakers x 3 'sentences per impostor). The client scores
and impostor fscores of 100 speak(;r models were lumped together to form a set of
client-speaker scores and a set of impostor scores. By adjusting a decision threshold,
these two sets of scores produce a detection error tradeoff (DET) curve [62] and a
speaker-independent equal error rate (EER). Note that the DET curve and EER are
handset-dependent because they are derived from handset-dependent scores. To ob-
tain handset-independent DET curves and EERs, the client and impostor scores of
10 handsets were concatenated. to form a set of handset-independent client scores and

impostor scores.

1Client speakers will not be used as impostors.
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5.6 Results and Discussions

5.6.1 Comparison in Terms of Error Rates

Table 5.2 show the results of different environment adaptation approaches, including
cepstral mean su‘btraction (CMS), test normalization (Tnorm) [9], handset normal-
ization (Hnorm) {83], speaker model synthesis (SMS) [99], PDBNN adaptation, sto-
chastic feature transformation (SFT) (57), MLLR, MLLR+Hnorm, MLLR+PDBNN
| and MLLR+PDBNN+SFT adaptation. All error rates were based on the average of
100 target speakers and 50 impostors. The column witﬁ label “Average” shows the
average of 10 handset-dependent EERs corresponding to the 10 handsets, and the col-
umn with label “Global” shows the handset-independent EERs obtained by merging
the scores of 10 handsets. Therefore, the decision thresholds used for obtaining the
averége EERs are speaker-independent but handset-dependent, and the thresholds
used fof obtaining the global EERs,ar‘é speaker- and handset-independent.

Figure 5.4 shows the DET curves corresponding to handset el2; there were
300(100x 3) speaker trails and 15000(100x50x3) impostor trials in the experiment.
Figuré 5.5 shows the composite DET curves obtained by merging the scores of all
handsets; there were 3000(300x 10) speaker trails and 150000(15000 x 10) impostor tri-
als in the experiment. The following discussions are based on the handset-independent
EERs.

Evidently, all cases of environment adaptation (except Tnorm) show significant
reduction in error rates when compared to CMS. In particular, MLLR+PDBNN and

MLLR+PDBNN+SFT adaptation achieve the largest error reduction. Table 5.2 also
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Figure 5.4: DET curves corresponding to handset el2 based on different environment
adaptation approaches: PDBNN, cepstral mean subtraction (CMS), Handset normal-
ization (Hnorm), speaker model synthesis (SMS), stochastic feature transformation
(SFT), MLLR, MLLR+PDBNN, and MLLR+PDBNN+SFT. For ease of comparison,
methods labeled from (A) to (H) in the legend are arranged in descending order of
EERs.
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Composite DET curves based on different environment adaptation ap-
proaches: cepstral mean subtraction (CMS), Handset normalization (Hnorm), speaker
model synthesis (SMS), PDBNN, stochastic feature transformation (SFT), MLLR,
MLLR+PDBNN+SFT, and MLLR+PDBNN. The composite DET curve is created
by merging the scores of all speakers and handsets. For ease of comparison, methods
labeled from (A) to (H) in the legend are arranged in descending order of EERs.
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Adaptation Equal Error Rate (%)

Method cbl [cb2 | ¢b3 | cbd | ell | e12 | el Jeld | pt1 [senh[] Average [ Global
CMs 8.218.50[21.20 | 15.4018.15[11.20 | 11.49 [8.85 [ 10.56 [ 6.79 | 11.03 11.20
Tnorm 8.88 |8.94]22.58|14.94{9.30] 9.78 [ 10.40[8.64 | 8.51 [ 5.54 || 10.74 | 11.39
Hnorm 7.30|6.98 | 13.81[10.42 | 7.42| 9.40 [ 1032|762 | 9.34 | 7.06 || 8.98 | 9.51
SMS 6.61]5.78 [ 14.93| 10.99{6.68 | 7.94 | 8.08 [6.88[ 7.86 [5.55 [ 8.22 | 9.51
PDBNN-100 7.72|8.48 | 10.02| 9.66 {6.72|11.59| 8.64 [9.59| 8.99 [3.01]] 8.44 | 9.34
SFT-20 4.183.61[17.64|11.8114.93 7.24 | 7.82 [3.85] 6.64 [360| 713 | 7.42
SFT-100 4.28|3.61[17.55|11.06 [4.81| 7.60 | 7.34 [3.87] 6.12 [365] 698 | 7.18
MLLR-20 4.693.3417.23|10.21}5.52| 7.35 | 9.66 |4.76] 8.84 354 7.51 | s.33
MLLR-100 4.52|3.14[15.17)| 9.58 [4.79]| 7.60 | 6.46 [4.84] 6.94 [3.60] 687 | 7.12
MLLR-100+Hnorm 5.0114.12]115.22| 9.34 |495| 7.01 | 5.96 }4.29| 6.65 | 3.69 6.62 7.77
SFT-20+Hnorm 4.18|3.61[17.64 | 11.81[4.93| 7.24 | 7.87 [3.85] 6.64 [ 360 7.13 | 7.42
MLLR+PDBNN-100 4.303.12]10.16] 6.89 [5.01] 6.84 | 6.36 [4.87] 6.53 [3.43]] 5.75 | 6.40
MLLR+PDBNN+SFT-100{4.21|3.01 [ 12.86 | 7.65 [4.97] 5.65 | 6.05 |4.26 [ 5.46 [ 3.43[| 5.75 | e.53

Table 5.2: Equal error rates (in %) achieved by cepstral mean subtraction (CMS),
Tnorm, Hnorm, speaker model synthesis (SMS), PDBNN adaptation, stochastic fea-
ture transformation (SFT), SFT+Hnorm, MLLR, MLLR+Hnorm, MLLR+PDBNN, -
and MLLR+PDBNN+SFT adaptation. Note that CMS and Tnorm do not require
the handset selector. All results were based on 100 target speakers and 50 impostors.
The MLLR and SFT transformation matrices were estimated using 20 and 100 speak-
ers (denoted as ‘-20" and ‘-100’, respectively) in the speaker set. The label “Average”
refers to the average of handset-dependent EERs, and the label “Global” refers to the
handset-independent EERs obtained by pooling the scores of all handsets.

demonstrates i:ha.t model-based adapt;a.tion and feature-based transformation (SFT)
are comparable in terms of error rate reduction. The results are also consistent with
those of Figure 5.5, which shows that a large portion of the DET curve of SFT-100
overlaps with that of MLLR-100.

Although PDBNN adaptation uses discriminative training to adapt the model pa-
rameters to fit a new environment, the results show that using PDBNN adaptation
alone is not desirable because its performance is inferior to that of MLLR adapta-
tion. This may be due to the intrinsic design of PDBNNS, i.e., the supervised rein-

forced/antireinforced learning of PDBNNs are designed for fine-tuning the decision
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boundaries by slightly adjusting the model centers responsible for the misclassifica-
tions. As a result, some of the centers will not be a.da.pte& at all. Because only
misclassified data are used for adaptation and their amount lis usually small after LU
training, moving all the centers from the clean space to the environmentally distorted
space may be difficult. On the other hand, MLLR adaptation finds a transformation
matrix to maximize the likelihood of the adaptation data. As a result, moving all of
the model centers to the environmentally distorted space is much easier.

PDBNN adaptation requires speaker-specific training data from all possibfe hand-
sets that the users may use. MLLR adaptation, on the other hand, only requires some
environment-specific utterances to estimate the global transformation matrices, which
requires much less training data; better still, the utterances do not necessarily need to
be produced by the same client speaker. PDBNN adaptation also requires additional
training for the inclusion of new speakers%ecause the new speaker models and back-
ground models should be adapted ﬁsing gradient descent to environment-dependent
models. On the other hand, for MLLR adaptation, transformation can be applied to
create new speaker models and background models once the MLLR transformation
matrices have been estimated.

The results also demonstrate that SFT and MLLR achieve a comparable amount
of error reduction. A comparison between SFT-20 and MLLR-20 (where the training
utterances of 20 speakers were used to estimate the transformation parameters) reveals
that SFT performs slightly better when the amount of training data is small. This
is because the number of free parameters in feature transformation is much less than

that of MLLR. However, the performance of SFT quickly saturates when the number
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of training patterns increases, as indicated in SFT-100 and MLLR-100. While MLLR
requires much more data to estimate the global transformation matrices robustly, its
performance is better than that of SF'T when suflicient training data are available.

As shown in Table 5.2, the EERs achieved by Tnorm and CMS are very. close.
Note that the compensation in Tnorm and CMS are “blind” in that no handset
information is used. The results show that Hnorm outperforms the classical CMS;
however, the improvement is not as significant as SFT and MLLR. Recall that both
Hnorm and Tnorm work in the likelihood-ratio score space using two normalization
paraméters Oﬁly (bias and scale).. SFT and MLLR, on the other hand, compensate
for the mismatch at the feature space and model space, respectively. Both methods
can translate and scale the components of feature vectors or models’ centers. Because
the number of free parameters in SFT and MLLR is much larger than that of Hnorm
and Tnorm, SFT and MLLR are more effective provided that their free parameters
can be estimated correctly. |

Table 5.2 and Figure 5.5 also show that SMS outperforms the classical CMS and
achieves a performance comparable to Hnorm, which agrees with the results in [99)].

Because SFT and Hnorm work in different spaces (SFT transforms speech features
in the feature space and Hnorm performs score normalization in the score space), we
have also combined these two techniques to see whether further improvement can be
made. The results (“SFT-20+Hnorm” in Table 5.2) show that no improvement was
obtained when compared with SFT-20; We have also combined MLLR and Hnorm to
see the eflect of combining model transformation with Hnorm. The results (“MLLR-

100+Hnorm” in Table 5.2) show that MLLR+Hnorm performs slightly worse than -
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that of MLLR alone in térms of EER. A possible reason is that the SFT (MLLR)
has already transformed the features (clean models} to a region close to the clean
features (distorted features); this action effectively achieves what Hnorm is supposed
to achieve. Therefore, performing Hnorm on SET scores or MLLR scores has little
effect. Another possible reason is that all of these methods (SFT, MLLR, and Hnorm)
use the same handset selector for choosing their parameters. Because the handset
information is identitical for each verification session, no additional benefit can be
obtained by combining SFT and Hnorm or MLLR and Hnorm.

Although it may not be desirable to use PDBNN’s reinforced learning alone, it
is amenable to the fine-tuning of MLLR-transformed centers. This is evident from
the row MLLR+PDBNN in Table 5.2, where error reductions of 10% with respect to
MLLR-100 and 31% with respect to PDBNN-100 were achieved. The main reason
behind these error reductions is that MLLR can transform the clean model centers
to the region of distorted clusters. These initial centers give a better “seed” for the
reinforced learning.

For_MLLR+PDBNN-|—SFT adaptation, an EER of 6.53% is achieved (the bottom
row of Table 5.2), which is slightly higher than that of MLLR+PDBNN adaptation
(6.40%). The DET curves of MLLR4+PDBNN+SFT and MLLR+PDBNN in Figure
5.5 are highly overlapped, which suggests that the performance of MLLR+PDBNN
with and without using stochastically-transformed data are almost identical for a
wide range of decision thresholds. Bear in mind that MLLR+PDBNN adaptation re-
quires speaker- and handset-dependent training data, whereas MLLR+PDBNN+SFT

adaptation requires handset-dependent training data only. Therefore, in terms of
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practicality, MLLR+PDBNN+SFT adaptation has advantage over MLLR+PDBNN

adaptation.

5.6.2 Comparison in Terms of Computational Complexity

In this section, we examine the computational complexity of MLLR and PDBNN
adaptation. Suppose the speaker modél is a GMM with M; components and the
background model is a GMM with M, components. Let D be the dimension of

feature vectors, and 7" be the number of frames in the adaptation data.

PDBNN

In PDBNN adaptation, for each epoch, Eq. 2.22 is used to compute a segmental
score for each training segment. Let S; and S; be the numbers of speaker’s segments
and background segments, respectively and N be the size of each segment. The time
comple;:ity is O((S1 + S2)N D(Ml. + M)). If that segment is misclassified, reinforced
or anti-reinforced learning will be applied, which will require O(N D(M; + M,)) oper-

ations. Therefore, PDBNN has an overall complexity of O((S; + S2)ND(M; + My)).

MLLR

Suppose a global transformation matrix is ﬁsed to compensate the channel mismatch
effect. Based on the notation of [95], computing the posterior probability requires
O(T DM,;) operations where T, D, and M, represents the number of adaptation vec-
tors, the dimension of feature vectors, and the number of Gaussians in the GMM,

respectively. To compute the intermediate variables h;; and z;, MLLR requires
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O(T D*M,) operations. To compute W, we néeci to solve a system of D x (D+1) linear
equations, which requires O(D*) operations. Updating the means requires multiply-
ing the mean vector by the adaptation matrix W, which needs O(M,D?) operations.
Therefore, MLLR. has an overall complexity of O(D* + M,D? + T D?Mj,).

To compare the computation time of different adaptation approaches, we have
measured their training and verification time. The simulations were performed on
a Pentium IV 2.66GHz CPU. The measurements were based on 30 speakers and 50
impostors in the HTIMIT corpus and the total CPU time running the whole task was
recorded.

The training time is composed of two parts: systemwise computation time and
enrollment computation time. The former represents the time to carry out the tasks
that only need to be berformed once. These tasks include the computation of MLLR
transformation matrices and background’ model training. The enrollment computa-
tion time represents the time to entoll a new speaker and to adapt his or her models.
It was determined by taking the average enrollment time of 30 client speakers us-
ing seven utterances per spealcer. The veriﬁcatiox‘l time is the time taken to verify
a claimant based on a single utterance. It was determined by taking the average
verification time of 80 claimants (30 client speakers and 50 impostors) using three
utterances per claimant.

Table 5.3 shows the training and verification time for Hnorm, Tnorm, PDBNN-
100, MLLR-100, MLLR+PDBNN-100 and MLLR+PDBNN+SFT-100. Evidently,
PDBNN adaptation requires an extensive amount of computation resources during

enrollment because a handset-dependent speaker model and a handset-dependent
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background model were created for each speaker and acoustic environment. It is
of interest to compare the enrollment time of the techniques that involve PDBNN
adaptation. Table 5.3 shows that the enrollment time for PDBNN-100 is longer than
that of MLLR+PDBNN-100 and MLLR+PDBNN+SFT-100. Because MLLR moves
the model centers to a feature space close to 1';he adapted data, PDBNN adaptation
converges rapidly. As a result, the enrollment time for MLLR+PDBNN-100 and '
MLLR+PDBNN+SFT-100 is less than that for PDBNN-100.

The long systemwise computation time of the methods that involve MLLR
suggests that computing the MLLR transformation matrices requires an extensive
amount of computation resources. This is because to use MLLR adaptation, it is
required to estimate 10 transformation matrices for 10 different environments of-
fline, and for each environment, patterns from all background speakers are involved
in the estimation of the transformation matrix. However, once the matrices have
been computed, MLLR adaptatioﬂ"requires considerably less computation resources
than PDBNN adaptation to enroll a new speaker (compare the enrollment computa-
tion time of PDBNN-100 and MLLR-100 in Table 5.3). This is because to enroll a
speaker, PDBNN adaptation requires to create 10 speaker models and 10 background
models for 10 different acoustic environments, whereas the MLLR, transformation
matrices have been precomputed offline. Fortunately, creating a speaker model by
PDBNN adaptation involves the patterns from the corresponding speaker and the
background speakers only, and adaptation takes place only for those patterns that
cause misclassification.

Table 5.3 shows that Hnorm requires considerably more computation resources
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Adaptation Method Training Time Verification Time
Systemwise Computation | Enrollment Computation
Time (seconds) Time (seconds) {seconds)
Hnorm 240.78 248
‘Tnorm 324.30 0.96 37.54
PDBNN-100 8,489.54 1.20
MLLR-100 0.96 0.38
MLLR+PDBNN-100 130,713.30 2,561.74 1.59
MLLR+PDBNN-SFT-100 5,157.77 1.27

Table 5.3: Training and verification time used by different adaptation approaches.
The training time is composed of two parts: systemwise computation time and en-
rollment computation time. The former represents the time to carry out the tasks that
only need to be performed once. These tasks include the computation of the MLLR
transformation matrices and background model training. The enrollment computa-
tion time represents the time to enroll a new speaker and to adapt his/her models.

than Tnorm during enrollment. However, Tnorm takes a longer time to verify a
speaker than Hnorm. Although both Hnorm and Tnorm work in the likelihood ratio
score space, they have different complexity when it comes to training and testing.
The main computation of Hnorm Hes in“the training phase and is proportional to the
total number of nontarget utterances because these utterances are fed to the speaker
and background models to calculate the nontarget scores, which in turn are used
to calculate the normalization parameters. Once the Hnorm parameters have been
calculated, rapid verification can be achieved. For Tnorm, on the other haﬂd, verifi-
cation is computationally intensive and the amount of computation is proportional to
the total number of speaker models used for deriving the normalization parameters.
For a better estimation of Tnorm parameters, a large number of scores are required,
which in turn require a large number of speaker models. This can greatly lengthen

the verification time. Therefore, among all adaptation methods, only Tnorm cannot
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achieve near realtime performance during verification.

5.6.3 Comparison in Terms of Storage Requirements

Because storage requirements are also important in practical implementation, it is of
interest to compare the disk space usage of different adaptation methods. Table 5.4
shows that PDBNNs adaptation requires the largest amount of disk space because
it requires the storage of one speaker model and one background model for each
handset and target speaker. On the other hand, Hoorm, MLLR, and SFT require a
small amount of disk space per handset. The disk space requirement of PDBNN is
proportional to the number of acoustic environments, E, because it is necessary to
adapt a handset-specific speaker model and a handset-specific background model for .
each environment. Note that Tnorm does not require any disk storage because its

normalization parameters are computed during verification.

5.7 Conclusions

We have presented model adaptation and transformation approaches to addressing the
problem of- environmental mismatch in telephone-based speaker verification systems.
A handset selector is combined with (1) handset-dependent model transformation,
(2) reinforced learning, and (3) stochastic feature transformation to reduce the effect
caused by the acoustic distortion. Experimental results based on 150 speakers of the
" HTIMIT corpus show that the model adaptation based on the combination of MLLR
and PDBNN outperforms a number of classical techniques, including CMS, stochastic

feature transformation, Hnorm, and speaker model synthesis.
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| Adaptation Method || Number of Parameters | Disk Usage in Bytes
CMS (No adaptation) PN, + Ny 326,400
Hnorm PN.+ Ny +2DFE 327,360
SMS PNy + EN, 704,000
MLLR PN+ N, + D(D+1)E 332,640
SFT PN, + Ny +2DE 327,360
PDBNN (PN: + Np)E 3,264,000
P Population size (100)
D Feature dimension (12)
N, Number of parameters per speaker model (= 1+ D+ Dj32 = 800)
Ny Number of parameters per baékground model (= [1 + D + D]64 = 1600)
E _ number of acoustic environments (10)

Table 5.4: Disk space requirements of different adaptation methods. The numbers
inside brackets are the values of the corresponding parameters used in the experiments.
Note: the figures in the last column are calculated by assuming that each floating-
point number occupies 4 bytes.
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Chapter 6

FEATURE TRANSFORMATION

One of the key problems in phone-based speaker verification is the acoustic mis- -
match between speech gathered from different handsets. One possible approach to
resolving the mismatch problem is feature tramfomation. This qhapter focuses on
feature-based compensation and highlights the state-of-the-art techniques that are

related to this thesis.

6.1 Cepstral Mean Subtraction

"a

When signal z[n] passes through a linear filter with impulse response h[n], we obtain

a signal y[n]
yln) = aln] + him, (6.)

where * denotes convolution. Based on Eq. 6.1, we can express the cepstrum of y([n]

in terms of the cepstrum of z[n] and A[n] as follows:
v: =%+ h, _ (6.2)

where t denotes the frame index. For an utterance with T' frames, the mean of y, is

given by



113

Cepstral mean subtraction (CMS) [8, 28] consists of subtracting the sample mean ¥

from the cepstral vector y, to form the normalized cepstral vector Xy, i.e.,
Substituting Eqs. 6.2 and 6.3 into Eq. 6.4, we obtain

~

Xt

= x —X. (6.5)

Note that the normalized cepstrum %; will become close to the. clean cepstrum x;
when x = 0. In qther words, CMS can remove the channel cepstrum h from channel
distorted speech y; when fhe expectation of clean speech cepstrum is zero.

Itrhas been shown that cepstral mean subtraction can minimize the filtering effect
of linear channels [8]. The method provides significant robustness a,ga‘iinst channel
variations as long as the uttera.iices have at least 2 seconds of speech [8]. To use
the method effectively, mean subtraction should be performed on every utterance for
both i;raining and recognition.

However, considerable loss of recognition accuracy is experienced when CMS is
used for speaker recognition in which both training and iecognition are performed
on the same channel. This is due to the implicit assumption of QMS: the long-term
cepstral mean of clean speech is zero. This assumption is correct only if the utterances
are phonetically balanced; in other words, the speech in eaéh utterance should contain

approximately the same amount of voiced, unvoiced, and plosive sound.
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6.2 Signal Bias Removal

Rahim and Juang [77] proposed an iterative technique called signal bias removal
(SBR) to minimize the effects of channel mismatch. SBR can be considered as a
blind equalization method that reduces the acoustic differences between the training
and testing environments. The method can deal with both additive cepstral bias and
additive spectral bias.

In SBR, the channel is represented by an additive bias term b. This bias term is
estimated from the distorted cepstral vectors using the following maximum-likelihood
formulation:

p(Y|b,A) = [H ply: — bl ] (6.6)
where Y = {y1,¥2,---,¥t,--., ¥} i8 an observation sequence of T frames and A =
{X;i=1,2,..., M} contains the hidden Markov models of A different speech units.
For a given A,’ the maximum-likelihood estimator, b, is the one that satisfies Eq. 6.6.

SBR. uses a two-step iterative procedure to remove channel bias. In the first step,

given a set of centroids yu; of distorted speech, the channel bias b is estimated from

the test utterance, i.e.,

b= 7 (v~ b 6.7)

where 7" is the number of frames in the utterance and ;- is the nearest neighbor to y,
according to a distance criterion that is consistent with the probability distribution
of the distorted signal y,:

¢ = argmin {ly, — . (6.8)

In the second step, the estimated bias, b, is subtracted from the distorted signal to
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recover the undistorted cepstrum, i.e.,

These two-step procedure results in a maximization of Eq. 6.6. The procedure is
iterated until a local optimal solution for b is reached.

Instead of using the cepstral mean as the channel bias as in CMS, SBR estimates
- the maximum likelihood of tﬁe bias. Expefimental results suggest that SBR outper-

forms than CMS {77].

6.3 Codeword-Dependent Cepstral Normalization

In codeword-dependent cepstral normalization (CDCN) [1, 3], the additive noise and
channel equalization vectors are estimated simultaneously using the EM algorithm.

Specifically, the distorted cepstrum is expressed as
y = X-+h+r(x,n,h), (6.10)

where X, n, and h represent the cepstrum of clean speech, additive noise, and channel’s
impluse response, respectively, and r{x,n,h) is a nonlinear function of x, n, and h.
The goal of CDCN is to estimate the uncorrupted cepstral vectors X = {x;,...,Xr}
from a distorted test utterance Y = {yy,...,yr}.

Acero. etal. [1,3] showed that CDCN provides dramatic improvement in perfor-
mance when a speech recognizer is trained on speech recorded from one microphone
and tested on speech recorded from another microphone. It was also shown that
CDCN does not degraded performance when both training and testing use the same

microphone.
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6.4 Stochastic Featiire Transformation

Stochastic feature transformation (SF'T) [57, 58] is inspired by the stochastic matching
method of Sankar and Lee [93]. Stochastic matching was originally proposed for
speaker adaptation and channel compensatidn. Its main goal is to transform the
distorted data to fit the clean speech models or to transform the clean speech models
to better fit the distorted data. In the case of feature transformation, the channel is
represented by either a single cepstral bias (b = [by, by, ...,bp]T) or a bias together
with an affine transformation matrix (A = diag {@1,a3,...,ap}). In the latter case,

the componentwise form of the transformed vectors is given by

Tei = fu(¥e)i = ayes + b, (6.11)

where y, is a D-dimensional distorted vector, v = {a;, b;}2, is the set of transforma-
tion parameters, and f,(-) denotes the tr;msformation function. Intuitively, the bias
b compensates the convolutive distdftion and the matrix A compensates the effects of
noise. Figure 6.1(a) illustrates the concept of stochastic feature transformation with
a single set of linear transformation parameters v per handset.

The firstorder transformation in Eq. 6.11, however, has two limitations. First, it
assumes that all speech signals are subject to the same degree of distortion, which
may be incorrect for nonlinear channels where signéls with higher amplitude are sub-
ject to a higher degree of distortion, because of the saturatiqn effect in transducers.
Second, the use of a single transformation matrix is inadequate for an acoustic en-
vironment with varying noise levels. Mak and Kung [47,57] proposed to overcome

these limitations by nonlinear transformation.
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".-=1] Ay =GMM Derived from
F, Clean Speech

._ .'\y = GMM Derived from
o Distorted Speech

Y': Distorted
Feature

v = arg mgxp(fu(y)mx"’)

E1,5 = fulyt): = @iye,i + b

(a)

T oY Ax = GMM Derived from
- Clean Specch

Ay = GMM Derived from
/ Distoried Speech

v = (v, v2)

V' = argmaxp{fulY)| A x,¥)

2
Bri= 3 Qk()’t)(ckiyai + agivei + bri)
k=1

(b)

Figure 6.1: The idea of stochastic feature transformation is illustrated here. (a) Linear
transformation with a single set of transformation parameters per handset and (b)
nonlinear transformation with two sets of transformation parameters (1, and 1) per
handset. (Source: S. Y. Kung, M. W. Mak and S. H. Lin, Biometric Authentication.
A Machine Learning Approach, Prentice Hall, 2004.)
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6.4.1 Nonlinear Feature Transformation

The proposal in [47,57] is based on the notion that different transformation matrices
and bias vectors can be applied to transform the vectors in different regions of the

feature space. This can be achieved by extending Eq. 6.11 to

K
Zri = fu(Ye)i ng Yt (Ck:y“ + aki¥ri + bii), - (6.12)
k_
where v = {ag;, b, cris K = 1, ,K;i=1,...,D} is the set of transformation para-
meters and _
' wY Y xyY |
gu(ye) = P(klys, Ay) = — POk, 2e)  (6.13)

Ez-q Wy p(}’tlﬂy Ey)

is the posterior probability of selecting the k-th transformation given the distorted
speech y;. Note that the selection of transformation is probabilistic and data-driven.
In Eq. 6.13, Ay = {w}, pl, ZY }£ | is the speech model that characterizes the distorted

speech and
_D _1 1 -
pyelist, =F) = (@) FX| %exp{—g(yt—prf(zz’) ‘(yz—u:)} (6.14)

is the density of the k-th distorted cluster. Figure 6.1(b) illustrates the idea of nonlin-
ear feature transformation with different transformations for different regions of the
feature space. Note that when K = 1 and ¢; = 0, Eq. 6.12 is reduced to Eq. 6.11
(i.e., the standard stochastic matching is a special case of the proposed approach).
Given a clean speech model Ax = {w, u¥, ZF}}L, derived from the clean speech

of several speakers, the maximum-likelihood estimates of v can be obtained by max-
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imizing an auxiliary function

T M K
@) =D > hi( (ve))gi(ve) log {wy'wy p(yilu . 25, vi) }
t=1 7=1 k=1
T M K
Zzzhj fu yt gk yi log {w wkp( ,;(Yt)|#f(:zf)|=fv,’c(}’t)|}
t=1 j=1 k=1

(6.15)

with respect to v/. In Eq. 6.15, v/ and v represent the new and current estimates of the
transformation parameters, respectively. T' is the number of distorted vectors; v} =
{4, bi» Chi }i2y denotes the k-th transformation; |J,; (y¢)| is the determinant of the
Jacobian matrix, the (r,s)-th entry of which is given by Js (vi)re = 0F (¥)s/O%sr;

and h;(f,(y:)) is the posterior probability given by

WX pfy )l 5X)

’ E: W (L (y )|t ’EX)
where
o \_D 1
p(fyolu; , 27) = (20) "7 |=F |77 -
1 B .
exp {3y =iV (v = ) | (6.17
Ignoring the terms independent of ¢/ and assuming diagonal covariance (i.e., Ej-(
= diag {(cX)?,...,(05%)?}, and likewise for B¥), Eq. 6.15 can be written as
T M K
QWW) =3 > hi(fulye))g @)
t=1 j=1 k=1
D D
C .+ a’ Yt + b ; )f 2
{__ Z Yo k i, o ki — 1) + Zlog(?c;ﬂ;yt,i + GL@:)} (6.18)
i= Tji i=1

The generalized EM algorithm can be applied to find the maximum-likelihood

estimates of v. Specifically, in the E-step, Eqs. 6.16 and 6.17 are used to compute
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hyi( fv(yt)) and Egs. 6.13 and 6.14 are used to compute gx(y:); then in the M-step, v
is updated according to

(6.19)

where 7 is a positive learning factor and # = 0.001 in this work. 8Q('{v)/8V' is the

derivative of Q(v'|v) with respect to ay;, b}; and c;, that is,

5 ; T M
W) S S hlhye Do)
Qs t=1 j=1
¥R + Oabes + B —
 Yuil(hiti am}@(lc2 =) 1 L (6
( Ojs 2CkYei + O
5 ’ T M
% > D k(v ))an(ye) -
ki t=1 _j' =1
( kzyt: +a‘k2y“ +bkl Mﬁ)
{ e (6.21)
5 T M
Qa( ) _ ZZhj(fu(yt))gk(yt)'
Chs t=1 j=1
NG s akigtﬁbm '“‘J*) s L (6
(05:) 20543+ ay

These E- and M-steps are repeated until Q(2/|v) ceases to increase. In [47, 57, Eq. 6.19
was répeated 20 times in each M-step. The exact number of iterations in the M-step is
not important as long as Q}(+/|v) is increasing in each iteration. The most significant
improvement occurs during the first 5 iterations. It was found that using 20 iterations
in the M-step gives better performance and faster convergence.

The posterior probabilities gi(y:) and h;(f.(y:)} suggest that there are K regions
in the distorted feature space and M regions in the clean feature space. As a result,

there are K'M possible transformations; however, this number can be reduced to K



by arranging the indexes j and k such that the symmetric divergence
1
D(AxgllAve) = 5tr {(E)7'E) +(£)'2) —21)
1 - —
+5 5 — )T [(Z)7 + (07 (o = )

between the j-th mixture of Ax and the k-th mixture of Ay is minimal.

6.4.2 Piecewise-Linear Feature Transformation
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When c;; = 0, Eq. 6.12 becomes a piecewise linear version of the standard stochastic

matching in Eq. 6.11. The maximum-likelihood estimate of v can be obtained by the

EM algbrithm. Specifically, in the M-step, the derivative of Eq. 6.18 with resbect to

¢/ is set to 0, which results in

2 ! ' ’ [}
Skith; + (s — Qb ) — v =0 and  gray; + rriby; — pri =0,

where

T .. M
Pri = ZZ tjgtkau'ﬁ 31, }

T M

ki = ZZ tjgtkytt/ )25
T M

Thi = ZZ tjgtk/( _11) H
t=1 j=1
T M

Spi = Zzhtjgtkyf,i/(aﬁ)zi
t=1 j=1
T M

U = D> hygwiives/(o})?, and
t=1 j=1
T M

W = Zzhtjgtk:

o+
il

—
[
Il

-

where hy; = hi(f.(y:)) and gy = gi(y:) are estimated during the E-step.

(6.23)
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6.5 Feature Mapping

Feature mapping [85] is a general feature-domain channel-compensation technique
that extends the mapping idea of speaker model synthesis (SMS) (see Section 4.8).
Similar to SMS, a channel-independent root GMM is trained using all data from many
channels; then channel-dependent GMMs are created by adapting the root GMM
using channel-dependent data. Let GMM (CD1), A®P? = {,&P 1, pfPr TEPY bethe
channel-dependent GMM for channel CD1 and GMM (CI), A¢" = {wf?, uf!, 61},
be the channel-independent root model. The mapping of a feature x in the space

modeled by A®?! to the channel-independent feaﬁure, Y, is given by

cD o’ cI

— 1y “:

Y"‘(x"lu'z‘ )JCD1+'U"£ )
i

where 1 = arg max; < < wCD lpr Yx) a.nd M is the number of mixtures. This map-

ping transforms x ~ N (u$P?, cm) into y ~ N(ué’, o).

During veriﬁcation; the handset type of the testing utterance is detected by a
handset selector and then each of the feature vectors in the utterance is mapped to the
channel-independent space based on the closest Gaussian in the channel-dependent
GMM. The mapped features are then input to the speaker and root GMMs to compute
a likelihood-ratio score.

Feature mapping has two advantages. First, the technique can be easily incorpo-
rated into any recognition systems without model retraining. Second, feature mapping
allows the aggregation of information obtained from several channel types into a sin-
gle channel-independent feature space. This capability is useful for model building or

updating.
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Feature mapping and SMS are related in that they both learn the transformations
or mappings between channel-dependent models derived from a channel-independent
model via MAP adaptation. However, there are also important differences. For
example, while SMS focuses on synthesizing speaker models for different channels,
feature mapping focuses on mapping features from different channels into a common
channel-independent feature space. In this respect, both SMS and feature mapping
are related to stochastic matching [93].

Experimental results based on NIST landline and cellular télephone speech cor-
pora suggest that feature mapping performs significantly better than CMS, and its

performance is similar to that of Hnorm and SMS.

6.6 Summary

Table 6.1 summarizes the characteristics of the feature-based compensation techniques
discussed in this chapter, and Table 6:2 compares these techniques in terms of train-

ing methods, requirements on the amount of adaptation data, and computational

complexity.
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Feature-based
Compensation

Characteristics

CMS

- Minimize linear channel effects by subtracting the mean cepstrum from
individual cepstral vectors.

- Assume that the expectation of clean speech cepstrum is zero.

- Should be applied to both training and recognition utterances.

- Performance degrades under matched conditions.

SBR

- Estimate channel bias based on maximume-likelihood methods.
- Perform better than CMS.

CDCN

- Estimate additive background noise and channel distortion using the EM
algorithm.

- Improve performance under mismatch conditions and does not degrade
performance under matched conditions.

- Computationally demanding.

“SFT

- Transform distorted data to better fit clean speech models.

- Can be easily extended to nonlinear, multiple transformations to overcome
nonlinear distortion.

- Transformation parameters are estimated using the generalized EM algorithm.

- Low computational complexity.

Feature Mapping

- Extension of SMS to the feature domain.

- Based on MAP adaptation.

- Make use of the one-to-one correspondence between individual Gaussians to
compute the transformation between different channels.

Table 6.1: Summary of the state-of-the-art feature-based compensation techniques
discussed in this chapter. '

Feature-based Training Requirement on the Computation

Compensation Methods Amount of Adaptation Data | Complexity

CMS Not. required Small Very low

SBR Maximum-Likelihood Moderate Moderate
(EM-based)

CDCN Maximum-Likelihood Moderate High
{(EM-based)

SFT Maximum-Likelihood Moderate Low
{EM-based)

Feature Mapping Bayesian Moderate Low
{EM-based)

Table 6.2: Comparison of feature-based compensation techniques in terms of training
methods, requirement on the amount of adaptation data, and computation complex-

ity.
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Chapter 7

FEATURE TRANSFORMATION FOR CHANNEL

COMPENSATION

One popular approach to compensating for handset distortion is to divide han_dsets
into several broad categories according to the type of transducer (e.g., carbon button
and electret). During operations, a handsét selector is used to identify the most likely
handset type from speech signals and handset distortion is compensated for based on
some a priori information ;about the identified type in the database. Although this
. method works well in landline phones, it-may encounter difficulty in mobile handsets
becausé they have a large number of categories, new handset models are frequently
released, and models can become obsolete in a short time. Maintaining a handset
database for storing the information of all possible handset models is a great challenge
and ﬁpdating the compensation algorithm whenever a new handset is released is also
difficult. Therefore, it is imperative to develop a channel compensation method that
does not necessarily require a priori knowledge of handsets. ‘This chapter proposes
a blind compensation algorithm to sollve this problem. The algorithm is designed to
handle the situation in which no a priori knowledge about the channel is available (i.e.,
a handset model not in the handset database is being used). Because the algorithm-

does not require a handset selector, it is suitable for a broader scale of deployment
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than the conventional approaches.

7.1 Blind Stochastic Feature Transformation

Channel compensation can be divided into supervised or unsupervised. Supervised
compensation assumes that the channel or handset characteristics are known a pri-
ori. Therefore, channel-specific compensation can be derived before recognition takes
place. If handset labels are available during recognition, the corresponding channel-
specific compensation can be applied to reduce the mismatch effect. Alternatively,
one can detect the handset label from the speech signal during verification [57). How-
ever, this approach may not be practical because users may use a new handset, which
is not well represented in the training set, during verification. While this problem
can be partially resolved by using a handset classifier with out-of-handset rejection
capability (58, 102], it is difficult to find a threshold for detecting unseen handsets. On
the other hand, unsupervised (bliﬁd) compensation does not assume any knowledge
of the channel characteristics. In particular, it adapts speaker models or transforms .
speaker features to accommodate cila.nnel variations based on verification utterances
only. Therefore, handset detectors are no longer required.

In speéker verification, it is important to ensure that channel variations are sup-
pressed so that the interspeaker distinction can be enhanced. In particular, given
a claimant’s utterance re-corded in an environment different from that during en-
r.ollment, one aims to transform the features of the utterance so that they become
compatible with the enrollment environment. Therefore, it is not appropriate to

transform the claimant’s utterance either to fit the speaker model only or to fit the
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background model only because thel former will result in an unacceptably high FAR
(false acceptance rate) and the latter an excessive FRR (false rejection rate). This
chapter proposes a feature-based blind transformation approach to solving this prob-
lem. Specifically, a feature-based transformation is estimated based on the statisti-
cal difference between a test utterance and a composite acoustic model formed by
combining the spgaker and background models. The transformation is then used to
transform the test utterance before_veriﬁcation. The transformation is blind in that
it compensates the handset distortion without a priori information about the chan-
nel’s characteristics. Hereafter, this transformation approach is referred to as blind

stochastic feature transformation (BSFT).

7.1.1 Estimation of Transformation Parameters

Figure 7.1 illustrates a speaker verification system with BSFT, whose operations are

divided into two separate phases:' enrollment and verification.

1. Enrollment Phase. The speech of all client speakers are used fo create a compact
universal background model (UBM) A} with M components. Then,r for each
client speaker, a compact speaker model AY is created by adapting the UBM
A} using maximum a posteriori (MAP) adaptation [86] (see also section 4.1).
Because verification decisions are based on the likelihood. of the speaker model
and background model, both models must be considered when the transforma-
tion parameters are computed. This can be achieved by fusing A}Y and AY to
form a 2M-component composite GMM AZM. During the fusion process, the

means and covariances remain unchanged but the value of each mixing coeffi-
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cient is divided by 2. This step ensures that the output of the composite GMM
represents a probability density function. Figure 7.2 illustrates the model fusion

Process.

2. Verification Phase. Distorted features Y = {yy, ..., yr} extracted from a verifi-
cation utterance are used to compute the transformation parameters v = { A, b}.
This is achieved by maximizing the likelihood of the composite GMM A2M given '

the transformed features X = {%,...,%r}:
% = fu(y)) = Ay:+Db, t=1,...,T, (7.1)

where A is a D x D identity matrix for zeroth-order transformation and A =
diag{ai,as,...,ap} for first-order transformation, and b is a bias vector. The
transformed vectors X are then fed to a full size speaker model Al and a full

size UBM AY for computing verification scores in terms of likelihood ratio':

s(X) = log p(RIAY) — log p(X |A}).

The transformation parameters v = {4, b} can be estimated by the EM algo-
rithm. More specifically, given the current estimate v’ = {A’, b’}, we compute

v = argmaxQ(v|/)

T 2M

= argmaxy_ > hy(f(ye)10g {wesp(fo(¥e) ks Begs¥) [T (v2)l}

t=1 j=1

where {we,j, ey T 124 are the parameters of AZM, h;(f./(y:)) is the posterior

IAN AN, AM and A} are GMM. However, the number of Gaussians in A) and A} are signifi-
cantly larger than that of AM and A}, ie., N > M.
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probability

) . Wi Do (Y|t e j)
h"(fl"(yt))=P(let)A2M:V)= J : . 3
’ 2241' wc,lp(fU’(yt)lﬂc,h Ec,l)

and |J,(y:)| is the determinant of a Jacobian matrix with (r, s)-th entry given

by JU(Yt)rs = 5’fu(y:)s/t9yt,r-

The main idea of BSFT is to transform the distorted features to fit the composite '
GMM A2, which ensures that the transformation compensates the acoustic distor-

tion.

Enrollment Phase Verification Phase

|
I
R !
3
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Utterances of Composite Model!
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' I
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I

Figure 7.1: Estimation of BSF'T parameters. The background model A , speaker
model A}, and composite model A2, produced during the enrollment phase, are
subsequently used for verification purposes.
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Figure 7.2: Model Fusion. The compact background model A} and compact speaker
model A¥ are combined to form the compact composite model A2M.

Because the computation complexity of estimating SFT parameters grows with
the amount of adaptation data and the total number of mixture components in the
GMMS, BSFT will become computationally intensive when the number of components
is large. 'i‘o perform rapid adaptation, we propose adopting a light-weight approach to
computing transformation parameters. O’.ne of the positive properties of SFT is that
the transformation can be estimat_.gd using GMMs with only a few components. In
the light-weight approach, we synthes‘ize a compact composite GMM (A2M) by fusing
a compact speaker GMM (AM) and a compact background GMM (A}), both with M
components where M <« N. It was found that a good trade-off between performance

and computation complexity can be maintained by using a suitable value of M.

7.1.2 A Two-Dimensional Example

Figure 7.3 illustrates the idea of BSFT in a classification problem with two-
dimensional input patterns. Figure 7.3(a) plots the clean and distorted patterns
of Class 1 and Class 2. The upper right (respectively, lower left) clusters represent

the clean (respectively, distorted)} patterns. The ellipses show the corresponding equal
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Figure 7.3: A Two-class problem illustrating the idea of BSFT. (a) Scatter plots of the clean and
distorted patterns corresponding to Class 1 and Class 2. The thick and thin ellipses represent the
equal density contours of Class 1 and Class 2, réspectively. The upper right (respectively, lower
left) clusters contain the clean (respectively, distorted) patterns. (b) Distorted patterns of Class
2 were transformed to fit Class 1’s clean model. (c) Reversely, distorted patterns of Class 1 were
transformed to fit Class 2's clean model. {d) Distorted data of Class 1 were transformed t6 fit the
clean models of both Class 1 and Class 2 using first-order BSFT. For clarity, only the distorted
patterns before and after transformation were plotted in (b} through (d).
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density contours. Symbols 4 and B represent the centers of the clean models. Fig-
ure 7.3(b) illustrates a transformation matching the distorted data of Class 2 and
the GMM of Class 1 (GMM1). Because the transformation only takes GMM1 into
account, while ignoring GMM2 completely, it results in a high error rate. Similarly,
the transformation in Figure 7.3(c) also has a high error rate. The transformation
in Figure 7.3(d) was estimated from the distorted data of Class 1 and a composite
GMM formed by fusing GMM1 and GMM2. In this case, the transformation adapts |
the data to a region close t¢ both GMM1 and GMM2, because it takes both GMMs
into account. Therefore, instead of transforming the distorted data to a region around
GMM1 or GMM2 as in Figures 7.3(b) and 7.3(c), the transformation in Figure 7.3(d)
attempts to cc;mpensate the distortion. The capability of BSFT is also demonstrated

in a speaker verification task to be described next.

7.2 Experimental Evaluations

7.2.1 Enrollment and Verification

Per discussion earlier, the experiments were divided into two phases: enrollment and

verification.

1. Enrollment Phase. A 1,024-component UBM A}% (je, N = 1,024 in Figure
7.1) was trained using the training utterances of all target speakers. The same
set of data was also used to train an M-component UBM (A} in Figure 7.1).
For each target speaker, a 1,024-component speaker-dependent GMM A% was

created by adapting A1%2* using MAP adaptation [86]. Similarly, AM was created
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by adapting A}, and the two models were fused to form a composite GMM A2,

The value of M was varied from 2 to 64 in the experiments.

2. Verification Phase. For each verification session, a feature sequence Y was
extracted from the utterance of a claimant. The sequence was used to determine
the BSFT parall;eters (A and b in Eq. 7.1) to obtain a sequence of transformed
vectors X. The transformed vectors were then fed to A1°?* and A} to obtain -

verification scores for decision making.

7.2.2 Speec.h Data and Features

The 2001 NIST speaker recognition evaluation set [37], which contains cellular phone
speech of 74 male and 100 female target speakers extracted from the SwitchBoard-II |
Phase IV Corpus, was used in the evaluation. Each target speaker has 2 minutes of
speech for training (i.e., enrollment); a t(:;;cal of 850 male and 1,188 female uttérances
are available for testing (i.e., veriﬁé-a,tion). Each verification utterance has a length of
between 15 and 45 seconds and is evaluated against 11 hypothesized speakers of the
same sex as the speaker of the verification utterance. Out of these 11 hypothesized
speakers, one is the target speaker who produced the verification utterance. Therefore,
there are oné target and 10 impostor trials for each verification utterance, which
amounts to a total of 2,038 target trials and 20,380 impostor attempts for 2,038
verification utterances.

Mel-frequency cepst‘ral coefficients (MFCCs) [18] and their first-order derivatives

were computed every 14ms using a Hamming window of 28ms. Cepstral mean sub-

traction (CMS) [28] was applied to the MFCCs to remove linear channel effects. The



134

MFCCs and delta MFCCs wére concatenated to form 24-dimensional feature vectors.

7.2.8 Performance Measures

Detection error trade-off {DET) curves and equal error rates (EERs) were used as
performance measures. They were obtained by pooling all scores of both sex from
the speaker and impostor trials. In addition to DET curves and EERs, decision cost

function (DCF) was also used as performance measure. The DCF is defined as
| DCF = Cpiss X PaissiTarget X Prorget
+  Crotseaterm X Pratseatarm|Nontarget X Phontarget:
where P:.I"arget and Pyontarget are the prior probability of target and nontarget speakers,
respectively, and where Ch;,s and Crasedlarm are the costs of miss and false alarm

errors, respectively. Following NIST’s recommendation [63], these parameters were

Sét as fOllOWS: PTarget = 0.01, PNonf.arget = 0.99, Chtiss = 10, and Craisedtarm = 1.

7.3 Results and Discussions

7.8.1 Verification Performance

Figure 7.4 and Table 7.1 show the results of the baseline {CMS only), Znorm [83),
and BSFT with different order and number of components M.? In Figure 7.4, there
are 2038 speaker trails and 20380 impostor trials. Evidently, all cases of BSFT show
sirgniﬁcant reductiqn in error rates when compared to the baseline. In particular, Table

7.1 shows that first-order BSFT with Znorm achieves the largest error reduction. The

2Theoretically, the larger the value of M, the better the results. However, setting M larger than
64 will result in unacceptably long verification time.



135

DET curves also show that BSFT with Znorm performs better than the baseline and -
Znorm alone for all operating points.

Because the evaluation trials in NIST01 are gender-matched, gender-dependent
background modeis can also be used for enrollment and estimation of BSFT para-
meters. In another ekperiment, speaker models were adapted from gender-dependent
background models using MAP adaptation. A compact gender-dependent background
model (with 64 components) was used to estimate the BSFT parameters. As shown in
Table 7.1 and Figure 7.5, using gender-dependent background model helps to reduce
the EERs and minimum DCF further for all cases of BSFT. However, Znorm and
BSFT with Znorm seem to perform better when the background model is gender-
independent. This may be attribute to the fact that less data are available for de-
termining the Znorm parameters (score ﬁean and variance) for each speaker when
gender-dependent background models wete used, which results in less reliable Znorm
scores for verification. For the gender-independent case, the training utterances of 60
speakers from the “devtest” section of NIST2001 were used for estimating the Znorm
parameters. For the gender-dependént case, however, the Znorm parameters of each
speaker were estimated from the respective gender of these 60 speakers. j‘kmong these
60 speakers, 38 are male and 22 are female, and each of them has one training utter-
ance. As a results, the Znorm parameters of the female speakers were determined by

22 utterances only.
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Speaker Detection Performance
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Figure 7.4: - DET curves comparing speaker verification performance using CMS
(black), Znorm (blue), first-order BSFT (red), and first-order BSFT with Znorm
(green). For BSFT, the number of components M in the compact GMMs was set
to 64. The circles represent the errors at which minimum decision costs occur. A
gender-independent background model was used in all cases.

7.8.2 Comparison with Other Models

It is of interest to compare BSFT with the short-time Gaussianization approach pro-
poseci in Xiang et al. [104] because both methods transform distorted features in the
feature space and their transformation parameters are estimated by the EM algorithm
[19]. The short-time Gaussiaﬁization achieves an EER of 10.84% in the NIST 2001

evaluation set [104], whereas BSFT achieves an EER of 9.26%, which represent an
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40 T T
20 .......................................................................
3
1=
=
E
[x]
g : . . h .
19 k... ST RO LN NN e
g ° 5 : : : :
=z — Baseling (CMS only}
O DCF=0.0447, EER=11.44%
.| — Znom
O DCF=0.0427, EER=10.61%
s |—BsPT NN T
O DCF=0.0384, EER=9.26%
— BSFT+Znorm
¢ DCF=0,0355, EER=B.36%
> i i

i i i
5 10 20 40
False Alarm Probability (in %)

05 1

L]

Figure 7.5: DET curves comparing speaker verification performance using CMS
(black), Znorm (blue), first-order BSFT (red), and first-order BSFT with Znorm
(green). For BSFT, the number of components M in the compact GMMs was set to
64. The circles represent the errors at which minimum decision costs occur. Gender-
dependent background models were used in all cases.

error reduction of 14.58%.3 The minimum decision cost of BSFT is also lower than

that of short-time Gaussianization (0.0384 versus 0.0440).

7.3.8 Cormputation Consideration

In BSFT, a set of transformation parameters v is computed by the EM algorithm in
which the likelihood function of a composite GMM given the transformed test data

is maximized. In short-time Gaussianization, a linear, global transformation matrix,

3Because Xiang et al. did not use Znorm in {104], their results should be compared with the one
without Znorm here.
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which aims to decorrelate the distorted features, is estimated by the EM algorithm
using the training data of all background speakers. The distorted features are then
transformed and mapped to fit a normal distribution. The linearly transformed fea-
tures are divided into a number of overlapping segments, with each segment containing
a number of consecutive transformed vectors. The consecutive vectors in a segment
are then sorted in ascending order. The rank of the central frame is used to find a
warped feature so that its cumulative density function (CDF) matches the CDF of a..
standard normal distribution.

It can be argued that the inferior performance of Gaussianization is due to the
nonadaptive nature of its transformation parameters. However, the adaptive nature
of BSFT comes with a computational price: different transformation parameters have
to be computéd for each speaker. Therefore, it is vital to have a cost effective com-

.putation approach for BSFT. Note that .’the computation complexity of estimating
BSFT parameters grows with the aﬁbunt of adaptation data (i.e., the value of T in
Eq. 7.1) and the number of mixture components in the compact GMMs (i.e., the
value-of M). To reduce computation time, M should be significantly smaller than
N, the number of components in the full size speaker and background models. This
is particularly important for the computation of BSFT parameters during the ver-
ification phase because the computation time of this phase is a significant part of
the overall verification time. The evaluations suggest that a good tradeoff between

performance and computation complexity can be achieved by using a suitable value

of M.
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7.8.4 Hnorm Vs. Znorm

In chapter 5, we used HTIMIT as the evaluation set. One nice property of HTIMIT
is that it provides explicit handset labels for all utterances in the corpus. Because of
this property, HTIMIT is particularly suitable for evaluating the Hnorm approach to
channel compensation where handset-dependent normalization parameters are esti-
mated by testing each speaker model against handset-dependent speech produced by .
impostors.

In this chapter, we used NIST 2001 as the evaluation set. The evaluation set also
provides algorithmically-determined handset labels. However, most of the training
and testing segments were obtained from handsets with an electret microphone and
only some were obtained from handsets with a carbon-button microphone. Hence, we
chose to use Znorm for score normalization because Znorm does not require handset-

specific data to compute the normalization parameters.

7.4 Conclusions

This chapter has presented a new approach, namely.blind stochastic feature transfor-
mation, to channel robust speaker verification and provided experimental results on
“the 2001 NIST evaluation set. The algorithm computes feature transformation para-
meters based on the statistical difference between a test utterance and a composite
GMM formed by combining the speaker and background models. The transforma-
tion is then used to transform the test utterance to fit the clean speaker model and

background model before verification. Experimental results show that the proposed
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algorithms achieves significant improvement in both equal error rate and minimum
detection cost when compared to cepstral mean subtraction, Znorm, and short-time

Gaussianization.
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Background Model (A]')

Gender-Independent Gender-Dependent
Compensation| SFT | M (| Equal Error| Minimum |[Equal Error| Minimum
Method Order Rate (%) |Decision Cost ﬁate (%) |Decision Cost
Baseline NA |NA 12.02 0.0477 11.44 0.0477
BSFT Zeroth} 2 11.90 0.0473 11.49 0.0440
BSFT Zeroth| 4 11.82 0.0458 11.16 0.0427
BSFT ‘ Zeroth| 8 11.39 0.0449 10.89 0.0428
BSFT Zeroth | 16 11.24 0.0450 10.79 0.0420
BSFT Zeroth | 32 11.22 0.0450 10.80 0.0422
BSFT Zeroth | 64 11.16 (.0443 10.61 0.0414
BSFT First | 2 12.00 0.0506 11.29 0.0445
BSFT First | 4 11.55 ’ 0.0471 10.27 0.0425
BSFT First | 8 10,70 0.0464 9.77 0.0400
BSFT First | 16 10.47 0.0454 9.48 0.0394
BSFT First { 32 10.43 0.0446 - 9.38 0.0395
BSFT First | 64 10.00 0.0428 9.26 0.0384
Znorm NA |NA 10.39 ‘ | 0.0447 10.61 0.0427
BSFT+Znorm First | 64 8.18 0.0369 8.36 0.0355

Table 7.1: Equal error rates and minimum decision cost achieved by the baseline (CMS
only), Znorm, and zeroth- and first-order BSFT with different order and number
of components M in the compact GMMs. The number of components in the full
size speaker and background models is 1,024. The columns “Gender-Independent”
and “Gender-Dependent” represents the types of background models being used for
obtaining the results.
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Chapter 8

CONCLUSIONS

This work has addressed two important issues in speaker verification: speaker -
modeling and channel mismatch compensation.

For the former, techniques that minimize the error rate of telephone-based speaker
verification systems have been investigated. For example, to make PDBNNs more -
appropriate for speaker verification, the original training algorithm of PDBNNs have
been modiﬁeci. The structural properties and learning rules of probabilistic decision-
base‘;i neural networks (PDBNNs), Gaussian mixture models (GMMs), and elliptical
basis function networks (EBFNs) have been compared using three problem sets. Ex-
periments using these three kernel—ﬁased probabilistic neural networks as speaker
models have been carried out to evaluate their suitability for speaker verification.

For the channel mismatch problem, we used two channel compensation approaches
to addressing the problem of environmental misma.t(_:h in telephone;based speaker ver-
ification systems. These approaches are model transformation/adaptation and fea-
ture transformation. For the model transformation/adaptation approach, we have
proposed an algorithm combining MLLR, PDBNN, and stochastic feature transfor-
mation and compared its performance with that of the state-of-the-art techniques.

For the feature transformation approach, we have proposed a blind feature trans-
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formation algorithm in which no a priori information of channel characteristics are
required.

Here, we summarize our major findings of this work:

e The use of GMMs and PDBNNs as speaker models is promising. Experimental
results, based on 138 speakers and visualization of decision boundaries, suggest
that GMM- and PDBNN-based speaker models outperform the EBFN ones.
It was also found that PDBNNs and GMMs are more robust than EBFNs in

recognizing speakers in noisy environments.

¢ The globally supervised training of PDBNNs is able to find decision thresholds
that not only reduce the variation of false acceptance errors among all speakers
in the system but also maintain the errors at a low level. Results also show that
the proposed modifications on the PbBNN’s supervised learning not only make
PDBNNs amenable to speai{ér ‘verification but also lead to more predictable

performance.

e Comparisons with conventional model-based channel compensation techniques
suggest that combining MLLR and PDBNN outperforms ‘a number of classi-

cal techniques, including CMS, stochastic feature transformation, Hnorm, and

speaker model synthesis.

¢ Unsupervised (blind) compensation does not assume any knowledge of the chan-
nel characteristics. It adapts speaker models or transforms speaker features to

accommodate channel variations based on verification utterances only. Exper-
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imental results show that the proposed blind feature transformation algorithm
achieves significant improvement in both equal error rate and minimum detec-
tion cost when compared to cepstral mean subtraction, Znorm, and short-time

Gausslanization.
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Chapter 9

FUTURE WORK

The blind 60mpensation method discussed in Chapter 7 is designed to handle
handsets that are unknown to the speaker verification system. However, es£imating
SFT parameters online requires additional computation during the verification phase.
One possible solution to reducing computation without sacrificing the advantages of
blind compensation is to precompute the transformation parameters of some com-
monly used handsets and store them in a handset database; during verification, the,
most appropfiate transformation pa.ram?ters are selected from the database if the
handset being used is detected to be one of the a priori known models. In this case,
the superviseci compensation appr(;ach discussed in [58] can be adopted. This paves
the ground for an integrated approach combining blind and supervised compensation
techniques. Figure 9.1 illustrates how the blind and supervised compensation can
be integrated into a speaker verification system. This integrated approach can enjoy
the best of the two worlds: (1) whenever a known handset is detected, precomputed
transformation parameters can be used and (2) should the handset being used is un-
known to the system, the system can compute the transformation parameters online

using blind or unsupervised techniques.
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Figure 9.1: Integration of Blind and Supervised Compensation.



(1)

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

147

BIBLIOGRAPHY

A. Acero. Acoustical and Environmental Robustness in Automatic Speech Recognition. Kluwer

Academic Publishers, Dordrecht, 1992.

A. Acero, L. Deng, T. Kristjansson, and J. Zhang. HMM adaptation using vector Taylor series

for noisy speech recognition. In ICSLP 2000, volume 3, pages 869-872, 2000.

A. Acero and R. M. Stern. Environmental robustness in automatic speech recognition. In

Proc. IEEE Int. Conf.. Acoustics, Speech and Signel Processing, pages 849-852, 1990.

M. Afify, Y. Gong, and J. P. Haton. A general joint additive and convolutive bias compensation
approach applied to noisy Lombard speech recognition. JEEE Trans. on Speech and Audio

Processing, 6(6):524-537, 1998.

5. Ahn, S. Kang, and H. Ko. Effective speaker adaptations for speaker verification. In IEEE

International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 5-0,

2000.

E. Ainbikaira.jah, M. Keane, A. Kelly, L. Kilmartin, and G. Tattersall. Predictive models for

speaker verification. Speech Communication, 13:417-425, 1993,

K. T. Assaleh and R. J. Mammone. New LP-derived features for speaker identification. JEEE

Trans. on Speech and Audio Processing, 2(4):630-638, 1994.

B. S. Atal. Effectiveness of linear prediction characteristics of the speech wave for automatic

speaker identification and verification. J. Acoust. Soc. Amer., 55(6):1304-1312, June 1974.

R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normalization for text-independent

speaker verification systems. Digital Signal Processing, 10:42-54, 2000.

F. Beaufays and M. Weintraub. Model transformation for robust speaker recognition from

telephohe data. In ICASSP’97, volume 2, pages 1063-1066, 1997.



1]

(12]

(23]

[14]

[25)

[16]

[17]

[18]

{19}

[20]

. 121]

[22]

148

Y. Bennani. Multi-expert and hybrid connectionist approach for pattern recognition: Speaker

identification task. Int. J. of Neural Systems, 5(3):207-216, 1994.
C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

S. F. Boll. Suppression of acoustic noise in speech using spectral subtraction. JEEE Transac-

tions on Acoustics, Spee;:h, and Signal Processing, ASSP-27(2):113-120, April 1979.

I. Booth, M. Barlow, and B. Watson. Enhancements to DTW and VQ decision algorithms for

speaker recognition. Speech Communication, 13:427-433, 1993.

D. K. Burton. Text-dependent speaker verification using vector quantization source coding.

IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-35(2):133-143, 1987.

C. Chesta, Q. Siohan, and C. H. Lee. Maximum a posteriori linear regression for hidden

markov model adaptation. In Furospeech’89, volume 1, pages 211-214, 1999,

S. Cox. Predictive speaker adaptation in speech recognition. Computer Speech and Language,

9:1-17, 1995.

S. B. Davis and P. Mermelstein. Comparison of pa.rametrié representations for monosyllabic
word recognition in continuously spoken sentences. IEEE Trans. on ASSP, 28(4):357-366,

August 1980,

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. J. of Royal Statistical Sec., Ser. B., 39(1):1-38, 1977.

V. D. Diakoloukas and V. V. Digé.lakis. Maximum-likelihood stochastic-transformation adap-

tation of hidden markov models. JEEE Trans. on Speech and Audio Proe., 7(2):177-187, March

1999.

V. Digalakis, D. Rtichev, and L. Neumeyer. Speaker adaptation using constrained reestimation

of Gaussian mixtures. IEEE Trans. On Speech and Audio Proc., pages 357-366, 1995.

K. M. Dobroth, B. L. Zeigler, and D. Karis. Future directions for audio interface research:
Characteristics of human-human order-entry conversations. In Proc. Am. Veice Input/Output

Soc., September 1989.



(23]
(24}

[25]

[26]
27
(28]
[29)
s
31
82

[33]

149

G.R. Doddington. A Coinputer Method of Speaker Verification. PhD thesis, Dept. of Electrical

Engineering, University of Wisonsin, Madison, 1970.

J. B. Pierrot. et al. A comparison of a priori threshold setting procedures for speaker verifica-

tion in the CAVE project. In Proc. ICASSP 98, pages 125~128, 1998.

K. Farrell, S. Kosonocky, and R. Mammone. Neural tree network/vector quantization prob-
ability estimators for speaker recognition. In Proc. Workshop on Neural Networks for Signal

Processing, pages 279288, 1994.

K. R. Farrell, R. J. Mammone, and K. T. Assaleh. Speaker recognition using neural networks

and conventional classifiers. 2(1):194-205, 1994.

M. E. Forsyth, A. M. Sutherland, and J. A. Jack. HMM speaker verification with sparse

training data on telephone quality speech. Speech Communication, 13:411-416, 1993.

S. Furui. Cepstral analysis technique for automatic speaker verification. IEEE Trans. on

Acoustics, Speech, and Signal Processing, ASSP-29(2):254-272, April 1981.

S. Furui. Recent advances in speaker recognition. Pattern Recognition Letters, 18:859-872,

1997,

G. J. Gales. Model Based Techniques for Noise Robust Speaker Recognition. PhD thesis,

Engineering Department, Cambridge University, 1995.

M. J. F. Gales. The generation and use of regression class trees for MLLR, adaptation. Technical

report, Technical Report CUED/F-INFENG/TR263, Cambridge University, 1996.

M. J. F. Gales. Maximum likelihood linear transformations for HMM-based speech recognition.

Computer Speech and Language, 12:75-98, 1998.

M. J. F. Gales and S. J. Young. Robust speech recognition in additive and convolutional

noise using parallel model combination. In Computer Speech and Language, volume 9, pages

289-307, 1995,



[34]

(3]

[36]

[37]

(38)

(39]

[40]-

[41]

[42]

14y

[44]

[45]

150

8. K. Gupta and M. Savic. Text-independent, speaker verification based on broad phonetic

segmentation of speech. Digital Signal Processing, (2):69-79, 1992.

H. Hermansky and N. Morgan. RASTA processing of speech. IEEE Transactions on Speech

and Audio Processing, 2(4):578-589, Oct 1994,

A. Higgins, L. Bahler, and J. Porter. Speaker verification using randomized phrase prompting.

Digital Signal Processing, 1:89-106, 1991.

http:/ /www.nist.gov/speech/ tests/spk/2001/doc. The NIST year 2001 speaker recognition eval-

uation plan.
http://www.nist, gov/speech/ tests/spk/index.htm.

Q. Huo and C. H. Lee. On-line adaptive learning of the continuous density hidden Markov
model based on approximate recursive Bayes estimate. JEEE Trans. on Speech and Audio

Processing, 5(2):161-172, March 1997.

Q. Huo and C. H. Lee. On-line adaptive learning of the correlated continuous density hidden

Markov models for speech recognition. IEEE Trans. on Speech and Audio Processing, 6(4):386—
397, 1998. . |

Jr. J. P. Campbell. Testing with the YOHO CD-ROM voice verification corpus. In ICASSP95,

volume 1, pages 341-344, 1995.

Jr. J. P. Campbell. Speaker recognition: A tutorial. Proc. of the IEEE, 85(9):1437-1462, 1997.

B. H. Juang, L. R. Rabiner, and J. G. Wilpon. On the use of bandpass liftering in speech
recognition. IEEE Trans. on Acoustic, Speech and Signal Processing, ASSP-35(7):947-954,

1937,

S. Katagiri, B. H. Juang, and C. H. Lee. Pattern recognition using a family of design algorithm

based upon the generalized probabilistic descent method. Proc. IEEE, 86(11):2345-2373, 1998.

R. Kuhn, J. C. Junqua, P. Nguyen, and N. Niedzielski. Rapid speaker adaptation in eigenvoice

space. IEEE Trans. on Speech and Audio Processing, 8(6):695-707, 2000.



[46]

[47]

[48]

(49]

[50]

[51]

(52]

[53]

(54]

(55]

(56]

151

S. Y. Kung. Digital Neural Networks. Prentice Hall, New Jersey, 1993.

S. Y. Kung, M. W. Mak, and S. H. Lin. Biometric Authentication A Machine Learning

Approach. Prentice Hall, 2004.

C. H. Lee, C. H. Lin, and B. H. Juang. A study on speaker adaptation of the parameters of
continuous density hidden Markov models. IEEE Trans. on ASSP-39, 39(4):806-814, April
1991.

C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regression for speaker adapta-

tion of continuous density hidden Markov models. Computer Speech and Language, 9(4):806-

814, 1995,

K. P. Li and J. E. Porter. Normalizations and selection of speech segments for speaker recog-

nition scoring. In ICASSP-88, volume 1, pages 595-598, 1988.

S. H. Lin, S. Y. Kung, and L. J. Lin. Face recognition/detection by probabilistic decision-based
neural network. JEEE Trans. on Neuwral Networks, Special Issue on Biometric Identification,

8(1):114-132, 1997.

C.S. Liy, C. H. Lee, B. H. Juang, and A. E. Rosenberg. Speaker recognition based on minimum

error discriminative training. In Proc. JCASSP’94, volume 1, pages 325-328, 1994.

C. S. Liu, H. C. Wang, and C. H. Lee. Speaker verification using normalized log-likelihood

score. IEEE Trans on Speech and Audio Processing, 4(1):56-60, 1996.

M. W. Ma.k,- W. G. Allen, and G. G. Sexton. Comparing multi-layer per(;eptrons and radial
basis function networks in speaker recognition. J. of Microcomputer Applications, 16:147-159,

1993.

M. W. Ma.k_, W. G. Allen, and G. G. Sexton. Speaker identification using multi-layer percep-

trons and radial basis functions networks. Neuvrocomputing, 6:99-118, 1994.

M. W. Mak and S. Y. Kung. Estimation of elliptical basts function parameters by the EM algo-
rithms with application to speaker verification. JEEE Trans. on Newral Networks, 11(4):961—

969, 2000.



[57]

[58]

[59]

152

M. W. Mak and S. Y. Kung. Combining stochastic feautre transformation and handset iden-
tification for telephone-based speaker verification. In Proc. ICASSP’2002, pages 17011704,

2002.

M. W. Mak, C. L. Tsang, and S. Y. Kung. Stochastic feature transformation with divergence-
based out-of-handset rejection for robust speaker verification. EURASIP J. on Applied Signal

Processing, 4:452-465, 2004.

J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):561-580,

~ April 1975.

(60}

[61]

[62]

[63)

(64]

[65]

[66]

R. J. Mammone, X. Zhang, and R. P. Ramachandran. Robust speaker recognition. JEEE

Signal Processing Magazine, pages 58-71, September 1996.

D. Mansour and B. H. Juang. A family of distortion measures based upon projection operation
for robust speech recognition. JEEE Transactions on Acoustics, Speech, and Signal Processing,

37(11):1659-1671, November 1989.

A. Martin, G. Doddington, T. Kamm, M. 6rdowski, and M. Przybocki. The DET Curve in

assessment of detection task performance. In Eurospeech ‘97, pages 1895-1898, 1997.

M. Przybocki A. Martin. NIST’s assessment of text independent speaker recognition perfor-
mance 2002. In The Advent of Biometircs on the Internet, A COST 275 Workshop, Rome,

Italy, Nov. 2002.

T. Matsui and 8. Furui. Comparison of test-independent speaker recognition methods using
VQ-distortion and discrete/continuous HMM’s. IEEE Trans. on Speech and Audio Processing,

2(3):456-459, 1994,

T. Matsui and S. Furui. Likelihood normalization for speaker verification using a phoneme-

and speaker-independent model. Speech Communication, 17:109-116, 1995.

E. McDermott. Discriminative Training for Speech Recognition. Ph.D. Thesis, Waseda Uni-

versity, Japan, 1997.



[67)

[68]

[69]

(70]

(71]

(72)

[73]

(7]

[75]

[76]

(77}

153

C. Mokbel. Online adaptation of HMMs to real-life econditions: A unified framewaork. IEEE

Trans. on Speéch and Audio Processing, 9(4):342-357, May 2001.

P. J. Moreno. Speech Recognition in Noisy Environments. PhD thesis, Department of Electrical

and Computer Engineering, Carnegie Mellon University, 1996.

D. Naik. Pole-filtered cepstral mean subtraction. In JCASSP’95, volume 1, pages 157-160,

1995.

J. M. Naik, L. P. Netsch, and G. R. Doddington. Speaker verification over long distance

telephone lines. In Proc. JCASSP'89, volume 1, pages 524-527, 1989,

L. Neumeyer and M. Weintraub. Probabilistics optimal filtering for robust speech recognition.

ICASSP’94, pages 417420, 1994.

P. Nguyen, C. Wellekens, and J. C. Junqua. Maximum likelihood eigenspace and MLLR for

speech recognition in noisy environments. In Eurospeech’99, volume 6, pages 2519-2522, 1999.

Y. Normandin. Hidden Merkov Models, Murimum Mutual Information Estimation, and the

)

Speech Recognition Problem. Ph.D. thesis, bept. Elect. Eng., Mc@Gill University, Canada, 1991,

J. Oglesby and J. S. Mason. Radial basis function networks for speaker recognition. In

ICASSP’91, pages 393-396, 1991.

A. B. Portiz. Linear predictive hidden markov models and the speech signal. ICASSP’82,

2:1291-1294, 1982,

T. F. Quartieri, D. A. Reynolds, and G. C. O’Leary. Estimation of handset nonlinearity with
application to speaker recognition. IEEE Trans. on Speech and Audic Processing, 8(5):567—

584, 2000.

M. G. Rahim and B. H. Juang. Signal bias removal by maximum likelihood estimation for
robust telephone speech recognition. IFEE Transactions on Speech and Audio Procless'éng,

4(1):19-30, Jan 1996,



[78]

[79]

(80]

(81)

[82]

[83]

[84]

(85]

(86

(87]

(88]

(89]

154

V. Ramamoorthy, N. S. Jayant, R. V. Cox, and M. M. Sondhi. Enhancement of ADPCM
speech coding with backward-adaptive algorithms for postfiltering and noise feedback. IEEE

Journal on Selected Areas in Communications, 6{2):364-382, 1988.
D. A. Reynolds. An overview of automatic speaker recognition technology.

D. A. Reynolds. Experimental evaluation of features for robust speaker identification. IEEE

Trans. on Speech and Audio Processing, 2{4):639-643, 1994,

D. A. Reynolds. Speaker identification and verification using Gaussian mixture speaker models.

Speech Communicetions, 17:91-108, 1995.

D. A. Reynolds. The effects of handset variability on speaker recognition performance: Ex-

periments on the switchboard corpus. In ICASSP’96, volume 1, pages 113-116, 1996.

D. A. Reynolds. Comparison of background normalization methods for text-independent‘

speaker verification. In Eurospeech’8%, pages 963-966, 1997.

D. A. Reynolds. HTIMIT and LLHDB: Speech corpora for the study of handset transducer

effects. In ICASSP’97, volume 2, pages 1535 1538, 1997,

D. A. Reynolds. Channel robust speaker verification via feature mapping. In JEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 6-10, 2003.
D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted Gaussian
mixture models. Digital Signal Processing, 10:19-41, 2000.

D. A. Reynolds and R. C. Rose. Robust text-independent speaker identification using Gaussian

mixture speaker models. IEEE Trans. on Speech and Audio Processing, 3(1):72-83, 1995.

D. A. Reynolds, M. A. Zissman, T. F. Quatieri, G. C. Q’Leary, and B. A. Carlson. The effects
of telephone transmission degradations on speaker recognition performance. In ICASSP’95,

volume 1, pages 329-332, 1995.

R. C. Rose, E. M. Hofstetter, and D. A. Reynolds. Integrated models of signal and back-
ground with application to speaker identification in noise. IEEE Trans. on Speech and Audio

Processing, 2(2):245-257, 1994.



[90]

[51]

[92]

(93]

(o4]

[95]

[96]

[97]

[98]

(99]

[100]

01

155

A. E. Rosenberg, J. Delong, C. H. Lee, B. H. Juang, and F. K. Soong. The use of cohort

normalized scores for speaker verification. In Proc. ICSLP’92, pages 599-602, 1992,

A. E. Rosenberg and S. Parthasarathy. Speaker background models for connected digits pass-

word speaker verification. In Proc. ICASSP’96, volume 1, pages 81-84, 1996.

A. E. Rosenberg, O. Siohan, and S. Parthasarathy. Speaker verification using minimum veri-

fication error training. In Proc. ICASSP’98, pages 105-108, 1998.

A. Sankar and C. H. Lee. A maximum-likelihood approach to stochastic matching for robust

speech recognition. IEEE Trans. on Speech and Audic Processing, 4(3):190-202, 1996.
G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978,

O. Siohan, C. Chesta, and C. H. Lee. Joint maximum a posteriori adaptation of transformation

and HMM parameters. IEEE Trans. on Speech and Audio Processing, 9(4):417-428, May 2001.

F. K. Soong, A. E. Rosenberg, L. R. Rabiner, and B. H. Juang. A vector quantization approach

to speaker recognition. In Proc. ICASSP’85, volume 1, pages 387-390, 1985.

R: Stern and M. Lasry. Dynamic speaker adaptation for feature-based isclated word recogni-

tion. IEEE Trans. on coustics, Spéecii, and Signal Processing, 35(6):751-763, 1987.

A. C. Surendran, C. H. Lee, and M. Rahim. Nonlinear compensation for stochastic matching.

IEEE Trans. on Speech and Audio Processing, 7(6):643-655, 1999.

R. Teunen, B. Shahshahani, and L. Heck. A model-based transformational approach to robust

speaker recognition. In JCSLP, volume 2, pages 495-498, 2000.

N. Z. Tishby. On the application of mixture AR hidden markov models to text independent

speaker recognition. IEEE Transactions on Signal Processing, 39(3):563—-570, March 1991.

Y. Tohkura. A weighted cepstral distance measure for speech recognition. [EEE Tran. on

Acoustics, Speech, and Signal Processing, ASSP-35(10}:1414-1422, October 1987,



(102]

[103]

[104]

[105]

[106]

[107]

[108]

{109} A

[110]

¢ 156

C. L. Tsang, M. W. Mak, and S. Y. Kung. Divergence-based out-of-class rejection for telephone
handset identification. In Proc. Int. Conf. on Spoken Language Processing, pages 2329-2332,

2002.

V. Valtchev. Discriminative Methods in HMM-based Speech recognition. Ph. D. thesis, Uni-

versity of Cambridge, UK, 1995.

B. Xiang, U. Chaudhari, J. Navratil, G. Ramaswamy, and R. Gopinath. Short-time Gaussian-
ization for robust speaker verification. In Proc. IEEE ICASSP’02, volume 1, pages 681-684, °

2002.

K. K. Yiu, M. W. Mak, and S. Y. Kung. A comparative study on kernel-based probabilistic
neural networks for speaker verification. International Journol of Neural Systems, 12(5):381~

391, 2002.

K. K. Yiu, M. W. Mak, a.hd S. Y. Kung. Environment adaptation for robust speaker verifica-

tion. In Furospeech (13, 2003.

W. D. Zhang, M. W. Mak, and M. X. He. A two-stage scoring method combining world and

cohort model for speaker verification. In Proc. I[CASSP 00, pages 1193-1196, June 2000,

W.D. Zhang, K.K. Yiu, M. W. Mak, C. K. Li, and M. X. He. A prioni threshold determination

for phrase-prompted speaker verification. In Eurospeech’39, volume 2, pages 1023-1026, 1999.

Y. Zhao. An EM algorithm for linear distortion channel estimation based on observations from

a mixture of Gaussian sources. JEEE Trans. on Speech and Audio Processing, 7(4):400-413,

1999,

M. 8. Zilovie, R. P. Ramachandran, and R. J. Mammone. Speaker identification based on the
use of robust cepstral features obtained from pole-zero transfer functions. IEEE Trans. on

Speech and Audio Processing, 6(3):260-267, 1998.



157

AUTHOR’S PUBLICATIONS

International Journal Papers

1. K. K. Yiu, M. W. Mak and S. Y. Kung. A Comparative Study on Kernel-Based
Probabilistic Neural Networks for Speaker Verification, International Journal of

Neural Systems, Vol. 12, No. 5, 381-391, 2002.

2. K. K. Yiu, M. W. Mak and S. Y. Kung. Blind Stochastic Feature Transforma-
tion for Channel Robust Speaker Verification, accepted'lﬁy J. of VLSI Signal

Processing.

3. K. K. Yiu, M. W. Mak and S. Y. Kung. Environment Adaptation for Robust
Speaker Verification by Cascading Maximum Likelihood Linear Regression and

Reinforced Learning, resubmitted to Computer Speech and Language.
International Conference Papers

4. K. K. Yiu, M. W. Mak and S.‘Y. Kung. Environment Adaptation for Robust
Speaker Verification, in Furospeech’03, Geneva, Sept. 2003, pp. 2973-2976.

5 K. K. Yiu, M. W. Mak and 5. Y. Kung. Speaker Verification with A Priori
Threshold Determination Using Kernel-Based Probabilistic Neural Networks, in
Int. Conf on Neural Information Processing 2002, (ICONIP’02), Singapore,
Nov. 2002, pp. 2386-2390.

6. K. K. Yin, M. W. Mak and S. Y. Kung,. KerneluBase:d Probabilistic Neural
Networks with Integrated Scoring Normalization for Speaker Verification, in

Pacific-Rim Conference on Multimedia 2002 (PCM’'2002), 2002, pp. 623-630.



7. K. K. Yiu, M. W, Mak, M. C. Cheung, and S. Y. Kung. A New Approach to
Channel Robust Speaker Verification via Constrained Stochastic Feature Trans-

formation, accepted by Int. Conf. on Spoken Language Processing, 2004.

8. M. C. Cheung, K. K. Yiu, M. W. Mak and S. Y. Kung. Multi-Sample Fu-
sion with Constrained Feature Transformation for Robust Speaker Verification,

accepted by Int. Conf. on Spoken Language Processing, 2004.

9. K. K. Yiu, M. W. Mak, M. C. Cheung, and S. Y. Kung. Blind Stochastic Feature
Transformation for Speaker Verification over Cellular Networks, accepted by

ISIMP, 2004.



