

i

Abstract

It is the responsibility of a game or game level designer to provide players

with a balanced game, one that offers a satisfying level of challenge. This can

be done using traditional game programs and artificial intelligence (AI)

techniques but it is becoming increasingly common for researchers are using

dynamic game balancing, which uses reinforcement learning and focuses on

the movement of non-player characters, especially in scripted games.

However, this is not suitable for all game genres, such as those that use

mazes or require dynamic terrains. In this paper we propose to adjust the

level of difficulty of a game by using data mined for sequential patterns that

can be used to analyze a player’s behaviors. Our method first mines

individual gameplay data and then transforms it into a set of sequential

patterns. This approach is tested here on a maze game. We capture the

behavior of several player’s and the parameters of the game environment

such as the number of dead ends achieved, hammers used on every level,

how quickly players achieve the goal, the size of the maze, number of

monsters hit, and the number of walls broken on each level. Feedback from

participants in our experiments was very positive as they found the games

designed using the proposed approach to be both more interesting and more

balanced. This proposed approach differs from existing rule base game AI

algorithms in three ways: (1) the game levels are based on the past

experience of the player; (2) the approach is data-driven; (3) the game levels

ii

are unique and are not predefined, making them more adaptive, which

contributes to making the game more interesting and balanced.

iii

Acknowledgements

It is my pleasure to express my sincere thanks to my supervisor, Prof. Keith

C.C. Chan, for providing useful guidance, constructive suggestions, and

continuous support in my graduate study at The Hong Kong Polytechnic

University. Nearly all of the work towards my master’s degree originated from

Keith. Without his supervision, I could never have had the great satisfaction of

completing this project. The experience of working with Keith will be a lifelong

asset.

I would also like to acknowledge my thanks to Dr. Korris F.L. Chung and Dr.

Robert W.P. LUK. They have provided valuable suggestions on my research.

Most importantly, I would like to thank all of my family members for their

patience, understanding and support.

iv

Table of contents

Abstract... i

Acknowledgements ... iii

Table of contents ... iv

List of figures... vi

List of tables...viii

��������	 Introduction ..1

1.1 The Problem...8

1.2 Overview of Proposed Approach..10

1.3 Outline of Thesis ..12

��������
 Game Related Literature..13

2.1 What is a Game?..13

2.2 Game Level Design..18

2.2.1 Guidelines for working with game level design................20

2.2.2 Game balance and level design24

2.3 Game AI ...29

2.3.1 Academic and Game AI ...30

2.3.2 Classic AI Techniques..33

��������� Data Mining on Game Level Design.............................42

v

3.1 Data Mining Analysis ..42

3.1.1 Association pattern mining...44

3.1.2 Apriori and Other Algorithms..45

3.1.3 Sequential Pattern ...47

3.1.4 Sequential / Temporal Pattern Mining Algorithms49

3.2 Multivariate Analysis of Games ..54

��������� Game AI with Prediction...62

4.1 Sequential Pattern Mining Approach ..65

4.2 Decision Tree Approach ...82

��������
 Experiment and Implementation...................................88

5.1 Game Description...88

5.2 Details of the implementation ...91

5.2.1 Game Engine...94

5.2.2 Maze Builder..97

5.3 Details of the experiment..98

��������� Conclusion and Future Research............................... 114

6.1 Summary of the thesis.. 114

6.2 Future research.. 115

References/Bibliographies ... 116

vi

List of figures

Figure 1 Doom.. 7

Figure 2 Spacewar!, the first computer game. (1962) .. 14

Figure 3 Pac Man [PAC].. 19

Figure 4 Map of “Dungeons and Dragons” [DD]... 20

Figure 5 Unfair Game ... 26

Figure 6 Stalemate.. 26

Figure 7 Game is balanced, but too short.. 27

Figure 8 An ideal balance graph.. 28

Figure 9 Grid .. 39

Figure 10 Mabinogi ... 41

Figure 11 Game Flow of the Level design using random number generation 63

Figure 12 Game Flow of the Level design using pre-defined template 64

Figure 13 Game logs data of m levels ... 66

Figure 14 Algorithm for Chi-square Testing:... 69

Figure 15 Prediction Rule Generation Algorithm.. 74

Figure 16 Game Flow of the Maze game using sequential pattern mining.................. 75

Figure 17 Basic algorithm of ID3 ... 84

Figure 18 Algorithm of C4.5 .. 84

Figure 19 Game Flow of the Level design with decision tree approach...................... 87

Figure 20 Maze Game .. 90

Figure 21 System Diagram of the Maze Game.. 91

Figure 22 System Flow of the Maze Game.. 92

Figure 23 Class Diagram .. 93

Figure 24 A tile-based game ... 96

Figure 25 Maze Game .. 98

vii

Figure 26 Decision Tree.. 105

Figure 27 Balance graph of the three versions of the maze game for one player112

Figure 28 Balance graph of the three versions of the maze game showing the average

performance of the ten players ..113

viii

List of tables

Table 1 A Two Dimensions Contingency Table with I Rows and J Columns................ 67

Table 2 Description of the Parameter of a level.. 76

Table 3 Description of the Parameters of player’s behavior.. 77

Table 4 Game Log Data .. 77

Table 5 Parameters of levels... 78

Table 6 Player’s Behavior ... 79

Table 7 4 X 6 Contingency table for NUMBER OF HAMMERS USED and DEAD ENDS

ACHIEVED... 79

Table 8 Game log data.. 90

Table 9 Sample XML for a level... 94

Table 10 Sample XML file of the player’s behavior... 95

Table 11 Sample XML for the prediction rule.. 95

Table 12 Data representative of the map in Figure 24.. 97

Table 13 Parameter of the Levels with random number ... 100

Table 14 Player’s Behavior of playing random maze.. 100

Table 15 Parameter of the “Hard” Levels with decision tree approach...................... 102

Table 16 Parameter of the “Easy” Levels with decision tree approach 102

Table 17 Classification Rules .. 103

Table 18 Player’s behavior on Maze with Decision Tree .. 106

Table 19 Default Parameters of Maze ... 107

Table 20 Parameters of Maze with Prediction Rule of a player................................. 108

Table 21 Player’s Behavior in Maze with Prediction Rule... 109

Table 22 Some Prediction Rules at Level 10 ... 109

Table 23 Question of the feedback form ...110

Table 24 Player ratings of original Maze Game vs, Predicted Maze Game................ 111

1

����������������		�� ������������������		����

Computer games provide an extremely popular form of entertainment on a

wide range of platforms far beyond the familiar personal computer and

include games played on devices as different as the Sony PlayStation, the

XBox or a simple mobile phone. There are many game genres including

first-person shooter games, real-time strategy games, role-play games,

games played with teammates, action, adventure, educational, simulations,

sports, fighting games and puzzles [BB2004]. Game development is similar to

system development in that it includes game design, game development and

game testing. [WIKI1] Every activity of the game development process

involves many sub-tasks. The main tasks of game designer are storytelling

and the design of characters, levels, scenes, graphics and sound effects.

Game programmers focus on the game programming and the design of the

game engine. Game testers use a variety of testing methods to ensure

players will find a game interesting.

There are many guidelines for designing a perfect computer game.

Schuytema[PS2007] says that a good game designer should understand a

player’s perception and emotions. The player’s perceptions include sound

effects and music, character design, movement, light and color, and the game

flow. The player’s emotions are affected by the game flow, by achievement,

2

by the difficulty of the problem and by the element of surprise. When

designing a game, designers should pay attention to both the emotional

responses of players and to their perceptions.

Game programmers commonly use Java, C#, and C to create a game engine,

which is the core software component of the computer game. An engine

interprets the game level design and implementation, graphic rendering,

collision detection, sound effects, scripting, animation, networking, memory

management, artificial intelligence and other elements of the game.[WIKI19]

These elements all contribute to a player’s perceptions and emotions and

therefore to the interest of the game. To make games even more interesting,

we can use game artificial intelligence (AI). At a general level, artificial

Intelligence refers to using machines or agents in a more human-like fashion

and can be classified as either “weak” or “strong”. Weak AI is often used in

academic work by applying AI technologies to real world problems. Strong AI

uses an agent or algorithm that mimics the human thought or behaviors.

Almost all game AI is weak AI. [BG2004] Thanks to the rapid development of

CPUs and RAM, developers more recently have started to use sophisticated

strong AI, usually more familiar in the academic world, such as Genetic

Algorithms, to create systems that mimic human thought processes.

[BG2004], [MB2005], [WIKI2], [WIKI3]

Today, computer games use a variety of forms of AI. [BG2004] It is used in

3

simple games such as Tetris or Bejeweled to complex online massively

multiplayer games (OMMPG). Generally, the game AI is applied to produce

the illusion of intelligence on the non-player character (NPC). Some game AI

provides a series of challenges or goals that must be met or reached in the

course of playing a game. Some game AI is used to catch cheats. Other

game AI may provide players with instant feedback.

There are two chief difficulties in using game AI. First, game AI is dependent

on the number of processor cycles and the amount of available memory and

its programming is mostly platform dependent. Second, the costs of game

development in terms of both time and money are huge. Game companies

cannot afford to research game AI. A lot of game programmers are still using

a lot of classic game AI such as finite state machines and flocking. Genetic

Algorithms, neural networks and expert systems are modern techniques in

game AI. [RR2005] [SR2002] [AN2004] [BB2004] [BG2004] [BM2005]

A successful computer game can be defined by a variety of factors: Online

integration, Technology, Genre, Purpose of Play and Business Model.

[MF2003] But the grand challenge of game AI is to be able to use it to make

games more fun. “Fun” is the most important determinant of whether a game

will be successful. Imagine a massively multiplayer online game on the

Internet. The profits of the game provider depend on spending on the player’s

weapons and equipment and a monthly fee. If players feel the game is

4

interesting, they will spend more time on the game, and spend more money to

stay or to buy equipment. There are many potential sources of “fun”. Fun can

come from challenges. Challenges and goals can be many things, for

example, victory in a scenario, the accumulation of money, or the right to

move to the next level. Goals and challenges may be on the one hand

pre-defined by the game engine and it may be a requirement of the game that

every player reach or meet them or on the other hand they may be

player-specific and be the result of or related to their game-playing activities

or preferences.

Challenges are strongly related to the design of game levels, also known in

many games as “maps”, “stages” or “missions”. Game levels are part of many

genres including puzzle games, adventure games, role-play games and

sports games. A level also includes a game environment in the game world of

the player. Some game genres such as adventure games or online massively

multiple-player games change the game environment and match mission

levels to the player’s experience. This is also called a “level”. Game level

design is a process of creating game levels and is a sub-task of game design.

Game level designers need to create a set of challenges within the level and

maximize the fun of the game. The game level engine is a tool or algorithm to

establish a game level during game development. Game level designers can

design a level using a level editor such as Valve's Hammer Editor, Epic's

UnrealEd, Leadwerks 3D World Studio, BioWare's Aurora Toolset and id

5

Software's Q3Radiant. [WIKI16]. The key to good level design is to challenge

the player in a satisfying way, to make the game “playable”. However

whatever a level is designed, some players will feel the game is hard but

others may feel it is too easy. One way to deal with this is to use an adaptive

game engine to generate an adaptive level. This means that the difficulty of

the level can be adjusted dynamically according to the individual player’s

behavior and the game environment. This adjustment of the difficulty is also

called dynamic game balancing. [WIKI14]

There are a number of approaches to ynamic game balancing. One approach

is to modify the behavior of the Non-Player Characters (NPCs). Research into

dynamic scripting is focused on the NPC’s behavior [PIE2004] [SL2006]

[PIE2004] but is suitable only for games that are scripted or imply storytelling.

Andrade [GA2005] also used reinforcement learning to modify NPC’s

behaviors. Another approach is to change the parameters of the game

environment. Hunicke and Chapman’s [RH2004] approach is to control the

game environment setting according to the player’s behavior and then adjust

the difficulty of the challenges. ��������	 [BM2005] uses rule-based AI in

fighting games with dynamic game balancing. Game AI is used to predict a

player opponent's next strike. This algorithm is based solely on the player’s

previous actions and seeks to prediction the NPC’s action. Apart from player

behaviors, we can also use a game log to record the parameters of a game

environment. Such gameplay data can be use both to predict NPC actions

6

and to adjust the difficulty of the game by changing the parameters of the

game environment in a scene. the game more balanced and playable, as

itailor–made for the specific player. In this way, a 12-year-old boy will not find

the game too difficult to play and an adult will not find it too easy. Here, data

mining is a useful tool in the design of game levels.

Data Mining can be used to adjust the level of difficulty of a gamey. Data

Mining, also called Knowledge Discovery in Databases (KDD) or Knowledge

Discovery, is used to extract or mine knowledge from large amounts of data.

[JH2001]. Data mining includes activities such as clustering, classification,

association, and sequential pattern discovery. Different activities are for

different approaches. Data mining involves several issues and goals [JH2001].

Various datasets can be mined to discover knowledge which can be used to,

for example, predict weather conditions at airports or to predict stock prices or

trends.

Gameplay data is both sequential and temporal. Sequential pattern mining is

used for prediction and is the process of mining frequently occurring patterns

that are related to time or other sequences. [JH1999] [JG1993], [HJ2001],

[JP2000], [JA2001], [KC1994] We can use it to predict a player’s behavior

and game environment, to adjust the difficulty of the level of the game, and to

make the game more adaptive.

7

Sequential pattern mining can replace traditional rule-based game AI or

pre-defined game environments when we build game scenes. For example,

the terrain or maze of a scene is pre-defined on Ultimate Online, Final

Fantasy and Doom (Figure 1). After playing several times, a player may

become bored with the unchanging environment.

Figure 1 Doom

In this thesis, we propose a new approach to game level design that uses

data mining techniques. We propose an approach to using sequential pattern

mining to adjust the difficulty of the levels of games that require terrain

generation. We do this by using the game log to find the relationship between

a player’s past behaviors and the parameters of the game environment. The

player’s behaviors can then be predicted and the game level can be adjusted

to the individual player. To replace the traditional rule-based game AI or

pre-defined game level template, we use sequential pattern mining. Our

8

proposed approach is as follows. First we detect underlying patterns in an

ordered game log over a series of levels. We then use these patterns to

construct sequence-generation rules that can predict the attributes of a player

and those attributes are used to generate a game environment of a suitable

level of difficulty.

1.1 The Problem

A game level is built on a set of small challenges [WIKI5], such as an enemy,

a maze, or some hybrid challenge, the game environment [TR1999], or the

number of enemies. Most of the elements of the game environment are

related to the mission. A balanced game will provide a satisfying level of

challenge to the player with a current level being more difficult than a previous

level. Although some games allow players to adjust the basic level of difficulty,

the levels of most games are pre-defined during the game design process

and the overall level of the game is static. As a result, some players will feel a

game is easy and others that it is hard. The game level designer may apply

game AI to control the behaviors of the NPC, provide instant feedback to

players, or generate a balanced game world.

The development of tailor -made game AI is constrained by unpredictable

cost and time requirements and the limitations of computer resources. A lot

9

of game programming uses existing game AI, pre-defined game level

templates for the development of a game. Exceptions are games [SW1999]

[AN2004] [PMIE2006] such as Creatures (CyberLife Technologies, 2001) and

Black and White (Electronic Arts, 2001).

Some game level design allows players to adjust the basic level of difficulty

but the levels of most games are defined in the design process and the

overall level of the game is static. As a result, some players will feel a game is

easy and others that it is hard. The adjustment of the difficulty of a game

during play is called dynamic game balancing. [WIKI14] Dynamic game

balancing uses an automatic algorithm to change parameters, scenarios and

behaviors in the game to prevent players feeling frustrated during play. There

are a number of different approaches to dynamic game balancing, including

modifying the behaviors of NPCs [PIE2004] [SL2006] [PIE2004] [BG2004]

and changing the parameters of the game environment. [RH2004]. However,

those researches are focusing on the scripting game or first person shooting

game (FPS). They are not suitable for other game genres. For example, if the

scene is a maze, dynamic scripting cannot be used to create a dynamic

terrain for the player.

We propose using a sequential pattern mining approach to analyze the game

log, which records player behaviors and the parameters of the game

environment. Then we generate a suitable game scene environment for the

10

player at a particular game level by adjusting the parameters of the new level

based on positive feedback [EA2002]. This makes the game more balanced

and the playability of the game increases, as it seems to be tailor–made for

the specific player. In this way, a 12-year-old boy will not find the game too

difficult to play and an adult will not find it too easy.

This approach differs from those used in existing algorithms in three ways: (1)

the game level is based on the past experience of the player; (2) the game

level is data-driven; (3) the game level is unique and is not predefined by

changing the parameters of the game environment. Not only can this

approach build a maze, it can also help the game to build terrain, which may

not be predefined.

1.2 Overview of Proposed Approach

Our proposed solution implies developing a sequential pattern-mining

algorithm for the game engine to provide a suitable game environment.

Gameplay data of the individual player will be collected and transformed into

a series of sequential patterns. These patterns are defined as follows:

In order to mine a sequential pattern, we first suppose that there is an ordered

11

sequence S of M BEHAVIORS which appear in a time series,

Behavior1… ,Behaviorp,…BehaviorM, where Behaviorp is located at time=p in

S. Further suppose that each Behavior in the sequence is described by n

distinct attributes, Attr1p, …, Attrjp, Attrnp, and that in any instantiation of the

Behavior description, an attribute Attrjp takes on a specific ordinal property

that is defined according to some of the attribute’s past values, valjp �

domain(Attrjp) – {vjk =1,2,…J}, which may be numerical, symbolic, or both.

[KC1994]. It is then possible to use the information theoretic measure to

identify relationships between various attributes found on different levels.

It is also possible to determine a set of prediction rules that can be used to

predict the characteristics of a future Behavior. For example, in a maze game,

the game engine can predict that if a player used a hammer three times, the

player will meet a dead end two times on the next level. We can do this by

using sequential pattern mining that uses a probabilistic inductive method,

which consists of three phases:

(1) Detection of underlying patterns in an ordered event sequence of time

series t.

(2) Construction of sequence-generation rules based on the detected patterns

(3) Use of these rules to predict the attributes of player and generate a

suitable environment with those attributes.

12

1.3 Outline of Thesis

This thesis is organized as follows. Chapter 2 describes current related work

done using AI for game development. In chapter 3 we will describe the current

technology for mining sequential patterns. In Section 4 we will give an

overview of the proposed solution using sequential patterns in game AI. In

chapter 5 we describe the implementation on a test model of our approach to

analyzing and predicting gameplay. We also provide the implementation

details and the pre-defined parameters or rules, and our experimental results.

Chapter 6 concludes the thesis.

13

����������������

�� ����

��

��������������

��		����������������

In Section 2.1, we present the history of the game and game design. In

Section 2.2 we present the basic concepts of game level design. Section 2.3

presents some classical game AI.

2.1 What is a Game?

A game is a series of processes that takes a player to a result; it is a series of

interesting decisions. [PS2007] But what does it mean for a decision to be

“interesting”? To take a classic game, Pac Man, as an example, it would not

be interesting if it could wander though the maze without ghosts or without

ghosts of varying kinds in various situations. The interest of Pac Man lies in

deciding which row of dots to chomp based on the player’s current positions

and statuses of the ghosts so that the player can eat all dots and finish a level.

A.S. Douglas invented the first graphic computer game “Tic-Tac-Toe” in 1952.

[INV] This game was programmed on an EDSAC vacuum-tube computer,

which had a cathode ray tube display. In 1962, Steve Russell used a

mainframe computer to develop the computer game “SpaceWar!” at MIT.[JJ

2001] “SpaceWar!” was the first game intended for computer use (Figure 2).

14

Figure 2 Spacewar!, the first computer game. (1962)

Developing computer games is now a truly major industry. Computer games

have developed from stand-alone games to massively multiplayer online

games. In 1962, the computer games had simple game logic and interacted

with the user through a vacuum-tube computer. When Ultima Online was

released in 1997, a new section of the computer game market, the online

game, was born. Today, a computer game has complicated game AI and

players interact with other through the Internet.

There are many guidelines for designing a perfect computer game. In the

previous chapter we discussed Schuytema’s [PS2007], which focused on

understanding a player’s perception and emotions. But Schuytema [PS2007]

also suggests a set of elements that a game should contain. A game should

have a goal and target for the player. The game should allow the player to

know their progress, and how to achieve the final goal. Sometimes, as in RPG

games, the player may not know the goal on the initial stage. The game will

then guide the players’ action and their perceptions and help the player

15

recognize the master goal of the game.

The rules of the game need to be clear and understandable, as this will affect

the players’ responses and actions in the game. Players need to know what

they can and cannot do in the game. If the logic of the game rule is not clear,

the player will spend more time trying to understand the game than enjoying

it.

The game world should have its own rules but a player’s responses should

not be fully controlled by the game rules, as this is frustrating. Schuytema

suggests that variability and malleability can make the game world more fun.

It is important that players be able to understand the context. When players

play the game, they want to get a new and exciting experience though the

game world. The game world might be quite different from normal life. For

example, in the game world, humans can fly without equipment. The

differences between the game and real worlds are a source of interest to

players as they attempt to understand the world of the game but the game

world and the context of the game cannot be unstructured and confusing to

the player. This reduces the playability of the game.

The game needs to grab and hold a player’s attention by engaging the

player’s mind and testing his dexterity. There is no game without a challenge

16

to the skill of the player, an adrenaline rush, or a sense of accomplishment.

Feedback can motivate players. Games are full of interactivity and this can be

between computer and player or between players. Feedback allows players

to determine the amount of success or failure they are achieving. The game

should provide vital information about what the player just did and clues for

the player to avoid repeating mistakes in the future.

The user interface of the game should be consistent. It should be smooth and

easy to understand. Usually, learning a game involves a learning period but

this should be as short as possible.

A rest break is important to the flow of a game. In these periods, players can

settle back into their character and prepare for the next sequence of action.

The game can provide simpler missions between missions of a heavy

intensity, or downtime within a mission.

The game flow should not be predictable. Randomness can be used to make

a game less predictable.

The game should allow the players to know where they are. Generally, if the

terrain is not intended to be a maze, the game should provide interface tools

that to navigate them where they are. The navigator may be a map, a guiding

17

arrow or other feature. Players like to explore a game world but they don’t

want to get lost in one.

It is important for players to be able to enjoy a sense of accomplishment. The

game should provide some small challenges with opportunities for

sub-victories for the player. For example, the “Nested Victory” approach is

used in a lot of football games. The player should get the most points he or

she can before the game finishes in a set time. Such games also provide

additional challenges in the form of semis and finals.

Player failures must also be dealt with. Games should include penalties for

failure, such as loss of equipment and reductions in strength. Balance is

essential here so as to avoid frustrating and hamstringing the player.

Game AI has uses in all of these areas. It can make a game more interesting

and interactive. Some game AI can create interesting play and challenging

patterns for players. Some AI provides instant feedback about the non-player

character (NPC) to the player. Some game AI is built as a “failure counter” into

game logic. If the player fails several times, a hint or a power-up provides the

player with some help.

18

2.2 Game Level Design

A game level is also called a “map”, “stage” or “mission” on many games. It is

used on a lot of genres, such as puzzle games, adventure games, role-play

games and sports games. [WIKI19]A game level is built on a set of small

challenges [WIKI] and the game environment [TR1999]. Some challenges

may be an enemy, some may be a maze or some challenges may be hybrid.

The current challenge of a level should be more difficult than that of the

previous level. The game environment includes the terrain design, number of

enemies, when and where the player resources are revealed and so on. Most

of the elements of the game environment are related to the mission. The

purpose of the remaining elements is to enhance the attraction of the game

world. For example, a game level in a racing game may have a player and a

non-player character (NPC). T The game level designer not only designs the

route of the race. He also needs to design scenes such as the position of the

NPC, the venue of the route and the path, the audience to enhance the

attractive of the level and the position of the power-on.

Pac Man (Figure 3) is a classic game that contains game level design.

Although the map never changes, An increase in levels means decreasing

the effective time of the power-up and increasing the speed of ghosts’

movement to increase the difficulty of a level. Some role-playing games or

advantage games, such as “Dungeons and Dragons” [BE2005] (Figure 4),

19

change the scene along with the level. The tower scenes in Dungeons and

Dragons change and become more complex when the game level increases.

In both Pac Man and Dungeons and Dragons the levels however are static.

The difficulty of the game level cannot be adjusted dynamically according to

the player’s experience, skill and ability when he or she is playing.

Figure 3 Pac Man [PAC]

20

Figure 4 Map of “Dungeons and Dragons” [DD]

In the early years of the computer game industry, game designers had to

design every level. In the past ten years, level designers have become

responsible for the creation of the game level. [WIKI17]

2.2.1 Guidelines for working with game level design

Game level design makes a game more interesting. The challenges or

mission can be different at every level. The major task of the game level

designer is to challenge the player and balance the game. Tim Ryan offered

the following advice on game level design [TR21999].

1) The game level designer should understand the main idea of the game.

21

The Level designer should maintain and express the game designer’s

vision. The Level designer should maintain good communication between

the producer and game designer so as to “capture” their concept of the

game.

2) The game palette must be clearly designed. The design palette includes

all of the art and the game play elements such as power-up, weapons,

game play puzzles and possible solutions.

3) Experimentation and implementation is important to game level design.

The designer can evaluation a level repeatedly to make sure that the level

is interesting enough to the player.

4) Every level should offer different types of challenges, for example, routes,

traps, power-up, enemies.

5) Every level should provide multiple or alternative solutions matching

players’ styles and their learning abilities. For example, some players like

playing conservatively but others like to play it risky.

6) Level can include secrets, alternate paths or shortcuts as unexpected

rewards.

22

7) Pacing of a level relates to the conflict, tension and excitement of the

player. The designer can consider using time limits, the movement speed

and the distance between player and goal to keep the level at a certain

pace and interest.

8) The revelation of the assets can keep the player interested in the game.

The assets can be terrain BEHAVIORS, enemy BEHAVIORS, power-up

equipments and so on. The designer should design the position, ordering

and timing of the revelation of the assets.

9) The core idea of the game should be clear.

10) The difference in the difficulty between levels should increase during the

game. At the beginning of the game, it should be easy for a player

because that is the learning period. The player’s ability, skill and

equipment should be enhanced after some level is passed. The designer

should thereafter test the players’ mettle and make them uncertain of

victory. At the end of the game, levels should be more difficult because by

this time the player has greater skill and more resources. There are

several solutions to help designers design a suitable progression of levels.

First, designer can scale up or down the difficult in the level without

grossly change the game play or the fun factor. Second, designer can

reposition the level in the game. Finally, designer can use

23

“change-of-pace” levels. A “change-of-pace” level is easier than a previous

level but allow the player to play with some unusual action or pattern. For

example, after fighting with “big brother” on the game level, an easy level

shows to player to give more lives or “power up”.

11) Try to make the game unique. The level designer should use levels to

combine the game elements and present the vision of the game to the

players. If the game is unique or novel, players will find it more interesting.

12) Don’t assume that players have read the instructions, dialogues, or

mission descriptions. A clear picture or layout is often the best way of

providing players with guidance as to how to complete a particular.

13) The “event horizon” can be positioned unpredictably or changeably. The

“event horizon” is a region that shows the player the upcoming terrain or

enemies that must be engaged. If the event horizon is always positioned

the same, players will become bored.

14) Players may have expectations of a level based on what they may have

already seen or been told. Player’s expectations can change as more

information is provided. The level should contain surprises.

15) The level should assume a player has a median skill level.

24

16) Every player has his or her tricks for the strategies and tactics for solving a

puzzle or problem in a game. The designer should know those tricks and

take them into account when designing the level. This is one of the indices

for the level of difficulty of a game level.

17) The increase in difficulty from one level to the next should not be too great.

18) The level designer is also a player’s adversary. Players expect game AI to

respond to them as humans. The strategy of the game AI should provoke

fear in a player and prey on the player’s weaknesses

19) Designers should accept that the testing cycle in level design can be quite

long. This is because game levels must be tested and retested until they

are suitable for the players for whom the game is intended.

20) The more time you spend designing a level the better it will be.

2.2.2 Game balance and level design

A balanced game is fair to players and is fair in a way that is balanced

between players, in a multiple player game, or between a human player and a

computer. On a game, it contains different challenges or decision to allow

25

player to decide. The game level designer should ensure that the game is

balanced, does not frustrate players, and retains their interest.

The goal of game balancing is genre-dependent. For example, a role-play

game (RPGs) should be designed so that the monsters and other adversaries

are not too hard for the player to defeat. Action games should not provide

weapons or power-ups that make tasks too easy.

Positive Feedback is [EA2002] uses positive feedback to makes things easier

for the player when he is ahead. For example, in a single-player role-playing

games, a player starts with poor weapons. He can get better weapons by

killing monsters or getting treasure and this will allow the player to get more or

better weapons and treasure, and so on.

Ernest Adams [EA2002] uses a balance graph to show how to use positive

feedback to balance a game. Time is represented on the horizontal axis. The

vertical axis uses a number to show who’s ahead and shows the difference in

points scored by the two players and whether a game is not balanced. [Figure

5] shows an unfair game where the advantage is with player A and he quickly

wins.

26

Figure 5 Unfair Game

Figure 6 Stalemate

[Figure 6] shows a game in a stalematee. No player will win this game. This

27

will not happen in a balanced game as a better player will receive positive

feedback. The graph in [Figure 7] shows a balanced game where the positive

feedback is received too soon. Player B is winning at first but player A wins

ultimately and too soon.

Figure 7 Game is balanced, but too short

Figure 8 shows an ideal balance graph. Player A and player B compete over a

long period with the advantage initially changing hands but ultimately one

player gets the upper hand and retains it, even while the progress to victory is

fraught with regular setbacks, maintaining the hope of the ultimate loser right

to the end.

28

Figure 8 An ideal balance graph

Game balance is applied during of game level design. Game level designer

should ensue the game is balance when designing a level. Most game levels

are defined during game design. Some games allow players to adjust the

basic level of difficulty yet the the overall level of the game is static. Some

players will feel that such a game is easy and others that it is hard.

Adjustment of the game difficulty is called dynamic game balancing. [WIKI4]

Dynamic game balancing uses an automatic algorithm to change parameters,

scenarios and behaviour in the game to maintain player interest. Dynamic

game balancing may modify NPC’s behaviors or the parameter of the game

environment.

Hunicke and Chapman [RH2004] adjusted the difficult of the game by

changing the game parameters by using a system called “Hamlet”. This is

29

a dynamic difficulty adjustment system which uses Inventory Theory and

Operations Results to analyse and adjust the supply and the demand of game

inventories in order to control the difficulty of the game. Hamlet is used on first

person shooting games.

Dynamic game balancing as applied to dynamic scripting focuses on the

[PIE2004] [SL2006] [PMIE2006] is suitable only for games that are scripted or

imply storytelling. For example, Sangkyung [SL2006] used a Gaussian

Mixture Model on the dynamic scripting for a shooter game. He used a

Gaussian Mixture Module to model the player’s reaction pattern and to

maintain the level intended by the level designer in the shooter game.

Spronck [PIE2004] [PMIE2006] used reinforcement learning on the dynamic

scripting to control the movement of the NPC. Andrade [GA2005] used

reinforcement learning to modify NPC behaviors.

2.3 Game AI

This section first compares and provides some background to academic and

game AI and then describes in some detail the seven different types of game

AI. We describe game the AI of Terrain Builder in even greater detail because

of its important role as a game environment and level design technique and

provide further detail about three basic algorithms used in Terrain Builder.

30

2.3.1 Academic and Game AI

At a general level, artificial Intelligence refers to using machines or agents in a

more human-like fashion and can be classified as either “weak” or “strong”.

Strong AI refers to an agent or algorithm that mimics the human thought or

behaviors. The agent may have emotion, consciousness, self-awareness, etc.

Weak AI, also called applied AI, is often to the use of software to accomplish

specific problem solving task that may not be especially to the human

cognitive abilities. John Searle uses “Weak AI” and “Strong AI” to distinguish

between two different hypotheses about artificial intelligence.[WIKI3]. Game

AI is weak AI because the goal of the game AI is to design agents that provide

the illusion of intelligence to enhance interest. [BG2004] In the early days of

computer games, game AI was dependent on the number of processor cycles

and the amount of available memory. It was also platform-dependent,

context-dependent, and nature-dependent [BG2004]. As a result, a lot of

academic AI such as Genetic Algorithms may not be suitable for game

development. Moreover, some academic AI (including Strong AI and weak AI)

are nondeterministic so they are only suitable for the emergent conditions of

the game scene or NPC behaviors.

To date, a lot of academic AI has been applied to game development. For

example Creatures, Black & White, Battlecruiser 3000AD, Dirt Track Racing,

Fields of Battle, and Heavy Gear used nondeterministic AI methods such as

decision trees, neural networks, genetic algorithms, and probabilistic methods.

31

[SR2004] [BG2004] , [MB2005], , [SW1998] , [WIKI2], [WIKI3]

In the early days of computer games, AI was used to reduce predictable

behavior. In games such as Pong, Pac-Man, and Donkey, the game designer

used very simple rules and scripted sequence action with random

decision–making [SR2002]. Nowadays, computer games use a variety of

forms of AI. [BG2004]. Game AI is used in a range of games as simple as

Tetris or Bejeweled or as complex as massively multiplayer online games.

Game AI is used for many different purposes. It can help to make game play

more random [RR2005], making it more difficult for players to exploit the

patterns of games and making games more challenging. Game AI provides

has been used to provide a series of challenges or goals that must be

reached in the course of playing a game [MF2003], [BG2004], [BB2004],

[BM2005] or in animation control [SR2002], Some game AI focuses on the

behavior of non-player characters (NPC), providing players with instant

feedback about non-player characters (NPCs) [BG2004], [BB2004], [BM2005],

controlling their movement in role-play games (RPG) [MF2003], [BG2004],

[BB2004], [BM2005]. Some game AI is used to assist the player [MF2003],

[BG2004], [BB2004], [BM2005]. The game can’t control the action of the

player but game AI can create situations and mechanisms that will favor the

creation of unexpected victories. Game AI can also provide challenges based

on the player’s past experience which can be used to train the player for more

difficult challenges and goals [TR21999], [BE2005]. These challenges will be

32

based either on the nature of the characters or the skill level of the player. For

example, in most online games, such as Ultima Online [UO], players can

create their own characters and occupations in the game world and the game

AI provides a list of related challenges through which players can improve

their skills. Puzzle-type games train players to be more skillful and archive

equipment on every level. The difficulty of the level increases when the player

plays. The player improves and can then play on the next level.

The ultimate goal of game AI is to make the game experience fun but there

are a number of barriers to its wider use and greater innovation in the area.

First, the development of game AI is on the end of the game development

cycle and is not a main “selling point” in the game market. The attractions of

perfect graphic design and sound effects make a more immediate selling

point than the fact that opponent characters can reason cleverly [AN2004].

Second, game AI is expensive to develop [AN2004] [SW1999] in terms of

both time and money and there is no guarantee of a proportionate return.

Finally, AI makes demands of the CPU and main memory on the hardware

that restricts its greater use but this factor is becoming less decisive

nowadays as more powerful platforms become more common.

Resource issues related to development, tuning, and testing have been one

of the main restriction on the use of AI approaches from academia, such as

genetic algorithms or neural networks, expert systems, case-based reasoning,

33

finite-state machines, decision trees, flocking, genetic algorithms, fuzzy logic

and belief networks [SR2004]. If applied, all of these can make the reactions

of NPCs more sophisticated and human-like and scene loading and effects

more smooth and attractive. Strategy games are the main area of the

academic AI research with the greatest challenges being in the area of AI

opponents. Real-Time Strategy (RTS) AI focuses on real-time performance

requirements. [RR2005] [SR2002] [AN2004] Ultimately, then, a successful AI

technique in game AI is one that is simple to implement and overcomes the

constraints of hardware [SR2002].

2.3.2 Classic AI Techniques

The following are some classic AI techniques which are applied in games.

1. Finite State Machines

Finite state machines (also simply called state machines) are often used in

game AI for game development [JM2006]. A finite state machine is a control

system which consists of a finite number of states and changes its status

based on the past behavior or a transition of the Behavior under a particular

condition. A tragic signal is a model of a finite state machine.

Pac-Man uses a finite state machine for the movement of its ghosts. [BG2004]

In each state, the ghosts’ behavior is different and their transitions are

determined by the play’s action. For example, if the player eats a power pill,

34

the ghosts’ states might change from chasing to evading and they return to

chasing after the player’s power returns to normal.

2. Influence Mapping

Influence Mapping, a common terrain analysis tool [DCP2000], uses a 2D

array to represent the area of a terrain. An influence map can operate in

almost any type of game world, whether it is represented using a square grid,

a hexagonal grid, or a fully 3D environment. Every cell of the grid consists of a

value, which is also called a “weighting”. A cell has a higher value implies a

character should move towards this cell. Influence maps can help NPCs plan

their movements by analyzing the value of every cell at every movement of

the NPCs. NPCs also identify the area the player controls and plan a

starting position to threaten a player-controlled enemy.[SR2002]. Sweetser

[SR2004] used Neural Networks to improve the analysis of the weightings of

the cells of influence maps.

3. Flocking

Flocking is used to control a group of flocking behaviors of the non-player

creatures such as sheep and fish. Bourg [BG2004] describes many examples

of the use of the flocking algorithm to control the movements of armies in

real-time strategy games. Flocking is also applied to enemies or squads in

first-person shooter games and can simulate the behavior of crowds of people,

for example, in a town square.

35

The simple steering behaviors of flocking are separation, alignment, cohesion,

and avoidance. [BG2004] The behavior use Separation to avoid hitting its

neighbors; use alignment to align itself to the average heading of its

neighbors; use cohesion to make a unit steer object toward the average

position of its neighbors. Avoidance [SR2002] allows groups of a unit to steer

around obstacles and moves so as to avoid enemies.

Formation and Swarming are similar to flocking. Formation is a technique for

group movement that mimics military formations. It is similar to flocking but

each agent is guided toward a specific goal location and heading that is

based on the position of the formation.[SR2004]

Swarming is similar to flocking. Flocking is suitable for small and medium

numbers of agents in a game. If the agent of the NPCs is calculated

individually, Swarming is used on every NPCs’ movement. Swarming is a

more computationally efficient method of moving a large numbers of

agents.[SR2002]

4. Dead Reckoning

Dead reckoning is used on the network computer game or online multiplayer

games. This is a process, which is used to reduce the lag, which is due to

network latency and bandwidth problems.

36

There is a process for predicting the future state of the entity based on the

current states and this reduces delays in the action. The current states are

estimated using one or more entity such as direction, speed, time or some

other mechanical measurement. [LL2002]. Dead Reckoning is used in sports

games to reflect the computer opponent’s action in few seconds.[SR2004]

5. Command Hierarchy

Command Hierarchy is a team-based AI. Team-base AI is common used in

strategic game and first- and third- person action games. Team AI is used to

control a large number of non-player characters (NPCs).

Normally, team AI is used to control a large number of computer-controlled

non-player characters. Command Hierarchy is a mechanism for controlling a

large number of the agents or non-player characters which are in a levels of

complexity. [SR2004]

Reynolds [SR2002] presents a good example of how decisions are made at

each level of the hierarchy of levels. Every level has its own responsibilities

and lower levels are subordinate to higher levels. An effective communication

is provided between up and down the hierarchy so that the information is

passed in a sufficient way.

37

To implement the command hierarchy, the game developer needs to consider

the strategy of the agents, a effective message passing algorithm and allow

data sharing between agents which are in difference levels and the controlled

AI of individual agents for every level.

6. A* Pathfinding

Pathfinding is a searching algorithm for finding paths between two points.

NPCs use pathfinding mechanism to move through the game world. A*

(pronounced A-Star) pathfinding mechanism can help a non-player character

or monster to negotiate a path though the terrain to the player, and then move

approaches to the player or leave alone from the player. It is efficiently even

when the player is constantly moving throughout the building. A* pathfinding

is used to find the shortest path in the game world, especially through mazes.

[SR2002] A* algorithm is most common basic ingredient for computing a

long-distance route of an NPC.

There is a limitation to using A* algorithm. The A* algorithm assumes that the

game world terrain is unchanging and as a result it is not suitable for use on a

dynamic terrain, for example, a terrain where monsters are moving in the map

and influencing the movement of the player. For pathfinding on changeable

terrains, D*, a variation of A* pathfinding, is a better choice.

38

7. Terrain builder

Terrain builder is used to build the game environment modeled in this work,

which is quite typical both in that it is common to use mazes to build game

environments and in that Terrain Builder is widely used in maze-building, both

at different game levels and in stand-alone games. Mazes are a type of

puzzle. They appear in RPG games, shooting games and most adventure

games. Pullen [WD2006] introduced the description of the maze and the

history of the maze. There are four types of maze: perfect, braid, unicursal,

and partial braid. A perfect maze contains one and only one solution. Braid

mazes, also called purely multiply connected mazes [WIKI18] [WD2006],

contain one or more passages without dead ends and require a player to

choose the correct path to a goal. A unicursal maze has just a single path. A

labyrinth is a unicursal maze with just one long snake-like passage and spiral

on the map. A partial braid maze is made up of a mixture of both loops and

dead ends. Terrain Builder can construct mazes using any one of the

following three algorithms.

Random Depth-first search

Depth-first search is a recursive function for creating perfect mazes

[MW2002]. Assume that there is a rectangular maze; each square of the grid

is a cell (Figure 9). The horizontal and vertical lines represent the walls. To

start, all walls of the cells are up and we use a depth-first search to selectively

knock down walls until the working maze is perfect.

39

Figure 9 Grid

This is the simplest maze generation algorithm. It works like this:

1) Start at a cell randomly and mark as a current cell.

2) Select its neighbor that has been visited before.

3) If the neighbor cell is found, knock the wall between the current

cell and its neighbors. Otherwise, return to the previous cell and

mark as a current cell, repeat step 2

4) Mark the neighbor as current cell, repeat step 2 and 3 until all cell

is visited.

Finally, all cells have been visited. All cells can be accessed when the player

play. This algorithm prevent the creation of any open areas or the path this is

lopped back to themselves.

Depth-First Searching is easy to implement and effective so that it is the most

common algorithm on maze generation.

40

Prim's algorithm

Prim's algorithm is a minimal spanning tree algorithm that uses a greedy

strategy [WIKI18][WD2006]. The algorithm is as follows[WIKI18]:

1) Select the start and end point of the maze.

2) Select a cell at random and become a current cell, then mark it

as a part of the maze. Add the walls of the current cell to the wall

list.

3) Draw a cell from the wall list. Break the wall at random of the

current cell to make a passage.

4) Make the cell on the opposite side as a part of the maze. Add

walls of its neighboring cell to the wall list

5) Move to the new cell become a current cell, and repeat 3 and 4

until there is at least one route between the start and end points.

Randomized Kruskal’s algorithm

Kruskal's algorithm is a minimal spanning tree algorithm for a connected

weighted graph [WIKI19][WD2006]. The algorithm as follows:

1) Create a list L. This lists all of the small paths between two cells

on the grid. Each cell connects to its neighbor cell only once.

2) Select a path from L and connect to the main path by removing

the wall. The addition of that path cannot be a circuit.

3) Repeat 2 until the at least one path is connected between the

start and end points.

41

There are also some new maze generation algorithms such as the

Aldous-Broder algorithm, the simplest algorithm, the non-cell-based algorithm.

and the small-memory algorithm.

Maze and Terrain design is very commonly used in game level design to

create game environments. For example, in the classic game, Doom, the

maze is in the form of a tower, beginning in a basement. Every level is a

pre-defined maze and players need to escape from the basement and go to

the elevator. Some scenes in Mabinogi [MAB](Figure 10), a massively

multiplayer online role player game (MMORPG), also use mazes.

Figure 10 Mabinogi

42

�������������������� ��������

��		��		����

����

����

��

����������

������		����

There is a lot of research on the data mining or statistical method on the

graphic representation, animation and sound effect of the game development.

However, there is not too much research on the using data mining on the

game level design or game engine development. [DK2003] uses data mining

on the evaluation the players’ behavior. However, it is not about the game

level design. Our proposed approach is used data mining to analysis the

game. We introduce some concept of the data mining in this section. In

section 3.1, we present some classical data mining algorithms. Section 3.2

presents the multivariate analysis which we used in the game level design

3.1 Data Mining Analysis

There are three main issues in the data mining process: Methodology,

Performance, and Dataset [JH2001] and each of these has in turn its own

specific concerns, which we outline in the following:

Mining methodology

1. The kind of knowledge mined

2. The ability to mine knowledge at multiple granularities

43

3. The use of domain knowledge

4. Knowledge visualization and presentation

Performance Issues

1. Efficiency and scalability of data mining algorithm

2. Parallel, distributed, and incremental mining algorithm

Issues relating to the diversity of data types

1. Handling of relational and complex types of data

2. Mining information from heterogeneous databases and global

information

There are four main approaches for a data mining algorithm in the data

mining process: Classification, Clustering, Association, and Prediction.

Classification is a grouping process that is used to group similar data. The

groups or the models are pre-defined. Usually, the models are used to

describe the behavior or the concept of the data, for example, weather data

may be related either to “Sunny” or “Raining”. Data will be grouped within

these groups by comparing the similarity between the models and data.

Classification is used for prediction. In many applications, classification is

used to predict missing or unavailable data values.

Clustering analyzes data without consulting a known class label or model.

44

Clustering is used to identify a model and label it. The simple principle of

clustering is applied to maximize the intra-class similarity and minimize the

inter-class similarity. Some clusters of a data set are formed so that the data

set within a cluster are highly similar within a cluster (model) and are highly

dissimilar to other clusters.

�

Association rule mining finds interesting association rules and correlations

between data sets. Association rules can help a business or organization

make decisions. Association rule mining finds relationships between data set.

3.1.1 Association pattern mining

A typical example of association rule mining is market basket analysis

[RA1994]. Customer-buying behavior is discovered using a set of association

rules. This is very useful for businesses, which can use this knowledge of

user behavior in product design, cross marketing and promotion. The basic

form of association rule is

BA � [support = x% , confidence = y%]

An interesting rule is found and it has a support and confidence threshold.

Suppose I is a set of items {i1, … im}, a database D that contains a set of

transactions. Each transaction contains a set of items, which belong to I. A

support threshold presents the percentage of records in a data set that

contains A B. A confidence threshold presents the percentage of records in

45

a data set that contains A and also contains B. A set of association rules is

created which satisfies both a minimum support threshold and a minimum

confidence threshold. An itemset refers to a set that contains k items which

satisfy the minimum support. To find the association rules within a database,

a two step procedure is applied as follows:

1. Find all frequent itemset in the database

2. Generate association rules from the frequent itemsets that satisfy

the minimum support and minimum confidence.

The general idea is that if, say, ABCD and AB are frequent itemsets, we can

determine if the rule AB CD holds by computing the ratio r =

support(ABCD)/support(AB). The rule holds only if r >= minimum confidence.

Note that the rule will have the minimum support because ABCD is frequent.

�

3.1.2 Apriori and Other Algorithms

AIS and SETM are early algorithms for finding frequent itemsets, which were

used before Apriori was developed. AIS performs level-wise enumeration of

sequences in 2 A, where A is the attributes of the sequence, in the most

immediate way by terminal extension, [RA1994] the algorithm is simple: to

find out all frequent k-itemset with 1� k� N where N is the cardinal number.

[RA1994]

SETM uses SQL to find frequent itemsets. In order to use the standard join

46

operation for candidate generation, SETM separates a sequence generation

from counting. However, it is not fundamentally different from AIS. [RA1994]

�

IBM's Quest project team developed an association rule mining algorithm,

Apriori, for rule mining in large transaction databases [JA2001] [JH2001]

[RA1994]. The algorithm is based on the Apriori property, which is an itemset

property used for generating frequent itemsets. This property is based on the

following observation. By definition, if an itemset I does not satisfy the

minimum support threshold, then I is not frequent. If an item A is added to the

itemset I, the resulting itemset (i.e., I � A) cannot occur more frequently than I.

Therefore, I � A is not frequent. Apriori contains a joining step and a pruning

step. The joining step generates candidate (k+1)-itemsets from frequent k-

itemsets. The pruning step eliminates candidate (k+1)-itemsets by counting

the data record. The Apriori algorithm is as follows:

1) Find the set of frequent 1-itemsets. This set is denoted L1.

2) Use L1 to find L2, the set of frequent 2-itemsets, which is used to

find L3, and so on, until no more frequent k-itemsets can be found.

Apply join step and prune step to create LK+1.

AprioriTid is an improvement on Apriori as it allows users to avoid having to

scan the entire database after the first pass when counting the support

threshold [JA2001]. It uses an addition set, counting_base, which is a set of

pairs (r, S1), where r is the first element of the transaction (r,s) in D and S1 is

47

the set containing all attributes in sub-sequence s. In each step, AprioriTid

generates a new set C of candidates that is same as the Aprior does. Then

the set counting_base, generated in the previous step, is used instead of the

entire database D to count support. When counting support, AprioriTid

generates the set counting_base associated with the current step. Although

AprioirTid scans the sets counting_base that are expected to be smaller as

they take into account all frequent itemsets discovered up to the previous set.

However there is some disadvantage when using AprioirTid. AprioirTid is the

complexity of its data structure and operation. And it has the same number of

operations as Apriori.

Direct Hashing and Pruning (DHP) [JP1995] is derived from Apriori but makes

use of an additional hash table that limits the generation of candidates in

candidate set. It also progressively trims the database by discarding attributes

in transactions or even by discarding entire transactions when they appear to

be useless.

3.1.3 Sequential Pattern

A sequence is a function mapping from a set of integers, described as the

index set, onto the real line or into a subset. A sequence containing k

elements is called a k-sequence. A time series database consists of

sequences of values or events changing with time. The value should be

48

measured at equal time intervals. A time series is a sequence whose index

corresponds to consecutive dates separated by a unit time interval.

Sequential pattern mining is the mining of frequently occurring patterns

related to time or other sequences. An example of a sequential pattern is

“Someone who bought a Wii nine month ago is likely to order a NDS within

three months”. A sequence in a set of sequences is maximal if it is not

contained in any other sequences. The goal of sequential pattern mining is to

identify maximal sequences from among a set of frequent sequences.

�

Several parameters set and influence the results of sequential pattern mining.

The first parameter of a time sequence is duration. The duration may be the

entire available sequence in the database. Sequential pattern mining can be

confined to the data within a specified duration. The second parameter is the

event folding windows, w. A set of events occurring within a specified period

of time can be folded into the analysis. The third parameter is the interval.

There are three different interval setting modes: interval equals 0 means no

interval gap is allowed such as in an ai-1aiai+1 sequence. If an interval is within

a specific period, the pattern is present between a minimal interval and a

maximum interval. The last interval setting mode is an exact value such as 2

days, 1 hour. [LS1993’]

49

3.1.4 Sequential / Temporal Pattern Mining Algorithms

Lin [WL2002] described temporal data mining, that is, data mining and the

theory of statistical time series analysis, as involving a number of tasks and

subtasks:

1. Temporal data mining tasks

a. Temporal data characterization and comparison

b. Temporal clustering analysis

c. Temporal classification

d. Temporal association mining

e. Temporal pattern analysis

f. Temporal prediction and trend analysis

�

2. The temporal data model may need to be developed based on

a. Temporal data structures

b. Temporal semantics

�

3. The temporal data mining concept must take account of the following

concerns:

a. the task of temporal data mining can be seen as a problem of

extracting an interesting part of the logical theory of a model

b. the theory of a model may be formulated in a logical formulism able

to express into a quantitative knowledge and an approximate facts

50

Most data mining techniques, such as AprioriAll or AprioriSome, are

Apriori-like algorithms because the Apriori property can be applied to mining

sequential patterns [RA1995]. If a sequential pattern of length k is infrequent,

its superset (of length k+1) cannot be frequent.

�

AprioriAll

AprioriAll is a count-all algorithm that counts all of the frequent sequences,

which are including non-maximal sequences. Those non-maximal sequences

need to be pruned out. To avoid counting non-maximal sequences by

counting longer sequences, the count-some algorithm is applied. [JA2001]

The temporal sequential pattern mining involves six-phase: sort phase,

litemset phase, transformation phase, sequence phase, and maximal phase.

[JA2001] describe as the follow:

In the sort phase, the original transaction database is converted into a

database of sequences by sorting the database with the data-sequences-id.

The data-sequences-id is the major key and transaction-time is the minor key.

The frequent itemsets are found in the itemset phase. Association rule mining

and sequential pattern mining is applied according to the different definitions

of support. In sequential pattern mining, the support of an itemset is defined

as the fraction of sequences in which the itemset is present. In the

transformation phase, each transaction is expressed as a set of itemsets. If a

51

sequence does not contain any itemsets, this sequence is deleted from the

transformed database. However, it still contributes to the count of the total

number of sequences. A transformed data-sequence is represented by a list

of sets of itemsets. In the sequence phase, the frequent sequences are found.

The general structure of this phase is to make multiple passes over the data.

In each pass, it starts with a seed set of frequent sequences. The seed set is

used to generate candidate sequences. The support for these candidate

sequences is found during the pass over the data. At the end of the pass, the

frequent candidates sequences is found. These frequent candidates become

the seed set for the next pass.

AprioriAll and AprioriSome were proposed as ways to find frequent

sequences. AprioriAll, is a count-all algorithm, generates the candidate

sequences using the frequent sequences from the previous pass and then

measures their support by making a pass over the database. At the end of

each pass, the support of the candidates is used to find the large sequences.

AprioriSome is a count-some algorithm, has a forward phase and a backward

phase. In the forward phase, only the sequences, which are certain lengths,

are counted. And the remaining sequences are counted in the backward

phase. In the final phase, the maximal sequence among the frequent

sequence is found.

AprioriSome can find only maximal sequential patterns. If some applications

52

require all pattern and their support, AprioriAll is applied. There are some

limitation on AprioriAll and ApriorSome, such as the absence of time

constraints, rigid definitions of a transaction, and absence of taxonomies.

[JA2001]

Frequent-pattern tree (FP-Tee)

Frequent-pattern tree (FP-Tree) is a tree structure for mining sequential

patterns that is supporting for the Apriori algorithm. [JH2001] The Apriori

algorithm incurs two costs: It generates a huge number of candidate sets and

it has to repeatedly scan a database and check a large set of candidates by

pattern matching. FP-tree combined with Apriori mines the complete set of

frequent itemsets without generating candidates. [JH2001] FP-tree is a

compressed database of frequent items within a frequent-pattern growth

(FP-growth) method. After constructing an FP-tree, the itemset association

information is retained by the FP-growth, and then a compressed database is

divided into a set of conditional databases, each of databases are associated

with one frequent item and mines each database separately.

However, there is a weakness on using FP-Tree. Jian Pei [JP2000] said,

“However, the items (or subsequences) containing different orderings cannot

be reordered or collapsed in sequential pattern mining. Thus, FP-tree

structures so generated will be huge that cannot benefit mining”. [JP2000]

FreeSpan

53

FreeSpan (Frequent pattern projected Sequential pattern mining) uses

frequent items project sequence databases into a set of smaller projected

databases and grows subsequence in each project database. The process is

recusively. [JP2000]

The major cost of FreeSpan solved in the projected databases. If a pattern

finds in each sequence of a database, the size of its projected database does

not decrease. Moreover, it is costly because if a length-k subsequence can

grow at any position, the searching process for length- (k+1) candidate

sequence will need to check every possible combination.[JP2000]

�

PrefixSpan

Prefix-projected Sequential Pattern mining (PrefixSpan) is used for sequential

pattern mining. It examines only the prefix subsequences and projects only its

corresponding postfix subsequences into projected databases [JP2000]

Sequential patterns in each projected database are grown by exploring only

local frequent patterns. The database projections are level-by-level projection

and bi-level projection to increase the efficiency of the mining process..

Bi-level projection is used for large databases. [JP2000]

An apriori-like sequential pattern mining algorithm has two weaknesses:

[JA2001]

- Large number of candidate sequences.

54

- Repeated database scans.

3.2 Multivariate Analysis of Games

In multivariate analysis, each observation consists of a vector and the p

variables of the vector Y= (y1, y2, … yp) represent measurements of a single

subject or object. Since the variables arise from the sample sampling unit,

they are typically inter-correlated. However, in most cases they measure

different things, for example, width, height and weight, or resting heart rate.

The mainly target of the multivariate analysis techniques is to simplify the

data.

Most of the multivariate techniques can be categorized as either descriptive

or inferential. [JG1993] Descriptive procedures should characterize the

correlation within the observation vectors or show how the variables

contribute to the grouping patterns. They may attempt to separate

overlapping information from correlated variables by constructing a small

number of uncorrelated variables, which also can be linear combinations of

the original variables that reveal the essential dimensionality of the system.

[JG1993]

Multivariable inferential procedures include hypotheses testing. The testing

55

allows any correlation structure among the variables. It also control the

experiment error rates, the rating is independent to the number of variables to

be tested. Many multivariable inferential techniques are extensions of

univariate procedures such as t-tests or F-tests. [JG1993]

Most procedures analyze only for the continuous random variables. However,

multivariate techniques also produce good results when applied to discrete

ordinal data. Log linear models, generalized linear models, or

correspondence analysis can be applied on the categorical or discrete data.

Multivariate data is a set of observations, which contains several different

variables pertaining to a number of set or individuals. Examination results,

nutritional studies, medical data, and shopping behavior could all serve as

multivariate data [JH2001].

A large set of multivariate data is represented by a set of formulae with few

parameters or a matrix (or data matrix). The representation as follow:

[JG1993]

Suppose that there are number of variables by p, and the number of

individuals by n.

56

�
�
�
�

�

�

�
�
�
�

	

�

nppp

p

p

xxx

xx

xxx

X

�

��

�

�

21

221

11211

A data matrix can be seen as n row vectors, which denote by
Tx1 to

T
nx , or as

p column vectors y1 to yp.

Multivariate analysis techniques are either variable-directed or

individual-directed. [JG1993] Variable-directed analysis is concerned with the

relationship between variables. When comparing variables, we only consider

column vectors of a data matrix. Matrix algebra is used to find the correlation

coefficient. It is a cosine of the angle between the two n-dimensional column

vectors. If the two variables are close together in n-dimensional space, then

the angle between the two vectors will be small and the cosine will be close to

+1 to indicate that two individuals have a positive correlation.

Individual-directed analysis is concerned with the relationships between

individuals or objects. Row vectors in p-dimensional space are used for

analysis. The distance between two row vectors implies the similarity of two

individual or objects. If two individual are similar, the distance would be small.

Multivariate techniques are used in medicine, physical and biological

sciences, economics and social science, and in many industrial and

commercial applications. Principal component analysis is used for exploring

data to reduce dimensions. Generally, PCA seeks to represent n correlated

57

random variables by a reduced set of uncorrelated variables, which are

obtained by transformation of the original data set into an appropriate

subspace. Principal component analysis and factor analysis are closely

related techniques. They are used to reduce the dimensionality of multivariate

data. The correlations and interactions between the variables are

summarized among the variables in terms of a small number of underlying

factors.

Factor analysis also takes into account the variation in a number of original

variables using a smaller number of index variables or factors. Each original

variable is represented a linear combination of these factors plus a residual

term. The residual term reflect the extent to which the variable is independent

of the other variables. For example there is a set of data with five variables as

x1, x2, x3, x4 and x5. [CA1980]A two factor model assumes that

52521515

42421414

32321313

22221212

12121111

eFaFaX

eFaFaX

eFaFaX

eFaFaX

eFaFaX

���

���

���

���

���

Where the aij values are constants, F1 and F2 are the factors and ei

represents the variation in Xi that is independent of the variation in the other

X-variables. The aim of the principal component analysis is similar to factor

analysis. PCA produces an orthogonal transformation of the variables and is

58

focus on the explaining the variance. Factor analysis is based on a proper

statistical model and is more concerned with explaining the covariance

structure of the variables. The idea of the factor analysis is to derive new

variables called factors, which provides a better representation of the data.

Most applications of factor analysis have been in psychology and the social

sciences [CA1980]. Suppose that information is collected from a wide range

of people as to their occupation, type of education, whether or not they own

their own home, and so on. A single index of class of the data to represent

that multidimensional data is constructed by factor analysis, which use a

single underlying factor.

Canonical analysis is used to partition variable into two sets. For example, a

first set contains variables that refer to behavior characteristics of

neurological patients such as problems in vision, speech, or movement and

the other set contains physiological variables derived from an EEG. IN

another example, the first set contains answer of respondents to a number of

questions and the second set contains their background data. The question is

whether the results in the first set are related to results in the second set.

�

A formal approach is introduced by [JG1993]. Let the m1 variable in the first

set as

12111 1
,...,, mzzz

59

and the m2 variables in the second set as

22212 2
,...,, mzzz

Canonical analysis looks for a solution of weights so that one can define

weighted sum variables

2211221211211221

1111211211111111

/)...(

/)...(

22

11

mwzwzwzx

mwzwzwzx

mm

mm

����

����

with numbers, wjls, as weights. The first index j refers to the number of the

variable within its own data set, the second to the number of the data set

(l=1,2), and the third index s gives the number of the dimension of the solution

(s=1, so far).

The first dimension of the solution is weighting wjl1 when the correlation

between x11 and x21 is maximized. This correlation is also called the canonical

correlation. The weighted sum vectors x11 and x21 are the first pair of

canonical variates. The weight wjl1 are called canonical weights. The

correlation between x11 (or x21) and the individual variable zjl is called the

canonical loadings.

A second solution is choosing wjl2 that the second canonical correlation

(between x12 and x22) is maximized, under the condition that canonical

variates x12 and x22 must be uncorrelated with the canonical variates x11 and

x12 of the first dimension. Canonical variates of any dimension must be

uncorrelated with the canonical variates of all other dimensions.

60

Other multivariate techniques include Multidimensional Scaling, Cluster

Analysis, and Correspondence Analysis.

Many univariate and multivariate methods assume that the measured

variables are all continuous. The distribution of a continuous random variable

may be described by the cumulative distribution function (c.d.f) or by its

derivative called the probability density function (p.d.f) For continuous

multivariate distributions, a suitable multivariate analogues need to be defined

for the variables for these functions. Categorical data is a type of discrete data.

For categorical data analysis, [JG1993] defines three types of variable on

multivariate analysis: Nominal, Ordinal and Numerical.

Nominal variables are label or name to distinguish one category from another.

Labels can be numbers, letters or names. If the label is numerical (1, 2, 3 …),

there are no differences or priori numerical values for those labels.

A priori order applies in Ordinal variables. For example, a “Height” variable

may consist of “Tall”, “Medium” or “Short”. Each label implies an order of

height. However, the actual measurements cannot be reflect on the labels or

the between the variables.

Numerical labels reflect the a priori order and their difference. For example, A

group of people answers the questionnaire. In the questionnaire, age is

61

collected and round off, in age classes of 5 years, with multiples of 5 as their

midpoints. Age is a numerical label. A person in category 20 must be older

than 17.5 years. The difference between 20 to 25 is same as the difference

between 50 and 55 and also are 5 years.�

The process of the distinction of the variables is very important. The

distinctions depend on a decision made by the data analyst and the

researcher.

62

�������������������� ����

��

����

��		����

��������		����		����

A game engine which is used to build game environments will usually use

traditional AI techniques [SW1999], such as random number generation,

pre-defined rules, or templates. This is because game level design is a

component in the development cycle of a game. Many game designers and

programmers focus on the movement of NPCs (including action, instance

response and movement), user interface design (design of the characters,

rendering of the graphic and layout of the world), game control and sound

effects. This is very costly. To reduce this cost, many game level designers

use weak AI and some game companies release a beta version of the game

to the public or target players to evaluate the game levels. Game companies

then can adjust the difficulty of the game level before official release.

[SW1999]

For example, almost all maze game AI generate a random number as a

parameter and build the mazes on every game level. This process is repeated

until the players pass all levels and reach the final goal (Figure 11). To

increase the playability of a game, when generating a new level, some game

level designers add more criteria to the maze generator to ensure the

difficulty of the level increases.

63

Figure 11 Game Flow of the Level design using random number generation

Some game level designers use pre-defined templates of the game

environment. The floor plan of the maze, number of NPCs and their behaviors

are pre-defined for every level. After players finish Level T, the game engine

immediately loads the new level T+1 (Figure 12).

64

Figure 12 Game Flow of the Level design using pre-defined template

The random generation and pre-defined template approaches are inflexible.

To deal with this, an adaptive game engine is applied. This adjustment of the

difficulty is also called dynamic game balancing and is discussed in section

2.2.2.

By analyzing the individual player’s gameplay data, we can identify

characteristic patterns and predict a player’s future behavior, adjusting the

game level so that the game is more interesting and adapts to the individual

player. As an illustration of the prediction tasks, we have given an example of

the ongoing process in a maze game. We will now propose a multivariate

65

pattern mining method for analyzing a player’s game log. This method also

builds a set of prediction rules to predict a player’s behavior and then adjusts

the difficulty of the level.

In Section 4.1, we present the details of our proposed approach to predicting

player behaviors and then adjusting the difficult of the game level. In Section

4.2, we use a decision tree approach to adjust the difficult of the game level

for the player.

4.1 Sequential Pattern Mining Approach

Assume the game log is a set of sequential patterns (Figure 13). It can be

defined as follows: suppose that there is an ordered sequence S of M

BEHAVIORS, Behavior1, …,Behaviorp,…,Behaviorm, where Behaviorp is

located at position p in S. Suppose also that each Behavior in the sequence is

described by n distinct attributes, Attr1p, …, Attrjp, …, Attrnp, and that in any

instantiation of the Behavior description, an Attrpj takes on a specific value,

valjp � domain(Attrjp)={vjk| k=1,…,J}, which may be numerical or symbolic or

both.

66

Figure 13 Game logs data of m levels

It is important to know the relationship between attributes as it can help to

increase the accuracy of the prediction. If the ith attribute of an Behavior that

takes on vi1, is always preceded at
 level (positions or time units) earlier by

an Behavior whose jth attributes takes on the value vjk, we can conclude that

the vj1 is dependent on vjk, with a level lag of
.

To decide if the ith attribute of an Behavior in a sequence is dependent on the

Level 1 Game Log

DEADHEAD 0
HAMMER 0
MAPSIZE 8
MONSTER 0
TIME EXPECT(ms) 1500
AGE 10
DEAD HEAD ACHIEVE 0
HAMMER USER 0
PERFORMANCE A
MONSTER HIT 0
TIME USED 1200
WALL BROKEN 0

Level 2 Game Log

DEADHEAD 0
HAMMER 0
MAPSIZE 8
MONSTER 0
TIME EXPECT(ms) 1500
AGE 10
DEAD HEAD ACHIEVE 0
HAMMER USER 0
PERFORMANCE A
MONSTER HIT 0
TIME USED 1200
WALL BROKEN 0

Level p Game Log

DEADEND 1
HAMMER 2
MAPSIZE 8
MONSTER 0
TIME EXPECT(ms) 1500
AGE 10
DEAD HEAD ACHIEVE 0
HAMMER USER 0
PERFORMANCE A
MONSTER HIT 0
TIME USED 1200
WALL BROKEN 0

Level m-1 Game Log

DEADHEAD 3
HAMMER 0
MAPSIZE 8
MONSTER 0
TIME EXPECT(ms) 1500
AGE 10
DEAD HEAD ACHIEVE 0
HAMMER USER 0
PERFORMANCE A
MONSTER HIT 0
TIME USED 1200
WALL BROKEN 0

Level m Game Log

DEADEND 0
HAMMER 2
MAPSIZE 8
MONSTER 0
TIME EXPECT(ms) 1500
AGE 10
DEAD END ACHIEVE 0
HAMMER USER 0
PERFORMANCE A
MONSTER HIT 0
TIME USED 1200
WALL BROKEN 0

67

jth attribute Attrjp of the Behavior at
 level earlier, the chi-square test can be

employed. The chi-square test uses a two-dimensional contingency table of I

rows and J columns (I and J respectively being the total number of values

taken on by the ith and the jth attributes).

 Attrjp

 vj1 vj2 … vjk … vjJ Totals

 vi1 o11

(e11)

o12

(e12)

…

…

o1k

(e1k)

…

…

o1J

(e1J)

o1+

 vi2 o21

(e21)

o22

(e22)

…

…

o2k

(e2k)

…

…

o2J

(e2J)

o2+

 .

.

.

.

.

.

.

.

.

 .

.

.

 .

.

.

.

.

.

Attri(p+
) vil ol1

(el1)

ol2

(el2)

…

…

olk

(elk)

…

…

olJ

(elJ)

ol+

 .

.

.

.

.

.

.

.

.

 .

.

.

 .

.

.

.

.

.

 viI oI1

(eI1)

oI2

(el2)

…

…

oIk

(elk)

…

…

oIJ

(elJ)

oI+

Totals O+1 o+2 o+k o+J M’

Table 1 A Two Dimensions Contingency Table with I Rows and J Columns

68

In Table 1,Let ojk be the total number of BEHAVIORS in S whose ith attribute

Attri(p+
), take on the value vil and are preceded at
 positions earlier by

BEHAVIORS that have the characteristic vjk. Let elk be the expected number

of such BEHAVIORS, under the assumption that Attri (p+
) and Attrjp are

independent. � �
� �

�
J

u

I

u

uklulk Mooe
1 1

'/ where ��
kl

lkoM
,

' is less than or equal

to M (the total number of BEHAVIORS in the sequence S) due to the

possibility of there being missing values in the data.

The chi-square statistic can be defined as

M
e
o

e
eo J

k lk

lkI

l

J

k lk

lklkI

l
X ���

�
� �

�
�
�

�
�

�
� 1

2

11

2

1

)(
2 .

The difference between the observed and expected value could have arisen

by chance. It can be determined by comparing chi-square statistic X2 with the

critical chi-square X2
d,�, where d=(I-1)(J-1) is the degree of freedom and �,

usually taken to be 0.05 or 0.01, is the significance level. The confidence level

is (1-�)%. If X2 is greater than the critical value, there is enough evidence to

conclude that Attri(p+
) is dependent on Attrjp. One cannot conclude this if X2 is

less than X2
d, �.

Finally, we can use multivariate analysis to find a set of prediction rules that

describe S and can be employed to predict the characteristics of a future

69

Behavior. For example, if a value of an attribute Attrjp I is equal vjk , then the

value of the attribute Attri(p+
) is equal vil after
 positions.

The following figure (Figure 14) summarizes the steps in Chi-square testing:

��� ��
������������
����

��� ��� �����������!�����������!������!���!�

��������	
��������������� ����������"�����������������!"������#�

�� ���$ �%��������������&���'�� � ����������������� �

������������
 � ��&����� �'
 (�)���&��#�

�)� ����'��&�����	��������������&���*�)�

)� � +���'�������,�����)�

�)� � � +���'��������,�����)�

-)� � � � +���'���&���,�����)�

.)� /��� ����������������"������������������������������������ �

���������'������0����&��)������������1�����������������!��&� ��������

2)� /��� ����������������"����������������������������������� �

���������'������0����&��)�����������1����������������%����� ��������

���� � � � � ����������������������0!���������

���� �������������������������3����!������������0�������

4�!��������������� ������������� ������

���� 5 �����"����� ���� ������������������������� � �� ����������'������0�

���&��)�����������1������

�
�� � � � 6�������&���

���� � � 6����������

���� � 6���������

���� 6������&���

Figure 14 Algorithm for Chi-square Testing:

If the results of chi-square testing are significant, we can conclude that an

attribute Attri(p+
) is dependent on another attribute, Attrjp. However, it cannot

70

provide information as to how the observed valued of the ith attribute in a

sequence is dependent on that of the jth attribute of an Behavior at
 positions

earlier

To predict the player’s future behavior, we can construct a set of prediction

rules. They represent each detected dependence relation between two

attributes values by using a rule in the following form:

If<Condition> then <conclusion> with certainty W.

The condition part of the rule shows the characteristic that a Behavior should

possess so that the Behavior at a certain position later in the sequence will

take on the attribute value predicted in the conclusion. As such a prediction

cannot usually be constructed with complete certainty, the degree of certainty

has to be reflected by the weight W associated with the rule.

Suppose the attribute value vil, is found and it is dependent on vjk as

described in the previous section, the prediction rule is constructed as follows

and shows the following relationship:

If Attrjp of an Behavior is vjk, then it is with certainty W that Attri(p+
) of an

Behavior located at
 positions later in the sequence has the value vil,

where W = W(Attri(p+
)=vil / Attri(p+
) � vil | Attrjp=vjk) measures the amount of

positive or negative evidence provided by vjk supporting or refuting the

71

Behavior at
 positions later to have the characteristic, vil.

The derivation of W is based on an information theoretic measure known as

mutual information and defined between vjk and vik as

)vAttrPr(
)vAttr|vAttrPr(

log

)vAttr:vAttr(I

il)p(i

jkjpij)p(i

jkjpil)p(i

�

��
�

��

�

�

�

)vAttr:vAttr(I jkjpil)p(i ���
 is positive if and only if

)vAttr|vAttrPr(jkjpij)p(i ���
 >)vAttrPr(il)p(i ��
 . Otherwise it is either

negative or has a value of 0.

As vil of Attri(p+
) is dependent on vjk of Attrjp, the weight of evidence can be

defined as in [DO1974]:

)vAttr:vAttr(I

)vAttr:vAttr(I

)vAttr|vAttr/vAttr(W

jk[jil)p(i

jk[jil)p(i

jk[jil)p(iil)p(i

�

���

���

��

��

��

.

W can also be expressed as

72

)vAttr|vAttrPr(
)vAttr|vAttrPr(

log

)vAttrPr(
)vAttr|vAttrjpPr(

log

)vAttrjpPr(
)vAttr|vAttrPr(

log

)vAttrPr(
)vAttr|vAttrPr(

log

)vAttrPr(
)vAttr|vAttrPr(

log

)vAttr:vAttr(I

)vAttr:vAttr(I

)vAttr|vAttr/vAttr(W

il)p(ijkjp

il)p(ijkjp

jkijp

il)p(ijk

jk

il)p(ijkjp

il)p(i

jkjpil)p(i

il)p(i

jkjpil)p(i

jk[jil)p(i

jk[jil)p(i

jk[jil)p(iil)p(i

��

��
�

�

��
�

�

��
�

�

��
�

�

��
�

��

���

���

�

�

�

�

�

�

�

�

�

��

��

.

The weight of evidence is a measure of the difference in the gain in

information when the ith attribute of a Behavior takes on the value vil and

when it takes on other values, given that the Behavior that is
 positions in

front has the characteristic vjk.

If vjk provides positive evidence supporting the ith attribute of the behavior at

positions later in the sequence having the value vil, the weight W is its position.

W is negative if the evidence of Vjk is negative

To illustrate how such predictions can be made, suppose that given a

sequence S of M Behavior, Behavior1,… , BehaviorM, and the value of the ith

attribute Attri(M+h) of the behavior BehaviorM+h, which is h positions behind,

and that the most recently observed one is S, BehaviorM, is predicted. The

relationship between attributes within the behavior should be determined to

discover whether the value of Attri(M+h) is dependent on the BEHAVIORS in S.

73

Assume that a set of BEHAVIORS is generated probabilistically in such a way

that the characteristics of the Behavior at a certain position depend on that of

a maximum of L BEHAVIORS before it. The prediction process starts by

searching though the prediction rules that determine how the characteristics

of BehaviorM, BehaviorM-1, Behavior(M-L)+1 may affect the value of Attri(p+
) of

BehaviorM+h.

To find the prediction rules, we use the following search process. First, we

match the attributes values valjp (where j=1,2,…,n and p=M, M-1,(M-L)+1) of

the BEHAVIORS BehaviorM, BehaviorM-1, Behavior(M-L)+1, against the subset

of prediction rules whose conclusions predict what values the ith attribute of

an Behavior at h t h, h+1, …, (h+L)-1 position later will take on. An attribute

value that satisfies the condition part of a rule, affects the value of the ith

attribute of the Behavior at M+h. As a result, this value provides a certain

amount of evidence on the conclusion parts, which either supports or

opposes the ith attributes taking on the value. This value is reflected by the

weight of the prediction rule.

Figure 15 summarizes the steps in building a prediction rule with weight W:

��� ����
��
���������

��� ��� �����������!�����������!������!���!�

��������	
��������������� ����������"�����������������!"������#�

�� ���$ �%��������������&���'����������� ���!����

74

�������
 � ��&������'
 (��)��&��#�

�)� ����'��&�����	��������������&���*�)�

)� � +���'�������,�����)�

�)� � � +���'��������,�����)�

-)� � � � +���'���&���,�����)�

.)� /��� ����������������"������������������������������������ �

���������'������0����&��)������������1�����������������!��&� ��������

� ������������������"����������

� /��� �������� ��������������������� � ��!��&� �&������������

��������������� � �� ���!��&� �&���� ���� ����������'������0����&��)������

������������"�7 ������������1�������� �7 �1�,�

��� � � � 6�������&���

���� � � 6����������

���� � 6���������

���� 6������&���

Figure 15 Prediction Rule Generation Algorithm

Figure 16 shows the game flow for implementing the proposed algorithm.

When player finishes Level T, the game engine collects the Level T game log

and retrieves all past behavior of the player from the database. The

parameters of the past levels are also retrieved. Using the Prediction Rule

Generation algorithm (Figure 15), the game engine will follow the weight of

the rule and the previous (T-
+1) level to predict (
 +1) level. The number of

NPCs on the game level is also a parameter of the game environment. Our

proposed algorithm can also predict the number of NPCs that should appear

at a level. The Maze builder will then create a new maze for the level using

depth-first searching and the parameters of (
 +1) level.

75

Figure 16 Game Flow of the Maze game using sequential pattern mining

We use the maze game as a testing model for the approach. There is an

ordered sequence S of M BEHAVIORS.(Behavior1… ,Behaviorp,…BehaviorM,

where Behaviorp is located at time=p in S). The details of the game logs are

in Table 4. For better presentation, we have divided Table 4 into two tables:

the parameters of the level (Table 5) and player’s behavior (Table 6). The

attributes of the parameters of the level are as follows:

LEVEL NUMBER, DEADEND, HAMMER, MAPSIZE, MONSTER and

TIME EXPECT TO FINISH

The description of the parameters of the level is as follows:

Name of Parameter Description

76

LEVEL NUMBER, Level number

DEADEND Number of Dead End for the maze

HAMMER Number of hammer is provides for the player

MAPSIZE There are three sizes of the map,10,12 and 15. The

is defined as number of girds (Column X Row) in

the map

MONSTER Number of monster on the maze

TIME EXPECT TO

FINISH

The expected timer that the player should be

finished in milliseconds

Table 2 Description of the Parameter of a level

The attributes of the player’s behaviors are as follows:

LEVEL NUMBER, DEAD END ACHIEVE, HAMMER USED, LEVEL

PREFORMANCE, MONSTER HIT, BROKEN WALL and TIME USED

The parameters of the game log containing the player’s behavior is as

follows:

Name of Parameter Description

LEVEL NUMBER, Level number

DEAD END ACHIEVE Number of Dead End that the player met of a level

HAMMER USED Number of hammer used to hit the monster or

break the wall of a level

LEVEL

PREFORMANCE

A- Same as expected time �0.1second

B-Time used is less than Time Expected

77

W- Time used is more than Time Expected

MONSTER HIT, Number of monster hit on a level

BROKEN WALL Number of wall broken on a level

TIME USED Time to finish the level in milliseconds

Table 3 Description of the Parameters of player’s behavior

LEVEL
NUMBER

DEADEND HAMMER MAP
SIZE

MONSTER TIME
EXPECT
TO FINISH

DEAD
END
ACHIEVE

HAMMER
USED

LEVEL
PERFORM
ANCE *

MONSTER
HIT

BROKEN
WALL

* Performance:
A- Same as expected time �0.1second
B-Time used is less than Time Expected

W- Time used is more than Time Expected

Table 4 Game Log Data

78

LEVEL NUMBER DEADEND HAMMER MAPSIZE MONSTER TIME EXPECT
TO FINISH

Table 5 Parameters of levels

LEVEL
NUMBER

DEAD
END
ACHIEVE

HAMMER
USED

LEVEL
PERFORMANCE *

MONSTER
HIT

TIME
USED

BROKEN
WALL

1 0 0 B 0 18677 0
2 0 0 B 0 21951 0
3 0 0 B 0 11396 0
4 0 0 B 0 17325 0
5 0 0 B 0 16513 0
6 0 0 W 0 32146 0
7 0 0 B 0 18657 0
8 0 0 W 0 33929 0
9 1 1 W 1 38155 0
10 1 0 B 0 30473 1
11 1 1 W 1 37874 0
12 1 0 B 0 33528 1
13 2 1 W 1 35241 1
14 2 2 W 2 41690 0
15 2 1 B 1 31105 1
16 1 1 W 1 63221 0

79

17 3 2 W 2 20639 1
18 3 3 W 3 16494 0
19 1 1 B 1 22919 0
20 1 0 B 0 14710 0

Table 6 Player’s Behavior

To predict the characteristics of the player’s behaviors in Table 4, we first

determine if the attribute “NUMBER OF HAMMERS USED” is important for

predicting the attribute “DEAD END ACHIEVE” on the next three maze levels.

We then construct a contingency table with 6 (there is a maximum of 5 dead

ends in the maze) columns and 4 (there is a maximum of 3 hammers used)

rows (Table 7).

 DEAD ENDS ACHIEVED

 ZERO ONE TWO THREE FOUR FIVE TOTAL

ZERO 4 4 0 4 0 0 12

ONE 4 0 0 0 0 0 4

TWO 0 0 0 1 0 0 1

NUMBER

OF

HAMMER

S USED THREE 0 0 0 0 0 0 0

 TOTAL 8 4 0 5 0 0 17

Table 7 4 X 6 Contingency table for NUMBER OF HAMMERS USED and

DEAD ENDS ACHIEVED

The value of the chi-square statistic, X2, is 33.15. X2 is greater than the critical

chi-square value x2
15,0,05 and x2

15,0.01. The chi-square test is significant at both

the 95% and 99%s. This means the attribute NUMBER OF HAMMERS USED

80

is dependent on the attribute NUMBER OF DEAD ENDS ACHIEVED of the

future three levels.

We used the chi-square test and found that the attribute “NUMBER OF

HAMMERS USED” is important in determining the attribute “DEAD ENDS

ACHIEVED” on the next three levels. It can predict that if a player used a

hammer three times, it will meet a dead end twice on the future level. To

predict the player’s future behavior, we can construct a set of prediction rules.

They represent each detected dependence relation between two attributes

values by using a rule in the following form:

If<Condition> then <conclusion> with certainty W.

)THREEACHIEVEHEADDEAD|

ZEROS USED HAMMER OF NUMBER / ZERO USED HAMMER OF W(NUMBER

�

���

700.

)THREEACHIEVEHEADDEAD|ZEROUSEDHAMMEROFNUMBERPr(
)THREEACHIEVEHEADDEAD|ZEROUSEDHAMMEROFNUMBERPr(

log

�

��

��
�

The prediction rule can be expressed as follows:

If a player did not use a hammer, then the player will, with a certainty of 0.70,

meet a dead end three times on the next three levels.

All the rules can be constructed from the other relevant values. A set of

prediction rules is constructed as follows:

81

1) If the player has broken the wall once, the player will, with a certainty

of 3.29, use the hammer once on the next level.

2) If the player has met a dead end once, the player will, with a

certainty of 3.29, use a hammer once on the next two levels.

3) If the player has met a dead end once, the player will, with a

certainty of 3.29, break the wall once on the next two levels.

4) If a player has used a hammer once, the player will, with a certainty

of 3.29, meet a dead end three times on next level.

5) If a player’s performance is good, the player will, with a certainty of

2.22, meet a dead end three times on the next level.

6) If a player’s performance is good, the player will, with a certainty of

2.22, use a hammer twice on the next two levels.

7) If a player’s performance is good, the player will, with a certainty of

2.22, break a wall twice on the next two levels.

8) If a player’s performance is good, the player will, with a certainty of

1.70, use a hammer twice on the next three levels.

9) If a player’s performance is good, the player will, with a certainty of

1.70, break a wall once on the next levels.

10) If a player’s performance is good, the player will, with a certainty of

1.70, break a wall once on the next two levels.

11) If a player’s performance is good, the player will, with a certainty of

1.70, use a hammer once on the next two levels.

12) If a player’s performance is good, the player will, with a certainty of

82

1.70, use a hammer once on the next levels.

13) If a player’s performance is good, the player will, with a certainty of

1.70, break a wall twice on the next three levels.

14) If the player broke the wall once, the player will, with a certainty of

1.70, use a hammer once on the next two levels.

15) If the player broke the wall once, the player will, with a certainty of

1.70, meet a dead end once on the next level.

16) If a player’s performance is good, the player will, with a certainty of

1.70, meet a dead end three times on the next two levels.

17) If a player’s performance is good, the player will, with a certainty of

1.7, meet a dead end once on the next level.

18) If a player used a hammer once, the player will, with a certainty of

3.29, break a wall once on the next two levels.

These prediction rules can be used to find the prediction parameters for the

game environment and player behavior.

4.2 Decision Tree Approach

Future levels can also be predicted by using a decision tree. C4.5 is a

decision tree-generating algorithm that is based on the ID3 algorithm by

Quinlan [JQ1993]. The decision is grown using a depth-first strategy. ID3

83

(Induction Tree Decision) builds a decision tree from a fixed set of

BEHAVIORS. The decision tree is used to classify future BEHAVIORS. The

Behavior has several attributes and belongs to a class (like hot or cold). The

leaf nodes of the decision tree contain the class name and a non-leaf node is

a decision node. The decision node is an attribute test with each branch (to

another decision tree) being a possible value of the attribute [JH2001].

The algorithm is summarized in Figure 17:

��� +��������8�54�94���!���9:����

��� 5�����8���������� �!�����0&��������������!�

��� 5�����8����������0��!�������!��������� � �������������!�

��� ;������8��� ���!����:����

� �

��� ����������� ��<=�

��� 5��!�����!����������������!�������!!���������

��� >������<��!���������� �������� �������������!!��=�

��� 5�����������0��!���!�����"������

���� >������<��!���������� �������� ������������!������������!!����!�����!=�

���� ������� ��!�0���������!�� ���� ���������� ���������������0��!������� ���� �����!�� ������������

����=�

���� 6������� ��<��������!�0���������!=�

�
�� +��������?�����&�������������!�0����������

���� � ��������������������� ��<������������ ��������!�0���������0����

���� � 6���!���������!������!�����!����!�����!�������������!�0���������0����

���� � 5��!���!�����"������

84

���� � � �������������������� ������������!������������!!����!�����!=�

���� � @�!��

���� ������������� ����������"�54�94�!��!���9���!!'!���

���������0��!�0��!�0���������!)�

���� 6�������

Figure 17 Basic algorithm of ID3

C4.5 derives from ID3. C4.5 is an extension of the decision-tree. The

algorithm consists of the following steps (Figure 18)

��� /��� ����� ���!���������������������������!����!�������&���������54�#�

��� ���&���� ���� ��!������� ����� ����� ��� ����&������ !���������!!���������� ����!#����� ��!!�����

����!��������������������������� �������� ��� ��������!!����������

�� ����� ���� ��� �� &��� ������ !���� ����!� ����� ������ ����� ����� �"� ����&���� ��"�

������ �����!��������!������������&������!��������"�� �

��� �������������� �����!���� �!��� ������ �������� ��������������������"�

Figure 18 Algorithm of C4.5

 A decision tree approach is presented by Duan Fu and Ryan Huletter.

[SR2004] A decision tree was used in the game “Black & White”, developed

by Lionhead Studios (2001).

Suppose the game log is a set of sequential patterns (Figure 13). It can be

defined as follows: suppose that there is an ordered sequence S of M

BEHAVIORS, Behavior1, …,Behaviorp,…,Behaviorm, where Behaviorp is

located at position p in S. Suppose also that each Behavior in the sequence is

described by n distinct attributes, Attr1p, …, Attrjp, …, Attrnp, and that in any

instantiation of the Behavior description, an Attrpj takes on a specific value,

85

valjp � domain(Attrjp)={vjk| k=1,…,J}, Transform the specific value , valjp �

domain(Attrjp)={vjk| k=1,…,J}, into a category of the Attrpj.

When building a decision tree, the information gain measure is used to select

the test attribute at each node in the tree. The attribute with the highest

information gain (or greatest entropy reduction) is selected as the test

attribute for the current node.

Suppose the k distinct value of class label attributes p on S. k distinct values

defines k distinct classes, Ci (for i=1,…,k)/. The expected information is given

by

�
�

�
m

i

iip ppobjobjobjI
1

221),(log),...,(

where pi is the probability that an arbitrary sample of the sequence S belongs

to class Ci and is estimated by Behaviori/S

.

On the attribute A, it contains k distinct values. The entropy is given by

),...,(
...

)(21

1

1
p

k

n

mnn
objobjobjI

S
objobj

AE �
�

�
�

where m is the number of distinct classes.

Gain(A), the expected reduction in entropy caused by knowing the value of

attribute A, is given by

)(),...,()(21 AEobjobjobjIAGain p ��

86

The algorithm computes the information gain of each attribute. The attribute

that has the highest information gain is chosen as the test attribute for the

given set S. A node is then created and labeled with the attribute, branches

are created for each value of the attribute, and the samples are partitioned.

The representation of the classification rules is in the form of IF-THEN rules.

Each attribute-value pair along a given path forms a conjunction in the rule

antecedent and is placed on the “IF” part. The leaf node holds the class

prediction, forming the rule consequent as a “THEN” part. C4.5 shows the

accuracy for every rule as a percentage.

On the testing model of the maze game, every level contains “easy” and

“hard” level templates. We analyze the player’s behavior on the previous level.

After analyzing the player’s behavior, the game engine predicts that the player

should play the “hard” level on the coming level. Then the “hard” level of the

coming level shows. Otherwise, the game engine generates an “easy” level

for the next level. The parameters of the level are pre-defined. Figure 19

shows the game flow with the decision tree approach.

87

Figure 19 Game Flow of the Level design with decision tree approach

88

�������������������� ����������		

������

������

��

������

����������		����

In this chapter, we present our implementation of our proposed solution on a

testing model – a maze builder. We use Java to implement the backend game

engine which is including our proposed algorithm. The game log is saved as

an XML file. A number of experiments were performed to verify the

performance of the algorithm and determine if it had any advantages over

other approaches. Section 5.1 describes the game. Section 5.2 presents the

details of the implementation. Section 5.2 shows the performance of the

algorithm on real data.

5.1 Game Description

Our testing model is a tile-based game similar to Pac-Man. The maze

features a mouse which, to finish a level, must find the cheese and east it

within a maximum time for each level (the game has twenty levels) shown on

the progress bar. The game is over if the mouse cannot eat the cheese within

this time. Figure 20 shows the game layout. There is an “Expected time” on

every level. “Expected time” means how long the player should take to finish

the current level. If the mouse eats the cheese within the expected time, the

mouse is rated “Good” and we give his performance “B” in the game log. If the

89

performance of the mouse is “Bad”, we record “W” in the game log. If the

difference between the expected time and finishing time is between +0.1

second and –0.1 second, the mouse gets an “A”.

On every level, monsters appear to block the movement of the mouse but the

mouse is provided with hammers to either kill the monsters or break through a

wall. data is captured in the game log as follows:

Name of Parameter Description

LEVEL NUMBER, Level number

DEADEND Number of Dead Ends for the maze

HAMMER Number of hammers provided to the player

MAPSIZE There are three sizes of map, 10,12, and 15. The

number of size is use to build the number of grids

(Column X Row) in the map

MONSTER Number of monsters in the maze

TIME EXPECT TO

FINISH

The expected finishing time

DEAD END ACHIEVE Number of Dead End that the player met of a level

HAMMER USED Number of hammers used to hit the monster or

break the wall of a level

LEVEL

PREFORMANCE

A- Same as expected time �0.1second

B-Time used is less than Time Expected

W- Time used is more than Time Expected

90

MONSTER HIT, Number of monster hit on a level

BROKEN WALL Number of wall broken on a level

TIME USED Time taken to finish the level in milliseconds

Table 8 Game log data

Figure 20 Maze Game

91

5.2 Details of the implementation

The maze game is implemented with Java and XML. When a player plays the

game, a set of game logs is stored as an XML file. Figure 21 is a system

diagram of the game. There are two parts to the game: the Game Engine and

the Maze Builder.

Figure 21 System Diagram of the Maze Game

The function of the game engine is to analysis the game log data and then

export the parameters of the game environment to the next level of the game.

The main task of the maze game is to generate the maze and the game

layout control such as the movement of the mouse, timer control and the

maze generation. The prediction rules and the player behaviors are stored in

XML format. When a player plays the game, the game engine predicts the

player’s behavior at the coming level by analyzing the game log data then

passes the parameter of the game environment of the coming level to the

92

maze builder. The maze builder uses these parameters to generate the game

world. The general flow of the game is shown in Figure 22 and the class

diagram is shown in Figure 23.

Figure 22 System Flow of the Maze Game

Player finishes a level

Maze builder sends
XML to game engine

Game Engine retrieves
all of the player’s game

logs

Transform Game Log
into sequential pattern

Generate Predict log
with certainty W

Send back parameter
and maze structure

with level

+1 to Flash

Generate the maze
with depth-first

searching

Maze Builder
generates the maze
with monster with

level

+1

New level is ready for
player

 Maze Builder

 Game Engine

Player plays the new
level

93

Figure 23 Class Diagram

94

5.2.1 Game Engine

When the game engine receives the start or complete signal from the maze

builder, the game engine reads the player’s behavior. Then it saves the

current game log data in XML format and analyses that data using the

previous game log data. Table 9 and Table 10 show the parameter of the

game level and the player’s behavior stored in XML format. The prediction

rules with their weightings are generated and are saved back to XML for

reference (Table 11). Then the game engine uses the prediction rules to

adjust the global level parameters and the map of the game. The game

engine sends back the parameters of the next maze to the Maze Builder. The

main classes of the game engine are Logger, Maze and GenConMatrix.

<level>
 <levelNum>1</levelNum>
 <DEADEND>0</DEADEND>
 <hammer>0</hammer>
 <mapsize>12</mapsize>
 <monster>0</monster>
 <pathToTarget>1</pathToTarget>
 <stepToTarget>0</stepToTarget>
 <timeExcept>2700</timeExcept>
</level>

Table 9 Sample XML for a level

<userBehaviour>
 <levelNum>1</levelNum>
 <dhArch>0</dhArch>
 <hammerUsed>0</hammerUsed>
 <levelPref>W</levelPref>

95

 <monHit>0</monHit>
 <stepArch>31</stepArch>
 <timeUsed>6989</timeUsed>
 <monhitFinal>0</monhitFinal>
 <wallBrokenFinal>0</wallBrokenFinal >
</userBehaviour>
<userBehaviour>
 <levelNum>2</levelNum>
 <dhArch>0</dhArch>
 <hammerUsed>0</hammerUsed>
 <levelPref>W</levelPref>
 <monHit>0</monHit>
 <stepArch>31</stepArch>
 <timeUsed>5249</timeUsed>
 < wallBrokenFinal >0</wallBrokenFinal >
</userBehaviour>

Table 10 Sample XML file of the player’s behavior

<Asso>
 <condition>
 <Attr>levelPref=B</Attr>
 </condition>
 <conclusion>
 <Attr>dhArch-2=3</Attr>
 </conclusion>
 <weight>1.700</weight>
</Asso>

Table 11 Sample XML for the prediction rule

 The maze for our testing model is built using tile-based game theory with

depth-first searching. The map is divided into several cells. The game maze is

perfect. A cell can be represented as “Wall” or “Path”. If the cell is a wall, the

maze builder does not allow the player to walk through it. We use the array to

represent the map. Figure 24 is a sample of a map with 25 X 25 grids and

Table 12 is the array to represent that maze.

96

Figure 24 A tile-based game

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 W

1 W W P W

2 W W W W W W W W W W W W W W W W W W

3 W W W W W W W

4 W W W W W W W W W W

5 W W W W W W W W W

6 W W W W W W W W W W

7 W W W W W W W W W

8 W W W W W W W W W W

9 W W W W W W W W W

10 W W W W W W W W W

97

11 W W W W W W W W

12 W W W W W W W W W W W W W W W W

13 W W W W W W

14 W W W W W W W W W W

15 W W W W W W W W W W W

16 W W W W W

17 W W W W W W W W W

18 W W W W W W W W W W W W

19 W W W W W W W W W

20 W W W W W W W W W W W W

21 W W W W W W W W W

22 W W W W W W W W W W

23 W W W W W W

24 W

Table 12 Data representative of the map in Figure 24

5.2.2 Maze Builder

The maze builder is used to build the game world and control the movement

of the mouse. The main classes of the maze builder are GameGUI and

MazeBuilder. Figure 25 is the layout of the game. The Maze builder recives

the map and parameters of the game world and then draws the layout of the

game. A player uses the arrow key to control the movement of the mouse.

The bottom of the game shows the current level, the number of hammer

available on the current level and the expected finishing time. Player can

98

use the “Space” bar to use the hammer and break the wall or kill the monster.

Then the number of hammers is reduced. There is a progress bar on the top

of the game to show the maximum time allowed to complete the current level.

If a player takes more than the expected time, the progress bar changes to

red.

Figure 25 Maze Game

5.3 Details of the experiment

We introduced the testing model to ten different players who provided their

99

feedback on the experience after playing. The main goal of testing was to find

out if the players felt that the game was playable.

A player will play the three maze games: the original maze game using

random number generation; the maze game using a decision tree; and the

maze game using our adaptive game engine. They will play 20 levels for

every game engine. The map may be 10, 12 or 15 grids; the maze may

contain between 0 and 20 dead ends; there may be between 0 and 9

hammers for each player; and there are between 0 and 8 monsters. Table 13

shows the level parameters of the original maze game which is implemented

with random numbers approach of one player. Table 14 is the game log of a

player that played the maze game with those parameters.

LEVEL_NUMBER MONSTER DEAD_END MAPSIZE HAMMER TIME_EXPECT
1 5 5 15 6 29500
2 1 13 10 2 33500
3 7 11 12 8 32500
4 0 8 15 1 31000
5 0 8 12 1 31000
6 2 2 15 3 28000
7 4 8 12 5 31000
8 6 6 10 7 30000
9 6 10 15 7 32000
10 0 16 12 1 35000
11 1 13 10 2 33500
12 3 3 10 4 28500
13 5 17 12 6 35500
14 5 13 12 6 33500
15 1 13 10 2 33500
16 4 8 10 5 31000
17 4 12 12 5 33000
18 6 6 12 7 30000
19 4 7 10 5 2700
20 4 8 15 5 31000

100

Table 13 Parameter of the Levels with random number

Level
Number

DEAD
END
ACHIEVE
e

HAMMER
USED

LEVEL
PREFORMANCE
*

MONSTER
HIT,

BROKEN
WALL

TIME USED

1 1 3 B 0 3 20810
2 1 1 B 0 1 10545
3 0 2 B 1 1 18456
4 0 1 B 0 0 23554
5 0 1 B 0 0 19408
6 0 1 W 0 1 46977
7 0 2 B 0 2 30534
8 1 5 B 3 2 21501
9 1 3 W 0 3 37704
10 0 1 W 0 0 36723
11 0 1 B 0 1 26448
12 1 2 B 1 1 24615
13 1 3 W 0 3 39106
14 0 0 W 0 0 38766
15 1 1 W 0 1 41950
16 0 1 W 0 1 41740
17 0 3 W 0 3 42581
18 0 2 B 0 2 15813
19 0 1 B 0 1 11296
20 0 2 W 0 2 38740
* Performance:
A- Same as expected time �0.1second
B-Time used is less than Time Expected
W- Time used is more than Time Expected

Table 14 Player’s Behavior of playing random maze

For the maze game using decision tree approach, we trained the decision

tree before the players played. Fifty players played the maze game in the

random number generation approach. After collecting the data, we compare

the parameters of every level to choose the “Easy” template and the “Hard”

template. A “Hard” template is defined that the most players lost in the same

101

level and same game parameters. A “Easy” template is defined that the most

players win in the same level and same game parameters.Table 15 and Table

16 show level parameters of “Hard” and “Easy” respectively.

To define the decision tree and the classification rules, we transformed the

game log into a set of row data and construct a decision tree with the

following attributes, ‘Dead End Achieve”, “Monster Hit”, “Wall Broken”,

“Hammer Used”, “Map Size”, “Monster”, “Hammer”, “Dead End” and two

classes, “Best (B) Performance” and “Worst (W) Performance”. If the player is

in the class “Best Performance” on the current level, the game will use the

“Hard” template on the next level. If the player is in the class “Worst (W)

Performance”, the game will use the “Easy” template on the coming level.

Table 18 is the game log of the player.

LEVEL_NUMBER MONSTER DEAD_END MAPSIZE HAMMER TIME_EXPECT
1 All player play easy template on Level 1
2 5 5 12 6 19500
3 2 2 12 3 18000
4 0 0 10 1 17000
5 5 5 10 6 19500
6 2 6 15 3 20000
7 3 3 10 4 18500
8 6 2 12 7 18000
9 6 2 12 7 18000
10 1 5 10 2 19500
11 6 2 10 7 18000
12 5 5 10 6 19500
13 1 1 10 2 17500
14 4 0 10 5 17000
15 4 0 15 5 17000
16 1 1 15 2 17500
17 2 2 10 3 18000

102

18 1 1 15 2 17500
19 5 5 12 6 19500
20 2 2 10 3 18000

Table 15 Parameter of the “Hard” Levels with decision tree approach

LEVEL_NUMBER MONSTER DEAD_END MAPSIZE HAMMER TIME_EXPECT
1 5 9 10 6 21500
2 3 15 15 4 24500
3 7 15 10 8 26500
4 6 14 15 7 24000
5 6 18 10 7 26000
6 5 17 10 6 25500
7 5 17 12 6 25500
8 7 19 12 8 28500
9 7 19 12 8 28500
10 7 19 12 8 28500
11 7 19 12 8 28500
12 7 11 10 8 24500
13 6 18 10 7 26000
14 7 11 12 8 24500
15 7 19 10 8 28500
16 2 14 10 3 24000
17 7 15 10 8 26500
18 7 15 15 8 26500
19 3 19 15 4 26500
20 7 19 12 8 28500

Table 16 Parameter of the “Easy” Levels with decision tree approach

The default class of the player is Easy.

If the player does not meet a dead end, the number of the monster is less

than three, and the number of dead end of the map is less than eight, then

the game engine will display an “Easy” level on the coming level with 93.6%

accuracy.

If the player uses a hammer fewer than six times, the size of the map is 10

and the number of the dead end is less than eight, then the game engine will

display an “Easy” level on the coming level with 91.5% accuracy.

If the player meets a dead end more than four times, the number of the

103

monster is more than four, and the number of the dead end is ten, then the

game engine will display an “Easy” level on the coming level with 75.6%

accuracy.

If the player meets a dead end more than eleven times, the size of map is

12, the number of the monster is fewer than four, and the number of dead

end is less than thirteen, then the game engine will display an “Easy” level

on the coming level with 70.7% accuracy.

If the player does not meet a dead end, the number of the monster of map is

less than three, and the number of dead end is seven or eight, then the

game engine will show a “Hard” level on the coming level with 63.0%

accuracy.

Table 17 Classification Rules

4���!����:���8�
�
 �� @� �A����8�7 �'��-#,B	,#,)�
 �� @� �C���8�
D� � � �� @� �A��	,�8�
D� � � D� � � �� @� �A��.�8�
D� � � D� � � D� � � �������!� �C���8�/�'�#,)�
D� � � D� � � D� � � �������!� �A����8�
D� � � D� � � D� � � D� � � ���!����A����8�
D� � � D� � � D� � � D� � � D� � � ������A��,�8�/�'�#,)�
D� � � D� � � D� � � D� � � D� � � ������C�,�8�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �C���8�7 �'-#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �A����8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������C�,�8�7 �'	
#,B�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������A��,�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ���!�E����	,8�7 �'.#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ���!�E����	
8�7 �'�#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�7 �'�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�/�'�#,B	#,)�
D� � � D� � � D� � � D� � � ���!����C���8�
D� � � D� � � D� � � D� � � D� � � ���!�E����	,8�7 �'.#,B
#,)�
D� � � D� � � D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � D� � � D� � � �������C�	�8�/�'
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �������A��	�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������A��,�8�

104

D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�7 �'-#,B
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�/�'�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������C�,�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�/�'�#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����A��
�8�/�'�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����C�
�8�7 �'�#,B	#,)�
D� � � D� � � �� @� �C�.�8�
D� � � D� � � D� � � ���!�E����	,8�
D� � � D� � � D� � � D� � � �� @� �A��2�8�
D� � � D� � � D� � � D� � � D� � � �������?���A��
�8�/�'	
#,B	#,)�
D� � � D� � � D� � � D� � � D� � � �������?���C�
�8�7 �'�#,B	#,)�
D� � � D� � � D� � � D� � � �� @� �C�2�8�
D� � � D� � � D� � � D� � � D� � � �������!� �A��,�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � �������!� �C�,�8�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����A����8�/�'
#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����C���8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�/�'
#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�7 �'�#,)�
D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � �� @� �A��2�8�
D� � � D� � � D� � � D� � � D� � � ���!����A����8�/�'.#,B
#,)�
D� � � D� � � D� � � D� � � D� � � ���!����C���8�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �C���8�/�'�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �A����8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������A��	�8�/�'-#,B
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������C�	�8�7 �'
#,)�
D� � � D� � � D� � � D� � � �� @� �C�2�8�
D� � � D� � � D� � � D� � � D� � � �������?���C���8�7 �'�#,)�
D� � � D� � � D� � � D� � � D� � � �������?���A����8�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �A��	�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �������!� �C�	�8�/�'	,#,B	#,)�
D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � ���!����A��	�8�7 �'2#,B	#,)�
D� � � D� � � D� � � D� � � ���!����C�	�8�
D� � � D� � � D� � � D� � � D� � � �� @� �A��2�8�
D� � � D� � � D� � � D� � � D� � � D� � � ������A��.�8�/�'2#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � ������C�.�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � �� @� �C�2�8�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����A����8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������?���A��,�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������?���C�,�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������A��,�8�/�'
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������C�,�8�7 �'�#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � ���!����C���8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������?���C���8�7 �'
#,)�

105

D� � � D� � � D� � � D� � � D� � � D� � � D� � � �������?���A����8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�/�'�#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�7 �'
#,B	#,)�
D� � � �� @� �C�	,�8�
D� � � D� � � �� @� �A��	��8�
D� � � D� � � D� � � ���!�E����	,8�
D� � � D� � � D� � � D� � � ������A����8�/�'
	#,)�
D� � � D� � � D� � � D� � � ������C���8�
D� � � D� � � D� � � D� � � D� � � �������?���C�,�8�/�'		#,B	#,)�
D� � � D� � � D� � � D� � � D� � � �������?���A��,�8�
D� � � D� � � D� � � D� � � D� � � D� � � �� @� �A��		�8�/�'
#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �� @� �C�		�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������A��.�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � ������C�.�8�/�'
#,)�
D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � ���!����C���8�/�'	�#,)�
D� � � D� � � D� � � D� � � ���!����A����8�
D� � � D� � � D� � � D� � � D� � � ������C�		�8�7 �'�#,)�
D� � � D� � � D� � � D� � � D� � � ������A��		�8�
D� � � D� � � D� � � D� � � D� � � D� � � ������C���8�/�'�
#,B-#,)�
D� � � D� � � D� � � D� � � D� � � D� � � ������A����8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �� @� �A��	
�8�7 �'�#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �� @� �C�	
�8�/�'
#,)�
D� � � D� � � D� � � ���!�E����	
8�
D� � � D� � � D� � � D� � � ���!����A����8�/�'
�#,B		#,)�
D� � � D� � � D� � � D� � � ���!����C���8�
D� � � D� � � D� � � D� � � D� � � ������A��,�8�7 �'
#,)�
D� � � D� � � D� � � D� � � D� � � ������C�,�8�/�'

#,B�#,)�
D� � � D� � � �� @� �C�	��8�
D� � � D� � � D� � � �� @� �C�	.�8�/�'
,#,B	#,)�
D� � � D� � � D� � � �� @� �A��	.�8�
D� � � D� � � D� � � D� � � ���!�E����	
8�/�'-.#,B2#,)�
D� � � D� � � D� � � D� � � ���!�E����	
8�/�'2,#,B	,#,)�
D� � � D� � � D� � � D� � � ���!�E����	,8�
D� � � D� � � D� � � D� � � D� � � �������?���C�,�8�/�'
-#,B
#,)�
D� � � D� � � D� � � D� � � D� � � �������?���A��,�8�
D� � � D� � � D� � � D� � � D� � � D� � � �������A��	�8�/�'

#,B
#,)�
D� � � D� � � D� � � D� � � D� � � D� � � �������C�	�8�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �� @� �A��	��8�/�'
#,B	#,)�
D� � � D� � � D� � � D� � � D� � � D� � � D� � � �� @� �C�	��8�7 �'
#,)�
�
�

Figure 26 Decision Tree

106

Level
Number

DEAD
END
ACHIEVE

HAMMER
USED

LEVEL
PREFORMANCE
*

MONSTER
HIT,

BROKEN
WALL

LEVEL
TEMPLATE

TIME
USED

1 0 0 B 0 0 Easy 18236
2 1 2 B 0 2 Easy 21241
3 1 3 B 0 3 Hard 21291
4 0 0 B 0 0 Hard 18396
5 2 5 B 3 2 Easy 27269
6 1 4 B 1 3 Easy 24175
7 1 1 B 0 1 Easy 24395
8 1 1 B 0 1 Hard 24265
9 0 0 W 0 0 Hard 33508
10 1 7 B 0 7 Easy 30464
11 0 1 B 0 1 Hard 18366
12 0 3 B 0 3 Easy 27630
13 1 3 W 2 1 Easy 42271
14 1 1 B 0 1 Easy 30173
15 0 1 W 0 1 Hard 51554
16 0 2 B 0 2 Easy 24455
17 1 2 B 0 2 Hard 27560
18 0 2 W 0 2 Hard 51500
19 0 1 W 0 1 Easy 60500
20 0 4 W 0 4 Easy 64102
* Performance:
A- Same as expected time �0.1second
B-Time used is less than Time Expected
W- Time used is more than Time Expected

Table 18 Player’s behavior on Maze with Decision Tree

The maze game using our adaptive game engine also includes the game

level template (Table 19). We tested the game with fifty players in a random

number approach and collected the game log. We defined the parameters of

the game level if the most of the players got a “B” on that corresponding level.

Every player plays on the game with our adaptive game engine. The

parameters of the first ten levels are the same. The game engine is adaptive

on the last ten game levels. The parameters of the game are changed by the

prediction rules which are real-time generated and mined from previous

107

player behaviors.

When a player finishes level 10, the game engine analyses the player’s

behavior and generates a list of prediction rules. Then the game engine

changes the parameters of the next game level with those predictions rules

according to their weighting. To make the game perform better, we only select

the highest 40 weighting rules. Table 22 shows some prediction rules

generated by our proposed solution. Table 20 and Table 21 show the final

parameters of the levels and the game log… Table 22 is a prediction rule

generated when a player plays beyond Level 10.

LEVEL_NUMBER DEAD_END HAMMER MAPSIZE MONSTER TIME_EXPECT
1 0 0 12 0 27000
2 1 2 10 0 27500
3 3 4 10 3 28500
4 2 3 12 2 28000
5 2 3 12 2 28000
6 3 4 15 3 28500
7 2 3 12 3 28000
8 1 2 12 4 27500
9 1 2 10 3 27500
10 2 3 12 0 28000
11 1 2 15 1 27500
12 2 3 12 4 28000
13 0 1 15 2 27000
14 3 4 12 1 28500
15 3 4 12 3 28500
16 0 1 12 2 27000
17 1 2 10 1 27500
18 0 1 12 1 27000
19 2 1 12 3 28000
20 1 2 15 1 27500

Table 19 Default Parameters of Maze

108

LEVEL_NUMBER DEAD_END HAMMER MAPSIZE MONSTER TIME_EXPECT
1 0 0 12 0 27000
2 1 2 10 0 27500
3 3 4 10 3 28500
4 2 3 12 2 28000
5 2 3 12 2 28000
6 3 4 15 3 28500
7 2 3 12 3 28000
8 1 2 12 4 27500
9 1 2 10 3 27500
10 2 3 12 0 28000
11 0 0 12 0 27000
12 1 2 12 2 27500
13 0 0 10 4 27000
14 1 2 15 2 28500
15 2 2 12 2 27500
16 3 0 12 1 27000
17 1 2 12 1 29000
18 2 2 15 0 27500
19 1 3 10 4 27500
20 1 2 12 2 31000

Table 20 Parameters of Maze with Prediction Rule of a player

Level
Number

DEAD
END
ACHIEVE

HAMMER
USED

LEVEL
PREFORMANCE
*

MONSTER
HIT,

BROKEN
WALL

TIME
USED

1 0 0 B 0 0 18046
2 1 2 B 0 0 15091
3 0 3 B 1 2 18326
4 0 1 B 0 1 15112
5 0 1 W 0 1 30183
6 0 2 W 1 1 33558
7 1 1 B 0 1 27209
8 0 1 B 1 0 27229
9 0 1 B 0 1 24225
10 0 2 B 0 0 27490
11 0 0 W 0 0 27389
12 0 1 B 1 0 24455
13 0 0 B 0 0 20690
14 0 2 W 1 1 35496
15 0 1 B 0 1 19337

109

Level
Number

DEAD
END
ACHIEVE

HAMMER
USED

LEVEL
PREFORMANCE
*

MONSTER
HIT,

BROKEN
WALL

TIME
USED

16 0 0 W 0 0 28714
17 0 1 W 0 1 28500
18 0 2 B 0 2 22471
19 0 2 B 0 2 20500
20 0 2 B 2 0 18500
* Performance:
A- Same as expected time �0.1second
B-Time used is less than Time Expected
W- Time used is more than Time Expected

Table 21 Player’s Behavior in Maze with Prediction Rule

If two hammers are used on level p, then there is a certainly of 2.9 that the

player will meet a dead ends on level p+1

If two hammers are used on level p, then there is a certainly of 4.0 that the

player break the two walls on level p+1

If a monster is hit on level p, then there is a certainly of 3.9 that the player will

not break the wall on the level p+2.

If the maze size is 10 on level p, then there is a certainly of 2.2 that the player’s

performance is B on level p+2

If a wall didn’t break on level p, then there is a certainly of 2.7 that the player

will not hit the monster on level p+1

Table 22 Some Prediction Rules at Level 10

When they have finished three maze games, players are asked to rate each

game on a scale of 1 to 10 with 1 being the lowest and 10 the highest The

feedback form is a modified form of Sweetser’s game flow evaluation form

[PS2005] The categories of Sweetser’s evaluation form include Concentration,

Challenge, Player Skills, Control, Clear Goals, Feedback, Immersion and

110

Social Interaction. Our experiment focuses on Challenge only. The adaptive

game engine is effective when the player starts to play Level 11. Some

questions are about Levels 11 to 20 and compare the performance of the

different approaches.

Question
1. The difficulty is same from Level 11 to Level 20
2. The Level of the game is random generated
3. The game is very easy for every level
4. The difficulty of level should increase as players progress through the
game
5. The Path is easy to find
6. The Level shows adaptability
7. Fun

** 1 is the minimum score .10 is the maximum score. **

Table 23 Question of the feedback form

Table 24 shows the questions and the average scores. We can see that the

maze game with the adaptive game engine compares favorably with the

original and that difficulty adjustment makes the game more fun.

Criterion Original Maze
Game

Maze Game
with C4.5

Maze Game with
Prediction Rule

1. The difficulty is the
same from Level 11 to
Level 20

6.5 5.2 3

2. The Level of the
game is randomly
generated

9 5.8 5.4

3. The game is very
easy at every level

5 4 3.8

111

4. The difficulty of
level should increase
as players progress
through the game

4 6.3 7.2

5. The Path is easy to
find

4.8 5 5.5

6. The Levels show
adaptability

2.0 5.7 6.9

7. Fun 4.2 5.8 6.9
Table 24 Player ratings of original Maze Game vs, Predicted Maze Game

The players felt that the maze game using our proposed solution adapts to

their behavior and is more interesting than either the original maze game or

the maze game that uses a decision tree.

Figure 27 shows a balance graph for our three versions of the maze game.

The horizontal axis represents the levels of the games and the vertical axis

indicates the player’s performance as a comparison between the difference

between the actual playing time and the expected playing time. It appears

that the maze game using our proposed approach is a better fit for the ideal

game progression, making it a more balanced game experience for the

player.

112

Figure 28, which compares the average performance of the ten players on the

three maze games against the curve of our proposed algorithm, also shows

them to be a good fit to the ideal game progression.

Figure 27 Balance graph of the three versions of the maze game for one

113

player

Figure 28 Balance graph of the three versions of the maze game showing the

average performance of the ten players

114

�������������������� ��������������		����

������

������������

����������������

6.1 Summary of the thesis

In this thesis, we have described several commonly used game AI techniques.

Different game AI techniques are used in different types of games. Our

proposed solution is a type of game AI focusing on dynamic game balancing.

It uses a player’s past experience to build the game environment. We have

proposed a data mining technique that uses sequential pattern mining to build

the game environment by using the relationship between characteristics of

the player and the environment. The proposed solution is able to (1) detect

underlying patterns in an ordered event sequence in a time series t, (2) use

detected patterns to construct sequence-generation rules (3) use these rules

to predict the attributes of players and generate a suitable environment for

those attributes.

Our proposed solution is different from existing algorithms in that the game

level is based on the past experience of the player, it is data-driven, and the

game environment is unique and is not predefined.

115

Our proposed solution is used for building game environments. We have used

a maze game as a test model. Not only can the solution build a maze, it can

also help the game to build terrain, which may not be predefined, all to

achieve the main goal of game development, to make games more fun.

6.2 Future research

Our proposed solution can also be applied to robotics training. The adaptive

environment is based on the past behavior of the robot. Engineers can easily

estimate the performance of the robot and train it.

A web site is also a type of maze in which users can easily get lost. In this

case a users’ visit log can be transformed into a set of sequential multivariate

patterns. Our proposed solution can provide users with an interactive

navigation menu and site owners can present users with suitable information

or products. As a result, users will enjoy visiting the site and the usability of

the web site will increase.

116

References/Bibliographies

1. [AN2004] A. Nareyek, “AI in Computer Game”, ACM Queue vol. 1, no. 10

- February 2004,

http://acmqueue.com/modules.php?name=Content&pa=printer

_friendly&pid=117&page=1

2. [BB2004] B. Bates, “Game Design”, Thomson Course Technology PTR,

2004

3. [BE2005] E. Byrne, “Game level design,” Hingham, Mass.: Charles River

Media, 2005.

4. [BG2004] Bourg, David M.,Sebastopol , “AI for game developers”

O'Reilly, 2004

5. [BM2005] ��������
	���
	������������	����	��	��	��������, Plano,

Tex. : Wordware Pub., 2005.	

6. [CA1980] C.Chatfield, A. J. Collins, “Introduction to Multivariate analysis”,

Chapman & Hall, 1980et

7. [CCH2001] C.H. Chan, “The Crazy Maze but Fun”,

http://www.hay.idv.hk/challenge/maze/, 2001

8. [CC2001] C.H. Chang, S.C. Lui and Y.C. Wu, “Applying Pattern Mining to

Web Information Extraction”, D. Cheung, G. J. Williams, and Q.

Ku (Eds.): PAKDD 2001, LNAI 2035, pp 4 –15 , 2001

9. [CC2003] C.Crawford, “Chris Crawford on game design”, Indianapolis,

117

Ind. : New Riders, 2003

10. [DCP2000] D.C. Pottinger, “Terrain Analysis in Realtime Strategy Games

Technical Director, Ensemble Studios”

http://www.gamasutra.com/features/gdcarchive/2000/pottinger.

doc

11. [DD] “Dragons of Faerun Map Gallery” ,

http://www.wizards.com/default.asp?x=dnd/ag/20060830a

12. [DK2003] D. Kennerl, ”Better Game Design through Data Mining”,

Gamasutra, August 15, 2003

http://www.gamasutra.com/features/20030815/kennerly_01.sht

ml

13. [DO1974] D.B. Osteyee and I.J. Good, “Information Weight of Evidence,

the Singularity between Probability Measures and Signal

Detection”, Berlin: Springer-Verlag, 1974

14. [EA2002] E Adams, “Balancing Games with Positive Feedback”,

Gamasutra, January 4, 2002

http://www.gamasutra.com/features/20020104/adams_01.htm

15. [GA2005] G. Andrade, G. Ramalho et V. Corruble , “Automatic computer

game balancing: a reinforcement learning approach”, In

International Conference on Autonomous Agents and

Multiagent Systems, pp. 1111--1112.,2005

16. [HJ2001] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal,

''Multi-Dimensional Sequential Pattern Mining'', Proc. 2001 Int.

118

Conf. on Information and Knowledge Management (CIKM'01),

Atlanta, GA, Nov. 2001.

17. [INV] “The history of Computer and Video game "

http://inventors.about.com/library/inventors/blcomputer_videog

ames.htm

18. [JA2001] J.M. Adamo, “Data Mining for Association Rules and

Sequential Patterns- Sequential and Parallel Algorithm”,

Springer, 2001

19. [JG1993] J. P. V. de Geer, “Multivariate Analysis of Categorical Data:

Theory”, SAGE Publications Inc., 1993

20. [JH1999] J. Han, G. Dong and Y. Yin , “Efficient Mining of Partial Periodic

Patterns in Time Series Database”, IEEE ,1999

21. [JH2001] J. Han, M. Kamber, “Data Mining: Concepts and Techniques”,

Morgan Kaufmann publishers, 2001

22. [JJ2001] J.Juul, “A Clash between Game and Narrative”,

http://www.jesperjuul.net/thesis/, 2001

23. [JM2006] “The Game AI Page”, http://www.gameai.com

24. [JP1995] J.S. Park, M.S. Chen, and P.S. Yu, “An Effective Hash Based

Algorithm for Mining Association Rules”, In Proceedings of

1995 ACM SIGMOD International Conference on Management

of Data, San Jose, May 1995, pp. 175-186.

25. [JP2000] J. Pei, J. Han, B. Mortaxavi-Asl and H. Pinto, “PrefixSpan:

Mning Sequential Patterns Efficiently by Prefix- Projected

119

Pattern Growth”, IEEE, 2000

26. [JQ1993] J. R. Quinlan,.: “C4.5: Programs for Machine Learning”,

Morgan Kauffman, 1993

27. [KC1994] Keith C.C Chan, Andrew, K.C. Wong, David, Y. K Chiu,

“Learning Sequential Patterns for Probabilities Induction

Prediction”, IEEE Transations on System, Man and

Cybernetics, Vol24, No. 10, October, 1994

28. [LL2002] L. Pantel and L. Wolf, “On The Suitability of Dead Reckoning

Schemes for Games” in Proc. of NetGames2002, 2002

29. [LS1993’] L. Swift, “Time Series – forecasting, simulation, applications”,

Ellis Horwood Limited , 1993

30. [MAB] “Mabinogi”, http://tw.mabinogi.gamania.com/

31. [MB2005] M. Buckland, “Programming Game AI by Example“ , Wordware

publishing, inc. 2005

32. [MF2003] M. Friedl ,“Online Game interactivity Theory”. Hingham, Mass :

Charles River Media, inc., 2003

33. [MW2002] “MazeWorks”,

http://www.mazeworks.com/mazegen/mazetut/index.htm

34. [MGAW] M. Gagnon and A.Withrow, “Road Blocks”,

http://www.2flashgames.com/f/f-861.htm

35. [PAC] “Pacman - Flash Game”, www.ebaumsworld.com/pacman.html

36. [PC2006] Phil Co, “Level Design for Games: Creating Compelling Game

Experiences”, Berkeley, Calif. : New Riders Games, 2006

120

37. [PIE2004] P. Spronck, I. Sprinkhuizen-Kuyper and E. Postma, “Difficulty

Scaling of Game AI”. GAME-ON 2004: 5th International

Conference on Intelligent Games and Simulation (eds. El

Rhalibi, A., and D. Van Welden), pp. 33--37. EUROSIS,

Belgium, 2004.

38. [PMIE2006] P Spronck, M Ponsen, I Sprinkhuizen-Kuyper, and E Postma .

“Adaptive Game AI with Dynamic Scripting. Machine Learning”,

Vol. 63, No. 3, pp. 217-248, 2006

39. [PS2005] P. Sweetser, P. Wyeth “GameFlow: a model for evaluating

player enjoyment in games”, Computers in Entertainment

(CIE), Volume 3 Issue 3 ACM Press ,July 2005

40. [PS2007] P. Schuytema. “Game Deisgn: A Practical Approach”, Charles

River Media 2007

41. [RA1994] R. Agrawal, R. Srikant: “Fast Algorithms for Mining Association

Rules'', Proc. of the 20th Int'l Conference on Very Large

Databases, Santiago, Chile, Sept. 1994

42. [RA1995] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, In

Proc. 1995 Int Conf. Data Engineering, page 3-14, Taipei,

Taiwan, March, 1995

43. [RE2003] R. E. Pedersen. ,”Game design foundations “, Plano, Tex. :

Wordware Pub., 2003.

44. [RH2004] R. Hunicke and V. Chapman, “AI for Dynamic Difficulty

Adjustment in Games”. Challenges in Game Artificial

121

Intelligence AAAI Workshop, pp. 91-96, San Jose, 2004.

45. [RR2005] R. Rouse. “Game design: theory & practice”, Wordware Pub.,

2005.

46. [RV2004] R. Hunicke., V. Chapman, “AI for Dynamic Difficulty Adjustment

in Games”. In Proceedings of the Challenges in Game AI

Workshop, Nineteenth National Conference on Artificial

Intelligence (AAAI '04) (San Jose, California) AAAI Press,

2004.

47. [SL2006] S.Lee, K. Jung, “Dynamic Game Level Design Using Gaussian

Mixture Model”, Q.Yang and G. Webb(Eds): PRICAII 2006,

LNAI 4099, pp 955-959 2006, Springer-Verlag Bedin Heidilbery,

2006

48. [SR2002] S. Rabin, ”AI game programming wisdom”, Hingham, Mass. :

Charles River Media, 2002

49. [SR2004] S.Rabin, ”AI game programming wisdom 2”, Hingham, Mass. :

Charles River Media, 2004

50. [SW1998] S. Woodcock, “Game AI: The State of the Industry, Game

Developer” , Gamasutra, November 20, 1998

http://www.gamasutra.com/features/19981120/gameai_01.htm

51. [SW1999] S. Woodcock, “Game AI: The State of the Industry, Game

Developer” , Gamasutra, August20, 1999

http://www.gamasutra.com/features/19990820/game_ai_01.ht

m

122

52. [TR1999] T. Ryan, “Beginning Level Design, Part 1: Level Design

Theory”, Gamasutra April 16, 1999.

http://www.gamasutra.com/features/19990416/level_design_0

1.htm

53. [TR21999] T. Ryan, “Beginning Level Design, Part 2: Rules to Design By

and Parting Advice”, Gamasutra April 16, 1999.

http://www.gamasutra.com/features/19990423/level_design_0

1.htm

54. [UO] “Ultima Online”, http://www.uo.com/

55. [UU] “Usability Glossary Playability”,

http://www.usabilityfirst.com/glossary/term_657.txl

56. [WD2006] W. D. Pullen, “Think Labyrinth!” ,

http://www.astrolog.org/labyrnth.htm

57. [WDM2006] “10 Usability Principles to guide you through the Web Design

Maze”, http://www.humanfactors.com/downloads/10tips.asp

58. [WL2002] W. Lin, M. A. Orgun and G. Williams; “An overview of temporal

data mining”. In The Proceedings of The Australasian Data

Mining Workshop, Held in Conjunction with The 15th Australian

Joint Conference on Artificial Intelligence, 3 December 2002,

Canberra

59. [WIKI1] “Wikipedia- Game_programming”,

http://en.wikipedia.org/wiki/Game_programming

60. [WIKI] “Wikipedia”, http://en.wikipedia.org/

123

61. [WIKI2] “Wikipedia-Artificial_Intelligence”,

http://en.wikibooks.org/wiki/Artificial_Intelligence

62. [WIKI3] “Wikipedia-Strong AI vs. Weak AI”,

http://en.wikipedia.org/wiki/Strong_AI

63. [WIKI4] “Wikipedia-Dynamic Game Balancing”,

http://en.wikipedia.org/wiki/Dynamic_game_balancing,

64. [WIKI5] “Wikipedia- Level design”,

http://en.wikipedia.org/wiki/Level_design

65. [WIKI16] “Wikipedia- Level Editor”,

http://en.wikipedia.org/wiki/Level_editor

66. [WIKI17] “Wikipedia- Level Designer”,

http://en.wikipedia.org/wiki/Level_designer

67. [WIKI18] “Wikipedia- Maze generation algorithm”

http://en.wikipedia.org/wiki/Maze_generation_algorithm

68. [WIKI19] “Wikipedia- Game Engine”,,

http://en.wikipedia.org/wiki/Game_engine

	theses_copyright_undertaking
	b21898273

