






Abstract 
 
 
A tropical cyclone is the generic term for a non-frontal synoptic scale low-pressure 

system over tropical or sub-tropical waters with organized convection and definite 

cyclonic surface wind circulation. Associated with the potential destructive winds and 

heavy rains, they primarily pose a threat to life and property to coastal zones. Their 

early identification would allow precautions to be put in place that would minimize 

the associated risks to people’s lives and properties. In recent years, more and more 

research efforts have been involved in tropical cyclone forecasting, and lots of 

prediction models have been proposed to simulate the intensities of a variety of 

tropical cyclones, including statistical models, statistical-dynamical models and 

dynamic models. However, each approach has its own methodologies, assumptions 

and design goals, making it difficult to adapt to different application requirements. 

 

In this thesis, we aim at discovering new approaches in designing reformative 

forecasting models to predict tropical cyclones using methodologies at different levels 

that are more reliable for the collected data types, more efficient and effective in 

terms of predicted accuracy and computational costs, and more scalable to future 

system expansion. We propose a satellite interpretation based forecasting model, a 

neural network regression-forecasting model and a similarity retrieval model, each of 

which has its own background features. In the satellite interpretation-forecasting 

model, we introduce an integrated approach for tropical cyclone comparison based on 

typical spiral shapes using time warping technology. The position and the shape of a 

tropical cyclone extracted from a satellite image is the major concern. The Gradient 

Vector Flow (GVF) snake model is used to extract the contour points of a dominant 

tropical cyclone from the satellite image. The similarity of two tropical cyclones is 

compared using the angle features found among the successive contour points. 

Furthermore to achieve a better reflection of the spiral shape of tropical cyclones, we 

adopt a time warping approach to allow fast and accurate comparison of patterns. In 
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the neural network regression forecasting model, we propose an integrated 

competitive neural network classifier to predict the maximum potential intensity of a 

tropical cyclone, based on a 10-year sample of western North Pacific tropical 

cyclones and monthly mean sea surface temperature. A large amount of feature 

variables are used in the network training including latitude, longitude, pressure, 

intensity, sea surface temperatures and so on. To deal with variety of variables, we 

design a variable selection procedure to choose the most important training variables 

to enhance the speed and accuracy of neural network training. In the similarity 

retrieval model, we present an approach to predict TC intensities using a feed-forward 

neural weight generator, which is adopted to generate a set of appropriate weights for 

various associated features of a tropical cyclone. We also propose the time-series 

similarity adjustment to measure the similarity of samples on consecutive 

observations of a tropical cyclone. Comparing with existing similar forecasting 

models, the experiments show that our proposed ones can achieve promising results.
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Chapter 1. Introduction 
 

A Tropical Cyclone (TC) is the generic term for a non-frontal synoptic scale low-pressure 

system over tropical or sub-tropical waters with organized convection and definite 

cyclonic surface wind circulation. It is known to form over all tropical oceans with the 

exception of the south Atlantic and the south Pacific east of about 140° W.  

 

The intensity of a tropical cyclone is a measure of the destructive effects over a particular 

place on humans and (or) structures. It is measured by the maximum 1-min sustained 

surface wind in the walls of the hurricane [1]. Usually, in tropical cyclone landfall areas 

the resultant damages are often extensive, especially in developed coastal areas. In the 

September of 2005, hurricane Katrina, the most destructive and costliest natural disaster 

in the history of the United States, passed through the Central Gulf Coast of America and 

flooded and damaged the coastal regions. The official death toll stands at 1,302 and the 

damage higher than $200 million. Over a million people were displaced.  

 

Building forecasting models for tropical cyclone intensity is one of the most challenging 

areas in tropical cyclone research in recent years. An accurate intensity prediction is 

extremely important in the forecast advisory and warning process, primarily because 

emergency management decision-making is closely tied to the movement of tropical 

cyclones and the intensity of land-falling tropical cyclones. Moreover, to mitigate tropical 

cyclone effects, it is necessary to predict the intensity changes of a tropical cyclone with 

high level of accuracy in order to prevent from loss caused by this destructive natural 

disaster. However, such information has not been exploited to its full potential for 

prediction of tropical cyclone intensity changes.  

 

In this chapter, we will first provide briefing introduction about tropical cyclone intensity, 

satellite image interpretation, Dvorak technique, time-series prediction and neural 

network forecast. Then we describe the contributions and the organization of this thesis.  
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1.1 Tropical Cyclone Intensity  
 

Tropical Cyclones (TC), including hurricanes and typhoons, with its remarkable spiral 

shape and central eye, are natural phenomenon and have great destructive forces. They 

are huge rotating column of warm and moist air. Moreover, its wind speed usually 

exceeds 150km/h and torrential rain is also a common observation with the tropical 

cyclone. The centre of tropical cyclones has very low sea-level pressure, and is often 

called the “eye” (like Figure 1.1 shown below). In the region of the Western North 

Pacific and the South China Sea, on average there are 30 tropical cyclones formed in each 

year. Tropical cyclones are classified in accordance with the World Meteorological 

Organization’s recommendation by their maximum sustain wind speeds near the centre. 

Taking Hong Kong as an example, the classification is defined in terms of wind speeds 

averaged over a period of 10 minutes as shown in Table 1.1 [80]: 

 

Table 1.1: Classification of tropical cyclones in Hong Kong  

Intensity Maximum 10-minute mean wind near the centre 

Tropical Depression (TD) Up to 62 km/h 

Tropical Storm (TS) 63 to 87 km/h 

Severe Tropical Storm (STS) 88 to 117 km/h 

Typhoon (TY) 118 km/h or more 

 

 
Figure 1.1: Model vertical profile of a mature typhoon 
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In recent years, lots of research efforts have been devoted to techniques recurring to 

physical devices, such as scatterometer technique [2], microwave radiometric [3], 

QuikSCAT [4] and so on. As it needs high expert information about those special 

settlements if the forecast is carried out using scatterometer, microwave or QuikSCAT 

techniques, interpretation from the satellite images directly, assisted by miscellaneous 

information, becomes a more and more popular research approach to achieve tropical 

cyclone forecasting for computer-science background researchers. One of the most 

widely accepted techniques is the Dvorak technique [5, 6], which assigns the wind 

intensity value (called TC number) based on the size, shape and vorticity of the dense 

cloud shield adjacent to the centre of the storm.  

 

Owing to the high variation of cloud pattern [7] and lack of efficient scene analysis 

technique for the isolation and extraction of cloud systems from satellite images [8], the 

pattern matching jobs for tropical cyclones in Dvorak analysis are so far mostly done by 

subjective human justification. Very few successful alternative techniques exist to 

support pattern recognition automatically in Dvorak analysis [9], let alone with the 

automatic identification for the position of “eye” in hurricanes and typhoons [10].  

 

1.2 Satellite Image Interpretation 
 

For more than three decades, satellite technologies have been extensively applied in 

various aspects, ranging from the military purpose, to the searching and discovery of 

natural resources. Meteorology, without saying, is one of the most typical areas, which 

has a high utilization of satellite technology, ranging from the observation of regional 

adverse weather conditions such as thunderstorms [11] and jet streams [12], to the global 

weather patterns such as synoptic scale cloud systems [13].  

 

The purpose of meteorological satellite image interpretation is to relate significant 

features in the image to physical processes that are occurring, or have occurred in the 

atmosphere [14]. Much of the research in image interpretation being done today involves 

the development of techniques to automate the analysis of digital imagery. Over the past 
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few decades, the primary analysis tool has been relying on the interpretive skill of the 

analysts who manually view the satellite images and make a subjective assessment of the 

features that may be involved. Most meteorological satellites make measurements in the 

visible and infrared portions of the electromagnetic spectrum. Some also have additional 

channels that can vary from the ultraviolet to the microwave region, such as Water Vapor 

Imagery to indicate the relative humidity of the mid-troposphere [15] and Microwave 

Imagery for the observation of precipitation images [16].  

 

Certain important atmospheric phenomena can possibly be found through the inspection 

of visible satellite pictures and by contrast with the difference in patterns found in other 

channels (such as infrared channel). These include:  

o Clouds system and activities 

o Storms, including tropical cyclones and severe thunderstorm 

o Wind flow 

o Miscellaneous phenomena such as volcanic ash, sun glint and dust storm 
 

1.3 Tropical Cyclone Intensity Mining  
 

Over the past decades, numerical models [17] are still the most commonly used weather 

prediction methods adopted by meteorologists and weather forecasters. This classical 

approach attempts to model the fluid and thermal dynamic systems for grid-point time 

series prediction based on boundary meteorological data such as mean sea level pressure 

(MSLP), web bulb and dry bulb temperature, and wind speed and direction. In order to 

improve the mining accuracy, grid point meteorological data including wind speed and 

direction, vorticity and divergence measurements at various atmospheric levels (e.g., 200 

hPa, 300 hPa, 500 hPa, 700 hPa) are being used for simulation as well. Besides, 

numerical simulation often requires intensive computations involving complex 

differential equations and computational algorithms. The accuracy is bounded by certain 

inherited constraints such as the adoption of incomplete boundary conditions, model 

assumptions and numerical instability. The bureau numerical tropical cyclone prediction 

model that has run operationally and regularly in recent years is the one-way-interactive 
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tropical cyclone model (OTCM) used by the Joint Typhoon Warning Centre (JTWC) in 

Guam. The OTCM model is generally the best and most consistent performer of the 

entire operational objective forecast aids in the western North Pacific region [18].  

 

The track forecast system (TFS) objective analysis utilizes the Barnes method [19] on 

pressure surface. The forecast component of the TFS uses fourth-order finite differencing 

for advection terms in flux form and a split-explicit time integration using the leapfrog 

scheme [20]. In order to ensure the maintenance of the vortex circulation throughout the 

forecast period, artificial heating options are integrated to supplement the Kuo-type 

cumulus parameterization [21] in the model. The TFS began operation at the Central 

Weather Bureau in Taiwan in 1990 and is still being used as a critical TC track-mining 

tool. As compared with the long-term, best performing OTCM in the western North 

Pacific region, TFS is out-performed by over 8% in 48-h TC track mining accuracy [22] 

that corresponds to 30 km of improvement.  

 

For TC intensity and tracks mining, concurrently schema adopted by weather forecasters 

include: 1) subjective prediction based on combination of linear extrapolation of TC 

movement together with the interpretation of other weather forecasting resources such as 

surface and upper-air weather charts; 2) numerical weather prediction by subjective “feed 

in” the TC position, intensity, and central pressure extracted from Dvorak analysis into 

the numerical model to perform the time series grid point prediction such as OTCM 

model, or the integration of bogus vortices with supplementary artificial heating model 

into the numerical system for time series prediction such as TFS system. However, as 

indicated by Jeng et al. [22], due to the rapid development of TC intensity that will affect 

the movement in severe weather, TC intensity and track-mining process are always 

subject to certain degree of inaccuracy. In these situations, human justification is adopted.  

 

1.4 Dvorak Techniques  
 

In view of the various meteorological phenomena interpreted from satellite pictures, we 

note that one of the most remarkable contributions of meteorological satellite is the 
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identification of tropical cyclones and extra-tropical cyclones. However, while shipping 

interests are pleased to know about the location of tropical cyclones, they also need to 

know the wind speed and intensity so that they can keep their ships at a safe distance. 

 

The most important technique for estimating winds in tropical cyclones was developed by 

Dvorak [5, 6] in 1975. From his theory, each tropical cyclone goes through a life cyclone 

that may be classified into one of several types by its appearance in visible images. 

Figure 1.2 shows the Dvorak Tropical Cyclones templates from T1 to T8, each T-number 

with eight sub-categories corresponding to eight different possible appearances of the TC 

patterns [5]. In general, the T-number of the observed storm can be determined by 

detailed examination of the images following a decision tree (shown in Figure 1.3 [5]) 

and by guidelines on the expected day-to-day change of storm patterns.  

 
Figure 1.2: Dvorak TC templates, with number assigned from T1 to T8 

 

Apart from the T-number, “Current Intensity” (CI) number can also be determined, which 

is related to storm’s maximum sustained surface wind speed. In 1984, Dvorak [23] 

introduced a variant of the above technique, called the enhanced infrared technique (EIR 

technique), which uses specially enhanced infrared images instead of the visible ones. 

This, of course, allows intensity estimates to be made at night. Nowadays, Dvorak 

technique is still the worldwide-agreed standard for the determination of TC intensity. 

But due to the highly variation of TC patterns, the visible and enhance infrared Dvorak 
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techniques are subjective which require professional training to be done effectively for 

good wind estimates.  Lastly, by using the EIR Dvorak technique, and based on the 

contrast of the equivalent blackbody temperature of the eye of the storm against the 

average equivalent blackbody temperature of the surrounding cloud shield, 

meteorological analysts can probably estimate the T-number from these two parameters 

using a lookup table.  

 
Figure 1.3: Decision tree used to determine T-number (Dvorak [5]) 

 

1.5 Time-series prediction and neural network forecasting  
 

The analysis of experimental data that have been observed at different points in time 

leads to new and unique problems in statistical modelling and inference. The obvious 

correlation introduced by the sampling of adjacent points in time can severely restrict the 

applicability of the many conventional statistical methods traditionally dependent on the 

assumption that these adjacent observations are independent and identically distributed. 
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The systematic approach by which one goes about answering the mathematical and 

statistical questions posed by these time correlations is commonly referred to as time 

series analysis.  

 

Many of the most intensive and sophisticated applications of time series methods have 

been to problems in the physical and environmental sciences. This fact accounts for the 

basic engineering flavor permeating the language of time series analysis. One of the 

earliest recorded series is the monthly sunspot numbers studied by Schuster (1906). More 

modern investigations may focus on whether a warming trend is present in global 

temperature measurements or whether levels of pollution may influence daily mortality. 

Geophysical time series such as those produced by yearly depositions of various kinds 

can provide long-range proxies for temperature and rainfall. Seismic recordings can aid 

in mapping fault lines or in distinguishing between earthquakes and nuclear explosions.    

 

Time series pattern learning and prediction have been studied extensively over the past 

decades [20, 39]. Neural networks, as sophisticated predicting models, have proven to be 

promising methods for time series predictions owing to their nonlinear and distributed 

characteristics. Vast researches ranging from financial prediction to weather forecast 

have been conducted in recent years. Conventional neural network model such as feed-

forward back-propagation (FFBF) network is a typical supervised learning model that is 

well suited to this kind of problems. However, in a temporal time series prediction 

problem such as approximating the TC intensity and track associated movement, for 

which the conventional neural network architectures and algorithms cannot incorporate 

with the up-coming sample sequence, therefore it fails to give accurate prediction results. 

In temporal time series problems, each time step of a sequence only incurs part of the 

final results, so the predictive outcomes can only be achieved after several time steps 

later. The other neural net approach that is commonly used for time series prediction is 

recurrent network [76]. In a fully recurrent network approach, such as the back-

propagation-through-time (BPTT), learning is done through adjustment of errors 

regularly back propagate all the way through the initial time.  
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1.6 Contributions of the Thesis 
 

In this research, our aim is to study the problem of Tropical Cyclone (TC) intensity 

mining on the principle, possible application and limits of some methods, for the 

construction of intensity forecasting model from a series of satellite data. The whole 

study can be divided into two subparts based on different methodologies adopted in the 

research: 1) satellite image interpretation forecasting; 2) regression neural network 

forecasting; each of which contains more subtasks as listed below:  

 

1) Satellite Image Interpretation Forecasting: It includes feature extraction, pattern 

recognition and matching. In feature extraction part, there contains two subtasks, 

data collection and feature extraction. As more and more researchers have published 

their research works in the Web, it has been much easier to access time series 

satellite images of typical tropical cyclones. NOAA (National Oceanic and 

Atmospheric Administration) [24] is one of good Internet sources where high-

resolution time series TC satellite images can be freely downloaded. For feature 

extraction, we focus on extracting the cyclones from satellite images in our study, 

and other features such as sea level pressure, wet or dry bulb temperature, wind 

speed and direction, and so on can be acquired separately from supplementary 

documents (from NOAA or Hong Kong Observatory). The Gradient Vector Flow 

(GVF) snake model [25] is used to extract the contour points of a dominant tropical 

cyclone contour from the satellite images. After the cyclones have been successfully 

extracted out, two another subtasks are being followed: pattern recognition and 

matching scheme. In this study, we propose an integrated approach for tropical 

cyclone comparison based on typical spiral shapes using time warping technology. 

We retrieve the similarity of two shapes to do matching using angle features found 

among the successive contour points. Furthermore to achieve a better reflection of 

the spiral shape of tropical cyclones, we adopt a time warping concept to result in a 

fast and accurate comparison.  

 

2) Regression Neural Network Forecasting: The main contribution of this part is to 
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develop and implement an algorithm based on climatology, persistence and synoptic 

observations, incorporating neural networks algorithms with multiple linear 

regression model to predict the TC intensity changes at certain intervals of time (6, 

12, 18, 24 hours). We have accomplished the following specific objectives.  

i. Implement a model to predict TC intensity changes at certain time intervals. 

ii. Create an interactive database with TC historical records.  

iii. Develop a random variable selection scheme to identify the variables that 

explain better the relationships between the inputs and output of a nonlinear 

dynamic system.  

iv. Test the capability of the neural networks as a tool to model highly non-

linear processes such as the TC intensity process.  

v. Test the capability of the proposed method to model the fast intensification, 

rapid reduction and re-intensification phenomena of tropical cyclones.  

vi. Analyze the contribution of meteorological variables to the proposed neural 

network model and investigate the relationships between those variables and 

the intensity.   

 

1.7 Organization of the Thesis 
 

The remaining parts of this thesis are organized as below. In chapter 2 we illustrate 

relative research works in recently years, including physical principle models, and 

imagery interpretation and neural network models. Then in chapter 3, 4 and 5, we 

describe three novel forecasting models to predict intensities of the tropical cyclones. 

They are a satellite interpretation based tropical cyclone forecasting system; an integrated 

neural training based tropical cyclone forecasting system; and a similarity retrieval model 

for time-series tropical cyclone data. In each chapter, detail algorithms and experimental 

results are given as well and shown that our proposed approaches are promising ones. At 

last in Chapter 6, we conclude the thesis and illustrate the limitations and the future 

works for each model.  

 10



Chapter 2. Related Works 

 

In recent years, lots of research efforts have been devoted to Tropical Cyclone (TC) 

forecast, such as scatterometer techniques [2], microwave radiometric [3], QuikSCAT [4], 

imagery interpretation [24], neural network forecasting [25] and so on. As it needs highly 

expert information about those special equipments if the forecast is carried out using 

physical principles, imagery interpretation and neural network forecasting, assisted by 

miscellaneous information, become a more and more popular approach to achieve TC 

forecasting for computer-science background researchers.  In this section, we are aiming 

to describe the theories and arguments used in this study. A Literature review of the most 

important contributions for the TC intensity field is given.  

 

2.1 Physical Principle Models 
 

2.1.1 CLIPER  
 

Hope et al. [26] developed the first operational model called HURRAN (HURRicane 

ANalog). By identifying previous storms that had characteristics in common with a 

current storm, HURRAN attempted to predict the most likely track of the current storm. 

Nuemann [27] introduced a model to predict hurricane tracks based on climatology and 

persistence called CLIPER (CLImatology and PERsistence). This model was the first 

operational model that used these kinds of variables for prediction. The persistence 

variables assumed that the integrated effects of all forces, which have steered the storm 

during some past period, would continue to predominate during some future period. In 

general, persistence is taken as the smoothed motion of the tropical cyclone in the past 

12- or 24- hour period. The persistence forecast is then the linear extrapolation of this 

motion for the next 12, 24, 36, and 72 hours. The problem with this type of forecast is 

that a higher order of persistence forecast requires a better knowledge of actual and past 

weather conditions. On the other hand, a climatological forecast makes use of the 

temporal and spatial repetitiveness of TC tracks produced by synoptic patterns, the 
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simultaneous observation of pressure, temperature, wind and other meteorological 

parameters [8].   

 

2.1.2 SHIFOR  
 

Using a similar set of variables used by CLIPER, Jarvinen and Neuman [28] developed 

an intensity prediction model called Statistical Hurricane Intensity Forecast (SHIFOR) 

which is used to predict the future intensity of the storm at 12-hour periods up to 72 hours. 

The prediction variables included: Julian day, initial storm intensity, intensity change 

during the past 12 hours, initial storm latitude and longitude, and zonal and meridional 

components of the storm motion vector. Ten predictor terms are included in each 

equation; these are usually second and third order products of the seven primary 

predictors listed above. The most important terms are the current intensity, the 12 hour 

intensity change, the Julian day and the latitude. The SHIFOR equations were developed 

using data from all historic storms during the period 1900 – 1972 that were at least 30 

nautical miles from the land. Thus, the SHIFOR intensity forecasts are not valid for 

storms less than 30 nautical miles from the coast.  

 

2.1.3 SHIPS  
 

It was in the 1980’s when several authors recognized the importance of synoptic data in 

the prediction of storm intensity. The concept of synoptic data is used to represent 

simultaneous observation of atmospheric variables at different spatial geographic 

extensions. Demaria and Kaplan presented their model called Statistical Hurricane 

Intensity Prediction Scheme (SHIPS) [1], a statistical-synoptic model, which was an 

improvement over SHIFOR because the authors were able to show that the average 

intensity error is 10-15% less than the error from a model that used only climatology and 

persistence.  

 

In 1999, an update of SHIPS was presented by Demaria and Kaplan [29]. This version 

was considered as a “statistical-dynamical” model because data obtained for the first 
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version from global model analysis was removed and synoptic predictors from a 

numerical model were added. This model was developed using standard multiple 

regression techniques with climatological, persistence, and synoptic predictors. Estimates 

of future storm intensity are made for 12-hr periods up to 72 hours. The primary 

predictors used in the prediction are (1) Intensity potential (the difference between the 

current storm intensity and an estimate of the Maximum Possible Storm Intensity 

determined from the sea surface temperature); (2) the vertical shear of the horizontal 

wind in the 850 – 200 millibar (mb) layer; (3) persistence (intensity change in previous 

12 hrs); (4) average 200 mb temperature; (5) average 200 mb east wind component; (6) 

average 850 mb vorticity; (7) day of the year; and (8) the flux convergence of eddy 

angular momentum evaluated at 200 mb.  

 

2.1.4 STIPS  
 

Knaff, DeMaria and Sampson introduced a new statistical intensity model called 

Statistical Typhoon Intensity Prediction Scheme (STIPS) that was made operational at 

the JTWC in 2002 [30]. Development of the STIPS model closely follows the 

development of the SHIPS model for Atlantic and Eastern Pacific tropical cyclone basins. 

STIPS is a multiple linear regression model where the dependent variables are the 

intensity change from the initial forecast time at 12-hour intervals. As a result, there are 

10 predictive equations for the 10 time periods, 12-h through 120-h forecasts. Potential 

predictors (independent variables) are created using current TC conditions, current TC 

trends, and the Navy Operational Global Atmospheric Prediction (NOGAP) analyses. 

The predictors are evaluated for their combined ability to predict tropical cyclone 

intensity change.  

 

2.1.5 STD5  
 

Knaff, DeMaria, Sampson and Gross presented the newly developed TC intensity models 

STD5 (Statistical, 5Day Tropical Cyclone Intensity Forecasts model) that extend the 

official forecasts of both track and intensity to 5 days [31]. The models utilize the 
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CLIPER approach to make forecasts through 5 days for Atlantic, eastern North Pacific, 

and western North Pacific basins. Results using independent input data show that these 

new models possess similar error and bias characteristics when compared with their 

predecessors in the North Atlantic and eastern North Pacific but that the west Pacific 

model shows a statistically significant improvement when compared with its forerunner.  

 

In this decade, the use of satellite data has brought a new beginning to hurricane research. 

DeMaria developed new improvements to the SHIPS model. Data from Geostationary 

Operational Environmental Satellites (GOES) infrared imagery (10.7 µm), identified 

more specific brightness temperatures which were previously azimuthally averaged on a 

4 km, storm-centred radial grid, and Ocean heat content (OHC) data which at some depth 

of the ocean is important for tropical cyclone intensity changes. 

 

2.1.6 GFDL  
 

The Geophysical Fluid Dynamic Laboratory (GFDL) developed a model known as 

GFDL model which belongs to the third category of hurricane intensity models and it was 

developed specifically for hurricane tracking and hurricane intensity prediction [32]. It 

includes 18 sigma levels and uses a horizontal finite-difference method with three nested 

grids. The two inner grids move to follow the storm, and the resolution of the inner 

domain is 1/6 degree. The GFDL model includes convective, radiated and boundary layer 

parameterizations and has a specialized method for initializing the storm circulation. The 

initial and boundary conditions are obtained from the Aviation run of the Medium Range 

Forecast (MRF) model. The representation of the storm circulation in the global analysis 

is replaced with the sum of an environmental flow and a vortex generating by nudging 

the fields in a separate run of the model to an idealized vortex. This idealized vortex is 

based upon a few parameters of the observed storm. The environmental flow is the global 

analysis modified by a filtering technique that removes the hurricane circulation. The 

forecasts from the interpolated GFDL forecasts are known as the Geophysical Fluid 

Dynamic Intensity (GFDI) model.  
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2.1.7 AMSU 

 
Kidder et. al. [33] has described the potential of the Advance Microwave Sounding Unit 

(AMSU) and how it can be used to predict hurricane intensity. A relationship between 

temperature anomalies and both the surface wind speed and central pressure of tropical 

cyclones was found. In general, the temperature anomalies closely follow both the wind 

speeds and the pressures. Gaps in the data are caused by the storm being located between 

orbital swaths or by missing AMSU data. Correlating intensity versus maximum 

temperature yields a correlation coefficient of 0.84 and a standard error of 19 kt. 

Correlating central pressure versus maximum temperature yields a correlation coefficient 

of 0.86 and a standard error of 12 hPa.  

 

2.2 Imagery Interpretation and Neural Network Models 
 

In addition to the above prediction models, there are other approaches to predict the 

tropical cyclone intensity. Using satellite imagery and neural networks are two of the 

most popular and effective approaches.  

 

2.2.1 Dvorak Techniques 
 

Dvorak [5, 6] has provided a reliable method to estimate TC intensity manually from 

visible and infrared (vis/IR) satellite imagery by using subjective pattern recognition and 

a set of applicable rules. Meteorological analysts rely on the Dvorak technique to produce 

initial intensity estimates, and it can also be used to produce intensity forecasts. In this 

pattern recognition technique, tropical cyclone intensity change is deduced from 

successive estimates of intensity fitted to climatological deepening and filling models. 

However, the use of this technique in operational intensity forecasts has occasionally 

resulted in substantial errors as this technique is subject to human justification. The 

Dvorak technique is also limited to producing intensity forecasts up to 24 h. Velden et al. 
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[9] introduced an objective Dvorak technique (ODT) to eliminate much of the 

subjectivity in the standard Dvorak method.  

 

One of the main limitations of the Dvorak technique (and any vis/IR technique) is that 

low- and upper-level clouds can obscure mid- level clouds. Unknown low-level structure 

and circulation make estimating intensity and locating the circulation center difficult. For 

Special Sensor Microwave Imager (SSM/I) passive microwave channel images, most 

upper-level (non-precipitating) clouds are essentially transparent. Using SSM/I images to 

examine TC structure has an advantage when compared with the limitations of other 

types of imagery. Rain bands and a TC center (when it exists) can be seen in the 85-GHz 

channel images when upper-level clouds as seen in IR imagery often obscure the banding 

structure. Richard and Paul [34] developed an automated method to estimate tropical 

cyclone intensity by using extracted characteristics from SSM/I imagery.  

 

2.2.2 EDGLM 
 

In [35], Lee and Liu proposed an Elastic Graphic Dynamic Link Model (EDGLM) to 

automate the satellite interpretation process and provide an objective analysis for tropical 

cyclones. It integrates Dynamic Link Architecture (DLA) for neural dynamics and Active 

Contour Model (ACM) [36] for contour extraction of tropical cyclone patterns. The idea 

of Dynamic Link Architecture was first proposed by C. von der Maslburg [37] in 1981 in 

the “Correlation Theory of Brain Function”, where he condensed the whole idea into a 

separate neural network framework by extending the synaptic plasticity theory of brain 

model. One of the powerful features of DLA is the flexibility and robustness for invariant 

pattern recognition. And most remarkable feature of this approach is that the pattern-

matching scheme under this architecture is inherently invariant under various 

transformations such as translation, relation, reflection, dilation and distortion. The 

deficiency of the EGDLM approach is that it is highly dependent on satellite image 

processing, with lack of other important meteorological properties of tropical cyclones, 

such as mean sea level pressure, wind direction and speed at different levels for TC 
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movement, intensity changes and so on. This limitation determines the faultiness of 

EGDLM in TC tracking mining.  

 

2.2.3 NOEGM 
 

In [25], Lee and Liu proposed an extended integrated neural network-based tropical 

cyclone identification and track mining system, based on their previous research work 

[35], which consists of two main modules: 1) TC pattern recognition system from 

satellite pictures known as neural oscillatory elastic graph matching (NOEGM) model, a 

neural network-based model that involves the automatic TC pattern segmentation and 

elastic pattern matching [38] from the predefined TC template, a process that simulates 

human TC identification technique known as Dvorak analysis [5, 6]. 2) A time series TC 

intensity and track mining system using a hybrid radial basis function (HRBF) network 

[39], a neural network time series prediction model that integrates the conventional RBF 

network with time difference and structural learning (TDSL) [40] techniques.  

 

The NOEGM model itself involves three main modules: 1) Multi-frequency bands 

feature extraction from satellite imageries using Gabor filters [41]; 2) automatic figure-

around TC pattern segmentation using composite neural oscillatory model, and 3) TC 

pattern matching using elastic graph dynamic link model. As an extension to traditional 

neural oscillator models [42, 43], a composite neural oscillator [44] is proposed to 

segment colour scene images into individual figure objects. Unlike the traditional models, 

a composite “Trinity” neuron oscillator model with common inhibitory neuron is 

employed to safeguard global phase locking of composite neural oscillators, which 

stimulate the visual cortex [45] of colour image perceptions. The proposed hybrid RBF 

network in [25] incorporates two main technologies into the conventional RBF network 

for temporal time series prediction problem: 1) structural learning technique that 

integrates the “forgetting” factor into the RBF BP algorithm; 2) a time difference with 

decay method is incorporated into the network to strengthen the temporal time series 

relation of the input data sequence for network training.  
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Although NOEGM model has enhanced the EDGLM model, by integrating various 

elements of tropical cyclones into a hybrid RBF neural model, it still needs to be further 

enhanced, especially in these two aspects. Firstly, relationships between successive 

satellite pictures can be generated to recognize the TC pattern and mine the time series 

development. Secondly, interactions of multiple TC systems within the same satellite 

images should be taken into account, as another one in the same region may influence the 

movement of one tropical cyclone.  

 

2.2.4 Two-dimension Wavelet Decomposition 
 

Wavelet analysis has been widely applied in the area of signal processing, image 

processing and pattern recognition with encouraging results [46]. Wavelet transform is 

chosen to be used in image frequency analysis and image decomposition because 1) by 

decomposing an image using wavelet transform, the resolutions of the sub-band images 

are reduced. In turn, the computational complexity will be reduced dramatically by 

working on a lower resolution image; 2) Wavelet decomposition provides local 

information in both space domain and frequency domain [47]. Liu et al. [48] proposed a 

new approach on automatic tropical cyclone detection from satellite images by using 

wavelet multi-resolution analysis [49]. Low and high frequencies signals are extracted 

from the satellite images for the segmentation and recognition processes. Genetic 

algorithm [50] was also applied for searching and finding the proper spiral shape. After 

the type of TC is identified, an enhanced RBF neural network is used in discovering the 

TC moving track. The Wavelet Decomposition module makes use of 2D wavelet analysis 

to decompose the image into higher frequency and lower frequency signals. The Image 

Segmentation module extracts all possible cyclone locations by using the lower 

frequency signal from the image. The higher frequency signal is used for analyzing the 

spiral feature. For the TC moving track discovery, an enhanced RBFNN is used. The 

disadvantage of Wavelet analysis is very obvious that it cannot solve the problem of 

multiple cyclones within the same satellite images. The proper number of levels of 

wavelet decomposition is not easy to decide, which leads to the inaccuracy for the 
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prediction. Lastly, the eye of the cyclone may not be located precisely as it only considers 

the processing on satellite image itself. 

 

2.2.5 Case-based Forecasting  
 

In [51], Pedro and Burstein proposed a multi-stage framework for combining case-based 

reasoning (CBR) and fuzzy multi-criteria decision making (FMDM) with the aim of 

building a model for intelligent decision support and carrying an application to Tropical 

Cyclone forecasting, which was proved to be successful. The proposed multi-stage 

framework is an extension of a two-stage task-based framework for CBR that uses 

FMDM technique to solve the case selection problem in CBR. It consists of three stages, 

namely: 1) Stage 0: Case representations; 2) Stage 1: Case selection; 3) Stage 2: Case 

adaptation and retention. To apply the proposed framework to Tropical Cyclone 

forecasting, Pedro and Burstein considered a particular stage of Hurricane Alberto [52] as 

a current TC case. Given the past 24 hours observation of Alberto on its latitude, 

longitude, minimum central pressure (MCP) and maximum sustained winds (MSW), its 

track position for the next 3 days can be predicted by selecting the best analog from the 

case bases from the past tropical cyclones. 

 

In stage 0, the cases are represented in terms of multiple attributes, multiple criteria and 

the order of importance. For similarity assessment, track positions are considered as first 

most important attributes and rack position, MCP and MSW as second most important set 

of attributes. The criteria for evaluating the usefulness of the past cyclones are synoptic 

history, meteorological statistics, and forecast critique and satellite image. In stage 1, a 

subset of past tropical cyclones is selected to depict similar past 24-hour track position. 

Fuzzy measure for “slightly similar”, “similar” and “very similar” are defined in terms of 

great circle distance between the track positions of past cases and track position of the 

current tropical cyclone. For example, a past tropical cyclone with slightly different 

structure as the current tropical cyclone may be regarded as either “slightly useful” or 

“useful” or “very useful” to the current situation. A past tropical cyclone that had been 

predicted with large errors may be “very useful” to the current situation, potentially 
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indicating the difficulty of predicting the future location and intensity of the current 

cyclone. In stage 2, these superior cases are then weighted accordingly and a weighted 

mean of attributes of the corresponding superior cases determine the position and 

intensity forecasts for all leads time.  

 

The case-based approach for TC forecasting has its obvious advantage at present stage, if 

it can be further improved by enhancing knowledge acquisition, reuse and creation, 

capturing experts’ knowledge, learning from past experience and imparting such 

knowledge for future decision making. Also, comparing with other proposed TC 

forecasting models should be included in the case-base forecasting approach.  

 

2.2.6 TC Eye Location 
 

Tropical Cyclone (TC) eye fix is often done manually in practice. Forecasters estimate 

the center location by tracing the movement of spiral rain bands using consecutive remote 

sensing images, or by overlaying spiral templates on remote sensing images for the best 

match [53]. These techniques are intuitive to forecasters since they are trained to identify 

the spiral structure of TCs, but are not completely objective.  

 

In contrast, automated TC eye fix methods often employ objective measures. Major 

approaches include wind field analysis and pattern matching. In wind field analysis, 

motion estimation techniques are applied on adjacent frames of images to construct a 

motion vector field. Examples include the use of the TREC (Tracking Radar Echoes by 

Correlation) algorithm [54] or automatic cloud features tracking technique [55]. The TC 

center is found by analyzing the motion field [56].  

 

For pattern matching, the TC eye is fixed by finding the best match of a predefined TC 

model, whose parameters are estimated from remote sensing data. A method that is 

applicable to ideal TCs [57] identifies shear patterns of large axisymmetric wind 

circulation systems to fix the TC eye. As another example, in [58], the spiral rain band of 

a TC is modelled by the equation , where a and α are found by transformation αθ cotaer =
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techniques. Templates generated by the estimated parameters are used to match against 

radar images at plausible latitude-longitude positions. An alternative method for finding 

spiral parameters involves the method of least squares [59].  

 

These eye fix methods require computationally expensive operations such as wind field 

or motions vector field construction, parameter estimation using searching algorithms, 

and extensive block or object matching. With the large volume and rate of data, this 

problem is often solved using mainframe computers or clusters to generate timely results.  

Yip and Wong [60] provided more details on the eye fix method using genetic algorithm. 

Rather than using traditional gradient ascend algorithms to search for the location of best 

match, genetic algorithm is used to speed up the search and to break out the local maxima. 

A time-honored technique of manual TC eye fix is to overlay spiral templates on a 

printout of remote sensing image for the best match of the spiral rain bands. Yip and 

Wong automated this process by choosing a simple model of TC and doing the match 

using genetic algorithm. Wang et al. [59] advanced a new system to locate the tropical 

cyclone center based on the satellite imageries, by putting forward several center location 

technologies based on tropical cyclone’s structure, the whirl and the whole movement. 

Some logarithmic helix is adapted in [61] to fit part of the cyclone feature cloud and the 

center of the helix can be considered as the center of the cyclone. Meanwhile, according 

to the cyclone’s movement feature, a rotation matching method is presented, where the 

rotation center point is just the tropical cyclone center.  

 

Although [59] and [60] have proposed two effective and efficient approaches for TC eye 

fix problem, there are still several difficult but important issues unsolved or ignored for 

fixing the eye. In [59], the method is only suitable for the tropical cyclone in mature 

status and only small distortion is covered, otherwise the objectivity and precision will be 

greatly degraded, which has already been examined by experiments. And in [60] the 

authors only considered the geographical position of a tropical cyclone, based on which 

the genetic algorithm was applied to deduce the eye location. If the tropical cyclone in the 

pre-processed satellite image is not a regular shape in which the swirl rainband and polar 

equation can be applied, the deduced result is highly suspected.     
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Chapter 3. A Satellite Interpretation Based 

Tropical Cyclone Forecasting System 
 

The most popular approach to compare two given Tropical Cyclones (TCs) is to measure 

the distances between various contour points of the tropical cyclones extracted from 

satellite images. However, this measure has a very high computational cost as it involves 

large amount of point-to-point calculations. Moreover, this measure does not reflect the 

most important characteristic of a tropical cyclone, spiral shape feature, during the 

comparison of two images. In this section, we illustrate our research efforts upon 

developing an effective and efficient TC forecasting system based on TC’s typical spiral 

shapes using time warping technology. Dvorak templates are used as the references to 

determine the intensity of the tropical cyclone to be predicted. Experimental results have 

proven that our approach is better than other conventional comparison approaches such as 

modified Hausdorff distance measure.  

 

In this part, at first an introduction with the system framework is given including three 

module layers. Then an introduction is provided to talk about the Active Contour Model, 

which is very popular and has been widely applied for feature extraction in this system. 

After that, a sequential neighbour checking algorithm is described to select the dominant 

cyclone from all cyclones appearing in the satellite image. Then, a point weight-assigning 

algorithm, including an eye location method, is introduced to determine the significance 

of each point on the TC contour according to its distance to the located eye. The 

remaining part of this chapter focuses on how we make use of the angle features to carry 

out prediction using dynamic time warping technique. The last section provides the 

evaluation of the system.  

 

3.1 Introductions and System Framework 
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Cloud patterns exhibit considerable variation and there currently exist very few scene 

analysis techniques that would allow the efficient isolation and extraction of cloud 

systems from satellite images. Consequently, research into tropical cyclone pattern 

matching using Dvorak analysis has largely relied on subjective human justification.  It 

should also be noted that the shapes and features of atmospheric systems as observed in 

remotely sensed satellite imagery are inherently ambiguous and this is reflected in 

ambiguity or fuzziness in the image processing. Recently, there has been considerable 

research into the extraction and comparison of time series objects from images and, more 

generally, shape matching. Pang et al. [6] presented a novel method for resolving the 

occlusion of vehicles seen in a sequence of traffic images which was able to extract the 

vehicle shape, represented as a cubical model, out of the background ignoring the effect 

of shadows and visual artefacts. In [7], Kamberov et al. developed a new conformal 

method for quantitative shape extraction from unorganized 3D oriented point clouds. This 

method evaluates empirical performance using synthetic, ground truth data and by 

comparison with other quantitative extraction methods.  

 

In this chapter then, we propose a comparison algorithm, angle feature matching, which 

is novel in that it makes use of the distinctive spiral features of tropical cyclones. As it is 

very difficult to define cyclones and to directly compare their shapes, we adopt an 

approximation method that compares pairs of corresponding angles formed by three 

adjacent contour points taken from each cyclone. We choose to measure these angles 

because they control the cyclone’s shape internally. We extract the active contour points 

of the cyclones using the popular active GVF snake model [14] and determine the 

distance between two sets of angles using a time warping algorithm. The particular 

advantage of time warping is that it allows the matching of similar yet out-of-phase 

sequences, or even the sequences of different lengths. In recent years, a great deal of 

work has been done on efficient searching and indexing of time warping. In [16] authors 

provided a new definition of similarity by regarding a time series as a multi-dimensional 

position vector, thus allowing any scaling and shifting operation on the sequences to be 

regarded as, respectively, vector multiplication and vector addition. In [17] authors 

suggested a method for handling subsequence matching. The sequences are divided into 
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pieces and the distance between any two sequences is the sum of the time warping 

distance between each two pairs of pieces. Our publications related to this chapter can be 

referred to [Publication 3,5,7], in which major images and tables in this chapter can also 

be found. 

. 

To implement our proposed matching approach, we designed a three-layer prototype, 

which includes an Extraction Module, an Angle Calculation Module and a Time Warping 

Matching Module. Figure 3.1 illustrates the flow of the system architecture in detail. The 

Extraction Module is tasked with picking up from the satellite images the dominant 

points which depict the contours of a tropical cyclone. The Angle Calculation Module 

then assigns a weight to every contour point based on its distance from the eye of the 

cyclone. All contour points from each image are then used to calculate a set of angles for 

comparison. The Time Warping Matching Module then uses the angle sets to finally 

retrieve the best-matched image from the template set.  

 
Figure 3.1: System architecture of a three-layer prototype 

 

3.2 Active Contour Model 
As a pre-processing step towards the tropical cyclone recognition, we need to extract 

patterns and detect contours from satellite images. In this chapter, an instance of the 

Active Contour Mode, GVF snake mode is used to achieve this target. The main 
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advantage of using such a snake model is that it allows the using of an initial contour 

estimation to overcome photometric abnormalities such as contour gaps, hidden contours, 

or edge points due to noise and texture. A scene of satellite picture with active contour 

extracted out is shown in Figure 3.2 for illustration. In this study our focus is to mine the 

shapes of two tropical cyclones and propose a prediction model. As a result, we assume 

that this is an acceptable tolerance in our research.  

 
Figure 3.2: Contour mapping on a satellite image 

 

Active contours are defined as energy-minimizing splines under the influence of internal 

and external forces [3]. The internal forces of the active contour serve as a smoothness 

constraint designed to hold the active contour together and to keep it from bending too 

much. The external forces guide the active contour towards image features such as high 

intensity gradients. The optimal contour position is computed such that the total energy is 

minimized. Let the active contour be given by a parametric representation v(s) = (x(s), 

y(s)), with s as the normalized arc length of the contour. The expression for the total 

energy can then be decomposed as follows:  
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where Eint represents the internal forces which encourage smooth curves, Eimage represents 

the local correspondence with the image function, and Econ represents a constraint force 
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where | | is the Euclidean norm. The first order continuity term, weighted by α(s), makes 

the contour behave elastically, while the second order curvature term, weighted by β(s), 

makes it resistant to bending. The use of internal energy allows active contours to 

interpolate gaps in the edge phenomena known as subjective contours. The image energy 

term derived from the image data over which the active contour lies is Eimage. This is 

constructed to attract the active contour to desired feature points in the image, such as 

edges and lines. Eimage can be associated with a potential P(x, y) which can be defined in 

terms of the gradient module of the image convoluted either by the Gaussian function: 

)),(*),((),( yxIyxGyxP ∇−=                                     (3.3) 

or as a distance map of the edge points: 

P(x, y)d(x, y),                                 (3.4) 
2),(),( yxdeyxP −=

where d(x, y) denotes the distance between the pixel (x, y) and its closest edge point. 

Potential forces move the snake and it tries to fall into a valley as if it were under the 

effect of gravity. In this chapter, we use the Gradient Vector Flow (GVF), one instance of 

the Active Contour Model, as it has the ability to both inflate and deflate the contour, to 

deform to concavities, and to increase the capture range of the external forces. The 

external force is computed as a diffusion of the gradient vectors of an image, without 

blurring the edges. Xu and Prince [62] defined the GVF field to the vector field 

v(i,j)=(u(i,j),v(i,j)) which is updated with every iteration of the diffusion equations, as in 

the following Equations 3.5 and 3.6.  
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The initial values of u and v are the gradient values.  
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where Gi is the first element of the gradient vector and Gj is the second element. The 

variables ci,j
1 and ci,j

2 in Equation 3.5 and 3.6 are derived by following calculations:  
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3.3 Matching Methodology 
 

3.3.1 A Fast Sequential Neighbour Checking Algorithm 
 

The GVF snake model is applied not only on the input satellite images, but also on the 

Dvorak template images. As more than one tropical cyclone may appear in the satellite 

image, we select only the dominant cyclone, that is, the one with the largest area. The 

boundary edge points of the extracted cyclone are then recorded in the library database 

for future reference. To achieve this, we propose a fast algorithm called Sequential 

Neighbour Checking, which proceeds by first checking a single pixel within the tropical 

cyclone, then checking its neighbours and each neighbour’s eight neighbours to see 

whether they also belong to the designated tropical cyclone. This allows every pixel 

within the same cluster of the tropical cyclone to be correctly examined. We have 50 

contour points for each TC, which is supposed to be enough to represent the basic 

boundary of a TC in our study. Figure 3.3 gives the clustered result and Figure 3.4 

provides the pseudo-code of this algorithm.  

 
Figure 3.3: Clustered result for a sample tropical cyclone 

 
Figure 3.4: Procedure of sequential neighbour checking algorithm 
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After extracting the contour points of the dominant cyclone, the Angle Calculation 

Module starts and, to locate the positional centroid of the tropical cyclone, an Eye 

Location algorithm is proposed. Different weights are then calculated and assigned to 

different contour points, based on their distance to the cyclone eye. A sequence of angles 

is then formed between every three consecutive points on the contour. Using these sets of 

angles, as well as the associated weights, the Time Warping Matching Module then 

retrieves the best-matched image from the template set. A shift fetcher is designed to 

work as a rotator, comparing two cyclone contours in all possible rotations. 
 
3.3.2 Tropical Cyclone Eye Location 
 
One of the most characteristic features of a tropical cyclone is its spiral shape. This shape 

can be represented using the active contour points extracted from the satellite images but 

GVF extraction is not able to reflect the internal helix structure of a tropical cyclone. 

Using shapes can reduce the accuracy of the prediction. It is very difficult to detect the 

eye of a tropical cyclone using image processing techniques, as the location of the 

cyclone eye is related to many other factors, for example, intensity, speed, and acreage. In 

this paper, given a tropical cyclone contour, we aim to find its positional centroid. Here, 

to detect the positional centre point O, we first introduce the definition of a pixel distance 

algorithm. This concept is illustrated in Figure 3.5.  

 
Figure 3.5: A pixel distance algorithm 

The pixel distance algorithm is implemented using an intermediate clustered image, like 

the middle image in Figure 3.3. All the pixels in a clustered image are either black or 

white. We set the pixel distance of P to 1 for every pixel P within the tropical cyclone, 

that is, for all pixels belonging to the largest cyclone shape in the image, so long as all of 

its eight neighbours (pixels in positions P+1 in Figure 3.5) have the same gradient values. 
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Accordingly, if the pixels in positions of P+1 to P+n all have the same gradient values, 

the pixel distance of P is set to n, otherwise the distance is set to n-1. In this way, it is 

possible to find the location centroid O (x, y) of an extracted contour such that a centroid 

with a radius R contains the largest number of pixel points within the contour. Figure 3.6 

shows an example of this. Figure 3.7 provides details of the pixel distance algorithm [67]. 

 
Figure 3.6: Result of Positional Eye Location 

 
Figure 3.7: The pixel distance algorithm 

 

3.3.3 A Weight Calculation Algorithm 
 

Having located the eye of the tropical cyclone O(x, y), we start the critical task of 

assigning weights to each point of the active contour. Conceptually, points which are 

nearer to the positional eye O(x, y) should have higher weights, as their influence on 
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controlling the spiral shape, the intensity, or other properties of the tropical cyclone will 

be greater. Based on this, we designed the following algorithm to determine the weight 

according to the distance between the positional eye and individual contour point. This is 

illustrated in Figures 3.8 and 3.9.  

 
Figure 3.8: Algorithm of calculating weight for each point on the contour 

 

 
Figure 3.9: Result of Weight assigned to each contour point 

 

Figure 3.9 shows two circles. In the right circle of Figure 3.9, the inner circle remarks 

how the cyclone eye O (x, y) is achieved: its radius is the largest pixel distance among all 

pixels within the contour. The outer cycle is the boundary derived from the minimum of 

{R1, R2, R3, R4}, where A, B, C and D are four extreme points on the contour. Different 

weights are assigned to those contour points based on their Euclidean distance to the eye 

O. In practice, any of {R1, R2, R3, R4} can be used to determine the size of the outer 

cycle. In this subpart, for ease of illustration we choose the minimum figure. We can use 

a set of feature vectors to describe the contour points of a tropical cyclone:  
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],,[},,...,,{ 21 wyxnnnnT ii ==                                      (3.7) 

where x and y are coordinates for each contour point and w is the correlated weight.  

 

3.3.4 An Angle Calculation Module 
 

There has recently been considerable research in the area of image comparison: in colour 

histograms [64], motion vectors [65], contour measures [66], and so on. Our algorithm 

uses the shape of the tropical cyclone to match two images but as it is difficult to describe 

these features, we approximate it using the angles of every third adjacent contour point, 

forming a set of sequential angles for each image. Figure 3.10 shows an example of angle 

and adjacent contour points, where A, B and C are three adjacent points on the contour 

edge of the tropical cyclone and θ is the internal angle.  

 
Figure 3.10: An internal angle between adjacent points 

 

Here we consider only the angle θ formed by vector AB  and CB  and, the interior angle 

of the triangle ABC, according to their sequential positions on the contour edge. Thus θ is 

limited within the range 0 to π. The expansion of the contour points creates a concave 

angle and a convex one, as in the two examples in Figure 3.10. This interior angle,θ, can 

be derived using the inversion of a trigonometric function as follows:   

|)|*||*2/)|||||arccos((| 222 BCABABBCAC −−=θ      π ≥ θ ≥  0       (3.8) 

 So, we can modify the feature vector for a tropical cyclone from Equation 3.7 into the 

following format:                                                        

],[},,...,,{ 21 wnnnnT ii θ==                                        (3.9) 
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where the weight of the angle θ, w, contains the weight value of the middle element of 

three adjacent points forming the angle. The weight of angle ABC for example is just the 

weight value of the contour point B. In this way, two input tropical cyclone satellite 

images provide two sets of angles, as shown in Figure 3.11. The major challenge here is 

to find an effective and efficient approach to derive the similarity of two sets or to 

determine the relationships between different distances/differences (dn) for every 

corresponding pair of nodes in Figure 3.11.  

 
Figure 3.11: Set of angles for each TC (each bold round point representing an angle 

formed in Figure 3.10) 

 

3.3.5 A Time Warping Matching Module 
 

Once we have formed a set of angles associated with weights for a tropical cyclone in a 

satellite image it is necessary to address the critical issue of determining the similarity 

between two sets. There are two factors to consider here. First, sets do not in general have 

the same number of angles. The comparison of two sets thus calls for the use of an 

efficient algorithm. Second, in order to approximately compare the shapes of two 

cyclones synchronously, the angles of each set should be kept in sequence. In this part, 

then, instead of directly calculating the distance of every pair of two angles from one set 

to another, we adopt the time warping concept [69] as it provides an accurate algorithm 

for the comparison of two sequences of different lengths. The idea is as follows.  

 

Given two angle sets, S and Q of lengths n and m, as well as the corresponding weights 

respectively,  

S=<s1w1, s2w2,…, sn-1wn-1, snwn>  (0 ≤  sn ≤  π) 

 32



Q=<q1w1, q2w2, …, qm-1wm-1, qmwm> (0 ≤  qm ≤  π) 

where sn and qm are sets of angles formed by Equation 3.8 for two input tropical cyclones 

and wi is the corresponding weight for the associated angle, we can develop an m-by-n 

grid, as illustrated in Figure 3.12.  

 
Figure 3.12: A warping path in an m-by-n grid 

 

Each grid element, (i, j), represents an alignment between angle si and qi. A warping path 

W is a sequence of grid elements that define an alignment between S and Q.  

W=(i1,j1), (i2,j2),…, (ip, jp)  max(n,m)≤p<m+n-1                     (3.10) 

where (ip, jp) corresponds to the pth grid element in the warping path. For example, (i2,j3) 

in Figure 3.12 represents the grid element (2,3), which implies that s2 is aligned with q3. 

For practical reasons, several types of constraints, which concern the warping path, are 

introduced in prevalent research work [70].  

 End Point Constraints: The warping path should start at (1, 1) and end at (n, m). 

 Monotonicity and Continuity: Given two grid elements in a warping path, (ik, jk) 

and (ik+1, jk+1), then 0 ≤  ik+1 – ik ≤  1 and 0 ≤  jk+1-jk ≤ 1. This restricts the 

allowable transitions of a node to adjacent elements, which are located at east, 

south, or southeast with respect to Figure 3.12. 

 Global Path Constraint: The global path constraint defines the region of grid 

elements that searched for the optimal warping path. The warping path is limited 

within the warping window, which is known as Sakoe-Chiba Band. The constraint 

can be defined as follows:  

rijriWji kkkkk +≤≤−∈∀ ,),(                                     (3.11) 

where r is the width of the warping window. In Figure 3.12, r = 1.  
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After aligning the sequences S and Q, their similarity can be measured by the cumulative 

distance of the warping path between them. Each element in the warping path is 

associated with a distance:  

 d(ik, jk) = || sikwik – qjkwjk||                                           (3.12) 

Thus the cumulative distance of a warping path is defined as: 

∑
=

=
p

k
kkc jidWD

1
),()(                                              (3.13) 

It is possible to have many warping paths. We choose an optimal warping path such that 

its cumulative distance Dc is the minimum. The corresponding distance is defined as Dtw: 

)}({min),( WDQSD cWtw ∀
=                                         (3.13) 

It would be computationally expensive to search through every warping path, so we find 

the optimal warping path using a dynamic programming approach. This approach is 

based on a recurrence formula that defines the cumulative distance, γ(i, j), between angle 

si and qj, where,  

)}1,1(),1,(),,1(min{),(),( −−−−+= jijijijidji γγγγ                       (3.14) 

By adopting Equations 3.10 to 3.14, we can construct a cumulative matrix as shown in 

Figure 3.13. This matrix represents such an algorithm using typical angle sequences Q = 

{7/8π, 3/4π, 6/7π, 1/2π} and S = {2/3π, 4/5π, 1/3π, 6/7π, 5/8π, 8/9π}. Each value in the 

cell represents the cumulative distance γ(i, j) of that cell, and it is supposed that all 

weights wi for the angles are set to 1.0 equally.   

 
Figure 3.13: A cumulative distance matrix for angle sequences Q and S 

 

After filling up the table, the optimal warping path can be found by tracing backward 

from the lower right corner towards the upper left corner. At each cell, we choose the 
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previous cell whose neighbouring cell has the minimum cumulative distance. In this way, 

1.19π in the bottom right corner cell can be regarded as the distance of angle sequence S 

and Q, and is marked as minDis (S, Q).  

 

In certain cases, after self-rotating the input tropical cyclone image by a number of 

degrees, the contour may provide a better match with the target tropical cyclone image. 

This means that we should do the comparison more than once. Where there are two angle 

feature sets, the functional equivalent of rotating the contour is obtained if the element in 

the angle sequence is shifted once to the left or right. A Shift Fetcher, shown in Figure 

3.1, is designed to repeatedly shift the sequence of S (or Q) and calculates a new 

cumulative distance matrix like the one in Figure 3.13. For example, sequence S = {2/3π, 

4/5π, 1/3π, 6/7π, 5/8π, 8/9π} will be S’= {4/5π, 1/3π, 6/7π, 5/8π, 8/9π, 2/3π} after 

shifting one position to the left. Then we have a new cumulative distance matrix for Q 

and S’ and a new minDis1(Q, S’), as in Figure 3.14.  

 
Figure 3.14: A cumulative distance matrix for angle sequences Q and S1 after a left shift 

After a loop of shifting all elements of one sequence, we select the smallest one of 

minDisn(Q,Sn) as the final distance of Q and S, as shown in Equation 3.15: 

)),(min),...,(min),,(min(min),( 2211 nn SQdisSQdisSQdisSQDis =         (3.15) 

 

As a result, given a query angle sequence, Q, for all sets of angle sequences in the 

database, we want to find the sequence Q with a minimum Dis(Q,S) as the sequence best 

matched to the queried sequence. In this way, the input tropical cyclone and its best 

match are considered to have a similar intensity. After we have retrieved the best-
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matched sample from the database, we can assign the features of current tropical cyclones 

using those of the best-matched sample.  

 

3.4 Performance Evaluation 
 

To evaluate the efficiency and the effectiveness of our proposed approach, we carried out 

a set of experiments in which an image is input in order to retrieve a most-like satellite 

image from the database. The image database contains a total of 64 Dvorak template 

images with a resolution of 100 x 100. The input is another set of tropical cyclone 

satellite images collected from an official U.S. Navy web site [71], having a resolution of 

800 x 600. The main reason that we selected images with different resolutions was to test 

the predictive performance of our system when there were great differences in the image 

relations. Dvorak templates were used because they are relatively informative as to the 

tropical cyclone’s intensity. In one of our previous research works [67], we proposed a 

modified Hausdorff distance measure [68] for use in the matching of significance-based 

points in tropical cyclone satellite images. Along with the time warping distance measure, 

these comparisons also made use of another model from our previous research, a 

modified Hausdorff distance measure. To carry out our idea, we designed the interface of 

an integrated system which first extracts the active contour points from each input 

satellite image then assigns separate weights to those points, calculates corresponding 

angle sequences, and finally retrieves a most-like Dvorak template image. The following 

section provides a brief introduction to the modified Hausdorff distance measure.  

 

3.4.1 Definition of Hausdorff Distance  

 
The Hausdorff distance is a shape comparison metric based on binary images. It is a 

distance defined between two point sets. Unlike most shape comparison methods that 

build a point-to-point correspondence between a model and a test image, the Hausdorff 

distance can be calculated without explicit point correspondence. Huttenlocher et al. [72] 

argued that the Hausdorff distance for binary image matching is more tolerant to 
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perturbations in the locations of points than binary correlations techniques, since it 

measures proximity rather than exact superposition. Here we modify the Hausdorff 

distance measure and apply it to Active Contour Matching.  

 

Given two finite point sets M = {m1, m2, …, mp} (representing a model in the database) 

and T = {t1, t2, …, tq} (representing a test image), the Hausdorff distance is defined as: 

)),(),,(max(),( MThTMhTMH =                                          (3.16) 

where jiTtMm
tmTMh

ji

−=
∈∈

minmax),(  and ||mi-tj|| is the Euclidean norm of the points mi and 

tj. The function h(M, T) is called the directed Hausdorff distance from M to T. It identifies 

the point  that is the farthest from any point of T and measures the distance from 

m

Mmi ∈

i to its nearest neighbour in T. The Hausdorff distance H(M, T) is the maximum of h(M, 

T) and h(T, M). Thus it measures the degree of mismatch between two sets by measuring 

the distances of the points of M that is farthest from any point of T, and vice versa. 

 

3.4.2 A Modified Hausdorff Distance 
 

Dubuisson and Jain [68] investigated 24 forms of different Hausdorff distance measures 

and found that the performance of a modified Hausdorff distance (MHD) measure was 

the best. The directed MHD is defined as: 
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∈ ∈
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TMh min1),(                                         (3.17) 

where P is the number of points in M. The definition of the undirected MHD is the same 

as (3.16). The Hausdorff distance defined as (3.16) is very sensitive to the outlier points. 

A few outlier points, even only a single one, can perturb the distance considerably, 

though the two objects might be very similar. The MHD can alleviate the sensitivity of 

the Hausdorff distance to the outlier points. The partial Hausdorff distance (PHD) was 

suggested by Huttenlocher et al and other researchers [73, 74]. The PHD takes the kth 

smallest nearest neighbour distance as the objective function to deal with occluded 

objects and arbitrary outliers. It has been proven to have great potential usage in robust 
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statistics [75], though the comparative study reported that the MHD performs better than 

the PHD.  

 

As the eye is a central feature of tropical cyclones, the matching process should give 

greater attention to the points near the eye of the cyclone than to those distant from it. We 

have proposed a new formula for the modified directed Hausdorff distance, assigning 

individual weights assigned to the contour points. The weights are defined as follows: 
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                                       (3.18) 

where  is the average weight for points m)(2/1 jiij WWW += i and tj in the contour sets M 

and T respectively. In this way, every jiTt
tm

j

−
∈

min  is weighted by the average weight of 

mi and tj because its contribution to  is assumed to be proportional to the 

significances of the two points being compared. By averaging the sum of weighted 

minimum distances between points m

),(' TMh

i and tj,  produces a more balanced and 

accurate matching result. The undirected Hausdorff distance is thus rewritten as: 

),(' TMh

)),(),,(max(),( '' MThTMhTMH =                                       (3.19) 

 

3.4.3 Experimental Results 
 

In this part, to illustrate the success of our proposed algorithm, we will discuss the 

experimental results from the points of view of accuracy and computational costs. Figure 

3.15 shows the experimental results for three typical comparison approaches, Time 

Warping Matching, Modified Hausdorff Distance, and Human Justification, all using the 

same input satellite image. The original satellite images from which the contour points 

are extracted are shown beside the contour. It is quite difficult to tell how much a 

retrieved contour is similar to the input one. Mostly, this matter is judged, subjectively 

and imprecisely, with human eyes. Figure 3.15 provides the retrieved results of two 

approaches, and also provides a retrieved result gT4 acquired using human visual 

justification. Visually we can consider that eT8 and gT4 in Figure 3.15 have more in 
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common with the input contour than eT4 does, yet human visual justification is 

notoriously subjective and cannot be regarded as scientifically convincing.  

 
Figure 3.15: Matching results for three approaches 

 

Figure 3.16: A Grid Scanning algorithm 

 
Nevertheless, it is obvious that in both cases, retrieved results and input, all data to be 

processed are sets of contour points. To calculate the accuracy of how similar of two sets 

of contour points are, we consider their positional relationships. We have designed a Grid 

Scan method that scales and transforms two sets of contour points into a similar position 

and size by putting their location eyes in the centre. A system flow is given in Figure 3.16. 

First, from the SHIFT FETCHER we can ascertain the number of shifts it has undergone 

before retrieval of a result, so we rotate either the input contour or the best matched 

sequence to make sure their coordinates consistent with the sequences at the time the best 

matched contour is found. To scale the smaller contour of the two to the same size as the 

larger contour, we divide both into N x N Blocks, where N is a predefined number.   

 39



To see whether the grid contains a contour point, we next superimpose two blocks and 

check each grid having the same position in two blocks. The following equation 

illustrates the basis of this type of comparison.  

∑ ∑
∈ ∈

⊗=
NxNi NxNi

iii AABAccuracy /)(                                           (3.20) 

where symbol ⊗ denotes the ith grid in different blocks, both having an active contour 

point. Details of the procedure of this comparison are listed in Figure 3.17 as follows:  

Procedure CalculateAccuracy (A, B) 
Count = 0; 
1. Rotate the contour A or B, making them matched best 
2. Divide A and B into N x N blocks 
3. Scan the blocks, two sequences are achieved as:  
  SA = {<a1,p1>,<a2,p2>, …, <an,pn>} 
  SB = {<b1,q1>,<b2,q2>, …, <bn,qn>} 
4. For each point ai
  If pi and qi both contain contour points 
         Count ++ 
   End If 
 End For 
5. Accuracy = Count / (No. of Contour Points in A) 
Figure.3.17. Procedure for finding the matching accuracy 

 

Table 3.1 shows the experimental results. Although gT4 looks very similar with the input 

contour, it is 10% less accurate than eT8. We do not disaffirm human visual justification, 

but as it is highly subjective, we do not consider it in the remaining experiments. Table 

3.1 also clearly shows that the modified Hausdorff distance measure is the least accurate 

one among the three. This shows that algorithms that depend solely on positional 

relationships such as Euclidean distance do not achieve acceptable retrieval results but 

require additional characteristics, such as shape.  

Table 3.1: Retrieved accuracy for the results in Figure 3.15 

Algorithm Angle Feature 
Matching 

Modified Hausdorff 
Distance Measure 

Human Visual 
Justification 

Matched 
Image 

eT8 eT4 gT4 

Accuracy 72.41% 53.12% 62.86% 
We further conducted a detailed experiment using a selection of 10 satellite images from 

the U.S. Navy official website. We input 10 Dvorak template images and calculated the 
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average matching accuracy. Experimental results (shown in Table 3.2) indicate that if the 

input image is any one of the Dvorak templates, both algorithms are 100% accurate, as 

both sets of compared contour points are identical. 10 out of 64 Dvorak templates are 

used for input testing. About the looking up database, all 64 templates are used. So, it 

doesn’t influence the result even if we use all templates as the input images. The results 

differ, however, for another set of testing satellite images (marked as SI in Table 3.2) 

from U.S. Navy official website with the Angle Feature Matching algorithm being a little 

more accurate than the modified Hausdorff distance measure. The improvement values in 

Table 3.2 are calculated in terms of accuracy, using Angle Feature Matching algorithm 

over that of the modified Hausdorff distance measure. Our weighting algorithm for 

selecting the dominant points that reflect the shape of the tropical cyclone also 

contributed to the matching results. The results can be seen in Figure 3.18.  

 

Table 3.2: Average Accuracy (%) comparison of the Angle Feature Matching (AFM) 

and the Modified Hausdorff Distance （MHD） 

 Input Image Angle Feature 
Matching using Time 

Warping 

Weighted 
Hausdorff Distance 

Improvement

Dvorak aT1 100% 100% 0 
Dvorak aT2 100% 100% 0 
Dvorak bT1 100% 100% 0 
Dvorak bT2 100% 100% 0 
Dvorak cT1 100% 100% 0 
Dvorak cT2 100% 100% 0 
Dvorak dT1 100% 100% 0 
Dvorak dT2 100% 100% 0 
Dvorak eT1 100% 100% 0 
Dvorak eT2 100% 100% 0 

SI: 1 61.23% 55.12% 1.11 
SI: 2 68.32% 66.72% 1.02 
SI: 3 70.41% 63.47% 1.11 
SI: 4 65.88% 63.92% 1.03 
SI: 5 83.69% 80.05% 1.04 
SI: 6 66.18% 59.43% 1.11 
SI: 7 57.35% 53.49% 1.07 
SI: 8 75.91% 71.15% 1.06 
SI: 9 60.36% 57.77% 1.04 

 
 
 
 
 

Accuracy  

SI: 10 77.48% 74.32% 1.04 
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AFM

AFM

 
Figure 3.18: Visual description of the experimental results 

 

We also assessed the computational cost of each algorithm using a computer with 2.26 

GHz Intel Pentium CPU and 512M RAM. All other windows applications were shut 

down to ensure the most precise time-cost measurement. The total cost of processing a 

match is given by the following equation: 

Total_Cost = IO_Cost + CPU_Cost                                                (3.21) 

where IO_Cost is the cost of performing disk I/Os and CPU_Cost is the cost of 

performing computation while retrieving the most similar contour from the library. The 

experiment took into account only the CPU_COST and ignored the IO_Cost as, 

compared to the CPU time, the time taken to read contour points from the library file was 

ignored. Table 3.3 shows the time cost of three algorithms using different sets of input 

satellite images. Time evaluation is not stable but it does indicate a trend towards the time 

warping distance measure being computationally faster than other two algorithms.   

Table 3.3: Computational costs of three algorithms 
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We also can evaluate this result by analyzing the computational costs of the three 

algorithms. Supposing that the input contour has m points and the matched contour has n 

points, we can calculate the computational complexities based on different comparison 

algorithms. The main concern of this part covers the time cost involved in the rotation 

and comparison steps, excluding the contour extraction procedures. Table 3.4, which 

shows the computational complexities, supports our approach.   

Table 3.4: Computational complexities of three approaches 

Algorithm Weighted Hausdorff 
Distance 

Time Warping 
Distance 

Computation Complexity O(1.5m2n) O(m2n) 
 

3.5. Summary 
 

In this chapter, we proposed an integrated approach to forecasting for tropical cyclone 

(TC) comparison that is based on a TC’s typical spiral shapes using time warping 

technology. We first extract the contour points of a dominant tropical cyclone from the 

satellite image using the Gradient Vector Flow (GVF) snake model. A fast sequential 

neighbor-checking algorithm is designed to find the largest cyclone in the satellite image. 

We also proposed a pixel distance algorithm to locate the centroid of a tropical cyclone. 

After that a weight calculation algorithm is carried out to assign different weights to 

points on the active contour based on their distance related to this centroid. Given two 

sets of contour points, one for the input tropical cyclone image and the other for an image 

in the database, we use angle features between successive contour points to determine the 

degree of similarity of two cyclone shapes. To better reflect the spiral shape of tropical 

cyclones and to produce a fast, accurate comparison, we adopt a time warping approach. 

The proposed approach was tested against and found to be superior to an approach that 

uses a modified Hausdorff distance measure. We added human visual justification as a 

reference because in the past years, even for a scientific meteorology prediction, expert’s 

visual justification is still worked as an important consideration, especially for TC 

movement’s prediction. In our research, we collected about thirty persons’ opinions about 

the prediction and made the result. 
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Chapter 4. An Integrated Neural Training 

Based Tropical Cyclone Forecasting System 

 

As forecasting based on satellite interpretation mainly concerns the features extracted out 

from satellite images, it doesn’t reflect the influences of climatology, persistence and 

synoptic factors against the intensity change of tropical cyclones. Recently much effort 

has been made to statistically relate the tropical cyclone intensity change by using 

multiple linear regression techniques. Neural network can better handle unknown non-

linear behavior existing in meteorological variables and they can be an effective 

alternative to traditional statistical techniques. In this section, neural network and upper 

air information are used to develop a model for predicting tropical cyclone intensity in 

the Western North Pacific at 6, 12, 18, 24h. Once the analog tropical cyclones are 

identified, the persistence, climatological and synoptic observations of analog tropical 

cyclones and the current storm are combined to create a training set and a multiple-

regression scheme is used to identify the variables that are best correlated with storm 

intensity. We also design a variable selection procedure to choose the most important 

training variables to enhance the speed and accuracy of neural network training. Our 

publications related to this chapter can be referred to [Publications 1,2,4], in which major 

images and tables in this chapter can also be found. 

 

The rest of this chapter is organized as follows. In section 4.1, an introduction is given to 

describe basic concepts about the competitive neural network and the estimation of 

regression coefficients. Section 4.2 tells about data collection and data preparation. In 

section 4.3, algorithms to identify analog tropical cyclones are described, including 

unsupervised classification techniques and application of the competitive neural network. 

In section 4.4, a variable selection procedure is implemented to choose those variables 

that best explain the tropical cyclone intensity behavior. At last in section 4.5, 

experimental results analysis is given to evaluate the performance of the proposed 

predicting model. 
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4.1 Introduction  
 

4.1.1. Competitive Neural Network 
 

A competitive neural network is composed generally of two layers. The first layer 

computes the direction and other properties of the input patterns and the second layer 

determines which of the prototype vector is closest to the input vectors. Hagan describes 

the competitive neural network as follows [76]: 

 

The first layer is based on a single instar, which is a type of neural network that is 

capable of performing pattern recognition and is able to recognize only one pattern. To 

recognize more than one pattern, a set of instars is used. The input/output expression for 

the instar net is: 

a = hardlim(Wp + b) = hardlim(1wTp + b) (4.1)

where W represents a matrix of vectors which wants to be recognized, b is set equal to the 

number of elements in input vector(p), and hardlim is a transfer function that assign the 

number one if its net input reaches a given threshold, otherwise its outputs will be zero. 

This rule allows a neuron to perform a classification of the input patterns. 

 

The instar will be activated whenever the inner product between the weight vector and 

the input is greater than or equal to –b: 

1wTp  -b                                       ≥ (4.2)

For two vectors of constant length, the inner product will achieve the largest value when 

they point in the same direction. If the following relation is set: 

pwb T
1−=  (4.3)

Then the instar will only be active when p focuses in exactly the same direction as 1w, (θ 

= 0, where θ is the angle between the vector 1wT and p). Thus, the neuron will recognize 

only the pattern 1w. To recognize more than one pattern, a variation of the procedure 

mentioned above has been implemented as follows. Given the following input vectors: 

{ }Qppp ,......,, 21  
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where: p1 = [pll  p12 …… p1R]; p2 = [p21  p22 …… p2R]; pQ = [pQ1  pQ2 …… pQR] 

The weight matrix, W1, and the bias vector, b1, for Layer 1 will be: 
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where each row of represents a prototype vector that is needed to be recognized and 

each element of  is set equal to the number of elements in each input vector (R). The 

upper subscript in W and b represents the first layer. The number of neurons, S is equal to 

the number of prototype vectors that will be identified as Q. The upper subscript T 

represents the transpose operation. Each row of  can be expressed as follows: 

1W
1b

1W

1W = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

QW

W
W
W

11

131

121

111

M

 , 2W = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

QW

W
W
W

22

232

222

212

M

 , …… , SW = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

SQS

SS

SS

SS

W

W
W
W

M

3

2

1

 

 

Thus, the output of the first layer is: 

a1 = W1p + b1 = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+
+

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+
+

RpW

RpW
RpW
RpW

Rpp

Rpp
Rpp
Rpp

Q
T

S

T

T

T

Q
T
Q

T

T

T

MM
33

22

11

33

22

11

 (4.4)

It should be noted that the output of the first layer, a1, is equal to the inner products of the 

prototype vectors with the input in addition of the constant R. These inner products 

indicate how close each of the prototype patterns is to the input vector.  

The second layer is called “competitive layer” and it is initialized using the outputs of the 

first layer. In this layer, the neurons compete with each other to determine a winner. The 

winning neuron indicates which category of input was presented to the network (each 

prototype vector represents a category).  

The first layer output, a1, is used to initialize the second layer. 

a2(0) = a1 (4.5)
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Then the second-layer output is updated according to the following recurrence relation: 

a2(t + 1) = poslin(W2a2(t)) (4.6)

where the transfer function poslin is defined as follows: 

a = poslin(n) =  
⎩
⎨
⎧ <

otherwise n,
0n if 0,

The second-layer weights  are set so that the diagonal elements are 1, and the off-

diagonal elements have a small value as follows: 

2W

2
ijw =  where 

⎩
⎨
⎧
−

=
otherwise,

ji if,1
ε 1

10
−

<<
S

ε  (4.7)

This matrix produces an effect called lateral inhibition, in which the output of each 

neuron has an inhibitory effect on all of the neurons. 

 

At this point the network has reached a steady state. The index of the second-layer neuron 

with a stable positive output is the index of the prototype vector that best matched the 

input. This process is called the “winner-take-all competition” since only one neuron will 

have a nonzero output. The timing for each calculation is long, say around 2 minutes, but 

it is still within our tolerant time range. At present stage, our research target is to achieve 

an accurate predicting result, so, for the current timing performance, it could be 

acceptable.  

 

4.1.2 Estimation of Regression Coefficients 

 
A regression model that involves more than one regressor variable is called a multiple 

regression model. The purpose of multiple linear regressions is to establish a quantitative 

relationship between a group of predictor variables (the columns of X) and a response, y. 

In general, given a single variable (y) depends on k independent variables (regressor or 

predictor variables), for example, x1, x2…, xk, the relationship between these variables is 

characterized by a mathematical model called “regression model” which can be 

expressed as follows: 

εββββ +++++= kk xxxy ....22110  (4.8)

The parameters jβ , j=0, 1, 2, …k are called the “regression coefficients”. 
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The method of least squares chooses theβ ’s in the above equation so that the sum of the 

squares of the error, , is minimized. The least squares estimators can be derived as 

follows: 
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The function S must be minimized with respect to kβββ ,,, 10 L . The least-squares 

estimators of kβββ ,,, 10 L  must satisfy: 
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The function S in a matrix form can be given as follows: 
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The least-squares estimators must satisfy: 
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Then, the least-squares estimators of β are: 

yXXX ')'(ˆ 1−=β  (4.14)

 

4.2 Data Collection and Preparation  
 

4.2.1 Data Collection  
 

Data collection and analysis are the major tasks in the early stage of system development. 

Upper air information obtained from National Center for Environment Prediction (NCEP) 
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and Hong Kong Observatory [80] is used to develop a database for storing historical data 

of past Western North Pacific tropical cyclones, from January 1994 to December 2004.  

 

Hong Kong Observatory provides a reliable historical data set that is usually known as 

the best track. The best track is a comprehensive tropical cyclone track analysis after 

considering all available observations and expert interpretation. Typically the 

observations are obtained from ships, radars, satellites, airplane reconnaissance, buoys 

data and other sources. The best track contains observations obtained every 6 hours and 

includes the following variables: tropical cyclone location, central pressure, tropical 

cyclone intensity, and storm dates. The tropical cyclone intensity is defined as the 

average 1-minute maximum sustained winds at sea level (Joint Typhoon Warning Center) 

or defined in terms of wind speeds averaged over a period of 10 minutes (World 

Meteorological Organization). The wind speed is measured in m/sec or in knots. In this 

study, the knot is adopted as a measure for tropical cyclone intensity. The best tracks are 

obtained from the HKO for events occurred during 1994 to 2003. 

 

 

Figure 4.1: The Best Track Data Format 

 

The sea surface temperature (SST) values used in this work is obtained from the 

Comprehensive Ocean-Atmosphere Data Set (COADS), which is an extensive collection 
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of surface marine data available in the world for the past two centuries and can be 

downloaded from the Internet (http://www.cdc.noaa.gov/cdc/data.coads.1deg.html). After 

December 2002, the SST data is collected from Joint Institute for the Study of the 

Atmosphere and Ocean (JISAO) http://www.jisao.washington.edu/data_sets/sst_oi/#data, 

which is an online database dedicated to provide meteorological data. Monthly mean 

values of SST are available on a 1°x1° of resolution on the horizontal. These values are 

linearly interpolated in space and time and are used for estimating the SST at specific 

tropical cyclone location and a particular time. 

 

Figure 4.2: Display SST Values using Panoply 

 

The National Center for Environmental Prediction and The National Center for 

Atmospheric Research (NCEP/NCAR) Reanalysis data is used to obtain the upper air 

observations at different pressure levels with a 2.5°x2.5° horizontal resolution. This data 

is obtained at every six hours along the storm track. The NCEP/NCAR reanalysis project 

is a state-of-the-art reanalysis/forecast system to perform data assimilation using 

observations from 1948 to the present. A large subset of this data is available from 

Climate Diagnostic Center (CDC) in its original format as well as its daily averages. The 

obtained variables from this source are summarized in Table 4.1. More information about 

this data is found in its web page 

(http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html).  
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Table 4.1: Data Obtained From NCEP/NCAR Reanalysis (Sourced by NCEP) 

Variables at 17 pressure levels: Units Least Sig. Digit 
U-wind speed m/s 0.1 
V-wind speed m/s 0.1 

 

4.2.2 Data Preparation 
 

The wind speed components data obtained from NCEP/NCAR and the sea surface 

temperature data provided by COADS are presented in the format of network common 

data form (NetCDF) [77]. These data sources contain worldwide data and consume 

nearly 11 GB of disk space. In order to handle this huge amount of raw binary data and 

extract the relevant meteorological data along the storm track, a Matlab GUI for 

converting NetCDF file to ASCII file is developed using Matlab NetCDF toolbox. The 

data is linearly interpolated in space and time and are used for estimating the v-wind 

component, u-wind component and SST values at specific hurricane location and a 

particular time. The irrelevant data is discarded and the relevant data is inserted to SQL 

Server database. The goal of this operation is to prepare structured data for predicting 

tropical cyclone intensity. For the SST data recorded from January 1994 to December 

2003, there are some missing values. This missing data may lead to the production of 

inaccurate prediction result and thus data-smoothing operation is needed. In order to 

handle the data-missing problem, the averaged SST value of each tropical cyclone is used 

to replace the missing SST value of each observation in the same TC. If the averaged 

SST value of a TC cannot be calculated, that TC data will be discarded since SST value is 

an important factor for predicting TC intensity. This step is important since it can 

improve the quality of the raw data. 

 

A historical database is built to store the climatology, persistence and synoptic 

observations of the North West Pacific (NW Pacific or Western North Pacific) Tropical 

Cyclone since 1994. This database is an organized structure divided into fields, where 

each field contains a specific type of information. The system provides Graphical User 

Interface (GUI) to the users for inputting and retrieving historical TC record.  
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The main advantages of having a database is that the information about any TC that 

developed in the NW Pacific can be accessed at any time and used according to the needs. 

The structure of the database is shown in Table 4.2 and Table 4.3. 

 

Table 4.2: Tropical Cyclone Database Structure 

Field Value Description 
Id Number Number Unique ID for TC 
Name Text Name of TC 
Initial Latitude Float Initial Storm Location Latitude 
Initial Longitude Float Initial Storm Location Longitude 
Initial Intensity Number Initial Storm Intensity 
Julian Date Number Julian Date of storm 
Initial Pressure Number Initial Storm Pressure 
Initial Date Date Time of Analysis 

 

The Id Number is a unique identifier for each TC. The Name field is used to store the 

name of the tropical cyclone. The Initial Latitude and Initial Longitude fields are 

necessary to identify the initial location of the storm. The Initial Intensity, Julian Date, 

Initial Pressure and Initial Date fields are utilized to save information about the initial 

state of the tropical cyclone. Each Tropical Cyclone contains several observations that 

include the following information: 

Table 4.3: Data Subfields 

Subfield Source Description 
1 Best Track Id Number 
2 Best Track Name 
3 Best Track Observation Number 
4 Best Track Year of the storm 
5 Best Track Month of the storm 
6 Best Track Day of the storm 
7 Best Track Time 
8 Best Track Storm Location Latitude 
9 Best Track Storm Location Longitude 
10 Best Track Storm Pressure 
11 Best Track Storm Intensity 
12 Calculated Storm Intensity Change 
13 Calculated Eastward component of storm motion (SMU) 
14 Calculated Northward component of storm motion (SMV)
15 Calculated Magnitude of the storm motion (SMT) 

 52



16 Interpolated from 
COADS 

Sea Surface Temperature (SST) 

17 Calculated Maximum Potential Intensity (MPI) 
18 Interpolated from NCEP Eastward component of wind speed at 850 mb 

(U850) 
19 Interpolated from NCEP Northward component of wind speed at 850 

mb (V850) 
20 Interpolated from NCEP Eastward component of wind speed at 200 mb 

(U200) 
21 Interpolated from NCEP Northward component of wind speed at 200 

mb (V200) 
22 Calculated  Vertical Wind Shear (VWS) 
23 Calculated  Average angular momentum at 850mb 

(MOM850) 
24 Calculated  Average angular momentum at 200mb 

(MOM200) 
25 Calculated Potential Intensification (POT) 
26 Calculated Translation Speed 
27 Calculated Direction 

 

4.3 Analog Tropical Cyclones Identification 
 

A competitive neural network is used to identify analog tropical cyclones, where an 

analog is defined as a storm that best resembles the meteorological behavior of the 

current storm. It is an algorithm that learns associations from observations by identifying 

similarities among their properties. Once learned, associations allow networks to classify 

input vectors into clusters or families. This is considered as an unsupervised classification 

technique because no target variable or response variable is needed.  

 

4.3.1 Unsupervised Classification Technique 
 

Unsupervised classification technique is used to identify the analog tropical cyclones 

since the major goal of unsupervised learning is to build representation from the inputs 

that can be used for reasoning, decision-making and prediction. By using such technique, 

it can classify the inputs into different clusters, reduce the data required in later stage and 

make other learning tasks easier. With unsupervised learning it is possible to learn larger 
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and more complex models than with supervised learning. The difficulty of the learning 

task increases exponentially in the number of steps between the two sets and that is why 

supervised learning cannot, in practice, learn models with deep hierarchies.  

 

In unsupervised learning, the learning can precede hierarchically from the observations 

into every more abstraction levels of representation. Each additional hierarchy needs to 

learn only one step and therefore the learning time increases linearly in the number of 

levels in the model hierarchy. Supervised learning technique such as back-propagation 

learning algorithm will be described briefly in the later part and it is used to implement 

the tropical cyclone intensity prediction module. Supervised learning learns based on the 

target value or the desired outputs. During the network training it tries to match the 

outputs with the desired target values. 

 

4.3.2 Application of the Competitive Neural Network 
 

In the following implementation procedure, it is important to notice that only six 

observations are used to explain the idea of how the competitive neural network is 

applied to identify analog tropical cyclones (TCs), the number of observations will 

increase as soon as the storm life increases. The implemented procedure includes three 

major steps given as follows:  

 

1. Once a tropical cyclone is detected HKO will collect a set of parameters (DA) at every 

6 hours since the TC detection time until the current time (t), defined by the actual time 

of the TC in process. These parameters include: the Julian date, TC location (latitude and 

longitude), intensity, minimum central pressure, translation speed and direction. The 

parameter sets (DIPi) are associated to the historical storms stored in the database that are 

extracted for the same storm life interval of the current storm. We assume that if the 

current storm has 6 observations, the analog tropical cyclones should have at least 6 

observations. Based on this, tropical cyclones that have at least 6 observations are 

selected from database for processing. The parameter set, DA, is a matrix whose columns 

are the D  vectors (i=1, 2…, 6) and a single column can be expressed as follows: i
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where 

- Di = Vector with storm’s information at time 0 hr, 6 hr, 12 hr, 18 hr, 24 hr 

- Lai = Storm location latitude at every time 

- Loi = Storm location longitude at every time 

- Ii = Storm intensity at every time 

- α i = Storm direction at every time  

- Jui = Julian Date at every time  

- Pi = Minimum Central Pressure at every time  

- TSi = Translation Speed at every time  

- DA = Matrix of information for the current storm 

MDP is the set that contains information for each of the past storm (DIPi) selected from 

the database and can be expressed as follows:  

DPi,1 = , 
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DIPi = [DPi,1 DPi,2 …DPi,6] for i = 1,2,…,n MDP = [DIP1 DIP2 …DIPi …DIPn] 

where  

- i = Storm index in the database 

- n = Number of tropical cyclones selected from the database 

- DPi,j = Vector that contains historical information for storm i (i = 1 ,2 , … , m, 

where m is the number of tropical cyclones in the database) in the time j (j = 1, 
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2, …, 6) 

- DIPi = Matrix that collects information for storm i 

 

DT = [DA MDP]  
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Current data set 

DA

Data set for first 
storm 

Data set for 
storm i 

Data set for last 
storm  

D  is the matrix formed by the union of the past data set (MDT P) and current data set (DA). 

This set is used in step 2 and can be expressed as above.  

 

2. A competitive neural network (CNN) is implemented to classify the input set (DT) into 

a preliminary set (DS). To accomplish this task a number (S) of prototype vectors (W), 

which are selected in a random way, are defined so that the CNN can learn to detect 

similarities among the provided data set DT. This step can be represented mathematically 

as follows: 

Ds = CNN (WSx7DT7xQ)  (4.15)

where 

- W = Prototype vectors 

- s = Class type (s = 1, … , S) 

- q = qth observation (q = 1, … , Q) 

- DT = is the union of historical observations (n) and current observations 

DS is a row vector with the same number of columns as DT and its values are between 1 

and S, which means that each single observation of every one of the TCs that composed 

DT is classified as follows:  

DS = [P1,1 P1,2 P1,3 P1,4 P1,5 P1,6 ; … ; Pi,1 Pi,2 Pi,3 Pi,4 Pi,5 Pi,6 ; …; 

PQ,1 PQ,2 PQ,3 PQ,4 PQ,5 PQ,6] 

 (4.16)
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where Pi,j is the observation j (j = 1, … , 6) of the storm i (i = 1, … , Q), and takes value 

between 1 and S. For instance, if S is equal to 5, DS may have the following distribution: 

DS = [5,1,3,3,4,3 ; 2,3,4,5,5,5; 1,2,3,2,2,2; … ; 2,1,1,3,4,1] (4.17)

The DS vector means that the set composed of historical data and the actual data (DT) has 

been classified according to each one of the observations. In this way, the first 

observation of the first tropical cyclone that composed DT is classified as class 5; the 

second observation of the first tropical cyclone is classified as the class 1, and so on.  

 

3. A majority voting procedure is implemented to get the outcome from the generated 

information (DS) by the competitive neural network. After six observations that 

correspond to each one of the tropical cyclones of the dataset (DT) are classified in S 

classes, a voting procedure is used to count the decision of each observation. If a majority 

decision is found, then the decision procedure will determine that the storm under 

analysis belongs to that majority class. If a majority decision cannot be found, the voting 

procedure will determine that the storm belongs to several classes that have the same 

number of decision counts. For example 

D  = [1,2,3,3,4,3; 4,4,5,5,6,6 ; …; 1,4,5,5,5,4] S

Using the above rule, the vector V may be expressed as follows: 

V = [3; 4, 5, 6; …;5] 

The first element of vector V indicates that the first tropical cyclone, the current tropical 

cyclone, in DT belongs to class 3, because of the majority voting rule; the second element 

of vector V means that the second tropical cyclone in Ds belongs to classes 4, 5 and 6, 

because the decision counts of the classes 4, 5 and 6 are the same. This process is 

repeated over and over until the last value is found. In this case, the last element belongs 

to class 5. Therefore, the tropical cyclones that have the same class to the current storm 

are selected to be the set of analogous storms (D ). N

 

DN = [DA , DP8, … , DP67, …] 
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DA represents the actual tropical cyclone. The DN matrix shows that the tropical cyclone 

(DP8) in the database identified by ID-number 8 is analogous to the current storm and also 

to the storm identified by ID-number 67. It is important to notice that only two storms are 

used to explain the idea of how the procedure works, but this won’t happen in practice 

because of the great amount of past analogous storms.   

Table 4.4: Variables Included In the Final Set of Analog Tropical Cyclones 

S1,1,k Description 
1 Storm Intensity Change (INTCHANGE) 
2 Eastward Component of Storm Motion (SMV) 
3 Northward Component of Storm Motion (SMU) 
4 Magnitude of Storm Motion (SMT) 
5 Sea Surface Temperature (SST) 
6 Maximum Potential Intensity (MPI) 
7 Eastward Component of Wind Speed at 850 mb (U850) 
8 Northward Component of Wind Speed at 850 mb (V850) 
9 Eastward Component of Wind Speed at 200 mb (U200) 
10 Northward Component of Wind Speed at 200 mb (V200) 
11 Vertical Wind Shear (VWS) 
12 Average Angular Momentum at 850 mb (MOM850) 
13 Average Angular Momentum at 200 mb (MOM200) 
14 Potential Intensification (POT) 

 

The final set of analogous tropical cyclones (DF) is composed of the seven variables of 

each one of the past tropical cyclones and the current storm. In addition to these variables, 

another set of variables (DX), shown in Table 4.4 is added for each one of the past tropical 

cyclones and is calculated for the current storm. The set DF is augmented with the 

inclusion of DX, which is composed of synoptic and persistence variables that are not 
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considered in the classification process. So the variables set (DX) and the final set of 

analogous TCs (DF) can be expressed as follows:   

Dx = ,  D
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where  

Last variable i
Table 4.
i.e. POT

First variable in 
Table 4.4 

i.e. INTCHANGE 

Latitude 

Longitude 

Intensity 

Direction 

Julian  
Date 

Pressure 

Transformed
Speed 

n 
4 

- n is the number of analogous storms 

- SI1,1 is the first synoptic or persistence variable for the current storm and for 

the first observation while S6,14 is the 14th variable for the current storm and for 

the 6th observation (SIp,q is the qth synoptic or persistence variable for the 

current storm and for the pth observation) 
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- S1,6,14 is the last (14th) synoptic or persistence variable in Table 4.4 for the first 

storm and for the 6th observation (Si,j,k is kth synoptic or persistence variable in 

Table 4.4 for the ith storm and for the jth observation where i = 1, 2, …, n; j = 1, 

2, …., 6; k = 1, 2 , …, 14) 

 

4.4 Random Variable Selection 
 

A variable selection procedure is implemented to choose among the variables generated 

in the previous process, those that best explained the tropical cyclone intensity behavior. 

The variable selection technique has been widely used throughout the years to find an 

appropriate number of regressors that can help to reduce the efforts of data collection and 

model maintenance.  

 

The regression technique is used to correlate the intensity of a current storm with 

climatological, persistence and synoptic variables of analogous saved on the set (DF) 

obtained in the previous section. The process includes the following steps: 

1. Divide the data into two sets: The analogous set (DF) is divided in two subsets: one 

is called the response variable (Y), composed of the tropical cyclone intensity known 

up to time t, and the other is called the predictors variables represented by the matrix 

(X) and its elements are the variables of the analogous tropical cyclones. The matrix 

representation can be expressed as follows: 

Y =  
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Where IO1 is the first intensity observation for the current tropical cyclone, I1,1 is the 

first intensity observation for the first analog storm that composed of the set Y, In,1 is 

the first intensity observation for the last analog storm that composed of the set Y 

and n is the number of analogs storms. La1 is the first latitude observation for the 

current storm, La1,1 is the first latitude observation for the first analog storm and 

Lan,1 is the first latitude observation for the last analog storm. SI1,1 and S1,14 are the 

first and last variables listed in Table 4.4 for the first observation of the current 

storm while S6,14 is the last variable (in Table 4.4) for the 6th observation of current 

storm. S1,1,14 is the last variable for the first observation of the first analog storm and 

Sn,6,1 is the first variable for the 6th observation of the last analog storm. 

 

2. Re-organize the data according to lead time: A lead time (tg) is defined so that the 

correlations between the dependent variable (Y) and the independent variable (X) 

could be lagged by tg periods of time. The value tg varied between 1 and 4, where tg 

= 1 indicates that the lag period is 6 hours, and tg = 4 indicates that the lag period is 

24 hours. Considering the following information: 
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When the lead time (tg) is set at 4, this lead time indicates that the dependant 

variable (Y) at time t is expanded using information (X) at the time t-4. Thus, it 

follows: 

Y =  and X =  ⎥⎦
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The first four observations in the dependent variables (Y) are eliminated because of 

the effect of the lag. The last four observations in the independent variables (X) are 

removed from the matrix to be used at the prediction stage. Then, the application of 

a given lead time (tg) can be described mathematically as follows: 
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Y =   and X =  
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Table 4.5: Lag Value used in the model 

Lag Value (tg) Time (hours) 

1 6 

2 12 

3 18 

4 24 

 

3. Implement a random variable selection scheme: A random variable selection scheme 

is developed. This process has the ability to select the regressors that best fit the 

dependent variable, in this case the tropical cyclone intensity. The number of 

variables in a group should be 20% or less than the number of observations 

contained in the response variable. This rule is implemented to avoid bias on 

regression estimators, which occurs when the number of variables exceeds the 

number of observations. The members of each group will be randomly selected. This 

random selection will produce a robust variable identification. The procedure can be 

described as follows:  

A. Divide regressor set X into n subset(s) of m variable(s): Given the regressor set 

(X) with a observations (rows) and b variables (columns), then the number of 

new variables (m) for each n subset is calculated as follows: 

(1). Number of variables per subset: If the number of variables (b) is less than 

the 20% of the number of observations (a), then the number of new variables 

(m) per subset is set equal to b; otherwise, the number of new variables (m) is 

rounded to nearest integer of the twenty percent of the number of observations 

(a). The following code illustrates the above rule: 

if b <= (a*0.2)  
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    m = b; 

else 

    m = (round(a*0.2)); 

end 

where round is the function to round the given number to the 

nearest integer 

 

(2). Number of subsets: If the modulus of the division between the number of 

variables (b) and the new variable (m) is equal to zero, then the number of 

subsets is equal to this division; otherwise, the number of subset is equal to this 

division plus one, as shown in the following code: 

if mod(b,m) == 0 

    n = b/m; 

else 

    n = b/m; 

    n = floor(n)+1; 

end 

 

where mod is the function to calculate the modulus after division; 

and floor is the function to round the given number to the nearest 

integer less than or equal to that number. 

Then, the set X is divided in n subsets if the condition is true as follows: 
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B. Use stepwise regression to model the response variable Y: Each one of these n 

or n+1 regressor subsets and its corresponding response (Y) is adjusted using a 

Matlab function called “Stepwisefit”, which is specially designed to fit 

regression models using stepwise regression. Stepwise regression is the 

combination of two procedures called forward and backward regression and is 

used to find a satisfactory number of regressors that best fit to a given response 

variable. 

To fit a regressor set ( ), the stepwisefit function is executed as many times 

as the set requires. The function can be expressed as follows:  

i
maX ,
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[b, se, pval, inmodel, stats, nextstep, history] =  

    stepwisefit(X, Y, 'penter', .08,'premove',.10,'maxiter',1000); 

where 

- b is a result vector of estimated coefficient values for all columns of 

X. 

- se is a vector of standard errors for b. 

- pval is a vector of p-values for testing whether b is 0. 

- inmodel is a logical vector, whose length equals the number of 

columns in X, specifying which predictors are in the final model. A 

“1” in position j indicates that the jth predictor is in the final model; a 

“0” indicates that the corresponding predictor is not in the final 

model. 

- stats is a structure containing additional statistics. 

- nextstep is the recommended next step -- either the index of the next 

predictor to move in or out, or 0 if no further steps are recommended.

- history is a structure containing information about the history of 

steps taken. 

- X is columns of matrix. 

- Y is the response variable. 

- penter is maximum p-value for a predictor to be added. The default 

is 0.05. 

- premove is minimum p-value for a predictor to be removed. The 

default is 0.10. 

- maxiter is maximum number of steps to take (default is no 

maximum) 

 

Only the best regressors for each one of the n or n+1 sets will be selected and collected to 

create a new set of regressors called the best subset (XBS). The maximum number of 

variables per best subset is seven. If the new set contains more than seven variables, the 

system will select seven of them randomly. 
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4.5 Intensity Prediction Using Feedforward Neural Network 

 

A feedforward neural network model is characterized by receiving input information to 

accomplish a modeling identification task without processing feedback information. The 

training patterns are presented to the network model several times until eventually the 

algorithm determines the optimal weights and biases that minimize the deviation between 

the network outputs and the established targets. The feedforward neural network model 

uses a variation of the standard backpropagation algorithm as the learning rule, which is 

based on the steepest descent algorithm. The errors are used to modify the searching 

direction and the gradient is computed at each layer starting from the last layer and 

finishing with the first layer. This is the reason for the backpropagation name.  

 

This section describes the procedure to apply the Levenberg-Marquardt backpropagation 

algorithm to predict the tropical cyclone intensity using the best subset obtained in the 

previous section. 

 

4.5.1 Application of Levenberg-Marquardt Backpropagation Algorithm 

 
The best subsets (XBS) obtained in the variable selection procedure are used as input data 

for this algorithm which is used to estimate the tropical cyclone intensity in a determined 

interval of time (tg). The procedure used to train the neural network can be divided in 

seven major tasks: 

 

1. Assembe the Training Data 

The current inputs (XBS) and their target vectors (TC intensity) are arranged in the 

following way: 
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where Xt-tg, n is the n best regressors at t-tg time and it is the intensity at the time t, XBS 

is the best subset of regressors. 

 

2. Create the Network Object 

A Matlab routine is used to create the network object. The function “Newff” creates a 

feedforward neural networkand also initializes the weights and biases of the network; 

therefore the network is ready for training. The function can be expressed as follows: 

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)  

where:  

-PR is R x 2 matrix of min and max values for R input elements. 

-Si is Size of ith layer, for Nl layers. 

-TFi is Transfer function of ith layer, default = 'tansig'. 

-BTF is Backpropagation network training function, in this case Levenberg-

Marquardt algorithm. 

-BLF is Backpropagation weight/bias learning function, default = 

'learngdm'. 

-PF is Performance function, default = 'mse'. 

 

3. Normalize Inputs and Targets 

Neural network training can be made more efficient if certain preprocessing steps are 

performed on the network inputs and targets. Matlab routine “prepca” is used to increase 

the training efficiency. 

In some situations, the dimension of the input vector is large, but the components of the 

vectors are highly correlated (redundant). It is useful in this situation to reduce the 

dimension of the input vectors. An effective procedure for performing this operation is 

principal component analysis. This technique has three effects: it orthogonalizes the 

components of the input vectors (so that they are uncorrelated with each other); it orders 

the resulting orthogonal components (principal components) so that those with the largest 

variation come first; and it eliminates those components that contribute the least to the 

variation in the data set. The following code illustrates the use of prepca, which performs 

a principal component analysis: 
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[pn,meanp,stdp] = prestd(p); 

[ptrans,transMat] = prepca(pn,0.02); 

First of all, normalize the input vectors, using prestd which normalizes the inputs and 

targets so that they will have zero mean and unity standard deviation. The pn is the 

normalized inputs and the vectors meanp and stdp contain the means and standard 

deviations of the original targets. This is a standard procedure when using principal 

components. In this study, the second argument passed to prepca is 0.02. This means that 

prepca eliminates those principal components that contribute less than 2% to the total 

variation in the data set. The matrix ptrans contains the transformed input vectors. The 

matrix transMat contains the principal component transformation matrix. After the 

network has been trained, this matrix should be used to transform any future inputs that 

are applied to the network. It effectively becomes a part of the network, just like the 

network weights and biases. If multiply the normalized input vectors pn by the 

transformation matrix transMat, this can obtain the transformed input vectors ptrans. 

 

4. Apply Early Stopping to improve generalization 

One of the problems that would occur during neural network training is called 

“overfitting”. The error on the training set is driven to a very small value, but when new 

data is presented to the network the error is large. The network has memorized the 

training examples, but it has not learned to generalize to new situations. Early stopping 

technique can be used to improving network generalization. In this technique the 

available data is divided into three subsets:  

 

The first subset is the training set, which is used for training a neural network and 

computing the gradient and updating the network weights and biases. The second subset 

is the validation set, which is utilized to determine the performance of the neural network 

on patterns that are not trained during the learning. The error on the validation set is 

monitored during the training process. The validation error will normally decrease during 

the initial phase of training, as does the training set error. However, when the network 

begins to overfit the data, the error on the validation set starts to go up. When the 

validation error increases for a specified number of iterations, the training is stopped, and 
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the weights and biases at the minimum of the validation error are returned. The final set is 

the test set which is used to finally check the overall performance of the neural network 

and estimate the generalization error. Test set is not used at all during the training process. 

It is useful to plot the test set error during the training process. If the error in the test set 

reaches a minimum at a significantly different iteration number than the validation set 

error, this may indicate a poor division of the data set. 

In this study, a quarter of the data is taken for the validation set, the other quarter for the 

test set and the remaining half for the training set. The sets are picked as equally spaced 

points throughout the original data. 

 

5. Train the Network 

Once the network weights and biases had been initialized, the network is ready to be 

trained. The training process requires a training set (network inputs and target outputs). 

During training, the weights and biases of the network are adjusted to minimize the sum 

of square errors (F(x)). The training process is implemented using a Matlab function 

called “train” that has the following parameters: 

[net ,tr] = train (NET, p, t) 

where: 
- NET=original network 
- p = network inputs 
- t = network targets 
- net= new network 
- tr = training record 

In this study, a two-layer network, with tan-sigmoid transfer function, Tansig, in the 

hidden layer and a linear transfer function, Purelin, in the output layer is employed. The 

network has four neurons in the hidden layer and 1 output neuron since there is one target.  

The number of neurons (H) in the hidden layer is calculated by following formula: 

H = P / (10(m + n)) 

where  
- P = number of training examples 
- m = number of outputs 
- n = number of inputs 
 
 

6. Evaluate the Network Response to New Inputs 
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Up to this point, the NN has been trained using the inputs (XBS) and compared with the 

known tropical cyclone intensity (Y) to minimize the performance function. The next step 

is to present current storm parameters to the trained NN for obtaining a tropical cyclone 

intensity prediction at the desired lead time (t+tg) as follows: 

XNEW = [Xt,1  Xt,2  …  Xt,n-1  Xt,n] 

It+tg = sim(net, (XNEW)T) 

Where XNEW represents the tropical cyclone parameters at the present time (t), It+tg is 

the predicted intensity in the lead time (tg) and sim is a Matlab function used to evaluate 

the neural network (net) when new input values are provided. 

 

Finally, it is important to notice that each best subset (XBS) is used to train an NN three 

times and a tropical cyclone intensity prediction is obtained. Since the NN is a nonlinear 

optimization algorithm and highly depends on the initial point, the NN will provide 

different results after every training process. Thus, an individual best subset is used to 

perform three predictions and its median is selected as the prediction for the best subset. 

 

7. Perform Post-Training Analysis 

The performance of a trained network can be measured to some extent by the errors on 

the training, validation and test sets, but it is often useful to investigate the network 

response in more detail. One option is to perform a regression analysis between the 

network response and the corresponding targets. The routine “postreg” provided by 

Matlab is designed to perform this analysis. The following commands illustrate how a 

regression analysis can be performed on the network”: 

[m,b,r] = postreg(a,t) 

The network output a and the corresponding targets t are pass to postreg. It returns three 

parameters. The first two, m and b, correspond to the slope and the y-intercept of the best 

linear regression relating targets to network outputs. The third variable returned by 

postreg is the correlation coefficient (R-value) between the outputs and targets.  
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4.6 Experimental Results Analysis 
 

In this section we present the results obtained by the application of the proposed intensity 

prediction model to a set of tropical cyclones from the Western North Pacific. Altogether 

we selected 19 tropical cyclones out of 199 as the representative sample of the tropical 

cyclone population used in this work, and was determined using the concepts of 

minimizing the sampling errors. These samples are time-series distributed and recorded 

every 6 hours during their lives. Besides, we also collected monthly data for the Mean 

Sea surface Level Pressure (MSLP) and NCEP/NCAR data all over the world from 

RAOB of NOAA from 1994 to 2003, in which we used two years’ data (2002 and 2003) 

for the experiments. A computer with 2.26 GHz Intel Pentium CPU and 512M RAM 

memory was used for the simulations. As the tropical cyclone observation sample is 

relatively large, we only considered those samples with equal or more observations than 

the input sample as the training set, which not only decreases the volume of the training 

set, but also improve the training accuracy of the network.  

 

Several experiments are carried out to evaluate the ability of the model to deal with 

different kind of tropical cyclones. Strong and typical tropical cyclone cases are first 

presented, followed by a tropical cyclone with high rate of intensification. Then the rapid 

intensity reduction rate is presented and a tropical cyclone with re-intensification 

behavior is presented. Finally tropical cyclone with double eye walls is discussed. 

 

4.6.1 Experiment with Strong Tropical Cyclone Intensity 
 

An important aspect for any intensity prediction model is the capability of modelling 

tropical cyclones that reaches the strongest category. The proposed model is tested using 

a strong tropical cyclone, Lupit, which was the most intense TC in 2003 in Western 

North Pacific. It formed as a tropical depression over the Pacific about 1200 km south-

southwest of Wake Island on 19 November and moved generally westwards. It 

intensified into a tropical storm on 21 November and strengthened into a severe tropical 

storm the next day. Lupit further strengthened into a typhoon on 23 November and 
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tracked northwestwards on 24 November. It attained a maximum sustained wind speed of 

125 kt (230 km/h) on the night of 26 November. Lupit turned northeastwards on 29 

November and started to accelerate the next day. It weakened into a severe tropical storm 

on 1 December. Lupit further weakened into a tropical storm on 2 December and became 

an extratropical cyclone the same day. Figure 4.3 shows the official intensity (dotted line) 

for Lupit given by the Hong Kong Observatory (HKO) and the forecast intensity at 12 

hours (continuous line) obtained by the proposed model. The average absolute prediction 

error at 12 hours interval is 7.95 knots and it is computed along of the storm. 

 
Figure 4.3: Intensity predictions for Lupit at 12 hours (November, 2003) 

 
Figure 4.4: Intensity predictions for Lupit at 24 hours (November, 2003) 

 

 71



Figure 4.4 shows the model fitting performance when the prediction interval is 24 hours 

for Lupit. The average absolute prediction error is 11.79 knots. It should be noted that the 

larger the prediction interval, the higher the prediction error. This simple experiment 

shows that the suggested prediction model is capable of representing the intensity of 

strong tropical cyclones at 12 hours interval prediction but shows a relative poor 

performance at 24 hours. Future work may be to devote more efforts to predict tropical 

cyclones with strong storm intensity. 

 

4.6.2 Experiment with Typical Tropical Cyclone Intensity 
 

The majority of the tropical cyclones that have occurred on the Western North Pacific can 

be classified as typical tropical cyclones, because of the tropical cyclone intensity level. 

Taking Podul as an example, this storm developed as a tropical depression about 1500 

km southeast of Guam on 19 October, 2001. Tracking north, it intensified into a tropical 

storm the following day and attained typhoon strength on 22 October, 2001. Podul then 

headed towards the northwest in the next two days. Podul reached its peak intensity on 25 

October when maximum winds near its centre were estimated at about 105 kt (195 km/h). 

Podul accelerated towards the north-northeast the next day. It weakened into a severe 

tropical storm on 27 October and became an extra-tropical cyclone the following day. 

The average absolute prediction error at 12 hours interval is 5.19 knots, which is 

computed along the entire storm track and using the intensity measured by the HKO as 

the observed values.  

 

Figure 4.5: Intensity Predictions for Podul at 12 Hours (October, 2001) 
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Figure 4.5 shows the outputs for Podul (2001) at 12 hours. It is a storm that reached its 

peak at 105 knots and is categorized as hurricane of category three. The average absolute 

intensity error at 12 hours interval prediction for this tropical cyclone using the proposed 

intensity model is 5.19 knots along of the storm. 

 

Figure 4.6: Intensity Predictions for Podul at 24 Hours (October, 2001) 

 

The proposed model is also evaluated with a typical tropical cyclone at 24 hours. Figure 

4.6 shows the results. The average absolute intensity error for Podul at 24 hours interval 

prediction using the proposed intensity model is 5.56 knots along of the storm. It can be 

seen that the proposed algorithm has the potential to predict better the intensity of a 

typical tropical cyclone than the intensity of a strong storm. 

 

4.6.3 Fast Intensity Change and Re-intensification Experiments 
 

The characteristics that are most difficult to deal with in the prediction of the tropical 

cyclone intensity are the fast intensification, rapid reduction and re-intensification. The 

proposed model is tested with tropical cyclones that exhibit at least one of these 

conditions. Hurricane Katrina, the sixth-strongest storm ever recorded in the Atlantic 

basin, passed through the Central Gulf Coast of America and flooded and damaged the 

coastal regions of Louisiana, Mississippi and Alabama. It is the most destructive and 

costliest natural disaster in the history of the United States. The official death toll now 

stands at 1,302 and the damage higher than $200 million. Over a million people become 
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homeless. In East Asia, The Maemi passed through the seas west of Okinawa and caused 

in at least one death and 71 injuries. After moving across the East China Sea, Maemi 

made landfall near Busan in South Korea. In South Korea, Maemi killed at least 113 

people and caused 14 other missing. About 34000 hectares of farmland were inundated 

and 5000 houses were destroyed. Hundreds of roads and bridges were damaged. The 

economic loss was estimated to be over USD 1.3 billions. Maemi, which reached 

category four status with a peak intensity of 120 knots, is used to implement the model 

when a rapid intensification is presented. Figure 4.7 shows the results for Maemi at 12 

hours. The average absolute intensity error for this tropical cyclone is 7.50 knots at 12 

hours prediction interval along of the storm. 

 

Figure 4.7: Forecasting for Maemi when Rapid Intensification is Presented (September, 
2003) 

 

It can be seen that the outputs from proposed model followed the official outputs up to 

the point where Maemi increases rapidly its intensity. However, the errors in the period 

of intensity peak seemed to be large (15 - 20 knots) for 12 hours, the proposed model 

tried to follow the observed intensity but it failed to make robust intensity estimation. 

After Maemi has reached its intensity peak, the proposed model gives an accurate 

prediction with small errors (less than 6 knots).  

 

The rapid reduction in intensity is also another attribute that is difficult to predict for any 

intensity prediction model. Dujuan was originated in west-northwest of Guam and was a 

tropical cyclone that moved towards the seas near southern Taiwan during the peak of the 
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hurricane season. This tropical cyclone at 24 hours prediction interval is used to test the 

prediction methodology under fast intensity reduction.  

 

The Dujuan is evaluated because after it reached its intensity peak; it underwent to a fast 

intensity changing from 95 knots to 35 knots in 24 hours. Figure 4.8 shows the results. 

The average absolute intensity error of this storm is 10.38 knots when it is evaluated 

along of its trajectory using 24 hours as an interval prediction. 

 

Figure 4.8: Forecasting for Dujuan when Rapid Intensity Reductions is Presented 
(August, 2003) 

 

It can be seen that the outputs from the proposed model failed to follow the official 

outputs especially in the period of fast intensity reduction. These results show that the 

model overestimated the tropical cyclone intensity in the fast reduction period. Further 

analysis is needed to improve the intensity prediction for fast intensity reduction. 

 

A characteristic that is also hard to predict is the re-intensification. This behaviour 

challenges the model to response as soon as it is detected. Re-intensification means that 

the tropical cyclone has gained (lost) enough strength to rise (decrease) its intensity. Nari 

was the tropical cyclone with the most unusual track in 2001 and had a long life span of 

15 days, strengthening and weakening repeatedly for four times. It is used to test the 

proposed model when the re-intensification is presented. The re-intensification is 

probably the most hazardous of the three conditions before mentioned because it 
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challenges the model to look out the new tropical cyclone intensity behaviour that could 

be increasing or decreasing. 

 

Figure 4.9: Re-intensification of Nari (September, 2001) 

 
Figure 4.10: Re-intensification of Parma (October, 2003) 

 

Figure 4.9 shows the re-intensification process presented in Nari. The average absolute 

intensity error for Nari is 5.88 knots at 12 hours and 8.63 knots at 24 hours. Figure 4.10 

shows another tropical cyclone used for testing the capability of modeling re-

intensification. The average absolute intensity error for Parma is 4.71 knots at 12 hours 

and 8.57 knots at 24 hours. 
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4.6.4 Experiment with Tropical Cyclone Having Double Eye Walls 
 

Another important aspect for the intensity prediction model is the capability of modelling 

tropical cyclones with special structure such as double eye walls. The proposed model is 

tested using storm Dujuan again, which passed to the south of Taiwan and moved 

towards the Pearl River Estuary in the early September 2003. When Dujuan crossed over 

the northern part of the South China Sea, it exhibited a double-eye-walled structure. The 

diameters of the inner and outer eyes are about 20 km and 100 km respectively. The 

average absolute intensity errors for Dujuan are 7.31 knots and 10.38 knots at 12 and 24 

hours interval prediction respectively. The results from the above experiments indicate 

that the proposed intensity prediction model can provide an effective and efficient way to 

model storms with double eye walls structure. Figure 4.11 shows the intensity predictions 

for Dujuan at 12 hours prediction interval.   

 
Figure 4.11: Intensity predictions for Dujuan at 12 hours (September, 2003) 

 

4.6.5 Comparing With Existing Models  
 

From the experiments, we know that the most important variables in this work are storm 

pressure, intensity change, sea surface temperature, storm location (latitude and 

longitude), and vertical wind shear. The detail contributions of variables are shown in 

Table 4.6 below.  
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Table 4.6: Variable Contribution for the Tropical Cyclone Sample at 6, 12, 18 and 24 
hours 

Percentage (%) 
No Variable Name 

6 hrs 12 hrs 18 hrs 24 hrs 

1 LAT Storm Location Latitude 2.67 5.58 7.50 9.32 

2 LON Storm Location Longitude 7.69 8.71 9.08 8.30 

3 TCJDATE Julian Day 4.36 3.13 4.05 3.86 

4 DIR Direction 1.33 1.42 1.92 3.37 

5 SPEED Translation Speed 6.90 8.08 6.27 6.78 

6 MSLP Minimum Central Pressure 14.35 13.60 12.33 12.36 

7 INTCHANGE Storm Intensity Change 12.05 13.60 11.99 11.25 

8 SMV Northward component of storm 

motion 

1.57 1.14 1.87 2.67 

9 SMU Eastward component of storm 

motion 

4.48 5.35 4.49 3.37 

10 SMT Storm Motion 4.18 0.68 1.09 2.67 

11 SST Sea Surface Temperature 4.48 9.90 10.51 9.53 

12 MPI Maximum Potential Intensity 5.27 3.53 3.16 3.70 

13 U850 Eastward component of wind 

speed at 850 mb 

2.48 2.16 2.57 1.23 

14 V850 Northward component of wind 

speed at 850 mb 

1.88 1.99 2.81 2.96 

15 U200 Eastward component of wind 

speed at 200 mb 

3.21 2.96 2.81 2.09 

16 V200 Northward component of wind 

speed at 200 mb 

3.69 1.82 1.97 2.67 

17 VWS Vertical Wind Shear 7.21 6.77 7.05 6.37 

18 MOM850 Average Angular Momentum at 

850 mb 

2.00 1.20 1.83 1.81 

19 MOM200 Average Angular Momentum at 

200 mb 

4.48 3.53 2.71 2.22 

20 POT Potential Intensification 5.69 4.84 4.00 3.49 
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The storm pressure variable measured in the tropical cyclone’s eye has been the most 

important predictor in this work. This result is not surprised since the relation between 

tropical cyclone intensity and storm pressure is directly proportional. These results can be 

explained using the idea that the smaller the central pressure, the greater winds that 

surrounded the storm. The intensity change is the second important variable that explains 

the tropical cyclone intensity for the proposed model. This result comes in agreement 

with the results found by DeMaria [30] who pointed out that the intensity change 

provides a pattern of future storm’s behaviour which means that storm that has intensified 

in the past 6 hours is likely to continue intensifying. The storm latitude and longitude 

variables have also proved their advantages to explain the tropical cyclone intensity. The 

sea surface temperature (SST) is another important predictor in the tropical cyclone 

intensity models. The results of this work agree with the results found by Baik [78]. The 

last important predictor is vertical wind shear (VWS) which is the difference between 

200 mb and 850 mb wind vector. It contributes around 7 % of variable contribution. This 

shows that the wind components at 850 mb and 200 mb have a close relationship with 

intensity change of the tropical cyclone.  

 

Results have shown the performance of the proposed model for different types of tropical 

cyclones. The performance of the model is difficult to compare with existing models 

because of limitation of published results. However, a comparison with small sample size 

is conducted. Table 4.7 shows the comparison between the performance of the proposed 

model and the model used by Joint Typhoon Warning Center [79].  

Table 4.7: Comparison Between the Proposed Model and JTWC’s Model 

  12 Hours 24 Hours 

Model Season 
No 

Cases 

Average 

Error (kt) 

No 

Cases 

Average 

Error (kt) 

NN Model 2001-2003 448 5.90 448 8.86 

JTWC Model 2001-2003 625 7.84 602 11.63 
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Table 4.8 and Table 4.9 show the relative improvement and intensity forecast error by the 

proposed model over the official JTWC’s model. Note that the proposed model achieved 

a considerable improvement at 12 and 24 hours interval over the model used by JTWC.  

Table 4.8: Proposed Model’s Improvement over JTWC’s Model 

Model At 12 Hours (%) At 24 Hours (%) 

JTWC Model 24.74 23.82 

Table 4.9: JTWC TC Intensity Forecast Error (Sourced by JTWC) 

 2004  

JTWC 24-h

2003 

JTWC 24-h 

2002  

JTWC 24-h  

2001  

JTWC 24-h 

Average Abs. 

Intensity Error (kt) 
11.0 11.0 10.0 11.0 

 

Figure 4.12 shows the fitness of the NN model (small dotted line) over the multiple linear 

regression model (continuous line) when both models are tested using the same variables 

to predict the tropical cyclone intensity. Also, the official forecast is shown (dotted line). 

This figure shows that the NN model can give a more accurate prediction on intensity 

(more close to the official forecast line) in the prediction stage than the Regression model 

that gives the same results obtained by Baik [78]. 

 

Figure 4.12: NN Model Enhancements over Regression Model for Rusa at 12 Hours 
(August, 2002) 
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Table 4.10 displays the average absolute errors obtained by the proposed NN model and 

those obtained by the multiple linear regression models. Furthermore, the percentages of 

this improvement are shown. 

Table 4.10: Proposed Model Improvements over Multiple Linear Regression Model 

At 12 Hours At 24 Hours 

Model Season No 

Cases 

Average 

Error (kt) 

No 

Cases 

Average 

Error (kt) 

NN Model 2001-2002 63 5.88 63 8.90 

Regression Model 2001-2002 63 6.58 63 10.76 

NN improvement over Regression 

(%)
10.64 17.29 

 

4.7 Summary 
 

In this chapter, artificial neural network and upper air information are used to develop a 

model for predicting tropical cyclone intensity in the Western North Pacific at 6, 12, 18 

and 24 hours. The historical NCEP (National Center for Environment Prediction) 

analyzing data and the sea surface temperature (SST) values are used along of each storm 

tracks to develop a set of climatology, persistence and synoptic variables. A competitive 

neural network (CNN) is adopted to identify analog storms to the current tropical cyclone. 

Once the analog tropical cyclones are identified, the persistence, climatological and 

synoptic observations of analog tropical cyclones and the current storm are combined to 

create a training set and a multiple-regression scheme is used to identify the variables that 

are best correlated with storm intensity. Experimental results clearly show that the 

proposed prediction scheme is a potential tool to increase the accuracy in predicting 

tropical cyclone intensity.  
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Chapter 5. A Similarity Retrieval Model for 

Time-Series Tropical Cyclone Data 
 

The last two decades have seen attempts to solve non-linear forecasting problems using 

AI technologies such as neural networks, fuzzy logic, genetic algorithms and expert 

systems. For instance, in [81], the authors allow a user to prescribe a solution based on 

the context of the current problem and those of selected past samples [82]. In [83], the 

authors proposed their approaches to allow numerical features to be converted into fuzzy 

terms and have greater flexibility in the retrieval of candidate cases. However, few of 

these research works ever tackle the intensity prediction of the tropical cyclone very well, 

and the critical obstacles to determine the importance of various features also exists. For 

tropical cyclone prediction, it has its particular characteristics, which are continuous, 

data-intensive, multidimensional dynamic and chaotic. Besides, tropical cyclones have 

great relationship with time-series, which increase in complexity but haven’t drawn too 

much attention from researchers. 

 

In this part, we describe a similarity retrieval model to predict tropical cyclone intensity 

using a feed-forward neural weight generator, which is adopted to generate a set of 

appropriate weights for various associated features of tropical cyclones. We also propose 

the time-series similarity adjustment to measure the similarity of samples on consecutive 

observations of a tropical cyclone. To validate our idea, we have evaluated its 

performance and results show that our proposed model has achieved a promising output.  

 

The rest of this chapter is organized as follows. In section 5.1, a system overview is given 

with description for every segment in the retrieval system. Then similarity measure 

functions for numerical variables such as Position, SMLP and Speed are described in 

section 5.2. A neural weight generator using a feed forward neural network is designed to 

determine the importance of each attribute contributing to the similarity of two 

observations. In this section, a time-series adjustment function is proposed to reflect the 
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time sensitive to the similarity measure. At last in section 5.3, experiments are carried out 

to validate this approach by comparing its results with other two existing methods.  

 

5.1 System Overview  
 

Figure 5.1 shows a forecasting model to predict the tropical cyclone intensities. This 

model uses a neural weight generator to estimate the significance of every feature of a 

tropical cyclone from observation. The time series adjustment is used to improve the 

similarity calculation among the tropical cyclone samples based on their observation 

sequence, which will be discussed in latter sections.  

 
Figure 5.1: Overview of the proposed prediction model 

 

In Figure 5.1, for every observation sample, either from the training dataset or the testing 

dataset, it is fed into a neural weight generator to get a set of most appropriate weights for 

the attributes. The dataset we used in this study is collected from Hong Kong 

Observatory including ten years tropical cyclone statistics from 1994 to 2003. Five 

representative attributes are involved in the dataset, Time, Intensity, Position (Longitude, 

Latitude), Speed and MSLP (Mean Sea Level Pressure). We divide them into three 

categories as time-series, positional and numerical attribute. Based on these attributes, we 
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design different similarity measure functions for them respectively. Integrity of the 

weights and the similarity measures is used to carry out the prediction.  

 

Each part in Figure 5.1 is described as below:  

Training Data: samples (shown in Figure 4.1) used to train the neural weight generator; 

 

Testing Data: samples (shown in Figure 4.1, and are supposed that the intensity of the 

sample is unknown) used to evaluation the performance of the designed system; 

 

TC Case (Attributes): a database to store tropical cyclone information according to their 

attributes; 

 

Similarity Assigning: the module in which the similarity measure functions are carried 

out to do the retrieval. Details will be given in section 5.2; 

 

Neural Weight Generator: a feed-forward neural network to determine the weight of each 

attribute. Details will be given in section 5.2.2; 

 

Time-series Adjustment: a similarity measure to indicate the time-series sensitive for 

tropical cyclone retrieval. Integrity of time-series adjustment and other similarity 

measures will be discussed in section 5.2.3; 

 

Best Matching: a matching module to find the most like sample from the database based 

on the proposed similarity measure functions.  

 

Predicted Intensity: intensity prediction results from the observation samples of the 

testing dataset.  

 

5.2. Similarity Measure Functions 
 

5.2.1 Positional and Numerical Measure Functions 
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From the best track data of tropical cyclones we got from Hong Kong Observatory in 

Figure 4.1, an observation sample can then be defined as an attribute vector C = [TN, TT, 

I, P, SMLP, Sp], where each symbol represents a corresponding attribute for a tropical 

cyclone observation: TN (Tropical cyclone Name), TT (Tropical cyclone Time), I 

(Intensity), P (Latitude, Longitude), SMLP (Sea Mean Level Pressure) and Sp (Speed). In 

this study, we only consider numerical variables such as I, P, S, Sp and time-series 

variable TT because that these variables can represent basic characteristics of a tropical 

cyclone other than TN. Besides, as Intensity (I) is used as the predicted output of the 

forecasting model, we also won’t consider it in later discussion. We now discuss their 

similarity functions separately.  

 

For SMLP and Sp, their similarity measures of two observation samples can be 

determined by their distance measure as shown in equation 5.1:  

                
)min()max(
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/ AA
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dD ji

ijSpeedSMLP −
−

==                                      (5.1) 

where Ai and Aj are values of the attribute A (SMLP or Sp) in different observations, and 

max(A) and min(A) are the maximum and minimum respectively in all samples of the 

attribute A (SMLP or Sp). So DSMLP and DSpeed are limited into interval [0,1].  

 

For variable Position (Latitude, Longitude), as it contains two parameters representing its 

orientations, the similarity measure can be determined as equation 5.2: 
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where Pi and Pj are the Position vector [latitude, longitude] in observation samples, and 

maxX and maxY denote the most right-button point in the Latitude-Longitude coordinate 

system covered in our database. Using maxX and maxY, Dposition can be limited into 

interval [0, 1]. The Latitude-Longitude coordinate system is described in Figure 5.2 like 

below.  
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Figure 5.2: Latitude-Longitude coordinate system using in similarity functions 

Therefore, we get the similarity functions for these three attributes as:  

positionSpeedSMLPji DDDSSSim −−−= 3),(                                            (5.3) 

 

5.2.2 Neural Weight Generator 
 

After we have calculated the similarity measure functions for SMLP, Sp and Position, we 

calculate the weights of these attributes of each tropical cyclone observation sample. The 

weight is used to determine the importance of each attribute contributing to the similarity 

of two observation samples. In this study, a neural weight generator is designed to carry 

out weight calculation for every attribute, by means of predicting the variable I (Intensity) 

for the observation samples in the database using neural network technology. In the 

neural weight generator, the weight means the positive or negative contribution of that 

input to the result variable, intensity. Figure 5.3 describes such a neural weight generator.  

 
Figure 5.3: Structure of the neural weight generator 
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First of all, the values of these attributes need to be normalized and changed into binary 

forms, which are the inputs and outputs of the neural weight generator. We use equal 

width bin approach to normalize each attribute, and the bin width is calculated using 

equation 5.4.   

bin
attattwidth )min()max( −

=                                           (5.4) 

where max(att) and min(att) are corresponding to the maximum and minimum value of 

that attribute among all observation samples respectively, and bin is the number of bins to 

be divided into. Taking attribute SMLP as an example, among all observations in the 

database, the maximum SMLP is 1019 and minimum is 874. We divide interval [874, 

1019] into 10 bins. Supposed that we have an observation sample with SMLP value 1000, 

it will be located into the 10th bin out of total 10 bins. Binary number 0 or 1 is used to 

represent whether there is a value located into the bin. So, SMLP 1000 can be 

transformed into 0000000001, where the binary bit 1 represents that there is a value in 

10th bin and no value in other bins. Based on the best data track from Hong Kong 

Observatory, tropical cyclones are classified into four types: Tropical Depression, 

Tropical Storm, Severe Tropical Storm, and Typhoon. We use a four-bit binary number 

to represent this type such as 0100, denoting a given observation sample is belonging to 

the second type, Tropical Storm.  

 

After the input pattern has been normalized and well represented, it is fed into a feed 

forward neural network for training and validation with sigmoid activation function. 

Assuming that instances of the input observations are Ak=(ak
1 , ak

2 , …, ak
n) (k = 1,2,…, 

m), where k is the index for the input observations, and n is the number of the input unit. 

The hidden layer unit j computes its activation values as below:  

∑
=

−=
n

i
jij

i
kj wafo

1
)( β                                            (5.5)  

where βj is the bias of the jth unit of the hidden layer, ak
i is the input instance, wij is the 

feed-forward weight connecting hidden unit j to input unit i, and f is the sigmoid function 

in equation 5.6. Note that wij is randomly distributed in [0.0, 1.0].  
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Next we apply a winner-take-all style competition in the output layer to determine the 

classification result for the input pattern. The activation function of the output layer is 

computing using similar equation 5.5. After the neural network is well-rounded training 

for a given pattern, the unit of the output layer, which has the largest activation value, 

will be considered as the category that the input pattern is classified. Or, we can use 

Equation 5.7 to represent it. For example, if c = 0010, then the input pattern is classified 

into the third class, as the third bit is set to 1. 
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When the training progress has completed for a given observation sample, a set of 

weights wij can be achieved for every input node i connecting to every hidden unit j. 

These weights can be regarded as the importance degree of every input node i, which is 

the similarity attribute of the observation samples, contributing to determining the 

network output, intensity classification. After that the similarity of two attribute vectors 

Ci and Cj can be modified as:  
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where Sik and Sjk are values of kth attribute for two observations respectively.  

 

5.2.3 Time-series Adjustment Function 
 

A tropical cyclone will be recorded with more than one observation during its life for the 

analysts’ prompt and precise references. The more observation samples for a tropical 

cyclone are recorded, the more precise prediction results will be achieved, and the earlier 

we can take action to avoid the disaster for loss of human lives and properties. Besides, 

empirically the form of the tropical cyclones is sensitive to time in any region all over the 

world. For example, in Hong Kong, there are more tropical cyclones with stronger 

intensities from June to August every year. Therefore, the attribute Time will have its 

particular impact to the similarity measure during the retrieval. The closer the date is to 
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the current date, the greater the impact is to the current weather. When interval of two 

Time points exceeds some value, the mutual impact may be ignored.  

Based on this idea, the conception of a time-series adjustment function is proposed. The 

time function E (t) need to meet the properties:  

- Variable t is the observation time in the cases; E (0) = 1 and E (∞ ) = 0;  

- E (t) is the function of degression, when t ∈(0, +∞ ) ∪ (-∞ , 0).  

Here the time function is defined as:  
||)( tCetE ⋅−=                                                         (5.9) 

where C is a constant and 0 < C < 1.  

 

The advantages of using E (t) as the time function exist in two aspects. One is , 

the other is that the current date is supposed to the origin, the E(t) increases 

monotonously (t ∈ (- , 0)) and E (t) decreases monotonously (t ∈ (0, + )). The 

function  (t ∈(0, + ) ∪ (-

1
0

|| =∫
+∞ − te

∞ ∞
||)( tetf −= ∞ ∞ , 0)) decreases more heavily. So the constant C (0 

< C < 1) is introduced to the function E(t) in order to prevent E(t) from decreasing 

heavily. As a result, we design a time-series adjustment function as below:  
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where Monthi (Monthj) and Dayi (Dayj) are the recording times for observations i and j. 

To show the dominance of variable Month over variable Date, a parameter α on Date is 

adopted to lower its influence to STij, where α belongs to [0.0, 1.0]. One of the 

advantages is that we avoid simply modeling the periodic effect in monotonously 

increasing or decreasing mode, instead of which a step-wise mode is used. Another 

advantage is that as max(ST) = 1 and min(ST) = 0, then the result of STij will not change 

rapidly even though two recorded times are at a longer time interval of each other, which 

makes it more feasible to be integrated into the previous similarity functions. 

Consequently, that the similarity of two attribute vectors Ci and Cj can be further 

modified in equation 5.11.  
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5.3 Experimental Analysis 
 

In order to evaluate the usefulness of our proposed competitive neural network classifier, 

we carry out a set of experiments to test whether our approach achieves an acceptable 

prediction precision, and whether there is a superiority comparing to other existing 

forecast models. We have collected 6,687 observation samples of 324 tropical cyclones 

passing through Hong Kong in the ten years from 1994 to 2003. These samples are time-

series distributed and recorded every 6 hours during their lives. A computer with 2.26 

GHz Intel Pentium CPU and 512M RAM memory is used for the simulations. As we 

cannot afford to take all these samples in our experiments, to ensure the representative, 

we randomly select 200 observation samples as the training set for the neural weight 

generator, and select randomly another 30 samples as the testing set. Figure 5.4 gives a 

detailed similarity retrieval procedure used in our experiments. 

 
Figure 5.4: Steps to predict the intensity of current tropical cyclone sample 

 
Before we feed the similarity attributes into the neural weight generator, we normalize 

them into binary representation as mentioned in section 5.2.2. Table 5.1 shows the 

normalization results and the number of units for every network layer. In total we need 

120 bits to represent the input values of three variables; we put 120 neurons in the input 

layer. Empirically the number of the hidden units needed is equal to one tenth of the 

number of input units; so 12 nodes are put into the hidden layer. In the last layer, 
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depending on the predicted intensity category, we use 4 units in this layer to show the 

classified results from the neural network classifier.  

Table 5.1: Input attributes normalization and initial number of layer units for neural 

weight generator 

Initial number of  
Input Pattern Input 

units 
Hidden 
units 

Output 
units 

Attribute No. Example Representation 
Position Long (10) x Lat 

(10) = 100 
Nij

th 
block,  
i=20,j=2
0 

100…0 (ninety-
nine 0s) 

MSLP Bin(10) x 1 = 
10 

109 100…0 (nine 0s) 

Speed Bin(10) x 1 = 
10 

136 100…0 (nine 0s) 

 
 
 
120 

 
 
 
12 

 
 
 
4 

In Figure 5.5 we show the predicted results and errors for 30 randomly selected TC 

observation samples. We can clearly see that the predicted intensities are very close to the 

original intensities in the database. The largest difference between the predicted intensity 

and the original one is 8, which is considered acceptable.   

 

Figure 5.5: Intensity prediction results and errors 

To justify the performance of our propose model, two existing TC forecasting models 

developed in our previous works are used for comparison: 1) Satellite Interpretation 
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(Chapter 3) and 2) Integrated Neural Training (Chapter 4). The totally 20 observation 

samples selected from the database are used for comparison, which is calculated using 

following equation:  

r

rp

I
II

P
|| −

=                                                                 (5.12) 

where Ip is the predicted intensity and Ir is the actual intensity for that observation in the 

database. As shown in Figure 5.6, the integrated neural training model has the highest 

prediction precision, followed by the satellite interpretation model and the similarity 

retrieval model. As the accuracy for more than half of samples is more than 70%, we still 

consider the similarity retrieval model has its potential in future research if we improve 

the corresponding algorithms, equations and parameters.  

 
Figure 5.6: Predicted precision of three approaches 

 

5.4 Summary 
 

In this chapter, we have presented an intensity forecast model for tropical cyclones based 

on similarity retrieval from non-linear tropical cyclone observations. Neural network is 

adopted to generate a set of appropriate weights for various feature variables of a tropical 

cyclone instance. We also have proposed the time-series adjustment function to measure 

the particular impact of the variable Time. Ten years of data comprising 6,687 

observation samples of 324 tropical cyclones passing through Hong Kong is used for the 

experiments. Results show that our proposed approach has research potential in the future 

if we put more efforts on algorithms modifications.  
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Chapter 6. Future Research and Conclusion 

 

6.1 Limitations and Future Works 

 
In this section, we discuss shortages and difficulties of above three forecasting models 

one by one, and then propose possible efforts needed to be devoted to achieve a more 

scientific, practical and accurate forecasting model for tropical cyclone intensity.  

 

6.1.1 Satellite Interpretation Based Forecasting 
 

Firstly, in this study, the eye of a tropical cyclone is determined based on the positional 

centroid of the extracted contour points from a satellite image. Actually the eye found 

using this approach leads to a highly inaccurate forecasting result as it may be far away 

from the real eye of the tropical cyclone. However, depending on the complexity of the 

internal structure of a tropical cyclone, it is very difficult to determine the real eye 

accurately only using information of the satellite images. In later part of this forecasting 

system, only contour points are used to form angles to match two tropical cyclones. 

Moreover, we plan to measure the significance of a contour point according to its 

distance to the cyclone eye, which should be located within the extracted contour. As a 

result, we decide to use its positional centroid as the tropical cyclone eye for later weight 

assignment. In the future, with more efforts, an efficient method to locate the real eye of a 

tropical cyclone needs to be developed to give a better forecasting result.  

 

Secondly, in this thesis, we assume that there is only one tropical cyclone existing in the 

satellite image, or, we choose the tropical cyclone with the largest area using a fast 

sequential neighbour checking algorithm. The reason is twofold. Firstly in most situations, 

there exist many small clouds near the tropical cyclone in the satellite image. When 

active contour model is carried out on the satellite image, there will be more than one 

cyclone contours including a big cyclone and many small ones. Those small cyclones are 
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considered as noises and will be removed. However, the disadvantage of choosing the 

largest cyclone is that, if there are two big tropical cyclones existing in the satellite image 

at one time, and we only select the largest one for prediction, we could omit the influence 

of the other tropical cyclones leading to inaccurate results. In future, the influence of 

multiple tropical cyclones in the forecasting system should be considered.  

 

Thirdly, future research efforts will be directed towards improving the matching 

module’s efficiency and matching accuracy, with special emphasis on improving the 

algorithm for finding the optimal time warping path. The weight assignment algorithm is 

needed to be improved to determine clear significance for each contour points.   

 

6.1.2 Neural Training Based Forecasting 
 

Firstly, in this study, the selection of the analog tropical cyclones for a given storm is an 

important aspect. We use the competitive neural network as the technique to perform this 

selection. In the future, a different unsupervised or supervised technique may be used to 

improve the classification algorithm. Supervised techniques based on a preliminary 

classification could be an alternative to improve the analog identification procedure. One 

of the most relevant supervised techniques that can be used in the future is the Learning 

Vector Quantization (LVQ).  

 

Secondly, the addition of new predictors must be done in the future. It has been proved 

that some predictors such as k-index, REFC (200-mb relative eddy angular momentum 

flux convergence), PEFC (200-mb planetary eddy angular momentum flux convergence), 

etc have close relationships with the tropical cyclone intensity. Also, different non-linear 

transformations such as logarithm, or quadratic can be applied to the predictors of the 

existing model to increase the pool of potential predictors and to explore a possible non-

linear relationship between the predictors and the storms intensity.  

 

Thirdly, the present study provides tropical cyclone intensity prediction up to 24 hours. 

The experimental results show that the proposed model can provide reliable storm 
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intensity prediction at 6, 12, 18, and 24 hr. The results also show that there is no 

significant increase in the error when the prediction interval increases. The forecast can 

be extended to 72 hr in the future. Moreover, the present work only uses the historical 

data to test the proposed model. In future, it is possible to apply the real-time 

meteorological observations to system and evaluate the accuracy of the model. And the 

proposed model is optimal for use in Western North Pacific basin since the equations 

used to derive some predictors are specific to this region only while these equations may 

not be applicable to other basins. Same performance may not be shown in other basins.  

 

In the future, more measure functions for more feature variables should be considered as 

add on. A more flexible structure of the neural network is going to be proposed and 

algorithms to determine the weights for each variable are also going to be elaborated in 

the future. Enhancement on the measure for the time series is also going to be conducted 

for the impact among different observation sample that are imprecise in nature. Therefore, 

investigation on the use of fuzzy theory and case base adaptation to counteract 

exceptional TC behaviour can be useful in the course of providing an accurate forecast.  

 

6.1.3 Similarity Retrieval Forecasting  
 

In this model, we only consider four numerical features of a tropical cyclone, which are 

Time, Position, SMLP and Speed, to form different similarity measure functions. It is 

definitely insufficient and can only achieve rough retrieval results. In the future, more 

measure functions for more feature variables should be considered as add on. A more 

flexible structure of the neural network (such as to optimized the inputs of the neural 

network by reducing the number of Longitude and Latitude inputs neurons from 10x10 to 

4x4) is going to be proposed and algorithms to determine the weights for each variable 

are also going to be elaborated in the future. Enhancement on the measure for the time 

series adjustment is also going to be conducted for the timing impact among different 

observation sample that are imprecise in nature. A powerful and well-correlated TC 

database is going to be built up in the future. Moreover, investigation on the use of fuzzy 
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theory and case base adaptation to counteract exceptional TC behaviour can be useful to 

provide accurate forecasts.  

 

6.2 Conclusions 
 

In this thesis we have been discovering new approaches in designing reformative 

forecasting models to predict the intensity of tropical cyclones using methodologies at 

different levels that are more reliable for the collected data types, more efficient and 

effective in terms of predicted accuracy and computational costs, and more scalable to 

future system expansion. In our study, three different approaches, based on different 

characteristics of tropical cyclones, have been proposed to achieve our research target: A 

satellite interpretation based tropical cyclone forecasting system, an integrated neural 

training based tropical cyclone forecasting system, and a similarity retrieval approach for 

time-series tropical cyclone data. Relative experiments show that our proposed 

approaches are effective and can achieve promising results. 

 

In satellite interpretation approach, we propose an integrated prototype for tropical 

cyclone (TC) comparison that is based on typical spiral shapes of TCs using time warping 

technology. Gradient Vector Flow (GVF) snake model is adopted to extract the contour 

points of TCs from the satellite image. A series of accessorial algorithms, including a fast 

sequential neighbor-checking algorithm, a pixel distance algorithm, and a weight 

calculation algorithm have been proposed for pre-processing input data. Given two sets 

of contour points, one for the input tropical cyclone image and the other for an image in 

the database, we use angle features between successive contour points to determine the 

degree of similarity of two cyclone shapes. To better reflect the spiral shape of tropical 

cyclones and to produce a fast, accurate comparison, we adopt a time warping approach. 

The proposed approach was tested against and found to be superior to an approach that 

uses a modified Hausdorff distance measure.  
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In the neural training based approach, we use artificial neural network for predicting TC 

intensity in the Western North Pacific at 6, 12, 18 and 24 hours. The historical NCEP 

(National Center for Environment Prediction) reanalysis data and the sea surface 

temperature values are used along with each storm track to develop a set of climatology, 

persistence and synoptic variables. A competitive neural network is adopted to identify 

analog storms associated with the current TC. Once the analog TCs are identified, the 

database observations of analog TCs and the current storm are combined to create a 

training set. A multiple regression scheme is used to identify the variables that are best 

correlated with storm intensity. Experimental results show that the proposed prediction 

scheme is a potential tool to increase the accuracy in predicting TC intensity. 

 

In similarity retrieval approach, an intensity-forecasting model for TCs is developed 

based on similarity mining from various features of time-series TC observations.  A 

feedforward neural network is adopted to generate a set of appropriate weights for 

different features of a TC instance. We also have proposed the time-series adjustment 

function to measure the particular impact of the Time feature. Ten years of data 

comprising 6,687 observation samples of 324 tropical cyclones passing through Hong 

Kong are used for the experiments. Results show that our proposed approach can achieve 

a satisfactory forecasting result and has its potential to be improved in the future on the 

algorithms, equations and parameters. 
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