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at the Hong Kong Polytechnic University in September 2003

Abstract

A new type of dynamic vibration absorber (DVA) has been designed to be the combination
of different types of vibration absorbers attaching at a single point, which, was proposed
and evaluated for vibration suppression. The effects of a number of absorber parameters
and locations of attachment have been compared. Holographic full-field vibration
visualization techniques have been tried for finding a suitable location of absorber on the

controlled structure.

Basic theories of the new dynamic absorber in suppression of vibration have been
established. The suppression of harmonic vibrations of a single-degree-of-freedom
(SDOF), multi-degree-of-freedom (MDOF) discrete system and continuous systems such
as beams and plates by the proposed dynamic vibration absorbers have been evaluated by
both computer simulations and experimental tests. The results obtained in both parts are

presented and discussed.
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For suppression of rigid body vibration, the performance of the commonly used
translational absorber was compared to those of a rotational absorber and the proposed
absorber. From the numerical analysis, it was found that the translational one has the
poorest performance in terms of the range of the absorption frequency; rotational absorber

is better while the proposed absorber can completely absorb all the rigid body vibrations.

For flexural vibration of continuous structures such as beams and plates, the performance
of the commonly used translational absorber was compared to those of the rotational
absorber and the proposed absorber by finite element analysis and experimental tests. It
was found that the proposed type of absorber provides excellent performance and simpler
implementation than those of the standard sprung mass absorbers as reported in textbooks
and other published literature. Even though there are many techniques for the optimization
of tuning and location of vibration absorbers as reported in the literature, most of them
require highly computational intensive analysis before the user can determine the tuning
values and the best location of the absorber. The proposed absorber is a combination of
translational and rotational absorbers to be attached onto the vibrating structure at a single
point. With the knowledge of the modal parameters of the structures, it is straightforward
to determine an effective attachment point for suppression of vibration. The numerical

predictions are verified by experimental tests.
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Nomenclature

Cross-section area of a structure

Scaling constant of the r'™ natural modes

Coefficient matrix of the equation of motion

Amplitude of the excitation force

Moment of inertia of the structure

Moment of inertia of the rotational vibration absorber
Moment of inertia of the translational vibration absorber
Stiffness of the primary SDOF structure

Stiffness of the 1* spring of the structure

Stiffness of the 2™ spring of the structure

Stiffness of the dynamic vibration absorber

The i column and j* row element of the stiffness matrix
Dimensionless stiffness ratio

Dimensionless stiffness ratio of the translational absorber
Dimensionless stiffness ratio of the rotational absorber

Total Length of the structure

Distance of the Cg of the structure from one end
Distance of the Cg of the structure from the other end
Dimensionless length ratio between /; and /;

Primary mass of a single degree of freedom structure
Mass of the dynamic vibration absorber

The i™ column and " row element of the mass matrix
Mass of the rotational absorber

Mass of the translational absorber

Dimensionless mass ratio of the translational absorber

Dimensionless mass ratio of the rotational absorber

Generalized translational force at the left end of an element
Generalized rotational force at the left end of an element
Generalized translational force at the right end of an element
Generalized rotational force at the right end of an element
Dimensional time

Potential energy of the structure

Transverse displacement of the left end of an element
Transverse displacement of the right end of an element
Displacement slope at the left end of an element
Displacement slope at the right end of an element
Displacement of the primary SDOF structure

Translational amplitude of the structure

Displacement of the primary structure
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Displacement of the dynamic vibration absorber
Displacement of the dynamic vibration absorber
Acceleration of the primary SDOF structure
Acceleration of the dynamic vibration absorber
Acceleration of the primary the structure
Acceleration of the dynamic vibration absorber
Distance between the Cg and the excitation force

Dimensionless length ratio between the Cg and the excitation force

Inertia ratio
Dimensionless inertia ratio

Rotational amplitude of the of the structure
Rotational amplitude of the structure

Rotational velocity of the structure

Rotational amplitude of the rotational absorber
Rotational acceleration of the rotational absorber

The j™ element of the mode shape vector at the r' mode
Natural frequency of the 1% mode

Natural frequency of the 2" mode

Driving frequency of the force

Natural frequency of the 1* mode of the rotational absorber
Natural frequency of the 2" mode of the rotational absorber
Natural frequency of the 3™ mode of the rotational absorber
Natural frequency of the 1* mode of the translational absorber
Natural frequency of the 2™ mode of absorber

Natural frequency of the 3™ mode of the translational absorber
Dimensionless frequency ratio of vibration

Dimensionless natural frequency ratio of the 1% mode
Dimensionless natural frequency ratio of the 2* mode

The i™ element of the mode shape vector at the r™ mode
Displacement of the element
Density of a material
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1. Introduction

Machine or product casings are usually in the form of thin plates or shells which may act
like loudspeakers when they are vibrating due to internal excitation. The vibration and
sound radiation of machine casings excited at one or a few discrete frequencies may be

suppressed in an economic way by attaching one or more vibration absorbers on to the

casings.

A dynamic vibration absorber s an auxiliary mass-spring system, which, when correctly
tuned and attached to a vibrating plate or shell subject to a harmonic excitation, causes the
steady-state motion of the point to which it is attached to cease. Such devices have been
invented for more than one hundred years but they are still not commonly used. One
reason is the lack of a systematic way to find a good attachment point for the absorber such
that the vibration amplitude and the sound radiation of the whole structure can be reduced.
Optimization of the tuning parameters and location of the attachment is highly
computationally intensive. An improper selection of attachment point for the absorber may
lead to an amplification of vibration and sound radiation in other parts of the structure.
This motivates the present research study of finding a more systematic way of using
dynamic absorbers for vibration suppression. The performances of several types of
dynamic absorbers of simple design were compared and a new type of dynamic absorber
was analyzed and proposed for vibration suppression. The new dynamic absorber is able to

absorb both the rotational and translational motions of the structure at the attachment point.



It provides superior vibration suppression performance to the standard sprung mass

absorber in beam and plate vibration if it is properly located on to the vibrating structure.

The performance of different types of vibration absorber including the translational type,
which is commonly used, the rotational type and the proposed type are compared by

numerical analysis and experimental tests.

There are several articles in the literature [1][2] reporting the use of simple vibration
absorbers for vibration suppression and they show the importance of the attachment point
of the absorber on to the primary structure. Some researchers [3][4] studied the free and
deterministically forced vibration of systems that were composed of combinations of
simpler assemblies such as beams, plates, spring-mass systems, etc.. However, very few of
them reported the effect of changing the positions of the absorber on the vibrating system.
In this study, the importance of the position of the attached absorber was studied and a
guideline is proposed for choosing a suitable location of the vibrating structure for
attaching the dynamic vibration absorber. Also, researchers proposed the use of a number
of absorbers of different tuning values and attachment points for good absorption results.
In contrast, the proposed absorber is a simple combination of translational and rotational
absorbers to be attached on to the vibrating structure at a single point. It was hoped that an
economical and practical way of using absorbers in vibroacoustic control could be devised

for the engineers working in the field.



In order to determine a suitable location for attaching a dynamic absorber on to the
vibrating structure, modal analysis of the structure is required. A whole field optical
measurement technique called ESPI [5][6] was used for the measurement of modal

frequencies and modeshapes as it is more convenient than the traditional point-wise

technique.

In this project, the suppression of rigid body motion, flexural vibration of beams and plates
by the standard translational-type, the rotational-type and the proposed combined type of
dynamic vibration absorbers were analyzed and compared via theoretical models, computer

simulations and experiments.



1.1.  Objectives

In this project, an easy, economical, and practical solution in vibration suppression is

proposed by means of using dynamic vibration absorbers.

To make the vibration suppression economical, a new type of vibration absorber for
structural vibration suppression was developed. We combined different kinds of dynamic
vibration absorbers to be a single vibration absorber, which gives superior performance in

vibration suppression.

To control vibration easily, guideline for determining a good location for attaching
different kinds of vibration absorber was investigated. Different kinds of absorber need
different methods in determining the location of installation. For example, in this project,
1t was found to be effective to attach the rotational vibration absorber at the nodal location
of a structure, a visualization technique called Electronic Speckle Pattern Interferometry

(ESPI) was used for finding a good location for installing the absorber.

To ensure the newly developed vibration absorber and the technique suggested to be

practical, they are all tested by simulations and experiments for validation.



1.2.

Review of dynamic vibration absorber designed for vibration suppression

A dynamic vibration absorber {DVA) is an auxiliary mass, which is frequently attached
to vibrating systems by springs and damping devices to assist in controlling the
vibration and sound radiation of structures. The theory of the standard translational-

type dynamic vibration absorbers was firstly reported by Den Hartog in 1909 [7].

Harris and Crede [8] provided a description of a number of different DVA

- arrangements, including pendulum and linear sprung mass arrangements. A description

is also given a device in tube form, in which a fluid rolls from one tank to another,

often used for antiroll in ships. Absorber systems can include rotational or linear

motion, or both.

Traditional passive dynamic absorbers can be effective only at a single resonant
frequency, and may not be effective at other resonant frequencies or for modes where a
node is present at the location of the absorber. An active dynamic absorber with a force
generator acting as the absorber mass was reported by Rockwell [9] for the control of
beam vibrations. A sensor mounted on the other side of the beam detected the motion
of the beam and sent a feedback signal to the generator, which, in turn, reacts against

the motion of the vibration.

Besides those DV As with seif-tuning capabilities [10], another strategy is to search for

a set of optimal parameters so as to guarantee that the vibration level is minimized over



a frequency band, taking into account their design constraints. Design Curves are
presented by Den Hartog [7] for the case of undamped single-degree-of-freedom
primary systems subjected to harmonic and white noise random excitation. Warburton
[11] presents expressions for optimum absorber parameters derived for undamped
single-degree-of-freedom primary systems, considering harmonic and white noise
random excitations. Warburton also reported the effect of damping in the primary
system on optimum absorber parameters in another article [12]. Frequency domain-
based performance indices are also used for investigating single-degree-of-freedom
primary systems in different applications. Wang and Cheng compare four optimization

methods [13], as applied to single-degree-of-freedom system with primary damping.

In reference [14], Nishimura ez al. address the optimization of a DVA for multi-degree-
of-freedom systems subjected to random input with a dominant frequency, using an
optimization method based on optimal control theory. Kitis et al. [15] proposed an
efficient optimal design algorithm for minimizing the response of a multi-degree-of-
freedom system under sinusoidal loading. More recently, 2 modal theory for
viscoelastic dynamic neutralizers was developed [16,17] and different optimization
techniques for the optimal design of neutralizers over a finite frequency band.
However, most of the studies of optimization of the tuning parameters and location of
the attachment of vibration absorbers in the literature are very computationally

intensive and they are only sound for structures of some particular configurations.



1.3. Review of structural-borne noise attenuation using dynamic vibration absorbers
A dynamic vibration absorber may be used for suppression of structural vibration and
sound radiation from the structure. Fuller et al. [18,19] presented a technique for tuning
absorbers applied to a cylindrical shell to minimize radiated sound. To suppress the
vibration amplitudes invblving high modes, Nagaya and Li [20] presented a method using
neural network procedures in solving non-linear equations for predicting tuning parameters

of the absorber for higher mode noise absorption.

Many techniques have been developed to reduce the vibration of the cylindrical shell and
the resulting interior noise [21, 22]. Passive control has been the traditional technique used
to achieve these goals. In a passive control system, the vibration and the coupled sound are
reduced by adding appropriate passive elements or by modifying the structure. Fuller has
studied the reduction of the interior sound field by changing the parameters of the
cylindrical shell {23] or by adding detuned, passive dynamic absorber [19]. For aircraft
cabin noise [24, 25], DVA provided a high reduction of noise because the aircraft cabin
noise due to propellers had a discrete spectrum with low frequency. Since absorbers can be
made small and light and can be installed conveniently, DV As find widely applications in
attenuating this kind of noise [26]. However, there is no general systematic way of
determining the attachment point of absorbers reported. In this project, the position of the
attachment of the DVA was studied and the proposed DVA was investigated such that
vibration amplitude of the whole surface was suppressed and the sound radiation from the

controlled structure could be attenuated.



1.4. Review of electronic speckle pattern interferometry for modal analysis

As presented in the later chapters, it was found that an effective attachment point for
vibration absorbers could be determined based on a modal analysis of the controlled
structure. This process can be simplified by using a full-field optical technique called
Electronic Speckle Pattern Interferometry (ESPI) [6, 27]. Because of its simple setup and
measurement procedures, it is a convienent tool for the identification of the modal

frequencies and vibration shapes of the controlled structures.

Holographic mnterferometry is a traditional method used to find small deflections and to
perform vibration analysis [28]. Techniques used for holographic vibration analysis can be
classified as real tune interferometry and time-averagedd interferometry. These kinds of
holographic techniques provide large amount of practical and theoretical information on
vibration analysis. However, the time consuming process of film registration and
development limits the effective application of holographic vibration analysis. ESPI, a
process using a video system for direct recording and display of interferograms exists for
speeding up holographic vibration analysis [29]. Since ESPI uses a video recording and
display system, it provides a real time dynamic displacement measurement platform in

vibration analysis.

For vibration analysis by the ESPI technique, a reconstructed image is obtained by

diffraction and intensity detection (a schematic set-up for time-averagedd ESPI is shown in



Figure 1.3.1). This reconstruction process includes high-pass filtering and full-wave

rectification of the obtained video signal.
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Figure 1.3.1. Schematic set-up of time-averaged ESP!I

If the object’s movement is greater than the wavelength of the light, dark and bright fringes
will be formed due to the interference fringes smearing together during the TV exposure
resulting in lower recorded fringe modulation and proportionally lower intensity after
demodulation {27]. A time-averaged fringe pattern can be formed when the standing
vibration of the object is suitably excited. So, we can obtain pictures for the vibration

mode-shapes of the structure in a convenient way by using this technique.

With the aid of this full field measurement method and knowledge of the mode-shape of
the contributing modes, a suitable location for attaching the dynamic vibration absorber can

be determined.



1.5. Thesis outline and new results

A literature survey of DVA for suppression of vibration and attenuation of sound radiation

. from vibrating structure and a review of the normal mode theory and ESPI are reported in

Chapter 1.

The theories for vibration control of discrete and continuous systems are described in
Chapter 2. Based on the goveming equations of motion, equations for the dynamic
response of the new type of vibration absorber are established. Hence, equations for
finding the effect of the vibration absorbers on rigid-body motion and multi-degrees-of-
freedom systems are derived. Numerical models for the flexural vibration of continuous
structures including beams and plates with vibration absorbers are developed by the finite

element method.

In Chapter 3, numerical studies are presented for the absorption of rigid body motions of
vibrating platforms with different types of DVA. To investigate the effect of distributed
models such as beams and plates, finite element models are developed and approximate

solutions obtained by using self-written and commercial programs. The results found are

verified by experiments.

Finally, discussions of the resuits and conclusions are presented 1n Chapter 4.
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2. Theory
2.1. Vibration suppression of discrete systems using dynamic vibration absorber
In this project undamped structures and absorbers were used in all numerical analysis.
Comparing to the analysis with the damped systems, it was able to give a clearer picture of
the effects of the dynamic absorbers (such as how the natural frequencies shift) in the
current investigation.

2.1.1. The traditional dynamic vibration absorber
A traditional approach to protect a device from steady-state harmonic disturbance at a
constant frequency is the addition of a vibration absorber. Unlike a vibration isolator, an
absorber is a second mass-spring system added to the primary structure to protect it from
vibration. The purpose of adding the absorber is to transmit the vibration energy from the
primary structure to the second mass-spring system [30]. The new system becomes a two-
degree-of-freedom system which has two natural frequencies. If the auxiliary mass-spring
system has no damping and is tuned to the forcing frequency, it acts as a dynamic absorber

and enforces a node at its point of attachment of the primary system [31].

support

F=Fpsin a),:rtﬂ

Figure 2.1.1a Model of dynamic vibration absorber attached on a system with a forced
vibration
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Figure 2.2.1b Vibration amplitude of the primary mass m.

As shown in Figure 2.1.1b, the absorber has split the original natural frequency into two
natural frequencies of the combined system: the original structure with the attached
absorber. The mass and stiffness of the absorber can be optimized to minimize the
vibration of the original device. As x is the displacement of the primary system (with mass
m and stiffness &) and x, is the displacement of the absorber mass (with mass m, and

stiffness &), the equation of motion is:
m 0§ x k+k, -k, | x F,sinw,t
s — (2.1.1)
0 m, | X, -k, Kk, |x, 0
Let the steady-state solution for x and x, be

x(t) =X sinwyt

12



Xq(t) = X; sinwgt (2.1.2)

Substituting equations 2.1.2 into 2.1.1, we have:

k+k,—m -k, X | . Fyl.
2 Sin@gt = SIN @ 4, ¢ (2.1.3)
-k, k,—-m.w5" | X, 0

x| [k+k,-m -k, TR
SO, = 2
Xa _ka ka —m,,, 0

_ 1 (k, —maa)a,,,z)F0 214
2 2 2 ( T )
(k+k, —mw, Yk, -mw, )=k, k,F,

Hence, by choosing suitable k, and m, such that k, =m_ w,’, X can be reduced to zero.

In such a case, the amplitude of motion of the absorber is:

X, =F,/k, (2.1.5)
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2.1.2. Vibration absorber for absorbing rigid body motions

F=Fpsinon

support

Figure 2.1.2. Ideal single-degree-of-freedom system

F=Fpsinot

w TS
\,/

support support

Figure 2.1.3. Model of a vibrating platform have resilient support at each of the four

CoOrmers

The idealized single-degree-of-freedom system as shown in Figure 2.1.2 consisting of a

mass supported by a spring is hard to be realized in practice, since even in the simplest case

of a mass suspended by a spring, the mass can not be constrained to move along a straight

line. It is important to understand what modification must be made to the simple theory to

interpret practical cases.
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A rigid resilient supported body exhibits the six natural modes of vibration as shown
diagrammatically in Figure 2.1.3. Each of the modes may be excited independently or
together with others. The six modes are vertical translation, a rocking mode about a point
above or below the center of gravity, and corresponding rocking modes when viewed in the
other elevation and the rotational mode. If excitation in a particular direction results in
motion of the mounted equipment not only in the same direction as the excitation but also
in some other modes of vibration, then the two modes are said to be coupled. Without loss
of generality, the vibrating platform can be simplified to a rigid beam with a variable center
of gravity. The performance of vibration absori)tion by a standard translational vibration
absorber, a rotational vibration absorber, and a combined type of absorber is presented in

the followings.

Consider a rigid beam of mass m with it’s center of mass at /;, supported by two springs
with stiffness k; and &, as shown in Figure 2.1.4. Let the length of the beam be L. The

model is set up as mentioned above so that the computation can be simplified.

l )

AR ETTERE TR RTTRRRTRRERRNRERRRNNNNNNANN

Figure 2.1.4. Model of a rigid beam without any vibration absorber
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The differential equations governing the behavior of free vibration of the system in Figure

2.1.4 can be described by the following matrix equations:

m O] [ ktk k= Tx]_
0 18] kb -kl ki*+k57 6]

(& +k, —mw? kl, -kl x
1 2 ) 282 211 ) =0 (216)
kil kil kLl —Iw* |0

L7y ! A
k' ml L k! m L

With & =

The non-dimensional form of the determinant of the coefficient matrix D(@)} is shown

below:

D _[+k-ar+ka-Ty -z57]-fa-1)-1] 217
Lk,

The roots (@, and @) of the equation Dfw)=0 are the natural frequencies of the system.

2 oo
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If a sinusoidal force F is applied at /;+y,. The differential equations of the system become:
k +k, -ma’ 2k212 _flll 1=_| F sinor
kb -kl kIS +kDL -1 | 8] |Fy,

And, the steady-state amplitude for an arbitrary value of @ are obtained by Cramer’s rule:

F);T%{ITZ +EQ-Ty -z& -5k a-T)-T] . (2.18)
F/(ZL =%{;[1+E—52]-[E(1-7)-T]} 219

11 12

N4

k] . k2

AT TR TR TRTRTRTHERRERTIRR>RRIRTRTRTRRITRITITTNWN

Figure 2.1.5. Model of a rigid beam with a translational absorber
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To control the vibration, traditional translational absorber may be added to the system. As
shown in Figure 2.1.5, an additional mass m; and a spring of stiffness X, are attached to the
beam. Let x; be the absorber displacement from its original position, the differential

equations governing the behavior of the system will be:

(m 0 0 %] [k+k+k kbL-kl, -k x| [ F]
0 I 06|+ kly-kl KIZ+K1> 0 | 8|=|y,F|sinex
0 0 m |% —k, 0 ko |lx] | O ]
&, +ky +k, —ma’ kyl, —k ], ~k [x] [ F]
kb, —kl, k1 + k1, - Ie’ 0 8 |=| y,F |sinwt (2.1.10)
] —k, 0 ko—mo® x| | 0
N N L. A T A L W S I /S .
Wlthk—k?.k,— I,z—mLz,l—i,a)—m,y—L,m,—m'
W:[HEH’E,—52][}“’+E(1—7)2-"‘“‘2][k — @ ]-{?‘2+E(1-T)2—”52][ ]2
1
[k ”"“zl{k(l—l)—tr (2.1.11)
620,57 -0, 5 - 0,7
m I{II +k(1-1) —“2][ “““2] y[k(l N- l][k "“*2]} (2.1.12)
FﬁcL D{ 1+% +% -a]fF -ma*]- 5% -Fa-T)-T]k - ma* ] (2.1.13)
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(2.1.14)

Ya
T “-4;_‘-,;'%,.,““0,_}_, S L
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k; k2
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Figure 2.1.6. Model of a rigid beam with a

Instead of attaching a traditional translational absorber, an

rotational absorber

alternate method to suppress the

vibration would be the addition of a rotational absorber and this method is rarely reported

in the literature. As shown in Figure 2.1.6, the attached rotational DV A with inertia /, and

rotational spring of stiffness &, was attached to the rigid beam. Let ¢ be the rotation of the

absorber, the differential equations governing the behavior

‘m 0 0% k, +k, kyl, —k 1, 0 Tx]
0 1 06 |+|ki,~ki ki*+kl>+k -k |6
00 1, ¢ 0 —k, k, | ¢ ]
[k, +k, —ma’ kyl, — k1, 0 Ix

-kl kIP+kL vk -l0? -k | 0=
I 0 —k, k,—I.o*| ¢

of the system will be:

F
=|y,F [sinox
0

| F
y, F |sinat
0

(2.1.15)
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Forig:"f}-’ E-‘r= k"z ’E= 12’};‘: Irz-’ Tzl—l,o 5'—-—(0—!5}”
\ kL mL mL L m

A
L

k- +ka-Ty 4k -za | -T2+ ki -a £

[ -1&]fa-n-17 (2.1.16)

-lo*-0, [0 -0, 5" -0.7]

L"k

F‘j{k D{Il +k(U-1) +k, ‘552][;6 ‘Tﬁz]*’?-5"[;(1—7)—7][!’5—K52]} (2.1.17)

F/kL D{y[l 52][’? ‘ia’“z]*[’?ﬂ-h-ﬂ[fa —1’15"‘]} (2.1.18)
%=%{_7‘1[’#‘”@‘?)‘T]‘?["EJ[HE-&”Z]} (2.1.19)

To investigate the response of the structure if both rotational and translational vibration
absorbers were attached to the system at the same point of a rigid beam model as illustrated

in Figure 2.1.7., the equation of motion of the combined system is expressed in Equation

Va
e
-~
(2.1.20). l § Lo
-
Cs_'_ I J\ \g
R e U R e R e NPT e e T Y

i J; kz

AR RTRTHRETRTETETTERE R RTR=RTRTRRRRRERR RN

Figure 2.1.7. Vibrating structure with both rotational and translational vibration absorbers.
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[k, +k, +k, —ma’

k,l, — k.
—k,
0

(2.1.20)

Hence, X}, X3, ® and @ can be found by a similar procedure as the cases of the rigid beam

fm 0 0 075,
07 0 08
0 0 m O0]5%
0 0 0 I|¢

kzlz _klll

k, +k, +k,
NRUSLY k12 +k,0° +k,
—k, 0
0 ~k,
kody ~k 1 -k,
kP +k 7 +k, - I 0
0 k, —m,@’
—k 0

r

k0 x
0 -k |&
k, 0 | x, B
0 k |¢
0 Ix
-k, e
0 X, -
k.-1a"| ¢

with a pure translational absorber or pure rotational absorber described before.
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2.1.3. Effect of a vibration absorber attached on to a multi-degree-of-freedom
system |

The theory of vibration absorption for a two-degree-of-freedom system as described in the
previous section can be extended to an n-degree-of-freedom system. Large-amplitude
responses will occur in a n-degree-of-freedom system if a harmonic excitation of frequency
close to one of the natural frequencies of the system is applied. Vibration absorbers can be
designed to reduce the steady-state amplitudes of the primary structure. Effect of a multi-
degree-of-freedom system were commonly mentioned in textbooks [33][34], to give a
rough idea on how the vibration absorber(s) affects a multi-degree-of-freedom, related

analysis methods and equations were described in this section.

Consider an n-degree-of-freedom system subjected to a harmonic excitation close to one of
the system’s natural frequencies. Let x;, x;, ..., x, be the chosen generalized coordinates.

Let m; and k;; be the element of the mass and stiffness matrices respectively. A vibration

absorber with mass 7 and stiffness k is attached to the system at a point whose

displacement is given by x;. Based on the equation of motion Mx+ Kx=F

with x=| ~? |. The generalized coordinate x,+; is defined as the displacement of the

absorber mass. The mass and stiffness matrices for the resulting #-+1-degree-of-freedom

system are:
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m, my, m, O

m,, My m,, 0

mnl mn2 mrm 0
0 0 7

kn +E k:z kln "i;-
k2l kzz k2n 0
knl kn2 knn 0
-k 0 0 k|

sin wf

2
ki —my,o kyy =m0

2 2
ky —my,0°  ky -myo

2
Ky —m,0° k,—m o

k,, —m, o ~k
by —my,0° 0
: 0
ky—mip@® 0
E—ﬁwﬂ
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(2.1.21)

(2.1.22)

(2.1.23)



where D(w) = det(-w’M - K). If the absorber is tuned with it’s natural frequency equal to

—~

~ |k L e o )
@ =,/—, which is equal to the excitation frequency, then, X; the vibration amplitude
m

where the absorber attached will become zero.

Using a similar conversion to that shown in Section 2.1.2, the steady-state amplitude of the

particle of the primary system to which the absorber attached can be calculated.

In the case when two vibration absorbers are added at the first and second elements of the
system, it becomes an #+2 DOF system. By similar calculation, the generalized coordinate
Xy+2 1s defined as the displacement of the absorber mass. The mass and stiffness matrices

for the resulting n+2-degree-of-freedom system are:

m, mp, 0
mZI mZZ O 0
M=|: R (2.1.24)
0 o0 m 0
| 0 0 0 m,]|
K, +k, K, -k 0]
k,, k,, +I::"2 e 0 -!?2
K=| S (2.1.25)
—k, 0 k0
Y —Ez 0 i‘;z J
Hence,
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t

rklz +E -m,0'* ki, =m0 kyy ~my,00° -k, 0
by = my ko +E2 — Mm@’ kyy ~my0° 0 _;;2
D= ’ 0 O 2126
Ky = M, 0° Koy = m,,@"° kyy —m,z0° 0
~k, 0 k, — i, 0* 0
I 0 ~k, 0 k, - o’ |

With the M and K matrices, forcing frequency w and the force function provided, using a
similar procedure to that described in Section 2.1.2, the steady-state translational amplitude

and rotational amplitude of each element of the system can be derived.

With a similar argument to that the two-degree-of-freedom system, the addition of a
vibration absorber tuned to the excitation frequency of a multi-degree-of-freedom system

leads to zero steady motion of the system particle at which it is attached.

The vibration absorber attached to a multi-degree-of-freedom system works by shifting the
natural frequencies of the system away from the excitation frequency. The natural
frequency near the excitation frequency is decreased and a natural frequency i1s added
between the excitation frequency and the next higher natural frequency of the primary

system.

The addition of damping to the absorber leads to a more complicated analysis. The steady-

state amplitude cannot be eliminated completely for any particle when damping present.
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An optimum tuning frequency and optimum damping ratio can be determined for a specific
system [13][14]. As the major purpose of the present analysis is to investigate the
suppression of vibration and the resulting sound radiated from the structure under a pure
harmonic excitation, damping in both the primary and the attached structures are neglected

for the simplification of calculations,

2.2. Vibration suppression of continuous systems using vibration absorbers

2.2.1. Modal analysis of forced vibration of undamped structures
The dynamfc response of structures under forced vibration may be explained by the well-
known mode-simulation method [32]. A DVA may be attached to a node or an anti-node
of a vibration mode which have the most significant contribution to the dynamic response

to the excitation.

For a system with » degrees-of-freedom, the governing equations of motion are a set of n
coupled ordinary differential equations of the second order. The solutions of these
equations become more complicated when the number of degrees-of-freedom of the system
is large. In such a case, a more convenient method known as modal analysis can be used to
predict the dynamic response of the system. The classical theory can be found in textbooks

[33, 34] and it is briefly described in the following.

Expansion theory is used and the displacements of the masses are expressed as a linear

combination of the normal modes of the system. This linear transformation uncouples the
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equations of motion so that we obtain a set of n uncoupied differential equations. Assume
the equation of motion of a multi-degree of freedom system under the external force F is:

[mli+[k]x=F, (2.2.1)
where F is the vector of arbitrary external forces. To solve this equation by modal analysis,
it is necessary to solve tﬁe éigenvalue problem.

o’ [m]X =[k]X
or (@*[m]-[k])X =0 (2.2.2)
By this equation, the mode shape vectors X, X3, ...,.X, and the corresponding natural
frequencies @;, @, ..., w, canbe found. The soluﬁon vector of equation 2.2.2 can be
expressed by a linear combination of the normal modes by means of the expansion
theorem:

x)=q,OX, +q,)X, +..+q,()X, (2.2.3)
where g;(t), q2(t), ..., ga{t) are time-dependent generalized coordinates, also known as the
modal participation coefficients or principle coordinates. By defining a modal matrix [X]

in which the /" column is the vector Xj, that is:

N /N D
< = + + +.+ >

y,  C
% ié% NNAN O NANNN Té“ Yé“

X(v.t) q:(t)X; g2(0)X; q3() X3 qu(t) X4

N~~~
PN

Figure 2.2.1. Combination of the normal modes to be the forced vibration deformation
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[X]=[X; Xz ... X (2.2.4)

So, equation 2.2.3 becomes:

x(0)=[X1q(®) (2.2.5)
q,{t)
where g(t) = qzz(t)
q,(t)

Since [X] is not a function of time, by differentiating equation 2.2.5 twice,

X(1)=[Xq(r) (2.2.6)
Substitute 2.2.5 and 2.2.6 into 2.2.1, we have:

[ml[X]g +[k][X]g=F (2.2.7)
multiplying by [.X] " the equation becomes:

[X) [mIX)G+[XT (k][ X]g =[X] F (2.2.8)
The normal modes are normalized as:

[X]) [m][(X]=[]] (2.2.9)
and [XV[k][X]=[w?] (2.2.10)
define the vector of generalized force ((7) associated with the generalized coordinates g(f)
as:

Q) =[X] F() (2.2.11)
Substituting equations 2.2.9, 2.2.10 and 2.2.11 into 2.2.8, we have:

§(0)+[@*lgt) = O() (2.2.12)

where §,(1)+ o, °¢,(t) = 0,(t) fori=1,2,3,...,n (2.2.13)
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The solution of the equations 2.2.13 can be expressed as:
g.(1) =q,(0)cos ;¢ + [‘1( )Jsmw t+— [ O(r)sinw, (t - 7)dr (2.2.14)
fori=1,2,3,...,n
Initial conditions g, (0} énd ¢,(0) can be obtained by the initial value of the physical
displacements x,{0) and velocity x,{0):
q(0) =[X]"[m]x(0) (2.2.15)
¢(0) =[X1"[m)x(0) (2.2.16)
If the generalized displacements g,(¢) are obtained, by equations 2.2.14, 2.2.15 and 2.2.16,

the physical displacement x,{f) can be found by equation 2.2.5.
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2.2.2. Suppression of flexural vibration of beams using dynamic vibration

absorbers

F

Ve

WAIII4

Figure 2.2.2. Iilustration of a beam with a translational DV A under an external excitation
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Figure 2.2.3. Illustration of the beam in figure 2.2.2 as a multiple SDOF systems

Vibration suppression of continuous systems with a DVA is described in this section. As
shown in Figure 2.2.2, a clamped flexible beam with a DVA at its center of mass is
considered. To study this kind of continuous system, finite element modeling is a tool
commonly used {35](36]. The methodology of analyzing a model by finite element was

briefly described in this section.

In finite element modeling, a continuous system in Figure 2.2.2 is divided into a finite

number of discrete elements as illustrated in Figure 2.2.3. Interpolations for the dependent
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vartables are assumed across each element and are chosen to assure appropriate inter-

element continuity. The beam then could be considered as a multi-degree-of-freedom

vibrating system.

Figure 2.2.4. Beam element has 4 degree-of-freedoms, represented by displacements and
rotations at the ends of the element.

The potential energy scalar product for a beam involves the second spatial derivatives of
the displacement. Thus a Rayleigh-Ritz [35] or assumed modes approximation [36] must
be twice differentiable. When the beam model is developed by the assumed modes
method, the requirement that the interpolation to be twice differentiable leads to requiring
that displacement and slope to be continuous at element boundaries. In order to enforce
this requirement over the entire beam, each beam element has four degree-of-freedoms
represented by the displacements and slopes at the end of the element. Let w, and w; be the
transverse displacement of the left end and right end of the element respectively, w; g wa
represents the slope at the left end and the right end of the element as shown in figure 2.2.3.

If £ 1s the local coordinate over the beam element, the finite element approximation for the

displacement u(& ¢) across the beam must satisfy:
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4(0,6) = w,, %(O,t)=w2, u(l,ty=w, and %(l,t):m (2.2.16)

The deflection of a beam element without transverse loading across its span, but with

prescribed displacement and slope at its ends is approximated as:

u(§)=C&* +C,E* +Cé+C, (2.2.17)
Using equations (2.2.16) and (2.2.17) to determine the constant leads to:
-1
o =F(2w, +iw, = 2wy +1w,),
1
C, —;—( 3w, =2lw, +3w, —iw,),
C, =—‘-4;i, and

C,=w, (2.2.18)

Hence, we have:

u(,t) = (1- 3cf +2§—)w +(‘§—25 5 )w2+(3£—2§ )w3+(—f—22+2§—3)w4 (2.2.19)

The kinetic energy of the beam element is:

1 Ju :
= J: pA(a—é-J o (2.2.20)
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Use Equation (2.2.19) and (2.2.20), the kinetic energy of the beam element becomes
T =%fv Mw where w=[w, W, W, w,) and the local element mass matrix for a

uniform beam element is:

156 22/ 54 -13/
_pAll 221 4> 13 -3

m (2.2.21)
© 4200 54 131 156 -22!
—-131 -3 -221 47
The potential energy of the beam element is:
1 ouY’
V= f Ell 2 o (2.2.22)
2 &

Substitute equation (2.2.19) into (2.2.22), ¥ =1/2w"kw, where the local element stiffness

matrix for a uniform beam is:

12 6 -12 6l
EI| 6 4 —6 27
“Pl-12 —6l 12 -6

6/ 2* -6/ 4

(2.2.23)
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Figure 2.2.5. An n-element model of a fixed-free beam which is fixed at x=0, Wy=0

A beam element has four degree of freedom. The local generalized coordinates are the
displacements at the ends of the elements. An n-element finite element model of a beam,
as shown In figure 2.2.5., has at most 2n+2 degrees of freedom. The global generalized
coordinates are the displacements of the boundaries between elements and the end of the
bar. Each geometric boundary condition reduces one of the global degree-of-freedom.

That means if one of the ends of the beam is fixed, then, it’s displacement is zero and the

model has 2n+/ degree-of-freedom.

Let W, W,, ..., W, represent the global generalized coordinates. Each local generalized
coordinate is one of the global generalized coordinates, unless that element is subject to a
geometric boundary condition. The local mass and stiffness matrices can be expanded to
include all global generalized coordinates. The total kinetic energy of the system is the

sum of the kinetic energies of the elements.
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If T, =—w, m,w, is the kinetic energy of the i" element, the local mass matrix can be

i

enlarged and the kinetic energy written in terms of the global generalized coordinates as

T = -;—WTA? W . Hence the total kinetic energy of the system is:

Id s r —~ R _ 1 . T n —~ .
> W M.W—EW DM W (2.2.24)

Thus the global mass matrix M can be assembled by the element masses m,, my,..., M.

Similarly, the global stiffness matrix K can be assembled by the element stiffness &, k...,

k.

The finite element interpolation of w must be such that w, a—and —a—are continuous
n s

across the inter-element boundaries. Note that %, and 63 are related to the global
1

N 3 .8 8 o 8 8, @
derivatives — and — by relations —=n, —+n,— and —=n, —+n, —.
Oixc 0y on ox oy Os oy ox

Thus, the primary variables at the nodes should be w, il and@.

Ox dy

Finite elements that require continuity of w and its first derivatives are called C’ elements.
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Suppose that w is interpolated by expression of the form w= iA ;9(x,y), where the 4;
J=i

denote the nodal values of w and its derivatives, and ¢ix,y) are Hermite interpolation

functions.

For the n-element beam with a DVA, we could use an n+/ or an n+2 degrees-of-freedom
model for analysis, where the component of the vibration absorber in the global stiffness

matrix and the global force vector can be easily obtained by the methodology discussed in

Section 2.1.3.
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2.2.3. Plate with dynamic vibration absorber under harmonic excitation

The analysis method fr:;\r beam vibration suppression using a dynamic vibration absorber
can be extended for plate vibration suppression with a dynamic vibration absorber in the
following manner. The transverse vibration of plate is described by a two-dimensional
boundary-value problem, which is materially more complex than a one-dimensional one.
Indeed, as explained in 2.2.2, an important consideration in two-dimensional problems is

the shape of the boundary.

The general ideas behind the assembly process for two-dimensional domains are essentially
the same as for the one-dimensional domains, but the details are more involved, which can
be attributed to the fact that there is no longer a simple correspondence between the node

number and element number.

To introduce the idea we consider part of a uniform plate consisting of four triangular
elements as shown in figure 2.2.6, in which the encircled number represent the element
number, the outside numbers represent the global node number and the smaller size inside

numbers represent the local node number for the individual element.
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4

Fig 2.2.6. Four triangular elements with numbering scheme

The plate is free on its sides. The two types of element stiffness matrices are:

KW= __1:
: 2
KU) — Z
2

I -1
-1 2
0 -1
I 0
0 1

-1 -1

0

-1

1

—1]

-1
2

-

.

And the element mass matrix is:

forj=1, 3;
forj=2,4 (2.2.25)
forj=1,2,3,4 (2.2.26)
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Since the motion of the plate is defined by the global nodal displacements and the entries of
the elerﬁent stiffness and mass matrices correspond to local nodal displacements, it is
necessary to develop a scheme for placing the element entries in the proper position in the
global matrices. To this end, we define the connectivity array C = fc;/, where j identifies
the element number and.k i‘epresents the global node numbers listed in the order specified

by the local nodes. And C is simply:

1 45
15 2

C= (2.2.27)
2 56
12 6 3

As an illustration of the use of the connectivity, an example of a 6 X 6 global stiffness
matrix for the system of Figure 2.2.6. The first row in C represents the first element and it
instructs us to place the entries k”(l), k.z(”, k|3(|), kzz(”, k.3 and k;;‘l) of the element
stiffness matrix K" in the positions (1, 1), (1, 4), (1, 5), (4, 4), (4, 5) and (5, 5) of the
global stiffness matrix K. Repeating the process for the remaining three rows of C, global

stiffness matrix is obtained:
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KK KD 0 KD MDD 0 ]
b+ kD K0 kP kD kD kS
b kP 0 0 kD
k) ky 0
Symmetric kD + k2 + kD kS
Dk

2 -1 60 -1 0 0
4 -1 0 -2 0
2 0 0 -1
= (2.1.28)
2 -1 0
symmetric 4 -1
2 |

and the same process applies to the construction of the global mass matrix.

The generation of the finite element mesh amounts to dividing the domain D into triangular
domains D; in such a way that no vertex of one triangle lies on the edge of another triangle.
It is common practice to begin with a coarse mesh and refine the mesh so as to improve the

accuracy of the eigen-solutions.
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2.2.4. Position determined for attaching the vibration absorbers

In order to suppress the resonant vibration of a structure by attaching a translational type
dynamic vibration absorbers, the absorber may be attached to somewhere with high
translational amplitude sﬁch that there is high energy transmission from the structure to the
absorber. Hence, an area with high vibration amplitude would be good for attaching the

translational type vibration absorbers.

To use a rotational vibration absorber for suppression of a resonant vibration, the absorber
may be added to somewhere with a high rotation amplitude. In most of the cases, the nodal
points or lines of a structure have vibrations with no translational movement but large
amounts of rotational motion. A rotational type vibration absorber may be attached to a
nodal point to provide significant vibration suppression when the system is under

resonance,

In a forced harmonic vibration not at a resonance, the participation of each mode to the

forced vibration can be determined by the normal mode theory as discussed in Chapter

2.2.1.

Figure 2.2.9 shows the frequency spectrum of a continuous system, according to equation

2.2.14, vector of generalized force associated with the generalized coordinates g() can be
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expressed as a linear combination of normal mode by means of the expression theorem:

!

q:{t) = q,(0)cos ¢ +(Q( )]smwt+— '[Q(r)smw (t—r)dr

vibration amplitude

t
|
|
t
|
|
1
1
1
]
t
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|
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|
1
1
1
1
i
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I
I
1
i
1

g

2
frequency

g

Figure 2.2.7 A typical frequency spectrum of a lightly damped continuous system.
Hence, the frequency spectrum of a continuous system shown in figure 2.2.7 can be

expressed as the separated modal contribution of modes of a continuous system as shown

in Figure 2.2.8.
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—»>

vibration amplitude

frequency
Figure 2.2.8 Iilustration of the individual modal contribution of a continuous system.

In harmonic excitation, a rotational absorber may be added to an intersection of the nodal
lines of the modes that have high contribution to the vibration. For example, if a force with
a driving frequency which is higher than the second mode of a system but lower than the
third mode of that system. Modal frequencies and shapes may be determined in order to
know which modal response is the most significant. The absorber can then be attached
onto the corresponding nodal position for maximum absorption of the energy and the
rotational vibration absorber there may be attached at a nodal point of the corresponding
mode. It is useful to find the location of these intersections because the position may be
good for attaching the absorber for suppressing any vibration of frequency that lies
between the second and the third modes of the system. This 1s important if the excitation
frequency 1s not of one single frequency, but may fluctuate within a narrow frequency

band.
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3. Computer simulations and experimental results

3.1. Computer simulations
3.1.1. Comparison of different types of DVA in absorbing rigid body motions

A numerical solution for a rigid beam mounted on springs was stmulated by means of a

self-written Matlab program.

The effects of using a translational type and a rotational type DVAs were studied. The
natural frequencies of the system were found by calculating the roots of the determinants of

the matrices in equation (2.1.6), (2.1.10), and (2.1.15) as shown in Chapter 2.1. They are:

The equation of motion of a rigid body:

B 2
kl+k2 ma 2k212 ‘:71[1 ) X =0 (216)
kd, -kl k1T 4kl 10’ |0

The equation of motion of a rigid body with a translational type DVA:

[k, +k, +k, - ma* k,l, — kil —k,  x F
K, -k, k1 +k,l,° - I 0 9 |=|y,F |sinor (2.1.10)
-k 0 k, —-ma?® || x, 0

¢

-

and the equation of motion of a rigid body with a rotational type DV A:

k +k, —mao’ ki, -k, 0 x, F
ko, —kl kLD vk -l k| 8 |=]|y,F [sinot (2.1.15)
0 —k, k. —1o*| ¢ 0

From the determinants of the coefficient matrices of the equations above, the vibration

amplitude of displacement and rotation of the rigid beam, with and without a translational

44



or rotational absorber were found and they are plotted in Figure 3.1.1a and 3.1.1b

respectively.

—— without absorber
- --. translational absorber
- — . rotational absorber

Vibration Amplitude X/k;F

ST - A A - — A w A A o A A o]

.

frequency ratio ®

Figure 3.1.1a. Frequency response of a beam model with translational and rotational
absorbers tuned at the lower natural frequency of the rigid beam model. (z=1/12;
1=0.7; k=1; ya=0.1; mr=0.2)
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Figure 3.1.1b. Frequency response of a beam modal with translational and rotational
absorbers tuned at the lower natural frequency of the rigid beam model (z=1/12;
1=0.7; k=1; ya=0.1; mr=0.2)

From the results, it was found that when the system was forced to vibrate at a lower
frequency around the first natural frequency as shown in Figure 2.1.5, the translational

vibration absorber is more effective in shifting away the original natural frequency from

the excitation frequency than using the rotational one.
The plots are the resulis of a simulation where an absorber is attached to a rigid beam.

When the absorbing frequency of the absorber is tuned at the natural frequency of the first

mode of the rigid beam, the natural frequencies of the beam changes. Figure 3.1.1a shows
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that both the translational and rotational absorbers have effects in suppressing the vibration.
However, the translational absorber tends to shift the new natural frequency further away
from the original natural frequency in comparsion to the rotational one. This tmplies that
after the translational absorber is added, the vibration level of a larger frequency band
around the tuned frequency were suppressed. So, the “useable” frequency range of the

system is wider if a translational absorber is attached to the system.

X/{k1*F)

|

|

|

|

|

|

| —— without absorber .

! ---. translational absorber
' - — . rotational absorber
|

|

|

l

|

|

Vibration Amplitude X/k;F

Frequency ratio ®

Figure 3.1.2a. Frequency response of a beam model with translational and rotational
absorbers tuned at the higher natural frequency of the rigid beam model. (z=1/12;
1=0.7; k=1; ya=0.1; mr=0.2)
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On the other hand, Figure 3.1.2 shows the system with the same configuration as the

previous model but tuned to the higher natural frequency of the rigid beam model (rotation

dominant as shown in Figure 2.1.4).
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Figure 3.1.2b. Frequency response of a beam model with translational and rotational
absorbers tuned at the higher natural frequency of the rigid beam model. (z=1/12;
1=0.7; k=1; ya=0.1; mr=0.2)

Figures 3.1.2a and 3.1.2b show a very different result in comparison with the results as
shown in Figure 3.1.1a and 3.1.2 b, which show that the system vibrates at the lower
natural frequency. This time, the rotational absorber rather than the translational absorber,
shifts the new natural frequency further away from the original natural frequency. This
means that when using the rotational absorber in suppressing the vibration amplitude of the
second natural frequency of the system, the “useable” frequency band of the system is

wider than the case of applying the translational absorber.
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In addition, it is found that the range of suppressed frequencies was wider when using the
rotational absorber to suppress the rotational dominant mode (second mode) than using the -

translational absorber to suppress the translational dominant mode (first mode).

Figures 3.1.3 to 3.1.6 show the effective range of vibration suppression by using the
translational and rotational absorbers with different mass ratios and stiffness ratios
combinations. @y, @ and @ are the natural frequencies of the system after adding the
translational absorber (where @; > @; > @;). Similarly, @,;, @r; and @,; are the natural

frequencies of the system attached to the rotational absorber (where @,; > @2 > @y3).
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Figure 3.1.3a. The suppressed frequency range comparison for absorbers tuned at lower
natural frequency of the system. (z=1/4; mr=0.2)
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Figure 3.1.3b. The suppressed frequency range comparison for absorbers tuned at higher
natural frequency of the system. (z=1/4; mr=0.2)
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Figure 3.1.4a. The suppressed frequency range comparison for absorbers tuned at lower
natural frequency of the system. (z=1/8; mr=0.2)
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Figure 3.1.4b. The suppressed frequency range comparison for absorbers tuned at higher
natural frequency of the system. (z=1/8; mr=0.2)
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Figure 3.1.5a. The suppressed frequency range comparison for absorbers tuned at lower
natural frequency of the system. (z=1/12; mr=0.2)
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Figure 3.1.5b. The suppressed frequency range comparison for absorbers tuned at higher
natural frequency of the system. (z=1/12; mr=0.2)
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Figure 3.1.6a. The suppressed frequency range comparison for absorbers tuned at lower
natural frequency of the system. (z=1/16; mr=0.2)
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Figure 3.1.6b. The suppressed frequency range comparison for absorbers tuned at higher
natural frequency of the system. (z=1/16; mr=0.2)
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According to the results, it was observed that the translational absorber is more effective in
suppressing the low frequency vibrations (on the other hand, a rotational absorber is better
in shifting away the second natural frequency and hence suppressing higher frequency

vibrations), it is found that the effect of the absorber was affected by the Z value, which is

the inertia ratio—-.
mL
When trying to suppress low frequency vibration (i.e. absorber tuned at the lower mode

natural frequency), the negative region increased if the value of Z is smaller. This means

that the effect of vibration suppression is better if the value of Z' is smaller.

In the case of suppressing higher frequency vibration, the rotational absorber would have a

better performance if the value of Z' is smaller.

With the aid of the derived equations, the effect of attaching both rotational and
translational absorbers to the rigid beam at the same point was mnvestigated. It was found
that it would be possible to make the beam transmit all the kinetic energy to the absorbers,
i.e. the beam would not move. This impressive result motivated the study of the response
of a continuous system such as a flexural beam or plate when both the rotational and

translational vibration absorbers were utilized.
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3.1.2. Simulation of vibration suppression of beams using dynamic absorbers

Somé inttial tests on the sensitivity to location when adding a translational absorber were
carried out by using a self-written Matlab Program. The simulation model was a fixed-
fixed beam (as shown in Figure 3.1.9). It showed how the mode shape of the system and
the location where the dynamichabsorbers was attached affected the effectiveness in
suppression of vibration. Also, the simulation showed that the force transmissibility was
high when the absorber was attached at the anti-node of the object (the transmissibility
when the absorber attached at an anti-node was at least three times higher than at other

positions on the beam).
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Figure 3.1.9a Model of fixed-fixed beam with a translational absorber.
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Figure 3.1.9b Model of fixed-fixed beam with rotational absorber
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In the simulation, the vibration absorbers were attached at the center of the beam with a
harmonic force applying to the beam at /- as shown in Figure 3.1.9a and Figure 3.1.9b. The

parameters of the simulation were shown in the Table 5.1.1 in the Appendix I.

Excitations at resonant or non-resonant frequency were tried in the simulations and the

results are shown in figures 3.1.10 to 3.1.17.
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Figure 3.1.10 Frequency response of the beam at forcing frequency at 37.9rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad’s, 208.7rad/s, 394.8rad/s, 652.9rad/s and

1052rad/s)
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Figure 3.1.11 Frequency response of the beam at forcing frequency at 71.5rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad’s, 394 .8rad/s, 652.9rad/s and

1052rad/s)
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Figure 3.1.12 Frequency response of the beam at forcing frequency at 105.2rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad/s, 394 .8rad/s, 652.9rad/s and

1052rad/s)
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Figure 3.1.13 Frequency response of the beam at forcing frequency at 156.95rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad/s, 394.8rad/s, 652.9rad/s and

1052rad/s)
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Figure 3.1.14 Frequency response of the beam at forcing frequency at 208.7rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad/s, 394.8rad/s, 652.9rad/s and

1052rad/s)
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Figure 3.1.15 Frequency response of the beam at forcing frequency at 301.75rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad’s, 208.7rad/s, 394 .8rad/s, 652.9rad/s and
1052rad/s)
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Figure 3.1.16 Frequency response of the beam at forcing frequency at 394.8rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad/s, 394.8rad/s, 652.9rad/s and
1052rad/s)
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Figure 3.1.17 Frequency response of the beam at forcing frequency at 523.85rad/s. (natural
frequencies of the beam are 37.9rad/s, 105.2rad/s, 208.7rad/s, 394.8rad/s, 652.9rad/s and

1052rad/s)

From the results, as expected, the translational absorber has a very good effects on
vibration suppression if the absorber was added to somewhere of large vibration amplitude
(near the anti-node if resonant) of the beam. Rotational absorber had very good
performance in vibration absorption at positions of large rotation of the beam (somewhere

near the node if resonant).
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Figure 3.1.18 Frequency response of a fixed-fixed beam attached with the translational and
the rotational absorber.

Simulation for the clamped-clamped beam without any vibration absorber, with a
translational absorber attached at a point of length ratio 2.5 and with a rotational absorber
attached at length ratio 2.5 were made and the results are shown in Figure 3.1.18. The
simulation shows that the attachment of transiational absorber at an improper location may
induce amplification in vibration amplitude. This shows the importance of finding a

suitable location for attaching a suitable absorber in vibration suppression.
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In concluding the simulations in this section, nodes of a beam would be good locations for
attaching the rotational absorber and anti-nodes of the beam would be good locations for
attaching the translational absorber. In addition, the result shows that implementing the
rotational absorber could obtain a wider frequency range for vibration suppression if the

excitation frequency is relatively high.

3.1.3. Simulation of vibration suppression of beam using a combined type of dynamic
vibration absorber

F
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Figure 3.1.19 Model of a beam with both a translational and a rotational DV As.

In Section 3.1.1, it was found that it is effective to suppress the vibration of a rigid beam if
both translational and rotational type vibration absorbers were used. A simulation of the

absorbers on a continuous system was done by means of a self-written MATLAB program.
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The model of the simulation is shown in Figure 3.1.19, a cantilever beam under a harmonic
excitation used. The parameters of the simulation were shown in the Table 5.1.2 in

Appendix I.

Comparison between the amplitude of vibration after adding translational absorbers, the

combined type absorber and no absorber are shown in the plot below.
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Figure 3.1.20. Comparison of the response of beam with “Rotational and Translational
Absorbers” and “Translational Absorbers™

68



In the simulation, a non-resonant single harmonic excitation was applied. Translational
absorbers and a combined type of absorber wére tuned at the excitation frequency and
added to beam. The response of the beam was simulated and is shown in Figure 3.1.20.

The results show that the t;anslational absorber was effective in vibration suppression; the
maximum vibration amplitﬁde is only about twenty-five percent of the maximum
amplitude of beam without any absorber. Although the translational absorbers have good
performance in vibration suppression, the combined type of vibration absorber have a
better performance. The result not only shows that there is higher suppression in the
maximum vibration level when using the combined type of absorber in comparison to the
case of translational absorbers, the result also show that when the combined type of
absorber is attached to the system, vibration can be isolated such that the beam section

beyond the absorbers has no movement at all.
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3.1.4. Simulation of vibration suppression of plate vibration using dynamic vibration
absorbers

To investigate the vibration suppression of plates with a dynamic vibration absorber, a

simulation was done by means of a finite element program. This shows the effectiveness

of the different type of absorbers including the combined type of dynamic absorber on a

plate under a non-resonant single harmonic excitation.

In this simulation, an aluminum plate with dimension 50mmX20mmX2mm was modeled.
The plate as shown in Figure 3.1.21 was modeled by 4000 square elements which were

meshed by the MSC Patran finite element program.

The natural frequencies of the plate was found after the normal mode analysis, the first
natural mode of the plate was shown in Figure 3.1.22 which is the first cantilever plate
mode with natural frequency equal to 3384Hz. In Figure 3.1.23, it shows the second
natural mode of the plate which is a butterfly mode with a nodal line at the center of the
plate and it’s natural frequency was found as 17091Hz. In Figure 3.1.24, it shows the third
natural mode of the plate with a nodal liﬁé and the natural frequency of this mode was

found as 21063Hz.
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Node 2099
Vibration Absorbers

Node 101
Excitation

Figure 3.1.21. Plate model (50mm X 20mm) and the force location.

MSC Patran 2001 13 25-Aug-03 18:06:25
Fringe: SC1:DEFAULT. Al:Mode 1 : Freq. = 3383 5: Eigenvectors, Transiational-{(NON-LAYERED) (MAG)

Figure 3.1.22. The first mode of the plate (The first beam mode)
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The effect of vibration absorbers on a plate vibrating at a non-resonant frequency was
investigated by exciting the plate with a single harmonic excitation of frequency far away
from any of its natural frequencies in this simulation. In the simulation. a frequency
between the natural frequencies of the second and the third plate mode was used as the
excitation frequency. The dynamic vibration absorbers were attached at the intersection of
the nodal lines of the second mode (Figure 3.1.23) and the third mode (Figure 3.1.24) of
the plate. Figures 3.1.25, 3.1.26. 3.1.27 and 3.1.28 show the simulated results of the
forced vibration of the plate without an absorber, with a translational absorber, with a
rotational absorber and with the combined type of absorber respectively where the
excitation location and frequencies in every single case are the same (please refer to Figure

31.21.)

MSC Patran 2001 13 25-Aug-03 16:0852 s '3‘7'*””‘
Fringe: SC1:DEFAULT, Al:Mode 2 : Freq. = 17091 . Eigenveciors. Translslions-(NON-LAYERED) (MAG)  4.73+001
4.39+001

4064001

1.68+001

1.35+001
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Nod}él line
(across node node 2099)

T

o 5.07+001 @Nd 101
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Figure 3.1.23. The second mode of the plate (The butterfly mode)
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Figure 3.1.24. The third mode of the plate (The second Beam mode)
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MSC.Patran 2001 13 26-Aug-03 22:37:04 1.00-006
Fringe: SC1:DEFAULT, Al:Freq = 18882 5: Displacements, Translational-(NON-LAYERED) (Z2) 8.67-007
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Figure 3.1.27. Vibration amplitude of the plate with Rotational absorber
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Figure 3.1.28. Vibration amplitude of the plate with both T & R absorber

* Vibration absorber used | Vibration amplitude ] Peak-to-peak vibration
range (m) amplitude (m)
Without dynamic absorber | 10° to 1.08%10° { 2.4%10° h
Translational absorber [ -4.25%] _]"' to 3.78x I(J l 8.03x 107
Rotational absorber [ -5.77%10° 10 2.3 I - 2.907x 107 __
Combined type of absorber { 8.01x10™ to 1.53 | 2331107

Table 3.1.1 Simulated vibration amplitude of the piate with different kinds of dynamic
vibration absorber.




By comparison with the peak-to-peak vibration amplitude of the plate without any absorber
as shown in Table 3.1.1, there is about 3 times vibration suppression if the translational
vibration absorber was used, while there are about 8 times and 10 times of vibration

suppression if the rotational and combined type of vibration absorber were used

respectively.

The simulated results showed that the combined type of absorber was the most effective
dynamic vibration absorber in vibration suppression within the frequency range. The
combined type of vibration absorber gives a good performance in vibration suppression in
the simulations, and match with the theoretical predictions in Chapter 2.3.3. The chosen
location was a suitable place for attaching the DVA in suppressing the vibration excited by
the force. This varies within that frequency range (in between the natural frequency of the

second mode and the third mode).

To consider the sound radiation by vibrating surfaces, the radiated power can be obtained
by integrating the far-field intensity over a hemispherical surface centered on the panel.

The time-averaged power may be written as [20]:

P=[16.¢)ds=[ [ 16.9ydedp G.1.1)
N .

A measure of the velocity of vibration is the space-averaged value of the time-averaged

normal vibration (17,,2> defined by:

(vf):% j{—;:fvnz(x,y,t)]dS (3.1.2)
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where T is a suitable period of time over which to estimate the mean square velocity

V2 (x,y) at a point (x, y), and S extends over the total vibrating surface: (Vf) is sometimes

known as the “average mean square velocity”.

A radiation efficiency, ratio (index) is defined by reference to the acoustic power radiated
by a uniformly vibrating baffled piston at a frequency for which the piston circumference
greatly exceeds the acoustic wavelength: ka>>/. With integration over a hemisphere, this

yields the fol.lowing expression for radiated power in this case:

}_"‘:%pocmzh_fnzl (3.1.3)
As a definition of reference radiation efficiency o, we have:

P =ap,eS(%,") (3.14)
which shows that if the far-field intensity is directly radically, the time-averagedd power is

closely related to the mean square velocity (1'1',,2) of the object’s surface.

To investigate the acoustical power radiated by the plate with absorbers at different

frequencies, the means square velocity (17,,2) spectrum curve is shown in Figure 3.1.34. In

this simulation, the plate without absorber (plate), the plate with a translational DVA (1T),
the plate with two rotational DVAs — one is oriented in the horizontal direction and the

other in vertical direction (2R), and the plate with both kinds of the absorber (1T+2R) were

compared.
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Mean square velocity (mm?s~)

Blank Plate With Translational With 2 Rotational With Translational
Absorber Absorbers Absorber and 2 Rotational
Absorbers

Figure 3.1.34. Mean square velocity of the plate with/without DV A at 19000Hz.

From the simulation, it was found that the translational type DV A does not suppress the
vibration level of the plate at the tuned frequency. On the other hand, the result of the
simulation shows that the attachment of rotational absorber or the combined type absorber

lead to about 40% reduction of mean square velocity reduction at the tuned frequency

compare with the plate without absorber.
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The reductions of total mean square velocity m using the rotational absorber and the
combined type of absorber are similar because the vibration under the excitation has no
translational motion but high rotational motion at the attachment point of the absorbers. It
shows ﬁat the “intersections of nodal lines” could be convenient and effective locations for
attaching the absorbers within a frequency range; knowledge of the nodal positions of the
contributing modes is useful for the determination of the attachment point of the absorbers.
Although they may not be the optimum locations for atfaching the absorbers, they would be

convenient locations for attaching the absorber with high performance in vibration

suppression.
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3.2. Experimental tests and results

3.2.1. Suppression of a forced beam vibration using a dynamic vibration absorber
Experimental procedure and design of the absorber.

The test rig setup is illustrated in Figure 3.2.1 below:

Rotational Absorber ﬁ Force
L 630mm ¢

N; 550mm

Fixed end

Translational Absorber Ligs

Figure 3.2.1a. Illustration of the experiment for testing the effect of the combined type of
absorber.

Rotational motton

Translational motion

Fire 3.2.1b. The rotational absorber and translational vibration absorber designed for the
experiment.
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(1) 650mmX20mmX2mm aluminum beam

(2) Clamp

(3) Combined type of dynamic absorber

(4) Briiel & Kjzr Charge Accelerometer Type 2032

(5) Briiel & Kjer Impact Hammer Type 8202

(6) Briiel & Kjar Charge Amplifier Type 2637

(7) Briiel & Kjaer Charge Amplifier Type 2637

(8) Briiel & Kjeer Dual Channel Signal Analyzer Type 2032

Figure 3.2.1c. Illustration of the setup for testing the effect of the combined type DVA.
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In order to evaluate the effect of the combined type of absorbers, a traditional sprung mass
was hung on to the beam as an translationz‘ﬂ absorber. As shown in Figure 3.2.1b, a
rotational absorber was also designed and mounted on the beam with the same distance
measured from the clamped end as that of the sprung mass absorber. The natural
frequencies of both absorbers were tuned at 230Hz. Since the two absorbers are practically
mounted at the same location, they are considered as a combined type of absorber in this

thesis.

In the experiment, the beam without any absorber was fixed on a table, and an impact
excitation was applied at the free end of the beam. The vibration of the beam was
measured by an accelerometer and analyzed by a B&K frequency analyzer; the frequency

response of the beam at 230Hz was recorded.

Then the translational absorber was attached at 585mm from the fixed end of the beam, a
similar vibration test as for the beam without any DVA was conducted. The frequency

response of beam at 230Hz was aiso recorded.
Finally, attaching the rotational absorber at the same position as the translational absorber,

the translation vibration response of the beam with both translational and rotational

absorber on 230Hz excitation was recorded. The results were plotted in Figure 3.2.2.
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Figure 3.2.2. The response of “the beam without absorber”, “the beam with rotational and
translational absorber” and “the beam with translational absorber only”.

The experimental result as shown in Figure 3.2.2 shows that if the combined type of

absorber was implemented, the vibration level of the whole beam was suppressed greatly.

The effectiveness of using the combined type of absorber in vibration suppression was

better than just using a translational absorber at all points of the beam. At some points, the

vibration amplitude of the beam after using the combined type of absorber was 8 times

lower than that of the case without any absorber and 5 times lower than that of the case

with the translational vibration absorber.

83




According to the simulation at Chapter 3.1.3, the vibration of the beam should be
completely isolated after the combined type of vibration absorber was added at the location
where the translational absorber was installed before. The experimental result showed that
the beam still vibrated slightly after the combined type of absorber was added, this may be
due to the fact that vibrafioh absorber in the experiment cannot occupy the whole width of
the beam, leakage of energy to the remaining portion of the beam caused the experimental

result to be a little bit different from the simulation result.

As the figure shows, although the combined type of dynamic vibration absorber cannot

isolate the vibration from the excitation completely, the vibration level was reduced

dramatically.
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3.2.2. Suppression of forced vibration of a resonant plate using dynamic absorber

An experiment was designed similar to the numerical experiment in Chapter 3.1.4. The
numerical results showed that the performance of the combined type of absorbers was
similar to that of the rotational absorbers alone for that particular configuration as
described in Chapter 3.1.4. In the physical experiment, only a combined rotational
absorber was therefore designed and tested for vibration suppression of the plate. The
rotation absorber used in experiment before (Figure 3.2.1b) was a single axis vibration
absorber that was able to absorb the rotation along a plane, which is good enough to be
implemented on the one-dimensional vibration system such as the beam vibration as shown
before. As the rotational absorber used in this experiment (Figure 3.2.3b and Figure
3.2.3c) was able to bend at multi-directions, it is good for use on the two-dimensional

system such as plate vibration.

There is a limited amount of information concerning the response on different position of
the dynamic vibration absorber attached to a plate under forced vibrations. Simple
experiments were carried out; Figure 3.2.3a shows the geometry of the plate being studied,
the position of vibration absorber being attached (attached at hole 1-7) and the points of
measurements (Positions 1- Positions 21 are measuring the amplitude of displacement of
the plate, and Position A1 & Position A2 are measuring the amplitude of displacement of

the absorber). The experiment was under a periodic excitation at a position shown in
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Figure 3.2.3a and the experimental setup was shown in Figure 3.2.3b. The plate used was a
85mm X 220mm aluminum plate with 2mm thickness. Where the vibration absorber was

made of a copper mass and a steel rod with mass ratio to the plate equal to 0.15.

r 3

B0 ™o s ‘
T pustion _8 j\AZ

L Fixed end

AANNSNSENNNNNNNNN

Figure3.2.3a. The geometry of the measured plate and points of measurement

86



Rotational motion

Figure 3.2.3b. The experimental setup Figure 3.2.3c. The Rotational Absorber

Figure 3.2.3c shows the specially designed rotational absorber used, it is able to absorb
multi-directional rotational motion. A signal generator was used to provide a signal for the
shaker to give a harmonic vibration at the source of excitation, which was attached to a
point between location E and F that shown in Figure 3.2.3a. After the accelerometer and
the force transducer obtained the signal from the point of measurement and the excitation
source respectively, the signal was conditioned by the charge amplifiers and send to the
dual channel signal analyzer. The frequency response results were obtained from the

spectrum analyzer.
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The resonant frequencies of the first mode and second mode of the cantilever plate were
measured to be 50Hz and 300Hz respectively by random excitation test [37]. In order to
see the effect of the dynamic vibration absorber at different positions. the plate was excited
at its resonant frequency to see the response of the absorber to the excitation. Two
different amplitudes of input Signal Amplitude were used to drive the vibrator, they are
0.5Vpp and 2Vpp, where the 0.5Vpp excitation gives a weaker force than the 2Vpp. The

results obtained from the experiment is summarized in the figures below:

—*= Blank fig c.) 300Hz, 2Vpp —+ Blank
fig a.) 300Hz, 0.8V . nk
20 o) ] HE » Position A o ® Position A
S 18 — —4- PositionB S 80 * Position B
E 5 ~ Position F E 70 B = Position F
-3 o
3 1 3
T 5 =
£ £
< 10 <
@ 2
3 8 3
[ e — ;
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2
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E 7 - )
2 o
I EN
TE‘ a
£ Es
e a3
b a
= 2
1
D¢
o 5 20 0 5 20

10 10
Length (cm) Length {cm)

Figure 3.2.4. Vibration suppression by dynamic absorber comparison - a. Excitation
voltage=0.5Vpp, b.)Excitation voltag =0.5Vpp (zoom), c. Excitation voltage=2.0Vpp.
d.)Excitation voltage=2.0Vpp (zoom)

a

From Figure 3.2.4a. and Figure 3.2.4c.). the dynamic vibration absorber reduced the

vibration amplitude by a factor of 1/9 (the average reduction was 41 times!). To compare
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From Figure 3.2.4a. and Figure 3.2.4c.), the dynamic vibration absorber reduced the
vibration amplitude by a factor of 1/9 (the averége reduction was 41 times!). To compare
the effect of the vibration absorber on different lo_cation clearly, Figure 3.2.4a and Figure
3.2.4c were enlarged to be Figure 3.2.4b and Figure 3.2.4d. In comparing the amplitudes of
vibration with the absorbef attached at position A and B, we could find the effectiveness of
the absorber at B was averagely 3.5 times better than‘at position A. These tell us that the
absorber is more effective when it is attached at position B, which is the nodal point of the
vibrating mode. As the vibration absorber was of the rotational type, mostly likely, the
absorber is most effective on the nodal points of vibrating mode and the experiment

validated this prediction.

On the other hand, by comparing results of different strength of the excitation force —
comparing the figures 3.2.4a & 3.2.4c and figures 3.2.4b & 3.2.4d. It was found that the
level of vibration displacement suppression was independent to the excitation forces; where

both of the tests give nearly 9 times of vibration reduction.

3.2.3. Suppression of forced vibration of a non-resonant plate using a dynamic
absorber ‘

The same plate tested in Chapter 3.2.2 was used to perform the following experiment. This
time, the driving frequency of the plate was set at 250Hz. The results obtained from the

experiment is attached in Appendix III and summarized in the following figures:
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Figure3.2.5. Vibration amplitude of a non-resonant plate with a dynamic vibration
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From Figure 3.2.5, it was found that althdugh the plate was not driven at a resonant
frequency, the vibration suppression was still significant at many points. As the excitation
frequency was somewhere between the natural frequency of the first and second modes of
vibration, the vibration mﬁy be dominated by these two modes. By comparing the results
from the position of absorber at position A and position B, it was found that the vibration
reduction was about one-half on average. As the node of the second mode was at position
B, the vibration reduction when the absorber attached at position B was at least 2 times

higher than the absorber attached to other points.
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3.2.4. Determination of suitable mounting position of dynamic absorber using ESPI

To find a suitable nodal position for attaching the proposed vibration absorber, a full field

technique called ESPI described in Chapter 1.3 was tried.

Figure 3.2.7a. Experimental setup of the ESPI system
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Figure 3.2.7b. The optical path and equipment setup.

(1) Uniphase Helium-Neon 200mW Class IIIb Laser Gun
(2) Reflection Mirror

(3) The aluminum plate

{4) Reflection Mirror

(5) CCD camera
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Nodal lines

Figure 3.2.8. Pictures taken by ESPI showing the nodal lines of the 2™ and the 3 mode of
a plate.

In the experiment, nodal lines of a vibrating plate at specified modes were found as shown
in Figure 3.2.8. Those positions are where the plate vibrates with very high twisting
amplitude. According to the theory stated in Section 2.2.3 and simulation shown in
Chapter 3.1.4. The intersections of the nodal lines should be good locations for attaching
the proposed absorber. It is possible to find such an area conveniently with the aid of a

whole field optical technique.

This experiment showed a tool for ﬁnding the intersections of the nodal lines. In this
experiment the position B of Figure 3.2.3a was found to be the intersections that gave best
performance in experiment shown in Section 3.2.2 and 3.2.3. It validated the simulation in

Section 2.2.3 as the experimental result matches with the result in simulation.
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4. Discussion and Conclusions

In the present study, the proposed combined type of dynamic vibration absorber have been
shown to be able to suppress forced vibration significantly in a narrow frequency range,
which overcomes the problem of the traditional sprung mass vibration absorber. For
suppression of rigid body vibration, the performance of the commonly used translational
absorber was compared to those of the rotational absorber and the proposed absorber.
From the numerical analysis in Section 3, it was found that the translational one has the
poorest performance in terms of the absorption frequency range, the rotational absorber is
better while the proposed absorber can completely absorb all the rigid body vibration. This

finding is useful for vibration suppression of the rigid body vibration of machine platforms.

For flexural vibration of continuous structurés such as beams and plates, the performance
of the commonly used translational absorber was compared to those of the rotational
absorber and the combined type vibration absorber by finite element analysis and
experimental tests. It was found that the combination of translational and rotational type of
absorber provides excellent performance than those of the standard sprung mass absorbers,
which, in the simulation, the combined translational plus rotational type vibration absorber
was able to isolate the vibration efficiently. And it was purposed to install such kinds of

combined type absorber close to the excitation of obtaining larger suppressed region.
In the suppression of plate vibration, combining two rotational absorbers of rotation axis

perpendicular to each other was used for vibration suppression. The combined absorber

was tested and compared with the effect of the traditional translational vibration absorber.
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It was found that when putting the proposed multi-axial rotational combined type vibration
absorber was effective when instaliing such kind of absorber at the location at which the
structure had a large rotation. Modal analysis was used for predicting the suitable location

for installing such kind of vibration absorber.

In conclusion, the proposéd absorbers are simple combination of different kinds of
vibration absorbers and attached on to the vibrating beam at a single point. With the
knowledge of the modal parameters of the structures, it is straightforward to determine an
effective attachment point for vibration and the resulting sound radiation as demonstrated
by the test cases reported in the previous chapter. In this project, a new type of vibration
absorber for structural vibration suppression was developed, a systematic way for choosing
a suitable vibration absorber and guidelines for determining a good location for vibration

absorber installation were described in this project.

96



Appendices

Appendix I - Computer simulations of vibration suppression of beams with vibration

absorbers with Matlab

Excitation

The beam parameters Young’s modulus 200e9Pa
| Cross-section area 3.6e-3m’
Density 7600kg/m”
Length 6m
Boundary condition Simply supported
The absorbers parameters Mass Ratio 0.1
Inertia Ratio 0.1
Translational force 2500N

Table5.1.1. Parameters of fixed-free beam used in the simulation in Section 3.1.2

The beam parameters Young’s modulus 200e9Pa
Cross-section area 3.6e-3m’
Density 7600kg/m’
Length 6m

Boundary condition

Fixed-free supported

The absorbers parameters Mass Ratio 0.1
Inertia Ratio 0.1
Excitation Translational force 2500N

Table5.1.2. Parameters of fixed-free beam used in the simulation in Section 3.1.3
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Appendix II - Computer simulations of vibration suppression of beams with vibration
absorbers using MSc Nastran

Cantilever beams are common elements of many aeronautical, civil and mechanical
engineering structures. Vibration analysis should be required when designing systems
using these elements. So, cantilever beam is chosen as a typical model for analyzing the

effectiveness of a dynamic absorber for vibration control.

As an initial sensitivity test of the absorber parameters and location of the attachment to the
effectiveness of vibration suppression, a commercial FEM software called MSC
NASTRAN is used for some quick tests. In this method, the structure is subdivided into a
finite number of small regions called elements. Mechanical model can be formed by these
elements. Within an element displacements and stresses are approximated using
polynomial shape functions. An element connected to adjacent elements at a finite number
of ponts 1s called grid points. Elemental material properties and geometry are used to
generate the stiffness of the entire structure, discretized at the grid points. The center load
acting on the structure is represented as the force, also at the grid points. In the simulation
presented in this report, a periodic force i1s used as the excitation. These are then used to
generate element results such as force per unit length, stress, strain, etc. Finally, amplitude

of vibration for the cantilever beam in concerned area can be known.
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Figure5.1.1. Simply supported cantilever beam model

A simply supported aluminum rectangular beam was modeled and meshed as Figure 5.1.1
above with cross sectional area 4 = 0.003m2, moment of inertia I, = 5x10°® kgmz, L =
2.5%x1078 kgmz, mass per unit length = 0.825kg/m. With the assumed information, the first
and second mode of vibration of this beam were calculated which are 56.85Hz and

227.40Hz respectively.

The point of attachment of the dynamic vibration absorber was changed in this simulation
with other parameters remained constant. There are in total 11 models were done (attach
the absorber in node 1 to node 11). To model the absorber, a lumped mass of 16kg (Basic

rectangular mass) and a linear spring with stiffness 1579 kN/m was used.
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The excitation was a 50Hz sinusoidal force acted on the mid-point of the beam. Two of the

Figure5.1.2. Excitation function used in the simuiation of cantilever beam

analyzed results were chosen.
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Figure 5.1.3. When the vibration absorber at node 11 (mid-point of the beam)

When the vibration absorber at node 11 (mid-point of the beam) the maximum vibration
amplitude of the beam was 0.0109 mm, which is only about one third of that of the
vibrating beam without dynamic absorber. In addition, we can see that the vibration
amplitude of the vibration absorber is about 0.0348 mm, which is very high when compare
to the vibration amplitude of the beam, and it tells us that when the absorber is attached on

the anti-node of the object, the transmissibility will be high.
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Figure5.1.4. When the vibration absorber at node 3 (near one of ends of the beam)

When the vibration absorber attached on position node 3 (near one of the ends of the beam)
the maximum vibration amplitude of the beam was 0.0222mm, which is a little bit higher
than the amplitude of the beam attached the dynamic absorber at mid-point {(ant-node of the
vibrating mode). In addition, we can see that the vibration amplitude of the vibration
absorber is only about 0.00784mm, which is very small when compare with the vibration
amplitude of the beam, and it tells us that when the absorber is attached on to a point other

than the anti-node of the object, the transmissibility will be smaller.

The simulations shows that if the Dynamic Vibration absorber has the resonant frequency
close to the forcing frequency, the amplitude of the vibration of the beam will be reduced
and some of the vibration will be transmitted to the vibration absorber.

Also, the location of the DVA affects the transmissibility where higher transmissibility will

be obtained at the point near the anti-node of the beam.
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Appendix III — Computer simulations of vibration suppression of beams with
dynamic absorber by a self-written Matlab program

File name:
tang42.m Criginal natural freq of the beam (rad/s)
F=2500 r=0.2 37.9 105.2 208.7 394.

Absorber at the 3rd node of the beam

Forcing freq = absorbing freq = 37.9 Applied at 1st degree of freedom (translational force at node 1)
Steady-state
Natural frequencies amplitude Force transmitted freq range
1.052 Translation 1052 -0.0105 2.78E+03 9.7
0.6529 652.9 -0.0048
0.3949 394.9 -0.0096
0.2093 209.3 0.0046
0.1067 106.7 0
0.0427 427 0.0025.
0.033 33 0.0872
1.0618 Rotation 1061.8 -0.0102 -2.06E+03 15.2
0.6686 668.6 -0.0047
0.4032 403.2 -0.0099
0.2098 209.8 0.0038
0.1057 105.7 . -0.0033
0.0451 45.1 0
0.0299 299 -0.0234
Absorber at the 3rd node of the heam
Forcing freq = absorbing freq = 71.55 Applied at 1st degree of freedom (transfational force at node 1)
Steady-state
Natural frequencies amplitude Force transmitted freq range
1.0522 Translation 1052.2 0.0115 -7.61E+03 441
0.6529 652.9 0.0079
0.3951 395.1 0.0165
0.2114 2114 -0.0053
0.0362 36.2 0
0.0688 68.8 -0.0052
0.1129 112.9 -0.0578
1.0898 Rotation  1089.8 0.0044 -455.4989 416
0.706 706 0.0045
0.4191 419.1 0.0115
0.2118 211.8 0.0003
0.0655 65.5 0.0081
0.1071 107.1 0
0.0336 336 0.0107

Absorber at the 3rd node of the beam
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Forcing freq = absorbing freq = 105.2 Applied at 1st degree of freedom (translational force at node 1)
Steady-state

Natural frequencies amplitude Force transmitted freq range
1.0523  Translation 1052.3 0.0007 -3.56E+03 444
0.3954 395.4 0.0021
0.653 6563 0.0048
0.2158 215.8 -0.0003
0.0364 36.4 0
0.0855 85.5 -0.0019
0.1299 129.9 -0.0113
1.1439  Rotation 1143.9 -0.0175 2.46E+03 30.3
0.7545 754.5 -0.0027
0.434 434 0.0058
0.2138 213.8 0.0187
0.0792 79.2 0.0253
0.0342 342 a
0.1095 1095 0.0079

Absarber at the 3rd node of the beam ) :
Forcing freq = absorbing freq = 156.95 Applied at 1st degree of freedom (translational force at node 1)
Steady-state

Natural frequencies amplitude Force transmitted freq range
1.0528  Translation 1052.8 -0.0069 -1.12E+04 71.5
0.6531 653.1 0.0025
0.3965 396.5 0.0078
0.2337 2337 0.0041
0.0365 36.5 0
0.1641 164.1 -0.0049
0.0926 92.6 -0.0149
1.291 Rotation 1291 0.0009 -4 .80E+03 102.4
0.8173 817.3 0.0016
0.4489 448.9 0.002
0.216 216 -0.0021
0.0885 88.5 -0.0024
0.1136 113.6 0
0.0344 344 0.0001
Absorber at the 3rd node of the beam
Forcing freq = absorbing freq = 208.7 Applied at 1st degree of freedom (translationa!l force at node 1)
Steady-state
Natural frequencies amplitude Force transmitted freq range
1.0534  Translation 1053.4 0.0028 3.77E+03 91
0.6532 653.2 -0.0001
0.3987 398.7 -0.0015
0.2729 272.9 -0.0022
0.1819 181.9 0
0.0365 36.5 0.0016
0.0945 94.5 0.0029
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1.5032
0.8523
0.4568
0.2173
0.0919
0.0344
0.1168

Rotation

1503.2
852.3
456.8
217.3
91.9
344
116.8

Absorber at the 3rd node of the beam

Forcing freq = absorbing freq = 301.75

 1.0551
0.6537
0.4173
0.355

0.1905
0.0366
0.0955
1.9659
0.8784
0.4633
0.2185
0.094

0.0345
0.1199

Natural frequencies amplitude

Translation 1055.1

Rotation

653.7
4173
355
190.5
36.6
95.5
1965.9
878.4
463.3
218.5
94
34.5
119.9

Absorber at the 3rd node of the beam
Forcing freq = absorbing freq = 394.8

1.0579
0.6551
0.3817
0.1928
0.0958
0.0366
0.4975
24711
0.8883
0.466

0.2191
0.0948
0.0345
0.1214

Natural frequencies amplitude

Translation 1057.9

Rotation

655.1
381.7
182.8
95.8
36.6
497.5
24711
888.3
466
2191
94.8
345
121.4

Absorber at the 3rd node of the beam
Forcing freq = absorbing freq = 723 .4

-0.0061 -3.28E+04 100.5
0.0052

0.008

-0.0019

-0.0063

0

0.0009

Applied at 1st degree of freedom (translational force at node 1)

Steady-state
freq range

164.5

Force transmitted
0.0006 1.45E+03
0.0005
-0.0002
-0.0012

0

0.0008
0.0006 .
0.000874
-0.0001809
-0.0004818
-0.0004693
0.0003319
0
-0.0000615

4.08E+03 244 8

Applied at 1st degree of freedom (translational force at node 1)

Steady-state
freq range

115.8

Force transmitted
0.001 -1.90E+03
-0.0028
-0.0002
0.0028

0

-0.0022
-0.0008
0.0004154
0.0001768
-0.0002048
-0.0005638
0.0001658
0
-0.0000315

2.88E+03 246.9

Applied at 1st degree of freedom (translational force at node 1)
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1.0975
0.8603
0.6492
(.3883
0.1947
0.0962
0.0366
4.3487
0.8979
0.45689
0.2196
0.0345
0.0954
0.123

Rotation

Steady-state

Natural frequencies amplitude
Translation 1097.5

860.3
649.2
388.3
194.7
96.2
36.6.
4348.7
897.9
468.9
219.6
345
954
123

0.0001192
-0.0000351
-0.0000548
-0.0001362
0
-0.0003087
0.0000511
0.0000946
-0.0003266
0.000012
-0.000235
0.0000236
0
-0.0000043
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Appendix IV - Experimental data of suppression of forced vibration of a plate using a
dynamic vibration absorber

Resonant frequency of cantilever plate (2nd Mode) = 300Hz
Resonant frequency of cantilever plate (1st Mode) = 50Hz
Forcing frequency = 300Hz

Input Signal Amplitude = 0.5Vpp and 2.0Vpp

Vpp = 0.5 Vpp=2
Amplitued (mL) Amplitued (mU)
__ Blank Cantilever |Absorber on: Blank CantijAbsorber on:

Measured Position Hole 1 Hole 2 Hole 6 Hole 1 Hole 2 Hole 6
1 20.1 0.901 0.634 1.89 79.9 3.58 2.43 7.67
2 15.2 0.881 0.585 1.37 625 3.52 2.3 567
3 10.9 0.817 0.552 1 44 3.28 2.18 4.19
4 5.72 0.659 0.523 0.541 24.3 2.54 2.08 2.28
5 0.908 0.407 0.502 0.2 473 1.7 2.1 0.797
6 3.03 0.098 0.462 0.248 13.2 0.341 1.88 0.908
7 6.95 0.206 0.398 0.569 28 0.946 1.54 2.36
[] 10.1 0.591 0.258 0.82 40.9 2.39 1.06 35
9 13.3 0.932 0.088 1.09 52.2 3.76 0.418 4.48

10 15.2 1.2 0.08 1.27 61.3 4.73 0.186 5.22
11 16.8 1.43 0.236 1.38 67 5.69 0.861 5.69
12 17.1 1.6 0.35 1.42 69.1 6.35 1.35 5.86
13 17.2 1.67 0.46 1.39 68.3 6.67 1.75 5.72
14 16.3 1.63 0.493 1.3 65.3 6.57 1.89 5.34
15 14.9 1.51 0.488 1.18 58.5 6.03 1.87 4.84
16 12.9 1.33 0.446 1.07 50.9 5.32 1.73 4,41
17 10.6 1.1 0.388 1.02 42.4 4.51 1.51 4,24
18 3.4 0.844 .3 0.982 32.4 3.33 1.16 4.01
19 5.54 0.601 0.215 0.815 227 24 0.819 3.27
20 3.29 0.35 0.136 0.531 13.4 1.49 0.487 2.72
21 1.7 0,182 0.074 0.299 7.53 0.731 2.56 1.37
A1 1.85 1.42 4.74 29 5.98 17.9
A2 1.72 1.13 2.98 6.84 4.04 119
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Resonant frequency of cantilever plate (2nd Mode) = 300Hz

Resonant frequency of cantilever plate (1st Mode) = 50Hz
Resonant frequency of dynamic absorber used = 250Hz
Forcing frequency = 250Hz

Input Signal Amplitude = 2.5Vpp

Amplitude of the signat at 250 Hz (mU)

Absorber Position. .- - o . R Y W e
Measuring Position |Blank Plate |Hale1 ' . <|Hole 2 . |Hole3. -~ |Holed . - [Hole5-" [Hale 6 |Hola ¥~ -
: 1 1 2750 5.20 451 68.27 32.70 45.40 1.99 7.78

21.70 5.30 442 5.81 26.30 32.20 1.45 5.85
17.00 5,30 440 548 2140 24.40 0.95 4.63
11.40 4,83 4.39 507 16.20 13.30 0.23 3.00
6.63 4.06 4.47 482 11.90 4.48 0.03 1.86
285 3.07 4.39 4 67 7.51 2.69 0.32 0.42
2.70 1.86 4.01 4,60 418 11.30 0.89 0.86
6.35 0 3.32 4.7 1.10 17.90 1.35 1.88
9,32 0.62 2.37 4,85 ‘097 2470 1.64 2.83
12.00 2.10 1.46 460 210 2940 1.93 3.46
14,00 3.39 0.26 4.10 2.02 34.10 214 3.98
15.40 444 0.64 3.35 1.32 37.10 233 4.3
15.90 5.25 1.69 242 1.16 39.00 242 442
15.80 578 2.3 1.14 117 39.60 2.55 4.24
14.90 5.90 2.86 0.48 1.44 39.00 2.64 3.87
13.30 562 3.00 0.05 1.50 35.10 2.80 3.03
11.30 499 279 0.25 1.40 30.80 2.87 2.30
8.62 4.02 2.39 0.41 1.15 23.30 293 1.51
5.49 2.87 1.81 .36 0.90 16.20 2.56 0.81
372 1.44 1.06 0.15 0.58 10.10 1.55 0.63
1.92 0.87 0.59 0.12 0.27 5.25 0.98 0.50

8.99 7.93 10.10 9.56 57.30 10.50 513

12.50 12.30 18.20 42.30 48.30 25.20 22.00
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