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The Contribution of Working Memory, Conceptual Knowledge and 

Calculation Principles to the Individual and Group Differences in 

Arithmetic Competency of Elementary School Children 

 

Abstract of the Study 

Research findings from previous studies have suggested the importance of working 

memory and conceptual and procedural knowledge to the development of children’s 

arithmetic competency. However, their influences on children’s arithmetic competency have 

rarely been studied together and most of the findings in these areas are from overseas studies. 

Given the national and cultural differences and the variations in curriculum design and 

classroom instructions, the applicability of international studies to the local population has 

yet to be confirmed. This current study is a cross-sectional study to assess working memory 

capacity, understanding of fundamental arithmetic concepts and use of calculation principles 

simultaneously, as they contribute to individual and group differences in competency in 

early elementary arithmetical learning. 

In the current study, a variety of measures were administered to 160 primary 1 to 3 

children from a local mainstream school, in order to assess the functioning of different 

components as well as general resource of children’s working memory, conceptual 

understanding of place-value and commutativity and the application of calculation principles. 

Results from analyses of variance ANOVA indicated that children of different grades and 

levels of arithmetic competency showed differences in performances in most of the measures 

of working memory with a few exceptions. Although the higher ability group of all grades 

outperformed their lower ability peers in the understanding of place-value and 

commutativity concepts, and the uses of calculation principles, the differences between the 
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performances of the two arithmetic ability groups tended to decrease as grade levels 

increased.  

Hierarchical regression analyses revealed that the relationship between working 

memory functioning and children’s arithmetical competency was not mediated by children’s 

conceptual or procedural knowledge and vice versa. Hierarchical analyses also revealed the 

pattern of interaction of different components of working memory, as they contribute in 

explaining variance in children’s arithmetic competency. All the three cognitive aspects in 

question were shown to have significant unique contribution and interaction in their 

influences on the arithmetic competency in each grade. However, it was found that these 

influences tended to decrease with schooling. 
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Elementary Arithmetic Competency 1 

Chapter One 

Introduction 

 

1. Background of the Study 

Competency in elementary arithmetic (i.e., addition, multiplication, subtraction, and 

division) is a principal foundation of everyday modern life. It provides the essential means for 

dealing with a wide variety of numerical-problem-solving situations. Basic arithmetic also 

provides the foundation for the more advanced mathematical skills that are central to all modern 

scientific disciplines. Consequently, the factors underlying the individual differences in this 

fundamental intellectual skill are crucial for children’s cognitive development (Ashcraft, 1995; 

Geary, 1994).

Individual differences inevitably exist in almost every domain of learning. Although Hong 

Kong students' generally strong performance in mathematics has long been recognized, not all 

local children excel at mathematics. The divergences in this intellectual domain could stem from 

different early learning experiences of elementary arithmetic, an irreplaceable foundation for 

higher-level mathematical competence. 

Reading ability and mathematical ability are currently the two most highly focused 

domains in local education. Over the past few decades, enormous progress has been made in 

understanding the individual differences in reading abilities. A wide variety of assessment and 

intervention tools have been established as a result of the increasing understanding of the topic. 

Growing knowledge on phonological processing and awareness, and their importance to the 

acquisition of strong reading skills has led to the development of both preventive measures and 

intervention strategies for children with or at risk of reading difficulties (Gersten & Chard, 1999) 
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In contrast, the individual differences in arithmetic remain comparatively less well 

understood (Ginsburg, 1997). Measures that are specifically designed to diagnose children at risk 

of mathematical difficulties are not available; despite an estimate in previous studies, which used 

different behavioral criteria, that roughly 4 to 10% of children have suffered from some forms of 

difficulty in the learning of mathematics. (Gross-Tsur, Manor, & Shalev, 1996; Ostad, 1997; 

Geary, 2003). Hence it is of great importance to identify the factors underlying the individual 

differences in arithmetic competency. 

Educators and psychologists have begun to channel efforts towards understanding the 

development of mathematical cognition or skills in young children. Models of mathematical 

cognition in normally developing children have emerged in the areas of word problem solving 

(Riley & Greeno, 1988), arithmetic operations (Jordan, Huttenlocher & Levine, 1992), 

development of counting knowledge (Geary, Bow-Thomas, & Yao, 1992; Gelman & Gallistel, 

1978), and strategy use  (Siegler & Jenkins, 1989). Among these areas, observable behavioral 

components and involved cognitive processes have received a greater amount of attention, since 

they are located at the first two levels of explanation in a complete theory of learning differences 

(Torgesen, 1999). 

A growing body of research is devoted to investigating how the functioning in working 

memory relates to or affects children’s arithmetic abilities. The vast majority of these empirical 

studies on working memory and arithmetic have been conducted with the multi-component 

model proposed originally by Baddeley and Hitch (1974), which explains a wide range of 

experimental and neuropsychological findings. In addition, more tasks have been developed for 

assessing the functioning of components in this model. In sum, this model proposes working 

memory that comprises a central executive and two subsidiary or “slave” systems, called the 

phonological loop and the visuospatial sketchpad. Though differences in sample selection and 
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choice of measure lead to inconsistent findings, available evidences converge on the view that 

different components of working memory might have specialized roles in arithmetic (Ashcraft, 

1995).  However, the fractionation of and the interactions between different components have yet 

to be confirmed.  

 Another stream in the research on children’s arithmetic focuses on their knowledge of 

arithmetic concepts and principles directly attributable to their connections with arithmetic  

learning. Among the concepts of arithmetic, place value is the most important found to be 

relevant to competency in elementary arithmetic (Ho & Cheng, 1997). Moreover, the 

understanding of and the ability to use arithmetic  principles such as commutativity, associativity, 

inverse, and reversal principles to derive and predict unknown arithmetic  facts from known facts 

were found to be crucial to the children’s development of arithmetic  reasoning and competency 

(Baroody, 2004).   

 Current available findings from the two aforementioned streams have confirmed their 

importance to children’s arithmetic competency. However, their influences on children’s 

arithmetic competency have rarely been studied together. Furthermore, most of the findings in 

these areas are from overseas studies. Given that there are national and cultural differences in 

mathematics performance, explained from factors such as numerical language features and 

variations in curriculum classroom instructions, the applicability of these findings to the local 

population has yet to be quantified.  

 

2. Purposes of the Study 

This current study is the first local cross-sectional study to assess working memory 

capacity, understanding of fundamental arithmetic concepts and use of calculation principles 

simultaneously, as they contribute to individual and group differences in competency in early 
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elementary arithmetic learning. The current study aims to address several issues in the 

understanding of the development of elementary arithmetic.  

First, it explores the differences, if any, in these three areas between children with 

different levels of arithmetic competency in each grade. Overseas findings indicate the presence 

of differences in working memory. Differences in conceptual understanding and use of 

calculation principles are also expected with reference to the limited findings from previous 

research.  

Second, the study examines the pattern of contributions and interaction within and 

between the three cognitive domains in question. Specifically, with reference to the effect of 

formal instruction on the children’s learning, it is expected that the relative importance of the 

differences in these cognitive domains to the arithmetic competency will change with the 

increasing level of schooling. Moreover, as conceptual understanding and use of calculation 

principles could be regarded as declarative and procedural knowledge resides in long-term 

memory, interactions between these aspects and working memory capacity are expected. 

Last but not least, this study focuses, in particular, on the functions of children’s working 

memory in elementary arithmetic. In view of inconsistency of previous findings regarding the 

role of the phonological loop, visuospatial sketchpad and central executive in arithmetic 

competency, this study will also explore in depth, the interactions between these three 

components in the working memory model proposed by Baddeley and Hitch (1974, 1986). Of 

particular interest is whether the central executive mediates the influences of the phonological 

loop or visuospatial sketchpad on children’s arithmetic ability. This study also attempts to 

explore the mechanism underlying the weaker performance in working memory span tasks. 
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3. Significance of the Study 

 The present study compares the functioning of working memory, understanding of place 

value and commutativity, and application calculation principles children who have received 

different level of schooling and have manifested varying competency in performing elementary 

arithmetic operations. If the results reveal connections between arithmetic competency and the 

differences in the functioning in these cognitive areas, the information will further substantiate 

previous overseas findings about the role of the above cognitive aspects in the competency of 

elementary arithmetic, and will be useful for educators, and especially those who are in the 

position of helping children with difficulties in mathematical learning.  
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Chapter Two 

Working Memory and Arithmetic Competency—Literature Review 

 

1. Overview of Working Memory 

In the exploration of memory and human cognition, there is a general agreement that 

working memory is a limited capacity system responsible for storing and transforming temporary 

information. The methods adopted by most of the studies for measuring working memory 

capacity focus on assessing one’s working memory span. Daneman and Carpenter (1980) 

suggested that working memory span was a better predictor of scholastic attainment than 

measures, such as digit span, that tax only on temporary storage capacity in the absence of 

concurrent processing operations. Storing information temporarily is insufficient in reflecting the 

real nature of academic learning activities.  

In the basic structure of a memory span task, the performance indicator is usually the 

amount of information that can be held in temporary storage when performing mental operations 

at the same time (Daneman & Carpenter, 1980). There are many different types of working 

memory span task with variations in the nature of the concurrent processing component. For 

example, in a reading span task, participants read a series of sentences for comprehension while 

being instructed to concurrently remember the last word in each sentence. In another task of this 

kind by Daneman and Carpenter (1980), termed, “listening span”, the participants listen to a 

series of incomplete sentences and are asked to supply the missing word from each. At the end of 

the series, the participants attempt to recall all the missing words in the correct order. Listening 

span is taken as the maximum number of sentences that can be handled without error in recalling 

missing words. Case, Kurland and Goldberg (1982) developed a counting span task in which the 
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participants are presented with a series of cards showing different numbers of colored spots and 

are asked to count the number of spots on each card. At the end of the series, the participants 

attempt to recall the results of all the counts. The task continues with increasing length of 

counting series; span is determined to be the maximum number of counts recalled before 

performance breaks down. 

Working memory capacity has been related to the individual differences in a number of 

areas in human development and abilities such as spoken language comprehension  (Adams, 

Bourke, and Willis, 1999), cognitive skills (Alloway, Gathercole, Willis & Adams, 2004), 

cognitive deficits in children with atypical development (Phillips, Jarrold, Baddeley, Grant & 

Karmiloff-Smith, 2004), and reading abilities (Chiappe, Hasher & Siegel, 2000; Swanson & 

Howell, 2001). Research has also confirmed that measures of working memory span are highly 

correlated with measures of general attainment and ability in the learning of mathematics. 

A growing body of research has been devoted to the study of how the profile in working 

memory relates to or affects arithmetic competency in children who are developing normally, as 

well as in those with learning difficulties. For example, Siegel and Ryan (1989) investigated the 

differences between subtypes of learning-disabled children. The subtypes included reading 

disability, arithmetic disability, and attentional deficit disorder. The arithmetic disability was 

conceptualized as normal reading and language skills, but difficulty with computational 

arithmetic, fine motor coordination and efficient written work. Siegel and Ryan (1989) found that 

children were impaired in both listening span and counting span when their learning difficulties 

in arithmetics coexisted with problems in reading. On the other hand, children with learning 

difficulties in arithmetic alone were impaired only on counting span. Siegel and Ryan (1989) 

suggested a low-capacity domain-general working memory responsible for the pervasive learning 
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difficulties in both reading and arithmetic learning, while an low-capacity domain-specific 

working memory responsible for the learning difficulty specific to arithmetic operations.  

Hitch and McAuley (1991) studied ALD children aged eight to nine with their normally 

achieving controls. In one experiment, Hitch and McAuley examined the performance of their 

subjects on several working memory span tasks, for information storage during concurrent 

operations. In another experiment, they sought to determine whether the children with ALD 

would be impaired at counting or retaining temporary information when each was assessed 

separately. While the children with ALD were impaired specifically in the counting span task in 

one study, they also manifested slower counting speed and lower digit span when these two tasks 

were assessed separately. Hitch and McAuley (1991) argued that cognitive deficits of ALD 

children were not only restricted to concurrent span tasks involving counting, but also to counting 

speed and auditory digit span.  

These studies of children with learning deficits in mathematics underscore the need for a 

clearer understanding of the structure and functions of working memory and its role in children’s 

arithmetic learning.  

Miyake and Shah (1999) posited that any model of working memory must address several 

issues. A model should specify how external information enters and remains active in the 

working memory system. It must also explain how information in the working memory is 

controlled and regulated. In addition, it should highlight the mechanism that limits the 

performance or capacity of working memory. Moreover, a model should address the role of 

working memory in performance of complex cognitive tasks and the relationship between 

working memory and knowledge stored in long-term memory.  While there are several prominent 

models of working memory with a varying number of functional dimensions, the most pertinent 

to this study is a multi-component system originally proposed by Baddeley and Hitch (1974; 
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Baddeley, 1986), composed of subsystems that are able to perform the functions in Miyake and 

Shah’s postulation. The vast majority of the empirical work on working memory and arithmetic 

has been conducted, using Baddeley and Hitch’s multi-component model, as the model has 

considerable support from a significant body of converging evidence gathered from normal adults, 

neuropsychological patients with selective lesions and both normally and abnormally developing 

children (Baddeley, 1986). 

Briefly, there are three components in Baddeley and Hitch’s (1974) multi-component 

model. These are: the central executive, the phonological loop and the visuospatial sketchpad. 

The central executive acts as a limited capacity attentional system that initiates and controls 

mental operations. Its primary role is to resource the competing demands for information 

processing and temporary information storage necessary for performing complex cognitive tasks 

such as reasoning or language comprehension. It fulfils a number of separate but overlapping 

executive control functions, such as coordinating concurrent activities, switching retrieval plans, 

attending to information source, and maintaining and manipulating information in long-term 

memory.  

The central executive is also thought to take part in coordinating the activities of the other 

components of the model, which act as limited capacity, modality-specific subsidiary systems 

(Baddeley, 1996). One of the subsidiary systems is the visuospatial sketchpad, which is dedicated 

to storing and manipulating spatial or visual information. Another system is the phonological 

loop, which is concerned with maintenance and processing verbal material. The idea that the 

system has limited capacity leads to the proposal that when a complex cognitive task overloads 

one or more subsystems, performance of the working memory as a whole is undermined.   

 Further evidence from studies of the normal population suggests that different 

components of working memory might have specialized roles in arithmetic (Ashcraft, 1995). 
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2. Phonological Loop  

The phonological loop is a speech-based system for storing short-term verbal information 

and is thought to have evolved from language perception and production systems  It has been 

fractionated into a passive phonological store and an active rehearsal process (Baddeley, 1986; 

1998). Short-term verbal memory, proposed to be the primary function of phonological loop, is 

thought to have a central role in the acquisition and execution of basic educational skills and has 

often been associated with the development of children's reading, comprehension, and arithmetic  

skills (Geary, 1990; Swanson, 1993). Evidence linking poor arithmetic skills with a short-term 

verbal memory deficit comes from a number of studies, with most of these studies using verbal 

recall tasks that tap on the storage capacity of the phonological loop.  

Logie, Gilhooly, and Wynn (1994) suggested that the role of the phonological loop was to 

keep a record of running verbal information, which is important to maintain accuracy in 

calculation. Logie et al. (1994) used articulatory suppression as an active phonological secondary 

task. Loading the phonological loop in this way was assumed to prevent subvocal rehearsal, and 

may lead to decay of verbal information stored in phonological loop. Logie et al. found that 

performance of the concurrent, secondary, verbal task had a significant effect on arithmetic  

performance. Performance of the secondary task was also disrupted by the concurrent arithmetic  

task.  

Children with arithmetic learning difficulties in Siegel and Ryan’s (1989) study 

significantly under-performed normal achievers on the working memory task that involved 

counting and were believed to have specific difficulties in remembering arithmetic information 

critical to problem solution, a function that is assumed to be covered by the phonological loop in 

the working memory model of Baddeley and Hitch (1974, 1986).  
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Lee and Kang (2002) studied whether and how working memory related to arithmetic 

functions. Ten university students, aged twenty-four to thirty years, were administered arithmetic 

tasks in a session where the administration of the arithmetic task was accompanied by a 

phonological suppression task. The subjects were asked to whisper a non-word string while 

solving arithmetic problems. Results indicated that the reaction times for the multiplication task 

were significantly delayed by the concurrent task, causing suppression of the phonological 

rehearsal function.  

Given that many previous studies found some form of short-term memory deficit relative 

to lower arithmetic competency, findings in some recent studies suggest that poor arithmetic  

skills might not be closely connected to capacity in short-term verbal memory span. Butterworth, 

Cipolotti, and Warrington (1996) reported the case of a patient, MRF, who showed poor 

performance on short-term verbal memory tests and abnormally fast forgetting as a result of 

neurological disorder, but whose arithmetic skills were intact. To assess the relationship between 

short-term memory capacity and performance in arithmetic calculation, MRF was administered in 

the Paced Auditory Serial Addition Task, in which the patient was required to add a new digit to 

the previously presented digit, ignoring the intervening response. Despite his rapid decrement in 

performance of single digits and letters with both auditory and visual presentation in a forgetting 

task, MRF performed well on this calculation task. MRF’s profile suggests the capacity of short-

term memory might not have a strong connection with arithmetic  skills. However, we should be 

cautious in extrapolating these results to other age groups. Butterworth, Cipolotti, and 

Warrington (1996) suggested that adults and children may be using different procedures in 

solving arithmetic combination. With a well-established system of arithmetic facts, adults would 

be more likely to use retrieval on the task, while children would depend more on backup counting 

strategies which may place a heavier load on short-term memory.  
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However, inconsistent findings were also found in studies with children. Bull and 

Johnston (1997) investigated the cognitive factors responsible for children's arithmetic learning 

difficulties (ALD).  Sixty-eight 7-year-old children were tested with measures of short-term 

memory, processing speed, sequencing ability, and arithmetic fact retrieval. Bull and Johnston 

(1997) found no significant group differences between the arithmetic difficulties group and the 

control group in measures of short-term memory, when reading ability had been controlled. 

While speed of item identification and information processing were found to be the best 

predictors to arithmetic attainment, short-term memory was shown to account for the least 

amount of variance in regression model with other variables.  

The presence of these inconsistent findings not only highlights the need to explore in 

more detail the role of short-term memory in children's arithmetic skills, but also the potential 

influence from other systems such as the central executive and visuospatial sketchpad.   

  

3. Visuospatial Sketchpad 

The structure of the visuospatial sketchpad has consistently been treated as a single 

component for processing and storage of visual and spatial information (Logie, 1991). The 

involvement of functions related to the visuospatial sketchpad in arithmetic  performance was 

considered in a number of studies.  

Dehaene (1992), in a review of essential findings and current points of numerical 

cognition, proposed the triple-code model for human numerical cognition. In this model, there are 

three types of number codes in human numerical cognition, namely, visual-arabic, auditory-

verbal, and analog magnitude code, which are differentially involved in various kinds of 

arithmetic operation and number processing. Dehaene suggested that an individual would activate 

an “approximate mode” through which he or she could access and manipulate a mental model of 
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approximate quantities similar to a “mental number line” when involving comparison of 

quantities, or approximate calculations.  

In a study of working memory impairments in children with specific arithmetic learning 

difficulties (ALD), McLean and Hitch (1999) administered a working memory battery of 10 tasks 

to 4th-graders. The battery included a Corsi Block task and a visual matrix task that were used to 

assess spatial and visual functions of the visuospatial sketchpad, respectively. The results showed 

that children with ALD under-performed age-matched controls only on spatial function but not 

on visual function. When chronological age was controlled, spatial function correlated with 

arithmetic ability but not with reading ability. However, in a study with 3rd graders and with 

different grouping criteria (Bull, Johnston, and Roy, 1999), spatial function, as manifested by 

performance in the Corsi block task, as in McLean and Hitch’s (1999) study, was not related to 

children’s mathematical ability.  

Heathcote (1994) examined the role of visuospatial working memory in the adults’ mental 

addition of multidigit addends. A standard task, devised to assess ability of mental calculation of 

2 3-digit addends was administered, either visually or auditorily, to 12 adults, in conditions with 

either spatial interference or articulatory suppression. Disruption in performance in either of these 

conditions suggested a slave system was involved in mental arithmetic. The results demonstrated 

that both phonological and visuospatial subsystems were involved in mental arithmetic, and 

visuospatial interference led to the greatest disruption in complex problems involving carrying. 

Heathcote proposed that the phonological loop acts as a storage device, retaining both the initial 

problem information and running total, visuospatial responsible functions such as keeping 

number place, and carrying in multidigit additions.  

The visuospatial sketchpad was also found to be related to arithmetic function in a study 

by Lee and Kang (2002). Ten university subjects were given an arithmetic test in another session 
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with a dual task for suppressing visuospatial activities. They were asked to remember the shape 

and location of a series of decorative figures while performing arithmetic tasks. Results indicated 

that the concurrent visuospatial suppression task had significantly hampered the performance of 

the subtraction task. Based on the results of their pilot study, Lee and Kang (2002) proposed that 

arithmetic function and working memory subsystems are related in an operation “type-specific” 

manner.  

Geary and Burlingham-Dubree (1989), in a study to investigate the validity of Siegler and 

Shrager's (1984) strategy choice model for addition, administered the Wechsler Preschool and 

Primary Scale of Intelligence (WPPSI) and the Arithmetic subtest of the Wide Range 

Achievement Test (WRAT) and simple addition tasks to 42 pre-school children. Results 

indicated that differences in strategy-choice variables were significantly related to two measures 

that require reproduction of simple and complex geometric designs and spatial scanning. Geary 

and Burlingham-Dubree (1989) concluded that was a close relation between pre-school children’s 

visuospatial ability and the level of accuracy in their usage of strategies for addition.  

Evidence from a recent study by McKenzie, Bull and Gray (2003) suggested an age-

related change in the importance of phonological and visuospatial functions. In an attempt to 

determine the effects of the two subsidiary slave systems of working memory and strategies 

being used in arithmetic at various developmental points, children aged 6 to 9 years were divided 

into two age-groups and administered simple mental arithmetic tasks, as well as measures for 

working memory, in three testing conditions. The first was the baseline condition, in which 

arithmetic tasks were administered without any disruptions. Concurrent phonological and 

visuospatial interference were introduced in the other two conditions. Although previous studies 

with older subjects suggested the greater importance of the phonological system over than 

visuospatial system, in this study, the performance of younger children was more affected by the 
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concurrent visuospatial interference, while the older children were more affected by concurrent 

phonological disruption. McKenzie, Bull and Gray (2003) suggested that the results indicated 

that the younger, primary two children were relying on strategies, which load on visuospatial 

sketchpad.  Older children, as those primary 4 children in the study and those with a better-

developed sub-vocal rehearsal function, would adopt a mixture of strategies that primarily rely on 

verbal function, with visuospatial function as auxiliary support. These results support the 

hypothesis that children use different strategies at different ages; younger children almost 

exclusively utilise visuospatial strategies in mental arithmetic, whereas older children use a 

mixture of phonological and visuospatial strategies. 

  

4. Central Executive 

The central executive of working memory has been well-known for its connection with 

the phonological loop and visuospatial sketchpad. However, many other functions have also been 

proposed as being under the control of executive functioning. Diamond (1989) suggested an 

inhibitory function where dominant action tendencies are suppressed in favor of more goal-

appropriate behavior. Baddeley, Bressi, Della-Sala, Logie, & Spinnler (1991) studied dementia 

patients’ performance on dual-tasks. The progressive deterioration in performance shown by 

these patients was suggested to be due to impairment in the functioning of the central executive. 

Based on a number of psychometric studies and the influence of the supervisory activating 

system (SAS) model of attentional control by Norman and Shallice (1980), Baddeley (1996) also 

suggested that the central executive is involved in attentional control, generation of random 

numbers, process control and switching strategies. In addition to the functions of process control 

and attention allocation, the central executive is thought to be able to access information from 
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long-term memory, although it is not confirmed whether the central executive itself has storage 

capacities (Ericsson & Kintsch, 1995).  

Cognitive difficulties associated with poor executive functioning include disrupted 

organizational and planning skills, generalized memory deficits, difficulties with mental 

flexibility, and poor task initiation, as well as behavioral difficulties such as distractibility and 

problems with sustained attention. In the light of this, studies in developmental neuropsychology 

have also suggested that the frontal lobes could be the neurological base of central executive with 

reference to the complex functions thought to be under the coverage of this working memory 

component (Welsh & Pennington, 1988).  

Case (1992) summarized and reviewed the fundamental changes of attentional, executive, 

and self-reflexive processes between the ages of 5 and 10 years. By examining the developmental 

trend of the frontal lobe, he gave further suggestion to the potential role of the central executive 

in individual differences in cognitive skills, including arithmetic. He postulated that frontal lobe 

functioning in children shows its main developmental increase from the ages of 7 to 10, and 

children reach adult performance levels on measures of executive functioning at around 10 years 

of age. He presumed that different rates in developmental advancement before the age of 10 

could be the source of individual differences in most of the cognitive skills requiring executive 

function.  

In the study to examine the functional aspects of working memory and their relative 

contribution to adults’ mental arithmetic performance, Logie et al. (1994) used a dual-task 

procedure to examine the extent to which disrupting each component of working memory would 

affect mental arithmetic performance. Random letter generation was used to disrupt functioning 

of the central executive. Results indicated that mental addition performance was greatly 
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hampered by the concurrent generation of random letters. Logie et al. (1994) suggested that 

mental arithmetic could be loaded on central-executive resources. 

The central executive has also been reported as being related to arithmetic fact retrieval. 

In a single case study, Kaufmann (2002) reported the performance of an adolescent, M. O. who 

was diagnosed with severe developmental dyscalculia, and literacy problems. Despite 

outstanding difficulties in retrieving arithmetic facts, M.O. demonstrated a rather well-preserved 

procedural skill, which was manifested by his intact ability to solve multidigit written 

calculations. M.O.’s performance on the Brown-Peterson Interference Task indicated a deficient 

central executive of working memory. Give that M.O. had intact functioning of the phonological 

loop, Kaufmann (2002) suggested that M.O.’s problem in retrieving arithmetic facts arose from 

his application of time-consuming backup strategies that relied heavily on the resources of the 

central executive.  

However, a limited number of studies focused specifically on the relationship between the 

central executive and arithmetic performance in normally developing elementary children. Many 

of these studies were conducted with adult or neuropsychological populations. Therefore, 

generalization of these results to developing children may not be appropriate. Nevertheless, with 

the finer picture of the central executive’s functional structure, gained over the past decade, a 

growing body of research has been devoted to learning how this component in working memory 

relates to or affects children academic competency.  

Lehto (1995) studied the relationship between working memory, specifically the 

functioning of the central executive, and academic attainment of Finnish teenagers. In addition to 

the measures for the phonological loop, several working memory span tasks were administered to 

measure the capacity of working memory. A memory-updating task was also administered to 

specifically measure the central executive. Data about the teenagers’ attainment in four academic 
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subjects were collected for evaluating the relationship with the performance in working memory 

tasks. Results showed that the memory-updating task, the measure that was prescribed for 

assessing the capacity of central executive, correlated strongly with all academic subjects, 

especially with attainment in mathematics, and was not mediated by the contribution of simple 

memory tasks.  

Passolunghi and Siegel (2001) conducted a study to investigate the relationship between 

impaired performance in arithmetic problem solving, working memory, short-term memory and 

inhibitory control of poor arithmetic problem solvers, using four working memory span tasks, as 

well as four a short-term memory tasks. The results showed that poor problem solvers had lower 

scores and made more intrusive errors, which reflected an inability to control and to ignore 

irrelevant or no longer relevant information. This finding gives partial and indirect support to the 

role of the central executive, which is believed to be responsible for attentional control in 

arithmetic problem solving.  

In sum, the studies discussed in the above review converge on a perspective that each, of 

the three components of the working memory system proposed by Baddeley (central executive, 

phonological loop, and visuospatial sketchpad) plays a role in arithmetic under different 

conditions. For example, DeStefano and LeFevre (2004), in their review, suggested that using 

problems in mental arithmetic that involved multiple digits would be more likely to reveal 

interactions between all the components of the working memory system.  

However, not all investigators have found a relation between working memory and 

performance in arithmetic tasks. Kail and Hall (1999) investigated the roles of arithmetic 

knowledge, processing time, memory and reading skill on the performance of arithmetic word 

problems. Results indicated that word-problem performance was predicted by arithmetic 

knowledge. Of the three general information-processing skills investigated in this research, while 
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processing time had demonstrated the strongest and most consistent relationship with arithmetic 

word-problem performance, the effects of working memory on word-problem performance were 

the smallest and least consistent. Given the limited number of studies and inconsistent findings, 

more research needs to be conducted with a larger cohort of normally developed school children 

before a clearer picture of the influence of working memory on elementary arithmetic   

competency can be sketched. 
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Chapter Three 

Understanding of Fundamental Arithmetic Concepts and Use of Calculation 

Principles—Literature Review 

 

1. Overview 

The development and acquisition of computational skills and conceptual understanding 

has been a major concern in the field of mathematical psychology (Resnick & Omanson, 1987). 

Over the last two decades, researchers have argued over which is more important, procedural 

knowledge or concepts, as well as the order of their development. Hiebert and Lefevre (1986) 

stated that the developmental relationship between conceptual knowledge and procedural 

knowledge is not as straightforward and cannot be readily conceptualized as either “skill-first” or 

“concept-first”. Baroody and Ginsburg (1986) also suggested an iterative relationship between 

the two domains, in which conceptual knowledge can lead to invention in procedural knowledge, 

while the application of procedural knowledge can also contribute to advances in conceptual 

knowledge.  

Nevertheless, conceptual understanding of fundamental arithmetic concepts and 

procedural knowledge are two critical areas to the understanding of children’s arithmetic 

development. Hiebert and Lefevre (1986) defined procedural knowledge as consisting of 

knowing the forms of arithmetic, as well as knowing step-by-step linear or hierarchical 

implementation, while conceptual knowledge, on the other hand, involves linking new 

information to an existing knowledge structure, as well as linking existing, but isolated aspects of 

knowledge. They also concluded that linking conceptual and procedural knowledge could greatly 

and mutually benefit both domains. For example, conceptual understanding involves 
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understanding of the properties of and relationships between arithmetic operations, which include 

single or multidigit addition, subtraction, multiplication and division (Hiebert & Lefevre, 1986). 

A thorough understanding in the concepts may predispose the ability to derive of calculation 

principles such as inverse, reversal, other associative-based principles, especially where standard 

calculation procedures are cumbersome and time-consuming.  

  

2. Fundamental Concepts of Elementary Arithmetic 

Among studies of multidigit addition, subtraction and simple multiplication, knowledge 

of place value and commutativity has been consistently suggested as critical to the mastery and 

competency of arithmetic.  

Place value principle refers to the numerical notation system in which the position of each 

digit determines the value it represents. In integers, the digit at the far-right of the number 

represents units; moving to the left the next digit represents tens, the next, hundreds, and so on. 

Commutativity refers to the principle that changing the order of the addends, or multiplicand and 

multiplier does not change the sum or product. For example, both the products of 8 x 3 and 3 x 8 

are equal to 24, and 12 + 33 is equal to 33 + 12.  

While calculation principles are derived knowledge about arithmetic operations that can 

allow a wide range of variations, the emergence of several principles can be well observed in the 

elementary levels of arithmetic learning. Included in the current study are inverse, reversal, and 

associative-based principles such as operand-plus-or-minus-one and operand-plus-or-minus-ten 

principle. These principles vary in a number of dimensions. For example, while calculation 

principles are assumed to provide shortcuts in solving some originally time-consuming 

calculations, wherever theoretically appropriate and applicable, answers that can be provided by 

commutativity, inverse, and reversal principles are comparatively more apparent, whereas those 
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by the associative-based rules are less transparent in such a way that a certain level of insight and 

judgment are demanded.  

It should be noted that the components addressed above and below are not to be regarded 

as a complete list of components critical for elementary arithmetic calculations, either from a 

mathematical or educational point of view.  

 

Place Value 

The concept of place value is a central concept underlying both our system of arithmetic 

notation and the operational algorithms that form the basis of arithmetic (Geary, 1993). Our 

number system, taught in elementary mathematical education, is based on place value in a base-

10 system; that is, the value of each digit in a number is determined by its relative position in the 

number. For integers, the digit at the far-right of the number represents units; moving to the left, 

the next digit represents an increasing power of ten, as the value of the digit increases by a factor 

of 10 with each move to the left. 

Understanding the place value in early elementary arithmetic operations relating to the 

ability to process arithmetic operations ranged from adding or subtracting 10s and units (10 + 1 = 

11); tens and tens  (10 + 20 = 30); and to arithmetic combinations involving several multi-digit 

items (78 + 43 - 59 = 62). In research, tasks for assessing place-value usually involve counting 

and number identification, positional knowledge, and digit correspondence, in which a subject is 

asked to indicate the value represented by a digit in a number. In classroom practice, educators 

and researchers often use concrete referents to represent the multi-digit numbers to assess and 

teach the concept of place value. For example, Base-10 cubes or clips are the most commonly 

used concrete representations.  
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The mastery of arithmetic combinations and conceptual understanding of the place-value 

in a base-ten number system facilitates multi-digit calculation. To be successful in performing 

multi-digit addition and subtraction, children must learn the carrying procedure for addition and 

the borrowing procedure for subtraction. For example, to perform a multi-digit subtraction 

problem in a written columnar format, a child could process single columns from right to left. 

The child has to “borrow” when the bottom number is greater than the top number and if top 

number is zero. Understanding these procedures requires understanding of the concept of place 

value. It has been suggested that instruction emphasizing concepts of place value and how they 

relate to steps in a procedure usually leads to increases in both conceptual and procedure 

knowledge (Rittle-Johnson & Alibali, 1999). Through formal instruction, children gradually learn 

conventional procedures for performing multi-digit addition and subtraction problems. Skilled 

performance in multi-digit addition and subtraction requires knowledge of several complex 

procedures. Although many primary-school children are competent in following rules and 

procedures, they may follow the wrong ones. Memorizing a procedure without understanding its 

underlying principles can lead children to make consistent mistakes in questions with a more 

complex structure.  

In a longitudinal study of first through third graders, Hiebert and Wearne (1996) found a 

close relationship between children’s understanding of multi-digit numbers and their level of 

computational skill. For example, it was shown that children who developed the earliest 

understanding of place-value concept in base-ten system performed at the highest level on 

computational tasks at the end of third grade. The finding also suggests that an early 

understanding of our number system leads to greater appreciation and participation in learning 

mathematics throughout primary school. 
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Ginsburg (1997) suggested that the use of a “cognitive clinical interview" method could 

offer a richer account of children's mathematical thinking. One of the five key areas of focus 

highlighted was “bugs”, which refers to systemic erroneous strategies in computations. For 

example, second-graders often do not correctly carry in multidigit addition (Fuson & Briars, 

1990). The children either write the two-digit sums beneath each column of single-digit addends 

or ignore the carried values. An example of an error in addition would be that the sum for 46 + 85 

would become either 1211 or 121.  

Erroneous procedures related to place-value can also be easily observed in subtraction. 

For example, children might subtract the smaller number from the large number, regardless of 

whether the large number is in the minuend or subtrahend; in this case, the answer for 312 – 145 

would become 233. Other areas of erroneous procedure include ordering numbers, setting out 

horizontally presented computations, and addition and subtraction involving carrying or trading. 

The occurrences of these consistent and systematic errors in multi-digit addition and subtraction 

procedures may indicate the presence of misunderstanding or immature understanding in 

mathematical knowledge, specifically in place value.  

 

Additive & Multiplicative Commutativity 

Commutativity is a case-sensitive concept involving the irrelevance of operands where 

changing the order of the operands in an arithmetic problem does not change the result or 

solution. Both addition and multiplication are commutative in nature. From a mathematical point 

of view, the commutative property of multiplication can be expressed as (a)(b) =(b)(a) while that 

of addition can be expressed as (a)+(b) =(b)+(a). For example 2 + 3 equals to 3 + 2, just as 3 x 2 

equals to 2 x 3.  
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Baroody and Ginsburg (1986) acknowledged that the knowledge of a commutative 

relation may be represented as schema-based view. According to this view, relational learning 

and transfer are an integral part of mastering basic number combination. Children notice 

arithmetic relations, which allow them to utilize existing knowledge. Therefore, by noticing that 

addition is commutative, they can reduce by almost half their effort to memorize the basic 

additive combinations. In the light of this, it is not necessary for those who understand the 

principle to store both forms of the commuted pairs in memory (Baroody & Dowker, 2004). 

Understanding these relations serves to convert small-factor-first expressions such as 2 x 3 into 

larger-factor-first expressions such as 3 x 2. Therefore both 2 x 3 and 3 x 2 to be stored in the 

retrieval network as a single 2 x 3 = 6 association. This explains why children are able to retrieve 

big-factor-first combinations of commutated operands as fast as the smaller-factor-first 

combinations, while the former is usually taught long after the latter.  

A similar view of commutativity has also been conceptualized in a model called the 

“Identical element model”, proposed by Rickard, Healy, and Bourne (1994). The identical 

elements model incorporates three basic assumptions. First, for simplicity, the model assumes 

distinct and sequential perceptual, cognitive, and motor stages of performance. Second, it 

assumes that answer retrieval occurs exclusively within the cognitive stage. The third assumption 

is that representation of each arithmetic fact within the cognitive stage can be fully characterized 

in terms of its three essential constituent elements, which include the two corresponding 

presented numbers in a fact and the operation formally required.  

Stated in this model, the order of the numbers in commutative operations is not 

represented. Thus the two orders of operand in a commuted multiplication problem map on to the 

same single representation within the cognitive stage. For non-commutative operations, the order 

is preserved (thus, 20 ÷ 4 and 4 ÷ 20 would be represented uniquely).  
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In addition, a problem presented in an Arabic format, such as 4 × 7, and the same problem 

presented in a written verbal format, such as four times seven, will access the exact same 

semantic memory “chunk” within the cognitive stage. In summary, any problems that differ only 

with respect to the format of presentation or the relational characteristics among the elements will 

access the same chunk. In contrast, problems that differ with respect to one or more elements will 

access completely different memory chunks. Thus, 4 × 7 and 7 × 6 will access completely 

different memory chunks. A later study by Rickard & Bourne (1996) provides further support to 

the “identical elements model” in the organization of multiplicative arithmetic skill in memory. 

In light of this model, a single representation for commuted combination would also 

account for the transfer for practice effects to unpracticed but commuted combinations. The 

findings of a study by Baroody (1999) support this view. A training experiment focused on third 

graders with negligible mastery of multiplicative combinations involving factors from 3 to 9. 

After being screened for baseline information, subjects given structured training on different 

subtests of combinations, followed by a post-test, specifically designed to identify any transfer of 

learning. Results indicated that practice on a subtest of combinations could facilitate the learning 

of unpracticed but commuted combinations. Baroody (1999) suggested that children could devise 

more flexible and accurate strategies and use commutativity principles to master combinations.  

 Given the close comparison in the format of presentation of combinations of this kind, 

one would assume that it is easy for even a primary school child to recognize the commutative 

nature of two commuted operands and to state the answer of a combination based on their 

knowledge about the solution of the commuted pairs. However, previous studies have presented a 

less optimistic view.  

Vergnaud (1988) has pointed out that the property of multiplicative commutativity of 

multiplication may not be readily accepted by school children. Certain instructional and curricula 
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pre-requisites should be given before children can assimilate the concept. In an empirical test of 

Vergnaud's hypothesis among schooled subjects, Nunes & Bryant (1996) showed that even 9- to 

10-year-old school children did not easily accept multiplicative commutativity when they tried to 

solve multiplicative problems in which any number could be taken as either multiplier or 

multiplicand. 

Regarding the development of the concept of commutativity, evidences from previous 

studies state that children would be able to discover additive commutativity at the numerical level 

via computational experiences. Baroody and Gannon (1984) assessed kindergartners’ 

understanding of the commutativity principle and their use of the min procedure, a more 

advanced mode of counting. Children were administered tasks to measure their procedural 

knowledge of min procedure, accompanied with judgmental tasks in which commuted pairs on 

addition combinations were presented. Children were considered successful on the judgmental 

tasks if they responded quickly and accurately to the question without overtly computing the 

answer. It was indicated that children who succeeded in the commutativity tasks were more likely 

and ready to use the min method in problem solving. Baroody and Gannon (1984) concluded that 

computational experience is associated with commutativity performance at this level. This 

perspective is consistent with Resnick’s (1992) account that computational experience is 

sufficient to play a key role in reconstructing an understanding of commutativity at higher levels 

of mathematical thinking.  

Contrary to the situation in the acquisition of commutativity for addition (Petitto & 

Ginsburg, 1982), instructions that specifically emphasize the property were suggested to have 

played a critical role in the development of the knowledge of multiplicative commutativity and its 

consequential application in solving multiplication problems.  
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To solve a simple addition combination, children can either access the answer by direct 

retrieval or use backup strategies such as finger counting and verbal counting. The situation here 

is similar for multiplication. For example, 6 times 7 is equal to adding 6 repeatedly for 7 times or 

adding 7 repeatedly for 6 times; therefore, if children fail to retrieve the answer to a 

multiplicative combination of 6 and 7, they can use a repeated addition method to solve it. 

Although frequent and successful retrieval will increase the chance of achieving understanding of 

this property of multiplicative commutativity, one’s fixation or dependence on the use of repeated 

addition in solving multiplication combinations would postpone the recognition of the relations.  

Data from a previous study by Schliemann et al. (1998) supports the suggestion that school 

instruction focusing on multiplicative commutativity is critical for the use of the commutative 

property for solving multiplication problems. Children approach multiplication in schools by 

learning about multiplication tables. They have many opportunities to realize that the same result 

is obtained if one multiplies 2 times 3 or 3 times 2. Moreover, they are explicitly taught that 

commutativity is one of the properties of multiplication, and they receive intensive training on 

algorithms entailing multiplicative relationships with emphasis numerical computations in which 

numbers are frequently used without reference to physical quantities. This type of training may 

accelerate use of multiplicative commutativity among school subjects. 

 

3. Use of Calculation Principles 

According to the model of mathematical development proposed by Resnick (1992), lack 

of understanding and erroneous usage of any derived calculation principle may suggest the areas 

of weakness in the children’s development of arithmetic reasoning. Resnick’s suggestion echoed 

a point suggested by Piaget that without understanding the inverse relations between addition and 

subtraction, no one could grasp the nature of these two operations. He added further that the 
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understanding of inverse relations is an essential part of the groupings that underlie concrete 

operation in his theory. Despite its importance in revealing children’s development of arithmetic 

reasoning, it is surprising that the topic has received less attention than other areas in 

mathematical cognition, in the past decades (Geary 1993). 

One crucial aspect of arithmetic reasoning is the ability to derive and predict unknown 

arithmetic facts from known facts. The particular derived fact strategies that are the main focus of 

this study are commutativity (e.g. if 8 + 6 = 14, then 6 + 8 = 14), inverse (e.g. if 46 + 27 = 73, 

then 73 – 27 = 46), reversal (e.g. 11 – 8 = 3, then 11 – 3 = 8), associative-based principles such as 

operand-plus-or-minus-one and operand-plus-or-minus-ten principles (e.g. if 9 + 4 = 14, then 9 + 

5 = 14 + 1 = 15; and if 19 + 14 = 33, then 19 + 24 = 33 + 10 = 43). 

Dowker (1998) studied the relationship between children’s calculation performance and 

their use of derived facts in addition and subtraction. The children were administered an 

arithmetic reasoning test involving use of arithmetic principles in derived fact strategies. Two 

numerically related problems were presented to the children in each trial. One problem was 

assigned as a sample and the answer to it was given. Children were asked to solve another 

problem, which could possibly be solved by making use of the answer of the sample problem. 

Trials with numerically unrelated problems were given as foils. The test consists of items that tap 

into children’s use of a variety of principles for addition and subtraction, such as inverse principle, 

reversal principle, and associative-based principles. Children were regarded to be able to use a 

principle if they could derive answer to target problems using the answer of the corresponding 

sample problems. Results indicated strong associations between calculation competency and use 

of derived calculation principles. Also, although effect was not significant, older children in the 

study tended to use more derived principles in a subtraction subtest. Dowker suggested children 

with flexible understanding in numerical facts and procedures might have higher tendency to 
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access arithmetic principles of various types or, conversely, that the ability to use derived 

principles leads to calculation competence.  

Bryant, Christie and Rendu (1999) studied the understanding of the inversion principles 

of 5- and 6-year-old children. The children were divided into younger and older groups. Thirty-

six problems, structured to assess the inversion principle, were further categorized into six testing 

conditions to examine whether children would understand the principle greater in some contexts 

than in others. Based on the results the study, Bryant and his colleagues concluded that children 

as young as 5 years understand and frequently used the inversion principle and that they did so in 

a “genuinely quantitative” way. Some children were even able to use the principle flexibly in way 

that they demonstrate usage of the principle even in a testing condition that required 

decomposition. 

Rasmussen, Ho and Bisanz (2003) examined whether children in pre-school and grade 

one were able to use the principle of inversion. Children were present with three-term inversion 

problem and standard problems of similar magnitude. Similar to the study by Bryant and his 

colleagues (1999), three testing conditions were included to examine the children’s decisions 

with respect to quantitative and non-quantitative features of the problems. Results showed that 

both preschool and grade one children were able to use inversion quantitatively. Rasmussen and 

her colleagues suggested that this principle is available in some form prior to extensive formal 

instruction in arithmetic. Though they suggested that using inversion to solve three-term 

arithmetic problems could be the effect of formal schooling, they did not support the view of the 

role of schooling as a pre-requisite for the majority of children to use inversion.  

Hanich, Jordan, Kaplan, and Dick (2001), in their multi-year longitudinal project, 

compared performance of grade two children with difficulties in mathematics but not in reading 

and second graders with difficulties in mathematics as well as in reading. Also included in the 
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study were a group of children with difficulties in reading but not in mathematics and a group 

with normal achievement in reading and mathematics. They assessed areas of mathematical 

cognition that included basic calculation principles, with respect to a previous observation that a 

majority of children in grade three had demonstrated ability to derive answers from known 

arithmetic facts. Results indicated that both groups of children with mathematical difficulty 

performed worse than children in control, and children with both mathematical and reading 

difficulties performed worse than children with only reading difficulties. Hanich and her 

colleagues suggested that children with mathematical difficulties might have a weak and unstable 

understanding of the relationships between and within arithmetic operations. Among those 

principles assessed in the study, performance on commutativity was the best while performance 

on inversion principle was generally weak.   

Yet, currently available findings about the development of mastery in these two areas are 

far from consistent. For example, although some of the aforementioned studies present evidence 

that even pre-schoolers could be capable of using inversion principles, at least, a study by Hanich 

and her colleagues (2001) revealed that elementary school children could demonstrate 

impoverished understanding and usage of calculation principles.  

In summary, there is a general belief that children’s numerical understanding of concepts 

and usage of calculation principles will increase during the early primary school years. The 

relationship between arithmetic competency and the mastery of a number of underlying concepts 

and principles has yet to be shown.  

Baroody (2004) stated that achieving mastery and competency in arithmetic skills is a 

complex task that requires both declarative and procedural knowledge, as well as flexibility in 

conceptual understanding. However, research in these areas of children’s elementary arithmetic 

development has received comparatively little attention and many of the currently available 
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findings are narrowly focused on one or two areas of concepts or calculation principles. In the 

light of this, further studies in this area of elementary mathematical cognition nevertheless 

provide an informative vision of children’s development of mathematical cognition, as well as 

important insights for instructional design (Rasmussen et al., 2003). 
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Chapter Four 

Purposes and Hypotheses 

 

This is the first local study to investigate the influence of working memory capacity, 

understanding of fundamental arithmetic concepts and use of calculation principles, on individual 

and group differences in early elementary arithmetic learning competency. Theoretically, there 

should be a cognitive explanation for the differences in arithmetic problem solving behaviors of 

individuals with either higher or lower arithmetic competency. 

The inconsistency in findings, uses of different screening criteria, and national or culture 

differences in a number of factors such as curriculum design, primary mathematical language, 

and early childhood experiences, diminish the applicability of overseas findings to the local 

situation. 

The first purpose of the current study is to explore the differences, if any, in the 

functioning of the three components of working memory with respect to the multi-component 

model proposed by Baddeley and Hitch (1974), and a numerical-related working memory as a 

whole, between children in each grade who demonstrate different levels of arithmetic 

competency. It is hypothesized that children with higher competency in performing elementary 

arithmetic operations would outperform their same grade less competent peers in the tasks for 

assessing functions of working memory.   

With reference to previous findings that the phonological loop is involved in arithmetic 

functions, differences between group and grade in the performance of this component will be 

observed. However, of particular interest is the question of whether the difference in function is 

domain-specific or domain-general. Passolunghi and Siegel (2001) found that poorer problem 
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solvers were impaired on passive storage of numerical information but not on material that 

included words. With reference to this recent finding, it is hypothesized that differences in 

performance may be seen only in digit span tasks that relate to numerical information, rather than 

to both phonological memory span tasks.  

From the account of mathematical cognition in Dehaene’s (1992) triple code model, 

where visual representations of magnitude could be involved in mathematical tasks, it is 

hypothesized that group differences in the functioning of visuospatial sketchpad will be identified. 

Moreover, of greater interest of is the identification of the process component involved in 

differences in arithmetic competency. Measures of visuospatial sketchpad used in the current 

study tap on two functions, a simple visual recognition function and a visual serial recall function. 

Previous findings do not adequately explain this issue. Bull and Johnston (1997) suggested that 

mathematical ability was not found to be associated with the performance in a serial recall 

measure of the visuospatial sketchpad. However, children’s use of written columnar calculation 

to solve multi-digit computation has been well observed and documented. The computation 

method involves recall and recognition of both numbers and the positional information of how 

the numbers should be arranged. From this information, it is possible that both visual serial recall 

function and visual recognition would relate to differences in arithmetic competency. 

 The functions of the central executive have rarely been studied separately. Previous 

findings indicated a positive result for group differences in the performance in these functions of 

the central executive. Given the role of the central executive proposed in the multi-component 

model (Baddeley & Hitch, 1974), of particular interest in the study of this component is whether 

it mediates the influence of the phonological loop or visuospatial sketchpad on differences in 

children’s arithmetic competency. 
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 Theoretically, differences in performance of general working memory span task may also 

be observed if group performances differ in the measure for the three working memory 

components. Special focus on the two versions of general working memory span task is placed on 

whether the results of these two measures support the hypothesis that a weaker performance 

manifested in span task can be explained in terms of task-switching hypotheses or by resource 

sharing account. Task-switching account suggests that there is no active maintenance of stored 

information, and that competes with the execution of concurrent operations in a span task. It 

hypothesizes that increased processing time results in reduced span. On the other hand, resource-

sharing account suggests that limited resources of working memory are shared by both concurrent 

tasks of processing and storage. This latter account hypothesized that a trade-off between limited 

resources for processing and storage could be observed (Towse, Hitch & Hutton, 1998).  

 

The second purpose of the current study is to explore the differences, if any, in 

understanding of fundamental arithmetic concepts and use of calculation principles, between 

children with different levels of arithmetic competency in each grade. It is hypothesized that 

children with higher competency in performing elementary arithmetic operations would 

outperform their same grade less competent peers in the tasks for assessing understanding of 

place value and commutativity, the application of calculation principles. The current literature on 

this topic provides no consistent and reliable answer. While some reports suggest that pre-

schoolers can manifest sophisticated conceptual understanding that leads to their learning of 

arithmetic procedures, some other studies have reported children in elementary school displaying 

a discrepancy between conceptual understanding and procedural skills, and between these areas 

of knowledge and measured arithmetic competency.  
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Among the concepts and calculation principles covered in the current study, the concept 

of place value has received most attention and the findings regarding its relationship with 

arithmetic competency are by far the most consistent. Given documented the importance of 

multi-digit arithmetic computation, it could be hypothesized that differences in the task of 

assessing the understanding of this concept exist between groups and grades.  

 From the similarity in structure of the problem pairs, it is assumed in this study that the 

answers provided by commutativity, inverse, and reversal problem-pairs are more transparent 

than those of problem pairs in the associative-based principles. Thus, more prominent differences 

in the ability to use associative-based calculation principle will be observed.  

 

The third purpose of the current study is to explore the pattern of contributions and 

interaction among working memory capacity, acquired understanding of arithmetic concepts and 

use of calculation principles, on children differences in arithmetic competency in each grade. Of 

particular interest is whether understanding of arithmetic concepts and use of calculation 

principles mediates the influences of the working memory capacity on children’s arithmetic 

competency, or vice versa.  

Moderation refers to the investigation of the statistical interaction between two 

independent variables in predicting a dependent variable. Mediation refers to the covariance 

relationships among an independent variable, a potential mediating variable, and a dependent 

variable. Since correlational analysis including all the variables suggested that the inter-

correlations between the measures on arithmetic competency, working memory, and the 

understanding of concepts and use of calculation principles were found to be significant. It is not 

appropriate to describe the relationship between these three domains in terms of mediation. 

Moreover, from a theoretical point of view, both the temporary memory storage and the 
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coordination activities of working memory are influenced by assessing contents from long-term 

memory (Baddeley, 2000; Mayer and Hegarty, 1996). Therefore, the presence, as well as the 

retrievability of information in the long-term memory, could mediate the relationship between 

children’s working memory functioning and their performance on timed arithmetic operations. 

Hence, the lower performance in working memory found among individuals with difficulties in 

arithmetic could also reflect the differences in acquired strategies, mental heuristics, and prior 

knowledge stored in the long-term memory. It is hypothesized that understanding of place value 

and commutativity, and knowledge in the application of calculation principles would mediate the 

influences of the working memory capacity on children’s arithmetic competency. 

Only a few studies have attempted to explore in the relationship between acquired 

arithmetic knowledge and the functioning of working memory and the way they relate to 

competency in arithmetic. For example, Keeler and Swanson (2001) investigated the relationship 

between working memory, declarative strategy knowledge, and mathematic achievement in 

children with and without mathematical disabilities. The results suggested that working memory 

and math achievement are related to strategy knowledge, which is an example of acquired 

knowledge.  

Furthermore, with reference to the effect of formal instruction on children’s learning, it is 

expected that the relative importance of the influence of these three cognitive domains on 

arithmetic competency change with increasing level of schooling.  
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Chapter Five 

Methodology 

 

1. Participants 

Three hundred and seven primary one to primary three students from a normal local 

mainstream primary school in Kowloon district participated in the initial screening. A measure of 

nonverbal intelligence, the Raven’s Standard Progressive Matrices, one standardized Chinese 

word reading test, and one arithmetic screening tests were administered in the initial screening. 

Given that different schools differ on the teaching schedule, as well as instructional design, only 

one school was used as the source of subject selection to eliminate the potential effect of 

instructional differences on the result. Subjects were selected for the study according to their 

performance in the screening tasks.  

Since the study aimed to investigate the difference between students with higher and 

lower arithmetic abilities, students in each grade were allocated to two groups according to their 

percentile rank in the arithmetic test. In each grade, students whose percentile rank fell between 

10 and 40 were assigned to the lower arithmetic ability group, while those whose percentile rank 

fell between 60 and 90 were assigned to the higher arithmetic ability group. An arithmetic test 

was constructed based on local curricula in mathematics and consisted of three subtests, each 

designed to assess children’s arithmetic abilities in each grade. The test for primary-one has thirty 

arithmetic problems presented in horizontal format. It was composed of problems that ranged 

from 1- to 1-digit (e.g. 3 + 6) to 2-digit 3-item problems (e.g. 53 – 16 + 29) addition and 

subtraction computations. Half of the problems involve either borrowing or carrying. The test for 

primary-two students also has thirty arithmetic problems and is composed of problems ranged 
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from 2- to 2-digit (e.g. 24 + 18) to 3- to 3-digit 3-item (e.g. 157 – 148 + 116) addition and 

subtraction computations, half of which involve either borrowing or carrying. Four simple 

multiplication and four division problems were included in the test for primary two students. The 

test for primary three students is composed of problems ranged from 3-digit 2-item (e.g. 136 – 

128) to 3-digit 3-item problems (e.g. 238 + 323 – 452) addition and subtraction computations. 

The test for primary three has also multi-digit multiplication and division problems with residuals 

(e.g. 146 x 6, 206 divided by 6). Children were given 20 minutes for finishing the test.  

In the current study, about 30 percents of children from each grade were required for 

lower ability group, so as to maintain adequate sample size for analyses. However, those at 

lowest and highest 10 percents of students in each grade were deliberately excluded from the 

study. The reasoning behind this is that students with profound learning difficulties or significant 

giftedness are usually observed at the two extremes of a student sample in each grade. 

Subjects' reading abilities and nonverbal intellectual abilities were assessed with the 

standardized Chinese Reading Test and Raven’s Standard Progressive Matrices respectively. 

Raven's Standard Progressive Matrices were adopted to measure the children's non-verbal reasoning 

ability and hence to estimate their intelligence.  The children were required to select, from six or 

eight alternatives, the one that best completed the matrix. The test was administered in a group 

setting with no time limit and most of the Primary 1 children were able to finish it in 30 minutes. 

The Chinese Word Reading Test (developed and standardized by the Hong Kong Education 

Department in 1988) is a 1-to-1 individual test for assessing children’s Chinese word reading skills.  

Material consists of 65 two-character Chinese words of primary school level arranged in ascending 

order of difficulty.  The children were asked to read the words aloud one by one.  The task ended 

when the child had failed to read 10 consecutive words. 
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Table 1. Descriptive Statistics for the Grouping Information 

Primary One Primary Two Primary Three 
      

 
 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

       
Total Number (N)  26 25 28 26 27 28 
        

Mean 80.65 81.68 96.00 95.84 107.70 107.82 
       Age (in 

months) SD 4.62 4.28 4.35 4.54 4.19 4.34 
        

Male 12 14 15 14 13 16 
       Gender 
Female 14 11 13 12 14 12 

        
        

Mean 12.84 24.76 14.07 23.88 14.88 24.89 
       Arithmetic 

Test SD 3.756 3.68 3.90 3.81 4.32 4.07 
        

Mean  25.80 25.68 36.85 36.8 46.8 47.10 
       Chinese 

Reading  SD 3.28 3.13 3.27 3.22 2.77 3.217 
        

Mean 19.38 20.08 24.61 25.04 36.00 36.00 
       

Raven  
(Raw Score) 

SD 4.61 4.39 4.95 4.85 3.99 4.50 
 

Those who were found to have a reading age not compatible with schooling or a 

nonverbal intelligence score in the bottom 20% of the norm for their age were excluded from the 

study. Children were matched on reading so as to ensure that any differences identified could be 

attributable to their individual difference in arithmetic cognition. T tests were performed in each 

grade to ensure that the two ability groups were adequately matched on reading abilities and non-

verbal intelligence. Results showed that the 2 ability groups in primary one did not differ in 

Chinese reading ability, t(49)= 0.206, p > 0.5, and nonverbal intelligence, t(49)= 0.552, p > 0.5, 

but differed in arithmetic, t(49)= 14.49, p < 0.01. For primary two, the 2 ability groups did not 
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differ in Chinese reading ability, t(52)= 0.081, p > 0.5, and nonverbal intelligence, t(52)= 0.323, 

p > 0.5, but did in arithmetic, t(52)= 9.81, p < 0.01. Finally, the 2 ability groups in primary three 

showed similar results, as they did not differ in Chinese reading ability, t(53)= 0.314, p > 0.5, and 

nonverbal intelligence, t(53)= 0.432, p > 0.5, but did in arithmetic, t(53)= 13.58, p < 0.01. 

In addition, children with a history of repeating their grade, with profound behavioral, 

emotional or serious attentional problems were excluded from the pool as well. Descriptive 

statistics for grouping information are shown in Table 1.  

 

2. Materials 

After the initial screening, one hundred and sixty children selected for the study were 

administered a battery of working memory tests, which consist of tasks that were designed to 

assess the functioning of each of the components suggested in Baddeley and Hitch’s (1974) 

multi-component model. The structure of some aspects of the working memory battery was 

designed with reference to a similar battery used in a previous study by McLean and Hitch (1999). 

Children were also administered tasks designed to test their understanding of place value and 

commutativity, and their ability to use calculation principles.  

 

Working memory—Phonological Loop  

Forward Digit Span. The Forward Digit Span task from the WISC-R subtest (Wechsler, 

1974) was used as a measure of phonological short-term memory with numerical contents. The 

test is composed of span items with an increasing number of digits, from two to eight digit per 

span length, with two trials for each span length. The researcher started from a span length of two. 

Digits were read to each child at a rate of 1 second per digit. A span was considered to be correct 

if all digits were recalled in correct order and 1 point was given. When the child succeeded on 
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both trials of a span length, the researcher moved to a higher level with span length increased by 

1. If the child failed on both trials of the same span length, testing was discontinued. Children 

were tested once only.  

Chinese Character Span. Chinese Character Span was used as a second index of 

phonological short-term memory. The design and the operation of the task follows those of the 

auditory digit span, except that the digits are replaced by Chinese characters which have 

pronunciations familiar to Cantonese speaking children. Similarity in structure allows direct 

comparison between the performance of the two phonological span tasks.  

 

Working memory— Visuospatial Sketchpad 

Squares Span. This is a self-developed task with reference to the design of the Corsi 

blocks task (Milner, 1971; Corsi, 1972). It tests the function of serial recall of visual information. 

Using MS PowerPoint, a total of 9 white identical squares is presented on a laptop screen with 

background set at black. The squares are arranged in random positions. In each trial the child 

observed a sequence of white squares highlighted into green, one at a time and at a rate of 1 

square per second, and no square was highlighted more than once. After having observed a 

sequence of white squares highlighted into green on the screen, the child was asked to respond by 

using a pen to point out those previously highlighted squares in correct order on the screen. A 

span was considered to be correct if the sequence of squares was reproduced in correct order; 

then 1 point was given. Each child was given 2 trials with span length of 2 squares. The first trial 

started with a span length of two squares and increased from two to eight squares per span length. 

There were 2 trials for each span length. When the child succeeded on both trials of a span length, 

the investigator moved to a higher level with span length increased by 1. If the child failed on the 

both trials of the same span length, testing was discontinued.  
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Visual Memory Test. The measure used in the study was adapted from the Test of Visual-

Perceptual Skills (non-motor)—Revised (TVPS-R) visual memory subtest. The task assesses 

children’s ability to remember, for immediate recall, all of the characteristics of a given form, and 

being able to recognize this form from an array of visually similar forms. The test consists of a 

total of 16 stimuli. These stimuli are in general different forms ranged from a simple geometrical 

shape to irregular pattern of lines and shapes. Each response array from which children were 

asked to pick out the previously presented stimuli had five different but similar forms, with only 

one of them representing the correct answer. Each stimulus was displayed for 2 seconds, 

followed by a 2-second delay, prior to the presentation of the response array. One point was 

given for each correct response.  

 
Working memory—Central Executive  

Verbal Trail. The ability to switch retrieval strategies was assessed in the Verbal Trail 

task (Reitan, 1958). The task involves generating a stream of responses by alternating between 

two different sequences. The child was asked to read out loud from 1 to 12 and A to L following 

the order (1-A-2-B-3-C…11-K-12-L). Before commencing, each child was asked to recite the 

alphabet in a correct order from A to L and count from 1 to 12. Each child was also asked to 

practice with a sequence up to “4-D”. The task did not involve reading. The children were asked 

to recall the order of number and alphabets from their memory. The dependent variable was the 

time taken to complete the task all over again.  

Crossing Out Task. A Crossing Out task was developed with reference to a similar task 

used by McLean and Hitch (1999) for measuring selective attention.  It is similar to a standard 

cancellation task except that the target is repeatedly shifted. The task involves inhibiting 

responses to items previously designated as targets. Each child was given a sheet of paper with 
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10 rows of digits. The first digit in each line was colored in red, and identified as the target while 

the rest were in standard black typeface. The child was asked to cross out all the digits that 

matched the target digit in the same row. Each line of ten digits contained 3 to 4 randomly 

positioned targets. Two trial rows were given for practice. The dependent variable was the time 

taken to complete the remaining 10 rows.   

Missing Item Task. The task was adapted from the design by McLean and Hitch (1999) in 

an attempt to measure the capacity to hold and manipulate information accessed in long-term 

memory. The task was a paper and pencil task with 12 problems, each consisted of a equation on 

the left with both addends but no answer (i.e. 3 + 4 = A), and a second incomplete equation on 

the right (i.e. A = 2 + b). Each question was presented in a form similar to the following example: 

3 + 4 = A = 2 + B. The child was asked to answer orally the sum of the first addition (A) and then 

to complete the equivalence, that is, to write down the value of the missing addend in the second 

addition (B) so that they have correct sum. Two practice trials were given in which the 

experimenter explained the task with demonstration. The logic behind this task is that the child 

had to access long-term memory to complete the first addition and maintain the resulting sum, 

and then complete the second addition with this active information and information in long-term 

memory. Time taken to complete the task was the dependent variable. Athough this was a timed 

test that children were asked to finish it as soon as possible, they were told that accuracy of 

answers was of greater importance.  

 

Working memory—General Working Memory Resource 

Operation Span.  The Operation Span task (Turner & Engle, 1989) was used as a measure 

of general working memory resources where the processing element involved arithmetic 

calculation. In each trial of this task, a short series of simple arithmetic problems (e.g. 3 + 2 
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followed by 4 + 9 in a series of two problems) was presented on the screen of a laptop computer. 

Each child was asked to verbalize the answer to each problem and recall all the answers in the 

correct order. The investigator recorded the responses of each child using a number keypad. Two 

practice trials were given for each child. The task began at each level with a series of 2 problems, 

with 2 trials at each level. After the child succeeded in both trials at each level, the experiment 

moved to the next level with the number of problems increased by 1. Span scores were obtained 

by noting the maximum number of answers that could be recalled entirely correctly in the trial. 

Accuracy of recall was assessed without taking into account whether the initial answers to the 

problems were calculated correctly.  

As one of the aims of the current study was to explore the mechanism underlying the 

performance in working memory span task, the task was repeated in two conditions: the normal 

and extended version. In the normal condition, calculation problems were in a format of a + or - 

b = c, where a and b are integers less than 10, with c as the answer to be recalled (e.g. 2 + 3 =). In 

the extended condition, problems were in a format of a + or- b + or- c + or- d= e, where a, b are 

integers less than 10, but c and d are either 1 or 0 (e.g. 2 + 3 – 0 + 1 =).   

Understanding of Place Value and Commutativity 

In designing the tasks for place value, past research in place-value understanding and 

local school curricula in mathematics were taken into consideration. There are two measures for 

the concept of place-value (Ho & Cheng, 1997). 

Digit Representation. In this task, there were a total of six items printed on a piece of 

paper. In each item, a multi-digit number was printed in black with one of the digits in the 

number circled in red. The number of digits ranged from 2 to 5. Each child was asked how much 

the value of number would decrease if the circled digit were to be changed to zero. Each child 

was required to give both oral and written responses to each item. For example, correct responses 
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to the number 1798 with “9” circled in red would be an oral answer of “ninety” and a written 

response of 90. One practice trial with feedback of whether the answer was right or wrong only 

was given. One point was given for each correct response.  

 Columnar Calculation. In each of the six test items in this task, the child was presented 

with a multi-digit arithmetic problem printed horizontally. These problems ranged from 2-to 2-

digit, to 3-to 3-digit, and all the solutions involved either carrying or borrowing. Each child was 

asked to solve the problem using written columnar calculations. This required the child to rewrite 

the horizontally printed problem into a vertically aligned format, with one-place of one operand 

matching the position of another operand. The number of place-value-related errors among the 

six items was the dependent variable, rather than the accuracy of the solutions. While 

misalignment of value place and consistently subtracting the smaller number from the larger 

number were examples of concept-related errors, inaccurate retrieval of arithmetic facts, and 

miscalculation were not the case.  

 Problem-pair Comparison. To assess students’ understanding of additive and 

multiplicative commutativity, a comparison test was developed and used. The tasks consisted of 

9 items among which 4 were designed for assessing additive commutativity. An additional 2 

items were for multiplicative commutativity, and 3 items were foils. In each item, two 2 to 3-item 

problems were presented in written form. Each child was asked to state within 10 seconds if the 

answers of the 2 paired problems were equivalent and explain the method he or she used to find 

out the answer. The child was credited with one point if he or she could state response without 

any overt or covert calculation, and could explain the result solely in terms of the concept of 

commutativity. Foils items were mixed with the commuted test items to prevent children from 

simply repeating the response to previous items. Foils were also used to detect any misconception 
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of commutativity. For example, a response, which stated that 27 + 45 –19 was equal to 27 + 19 – 

45 and suggested that the problems were commuted, was an incorrect response.  

Use of Calculation Principles   

Hinted Calculation. The ability to use calculation principles was assessed with a method 

similar to that of Dowker (1998). Each child was asked to solve twenty-five pairs of problems in 

which the given answer to the first problem in each pair could be used to solve the second. Four 

items were given to assess the use of the commutativity principle, the inversion principle, the 

reversal principle, the associative-based principles of operand plus-or minus-1, and operand plus-

or minus-10. The problems were presented to children both orally and visually in a horizontal 

format Children were told to give an oral response as soon as they knew the answer to the 

problem, and to respond quickly. To prevent children from calculating, a 5-second time limit was 

implemented. All the correct answers was scored as “1” while those incorrect or “nil” responses 

was scored “0”. Two-digit two-item problems were used to prevent children from simply by 

retrieving facts easily. Five problems preceded by answers to numerically unrelated problems 

were given as foils. The six types of problems were complied and mixed together into a single list 

of problem-pairs.  

3. Procedure 

 All students were tested in their school by a graduate student and eleven trained 

undergraduate students. For initial screening, one session of approximately 60 minutes was 

required for group administration of Raven’s Standard Progressive Matrices and the arithmetic 

test for each of the three grades. Three 60-minute sessions for individual administration of 

Chinese reading test were conducted 1 week after the group test.  

All the other measures were administered three weeks after the initial screening and by 

the end of school year. Each child was tested individually in a quiet area and completed the tasks 
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in one 50-minute session. The tasks were administered to each subject in an order such that no 

two tasks from the same domain were administered consecutively, so as to prevent fatigue in any 

sensory as well as cognitive modalities.  

 

4. Data Analyses 

Differences between groups and grades were analyzed using a two-way analysis of 

variance for each variable of working memory and the conceptual knowledge of place value and 

arithmetic commutativity. Planned comparisons were launched to identify significant differences 

in the children’s cognitive functioning.  With reference to the method used by Swanson and 

Sachse-Lee (2001), hierarchical regression, a series of stepwise multiple regression analyses, 

were conducted to determine if the influence of one factor of arithmetic competency could be 

substantially mediated by the presence of another factor. The analyses were conducted with the 

variables of working memory, understanding of conceptual knowledge, and use of calculation 

principles as predictors, and arithmetic competency as dependent variables.  
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Chapter Six 

Results  

 

An overall 2 ability groups x 3 grades Two-way analysis of variance (ANOVA) was 

performed to assess the main effects of, and the interaction between grade and ability on the 

performance of each task. Partial Correlations were performed to examine the interrelations 

among the measures. Planned comparisons were performed to compare the performance of 

the six groups in the study where necessary. Hierarchical regression analyses were conducted 

to explore the contribution of the cognitive measures in explaining the variance in arithmetic 

competency.  

 

1. Measures of Working Memory 

Measures of Phonological Loop 

Forward Digit Span 

The means and standard deviations for performance in forward digit span and 

forward character span are shown in table 2. Two-way ANOVA showed a significant main 

effect of ability, F (1, 154)= 54.144, p < 0.005, as well as a main effect of grade F (2, 154)= 

170.47, p < 0.005. The interaction between ability and grade was found to be not significant, 

F (2, 154)= 0.942, p > 0.1. Despite the significant main effect of ability and grade, planned 

comparison revealed that there was no significant difference between the Primary 1 higher-

ability group and Primary 2 lower-ability group, t(51)=0.469, p > 0.5.  

Forward Character Span 

Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 29.69, p < 

0.005, as well as a main effect of grade F (2, 154)= 123.41, p < 0.005. The interaction 

between ability and grade was again found to be  not significant, F (2, 154)= 1.498, p > 0.2. 
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Despite the significant main effect of ability and grade, the difference between the 2 ability 

groups in Primary 3 was not significant, t(53)=1.845, p > 0.5.  

Table 2. Performance Statistics of the Selected Groups on Measures of Phonological Loop 
 

Primary One Primary Two Primary Three 
      

 
 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

       
Total Number (N)  26 25 28 26 27 28 
        

Mean  4.65 5.92 5.89 6.96 8.00 8.71 Forward 
Digit Span SD .74 .70 .78 .77 .73 1.08 
        

Mean  7.846 8.440 8.536 9.308 10.000 10.643 Chinese 
Character 
Span 

SD .78 .58 1.07 .67 .73 .48 

        
Mean  3.19 2.52 2.64 2.34 2.00 1.92 Span 

Difference  SD .49 .58 .55 .48 .39 .71 
 

Discrepancy between performance in Digit and Character Span 

All subjects had shown a discrepancy in performance of forward character span and 

digit span, with performance in forward character span task higher than that in forward digit 

span. The discrepancy between character span and digit span was calculated for all subjects. 

Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 15.924, p < 0.005, 

as well as a main effect of grade F (2, 154)= 35.487, p < 0.001. A significant interaction 

between ability and grade was also found, F (2, 154)= 4.019, p < 0.05. The significant 

interaction effect in difference of the discrepancy between performance in digit and character 

span was due to the fact that the difference in the discrepancy manifested by the 2 ability 

groups decreased from primary 1 with mean difference of 0.6723 [t(49)=4.446, p < 0.001, 2-

tailed], to primary 3 with mean difference of 0.0714 [t(53)=0.456, p < 0.65, 2-tailed].  
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Measures of Visual-Spatial Sketchpad  

TVPS-Revised Visual Memory Test 

The means and standard deviations for performance in visual memory test and 

Square span are shown in table 3. While two-way ANOVA indicated a significant main 

effect of grade, F (2, 154)= 101.98, p < 0.001, no significant main effect of ability, F (1, 

154)= 0.024, p > 0.5 and interaction between grade and ability, F (2, 154)= 0.070, p > 0.5, 

emerged for visual memory. A Tukey test showed that the subjects in primary 3 performed 

significantly better than those in primary 2, and subjects in primary 2 performed significantly 

better than those in primary 1 in the visual memory subtest of TVPS-Revised.  

Square Span 

ANOVA showed a significant main effect of ability, F (1, 154)= 69.53, p < 0.001, as 

well as a main effect of grade F (2, 154)= 86.24, p < 0.001, for square span task. However, 

the interaction between ability and grade was found to be not significant, F (2, 154)= 0.42, p 

> 0.5.   

Table 3. Performance Statistics of the Selected Groups on Measures of Visuospatial 
Sketchpad 

Primary One Primary Two Primary Three 
      

 
 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

       
Total Number (N)  26 25 28 26 27 28 
        

Mean  9.46 9.48 10.46 10.46 11.48 11.42 Visual 
Memory SD .50 .52 .50 .50 .51 .53 
        

Mean  4.02 5.04 5.03 6.10 5.96 7.00 Visuospatial 
Memory SD .80 .78 .74 .74 .75 .76 
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Measures of Central Executive 

Missing Item 

The means and standard deviations for performance in measures for the central 

executive are displayed in Table 4. Two-way ANOVA showed a significant main effect of 

ability, F (1, 154)= 139.82, p < 0.001, as well as a main effect of grade F (2, 154)= 151.19, p 

< 0.001. A significant interaction between ability and grade was also found, F (2, 154)= 

149.16, p < 0.001. The significant interaction effect reflected the fact that difference in the 

performance of the 2 ability groups decreased from primary 1 with mean difference of 70.19 

[t(49)=25.27, p < 0.001, 2-tailed], to primary 3 with mean difference of 21.76 [t(53)=21.92, 

p < 0.001, 2-tailed].  

The accuracy rate for the Missing Item was recorded. The overall mean percentages 

of accuracy for Primary one, two and three were 94.33%, 96.07%, and 99.45% respectively.  

Verbal Trail 

 Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 81.92, p < 

0.001, as well as a main effect of grade F (2, 154)= 129.60, p < 0.001, for Verbal Trail task. 

However, the interaction between ability and grade was found to be not significant, F (2, 

154)= 0.039, p > 0.5. Tukey Multiple comparison revealed that differences between all the 

experiment groups were statistically significant.  

Crossing Out 

 Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 

172.63, p < 0.001, as well as a main effect of grade F (2, 154)= 168.56, p < 0.001, for 

Crossing out. However, the interaction between ability and grade was found to be not 

significant, F (2, 154)= 1.546, p > 0.1. Similar to the result of Verbal Trail tasks, Tukey 

multiple comparisons revealed that differences between all the experiment groups were 

statistically significant. The accuracy rate for the Crossing Out was recorded. The overall 
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mean percentages of accuracy for primary one, two and three were 98.96%, 99.11%, and 

99.57% respectively.  

Table 4. Performance Statistics of the Selected Groups on Measures of Central Executive 
Primary One Primary Two Primary Three 

      
 
 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

       
Total Number (N)  26 25 28 26 27 28 
        

Mean  388.36 318.17 274.10 236.38 208.87 187.11Missing Item  
(Time in sec.) SD 11.05 8.57 7.42 6.99 4.29 3.00
        

Mean  52.71 46.96 41.00 35.06 29.00 23.02Verbal Trail 
(Time in sec.) SD 2.21 2.20 2.22 2.35 2.44 1.82
        

Mean  50.66 46.33 40.80 37.64 33.76 30.29
SD 1.98 1.79 1.71 1.66 1.82 1.51

Crossing Out  
(Time in sec.) 

       
 

General Measures of Working Memory 

Operation Span (Normal Version) 

The statistics of performances in the two versions of Operation Span task are 

displayed in table 5. Two-way ANOVA showed a significant main effect of ability, F (1, 

154)= 40.41, p < 0.001, as well as a main effect of grade F (2, 154)= 84.48, p < 0.001, for the 

normal version of operation span task. However, the interaction between ability and grade 

was found to be not significant, F (2, 154)= 1.488, p > 0.1.  

In each grade, the high-ability group performed significantly better than the low-

ability group. Planned comparisons revealed no significant difference between primary 1 

higher-ability group and primary 2 lower-ability group t(51)=1.714, p > 0.05, 2-tailed, 

between primary 2 higher-ability group and primary 3 lower-ability group t(51)=0.159, p > 

0.5, 2-tailed.  
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Analysis of accuracy in the mental arithmetic operation in the normal version of 

Operation Span task showed  no significant main effects of ability and grade, as well as, 

interaction between the two independent variables.  

Operation Span (Extended Version) 

Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 73.73, p < 

0.001, as well as a main effect of grade F (2, 154)= 145.63, p < 0.001, for the extended 

version of operation span task. Different from the normal version was a significant 

interaction between ability and grade F (2, 154)= 4.12, p < 0.05, with difference between the 

two ability groups increased through primary 1 to primary 3.  

Tukey test showed a similar pattern of group differences to the normal operation span. 

Performances of low-ability groups were significantly lower than those of the high-ability 

group of the same grade, but were statistically comparable to those of the high-ability group 

at 1 grade below.  

Analysis of the accuracy in the mental arithmetic operations in the extended version 

of Operation Span task showed significant main effects of both ability F (1, 154)= 18.03, p < 

0.001, and grade F (2, 154)= 5.043, p < 0.005, but  no significant interaction between the two 

independent variables F (2, 154)= 0.716, p > 0.1.  

Discrepancy between span in Normal and Extended Version of Operation Span task 

Performances of all subjects in the extended version of operation span task were 

either lower than or equal to those in normal operation span. Discrepancy in span between 

the two versions was calculated for all subjects. Two-way ANOVA showed a significant 

main effect of ability, F (1, 154)= 6.171, p < 0.05, as well as a main effect of grade F (2, 

154)= 9.480, p < 0.001. No significant interaction effect was indicated.  
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Tukey test showed discrepancies in performances of low-ability groups were 

significantly higher than those of the high-ability group of the same grade, but were 

statistically comparable to those of the high-ability group at one grade below.  

Discrepancy in accuracy between the two versions was also calculated and analyzed 

for all subjects in a similar manner to the analysis of discrepancy in span. Two-way ANOVA 

showed a significant main effect of ability, F (1, 154)= 16.51, p < 0.001, as well as a main 

effect of grade F (2, 154)= 5.568, p < 0.005. Again, no significant interaction effect was 

indicated.  

Table 5. Performance Statistics of the Selected Groups on Operation Span Tasks 
Primary One Primary Two Primary Three 

      
 
 
 Lower 

ability 
Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Total Number (N)  26 25 28 26 27 28 
        

Mean  3.07 3.60 4.00 5.00 4.96 6.00 Normal 
Operation Span 
(Span) 

SD .93 .70 .86 .84 .85 .86 

        
Mean  97.19 98.34 97.39 98.32 97.79 98.72 Normal 

Operation Span 
(Accuracy) 

SD 5.32 3.44 3.92 3.25 3.90 2.55 

        
Mean  2.00 2.56 3.00 4.15 4.11 5.50 Extended 

Operation Span 
(Span) 

SD .80 .71 .60 .88 .80 .74 

        
Mean  86.53 94.57 90.66 95.39 93.59 98.02 Extended 

Operation Span  
(Accuracy) 

SD 13.60 6.72 10.86 5.80 6.70 3.29 

        
Mean  1.07 1.04 1.00 .84 .85 .50 Span 

Differences  SD .27 .20 .60 .36 .60 .50 
        

Mean  10.65 3.77 6.73 2.93 4.19 .69 Accuracy 
Differences 
 

SD 12.66 5.23 8.78 5.30 5.44 1.96 
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Partial Correlations Between Measures of Working Memory 

Partial Correlations, with the effect of chronological age under control, were obtained 

for all measures of working memory and are shown in table 6. The focus of these 

correlations is to explore the relationship between the measure for general working memory 

and the measures for the three components, and between the three components. Several 

observations are highlighted. 

Strong and significant correlations were shown between the spans, and between the 

accuracy rates of the two versions of Operation Span task. Generally, operation Span 

correlated significantly with most of the other measures, except those visuospatial measures.  

Strong and significant correlations among the three measures of central executive 

were indicated. The measure of central executive correlated significantly with most of the 

measures of phonological loop and visuospatial sketchpad.  

 No significant correlations between measures of phonological loop and visuospatial 

sketchpad were observed, suggesting the separate nature of the visuospatial sketchpad and 

phonological loop. 
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Table 6. Correlation Coefficients Between Measures of Working Memory, Controlling for Chronological Age 
 
            2 3 4 5 6 7 8 9 10 11
1. Forward Digit Span 

 .78** .21         .30 -.21* -.25* -.14 .58* .04 .60* .09

2. Forward Word Span 
            .60 .78 -.04* -.31* .08 .57* .07 .54* .04

3. Visual Memory 
            .56* .33* .43* .48* .21 -.06 .18 -.07

4. Square Span 
            -.22* -.09 .33* .29 -.04 .23 .11

5. Missing Item (Time) 
       .81** .84** -.21* -.06 -.23* -.26* 

6. Verbal Trail (Time) 
         .89** -.02 -.03 -.14 -.22

7. Crossing Out (Time) 
         -.31* -.02 -.35* -.21

8. Normal Operation Span (Span) 
           .04 .85** .09

9. Normal Operation Span 
(Calculation Accuracy)            .10 .51**

10. Extended Operation Span (Span)
            .19*

11. Extended Operation Span 
(Calculation Accuracy)            

** Correlation is significant at the 0.01 level (2-tailed)         * Correlation is significant at the 0.05 level (2-tailed) 
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2. Measures on Conceptual Knowledge 

Measures of Understanding of Place Value 
 
Digit Representation  

The means and standard deviations for performance in measures for assessing 

conceptual understanding are shown in Table 7. Two-way ANOVA showed a significant main 

effect of ability, F (1, 154)= 130.78, p < 0.001, as well as a main effect of grade F (2, 154)= 

240.51, p < 0.001. A significant interaction between ability and grade was also found, F (2, 

154)= 3.619, p < 0.05. The significant interaction effect reflected the fact that discrepancy in the 

performance of the two ability groups changed from primary 1 with absolute mean difference of 

1.22, to primary 2 with absolute mean difference of 0.67, and finally to primary 3 with absolute 

mean difference of 0.95. Planned comparison showed no significant difference between primary 

1 higher-ability group and primary 2 lower-ability group, t(51)=0.591, p > 0.5, 2-tailed, while 

Tukey test showed that differences between other experiment groups were statistically 

significant.  

Columnar Calculation  

 Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 56.17, p < 

0.001, as well as a main effect of grade F (2, 154)= 61.43, p < 0.001. A significant interaction 

between ability and grade was also found, F (2, 154)= 7.641, p < 0.005, with difference between 

the two ability groups in a same grade decreased from primary 1, with significant absolute mean 

difference of 1.31 (t(49)=6.175, p <0.01, 2-tailed), to primary 3, with significant absolute mean 

difference of 0.25 (t(53)=1.457, p > 0.1, 2-tailed). Planned comparison showed  no significant 

difference only between the 2 ability groups in primary 3, whereas differences between other 

experiment groups were statistically significant.  
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Measures of Concept of Commutativity 
 
Problem-Pair Comparison 

 Since the items for primary 1 are different from those for primary 2 and 3, with two 

problems for assessing the concept of multiplicative commutativity removed from the item for 

primary 1, the number of desired responses manifested by primary 1 group was analyzed 

separately from that of the primary 2 and 3 groups. 

 The mean number of desired responses of the two ability groups in primary 1 was 

compared using independent-samples T-test. The results showed a significant mean difference 

between the two ability groups, t(49)=2.24, p < 0.05 2-tailed. Two-way ANOVA was run for 

groups in primary 2 and 3. Despite a significant main effect of grade F (1, 105)= 7.61, p < 0.01, 

both main effect of ability, F (1, 105)= 1.455, p > 0.1, and interaction effect, F (1, 105)= 1.455, 

p > 0.1, were not significant.  

 
Table 7. Performance Statistics of the Selected Groups on Measures of Understanding of 
Concepts 
 Primary One Primary Two Primary Three 
 Lower 

ability 
Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

Total Number (N)  26 25 28 26 27 28 
        

Mean  2.57 3.80 3.71 4.38 4.92 5.89Place Value  
(Digit 
Representation) 

SD .80 .40 .46 .49 .54 .31

        
Mean  5.26 3.96 3.00 2.00 1.03 .78Place Value 

(Columnar 
Calculations) 

SD .72 .78 .72 .80 .64 .62

        
Mean  2.46 2.84 5.60 5.84 6.00 6.00Commutativity 

(Problem-pair 
Comparison) 

SD .76 .37 .87 .54 .00 .00

        
Mean  .31 .12 .10 0.03 .00 .00Foils in 

Commutativity SD .62 .33 .31 .19 .00 .00
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Over-generalization of the Concept of Commutativity 

 Foil items were introduced to check if the concept of commutativity would be over-

generalized by the subjects. Two-way ANOVA revealed only significant main effect of grade 

for the correct response on the foil items, F (1, 154)= 6.05, p < 0.005, with subjects in primary 1 

showing the highest tendency to over-generalize the concept of the foil items, whereas subjects 

in primary 3 made the least mistakes of this kind. 

 

3. Measures on Use of Calculation Principles 

Measures of the Use of Additive Commutativity 

Statistics regarding the use of the five calculation principles are shown in table 8. Two-

way ANOVA showed a significant main effect of ability, F (1, 154)= 17.902, p < 0.001, as well 

as main effect of grade F (2, 154)= 36.046, p < 0.001. A significant interaction between ability 

and grade was also found, F (2, 154)= 12.168, p < 0.001. The significant interaction effect 

reflected the fact that difference in usage of commutated equation in addition of the two ability 

groups changed from primary 1, with significant absolute mean difference of 0.946, t(49)=4.838, 

p > 0.01, 2-tailed, to no significant difference in usage between the two ability groups in 

primary 3.  

Planned comparison showed  no significant difference between primary 1 higher-ability 

group and primary 2 lower-ability group, t(51)=0.049, p > 0.5, 2-tailed. Tukey test also showed 

that usages of the knowledge of additive commutativity among other groups in primary 2 and 

primary 3 were statistically comparable. Despite the differences between groups and grades, all 

groups demonstrated 100% accuracy in their usage of commutated equations in solving the 

target items.  
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Measures of the Use of Reversal 

A similar result was exhibited in the item for assessing the use of reversal principle. 

Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 21.52, p < 0.001, as 

well as main effect of grade F (2, 154)= 34.54, p < 0.001. A significant interaction between 

ability and grade was also found, F (2, 154)= 5.859, p < 0.005, due to the lower-ability groups 

showing substantial increment from primary 1 (mean usage = 2.08) to primary 3 (mean usage of 

3.70) in the usage of reversal principle, while higher-ability groups began with and maintained 

at a much higher level from primary 1.  

Planned comparison showed  no significant difference between primary 1 higher-ability 

group and primary 2 lower-ability group, t(51)=0.592, p > 0.5, 2-tailed, and between primary 2 

higher-ability group and primary 3 lower-ability group, t(51)=0.431, p > 0.5, 2-tailed. Despite 

the differences between groups and grades, all the groups demonstrated nearly error-free usage 

of the hinted equations in solving reversal items. 

 Measures of the Use of Inversion 

Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 16.79, p < 

0.001, as well as main effect of grade F (2, 154)= 57.92, p < 0.001 for the usage of inversion 

principle. A significant interaction between ability and grade was also found, F (2, 154)= 3.46, p 

< 0.05. The lower-ability groups showed substantial increment from primary 1 (mean usage = 

1.80) to primary 3 (mean usage of 3.56), while the higher-ability groups showed more steady 

increment from primary 1 (mean usage = 2.68) to primary 3 (mean usage of 3.85) in the usage 

of inversion principle.  

Planned comparison showed no significant difference between primary 2 higher-ability 

group and primary 3 lower-ability group, t(51)=1.48, p > 0.1, 2-tailed, and between the 2 ability 

groups in primary 2, t(52)= 1.73, p > 0.1, 2-tailed. 
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Despite the differences between groups and grades, all the groups demonstrated nearly 

error-free usage of the hinted equations in solving inversion items. 

Measures of the Use of Operand-Plus/Minus-One 

A similar result was exhibited in the item for assessing the use of operand-plus/minus-

one principle. Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 38.99, 

p < 0.001, as well as main effect of grade F (2, 154)= 65.37, p < 0.001. A significant interaction 

between ability and grade was also found, F (2, 154)= 14.42, p < 0.05. The lower-ability groups 

showed substantial increment from primary 1 (mean usage = 0.62) to primary 3 (mean usage of 

3.00), while the higher-ability groups showed more steady increment from primary 1 (mean 

usage = 2.28) to primary 3 (mean usage of 3.25) in the usage of addend plus-minus one 

principle.  

Planned comparison showed  no significant difference between primary 1 higher-ability 

group and primary 2 lower-ability group, t(51)=0.108, p > 0.5, 2-tailed, between primary 2 

higher-ability group and primary 3 lower-ability group, t(51)= 0.276, p > 0.5, 2-tailed, and 

between the 2 ability groups in primary 2, t(52)= 0.287, p > 0.5, 2-tailed, 

For the 144 subjects who showed usage of operand-plus/minus-one principle to solve 

target items, accuracy of their usage was analyzed. Two-way ANOVA showed a significant 

main effect of ability, F (1, 138)= 8.388, p < 0.001, as well as main effect of grade F (2, 138)= 

8.132, p < 0.001. A significant interaction between ability and grade was also found, F (2, 138)= 

3.405, p < 0.05. Though some of the primary 1 lower-ability group utilized the corresponding 

hinted equation to solve target items, the accuracy was very low. Substantial increments were 

shown from primary 1 to primary 3 in the lower-ability group. In addition to the higher usage 

hinted item, the higher-ability groups also demonstrated higher accuracy in their usage of the 

principle. 
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Measures of the Use of Operand-Plus/Minus-Ten 

A similar result was exhibited in the item for assessing the use of operand-plus/minus-

ten principle. Two-way ANOVA showed a significant main effect of ability, F (1, 154)= 26.40, 

p < 0.001, as well as main effect of grade F (2, 154)= 170.61, p < 0.001. However, no 

significant interaction between ability and grade was found, F (2, 154)=0.120, p > 0.5. Planned 

comparison showed only the difference between primary 1 higher-ability group and primary 2 

lower-ability group was close to significant, t(51)=1.87, p = 0.061, 2-tailed.  

Accuracy of usage was analyzed for the 124 subjects who showed usage of operand-

plus/minus-ten principle to solve target items. Two-way ANOVA showed a significant main 

effect of ability, F (1, 118)= 5.137, p < 0.001, as well as main effect of grade F (2, 118)= 8.418, 

p < 0.05. A significant interaction between ability and grade was also found, F (2, 118)= 4.22, p 

< 0.05.  

 
Partial Correlations Between Measures of Conceptual Understanding and Use of Calculation 

Principles 

Partial Correlations, with the effect of chronological age under control, were obtained 

for all measures of conceptual understanding and the use of calculation principles; these are 

shown in table 9. The focus of these correlations is to explore whether the understanding or use 

of one concept or principle would be closely linked with the tendency and accuracy in the 

application of other principles. Several observations are highlighted. 

Strong and significant negative correlation was found between Digit Representation and 

Columnar Calculation. This suggested a strong within-domain relationship between these two 

measures of place-value.    

The understanding of the concept of commutativity did not correlated  significantly with 

other measures of place-value concept and the five measures of principles, even to the additive 

commutativity principle. This could be due to the controlling of chronological age and the 
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design of the measure. Only significant effect of grade was found in the difference in the 

performance of this measure. Due to the genuine connection between age and schooling, control 

of chronological age would inevitably diminish the relationship of this concept with other 

measures.  

 No significant correlations between usage and accuracy of usage were observed in the 

principles of additive commutativity, inversion, and reversal. This was because the accuracy of 

usage of additive commutativity, inversion and reversal were constantly high, ranging from 

98.7% to 100%.  

Regarding the two associative-based principles, significant correlation was observed 

between the usage of the operand-plus/minus-one and operand-plus/minus-ten principles. While 

usage correlated significantly with accuracy in the application of operand-plus/minus-one, there 

was a weak correlation between these two aspects in operand-plus/minus-ten.  
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Table 8. Performance Statistics of the Selected Groups on Measures of Use of Calculation 
Principles 
 

 Primary One Primary Two Primary Three 
 Lower 

ability 
Higher 
ability 

Lower 
ability 

Higher 
ability 

Lower 
ability 

Higher 
ability 

        
Mean  2.65 3.60 3.60 3.73 4.00 4.00 Additive 

Commutativity 
(Usage) 

SD .74 .64 .73 .45 .00 .00 

        
Mean  100.00 100.00 100.00 100.00 100.00 100.00Add. Commutativity  

(Correct Usage %) SD .00 .00 .00 .00 .00 .00 
        

Mean  2.07 3.20 3.32 3.61 3.70 3.92 Reversal 
(Usage) SD .93 .95 .86 .63 .60 .26 
        

Mean  99.03 99.00 100.00 100.00 100.00 100.00Reversal 
(Correct Usage %) SD 4.90 5.00 .00 .00 .00 .00 
        

Mean  1.87 2.68 3.07 3.26 3.55 3.85 Inversion 
(Usage) SD .63 .55 .89 .82 .80 .35 
        

Mean  98.71 100.00 99.10 100.00 100.00 100.00Inversion 
(Correct Usage %) SD 6.53 .00 4.72 .00 .00 .00 
        

Mean  .61 2.28 2.25 2.57 3.00 3.25 Operand-Plus/Minus-
One 
(Usage) 

SD .49 .73 .70 .57 .96 .92 

        
Mean  25.00 67.33 68.45 76.92 74.07 77.67 Operand- Plus/Minus-

One #

(Correct Usage %) 
SD 44.72 42.62 41.41 35.92 31.71 30.68 

        
Mean  .15 .76 1.10 1.65 2.59 3.07 Operand-Plus/Minus-

Ten 
(Usage) 

SD .36 .43 .78 .56 .57 1.01 

        
Mean  .00 47.36 52.38 78.00 79.62 68.45 Operand-Plus/Minus-

Ten*

(Correct Usage %) 
SD .00 51.29 46.03 38.40 35.30 34.42 

 

# Principle used by 144 subjects     
 

* Principle used by 124 subjects 
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Table 9. Partial Correlation Coefficients Between Measures of Conceptual Understanding and Use of Calculation Principles, Controlling for 
Chronological Age 
 
             

         

          

            

            

            

            

        

            

           

            

            

            

2 3 4 5 6 7 8 9 10 11 12
1. Place Value 

(Digit Representation) -.66** -.23** .02 .12 .01 .13 .03 .20** -.11 .27* -.04

2. Place Value 
(Columnar Calculations) .06 -.23* -.54* .01 -.52** -.02 -.55** -.15 -.56** -.10

3. Commutativity 
 .12 -.016 .20 -.01 -.03 -.18 .05 -.33 .09

4. Additive Commutativity 
(Usage) .51* -.07 .33* -.07 .18* .01 .20* -.12

5. Reversal (Usage) 
 -.10 .75** .01 .50** .01 .47** -.13

6. Reversal (Accuracy) 
 -.01 -.05 .04 .13 -.01 -.01

7. Inversion (Usage) 
 -.01 .57** .05 .52** -.02

8. Inversion (Accuracy) 
 .14 .09 .01 .02

9. Operand-Plus/Minus-One 
(Usage) .27** .75** .17

10. Operand-Plus/Minus-One 
(Accuracy) .10 .17

11. Operand-Plus/Minus-Ten 
(Usage) .11

12. Operand-Plus/Minus-Ten 
(Accuracy) 

**Correlation is significant at the 0.01 level (2-tailed)         
* Correlation is significant at the 0.05 level (2-tailed)
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4. Hierarchical Regression Analyses 

A series of forced-order, theoretically driven, hierarchical regression analyses was 

performed to identify measures that accounted for unique variances in individual differences 

in elementary arithmetical competency, and to determine if the contribution of some variables 

was mediated by the presence of other variables. Since the order of entry is known to 

influence the outcome of regression analyses, several matrices were constructed for each 

relationship to be examined. Moreover, each analysis of relationship was repeated for each 

grade to allow for children from different grades being administered different sets of 

arithmetic test. 

 

Analysis of Variances by the Measures of Central Executive and Phonological Loop on 

Arithmetic Competency 

To address questions about the contribution of the phonological loop and central 

executive on performance in arithmetic operations, their order of entry was rotated at two 

nested levels. The first level concerned whether the central executive measures were entered 

before or after the measures of phonological loop. By this means, it was possible to identify 

shared and unique variance associated with the two categories of measures. The second level 

concerned the order of entering the measure of the two phonological loop span tasks. This is 

to address the question of whether variance unique to the span tasks as a pair is common to 

them both.   

Primary One 

The results of analyses for primary one are summarized in Table 10. The results 

indicated that both measures of phonological loop and central executive accounted for 85.4% 

of variance. Measures of phonological loop accounted for 17.6% of variance when entered 

after those of central executive, whereas central executive accounted for 17% when entered 
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after the spans. Thus, PL and CE measures mainly explained 50.8% shared variance, with 

both categories explaining comparable unique variance in performance in arithmetic.  

While digit span or character span explained significant variance when either was 

entered at the penultimate step, only digit span explained further variation when entered last. 

Thus, the variance unique to span tasks was unique to digit span.  

Table. 10 Outcome of hierarchical regression analyses for Primary 1 
 PL entered before CE measures CE entered before PL measures 

Step Variable(s) R2 Change Variable(s) R2 Change 

Digit Span entered before Character Span 
 
1 Forward Digit Span .684* CE measures .678* 
2 Forward Character Span .000 Forward Digit Span .174* 
3 CE measures .170* Forward Character Span .002 

Character Span entered before Digit Span 
 
1 Forward Character Span .370* CE measures .678* 
2 Forward Digit Span .314* Forward Character Span .093* 
3 CE measures .170* Forward Digit Span .083* 
* p<0.05 
 
Primary Two 

The results of analyses for primary two are summarized in Table 11. The results 

indicated that both measures of phonological loop and central executive accounted for 73.7% 

of variance. Measures of phonological loop accounted for 19.3% of variance when entered 

after those of central executive, whereas central executive accounted for 11.2% when entered 

after the spans. Thus, PL and CE measures mainly explained 43.2% shared variance, while 

phonological loop explained more unique variance in performance in arithmetic.  

While digit span or character span explained significant variance when either was 

entered at the penultimate step, only digit span explained further variation when entered last. 

Thus, the variance unique to span tasks was unique to digit span.  
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Table. 11 Outcome of hierarchical regression analyses for Primary 2 
 PL entered before CE measures CE entered before PL measures 

Step Variable(s) R2 Change Variable(s) R2 Change 
Digit Span entered before Character Span 

1 Forward Digit Span .623* CE measures .544* 
2 Forward Character Span .002 Forward Digit Span .177* 
3 CE measures# .112* Forward Character Span .016 
 

Character Span entered before Digit Span 
1 Forward Character Span .472* CE measures .544* 
2 Forward Digit Span .153* Forward Character Span .098* 
3 CE measures .112* Forward Digit Span .095* 
* p<0.05 
 
Primary Three 

The results of analyses for primary three are summarized in Table 12. The results 

indicated that both measures of phonological loop and central executive accounted for 79.9% 

of variance. Measures of phonological loop accounted for 18.1% of variance when entered 

after those of central executive, whereas central executive accounted for 32.2% when entered 

after the spans. Thus, PL and CE measures explained 29.6% shared variance, while CE 

explained more unique variance in performance in arithmetic.  

While digit span or character span explained significant variance when either was 

entered at the penultimate step, only digit span explained further variation when entered last. 

Thus, the variance unique to PL span tasks was unique to digit span. 

Table. 12 Outcome of hierarchical regression analyses for Primary 3 
 PL entered before CE measures CE entered before PL measures 

Step Variable(s) R2 Change Variable(s) R2 Change 
Digit Span entered before Character Span 

1 Forward Digit Span .469* CE measures .618*
2 Forward Character Span .008 Forward Digit Span .170*
3 CE measures .322* Forward Character Span .011

Character Span entered before Digit Span 
1 Forward Character Span .376* CE measures .618*
2 Forward Digit Span .101* Forward Character Span .144*
3 CE measures .322* Forward Digit Span .037*
* p<0.05 
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Analysis of Variances by the Measures of Central Executive and Visuospatial Sketchpad on 

Arithmetic Competency 

To address questions about the contribution of Visual Spatial Sketchpad (VSSP) and 

central executive (CE) to performance in arithmetic operations, their order of entry was 

rotated at two nested levels. The first level concerned whether the CE measures were entered 

before or after the measures of VSSP. It was possible to identify shared and unique variance 

associated with the two categories of measures. The second level concerned the order of 

entering the two measures of VSSP. This is pertinent to the question of whether variance 

unique to the VSSP tasks as a pair is common to them both.  

Primary One 

The results of analyses for primary one are summarized in Table 13. The results 

indicated that both measures of VSSP and CE accounted for 92.4% of variance. Measures of 

VSSP accounted for 33.8% of variance when entered after those of central executive, 

whereas central executive accounted for 35.1% when entered after the VSSP tasks. Thus, 

VSSP and CE measures mainly explained 23.5% shared variance; with CE measures 

explained more unique variance than VSSP in performance in arithmetic.  

While visual memory and visuospatial memory explained significant variance when 

either was entered at the penultimate step, only square span explained further variation when 

entered last. Thus, the variance unique to span tasks was unique to square span. 

Table. 13 Outcome of hierarchical regression analyses for primary 1 
 VSSP entered before CE measures CE entered before VSSP measures 

Step Variable(s) R2 Change Variable(s) R2 Change 
Square span entered before Visual memory 

1 Square Span  .456* CE measures .586* 
2 Visual Memory .117* Square Span  .307* 
3 CE measures .351* Visual Memory .031 

Visual memory entered before Square span 
1 Visual Memory  .355* CE measures .586* 
2 Square Span .218* Visual Memory .229* 
3 CE measures .351* Square Span  .109* 
* p<0.05 
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Primary Two 

The results of analyses for primary two are summarized in Table 14. The results 

indicated that both measures of VSSP and CE accounted for 81.9% of variance. Measures of 

VSSP accounted for 23.3% of variance when entered after those of central executive, 

whereas central executive accounted for 23.6% when entered after the VSSP tasks. Thus, 

VSSP and CE measures mainly explained 35% shared variance; with CE measures explained 

slightly more unique variance than VSSP in performance in arithmetic.  

While visual memory and visuospatial memory explained significant variance when 

either was entered at the penultimate step, only square span explained further variation when 

entered last. Thus, the variance unique to spans tasks was unique to square span, as similar to 

the pattern found in Primary 1. 

Table. 14 Outcome of hierarchical regression analyses for primary 2 
 VSSP entered before CE measures CE entered before VSSP measures 

Step Variable(s) R2 Change Variable(s) R2 Change 
Square span entered before Visual memory 

1 Square Span  .442* CE measures .481*
2 Visual Memory .141* Square Span  .324*
3 CE measures .236* Visual Memory .014 

Visual memory entered before Square span 
1 Visual Memory .382* CE measures .481*
2 Square Span        .201 Visual Memory .212*
3 CE measures .236* Square Span .126*

* p<0.05 
 
Primary Three 

The results of analyses for primary three are summarized in Table 15. The results 

indicated that both measures of VSSP and CE accounted for 81.9% of variance. Measures of 

VSSP accounted for 20.2% of variance when entered after those of central executive, 

whereas central executive accounted for 27.5% when entered after the VSSP tasks. Thus, 

VSSP and CE measures mainly explained 34.2% shared variance; while CE measures 

explained more unique variance in performance in arithmetic.  
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While visual memory and visuospatial memory explained significant variance when 

either was entered at the penultimate step, only square span explained further variation when 

entered last. Thus, the variance unique to span tasks was unique to square span 

Table. 15 Outcome of hierarchical regression analyses for primary 3 
 VSSP entered before CE measures CE entered before VSSP measures 

Step Variable(s) R2 Change Variable(s) R2 Change 
Square span entered before Visual memory 

1 Square Span  .341* CE measures .617* 
2 Visual Memory .203* Square Span  .196* 
3 CE measures .275* Visual Memory .006 

Visual memory entered before Square span 
1 Visual Memory  .138* CE measures .617* 
2 Square Span .681* Visual Memory  .131* 
3 CE measures .275* Square Span .071* 
# CE Measures: Crossing Out (Time), Verbal Trail (Time), Missing Item (Time) 
* p<0.05 
 
Analysis of Variances by the Three Measures of Central Executive on Arithmetic 

Competency 

Primary One 

The results of analyses for primary one are summarized in Table 16. All the three 

measures of CE accounted for 67.8% of variance. Measures of Missing Item accounted for 

38.4% of variance when entered after the other two measures of central executive whereas 

Verbal Trail accounted for 5.1% when entered last. When Crossing out was entered last, 

variance of 6.7% of unique variance was indicated. The three measures explained 17.6% of 

shared variance in arithmetic performance.  

Table. 16 Outcome of hierarchical regression analyses for primary 1 
Step Variable(s) R2 Change Variable(s) R2 Change 

Missing Item Entered last 
1 Crossing Out .262* Verbal Trail .215* 
2 Verbal Trail .059* Crossing Out .079* 
3 Missing Item .384* Missing Item .384* 

Missing Item Entered first 
1 Missing Item .574* Missing Item .574* 
2 Verbal Trail .037 Crossing Out .053* 
3 Crossing Out .067* Verbal Trail .051* 

* p<0.05 
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Primary Two 

The results of analyses for primary two are summarized in Table 17. All the three 

measures of CE accounted for 64.1% of variance. Measures of Missing Item and Crossing 

Out accounted for 33.2% and 6.1% of variance respectively when entered after the other two 

measures of central executive, whereas Verbal Trail accounted for an insignificant 0.7% when 

entered last. The three measures explained 24.1% of shared variance in arithmetic 

performance.  

Table. 17 Outcome of hierarchical regression analyses for primary 2 
Step Variable(s) R2 Change Variable(s) R2 Change 

Missing Item Entered last 
1 Crossing Out .217* Verbal Trail .116* 
2 Verbal Trail .092* Crossing Out .193* 
3 Missing Item .332* Missing Item .332* 

Missing Item Entered first 
1 Missing Item .412* Missing Item .412* 
2 Verbal Trail .168* Crossing Out .222* 
3 Crossing Out .061* Verbal Trail .007 

* p<0.05 
 

Table. 18 Outcome of hierarchical regression analyses for primary 3 
Step Variable(s) R2 Change Variable(s) R2 Change 

Missing Item Entered last 
1 Crossing Out .165* Verbal Trail .297* 
2 Verbal Trail .164* Crossing Out .033 
3 Missing Item .288* Missing Item .288* 

Missing Item Entered first 
1 Missing Item .486* Missing Item .486* 
2 Verbal Trail .043* Crossing Out .132* 
3 Crossing Out .089* Verbal Trail .000 

* p<0.05 
 

Primary Three 

The results of analyses for primary three are summarized in Table 18. All the three 

measures of CE accounted for 61.8% of variance. Measures of Missing Item accounted for 

28.8% of variance when entered after the other two measures of central executive whereas 

Crossing Out accounted for 8.9% when entered last. When Verbal Trail was entered last, no 
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significant amount of unique variance was indicated. Therefore unique variance unique to 

Verbal Trail task is common with the other two tasks. Moreover, the three measures explained 

40.5% of shared variance in arithmetic performance.  

 
Analysis of variances by Operation Spans and measures of the Three Working Memory 

Components  

Another 2 models of hierarchical regression were conducted to identify the unique 

and shared variance associated with components measures and measures of general working 

memory (WM). 

Primary One 

The results of analyses for primary one are summarized in Table 19. The components 

measures and general working memory together accounted for 96.9% of the variance in 

arithmetic skills. General WM and components measures explained 34.8% and 14.6% unique 

variance respectively, with 47.5 % shared variance. 

Table. 19 Outcome of hierarchical regression analyses for primary 1 
Step Variable(s) R2 Change Variable(s) R2 Change 

Component Measures Entered first Measures of General Working 
Memory (WM) Entered first 

1 Component Measures .621* General WM .823* 
2 General WM .348* Component Measures .146* 
* p<0.05 

 

Primary Two 

The results of analyses for primary two are summarized in Table 20. The components 

measures and general working memory together accounted for 90.1% of the variance. 

General WM and components measures explained 57.5% and 11.3% unique variance 

respectively, and explained 21.3 % shared variance in arithmetic skills. 
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Table. 20 Outcome of hierarchical regression analyses for primary 2 
Step Variable(s) R2 Change Variable(s) R2 Change 

Component Measures Entered first Measures of General Working 
Memory (WM) Entered first 

1 Component Measures .326* General WM .788* 
2 General WM .575* Component Measures .113* 
* p<0.05 
 

Primary Three 

The results of analyses for primary three are summarized in Table 21. The two 

categories together accounted for 82.4% of the variance in arithmetic skills. General WM and 

components measures explained 51.1% and 25.2% unique variance respectively, with 21.0 % 

shared variance. 

Table.21 Outcome of hierarchical regression analyses for primary 3 
Step Variable(s) R2 Change Variable(s) R2 Change 

Component Measures Entered first Measures of General Working 
Memory (WM) Entered first 

1 Component Measures  .313* General WM .572* 
2 General WM .511* Component Measures .252* 
* p<0.05 
 

Analysis of variances by the Measures of working memory, Conceptual knowledge and Use 

of Principles on Arithmetic Competency 

To address questions about the contribution of working memory, conceptual 

knowledge and uses of calculation principles in the performance in arithmetic operations, 

their order of entry was again rotated at two nested levels as in previous analyses. The first 

level concerned whether the measures of working memory (WM) were entered first or last. 

The second level concerned the order of entering the measures of conceptual knowledge of 

place value (PV) and commutativity (COMMU), and uses of calculation principles.  
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Primary One 

The results of analyses for primary one are summarized in Table 22. The results 

indicated that, together, all the involved measures accounted for 94.8% of variance. Measures 

of conceptual knowledge of PV and COMMU, and calculations principles accounted for 

29.5% and 7.5% of unique variance when being entered last, with unique variance of 43.7% 

explained by measures of working memory. The three domains explained 14.1% shared 

variance.  

Table. 22 Outcome of hierarchical regression analyses for primary 1 
Step Variable(s) R2 Change Variable(s) R2 Change 

Working Memory Measures entered first 
 Uses of Calculations Principles first Concepts of Place Value(PV) and 

Commutativity (COMMU) first 
1 WM Measures .518* WM Measures .518* 
2 Calculations Principles .135* PV and COMMU .355* 
3 PV and COMMU .295* Calculations Principles .075* 

Working Memory Measures entered last 
1 Calculations Principles .306* PV and COMMU .346* 
2 PV and COMMU .205* Calculations Principles .165* 
3 WM Measures .437* WM Measures .437* 
* p<0.05 
 
 
Primary Two 
 

The results of analyses for primary two are summarized in Table 23. The results 

indicated that, together, all the involved measures accounted for 91.6% of variance. Measures 

of conceptual knowledge of Place value (PV) and Commutativity (COMMU), and 

calculations principles accounted for 21.5% and 10.3% of unique variance when being 

entered last, with unique variance of 40.7% explained by measures of working memory. The 

three domains explained 19.1% shared variance.  
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Table. 23 Outcome of hierarchical regression analyses for primary 2 
Step Variable(s) R2 Change Variable(s) R2 Change 

Working Memory Measures entered first 
 Uses of Calculations Principles first Concepts of Place Value(PV) and 

Commutativity (COMMU) first 
1 WM Measures .497* WM Measures .497* 
2 Calculations Principles .204* PV and COMMU .316* 
3 PV and COMMU .215* Calculations Principles .103* 

Working Memory Measures entered last 
1 Calculations Principles .271* PV and COMMU .315* 
2 PV and COMMU .238* Calculations Principles .194* 
3 WM Measures .407* WM Measures .407* 
* p<0.05 
 

Primary Three 

The results of analyses for primary three are summarized in Table 24. The results 

indicated that, together, all the involved measures accounted for 88.3% of variance. Measures 

of conceptual knowledge (PV and COMMU), and calculations principles accounted for 

14.3% and 15.1% of unique variance when being entered last, with unique variance of 38.7% 

explained by measures of working memory. The three domains explained 20.2% shared 

variance.  

Table. 24 Outcome of hierarchical regression analyses for primary 3 
Step Variable(s) R2 Change Variable(s) R2 Change 

Working Memory Measures entered first 
 Uses of Calculations Principles first Concepts of Place Value(PV) and 

Commutativity (COMMU) first 
1 WM Measures .465* WM Measures .465* 
2 Calculations Principles .275* PV and COMMU .267* 
3 PV and COMMU .143* Calculations Principles .151* 

Working Memory Measures entered last 
1 Calculations Principles 276* PV and COMMU .238* 
2 PV and COMMU .220* Calculations Principles .258* 
3 WM Measures .387* WM Measures .387* 
* p<0.05 
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Chapter Seven 

Discussion 

 

1. General Discussion 

This study set out to examine the roles of the working memory and its components as 

portrayed in the working-memory model of Baddeley & Hitch (1974) understanding of the 

concepts of place value and commutativity and uses of calculation principles in arithmetic 

competency of children from primary one to primary three. 

 

Group Differences in Working Memory Measures 

Phonological Loop 

 In the current study, digit span and Chinese character span were adopted to measure the 

short-term memory of verbal material. The results showed that children with lower arithmetic 

ability under-performed those with higher ability of the same grade, and children in higher 

grades tend to outperform their lower grade peers, in all measures of phonological loop. The 

lower performance in digit span could represent a poor representation of numerical materials. 

However, the lower performance in Chinese character span was also exhibited by the lower-

ability group in each grade. This result is surprising, given that both groups in each grade were 

matched on Chinese reading ability. This would not be explained by poorer access to 

representation of Chinese character, due to the fact that subjects in the current study are matched 

on reading ability. This finding also presents a different view, as could be suggested by Bull and 

Johnston’s notion that short-term memory of the phonological loop does not account for 

differences in children’s mathematical ability when differences in reading ability have been 
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controlled for (Bull & Johnston, 1997). One possibility is that subjects in the lower ability 

groups were weak on some more general factors, such as speed of item identification and 

general speed of information processing, which may influence the performance of verbal 

memory span task. Addressing this issue is beyond the scope of the present study. 

 Since the designs of the two span tasks in the current study are the same, except in the 

nature of content materials, individual performances in the two tasks were compared. All 

subjects displayed a discrepancy in performance of forward character span and digit span, with 

performance in forward character span task higher than that in forward digit span. Analyses of 

the discrepancy revealed three patterns of the development of phonological loop. Firstly, the 

discrepancy between performance of digit span and Chinese character span became smaller as 

schooling increased. Secondly, discrepancies shown by higher-ability groups were consistently 

smaller than those of lower-ability groups. Thirdly, despite no interaction effects of grade and 

ability shown in both span tasks, the difference between the between-span discrepancies of the 2 

ability groups converged as schooling increased. With the observation that the lower-ability 

group exhibited a higher increment rate in the performance of digit span task than in character 

span task, one plausible explanation for this feature is that formal schooling might have a 

stronger effect on enhancing the memory skills for numerical skills of children with lower 

arithmetic ability who entered school with much weaker representation of numerical 

information.  

 

Visuospatial Sketchpad 

 TVPS-R and Square Span were used to measure the short-term visual memory and 

visuospatial memory respectively. It was found that the lower-ability groups under-performed 
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their higher-ability counterparts only in square span but not in short-term visual memory. Given 

that the square span has no obvious arithmetic or numerical content, the finding supports the 

perspective that a visuospatial working memory weakness contributes to lower arithmetic 

performance (McLean & Hitch, 1999). The finding that square span, a measure which required 

serial recall, associated with individual difference in arithmetic performance supporting the 

prevailing perspective that mathematical ability associates with the performance in a serial recall 

measure of the visuospatial sketchpad (Mclean & Hitch, 1999; Dehaene, 1992; Heathcote, 1994). 

Since the materials used in the current study to differentiate children on their arithmetic ability 

were composed of multi-digit problems in which required carrying or borrowing, the findings 

give support to Heathcote’s (1994) perspective that the influence of visual-spatial sketchpad 

may be more pronounced on multi-digit arithmetic problem solving. Moreover, the observation 

that some children in the current study used number imagery or visualizing number 

representation in backup counting strategies for solving simple arithmetic combinations, gives 

further support to the importance of the visuospatial sketchpad in the differences in arithmetic 

competency.  

 

Central Executive 

 Three measures for assessing three functions, which were proposed to be performed by 

the central executive, were used in the current study; these include the Verbal Trail task for 

assessing the ability to switch retrieval strategies; the Crossing Out task for measuring selective 

attention and ability to inhibit responses to non-targets that had been designated as targets 

previously; and the Missing Item tasks to measure the executive function of holding and   

manipulating information.  
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While grade difference in Verbal Trail could reflect the effect of formal schooling on  

quicker access to the numerical and alphabetical information in long-term memory, the ability 

group difference could be attributed to differences in the capacity to switch strategies 

continuously, given that reading abilities were matched between ability groups. 

The finding that children’s arithmetic ability associated with performance in Crossing 

Out tasks is consistent with the results of Passolunghi and Siegel (2001), whereby the weaker 

performance in working memory of poorer arithmetic problem solvers was related to an 

inability to control and to ignore irrelevant or no longer relevant information. It was suggested 

that an inability to sustain attention on the task in hand makes the solving of arithmetic 

questions very difficult, particularly where slower, less efficient overt counting strategies are 

being used. This would result in the child’s losing track of the counting procedure, which in turn 

leads to under- or over-counting (Geary & Burlingham-Dubree, 1989). 

 The results of the Missing item tasks showed that children in higher grades performed 

better than those in lower grades, and children with higher arithmetic competence performed 

better than those with lower competence. However, the difference is not necessarily attributable 

to executive functioning in concurrently holding and manipulating information. There were 

interesting observations that children, even of the same grade, might have used different 

strategies in solving the simple arithmetic combinations, which could have contributed to the 

time used to finish the task. For example, some children consumed much less time in solving 

simple arithmetic combinations than their same grade counterparts who used backup strategies, 

such as finger counting or verbalization. Descriptive statistics revealed that there was a 

decreasing trend in the standard deviation of time used along the 3 grades, from SD of 11.06 

seconds of the primary 1 lower-ability group, down to SD of 3.01 seconds of the higher-ability 
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group in primary 3. Thus, the variation of strategy used may contribute to the group and ability 

difference, in addition to that in the executive function. Therefore the interpretation of the 

Missing Item task difference should be tentative, bearing in mind the existence of the behavioral 

pattern of strategy used.  

 

General Working Memory 

 Operation Span tasks were included in the current study as a general measure of working 

memory as a whole. Foreshadowed by the findings in phonological loop, visuospatial sketchpad 

and central executive, a similar pattern was exhibited in both the normal and extended version of 

Operation Span task, with children of higher grade outperforming children of lower grade, and 

in each grade, children with higher arithmetic ability outperforming those with lower ability. 

This current finding converges with previous findings that poor arithmetic problem solvers have 

weakness in working memory (Hitch & McAuley, 1991; Swanson, 1993). Moreover, it was 

found that children with lower arithmetic ability performed at a level close to that of the high-

ability group at 1 grade below. This raises the possibility that the weaker working memory 

capacity of the lower arithmetic ability group may be due to a developmental delay rather than a 

specific deficit.  

The lower performance in operation span task reflects a weaker ability to recall the 

serially stored data in the presence of concurrent processing operations. It was also found that 

both ability groups suffered a reduction in span performance in the extended version, with the 

low ability group exhibiting a larger degree of decrement. This finding supports the task-

switching hypothesis and the notion that children with lower arithmetic ability are associated 

with faster decay in working memory. 
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However, the result from the analysis of accuracy of calculation performed during the 

Operation Span task also provided partial support to a resource sharing account of working 

memory. Given that no significant ability and grade difference exhibited in calculation accuracy 

in the normal version, significant ability and grade effects found on discrepancy between the 

calculation accuracy of normal and extended version actually reflect the decrement mainly in 

the accuracy of calculation in the extended version. This accuracy-span trade-off reflected that 

some resources would have been shared by the processing of the calculations in trials.  

While association of differences in arithmetic ability and the group differences in central 

executive, phonological loop and visuospatial sketchpad have been confirmed by many previous 

studies, the nature of interactions among these three components of working memory regarding 

their influences on arithmetic competency has yet to be definitively shown.  

One focus of the current study is to explore the interactions between the central 

executive and the two subsidiary storage systems, as proposed in the popular model by 

Baddeley and Hitch (1974), upon their influence on arithmetic competency. Using hierarchical 

regression analyses, this study attempted to determine whether influence of phonological loop or 

visuospatial sketchpad was mediated by the presence of central executive. 

 

Relationship between Central Executive and Phonological Loop 

 Hierarchical regression analysis showed that phonological loop and central executive 

contribute unique variance to arithmetic ability in all three grades. That is, the entry of central 

executive first into the equation did not diminish the contribution of phonological loop to the 

difference in arithmetic ability or vice versa. This supports a domain-specific interpretation of 

phonological loop and central executive that each of them plays a specific role in arithmetic 
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ability. However, this does not necessarily mean that the phonological loop and central 

executive are two distinct, independent functions, due to the presence of a high proportion of 

shared variance explained by them. This supports the view that the two components interact in 

some ways in their influence on arithmetic tasks.   

 

Relationship between the Two Measures in Phonological Loop 

 While phonological loop was found to have contributed unique variance to arithmetic 

competency, hierarchical analyses showed that the variance was not common to both Digit Span 

and Character Span for phonological loop in all three grades. Character Span, when entered after 

Digit Span, explained  no significant further variation to arithmetic competency. This may have 

been the result of matching reading abilities of children in each grade.  

 

Relationship between the Central Executive and the Visuospatial Sketchpad 

Hierarchical regression analysis of the model, consisting of central executive and 

visuospatial sketchpad, also showed that each of them contributed unique variance to arithmetic 

ability in all three grades. That is, the entry of central executive first into the equation did not 

nullify the contribution of visuospatial sketchpad to the difference in arithmetic ability or vice 

versa. The finding that both components under discussion elucidated unique and shared variance 

in arithmetic competency supported a combination of domain-specific and domain-general 

interpretation of their nature of interaction. 
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Relationship between the Two Measures in Visuospatial Sketchpad 

 While visuospatial sketchpad was found to have contributed unique variance to 

arithmetic competency, hierarchical analyses showed that the variance was not common by both 

visual memory and visuospatial memory in all three grades. Visual memory, when entered after 

Square Span, a measure of visuospatial memory, explained  no significant further variation to 

arithmetic competency. This is in line with the results for the insignificant ability-group 

differences in visual memory task. Since the visual memory task used in the current study has its 

focus on pattern recognition with non-numerical contents, the findings suggested that 

visuospatial ability that requires serial recall of spatial position, is more important than the 

ability to recognize graphical representations to differentiate arithmetic performance. 

Observations of children’s strategic devices also provide evidence backing this view. As 

observed in the screening sessions, many children were found to use written columnar 

calculation to solve multi-digit arithmetic problems. The use of written calculation highly 

reduces the importance of short-term visual memory, while keeping numbers in correct 

alignment places significant demands on visuospatial memory. 

  

Relationships among the Measures for Central Executive 

Hierarchical regression analysis of the model, consisting of the three measures of central 

executive, showed that each Missing Item and Crossing Out contributed unique variance to 

arithmetic ability in all three grades. However, the Verbal Trail task for assessing the function of 

switching retrieval plan contributed unique variance only in primary one, but not in the other 

two grades. Shared variance explained by the three measures also suggests interactions among 

them and they are three separate but interacting functions of the central executive. The finding 
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gives support to the perspective that cognitive functions of attention selection, along with 

concurrent retrieval and manipulation of information in long-term memory are important to 

arithmetic competency (Baddeley, 1996). However, decreasing size of variance explained by the 

verbal trail could be the result of confounding variables such as the articulatory speed of 

children or the relatively lower difficulty of the tasks to older children in elementary school.  

 
Decreasing Variance by Different Components of Working Memory from Primary One to 

Primary Three 

Here, the important finding that the contribution by measures of working memory to the 

arithmetic competency tended to decrease as grade level increased, was brought out. When all 

the measures for the three working memory components and operation spans were included 

together in a testing model for hierarchical regression analyses, total variances showed a 

decreasing trend from 96.9% in primary 1 to 82.4 % in primary 3. With reference to separate 

hierarchical analyses of different components, visuospatial sketchpad showed a larger decrement 

in unique variance suggesting a decreasing contribution of this domain in explaining differences 

in elementary arithmetic competency.   

Geary and Burlingham-Dubree (1989) suggested that at early stages where the child is 

using concrete representations to aid counting, visuospatial skills and central executive may play 

a greater role (Geary & Burlingham-Dubree, 1989; Luria, 1980). As children gain more 

experience with arithmetic procedures and facts, more of this arithmetic knowledge becomes 

automated in long-term memory that allows many children to use retrieval to solve arithmetic 

operations.  The visuospatial and the central executive may play a lesser role in finding the 

solution at that point.  
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However, this finding does not contradict with those of previous studies that emphasize 

the role of the central executive in children’s overall mathematical learning. Bull and Johnston 

(1997) suggested that the central executive may be most relevant in arithmetic tasks requiring a 

choice has to be made from many different alternative solution strategies or when older children 

are asked to solve more complex arithmetic problems, where some parts of the problem require 

a heuristic solution to be implemented. Studies investigating executive functioning in relation to 

different arithmetic skills at different levels of education will provide more evidence to support 

this claim. 

 

General Working Memory and Other Measures of Working Memory 

Also of particular interest is the consideration of whether operation span, as a general 

measure of working memory, adds no further influence to arithmetic ability, beyond the 

contribution by measures of phonological loop, visuospatial sketchpad and central executive. 

Hierarchical analysis showed that operation span explained unique variance in the model. This 

suggests that operation span covers some functions that could not be explained by the three 

components of working memory. 

 

Group Differences in the Understanding of Place Value and Commutativity

Place value 

 Understanding of place value concepts was assessed by Digit Representation and 

Written Columnar Calculation. Performance in Digit Representation progressed as grade level 

increased and most children in primary three showed no problem in achieving the maximum 

score. The performance of the low-ability groups was also seen to be comparable to that of the 
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high-ability groups at one grade below. This suggests that a significant delay in understanding 

of place value could have existed in those low-ability groups. Performance in Columnar 

Calculation was assessed in terms of number of misalignment and carrying- or borrowing-

related errors. In an un-timed condition, no difference in the number of errors was found 

between the two ability groups in primary three.  

 Strong and significant negative correlation was found between Digit Representation and 

Columnar Calculation in the current study. This result supports the findings of Hiebert and 

Wearne (1996), that there is a close connection between children's understanding of multidigit 

numbers and their written computational skills. Children who develop the earlier understanding 

of place value could perform at the higher level of accuracy in written computation. 

Commutativity 

 Understanding of commutativity concepts was assessed by problem comparison task, 

which involved additive and multiplicative commutativity. Children in Primary 1 were only 

assessed with additive commutativity. The only group difference in additive commutativity was 

found between the 2 ability-groups in primary 1, and most of the older children seemed to have 

understood this concept in addition very well.  This is consistent with the notion that most 

children develop an understanding of commutativity with more exposure to the outcome of 

simple addition (Baroody & Gannon, 1984). With only a few months of formal education, those 

children with lower arithmetic competency in primary 1 may not benefit from the limited and 

erroneous exposure in simple addition, which may, in turn, lead to a delay in the understanding 

in additive commutativity. Given that children in Primary 2 and Primary 3 already understood 

additive commutativity, the grade difference that emerged in primary 2 and 3 reflected the 

difference in multiplicative commutativity. Since the teaching of multiplication is normally 
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introduced in primary two, the development of the related commutativity principle usually takes 

place one year after the additive principle.   

 Foil problems were used to detect whether children over-generalized the concepts. In 

line with the result in Problem-pair Verification tasks is the finding that children of primary 1 

would have rather immature understanding of additive commutativity and were most likely to 

wrongly apply the concepts to other unrelated problem types. For example a few of the children 

mistakenly treated the answer of 43 + 35 – 26 as equal to the answer of 43 - 35 + 26, reflecting 

their recognition of the “operand” part of the principle, on the one hand, but their negligence of 

the “operation” part of the principle, on the other hand. 

 

Group Differences in the Usage of Calculation Principles 
 
Additive Commutativity 

On the usage of calculation principles, the results revealed that most children with higher 

arithmetic ability were able to apply this principle to their problem solving, even as early as 

primary one, given that they showed a higher tendency to use columnar calculation and backup 

strategies at this stage. Children with lower arithmetic ability showed delay in the application of 

the principle. This could be explained by the fact that children with lower arithmetic skills tend 

to make more errors during their learning of basic arithmetic combinations. This inconsistency 

in the answer of the same combination would weaken the strength of the commutative 

relationship between any two addends in an addition condition. 

 Both ability groups demonstrated high usage of the principle in primary two and three, 

being assisted by the notable progress of the lower-arithmetic ability group. Formal education 
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and higher exposure to arithmetic may reduce the discrepancy in the application of this principle.

  

Inversion and Reversal 

 In comparison with usage of the additive commutativity principle, the usage of the 

inversion and reversal principles displayed a similar pattern of group differences, except for a 

lower usage of these two principles in the higher ability group in primary one. The principles of 

commutativity, inversion, and reversal could be regarded as highly transparent principles, 

whereby answers to problems can be found in the hinted equation directly without any demand 

on alteration. The lower usage manifested in inversion and reversal could be due to the 

difference in successful experiences of exposure to the pre-requisite arithmetic operations; in 

this case, exposure to subtraction would be the source of difference.  

Similar results were found in an attempt to investigate mathematical competencies in 

children with different patterns of academic achievement (Hanich et al., 2001). Hanich and her 

colleagues (2001) suggested lags in usage if inversion was due to a weaker or immature 

relationship between addition and subtraction, which could be the result of instructional 

approaches.  

 
Operand-plus/minus-one  
 

While increment in usage of this principle was indicated in both higher and lower 

arithmetic groups, usage was generally less than that of the three calculation principles above, 

and fewer higher-ability children could reach maximum usage, even at primary three. Unlike the 

three calculation principles discussed above, the principle of operand-plus/minus-one is less 

easy to apply. The answers to items for testing these principles are much less apparent that users 

need to decompose the operands and identify the relationships between operands in the problem 
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pair during the application of the principle. Moreover, the level of accuracy of the application 

reflected that some children might have encountered difficulty in applying the principle, even 

though they were aware of the special characteristics between operands in the test items. 

Moreover, to benefit from the application of this principle, a child should not only be aware of 

the relationship between operands, but also be able to make accurate judgment of direction of 

change with respect to the type of operation indicated in the problem.  

 
Operand-Plus/minus-Ten 
 

The usage and accuracy in the principle of operand-plus/minus-ten was even less than 

that of operand plus-or minus one, which could plausibly be attributed to problem-size effect. 

Moreover, the tendency of children to apply the operand-plus/minus-one principle associated 

with the tendency to apply the operand-plus/minus-ten principle. The tendency to use these 

principles seems to be moderated by a concept termed “confidence criterion”, which was 

proposed by Siegler (1988). The confidence criterion in this case would represent an internal 

representation against which the child gauges confidence in applying a principle correctly. 

Hence, children with a rigorous confidence criterion would only apply it whenever they are 

certain it is correct, whereas children with a more lenient criterion would use it whenever they 

know it is applicable. 

It is also worth noting that the correlations between working memory and the two less 

transparent calculation principles were the highest among the five calculation principles in 

question. Successful application of these principles takes into account the size and judgment on 

the direction of change, which requires higher working memory capacity.  
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Patterns of contribution of working memory, understanding of Concepts, and use of calculation 

principles 

The current study attempted to explore the contribution of working memory, 

understanding of fundamental concepts, and use of calculation principles to the individual 

differences in arithmetic competency. Hierarchical regression analysis of the model, which 

consisted of all measures of working memory, understanding of concepts, and uses of 

calculation principles, showed that each aspect contributed unique variance to arithmetic ability 

in all three grades. Shared variance explained by the three aspects also suggests interactions 

among them.  

In line with the analyses of models with only working memory measures, decrement in 

total variance of working memory was indicated in this model, though to a lesser extent. A 

similar trend was indicated in the conceptual understanding. The explanation could be 

straightforward, as smaller differences in conceptual understanding were found between the two 

ability groups in the primary three children. Moreover, an increasing trend in the variances 

explained by the use of calculation principles was observed, through in a smaller magnitude. 

The size of the unique variances explained by the use of calculation principles in all three grades 

was smaller than that by the use of working memory, but was shown to be comparable to the 

unique variance explained by the understanding of concepts at the level of primary 3, though 

significant in all three grades. This finding suggests that application of calculation principles 

could be becoming more closely related to arithmetic competency throughout early elementary 

school years, though its role is still far less important than that of working memory.  

 With respect to the results of the hierarchical regression, it could be concluded that the 

relationship between working memory functioning and children’s arithmetic competency was 
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not mediated by the children’s understanding of place value and commutativity concepts, and 

the application of calculation principles.  

 
2. Limitation of the study 

The variability of strategy choice manifested by the subjects in solving the calculation 

problems may have affected the result of some of the tasks as measures of designated functions 

related to working memory. Among the tasks used in this study, Operation Span and Missing 

Item are the two tasks that were most susceptible to the variability of strategy choice. In 

particular, the structure of these two tasks is such that subjects could achieve the same score by 

using very different strategies (Daneman & Tardif, 1987). Such considerations suggest the need 

to record and analyze exactly how the tasks were performed.  

 As suggested in the discussion of exposure to arithmetic tasks possibly leading to the 

development or understanding of some fundamental concepts and relations, the factor of 

exposure was controlled in this study. Although children taking part in the study were assumed 

to have received comparable opportunities in access to arithmetic work within the school 

curriculum, the variation in degree and quality of extracurricular exposure should also be 

considered as being potentially very significant. Achieving a match in both the level of in-

school exposure and extracurricular exposure may further validate the interpretation of findings 

in the current study.  

3. Directions for future study  
 

As indicated in the findings, the contributions of working memory and conceptual 

understanding, and the use of calculation principles on the differences in arithmetic competency 

decreased as grade levels rose. Some other factors may come into play as the level of schooling 

increases. For example, it was observed that some children displayed considerable level of 
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tension and anxiety when they were asked to perform the tasks, particularly those tasks that 

were related to mathematics. This highlights the question of whether anxiety or other emotional 

factors may interfere with children’s arithmetic performance. Ashcraft and Kirk (2001) found 

that reduced working memory capacity led to a pronounced increase in reaction time and errors 

when mental addition was performed concurrently with a memory load task. Generally, the 

results demonstrated that math anxiety, through a disturbance in working memory, affects on-

line performance in math-related tasks. Future studies may need to include the role of anxiety 

about mathematical tasks and its affect on children’s arithmetic competency.  

The hypothesis that variations of strategy mediate executive functions of working 

memory on arithmetic competency has not been confirmed. Given its potential effects on time 

and accuracy of working memory span task, it is suggested that arithmetic strategies choice used 

by local children in solving arithmetic problems should be included in future studies in 

combination with other cognitive factors.  

 
4. Conclusion 

 
This study set out to examine the roles of working memory, understanding of 

fundamental concepts, and uses of calculation principles in arithmetic competency of lower 

primary school children. Children of different grades and levels of arithmetic ability generally 

showed differences in performances in most of the measures of working memory. Moreover, 

while understanding of concepts and uses of calculation principles were found to increase with 

schooling, the differences between the performances of higher and lower arithmetic ability 

groups were found to decrease as grade levels increase.  

Although no causal relationship between the studied cognitive abilities and arithmetic 

competency could be concluded, the information regarding the group differences in children’s 
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performances in the cognitive tasks shed light on the potential value of launching of working 

memory training and direct instruction on arithmetic concepts and principles in helping 

elementary school children with difficulties in arithmetic.  

Furthermore, all the three cognitive aspects in question were shown to be significant and 

unique, as well as interactive in their influences on arithmetic competency in each grade. 

However, the influence of them altogether on elementary arithmetic competency was found to 

decrease with schooling.  

It is not possible to provide a complete explanation of why some children have lower 

arithmetic competency, as there are also many social, motivational, and educational factors 

involved. Consideration of these factors will help us to gain greater insight into the issue of 

children’s arithmetic competency and mathematical development in future studies. 
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Appendix 1 

Consent Letter to School and Parents 

 

尊敬的 校長 / 家長： 

本地兒童數學運算與認知能力之研究 

香港理工大學護理學院「宏利兒童學習潛能發展中心」現正進行一

項有關於本地初小學童數學運算能力與認知能力的研究，目的是要探討初

小學童數學運算能力與其本身認知能力(如工作記憶能力、數學原則的認識

與運用等)的關係。現特來函邀請 貴校參與是項研究的活動。 

 

本研究除了探討初小學童數學運算能力及其數理的認識及應用三者

之間的關係外，亦會比較數學能力稍遜的學童與一般學童的工作記憶能力

及數理的認識與運用於初小(從小一至小三)的階段中的發展。有關的研究

結果將有發展配合學生學習模式和差異的數學支援課程。 

 

本研究將分為兩個階段。首階段主要工作為於小一至小三的級別中

選擇受試學童。選擇方法包括 1)集體運算能力與智力測試，及 2)數學科老

師推荐。集體測試將需要小一至小三的學童完成一項非語文智力測驗(約

30 分鐘)及於限時內完成一份基本數學運算工作紙(時限為 30 分鐘)。研究

人員將根據學童數學運算工作的表現，於小一至小三各級中選擇約 25 位

數學運算能力稍遜及另外約 25 位數學運算能力中等的學童進行第二階段

的研究。第一階段維期將不多於一週。 

 

第二階段的研究主要是學童個別測試。測試工作內容將包括多項有

關工作記憶的測試及有關數理意識及運用的測試。完成以上多項的個別測



 

試需時共約 50 分鐘。為減低測試過程對老師及學童的影響，第二階段的

測試工作可按學校及學生的情況，於短期內分多節完成。第二階段維期將

不多於兩週。 

 

基於是項研究計劃是需要了解初小各級學童於下學期完結前在運算

工作上的表現，故此我們希望能獲安排於本年五月期間完成是項研究計劃

中的所有測試。 

 

本研究所得的資料，只供集体數據分析及教學研究，將不用於其他

途徑，並會絕對保密。有關的研究結果將有發展配合學生學習模式和差異

的數學支援課程。 

 

 敬祝    教安! 

 

 

黎程正家博士 

「宏利兒童學習潛能發展中心」負責人 

香港理工大學護理學院副教授 

聯絡人:黃有佳先生 

聯絡電話及傳真:2766-6313 

 
 
 
 
 
 
 
 
 
 



 

香港理工大學 

護理學院 

「宏利兒童學習潛能發展中心」 

 

本地兒童數學運算與認知能力之研究 

學校回條 

 

¾ 本校  願意  /  不願意 (請刪去其一)參與上述研究。 

¾ 校方明白此項研究的目的，亦明白個人資料將會保密。 

 

學校：  

校方負責人：  

聯絡電話：  

回覆日期:  

 

________________________________________________________________    

 

香港理工大學 

護理學院 

「宏利兒童學習潛能發展中心」 

 

本地兒童數學運算與認知能力之研究 

家長回條 

 

¾ 本人 *願意／不願意   子女 _____________(班別)________ (子/女姓名)於

校內參與上述研究。 

¾ 本人明白此項研究的目的，亦明白個人資料將會保密。本人亦可隨時終

止子女參與是項研究。 
 

家長簽名：  

家長姓名：  

填表日期：  

聯絡電話：  

 



Appendix 1 

Materials of the Experiment (A Partial Listing) 

1. Arithmetic Test  

1.1 Problem types of the Test for Primary 1 

Problem Type Example 
1 to 1-digit Addition, without carrying 3 + 6 =  
1 to 1-digit Addition, with carrying 4 + 8 =  
1 to 1-digit Subtraction, without borrowing 9 – 6 =  
2 to 1-digit Addition, without carrying 22 + 7 =  
2 to 1-digit Addition, with carrying 23 + 8 =  
2 to 1-digit Subtraction, without borrowing 27 – 5 =  
2 to 1-digit Subtraction, with borrowing 23 – 6 =  
2 to 2-digit Addition, without carrying 23 + 16 =  
2 to 2-digit Addition, with carrying 34 + 18 =  
2 to 2-digit Subtraction, without borrowing 38 – 25 =  
2 to 2-digit Subtraction, with borrowing 32 – 17 =  
3 to 2-digit Addition, without carrying 123 + 46 =  
3 to 2-digit Addition, with carrying 144 + 67 =  
3 to 2-digit Subtraction, without borrowing 147 – 34 =  
3 to 2-digit Subtraction, with borrowing 134 – 47=  
2 to 2 to 2-digit Addition, without carrying 12 + 23 + 14 =  
2 to 2 to 2-digit Addition, with carrying 17 + 24 + 16 =  
2 to 2 to 2-digit Subtraction, without borrowing 58 – 12 – 15 =  
2 to 2 to 2-digit Subtraction, with borrowing 53 – 18 – 16 =  
2 to 2 to 2-digit Mixed (+ -), with trading 53 – 16 + 29 = 
2 to 2 to 2-digit Mixed (- +), with trading 34 – 27 + 16 =  

 

1.2 Problem types of the Test for Primary 2 

Problem Type Example 
2 to 2-digit Addition, with carrying 24 + 18 =  
2 to 2-digit Subtraction, with borrowing 32 – 17 =  
3 to 2-digit Addition, without carrying 123 + 46 =  
3 to 2-digit Addition, with carrying 144 + 67 =  
3 to 2-digit Subtraction, without borrowing 147 – 34 =  
3 to 2-digit Subtraction, with borrowing 134 – 47=  
3 to 3-digit Addition, without carrying 124 + 135 = 
3 to 3-digit Addition, with carrying 157 + 165 = 
3 to 3-digit Subtraction, without borrowing 187 – 146 = 
3 to 3-digit Subtraction, with borrowing 136 – 128 = 
2 to 2 to 2-digit Addition, with carrying 17 + 24 + 16 =  
2 to 2 to 2-digit Subtraction, with borrowing 53 – 18 – 16 = 
2 to 2 to 2-digit Mixed (+ -), with trading 48 + 23 – 32 =  



2 to 2 to 2-digit Mixed (- +), with trading 34 – 27 + 16 = 
3 to 3 to 3-digit addition, without carrying 132 + 125 + 102 = 
3 to 3 to 3-digit addition, with carrying 147 + 135 + 152 = 
3 to 3 to 3-digit subtraction, without borrowing 289 – 124 – 133 = 
3 to 3 to 3-digit subtraction, with borrowing 286 – 128 – 139 = 
3 to 3 to 3-digit Mixed (+ -), with trading 144 + 137 – 108 = 
3 to 3 to 3-digit Mixed (- +), with trading 157 – 148 + 116 = 
1 to 1 Multiplication (1) 4 x 6 = 
2 by 1 Division, without residual 42 ÷ 6 = 

 

1.3 Problem types of the Test for Primary 3 

Problem Type Example 
3 to 3-digit Addition, with carrying 157 + 165 = 
3 to 3-digit Subtraction, with borrowing 136 – 128 = 
2 to 2 to 2-digit Addition, with carrying 17 + 24 + 16 =  
2 to 2 to 2-digit Subtraction, with borrowing 53 – 18 – 16 =  
2 to 2 to 2-digit Mixed (+ -), with trading 48 + 23 – 32 =  
3 to 3 to 3-digit addition, with carrying 147 + 135 + 152 = 
3 to 3 to 3-digit subtraction, with borrowing 297 – 128 – 139 = 
3 to 3 to 3-digit Mixed (+ -), with trading 238 + 323 – 452 = 
3 to 3 to 3-digit Mixed (- +), with trading 157 – 148 + 116 = 
2 to 1 Multiplication, without carrying 12 x 4 = 
2 to 1 Multiplication, with carrying 14 x 6 = 
3 to 1 Multiplication, without carrying 232 x 3 = 
3 to 1 Multiplication, with carrying 146 x 6 = 
2 by 1 Division, without residual 42 ÷6 = 
2 by 1 Division, with residual 47 ÷8 = 
3 by 1 Division, without residual 182 ÷7 = 
3 by 1 Division, with residual 206 ÷ 6 = 
2 to 1 to 1-digit Mixed (+ x), with trading 24 + 8 x 7 = 
2 to 1 to 1-digit Mixed (- x), with trading 64 – 9 x 3 = 
2 to 2 to 1-digit Mixed (+ ÷), with trading 48 + 72 ÷ 8 = 
2 to 2 to 1-digit Mixed (-  ÷), with trading 42 – 35 ÷ 7 = 

 

 

 

 

 

 

 



2. Squares Span.  

 

 

 

 

 

 

Example of Squares Span with Span length of 2  
(G = Colored in Green) 

 

3. Crossing Out Task 

目標字  例子            
1  

 
 1 2 7 4 1 3 2 1 5 2 1 8 

              

9  
 1 9 3 1 7 9 4 8 9 1 6 5 

              

7  
 9 1 7 6 9 7 5 2 9 3 7 8 

 

4. Missing Item Task 

3 + 4 = A = 2 + B  B=  
  
6 + 2 = A = 5 + B  B=  
  
8 + 2 = A = 6 + B  B=  
  
7 + 4 = A = 8 + B  B=  

Remarks 
“A” is an oral response where  
“B” is a written response 

 

 

 

After
1 sec 

G

G



5. Operation Span 

Normal Version 

 
2 + 3 = a1 
4 + 5 = a2 
Recall a1, a2 
 
4 - 1 = b1 
6 + 3 = b2 
7 - 5 = b3 
Recall b1, b2, b3 
 
3 + 8 = c1 
9 - 3 = c2 
1 + 7 = c3 
6 + 5 = c4 
Recall c1, c2, c3, c4 

Extended Version 

 
2 + 3 + 1 - 0 = a1 
4 + 5 + 0 - 1= a2 
Recall a1, a2 
 
4 - 1 - 1 + 0= b1 
6 + 3 - 0 + 1= b2 
7 - 5 - 1 + 0= b3 
Recall b1, b2, b3 
 
3 + 8 + 0 - 1= c1 
9 - 3 + 0 - 1= c2 
1 + 7 + 0 - 1= c3 
6 + 5 - 0 + 1= c4 
Recall c1, c2, c3, c4 
 

 

6. Digit Representation. 

 Correct Response Incorrect Response 

453 

50 (Written) 
 
“Five-Ten”  
(Representing fifty orally)  

5 (Written) 
 
“Five” (orally) 

 

2798 

 

 
700 (Written) 
 
“Seven-hundred” (orally) 

 
70 (Written) 
 
“Seven-Ten”  
(Representing seventy orally) 

  

7. Problem-pair Comparison 

2 x 8  
 

8 x 2 

45 + 26 + 17   
 

45 + 17 + 26 

47 - 31 + 25 (Foil) 
 

31 – 25 + 47  

61 + 43 (Foil) 61 – 43 
 

 



8. Hinted Calculations.  

Additive Commutativity 
 

23 + 65 = 88 
 

65 + 23 =  

42 + 13 + 27 = 82 
 

27 + 42 + 13 =  

34 + 21 + 17 = 72 (Foil) 
 

31 + 22 + 19 = 

28 + 12 – 37 = 3 (Foil) 
 

37 + 12 – 28 =  

 
Inversion 

 
41 + 23 = 64 
 

64 - 23 =  

45 – 23 = 22 
 

45 – 22 =  

46 – 12 = 34 (Foil) 
 

34 – 12 =  

 
Reversal 

 
54 – 37 = 17 
 

54 - 17 =  

57 – 24 = 33   
 

58 – 33 =   

16 + 18 = 34  (Foil) 
 

16 + 34 =  

 
Operand-plus/minus-one 

 
24 + 47 = 71  
 

24 + 48 =  

44 – 26 = 18   
 

44 – 25 =   

 
Operand-plus/minus-ten 

 
21 + 34 = 55   
 

21 + 44 =  

42 + 21 = 63   
 

52 + 21 =  

 


