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Abstract 
Given a database of records, clustering is concerned with the grouping of similar 

records into different groups or clusters based on their attribute values. Many 

algorithms have been proposed in the past to address the clustering problem but most 

of them are developed mainly to handle continuous-valued data. Relatively little 

attention has been paid to the clustering of categorical data. Given that these kind of 

data is very commonly collected in many applications in business, medicine and the 

social sciences, etc., it is important that an effective clustering algorithm be 

developed to handle such data, in this thesis, we propose such an algorithm. This 

algorithm is based on the use of a simple genetic algorithm (GA) that employs a 

probabilistic search technique for solutions that are supposedly optimal or near-

optimal according to some performance criteria. This GA-based clustering algorithm 

makes use of an encoding scheme that can encode clustering results in chromosomes 

effectively.  To work with this scheme, we also propose a set of genetic operators 

that can facilitate the exchange of clustering information between chromosomes on 

one hand and allow variations to be introduced on the other.  For the proposed GA to 

work well, we have also introduced a fitness function to evaluate clustering quality.  

This is based on an information theoretic measure that measures how much the 

presence of a particular attribute value supports or refutes a record in a data set to be 

classified into a specific cluster. The higher its fitness value based on the evaluation 

function, the better the solution encoded in a chromosome. Unlike traditional 

algorithm, the proposed GA-based clustering algorithm has the advantage that it can 
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automatically determine the number of clusters hidden in a dataset. The proposed 

algorithm has been tested with both simulated and real data; the results show that it is 

very promising and can have many real applications. 
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Chapter 1 

Introduction 
Given a set of records each characterized by a common set of attributes, clustering is 

concerned with the grouping together of similar records based on their attribute 

values. Clustering is sometimes also known as unsupervised learning, numerical 

taxonomy, vector quantization, and learning by observation [Jain et al. 1999]. Over 

the last several decades, many clustering algorithms have been developed and used 

with much success in many applications such as scientific data exploration, 

information retrieval, text mining, spatial database applications, computer vision, 

web analysis, CRM marketing, medical diagnostics, and computational biology. 

More recently, clustering has been used in data mining to deal with data that 

typically finds in database or data warehouse of large enterprises [Fayyad et al. 

1996].  These databases or data warehouse typically consist of not just continuous-

valued numerical data, but also large amount of data characterized by categorical 

variables. 

 

A categorical variable is a variable that can take on two or more values, for example, 

colour can take on {red, yellow, green, …} and weather conditions can take on 

{sunny, rainy cloudy,…}, etc. Many clustering algorithms have been proposed in the 

past to handle numeric data and relatively little attention have been given to 

categorical data. Since the proximity measure used in traditional clustering 

algorithms cannot be defined directly on categorical data, these algorithms do not 

handle categorical data clustering effectively. Given that such data are so commonly 
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found in different application areas such as those in business, medicine and the social 

sciences, it is important that an effective algorithm can be developed for these data. 

 

1.1. The Clustering Problem 
For a clustering algorithm to perform effectively with categorical data, it has to 

tackle a number of problems including: (i) determining the number of clusters to be 

formed when given a data set; (ii) handling noisy and missing data values; and (iii) 

allowing clustering results to be interpreted and (iv) processing capability to deal 

with categorical data.  

 

Determining the number of clusters to be formed 

One problem that faced by many clustering algorithms is to determine how many 

clusters to form in a given data set. Many popular clustering techniques such as the 

K-means algorithm, requires that the desired number of clusters to be formed to be 

decided by the users. Providing such information is often difficult as there is usually 

a lack of enough domain knowledge for such decision. Because of this difficulty, 

some effort has been made to look into the determination of the “right” number of 

clusters [Cristofor and Simovici 2002; Everitt et al. 2001; Fraley and Raftery 1998; 

and Tibshirani et al. 2000] 

 

Difficulties in handling missing and noisy values 

Real-world data are often incomplete and inconsistent. Missing and noisy values are 

common in all kinds of databases [Han and Kamber 2001]. Missing values can be 

found for numerous reasons. For example, it is possible that relevant information 

may not be available at the time of collection, or may not be regarded as important at 

the time of entry. They may also be due to human error such as omission. Other than 

missing values, dirty or noisy data can be recorded as a result of inconsistency of 

data sources, or randomness or variations when measurement data are obtained.  

They may also be introduced as a result of deliberately supply of false information.  

 

Many clustering techniques do not perform well with the presence of too many noisy 

values in the data. For example, for centroid based clustering algorithm such as the 
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K-means algorithm, if the initial centers are not chosen properly, the noisy values 

could cause splitting of a cluster or merging of two supposedly distinct clusters into 

one. This problem is complicated by the fact that many clustering algorithms do not 

automatically determine the number of clusters that should be formed. As a result, 

noisy and missing values can significantly distort the results of some clustering 

algorithms.  

 

To avoid the problems caused by noisy values, a data set has to be preprocessed by 

data cleaning or data cleansing procedures [Fayyad et al. 1996a, 1996b; and Fayyad 

1998a]. However, no data cleaning method can filter data perfectly and they may not 

be suitable for all problem domains. For instance, given a clinical database, the 

missing of some symptoms may actually provide useful information. In this case, the 

use of typical data cleaning and preprocessing techniques, such as inserting 

normalized data into the missing field, modifying prior probabilities, or using 

average data values  [Kennedy et al. 1997], etc., may grossly distort the original data 

[Matthews and Hearne 1991].  For a clustering algorithm to effectively perform its 

tasks, there is a need for it to be able to handle noisy and missing values as much as 

possible. 

 

Difficulties in interpreting clustering results 

Data interpretation is very important in many data mining tasks [Fayyad et al. 1996a, 

1996b, 1996c]. However, for clustering, the basis on which data assignments are 

made is not always clear. It is also not always clear what knowledge different 

clustering techniques discover. For example, clustering techniques based on the use 

of distance metrics do not interpret clustering results but merely provide grouping 

information. Some clustering techniques, such as hierarchical agglomerative 

clustering techniques [Kaufman and Rousseeuw 1990] do generate hierarchies but 

does not necessarily allow easy interpretation of the nature of patterns revealed 

inside the hierarchy. One way to deal with this interpretation problem is to use a 

separate inductive learning algorithm, such as C4.5 [Quinlan 1993] to generate a 

decision tree that can, hopefully, allow patterns underlying each cluster to be 

explicitly described. While this can help understand differences between clusters, 
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these inductive learning techniques are normally designed quite differently from the 

algorithm that generates the clusters. The rules that are induced when using C4.5 

may not describe a cluster perfectly. 

 

Problems with categorical data 

Many clustering algorithms have mainly been developed to deal with continuous-

valued data. Typically, a distance measure defined in the Euclidean space are used to 

determine if two data records are similar or close enough to be placed in the same 

clusters. However, distance measure defined in the Euclidean space cannot be used 

with categorical data that are defined on the nominal scale.  For this to be feasible, 

the categorical attributes have to be binarized, i.e., a binary attribute needs to be 

created for each unique value of the original categorical attribute.  Even with all 

categories binarized, experiments have shown that many clustering algorithms 

developed originally for continues-valued data do not handle such data too well. 

 

1.2. Overview of our proposed solution 
To discover clusters in categorical data, we propose a novel algorithm that is based 

on a simple genetic algorithm (GA). GAs, which have been developed to solve 

optimization problems, have recently been widely used in different areas and have 

been shown to be very successful [Tzafestas et al. 1999; and Chen 2002]. Here, we 

make use of GA’s powerful ability to perform probabilistic search to try to find 

optimal cluster groupings. 

 

Like other GA based algorithms, our clustering algorithm is as well based on GA 

operators; we need to decide on an appropriate encoding scheme and a suitable 

fitness function. For the encoding scheme, we choose to encode a cluster 

arrangement in each chromosome with each gene encoding a cluster. As for the 

fitness function, given a set of categorical data and the cluster arrangement as 

encoded in a chromosome, the fitness function we choose is probabilistic and is 

based on an information-theoretic entropy measure. It measures the frequency of 

occurrence of same attribute-value pair within each cluster so that a higher fitness 
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values means the records within the same cluster share more common attribute 

values. With this fitness function, we aim to optimize the “purity” of the attributes 

within a cluster.  

 

The fitness measure that is used can be expressed as interesting patterns so that a set 

of attribute-value pairs can be correlated with a cluster label [Agrawal et al. 1993; 

Agrawal, Srikant 1994; and Agrawal et al. 1996]. For this, one may be attempted to 

use support and confidence measure that are used to determine if the pattern is 

interesting as a fitness measure.  However, this requires users to define these 

interestingness measures and this is usually difficult to determine. To overcome this 

problem, the probabilistic measure the proposed algorithm employs does not require 

subjective thresholds to be provided. The interestingness of the pattern can be 

reflected by the value of the function we propose so that the fitter a chromosome is, 

the more interesting and meaningful the grouping of the chromosome encodes. And 

this is not affected by the users’ choice of interestingness threshold. 

 

In order to maximize the occurrence of an attribute value, it is necessary to regroup 

data records. This is achieved by special crossover and mutation operators that aim at 

swapping randomly selecting records from each cluster from one cluster to another. 

This process is repeated until there is no further improvement in the fitness of the 

best chromosomes.  

 

In brief, the proposed GA based clustering algorithm has several useful features: (i) it 

uses an entropy based, rather than the distance based, similarity measure for 

clustering; (ii) since the fitness measure is probabilistic, it can be used even with 

noisy and missing values; (iii) it uses a reclassification technique to speed up the 

identification of optimal solutions; and (iv) it is able to express patterns discovered in 

each cluster explicitly to allow for them to be better interpreted. In addition to these 

features, it should be noted that the proposed algorithm could be modified to find a 

suitable number of clusters that should be discovered in a data set.  
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1.3. Outline of the Thesis 
The thesis is organized as follows. In Chapter 2, a review of relevant literature is 

presented. We discuss how clustering can be performed with traditional clustering 

algorithms developed for pattern recognition or machine learning. In particular, we 

describe also some clustering algorithms developed specifically to handle categorical 

data. Besides, since GA has been used to perform clustering and our proposed 

algorithm is based on GA, in this same chapter, we also give a brief overview of how 

GA has been used in data clustering. 

 

In Chapter 3, we describe our proposed GA-based clustering algorithm in details. We 

have evaluated the proposed clustering algorithm with synthetic and real data. In 

Chapter 4, we give the details of the experiments and discuss the results.  Our 

proposed algorithm can be modified to allow the number of clusters to be discovered.  

In Chapter 5, we discuss the details of how our algorithm is modified to solve the 

problem. Finally, in Chapter 6, we give a summary of the work and a proposal for 

future. 
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Chapter 2 

Literature Review 
Research into clustering has traditionally concentrated on numerical data. Many 

effective algorithms have been developed for such data [Kaufman and Rousseeuw 

1990; Ng and Han 1994; Zhang et al. 1996; Guha et al. 1999; Karpis et al. 1999; 

Ester et al. 1996; Ankerst et al. 1999; Wang et al. 1997; Sheikholeslami et al. 1998; 

and Agrawal et al. 1998 etc.]. When it comes to categorical data, however, not many 

clustering algorithms are developed specifically for them. 

 

For many clustering algorithms, the Euclidean distance is usually used as a measure 

of similarity between two records. Unfortunately, this distance measure cannot be 

defined for categorical data. Recently, algorithms that measure data point-density 

have been developed for mining large numerical data sets for inherent clusters. 

However, density measures are also not very good measuring criteria for categorical 

data, as density is not a quality of such data.  

 

For categorical data, a popular distance measure that can be used is the hamming 

distance measure. It is defined to be a count of the matches and mismatches of 

attribute values of two different objects or data records. Even with hamming distance, 

it should be noted that the concept of density and centroid is hard for some clustering 

algorithms to work effectively.   

 

One approach to clustering categorical data is to ignore the distance measures 

altogether.  Such an approach would make use of a probability measure instead. This 
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measure is based on counting the frequency of common features shared by records in 

the same cluster. The higher the frequency, the more similar the data records are in a 

cluster. In the following, we give an overview of existing clustering techniques that 

can be classified according to whether or not they are developed for continuous-

valued data, or for categorical data. As our proposed algorithm is GA based, we also 

discuss how GAs have been used in clustering. 

 

2.1. Continuous-Valued Data Clustering 
As discussed above, many popular clustering algorithms employ a distance metric as 

a measure of how similar the records are. The most popular distance metric used is 

the Euclidean distance. Many optimization-based clustering algorithms, such as the 

K-mean algorithm, require users to specify the number of clusters ahead of time. One 

advantage of these techniques is that they are fast and easy to implement. Compared 

to optimization-based algorithms, hierarchical clustering algorithms do not require 

the number of clusters to be determined ahead of time. Such algorithms make use of 

dendrogram to identify similar records that should be grouped and to determine the 

number of clusters to form.  Hierarchical clustering algorithms, compared to the 

optimization-based algorithms, can be slow.  

 

2.1.1. Optimization-based Methods 

Given k, the number of clusters to form, optimization-based methods attempt to 

partition a given data set into k clusters based on a criterion function [Han and 

Kamber 2001]. These algorithms seek to optimize a criterion function. The criterion 

function, often called a similarity function, can be a distance metric and is used as a 

partitioning function so that the data records within a cluster are “similar”, whereas 

the data records of different clusters are “dissimilar”.  

 

However, to search globally for the optimised partitioning requires exhaustive 

enumeration of all possible partitions. This is computationally infeasible. For this 

reason, a locally optimised approach is usually used. This is done by trying to 
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optimise the local partitioning function like hill-climbing and producing successive 

clusters. It terminates when a local optimum is determined. 

 

Among optimization-based clustering algorithms, the K-means algorithm is the most 

popular. It takes an input parameter k and partitions a given data set into k clusters by 

optimising a criterion function.  

∑∑
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k

j Cs
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jq

csdCSd
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where cj is the centre of a cluster Cj,  sq is a record assigned to Cj, k is the number of 

clusters to be formed, and d(sq, cj) is the Euclidean distance between data record sq 

and cj. Thus, the criterion function d(S, C) is attempting to minimize the distance of 

every data record from the centre of the cluster to which the record belongs.  

 

More specifically, the K-means algorithm begins with the choosing of k records as 

the initial cluster centres. It then assigns each record to the cluster whose centre is the 

nearest to it. Once this is done for all records, the centre is recomputed for each 

cluster by calculating the cluster means. The records are relocated according to the 

updated cluster means until there are no changes.  

 

There are quite a lot of variants of K-means clustering. They vary from the selection 

of the initial K-means and the criterion function, to the calculation of the cluster 

means. Instead of computing the means, the K-medoids algorithm [Kaufman and 

Rousseeuw 1990] used one record in the cluster as a representative. CLARA 

[Kaufman and Rousseeuw 1990] is a modified version of K-medoids based on 

sampling. Instead of finding representative records for the entire data set, CLARA 

draws a sample of the data set, applied K-medoids on the sample, and finds the 

medoids of the sample. The size of the samples depends on the number of clusters. 

Empirical results show that the size of 40+2k, where k is the number of clusters to be 

formed [Kaufman and Rousseeuw 1990], gives the optimal result. CLARA will 

normally run several samples to select the best clustering arrangement.  

 



Chapter 2 – Literature review  10 

Based on CLARA, an algorithm called CLARANS has been proposed [Ng and Han 

1994]. CLARANS draws a sample of data records called nodes in each step of a 

search and this has the benefit of not limiting a search to a localised area. CLARANS 

takes two user parameters maxneighbour and numlocal while performing its tasks. 

Maxneighbour is the maximum number of the surrounding records of sample data 

record that are to be examined. Numlocal is the maximum number of local optima 

that can be collected. CLARANS begins by selecting a random data record. It then 

checks a sample of neighbour records of the data record, and if a better neighbour is 

found, it changes to the neighbour record as a local optimum and continues 

processing until the maxneighbour is reached. Otherwise, it declares the current 

record a local optimum and starts a new pass to search for other local optimum. After 

a specified number of local optimum, numlocal are collected, the algorithm returns 

the best of these local values as the medoid of the cluster. 

 

2.1.2. Hierarchical Methods 

Hierarchical clustering methods can be either agglomerative or divisive [Kaufman 

and Rousseeuw 1990]. Agglomerative methods, also known as bottom-up models, 

start with each record itself in the data set forming a single cluster. They then 

progressively join the nearest clusters into a larger cluster until all the clusters have 

merged into one. Divisive methods, also known as top-down models, are the opposite 

of the agglomerative methods. They start with all records forming a single cluster 

and, step-by-step, this single cluster is divided into smaller clusters. Ultimately, each 

record forms a single cluster.  

 

These hierarchical clustering algorithms produce a tree of clusters, called a 

dendrogram, which shows how the clusters are related. It can also be a data structure 

as is used by BIRCH [Zhang et al. 1996]. The data structure, called a CF-tree 

(Clustering-Feature tree), allows records to be grouped from smaller clusters to form 

larger clusters hierarchically. Suppose the root of CF tree represents a large cluster 

containing all data records, the branches of the tree are subclusters of those records. 

A CF tree contains a measure called clustering feature. A clustering feature 

describes the number of data records in each subcluster, the linear sum and square 
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sum of distance among those records. A CF tree makes use of two parameters: 

branching factor B and threshold T to control the clustering of data records. The 

branching factor B specifies the maximum number of children per non-leaf node 

which stores sums of the clustering features of their children, and thus summarize 

clustering feature about their children. The threshold T specifies the maximum 

diameter of subclusters stored at the leaf nodes of the tree. These two parameters 

influence the resulting size of the tree [Han and Kamber 2001]. 

 
Root level 

First level 

… … …

… …

CF1 CF2 CF3 CF4

CF11 CF12 CF13 CF14

 

 

 

 

 

Figure 2-1. CF tree 

 

The data records are incrementally inserted to the closest leaf node of the CF tree. 

Once inserted, it updates the clustering features from the leaf node up to the root 

node. If the diameter of the subcluster after insertion exceeds the threshold T, the leaf 

node and possibly other nodes are split. After all data records are inserted, the tree is 

rebuilt to improve the clustering quality by redistributing the data records again. The 

final clusters can be obtained by cutting the branches at a particular level.  

 

Other than BIRCH, Chameleon [Karypis et al.  1999] is also a hierarchical clustering 

algorithm. It differs from other similar algorithms by its taking into account the 

dynamic model of clusters.  Like other hierarchical clustering algorithms, it merges 

data records successively based on the idea of relative inter-connectivity and relative 

closeness. It merges clusters if their inter-connectivity and proximity are high enough 

with respect to the interconnectivity and closeness between records and the cluster.  

Chameleon first constructs a sparse graph for the data records according to their 

similarity. It then uses a graph partitioning method to partition the data records into a 

large number of smaller clusters.  After that, it uses hierarchical method to 

progressively merge the smaller clusters into larger one [Han and Kamber 2001].   
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2.2. Categorical Data Clustering  
There has not been much effort to develop clustering algorithms for categorical data. 

Among the more popular algorithms, the most well known one is called COBWEB 

[Fisher 1987]. COBWEB adopts a technique called concept learning. It groups data 

records with similar features together in one single cluster. Based on COBWEB, two 

variants of it have been developed. They include Autoclass [Cheesman and Stutz 

1995] and ITERATE [Biswas et al. 1998].  

 

Other conceptual clustering techniques [Michalski 1980; Fisher et al. 1991; Fisher 

1987; Fisher et al. 1993; Anderson and Matessa 1991; Gennari et al. 1989; and 

Cheesman and Stutz 1995] developed by the machine learning researchers can also 

be considered for use in clustering records containing discrete-valued data.  More 

recent work on clustering categorical data can be found in [Guha et al. 1998; Ganti et 

al. 1999; Huang 1997a; Huang 1997b; Huang 1998; Han et al. 1997; Gibson et al.  

2000; Zhang et al. 2000; and Cristofor and Simovici 2002].  In the following, we 

briefly describe the three more popular approaches. 

 

2.2.1. COBWEB 

COBWEB [Fisher 1987] performs clustering by maximizing its ability to infer 

similarities between data records. COBWEB is a typical form of incremental 

conceptual clustering. It forms clusters of records that shared common concepts. 

 

COBWEB performs hierarchical clustering in the form of a classification tree.  It 

uses a heuristic measure called Category Utility to perform grouping. Categorical 

utility (CU) is a function for maximizing the similarity of records within a single 

cluster and the dissimilarity of records between two different clusters. CU makes use 

of two concepts: intra-cluster similarity and inter-cluster dissimilarity. Intra-cluster 

similarity is defined to be the probability Pr(Ai = aij | Ck) where Ai is the attribute i of 

a data record, aij is the value of attribute i and Ck is one of the k clusters. The larger 

the intra-cluster similarity within a cluster, the greater the proportion of data records 
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in that cluster that share this attribute-value pair, and the more predictable is the 

cluster that possess this attribute-value pair. Inter-cluster dissimilarity, on the other 

hand, is defined to be the probability Pr(Ck | Ai = aij). The larger this value is, the 

fewer the data records in contrasting clusters that share this attribute-value pair, and 

the more predictable is this attribute-value pair contribute only to one cluster.  

 

Given a dataset, COBWEB inserts records one-by-one into the classification tree by 

maximizing the category utility. The records are placed together under those nodes 

having the most attributes in common. The records traverse the classification tree 

several times till the tree become stable.  

 

The placement of the records into clusters is highly sensitive to the input order. 

COBWEB solves this problem by introducing two operators that help make it less 

sensitive to input order. These operators are merging and splitting. When a record is 

inserted, the two best nodes are merged into a single node. Furthermore, COBWEB 

considers splitting the children of the best node among the existing tree. Both 

merging and splitting are based on category utility and these two operations provide 

a way for COBWEB to flexibly reallocate an assigned record.  

 

2.2.2. The K-modes Algorithm 

The K-modes algorithm [Huang 1997a; Huang 1997b; and Huang 1998] is a 

modified version of the K-means algorithm for handling categorical data. The K-

modes algorithm, like K-means, takes an input parameter k and attempts to partition a 

given data set into k clusters by optimising a criterion function.  

 

K-means identifies a representative of each cluster being formed by calculating the 

centre of all records in the cluster. However, the mean of two categorical attributes 

produces a meaningless value. For this reason, the mode of each attribute is used 

instead. More specially, the algorithm begins by choose k records as the initial cluster 

centres. It then assigns each record to a cluster whose centre is the nearest. The 

centre is then recomputed by calculating the cluster modes. To measure dissimilarity, 

K-modes define a simple dissimilarity matching function. The function calculate the 
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number of mismatch between the cluster centre Cj, where j = 1, 2, … , k and a record 

sq with m attributes, where i = 1, 2, … , l and n = 1, 2, … , m ,:   
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For each of the iterations, it tries to minimize the dissimilarity function. The lower 

the value of the dissimilarity function, the more the attributes the data record match 

with the cluster centre and the smaller the distance is between the data record and the 

cluster centre. For each assignment of the data record to a cluster, the mode is 

updated by finding the most frequent attribute value for that cluster. After all the 

records are assigned, the process is repeated.  The records are considered for 

relocation according to the updated cluster mode until there are no further changes.  

 

K-modes, like K-means, has the advantages of being computationally easy and has 

high scalability when processing large amount of and high dimensional data. K-

modes are limited in their ability to find starting representatives or centres. Also, they 

are usually only able to converge to a locally optimal solution [Huang 1998].  

 

2.2.3. Autoclass 

The Autoclass [Cheeseman et al. 1988; and Cheeseman and Stutz 1995] system, 

developed by Peter Cheeseman et al., is an unsupervised Bayesian classification 

system that seeks for a maximum posterior probability classification.  

 

Bayesian theory gives a mathematical calculus of the degrees of belief that a given 

sample belongs to a particular class/cluster. Let s be a data record whose cluster label 

is unknown. Let H be some hypothesis, such that the data record s belongs to a 

specified cluster C. Let P(H|s), the probability that the hypothesis H holds given the 

observed data record s. More specifically, P(H|s) denotes the posterior probability of 
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H conditioned on s. It reflects the probability in H after seeing evidence s. In contrast, 

P(H) is the prior probability of H. It denotes that the probability H holds regardless 

of how the given data record looks. Given a data set with k clusters, C1, C2, …, Ck. 

Autoclass repeatedly creates a random assignment of the data records into any one 

cluster and then tries to massage this into a higher posterior probability of 

classification through local changes until it converges to some “local maximum”.  To 

find these local maximum, Autoclass uses the Expectation Maximization (EM) 

Algorithms [Dempster et al. 1977].  

 

The EM algorithm is based on the fact that at a maximum, cluster parameters can be 

estimated from statistics. These statistics are obtained from the attributes of the data 

records belonging to that cluster and it is Bernoulli distributions for categorical 

attributes, Gaussian distribution for numeric attributes and Poisson distribution for 

number counts. Given the cluster parameters like cluster mean and cluster standard 

deviation, Autoclass computes a relative likelihood weight,  that gives the 

probability that a particular record, s is a member of a cluster, C

kscw

k. Using these 

weights, cluster membership is expressed probabilistically rather than a specific 

assignment. Thus every one of the records in a given dataset is considered to have a 

probability that it belongs to each of the possible cluster. These cluster membership 

probabilities must sum to one for each of the data records. No crisp boundaries are 

presented among clusters. The records are assigned to the clusters with different 

degree of membership. The higher the membership, the more likely the records 

belong to that cluster. 

 

The algorithm firstly computes the probabilistic cluster memberships of records 

using the cluster parameters. After the records are assigned, the cluster parameters 

are updated. It then reassigns those records according to the updated cluster 

parameters. It repeats until it stops changing. Then, it is said to find a local maximum. 

Autoclass can be stopped by a maximum duration, by a maximum iteration or by 

user intervention. When stopped, clusters can be obtained, each of which is described 

by a set of cluster parameters such as the mean and standard deviation of the 

attributes in the cluster. For example, “cluster A is described with height normally 
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distributed with mean 4.67ft and standard deviation 0.32 ft”. A set of cluster weights 

further describes the probabilistic assignment of the records to each of the clusters. 

The main description of the Autoclass algorithm is depicted in Figure 2-2. 

 

1. Determine the number of clusters, k, for a partition. 
2. Randomly split the data into k groups and estimate the parameters of each 

cluster. 
3. Repeat the redistribution process using a hill climbing method in an attempt to 

optimize the clustering structure, and 
4.  Adjust the number of k, and repeat steps 1-3. 
 

Figure 2-2. Description of the Autoclass algorithm 

 

From Figure 2-2, we can see Autoclass divided into two parts: (i) determining the 

number of clusters; and (ii) determining the parameters that optimize the most 

probable clusters. In determining the number of clusters, Autoclass suggests that 

including a cluster that has negligible posterior probability in the model cannot 

improve the likelihood of the better clustering. Similarly, the model in which a 

cluster has a negligible prior probability will always be less probable than models 

that simply omit that cluster. Autoclass begins with smaller number of clusters and 

searches to find the best cluster parameters for that number of clusters. When the 

resulting clusters have significant probability, the number of clusters is increased. 

This process repeated until the result has clusters with negligible posterior 

probability. The clusters with negligible posterior probability are removed and the 

optimal number of cluster is found. 

 

2.3. Genetic Algorithm Clustering 
Genetic algorithms demonstrate robust and domain-independent search 

characteristics. For this reason, genetic algorithms have been widely used in 

optimization-based clustering methods when the goal is to find a global optimum 

solution [Su and Chang 1998; Krishna and Murty 1999; Jiang and De Ma 1996; and 

Song et al. 1997]. 
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Genetic algorithms can be used in clustering for purposes as varied as finding 

optimal numbers of cluster [Tseng and Yang 1997], initializing cluster centers 

[Kuncheva and Bezdek 1998; and Bezdek et al. 1994] and finding globally optimal 

clustering [Su and Chang 1998; Krishna and Murty 1999; Jiang and  De Ma 1996; 

Song et al. 1997; Kemenade 1996; Kuncheva and Bezdek 1998; and Bezdek et al. 

1994]. Recently, the focus of research has been on using GA to find clustering rules 

[Sarails et al.  2002] and using GA to find the number of clusters [Simovici et al.  

2002; and Leon et al. 2006]. For example, GA has been used to acquire rules that 

identify dense regions and used an evaluation function to adjust those rules on 

coverage of the dense region [Sarails et al. 2002]. The identification of such rules 

also allows the identification of the attributes and ranges that contribute to the final 

cluster.  

 

2.3.1. Genetic K-means Algorithm 

The K-means algorithm must be the most typical of the optimization-based clustering 

algorithms. Although K-means algorithm is simple and computational efficient, it 

suffers from the problem of binding to local optimum. This is because the K-means 

algorithms search only those spaces that are close to their starting cluster centers. 

This search will be stagnant if the hill-climbing process has reached its local 

optimum. It cannot jump from one space to another space at random.  

 

In [Krishna and Murty 1999], it attempts to solve this problem by stochastically 

searching from a different solution space. It attempts to find optimal initial centers 

for K-means. The algorithm starts from randomly generate initial centers. K-means is 

then run against these initial centers to find the clusters. The cluster centers with the 

least within-group sum of distance are chosen for genetic operations and are picked 

up as initial centers for next generation. The GA process stops when the maximum 

number of generation is reached. 
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2.3.2. Genetic rule-based Algorithm 

A genetic rule-based clustering algorithm [Sarails et al. 2002] presents a tool for 

clustering using a rule-based GA. For a given data set, the algorithm tries to find a 

set of clustering rules. The number of rules corresponds to the number of desired 

clusters. Each rule contains d genes, where each gene corresponds to an interval 

involving one feature. Each gene belongs to a rule contains two fields: a lower 

boundary (lbi) and an upper boundary (ubi), where lbi and ubi denotes the lower and 

upper values of the ith feature of the rule. The lower boundary and the upper 

boundary are used as comparators for a selected feature. The comparison operator 

may be ≥ (larger or equal) and ≤ (smaller or equal). For example, given a dataset 

containing data records that have two attributes, tax and salary, we can define two 

clusters as follows: 

 

Cluster 1: 

 Rule A: ( (400 ≤ salary ≤ 1000) && (0 ≤ tax ≤ 100) ) 

Cluster 2: 

 Rule B: ( (0 ≤ salary ≤ 200) && (300 ≤ tax ≤ 400) ) 

 

The entire chromosome will appear as in Fig 2-3. 

Chromosome A: 

 

400 1000 0 100

Rule A

Salary gene Tax gene

 

 

 

Chromosome B: 

0 200 300 400

Rule B

Salary gene Tax gene 

 

 

 

Figure 2-3. Grouping rules encoded in chromosomes 

 

The genetic rule-based clustering algorithm evaluates chromosome fitness along five 

parameters: rule asymmetry, rule density, rule coverage, rule homogeny, and degree 
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of rule overlap. Each criterion has a role in maximizing interclass dissimilarity and 

intraclass similarity. For a data record belonging to one particular rule, rule 

asymmetry ensures uniform distribution of data records relative to the rule centre. 

Rule asymmetry takes two measures, Cr and Cp. Cr is the rule centre. For example, 

given a rule with 400 as its lower and 1000 as its upper bound, Cr would be 

400+1000 / 2 = 700. Cp measures the average of all points in a cluster. Then, it 

calculates how much Cp deviate from Cr. Rule density measures the number of data 

records in a unit area. Rule coverage measures how many data records are covered 

by a rule. Rule homogeny ensures that the data records within a cluster are close to 

each other and penalises where there are holes in dimensions. Rule overlap is used to 

penalise duplicate rules over generations.  

 

The higher the score in the five parameters, the best is the chromosome. The fittest 

chromosomes are then selected, crossover mutated and carried to the next generation. 

The genetic algorithm terminates after it reaches the maximum iterations. The best 

chromosome is the result of the final clusters. The experimental result shows that it 

can identify clusters of various shapes, sizes and densities [Sarails et al.  2002].  

 

2.3.3. An Information-Theoretical Approach to Genetic Algorithms 
for Clustering 

An information-theoretical approach to genetic algorithm for clustering has been 

proposed recently [Cristofor and Simovici 2002; Simovici et al. 2000; and Simovici 

et al.  2002]. Given a data set with categorical attributes, the algorithm uses the 

entropy to measure the similarity of data records within each cluster. The similarity 

can be measured by using Shannon and Gini entropy [Cristofor and Simovici 2002]. 

The Shannon entropy, the uncertainty within a cluster, decreases when the attributes 

within the data records are similar. On the other hand, the entropy increases when the 

data records within a cluster are dissimilar. From this perspective, it attempts to 

construct clusters that the sum of the dissimilarities among the data records is 

minimal. 
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In order to search more efficiently the space of possible clustering, genetic algorithm 

is employed. The clustering process is divided into two phases. In the first phase, it 

estimates the influence of each attribute on the decision to place a record in a specific 

cluster. This estimation can be obtained from a domain expert or by using a set of 

training records. In the second phase, it searches for a clustering of the entire set of 

records such that the attributes of the records influence the clustering to the extent 

obtained in the first phase. The partition of the records is based on an entropy 

measure that is called impurity measure by the algorithm to calculate the similarity of 

records within a cluster. The definition of impurity is depicted in Figure 2-4 

[Simovici et al.  2002] as follow: 

 

S B1 

B2 

B3

B4

L 

 
Figure 2-4. A partition of S and an impure subset L 

 

Let f be a function, S be a set and let { }nBB ,...,1=π  be one partition of S and L be a 

subset of S. The impurity of a subset L of S relation to a partition π  is the impurity 

generated by f as follow [Simovici et al.  2002]:  
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The impurity measure generated by f can be a Shannon’s entropy measure or a gini 

index. For Shannon’s entropy fent(p) = -p log p [Simovici et al.  2002]  and for gini, 

fgini(p) = p – p2 [Simovici et al.  2002], or 
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If  },...,{ 1 mLL=σ  be the partition of the cluster for the data set, the quality of a 

clustering is measured as:  
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where R is the number of records in data set [Simovici et al.  2002]. 

 

This quantity is called the conditional entropy of π  relative to σ . In other words, the 

conditional entropy  is the average value of the specific impurity of the 

classes of the partition 

)|( σπfH

σ  relative to the partition π . The dissimilarity d [Simovici et 

al.  2002] is defined as 

( ) ( ) ( )πσσπσπ ||, fff HHd +=  

 

When π  is close to σ , meaning that their classes have many attribute-values pair in 

common, then both  and ( σπ |fH ) ( )πσ |fH  are close to 0, so  is close to 

0 [Simovici et al.  2002]. 

( σπ ,fd )
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A genetic algorithm is employed to find such partition and  is used as the 

fitness function. Each record is randomly assigned with a cluster label and the fitness 

of a chromosome is calculated by the above notion. At the end of each generation, 

the fittest chromosome amongst all will be brought forward to the next generation 

until some stopping criteria is reached. Since unwanted clusters will increase the 

impurity of the partition, by varying the number of partitions, the number of natural 

clusters existing in the data may be discovered. 

( σπ ,fd
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2.3.4. ECSAGO 

ECSAGO [Leon et al. 2006] is a genetic algorithm for clustering based on Hybrid 

Adaptive Evolutionary (HAEA) algorithms and Unsupervised Niche Clustering 

(UNC). HAEA is a parameter adaptation technique that automatically learns the rate 

of genetic operators. In each generation, one genetic operator such as crossover and 

mutation is selected for each chromosome according to dynamically learned operator 

rates that are encoded in the chromosome. If the genetic operator chosen requires 

mating, it will pick another chromosome to finish the operation. Unsupervised Niche 

Clustering (UNC) is a clustering algorithm that based on a niche technique. A niche 

technique only allow crossover where the two parents are in the same niche in order 

to prevent bad offspring. To determine clusters from the two parents are in the same 

niche, we should make sure the two parents are close enough, within a distance 

known as niche radius. If the distance between two clusters centre from two parents 

are within the niche radius, the two parents can perform crossover. Genetic algorithm 

maintains a population pool where chromosomes may contain different number of 

clusters. These chromosomes are in their best fitness that they are said to reach their 

local optimum. As a result, the final population maintain a pool of chromosomes 

with different number of clusters. The chromosome is ranked according to the fitness 

function and the best chromosome is picked up. The number of clusters and the 

cluster grouping can then be determined. The fitness function adopts the Euclidean 

distance measure where distance between records within the same cluster should be 

minimized. This technique provides benefit that it can locate all optima of multi-

modal problem such as finding all optimal clustering for different number of clusters 

in a single course of action. 
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Chapter 3 

A GA-based approach to 
clustering categorical data 
In this Chapter, we describe a GA-based algorithm for the clustering of categorical 

data. Specifically, we describe (i) how different clustering arrangements can be 

encoded in a population of chromosomes, (ii) a fitness function that can allow the 

interestingness of different clustering arrangements to be compared; (iii) a crossover 

operator that can allow interesting patterns discovered in different clustering 

arrangements to be exchanged; (iv) a mutation operator that can allow variations to 

clustering arrangements so as to avoid local minimum and (v) a reclassification 

operator that can correct the wrong clustered records into correct one.  

 

In Section 3.1, we give a formal definition of the clustering problem we are tackling 

and we also introduce the notations we will be using in describing the proposed 

algorithm. For the purpose of compare-and-contrast, we describe, in Section 3.2, 

popular proximity measures used in traditional clustering algorithms. Before we 

present our proposed algorithm, we first introduce a simple GA that our algorithm is 

based on in Section 3.3. In Section 3.4, we describe the details of our GA-based 

clustering algorithm. In particular, we describe a scheme for encoding different 

clustering arrangement in chromosomes. We also describe the genetic operators we 

use in the proposed algorithm for crossover and mutation. In Section 3.5, we 

introduce a fitness function for the evaluation of chromosomes.  

 



Chapter 3 – Our proposed method   24 

3.1. The Clustering Problem and Notations 
The clustering problem, in its simplest form, can be considered as a special kind of 

partitioning problem. The problem of partitioning can be defined to be the 

partitioning of a data set with records, S, into a collection of mutually disjoint subset 

si of S such that , misi ,,1 , K=∅≠

Ss
m

i
i =

=
U

1

 

and  

mjijiss ji ,,1,,  where K=≠∅=∩  

 

Many well-known problems like bin packing (assigning item to bins), graph coloring 

(assigning specific colors to nodes of a graph) and clustering (grouping of similar 

objects) etc., can also be classified into partitioning problems [Falkenauer 1998]. For 

these problems, when the number of objects and the attributes increase, the number 

of possible partitions that need to be considered will explode drastically [Theodoridis 

and Koutroumbas 1999] and there is no practical way to check for every possible 

combination. Traditionally, these problems are solved by the use of different 

heuristics including simulated annealing, genetic algorithm, evolutionary 

programming and tabu search are developed under such circumstances [Falkenauer 

1998]. 

 

The clustering problem can be described as follows.  Given a data set, S containing N 

records (or objects), s1, ..., sq, ..., sN, with q = 1, …, N.  Suppose that each record in 

the data is described by n distinct attributes, A1, ..., Aj, ..., An, where Aj can take on 

continuous, or discrete data values and their respective domain of values are denoted 

as dom(A1), …, dom(Aj), …, dom(An) where dom(Ai)={ai1, …, aij, …, aim}.  Suppose 

also that the data are noisy in the sense that a certain percentage of values are 

incomplete, inconsistent or incorrect so that the patterns inherent in the data are not 

completely deterministic.  The clustering problem that we are concerned with is to 

discover a meaningful grouping of the data in, S, so that data records that share 

common characteristics are grouped together into the same group and data records 
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that are different in characteristics are placed separately. In other words, we need to 

discover a Ck = {sq | q ∈ {1, …, N}}, k = 1, …, K, where K is the total number of 

discovered clusters and U  and CK
K

k
Nk sssC

1
21 },,,{

=

= k ∩ Cl = ∅, k ≠ l.  

 

In grouping records into groups that share some common characteristics, it should be 

noted that, if one is to perform clustering by trial-and-error, the number of possible 

groupings that need to be considered could be substantially large. This is a 

combinatorial optimization problem that Genetic Algorithms (GA) can tackle well. 

In fact, GA has been used for clustering as well as in other data mining problems [De 

Jong 1988; Chan and Au 2001; and Sarails et al. 2002]. The benefit of GA is that it 

searches a solution space probabilistically at different places and is better able to 

avoid local maxima. Also, GA can be implemented in parallel and can perform its 

tasks relatively efficiently when handling very complex problems. 

 

Given the above notation, it should be noted that the clustering problem is therefore 

to find a mapping f where f : S → {C1, …, Ck }and a cluster, Cj, contains precisely 

those records or objects mapped to it [Dunham 2003]. 

 

How good f is can be evaluated with a goodness measure or cost function that can 

differ from applications to applications if domain-specific knowledge is known. In 

general, however, a clustering arrangement is good if all records in a cluster share the 

same characteristics and all those in the other clusters are characterized differently. 

The greater the homogeneity within a group and the greater the difference between 

groups, therefore, the better is the cluster arrangement. 

 

Since the goal of clustering is to group similar records, the concept of similarity and 

what an adequate degree of similarity is needed to be properly defined [Steinbach et 

al. 2001]. The use of different similarity measures may lead to different clustering 

arrangement and different total numbers of clusters. Hence, it is important that such 

measures be properly defined [Fraley and Raftery 1998; Steinbach et al. 2001; and 

Berkhin 2002].  
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3.2. Similarity measures 
Since clustering is concerned with the grouping of similar records and separating of 

dissimilar records, we need to define a proximity (or a similarity) measure. This 

measure can be denoted as proxim(si, sj) and its magnitude should reflect how similar 

two records si and sj are [Theodoridis and Kourthoumbas 1999; Everitt et al. 2001; 

and Dunham 2003]. Often, the definition of similarity is the crucial factor in cluster 

analysis in data mining.  But unfortunately, it is not easy to formulate a universally 

applicable definition for proxim(si, sj) as there are different types of data, binary, 

nominal, ordinal, and ratio (or continuous data), etc., and each data type may need to 

be taken into consideration so that they may be measured differently if needed.  

 

For the purposes of proximity measurement, data may be categorised as either 

numerical or categorical. For numerical data, the most often used proximity measure 

is “distance” which can be denoted as dist(si, sj) or δij. A distance metric must satisfy 

the triangular equality: δij + δjk ≥ δik, i.e., the sum of the distances between si and sj 

and sj and sk must be greater than or equal to that of the distance between si and sk. 

 

A record is considered to belong to a cluster if its distance with respect to that cluster 

is smaller than those of other clusters. A variety of distance measures have been 

proposed for distance-based clustering. They include Euclidean distance, Manhattan 

distance, Chebyshev distance, Pearson correlation and angular separation. Of these 

distance measures, the most commonly used one is the Euclidean distance measure. 

The Euclidean distance between two records si and sj are defined as: 
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where aik and ajk are the kth attribute value of the records si and sj respectively.  
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Since attributes may be measured with different scales and if the Euclidean distance 

is used, it could result in unfair weighting of the importance of some attributes. For 

continuous-valued attributes, a step called normalization is usually required before 

distances are computed.  

 

For data that is categorical, they can be further classified into either binary or 

categorical attribute. A binary attribute has only two states: 0 or 1, or true or false, 

where 0 means that the attribute is absent, and 1 means that it is present.  Binary 

attributes can be considered as categorical attributes that take on two different values. 

 

If spatial distance is applied to discrete data, it should be noted that it would lead to 

invalid measurements and misleading clustering results [Guha et al. 1999]. To deal 

with discrete-valued attributes, they are typically converted into binary variables first 

so that some similarity measures can apply. These measures include, for example, the 

simple matching coefficient, and the Jaccard coefficient [Everitt et al. 2001]. The 

simple matching coefficient is given as in Table 3-1 and can be represented as 

follows:  

)/()(),( dcbadasssim ji ++++=  

where a denotes the number of binary attributes that are positive for both records, d 

denotes the number of binary attributes that are negative for both records, c denotes 

the number of binary attributes that are positive for si and negative for sj and b 

denotes the number of binary attributes that are negative for si and positive for sj.  

 

It should be noted that a binary attribute may contain values that not of equal 

importance. For example, 1 may be considered as much more significant than 0. A 

similarity measure defined to tackle this kind of attribute is called non-invariant 

similarity. The most well-known such similarity  is the Jaccard coefficient which is 

defined as  

)/()(),( cbacbjisim +++=  

where the parameters, a, b and c are the same as denoted above.  
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 Object j 

  1 0 Sum 

 1 a B a + b 

Object i 0 c D c + d 

 Sum a + c b + d p = a + b + c + d

Table 3-1. A contingency table for binary variables. 

 

A categorical attribute is an attribute that can take on more than two values other 

than 0 or 1 as is with binary attributes. For example, attributes such as colour, 

weather, etc. Normally, they can take on values other than 1 or 0. Even if it does 

happen to take on a value of 1 or 0, it does not need to be understood as suggesting a 

binary relationship. A categorical attribute can be dealt with in the same way as a 

binary attribute, with each value being regarded as a single binary attribute. The 

dissimilarity between two records si and sj can then be computed as 
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where n is the number of attributes in si and sj [Huang 1998; and Han and Kamber 

2001] 
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Other than the above measure, probabilistic similarity measures have also been 

proposed for categorical attributes [Good 1966]. Such measures are based on the idea 

that a group of records that group together should share a common set of features.  

 

Even though they are developed to handle data of different types, it should be noted 

that they are normally used to measure pair-wise distances.  More global information, 

such as information regarding what the main attributes are that characterize a 

particular cluster cannot usually be obtained during the clustering process. For more 

effective clustering, it would be useful for such information to be considered for the 

cluster formation process. Towards this goal, we propose a GA based clustering 

which we will describe in the following sections.  
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3.3. A Simple Genetic Algorithm 
The simple GA was first proposed by Holland in 1975, forms the basis of all 

extended ones. In a simple GA, a set of solutions is mapped to a set of 

representations in a representation space. These representations are encoded into a 

string form that is called a chromosome. The most typical form of chromosome is a 

string of bits (e.g. 1011, 1101), but in different applications the representations can 

be encoded differently, as, for example, integers, strings, or symbols.   

 

Given the chromosomes, the simple GA is then set to carry out a parallel search in 

the representation space. At each search, a fixed number of representations are 

examined and those which best fit the solution are kept. After a number of searches, 

only good solutions remain and the best of these is taken as the ultimate best solution.  

 

The mechanism by which the best representation can be found and retained is the 

result of the GA applying a series of genetic operators. These operators are of two 

types, evolving operators and survival operators. Evolving operators such as 

crossover and mutation operators are responsible for evolving representations to 

better solution. Survival operators such as selection and replacement operators are 

responsible for maintaining the best solution in the population. It is these best 

representations that the evolving operators operate on, so the population can 

gradually evolve. The mechanism of the simple GA is shown in Figure 3-1 below. 

 

A simple GA uses a generational approach for chromosome replacement. In a 

generational approach, all chromosomes will be considered for reproduction. All 

chromosomes in the previous generation will be replaced by the siblings producing 

in the new generation, i.e. in a generation with a population of 50 chromosomes, any 

50 of them may be selected, mate and reproduce 50 new chromosomes. The old 50 

chromosomes will be replaced by the new 50 chromosomes that will again reproduce.  
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8. Return the best chromosome. 

7. Repeat Step 3-7 until reaching some termination criteria. 

6. Delete the old generation of chromosomes to accommodate the new 

chromosomes and this produce the new generation. 

5. Mutate the child chromosomes. 

4. Crossover every pair of chromosome and reproduce 2 new child 

chromosomes. 

3. Select a pair of chromosomes from the population. 

2. Evaluate each chromosome by fitness function. 

1. Initialise a population of chromosome.  

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Convention genetic algorithm 

 

During reproduction, two operations – crossover and mutation – are usually used. 

For crossover, part of the chromosome from one of the parents will be combined 

with a part from another. A typical simple GA usually employs a single-point 

crossover, i.e, a cut-point is randomly selected in both chromosomes and the two 

parent chromosomes involved can exchange their alleles across the cut-point to form 

a new pair of chromosomes.  

 

After crossover, a mutation operator operates on the newly formed chromosomes. 

For mutation, certain alleles of a chromosome are randomly selected. If the 

representation or encoding of a chromosome is in binary form, then the selected 

alleles will be swapped from 0 to 1 or 1 to 0. When the encoding is in symbolic 

format, mutation will change the current symbol randomly to other symbols. 

 

The GA as proposed by Holland has certain problems such as duplication of 

chromosomes and loss of the best chromosomes across generations. In the past 

several decades, researchers have attempted to improve it in order to yield better 

performance. For example, in [Whitley and Kauth 1988], a difference replacement 
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mechanism than generational replacement, called GENITOR, has been proposed. It 

has been called steady-state genetic algorithm (SSGA) in [Syswerda 1989]. 

 

In generational replacement, many best chromosomes cannot be kept and their genes 

may be lost in the next generation. The outcomes from a traditional simple GA can 

therefore be undesirable. In SSGA, however, only a small portion of the current 

population will be replaced by new chromosomes. The remaining chromosomes will 

remain intact and will stay in the next generation.  For SSGA, we need to specify the 

number of newly created chromosome to be inserted into the current population. 

Usually, this parameter should be small when compared to the entire population. In 

fact, in a typical SSGA, only one or two chromosome will be chosen for replacement 

at a time.  

 

Since the number of chromosomes in the old population to be removed and the 

number of chromosomes in the new population to be inserted are decided by the 

users, it should be noted that generational replacement could actually be viewed as a 

special case of SSGA in which the number of replacement equals the size of the 

population.  

 

Compared to generational replacement, SSGA can guarantee to keep the best 

chromosome discovered so far. However, SSGA takes longer time to converge and it 

also suffers from the duplication problem as mentioned earlier that can cause 

premature termination of the evolutionary process. To overcome this problem, it is 

proposed that an “SSGA without duplicates” [Davis 1991] approach be adopted. This 

approach discards children that are duplicates of current chromosomes in the 

population, i.e., they are not inserted into the current population. Experiment shows 

that the performance for “SSGA without duplicates” is better than that of SSGA and 

the simple GA that performs generational replacement [Davis 1991]. 

 

The merits of GA as an efficient technique for searching for optima in very large 

search spaces builds on the foundation that it can limit and confine its search scope 

on several dimensions while keeping the remaining dimension intact. The success 
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relies on the selection scheme. Consider a population of chromosomes, during 

generations, those chromosomes with the least scores are eliminated while those with 

the highest scores remain in the pool. After a number of generations, an evolutionary 

process tend to converge and one may find that most segments of the chromosomes 

in a population may be the same (see Figure 3-2), 

 

4 Chromosome with point 1 – 5   in commons: 

Chromosome 1: 10110111 Chromosome 2: 10110000 

Chromosome 3: 10110011 Chromosome 4: 10110101 

 

Crossover in Chromosome 1 and 3 at point 6: 

Chromosome 1: 101101|11 Chromosome 2: 101100|00 

 

Chromosome 1: 101101|00 Chromosome 2: 101100|11 

Newly formed chromosome still with point 1 – 5   in commons. 

Figure 3-2. Four chromosomes in a population 

 

This is because, for crossover to apply to two randomly selected chromosomes, the 

common segment will still remain in common. There is no method in crossover to 

change the allele of the common parts and these common genes can be represented 

by a “don’t care” symbol * as Figure 3-3. 

 

Chromosome 1: *****111 Chromosome 2: *****000 

Chromosome 3: *****011 Chromosome 4: *****101 

Figure 3-3. Four chromosomes represented with “don’t care” symbols 

 

For the chromosomes as shown, a new combination of the values for the last three 

genes can be produced. If there is no means for crossover to change the common 

segments, a GA may quickly converge to its local optima. To overcome the problem, 

a GA has to make use of mutation.  
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For the mutation operator, a gene in a chromosome is randomly selected and its value 

replaced with a randomly selected value from the list of possible ones. With mutation, 

there can be a chance to introduce variation in the common segment. The 

chromosome with the mutated gene can be evaluated and will remain in the next 

generation if it is good enough.  

 

Depending on a mutation rate set by the users, great changes can be made to a 

population.  However, in general, mutation rate are set very small and mutation 

normally changes only very few genes. In fact, mutation serves the purpose to keep 

most genes intact in the chromosome. Increase in mutation rate may result in the best 

genes disappearing in a particular generation thereby resulting in much longer time 

to locate optimal solutions.  

 

3.4. A GA-Based Clustering Algorithm for Known K 
The proposed GA, which we call GACDD (GA Clustering for Discrete-valued Data), 

is modified from the simple GA in several ways to suit the clustering task. First, it 

uses a Steady-State (SS) without duplicate replacement scheme during reproduction 

to make sure that only the better solutions are passed through generations. Second, 

the encoding of chromosome is modified for the handling of discrete data clustering. 

The cluster labels are encoded into the genes instead of the record labels.  When 

clusters, rather than individual records, are taken as building blocks, we can maintain 

the best cluster groupings during evolution. Third, instead of swapping records, the 

crossover operator we used swaps clusters between two parent chromosomes. 

Similarly, the mutation operator operates on a cluster. As for selection, the 

tournament selection [Falkenauer 1998] is used for the proposed GA. It is chosen so 

that better chromosomes can have a better chance for selection.  

 

For the fitness function, a weight of evidence measure is defined and used as a 

calculation for the fitness of a chromosome. The weight of evidence makes use, in 

turn, of a probabilistic information calculation defined on the concept of entropy. It is 

computed using an algorithm that can uncover interesting relationship between 
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different attributes. These relationships can be interpreted as association relationships 

with different support and confidence [Agrawal et al. 1993; Agrawal and Srikant 

1994; and Agrawal et al. 1996]. By the use of a statistical measure, we can identify 

only those interesting relationships that are statistically significant. Having found all 

these relationships, we can then calculate their information entropy in terms of 

weight of evidence. In brief, the proposed GA based clustering algorithm can be 

described in several steps as given in Figure 3-4: 

 

ALGORITHM 3.1. GACLUSTERINGFORDISCRETEDATA (GACDD) 
1. Let CR be crossover rate 
2.  MR be mutation rate 
3.  P be population 
4.       M be number of chromosomes in the population 
5.     N be number of records 
6. Set t = 0 
7. Initialize(Pt) 
8. Encode(Pt) 
9. Begin 
10.  Repeat 
11.   Fitness-Function(Pt) 
12.    
13.   # Selection, crossover, mutation and reclassify 
14.   Begin  
15.    For each i to (CR * P) / 2  
16.     Parent1 = Select(Pt) 
17.     Parent2 = Select(Pt) 
18.     Child1, Child2 = Crossover(Parent1, Parent2) 
19.       
20.       Begin  
21.      For each i to (MR * N) 
22.       Mutate(Child1) 
23.        Mutate(Child2) 
24.      End for each  
25.     End begin   
26.      
27.     Begin 
28.      For each i to M 
29.       Reclassify(Pt) 
30.      End for each 
31.     End begin   
32.    
33.     Children-Array ← Child1, Child2 
34.    End for each 
35.   End begin 
36.   Pt+1 = Steady-State-Replacement(Children-Array, Pt) 
37.  



Chapter 3 – Our proposed method   35 

38.  Until(Termination condition(s) = true) 
39. End begin 
 

Figure 3-4. Algorithm of SSGA for our proposed clustering algorithm 

 

3.4.1. Encoding Scheme 

One way to encode a clustering arrangement in a chromosome is to encode the 

cluster label of a record in each gene, i.e., if we have N data records, we will have a 

chromosome of N genes. However, as pointed out in [Falkenauer 1998], the use of 

this representation scheme can result in duplicate chromosomes. For example, if a 

data set of six records is to be grouped into two clusters represented as 1 and 0, then 

the two chromosomes encoded as [000111] and [111000] will have exactly the same 

grouping of data records, i.e., the first three records being in one group and the 

second three being in another.   

 

While this will not prevent a GA from finding an optimal solution, the presence of 

duplicated chromosomes does greatly affect the algorithm’s search efficiency since (i) 

it reduces the diversity of the population and this essentially lowers the crossover rate, 

(ii) computational resources are wasted, as the reproductive processes do not always 

result in different chromosomes.  

 

To overcome these problems, we propose an encoding scheme that can better 

facilitate the discovering of a more “optimal” clustering arrangement. In doing so, 

we took into consideration the followings: (i) the representation space should be 

complete, that is, all possible solutions must be representable in the space, otherwise 

we may never be able to find an globally optimal solution, (ii) the mapping from the 

solution space to the representation space should be one-to-one, i.e., one solution can 

only be mapped into one representation and it cannot be mapped into two or more 

different representations and vice versa so as to avoid redundancy. With these points 

in mind, we propose to encode each cluster in a gene in a chromosome so that each 

gene contains a number of record labels. 
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 Using the notations as described above, for example, we can represent a data set, S 

of N = 10 records as s1, ..., sq, ..., s10.  Assume that we would like to encode the 

clustering arrangement consisting of 3 clusters, C1, C2 and C3. Assume further that C1 

consists of three members, s1, s5, s6, C2 consists of three members, s2, s4, s10, C3 

consists of four members, s3, s7, s8, s9. This cluster arrangement of each chromosome 

can be represented and implemented using a list-of-list structure as shown in Figure 

3-5 below.  

 

 

 
[[s1, s5, s6], [s2, s4, s10], [s3, s7, s8, s9]] 

Figure 3-5. A list-of-list representation of a chromosome 

 

This representation scheme used by GACDD has the advantage that it can represent 

all possible clustering arrangement without any inconsistency.  In addition, it can 

avoid the problem of two chromosomes encoding exactly the same clustering 

arrangement.  

 

3.4.2. Initialization 

During initialization, for a data set that is to be divided into K clusters, we will need 

to randomly generate K genes, Ck = {sq | q ∈ {1, 2, …, N}}, k = 1, 2, …, K and 

 and CU K
K

k
nk sssC

1
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=

= k ∩ Cl = ∅, k ≠ l. Given this requirement, GACDD 

initializes the population randomly using a random number generator as follows.  For 

each record, sq, q ∈ {1, 2, …, N}, it is uniformly randomly assigned to one of C1, 

C2,…,  CK. This assignment process is done with a random number generator that 

generates numbers from 1, …, K. A record is considered to be a member of Ck, if the 

number generated for it is k.  Once all the records are randomly assigned to a cluster 

based on the number generated for them, they are organized into the list-of-list 

structure as discuss above. For a population P containing M chromosomes, the 

population need to be initialized M times.  
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For clarification, pseudo code is specified for each function. The symbols in the 

pseudo code are defined as follows: Pt is the population of the tth generation. Pt[i] is 

the ith chromosome in the population of the tth generation which also denote as list. A 

list consists of K lists representing K clusters where K is the predefined number of 

clusters. Hence, it results in a list-of-list structure. list[k] is the kth list of the list 

representing the kth cluster. S is the record set. S[q] is the qth record and s is a single 

record of the data set. The initialization algorithm is summarized as follows in Figure 

3-6.  

 
1 proc initialize(↔Pt, ←S) /* Pt is population and S is record set */ 
2  for i = 1 to |Pt| do           /* For each chromosome in the population */ 
3   Pt [i] = set_list (K)    /* Initilize the list of list to contain K list */ 
4   /* Assign each record to the lists */ 
5   for q = 1 to |S| do k = rand(1 …K); add(S[q], Pt [i], k) od 
6  od 
7  
8 proc add(←s, ↔list,←k) 
9  add_record(list[k], s)  /* Add record S[q] to list[k] */   

 
Figure 3-6. Pseudo code for Initialization 

 

3.4.3. Selection 

To select chromosomes for reproduction, GACDD makes use of the tournament 

selection mechanism. Roulette wheel or proportional selection is the most popular 

selection mechanism in GA applications. However, it is sometimes not the best 

approach to be used. First, it exerts high selective pressure on the best chromosome 

[Falkenauer 1998]. For a population with members having very large differences in 

fitness values, the best chromosome is often chosen much more often than the others 

if the proportional selection mechanism is used. This may result in rapid convergence 

to local minimum.  This mechanism also does not work too well when the fitness of a 

chromosome may be negative. This is because, for proportional selection, we need to 

compute a relative fitness with respect to the minimum fitness in the population. The 

usual approach to do so is to set the minimum value to zero, subtract the fitness of 

each chromosome from this baseline and re-calculate the relative fitness of the 

chromosome. However, as converting negative fitness to a positive number using 
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such an approach does not reflect the natural fitness of chromosomes, this is not a 

preferable.  

 

Instead of proportional selection, the ranking selection mechanism can be considered. 

Under such a mechanism, all chromosomes are ranked according to their fitness 

values. Once this is done, the proportional selection mechanism can be used on the 

ranked chromosomes. Again, this practice may not truly reveal the fitness though the 

problem of selective pressure is avoided [Falkenauer 1998].  

 

Since GACDD employs a fitness function called the weight of evidence (details are 

described later in this chapter) function and that this function can take on negative 

values and since there can be relatively large differences in fitness values, the use of 

the proportional selection or ranking selection mechanisms may lead to premature 

convergence. For this reason, we choose the tournament selection mechanism as it 

can better avoid these undesirable characteristics.  

 

Tournament selection works as follow. For each selection, we randomly select two 

chromosomes in the population. We then compare their fitness. The fitter one wins 

and will be picked up for further operation. The loser will be put back to the pool of 

chromosomes. The selection repeats until we have taken sufficient chromosomes. 

The selected chromosomes will pair up, undergo crossover and form new 

chromosomes for the next generation. Tournament selection performed well with 

steady state genetic algorithm [Falkenauer 1998].  

 
1 proc select(←Pt, →list) 
2  index1 = rand(1…|Pt|); index2 = rand(1…|Pt|); 
3   /* Calculate the fitness of the chromosomes */ 
4   if (get_fitness(Pt [index1]) > get_fitness(Pt [index2]) then 
5    list = Pt [index1]; return list; 
6   else list = Pt [index2]; return list; fi 

  
Figure 3-7. Pseudo code for Selection 
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3.4.4. Crossover 

With the encoding scheme described above, different genes in the chromosome 

encode different clusters and since different clusters can have different number of 

records, these genes are of different length.  To ensure that the grouping arrangement 

of a chromosome be exchanged with another can evolve to better one, we must 

ensure only a small part of the chromosome is modified every time during crossover.  

Besides, crossover should happen at the cluster edge. If the crossover cut-off point is 

inside the cluster instead of the cluster edge, a chromosome will be cut and then 

combined independently of each other. For this reason, it is hard to allow good 

solutions to survive. When the population reaches an optimal, the crossover operator 

may destroy the optimal solution.  To overcome this problem, in GACDD, the 

crossover operator is chosen in such a way that an entire cluster is selected randomly 

and exchanged between two chromosomes during reproduction. The details of the 

crossover procedure are given as follows. 

 

After two parents are selected for crossover, a gene, Ck, is then randomly selected 

from the first parent. This gene is to replace a gene, Cl, randomly selected from the 

second parent. By viewing genes as sets consisting of lists of record labels, the gene 

Cl from the second parent can be eliminated from Ck by subtracting, in the set 

theoretic sense, it from the set corresponding to Ck. The remaining record labels in 

the gene Cl of the second parent, after set subtraction, will be redistributed to its 

other genes in such a way that genes that are smaller in size, i.e. containing less 

records, will have greater chance to be assigned the new record labels.  This is done 

mainly to prevent clusters of very small sizes from evolving.  To favor smaller size 

clusters, we have adopted the following approach.  It should be noted, however, that 

there are other ways of favoring relatively small-size clusters in the redistribution 

process.  The actual approach will likely be dependent on the application domain and 

how much relatively small-size cluster can be tolerated in the application. 

 

To re-distribute records in a chromosome of [[s1, s5], [s2, s4, s10], [s3, s6, s7, s8, s9]], for 

example, since the length of the list is different (i.e., the number of records in each 

corresponding cluster is different) and since we would prefer to minimize clusters of 
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smaller sizes, the probability of remaining records being re-inserted into a list is 

made to be inversely proportional to the length of the list using the following 

equation:  

∑
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Hence, the probabilities of insertion of C1, C2 and C3 are 0.484, 0.324 and 0.194 

respectively. The assignment of genes will be done by a mechanism called the 

roulette wheel selection [Falkenauer 1998]. The probabilities of the genes are added 

to obtain the corresponding cumulative probabilities.  

 

The cumulative probabilities of C1, C2 and C3 are 0.484, 0.808 and 1 respectively.  

 

 C1 C2 C3

 0.0 0.484 0.808 1.0 
Figure 3-8. Roulette wheel selection of gene for insertion 

 

A random number between 0 and 1 is generated. If it falls between any two numbers, 

the gene corresponding to that part will be selected for the insertion. The insertion 

repeats until all remaining records are assigned. 

  

An example of the crossover process is given below.  Assume that we have two 

chromosomes with their list-of-list representation as follows: 

Parent1: [[s1, s4, s5], [s2, s3, s7], [s6, s8]]  

Parent2: [[s3, s7], [s1, s2, s4, s5], [s6, s8]] 

Each chromosome consists of three lists representing three clusters. Figure 3-9 

depicts an example of such reassignment. 
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Injected group 

 

 

 

 

 

 

 

 

Figure 3-9. List-of-list crossovers 

 

After re-insertion, the replaced list may have overlapped with one or more other lists 

in the same chromosome. So, duplicated records will have to be removed from the 

lists. If the removal of records causes some lists to become empty, then the cluster is 

considered to have disappeared. Then, the crossover operation will be considered 

failed because it does not contain enough K clusters. If this is the case, the crossover 

operation will be repeated. The crossover operation, it should be noted, will also be 

repeated when the children produced has the same or a smaller fitness value than the 

parents due to the steady-state reproduction scheme the GACDD adopts. This is done, 

as previously discussed before, to prevent premature convergence. 

 
1 func crossover(←Pt[i], ← Pt[j], →list3, →list4) 
2  index1 = rand(1…| Pt[i]|); index2 = rand(1…| Pt[j]|); 
3  /* Swap the lists between the two chromosomes */ 
4  list3 = merge(Pt[i], Pt[j][index2], index1);  
5  list4 = merge(Pt[j], Pt[i][index1], index2); 
6  return list1, list2; 
7  
8 func merge(←list2, ←list1[index2], ←index1) 
9  add_list(list1[index2], list2)  /* Add the list to another list-of-list */ 
10  /* For each record in the index1th list2 */ 
11  for i =1 to |list2[index1]| 
12    /* For each record in the index2th list1 */ 
13   for j =1 to | list1[index2]| if (list2[index1][i]== list1[index2][j]) do 

delete(list2[index1][i]); od fi 
14  for i =1 to |list2| 
15   roulettewheelreplace(list2, list2[index1]); return chrom; 
16  
17 proc roulettewheelreplace(↔list2, ←list2[index1]) 

[[s1, s4, s5], [s2, s3, s7], [s6, s8]]

[[s3, s7], [s1, s2, s4, s5], [s6, s8]] 

1. Select groups for crossover 
Appear twice 

2. Inject group to chromosome 

[[s3, s7], [s1, s4, s5], [s1, s2, s4, s5], [s6, s8]]

[[s3, s7], [s1, s4, s5], [s6, s8]] 
 2s   

[[s3, s7], [s1, s4, s5], [s2, s6, s8]]  

Left aside

3. Subtract duplicates from other  
Re-inserted 

4. Reinsert missing records  



Chapter 3 – Our proposed method   42 

18  for i = 1 to |list2|  
19   prob[i] =1/|list2 [i]| 
20  prob[i] = prob[i]/sum(prob[]) 
21  for (i = 1 to |prob[]|) prob_total= prob_total + prob[i];  prob[i] = 

prob_total; 
22  for j = |list2[index1]| do 
23   k = rand(0…1); 
24   for (i = 1 to |prob[]|) if k <  prob[i] do add(list2[i], record) od fi 
25  od 
 

Figure 3-10. Pseudo code for Crossover 

 

3.4.5. Mutation 

To introduce variations into a population, GACDD makes use of two kinds of 

mutation operators. The first kind of mutation operator selects a cluster randomly. A 

record label is then randomly selected from this cluster. This label is then randomly 

placed into another cluster.  This operator can be called a relocation operator. The 

number of record labels moved from one cluster to another is proportional to a 

mutation rate. This kind of mutation may evolve clusters of very different sizes if the 

relocation often happens in only few clusters. 

 

The second kind of mutation operator involves randomly selecting two different 

clusters. A record label from each cluster is then randomly selected and then 

swapped. This second mutation operator can ensure that the clusters involves have 

the same size as there will not any change in their sizes.  

 

The mutation rate decides how often mutation takes place. The number of mutation 

nMutate is computed as MR * N where MR is mutation rate and N is number of 

records in the dataset. 

 

It should be noted that the mutation rate does not need to be held constant. In the 

initial iterations of the evolutionary process, the number of mutations is set relatively 

large as this can increase diversity among chromosomes. As evolution progresses, 

the number of mutation can be stepwise decreased so as to prevent good 

characteristics of chromosomes from being destroyed. 
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1 proc mutate(↔list) 
2  index1 = rand(1… |list|); index2 = rand(1…|list|) 
3  mutate_index = rand(1…|list[index1]|)  
4  add_record(list[index2], list[index1][mutate_index]) 
5  delete_record(list[index1][mutate_index]) 

 
Figure 3-11. Pseudo code for Mutation 

 

3.4.6. Reclassification 

GA stochastically finds the solution. It relies on crossover keeping the best genes in 

the chromosome while bases on mutation looking for better genes for a better 

solution. In order to get a better solution, mutation needs to pick up the right gene in 

the right position of the chromosome. At the beginning of the generation, mutation 

can improve rapidly the quality of chromosome because many genes are not in their 

best values. Evolution keeps the improved chromosome to the next iteration. After 

several iterations, there left only some genes with wrong values in the chromosome. 

At this time, it is difficult for mutation operator to find exactly the right position and 

generate exactly the right value for that position in a totally random nature. It usually 

takes a very long time to evolve to a better chromosome. For this reason, GA can 

only get the near-global optimal solution very often after termination. The one to two 

percent error hardly gets the right correction or it may take very long time to do so. 

 

The problem of the convergence to the global solution is difficult to solve by GA 

alone, we adopt another mechanism called reclassification. We generate a set of 

interesting patterns from the chromosome after mutation. The interesting patterns 

specify under what attribute-values the record is classified into the clustering label. 

The details of interesting pattern generation will be explained in Section 3.5. The 

interesting pattern is presented like this: 

 

If sq contains ajk, then sq belongs to Cp with Weight of Evidence = W. 

 

For each record processing a specific set of attribute-values, according to the 

interesting patterns, we can calculate the total weight of the evidence for that record 

processing in each clustering label. That is, how much confidence we believe the 
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record should belong to the cluster. Sometimes, the record may show evidences that 

it belongs to both Cp and Ck when Cp and Ck also show positive values in weight of 

evidence. For a crisp clustering, we only assign the record to one cluster. Then we 

will assign the record to the cluster with maximum weight of evidence. For a data set 

containing 100,000 records, if only 1 record is in the wrong cluster. Evolutionary 

operators like crossover and mutation usually hardly show their power in such case 

and take a long time to find the wrong clustering record. However, we can reclassify 

the records according to the patterns embedded in the chromosome. By summing up 

the weight of evidence that match an interesting pattern, we can reclassify the 

records. 

 

After reclassification, we obtain a new clustering of the records. The new clustering 

can be the same as or different from the clustering before. If the new clustering is 

different, we then examine whether there is an improvement in the fitness of the 

chromosome. If fitness value is increased, then we can use the new clustering 

forming a new chromosome. We then put the new chromosome into reclassification 

again. This process repeats until there is no improvement. Then, we can generate a 

final reclassified chromosome. Reclassification according to the interesting pattern 

can put the incorrectly clustered records back into the right cluster.  

 

1 proc reclassify(←list) 
2  if Rule.attribute = list[k][q].ajk 
3   newlist = add(sq, list, Rule.cluster)  
4   fitness-function(↔ list) 
5  if (get_fitness(newlist) > get_fitness(list) then 
6    reclassify(newlist); 
7  fi 
8  
9 proc add(←s, ↔list,←k) 
10  add_record(list[k], s) 

  
Figure 3-12. Pseudo code for Reclassification 

 

3.4.7. Reproduction and Deletion 

During reproduction, in the case of the simple GA, the old generation is usually 

replaced completely with the new.  For the GACDD, however, we choose to adopt 
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the steady state without duplicate reproduction scheme. In other words, whenever 

two children are obtained as a result of the crossover of two parents, their fitness 

values are computed immediately and they are inserted into the existing population 

only when their fitness values are greater than the fitness value of the least-fit 

chromosomes.  In such case, the least-fit chromosomes are deleted. In [Davis 1991], 

it is shown that the SSGA without duplicate scheme can effectively increase the 

diversity of solutions as encoded in a population thereby increasing the chance for 

the best solution to be evolved during crossover and mutation. Figure 3-13 depicts 

the details of the SSGA for partitioning problem.  

 
1 proc steady-state-replacement(←chrom-array, ↔ Pt) 
2  /* Sort the chromosomes by the fitness ascendingly */ 
3  sort(Pt [], ascending); 
4  for i = 1 to |chrom-array| replace(Pt [i], chrom-array[i]); 

  
Figure 3-13. Pseudo code for Reproduction  

 

3.4.8. Termination of evolutionary process 

Evolutionary process terminates after reaching a stopping condition. Termination 

conditions are the criteria by which a GA decides whether to continue searching or 

stop the search. Once a set of termination conditions is defined, each of these 

termination conditions is checked after each generation to see if it is time to stop.  

 

In general, for GACDD, when considering whether or not to continue an 

evolutionary process, we consider (i) generation numbers, (ii) fitness thresholds, (iii) 

fitness convergence and (iv) population convergence. For (i), it means that a 

maximum number of iteration is defined. GACDD stops execution when the 

maximum number of generation is reached. For (ii), the fitness threshold, if reached, 

can terminate the execution of the evolutionary process when the fitness of the best 

chromosome is greater than or less than a user-defined threshold. For (iii), fitness 

convergence is concerned with improvement in the fitness values of the best 

chromosome in a user-defined number of consecutive generations. The fitness of the 

best chromosome can be said to be converged and the evolutionary process 

terminated if there is no significant improvement in fitness value. For (iv), the 
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population convergence is a condition when the variance of the fitness of all the 

chromosomes in a population is below a user-defined threshold. As this mean that it 

is very hard to get better solution, it is time to terminate the execution.  

 

In GACDD, we apply the maximum generation termination condition and fitness 

convergence because they are computational easy. We will explain the purpose of the 

two termination criteria later. In particular, we describe here how we use the 

termination criteria involving generation number and fitness convergence.  

 

The generation number condition is set to prevent endless processing. We set the 

maximum number of generation to be 100,000. Since the population may converge 

before reaching maximum generations, we also look at the fitness of the best 

chromosome when deciding whether or not to terminate the evolutionary process. If 

there is no improvement of the fitness of the best chromosome after 500 consecutive 

generations, we assume GA has found the best solution and we terminate the 

evolutionary process. Actually, the maximum number of generation takes little effect 

in most termination. It just provides a safeguard from endless processing. Almost all 

trails will end before the maximum number of generation because it is stopped by the 

500 consecutive generations. 

 

3.5. The Fitness Function 
The choice of the fitness function for a GA can have significant impact on its 

performance. In general, the fitness functions are different for different problem 

domains as the characteristics of the best solutions are different from problems to 

problems.  

 

In general, in finding a fitness function for a genetic algorithm, the function needs to 

have a well-defined value for all possible solutions and its value should indicate the 

quality of the solution.  For the clustering problem we are considering, for example, 

the fitness function we are searching for should reflect how good a particular 
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grouping is. Its value should aim at reflecting how similar the members within a 

group.  

 

Here, we propose a novel fitness function that can be used to measure the goodness 

of the current clustering. It is based on measuring the information entropy supporting 

the records belonging to one cluster to be grouped into the cluster and this measure is 

called the weight of evidence measure. If a record has a positive value of weight of 

evidence, it means there are evidences supporting it to be grouped into the cluster 

based on its attributes.  In this section, we define the weight of evidence measure and 

how it can be used as a fitness measure for our GACDD. We will show how the 

grouping of records can be improved through the application of such fitness measure. 

 

3.5.1 A Weight of Evidence Measure 

In order to evaluate each chromosome for how good the cluster assignment is, we 

adopt a measure proposed in [Chan and Wong 1990]. This measure is used here as an 

objective measure to decide if an attribute value is useful in the characterization of a 

cluster. If it is useful, the attribute value can be considered as providing evidence 

supporting a record to belong to the cluster and the amount of evidence can be 

measured by a weight of evidence measure. Given all the attribute values of a record, 

each of them can then be determined to see if they are useful for the characterization 

of a particular cluster.  If so, there is evidence supporting the record to be in the 

cluster.  The total amount of evidence provided by each useful attribute values can 

then be used to define as the fitness function of GACDD so that the greater the 

evidence, the better the grouping arrangement as encoded in a chromosome is. 

 

The fitness value of a chromosome can be determined in two simple steps: 1) finding 

useful attribute values that provide evidence supporting or refuting a record to be in a 

particular cluster; 2) compute the total amount of such evidence to determine the 

fitness values of a cluster grouping encoded in a chromosome. Figure 3-14 shows the 

pseudo code of the algorithm. In the following, we will discuss each step in detail. 

1 proc fitness-function(↔ Pt) 
2  /* Sort the chromosomes by the fitness ascendingly */ 
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3   
4  for i = 1 to |a|  /* |a| is the number attributes */  
5   for j = 1 to |a[i]| /* |a[i]| is the number of possible values that 

attribute i contains */ 
6    for k = 1 to |C| /* |C| is the number of clusters */ 
7     findrules(Rule) /* find the interesting rules */ 
8   
9  for k = 1 to |list| 
10   for q = 1 to |list[k]|  /* |list[k]| is the number of records in 

cluster k */ 
11    for l = 1 to |Rule| 
12     if Rule.cluster = k && Rule.attribute = list[k][q].ajk 
13      do woe = calculateWOE() 
14       totalwoe = totalwoe + woe 
15      od 
16     fi 

Figure 3-14. Interesting patterns + Weight of Evidence 

 

Step 1. Discover useful attribute values 

The major goal of this step is to determine if an attribute value, ajk, is useful in 

determining if a record should or should not be in a particular cluster, Cp.  For this 

purpose, we use a statistics proposed in [Chan et al. 1988; Chan and Wong 1990]. 

 

If the attribute value ajk is useful, we represent this as ajk ⇒ Cp. We can define a 

support measure of Cp as below: 

)Pr(
in  records of no.

)(support p
p

p C
M

C
C ==    (1) 

i.e., it is the probability of Cp in the database and is defined as the number of records 

containing cluster label Cp, divided by the total number of records.  

 

In addition, we can also define the confidence of ajk ⇒ Cp as the conditional 

probability of Cp given ajk, i.e., it is defined as the number of records containing both 

ajk  and Cp, divided by the total number of records containing, ajk , as follows: 
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where M is the total number of counted records. The value of M should be equal to or 

less than N due to the possibility of having missing values in the database. 

 

To know if an attribute value, say ajk, is useful in determining if a record should or 

should not be in a particular cluster, Cp, we determine if  

 

jk

jkp
jkp a
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This means that we need to decide if support(Cp) is significantly different from 

confidence(ajk ⇒ Cp ). If this is the case, then ajk  can be considered as useful. 

 

To determine how great the difference between Pr(records is in Cp | ajk  ) and 

Pr(records is in Cp ) (i.e., also as support(Cp) and confidence(ajk ⇒ Cp)} to be 

considered significant, we use an objective measure based on statistic confidence. 

Let o  be the total number of records in cluster C
jkp ac p that is also characterized by ajk, 

and  be the expected number of records in Ce jkp ac p that is also characterized by ajk . 

Then, o = observed number of records is in C
jkp ac p | ajk  and = observed number 

of records is in C

e jkp ac

p  ∗ observed number of records with ajk. Since the absolute 

difference |e - o | of the expected and observed difference does not reveal 

relative degree of discrepancy between the two values, an adjusted residual is 

proposed in [Chan et al. 1988; Chan and Wong 1990] to objectively determine if the 

differences are significantly different and this adjusted residual is defined as: 

jkp ac jkp ac
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There are two components in the adjusted residual. The first component  is the 

standardized residual [Chan et al. 1988; Chan and Wong 1990] (Equation (5)). It is 

used to eliminate the influence of marginal totals on the absolute difference. z  

has the property that it is distributed asymptotically as chi-square and has an 

approximate normal distribution with a mean of approximate 0 and a variance of 

approximately 1. Since it is based on the asymptotic variance of 1, when it differs too 

much from 1, a better estimation is needed to reflect the residual. Hence, it requires 

the second component.  

z jkpac

jkpac

 

The second component v  (Equation (6)) is the maximum likelihood of its 

asymptotic variance. It takes into account of two parameters o  and o which are 

the number of records having attribute-value a

jkpac

jka+ pc +

jk and the number of records in Cp 

respectively.  can reflect more the true distribution of records. The adjusted 

residual is obtained from dividing the standardized residual with the new 

variance v . So it can give a better approximation to the case. 

v jkpac

d jkpac

jkpac

 

In order to know whether ajk is useful in supporting or refuting a record as a member 

of a cluster Cp, we can make use of the probabilities of the observed and expected 

occurrence. Since the adjusted residual exhibits an approximate standard normal 

distribution, if |d | > 1.96, we can conclude, with 95 percent (or 2.576 with 99 

percent) that the relationship between C

jkpac

p and ajk is significant. Such relationship can 

be two ways; it can be due to the presence or the absence of ajk. In other words, ajk is 

a determinant factor in the assignment of the record to Cp. Three interesting patterns 

can be obtained by the adjusted residual: 

1) Positive Pattern. If d  > 1.96, we can conclude that with 95 percent 

confidence a record characterized by a

jkpac

jk is likely to be a member of Cp.  

2) Negative Pattern. If d  < -1.96, we can conclude that with 95 percent 

confidence a record not characterized by a

jkpac

jk is likely to be a member of Cp.  



Chapter 3 – Our proposed method   51 

3) Neutral Pattern. If -1.96 > d  > 1.96, we can conclude that the pattern is not 

significant. A record characterized by a

jkpac

jk does not provide us with much 

information about whether it should be a member in Cp 

 

By scanning through each attribute, we can obtain 1) the frequency of each attribute 

value, 2) the frequency of each cluster label and 3) the frequency of the presence of 

both attribute value and cluster label. After that, we can find out which attribute 

value is related to the cluster label. Those attribute values with statistically 

significant adjusted residual are considered useful. According to different level of 

statistical confidence, when adjusted residual > 1.96, we can conclude that the 

attribute value involved makes positive evidence supporting a record to be a member 

of a cluster and if adjusted residual < -1.96, we can conclude that the attribute value 

involved makes negative evidence refuting a record to be a member of a cluster. 

With these attribute values identified, we can determine which if a record should be 

in a particular cluster by determining if it possesses useful attributes. To do so, we 

still require a quantitative measurement to determine the degree of evidence for such 

assignment and the details of this process are given below.  

 

2) Compute Weight of Evidence Measures 

The attribute values that are useful for the characterization of clusters identified can 

provide varying amount of evidence supporting and refuting a record to be assigned 

to a cluster. There is a chance that a record may be characterized by some attribute 

values supporting it to be a member of a group and at the same time, it also contains 

attribute values refuting it to be a member of that group.  Similarly, there is a chance 

that some of the attribute values of a record support it to be a member of a cluster 

and some support it to be another.  Given these considerations, there is a need for us 

to measure the amount of evidence supporting or refuting the cluster membership of 

a cluster given the attribute values characterizing a record.  Here, we propose a 

weight of evidence measure, W if a record is characterized by ajk then that a record 

belongs to Cp is with weight of evidence W (record in Cp / record not in Cp | record 

characterized by ajk ) where: 
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which can be further defined as follow: 
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Weight of evidence is a measure of the amount of positive and negative evidence 

supporting and refuting a record to be clustered into Cp. It is based on the concept of 

mutual information [Cover and Thomas 1990; Lubbe 1997]. 
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I(Cluster = Cp : ajk) is positive if and only if Pr(Cluster = Cp | ajk) > Pr(Cluster = Cp); 

otherwise, it is negative or zero. Mutual information measures the decrease (if 

positive) or increase (if negative) in uncertainty about when record assign to the 

cluster Cp given the attribute-value ajk. The difference in the gain in information 

between records assigned to the cluster Cp, records assigned not to Cp given attribute-

value ajk is a measure of evidence that ajk favors the assignment the record to cluster 

Cp as opposed to other cluster not in Cp. The difference, denoted by W (record in Cp / 

record not in Cp | record characterized by ajk ), is defined as weight of evidence: 
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Since we will not allow empty cluster, during initialization, crossover and mutation, 

Pr (Cp) where p = 1, …, n cannot be 0. That implies Pr ( pC ) also cannot be 0. 

However, we should note that there exist cases where there are no records containing 
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both Cp and ajk, so Pr (ajk  ∩ Cp ) is 0. The same applies for Pr (ajk  ∩ pC ). If this is 

the case, then weight of evidence will be 0 and undefined respectively. So, we must 

replace the values with some more meaningful. If Pr (ajk  ∩ not pC ) = 0, weight of 

evidence )|Cluster/Cluster( jkpp aCCW ≠=  is replaced by 

)|Cluster/Cluster(max
, jlpplk

aCCW ≠=  given Pr (ajk ∩ pC ≠ 0, where l = 1, 2, …, L and 

L is the total number of all possible values of Aj. Similarly, if Pr (ajk ∩ Cp) = 0, 

weight of evidence )|Cluster/Cluster( jkpp aCCW ≠=  is replaced by 

)|Cluster/Cluster(min
, jlpplk

aCCW ≠=  given Pr (ajk ∩ Cp) ≠ 0, where m = 1, 2, …, M 

and M is the total number of all possible values of Aj. Given all attribute-values, we 

just calculate weight of evidence for those patterns that is significant. We then make 

use these weights of evidence to calculate the fitness values of each chromosome. 

 

3) Determine Fitness Value 

Given a data set and a chromosome, a data set S is a set of records sq ∈ S, q = 1, …, 

N where N is the total number of records. A record sq corresponds to a row of such 

data set and an attribute, Aj, j = 1, …, n where n is the number of attributes, 

corresponds to a column of each record. ajk  is the value of the attribute Aj in the 

record sq. For each record sq, we determine, for each cluster encoded in a 

chromosome, how much evidence its attribute values provide supporting or refuting 

the record to be a member of the cluster.  For each attributes useful in determining 

the membership of the record of a particular cluster, we add up the weight of 

confidence provided by these attributes. By repeating this for each possible cluster 

encoded in a chromosome, the amount of evidence supporting and refuting sq to 

belong to Cp, can easily be determined.  

 

Suppose a record sq is characterized by m attribute values and only some of them are 

found to be useful in determining if sq should be assigned to Cp, then we can define a 

total weight of evidence, provided by all useful attribute values, that the record 

belonging to Cp will be equal to the sum of weight of evidence, i.e.,  
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We can make use of this value to determine the fitness of a chromosome with a 

particular cluster arrangement encoded in it.  

 

The total fitness of a chromosome can be obtained through the total weight of 

evidence of individual cluster, i.e.,  
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The fitness of a chromosome is the summation of the average weight of evidence of 

all cluster labels. As the weight of evidence implies the amount of information or 

evidence that support or refute a record to be assigned to a particular cluster, greater 

evidence implies greater probability the record will be in the cluster. So, we try to 

assign a record if it maximizes the evidence.  In other words, the greater the evidence, 

the greater the probability that the record is correctly assigned. After we summed up 

the evidence of all records; the greater the total evidence, the greater in general will 

be each record in its best assignment, hence, the chromosome will likely be fitter. 
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Chapter 4 

Experimental results 
In this chapter, we present the results of our attempts to evaluate GACDD.  To do so, 

we used both synthetic and real data and compared the performance of the proposed 

clustering algorithm against several different popular clustering algorithms as 

described in Chapter 2: (1) the K-means [MacQueen 1967] algorithm which is 

perhaps the most popular clustering algorithm amongst all; (2) the K-modes [Huang 

1997a, 1997b, 1998] algorithm which is a clustering algorithm developed for use 

with categorical data; (3) a GA based clustering algorithm [Cristofor and Simovici 

2002; Simovici et al. 2000; and Simovici et al.  2002]; (4) the COBWEB [Fisher 

1987] which is a machine learning approach that can be used to cluster discrete data; 

and (5) Autoclass [Cheeseman et al. 1988; and Cheeseman and Stutz 1995] which is 

another popular machine learning method that is parametric and that makes use of 

the idea of Bayesian classification when performing clustering. 

 

In the following sections, we first describe the data sets we used in our experiments, 

and then we discuss the criteria we used in our performance evaluation.  

 

4.1. Data Sets and Evaluation Criteria 
To evaluate the effectiveness of the proposed clustering algorithm, we test it with 

both the synthetic and real data.  In this section, we explain the data sets we used and 

the experiments we carried out. 
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4.1.1. Data sets 

The data sets we used in our experiments contain both synthetic and real data. The 

synthetic data set is used as a controlled data set to study the performance of the 

proposed algorithm with respect to their ability to handle missing and noisy data. 

Besides synthetic data, we also used real data sets to study how well the proposed 

clustering algorithm can handle real data. These real data sets were selected from a 

wide variety of application domains including agricultural, medical and social 

databases. The set size ranges from several hundreds to several tens of thousand 

records. Among these, most of them are data sets containing all categorical attributes. 

For those data sets containing numeric attributes, equal-width discretization is 

performed ahead of time. Missing values, it should be noted, can be found in varying 

percentages ranging from 0% to 50% in these data sets. 

 

4.1.2. Experimental Set-up 

For performance benchmarking, we used the K-means, K-modes and COBWEB 

algorithm implemented in WEKA [Witten and Frank 1999]. We also used AutoClass 

implemented in [Cheeseman and Stutz 1995]. For the GA-based clustering algorithm, 

we implemented the algorithm according to [Cristofor and Simovici 2002]. 

 

For each experiment, we performed 1000 trials with each data set using different 

parameters. For each trial, the data in the data set is shuffled to prevent the ordering 

effect on the algorithm such as COBWEB. The averages of all results obtained from 

all different trials were then computed and recorded.  

 

All algorithms, except COBWEB, require the number of clusters to be pre-defined. 

For the purpose of comparison of accuracy of the various algorithms, we merged 

clusters to get the desired number of clusters for COWEB. The standard deviation 

was also recorded. 

 

The set-up for our experiments with each of the different algorithms is described as 

follows. For GACDD, we set the crossover and mutation rate to 0.1 and 0.01 

respectively. As discussed in Chapter 3, we increase the mutation rate and decrease 
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the crossover rate during the evolutionary process. For all experiments, the 

population size was set to 100 and the maximum number of reproductive iterations 

was set to 10000.  

 

For the K-means and K-modes algorithms, the choice of initial centers may affect the 

results of clustering.  To find these centers, a parameter called random seed is used 

for the initial cluster-center selection. We used another random number generator to 

generate random seeds for each trial. 

 

For COBWEB as implemented in WEKA, we need to supply two parameters. One is 

the acuity for the standard deviation that is only effective for numeric attributes. 

Another is the cutoff, which determine the split and merge conditions. The cutoff 

value is between 0 and 1 and is set to allow us to determine the number of clusters in 

our experiments. We increase the cutoff value until the correct number of cluster is 

found. 

 

For the GA-based clustering algorithm, it does not require any parameter to be set. 

For Autoclass, the statistical model needed to be specified for it to work. Since the 

attributes are categorical in nature, we select the binomial model. The maximum 

number of iterations for Autoclass was set to 10000 in our experiments 

 

When comparing performance of the various clustering algorithms, we chose to use 

the misclassification counts as defined in [Krovi 1992; Li and Biswas 2002; and 

Huang 1997b] as a measure of accuracy.  If a clustering algorithm is effective, the 

clusters it discovers should be of good quality and should share common patterns. A 

good classifier-discovery algorithm should be able to uncover these patterns and use 

them to correctly re-classify records randomly selected from each cluster. The 

misclassification count can, therefore, be used to determine how good the clusters 

formed are.  

 

For our case, how the data records should be grouped to form clusters is actually 

known. We can therefore easily determine the misclassification count and be able to 
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use it to evaluate the relative merit of all clustering algorithms. The misclassification 

count is a function of an accuracy count that can be defined as:  

 

databasein recordsofnumber total
iedmisclassif records ofnumber  - databasein  records ofnumber  total

=accuracy  

 

Since some clustering algorithms such as COBWEB does not allow pre-setting of the 

number of clusters at the beginning of each experiment, for the purpose of comparing 

results, we adopted the following procedures: (i) if the number of clusters discovered 

by COBWEB is too small, the clusters are mapped against the original grouping in 

such a way so as to obtain the highest accuracy; (ii) if the number of clusters 

discovered is too large, then do (i) to achieve the highest possible accuracy for those 

discovered clusters and for those records in the remaining clusters, they are assigned 

to existing clusters in such a way that the accuracy is maximized. By doing so, we 

can obtain the highest possible accuracy with COBWEB even when the number of 

clusters it generates is different from the desired solution. 

 

Since we have pre-defined the number of clusters, some records must be correct no 

matter how they are grouped and this is called the baseline accuracy here. For 

example, consider 100 records in a database containing 4 clusters with 25 each, the 

baseline accuracy will be 25%, i.e., if we are to group every record into one single 

cluster, we have an accuracy of at least 25%. For this reason, the accuracy of 

different algorithms should be benchmarked also against the baseline accuracy 

instead of considering only its absolute value.  

 

4.2. Results 
4.2.1. The synthetic Database 

The synthetic dataset contains 100 houses divided into 4 clusters. To embed patterns 

in these clusters, we define a set of if-then rules that specify what values some of the 

attributes should take.  
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The dataset is characterized by 9 attributes that are categorical in nature (see Table 4-

1). In order to test the clustering algorithms’ ability to handle noisy and missing data, 

the data values were randomly selected and removed or corrupted by replacing them 

with other values.  

 

Attributes Values 
(1) Length of Funnel {Short, Long} 
(2) Number of Funnels {1, 2, 3, 4} 
(3) Shape of Window {Square, Circle} 
(4) Position of Window {Left, Middle, Right} 
(5) Style of Window {Cross lined, Horizontal lined, Vertical lined}  
(6) Texture of Door {Black, Horizontal lined, Vertical lined, Checked} 
(7) Position of Door {Left, Middle, Right} 
(8) Position of Plant {None, Left, Right, Both} 
(9) Texture of Roof {None, Blacked, Checked, Horizontal lined, Vertical 

lined} 
Table 4-1. Attributes in the synthetic dataset. 

 

When generating the data, we used the following rules. It should be noted that two 

attributes (3) Shape of Window and (5) Style of Window are irrelevant for the 

characterization of any cluster but are included mainly to test the ability of the 

clustering algorithm to handle irrelevant data. The attribute-values of these two 

attributes are randomly generated.  For a clustering algorithm to perform well, it has 

to be able to ignore these two attributes during the cluster formation process. An 

effective cluster should be able to discover the patterns as defined by these rules 

below. 

 

Class 1: 
1) (2) Number of Funnels = 3 
2) (2) Number of Funnels = 4 
3) (7) Position of Door = Middle 
4) (7) Position of Door = Right 
 
Class 2: 
5) (8) Position of Plant = Left. 
6) (1) Length of Funnel = Long. 
7) (6) Texture of Door = Horizontal lined. 
 
Class 3: 
8) (2) Number of Funnels = 2 
9) (4) Position of Window = left 
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10) (9) Texture of Roof = Horizontal lined 
11) (1) Length of Funnel = Short 
 
Class 4 
12) (6) Texture of Door = Black 
13) (6) Texture of Door = Checked  
14) (1) Length of Funnel = Short 
15) (8) Position of Plant = Both 
16) (9) Texture of Roof = Vertical lined 

  

Figure 4-1. Simulated data of houses 
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In order to make K-means work with categorical attributes, the categorical attributes 

have to first be made into binary attributes. For example, a categorical attribute 

“color” carries three possible values “red”, “blue” and “yellow”. The “color” 

attribute will be required to split into the attributes of “red color”, “blue color” and 

“yellow color”. If the data record originally carries “color” with “red” value, it will 

make the “red color” one and the other two colors zero.  Hence, the total number of 

attributes in our synthetic data set is increased from 9 to 30.  Also, for K-means or K-

modes, when handling missing values, they are replaced, in our experiments, by the 

mode of an attribute. 

 

The results of the clustering experiments are shown in the Table 4-2. As shown in the 

table, our proposed algorithm performed better than K-means and K-modes. Our 

method can classify the records with no error all the time. The performance of K-

means is somehow poor. It may be due to the reason that it needs to transform the 

data into a Boolean value. Such distance measure is not appropriate for categorical 

attributes. Also, K-means does not have any mechanism to jump from a local 

optimum to other searching space to reach a global maximum. So its performance is 

subject to the initial centers selected. If these are not chosen well, it may have poor 

result. For this reason, the results obtained cannot be guaranteed to have good quality. 

In fact, there can be a large discrepancy among different results.  

 

Compared to K-means, by the schemata theory [Michalewicz 1996] and many 

empirical studies [Davis 1991; Goldberg 1989; and Michalewicz 1996], GA usually 

can achieve good results. From our experiments, this proves to be the case as we 

have 100% accuracy in all our 1000 trials. 

 

In the cases of testing the proposed algorithm, we also test with real data sets, since 

real data often contains many missing and inconsistent, erroneous values, it is 

important that a clustering algorithm be capable of handling these data. From our 

experimental results, our algorithm can be very effective as it achieves high accuracy 

with such data.  
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Other than being able to handle noisy data, it is important for a clustering algorithm 

to discover the more important attributes that are responsible for characterizing or 

discriminating one cluster from another. There are two advantages if these attributes 

can be identified.  First, the dimensionality problem can be better handled. Second, 

we can better interpret the clustering results. For the proposed method, we are able to 

also explicitly discover which attribute values are responsible for characterizing a 

particular cluster.  

 

Without Missing Value and Noise 

When the dataset contains no missing values or noise, the results are given as follows.  

 

 Accuracy Rank 
GACDD 100.00% 1 
K-means 66.00% 6 
K-modes 72.80% 5 
COBWEB 100.00% 1 
GA Clustering 93% 4 
Autoclass 100.00% 1 

Table 4-2. Accuracy for the simulated data without missing value and noise. 

 

As shown in Table 4-2, our method performs better than K-means, K-mode and the 

GA-based algorithm and has the same accuracy as COBWEB and Autoclass. The 

performances of the K-means and K-modes algorithm are relatively poor and the 

local-optimum problem as discussed earlier may also be a dominant cause for the 

relatively poor performance of these algorithms. Also, for K-means, it does not 

explicitly handle categorical data. It needs to rely on binarization to handle them. As 

K-means and K-modes adopt the same algorithm, the performance difference is 

mainly due to the dissimilar distance measures and this is the likely reason why K-

means does not handle categorical data as well as K-modes.  

 

It should be noted that COBWEB discovered 3 clusters, which are of sizes 25, 25 and 

50 respectively. Looking at the second level, the large cluster can be split into two 

clusters of size 25 each. As a result, although COBWEB also matches all four classes 
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and contains 100 percent accuracy, it requires further processing to obtain the 

required number of clusters. It usually is not easy for normal user. 

 

With 10% Missing Values and Noise  

To investigate into the effectiveness of the different clustering algorithms in the 

presence of difference missing values and noise level, we randomly added 10% noise 

to the original dataset. For the proposed algorithm, COBWEB, GA-based clustering 

and Autoclass, they have been designed to handle missing values by themselves. For 

K-means and K-modes, the missing values in the dataset are replaced by the highest 

frequency values. 

 

 Accuracy Rank 
GACDD  98.5% 1 
K-means 84.3% 5 
K-modes 74.5% 6 
COBWEB 95.7% 2 
GA Clustering 90.2% 4 
Autoclass 94.2% 3 

Table 4-3. Accuracy for the simulated data with 10% missing value and noise. 

 

Of these different algorithms, GACDD performed better. COBWEB and Autoclass 

also show satisfactory results. The GA based clustering algorithm also performed 

quite well and is relatively stable but it does not find the best solution. For K-means 

and K-modes, there is a surprisingly improved accuracy. Theoretically, K-means and 

K-modes do not have special capability to handle noise and missing value.  However, 

you will notice later that as the noise levels vary, the accuracy of these approaches 

can also vary significantly.  

 

With 20% and 50% Missing Value and Noise

When missing values and noise are increased to 20%, GACDD still give relatively 

good results when other algorithms have shown rather significant degrade in 

performance. Autoclass also performed quite well at this noise level.  This is because 

COBWEB and Autoclass also process certain capability in handling such data. 

Compared to them, K-means and the others are rather far-behind and there is a rather 

substantial difference in terms of classification accuracy.  
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 Accuracy Rank 
Our algorithm 88.6% 1 
K-means 76.2% 4 
K-modes 73.2% 5 
COBWEB 80.5% 3 
GA Clustering 62.1% 6 
Autoclass 86.6% 2 

Table 4-4. Accuracy for the simulated data with 20% missing value and noise. 

 

When missing values and noise are increased to 50%, GACDD is still relatively 

stable in performance while the other algorithms have dropped sharply in 

performance. Table 4-5 shows the accuracy against the level of noise and missing 

value. 

 

 Accuracy Rank 
Our algorithm 80.6% 1 
K-means 31.2% 5 
K-modes 30.7% 6 
COBWEB 70.3% 3 
GA Clustering 51.8% 4 
Autoclass 74.2% 2 

Table 4-5. Accuracy for the simulated data with 50% missing value and noise. 

 

Accuracy vs. Noisy and Missing value percentage
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Figure 4-2. Accuracy vs. Noisy and Missing value percentage. 
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4.2.2. The soybean Database 

The soybean database [Blake and Merz 1998] contains 47 records and each record is 

characterized by 36 attributes. It is one of the most typical data sets used to test 

clustering algorithms. All attributes in the dataset are categorical in nature. Among 

the attributes, one attribute is the cluster label which specifies the disease that can be 

carried by the soybean species. These diseases include: the Diaporthe Stem Canker, 

the Charcoal Rot, the Rhizoctonia Root Rot and the Phytophthora Ort. The first three 

classes have 10 records for each and the last class has 17 records. So, the clusters are 

similar in size.  

 

Records in the Rhizoctonia Root Rot and the Phytophthora Ort share many common 

features. Since the records with the same disease are placed consecutively together in 

the data sets, we reshuffle the records to examine the effect of ordering of records 

that are sensitive to some clustering method such as COBWEB.  

 

In our experiment, since the K-means algorithm cannot handle categorical data well, 

there is a need to transform all categorical attributes in the dataset to binary-valued 

attributes. After transformation, the number of attributes is, therefore, expanded from 

35 attributes to 84 attributes for K-means. The clustering result is illustrated in the 

Table 4-6. 

 

 Accuracy Rank 
GACDD 100% 1 
K-means 84.5% 6 
K-modes 88.9% 5 
COBWEB 100% 1 
GA clustering 94.5% 4 
Autoclass 100% 1 

Table 4-6. Accuracy for the soybean dataset. 

 

From the above result, GACDD performed as well as COBWEB and Autoclass. It 

should be noted, however, that COBWEB is sensitive to the ordering of the records 

while others do not. When the records are reshuffled, the conceptual tree formed in 

COBWEB is different. It happens some results that cannot form enough clusters in a 

particular tree level. For these cases, we manually split the sub-clusters in the tree 
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node till enough clusters are formed. In the experiment, we match the solutions 

against the clusters to obtain the greatest possible matches by merging and splitting 

different branches to get the desired number of clusters. However, in real life 

database, the manual grouping is difficult to handle like the selection of cut-off level 

in hierarchical clustering.  We will discuss more on this issue in later section. 

 

The GACDD gets very good results in this data set. The GA based clustering 

algorithm obtained relatively satisfactory results. It is better than K-means and K-

modes but not as good as GACDD. K-means and K-modes always get local 

maximum. Relatively speaking, GA-based algorithms can better tackle this problem.  

 

4.2.3. The zoo Database 

The zoo database [Blake and Merz 1998] contains 101 records. Each record is 

characterized by 18 attributes that describe the features carried by the animals. 15 out 

of the 18 attributes are binary-valued. The binary attributes are Hair, Feathers, Eggs, 

Milk, Airborne, Aquatic, Predator, Toothed, Backbone, Breathes, Venomous, Fins, 

Tails, Domestic, and Catsize. One attribute is numeric that specifies the number of 

legs that contains 0, 2, 4, 5, 6 and 8. One attribute is the animal name that is 

irrelevant and it is ignored. One is the class that describes the specimen. We regarded 

the specimen as the natural clustering and used for result comparison. There are no 

missing values and there are a total of 7 specimens, of which there are 41 mammals, 

20 birds, 13 fishes, 10 invertebrates, 8 insects, 5 reptiles and 4 amphibians. The 

seven specimens varied greatly in the number of animals. Hence, we can test the 

different algorithms in handling unequal clusters size. In our experiment, since all the 

attributes are categorical, there is a need to transform all the attributes to binary-

valued attributes for K-means algorithm. Therefore, the number of attributes is 

expanded from the original 16 attributes to 38 binary-valued attributes. The 

clustering result is tabulated in Table 4-7. 

 

 Accuracy Rank 
GACDD 92.1% 1 
K-means 74.7% 6 
K-modes 75.7% 5 
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COBWEB 89.6% 2 
GA clustering 78.3% 4 
Autoclass 87.1% 3 

Table 4-7. Accuracy for the zoo dataset. 

 

As illustrated in Table 4-7, GACDD performed relatively well. It performed well 

with different cluster sizes. It can correctly identify the largest cluster that has 41 

records and the smallest cluster that has only 3 records. Although COBWEB has 

very high accuracy in the zoo data set, it could not discover the correct number of 

clusters. The closest numbers of clusters obtained are only 6 and 8. The smallest 

cluster that describes reptiles with record size four was never found. 

 

For the GA based clustering algorithm, it has an average accuracy of 78.3% but there 

is a large variance in accuracy in different trials. In fact, the standard deviation is as 

high as 6.67% as opposed to 1.7% in case of GACDD. The reason for this is that GA 

clustering has no quick methods but only mutation to correct the wrong clustered 

records when it hits a local optimal. In contrast, our algorithm can use the patterns 

discovered in the data to more accurately place clustered records into the correct one.   

 

The accuracy of K-means and K-modes are the lowest. This is likely due to these 

algorithms not being able to handle clusters with wide-varying sizes [Han and 

Kamber 2001]. 

 

4.2.4. The vote Database 

The vote database [Blake and Merz 1998], which describes the 1984 United States 

Congressional Voting Records have 435 votes on 16 key issues. There are 17 

attributes, of which 16 are Boolean-valued. The voting issues include handicapped-

infants, water-project-cost-sharing, adoption-of-the-budget-resolution, physician-fee-

freeze, el-salvador-aid, religious-groups-in-schools, anti-satellite-test-ban, aid-to-

nicaraguan-contras, mx-missile, immigration, synfuels-corporation-cutback, 

education-spending, superfund-right-to-sue, crime, duty-free-exports, export-

administration-act-south-africa.  
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Each record is characterized by a classification label describing that the vote is 

coming from democrat or republican. There are 267 democrats and 168 republicans. 

All attributes contain 2% to 25% missing values with an average of about 12% 

missing. Since all attributes are binary in nature, there is no need for any 

transformation to be done for K-means. The clustering result is illustrated in Table 4-

8. 

 
 Accuracy Rank 
GACDD 89.3% 1 
K-means 83.6% 6 
K-modes 86.4% 4 
COBWEB 88.0% 2 
GA clustering 86.4% 4 
Autoclass 87.3% 2         

 

 

 

 

 

Table 4-8. Accuracy for the vote dataset. 

 

From the experiment, the accuracy of all the algorithms is relatively close to each 

other. The differences among them are less than 6%. Nevertheless, GACDD still 

outperform others. The reason for small differences in accuracy may be due to only 2 

clusters are present in the record set. K-means is relatively poor amongst all. For 

most of the trials, K-means is relatively good.  However, perhaps due to poor 

initialization of centers, the error rate can go up to 45% in some cases. 

 

4.2.5. The heart Database 

The heart database [Blake and Merz 1998] contains 4 sets of data, which include the 

Cleveland, Hungarian, Switzerland and Long Beach VA data sets. They record the 

symptoms of patients with heart diseases. The database contains 14 attributes. 

Among these attributes, 6 are continuous: age, resting blood pressure, serum 

cholesterol, maximum heart rate achieved, ST depression induced by exercise 

relative to rest and number of major vessels colored by fluoroscopy. The remaining 8 

are categorical attributes. They are: sex, chest pain type, fasting blood sugar, resting 

electrocardiography results, exercise induced angina, the slope of the peak exercise 

ST segment, heart test and heart disease presence. The last attribute can take on 0 and 
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1 which distinguish the absence and presence of the heart disease, so there are two 

natural clusters. 

 

There are missing values in two attributes which are: the number of major vessels 

and the chest pain type. The categorical attributes are transformed into binary-valued 

attributes and expanded into 23 attributes for K-means. The numeric attributes are 

discretized into equal-depth intervals for GACDD, and the GA-based clustering 

algorithm and K-modes. For COBWEB and Autoclass, no data transformation is 

required. The cluster results are illustrated in Table 4-9. 

 

 Accuracy Rank 
GACDD 80.1% 1 
K-means 72.6% 4 
K-modes 69.1% 5 
COBWEB 76.0% 2 
GA clustering 65.7% 6 
Autoclass 74.5% 3 

Table 4-9. Accuracy for the heart-disease dataset. 

 

The GACDD outperforms the other algorithms in this experiment. It has an average 

of 80.1% accuracy throughout the experiment. The experimental results show that 

the proposed algorithm can perform effectively in the presence of both continuous 

and discrete data simultaneously.  

 

It should be noted that, for GACDD and the GA based clustering algorithm and K-

means and K-modes, we have tried to discretize the continuous intervals into 

different number of intervals, ranging from 3 to 10. The overall accuracy does not 

vary greatly and there is just a maximum of 2% difference.  For COBWEB, in some 

of the trials, three clusters were discovered in the first level of the concept hierarchy 

whereas only there are two clusters in the original database. The accuracy of 

COBWEB obtained in this case is thus by merging the extra cluster to one of the 

other clusters using the mechanism described in Section 4.1.2.  

 

Although the performance of K-means is better, there is a large difference among the 

accuracy in trials again. This may be due to a wrong choice of cluster centers in some 
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cases. For K-modes, the accuracy through trials are more stable, however, there its 

accuracy is relatively low. For the GA based clustering algorithm, it cannot find the 

clusters underlying the data and this is likely due to the inability of the simple 

entropy measure to discover good clusters. 

 

4.2.6. The mushroom Database 

The mushroom database [Blake and Merz 1998] that contains data about 23 species 

of gilled mushrooms in the Agaricus and Lepiota Family, contains 8124 records in 

the data set. Each species is characterized as definitely edible and poisonous by its 

class. Each record carries 22 attributes that are all nominally valued. These values 

describe the appearance, population and habitat of all the mushrooms. All attributes 

are shown in the Table 4-10. 

 

Attribute Value 
(1) Cap-shape {Bell, Conical, Convex, Flat, Knobbed, Sunken} 
(2) Cap-surface {Fibrous, Grooves, Scaly, Smooth} 
(3) Cap-color {Brown, Buff, Cinnamon, Gray, Green, Pink, Purple, Red, White, 

Yellow} 
(4) Bruises {Bruises, No} 
(5) Odor {Almond, Anie, Creosote, Fishy, Foul, Musty, None, Pungent, Spicy} 
(6) Gill-attachment {Attached, Descending, Free, Notched} 
(7) Gill-spacing {Close, Crowded, Distant} 
(8) Gill-size {Broad, Narrow} 
(9) Gill-color {Black, Brown, Buff, Chocolate, Gray, Green, Orange, Pink, Purple, 

Red, White, Yellow} 
(10) Stalk-shape {Enlarging, Tapering} 
(11) Stalk-root {Bulbous, Club, Cup, Equal, Rhizomorphs, Rooted} 
(12) Stalk-surface-above-
ring 

{Ibrous, Scaly, Silky, Smooth} 

(13) Stalk-surface-below-
ring 

{Ibrous, Scaly, Silky, Smooth} 

(14) Stalk-color-above-
ring 

{Brown, Buff, Cinnamon, Gray, Orange, Pink, Red, White, Yellow} 

(15) Stalk-color-below-
ring 

{Brown, Buff, Cinnamon, Gray, Orange, Pink, Red, White, Yellow} 

(16) Veil-type {Partial, Universal} 
(17) Veil-color {Brown, Orange, White, Yellow} 
(18) Ring-number {None, One, Two} 
(19) Ring-type {Cobwebby, Evanescent, Flaring, Large, None, Pendant, Sheathing, 

Zone} 
(20) Spore-print-color {Black, Brown, Buff, Chocolate, Green, Orange, Purple, White, Yellow}
(21) Population {Abundant, Clustered, Numerous, Scattered, Several, Solitary} 
(22) Habitat {Grasses, Leaves, Meadows, Paths, Urban, Waste, Woods} 
(23) Class {Edible, Poison} 

Table 4-10. All attributes in Mushroom dataset. 
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Of these attributes, there are 30% missing values in one of them. Categorical 

attributes are converted into binary attributes and expanded from 22 attributes to 121 

attributes. The dataset used in our experiment is relatively large. The attributes also 

take on many possible values of which some are likely to be irrelevant. The result of 

the mushroom dataset is illustrated in Table 4-11 below. 

 

 Accuracy Rank 
GACDD 89.8% 1 
K-means 78.5% 4 
K-modes 73.7% 5 
COBWEB 87.3% 3 
GA clustering 62.3% 6 
Autoclass 89.0% 2 

Table 4-11. Accuracy for the mushroom dataset. 

 

In the experiment, our algorithm performed better than the others. Since each 

attribute in the data set can take on many different values, there are high probabilities 

that some of them are irrelevant. From the experiment, those algorithms that rely on 

the use of conditional probability measure performed relatively better as they are 

better able to handle noise. The exception to this is the GA-based clustering 

algorithm which is based on an impurity measure. When the attributes can take on 

many values and the number of clusters is comparatively small, each cluster may be 

regarded as impure by its own as each attribute in the cluster may be required to take 

several values.  It is difficult to define a good cluster by such similarity measure.  

From such point of view, the similarity measure is important for the definition of a 

good cluster.  

 

The results of K-means and K-modes are also rather low compared to the proposed 

algorithm. The limitations of these algorithms in finding global optimum are a great 

barrier to obtaining better results. COBWEB and Autoclass, also did not perform too 

well due perhaps to the distance measure not being able to handle categorical data 

containing too many possible values.  
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Except for the proposed algorithm, the other clustering algorithms do not perform too 

well with this set of data.  This is likely due to relatively more irrelevant attributes in 

this set of data. It is also because some attribute-value pairs in some attributes always 

seem to contradict with most possible groupings of the records. The overall 

contribution of these attributes to the similarity measures may take some bad effect 

on the overall score. And this can result in a drop in overall accuracy. For the 

proposed algorithm, since it is better able to identify irrelevant attributes, it 

performed better.  For example, in this mushroom dataset, we discovered that the 

stalk-shape and veil-type are irrelevant to the final grouping of the result since no 

interesting rules are discovered for these two attributes. As a result, the clusters 

discovered by the proposed algorithm are more meaningful. 

  

4.2.7. All datasets comparisons 

In the experiments, we compared our algorithm with various well-known algorithms. 

In order to determine the robustness of the algorithm, The data sets we used, as 

described above, has these characteristics: (i) they contain noisy and missing values; 

(ii) the clusters are of unequal sizes; (iii) the cluster numbers are relatively large; (iv) 

the data set are relatively large and (v) they are data sets with relatively many 

attribute value-pairs. The experimental results are summarized in Table 4-12. 

 

 GACDD K-means K-modes COBWEB GA-based 
clustering 

Autoclass

Synthetic 100% 
(1st) 

66.0% 
(6th) 

72.8% 
(5th) 

100% 
(1st) 

93.0% 
(4th) 

100% 
(1st) 

Synthetic 
10% noise 

98.5% 
(1st) 

84.3% 
(5th) 

74.5% 
(6th) 

95.7% 
(2nd) 

90.2% 
(4th) 

94.2% 
 (3rd) 

Synthetic 
20% noise 

88.6% 
(1st) 

76.2% 
(4th) 

73.2% 
(5th) 

80.5% 
(3rd) 

62.1% 
(6th) 

86.6% 
(2nd) 

Synthetic 
50% noise 

80.6% 
(1st) 

31.2% 
(5th) 

30.7% 
(6th) 

70.3% 
(3rd) 

51.8% 
(4th) 

74.2% 
(2nd) 

Soybean 100% 
(1st) 

84.5% 
(6th) 

88.9% 
(5th) 

100% 
(1st) 

94.5% 
(4th) 

100% 
(1st) 

Zoo 92.1% 
(1st) 

74.7% 
(6th) 

75.7% 
(5th) 

89.6% 
(2nd) 

78.3% 
(4th) 

87.1% 
(3rd) 

Vote 89.3% 
(1st)  

83.6% 
(6th) 

86.4% 
(4th) 

88.0% 
 (2nd) 

86.4% 
(4th) 

87.3% 
(2nd) 

Heart 80.1% 
(1st) 

72.6% 
(4th) 

69.1% 
(5th) 

76.0% 
(2nd) 

65.7% 
(6th) 

74.5% 
(3rd) 

Mushroom 89.8% 
(1st) 

78.5% 
(4th) 

73.7% 
(5th) 

87.3% 
(3rd) 

62.3% 
(6th) 

89.0% 
(2nd) 
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Average 91.0% 
(1st) 

72.41% 
(6th) 

71.66% 
(5th) 

87.49% 
(3rd)  

76.03% 
(4th) 

88.1% 
 (2nd) 

S.D. 0.1073 0.1923 0.1977 0.1037 0.1074 0.1202 
Table 4-12. Summary of the experimental results. 

 

Table 4-12 contains a summary of the experimental results for all data sets. Among 

all these algorithms, the proposed clustering algorithm performed the best. The 

average correct classification rate of 91.0% is statistically significantly better than 

the average and than that of Autoclass and COBWEB that is the second and third 

bests. 

 

From the above table, it may give one an impression that the top three algorithms are 

much better than the bottom three. While this is the case with the average 

classification accuracy measure, it shall be noted that, among the top three, 

COBWEB can fluctuate greatly in accuracy.  Moreover, since only COBWEB cannot 

preset the desired number of clusters, there exists some trials without enough clusters 

found, and this induced a large drop in accuracy. The small standard derivation in 

our algorithm shows that it is a reliable clustering algorithm. 

 

4.3. Discussions 
The experimental results show that the proposed algorithm can be very effective. 

This can be due to the differences in characteristics in the proposed algorithm when 

compared to the others.  The details are given in Table 4-13.  

 

 GACDD K-means K-modes COBWEB GA-based 
Clustering 

Autoclass

1) Similarity Measure Model Dist. Dist. Model Model Model 
2) Method Type Partitioning Partitioning Partitioning Hierarchical Partitioning Partitioning
3) Missing Value b   b b b 
4) Irrelevant Features b    b b 
5) Result Interpretation b   Certain 

extent 
 Certain 

extent 
6) Capability for Fuzzy 
clustering 

b     b 

Table 4-13. Comparison of the algorithms’ characteristics 

The results of the classical K-algorithms, such as K-means and K-modes in the 

experiments are not very well and they are often affected by the initial settings of the 

cluster centres. Since there is no mechanism for these methods to hop out of a local 



Chapter 4 – Experimental results   74 

optimum, the grouping of the data records is sensitive to initial centre selection.  

Also, if the clusters are not spherical and not of convex shape or the clusters size 

varies greatly, the performance of these algorithms are usually relatively poor.  

 

Comparing with K-means, it should be noted that K-modes should perform better as 

it is supposed to better handle categorical data. On the contrary, K-means need to 

pre-process the data by making those categorical attributes binary. From the 

experiment, we discovered that the results of these two methods are more or less the 

same. However, the fluctuation in accuracy of K-means is much larger (when noise 

and missing values are at 20% and 50%).  This may be due to the loss of information 

after transformation. The reason behind it is that K-means uses spatial distance to 

determine the differences between two records.  When the initial centers are not 

selected well, the spatial distance similarity measure distorts the meaning of the 

cluster centers and assignments of the following records will be determined wrongly 

and the cluster centers are updated wrongly in a vicious circle. Because of the 

distance measure adopted and their lack of features to distinguish between relevant 

and irrelevant attributes, K-means and K-modes do not usually cater well for noisy 

and missing data. Basically, whenever there are missing values, they will be replaced 

either by the mean or mode value. For some data set, this can distort the original data 

set and can lead to poor performance [Matthews and Hearne 1991]. 

 

Compared to other clustering algorithms, COBWEB is based on a hierarchical 

approach. COBWEB performs quite well and achieves relatively high accuracy 

(ranked 3rd with 87.49% accuracy). The probability similarity measure makes 

COBWEB resistant to missing values. Compared to K-means and K-modes, 

COBWEB performs better as it adopts a probability measure as a similarity measure 

and this makes it more resistant to missing values and noise. 

 

Since COBWEB generates clusters in a hierarchical manner, many possible 

groupings can be discovered for a given set of data. In hierarchical clustering, the 

number and grouping of clusters are determined by cutting a dendrogram at a 

particular height (sometimes termed the best-cut). For example, from Figure 4-3a, we 
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can see that two clusters are formed by cutting at (1) while four clusters are formed 

by cutting at (2). If we want to obtain three clusters, since only two and four clusters 

can be formed by cutting at (1) and (2) respectively, there is no choice to obtain the 

desired number of clusters, say three. In that case, we can only split the clusters of 

{A, B} or {C, D} by (3) and (4) respectively.  

 

A B C D

(1)

(2) 

A B C D

(3) (4)

(a) (b) 

 

 

 

 

 

Figure 4-3. Partitioning in a hierarchical tree 

 

For COBWEB, given a tree structure of clusters, we are facing two issues – how 

many clusters and which solution. In the experiment, we match the solutions against 

the clusters to obtain the greatest possible matches by merging and splitting different 

branches to get the desired number of clusters. However, it is very difficult to 

determine the splitting in real-life situation without knowing the class labels. Besides 

the above, COBWEB is sensitive to the input order of records. The tree structure 

may be totally different by different input order. In our experiment, we can easily 

handle it by matching the class label to obtain the greatest matches but it is not 

practical in real life. 

 

Like GACDD, the GA-based clustering algorithm is also based on the use of GA. 

Unlike the K-algorithms, which search for the best cluster arrangement by hill-

climbing, GA adopts a probabilistic search strategy which makes it better able to 

avoid hitting local optimum. The solutions that can be obtained can theoretically be 

globally optimal.  In the GA-based clustering algorithm, it adopts a scaled entropy 

function as the similarity measure. The function calculates the similarity of an 

attribute-value partition relative to the class partitioning and vice versa. In fact, the 

GA-based clustering algorithm consists of two phases: the first phase extracts a small 

sample to calculate the importance of the attributes contributing to the final 
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clustering whereas the second phase use the relevant attributes for obtaining the 

result. However, in the first phase, it cannot determine if an attribute is relevant or 

irrelevant. It leaves the user to determine whether to include the attributes in the 

second phase for clustering. In the presence of noise or irrelevant attribute, the 

similarity function seems to be adversely affected and not be able to accurately 

reflect how good a clustering arrangement is.  

 

Autoclass imposes a classical finite mixture distribution model on the data and uses a 

Bayesian method to derive the most probable class for the records giving prior 

information. The experimental results show that the accuracies in different datasets 

are also quite high. Many studies have reported that the performance of Bayesian 

inference is satisfactory. The experimental results show Autoclass handle data with 

missing value quite well. Autoclass can also identify the influence of the attributes to 

the final clustering. Despite its good performance, the computational complexity 

required by probability estimation is extremely high and it is attributable to the 

exhaustive search approach.  

 

A disadvantage with Autoclass is that the time taken increases rapidly with the 

dataset size. In addition, Autoclass also suffers from the over-fitting problem 

associated with the maximum likelihood optimization methods for probabilistic 

model [Li and Biswas 2002]. That is, Autoclass can be heavily biased by the 

existence of small clusters and produce too many partitions. From Li’s result and 

from our experiments, it still shows that Autoclass produces excessive clusters. Since 

we pre-defined the number of clusters in Autoclass, the shortcoming of producing 

excessive clusters does not reflect in the above experiment. Besides, the maximum 

likelihood approach in Autoclass can be sensitive to the choice of starting values. 

 

Compared to the others, the proposed GA based clustering algorithm GACDD, 

performs better in many way than the compared algorithms in the experiment. Our 

algorithm used a proximity measure that is quite different. Though if-then interesting 

patterns for clustering have been studied in some papers, the application of the 

patterns suffers from practical difficulties. It required user to determine a threshold 
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such as minimum support and confidence to derive the interesting patterns [Han et 

al.1997]. However, it is a difficult task for normal user to define the threshold.  If it 

is set too high, a user may miss some useful rules but if it is set too low, the 

algorithm may be overwhelmed by many irrelevant attributes. The interesting 

patterns generated are a statistically significant one in our algorithm. The rules will 

only be considered interesting if they are statistically significant. Hence, the 

interesting patterns generated are data-driven. Interesting patterns help a lot in cluster 

interpretation and irrelevant attributes identification. 

 

All traditional distance based clustering algorithms cannot generate explanations for 

their clustering results. For data mining task to be effective, data interpretation is one 

of the vital processes in KDD [Fayyad et al. 1996a, 1996b, 1996c]. COBWEB gives 

explanation to a certain extent by the conceptual tree construction, while other 

compared algorithms only provide the representatives of the clusters for 

interpretation. On the contrary, our algorithm gives a good result interpretation. It not 

only provides the result with the interesting patterns classifying a record to the 

cluster, but also a measure of how important the patterns contribute to it. Since the 

patterns describe the relationship and importance of an attribute-value to a cluster 

label, it is very clear to the user to make further investigation especially in marketing 

analysis and customer relationship analysis. 

 

Some features are irrelevant and they provide little correlation with other features. 

Clustering by the values of these few irrelevant attributes will ruin the grouping in 

many other attributes. As a result, it is better to ignore those “irrelevant” features, as 

they will produce noise in the clustering. Many studies show that relevant feature 

selection can improve accuracy [Devaney and Ram 1997; and Talavera 1999]. Our 

algorithm generates rules in a statistically significant manner; for those attributes-

values that are not statistically significant, it will be regarded as not important, and 

hence irrelevant. Feature selection improves performance with respect of 

classification accuracy. Moreover, it can greatly reduce the data dimensionality, thus 

improving speed. Also, it helps user to identify these irrelevant attributes and assist 

in result interpretation. 
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Our algorithm maintains its accuracy in the presence of the noise and missing values. 

The experimental results indicate that it also performs well in large dataset, dataset 

with uneven cluster and dataset with many clusters. 

 

GACDD employs the novel genetic operators and contains two phases’ operations. 

In the first phase, it is the normal genetic operations of crossover and mutation; while 

in the second phase, it is a rule-based reclassification. The significance of 

reclassification is two-fold. The first function for reclassification is to rectify the bad 

gene produced in genetic operators and the deficiency of genetic algorithm to get the 

global optimum. During genetic operation, mutation will change some genes in order 

to introduce diversity in the population. However, it may change some good genes 

into bad genes. Though we can eliminate these by not allowing such mutation after 

calculating the fitness, normally we still allow these to exist to introduce enough 

diversity to avoid premature convergence. In another case, mutation change the good 

gene into bad gene, however, it simultaneously changes some bad gene into good one, 

so the good one compensates for the error introduced. If the total number of good 

and bad gene remains unchanged, it will not decrease in fitness and there is no 

mechanism to prevent such an error. Another thing is GA can easily reach its local 

optimum, but after that it may take considerable time to get its global maximum. The 

time taken may be much longer than that for local optimum. Consider a large dataset 

with one million records, after certain time, it gets all correctly classify into right 

cluster except one record. It is very difficult to find the error record and then can 

change correctly to the desire cluster. So, it is hardly surprising the result of genetic 

algorithm always contains some errors. The reclassification in such case shows its 

power. When GA reaches its local optimum, it always gets most records in correct 

cluster. By making use of the interesting rules hidden in these records, we can put 

back the error records into the correct cluster. The second function of reclassification 

is that correct clustering depends on the correct interesting patterns. It implies if we 

can get most interesting patterns, we can already get most records correct. In a 

genetic algorithm with one thousand iterations, the chromosome usually converges 

quickly and most interesting patterns will get correct in the early generations. By 
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using the patterns for reclassifying the records, we do not need to rely on genetic 

operations to change the gene correctly by chance to get better clustering. In short, 

we can greatly shorten the clustering time and increase efficiency. 

 

In conclusion, the performance of the clustering methods is limited by two factors: 

the suitability of the objective function and the effectiveness of the search method. 

For the algorithms examined, it is interesting that the results can be classified to two 

groups in terms of accuracy. Our algorithm, COBWEB and Autoclass is in the first 

group while K-means, K-modes and GA based clustering in the second group. The 

searching methods in K-algorithms limit them from obtaining the global solution. 

Though they can get satisfactory performance in accuracy and speed, the capability 

to obtain the best solution is unpleasant. GA based clustering solves the problem by 

genetic algorithm but the general entropy similarity measure makes it difficult to 

differentiate records and put them into different clusters. Our method also employ 

genetic algorithm. However, our algorithm that uses the interesting patterns make the 

data records easily be classified back into the correct cluster. Also, GACDD employs 

a totally different similarity function that groups the records based on the 

characteristics they process. The category utility and Bayesian inference of 

COBWEB and Autoclass also make it more effective in clustering.  
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Chapter 5 

Clustering When K is Unknown 
Traditionally, determining the optimal number of clusters when clustering a dataset 

is a difficult problem. Many clustering techniques, such as those based on 

optimization methods, like the K-means, require users to input the number of desired 

clusters. For hierarchical techniques, data records are merged together to form sub-

clusters and sub-clusters are merged in a hierarchical manner according to some 

optimization criteria. In the end, it forms a single cluster containing all records. A 

tree called dendrogram is often used to describe which sub-clusters are merged 

together and the distance between them. In a dendrogram, we can form the desired 

number of clusters by cutting the tree at some level. The hierarchical techniques add 

certain flexibility to clustering, it is still very hard to determine the suitable cutting 

level however.  While the estimate of a suitable number of clusters is relatively easy, 

for hierarchical methods that depend on distance measure such as conceptual 

clustering, it can be very hard to determine the cutting as no distance measure can be 

used as indicator. In practice, therefore, users are required to run experiments for 

different k and then decide for themselves how the results should be interpreted given 

different cluster numbers. Alternatively, cluster validation techniques can be used to 

help determine the optimal cluster numbers. These techniques are used to determine 

intra-cluster and inter-cluster similarity. The best number of clusters can be found by 

minimizing the intra-cluster distances while maximizing inter-cluster distances. 

There have been some works on determining the right number of clusters [Cristofor 

and Simovici 2002; Everitt et al. 2001; Fraley and Raftery 1998; and Tibshirani et al. 
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2000]. They are, however, not developed for discrete-valued data. For such data, we 

need to have a good technique to allow a suitable number of clusters to be 

determined.  

 

5.1 Extended GACDD 
To enhance the applicability to real world problem, GACDD is extended to find the 

optimal number of clusters for discrete data. In the extension, GA is modified in the 

following ways: (1) Chromosomes in the population can contain different cluster 

number in a range defined by minimum and maximum cluster number, (2) 

Chromosomes is initialised randomly to process different cluster numbers in a range 

specified, (3) Two-point crossover randomly selects two cutting points containing 

one or more clusters, (4) Empty groups will be deleted, (5) Two new mutation 

operators are induced – merge mutation and split mutation operators and (6) Fitness 

function is enhanced for new criteria. The encoding of the chromosome will be 

remained as using cluster as the gene. In the following sections, we explain in detail 

the extended GACDD for unknown k. 

 

5.1.1 Minimum and Maximum Cluster Number 

In GACDD, we need to specify k, the desired number of clusters. In the extended 

GACDD, the range, more exactly, the minimum and maximum cluster numbers are 

defined. For each GA operation, the cluster number contained in chromosome will be 

checked against the range. The main purpose is to prevent the GA operations from 

generating too few and too much clusters. Actually, we can arbitrarily define the 

lower and upper limit of cluster number in the initialisation of chromosome. Then, 

leaving GA operators to increase or decrease the number of clusters during GA 

operations. GA will not indefinitely increase the cluster number because cluster 

number exceeding the natural cluster will cause the chromosome less fit than other as 

it processes records with dissimilar characteristics or attribute-value pair in the 

cluster. 
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5.1.2 Initialization 

For initialisation, we define the minimum and maximum desired cluster numbers. 

[Cole 1998] Actually, we can just define the maximum bound because when assign 

records randomly to each cluster, there may happen that some clusters will not be 

assigned any records, which result in different cluster numbers in the chromosome 

pool. However, since each cluster has equal chance being assigned, when the data set 

has many records, the chance that results in empty clusters will be rare.  To guarantee 

the chromosome pool to have adequate chromosomes of different cluster numbers, 

we need to make sure similar amount of chromosomes of different cluster numbers 

inside. As a result, for each chromosome, first selected randomly the desired cluster 

number from the range defined in the upper and lower limit of clusters, say k1 and k2. 

If the lower and upper limits are 3 and 5 respectively, we can generate chromosome 

with 3 or 4 or 5 clusters. Each chromosome is randomly assigned the number of 

clusters from k1 and k2. After assignment, we can check whether the chromosome 

contains enough clusters and invalid chromosome will be deleted. The process 

repeated until all chromosomes contain their desired number of clusters. 

 

1 proc initialize(↔Pt, ←S) /* Pt is population and S is record set */ 
2  for i = 1 to |Pt| do           /* For each chromosome in the population */ 
3   /* Initialize the number of cluster randomly between minCluster and 

   maxCluster */ 
4   K = rand(minCluster … maxCluster);  
5   Pt [i] = set_list (K)    /* Initilize the list of list to contain K list */ 
6   while checkOK  do 
7   /* Assign each record to the lists */ 
8    for q = 1 to |S| do k = rand(1 …K); add(S[q], Pt [i], k) od 
9     checkOK = valid_check(Pt [i]); 
10   od 
11  od 
12  
13 proc add(←s, ↔list,←k) 
14  add_record(list[k], s)  /* Add record S[q] to list[k] */   

 
Figure 5-1. Pseudo code for Initialization 
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5.1.3 Crossover 

The crossover operation is modified to adopt a two-point crossover. Since the 

chromosomes employ a list-of-list representation, two-point representing the starting 

list and ending list is selected. The parent chromosomes undergo the two-point 

selection and exchange the selected groups. Figure 5-2 depicts the crossover process. 

This results in an opportunity of increasing and decreasing in the number of clusters 

presented in the chromosome. The number of clusters is then checked to examine 

whether it is still within a valid range. If not, the invalid child chromosomes will be 

thrown away, and the crossover will be repeated till it is accepted. There may exist 

duplicate genes in the crossover chromosome, the duplicate genes are deleted and the 

remaining one will be redistributed in the same manner as that in Chapter 3. In case 

that the cluster is empty after deletion, the cluster will be deleted from the 

chromosome. 

[[s1], [s2, s7], [s3, s5],  [s4, s6, s8]] 

Injected groups 

1. Select 

 

Figure 5-2. Two points crossover. 

 

1 func crossover(←Pt[i], ← Pt[j], →list3, →list4) 
2  index1 = rand(1…| Pt[i]|); index2 = rand(1…| Pt[j]|); 
3  index3 = rand(1…| Pt[i]|); index4 = rand(1…| Pt[j]|); 
4  /* Swap the lists between the two chromosomes */ 
5  list3 = merge(Pt[i], Pt[j], index1, index3, index2, index4);  
6  list4 = merge(Pt[j], Pt[i], index2, index4, index1, index3); 
7  return list1, list2; 
8  
9 func merge(←list2, ←list1, ←index1, ←index2, ←index3, ←index4) 

groups for crossover

Appear twice 

2. Inject group to chromosome 

Left Aside

3. Subtract duplicates from other 

Reinserted 

4. Reinsert missing objects  

[[s1, s4], [s2, s7], [s3, s5], [s6, s8]]

[[s1, s3, s7], [s2, s4, s5], [s6, s8]] 

[[s1, s3, s7], [s2, s7], [s3, s5],  [s2, s4, s5], [s6, s8]]

s4
[[s1], [s2, s7], [s3, s5],  [s6, s8]]
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10  for i =index1 to index2 do 
11   add_list(list1[i], list2) od /* Add the list to another list-of-list */ 
12  /* For each record in the list1 and list2 */ 
13  for m = index1 to index2 do 
14   for n = index3 to index4 do 
15    for i =1 to |list2[m]| 
16     /* For each record in the mth list1 */ 
17     for j =1 to | list1[n]| if (list2[m][i]== list1[n][j]) do 

delete(list2[m][i]); od fi 
18  for m = index1 to index2 do 
19   for i =1 to |list2[m]| 
20    roulettewheelreplace(list2, list2[m]); return chrom; 
21  
22 proc roulettewheelreplace(↔list2, ←list2[index1]) 
23  for i = 1 to |list2|  
24   prob[i] =1/|list2 [i]| 
25  prob[i] = prob[i]/sum(prob[]) 
26  for (i = 1 to |prob[]|) prob_total= prob_total + prob[i];  prob[i] = 

prob_total; 
27  for j = |list2[index1]| do 
28   k = rand(0…1); 
29   for i = 1 to |prob[]| if k <  prob[i] do add(list2[i], record) od fi 
30  od 

Figure 5-3. Pseudo code for Crossover 

 

5.1.4 Mutation 

In addition to the swap mutation described in Chapter 3, two new mutation 

operations – split mutation and merge mutation are added. It then results in three 

types of mutation. The swap mutation switches the genes between two groups while 

keeping the total number of groups equal. It is the process that randomly picks up 

two groups in the chromosomes, then randomly picks the gene from each group and 

swaps the genes between groups. The split and merge mutation increase or decrease 

the number of clusters in the chromosome. The split mutation operates by randomly 

taking out a cluster. Larger cluster has a greater chance to be chosen. Then, the 

cluster is split into two. Records in the cluster are randomly assigned to either one of 

two split clusters with equal chance. The split will result in two clusters with similar 

size. The merge mutation runs by randomly choosing two clusters in the 

chromosome, then merge the records together as a single cluster. The splitting and 

merging of the chromosome is determined by two parameters – split and merge 

mutation rates which are defined by the user. Since frequent split and merge 
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mutation will spoil the swap mutation process, they are expected to occur 

occasionally. 

1 proc mutate(↔list) 
2  swap_mutate(list); 
3  merge_mutate(list); 
4  split_mutate(list); 
5  
6 proc swap_mutate(↔list) 
7  index1 = rand(1… |list|); index2 = rand(1…|list|); 
8  mutate_index = rand(1…|list[index1]|);  
9  add_record(list[index2], list[index1][mutate_index]); 
10  delete_record(list[index1][mutate_index]); 
11  
12 proc merge_mutate(↔list) 
13  merge_index1 = rand(1…|list|); 
14  merge_index2 = rand(1…|list|); 
15  for i = 1 to |list[merge_index1]| do 
16   add_record(list[new], list [merge_index1] [i]) 
17  od 
18  for i = 1 to |list[merge_index2]| do 
19   add_record(list[new], list [merge_index2] [i]) 
20  od 
21  delete(list, list[merge_index1]); 
22  delete(list, list[merge_index2]); 
23  add(list, list[new]); 
24  
25 proc split_mutate(↔list) 
26  mutate_index = rand(1…|list|); 
27  for i = 1 to |list[mutate_index]| do 
28   if rand(0…1) < 0.5 
29    add_record(list[new1], list [mutate_index] [i]) 
30   else 
31    add_record(list[new2], list [mutate_index] [i]) 
32  od 
33  delete(list, list[mutate_index]); 
34  add(list, list[new1]); 
35  add(list, list[new2]); 

 
Figure 5-4. Pseudo code for Mutation 

 

 

5.1.5 Fitness Function 

Since the chromosomes contain different cluster numbers, the fitness function is 

slightly modified to have a fair evaluation. In a chromosome, more clusters tend to 

generate more rules and hence, the total fitness for the chromosome with more 
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clusters must be greater. To give a fair evaluation, the total fitness should be divided 

by the number of clusters presented in that solution. Since the original fitness is 

measured in an entropy approach, the cluster number will also take logarithm as the 

entropy one. As a result, the fitness function is changed to the following: 
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5.2 Experimental Results 
Experiments are set up to examine the effectiveness of extended GACDD to find the 

natural number of clusters. The natural number of clusters is the number in the class 

labels in the data sets. Several synthetic and real-life datasets will be used for 

experiments. The parameters of GACDD are set as follow. The population is 100. 

The maximum iteration is 10000. The crossover rate is 0.06. The swap, split and 

merge mutation rate will be 0.02, 0.02 and 0.01 respectively. The minimum and 

maximum numbers of clusters are set to be 2 and 10 accordingly. 

We examine the GACDD with 1) Synthetic dataset; 2) Soybean dataset; 3) Vote 

dataset and 4) Zoo dataset. Detail description for the dataset can be found in Chapter 

4. We run 1000 trails for each datasets in the experiment. The experimental result is 

illustrated in Table 5-1. 

 

GACDD Dataset Cluster number 
in dataset Cluster number Accuracy 

Synthetic 4 4 100% 
Soybean 4 4 100% 
Vote 2 2 87.13% 
Zoo 7 4 83.16% 

Table 5-1. Comparison of accuracy and number of clusters by our algorithm  
 

In the synthetic and soybean dataset tests, extended GACDD can discover correctly 

the number of clusters. Moreover, they also get 100% accuracy in clustering the 

records. For extended GACDD, although GA sometimes finds more or less clusters 

than the desired number, the reclassification shows its capability to correct it to the 

right number of clusters. In fact, during the genetic operations, the split and merge 
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mutation may introduce more or less clusters. However, the reclassification will put 

back those wrongly classified records to the correct cluster according to the 

interesting patterns obtained. This result in some clusters empty of records. The 

empty cluster will be deleted. So the correct number of cluster can be found. 

  

For the vote dataset, extended GACDD discovers correctly the natural number of 

clusters. Moreover, we can get 87.13% accuracy in clustering the records correctly. 

Table 5-2 shows the result of extended GACDD.  

 

Cluster 1 2 
Democrat 220 47 
Republican 9 159 

Table 5-2. Clustering of vote datasets by our algorithm 

 

For the zoo dataset, extended GACDD only finds 4 clusters. The most significant 

error happens in the Amphibians, Insects and Invertebrates. These 3 categories are 

merged into one big cluster. Actually, reptiles show evidence that it shares many 

common features with those of other clusters.   

 

Cluster 1 2 3 4 
Mammals 41 0 0 0 
Birds 0 0 0 20 
Reptiles 2 3 0 0 
Fishes 0 13 0 0 
Amphibians 1 0 3 0 
Insects 0 0 8 0 
Invertebrates 0 0 10 0 

Table 5-3. Clustering of zoo datasets by our algorithm 

 

From the experimental results, extended GACDD demonstrates capability on finding 

the number of clusters. Most of the time, it can find the cluster number correctly with 

high classification accuracy. Extended GACDD controls the generation of excessive 

clusters by two mechanisms. We can increase the merge mutation rate to allow 

greater possibilities for the cluster to merge together. Also, the reclassification can 

group back the records according to the interesting patterns obtained. As a result, we 

can reduce the number of clusters formed.  
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Chapter 6 

Conclusion 

In the thesis, we introduce a novel clustering method for categorical data. Basically, 

the effectiveness of a clustering method is critically determined by two factors, the 

searching method and the proximity criteria. The proposed algorithm employs a 

genetic algorithm for clustering that is shown in the experiments to be an effective 

clustering method for categorical data. The proximity criteria adopt a rule-based 

information theoretical measure called weight of evidence. It finds the interesting 

patterns and measures the weight of these patterns that supporting the presence of an 

attribute-value pair to be relevant to a cluster label. By summing up the total weight 

that the records acquire in the patterns due to presence of both the attribute-value and 

the corresponding cluster label, we can measure the fitness in the chromosome and 

hence how best the records are clustered together. 

 

Traditional genetic algorithm has difficulties in solving clustering problem. The 

difficulties are in both chromosomes encoding and genetic operations. The proposed 

algorithm is modified to handle such problem. The proposed algorithm involves a 

two-phase process. In the first phase, it is a genetic-based searching for the 

meaningful grouping of the data. In the second phase, it applies those interesting 

patterns to reclassify the records in the dataset.  It is changed from records to cluster 

as the building block for encoding, crossover and mutation.  
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Empirical results show that the proposed algorithm can successfully find the clusters 

in the datasets. The results illustrate promising performance and it is the most 

accurate one among the compared algorithms. In addition to the encouraging 

performance, the proposed clustering algorithm is also able to discover a set of if-

then rules describing the pattern underlying all discovered clusters. We apply 

simulated data as control experiment to test the capability to find out those rules. We 

defined a set of rules embedded in the simulated data. The result indicates that the 

proposed algorithm can successfully discover the rules hidden in the data. From user 

point of view, the knowledge can be unveiled and interpreted for further analysis.  

 

The proposed algorithm brings a number of advantages. It can handle data with noisy 

and missing values. It can be easily modified to handle huge amount of data by using 

data sampling. It can identify the irrelevant attributes and ignore those attributes in 

the clustering to reduce dimensionality. It can uncover the underlying knowledge in 

terms of interesting patterns with weight assigned. Most importantly, it can give an 

easy interpretation. 

 

For years, finding the natural number of clusters in a dataset has been a difficult issue 

in many clustering algorithms. It is not easy for user to determine the desired number 

of clusters. Even a hierarchical tree of clusters is given; it is still hard to determine 

the cut points. The proposed algorithm is modified in Chapter 5 to find the optimal 

number of clusters. It is modified in several ways. It allows a variable number of 

clusters in the chromosomes. It introduces split and merge mutation and new 

crossover operations. In addition, the fitness function is enhanced to give a fair 

evaluation. The experimental results illustrate the proposed algorithm can 

successfully find the correct number of clusters in many datasets which is also not an 

easy task for many clustering methods. Though the proposed algorithm may 

produces excessive clusters but it has ways to rectify it. It is by controlling the merge 

mutation rate and effect of reclassification. As a result, the number of cluster can be 

carefully controlled. 
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6.1 Future Work 
Empirical results show our algorithm can handle categorical data and is comparable 

to many common clustering algorithms. There are still areas for further enhancement. 

Future work can be done on the following areas: 

− Controlling of GA parameters and operations 

− Defining the interesting rules 

− High dimensional data and huge data size 

6.1.1. Controlling of GA parameters and operations 

Empirical and theoretical results show that the selection of parameters used in GA 

can have a large impact on the performance of the GA.  In [Grefenstette 1986], 

Grefenstette proposed a set of control parameters that is largely adopted by domain 

users. Empirically, if the mutation rate is too small, it may take a long time to find an 

optimal solution and it is set too high, the convergence rate can be slow. Population 

size and crossover rate can affect the diversity. If the crossover rate is too small, it 

will lead to small diversity and early convergence of the evolutionary process. If it is 

set too large, it can eliminate easily the best chromosomes. Moreover, the different 

methods in genetic operations such as selection, mutation and crossover can also 

have some influence on the results obtained at the end of an evolutionary process. As 

the interaction of the control parameters and the performance of a GA are known to 

be complex, many methods have been proposed to solve the problems [Back 1992; 

Srinivas and Patnaik 1994; and Lee and Tagaki 1993]. In [Back 1992; and Srinivas 

and Patnaik 1994], it employs a self-adaptive system to control the parameters. That 

is, the probabilities of crossover and mutation are varied depending on the fitness 

values of the solutions. Fuzzy approach is also applied to solve the problem. In [Lee 

and Tagaki 1993], a fuzzy knowledge-based system is used to dynamically control 

GA parameters. The results demonstrate that the performance in accuracy and speed 

is much improved.  

6.1.2. Defining interesting rules 

Many GAs generate initial populations randomly. For GACDD, we also assign 

records to the cluster randomly initially. The initialization can affect the genetic 

search in our algorithm in the following way.  
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GACDD detects for interesting attribute values and uses weight of evidence measure 

as a fitness measure. In the initialization, there may not be enough statistically 

significant interesting patterns in the chromosomes. This, as a result, leads to the 

little variances in the fitness of the chromosomes and hence small diversity in the 

population and require more iterations to get the solution.  

 

For some datasets, the separation among clusters may not be very big and there may 

be severely overlapping clusters. Normally, we can increase the number of relevant 

attribute values discovered by reducing the confidence level when detecting for 

significant statistics. We can lower it, say from 99% to 95%. The increase in the 

detected values will increase the diversity in the clusters but will lower the 

robustness when testing for the cluster re-classification accuracy. 

 

The initialization process, it should be pointed out, does not have to be completely 

random.  In fact, if we use some fast algorithms, such as the K-modes, to initialize 

the clusters for the initial generation of chromosomes, the discovery of relevant 

attributes can be much faster and this can result in the evolutionary process being 

terminated earlier.  

 

6.1.3. High dimensional data and large datasets 

The kind of problems that GA solves is typically optimization problems and the 

search space increases exponentially as a function of the problem size. For this 

reason, the number of generations it takes for a globally optimum solution to be 

found increases rapidly with the problem complexity. A number of methods have 

been described in the literature [Cantú-Paz 1998; Ratha et al. 1995; Zaki et al. 1997; 

and Toivonen 1996] to address this problem and among them, the use of parallel 

computation approaches in GA and the use of data sampling to improve convergence 

seem to be more popular. 

 

Parallel GA has been investigated for a number of years [Cantú-Paz 1998; and Ratha 

et al. 1995]. The basic idea behind many parallel GA is to divide a task into chunks 
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and solve the chunks simultaneously using multiple processors. This divide-and-

conquer approach can be used in different ways and this leads to different methods to 

perform parallel GAs. Some methods change the behaviour of the algorithm while 

others do not. There are typically three ways to parallelize GAs: global 

parallelization, coarse-grained parallel GAs or distributed GAs and fine-grained 

parallel GAs. Early studies on parallel GAs was made by Grefenstette [Grefenstette 

1981]. The prototype is a global parallel GA with a “master” processor that does 

selection and applies crossover and mutation. The individuals are sent to “slave” 

processors to be evaluated and returned to the master at the end of every generation. 

The investigation shows that the speed-up in time is nearly linear-scaled with the 

number of processor [Talbi and Bessière 1991].  

 

Data sampling is a technique largely applied to the field of statistics to model the 

characteristics of the population. For large databases, data sampling can be used in 

such cases to sample some of the records for mining.  The effectiveness of the result 

can be largely influenced by the size of the sample and the sampling techniques but a 

major benefit of sampling is the speed and efficiency of working with a smaller data 

size that still contains the essence of the entire database. Sampling enables analysts 

to spend relatively more time fitting models and thereby less waiting time for 

modelling results. It also enables easier visualization of the data. For this reason, the 

use of sampling in data mining as statistically valid practice for processing large 

databases can be considered for future work [Zaki et al. 1997; and Toivonen 1996]. 

 

In data mining, the sampled data is used to construct predictive models, which in turn, 

are used to make prediction for the entire database. Therefore, the validity of a 

sample, that is, whether the sample is representative of the entire database, is 

critically important. Whether a sample is representative of the entire database is 

determined by two characteristics –the quality of the sample and the size of the 

sample. In order to find a sample that is good quality, a sample should be unbiased 

enough to be at least typical of the database, that is, each record has the same chance 

of being selected. A simple random sampling is the most typical sampling technique 

which a certain number of records is taken out from the whole population entirely by 
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random. Theoretically, if the sample size is large enough, the information in the 

population can also be maintained in the sample as each record is picked up by 

random. As a result, sample size is a major factor that will affect the outcome of the 

mining result. 

 

Data sampling largely speeds up the mining process without compromising the result 

accuracy. However, for data sampling to be applied in clustering, the algorithm must 

be able to generate result with some cluster representatives or some rules in order to 

deduce the remaining data points in the population. Many clustering algorithms like 

hierarchical approach, concept learning approach, density-based approach and 

neural-net approach often hardly applied the data sampling. They required further 

processing, such as decision tree building from the sampling result, to classify the 

population. However, decision tree prediction based on sampling data may distort the 

original grouping of the dataset. Among the selected algorithms for comparison, that 

is K-means, K-modes, COBWEB, GA based clustering, Autoclass and GACDD, in 

the chapter 4, COBWEB and GA based clustering cannot naturally apply the data 

sampling without relying on another algorithm for predicting the population. In order 

to predict the records, GACDD is slightly modified to handle the sample data. 

GACDD will initially sample a small subset of records for deriving interesting 

patterns. GACDD then operates on the sampled data to find out the patterns by 

performing the GA operations and fitness functions. Followed by exploring the 

interesting patterns found on the sample data, GACDD then classify the entire data 

set to the corresponding cluster by the interesting patterns obtained from the sampled 

data. 
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