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ABSTRACT 

 

Hybrid FRP-concrete-steel double-skin tubular columns (DSTCs) are a new form 

of hybrid columns recently proposed by Prof. J.G. Teng of The Hong Kong 

Polytechnic University. The column consists of an outer tube made of 

fiber-reinforced polymer (FRP) and an inner tube made of steel, with the space 

between filled with concrete. In this new hybrid column, the three constituent 

materials are optimally combined to achieve several advantages not available with 

existing columns. This thesis presents a combined experimental and theoretical 

study aimed at developing a good understanding of the structural behavior of and 

reliable design methods for this new hybrid column to facilitate its acceptance in 

practical applications. 

 

The first phase of the research was experimental, involving laboratory tests of 

DSTC specimens under axial compression, bending and eccentric compression to 

study the compressive, flexural and beam-column behavior of the new hybrid 

column. In addition to axial compression tests on short DSTCs, tests were also 

conducted on stub columns of circular solid and annular concrete sections 

confined with an outer FRP tube to gain a better understanding of how the three 
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components in a DSTC interact under axial compression. The test results have 

confirmed that the concrete in the new column is very effectively confined by the 

two tubes and local buckling of the inner steel tube is either delayed or suppressed 

by the surrounding concrete, leading to a very ductile response. The test results 

have also shown that the new DSTC is very ductile under both flexure and 

combined flexure and axial compression. The bending tests showed that when the 

new section form is employed as a beam, the outer FRP tube not only enhances 

the structural behavior by providing confinement to the concrete but also provides 

a significant contribution to the shear resistance. 

 

Apart from the experimental study, finite element (FE) analysis of hybrid DTSCs 

under axial compression was also conducted. Existing Drucker-Prager (D-P) type 

concrete plasticity models for confined concrete were first critically assessed. It 

was found that D-P type plasticity models lead to reasonable predictions for both 

actively- and passively-confined concrete (e.g. FRP-confined concrete) only if the 

flow rule is suitably related not only to the confining pressure but also to the rate 

of increment of the confining pressure. A constitutive concrete model which takes 

into account the conclusions drawn from the assessment of existing D-P type 

models and other distinct characteristics of non-uniformly confined concrete was 

then proposed and verified with test results. A parametric study was next 

conducted using a finite element analysis incorporating the proposed constitutive 
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model, from which a simple one-dimensional stress-strain model for the concrete 

in DSTCs for design use was formulated.  

 

Making use of the proposed one-dimensional stress-strain model for the concrete 

in DSTCs, a simple theoretical method based on section analysis was also 

developed for DSTCs under flexure or combined axial compression and flexure. 

The section analysis method was then verified with test results and used in a 

parametric study to examine the beam-column behavior of hybrid DSTCs. 
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NOTATION 

 

A, B, C constants used in the yield criterion of the CDPM in ABAQUS 

[ ]A  extensional stiffness matrix of an FRP laminate 

[ ]B  coupling stiffness matrix of an FRP laminate 

1C  a constant used in Mander et al.’s (1988) model  

2C  a constant used in Fam et al.’s (2003) model 

3C  a constant used in Karabinis and Kiousis’s (1996) model 

pC  a constant for the equivalent plastic strain 

d damage variable  

[ ]D  flexural stiffness matrix of an FRP laminate 

e
ijklD  initial (undamaged) elasticity matrix 

sD  outer diameter of a steel tube 

oD  outer diameter of a circular (or an annular) section 

e  loading eccentricity  

E1, E2 elastic moduli of an FRP laminate in two principal directions 

cE2  slope of the linear second portion of the stress-strain curve of for 
FRP-confined concrete in a column specimen 
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ecE2  slope of the linear second portion of the stress-strain curve for 
FRP-confined concrete in a beam-column specimen 

cE  elastic modulus of unconfined concrete 

Ef1, Ef2 elastic moduli of fibers in two principal directions 

frpE  elastic modulus of FRP  

Em elastic modulus of polymer  

pE , /
pE '

uf , '
yf parameters used in the models of Karabinis and his coauthors 

sE  elastic modulus of steel 

oEsec  secant modulus at the compressive strength of unconfined 
concrete 

F  yield function 

'
bf  compressive strength of concrete under biaxial compression 

'
ccf  compressive strength of FRP-confined concrete in a column 

specimen 

'*
ccf  peak stress of concrete under a specific constant confining 

pressure 

ccf  ultimate stress of FRP-confined concrete in a beam-column 
specimen, proposed in Fam et al. (2003) 

'
chf  unconfined concrete strength from hollow cylinder tests 

'
cof  unconfined concrete strength from standard solid cylinder tests 

'
cuf  ultimate stress of FRP-confined concrete in a column specimen 

'
cuof  stress corresponding to cuoε  

lf  maximum confining pressure provided by FRP 
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of  intercept of the stress axis by the linear second portion of the 
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CHAPTER 1 

INTRODUCTION 

 

1.1 HYBRID STRUCTURES INCORPORATING FIBER 

REINFORCED POLYMER 

In recent years, fiber reinforced polymer (FRP) composites have found 

increasingly wide applications in civil engineering, both in the retrofit of existing 

structures and in new construction. FRP composites consist of fibers embedded in 

polymeric resins, and possess several advantages over steel, including their high 

strength-to-weight ratio and excellent corrosion resistance. As a result, the use of 

FRP composites as externally bonded reinforcement for the retrofit of structures 

has become very popular in recent years (Teng et al. 2002; Teng et al. 2003). 

These same advantages can also be exploited in new construction, and indeed a 

large amount of research around the world is currently under way examining the 

performance of various forms of structures made of FRP composites alone (i.e. all 

FRP structures) or FRP composites in combination with other materials (i.e. 

hybrid structures). Examples include FRP bridge decks, concrete-filled FRP tubes 

as columns and piles, and FRP cables. 
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Compared with the two primary modern structural materials, namely steel and 

concrete, FRP composites also have some disadvantages. These include their 

relatively high cost, linear-elastic-brittle stress-strain behavior, low elastic 

modulus-to-strength ratio, and poor fire resistance. In retrofit applications, cost 

savings arise from a number of aspects that offset the higher material cost, but this 

is more difficult to achieve in new construction at the present. The low elastic 

modulus-to-strength ratio is not critical in retrofit applications as the FRP is 

generally used to resist tension. The poor fire performance is also not an acute 

problem in retrofit applications either because the structure is in the open space 

(e.g. bridges) or because the FRP is not required to make a substantial 

contribution to structural resistance during a fire. When FRP composites are 

deployed in new construction, the consequences of their weaknesses need to be 

minimized as in retrofit applications. Based on these considerations, it may be 

concluded that the successful application of FRP composites in new construction 

requires the following three criteria to be met: (a) cost effectiveness at least in 

terms of a life-cycle cost assessment; (b) FRP to be used in areas subject to 

tension as much as possible; (c) fire resistance to be non-critical. It should be 

noted that criterion (c) is easily met for bridge structures and other outdoor 

structures, while the first two requirements very often mean that FRP composites 

should be used in combination with other materials to form hybrid structures.  

 

Based on the above discussion, it is apparent that the area of hybrid structures 

should be a major research focus in the use of FRP composites in new 

construction. Within the area of hybrid structures, the aim shall be to optimally 

combine FRP with traditional structural materials such as steel and concrete to 
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create innovative structural forms that are cost-effective and of high-performance. 

To this end, simple duplications of existing structural systems are often 

inadequate. 

 

Various forms of hybrid structures incorporating FRP have been proposed by 

previous researchers. Examples of hybrid flexural members with FRP include the 

hybrid FRP-concrete beam/slab (Figure 1.1) introduced by Burgueno et al. (2004) 

in the USA, and the hybrid FRP-concrete beams (Figure 1.2) introduced by 

Nordin and Taljsten (2004) in Sweden. The former consists of a concrete-filled 

FRP tube at the bottom and a reinforced concrete slab at the top, while the latter 

consists of concrete cast on the flat top surface of an FRP profile. It is evident that 

although these two members take different forms, the FRP is placed in the tension 

side of the member, which is desirable as discussed above.  

 

The most popular example of hybrid compression members incorporating FRP is 

the concrete-filled FRP tube (CFFT) (Mirmiran and Shahawy 1997; Fam and 

Rizkalla 2001a, b; Hong et al. 2002; Zhang et al. 2000; Mirmiran 2003; Xiao 

2004), as shown in Figure 1.3. When a concrete-filled FRP tube is under 

compression, the concrete is subjected to axial compression and confinement from 

the outer FRP tube, which is consequently subjected to tension in the 

circumferential direction. As a result, a very ductile structural member is formed 

from two brittle materials, namely, FRP and concrete. In addition to good ductility, 

the advantages of simple concrete-filled FRP tubes include their lightweight and 

excellent corrosion resistance. With these advantages, concrete-filled FRP tubes 

have been proposed for use as bridge columns and piles. However, it is noted that 
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concrete-filled FRP tubes have a number of disadvantages particularly when used 

as building columns. These include poor fire resistance, difficulty for connection 

to beams, inability to support substantial construction loads, brittle failure in 

bending, and high cost as the tube needs to be relatively thick in order to resist 

axial loads. As a bridge column, although the fire resistance and connection 

problems are not significant, it still suffers from the other disadvantages 

mentioned above.  

 

1.2 HYBRID FRP-CONCRETE-STEEL TUBULAR COLUMNS 

1.2.1 Double-Skin Tubular Columns 

Double-skin tubular columns (DSTCs) are a variation of the conventional 

concrete-filled steel tubes which have been a common form of columns. The 

simplest form of concrete-filled steel tubes consists of a single hollow steel tube 

filled with concrete with or without internal steel reinforcing bars, while a 

double-skin tubular column consists of two generally concentric steel tubes with 

the space between filled with concrete (Figure 1.4). To the best of the authors’ 

knowledge, such double-skin tubes were first reported in late 1980s 

(Shakir-Khalil and Illouli 1987). Since then, much research has been conducted 

on these columns (e.g. Shakir-Khalil 1991; Wei et al. 1995a, b; Han et al. 1995; 

Yagishita 2000; Zhao et al. 2002; Tao et al. 2003; Han et al. 2004). The inner void 

reduces the column weight without significantly affecting the flexural rigidity of 

the section and allows the easy passage of service ducts. 
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More recently, double-skin FRP tubes consisting of two FRP tubes and an annular 

concrete infill have been also been studied by Fam and Rizkalla (2001b). This 

structural form possesses the advantages of both concrete-filled FRP tubes and the 

structural form of DSTCs, but it also suffers from all the deficiencies of 

concrete-filled FRP tubes. 

 

1.2.2 New Form of Hybrid Columns 

To overcome the existing disadvantages of concrete-filled FRP tubes, a new form 

of hybrid columns has recently been proposed by Prof. J.G. Teng of The Hong 

Kong Polytechnic University. The new column consists of a steel tube inside, an 

FRP tube outside and concrete in between (Figure 1.5). The inner void may be 

filled with concrete if desired. The FRP tube is provided with fibers which are 

predominantly oriented in the circumferential direction to provide confinement to 

the concrete and additional shear resistance. The new column form is an attempt 

to combine the advantages of all three constituent materials and those of the 

structural form of DSTCs, so as to achieve a high-performance structural member. 

While such a member may be used as a beam, its advantages are most obvious 

when used as a column so this new member may also be conveniently referred to 

as a hybrid FRP-concrete-steel double-skin tubular column (hybrid DSTC). 

 

The novel feature of the new column form compared to existing forms of DSTCs 

is that the inner tube is made of steel but the outer tube is made of FRP with fibers 

oriented mainly in the hoop direction to provide confinement to the concrete for 

enhanced ductility. This simple change to the existing DSTC forms offers many 
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advantages, leading to a column which is easy to construct and highly resistant to 

corrosion and earthquakes. Direct comparisons can be made with a steel-concrete 

DSTC or an FRP-concrete DSTC.  

 

Compared to the steel-concrete DSTC, the advantages of the new hybrid column 

include:  

(a) A more ductile response of concrete as it is well confined by the FRP tube 

which does not buckle. As mentioned above, the FRP tube is designed to have 

predominantly hoop fibers with its axial stiffness being nearly zero; by doing 

so, local buckling of the FRP tube due to axial compressive stresses, which is 

a common problem for steel tubes, is unlikely to happen. 

(b) No need for fire protection of the outer tube as the outer tube is required only 

as a form during construction and as a confining device and additional shear 

reinforcement during earthquakes. The FRP tube with negligible axial 

stiffness contributes little to the load-carrying capacity of the hybrid member 

and is not expected to affect the structural resistance during a fire. However, 

the outer steel tube of a steel-concrete DSTC takes considerable axial loading, 

and when its structural resistance is lost during a fire, the structural safety of 

the column is considerably compromised.  

(c) No need for corrosion protection as the steel tube inside is well protected by 

the concrete and the FRP tube. FRP, however, has excellent corrosion 

resistance. 

  

Compared to the FRP-concrete DSTC, the advantages of the new hybrid column 

include:  
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(a) Ability to support construction loading through the use of the inner steel tube. 

A steel tube is superior to an FRP tube in taking construction loading, as the 

latter is more susceptible to a buckling failure.  

(b) Ease for connection to beams due to the presence of the inner steel tube, which 

enables existing connection forms to be directly used.  

(c) Savings in fire protection cost as the outer tube is required only as a form 

during construction and as a confining device and additional shear 

reinforcement during earthquakes.  

(d) Better confinement of the concrete as a result of the increased rigidity of the 

inner tube.  

 

Similarly, the new hybrid column also has significant advantages over other 

composite/hybrid columns including concrete-filled steel tubes, concrete-filled 

FRP tubes and concrete-encased steel columns in many applications. 

 

The section form shown in Figure 1.5(a) consists of two circular tubes, but many 

different combinations of tubes are possible. Figures 1.5(b) and 1.5(c) show some 

of such variations. The section form can also be employed in a beam, in which 

case the inner steel tube may be shifted towards the tension side (Figure 1.5(d)). It 

should be noted that if the column section with two concentric tubes is deployed 

in situations where axial compression does not dominate under service loading, 

the column should be provided with some longitudinal reinforcement to avoid the 

development of large tensile cracks. 
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1.3 OBJECTIVES, SCOPE AND LAYOUT OF THIS THESIS 

As the hybrid DSTC columns are a new form of structural members, no existing 

studies have dealt with their behavior and design.  

 

This thesis reports research carried out by the candidate over the last few years 

aimed at developing a good understanding of the structural behavior of and 

reliable design methods for this new form of hybrid columns. The thesis is mainly 

concerned with hybrid DSTCs with two concentrically placed circular tubes filled 

with concrete in between (Figure 1.5(a)), so hereafter the term “new hybrid 

DSTCs” or “hybrid DSTCs” is reserved for columns with a section shown in 

Figure 1.5(a) unless otherwise specified.  

 

For columns, their compressive behavior is obviously the most important. 

Moreover, columns are normally also subjected to bending due to lateral loads, so 

that their beam-column behavior is also important. The flexural behavior of 

columns also needs to be understood within the overall picture of the 

beam-column behavior of columns. Therefore, this thesis deals with the 

compressive, flexural, and beam-column behaviour of hybrid DSTCs. The 

flexural behaviour of hybrid beams with a section as shown in Figure 1.5(d) is 

also treated.   

 

The stress-strain behaviour of the confined concrete in this new form of hybrid 

structural members is the key to understanding their structural performance. To 

better understand the behaviour of concrete, it is important to understand how the 
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concrete is confined by the two tubes in these new columns and how the inner 

void and the steel tube affect the effectiveness of confinement. Direct 

comparisons of the behaviour of concrete between the new DSTCs, FRP-confined 

solid concrete cylinders (FCSC, see Figure 1.6(a)) and FRP-confined hollow 

concrete cylinders (FCHC, see Figure 1.6(b)) are presented in this thesis to clarify 

the differences and similarities. 

 

Based on the above considerations, the research work presented in this thesis was 

carried out with the following six specific objectives: 

 

(a) To obtain a good understanding of the compressive, flexural and beam-column 

behavior of hybrid DSTCs through experimental work; 

(b) To clarify the confinement mechanism for the concrete in such DSTCs, 

through comparative tests of different section forms; 

(c) To develop a finite element (FE) model for predicting the axial compressive 

behavior of hybrid DSTCs; 

(d) To develop a simple one-dimensional stress-strain model for the concrete in 

such DSTCs for section analysis; and 

(e) To develop a sectional analysis method for predicting the flexural and 

beam-column behavior of hybrid DSTCs. 

 

The research methodology adopted combines experimental investigations with 

theoretical modeling. The experimental program of the present study consisted of 

three series of tests: concentric compression tests, eccentric compression tests and 
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four-point bending tests to study the compressive behavior, beam-column 

behavior and flexural behavior of hybrid DSTCs. Comparative tests of DSTCs, 

FCHCs and FCSCs were also conducted to study the confinement mechanism of 

the concrete in hybrid DSTCs. These experimental results form a necessary basis 

for the theoretical modeling work. They also provide the means for verifying the 

theoretical models.  

 

Since the proposed hybrid section has three constituents, it is important to 

understand the interaction between them, which is difficult to achieve through 

experiments alone. To this end, a three dimensional FE model was developed to 

study the behavior of this hybrid section under concentric axial compression. As a 

first step, existing Drucker-Prager (D-P) type concrete plasticity models for 

confined concrete were assessed. A constitutive model which takes into account 

the conclusions drawn from the assessment of existing D-P type models and other 

distinct characteristics of non-uniformly confined concrete was then proposed and 

verified with test results. A parametric study using the verified FE model was then 

conducted, from which a simple one-dimensional stress-strain model for the 

concrete in DSTCs was formulated. A sectional analysis method employing this 

simple stress-strain model was then developed based on the so-called fiber 

element approach. The proposed sectional analysis method was verified with test 

results and then deployed to study the behavior of hybrid DSTCs under pure 

flexure and combined axial compression and flexure.  

 

The combined experimental and theoretical study is presented in this thesis in 8 

chapters, details of which are summarized below.  
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Chapter 2 presents an extensive literature review of topics related to the present 

study. It starts with a discussion of existing research on concrete-filled FRP tubes, 

including both experimental and theoretical investigations. The behavior and 

analytical modeling of FRP-confined concrete, which depend on the unique 

properties of FRP tubes, are focused on in this discussion. Existing research on 

the experimental behavior and theoretical modeling of double-skin tubular 

columns is also discussed. Available three-dimensional constitutive models for 

concrete are then summarized, with an emphasis on their ability to model confined 

concrete.  

 

Chapter 3 presents the experiment results of hybrid DSTCs subjected to 

concentric axial compression. Test results for two similar sections, namely, 

FCSCs and FCHCs, are also presented in this chapter. A brief introduction to the 

test program is first given. Details of the test specimens and the measured 

properties of the materials are then given. The main variables examined include 

the section configuration, the amount of FRP forming the outer tube, the type of 

the inner tube, and the inner void size. The procedure for the preparation of 

specimens is then described, including the formation of the mould for casting 

concrete and the wet-lay up process for forming the FRP tube. The test set-up and 

the instrumentation are next presented, followed by the experimental observations, 

results and discussions, with the focus being on the behavior of confined concrete 

and the steel tube. Based on the test results, comparisons are then made between 

the different types of sections. Through these comparisons, the effects of the key 

variables are clarified.  
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In Chapter 4, existing Drucker-Prager (D-P) type plasticity models for confined 

concrete are assessed. The effects of the three key components of a concrete 

plasticity model, namely, the yield criterion, the hardening rule and the flow rule, 

on the performance of the plasticity model in capturing the behavior of confined 

concrete, is assessed through a series of numerical tests. Conclusions are drawn 

from this assessment regarding the necessary attributes of a plasticity model for 

reasonable predictions of both actively- and passively-confined concrete (e.g. 

FRP-confined concrete). These conclusions also form the basis of the FE model 

for hybrid DSTCs presented in Chapter 5.  

 

Chapter 5 presents an FE model for hybrid DSTCs subjected to concentric axial 

compression. This chapter starts with a description of the adopted concrete 

constitutive model, which takes due account of the conclusions reached in Chapter 

4 and other distinct characteristics of non-uniformly confined concrete. The FE 

model is then presented in detail and verified with test results presented in Chapter 

3. Results from a parametric study using the verified FE model are next presented 

to explore the behavior of hybrid DSTCs under axial compression. Finally, a 

simple stress-strain model is proposed based on both the FE and the test results.  

 

Chapter 6 deals with the flexural behavior of hybrid DSTCs. Two series of four 

point bending tests are first presented. The test design, specimen details, material 

properties, preparation of specimens, test set-up and instrumentation are described 

in detail. The experimental results are next presented and discussed. The 

parameters examined in the experimental work include the section configuration, 
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the concrete strength, and the thicknesses of the steel tube and the FRP tube 

respectively. Finally, a sectional analysis method is presented. Comparisons 

between the predictions from the sectional analysis method and the test results 

confirm the accuracy of this method.  

 

The beam-column behavior of hybrid DSTCs is investigated in Chapter 7. 

Eccentric compression tests, during which the specimens were subjected to 

combined axial compression and bending, are first described in this chapter. The 

load eccentricity is the main test variable. Experimental results are then discussed, 

with particular attention to the behavior of the mid-height section of the specimen. 

The sectional analysis method presented in Chapter 6 is extended for the 

prediction of DSTCs under eccentric compression. Results from a parametric 

study conducted using this extended section analysis method are also presented.  

 

The thesis closes with Chapter 8, where the conclusions drawn from previous 

chapters are reviewed, and areas in need of further research highlighted. 
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Figure 1.1 Cross section of hybrid FRP/concrete beam/slab (Burgueno et al. 2004) 

 

 

 

Figure 1.2 Hybrid FRP-concrete beam (Nordin and Taljsten 2004) 
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Figure 1.3 Concrete-filled FRP tube (Website of Queen’s university, Canada) 

 

             
 

Figure 1.4 Double-skin steel tube (Zhao and Grzebieta 2002) 
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Figure 1.5 Typical sections of new hybrid double-skin tubular members 

 

 

Figure 1.6 Cross-sections of FCSCs and FCHCs 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

This chapter presents a review of existing knowledge pertinent to the new hybrid 

FRP-concrete-steel double-skin tubular column (DSTC). As pointed out in 

Chapter 1, existing structural forms that are closely similar to this new member 

form are concrete-filled FRP tubes (CFFTs) and two forms of DSTCs, including 

steel-concrete DSTCs and FRP-concrete DSTCs. Therefore, existing knowledge 

of these structural forms, including both experimental and theoretical findings, are 

reviewed in this chapter. In addition, previous research on the constitutive 

modeling of confined concrete is briefly summarized and commented on. This 

existing work provides the basis for the three dimensional finite element (FE) 

modeling work presented later in the thesis.  

 

The chapter starts with a discussion of previous research on CFFTs with or 

without an inner void. In these structural members, the concrete is confined by an 

FRP tube which has properties different from traditional confining materials such 

as steel. Consequently, FRP-confined concrete behaves differently from 

actively-confined concrete (i.e. concrete subject to constant confinement) or 
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steel-confined concrete. This different behavior has been widely investigated both 

experimentally and theoretically. In addition, the unique properties of the FRP 

tube are also important for a better understanding of the structural behavior of 

these members.  

 

Existing research on the structural performance of steel-concrete DSTCs and 

FRP-concrete DSTCs, with an emphasis on the concrete behavior in such hybrid 

sections, is then described. The concrete in these two types of hybrid members is 

subjected to constraints from both the inside and the outside, a situation which 

also exists in the new hybrid DSTC. Previous experimental work on these two 

DSTCs is introduced, followed by a summary of analytical modeling work.  

 

Existing constitutive models for confined concrete are described towards the end 

of this chapter; their unique characteristics are a particular focus of the discussions 

presented here. 

 

2.2 CONCRETE-FILLED FRP TUBES 

2.2.1 Introduction 

Fiber reinforced polymer (FRP) is composed of fibers embedded in a polymeric 

resin. In this section, the properties of FRP laminates, formed from a number of 

laminae with fibers oriented in different directions, are discussed based on 

available research. Both constitutive equations and standard test methods are 

described. Following this, the unique properties of FRP-confined concrete, 

together with existing analytical and design models, are presented. For simplicity, 
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hereafter in this chapter the term “FRP-confined concrete” is used to refer to 

concrete in circular solid cylinders confined with an FRP jacket, unless otherwise 

specified. 

 

2.2.2 FRP Laminates 

2.2.2.1 Constitutive equations 

It is widely acknowledged that the stress-strain behavior of FRP is predominantly 

linear elastic, especially when it is loaded in the direction of the fibers (Shao 2003; 

Daniel and Ishai 1994). Consequently, most of the previous research (e.g. Fam 

2000; Samaan 1997; Davol 1998; Flisak 2004; Bhide 2002; Becque 2000; Zhu 

2004) adopted a linear elastic constitutive law based on the lamination theory of 

FRP laminates.  

 

An FRP laminate (Figure 2.1(b)) is made up of two or more unidirectional 

laminae, which are plane (or curved) plies of unidirectional fibers in a matrix and 

stacked together at various orientations. The unidirectional lamina (Figure 2.1(a)) 

is an orthotropic material with the three principal material axes being in the 

direction of the fibers (longitudinal), normal to the fibers in the plane of the 

lamina (in-plane transverse), and normal to the plane of the lamina. Consequently, 

the mechanical analysis of FRP laminates generally includes two steps (Daniel 

and Ishai 1994): (i) micro-mechanical analysis to find the properties of a 

unidirectional lamina (a one-ply material) and (ii) macro-mechanical analysis to 

find the properties of an FRP laminate. 
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The micro-mechanical analysis of the in-plane elastic constants of a unidirectional 

lamina is based on the mechanical properties of the two constituents (i.e. fiber and 

polymer), their volume ratio and Eqns 2.1-2.4 shown below. 
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in which E1 and E2 are the elastic moduli of an FRP laminate in the two principal 

directions, 12ν  is the longitudinal Poisson’s ratio of an FRP laminate, and G12 is 

the in-plane shear modulus of an FRP laminate; Ef1 and Ef2 are the elastic moduli 

of fibers in the two principal directions; Gf12 is the shear modulus of fibers; 1fν  

is the longitudinal Poisson’s ratio of fibers; Em, Gm and mν are the elastic modulus, 

the shear modulus and the Poisson’s ratio of polymer respectively, and Vf and Vm 

are the volume ratio of fibers and polymer respectively.  

 

The in-plane stress-strain relationship of a one-ply FRP lamina can be expressed 

by Eqn 2.5.  
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The macro-mechanical analysis is based on the mechanical properties of the 

laminae, the stacking sequence and the lamination theory. The lamination theory 

leads to Eqn 2.10 for a laminate with an arbitrary structure (Figure 2.2). 
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Where,  

,xN  yN  and sN  are the resultant force in the laminate global x-direction per 

unit width, the resultant force in the laminate global y-direction per unit width, 

and the resultant shear force in the laminate global x-y plane per unit width 

respectively; 

xM , yM  and sM  are the resultant moment in the laminate global x-z plane per 

unit width, the resultant moment in the laminate global y-z plane per unit width, 

and the resultant twisting moment per unit width respectively; 

,0
xε  0

yε  and 0
sγ  are the strain components on a reference plane equidistant from 

the top and bottom of the laminate, in the laminate global coordinate system; 

,xκ  yκ  and sκ  are the laminate curvatures; 

[ ]A  is the extensional stiffness matrix, relating in-plane loads to in-plane strains; 
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[ ]B  is the coupling stiffness matrix, relating in-plane loads to curvatures and 

moments to in-plane strains; 

[ ]D  is the flexural stiffness matrix, relating moments and curvatures. 

 

[ ]A , [ ]B  and [ ]D  can be obtained through the lamination theory, based on the 

properties of each lamina and the stacking sequence (see Daniel and Ishai 1994). 

 

As special cases, a laminate is referred to as a symmetric laminate when for each 

ply on one side of the reference plane (i.e. the middle plane) there is a 

corresponding ply at an equal distance from the reference plane on the other side 

with an identical thickness, fiber orientation and properties; a laminate is called a 

cross-ply laminate when it only consists of plies with principal material axes 

coinciding with the laminate axes; a laminate is called a balanced laminate when it 

consists of pairs of plies with identical thicknesses and elastic properties but has 

+θ  and -θ  orientations of their principal material axes with respect to the 

laminate reference axes. For a symmetric laminate, the coupling stiffness matrix B 

is zero; for a cross-ply or balanced laminate, 0== sysx AA . Therefore, for a 

symmetric balanced or symmetric cross-ply laminate, Eqn 2.11 can be obtained, 

which is very similar to that of an orthotropic material.   
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The effective engineering constants (i.e. elastic modulus, Poisson’s ratio, shear 

modulus) can then be easily defined for such laminates.  
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In existing research (Hahn and Tsai 1973; Lifshitz 1988; Haj-Ali and Kilic 2002; 

Yuan et al. 2002; Shao 2003; ASTM D3518/D3518M-94 1994), deviations from 

linearity were observed when FRP was loaded under in-plane transverse loading 

and in-plane shear, although the linear elastic behavior of fibers is generally the 

dominant behavior in the response of unidirectional FRP materials loaded in the 

direction of the fibers (Shao 2003; Daniel and Ishai 1994). The non-linearity of 

FRP under in-plane shear is much more significant than that of FRP under 

in-plane transverse loading.  

 

2.2.2.2 Test methods 

The classical lamination theory provides a feasible method to evaluate the 

mechanical properties of FRP tubes. This theory, however, involves complicated 

calculations for FRP laminates, especially those with asymmetric unbalanced 

laminate structures. In addition, non-linear behavior may be dominant for FRP 

tubes with angle-ply laminate structures, which cannot be predicted by the 

lamination theory. Moreover, some previous research (e.g. Fam 2000) showed 

that the error of predictions of the lamination theory may be up to 40% for the 

ultimate strength, up to 25% for the elastic modulus and up to 50% for the 

Poisson’s ratio. Therefore, standard material tests are important for more accurate 

evaluation of the mechanical properties of FRP tubes.  

 

The most popular test standards for the tensile properties of FRP appear to be 

ASTM D3039/D3039M-00 (2000) and ASTM D2290-00 (2000), or the earlier 

versions of these two standards. ASTM D3039/D3039M-00 (2000) provides a test 
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method for the tensile properties of FRP using flat coupon tests. A typical test 

sample following this standard is shown in Figure 2.3(a). ASTM D2290-00 (2000) 

provides a test method for the tensile properties of an FRP ring through the split 

disk method (i.e. ring splitting tests). A typical test sample following this standard 

is shown in Figure 2.3(b). Lam and Teng (2004) compared results from flat 

coupon tests and ring splitting tests and concluded that the ultimate strength 

obtained by the ring splitting test is in general lower than that obtained from the 

corresponding flat coupon test, mainly due to the effect of curvature. Despite the 

difference in the ultimate strength, Lam and Teng (2004) also found that the 

elastic moduli obtained from these two test methods are almost the same.  

 

The most popular test standards for the compressive properties of FRP include 

ASTM D3410/D3410M-95 (1995) which provides a test method for the 

compressive properties of FRP through shear loading tests, and ASTM D695-02a 

(2002) which is specifically for rigid plastics, or the earlier versions of these two 

standards.  

 

In the present research, the FRP tubes used had all the fibers oriented in the hoop 

direction. Consequently, only the tensile properties of FRP in the hoop direction 

were of interest. Flat coupon tests following ASTM D3039/D3039M-00 (2000) 

were conducted as described in the following chapters.  
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2.2.3 FRP-Confined Concrete  

2.2.3.1 Introduction 

Extensive research has been conducted on the compressive strength and 

stress-strain behavior of FRP-confined circular concrete cylinders (e.g. Fardis and 

Khalili 1981; Mirmiran and Shahawy 1996; Saafi et al. 1999; Fam and Rizkalla 

2001a, b; Toutanji 1999; Xiao and Wu 2000; Lam and Teng 2003a; Teng et al. 

2006a, b), through experimental work, theoretical analysis or FE analysis. The 

following unique properties have emerged from existing research on 

FRP-confined concrete: (1) due to the linear elastic behavior of FRP, the concrete 

is subjected to a continuously increasing confining pressure provided by the FRP 

jacket, and reaches its ultimate state by the hoop rupture of FRP when its tensile 

strength is reached; this is different from concrete under a constant active 

confining pressure and that confined by a steel tube which provides an almost 

constant confinement after yielding; (2) the axial stress-strain curve of 

FRP-confined concrete exhibits an approximately bilinear shape with a 

continuously increasing axial stress until ultimate failure (Figure 2.4(a)) when the 

level of confinement from the FRP jacket is sufficiently large, but otherwise has a 

descending branch following the initial ascending branch (Figures 2.4(b) and (c)); 

(3) the behavior of FRP-confined concrete, including its stress-strain curve and 

ultimate state, depends strongly on the stiffness of FRP and the column size, 

among other parameters. 

 

Many stress-strain models have been proposed for predicting the behavior of 

FRP-confined concrete based on test results, including design-oriented models in 
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closed-form expressions (e.g. Lam and Teng 2003a) and analysis-oriented models 

(e.g. Teng et al. 2006a) which predict stress-strain curves by an incremental 

procedure (Teng and Lam 2004; Teng et al. 2006a). 

 

2.2.3.2 Design-oriented model 

Design-oriented models are based on the interpretation of experimental results and 

regression analysis, and adopt closed-form equations to express the stress-strain 

curve. Consequently, the accuracy of these equations depends on whether the test 

database is reliable and sufficiently large, and whether the variables selected for 

inclusion in the closed-form equations are reasonable and sufficient to reflect the 

mechanical behavior of FRP-confined concrete. Some typical stress-strain models 

of this category include those presented in Lam and Teng (2003a), Xiao and Wu 

(2000), Toutanji (1999), Saffi et al. (1999), and Samaan et al. (1998).  

 

Different researchers adopted different approximations to a typical bilinear 

stress-strain curve. Examples include Xiao and Wu’s (2000) model which 

approximates the bilinear curve using two straight lines, Toutanji’s (1999) model 

and Saafi et al.’s (1999) model which approximates the bilinear curve using two 

curved lines, and Samaan et al.’s (1998) model which approximates the bilinear 

curve using a single equation of complex form. In particular, Lam and Teng’s 

(2003a) model describes the typical bilinear stress-strain curve using a parabola 

for the first portion and a straight line for the second portion, with the various 

parameters being dependent on the FRP properties. The parabola is similar to that 

in stress-strain equations for unconfined concrete in codes of practice such as BS 

8110 (1997) and Eurocode 2 (1991), and is thus familiar to engineers. In addition, 
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Lam and Teng (2003a) selected suitable variables for the proposed equations, 

based on a large database containing the test results of 76 FRP-confined 

specimens. Test results of FRP-confined circular concrete cylinders can be closely 

predicted by Lam and Teng’s (2003a) model, which is briefly presented below.  

 

Lam and Teng’s (2003a) design-oriented stress-strain model is based on the 

following assumptions: (i) the stress-strain curve consists of a parabolic first 

portion and a linear second portion; (ii) the slope of the parabola at zero axial 

strain (the initial slope) is the same as the elastic modulus of unconfined concrete; 

(iii) the nonlinear part of the first portion is affected to some degree by the 

presence of an FRP jacket; (iv) the parabolic first portion meets the linear second 

portion smoothly (i.e. there is no change in slope between the two portions where 

they meet); (v) the linear second portion terminates at a point where both the 

compressive strength and the ultimate axial strain of confined concrete are 

reached.  

 

Based on these assumptions, Lam and Teng’s (2003a) stress-strain model for 

FRP-confined concrete is described by the following expressions: 

( ) 2
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4 c
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cc
ccc f

EEE εεσ
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−=    for   tc εε <≤0            (2.12)             

and 

ccoc Ef εσ 2+=      for    cuct εεε ≤≤              (2.13) 

where cσ  and cε  are the axial stress and the axial strain, cE  is the elastic 

modulus of unconfined concrete, cE2  is the slope of the linear second portion, 
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of  is the intercept of the stress axis by the linear second portion, and cuε  is the 

ultimate axial strain of confined concrete. The parabolic first portion meets the 

linear second portion with a smooth transition at tε  which is given by 
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=ε                         (2.14)  

The slope of the linear second portion cE2  is given by 
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where '
ccf  is the compressive strength of confined concrete.  

This model allows the use of test values or values specified by design codes for 

the elastic modulus of unconfined concrete cE  . For example, it is suggested in 

ACI 318-95 (1999) that the elastic modulus of unconfined concrete 

'4730 coc fE = . Lam and Teng (2003a) proposed that of  be equal to the 

compressive strength of unconfined concrete '
cof , Eqn 2.16 be used to predict the 

ultimate axial strain cuε , and Eqns 2.17 and 2.18 be used to predict the 

compressive strength of FRP-confined concrete '
ccf .   
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where frpE  is the elastic modulus of FRP in the hoop direction, frpt  is the 

thickness of the FRP jacket, ruph,ε  is the hoop strain of FRP at the rupture of the 
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jacket due to hoop tensile stresses, oR  is the outer radius of the confined concrete 

core, oEsec  and coε  are the secant modulus and the axial strain at the 

compressive strength of unconfined concrete, with cocoo fE ε/'
sec = . The term 

)/( sec oofrpfrp REtE  is referred to as the confinement stiffness ratio and coruph εε /,  

is the strain ratio. lf  is the maximum confining pressure provided by an FRP 

jacket which is defined by 

              
o

ruphfrpfrp
l R

tE
f ,ε
=                         (2.19)               

The ratio of maximum confining pressure to unconfined concrete strength '
l / coff  

has been commonly referred to as the confinement ratio.  

 

Teng et al. (2006b) refined Lam and Teng’s (2003a) model based on additional 

test data and proposed the following equations for '
ccf  and cuε . 
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where )/( sec oofrpfrpK REtE=ρ  is the confinement stiffness ratio and 

coruph εερε /,=  is the strain ratio.  

 

With these refinements, the modified version of Lam and Teng’s (2003a) model 

provides closer predictions of test stress-strain curves than the original model, 

especially for concrete confined by a relatively weak FRP tube.  
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2.2.3.3 Analysis-oriented model 

While design-oriented models are given in closed-form expressions which are 

derived directly from test results, analysis-oriented models consider the responses 

of the concrete and the FRP jacket as well as their interaction in an explicit 

manner. Analysis-oriented models provide a unified treatment of both 

well-confined concrete with a bilinear stress-strain curve and weakly-confined 

concrete with a stress-strain curve featuring a descending branch, and can 

potentially be used to predict the behavior of concrete confined with other 

materials (Teng et al. 2006a). These features make analysis-oriented models more 

versatile and powerful than design-oriented models (Teng et al. 2006a). While 

some of the models (e.g. Becque et al. 2003) are based on alternative methods, 

most of the analysis-oriented models (e.g. Teng et al. 2006a; Fam and Rizkalla 

2001a; Mirmiran and Shahawy 1996; Spoelstra and Monti 1999) are based on an 

active confinement model for concrete, force equilibrium and displacement 

compatibility in the radial direction between the concrete core and the FRP jacket. 

The accuracy of this category of models consequently depends on whether the 

active confinement model is appropriate, whether the relationship between the 

axial and the lateral strains of concrete is accurate and whether the failure criterion 

is reliable. Becque et al.’s (2003) model is based on Gerstle’s (1981a, b) 

octahedral stress-strain model with some modifications, and is discussed later in 

Subsection 2.2.4.  

 

The common procedure of this kind of models for developing axial stress-strain 

curves is: (1) for a given axial strain of concrete, find the corresponding lateral 

strain; (2) based on the force equilibrium and the displacement compatibility in 
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the radial direction between the concrete core and the FRP jacket, find the 

corresponding lateral pressure; (3) based on the axial strain and the obtained 

lateral pressure, find the axial stress using an active confinement model, and thus 

obtain a point on the stress-strain curve; (4) repeat steps (1)-(3) and develop the 

whole curve.  

 

Although most existing analysis-oriented models (e.g. Teng et al. 2006a; 

Mirmiran and Shahawy 1996; Spoelstra and Monti 1999; Fam and Rizkalla 2001a) 

employ Mander et al.’s (1988) model, which was originally proposed for 

steel-confined concrete, as the active confinement model, different models employ 

quite different methods for step (1) (i.e. to find the lateral strain corresponding to 

an axial strain). This also produces the most significant differences between the 

various models. 

 

Some researchers (e.g. Spoelstra and Monti 1999) adopted an implicit and 

iterative method for step (1), which appears to be very complex and 

time-consuming. As an improvement, some researchers (e.g. Teng et al. 2006a; 

Mirmiran and Shahawy 1996) proposed an explicit equation for the relationship 

between the axial strain and the lateral strain, with the variables in this equation 

being material properties such as the confinement stiffness and the strength of 

FRP. Teng et al.’s (2006a) analysis-oriented model is the latest one based on a 

large test database of concrete under different types of confinement, namely, 

active confinement and passive confinement (i.e. FRP confinement and steel 

confinement). Teng et al’s (2006a) model has shown good agreement with 

numerous test results and is briefly presented below.  
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Eqn 2.22 was proposed by Teng et al. (2006a) for the relationship between the 

axial strain and the lateral strain. 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
Φ

co

l

.

co

l
'

co

l

co

c

co

l exp..
f ε

ε
ε
εσ

ε
ε

ε
ε 7750185081

70

  (2.22) 

where lσ  is the confining pressure and can be related to the lateral strain lε  by 

o

lfrpfrp
l R

tE ε
σ −= . The axial strain cε  and the lateral strain lε  are the only two 

variables in this equation with their relationship being implicit.  

 

With Eqn 2.22, the axial stress-strain response of FRP-confined concrete can be 

predicted without difficulty following the procedure stated earlier, base on an active 

confinement model. Teng et al. (2006a) adopted the following axial stress-axial 

strain equation for the active confinement model, which was originally proposed 

by Popovics (1973) and used in Mander et al.’s (1988) model for steel-confined 

concrete.  
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where σc is the axial stress of concrete, '*
ccf  and *

ccε  are respectively the peak axial 

stress and the corresponding axial strain of concrete under a specific constant 

confining pressure. The constant 1C  in Eq. 2.23, approximately accounting for the 

brittleness of concrete, is defined in Carreira and Chu (1985) as 
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Teng et al. (2006b) also proposed Eqns 2.25 and 2.26 for the peak stress and 

strain, instead of the original equations adopted in Mander et al. (1988).   
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2.2.4 FRP-Confined Annular Concrete Cylinders 

As introduced in Subsection 2.2.3, test results of FRP-confined circular concrete 

cylinders can now be closely predicted by some of the existing stress-strain 

models such as those proposed by Lam and Teng (2003a) and Teng et al. (2006a). 

However, the behavior of FRP-confined concrete in sections other than circular 

sections is not yet well understood. In non-circular FRP-confined sections such as 

annular sections, the concrete is non-uniformly confined. Only a very limited 

amount of research is available on the behaviour of FRP-confined concrete in 

annular sections (e.g. Fam and Rizkalla 2001a, b; Becque et al. 2003). 

 

Fam and Rizkalla (2001b) reported the test results of four FRP-confined hollow 

concrete cylinders (FCHCs) and showed that FRP confinement is less effective 

for concrete in FCHCs than for concrete in FRP-confined solid concrete cylinders 

(FCSCs). Fam and Rizkalla (2001b) also reported two tests on FRP-concrete 

DSTCs with both the inner and the outer tube being made of FRP. Such 

FRP-concrete DSTCs were reported to be superior to FCHCs in terms of the 

effectiveness of FRP confinement on the concrete, due to the existence of the FRP 

inner tube. It was also observed from the test results that corresponding to a given 
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axial strain, the lateral strain of an FRP-concrete DSTC specimen is lower than 

that of the corresponding FCSC specimen but is higher than that of the 

corresponding FCHC specimen. However, the effect of many parameters which 

may affect the behavior of FCHCs and DSTCs were not clarified by these limited 

test results.  

 

Fam and Rizkalla (2001a) and Becque et al. (2003) presented their attempts to 

model FCHCs and FRP-concrete DSTCs. These models were shown to provide 

reasonable predictions of the limited test results and are summarized below. 

 

Fam and Rizkalla (2001a) adopted the same procedure as that for FRP-confined 

circular concrete cylinders (see Subsection 2.2.3.3) to develop the stress-strain 

curve of FRP-confined concrete in an annular section. Fam and Rizkalla (2001a) 

proposed the following equation for steps (1) and (2) of this procedure, based on 

the linear elasticity theory:  
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where oR  and iR  are the outer radius and the inner radius of the annular section 

respectively, and cν  is the Poisson’s ratio of concrete. Fam and Rizkalla (2001a) 

related the Poisson’s ratio of confined concrete to the axial strain and the 

confining pressure based on test results of actively-confined and unconfined 

concrete presented in Gardner (1969). 
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Fam and Rizkalla (2001a) adopted the lσ  value found through Eqn 2.27 for a 

given axial strain, and subsequently found the axial stress of the annular section 

based on Mander et al.’s (1988) active confinement model. By doing so, it was 

implicitly assumed that the confining stress and consequently the axial stress are 

uniform over the annular section. This is not consistent even with the results from 

the linear elasticity theory adopted to produce Eqn 2.27, as is shown later in 

Chapter 3. In addition, the equation for cν  in this paper is based on the test 

results of actively-confined concrete, and its validity for FRP-confined concrete 

has not been appropriately justified. In Chapter 3, it is shown that Fam and 

Rizkalla’s (2001a) analysis-oriented model does not provide reasonable 

predictions of the results of FCHC specimens tested in the present research. 

 

Becque et al.’s (2003) analysis-oriented model employs Gerstle’s (1981a, b) 

octahedral stress-strain model with some modifications for FRP-confined concrete 

in a circular or an annular section. For FCHCs, it was assumed that the concrete 

stress remains constant when the axial strain exceeds the value of 0.004. This is 

not consistent with the test results from the present study as shown in Chapter 3. 

In addition, Becque et al. (2003) neglected the effect of the coupling modulus, 

which accounts for the experimental observation that the deviatoric stress causes a 

decrease in volume. This may cause considerable errors when the hydrostatic 

pressure is large. Furthermore, it is necessary to always assume a stress increment 

at the first step for a given confining pressure when developing the stress-strain 

curve through the octahedral model. By doing so, the descending branch of 

concrete stress-strain curves cannot be predicted. Becque et al.’s (2003) model 

also implicitly assumes a uniform axial stress over the annular section, which is 
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thus incapable of accounting for the variation of stresses over the section and does 

not reflect the true behavior. In Chapter 3, it is shown that Becque et al.’s (2003) 

analysis-oriented model does not provide reasonable predictions of the results of 

the FCHC specimens tested in the present research. 

 

2.2.5 Beam-Column Behavior  

The beam-column behavior of concrete-filled FRP tubes (CFFTs) has also been 

extensively investigated (e.g. Flisak et al. 2001; Parvin and Wang 2001; Davol et 

al. 2001; Fam and Rizkalla 2002; Fam et al. 2003; Mirmiran et al. 1999). The 

experimental work presented in these papers includes pure bending tests (e.g. Fam 

and Rizkalla 2002), eccentric compression tests (e.g. Flisak et al. 2001; Parvin and 

Wang 2001; Fam et al. 2003) and tests of CFFTs under a constant axial load and a 

monotonically increased lateral load (e.g. Mirmiran et al. 1999).  

 

While some researchers directly adopted the stress-strain curve of FRP-confined 

concrete obtained from axial compression tests for the modeling of beam (and 

beam-column) specimens (e.g. Davol et al. 2001), other researchers (e.g. Fam and 

Rizkalla 2002; Fam et al. 2003; Mirmiran et al. 1999) found from their 

experiments that the confining effectiveness is lower in beam (and beam-column) 

specimens than in column specimens. Consequently, they recommended to adopt 

different stress-strain curves for the confined concrete in column and beam (and 

beam-column) specimens.  
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Fam et al. (2003) suggested that the stress-strain curve of unconfined concrete 

should be adopted for the concrete in the compression zone when a CFFT 

specimen is under pure flexure. When a CFFT specimen is under axial 

compression, the stress-strain model proposed by Fam and Rizkalla (2001a) was 

suggested for use. When a CFFT specimen is under eccentric compression, a 

so-called variable confinement model was recommended (Eqns 2.28-2.30) which 

produces stress-strain curves lying between that for column specimens and that of 

unconfined concrete which was proposed for use in modeling beam specimens 

(Figure 2.5). The proposed variable confinement model for the concrete in 

beam-column specimens is represented by Eqn 2.28, which is similar to Eqn 2.23.  
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with the ultimate stress ccf  and strain ccε  being defined as follows: 
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where )/( sec1 occ EEEC −= ; oEsec is the secant modulus of unconfined concrete 

and can be estimated by cocof ε/' . cuoε  is the ultimate strain of unconfined 

concrete for beam specimens which is assumed to be equal to the ultimate 

compressive strain of the FRP tube;  '
cuof  is the stress corresponding to cuoε ; 

'
ccf  and cuε  are the ultimate concrete stress and strain for column specimens; 

oD  and e  are the outer diameter of the CFFT specimens and the loading 

eccentricity; 2C  can be calculated when ccf  and ccε  are found.  
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Mirmiran et al. (1999) noticed that the effect of confinement increased with the 

level of axial load and suggested that the strain hardening of concrete, i.e. the 

slope of the linear second portion of the stress-strain curve of confined concrete 

cE2 , is a function of the axial load level. An upper bound of cE2  was set to be 

equal to that of the confined concrete in a CFFT column specimen and a lower 

bound of cE2  was set to be equal to zero. Rochette and Labossiere (1996) also 

proposed a lower bound of 0 for cE2 . A similar approach was suggested by Ziara 

et al. (1995) for conventional RC beams with considerable transverse 

reinforcement.  

 

2.3 DOUBLE-SKIN TUBULAR COLUMNS 

2.3.1 Introduction 

Extensive research has been carried out on double-skin tubular columns (DSTCs), 

both on steel-concrete DSTCs (e.g. Zhao et al. 2002; Zhao and Grzebieta 2002; 

Elchalakani et al 2002; Wei et al. 1995a, b; Han et al. 1994; Tao et al. 2002) and 

FRP-concrete DSTCs (e.g. Fam and Rizkalla 2001b; Becque et al. 2003; Fam and 

Rizkalla 2002). While some of the research was concerned with the beam-column 

behavior (e.g. Tao et al. 2002) or the flexural behavior of DSTCs (e.g. Fam and 

Rizkalla 2002), most of the research was focused on the concentric compressive 

behavior (e.g. Zhao et al. 2002; Zhao and Grzebieta 2002; Elchalakani et al 2002; 

Wei et al. 1995a, b; Han et al. 1994; Fam and Rizkalla 2001b; Becque et al. 2003). 

Cross sections with two concentrically placed circular tubes and with concrete 

filled between were investigated in most of existing studies (e.g. Wei et al. 1995a, 
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b; Han et al. 1994; Zhao et al. 2002; Fam and Rizkalla 2001b; Becque et al. 2003; 

Fam and Rizkalla 2002), although other sections have also been studied to a more 

limited extent (e.g. Tao et al. 2002; Elchalakani et al. 2002; Zhao and Grzebieta 

2002). Both experimental and theoretical research have been conducted. 

 

2.3.2 Experimental Behavior  

While some theoretical models were proposed for the prediction of DSTCs, most 

existing research has been experimental. The ultimate load of DSTCs and the 

buckling behavior of steel tubes (for steel-concrete DSTCs only) have been the 

two aspects of greatest concern in existing research. 

 

The conclusions drawn by different researchers on the load capacity of DSTCs are 

controversial. For steel-concrete DSTCs, Zhao et al (2002) suggested that the 

ultimate load of the hybrid member could be estimated by the sum of the section 

capacities of the unconfined concrete, the outer steel tube and the inner steel tube. 

However, Wei et al. (1995a, b) found from their experiments that the sum of the 

load capacity of each component could be increased by 10-30% in a DSTC. For 

FRP-concrete DSTCs, Fam and Rizkalla (2001b) found that the existence of an 

inner tube significantly increased the concrete strength.  

 

In most existing studies on steel-concrete DSTCs, steel tubes with a relatively 

small Ds/ts value (e.g. Ds/ts = 17-33 for the inner tube in Zhao et al. 2002) were 

adopted. Therefore, the “elephant foot” buckling mode was the most often 

observed mode of buckling failure when such tubes were tested under 
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compression. In this case, buckling normally took place after yielding. The axial 

deformation at the occurrence of buckling depends significantly on the Ds/ts value. 

Buckling occurs earlier in steel tubes with a relatively large Ds/ts value. For the 

steel inner tube of a steel-concrete DSTC, it was reported that buckling was 

delayed or prevented because of the restraint of concrete (e.g. Wei et al 1995a, b) 

and that the buckling mode changed from the “elephant foot” mode to a “distorted 

diamond” mode. Consequently, the axial deformation capacity of the steel tube 

was enlarged.  

 

2.3.3 Theoretical Modeling  

Various theoretical models were proposed for the prediction of the behavior of 

concrete in steel-concrete DSTCs (e.g. Wei et al 1995b; Han et al. 1994) or that in 

FRP-concrete DSTCs (e.g. Becque et al. 2003).  

 

Wei et al. (1995a) based their model on a previously proposed model for 

steel-confined solid concrete cylinders. It was assumed that there is no interaction 

between the concrete and the steel inner tube. This assumption may be suitable for 

steel-concrete DSTCs, as the dilation of steel-confined concrete becomes 

divergent after the yielding of the steel tube, and the outward expansion of the 

concrete thus becomes larger than that of the inner steel tube. However, for 

concrete confined with a strong FRP jacket, the ratio of the lateral strain to the 

axial strain may be less than 0.5 and interaction may exist between the concrete 

and the inner steel tube. Actually, such interaction was found in the tests of Fam 

and Rizkalla (2001b) on FRP-concrete DSTCs. In addition, Wei et al. (1995a) 
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made the assumption that the stresses, including the axial and the lateral stresses, 

are uniform over the section. This assumption is also undesirable as it has no 

theoretical basis and cannot account for the stress variation over the section. 

Therefore, although Wei et al.’s (1995a) model provided good predictions of his 

limited test results on steel-concrete DSTCs, its wide validity for such DSTCs is 

doubtful and it cannot be used for the prediction of other DSTCs (e.g. 

FRP-concrete DSTCs and hybrid DSTCs investigated in the present research).  

 

Han et al. (1994) based their model on the linear elastic theory. A Poisson’s ratio 

equal to 0.4 was adopted for concrete. However, it has been shown by many 

researchers (e.g. Teng et al. 2006a) that the Poisson’s ratio varies not only with 

the axial deformation but also with the confining pressure. In addition, Han et al.’s 

(1994) model suffers from the same problem as Wei et al. (1995a), since it is 

based on the assumption that no interaction exists between the concrete and the 

steel inner tube, and a uniform axial stress exists over the section. Becque et al.’s 

(2003) model also suffers from many problems as discussed in Subsection 2.2.4. 

 

It may be concluded from the above discussions that most existing research on 

DSTCs has been experimental and has been concerned with the overall structural 

behavior. The confining mechanism for the concrete in DSTCs has not yet 

received an in-depth treatment. All existing theoretical models cannot account for 

stress variations over the annular section. These models are not based on and do 

not lead to a good understanding of the behavior of concrete in DSTCs.  
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2.4 CONSTITUTIVE MODELS FOR CONCRETE 

2.4.1 Introduction 

The finite element (FE) method has frequently been employed to predict the 

results of experiments for hybrid structural members (e.g. concrete-filled FRP 

tubes), due to its capability of capturing complex stress variations within the 

entire member and predicting interactions between components. The success of an 

FE model depends significantly on the employment of an appropriate constitutive 

model for each constituent material. Many different concrete constitutive models 

have been published for the modeling of FRP-confined concrete, including 

plasticity models (e.g. Karabinis and Kiousis 1994, 1996; Karabinis and Rousakis 

2002; Oh 2002; Mirmiran et al. 2000; Lan 1998; Fang 1999; Mahfouz et al. 2001; 

Shahawy et al. 2000) and plastic-damage models (e.g. Luccioni and Rougier 2005; 

Huang 2005). Despite the inclusion of damage in some models (e.g. Luccioni and 

Rougier 2005; Huang 2005), all of these constitutive models involve concrete 

plasticity. The inclusion of plasticity in the concrete constitutive model is 

generally based on the experimental observation that concrete can flow like a 

ductile material under triaxial compression (Chen 1982). In this thesis, a material 

is defined to be under triaxial compression when it is subjected to equal confining 

pressures in two lateral directions and axial compression in the loading direction, 

unless otherwise specified. Most, if not all of the existing concrete plasticity 

models (e.g. Karabinis and Kiousis 1994, 1996; Karabinis and Rousakis 2002; Oh 

2002; Mirmiran et al. 2000; Lan 1998) adopt the flow or incremental theory of 

plasticity, in which the yield criterion can be modified at every state of plastic 

deformation (Chen 1982; Oh 2000). Hereafter in this thesis a concrete plasticity 
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model refers to a concrete model within the theoretical framework of the flow 

theory of plasticity.  

 

2.4.2 Concrete Plasticity 

The key components of a concrete plasticity model include the yield criterion, the 

hardening rule and the flow rule. The yield criterion is normally defined by a yield 

function F, which is a function of the current stress and one or more other 

parameters. When F is less than zero, the material is in the elastic range; when F 

is equal to zero, yielding and inelastic deformation occur. The yield function can 

be understood as a surface in the three-dimensional stress space, which is called a 

yield surface. When strain hardening/softening is included in a yield criterion, it 

represents a series of surfaces in the stress space, including the initial yield surface 

and subsequent yield surfaces (i.e. loading surfaces) which evolve with the plastic 

deformation. The hardening rule is normally defined by a hardening function, 

which defines the relationship between the subsequent yield surfaces and the 

magnitude of plastic deformation (or plastic work per unit volume). It is apparent 

that a hardening function at least includes the magnitude of plastic deformation 

(or plastic work per unit volume) as one parameter. The flow rule is defined using 

a so-called potential function, which defines the direction of the plastic 

deformation. When the potential function is the same as the yield function, the 

flow rule is called an associated flow rule; otherwise the flow rule is called a 

non-associated flow rule. While the associated flow rule is often adopted for 

ductile materials such as metals, the non-associated flow rule is extensively 

adopted for soil and granular materials (Oh 2000). 
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Many yield functions have been proposed for concrete. The number of parameters 

included in these functions ranges from one (e.g. Von Mises criterion) to five 

(Chen 1982). Except for the von Mises criterion, which is used widely for metal 

plasticity, most of the yield criteria developed for concrete incorporate a 

dependence of the shear strength (i.e. the peak value of the second deviatoric 

stress invariant) on the hydrostatic pressure (i.e. the first stress invariant). This 

dependence was widely observed in experiments (Chen 1982). Although more 

advanced functions that fit the experimental evidence better have also been 

suggested (e.g. William-Wranke criterion with five parameters), the 

Drucker-Prager (D-P) (Drucker and Prager 1952) criterion with two parameters is 

widely used for the modeling of confined concrete (e.g. Lan 1998; Karabinis and 

Kiousis 1994, 1996; Karabinis and Rousakis 2002; Oh 2002; Mirmiran et al. 2000; 

Fang 1999; Mahfouz et al. 2001; Shahawy et al. 2000), not only because it is 

simple in form but also because it is sufficiently accurate for concrete under 

triaxial compression when the hydrostatic pressure is within the practical 

engineering range. It has, however, been noted by some researchers (e.g. Chen 

1982; Lan 1998; Huang 2005) that the shear strength is different for concrete 

under biaxial compression and that under triaxial compression, even when the 

hydrostatic pressure for the two cases is the same. The original D-P criterion with 

two parameters cannot reflect this test observation. In this thesis, a material is 

defined to be under biaxial compression when it is subjected to equal compression 

in two principal directions, unless otherwise specified. Karabinis and Kiousis 

(1996) modified the D-P criterion by including the third deviatoric stress invariant 
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to reflect this difference in the shear strength, although the accuracy of the 

parameters they adopted is doubtful (see Chapter 4).  

 

Although some researchers (e.g. Mirmiran et al. 2000; Fang 1999; Shahawy et al. 

2000) assumed an elastic-perfectly plastic model for confined concrete, the strain 

hardening/softening behavior has long been observed in experiments (Chen 1982). 

While the classical hardening rule with the plastic deformation as the only 

parameter without involving any hydrostatic (or confining) stresses has been 

adopted by many researchers (e.g. Mahfouz et al. 2001), it was recently noted (e.g. 

Lan 1998; Oh 2002; Karabinis and Kiousis 1994; Chen and Lan 2004) that, such a 

hardening rule cannot lead to reasonable predictions of the ductility of confined 

concrete. These authors also proposed modified hardening rules in which the 

confining pressure was taken as another parameter, and announced good 

predictions of test results.  

 

It was noted by many researchers (e.g. Chen and Lan 2004; Huang 2005; 

Mirmiran 2000; Oh 2002) that the associated flow rule leads to an overestimation 

of the expansion of confined concrete. Mirmiran (2000) and Karabinis and 

Kiousis (1994, 1996) adopted a non-associated flow rule with a constant dilation 

angle for the modeling of confined concrete. Karabinis and Rousakis (2002) 

recently related the dilation angle to the plastic deformation, and the dilation 

angles they adopted imply volume compaction of concrete throughout the 

deformation process. Oh (2002) related the dilation angles to both the confining 

pressure and the plastic deformation, based on empirical equations for 
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actively-confined concrete, but the wide validity of Oh’s (2002) model for 

FRP-confined concrete has yet to be established. 

 

In Chapter 4, the performance of existing D-P type plasticity models for the 

modeling of confined concrete is assessed numerically, with the focus on the three 

key components: the yield criterion, the hardening rule and the flow rule.   

 

2.4.3 Plastic-Damage Models   

Despite the good performance of concrete plasticity models in modeling concrete 

under monotonic loadings, it is difficult for such models to represent the stiffness 

gradation of concrete (Lee and Fenves 1998), which was observed in concrete 

subjected to cyclic loadings (Karsan and Jirsa 1969; Gopalaratnam and Shah 1985; 

Maekawa et al. 2003). In addition, the adoption of a plasticity model to simulate 

the post-peak descending (strain softening) behavior of concrete has long been 

controversial (Chen 1982). The modeling of strain softening using a plasticity 

model involves the retraction of yield surface in the stress space and may cause 

numerical difficulty during the FE analysis. In order to model the stiffness 

degradation, some researchers (e.g. Mazars 1986; Cervera et al. 1995) adopted 

continuum damage mechanics in which the stiffness degradation can be modeled 

by defining the relationship between stresses and effective stresses. However, 

without plastic strains the continuum damage mechanics theory cannot provide an 

appropriate dilatancy control, which is very important for simulating concrete 

structures under multi-axial loading (Lee and Fenves 1998). Therefore, some 

researchers (e.g. Simo and Ju 1987; Lubliner et al. 1989; Lee and Fenves 1989) 



 47

imbedded the continuum damage mechanics concept in a plasticity model, leading 

to the so-called plastic-damage model.  

 

It is obvious that the only difference between a plastic-damage model and a 

plasticity model is the inclusion of damage. The description of damage, however, 

is very complicated, not only because there are many different damage states such 

as tensile cracking and compressive failure, but also because of the recovery of 

degraded stiffness during a cyclic loading process, which is a consequence of the 

closing of previously open cracks (Reinhardt 1984; Lee and Fenves 1998). 

Nevertheless, the definition of damage could be relatively simple for some special 

cases, such as concrete under monotonic compression in which tensile damage 

and stiffness recovery are not of concern. Lee and Fenves (1998) proposed a 

plastic-damage model using the concepts of scalar damaged elasticity. For the 

simple case of concrete under monotonic compression, the parameters of a 

plastic-damage model such as Lee and Fenves’s (1998) model can be easily 

calibrated using a compressive stress-strain curve with a known unloading 

stiffness.  

 

2.4.4 Constitutive Models in ABAQUS  

In general, an FE model built within a commercially available software package, 

such as ABAQUS, is often easily accessible, well maintained and possibly 

extendable (Chen and Lan 2004). On the other hand, as commercially software 

packages are programmed for general purposes, they may not necessarily have all 

the capabilities required to accurately model the application of interest.  
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The Extended Drucker-Prager (D-P) Model provided in ABAQUS is a D-P type 

plasticity model. It adopts a modified D-P yield criterion which includes the third 

deviatoric stress invariant. However, this model includes a limit for the shear 

strength ratio of the material under biaxial compression to that for triaxial 

compression, which seems not appropriate for normal concrete (see Chapter 4). 

This model also allows the user definition of strain hardening/softening and the 

adoption of a non-associated flow rule. In Chapter 4, the assessment of existing 

D-P type models and the verification of proposed modifications using this model 

as a tool are presented.  

 

The Concrete Damaged Plasticity Model (CDPM) in ABAQUS is a 

plastic-damage model. It uses concepts of isotropic damaged elasticity in 

combination with isotropic tensile and compressive plasticity to represent the 

inelastic behavior of concrete. The yield criterion proposed in Lee and Fenves 

(1998) is adopted in this model, which reduces to the D-P yield condition for the 

special case of concrete under triaxial compression. The third deviatoric stress 

invariant is also included in the yield criterion, with a larger range of allowed 

shear strength ratio which covers the normal experimental values of concrete (see 

Chapter 4). The degradation of elastic stiffness can be captured by this model 

using a scalar damage variable which varies with the plastic deformation. This 

model also allows the definition of strain hardening/softening and the adoption of 

a non-associated flow rule. In Chapter 5, the use of this model, with suitable 

modifications, for the modeling of the hybrid DSTCs is examined.  
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ABAQUS allows the inclusion of modifications to its constitutive models, within 

their general theoretical frameworks. Modifications can be implemented using the 

Solution-Dependent Field Variable (SDFV) option with a user subroutine, as 

noted by Lan (1998). In Chapters 4 and 5, modifications to the two models 

mentioned above using this option are presented.  

 

2.5 CONCLUDING REMARKS 

This chapter has provided a review of existing research relevant to the new hybrid 

DSTCs. A summary of theoretical models for predicting the behavior of 

FRP-confined concrete, either in solid circular sections or in annular sections, has 

been presented. It is clear that the existing knowledge provides an important basis 

for understanding the behavior of hybrid DSTCs. It is also clear the behavior of 

confined concrete in annular sections is not yet well understood, although test 

results of FRP-confined concrete in circular solid cylinders can now be closely 

predicted by some of the existing stress-strain models. The validity of existing 

three-dimensional concrete constitutive models for FRP-confined concrete is 

either doubtful or has not been well established. For the new hybrid DSTCs to be 

widely accepted in practice, it is therefore imperative to carry out rigorous 

experimental investigations into their behavior, and to develop suitable modeling 

techniques and design methods.  
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Figure 2.1 (a) Unidirectional lamina and (b) multidirectional laminate (Fam 2000) 

                        

Figure 2.2 Stress resultants acting on a general shell element (Fam 2000) 
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(b) Test sample following ASTM D2290-00 

 

Figure 2.3 Typical test samples of FRP laminates (after Lam and Teng 2004) 
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Figure 2.4  Classification of stress-strain curves of FRP-confined concrete 

 (a) Increasing type; (b) Decreasing type with ''
cocu ff >  

(c) Decreasing type with ''
cocu ff <  

(Lam and Teng 2003a) 
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Figure 2.5 Variable confinement model (Fam et al. 2003) 
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CHAPTER 3 

                       COMPRESSIVE BEHAVIOR 

OF HYBRID DSTC COLUMNS 

 

3.1 INTRODUCTION 

As explained in Chapter 1, the advantages of the new hybrid DSTCs are most 

obvious when used as a column, for which the compressive behavior is the main 

behavioral aspect to be understood. This chapter presents a systematic study on 

the compressive behavior of these hybrid members. In addition, compressive tests 

on specimens of other similar section forms were also conducted for comparison, 

in order to reach a better understanding of the structural behavior and confining 

mechanism of this new type of members. These other columns forms include 

FRP-confined solid cylinders (FCSC) which consists of a circular solid concrete 

section confined by an outer FRP tube, and FRP-confined hollow cylinders 

(FCHC) which consists of an annular concrete section confined by an outer FRP 

tube (Figure 1.6). 

 

3.2 SPECIMEN DETAILS 

In total, 43 specimens were prepared and tested, including 18 DSTC specimens, 

11 FCSC specimens and 14 FCHC specimens. The specimens all had an outer 



 55

diameter of 152.5 mm and a height of 305 mm. Other details of the specimens are 

summarized in Table 3.1. The specimens were cast in seven batches (“1-7”) with 

the same concrete mix ratio except batch 4. In batch 4, a smaller water-to-cement 

ratio was adopted in order to produce a higher concrete grade. The resulting 

concrete strengths varied within the narrow range of 36.5 MPa to 40.1 MPa 

except for batch 4 which had a concrete strength of 46.7 MPa. 

 

Batches 1 and 2 were designed mainly to investigate the behavior of DSTC 

specimens and the effect of a different outer FRP tube and a different inner steel 

tube. Batch 1 included three pairs of DSTC specimens with the only variable 

being the thickness of outer FRP tube, and three pairs of corresponding FCSC 

specimens for comparison. Each pair were nominally identical, and the three pairs 

of either DSTCs or FCSCs covered three different FRP tube thicknesses, being 

composed of one ply, two plies and three plies of FRP respectively. Batch 2 

included three pairs of DSTCs only. Again, each pair of specimens was nominally 

identical, and the three pairs of DSTCs had one-ply, two -ply and three-ply FRP 

tubes respectively. The void ratio φ  (ratio between the inner diameter and the 

outer diameter of the annular concrete section) of the DSTCs in batch 1 is 0.5 

which is similar to that of the DSTCs in batch 2 which is 0.58. The only major 

difference between the DSTCs of these two batches lies in the steel tubes used. 

The steel tubes in batch 1 had a diameter-to-thickness ratio of 23 while this ratio 

was 42 for batch 2. A comparison of the test results of DSTCs of batch 1 with 

those from batch 2 can be expected to show the effect of a thicker steel inner tube.  
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Batches 3, 4 and 5 were designed to clarify the difference in behavior between 

FCSC, DSTC and FCHC specimens and the effect of the void ratio. Each batch 

consisted of two nominally identical DSTC specimens, two nominally identical 

FCHC specimens and one FCSC specimen, with the DSTC and FCHC specimens 

having the same void ratio. The void sizes of the three batches of specimens (see 

Table 3.1) were chosen so that their void ratios cover a considerable range 

(approximately equal to 1/4, 1/2 and 3/4 respectively). Despite the different void 

ratios, the Ds/ts ratios of the steel inner tubes were similar for these three batches 

(see Table 3.1). In batch 4, a higher concrete grade was designed in order to avoid 

repetitions of specimens in batch 1 and to investigate the effect of concrete 

strength, although the deference in the concrete strength between the two batches 

turned out to be much smaller than intended. 

 

Batches 6 and 7 were designed to investigate the behavior of FCHC specimens, 

including the effect of void ratio and the effect of FRP tube thickness. Each batch 

included two nominally identical two-ply and two nominally identical three-ply 

FCHC specimens. The main difference between these two batches of specimens is 

the different void sizes. The void ratios of these two batches of specimens were 

designed to be equal to 0.58 and 0.75 respectively, for easy comparisons with 

specimens of batches 2 and 3. In addition, one two-ply and one three-ply FCSC 

specimens were included in batch 7 for comparison purposes.  

 

Each specimen is given a name, which starts with a letter (“D”, “S” or “H”) to 

represent the type of specimen (see Table 3.1), followed by a two-digit number to 

represent the concrete strength, and then a letter (from “A” to “D”) to represent 
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the void ratio (0.28, 0.50, 0.58 and 0.75) for DSTC and FCHC specimens only 

(see Table 3.1) together with a number which defines the number of plies in the 

FRP tube. The last Roman number is used to differentiate the two nominally 

identical specimens of a pair. For example, specimen D40-B1-II is the second 

DSTC specimen of a pair that had a one-ply FRP tube, a void ratio of 0.50, and a 

concrete cylinder compressive strength of 40 MPa.  

 

3.3 MATERIAL PROPERTIES 

Tensile tests on six FRP coupons were conducted following the ASTM standard 

(ASTM D3039 2000). The test results showed that the FRP used in the study had 

an average tensile strength of 1825.5 MPa and an average elastic modulus of 80.1 

GPa, based on a nominal thickness of 0.17 mm per ply. 

 

Three plain concrete cylinders (152.5 mm x 305 mm) were tested for each batch 

to determine the concrete cylinder compressive strength. The average concrete 

strengths obtained from these concrete cylinder tests are given in Table 3.1, while 

other concrete properties are given in Table 3.2. In these tables, Ec, '
cof  and coε  

denote the elastic modulus, the peak stress (i.e. the cylinder compressive strength) 

and the axial strain at peak stress respectively. For batch 7, the unconfined 

concrete properties for specimens H33-C2-I and H33-C3-I are different from 

those for specimens H37-C2-I and H37-C3-I because these two sets of FCHCs 

were tested on 29 days and 47 days of age respectively, and their unconfined 

concrete properties were obtained on the day of testing the FCHCs by having the 
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3 plain concrete cylinders and 2 plain hollow cylinders shared by the two sets of 

FCHC specimens (see footnote in Table 3.2). 

 

In each of batches “3” to “7”, two plain hollow concrete cylinders (outer 

dimensions of 152.5 mm x 305 mm) with the same inner void size as that of the 

FCHC specimens in the same batch were tested to clarify whether and how the 

inner void affected the compressive strength of concrete. The concrete strength so 

determined is denoted by '
chf  in Table 3.2. The results in Table 3.2 show that the 

inner void had little or very limited effect on the concrete strength, and this effect 

appears to increase with the concrete strength. 

 

Tensile tests on three steel coupons were conducted for each type of steel tubes. 

The coupons were cut from a steel tube along the longitudinal direction and were 

tested following the BS 18 (1987) standard. The average values of the elastic 

modulus Es, yield strength fy, and ultimate tensile strength fu for each type of steel 

tubes are listed in Table 3.2. 

 

In addition, for each type of steel tubes, three hollow steel tubes cut from the same 

long steel tube that provided the steel tubes for the DSTCs and for tensile coupons 

were tested under axial compression. The steel tubes had the same height as those 

in the DSTC specimens (305 mm). All these steel tubes except the three tubes for 

batch 5 showed large plastic deformation until local buckling in the elephant’s 

foot mode took place (Figure 3.1(a)). The steel tubes for batch 5 also showed 

large plastic deformation but failed by a combination of overall buckling and local 

buckling (Figure 3.1(b)). This is because these tubes had a larger Ls/Ds ratio 
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compared with the other tubes. The average axial load capacities of all steel tubes 

(Ps) are listed in Table 3.3.   

 

3.4 PREPARTION OF SPECIMENS 

The preparation process of the DSTC specimens included the following steps: (1) 

fabrication of the form, which consisted of a PVC tube outside and a steel tube 

inside; strain gauges on the steel tube were installed before the casting of concrete 

(Figure 3.2(a)), for specimens in batches 1 and 2; (2) casting the concrete; (3) 

wet-layup formation of the FRP tube after the concrete had hardened and the PVC 

form had been removed (Figure 3.3). A similar preparation process was adopted 

for the FCSC and FCHC specimens except step (1). For the FCSC specimens, 

standard 152.5 mm x 305 mm steel moulds were used for casting concrete. For the 

FCHC specimens, standard steel moulds with an inner insertion were used (Figure 

3.2(b)).  

 

It should be noted that the FRP tubes were formed by the wrapping and resin 

impregnation of fiber sheets on hardened concrete as is done in retrofit 

applications, instead of the use of prefabricated FRP tubes into which concrete is 

cast. The wrapping process was used as prefabricated FRP tubes with fibers 

oriented mainly in the hoop direction were not readily available to the authors. It 

is believed that there is little difference between the two methods of forming the 

FRP tube in terms of the performance of the hybrid column, based on previous 

research by Shahawy et al. (2000). 
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3.5 EXPERIMENTAL SET-UP AND INSTRUMENTATION 

For each specimen, four bi-directional strain rosettes with a gauge length of 20 

mm were installed at the mid-height of the FRP tube. For the specimens in 

batches 1 and 2, two additional bi-directional strain rosettes with a gauge length of 

10 mm were attached at the mid-height of the inner steel tube. The circumferential 

layout of the strain gauges is shown in Figure 3.4, in which the overlapping zone 

spans a circumferential distance of 150 mm.  

 

In addition, two linear variable displacement transducers (LVDTs) were used to 

measure the axial deformation of the middle region of 120 mm (Figure 3.5) for 

each specimen. All compression tests were carried out using an MTS machine 

with a displacement control rate of 0.003 mm/sec. All test data, including the 

strains, loads, and displacements, were recorded simultaneously by a data logger. 

 

3.6 BEHAVIOR OF HYBIRD DSTC SPECIMENS 

3.6.1 Overall Observations 

All DSTC specimens failed by the rupture of the FRP tube under hoop tension. 

The load kept increasing for the two- and three-ply specimens; for the one-ply 

specimens, the load remained nearly constant in the second stage of deformation, 

as shown in Figure 3.6. The axial strains were calculated from the LVDT readings 

in this figure and elsewhere in this chapter unless otherwise specified. In this 

chapter, the following sign convention is adopted: compressive loads, stresses and 

strains are positive while tensile strains are negative. During the loading process, 
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snapping noises, which were attributed to the micro-cracking of concrete and 

movements of aggregates, were heard after the unconfined concrete strength was 

reached. White patches on the FRP outer tube then occurred when the load was 

close to the ultimate value. With the development of white patches, several large 

noises were heard and FRP rupture took place. Specimen D40-B2-I after test is 

shown in Figure 3.7.   

 

3.6.2 Axial Load-Axial Strain Behavior 

The key test results of all 18 DSTC specimens are summarized in Table 3.3. In 

this table, Pc is equal to the ultimate load of the hybrid column from the test, Pco is 

equal to the unconfined concrete strength times the area of the annular concrete 

section, Ps is equal to the average ultimate load of the three hollow steel tubes of a 

given type, and (Pco+Ps) represents the ultimate load of the DSTC if the 

constituent parts do not interact and the confinement effect of the FRP tube is 

ignored. The ultimate experimental strain, which is the strain at the rupture of the 

FRP tube, is denoted by cuε  and listed in Table 3.4. The strain of unconfined 

concrete at peak stress coε  found from tests on three 152.5 mm x 305 mm 

concrete cylinders is also used to normalize the measured ultimate strain in Table 

3.4. Table 3.3 shows that the provision of a two- or three-ply FRP tube 

significantly enhanced the load-carrying capacity of hybrid DSTCs (by up to 

62%), but a one-ply FRP tube did not affect the load-carrying capacity. All 18 

specimens achieved much larger ultimate strains than the strain at peak stress of 

the unconfined concrete, with the largest value of the former being 10.58 times 

the latter. It can be concluded that when all other parameters are the same, a 
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thicker FRP tube leads to greater increases in the ultimate load and the ductility of 

DSTCs. 

 

Typical axial load-axial strain curves of the DSTC specimens are shown in Figure 

3.6. For the three specimens of batch 2, the axial load-axial strain curves of the 

steel tube and the annular concrete section and their sum are also shown in Figure 

3.6(b) for comparison. The direct contribution of the FRP tube to the axial load 

capacity is not included in this sum as it had no longitudinal fibers.  

 

Figure 3.6 shows that the two-ply DSTC and three-ply DSTC had a bilinear 

load-strain curve while the one-ply DSTC had an almost elastic-perfectly plastic 

load-strain curve. Similar curves can be obtained from FCSC specimens with 

appropriate levels of confinement (Lam and Teng 2003a). It is also obvious that 

the DSTCs reached ultimate loads and ultimate strains which are significantly 

higher than may be expected from the simple addition of those of the axial 

load-strain curves of steel and concrete, even for DSTC specimens with a one-ply 

FRP tube. It can also be found from Figure 3.6 that although the two-ply DSTC 

specimens had void ratios ranging from 0.28 to 0.75, they all showed a bilinear 

monotonically ascending load-strain curve. 

 

3.6.3 Buckling Behavior of Steel Tubes 

3.6.3.1 Hollow steel tubes 

Figure 3.8 shows a typical axial load-deformation curve for the hollow steel tubes 

in batch 1 specimens under axial compression; those for the hollow steel tubes in 
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other batches are similar. It is clear from Figure 3.8 that local buckling, after 

which the load began to drop, occurred after the yielding of steel. Figure 3.9 

shows a comparison between the axial strains obtained from strain gauges at the 

mid-height section and those calculated from the platen-to-platen displacements 

which represent the axial shortenings of the steel tube. It can be seen from Figure 

3.9 that a linear relationship between the two strain values is observed initially, 

but when the axial strain exceeds about 0.016, the difference between these two 

strain values begins to increase, indicating the development of local buckling 

deformation outside the mid-height section. When the axial strain reaches about 

0.019, which corresponds to the occurrence of buckling, the axial strain measured 

by strain gauges begins to reduce slowly while the axial strain from 

platen-to-platen shortenings keeps increasing.  

 

3.6.3.2 Steel tube inside hybrid DSTCs 

Due to the existence of the external concrete in the DSTCs, the inner steel tube 

was prevented from buckling outwards. As a result, its likeliness to buckle was 

reduced. The buckling behavior of the steel tubes inside the DSTC specimens of 

batches 1 and 2 is discussed below. The steel tubes inside the DSTCs of batches 3 

to 5 were designed to be so thick that no local buckling was found after test. 

 

For the DSTC specimens of batch 1, local buckling of the steel tube (Ds/ts =76/3.3) 

did not occur in those with a one- or a two-ply FRP tube. For the two-ply DSTCs, 

when failure occurred by the tensile rupture of FRP, the axial compressive strain 

reached about 0.022, which is significantly higher than the value of about 0.019 at 

the buckling of the hollow steel tubes. This observation indicates that the external 



 64

concrete at least delayed the occurrence of local buckling of the steel tubes in 

these DTSC specimens. In the DSTC specimens with a three-ply FRP tube, local 

buckling of the steel tube did occur but the buckling mode was different. The 

corresponding hollow steel tubes tested under compression failed in the “elephant 

foot” mode (Figure 3.1(a)), which is the commonly reported buckling mode for 

steel tubes with relatively small diameter-to-thickness ratios. However, small 

inward ripples developed on the steel tubes of the three-ply DSTC specimens 

(Figure 3.10(b)). In order to clarify when steel tube buckling took place in the 

three-ply specimens, the axial strain values obtained from the strain gauges on the 

steel tube are compared with those calculated from the platen-to-platen 

deformations for specimen D40-B3-I in Figure 3.11. Figure 3.11 shows that a 

linear relationship is maintained between the two strain values until an axial strain 

of about 0.025, after which the axial strain value found from the strain gauges 

begins to increase faster than that calculated from the platen-to-platen shortenings, 

indicating the development of significant local deformations. Therefore, it can be 

concluded that steel tube local buckling took place at an axial strain value not 

smaller than 0.025, which is much higher than the buckling strain from the hollow 

steel tube tests. It is also noted that this strain value (0.025) is higher than the 

ultimate axial strain of the DSTC specimen when rupture of the FRP tube 

occurred. 

 

The DSTC specimens of batch 2 had steel tubes with a larger Ds/ts ratio than those 

in batch 1, which made local buckling a more likely event. Test observations 

revealed that local buckling took place in specimens with a two- or three-ply FRP 

tube but not in specimens with a one-ply FRP tube. It is not surprising that a steel 
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tube in a DSTC with a thicker FRP tube experiences more severe local buckling 

deformations (Figure 3.12(a)), as in such a DSTC, the steel tube experiences 

larger axial straining before failure of the specimen and the confining pressure is 

larger. It should be noted that even in two nominally identical DSTCs, the 

buckling deformations of the two steel tubes may be significantly different. Figure 

3.12(b) contrasts the different deformations of the two steel tubes in two 

nominally identical three-ply DSTCs (D37-C3-I and D37-C3-II). This difference 

is due to the sensitivity of these tubes to small imperfections and external 

disturbances such as the movements of the adjacent concrete. As a result of these 

different deformations, the two DSTC specimens showed significant difference in 

the recorded strains. Figure 3.13 shows the axial strain-hoop strain curves of these 

two specimens, in which the axial and hoop strains were obtained from the strain 

gauges at the mid-height of the FRP tube. The axial strains were averaged from all 

four strain gauges, while the hoop strains were averaged from the three gauges 

outside the overlapping zone. It is seen that as the axial strain increases, the hoop 

strain of specimen D37-C3-II, in terms of the absolute value, becomes 

increasingly smaller than that of D37-C3-I. This is because that the hoop strain of 

the FRP tube in the DSTC varied over the height of the specimen and had the 

highest values at the locations of buckling deformation of the steel tube. In 

specimen D37-C3-I, the buckling deformations were located at approximately the 

mid-height, therefore the hoop strain gauges at the mid-height recorded relatively 

high values. In specimen D37-C3-II, the buckling deformations were located 

away from the mid-height of the FRP tube. 
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3.6.4 Interaction between the Concrete and the Steel tube 

The interaction between the concrete and the steel tube in a DSTC can be revealed 

by a comparison of the axial strain-hoop strain curves of the steel tubes inside the 

DSTCs and those from the hollow steel tube tests, as any lateral stresses caused 

by this interaction are expected to cause variations in the axial strain-hoop strain 

curve. In this subsection, such comparisons are made (Figure 3.14) for the 

specimens of batch 1. The strain rosettes on the steel tubes inside the DSTC 

specimens remained functional throughout the loading process for these 

specimens, so that the entire axial strain-hoop strain curves are available, making 

such comparisons possible. In Figure 3.14, the strain values were averaged from 

the readings of these strain rosettes which were attached at the mid-height of the 

steel tubes.  

 

It is evident from Figure 3.14 that there is little difference between the curves of 

the steel tubes inside the one- or two-ply DSTC specimens and that of the steel 

tube under pure axial compression. This suggests that the interaction between the 

steel tube and the concrete did not exist or is negligible for the one- and two-ply 

DSTC specimens. For the three-ply specimens, the steel tube inside specimen 

D40-B3-II had almost the same curve as that under pure compression, while the 

steel tube inside specimen D40-B3-I showed a slightly lower curve, which 

suggests that this interaction existed in specimen D40-B3-I but not in specimen 

D40-B3-II. It may therefore be concluded that the interaction between the 

concrete and the steel tube in a hybrid DSTC does not exist when the FRP outer 

tube is relatively weak and may exist when the FRP outer tube is sufficiently 

strong. 
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3.7 CONCRETE BEHAVIOR 

3.7.1 Comparison between FCSCs and FCHCs  

3.7.1.1 General behavior of FCHCs 

In general, the FCHC specimens showed quite different behavior (see Figure 3.16) 

from the DSTC and FCSC specimens. Specimens with a small void (void ratio = 

0.28) exhibited load-strain curves similar to those of the FCSC and DSTC 

specimens; those specimens with a two-ply FRP tube showed monotonically 

increasing load-strain behavior until they failed by the rupture of the FRP tube. 

FCHC specimens with intermediate void ratios of 0.5 and 0.58 showed a 

descending branch with a slowly deceasing load, until failure occurred by the 

rupture of the FRP tube, after which the load decreased rapidly. Specimens with a 

large void (void ratio = 0.75) also had a smooth descending branch after the peak 

load, but exhibited no clear failure point: no explosive FRP rupture was observed 

during the test but considerable concrete damage on the inner surface was found at 

the end of test. Specimens H37-C2-I and H37-D2-II after test are also shown in 

Figure 3.15.  

 

3.7.1.2 Stress-strain behavior 

The stress-strain curves of FCSCs and FCHCs of different void ratios are 

compared in Figure 3.17. The axial stress was found by dividing the axial load by 

the concrete area. The hoop strain was averaged from the three strain gauge 

readings outside the overlapping zone. The predictions of the two models 
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proposed by Fam and Rizkalla (2001a) and Becque et al. (2003) respectively are 

also shown in Figure 3.17 for comparison. All specimens covered by Figure 3.17 

had a two-ply FRP tube. 

 

The key test results are also summarized in Table 3.4, in which maxσ  is the peak 

concrete stress, which is equal to the peak load resisted by the concrete divided by 

the concrete area, /
ccf  is the peak concrete stress of a corresponding FCSC 

specimen with the same amount of FRP and the same unconfined concrete 

strength, and cuε  is the concrete strain at the rupture of the FRP tube. For FCHC 

specimens with a large inner void (i.e. void ratio = 0.75), as no explosive FRP 

rupture was observed, the strain at the peak concrete stress is listed instead. This is 

why the cuε  values of FCHC specimens in these two batches are obviously lower 

than those of the corresponding FCSC specimens.  

 

Figure 3.17(a) shows a comparison between two nominally identical FCHCs with 

a small void (i.e. void ratio = 0.28) and a corresponding FCSC. The two FCHCs 

showed very similar behavior. The effect of FRP confinement is obvious for such 

FCHC specimens, as the compressive strength and ultimate strain of the concrete 

are substantially higher than those of the unconfined concrete (also see Table 3.4). 

These FCHC specimens also displayed approximately bilinear stress-strain curves 

until failure. Their curves, however, are always lower than that of the 

corresponding FCSC specimen and end at a lower (by about 11%, see Table 3.4) 

ultimate strength. However, there is no clear difference between the cuε  values 

of these two FCHCs and that of the corresponding FCSC. Figure 3.17(a) also 
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shows that for these FCHCs, the model of Becque et al. (2003) substantially 

underestimates the ultimate concrete stress; Fam and Rizkalla’s (2001a) model 

predicts the general trend much better but substantially overestimate the ultimate 

axial strain. 

 

Figures 3.17(b)-(c) show comparisons between FCSCs and FCHCs with 

intermediate void ratios of 0.5 and 0.58 respectively. The stress-strain curves of 

these FCHC specimens have a descending branch before failure by the rupture of 

the FRP tube. After the peak stress, the FRP hoop strain continues to increase 

while the concrete stress steadily decreases. Rupture of the FRP tube can be easily 

identified, as it corresponds to a rapid decrease in stress on the stress-strain curve. 

While the peak axial stresses of these FCHC specimens are significantly lower (by 

about 20%, see Table 3.4) than those of the corresponding FCSC specimens, the 

differences between their ultimate axial strains are much smaller (see Table 3.4). 

However, the ultimate hoop strains of these FCHC specimens are generally lower 

(by about 25% or more) than those of corresponding FCSC specimens, which is 

mainly due to a much more non-uniform deformation state in these FCHC 

specimens. Figures 3.17(b) and (c) also show that for these FCHCs, Fam and 

Rizkalla’s (2001a) model predicts an incorrect trend. Becque et al.’s (2003) model 

assumes a constant concrete stress if the axial strain exceeds 0.004, which differs 

considerably from the test results. 

 

Figures 3.17(d)-(e) show comparisons between FCSCs and FCHCs with a void 

ratio of 0.75. The peak axial stresses of concrete in these FCHC specimens are 

significantly lower (by about 20-30%) than those of the corresponding FCSC 
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specimens (Table 3.4) though higher than the unconfined concrete strength. In 

addition, these peak stresses of FCHCs occur at a relatively low axial strain (about 

1.7 times the peak strain of unconfined concrete), after which the axial stress 

decreases rapidly. These figures also show that the hoop strain in these FCHC 

specimens remains almost unchanged at a low value or increases only slowly in 

the post-peak regime. This explains why explosive FRP rupture was not observed 

in these FCHC specimens. Figures 3.17(d) and (e) show that for these FCHCs, 

Fam and Rizkalla’s (2001a) model provides reasonably predictions of the general 

trend but considerably underestimates the ultimate concrete stress. Again, the flat 

second branch of the curve from Becque et al.’s (2003) model differs greatly from 

the test results. 

  

It is of interest to note that for each of the two pairs of nominally identical FCHC 

specimens covered by Figures 3.17(d) and 11(e), the two specimens displayed 

significantly different stress-strain curves. Inspections of the failed specimens 

revealed that this was due to the localization of deformation at different heights in 

these specimens. For instance, specimen H40-D2-I experienced localized 

deformations outside the 120 mm mid-height region covered by the LVDTs which 

delivered almost constant axial strains in the descending regime (Figure 3.17(e)). 

Specimen H40-D2-II however experienced localized deformations near the 

mid-height, which are thus reflected by the LVDT readings. If axial strains are 

calculated from platen-to-platen shortenings instead, the axial stress-strain curves 

of these two specimens are quite similar (Figure 3.18).  
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It is also worth noting that those FCHC specimens (e.g. specimens H37-D2-I and 

H37-D2-II in Figure 3.17(d)) with a relatively low unconfined concrete strength 

(36.5 MPa) displayed stiffer stress-strain curves in the early stage than the 

corresponding FCSC specimen. This may be due to the higher hoop stresses in 

these FCHC specimens than in the corresponding FCSC specimen. This 

phenomenon, however, is not obvious (e.g. specimen H40-D2-II in Figure 3.17(e)) 

or does not exist (e.g. specimen H40-D2-I in Figure 3.17(e)) when the unconfined 

concrete strength is higher (40.1 MPa). This could be explained by the fact that 

the unconfined concrete strength of these FCHC specimens from hollow cylinder 

tests was slightly lower (by about 5%) than that of the corresponding FCSC 

specimens from solid cylinder tests (see Table 3.2), which might counteract the 

beneficial effect of the higher hoop stresses.  

 

The difference in behavior between FCSC specimens and FCHC specimens could 

be explained by their different stress and deformation states. In FCSC specimens, 

after the outer FRP tube is activated by the expansion of the concrete core, the 

concrete is subjected to axial stresses and uniform confinement over the whole 

section. In FCHC specimens, however, the two lateral confining stresses, the 

radial stress and the hoop stress, are not equal and both vary in the radial 

direction. 

 

Based on the classical theory of elasticity, when a hollow concrete cylinder is 

subjected to an outer pressure op  only, the circumferential stress θσ  and radial 

stress rσ  at any point with radius r can be found from the following equations: 
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where oR  and iR are the outer and the inner diameters of the annular section 

respectively. 

  

According to Eqns 3.1 and 3.2, the hoop stress increases while the radial stress 

decreases from the outer edge to the inner edge, as shown in Figure 3.19 where 

the stresses are normalized by the outer pressure op . In particular, the concrete at 

the inner edge is confined by the hoop stress only, where the radial stress is zero. 

It can thus be hypothesized that in FCHCs, as the outer pressure provided by the 

FRP tube increases, the concrete near the inner edge is damaged first and its axial 

load resistance consequently decreases. If the concrete near the outer edge is able 

to resist at least the stresses released by the damaged concrete near the inner edge, 

then the average stress on the section keeps increasing. Otherwise, the peak stress 

is reached and the stress-strain cure follows a descending branch. In general, this 

peak stress point occurs earlier in FCHC specimens with a larger inner void as 

they are subjected to a more non-uniform stress state. This hypothesis explains 

well the observation that the FCHC specimens with a larger inner void reached 

their peak stress before the rupture of the FRP tube, while those with a small inner 

void had a continuously increasing stress-strain curve. 
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3.7.1.3 Axial strain-hoop strain behavior  

It is now well established that the axial strain-hoop strain relationship of confined 

concrete is the key parameter controlling the effectiveness of FRP confinement 

and has been investigated by many researchers (e.g. Fam and Rizkalla 2001b; 

Teng et al. 2006a). 

 

As stated earlier, the concrete in FCHCs is subjected to a non-uniform stress and 

deformation state. A full understanding of the deformation state requires strain 

information across the concrete section. Due to technical difficulties, hoop strain 

gauges were only installed on the FRP tube in the tests. Nevertheless, these strain 

readings still provide useful insight into the deformation state of FCHC 

specimens. 

 

The axial strain-hoop strain curves of some of the FCSC specimens and the FCHC 

specimens are shown in Figure 3.20, where the hoop strains were averaged from 

the readings of the three strain gauges outside the overlapping zone of the outer 

FRP tube. All these specimens had very similar unconfined concrete strengths (the 

differences are less than 1%) and a two-ply FRP tube. Therefore the differences 

observed in this figure are only due to the different inner void sizes. It is seen that 

the axial strain-hoop strain curve of the FCHC specimen with the smallest inner 

void (specimen H37-A2-I) is almost the same as that of the corresponding FCSC 

specimen, while those of other two FCHC specimens are higher. This observation 

indicates that for a given axial strain, the outer hoop strain of the annular concrete 

section, in terms of the absolute value, decreases with the inner void size. This is 
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easy to understand as in FCHCs, no pressure acts on the inner surface, leading to a 

reduced outward expansion of the concrete section.  

 

3.7.2 Comparison between FCSCs and DSTCs 

To evaluate the effectiveness of confinement of the concrete in DSTCs, the 

behavior of the concrete in the DSTC specimens is compared with that of the 

corresponding FCSC specimens. The axial stress of the concrete in the DSTCs is 

defined as the load carried by the annular concrete section divided by its 

cross-sectional area. The load carried by the concrete section is assumed to be 

equal to the difference between the load carried by the DSTC specimen and the 

load carried by the steel tube at the same axial strain; the latter was found from the 

compression tests on hollow steel tubes. When the axial strain of a DSTC 

specimen exceeds the buckling strain of the corresponding hollow steel tube tests, 

it is assumed that the load resisted by the steel inner tube is equal to Ps, as in a 

DSTC specimen, the buckling of the steel inner tube is prevented or delayed by 

the constraint from the concrete, and the decrease in the load carried by the tube 

may be expected to be limited. The peak concrete stress deduced from this process 

and the ultimate strain for all DSTC specimens are summarized in Table 3.4.  

 

Figures 3.21(a)-(c) show the comparisons between the stress-strain curves of 

DSTC and FCSC specimens for different unconfined concrete strengths. For 

specimens D40-D2-I and II, as the concrete area is relatively small, considerable 

errors may exist in the deduced axial stresses of concrete when the load taken by 

the steel tube cannot be accurately evaluated. Therefore, the last part of the 
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stress-strain curves for specimen D40-D2-I (after the axial buckling strain from 

the hollow steel tube tests) is not shown. For the same reason, the compressive 

strengths of confined concrete of these two specimens cannot be deduced. 

 

Figures 3.21(a)-(c) show that in general, for the same unconfined concrete 

strength, the stress-strain curves of the DSTC specimens are similar to those of the 

corresponding FCSC specimen. This observation indicates that the inner steel tube 

in the DSTC specimens provided effective constraint to the inner edge of the 

annular concrete section. The DSTC specimens shown in Figure 3.21 cover 

different Ds/ts ratios of the inner steel tube (from 18 to 42), different void ratios 

(from 0.28 to 0.75) and different unconfined concrete strengths (from 36.5 MPa to 

46.7 MPa). The variations of these parameters, however, do not significantly 

affect the effectiveness of confinement of the concrete in the DSTCs. 

 

Some small differences do exist in the stress-strain curve between some of the 

DSTCs and the corresponding FCSCs. Compared with the corresponding FCSC 

specimen, the axial stress-strain curve of specimen D37-C2-I with a void ratio of 

0.58 has a smaller slope of its second part, which however ends with a larger axial 

strain (Figure 3.21(a)). Similarly, the curve of specimen D40-D2-I with a void 

ratio of 0.75 is slightly lower than that of S40-2-I. However, the ultimate axial 

strain of specimen D40-D2-I is considerably larger than that of the corresponding 

FCSC specimens (see Table 3.4). For specimens with smaller void ratios (e.g. 

D37-A2-I and D40-B2-I), such differences from the corresponding FCSC 

specimens are not seen. Therefore, the void ratio is a significant parameter 

affecting the behavior of concrete in DSTC specimens. 
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3.7.3 Comparison between DSTCs and FCHCs 

It is evident from Table 3.4 that the concrete in DSTCs has greater compressive 

strengths and ultimate strains than that in the corresponding FCHCs, regardless of 

the type of steel tubes in the DSTCs. The stress-strain behavior of concrete in 

DSTCs is thus superior to that of concrete in FCHCs (Figures 3.17 and 3.21). In 

FCHCs, the concrete near the inner edge suffers from early loss of resistance as a 

result of local spalling failure, but in DSTCs, the steel inner tube effectively 

restrains the inner edge concrete against local spalling failure. As a result, the 

concrete in DSTCs can resist increasing axial stresses until failure occurs by the 

rupture of the FRP tube.  

 

As mentioned earlier, the axial strain-hoop strain relationship is the key parameter 

controlling the effectiveness of FRP confinement of concrete. Figures 3.22(a)-(e) 

show comparisons between the axial strain-hoop strain curves of FCHC and 

DSTC specimens. The curves of FCSC specimens are also shown for reference. 

The axial strains in these figures were averaged from the four axial strain readings 

at the mid-height, which is believed to reflect more closely the axial deformation 

at the mid-height in cases when the axial deformation was non-uniform down the 

height. The curves of any two nominally identical specimens were found to be 

very similar except specimens D37-C3-I and II, so only one of the two curves is 

shown for each of the other pairs. The obvious difference in the axial strain-hoop 

strain curve between specimens D37-C3-I and II is explained earlier.  
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It is interesting to find that the axial strain-hoop strain curves of DSTC specimens 

in batch 2, with a void ratio of 0.58, agree well with those of the corresponding 

FCHC specimens, and the curves of both DSTCs and FCHCs are higher than 

those of the corresponding FCSC specimens (Figures 3.22(a)-(b)). By contrast, 

the axial strain-hoop strain curves of all three types of specimens in batch 5, with 

a void ratio of 0.28, are similar (Figure 3.22(c)), indicating that a small void 

produces little difference between FCHCs, DSTCs and FCSCs. The curves of 

DSTCs in batches 3 and 4 , with a void ratio of 0.75, are similar to those of 

FCHCs when the axial strain is less than about 0.005 (Figures 3.22(d)-(e)). 

However, the curves of FCHCs in these two batches do not follow a bilinear path 

in the later stage and thus deviate from those of DSTCs. This is due to the 

occurrence of significant local deformations in the later stage of loading of the 

FCHC specimens, which were not captured by the four strain rosettes.   

 

It may be concluded from the above discussions that the axial strain-hoop strain 

relationships of FCHCs and the DSTCs are almost the same before significant 

local deformations take place in the FCHCs, and that the radial expansion of the 

outer FRP tube in both DSTCs and FCHCs is less than that in FCSCs for the same 

axial strain. This observation suggests that the inner steel tube in DSTCs has only 

a negligible effect on the lateral expansion of the outer concrete surface and that 

overall, the radial interaction between the steel tube and concrete is insignificant 

before the concrete starts to spall at the inner edge. It is, however, noted earlier in 

the chapter that significant differences exist between the stress-strain curves of 

DSTC and FCHC specimens. Taken all factors into consideration, it may be 

concluded that the inner steel tube works mainly as an inner support to prevent the 
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local damage and inward spalling of the concrete near the inner edge. The FCHC 

specimens were indeed found to fail by local damage and loss of part of concrete 

near the inner edge (Figures 3.15(b) and (c)). 

 

3.7.4 Effect of Thickness of FRP Tube 

It has been well established that the behavior of FCSC specimens depends on the 

amount of confining FRP. When all other parameters are the same, a thicker FRP 

tube leads to greater increases in strength and ductility. For example, specimens 

S40-3-I and S40-3-II with a three-ply FRP tube are superior to specimens S40-2-I 

and S40-2-II with a two-ply FRP tube, in both strength and ductility (Table 3.4). 

The thickness of the FRP tube also significantly affects the stress-strain curve of 

confined concrete, especially its second portion. The thicker the FRP tube, the 

stiffer the response of the second stage (Teng et al. 2006a).  

 

For FCHC specimens, especially those with a large void ratio, the effect of the 

thickness of the FRP tube is not as significant as the effect for FCSC specimens. 

Comparisons between specimens H37-D2-I, H37-D2-II and H37-D3-I, H37-D3-II 

(Table 3.4) show that specimens with a two-ply FRP tube have almost the same 

peak concrete stress and corresponding strain as those with a three-ply FRP tube. 

Their stress-strain curves also show little differences (Figure 3.23). Two reasons 

are possible for this phenomenon: 1) the concrete in FCHCs is subjected to 

non-uniform confinement and the overall effect of confinement is less significant 

than that in FCSC specimens; 2) the failure of FCHCs with a large void ratio is 

controlled by the local damage and spalling of concrete near the inner edge 
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instead of the rupture of the FRP tube. Therefore, the FRP tube is not fully 

utilized and the use of a thicker FRP tube does not bring obvious benefits. Figure 

3.23 shows that in specimens H37-D3-I and H37-D2-II, the hoop strains of the 

FRP tubes reached only low values (about 0.005 or less) compared with the hoop 

rupture strain of the FRP tubes (about 0.018). 

 

The thickness of the FRP tube in general has similar effect on DSTCs and FCSCs 

(Figure 3.24). The three-ply specimen developed the highest curves and achieved 

the highest concrete strength and the largest ductility. This is easy to understand 

as the steel inner tube helps to prevent the damage and spalling of concrete and 

thus all the DSTC specimens in the present study failed by the rupture of the FRP 

tube. 

 

3.8 CONCLUSIONS 

This chapter has presented and interpreted the results of a large number of axial 

compression tests on hybrid DSTC specimens, and on specimens of other similar 

section forms, i.e. FCSCs and FCHCs, to examine the behavior of concrete in 

such FRP-confined annular sections. The main parameters examined include the 

section configuration, the void ratio, the diameter-to-thickness ratio of the inner 

steel tube, and the thickness of the FRP tube. Two existing stress-strain models 

(Fam and Rizkalla 2001a; Becque et al. 2003) were used to predict the 

stress-strain behavior of FRP-confined concrete in FCHCs. Based on the test 

results and discussions presented in the chapter, the following conclusions may be 

drawn: 
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(1) The concrete in the new hybrid DSTCs is very effectively confined by the two 

tubes and local buckling of the inner steel tube is either delayed or suppressed 

by the surrounding concrete, leading to a very ductile response. The load-axial 

shortening behavior of concrete in DSTCs is very similar to that of FCSCs. 

(2) DSTCs are superior to FCHCs in both the general behavior and the 

effectiveness of confinement of concrete. The inner steel tube plays an 

important role by preventing the concrete near the inner edge from inward 

spalling. 

(3) The behavior of FCHCs, including their stress-strain curves, deformation 

properties and failure mechanisms, depends significantly on the void ratio.  

(4) The behavior of concrete in DSTCs is generally similar to that in FCSCs 

provided the void ratio and the Ds/ts ratio of the steel inner tube are within a 

reasonable range. This range is at least from 0.28 to 0.75 for the void ratio and 

from 20 to 42 for the Ds/ts ratio of the steel tube, as found from the tests.   

(5) The thickness of the outer FRP tube has a significant effect on the behavior of 

concrete in FCSCs and DSTCs, but a smaller significant effect on the behavior 

of concrete in FCHCs, especially when the void ratio is large.  

(6) The concrete in FCHCs or DSTCs is subjected to unequal lateral confining 

stresses in the radial and hoop directions. This produces non-uniform axial 

stresses over the section and accounts for the difference in behavior between 

these annular sections and FCSCs.  

(7) The two stress-strain models (Fam and Rizkalla 2001a; Becque et al. 2003) do 

not provide accurate predictions of the test results of FCHCs. Therefore, new, 

accurate stress-strain models for concrete in DSTCs and FCHCs need to be 

developed for use in theoretical models for such columns.
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Table 3.1 Details of specimens 

 

Specimen 

Type Number 

FRP outer 
tube 

thickness

Void size 
(mm) 
(void 

ratioφ ) 

Steel tube 
Ds(ts) 
(mm) 

Concrete 
cylinder 
strength

'
cof (MPa) 

Batch

D37-A2-I, II 2 plies 42(0.28) 42(2.1) 36.7  5 
D40-B1-I, II 1 ply 
D40-B2-I, II 2 plies 
D40-B3-I, II 3 plies 

 
76(0.50) 

 

 
76(3.3) 

 
39.6 

 
 1 

D47-B2-I, II 2 plies 76(0.50) 76(3.5) 46.7  4 
D37-C1-I, II 1 ply 
D37-C2-I, II 2 plies 
D37-C3-I, II 3 plies 

 
88(0.58) 

 

 
88(2.1) 

 
36.9 

 2 

 
 
 

D 
(DSTC) 

 
 
 

D40-D2-I, II 2 plies 115(0.75) 115(5.2) 40.1 3 
S40-1-I, II 1 ply / / 
S40-2-I, II 2 plies / / 
S40-3-I, II 3 plies / / 

 
39.6 

 
 1 

S40-2-III 2 plies / / 40.1 3 
S47-2-I 2 plies / / 46.7 4 
S37-2-I 2 plies / / 36.7  5 
S37-2-II 2 plies / / 36.5 6 

 
 

S 
(FCSC) 

 

S37-3-I 3 plies / / 36.5 6 
H37-A2-I, II 2 plies 42(0.28) / 36.7  5 
H47-B2-I, II 2 plies 76(0.50) / 46.7  4 

H33-C2-I 2 plies 88(0.58) / 33.6  7 
H37-C2-I 2 plies 88(0.58) / 36.8  7 
H33-C3-I 3 plies 88(0.58) / 33.6  7 
H37-C3-I 3 plies 88(0.58) / 36.8  7 

H40-D2-I, II 2 plies 115(0.75) / 40.1  3 
H37-D2-I, II 2 plies 115(0.75) / 36.5  6 

 
 

H 
(FCHC) 

 

H37-D3-I, II 3 plies 115(0.75) / 36.5  6 
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Table 3.2 Material properties 

Concrete Steel 

Batch 
 

Elastic 
modulus

 Ec 
(GPa) 

Strain at 
peak 

stress coε  

Peak stress 
from hollow 

cylinders 
'

chf  
(MPa) 

'

'

co

ch

f
f  

Elastic 
modulus

Es 
(MPa) 

Yield 
stress 

fy 
(MPa) 

Ultimate 
stress 

fu 
(MPa) 

1 30.2 0.00263 / / 207.3 352.7 380.4 

2 29.5 0.00262 / / 208.9 337.8 387.5 

3 28.2 0.00259 38.1 95.1% 199.7 353.7 396.3 

4 30.7 0.00287 42.4 90.9% 198.7 406.2 475.5 

5 27.8 0.00274 36.7 100.3%  201.7 365.2 410.9 

6 30.1 0.00256 36.6 100.2% / / / 

7* 27.8* 0.00258* 33.1* 98.6%* 

7^ 27.9^ 0.00289^ / / / / / 

 

* For specimens H33-C2-I and H33-C3-I, obtained from one plain solid cylinder 

and two plain hollow cylinders 
^ For specimens H37-C2-I and H37-C3-I, obtained from two plain solid cylinders 
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Table 3.3 Key test results of DSTC specimens 

 

Specimen 

Ultimat

e load 

Pc (kN) 

Average

Pc 

(kN) 

Ultimate 

load of 

steel tube 

Ps (kN) 

Ultimate load 

of concrete 

section 

Pco (kN) 

)PP(
P

sco

c

+

 

D37-A2-I 942.1 
D37-A2-II 1031.3 

986.7 113.9 618.7 1.35 

D40-B1-I 793.8 
D40-B1-II 829.3 

811.5 0.99 

D40-B2-I 1044.2 
D40-B2-II 1024.8 

1034.5 1.27 

D40-B3-I 1214.0 
D40-B3-II 1201.9 

1208.0 

273.8 543.5 

1.48 

D47-B2-I 1207.0 
D47-B2-II 1124.7 

1165.9 378.3 640.4 1.14 

D37-C1-I 704.3 
D37-C1-II 680.2 

692.2 1.10 

D37-C2-I 861.3 
D37-C2-II 825.4 

843.3 1.33 

D37-C3-I 1025.6 
D37-C3-II 1022.7 

1024.2 

184.7 447.1 

1.62 

D40-D2-I 1221.8 
D40-D2-II 1207.5 1214.6 722.7 315.6 1.17 
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Table 3.4 Peak concrete stresses and ultimate strains of all specimens 

* Strain at peak stress, as no explosive FRP rupture occurred in these specimens.  

Specimen maxσ  
(MPa) 

Average 

maxσ  
(MPa) 

'
max

cof
σ

 /
max

ccf
σ

 cuε  
 Average 

cuε  co

cu

ε
ε

 

D40-A2-I 54.6 0.0192 
D40-A2-II 49.6 

52.1 1.42 0.98 
0.0157 

0.0175 6.37 

D40-B1-I 41.5 0.0148 
D40-B1-II 40.1 

40.8 1.03 0.99 
0.0141 

0.0145 5.53 

D40-B2-I 56.3 0.0220 
D40-B2-II 55.0 

55.6 1.40 0.99 
0.0183 

0.0202 7.69 

D40-B3-I 68.7 0.0234 
D40-B3-II 67.8 

68.2 1.72 1.08 
0.0237 

0.0235 8.96 

D47-B2-I 60.0 0.0223 
D47-B2-II 55.7 

57.9 1.24 1.00 
0.0145 

0.0184 6.41 

D37-C1-I 42.9 0.0166 
D37-C1-II 41.4 

42.2 1.14 N/A 
0.0133 

0.0150 5.71 

D37-C2-I 55.9 0.0235 
D37-C2-II 52.9 

54.4 1.48 1.02 
0.0188 

0.0212 8.07 

D37-C3-I 69.4 0.0241 
D37-C3-II 69.2 

69.3 1.88 1.10 
0.0277 

0.0259 9.89 

D40-D2-I N/A 0.0296 
D40-D2-II N/A 

N/A N/A N/A 
0.0252 

0.0274 10.58 

S40-1-I 41.5  0.00825 
S40-1-II 40.8 

41.1 1.04 1.00 
 0.00942 

0.00884 3.36 

S40-2-I 56.3 0.0183 
S40-2-II 56.5 

56.4 1.42 1.00 
0.0170 

0.0177 6.74 

S40-3-I 65.7 0.0256 
S40-3-II 61.0 

63.3 1.60 1.00 
0.0167 

0.0212 8.05 

S40-2-III 54.6 54.6 1.36 1.00 0.0213 0.0213 8.22 
S47-2-I 58.0 58.0 1.24 1.00 0.0177 0.0177 6.17 
S37-2-I 53.1 53.1 1.45 1.00 0.0153 0.0153 5.58 
S37-2-II 53.8 53.8 1.48 1.00 0.0154 0.0154 6.02 
S37-3-I 63.1 63.1 1.73 1.00 0.0215 0.0215 8.40 

H37-A2-I 46.8 0.0171 
H37-A2- II 47.8 

47.3 1.29 0.89 
0.0152 

0.0162 5.89 

H47-B2-I 45.8 0.0173 
H47-B2-II 46.2 

46.0 0.98 0.79 
0.0186 

0.0180 6.27 

H33-C2-I 44.8 44.8 1.33 / 0.0150 0.0150 5.81 
H37-C2-I 42.6 42.6 1.16 0.80 0.0218 0.0218 7.54 
H33-C3-I 50.7 50.7 1.52 / 0.0424 0.0424 16.4 
H37-C3-I 48.3 48.3 1.31 0.76 0.0253 0.0253 8.73 
H37-D2-I 42.6 0.00371* 
H37-D2-II 44.4 

43.5 1.19 0.81 
0.00471* 

0.00421 1.65 

H37-D3-I 42.7 0.00325* 
H37-D3-II 45.3 

44.0 1.21 0.70 
0.00500* 

0.00413 1.61 

H40-D2-I 39.9 0.00249* 
H40-D2-II 44.8 

42.3 1.06 0.78 
0.00634* 

0.00442 1.70 
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(a)                               (b) 

Figure 3.1 Buckling of hollow steel tubes under axial compression 

 

 

 

 

 

 

 

 

 

(a) for DSTCs                     (b) for FCHCs 

Figure 3.2 Forms for casting concrete 

 

 

 

Elephant’s foot 
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Figure 3.3 Formation of the FRP tube 

 

 

 

 

 

 

 

 

 

Figure 3.4 Layout of strain gauges 
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Figure 3.5 Test in progress 
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  (a) Specimens of batch 1 

   Figure 3.6 Axial load-strain curves of DSTC specimens 
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 (b) Specimens of batch 2 

 

 

 

 

 

 

 

 

 

 

(c) Specimens of batch 3 

Figure 3.6 Axial load-strain curves of DSTC specimens (Cont’d) 
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 (d) Specimens of batch 4 

 

 

 

 

 

 

 

 

 

 

 (e) Specimens of batch 5 

Figure 3.6 Axial load-strain curves of DSTC specimens (Cont’d) 
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Figure 3.7 DSTC specimen after test 
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Figure 3.8 Axial load-shortening curve of hollow steel tube under compression 
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Figure 3.9 Comparison between axial strains from strain gauges and from axial 

shortenings 
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(a) Specimen D40-B2-I after test 

 

 

 

 

 

 

 

 

 (b) Specimen D40-B3-I after test 

Figure 3.10 Inner steel tubes of batch 1 after test 
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Figure 3.11 Comparison between axial strains from strain gauges and from axial 

shortenings 
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(a) Steel tubes from different DSTCs 

 

 

 

 

 

 

 

 

(b) Steel tubes from two identical three-ply specimens 

Figure 3.12 Steel tubes inside DSTC specimens of batch 2 after test 
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Figure 3.13 Axial strain-hoop strain curves of specimens D37-C3-I and D37-C3-II 

 

 

 

 

 

 

 

 

 

 

(a) One-ply specimens 

Figure 3.14 Hoop strain-axial strain curves of steel tubes 
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(b) Two-ply specimens 

 

 

 

 

 

 

 

 

 

 

(c) Three-ply specimens 

Figure 3.14 Hoop strain-axial strain curves of steel tubes (Cont’d) 

 

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 0.005 0.01 0.015 0.02 0.025 0.03

Axial strain

H
oo

p 
st

ra
in

Hollow steel tube
D40-B2-I
D40-B2-II

 

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 0.005 0.01 0.015 0.02 0.025 0.03
Axial strain

H
oo

p 
st

ra
in

Hollow steel tube
D40-B3-I
D40-B3-II



 97

 

 

 

 

 

 

 

 

 

(a) Specimen H37-C2-I 

 

 

 

(b) Specimen H37-D2-I 

Figure 3.15 FCHC specimens after test 
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Figure 3.16 Axial load-strain curves of FCHC specimens 
 

 

 

 

 

 

 

 

 

 

(a) Void ratio 280.=φ  

Figure 3.17 Comparison of stress-strain curves between FCSCs and FCHCs 
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(b) Void ratio 50.=φ  

      
(c) Void ratio 580.=φ  

Figure 3.17 Comparison of stress-strain curves between FCSCs and FCHCs 

(Cont’d) 
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(d) Void ratio 75.0=φ , 5.36' =cof MPa 
          

 
(e) Void ratio 75.0=φ , 1.40' =cof MPa 

Figure 3.17 Comparison of stress-strain curves between FCSCs and FCHCs 
(Cont’d) 
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Figure 3.18 Axial stress-strain curves based on platen-to-platen deformations 

    

Figure 3.19 Theoretical stress variations in the radial direction 
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Figure 3.20 Comparison of axial strain-hoop strain curves between FCHCs and a 

corresponding FCSC 

 
(a) '
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Figure 3.21 Comparison of stress-strain curves of concrete between FCSCs and 
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(b) '
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(c) '
cof  = 47 MPa 

Figure 3.21 Comparison of stress-strain curves of concrete between FCSCs and 

DSTCs (Cont’d) 
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(a) Void ratio 280.=φ  

 

(b) Void ratio 50.=φ  

Figure 3.22 Axial strain-hoop strain curves of FCHC and DSTC specimens
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(c) Void ratio 580.=φ , with a two-ply FRP tube 

 

(d) Void ratio 580.=φ , with a three-ply FRP tube 

Figure 3.22 Axial strain-hoop strain curves of FCHC and DSTC specimens 
(Cont’d) 
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(e) Void ratio 75.0=φ  

Figure 3.22 Axial strain-hoop strain curves of FCHC and DSTC specimens 
(Cont’d) 
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Figure 3.23 Effect of thickness of FRP tube on stress-strain curves of FCHCs 

 

Figure 3.24 Effect of thickness of FRP tube on stress-strain curves of concrete in 

DSTCs 
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CHAPTER 4 

       ASSESSMENT OF DRUCKER-PRAGER TYPE       

PLASTICITY MODELS FOR THE MODELING OF 

FRP-CONFINED CONCRETE 

 

4.1 INTRODUCTION 

Extensive research has been conducted on FRP-confined concrete using circular 

solid cylinders confined with an FRP jacket, and the behavior of such 

uniformly-confined concrete is now well understood, as reviewed in Chapter 2. 

Many stress-strain models have been proposed for concrete in FRP-confined solid 

cylinders (FCSCs) based on test results, including design-oriented models in 

closed-form expressions (e.g. Lam and Teng 2003a) and analysis-oriented models 

(e.g. Teng et al. 2006a) which predict stress-strain curves by an incremental 

procedure. Test results can now be closely predicted by some of the existing 

stress-strain models such as those proposed by Lam and Teng (2003a) and Teng et 

al. (2006a). By contrast, the behavior of FRP-confined concrete in sections other 

than circular sections is not yet well understood. In non-circular FRP-confined 

sections such as rectangular sections and annular sections, the concrete is 

non-uniformly confined. A substantial amount of work has been conducted on 

FRP-confined concrete in rectangular sections (e.g. Lam and Teng 2003b), but 

only a very limited amount of information is available on the behaviour of 
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FRP-confined concrete in annular sections (Fam and Rizkalla 2001a, b; Becque et 

al. 2003). Fam and Rizkalla (2001a) and Becque et al. (2003) presented their 

attempts to model FCHCs or FRP-concrete DSTCs using analysis-oriented 

models. These models are based on the assumption that the axial concrete stresses 

are uniform over the section which does not reflect the true behavior. It has also 

been shown in Chapter 3 that these models do not provide reasonable predictions 

of the test results obtained in the present study.  

 

It is well known that stresses in an annular section are non-uniform in the radial 

direction when it is subjected to axial compression applied through a rigid plate, 

as shown by the results from the classical theory of elasticity (see Chapter 3 for 

details). The analysis-oriented models introduced earlier for FCSCs (e.g. Teng et 

al.’s (2006a) model expressed by Eqns 2.22-2.26) cannot predict the behavior of 

hybrid DSTCs, not only because they are proposed for concrete under uniform 

confinement but also because they are one-dimensional models which do not 

provide complete multi-axial stress-strain relationships. These models, however, 

can be used to calibrate the material parameters in constitutive models because of 

their ability to predict the behavior of FCSCs.   

 

Many different FE studies have been published on FRP-confined concrete. The 

constitutive models for concrete adopted in previous research include plasticity 

models (e.g. Karabinis and Kiousis 1994, 1996; Karabinis and Rousakis 2002; Oh 

2002; Mirmiran et al. 2000; Lan 1998; Fang 1999; Mahfouz et al. 2001; Shahawy 

et al. 2000) and plastic-damage models (e.g. Luccioni and Rougier 2005; Huang 

2005). Despite the inclusion of damage in some models (Luccioni and Rougier 
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2005; Huang 2005), all these constitutive models involve concrete plasticity. In 

this chapter, the effects of three key components of a plasticity model, namely, the 

yield criterion, the hardening rule and the flow rule, on its performance in 

predicting the behavior of confined concrete are assessed numerically. As a basis 

for this assessment, the general behavior of confined concrete is reviewed first. 

The assessment is mainly focused on the Drucker-Prager (D-P) type concrete 

plasticity models, not only because they are widely used (e.g. Karabinis and 

Kiousis 1994, 1996; Karabinis and Rousakis 2002; Oh 2002; Mirmiran et al. 2000; 

Lan 1998; Fang 1999; Mahfouz et al. 2001; Shahawy et al. 2000) but also because 

the conclusions reached for such models are relevant to other plasticity models. 

The conclusions drawn in this chapter will be taken into account in the modeling 

of hybrid DSTCs presented in Chapter 5.   

 

4.2 GENERAL BEHAVIOR OF CONFINED CONCRETE 

The behavior of concrete under a constant active confining pressure has been 

widely investigated (Richart et al. 1928; Mander et al. 1988; Canadppa et al. 2001; 

Sfer et al. 2002). Extensive research on the behavior of FRP-confined concrete, 

which is subjected to a varying passive confining pressure, has also been 

conducted, as reviewed in Chapter 2. Figure 4.1 (Teng and Lam 2004) shows the 

typical stress-strain curves of actively-confined and FRP-confined concrete 

respectively, and Figure 4.2 (Teng et al. 2006a; Teng and Lam 2004) illustrates 

the dilation properties of them. In these figures, compressive stresses/strains are 

defined to be positive while tensile strains/stresses are defined to be negative. 

These definitions are adopted throughout this chapter unless otherwise specified. 
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The curves of carbon FRP-(CFRP-) confined concrete were obtained by Lam and 

Teng (2004) from compression tests on 152 mm × 305 mm concrete cylinders. 

The CFRP had a nominal thickness of 0.165 mm per ply, an elastic modulus of 

250 GPa and a tensile strength of 3800 MPa. The curves of actively-confined 

concrete were obtained either by Canadppa et al. (2001) or Sfer et al. (2002) from 

concrete cylinders with active confinement at different lateral pressures. The 

unconfined concrete cylinder strengths of these specimens were in the range of 

32.8 MPa-42 MPa. In these figures, the axial stress σc is normalized by the 

compressive strength of unconfined concrete /
cof  while the axial strain εc or 

lateral strain εl is normalized by the axial strain of unconfined concrete at its peak 

stress εco.  

 

It can be seen from Figures 4.1 and 4.2 that actively-confined concrete has the 

following properties: (1) the peak stress of concrete and the corresponding strain 

increases with an increase in the confining pressure; (2) the curve of concrete 

confined by a larger confining pressure has a more gradual descending branch; (3) 

corresponding to the same axial strain, the lateral expansion of concrete under a 

larger confining pressure is less; and (4) actively-confined concrete exhibits 

continuous volume dilation after volume compaction, and the volumetric strain of 

the transition point increases with an increase in the confining pressure. It can also 

be found from simple calculations that the shear strength of concrete, which refers 

to the peak value of the second deviatoric stress invariant, increases with an 

increase in the confining pressure.  
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The main characteristics of FRP-confined concrete include: (1) an approximately 

bilinear axial stress-strain curve, the first part of which differs only slightly from 

the curve of unconfined concrete while the second part of which depends on the 

circumferential stiffness and strength of the outer FRP jacket; (2) corresponding 

to the same axial strain, the lateral strain of concrete confined by a stronger FRP 

jacket is less; and (3) the volumetric change depends significantly on the FRP 

jacket stiffness 
o

frpfrp

R
tE

in which frpE  and frpt are the elastic modulus and 

thickness of the FRP jacket respectively, and Ro is the radius of the cylinder. 

Figure 4.2(b) shows that the concrete cylinder confined by a one-ply FRP jacket 

exhibits continuous volume dilation after volume compaction; the concrete 

cylinder confined by a two-ply FRP jacket exhibits volume compaction initially 

followed by volume dilation which however is replaced by volume compaction 

afterwards until final failure; the concrete cylinder confined by a three-ply FRP 

jacket exhibits continuous volume compaction. Teng et al. (2006a) also concluded 

from test results that although the lateral strain-axial strain paths of 

actively-confined concrete and FRP-confined concrete are very different, the axial 

strain at a given lateral strain depends mainly, if not completely, on the current 

confinement ratio defined as the ratio between the lateral confining pressure lσ  

and the strength of unconfined concrete '
cof . This conclusion means that at the 

interception points in Figure 4.2(a) both FRP-confined concrete and 

actively-confined concrete are with the same confinement ratio. 
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4.3 DRUCKER-PRAGER (D-P) TYPE PLASTICITY MODELS 

4.3.1 Introduction 

Concrete plasticity models are generally based on the same framework of 

plasticity theory for metals, but with necessary modifications to include the 

unique properties of concrete. The key aspects of a plasticity model include the 

yield surface (including the initial and subsequent yield surfaces), the flow rule 

and the hardening rule. The initial yield surface determines when plastic 

deformation begins; the flow rule determines the direction of plastic deformation; 

and the hardening rule defines the relationship between the subsequent yield 

surfaces and the magnitude of plastic deformation.  

 

Many yield functions have been proposed for concrete. The number of parameters 

included in these functions ranges from one (e.g. Von Mises criterion) to five 

(Chen 1982). Among these yield functions, the Drucker-Prager (D-P) criterion has 

been widely adopted for the modeling of confined concrete (e.g. Karabinis and 

Kiousis 1994, 1996; Karabinis and Rousakis 2002; Oh 2000; Mirmiran et al. 2000; 

Lan 1998; Fang 1999; Mahfouz et al. 2001; Shahawy et al. 2000) because of its 

simplicity (involving only two parameters) and its capability to capture shear 

strength increases as a result of hydrostatic pressure increases, which is a unique 

property of concrete under confinement. In this section, the ability of this type of 

models to simulate the behavior of both actively-confined and FRP-confined 

concrete is discussed by examining the three key aspects mentioned above, 

namely, the yield criterion, the flow rule and the hardening rule. Various existing 
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D-P type models are examined. Several numerical tests are introduced to illustrate 

and verify the conclusions drawn.  

 

Based on the critical assessment of existing models, a modified D-P type 

plasticity model is proposed and implemented in the general purpose FE program 

ABAQUS. Numerical tests are then introduced to verify the suitability of the 

proposed model for actively-confined and FRP-confined concrete.  

 

4.3.2 Existing D-P Type Plasticity Models 

The Drucker-Prager yield/failure criterion is one of the pressure-sensitive criteria 

which reflect the experimental observation that the shear strength of concrete 

increases with an increase in the hydrostatic pressure. The difference between the 

Drucker-Prager failure criterion and pressure-insensitive criteria (e.g. Von Mises 

criterion) is obvious in the meridian plane of the stress space (Figure 4.3). The 

latter is a line parallel to the abscissa while the former is an inclined line. When a 

plasticity model is based on the Drucker-Prager yield/failure criterion, it is 

referred to as a Drucker-Prager type plasticity model.  

 

4.3.2.1 Yield criterion 

(i) General equations 

The Drucker-Prager yield criterion takes the following form (Chen 1982; Oh 

2000). 

kIJF −−= 12 θ                        (4.1)  
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where θ  and k are parameters to be determined, 2J and 1I are respectively the 

second deviatoric stress invariant and the first stress invariant. When k  is not a 

constant and is related to plastic deformations (Eqn 4.2), it is known as the 

hardening-softening function and Eqn 4.1 represents both the initial and the 

subsequent yield surfaces. 

)~()~( pp dkkk εε ∫==                      (4.2) 

p
j

p
jpp ddCd εεε =~                      (4.3) 

where pdε~ is the equivalent plastic strain increment. When the D-P yield criterion 

with an associated flow rule is adopted, pC  is given by the following equation 

for concrete under triaxial compression: 

5.03
3

1

2 +

−
=

θ

θ
pC                       (4.4) 

The classical metal plasticity model can be regarded as a special case of the D-P 

type models, with θ =0 and consequently 
3
2

=pC . 

 

It is evident from Eqn 4.1 that the initial and the subsequent yield surfaces have 

the same shape in the stress space, provided that θ  is a constant for a given 

material. The subsequent yield surfaces are a series of straight lines in the 

meridian plane. These lines are all parallel to that representing the initial yield 

surface as shown in Figure 4.4. The only difference between these lines is the 

point of interception with the 2J axis, and this interception point is dependent 
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on the hardening/softening function k. It is also evident from Eqn 4.1 that the D-P 

yield surface has a circular shape in the deviatoric plane, as shown in Figure 4.5.  

 

Although many researchers directly adopted Eqn 4.1 as the yield criterion for 

concrete (e.g. Mirmiran et al. 2000; Karabinis and Kiousis 1994; Karabinis and 

Rousakis 2002; Oh 2000; Lan 1998; Fang 1999; Mahfouz et al. 2001; Shahawy et 

al. 2000), some others (Chen 1982; Karabinis and Kiousis 1996; Huang 2005) 

found from test results that the third deviatoric stress invariant should also be 

included in the yield criterion to better reflect the experimental observations. 

Karabinis and Kiousis (1996) modified the D-P criterion by including the third 

deviatoric stress invariant, although the accuracy of the parameters they adopted is 

doubtful. The yield criteria adopted in existing D-P type models (Table 4.1) are 

assessed below, with an emphasis on the importance of the inclusion of the third 

deviatoric stress invariant, and the determination of constants in the yield 

criterion.  

 

(ii) Discussions 

It has been noted by many researchers (e.g. Chen 1982; Lan 1998; Huang 2005) 

that the shear strength of concrete under biaxial compression and that under 

triaxial compression is different, even when the hydrostatic pressures of the two 

cases are the same. Based on the plasticity theory, it is known that the stress states 

of concrete under biaxial compression and triaxial compression correspond to 

different circumferential positions on the deviatoric plane respectively (Figure 

4.5). The shear strength ratio between these two cases (i.e. between biaxial 

compression and triaxial compression) can be found from experimental results or 
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empirical equations for the strengths of concrete under biaxial compression and 

triaxial compression (see Appendix 4.2). If the experimental results of Kupfer et 

al. (1969) are adopted for concrete under biaxial compression and the empirical 

equation proposed by Richart et al. (1928) is adopted for concrete under triaxial 

compression, this strength ratio is around 0.7 (Appendix 4.2), much less than 1 as 

implied by the circular failure curve. Therefore, a failure surface which aims at 

reflecting the experimental behavior of concrete should take into account the 

effect of the third deviatoric stress invariant and adopt a non-circular failure curve 

in the deviatoric plane. A possible shape of such failure surfaces is shown in 

Figure 4.5.  

 

It can also be expected that the peak stress of concrete under non-uniform 

confinement cannot be accurately predicted by Eqn 4.1. The stress state of 

non-uniformly confined concrete corresponds to a circumferential position 

between that of triaxial and biaxial compression on the deviatoric plane (Figure 

4.5). Therefore, the peak stress of this case cannot be accurately predicted as the 

two extreme cases (i.e. biaxial compression and triaxial compression) are not 

accurately defined.  

 

In Eqn 4.1, θ  is known as the friction parameter and θarctan  is defined as the 

friction angle in the 2J -I1 plane. The value of θ  can be found through 

calibration using empirical equations for concrete under triaxial compression. 

Among many such equations, the most popular are those proposed by Richart et al. 

(1928) and Mander et al. (1988). Teng et al. (2006a) recently proposed an 

equation which has been verified by a large amount of test data. The friction 
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parameter is calculated to be 0.2934 using the equation proposed by Richart et al. 

(1928) and to be 0.2634 using the equation proposed by Teng et al. (2006a), as 

explained in Appendix 4.1. 

 

Mirmiran et al. (2000), Shahawy et al. (2000), Karabinis and Kiousis (1994), 

Karabinis and Rousakis (2002) and Oh (2000) directly adopted the D-P yield 

criterion and calibrated the θ  value using empirical equations for the triaxial 

compressive strength of concrete. Fang (1999) and Mahfouz et al. (2001) 

simulated concrete using the smeared concrete model in ABAQUS, which has a 

yield criterion similar to Eqn 4.1 for concrete in compression. Therefore, these 

models cannot give accurate predictions for the strength of concrete under 

non-uniform confinement. In Karabinis and Kiousis (1996), the term 2J  in 

Eqn 4.1 is replaced by 4
32 1 rSCJ −  where 2/3

2

3

)(J
J

Sr =  is a function of the 

second and the third deviatoric stress invariants, and 3C  is a constant. This 

replacement causes the shape of the yield surface in the deviatoric plane to be 

non-circular. It is suggested that 3.23 =C in Karabinis and Kiousis (1996). By 

doing so, 4
31 rSC− is equal to 1.17 for triaxial compression and equal to 0.58 for 

biaxial compression. The shear strength ratio is approximately 0.5, which is lower 

than the experimental value (about 0.7) as discussed earlier.  

 

4.3.2.2 Strain hardening and softening 

(i) General equations 
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Although some researchers (e.g. Mirmiran et al. 2000; Shahawy et al. 2000) 

assumed an elastic-perfectly plastic model for confined concrete, the strain 

hardening/softening behavior has long been observed in experiments (Chen 1982). 

In classical metal plasticity models, k  is only a function of the equivalent plastic 

strain (Eqn 4.2). If this concept is adopted with the D-P yield criterion, the strain 

hardening/softening rule can be determined by any single uniaxial stress-strain 

curve of concrete, either with or without confinement. It is evident that the task is 

to determine the value of k  corresponding to a given value of pε
~  based on Eqn 

4.2. It can be easily shown that pdε~  is equal to pd 1ε  for concrete under uniaxial 

compression based on Eqns 4.2-4.4 and Eqn 4.11 presented later in this chapter, 

where p
1ε  is the plastic strain in the loading direction. The hardening/softening 

function can then be determined by the following procedure with a uniaxial 

stress-strain curve: 

 

(1) obtain the axial stress-plastic strain curve using  

c

p

E
1

11
σ

εε −=                         (4.5) 

and the 11 εσ − relationship;  

(2) find the relationship between the plastic strain and both 2J  and 1I  based on 

the axial stress-plastic strain curve obtained in step (1); 

(3) find the relationship between k  and the plastic strain based on Eqn 4.1 and 

the results of step (2).  

 



 120

While the classical hardening rule takes the plastic deformation as the only 

parameter, it has recently been noted (Lan 1998; Oh 2002; Karabinis and Kiousis 

1994; Chen and Lan 2004; Huang 2005) that without involving the confining 

pressure, the hardening rule cannot lead to reasonable predictions of the ductility 

of confined concrete. Some of these authors (e.g. Lan 1998; Oh 2002) have also 

proposed modified hardening rules in which the confining pressure is taken as 

another parameter, and announced good predictions of test results. The hardening 

rules adopted in existing D-P models (Table 4.1) are assessed below. The 

importance of the inclusion of strain hardening/softening, and that of the inclusion 

of confining pressures in the hardening rules are numerically illustrated.   

 

(ii) Discussions 

As is evident from numerous compression tests on concrete (e.g. Figure 4.6), an 

elastic-perfectly plastic model cannot reflect the true behavior of concrete in 

compression. Therefore a plasticity model including strain hardening and 

softening is necessary to capture the experimental phenomenon. Mirmiran et al. 

(2000) and Shahawy et al. (2000) adopted an elastic-perfectly plastic model, 

which is obviously incapable of close predictions of the behavior of 

actively-confined concrete. However, Mirmiran et al. (2000) and Shahawy et al. 

(2000) believed that an elastic-perfectly plastic model can provide reasonably 

close predictions of the axial stress-strain behavior of FRP-confined concrete. The 

following discussion is an attempt to clarify this issue.  

 

It is known that FRP-confined concrete is subjected to a varying confining 

pressure. In order to determine a point on the stress-strain curve of FRP-confined 
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concrete, it is necessary to, (1) find the confining pressure under a given axial 

strain, (2) find the axial stress based on the known axial strain and confining 

pressure. Step (1) above relates to the flow rule which is discussed in Subsection 

4.3.2.3, while step (2) relates directly to the strain hardening/softening rule. 

Researchers (e.g. Mirmiran and Shahawy 1996; Spoelstra and Monti 1999; Fam 

and Rizkalla 2001a; Chun and Park 2002; Harries and Kharel 2002 and Teng et al. 

2006a) generally believe that the axial stress of FRP-confined concrete at a given 

axial strain and confining pressure is equal to that of actively-confined concrete 

with the same confining pressure and axial strain. Figure 4.7, which is produced 

using Teng et al.’s (2006a) model, illustrates that the stress-strain curve of 

FRP-confined concrete crosses a series of stress-strain curves of actively-confined 

concrete at points where both the FRP-confined concrete and the 

actively-confined concrete have the same confining pressure. The locations of 

these interception points, however, depend on the stiffness of the FRP jacket. 

When the FRP jacket stiffness is higher, these interception points are at smaller 

axial strains. As the assumption of elastic-perfectly plastic behavior can only 

correctly capture the peak stress point of actively-confined concrete (i.e. cannot 

predict the post peak softening behavior), it would lead to inaccurate predictions 

of the stress-strain behavior of FRP-confined concrete when the interception 

points do not coincide with the peak stress points. The farther these interception 

points are from the peak stress points, the larger the prediction errors. It can 

therefore be concluded that the assumption of elastic-perfectly plastic behavior 

generally cannot lead to close predictions of the stress-strain behavior of 

FRP-confined concrete, but may produce reasonable predictions when the FRP 
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jacket stiffness is within a certain range, provided that the dilation of confined 

concrete is closely predicted. 

 

If the equivalent plastic strain is taken as the only variable in the strain 

hardening/softening function, the axial stress-strain curves of both 

actively-confined and FRP-confined concrete cannot be closely predicted, as 

pointed out by previous researchers (Lan 1998; Oh 2002; Karabinis and Kiousis 

1994; Chen and Lan 2004; Huang 2005). Two numerical tests were conducted in 

the present study to clarify this issue. Figure 4.8 shows the FE results from such a 

D-P type model for the stress-strain curves of unconfined concrete and concrete 

confined by a constant active pressure equal to 6 MPa and 12 MPa respectively. 

The unconfined concrete strength is 39.6 MPa. The hardening/softening function 

was obtained from the uniaxial stress-strain curve of unconfined concrete 

produced by Teng et al.’s (2006a) model, following the procedure stated earlier. 

The Extended Drucker-Prager Model of ABAQUS, which is introduced in detail 

later in this chapter, was employed to conduct this FE analysis. It can be seen in 

Figure 4.8 that the slopes of the strain softening branch of all three curves are 

almost identical. This is not consistent with the experimental observation that the 

stress-strain curve of actively-confined concrete has a less steep descending 

branch than unconfined concrete (Figure 4.1). Figure 4.9 shows the FE results 

from the same D-P model with a constant dilation angle equal to 8o (the dilation 

angle is discussed in detail in Subsection 4.3.2.3) for FRP-confined concrete. The 

concrete cylinder has an outer diameter of 152.5 mm and is confined by a two-ply 

GFRP jacket with an elastic modulus of 80,100 MPa and a thickness of 0.17 mm 

per ply. It is obvious that the FE results are quite different from the test results. 
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The inappropriate strain hardening/softening function is again one of the major 

reasons. As such a strain hardening/softening function leads to an underestimation 

of the post-peak stress of actively-confined concrete (see Figure 4.8), the stresses 

of FRP-confined concrete, which is subjected to continuously varying confining 

pressures, are consequently underestimated. It may therefore be concluded that the 

strain hardening/softening function should also be dependent on the confining 

pressure, in order to closely predict the behavior of confined concrete. In 

Subsection 4.3.4, it is verified through numerical tests that a strain 

hardening/softening function dependent on the confining pressure leads to close 

predictions of the behavior of confined concrete. 

 

Some researchers (e.g. Lan 1998; Oh 2000; Karabinis and Kiousis 1994) included 

the confining pressure into the hardening/softening function. Lan (1998) included 

the effect of confining pressure based on a set of experimental stress-strain curves 

of actively-confined concrete with different confining pressures. Oh (2000) 

proposed a set of complicated equations to determine the k  function. These 

equations included six parameters and twenty subordinate parameters and were 

obtained from nonlinear regression analysis of data produced from an empirical 

axial stress-strain model developed by the same author for concrete under triaxial 

compression. Despite the complicated form, the major hardening parameters were 

still the plastic deformation and the confining pressure, for concrete with a given 

unconfined strength.  

 

Karabinis and Kiousis (1994) adopted the following form for the k  function:  
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in which ε  is a function of the plastic strain trajectory which is an indirect 

representation of the equivalent plastic strain; )( lR σ is a function of the confining 

pressure; the other parameters, including pE , /
pE  , '

uf  , and '
yf  , are constants 

that can be determined using the unconfined concrete strength. This equation, 

although complicated, indicates the dependence of the hardening function on both 

the confining pressure and the plastic deformation. 

 

The above three approaches are conceptually correct and can be expected to 

provide close predictions of the axial stress-strain behavior of actively-confined 

concrete, if their material parameters are suitably selected. However, in order to 

closely predict the behavior of FRP-confined concrete, an appropriate flow rule is 

another important issue, as discussed below.  

 

4.3.2.3 Flow rule 

(i) General equations 

When the associated flow rule is adopted, the flow potential is the same as the 

yield function and the plastic strain increments can be calculated using Eqn 4.7 

(Chen 1982; Oh 2000). 
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where F is the yield function defined by Eqn 4.1 and λ  is a scalar hardening 

parameter which can vary throughout the straining process. 
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For concrete subjected to triaxial compression, Eqn 4.7 can be written as 
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Eqn 4.11 can be obtained from Eqns 4.8-4.10.  
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where α  is the dilation rate, 
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Eqn 4.11 clearly shows how the flow rule determines the direction of plastic 

deformation. For concrete under triaxial compression, the flow rule determines the 

ratio of the lateral (or volume) plastic strain to the axial plastic strain.  

 

While the associated flow rule was adopted in some research (e.g. Fang 1999; 

Mahfouz et al. 2001), it has been found by many researchers (e.g. Chen and Lan 

2004; Huang 2005; Mirmiran et al. 2000; Oh 2002) to lead to an overestimation of 

the expansion of confined concrete. Consequently, these authors suggested the use 

of the non-associated flow rule.  
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When the non-associated flow rule is adopted, a flow potential G  different from 

the yield function is defined (Eqn 4.14) to find the plastic strain increments (Oh 

2000). That is,  
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where β  is the dilation parameter and βarctan  is defined as the dilation angle. 

A positive β  value indicates volume dilation while a negative β  value 

indicates volume compaction.  

 

By adopting Eqn 4.14, Eqn 4.11 can be rewritten as 
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Mirmiran et al. (2000), Shahawy et al. (2000) and Karabinis and Kiousis (1994, 

1996) adopted a non-associated flow rule with a constant dilation angle for the 

modeling of confined concrete. Karabinis and Rousakis (2002) recently related 

the dilation angle to the plastic deformation. Oh (2002) noted the complicated 

deformation properties of concrete and related the dilation angle to both the 

confining pressure and the plastic deformation based on empirical equations for 

actively-confined concrete. The flow rules adopted in existing D-P type models 

(Table 4.1) are numerically assessed below, including (1) the associated flow rule; 

(2) the non-associated flow rule with a constant dilation angle; (3) the 

non-associated flow rule with a dilation angle varying with the plastic 
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deformation; (4) the non-associated flow rule with a dilation angle varying with 

both plastic deformation and confining pressure. 

 

(ii) Discussions 

As stated earlier, the flow rule determines the ratio of lateral (volume) plastic 

strain to axial plastic strain. When the associated flow rule is used, continuous 

volume dilation after yielding is predicted, as the dilation angle is set to be equal 

to the friction angle which is a positive constant (e.g. 16.3 degrees, see Appendix 

4.1). However, experimental observations show that actively-confined concrete 

exhibits volume compaction followed by volume dilation, while concrete strongly 

confined by an FRP jacket exhibits continuous volume compaction (Figure 4.2(b)). 

An experimental axial-lateral strain curve of actively-confined concrete is 

compared with FE results in Figure 4.10. The experimental curve, from a concrete 

cylinder with an unconfined strength of 41.9 MPa and confined by a constant 

pressure equal to 12 MPa, was obtained by Canadppa et al. (2001). The FE results 

are from the D-P model with the associated flow rule. It is obvious that the FE 

results overestimate the lateral expansion of actively-confined concrete, as found 

by Chen and Lan (2004), Huang (2005), Mirmiran et al. (2000) and Oh (2002).  

 

Mirmiran et al. (2000) and Shahawy et al. (2000) explored the use of a 

non-associated flow rule with a constant dilation angle not equal to the friction 

angle for the modeling of FRP-confined concrete. Although Mirmiran et al. (2000) 

and Shahawy et al. (2000) found that the dilation tendencies of FRP-confined 

concrete could not be properly established by such a flow rule, they showed that 

the stress-strain curves of FRP-confined concrete could be reasonably closely 
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predicted by assuming the dilation angle to be equal to zero. The inability of such 

an assumption in predicting the dilation properties of FRP-confined concrete is 

evident from available test results. Based on test results, FRP-confined concrete 

(see Figure 4.2(b)) exhibits a varying dilation angle during the loading process 

(e.g. volume compaction occurs after volume dilation), while the assumption of a 

zero dilation angle corresponds to no volume change. 

 

To understand the success of Mirmiran et al.’s (2000) model in predicting the 

stress-strain behavior of FRP-confined concrete and to explore its wider validity, 

Teng et al.’s (2006a) analysis-oriented stress-strain model is employed for the 

following discussion. Figure 4.11 shows the dilation angles of FRP-confined 

concrete calculated from Teng et al.’s (2006a) model for two specimens tested 

respectively by Mirmiran et al. (2000) and the author. In Mirmiran et al.’s (2000) 

test, the concrete had an unconfined strength of about 30 MPa, the cylinder had a 

diameter of 152.5 mm and the FRP tube had an elastic modulus of 40,336 MPa, a 

thickness of 2.21 mm and a tensile strength of 579 MPa in the circumferential 

direction. In the Yu’s test, the concrete had an unconfined strength of 36.7 MPa 

and a corresponding strain of 0.0026, the cylinder had a diameter of 152.5 mm 

and the FRP tube had an elastic modulus of 80,100 MPa, a thickness of 0.34 mm 

and a hoop rupture strain of 0.0019. It is obvious from Figure 4.11 that the 

dilation angle of FRP-confined concrete not only varies with the plastic 

deformation, but also depends on the stiffness of the FRP jacket. FRP-confined 

concrete with a weaker jacket (Yu’s test) has a larger dilation angle. Therefore, 

the adoption of a constant dilation angle cannot lead to reasonable predictions of 

the behavior of FRP-confined concrete of different jacket stiffnesses. Mirmiran et 
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al.’s (2000) conclusion is reasonable for his own test as the actual dilation angle 

of his specimen is seen in Figure 4.11 to vary from about 3 degrees to negative 5 

degrees (Figure 4.11). In addition, Mirmiran et al. (2000) assumed the 

elastic-perfectly plastic behavior. The good performance of his FE model in 

predicting the axial stress-strain curve is also partly because the effect of 

underestimating lateral expansion at the beginning of the loading process 

counteracts the effect of overestimating the stress of confined concrete due to the 

assumption of elastic-perfectly plastic behavior. The zero-degree dilation angle 

assumption obviously does not lead to close predictions of Yu’s test results (see 

Figure 4.12(a)). Using a trial-and-error procedure, it was found that a constant 

dilation angle equal to 8 degrees can produce reasonable predictions for Yu’s test, 

as shown in Figure 4.12(a). By doing so, the lateral dilation of FRP-confined 

concrete can also be reasonably but not accurately predicted, as indicated in 

Figure 4.12(b). It can be found from Figure 4.12(b) that the FE results 

underestimate the lateral expansion. This is consistent with Figure 4.11 as at the 

beginning of the loading process the dilation angle is larger than 8 degrees. Based 

on the above discussion, it can be concluded that the assumption of a constant 

dilation angle not only does not lead to reasonable predictions of the complicated 

dilation properties of FRP-confined concrete (see Figure 4.2(b)), but also fails to 

predict the stress-strain behavior of FRP-confined concrete accurately. The above 

discussions also suggest that adopting the associated flow rule, which implies a 

constant dilation angle equal to the friction angle, does not provide close 

predictions of the behavior of FRP-confined concrete. 
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Karabinis and Rousakis (2002) recently related the dilation angle to the plastic 

deformation, but assumed it to be a constant in their earlier studies (Karabinis and 

Kiousis 1994, 1996). The following equation was given by them:  
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                    (4.16) 

where 0α  and uα  are the initial and ultimate values of α  and αK  is the 

initial rate of change of α  as a function of ε  which is known as the plastic 

strain trajectory and is an indirect representation of the equivalent plastic strain. 

Eqn 4.16 describes the variation of α  which parallels the variation of plastic 

deformation. Karabinis and Rousakis (2002) proposed that the values of 0α  and 

uα  be equal to -0.6 and -1.732 respectively.  

 

Karabinis and Kiousis (1994, 1996) assumed a constant dilation angle and thus 

could not closely predict the behavior of confined concrete as explained earlier. 

Karabinis and Rousakis (2002) related the dilation angle to the plastic 

deformation but the negative dilation angle values they used are not consistent 

with experimental observations. As explained earlier, a negative value of α  

indicates volume compaction. However, experimental observations showed that 

actively-confined concrete exhibits volume compaction followed by volume 

dilation with plastic deformation. In addition, Karabinis and Rousakis (2002) did 

not take into account the variation of dilation angle with the confining pressure. 

This variation, however, is evident from numerous tests (e.g. Figure 4.2(b)). In 

Figure 4.2(b), it is obvious that concrete confined with a larger confining pressure 

begins to dilate at a larger axial strain.    
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Oh (2002) noted the complicated deformation properties of concrete and related 

the dilation angle to both the plastic deformation and the confining pressure. 

Several equations were proposed to express the dilation angle based on an 

empirical transverse deformation model, proposed by the same author, and 

non-linear regression analysis. These equations, although complicated, include the 

variation of the dilation angle with both the confining pressure and the plastic 

deformation. Therefore, it can be expected that the equations of Oh (2002) are 

capable of close predictions of the dilation behavior of actively-confined concrete, 

provided that his empirical model has sufficient accuracy. However, it is believed 

that Oh’s (2000) equations cannot provide close predictions of FRP-confined 

concrete, as explained below.  

 

Figure 4.2(a) shows the curve of FRP-confined concrete crossing those of 

actively-confined concrete. Existing test results show that at the points of 

interception, the confining pressures of both types of specimens are almost the 

same for a given concrete (Teng et al. 2006a). However, in a plasticity model, the 

direction of plastic flow determines the ratio of the increment of lateral plastic 

strain to the increment of axial plastic strain. Figure 4.2(a) shows clearly that the 

tangent Poisson’s ratio (i.e. the ratio of the increment of lateral strain to the 

increment of axial strain) of actively-confined concrete is different from that of 

FRP-confined concrete at the interception point, where the axial strain and the 

confining pressure are however almost the same for both cases. It should be noted 

that Figure 4.2(a) shows the axial-lateral strain curves, but it is reasonable to 

expect that the axial-lateral plastic strain curves are similar. Therefore, a plasticity 
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model, which relates the flow rule to the confining pressure and thus can predict 

the behavior of actively-confined concrete closely is likely to give unreliable 

predictions for FRP-confined concrete.  

 

Teng et al.’s (2006a) analysis-oriented model is employed to further clarify this 

issue. The results from this model are shown in Figure 4.13, in which the 

horizontal axis is the axial plastic strain and the vertical axis is the dilation angle. 

The solid black curve in Figure 4.13 represents the results for a solid circular 

concrete cylinder ( 6.39' =cof MPa, diameter=152.5 mm) confined by an FRP 

jacket with an elastic modulus of 80,100 MPa and a thickness of 0.34 mm. The 

two dashed curves in Figure 4.13 represent the results for actively-confined 

concrete with the confining pressures equal to 6 MPa and 10 MPa respectively. 

The vertical dotted line on the left represents the axial plastic strain value of 

FRP-confined concrete when the confining pressure provided by the FRP jacket is 

equal to 6 MPa, while the right vertical dotted line represents the axial plastic 

strain value when the confining pressure is 10 MPa. It is evident from Figure 4.13 

that the dilation angle of actively-confined concrete is different from that of 

FRP-confined concrete even when both have the same axial plastic strain and 

confining pressure. The black regions marked in Figure 4.13 indicate the 

differences in the dilation angle at the two key values of axial plastic strain. These 

results again suggests that a plasticity model, which relates the flow rule to the 

confining pressure and can accurately predict the behavior of actively-confined 

concrete, tends to overestimate the lateral dilation of FRP-confined concrete and 

in turn overestimate the axial stress-strain behavior. This point is further examined 

in Subsection 4.3.4 through FE results.  



 133

 

The difference in the dilation angle can be explained by the difference between 

actively-confined concrete and FRP-confined concrete which is under passive 

confinement. For actively-confined concrete, the confining pressure is constant 

and is not related to the deformation of concrete. For passively-confined concrete, 

however, the confinement level varies with the increment of deformation and in 

turn controls the deformation. Therefore, the dilation angle of passively-confined 

concrete may be related not only to the confining pressure but also to the ratio of 

the confining pressure increment to the lateral strain increment (i.e. the rate of 

confining pressure increment). For FRP-confined concrete, this ratio is directly 

related to the FRP jacket stiffness. The variation of dilation angle with this ratio is 

clearly illustrated in Figure 4.11 which shows the variations of dilation angle with 

the axial plastic strain for concrete confined by two different FRP jackets.  

 

The above discussions indicate that all flow rules adopted in existing D-P type 

models cannot lead to close predictions for FRP-confined concrete. Considering 

the dilation properties of passively-confined concrete discussed above, the flow 

rule should also include the rate of confining pressure increment, beside the 

plastic deformation and the confining pressure, in order to reach reasonably 

accurate predictions. In Subsection 4.3.4, it is verified through numerical tests that 

such a flow rule leads to reasonable predictions of the behavior of both 

actively-confined and FRP-confined concrete. 
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4.3.2.4 Concluding remarks 

It can be concluded from the above discussions that in order to provide reasonably 

accurate predictions of the behavior of both actively-confined and 

passively-confined concrete, the D-P type plasticity models should at least include 

the following modifications: (1) a yield criterion dependent on the third deviatoric 

stress invariant; (2) a confinement-dependent hardening rule; (3) a 

confinement-dependent non-associated flow rule, in which the dilation angle is 

related not only to the confining pressure but also to the rate of confining pressure 

increment. When (1) is appropriately applied, the strength of concrete under 

non-uniform confinement can be accurately predicted; when (2) is appropriately 

applied, the axial stress-strain curve of actively-confined concrete can be 

accurately predicted; when (3) is appropriately applied, the lateral deformation of 

both passively-confined and actively-confined concrete can be accurately 

predicted.  

 

None of the existing models includes all three modifications mentioned above. 

Fang (1999) and Mahfouz et al. (2001) directly adopted the smeared crack 

concrete model in ABAQUS, which has an associated flow rule and does not 

include the third deviatoric stress invariant in the yield criterion. Fang’s (1999) 

model also did not consider strain hardening/softening. The models proposed by 

Karabinis and his coauthors (Karabinis and Kiousis 1994, 1996; Karabinis and 

Rousakis 2002) do not include the effect of confining pressure on the flow rule 

and provide unreasonable values for the dilation angle. Therefore, their models 

cannot provide reasonable predictions of the lateral deformation of confined 

concrete. In addition, the shear strength ratio was either set to be 1 (Karabinis and 
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Kiousis 1994; Karabinis and Rousakis 2002) or set to be a value smaller than 

common experimental values (Karabinis and Kiousis 1996), as discussed earlier. 

The model proposed by Oh (2000) is conceptually correct for actively-confined 

concrete, except that it does not include the effect of the third deviatoric stress 

invariant and thus is not suitable for use with concrete under non-uniform 

confinement. However, it cannot provide reasonable predictions of the behavior of 

FRP-confined concrete as discussed earlier. The model adopted in Mirmiran et al. 

(2000) and Shahawy et al. (2000) do not include any of the three required 

modifications. Therefore it cannot be expected to predict the behavior of either 

actively-confined or passively-confined concrete with reasonable accuracy. 

 

In the next subsection, it is illustrated that a D-P type model including all the 

above three modifications can lead to accurate predictions for both 

actively-confined and FRP-confined concrete. 

 

4.3.3 Proposed Modifications  

The proposed modifications are summarized below in Eqns 4.17-4.19.  

 

(1) Yield criterion related to the third deviatoric stress invariant  

The yield criterion is related to the third deviatoric stress invariant, as also 

suggested by Chen (1982), Karabinis and Kiousis (1996), and Huang (2005). 

Eqn 4.1 is modified into   

   ),,(
321 JJIFF =                        (4.17) 

(2) Confinement-dependent hardening rule 
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The hardening function is related to the confining pressure, as also suggested 

by Lan (1998), Oh (2002), Karabinis and Kiousis (1994) and Chen and Lan 

(2004). Eqn 4.2 is modified into  

)~,( plkk εσ=                        (4.18) 

where lσ  is the confining pressure.  

(3) Confinement-dependent non-associated flow rule 

A non-associated flow rule with a flow potential different from the yield 

function is adopted (Eqn 4.14). The dilation parameter β  is related to the 

plastic deformation, the confining pressure and the rate of confining pressure 

increment. 
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where lε  is the lateral strain. 

For actively-confined concrete, 
l

l

ε
σ
∆
∆ =0 and Eqn 4.19 reduces to  
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For FRP-confined concrete in which the concrete is confined by a linear 

elastic confining device, 
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σ  and lσ  can be determined from pε

~  and 

lε . Eqn 4.19 thus reduces to 
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The FE program ABAQUS was adopted to conduct FE analyses. The proposed 

modifications were made to a D-P type plasticity model available in ABAQUS, 
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which is referred to as the Extended Drucker-Prager Model. The facility of user 

defined solution-dependent field variables (SDFV) available in ABAQUS was 

used to implement these modifications.  

 

4.3.3.1 Extended Drucker-Prager model in ABAQUS 

The Extended Drucker-Prager Model in ABAQUS is a D-P type plasticity model 

with a modified yield criterion. In this model, an additional parameter K is 

adopted to take into account the effect of the third deviatoric stress invariants. The 

physical meaning of K is that it represents the shear strength ratio of materials 

between biaxial compression and triaxial compression. In the Extended 

Drucker-Prager Model, the yield criterion takes the following form:  

kIsF −−= 1θ                      (4.22) 
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where 3J  is the third deviatoric stress invariant. By using “ s ” in Eqn 4.22 

instead of 2J  in Eqn. 4.1, the shape of the yield surface in the deviatoric plane 

is changed and is no longer circular. Based on Eqn 4.23, when 1
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(corresponding to the triaxial compression case), 2Js = ; when 
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Therefore, if suitable parameters are selected so that Eqn 4.22 represents the same 

failure curve as Eqn 4.1 in the meridian plane for the case of txiaxial compression, 
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the failure surface for the case of biaxial compression can be represented by the 

following equation:  

KkIKJF −−= 12 θ                    (4.24) 

The modified yield surface in the deviatoric plane and that in the meridian plane 

are shown in Figure 4.14. However, in the Extended Drucker-Prager Model of 

ABAQUS, the K value is limited between 0.778 and 1.0 to ensure the convexity 

of the yield surface. The lower limit of K value is larger than the experimental 

value (about 0.7, see Appendix 4.2) and thus this model tends to overestimate the 

strength of concrete under biaxial compression. Nevertheless, the K value does 

not affect the results for concrete under triaxial compression, as long as the θ  

value is calibrated with empirical equations for triaxial compression. 

 

The Extended Drucker-Prager Model also allows the user to define the strain 

hardening/softening function and input a dilation angle, either the same as or 

different from, the friction angle to allow either the associated or the 

non-associated flow rule to be used.  

 

4.3.3.2 Solution-dependent field variables (SDFV) in ABAQUS 

In ABAQUS, the material properties can be set to be dependent on the 

solution-dependent field variables using the user-defined subroutine USDFLD. A 

solution-dependent field variable is a field variable that varies throughout the 

solution process (such as the displacement and the stresses). This facility provides 

the possibility for the material models in ABAQUS to account for additional 

material characteristics.  
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In the present study, the option of SDFV was adopted to define the dependence of 

strain hardening/softening on the confining pressure, and the dependence of the 

flow rule on the confining pressure, the plastic deformation and the rate of 

confining pressure increment. By doing so, the variations of the material 

properties during the loading process can be appropriately captured. 

 

4.3.3.3 Implementation of the proposed modifications in ABAQUS 

(1) Yield criterion 

   The yield criterion of the Extended Drucker-Prager Model was directly 

adopted, with θ  = 0.2624 which was found using Teng et al.’s (2006a) 

equations (see Appendix 4.1), and K = 0.78. The use of this K instead of 0.725 

found from empirical equations (see Appendix 4.2) is due to the limitation of 

the Extended Drucker-Prager Model in ABAQUS as explained earlier.  

 

(2) Hardening rule 

The confinement-dependent hardening rule was implemented in ABAQUS 

through the following procedure: 

 

(a) obtain a series of axial stress-strain relationships of concrete for various 

active confining pressures using Teng et al.’s (2006a) model, based on 

given values of the unconfined concrete strength and the corresponding 

strain of concrete; 
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(b) obtain the corresponding axial stress-plastic strain relationships of 

concrete for different confining pressures based on the initial elastic 

modulus, the initial Poisson’s ratio and the equation below: 

c
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εε 2+−=                   (4.25) 

where cE  and cν  are the initial values of the elastic modulus and 

Poisson’s ratio of concrete respectively. The empirical equations below 

were adopted for cE  and cν  when experimental values were not 

available. 

'4730 coc fE =                     (4.26) 

cν = 0.18                       (4.27) 

(c) input these relationships into ABAQUS in the required format, in which 

the association of the stress-strain relationship with the confining pressure 

is defined using the SDFV option.  

 

A computer program was developed to produce the input material data. The 

only parameters needed for the program are the unconfined concrete strength 

and the corresponding strain as stated earlier.  

  

(3) Flow rule 

The confinement-dependent flow rule was implemented through the following 

procedure:  
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(a) obtain a series of axial strain-lateral strain relationships of concrete for 

various confining pressures using Teng et al.’s (2006a) model;  

(b) obtain a series of axial strain-lateral strain relationships of FRP-confined 

concrete for different 
o

frpfrp

R
tE

 values using Teng et al.’s (2006a) model; 

for FRP-confined concrete 
l

l

ε
σ
∆
∆ =
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frpfrp

l

l

R
tE

=
ε
σ ; 

(c) calculate the dilation angles under different conditions based on the axial 

strain-lateral strain relationships obtained from steps (a) and (b) and Eqns 

4.15, 4.25 and the following equation:  
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εε +−−= )1(                 (4.28) 

(d) input the variation of the dilation angle with the plastic deformation, the 

confining pressure and the rate of confining pressure increment into 

ABAQUS in the required format, in which the SDFV option was once 

again adopted. 

  

A computer program was again developed to produce the input material data. 

 

4.3.4 Verification of the Proposed Modifications and Discussions 

Since the material parameters for the modified D-P model proposed here were 

obtained from the analysis-oriented model of Teng et al. (2006a), it can be 

expected that the proposed model has the same accuracy as Teng et al.’s (2006a) 

model. Several numerical tests (i.e. FE analyses) were conducted for verification 

as shown below. For the concrete under a uniform active confining pressure, only 
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a single 8-node solid element was used. For the FCSC specimen, the FE model 

was for a vertical slice of the specimen and consisted of a single-layer of 8-node 

solid elements for the concrete tied to 4-node shell elements for the FRP jacket. 

The FRP jacket was simulated to behave in a linear elastic manner with stiffness 

in the hoop direction only.  

 

(1) Numerical test I: actively-confined concrete 

 Figure 4.15 shows a comparison between the predictions obtained from the 

proposed model and the test results reported by Sfer et al. (2002) for 

actively-confined concrete. The concrete has an unconfined strength of 32.8 

MPa and a corresponding strain of 0.0018, and is confined by a constant 

pressure of 9 MPa. Results from Teng et al.’s (2006a) analysis-oriented model 

are also shown in Figure 4.15 for reference. It is evident that the FE results are 

almost identical to the predictions of Teng et al.’s (2006a) model, and are very 

close to the experimental stress-strain curve. 

 

(2) Numerical test II: FRP-confined concrete 

In this numerical test, a two-ply FRP-confined solid concrete cylinder, which 

has been denoted as “S40-2-II” in Chapter 3, was simulated using the 

proposed D-P type model. The cylinder had a diameter of 152.5 mm; the 

concrete had an unconfined strength of 39.6 MPa and a corresponding strain 

of 0.0026; the FRP jacket had an elastic modulus of 80100 MPa, and a 

thickness of 0.17 mm per ply. The FE results are compared with the test 

results and the predictions from Teng et al.’s (2006a) model in Figure 4.16. It 

is evident that they are in close agreement with each other.  
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(3) Numerical test III: Oh’s (2002) approach for FRP-confined concrete 

This numerical test was conducted to demonstrate that the confining 

pressure-dependent non-associated flow rule proposed by Oh (2000), which is 

capable of accurate predictions of the behavior of actively-confined concrete, 

cannot provide reasonably close predictions of the behavior of FRP-confined 

concrete. A D-P model with the flow rule related to the confining pressure 

and the plastic deformation but not the rate of confining pressure increment, 

following the work of Oh (2000), was employed in this numerical test. The 

FE results obtained with this D-P model, denoted as “FE results (Oh)”, are 

compared with the test results in Figure 4.17. The FE results from the model 

adopted in numerical test II, denoted as “FE results”, are also shown in Figure 

4.17 for reference. It is clear from Figure 4.17 that there are considerable 

differences between “FE results (Oh)” and the test results. The FE analysis 

with a D-P model following Oh’s (2000) approach overestimates the dilation 

of FRP-confined concrete and thus overestimates its axial stress-strain 

behavior. This further demonstrates the importance of including the 

dependence of the flow rule on the rate of confining pressure increment in 

modeling passively-confined concrete. 

 

The preceding comparisons show that the modified D-P type plasticity model 

proposed here can accurately predict the behavior of both actively-confined and 

FRP-confined concrete. However, this model still has its limitations. Firstly, the 

softening behavior of confined concrete is simulated using the 

hardening/softening function k, which involves the retraction of the yield surface 
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in the stress space. This may cause numerical difficulty during the finite element 

analysis. Secondly, the D-P type plasticity model cannot simulate the reduction of 

elastic stiffness during the loading process, which however has been widely 

observed in previous experimental work (Maekawa et al. 2003). This limitation 

does not affect the numerical simulation results of monotonic tests but does affect 

those of cyclic tests. Thirdly, the shear strength ratio allowed in the Extended D-P 

Model of ABAQUS are significantly higher than the typical experimental values 

of concrete and tends to overestimate the strength of concrete under non-uniform 

confinement. Lastly, the proposed modifications are calibrated with empirical 

equations for concrete under uniform confinement and improvements may be 

necessary when they are applied to concrete under non-uniform confinement.  

 

The first two limitations mentioned above can be overcome by including damage 

into a concrete plasticity model, forming a so-called plastic-damage model, as 

mentioned in Chapter 2. By doing so, both strain softening and the degradation of 

elastic constants can be simulated as the damage of concrete. In the next chapter, 

an improved plastic-damage model, which is within the theoretical framework of 

the Concrete Damaged Plasticity Model (CFPM) in ABAQUS and takes due 

account of the conclusions reached in this chapter, will be presented. The CDPM 

provided in ABAQUS allows a wider range of shear strength ratios to be used and 

thus does not suffer from the third limitations mentioned above. The distinct 

deformation characteristics of non-uniformly confined concrete are also taken into 

account in this improved model so that it can be applied to concrete under various 

non-uniform confinement. Numerical results for the new hybrid DSTCs, obtained 

using this plastic-damage model, will also be presented in Chapter 5. 
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Appendix 4.1 

Based on Richart et al. (1928),  

lcocc ff σ1.4// +=                        (4.A.1) 

Therefore,  

lcofI σ1.6/
1 +=                         (4.A.2) 

and  

3
)1.3( /

2

lcofJ σ+
=                      (4.A.3) 

at the peak concrete stress. Consequently,  

0)1.6(
3

)1.3( /
/

=−+−
+ kff

lco
lco σθ

σ               (4.A.4) 

and  

0)
3
1.31.6()

3
1( / =−−−− kf lco σθθ               (4.A.5) 

As θ  is a constant not related to the current stress state, it is necessary that  

0
3
1.31.6 =−θ                       (4.A.6) 

As a result,  

2934.0=θ , θarctan =16.3 degrees              (4.A.7) 

Similarly, with the following equation proposed by Teng et al. (2006a), 

lcocc ff σ5.3// +=                      (4.A.8) 

it can be easily shown that  

2624.0=θ , θarctan =14.7 degrees             (4.A.9) 



 146

Appendix 4.2 

The shear strength ratio between biaxial compression and triaxial compression can 

be calculated using the empirical equations for the strengths of concrete under 

biaxial compression and triaxial compression. For instance, if the biaxial 

compressive strength of concrete is assumed to be equal to 1.16 times the uniaxial 

compressive strength (Kupfter et al. 1969) and Richart et al.’s (1928) equation is 

adopted to calculate the strength of confined concrete, the shear strength ratio can 

be calculated to be 0.69, as shown below.  

For concrete under triaxial compression, Eqns 4.A.1-4.A.3 can be used to obtain 

the peak stress and the corresponding stress invariants.  

 

For concrete under biaxial compression: 

/
1 32.2 cofI =                       (4.A.10) 

3
16.1 /

2
cofJ =                      (4.A.11) 

Imposing the condition that the values of 1I  for the two cases are the same using 

Eqn 4.A.2 and Eqn 4.A.10, one obtains  

/22.0 col f=σ                       (4.A.12) 

Therefore the shear strength ratio of concrete under biaxial compression to that 

under triaxial compression is equal to  

=
+ //

/

22.0*1.3
16.1

coco

co

ff
f 0.69                (4.A.13) 

Similarly, if Eqn 4.A.8 proposed by Teng et al. (2006a) is adopted, the shear 

strength ratio is found to be 0.725. 
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Table 4.1 Summary of existing D-P type models for FRP-confined concrete 

 
 

Hardening rule 

D-P type 
model 

Yield 
criterion 

Including 
strain 

hardening/ 
softening? 

Related to the 
confining pressure?

Flow rule 

Fang (1999) Eqn 4.1 No / Associated flow rule 

Mahfouz et al. 
(2001) Eqn 4.1 Yes  No Associated flow rule 

Lan (1998) Eqn 4.1 Yes 

Yes (via 
experimental 

stress-strain curves 
of actively-confined 

concrete) 

Associated flow rule 

Karabinis and 
Kiousis (1994) Eqn 4.1 Yes Yes (via Eqn 4.6) 

Non-associated flow rule 
with a constant dilation 

angle 

Karabinis and 
Kiousis (1996) 

Including the 
third deviatoric 
stress invariant 

Yes Yes (via Eqn 4.6) 
Non-associated flow rule 
with a constant dilation 

angle 

Karabinis and  
Rousakis  
(2002) 

Eqn 4.1 Yes Yes (via Eqn 4.6) 

Non-associated flow rule 
with a dilation angle 

varying with the plastic 
deformation 

Mirmiran et al. 
(2000) 

Shahawy et al. 
(2000) 

Eqn 4.1 No / 
Non-associated flow rule 
with a constant dilation 

angle 

Oh (2002) Eqn 4.1 Yes 

Yes (via empirical 
equations for 

actively-confined 
concrete) 

Non-associated flow rule 
with a dilation angle 
varying with both the 

plastic deformation and 
the confining pressure 
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Figure 4.1 Stress-strain curves of confined concrete (Teng and Lam 2004) 
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(a) Lateral strain-axial strain responses of unconfined and confined 

concrete  (Teng et al. 2006a) 

Figure 4.2 Dilation properties of confined concrete 
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(b) Stress-volumetric strain responses of confined concrete  

(Teng and Lam 2004) 

Figure 4.2 Dilation properties of confined concrete (Cont’d) 
 

 

 

 

Figure 4.3 Drucker-Prager yield surface in the meridian plane 
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Figure 4.4 Initial and subsequent yield surfaces in the meridian plane 

 

 

 

Figure 4.5 Failure surfaces in the deviatoric plane 
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Figure 4.6 Axial stress-strain curve of concrete under uniaxial compression 
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Figure 4.7 Theoretical stress-strain curves of FRP- and actively-confined concrete 

(Teng et al. 2006a) 
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Figure 4.8 Theoretical axial stress-strain curves of unconfined and confined 
concrete  

 
 

 

 

 

 

 

 

 

 

 

Figure 4.9 Axial stress-strain curves of FRP-confined concrete 
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Figure 4.10 Theoretical axial-lateral strain curves of actively-confined concrete 
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(a) Axial stress-strain curves 
 

 

 

 

 

 

 

 

 

 

(b) Axial-lateral strain curves 

Figure 4.12 FE results from a D-P model with a constant dilation angle for Yu’s test 
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Figure 4.13 Comparison between actively-confined and FRP-confined concrete 

 

(a) Failure surface in the deviatoric plane (ABAQUS 2004) 

Figure 4.14 Failure surface of the Extended Drucker-Prager Model in ABAQUS 
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Figure 4.14 Failure surface of the Extended Drucker-Prager Model in ABAQUS 

(Cont’d) 
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(a) Axial stress-strain curves 

Figure 4.15 FE results for actively-confined concrete from numerical test I 
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(b) Axial stress-lateral strain curves 
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              (c) Lateral strain-axial strain curves 

Figure 4.15 FE results for actively-confined concrete from numerical test I 
(Cont’d)
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(a) Axial stress-strain curves 
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  (b) Hoop strain-axial strain curves 

Figure 4.16 FE results for FRP-confined concrete from numerical test II 
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(a) Axial stress-strain curves 
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(b) Hoop strain-axial strain curves 

Figure 4.17 FE results for FRP-confined concrete from numerical test III
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CHAPTER 5 

                  FINITE ELEMENT MODELING OF 

HYBRID DSTCS 

 

5.1 INTRODUCTION 

It was concluded in Chapter 4 that a D-P type plasticity model leading to close 

predictions of the behavior of confined concrete, including actively-confined 

concrete and FRP-confined concrete, should include a strain-hardening/softening 

rule and a flow rule that are both confinement-dependent, and a yield criterion 

dependent on the third deviatoric stress invariant.  

 

In this chapter, an improved constitutive model, which takes due account of the 

conclusions reached in Chapter 4 on concrete plasticity, confinement-dependent 

damage and other distinct characteristics of non-uniformly confined concrete, is 

first discussed. The inclusion of damage is to simulate the elastic stiffness 

reduction of concrete while the inclusion of the other distinct characteristics of 

non-uniformly confined concrete is also necessary as is discussed later. 

Verification of the model with test results of concrete under both uniform and 

non-uniform confinement is then presented.   
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A finite element (FE) analysis is next presented for hybrid DTSCs under axial 

compression, using the proposed constitutive model. The predictions by the FE 

model are compared with the test results of such columns presented in Chapter 3. 

Finally, a parametric study is presented based on which a design-oriented 

stress-strain model is proposed.   

 

5.2 IMPROVED CONSTITUTIVE MODEL FOR CONCRETE 

5.2.1 Introduction 

In general, the nonlinearity of concrete under compression can be modeled by 

approaches based on the concept of either damage or plasticity, or both (Maekawa 

et al. 2003). Plasticity is generally defined as the unrecoverable deformation of 

concrete after all loads have been removed. Damage is generally characterized by 

the reduction of elastic constants and capacity of absorbing elastic strain energy. 

Both the reduction of unloading stiffness and unrecoverable deformation have 

been clearly observed in real concrete compression tests (Oshima and Hashimoto 

1984; Maekawa et al. 2003) as shown in Figure 5.1, which suggests that the 

concept of plasticity should be combined with the concept of damage to correctly 

represent the nonlinear behavior of concrete.  

 

In this section, an improved constitutive model for concrete, which is within the 

theoretical framework of the Concrete Damaged Plasticity Model (CDPM) 

provided in ABAQUS but includes necessary modifications to reflect the 

properties of confined concrete, is discussed. The proposed modifications include 

modifications to the plasticity part and the damage variable, and modifications to 
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reflect the characteristics of concrete under non-uniform confinement. The 

modifications to the plasticity part are similar to those introduced in the previous 

chapter. The dependence of the damage variable on the confining pressure is 

included. The unique properties of concrete under non-uniform confinement are 

also appropriately considered.  

 

5.2.2 Concrete Damaged Plasticity Model (CDPM) in ABAQUS 

The Concrete Damaged Plasticity Model in ABAQUS provides a general 

capability for modeling concrete in all types of structures (beams, trusses, shells 

and solids). It uses concepts of isotropic damage in combination with isotropic 

tensile and compressive plasticity to represent the inelastic behavior of concrete, 

and is designed for applications in which concrete is subjected to monotonic, 

cyclic and/or dynamic loadings (ABAQUS 2004). The key aspects of this model 

in terms of the compressive behavior of concrete, including the damage variable, 

the yield criterion, the hardening rule, and the flow rule, are summarized as 

follows. In this chapter, compressive stresses/strains are defined to be positive 

while tensile strains/stresses are defined to be negative, unless otherwise 

specified. 

 

5.2.2.1 Damage 

The scalar damaged elasticity equation is adopted, which takes the following 

form:  

)()1( p
ijij

e
ijklij Dd εεσ −−=                    (5.1) 
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where ijσ  is the stress tensor, ijε  and p
ijε  are the strain tensor and the plastic 

strain tensor respectively, e
ijklD  is the initial (undamaged) elasticity matrix and d 

is the damage variable which characterizes the degradation of the elastic stiffness.  

 

In general, the scalar damage variable is determined by a series of equations 

which take into account the effect of both tensile and compressive damage, and 

the effect of stiffness recovery which is associated with stress reversals in cases of 

cyclic loading. When concrete is subjected to uniaxial monotonic compression, 

Eqn 5.1 is simplified to:  

)()1( 111
p

cEd εεσ −−=                    (5.2) 

where 1σ  and 1ε  are the compressive stress and strain of concrete in the 

loading direction respectively; p
1ε  is the plastic strain in the loading direction; 

cE  is the initial elastic modulus of concrete.  

 

The effective stress 1σ  is defined as: 

d−
=

1
1

1
σσ                         (5.3) 

Similarly, the first effective stress invariant 1I  and the second effective 

deviatoric stress invariant 2J  are defined in terms of the effective stress tensor.  

iiI σ=1                          (5.4) 

ijij SSJ
2
1

2 =                        (5.5) 

where ijS  is the effective deviatoric stress tensor.  
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5.2.2.2 Yield criterion 

The model adopts the yield function proposed by Lubliner et al. (1989) and 

modified by Lee and Fenves (1998). In terms of effective stresses, the yield 

function takes the following form.  

0)~())~(3(
1

1
minmin12 =−−−+−

−
= pccnp CBIAJ

A
F εσσσε   (5.6) 

with  

;
1/2

1/
''

''

−
−

=
cob

cob

ff
ffA   ,5.00 ≤≤ A                   (5.7) 

),1()1(
)~(
)~(

AAB
pttn

pccn
+−−=

εσ

εσ
                   (5.8) 

12
)1(3

−
−

=
K

KC .                         (5.9) 

Here,  

minσ  is the minimum principal effective stress; 

'
bf  is the concrete strength under biaxial compression; 

cnσ  and tnσ are the effective compressive and tensile cohesion stresses 

respectively; 

pcε~  and ptε~ are the equivalent compressive and tensile plastic strains 

respectively; 

K  is the strength ratio of concrete under biaxial compression to triaxial 

compression 
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Typical yield surfaces in the deviatoric plane are shown in Figure 5.2(b) for 

different values of K.  

 

For the case of triaxial compression, Eqn 5.6 reduces to the Drucker-Prager yield 

condition expressed in Eqn 5.10.  

cnAIACJC σ)1(
3

)3(3)1
3
1( 12 −=

+
−+             (5.10) 

Compared with Eqn 4.1, the friction parameter θ  and k in Eqn 4.1 can be 

expressed by:  

)3(3
)3(3

+
+

=
C

ACθ                        (5.11) 

 cn
C

Ak σ
3

)1(3
+
−

=                       (5.12) 

Therefore, the value of C  can be found based on the value of θ  which is 

related to the strength of concrete under triaxial compression (see Appendix 4.1), 

and the value of A which is related to the strength of concrete under biaxial 

compression (Eqn 5.7). The yield surface of concrete under compression (with the 

minimum principal stress larger than zero) can be represented in the meridian 

plane by a linear curve for the case of triaxial compression (Figure 5.2(a)) and in 

the deviatoric plane by a non-circular curve (Figure 5.2(b)). 

 

5.2.2.3 Hardening rule 

For concrete under uniaxial monotonic compression, the strain 

hardening/softening function can be defined in the CDPM by 

)~( pcncn εσσ =                          (5.13) 
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5.2.2.4 Flow rule 

A non-associated flow rule is assumed in the CDPM. The flow potential adopted 

in this model is the Drucker-Prager hyperbolic function (Eqn 5.14). 

;
ij

p
ij

Gd
σ

λε
∂
∂

=  ψψσ tan)tan( 12
2 IJG to −+∋=          (5.14) 

where ψ  is the dilation angle measured in the meridian plane at high confining 

pressure; toσ  is the uniaxial tensile stress at failure; ∋ , referred to as the 

eccentricity, defines the rate at which the function approaches the asymptote. The 

flow potential tends to a straight line when the eccentricity ∋  is close to zero. A 

typical curve of the flow potential in the meridian plane is shown in Figure 5.3. It 

is seen (Figure 5.3) that the dilation angle is very close to ψ  when the concrete 

is under compression.  

 

5.2.3 Proposed Modifications 

It was concluded in Chapter 4 that a plasticity model leading to close predictions 

for FRP-confined concrete should include a strain-hardening/softening rule and a 

flow rule that are both confinement-dependent, and a yield criterion that is 

dependent on the third deviatoric stress invariant. A confinement-dependent 

strain-hardening/softening rule is necessary to reflect the difference in the 

experimental stress-strain curve between confined concrete and unconfined 

concrete. A confinement-dependent flow rule, in which the dilation angle is 

related not only to the confining pressure but also to the rate of confining pressure 

increment, is required to capture the unique lateral expansion behavior of 

passively-confined concrete. A yield criterion dependent on the third deviatoric 
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stress invariant is necessary to simulate the experimental observation that the 

shear strength is different for concrete under biaxial compression and triaxial 

compression, even when the hydrostatic pressure is the same for both cases. In a 

plastic-damage model such as the CDPM in ABAQUS, a confinement-dependent 

damage variable also needs to be included, as strain softening is at least partially 

simulated by the scalar damage in such models. As the CDPM implicitly includes 

the effect of hydrostatic pressure and the third deviatoric stress invariant on the 

shear strength of concrete, modifications are proposed herein only for the 

hardening rule, the flow rule and the damage variable, based on the above 

discussions. In addition, the unique properties of concrete under non-uniform 

confinement are appropriately included, and are discussed later.  

 

5.2.3.1 Damage variable 

As explained earlier, concrete nonlinearity can be modeled as either damage or 

plasticity, or both. Different definitions of damage and plasticity lead to different 

plastic-damage models. When suitable material parameters are used, these 

different models may lead to the same prediction for concrete under monotonic 

loadings. However, predictions of cyclic loading tests depend significantly on 

how to differentiate the effects of damage and plasticity, as the definition of 

damage directly determines the stiffness of the unloading curve (Figure 5.1). To 

accurately reflect experimental observations, it is desirable to isolate the effect of 

damage using test results of concrete under cyclic loadings. In the present research, 

as only the simulation of monotonic loading tests is concerned, the following 

assumption is adopted for simplicity: concrete non-linearity before the peak stress 

is due only to concrete plasticity and strain hardening but there is no strain 
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hardening/softening after the peak stress has been reached. A similar assumption 

was adopted by Schwer (2003) and Murray and Lewis (1995) in their 

plastic-damage models. Besides its simplicity, the advantage of this assumption is 

that it simulates stress reductions after the peak stress by reductions in elastic 

constants instead of retractions of the yield surface in the stress space. Retractions 

of the yield surface are necessary to simulate the strain softening behavior in a 

concrete plasticity model and may cause numerical problems.   

 

Similar to the strain hardening rule, the damage variable is assumed to be 

dependent on the confining pressure, as the descending branches of the 

stress-strain curves of confined and unconfined concrete have different slopes (see 

Section 4.2).  Based on the assumption stated earlier, the damage variable is 

equal to zero before the peak stress and is given by the equations below after the 

peak stress.  

 

For concrete under uniaxial compression, 
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in which cσ  is the axial stress of concrete on the descending branch and '
cof  is 

the stress of concrete at the peak point. 
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in which '*
ccf  is the peak stress of concrete under a constant confining pressure; 

lσ  is the confining pressure; cJ 2  and 2J  are the second deviatoric stress 

invariants corresponding to the peak stress point and a point on the descending 

branch respectively; cI1  and 1I  are the first stress invariants corresponding to 

the peak stress point and a point on the descending branch respectively. 

 

The confining pressure-dependent damage variable was implemented in 

ABAQUS through the following procedure: (1) obtain a series of axial 

stress-strain curves of concrete for various constant confining pressures using 

Teng et al.’s (2006a) model; (2) find the values of the damage variable 

corresponding to different axial strains and confining pressures using Eqns 5.15 

and 5.16; (3) input these values for the damage variable into ABAQUS in the 

required format, in which the association of the damage variable with the 

confining pressure is defined through the SDFV option as described earlier in 

Chapter 4. A computer program was developed to produce the input material data. 

 

5.2.3.2 Yield criterion 

It is evident that the CDPM implicitly includes the effect of the first stress 

invariant and the third deviatoric stress invariant. The two controlling parameters 

of this model for concrete in compression are A and C in Eqn 5.10. 

 

The constant A can be determined using Eqn 5.7 based on the experimental biaxial 

concrete strength. Kupfer et al. (1969) found from their tests that the ratio '' / cob ff  
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is approximately 1.16, yielding a value of 0.12 for A. This value is adopted in the 

present research. 

 

The constant C can be determined using Eqn 5.9 based on the experimental shear 

strength ratio of concrete between biaxial compression and triaxial compression. 

It has been shown in Appendix 4.2 that this ratio is equal to 0.725 based on 

empirical equations, yielding a value of 1.83 for C, which is used in the present 

research.  

 

5.2.3.3 Hardening rule 

It has been made evident in Section 4.3 that the hardening rule should be related 

to the confining pressure. The equation below is adopted in the present research. 

),~( lpcncn σεσσ =                      (5.17) 

According to the assumption stated in Subsection 5.2.3.1, the definition of strain 

hardening is the same as in a plasticity model (see Section 4.3) before the peak 

stress of concrete. Therefore, the procedure to produce the material data for 

ABAQUS are the same as that introduced in Subsection 4.3.3.3. After the peak 

stress has been reached, no strain hardening/softening is defined and the yield 

surface remains unchanged.  

 

5.2.3.4 Flow rule 

The procedure to calculate the dilation angle is similar to that introduced in 

Subsection 4.3.3.3 for a concrete plasticity model, except that the equivalent 

plastic strain should be calculated based on Eqn 5.1 and the damage variable 
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obtained using Eqns 5.15 and 5.16. In addition, the Drucker-Prager hyperbolic 

function is adopted as the flow potential (Eqn 5.14) instead of Eqn 4.14. It is 

shown in Figure 5.3 that the dilation angle is close to ψ  when 1I  > 0. Therefore, 

the calculated dilation angle is input as the ψ  value for the CDPM, which is 

believed to have only minor effects on the calculated results.  

 

5.2.3.5 Concrete under non-uniform confinement 

Up to now, all the material parameters have been found from Teng et al.’s (2006a) 

analysis-oriented model, which is for FRP-confined circular concrete cylinders in 

which the concrete is under uniform confinement. It has been discussed earlier 

(Section 4.3) that the effect of the third deviatoric stress invariant should be taken 

into account in the yield criterion so that the strength of concrete under biaxial 

compression and non-uniform confinement can be accurately predicted. The 

CDPM implicitly includes this effect. The inclusion of this effect, however, does 

not necessarily mean that the deformation (e.g. the axial stress-strain curve and 

the lateral strain-axial strain curve) of concrete under non-uniform confinement 

can be closely simulated. The prediction of the axial stress-strain behavior 

depends significantly on the definition of the hardening rule, and the prediction of 

the lateral strain-axial strain behavior depends significantly on the definition of 

the flow rule, instead of the yield criterion.  

 

The hardening rule is related to the confining pressure as explained earlier, but the 

definition of the confining pressure, which is equal to both of the two principal 

lateral stresses for concrete under uniform confinement, remains absent for 

concrete under non-uniform confinement. Therefore, an effective confining 
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pressure effl ,σ  should be defined for accurate predictions of the deformation of 

concrete under non-uniform confinement. To this end, the equation below is 

adopted in the present research for the effective confining pressure:  
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where 2σ  and 3σ  are the two principal lateral stresses respectively; '
cof  is the 

cylinder compressive strength of concrete; and a  is a constant to be determined 

based on test results.  

 

Eqn 5.18 can be regarded as a special case of the generalized f-mean in 

mathematics and statistics expressed by 
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It is easy to see that Eqn 5.18 refers to the well-known harmonic mean when 

0=a  In addition, 32, σσσ ==effl  when the two lateral stresses are equal, no 

matter what the value of a is. The inclusion of an additional term '
coaf  in Eqn 

5.18 for the effective confining pressure is mainly due to the experimental 

observation that the effectiveness of confinement depends partially on the 

unconfined concrete strength. 

 

Kupfer et al. (1969) provided stress-strain curves for concrete under biaxial 

compression with different stress ratios. The test results provided by Kupfer et al. 
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(1969) have been extensively cited (e.g. Ahmad and Shah 1982; Maekawa et al. 

2003) and were also employed in the present research for the calibration of the 

value of a in Eqn 5.18. Based on Kupfer et al.’s (1969) test results, the best-fit 

value for a is 0.039. Eqn 5.18 is then rewritten as 
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For actively-confined concrete, the flow rule is related to the confining pressure 

(Eqn 4.20). effl ,σ  expressed by Eqn 5.19 is adopted in the present research as the 

effective confining pressure for Eqn 4.20. For FRP-confined concrete, the flow 

rule needs to be related to the ratio between the confining pressure and the lateral 

strain (Eqn 4.21). For FRP-confined concrete in a circular section, this ratio (i.e. 

l

l

ε
σ ) can be expressed in terms of the properties of the FRP outer tube as 

o

frpfrp

l

l

R
tE

=
ε
σ , where oR  is the outer diameter of the circular section. For 

FRP-confined concrete in non-circular sections, this ratio is however not readily 

available as the lateral stresses and the strains are unequal in different directions. 

In the present research, two methods were explored for the flow rule of confined 

concrete in such cases: 

 

Method (1) 

The first method is to make use of the flow rule for concrete in an equivalent 

FRP-confined circular section. For FRP-confined annular sections, the flow rule 

for concrete in an FRP-confined circular section with the same outer diameter and 
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FRP tube is adopted for the concrete, as for both cases the term 
o

frpfrp

R
tE

 directly 

relates the hoop expansion to the confining pressure provided by the FRP tube. 

For FRP-confined rectangular sections, the oR  value of an equivalent FCSC 

specimen, in which the same area of concrete is surrounded by the FRP tube, is 

used. It is obvious that when adopting this method, the flow rule is the same for 

concrete over the whole section.  

 

Method (2) 

The second method is to make use of the effective confining pressure given by 

Eqn 5.19, together with the area strain, which is defined as the average of the two 

lateral strains, as the effective lateral strain. By doing so, Eqn 4.21 can be 

rewritten as  
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where 2ε  and 3ε  are the two principal lateral strains. 

It is obvious that when adopting this method, the flow rule for concrete may be 

different for each point over a non-circular section. 

 

5.2.4 Verifications of Improved Constitutive Model 

Using the constitutive model described above in this section, FE analyses were 

conducted for actively-confined concrete, FCSCs, concrete under biaxial 

compression and FRP-confined square concrete specimens. For both FCSC and 

FRP-confined square concrete specimens, the FE model was for a vertical slice of 



 175

the specimen and consisted of a single-layer of 8-node solid elements for the 

concrete tied to 4-node shell elements for the FRP jacket. For the concrete under 

biaxial compression and a uniform active confining pressure, only a single 8-node 

solid element was used. 

 

Figure 5.4 shows a comparison between the predictions obtained from the 

proposed model and the test results reported by Sfer et al. (2002) for 

actively-confined concrete. The concrete had an unconfined strength of 32.8 MPa 

and a corresponding strain of 0.0018, and was confined by a constant pressure of 

9 MPa. Predictions from Teng et al.’s (2006a) analysis-oriented model are also 

shown in Figure 5.4 for reference. It is evident that the FE analysis provides 

almost the same predictions as Teng et al.’s (2006a) model, which are reasonably 

close to the experimental stress-strain curve. The minor difference in the 

lateral-axial strain curve between the FE results and the predictions of Teng et 

al.’s (2006a) model is due to the limitation of the allowable values of the dilation 

angle in the CDPM in ABAQUS. The allowable values of the dilation angle of 

this model are limited between 0o and 16o in ABAQUS, while the calculated 

dilation angle in the proposed model is negative in the early loading stage. In 

order to make use of the theoretical framework of the CDPM model in ABAQUS, 

the negative values were replaced by 0o in the implementation. This consequently 

caused a small overestimation of the lateral strain in the early loading stage.  

 

Figure 5.5 shows a comparison between the predictions of the proposed model 

and the test results of an FCSC specimen (specimen S40-2-II presented in Chapter 

3). The concrete in this specimen had an unconfined strength of 39.6 MPa and a 
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corresponding strain of 0.00263. The cylinder had a diameter of 152.5 mm and a 

height of 305 mm, and was confined by a two-ply FRP tube with an elastic 

modulus of 80.1 GPa based on a nominal thickness of 0.17 mm per ply. As 

concrete is subjected to uniform confinement in this case, there is no difference in 

the predictions of using method (1) and method (2) for the flow rule of concrete. 

Results from Teng et al.’s (2006a) analysis-oriented model are also shown for 

reference. The FE results are almost the same as the predictions from Teng et al.’s 

(2006a) model, which are reasonably close to the test stress-strain curve. 

 

Figure 5.6 shows a comparison between the FE results and the results of biaxial 

compression tests by Kupfer et al. (1969). The concrete had a uni-axial 

compressive strength of 32.0 MPa and a corresponding strain of 0.0021, and was 

subjected to biaxial compression with two different axial-to-lateral stress ratios, 

namely, 1/ 21 =σσ and 0.5 respectively. Figure 5.6 shows that the FE results 

agree well with the test results. 

 

Figure 5.7 shows comparisons between the FE predictions and the test results for 

an FRP-confined square concrete specimen with an unconfined concrete strength 

of 46.0 MPa and a corresponding strain of 0.0026 tested at The Hong Kong 

Polytechnic University. The specimen had a width of 150 mm and the four round 

corners had a rounded radius of 24 mm. It was wrapped with a two-ply CFRP 

jacket with an elastic modulus of 250,000 MPa based on a nominal thickness of 

0.165 mm per ply. The comparisons are for both the average axial stress-axial 

strain curve and the corner hoop strain-axial strain curve. The average axial stress 

is defined as the load divided by the cross-sectional area of the concrete. The 
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experimental corner hoop strains were averaged from the readings of four strain 

gauges at the four corners. The curves denoted as “FE results I” in Figure 5.7 

were obtained by using method (1) stated in Subsection 5.2.3.5 for the flow rule 

of concrete while those denoted as “FE results II” were obtained by using method 

(2). Figure 5.7 shows that the predictions by both methods of defining the flow 

rule for concrete are in reasonably close agreement with the test results. 

 

5.3 MODELING OF HYBRID DSTCS 

5.3.1 Model Description 

FE models were developed for short DSTC specimens presented in Chapter 3. 

The specimens were tested under concentric axial compression. 

 

In the tests, the two ends of a short column were constrained by the loading 

platens, but these constraints were assumed to have little effects on the behavior in 

the mid-height region of the column with a length equal to twice the diameter. 

Consequently, the FE model employed in this study consisted of one layer of 

finite elements spanning a one-degree circumferential segment (Figure 5.8). The 

finite element model was assigned boundary conditions representing 

axis-symmetric behavior (Figure 5.8). This simple model was aimed to provide 

close predictions of the behavior of the mid-height region of hybrid DSTCs.   

 

The FRP tube was simulated to behave in a linear elastic manner with stiffness in 

the hoop direction only. The stiffness of the FRP tube in the longitudinal direction 

is very small and was neglected in the model. The tensile rupture behaviour of the 
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FRP in the hoop direction was not included in the model, but strains developed in 

the FRP tube could be compared with the ultimate tensile strain of the FRP tube to 

estimate the occurrence of FRP rupture. In the FE analysis the rupture strain of 

FRP was set to be the average experimental value of two identical hybrid DSTC 

specimens. The average stress-strain curve of the steel from tensile tests was 

represented with a number of data points. The J2 flow theory was employed to 

model the plastic behavior of the steel. The concrete was modeled by the modified 

CDPM introduced earlier.  

 

The Mesh Tie Constraint option of ABAQUS was adopted in the model to 

simulate the interaction between the FRP and the concrete. Using these constraints, 

a node on the FRP tube was tied to a corresponding node on the outer edge of the 

concrete infill so that the two nodes were forced to experience the same 

translations. The Contact Pairs option of ABAQUS was adopted to simulate the 

interaction between the steel tube and the concrete. In the radial direction, the 

so-called “hard” contact, which allows the two surfaces to separate from each 

other, was specified. The contact pressure was automatically calculated by the 

program when the two surfaces were in contact. On the contrary, if the surfaces 

were not in contact, the pressure became zero. In the tangential direction, a 

friction coefficient was specified but this friction coefficient was not expected to 

affect the predictions as no slips were expected between the steel tube and the 

concrete infill due to the axis-symmetric nature of the FE model. 

 



 179

5.3.2 Mesh Convergence Study 

A mesh convergence study was conducted, arriving at an appropriate mesh for the 

subsequent finite element modeling work presented in this chapter. A 

commonly-used approach for mesh convergence studies is to find a mesh which 

provides almost the same results as those from a further refined mesh. It was 

found by trying several different meshes that the element size of 1.6 mm in the 

radial direction was fine enough. Figure 5.9 shows a comparison between the 

predictions of FE models with two different meshes, for the average axial 

stress-strain curves of specimen D37-C2-I (see Chapter 3 for specimen details). 

The comparison shown in Figure 5.9 were obtained using a flow rule based on 

method (1), but the comparison based on method (2) are similar. The element size 

of the coarser mesh in Figure 5.9 is 1.6 mm while that of the refined mesh is 0.8 

mm. As they give almost the same predictions, the element size of 1.6 mm was 

adopted in the subsequent finite element modeling work.    

 

5.3.3 Results and Discussions 

5.3.3.1 Comparison with test results  

Figure 5.10 shows comparisons between the FE results and the experimental 

results for all 18 DSTC specimens presented in Chapter 3, in terms of the axial 

stress-strain curves. Some simple descriptions of the specimens are also included 

in Figure 5.10, while further specimen details are available in Chapter 3. As stated 

in Chapter 3, the experimental axial stress of the concrete in the DSTCs is defined 

as the load carried by the annular concrete section divided by its cross-sectional 

area. The load carried by the concrete section is assumed to be the difference 
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between the load carried by the DSTC specimen and the load carried by the steel 

tube at the same axial strain. The latter was found from the compression tests of 

hollow steel tubes. When the axial strain of a DSTC specimen exceeds the 

buckling strain of the corresponding hollow steel tube, it is assumed that the load 

resisted by the steel inner tube is equal to Ps which is the ultimate load from the 

compression tests of hollow steel tubes. Similarly, the axial stress of concrete 

from the FE results is defined as the predicted load carried by the annular concrete 

section divided by its cross-sectional area. Again, the curves denoted as “FE 

results I” in Figure 5.10 were obtained using method (1) stated in Subsection 

5.2.3.5 for defining the flow rule while those denoted as “FE results II” were 

obtained using method (2). It is evident from Figure 5.10 that the FE models 

based on both methods of defining the flow rule for concrete provide reasonably 

close predictions for all test specimens except the one-ply specimens. The only 

obvious difference between the predictions due to the two methods of defining the 

flow rule appears to occur for specimens D40-B3 and D37-C3 (Figures 5.9(e) and 

(h)). For specimens D40-B3 and D37-C3, the curves predicted by method (2) are 

slightly higher as the interaction between the concrete and the steel tube was 

predicted to begin at a smaller axial strain. When using method (1), such 

interaction was predicted to begin at an axial strain slightly higher than the 

experimental ultimate strain. For the one-ply specimens (Figures 5.9(b) and (f)), 

both FE models overestimate the test results by predicting a monotonically 

ascending curve. This overestimation is believed to be due to Teng et al’s (2006a) 

analysis-oriented model which was adopted to produce material parameters for the 

constitutive model. Teng et al. (2006a) pointed out that although their model 

provided accurate predictions to numerous independent test data of FRP-confined 
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concrete, it might overestimate the axial resistance of concrete confined by a weak 

FRP jacket (such as a one-ply FRP jacket herein). Therefore, future improvements 

to the proposed FE model may be made when a more accurate analysis-oriented 

stress-strain model is available.  

 

Figure 5.11 shows comparisons between the FE and experimental results, in terms 

of the hoop strain-axial strain curves. The experimental strains were obtained 

from several strain rosettes located at the mid-height of the outer FRP tube. The 

predictions are seen to be in close agreement with all test results.  

 

5.3.3.2 Stress distribution in the radial direction  

Figure 5.12 shows the predicted axial stress distribution in the radial direction for 

specimen D37-C2-I. It is obvious that, although a different definition of the flow 

rule makes only minor difference in the predicted axial stress-strain curve and 

hoop strain-axial strain curve (Figures 5.9 and 5.10), it leads to significant 

difference in the axial stress distribution over the section. When method (2) is 

used to define the flow rule, the stress variation is more rapid near the inner edge 

but slower near the outer edge, compared with the results based on using method 

(1). It is also obvious from Figure 5.12 that the axial stress varies significantly in 

the radial direction. The axial stress reduces with the distance from the outer edge, 

and the rate of variation is more significant near the inner edge. This could be 

explained by the fact that the two lateral stresses are more non-uniform near the 

inner edge as shown in Figure 5.13, leading to a smaller effective confining stress 

and a less significant confining effect. The ability to predict stress variations over 
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the section is one of the advantages of a three-dimensional FE model over a 

one-dimensional analysis-oriented model such as Teng et al.’s (2006a) model.   

 

5.3.3.3 Interaction between the concrete and the steel tube 

Under axial compression, the interaction between the concrete and the steel inner 

tube is dictated by the difference in the radial displacements (or the lateral 

expansions) of the two components. The lateral expansion of the steel tube is 

controlled by the Poisson’s ratio of steel which is around 0.3 in the elastic range 

and is around 0.5 in the perfectly-plastic range. In the strain hardening range, the 

Poisson’s ratio of steel is between 0.3 and 0.5. The lateral expansion of concrete is 

controlled by a Poisson’s ratio of around 0.18 in the elastic range, but this ratio 

varies in a complicated manner in the inelastic range. For uniformly confined 

concrete, the lateral expansion of concrete can be predicted by an 

analysis-oriented model such as the one proposed by Teng et al. (2006a). For 

non-uniformly confined concrete, the lateral expansion of concrete, however, is 

non-uniform over the section and a three-dimensional constitutive model, such as 

the one adopted in the present research, needs to be employed for close 

predictions. Generally, concrete confined by a stronger FRP jacket has less lateral 

expansion corresponding to a given axial strain (Teng et al. 2006a).  

 

Figure 5.14(b) shows the radial displacement of the steel tube versus that of the 

concrete inner edge for specimens D40-B1-I, D40-B2-I, D40-B3-I; the flow rule 

was defined using method (2). The only differences between these specimens are 

the FRP outer tubes, which are one-ply, two-ply and three-ply tubes respectively. 

The FE results show that in the initial stage, the radial displacements of both 
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components are equal for all the three specimens, because the initial Poisson’s 

ratio of concrete is smaller than that of steel and the steel tube moves outward 

faster than the concrete, so the two components remain in contact. After the elastic 

range, the concrete begins to deform faster and separates from the steel tube. The 

distance between the two components, as indicated in Figure 5.14(b), then 

continues to increase with loading for the one-ply specimen, keeps almost 

constant in the final loading stage for the two-ply specimen, but begins to 

decrease after a certain axial strain for the three-ply specimen. This distance does 

not disappear for the specimens with a one-ply or a two-ply FRP tube until the 

ultimate limit state, indicating that there is no interaction between the concrete 

and the steel tube throughout the loading process. For the specimen with a 

three-ply FRP tube, this distance disappears in the final stage, indicating that 

interaction between the concrete and the steel tube exists in this stage. This 

finding is consistent with the experimental results given in Chapter 3.  

 

Figure 5.14(a) shows the corresponding predictions when the flow rule is defined 

by method (1). Similar observations can be made about these predictions. The 

only difference is that by using method (1) the predicted interaction between the 

steel tube and concrete occurs at a larger axial strain, as also seen in the predicted 

axial stress-strain curves (Figure 5.10). 

 

5.3.3.4 Comparison between FCSC and DSTC specimens 

The differences between FCSC and DSTC specimens are obvious when 

examining the stress distribution over the cross section. In an FCSC specimen, the 

stresses, including both axial and lateral stresses, are uniform over the section. 
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However, in a DSTC specimen, the axial stresses are highly non-uniform in the 

radial direction, as shown in Figure 5.12. In addition, the two lateral stresses (i.e. 

the radial stress and the circumferential stress) are equal to each other over the 

whole section of an FCSC specimen, but are quite different over the section of a 

DSTC specimen, as shown in Figure 5.13. The unequal lateral stresses reduce the 

confinement effectiveness, as discussed in Chapter 4.  

 

Despite the obvious differences pointed out above, the overall behavior of FCSC 

specimens and that of DSTC specimens can be compared using the axial 

stress-strain curves and the hoop strain-axial strain curves. Due to the axial stress 

variation over the section, the axial stress of a DSTC specimen refers to the 

average axial stress, and is defined as the load carried by the annular concrete 

section divided by its cross-sectional area, as stated earlier. The hoop strain refers 

to the hoop strain developed on the FRP outer tube. Figure 5.15 shows 

comparisons of FE results of an FCSC and two different DSTCs. The FE results 

were obtained using a flow rule based on method (1), but the FE results based on 

method (2) are similar. The geometric and material parameters, including the 

unconfined concrete properties, the outer diameter and the FRP outer tube, are all 

the same for each pair of FCSC and DSTC specimens.  

 

It can be seen from Figures 5.14(c) and (d) that when the void ratio is relatively 

small the DSTC specimen has almost the same behavior as the corresponding 

FCSC specimen, in terms of the average axial stress-strain curve and hoop 

strain-axial strain curve. However, when the void ratio is relatively large, Figures 

5.14(a) and (b) show that there are some differences between these two kinds of 
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specimens: (1) the axial stress-strain curve of the DSTC specimen has a smaller 

slope for its second branch, which however ends at a larger axial strain; (2) the 

radial expansion of the outer FRP tube of the DSTC specimen is less than that of 

the FCSC specimen for the same axial strain. These findings are consistent with 

the experimental observations presented in Chapter 3.   

 

5.3.3.5 Concluding remarks 

The following concluding remarks can be made based on the above discussions. 

 

(1) The FE results, based on either method for the definition of the flow rule for 

concrete are in reasonably close agreement with the test results, in terms of the 

general structural behavior, including the axial stress-strain behavior and the 

hoop strain-axial strain behavior.  

(2) The FE models are superior to analysis-oriented models due to their ability to 

predict both the stress variation over the section and the interaction between 

the steel tube and the concrete.  

(3) The differences between the predictions corresponding to the two different 

methods for defining the flow rule for concrete lie mainly in the axial stress 

distribution and the strain level at which the interaction between the concrete 

and the steel inner tube occurs. 

 

As in general there is no significant difference between the predictions of the two 

methods for defining the flow rule of concrete, in terms of the general structural 

behavior, the parametric study presented in the following section was conducted 
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employing method (1) which appears to be simpler, despite that method (2) 

appears to be more reasonable in that it takes into account the different flow rule 

for each point over a non-circular section. The parametric study was aimed at not 

only a good understanding of the effects of different parameters on the structural 

behavior of hybrid DSTCs, but also the development of a simple design-oriented 

model.   

 

5.4 PARAMETRIC STUDY 

5.4.1 Introduction 

From the test results presented in Chapter 3 and the FE results presented earlier in 

this chapter, the main parameters affecting the behavior of concrete in a DSTC 

specimen in contrast to an FCSC can be identified to be the void ratio and the 

confinement stiffness 
o

frpfrp

R
tE

, where frpE  and frpt  are respectively the elastic 

modulus and the thickness of the FRP outer tube and oR  is the outer diameter of 

the cylinder. It is shown in Subsection 5.3.3.3 that significant interaction between 

the concrete and the steel tube exists when the FRP outer tube is sufficiently 

strong. In such cases, the stiffness of the steel inner tube may also affect the 

behavior of concrete. The ultimate condition of concrete is also significantly 

affected by the rupture strain of the FRP outer tube, as explained earlier. In 

addition, the properties of unconfined concrete are also significant parameters 

affecting the behavior of confined concrete. These two factors are important for 

FCSCs as well.  
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The unconfined concrete properties are not taken as significant parameters in this 

parametric study. Although they may affect the effectiveness of confinement, this 

effect is very limited on the stress-strain curve of FRP-confined concrete when the 

axial stress and the axial strain are normalized by the peak stress of unconfined 

concrete strength and the corresponding strain respectively, provided that normal 

strength concrete is used. In this parametric study, the concrete has an unconfined 

strength of 40 MPa and a corresponding strain of 0.0026. It was explained in 

Chapter 1 that it is desirable that the FRP outer tube does not significantly 

enhance the load-carrying capacity of the new hybrid DSTCs. Based on this 

consideration, the stiffness of the FRP outer tube should not be too large. It has 

been shown that the load capacity of a three-ply DSTC specimen (e.g. specimen 

D40-C3-I in Chapter 3) was enhanced by 62% due to the presence of the FRP 

tube. In practical applications, it is reasonable to employ suitable FRP tubes so 

that the confinement stiffness is smaller than that of the three-ply DSTC 

specimens. The confinement stiffness, however, should not be too small as 

otherwise there may be a descending branch in the stress-strain curve of confined 

concrete. It has been shown that the one-ply DSTC specimens (e.g. specimen 

D40-B1-I in Chapter 3) had an almost elastic-perfectly plastic stress-strain curve. 

Therefore, it is reasonable to take the confinement stiffness of specimen D40-B1-I 

as the lower limit for practical use. Based on the above considerations, the 

confinement stiffness adopted in this parametric study ranges from 200 MPa 

(>178.6 MPa which is the confinement stiffness of specimen D40-B1-I) to 500 

MPa (<535.8 MPa which is the confinement stiffness for specimen D40-C3-I). 

Four values were adopted, which are 200 MPa, 300 MPa, 400 MPa and 500 MPa 

respectively. Two rupture strain values, namely, 0.01 and 0.02, were selected in 
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the parametric study for the FRP outer tube. The former value is close to the 

rupture strain of commonly used CFRP while the latter value is close to that of 

commonly used GFRP. Three void ratios, namely, 0.25, 0.5 and 0.75, were 

adopted in the parametric study. The Ds/ts ratio of the steel inner tube was set to 

be 25 unless otherwise specified.  

 

5.4.2 Interaction between the Concrete and the Steel Tube 

It was found from the FE analysis that there is no interaction between the concrete 

and the steel tube for all cases when the FRP rupture strain is 0.01. When the FRP 

rupture strain is 0.02, however, this interaction appears in the final stage of 

deformation for specimens with a void ratio of 0.75 and a confinement stiffness of 

400 MPa or 500 MPa, and specimens with a void ratio of 0.5 and a confinement 

stiffness of 500 MPa (Figures 5.18 and 5.19). It is noted that this interaction tends 

to appear earlier for specimens with a larger void ratio or with a larger 

confinement stiffness, or both.  

 

Due to the existence of interaction, the Ds/ts ratio of the steel inner tube may also 

be expected to affect the behavior of concrete. In order to clarify this point, 

different steel tubes were employed in the specimens with a void ratio of 0.75 and 

a confinement stiffness of 400 MPa or 500 MPa in the parametric study. The Ds/ts 

ratio of the steel inner tube varies from 10 to 50. Figure 5.16 shows the FE results 

for different Ds/ts ratios. It is evident that the Ds/ts ratio of the steel tube has only a 

small effect on the stress-strain behavior of the concrete in DSTCs. Therefore, it 

needs not be taken as a significant parameter in the present parametric study. All 
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other FE results of this parametric study are for a steel tube with a Ds/ts ratio of 

25.   

 

5.4.3 Compressive Strength 

Figure 5.17 shows the compressive strengths (i.e. the ultimate stresses) of 

concrete for all the cases analyzed. Each case represents a specimen with one 

combination of the three key parameters of void ratio, confinement stiffness and 

FRP rupture strain. Each group of three points with the same shape (triangle or 

rectangular) and the same confinement stiffness in Figure 5.17 represents the 

results for specimens with the three void ratios of 0.25, 0.5 and 0.75 respectively. 

It is clear that the three points in each group are very close to each other except 

the two solid points. These two higher solid points are for specimens in which 

there is significant interaction between the concrete and the steel tube. It may 

therefore be concluded that the void ratio has only a small effect on the 

compressive strength of concrete in DSTCs, when there is no interaction between 

the concrete and the steel tube. On the contrary, the FRP rupture strain and the 

confinement stiffness both have a significant effect on the compressive strength of 

concrete, as shown in Figure 5.17. 

 

5.4.4 Ultimate Axial Strain 

Figure 5.18(a) shows the ultimate axial strains for all the analyzed cases. It is 

evident that the ultimate axial strain increases with the FRP rupture strain or the 

confinement stiffness, or both. It is also noted that the effect of the void ratio 

cannot be neglected. Figure 5.18(b) shows the variation of the ultimate axial strain 
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with the void ratio for specimens with a FRP rupture strain of 0.02. Different from 

the conclusions drawn for the compressive strength of concrete, it is clear from 

Figure 5.18(b) that the ultimate axial strain increases considerably with the void 

ratio. 

 

5.4.5 Axial Stress-Strain Curves 

Figure 5.19 shows the predicted axial stress-strain curves of all analyzed cases 

with a void ratio of 0.5. It can be seen that the curves remain almost identical until 

the axial stress reaches about the unconfined concrete strength, significant 

differences between these curves are seen afterwards. The specimen with a larger 

confinement stiffness exhibits a second branch which is with a larger slope and 

ends at a larger ultimate axial strain. In addition, when the confinement stiffness is 

large enough, significant interaction between the concrete and the steel tube 

appears in the final stage.  

 

Figure 5.20(a) shows the predicted axial stress-strain curves of all specimens with 

a confinement stiffness of 300 MPa. No interaction between the steel and the 

concrete can be seen in the final stage for all these specimens. The specimen with 

a larger void ratio has a shallower second branch which however ends at a larger 

ultimate axial strain. Despite these differences, all these specimens have 

approximately the same compressive strength of concrete. Figure 5.20(b) shows 

the predicted axial stress-strain curves of all specimens with a confinement 

stiffness of 500 MPa. Similar to Figure 5.20(a), the specimen with a larger void 

ratio exhibits a longer stress-strain curve with a larger ultimate axial strain. In 
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addition, because of the interaction between the concrete and the steel tube in the 

final stage, the ultimate strength of the specimen with the largest void ratio is also 

significantly larger than those of the other two specimens.   

 

5.5 DESIGN-ORIENTED STRESS-STRAIN MODEL 

5.5.1 Introduction 

As mentioned in Chapter 2, Lam and Teng’s (2003a) design-oriented model can 

closely predict the axial stress-strain curves of FRP-confined solid concrete 

cylinders (FCSCs). A refined version (Teng et al. 2006b) of this model has 

recently been proposed and been shown to provide more accurate predictions than 

the original model (Lam and Teng 2003a), especially for weakly-confined 

concrete. Lam and Teng’s (2003a) design-oriented model was described in detail 

in Subsection 2.2.3.2 and is described by Eqns 2.12-2.19. Teng et al.’s (2006b) 

proposed new equations for the compressive strength and the ultimate axial strain 

of FRP-confined concrete (i.e. Eqns 2.20 and 2.21). While Teng et al.’s (2006b) 

model provides close predictions for FCSCs, it cannot be directly applied to 

concrete in DSTCs. The behavior of concrete in DSTCs is more complicated and 

depends on more parameters, such as the void ratio, besides the properties of FRP 

and unconfined concrete. The effects of these parameters have been clarified in 

the parametric study presented in Section 5.4. In this section, suitable 

modifications to Teng et al.’s (2006b) refined model are proposed, based on the 

results from the parametric study, leading to a design-oriented model for the 

prediction of the average axial stress-strain curves of the concrete in the new 

hybrid DSTCs.   
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5.5.2 Modifications to Teng et al.‘s (2006b) Model  

Based on the results from the parametric study (see Subsection 5.4.3), it is clear 

that the compressive strength of concrete in hybrid DSTCs is mainly related to the 

confinement stiffness and the FRP rupture strain but not the void ratio, when 

significant interaction between the concrete and the steel inner tube does not exist. 

When such interaction exists, the compressive strength of concrete may be 

significantly enhanced. The effects of these two parameters are appropriately 

considered in Teng et al.’s (2006b) model for concrete uniformly confined with 

FRP (solid cylinders with the void ratio equal to zero) (Eqn 2.20). Therefore, Eqn 

2.20 is directly adopted here for the compressive strength of the concrete in hybrid 

DSTCs. Figure 5.21 shows that Eqn 2.20 provides reasonably accurate predictions 

when there is no interaction between the concrete and the steel inner tube. When 

such interaction exists, Eqn 2.20 provides less accurate but safer predictions.  

 

The parametric study also showed that the ultimate strain is related not only to the 

confinement stiffness and the FRP rupture strain, but also to the void ratio. 

Therefore, Eqn 2.21 needs to be modified to include the effect of the void ratio. 

The equation below is proposed in which φ  is the void ratio:   

x
K

co

cu )1(5.675.1 45.18.0 φρρ
ε
ε

ε −+=                 (5.21) 

Based on the results from the parametric study, the best-fit value for x is -0.22. 

Therefore, Eqn 5.21 becomes, 

22045180 156751 ...
K

co

cu )(.. −−+= φρρ
ε
ε

ε               (5.22) 
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Figure 5.22 shows the comparison between the results from Eqn 5.22 and those 

from the parametric study. It is evident that they are in close agreement.  

 

To summarize, the proposed design-oriented stress-strain model for concrete in 

hybrid DSTCs includes Eqns 2.12-2.15 proposed by Lam and Teng (2003a), Eqn 

2.20 from Teng et al. (2006b) for the compressive strength and Eqn. 5.22 for the 

ultimate axial strain.  

 

Comparisons between the predictions of the proposed stress-strain model and the 

test results are given in Figure 5.10. This design-oriented model is seen to provide 

reasonably close but conservative predictions. The conservativeness arises mainly 

from the conservative nature of Eqn 2.20 for such concrete. 

 

5.6 CONCLUDING REMARKS AND DESIGN 

RECOMMENDATIONS 

5.6.1 General 

This chapter has presented a modified plastic-damage model within the theoretical 

framework of the Concrete Damaged Plasticity Model (CDPM) in ABAQUS 

(2004) for the modeling of FRP-confined concrete. The proposed modifications 

include a damage variable, a strain-hardening rule and a flow rule, all of which are 

confinement-dependent, following the conclusions drawn in Chapter 4. The 

unique deformation characteristics of non-uniformly confined concrete are also 

included in the modified model. The validity of the proposed model has been 
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demonstrated through comparisons with test results of actively-confined concrete, 

FRP-confined concrete in a circular section and that in a rectangular section, and 

concrete under biaxial compression. Using this modified plastic-damage model 

for concrete, a finite element model was developed for hybrid DSTCs. Results 

from this finite element model are in reasonably close agreement with test results. 

A parametric study using this FE model was also presented which led not only to 

a good understanding of the behavior of hybrid DSTCs but also to a 

design-oriented model. 

 

5.6.2 Design Recommendations 

The design-oriented stress-strain model described in Section 5.5 was proposed 

based on an FE parametric study and was demonstrated by comparisons with test 

results to be reasonably accurate and safe. Consequently, this simple stress-strain 

model is recommended for design use.  

 

The parametric study showed that the confinement stiffness 
o

frpfrp

R
tE

 of the FRP 

outer tube affected the behavior of hybrid DSTCs significantly. For practical use, 

the FRP outer tube should satisfy two requirements: (1) it is not too stiff and does 

not significantly enhance the load-carrying capacity of hybrid DSTCs; (2) it is 

sufficiently stiff to avoid a descending branch in the stress-strain curve of 

confined concrete.  
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The parametric study showed that the void ratio also significantly affects the 

behavior of hybrid DSTCs, especially the deformation behavior. For practical use, 

a void ratio within the range of 0.6 to 0.75 is recommended due to the following 

reasons: (1) the void ratio should be sufficiently large so that the advantages of 

hybrid DSTCs, such as their light-weight and good ductility, become obvious; (2) 

the void ratio should not be too large, so that the section still contains a sufficient 

amount of concrete for resisting compressive stresses.    

 

The steel inner tube was shown to have a small effect on the stress-strain behavior 

of the concrete. It however significantly affects the overall load-carrying capacity 

of hybrid DSTCs, especially when the void ratio is large. In addition, the Ds/ts 

ratio of the steel tube needs to be limited so that local buckling does not become a 

significant concern. Based on the present test results, an upper limit of 40 for the 

Ds/ts ratio may be recommended for practical applications. 
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Figure 5.1 Typical stress-strain curve of concrete under compression 

Figure 5.2 Yield surface of Concrete Damaged Plasticity Model in ABAQUS 
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(b)Yield surfaces in the deviatoric plane (ABAQUS 2004) 

Figure 5.2 Yield surface of Concrete Damaged Plasticity Model in ABAQUS 
(Cont’d) 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. D-P hyberbolic flow potential in the meridian plane 
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(a) Axial stress-strain curves 

 

 

 

 

 

 

 

 

 

 

 (b) Axial stress-lateral strain curves 

Figure 5.4 Actively-confined concrete 
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(c) Lateral strain-axial strain curves 

Figure 5.4 Actively-confined concrete (Cont’d) 
 

 

 

 

 

 

 

 

 

 

                      (a) Axial stress-strain curves 

Figure 5.5 FRP-confined circular concrete cylinders 
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     (b) Hoop strain-axial strain curves 

Figure 5.5 FRP-confined circular concrete cylinders (Cont’d) 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Concrete under biaxial compression 
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(a) Average axial stress-axial strain curve 

 

 

 

 

 

 

 

 

 

 

                   (b) Corner hoop strain-axial strain curve 

Figure 5.7 FRP-confined concrete in a square specimen 
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Figure 5.8 FE model for hybrid DSTCs 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.9 Results of mesh convergence study 
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 (a) Void ratio=0.28, '
cof =36.7 MPa, two-ply FRP 

 

 

 

 

 

 

 

 

 

 

(b) Void ratio=0.5, '
cof =39.6 MPa, one-ply FRP 

Figure 5.10 Axial stress-strain curves of concrete in DSTCs 
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 (c) Void ratio=0.5, '
cof =39.6 MPa, two-ply FRP 

 

 

 

 

 

 

 

 

 

 

 (d) Void ratio=0.5, '
cof =46.7 MPa, two-ply FRP 

Figure 5.10 Axial stress-strain curves of concrete in DSTCs (Cont’d) 
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  (e) Void ratio=0.5, '
cof =39.6 MPa, three-ply FRP 

 

 

 

 

 

 

 

 

 

 

 (f) Void ratio=0.58, '
cof =36.7 MPa, one-ply FRP 

Figure 5.10 Axial stress-strain curves of concrete in DSTCs (Cont’d) 
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  (g) Void ratio=0.58, '
cof =36.7 MPa, two-ply FRP 

 

 

 

 

 

 

 

 

 

 

 (h) Void ratio=0.58, '
cof =36.7 MPa, three-ply FRP 

Figure 5.10 Axial stress-strain curves of concrete in DSTCs (Cont’d) 
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 (i) Void ratio=0.75, '
cof =40.1 MPa, two-ply FRP 

Figure 5.10 Axial stress-strain curves of concrete in DSTCs (Cont’d) 
 

 

 

 

 

 

 

 

 

 

(a) Void ratio=0.28, '
cof =36.7 MPa, two-ply FRP 

Figure 5.11 Hoop strain-axial strain curves of concrete in DSTCs 

0

10

20

30

40

50

60

70

0 0.005 0.01 0.015 0.02

Axial strain

A
xi

al
 s

tre
ss

 (M
Pa

)

FE results I
FE results II
D40-D2-I
D40-D2-II
Proposed model

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.005 0.01 0.015 0.02 0.025

Axial strain

H
oo

p 
str

ai
n

FE results I
FE results II
D37-A2-I
D37-A2-II



 208

 

 

 

 

 

 

 

 

 

 

 

 (b) Void ratio=0.5, '
cof =39.6 MPa, one-ply FRP 

 

 

 

 

 

 

 

 

 

 

 (c) Void ratio=0.5, '
cof =39.6 MPa, two-ply FRP 

Figure 5.11 Hoop strain-axial strain curves of concrete in DSTCs (Cont’d) 
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 (d) Void ratio=0.5, '
cof =46.7 MPa, two-ply FRP 

 

 

 

 

 

 

 

 

 

(e) Void ratio=0.5, '
cof =39.6 MPa, three-ply FRP 

Figure 5.11 Hoop strain-axial strain curves of concrete in DSTCs (Cont’d) 

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.005 0.01 0.015 0.02

Axial strain

H
oo

p 
st

ra
in

FE results I
FE results II
D47-B2-I
D47-B2-II

-0.02

-0.015

-0.01

-0.005

0

0 0.005 0.01 0.015 0.02 0.025 0.03

Axial strain

H
oo

p 
st

ra
in

FE results I
FE results II
D40-B3-I
D40-B3-II



 210

 

 

 

 

 

 

 

 

 

 

(f) Void ratio=0.58, '
cof =36.7 MPa, one-ply FRP 

 

 

 

 

 

 

 

 

 

 

 (g) Void ratio=0.58, '
cof =36.7 MPa, two-ply FRP 

Figure 5.11 Hoop strain-axial strain curves of concrete in DSTCs (Cont’d) 
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 (h) Void ratio=0.58, '
cof =36.7 MPa, three-ply FRP 

 

 

 

 

 

 

 

 

  

 

(i) Void ratio=0.75, '
cof =40.1 MPa, two-ply FRP 

Figure 5.11 Hoop strain-axial strain curves of concrete in DSTCs (Cont’d) 
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(a) Flow rule based on method (1) 

 

 

 

 

 

 

 

 

 

 

 (b) Flow rule based on method (2) 

Figure 5.12 Axial stress distribution in the radial direction 
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(a) Flow rule based on method (1) 
 

 

 

 

 

 

 

 

 

 

 
 (b) Flow rule based on method (2) 

Figure 5.13 Ratio of radial stress to circumferential stress 
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 (a) Flow rule based on method (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (b) Flow rule based on method (1) 

 Figure 5.14 Interaction between the steel tube and the concrete 
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     (a) Axial stress-strain curve, void ratio=0.75 

 

 

 

 

 

 

 

 

 

 

(b) Hoop strain-axial strain curve, void ratio=0.75 

Figure 5.15 Comparison between FCSC and DSTC specimens 
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(c) Axial stress-strain curve, void ratio=0.28 

 

 

 

 

 

 

 

 

 

 

(d) Lateral-axial strain curve, void ratio=0.28 

Figure 5.15 Comparison between FCSC and DSTC specimens (Cont’d) 
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(a) Confinement stiffness=500 MPa, FRP rupture strain=0.02  

(b)  

 

 

 

 

 

 

 

 

 
(b) Confinement stiffness=400 MPa, FRP rupture strain=0.02 

Figure 5.16 Effect of Ds/ts ratio of steel inner tube on stress-strain behavior  
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Figure 5.16. Ultimate strength of concrete in DSTCs 

 

 

 

 

 

Figure 5.17 Compressive strength of concrete in DSTCs 

 

 

 

 

 

 

 

 

 

 

(a) Effect of confinement stiffness on ultimate axial strain 

Figure 5.18 Ultimate axial strain of concrete in DSTCs 
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 (b) Effects of void ratio on ultimate axial strain  

Figure 5.18 Ultimate axial strain of concrete in DSTCs (Cont’d) 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Effect of confinement stiffness on stress-strain behavior
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            (a) Confinement stiffness=300 MPa 
 

 

 

 

 

 

 

 

 

 

 

      (b) Confinement stiffness=500 MPa 

Figure 5.20 Effect of void ratio on stress-strain behavior
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Figure 5.21 Compressive strength of concrete in DSTCs 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Ultimate axial strain of concrete in DSTCs 
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CHAPTER 6 

                         FLEXURAL BEHAVIOR OF 

HYBRID DSTCS 

 

6.1 INTRODUCTION 

This chapter examines the flexural behavior of the new hybrid FRP-concrete-steel 

double-skin tubular structural members. As columns are normally subjected to 

combined axial and lateral loads, their flexural behavior is important within the 

overall picture of their beam-column behavior. Furthermore, such hybrid 

members with an eccentric inner steel tube are highly attractive for use as beams 

(Figure 6.1), for which the flexural behavior is the main structural aspect to be 

understood.  

 

In this chapter, a systematic experimental study on the flexural behavior of these 

hybrid members is firstly presented, which includes two series of four-point 

bending tests (14 beam specimens). The specimen details, material properties, 

preparation of specimens, test set-up and instrumentation are presented, followed 

by a detailed discussion of the experimental observations and results. Results from 

a theoretical model are also presented and compared with the test results. The 

theoretical model is based on the traditional section analysis employing the 

so-called fiber element approach. For simplicity, the test specimens are referred to 
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as beams hereafter in this chapter despite that the section form with a concentric 

inner tube is more suitable for columns. 

 

6.2 BENDING TESTS 

6.2.1 Test Specimens 

In total, two series of four-point bending tests (Figure 6.2) on hybrid 

FRP-concrete-steel double-skin tubular beams (DSTBs) were conducted. The 

specimens all had an overall length of 1500 mm, an outer diameter of 152.5 mm, 

and an inner void with a diameter of about 69 mm. The first test series included 

eight specimens of axis-symmetric configuration (i.e. the outer FRP tube was 

concentric with the inner steel tube). Two of them were additionally reinforced 

with six 6 mm diameter longitudinal deformed FRP bars in contact with the inner 

surface of the FRP tube and evenly spaced around the circumference (Figure 6.3). 

These FRP bars were intended to increase the initial flexural stiffness of the beam 

and to delay the development of cracks in the beam.  

 

The second test series included six specimens in which the inner steel tube was 

eccentrically placed, being shifted towards the tension zone of the beam section to 

improve the bending rigidity of the section (Figure 6.1). Details of all specimens 

are summarized in Table 6.1. In this table, the steel tube eccentricity is defined as 

the distance from the centre of the steel tube to the center of the concrete section 

(Figure 6.1), and Ds and ts are the outer diameter and the thickness of the steel 

tube respectively. The variables studied include the concrete strength (from 26.1 

MPa to 38.2 MPa), the thickness of the FRP tube (1 ply and 2 plies), the thickness 
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of the steel tube (from 2.7 mm to 4.3 mm), the provision of FRP bars (6 bars), and 

the eccentricity of the steel tube (18.2 mm and 32.2 mm). It should be noted that 

the two steel tube eccentricities were initially designed to correspond to 20 mm 

and 0 mm concrete covers on the tension side of the section respectively. While a 

20 mm cover was achieved without difficulty, it was found to be difficult to 

produce specimens with the steel tube in contact with the FRP tube. Instead, the 

measured concrete covers of specimens B-E0-32, B-E1-32 and B-E2-32 were 4.5 

mm, 5.5 mm and 6.5 mm respectively. As a result, a steel tube eccentricity of 32.2 

mm (or 6 mm concrete cover) was adopted as the average value for the latter two 

specimens in making the theoretical predictions for these two specimens. 

Specimen naming uses the following convention: it starts with the letter “B” to 

indicate that this is a beam specimen, followed by a letter (from “A” to “E”) 

which represents one of the five types of steel tubes used, and then followed by a 

number which defines the number of plies of the FRP tube. For two of the 

specimens in series I, the letter “F” is added at the end to indicate the inclusion of 

FRP bars as additional longitudinal reinforcement. For series II specimens, a 

two-digit number is added at the end to define the eccentricity of the steel tube. 

For example, specimen B-E2-32 had a type E steel tube and a two-ply FRP tube, 

with the centre of the former being at 32.2 mm from that of the latter. 

 

6.2.2 Material Properties 

Tensile tests on three steel coupons were conducted for each type of steel tubes. 

The coupons were cut along the longitudinal direction from a steel tube of the 

same type and were tested according to BS 18 (1987). The average experimental 

values of the elastic modulus (Es), yield strength (fy), and tensile strength (fu) for 
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each type of steel tubes are listed in Table 6.1. Four tensile tests for the FRP bars 

were also conducted basically following ACI 440.3R (2004), with two of the 

specimens failing near the ends and the other two failing away from the ends. The 

average elastics modulus from the 4 specimens was 54.5 GPa, while the average 

tensile strength from the two specimens failing away from the ends was 951.7 

MPa. The elastic modulus is the more important parameter for the subsequent 

interpretation of the test results, as the rupture strains of FRP bars in the beam 

specimens were measured using strain gauges. Tensile tests showed that the 

GFRP for making the FRP tubes had an average strength of 1825.5 MPa, an 

average Young’s modulus of 80.1 GPa, and an average rupture strain of 0.0228. 

These results were determined from tensile tests conducted following the ASTM 

standard (ASTM D3039/D3039M-00 2000) on six coupons and calculated using a 

nominal thickness 0.17 mm per ply. These properties are for the hoop direction of 

the FRP tubes where the FRP fibers were oriented in the hoop direction only. 

Three concrete cylinders (152.5 mm x 305 mm) were cast for each batch of 

concrete to determine the compressive strength. The mean concrete cylinder 

strength ( '
cof ) for each batch is also given in Table 6.1.  

 

6.2.3 Preparation of Specimens 

The preparation process of the DSTC specimens without FRP bars is similar to 

that introduced in Chapter 3 for the short column specimens, except that a longer 

formwork was needed for the beam specimens (Figure 6.4). The FRP tube was 

again formed by the wrapping and resin impregnation of fiber sheets on hardened 

concrete (Figure 6.5), due to the same reason as stated in Chapter 3. For 
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specimens with additional FRP bars (i.e. specimens B-D1-F and B-D2-F), the 

FRP bars were attached to the inner surface of the outer PVC tube at several 

points along their length using a sealant, before the casting of concrete.  

 

6.2.4 Experimental Set-up and Instrumentation  

The test set-up is shown in Figure 6.2. Except for the two specimens without an 

outer FRP tube (specimens B-E0-18 and B-E0-32), sixteen strain rosettes were 

installed, with 8 strain rosettes evenly distributed around the circumference of the 

FRP tube at each of sections 1 and 2 (Figure 6.2(a)). For those specimens with 

FRP bars, six additional uni-directional strain gauges (one for each bar) were 

installed on the FRP bars within the pure bending region. Five displacement 

transducers were provided at sections 1, 2 and 3 (Figure 6.2(a)) and the two 

loading sections (Figure 6.2(b)) to measure deflections, while two other 

displacement transducers were provided at each end of the specimen to measure 

the slips between the concrete and the steel tube and between the concrete and the 

FRP tube respectively (Figure 6.2(c)). 

 

For the two specimens without an FRP tube, five uni-directional strain gauges 

were attached on the concrete surface at different heights of the mid-span section. 

The provision of displacement transducers differed in that only one displacement 

transducer was needed at each end to monitor the slip between the concrete and 

the steel tube. At each loading point, a load cell was used to measure the applied 

load P. The test data were collected by a data logger. 
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6.2.5 Test Results, Observations and Discussions  

6.2.5.1 General observations 

The load-deflection curves are shown in Figure 6.6, where the load P represents 

the average load recorded by the two load cells. It is clear that except specimens 

B-A1 and B-E2-32, the beam specimens without FRP bars exhibited a smooth 

load-deflection curve with large deflection ductility, with the mid-span deflection 

exceeding 1/15 of the span at a less than 10% reduction in the load carrying 

capacity. During the tests of B-A1 and B-E2-32, there was a sudden load drop 

accompanied by a loud noise, after which, however, the specimens could be 

reloaded to exceed the original load level. 

 

The two specimens with FRP bars (B-D1-F and B-D2-F) also experienced sudden 

load drops during the tests. These load drops, which were due to the rupture of the 

FRP bars, were relatively small (about 19% of the peak load) and could not be 

subsequently recovered. After these load drops, the specimens could still sustain 

an almost constant load with increasing deformation. 

 

For the specimens with an FRP tube but without FRP bars, the test was eventually 

terminated due to the headroom limitation of the loading frame. For the two 

specimens without an FRP tube, the test was terminated when many large cracks 

were found on the beam (due to the absence of an FRP tube outside) (Figure 

6.7(c)) and the whole loading system became somewhat unstable. For the two 

specimens with FRP bars, the test was terminated when the beam became 

increasingly more asymmetric and unstable due to a major localized crack (Figure 
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6.7(b)). Specimens B-B1, B-D1-F and B-E0-18 after the tests are shown in Figure 

6.7 to illustrate the typical deformation and crack patterns. 

   

6.2.5.2 Development of cracks 

During the tests, initial flexural cracks were found in the early stage of loading. 

For the DSTB specimens, these initial cracks were revealed by white patches on 

the FRP tube which appeared as a result of resin damage due to cracks in the 

concrete behind the tube. The initiation of cracks can also be identified from the 

readings of strain gauges. Figure 6.8 shows two typical compressive-tensile strain 

curves for two specimens, in which the compressive and tensile strains are from 

two strain gauges located at the top and bottom of the mid-span respectively. In 

both cases, the relationship between the two strains is initially linear, but after the 

tensile strain reaches about 0.00013, the tensile strain in specimen B-C1 increases 

much more rapidly than before, while the tensile strain in specimen B-B1 remains 

almost constant despite large increases of the compressive strain. This is because 

tensile cracks occurred within the gauge length of the strain gauge in the former 

case but outside the gauge length in the latter case. The end of the initial linear 

relationship corresponds to the occurrence of tensile cracks in the beam, which 

took place at about 15% of the peak load for those specimens without FRP bars 

and at about 20% of the peak load for those with FRP bars.  

 

With further load increments, new cracks and extension of existing cracks were 

observed. At the end of each test, the mid-span deflection exceeded 1/15 of the 

span and wide cracks were found in the specimen. For the specimens with an 

outer FRP tube but without FRP bars, two major vertical cracks always formed 
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right below or very close to the two load positions, and other less prominent 

vertical cracks were randomly distributed within and outside the pure-bending 

region of the specimen (Figure 6.7(a)). For the specimens without an outer FRP 

tube, inclined shear cracks were found together with flexural cracks along the 

specimen (Figure 6.7(c)). For the specimens with FRP bars, no obvious cracks 

were found on the surface of the FRP tube before the peak load except some 

“white patches” which indicated the appearance of cracks in the concrete behind. 

After the attainment of the peak load (at a mid-span deflection of about 1/50 of 

the span) at the rupture of the FRP bar at the bottom of the beam, a major crack 

opened up at the location of rupture of the FRP bar within the pure bending region 

(Figure 6.7(b)). 

 

6.2.5.3 Effect of the FRP tube 

For the specimens in series I, in which the two tubes (the FRP tube and the steel 

tube) were concentrically placed, the thickness of the FRP tube had little effect on 

the stiffness and the ultimate load of the DSTB (Figure 6.6). However, local 

rupture of the FRP tube by hoop tension was found in the final stage of testing in 

some specimens with a one-ply FRP tube (Figure 6.9) but in none of the two-ply 

FRP tubes. This implies that a thicker FRP tube will lead to a more ductile 

response. In addition, specimens with an FRP tube can be expected to possess a 

superior performance to those without an FRP tube due to the confinement to 

concrete and the shear resistance provided by the FRP tube. 

 

For the specimens in series II, which had an eccentrically placed steel tube, the 

one-ply FRP tube enhanced the ultimate load by over 20% for both steel tube 
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eccentricities. A thicker FRP tube also helped increase the ultimate load and the 

ductility; local FRP rupture was again found in both specimens with a one-ply 

FRP tube in the final stage of testing. Indeed, for specimens B-E1-18 and B-E1-32, 

the load began to drop in the final stage due to the rupture of the FRP tube (Figure 

6.6(b)). In addition, shear cracks were found in the two specimens without an FRP 

tube (Figure 6.7(c)), but not in the other specimens with an FRP tube (Figure 

6.7(a) and (b)), which were at least partially responsible for the poorer 

performance of the specimens without an FRP tube. The FRP tube clearly 

enhanced the shear resistance of the specimens. The shear resistance offered by 

the FRP tube is also confirmed by the development of significant hoop tensile 

strains (over 0.1%) at some locations (probably where the shear cracks in the 

concrete were located) in the lower part of the FRP tube as revealed by strain 

measurements. 

 

6.2.5.4 FRP confinement of concrete 

As there were only hoop fibers in the FRP tubes, their axial stiffness and strength 

were insignificant. The contribution of the FRP tube to the flexural behavior of a 

DSTB was mainly through the provision of confinement to the concrete. Axial 

compressive tests (Chapter 3) have shown that the confinement provided by the 

FRP tube to the concrete in such a double-skin section can improve the ductility 

or both the ductility and the strength of the concrete, depending on the thickness 

of the FRP tube. The benefit of confinement was also present in the test beams 

with an FRP tube (Figure 6.6 and Table 6.1). 
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The test results from series I indicate that the ultimate load was little affected by 

the thickness of the FRP tube. This observation may mean that in these test beams, 

the behavior of the concrete confined by a one-ply FRP tube did not differ 

significantly from that of the concrete confined by a two-ply FRP tube, which 

differs from the conclusion drawn from the axial compression test results on 

closely similar DSTC sections (Chapter 3). In the axial compression tests, the 

two-ply tube led to a significantly higher ultimate load and better ductility than 

those obtained for a one-ply tube. This difference in the effect of confinement 

between axial compression and flexural specimens may be due to two reasons: 1) 

the area of the compressive region of concrete is much smaller (less than half of 

the section) in the flexural specimens, so their ultimate loads are much less 

sensitive to the concrete strength; 2) the effect of confinement is reduced in a 

beam specimen due to the existence of a strain gradient over the beam section. 

Previous experimental work by other researchers on concrete-filled FRP tubes has 

shown that the effect of confinement on concrete is less significant for beams than 

for columns (Fam and Rizkalla 2002; Mirmiran et al. 1999). 

 

The test results of specimens of series II clearly indicate the benefit of a thicker 

FRP tube. The ultimate load of specimen B-E2-18 is 7.69% higher than that of 

specimen B-E1-18, while the ultimate load of specimen B-E2-32 is 15.1% higher 

than that of specimen B-E1-32. The larger difference between the two B-E-32 

specimens may be due to two reasons: 1) there was more concrete in the 

compressive region of the B-E-32 sections with a steel tube eccentricity of 32.2 

mm than the B-E-18 sections with a steel tube eccentricity of 18.2 mm, so more 

benefit was derived from the FRP confinement; 2) the concrete in the B-E-32 
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specimens had a lower unconfined strength (26.1 MPa) (Table 6.1), which made 

the effect of FRP confinement more significant in terms of strength increases 

relative to the unconfined strength, as has been established in the existing 

literature (e.g. Teng and Lam 2004). 

 

For the specimens in series I, although the thickness of the FRP tube had little 

effect on the ultimate load, it did lead to a clear difference in the axial strain-hoop 

strain behavior (at the top compressive fiber). Figure 6.10 shows two axial 

strain-hoop strain curves for specimens B-C1 and B-C2 with a one-ply FRP tube 

and a two-ply FRP tube respectively. Both curves indicate that as the axial strain 

increases, the rate of increase in the hoop strain (in terms of the absolute value) 

initially increases and then remains more or less constant. In the later stage of 

loading, at the same axial compressive strain, the hoop strain for the one-ply tube 

is about twice that for the two-ply tube, so the two tubes provided about the same 

amount of confinement as their thicknesses were different. For instance, at an 

axial compressive strain of 0.008, the hoop tensile strain is 0.0052 for B-C1 and 

0.0029 for B-C2. This greater demand on the hoop deformation of the one-ply 

tube explains why some of the one-ply FRP tubes but none of the two-ply FRP 

tubes failed by rupture and why DSTBs with a thicker FRP tube can be expected 

to exhibit greater ductility. 

 

6.2.5.5 Slip between the concrete and the tubes 

The slip between the concrete and the FRP tube was insignificant (almost zero) in 

all cases except for B-E2-32 due to the small axial stiffness of the FRP tube. The 

slip between the concrete and the steel tube, however, was much larger (about 10 
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mm at the end of test for most of the specimens). The steel tube-to-concrete slip 

gradually increased with the mid-span deflection except for specimen B-A1.  

 

During the test of specimen B-A1, there was a sudden load drop accompanied by 

a loud noise at a load P=26.1 kN with a mid-span deflection of 54.1 mm. The 

LVDT readings at the two ends of the specimen revealed that there was a sudden 

increase in the slip between the concrete and the steel tube at the onset of this 

sudden load drop. It is believed that this sudden slip increase was due to at least a 

partial loss of the composite action between the concrete and the steel tube. This 

phenomenon indicates that an improvement to the bond between the concrete and 

the steel tube in such DSTBs may be needed. 

 

During the test of specimen B-E2-32, there was also a sudden load drop with a 

loud noise at a load P=35.4 kN with a mid-span deflection of 21.5 mm. The 

associated slip between the concrete and the FRP tube was about 0.65 mm. This 

suggests that the bond between the concrete and the FRP tube in such DSTBs may 

also need improvement, particularly if the FRP tube possesses significant axial 

stiffness. 

 

It is evident from the test observations that improvements to the bond resistance at 

both interfaces are desirable. Roughening treatments on the tubes and the use of 

mechanical connectors are possible alternatives to achieve enhanced interfacial 

bond resistance. 
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6.2.5.6 Effect of FRP bars 

Two of the beams (B-D1-F and B-D2-F) had FRP bars as additional longitudinal 

reinforcement. These FRP bars were provided to avoid the early development of 

cracks in the tensile concrete. The FRP bars enhanced both the stiffness and the 

ultimate load of the beam. These beams displayed almost linear load-deflection 

behavior up to a mid-span deflection of about 1/100 of the span (or about 80% of 

the ultimate load). Afterwards, the stiffness of the beam reduced continuously, 

while the load kept increasing until the ultimate load was reached at a mid-span 

deflection of about 1/50 of the span. No obvious cracks were found on the surface 

of the FRP tube before the peak load was reached. At the ultimate load, a sudden 

and large noise was heard and the load dropped abruptly to a lower level, 

accompanied by the opening-up of a major crack and a large increase of the 

mid-span deflection. This failure was due to the rupture of the FRP bar at the 

bottom of the beam, which was subjected to the largest tensile strain. After this 

large reduction in load, the specimen continued to sustain a considerable load in a 

ductile manner. Figure 6.6(a) shows a comparison of the load-deflection responses 

of specimens with or without FRP bars. It is clear that the provision of FRP bars 

provides an effective means to enhance the flexural stiffness and the ultimate load 

of the member, and to suppress early cracking. 

 

6.2.5.7 Effect of the steel tube 

In the present hybrid members, the steel tube is the sole longitudinal 

reinforcement, except when some FRP bars are also provided. The steel tube thus 

plays a very important role in resisting loading and ensuring a ductile response. 

With all other parameters being the same, a thicker steel tube leads to a higher 
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ultimate load, as can be seen by comparing the results for specimens with a 4.3 

mm thick steel tube (specimens B-C1 and B-C2) to those for specimens with a 2.7 

mm or 3.2 mm thick steel tube (specimens B-A1 and B-A2; and specimens B-B1 

and B-B2) (Figure 6.6(a)). For the two groups of specimens with steel tube 

thicknesses of 2.7 mm and 3.2 mm respectively, the small benefit of the slightly 

thicker tube was offset by a lower yield stress, so the effect of steel tube thickness 

is unclear in Figure 6.6(a). 

 

For the hybrid section to be employed in a beam, the flexural stiffness and 

strength of the beam can be enhanced by shifting the steel tube towards the 

tension side, which also places more concrete in the compression zone. The 

specimens in series II were tested to demonstrate the performance of DSTBs with 

an eccentrically placed steel tube. The test results show that the ultimate load of 

specimen B-E1-18 is about 40% higher than that of specimen B-B1 (Table 6.1), 

although the two specimens had similar steel tubes, FRP tubes and concrete. 

Specimen B-E1-18 also displayed a higher flexural stiffness than that of specimen 

B-B1 (Figure 6.6). Similar conclusions can be drawn by comparing the results of 

specimens B-E2-18 with B-B2. It can also be found that the ultimate loads of 

specimens B-E1-32 and B-E2-32 are higher than those of specimens B-E1-18 and 

B-E2-18 respectively (3.1% for one-ply tubes and 10.23% for two-ply tubes), 

although the unconfined concrete strength of the former two specimens is much 

lower (28%) than that of the latter two specimens. This is because the former two 

specimens had a larger steel tube eccentricity. It may also be noted that the 

difference in the ultimate load is larger between the two specimens with a two-ply 
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tube, which suggests that the effect of FRP confinement on the concrete is more 

significant for these specimens. 

 

6.3 THEORETICAL ANALYSIS 

6.3.1 Analysis Model   

A traditional section analysis of the so-called fiber element approach was 

developed for the present DSTBs based on the plane section assumption and the 

assumption that all FRP bars become ineffective once rupture of the most highly 

stressed FRP bar occurs. The analytical procedure involves the determination of 

the position of the neural axis for a given strain of the extreme compression fiber 

by force equilibrium and the evaluation of the bending moment by integrating the 

contributions of stresses over the section. 

 

The stress-strain behavior of the steel tubes was modeled based on their tensile 

test results. For specimens in series I except specimens B-C1 and B-C2, an 

elastic-perfectly plastic stress-strain curve was adopted with the elastic modulus 

and the yield stress for each type of steel tube as given in Table 6.1. For 

specimens B-C1 and B-C2 and the specimens in series II, the experimental 

stress-strain curves did not show an elastic-perfectly plastic shape. A typical curve 

for the steel of specimens B-C1 and B-C2 is shown in Figure 6.11. For these 

specimens, the stress-strain curve for each type of steel tube was modeled by 

representing the average experimental stress-strain curve with a large number of 

data points.  
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A linear stress-strain curve was adopted for FRP bars based on the tensile test 

results. The contribution of the outer FRP tube in the longitudinal direction was 

neglected as it did not have longitudinal fibers. 

 

The concrete was assumed to possess the same initial elastic modulus in both 

tension and compression. Tensile cracking was assumed to occur at a tensile strain 

of 130µε  based on test observations (e.g. Figure 6.8(b)), and the concrete was 

assumed to resist no tensile stresses after cracking. The design-oriented 

stress-strain model (Eqns 2.12-2.15, 2.20 and 5.22) proposed in Chapter 5 was 

adopted to produce the stress-strain relationship of concrete in compression. For 

each specimen, the longitudinal strain at the extreme compression fiber of its FRP 

tube reached at the end of test was taken as the ultimate point of the stress-strain 

curve of its confined concrete. 

 

6.3.2 Load-Strain Curves 

6.3.2.1 Specimens without FRP bars 

Figures 6.12(a)-(f) show comparisons of predicted and experimental load-strain 

curves for specimens B-C1, B-C2, B-E1-18, B-E2-18, B-E1-32, and B-E2-32 

respectively. The strain values shown are those of the extreme compressive fiber 

at the mid-span. These comparisons cover different section configurations, 

different steel tube eccentricities, and different FRP tube thicknesses. 

 

It is evident that in general the theoretical results agree well with the test results 

for all specimens except specimen B-E2-32. Considerable errors exist for the 
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initial part of the load-strain curve of specimen B-E2-32 (Figure 6.12(f)). These 

errors may be attributed to slips between the FRP tube and the concrete which 

might have existed right from the beginning of loading due to the greater 

thickness of the FRP tube (i.e. greater axial rigidity) of specimen B-E2-32, so that 

the strains recorded on the FRP tube are smaller than predictions based on the 

plane section assumption. Indeed, the sudden slip found during the test of this 

specimen, but not in other specimens, supports this explanation. 

 

It is also noted that the theoretical analysis provides better predictions for the 

specimens with a one-ply FRP tube (B-C1, B-E1-18 and B-E1-32) than for those 

with a two-ply FRP tube. For specimen B-E2-18 with a two-ply FRP tube and an 

eccentric steel tube, the ultimate load can be closely predicted, but errors exist in 

the predicted load-strain response. For specimen B-C2 which had a two-ply FRP 

tube and a concentric steel tube, the theoretical analysis overestimates both the 

ultimate load and load-strain response. This observation may be due to the fact 

that in a beam specimen the confining mechanism is different from that in a 

column specimen and the effect of confinement is reduced due to the existence of 

a strain gradient over the beam section.  

 

Taking into consideration the above observation and the experimental finding that 

the experimental behavior of a beam with a one-ply tube differed from that of the 

corresponding beam with a two-ply tube (Figure 6.6) only slightly, the following 

simple compressive stress-strain curve with an approximately elastic-perfect 

plastic shape was assumed for concrete in DSTBs, regardless of the thickness of 

the FRP tube. This curve is close to that found from the design-oriented 
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stress-strain model for the one-ply DSTC specimens with a very small concrete 

strength increase (e.g. Figure 5.10(b)).   
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in which cσ  and cε  are the stress and strain of concrete respectively, whereas 

cE , '
cof  and coε  are the elastic modulus, the unconfined concrete cylinder 

strength and the corresponding strain respectively. It should be noted that the 

stress-strain curve represented by Eqns 6.1 and 6.2 can be regarded as a special 

case of the curves produced by the design-oriented stress-strain model presented 

in Chapter 5, with 02 =cE . The results predicted by the section analysis using this 

modified stress-strain curve [denoted as “theoretical results (modified)”] are also 

compared with the test results in Figures 6.12(a)-(f). As expected, the modified 

theoretical results provide close predictions for specimens with two concentrically 

placed tubes, and safe and reasonable predictions for specimens with an eccentric 

steel tube.  

 

It should be noted that the different confinement effects on the concrete in column 

and beam specimens have also been noted by previous researchers. Mirmiran et al. 

(1999) concluded from their beam and beam-column test results of concrete-filled 

FRP tubes that the confinement effect increases with the level of axial load. It is 

also suggested in Mirmiran et al. (1999) that the slope of the second linear part of 

the stress-strain curve, i.e. E2c, of FRP-confined concrete should be a function of 

the axial load level. Rochette and Labossiere (1996) proposed a lower bound of 0 
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for E2c. The proposed concrete stress-strain curve (Eqns 6.1 and 6.2) is similar to 

that proposed by Mirmiran et al. (1999) with the lower bound for E2c proposed by 

Rochette and Labossiere (1996). A similar approach was suggested by Ziara et al. 

(1995) for conventional RC beams with considerable transverse reinforcement. 

Fam et al. (2003) also found that the confinement effect is less significant in 

beams than in columns, but suggested to use the unconfined stress-strain curve for 

concrete confined by an FRP tube when it is under pure flexure. The theoretical 

results obtained using the concrete stress-strain curve suggested in Fam et al. 

(2003) are also shown in Figures 6.12(a)-(b) for specimens B-C1 and B-C2. It is 

evident that the direct use of the unconfined concrete stress-strain curve led not 

only to an underestimation of the test results but also to a descending branch for 

the load-strain curves, which is not supported by the experimental observations.  

 

6.3.2.2 Specimens with FRP bars 

Figure 6.12(g) shows a comparison of load-strain curves for one of the two 

specimens with FRP bars. Eqns 6.1 and 6.2 were used in the theoretical analysis. 

The comparison for the other specimen is similar. The theoretical load-strain 

curve follows the experimental curve closely but then exceeds it considerably 

with a significantly higher ultimate load. It was found that the rupture strain of 

FRP bar in the beam tests (0.011) was much lower (about 36%) than the rupture 

strain obtained from tensile tests (about 0.017), which was adopted in the analysis. 

The degradation of rupture strain of FRP bar in the beam tests may be due to the 

presence of bending deformation in the FRP bar. This reduction in the rupture 

strain explains the difference between the predicted and experimental load-strain 

curves. An alternative prediction, in which the reduced rupture strain observed in 
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the beam tests replaced that from the tensile tests, is also shown in Figure 6.12(g) 

[denoted as “theoretical results (modified)”]. This alternative prediction is in 

much closer agreement with the experimental curve. 

 

6.3.3 Load-Deflection Curves 

The results form the section analysis can be integrated to predict the deflections of 

the beam. Figure 6.13 shows comparisons between the experimental and the 

predicted mid-span load-deflection curves for specimen B-E1-32, which had no 

FRP bars, and for specimen B-D1-F, which had FRP bars, respectively. The 

theoretical analysis again adopted Eqns 6.1 and 6.2 as the compressive 

stress-strain curve for concrete. For specimen B-E1-32, the theoretical results 

agree well with the test results up to a load level of about 1/3 of the ultimate load, 

after which the difference between the theoretical and test results becomes more 

significant. The differences are believed to be mainly due to the development of 

wide localized cracks in the beam and slips between the concrete and the tubes, 

both of which were not considered in the analysis. For specimen B-D1-F, the 

predicted curve ends at the rupture of the FRP bar at the bottom, as the accuracy 

of the section analysis further deteriorates due to the appearance of a wide crack at 

the location of FRP bar rupture immediately afterwards. It can be seen from 

Figure 6.13(b) that the prediction is more accurate than that for specimen B-E1-32. 

This is consistent with the test observation that no large cracks were found in 

specimen B-D1-F before the rupture of the bottom FRP bar. Some small 

differences between the test and predicted results still exist, which may be 

attributed to some slips between the concrete and the tubes (particularly the steel 

tube). 
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6.4 DESIGN RECOMMENDATIONS 

It is shown in Section 6.3 that the proposed section analysis method with the 

compressive stress-strain curve of concrete defined by Eqns 6.1 and 6.2 provides 

reasonable and safe predictions of the behavior of DSTBs. This method is 

therefore recommended for design use.  

 

The normalized hoop strain-axial strain curves of two DSTB specimens are 

compared with those of the corresponding DSTC specimens in Figure 6.14, where 

the hoop strain and axial strain are normalized by the strain corresponding to the 

peak stress of unconfined concrete. For DSTB specimens, the strain values were 

recorded by the strain gauge at the top of the specimen (i.e. the extreme 

compressive fiber). It can be found from Figure 6.14 that with the same concrete 

axial strain, the beam specimens (B-C1 and B-C2) are subjected to a smaller hoop 

strain than the corresponding column specimens (D40-B1-I and D40-B2-I 

respectively). This can be explained by the strain gradient developed over a beam 

section. Within the section, the concrete subjected to a larger axial strain (near the 

extreme compressive fiber) tends to expand more significantly, while the concrete 

subjected to a smaller axial strain expands less. Therefore, part of the expansion 

on the compression side is transferred to the rest of the section and the hoop strain 

experienced by the FRP outer tube is reduced.  

 

Based on the above observation, it is safe to adopt the ultimate axial strain 

predicted by the design-oriented stress-strain model, which was proposed for 
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column specimens in section analysis of beam specimens. This ultimate axial 

strain is thus recommended for design use.   

 

6.5 CONCLUSIONS 

This chapter has presented and interpreted the results of two series of 4-point 

bending tests on hybrid double-skin tubular beams (DSTBs). The main parameters 

examined in this study include the section configuration and the thicknesses of the 

steel tube and the FRP tube. A simple theoretical model based on the plane 

section assumption and the fiber element approach was also developed and 

employed to predict the responses of the test beams. Based on the test results and 

comparisons with the theoretical predictions, the following conclusions can be 

drawn. 

 

(1) Hybrid DSTBs possess a very ductile response. The FRP tube confines the 

concrete and provides additional shear resistance. The steel tube provides 

ductile longitudinal reinforcement. 

(2) A DSTB with an eccentric steel tube benefits more significantly from the 

outer FRP tube than a corresponding DSTB with a concentric steel tube, as in 

the former, a larger amount of concrete is in the compression zone. 

(3) Significant slips between the concrete and the two tubes, particularly the steel 

tube, and associated load fluctuations may occur. Improvements to the bond 

resistance at both interfaces are desirable. 

(4) The flexural response of a DSTB, including the flexural stiffness, ultimate 

load and cracking, can be substantially improved by shifting the inner steel 
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tube towards the tension region or by providing FRP bars as additional 

longitudinal reinforcement. 

(5) The effect of FRP confinement on concrete in beam specimens is less 

significant than that in column specimens of identical sections, because of the 

existence of a strain gradient and a relatively small concrete compression 

zone. 

(6) The predictions from the theoretical model are in reasonably close agreement 

with the test results. Differences arise from factors not considered in the 

theoretical model, including the concentrations of cracks and the slips between 

the concrete and the two tubes. The development of a more accurate model 

should take these factors into account.  
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Table 6.1 Details of specimens and measured load capacities 

Steel tube 
Specimen  FRP 

Tube 

Steel tube 
eccentricity

(mm) 

FRP 
bars Ds 

(mm) 
ts 

(mm) 
sE  

(MPa) 
fy 

(MPa)
fu 

(MPa)

Concrete cylinder 
strength 

'
cof  (MPa) 

Ultimate 
Load P  
(kN) 

B-A1 1 ply 27.26 
B-A2 2 plies 

76.1   2.7 201.5  381.5  421.5 
 27.44 

B-B1 1 ply 
38.2 

 25.09 
B-B2 2 plies 

 76.1   3.2  207.3 352.7 380.4 
26.48 

B-C1 1 ply  39.36 
B-C2 2 plies 

No 

 76.1   4.3  197.8# 416.4*  478.6 
35.5 

 38.41 
B-D1-F 1 ply Yes  46.28 

Series 
I 

B-D2-F 2 plies 

No 

 Yes 
 76.1   3.5  198.7  406.2  475.5 27.8 

 48.91 
B-E0-18 No  28.90 
B-E1-18 1 ply  35.39 
B-E2-18 2 plies 

18.2 33.4 
 38.11 

B-E0-32 No   27.11 
B-E1-32 1 ply  36.49 

Series 
II  

B-E2-32 2 plies 
32.2 

No  76.1   3.5 208.6# 340.3*  444.5 

26.1 
 42.01 

    
 # Initial elastic modulus 

* 0.2% proof stress 
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Figure 6.1 Double-skin tubular members with an eccentric steel tube 
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   (a) Dimensions of test set-up 

 

         (b) Overview of test set-up             (c) End of specimen                     

Figure 6.2 Test set-up 
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Figure 6.3 Cross-section of specimen with FRP bars 

 

 

 

 

 

 

 

 

 

Figure 6.4 Formwork for casting concrete 
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Figure 6.5 Fabrication of FRP tube 
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(a) Series I 

 

(a) Series II 

Figure 6.6 Mid-span load-deflection curves 
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 (a) Specimen B-B1 

 

 

 

 

 

 (b) Specimen B-D1-F 

 

 

 

 

 

 (c) Specimen B-E0-18 

Figure 6.7 Specimens after testing 



 251

 

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Compressive strain

Te
ns

ile
 st

ra
in

 

(a) Specimen B-C1 
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(b) Specimen B-B1 

Figure 6.8 Compressive-tensile strain curves 
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Figure 6.9 Specimen B-D1-F after testing 
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Figure 6.10 Axial-hoop strain behavior 
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Figure 6.11 Typical stress-strain curve of steel tube in B-C1 
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(a) Specimen B-C1 
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(b) Specimen B-C2 

Figure 6.12 Comparison of load-compressive strain curves 



 255

0

5

10

15

20

25

30

35

40

0 0.002 0.004 0.006 0.008 0.01

Compressive strain

P 
(k

N
)

Test results
Theoretical results
Theoretical results (modified)

 

(c) Specimen B-E1-18 
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(d) Specimen B-E2-18 

Figure 6.12 Comparison of load-compressive strain curves (Cont’d) 
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(e) Specimen B-E1-32 
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(f) Specimen B-E2-32 

Figure 6.12 Comparison of load-compressive strain curves (Cont’d) 
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 (g) Specimen B-D1-F 

Figure 6.12 Comparison of load-compressive strain curves (Cont’d) 
 

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

Mid-span deflection (mm)

P 
(k

N
)

Test results
Theoretical results

 
(a) Specimen B-E1-32 

Figure 6.13 Comparison of mid-span load-deflection curves 
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 (b) Specimen B-D1-F 

Figure 6.13 Comparison of mid-span load-deflection curves (Cont’d) 
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Figure 6.14 Comparison between hoop strain-axial strain curves of DSTBs and 

DSTCs 
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CHAPTER 7 

BEAM-COLUMN BEHAVIOR OF HYBIRD DSTCS 

 

7.1 INTRODUCTION 

This chapter first presents an experimental study on the beam-column behavior of 

the new hybrid FRP-concrete-steel double-skin tubular columns (DSTCs). The 

beam-column behavior is important for design as columns are normally subjected 

to combined axial and lateral loads, such as wind and seismic loads.  

 

The beam-column behavior of a composite column can be predicted by a 

traditional section analysis when the stress-strain relationship of each constituent 

material is known. In this chapter, results from such a section analysis method 

based on the design-oriented stress-strain model presented in Chapter 5 for the 

concrete in hybrid DSTCs are presented. The theoretical results are shown to be in 

close agreement with the experimental results reported earlier in this chapter.  
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7.2 EXPERIMENTAL STUDY 

7.2.1 Specimen Details 

In total, six identical DTSC specimens were prepared and tested under eccentric 

compression with three different eccentricities (0 mm, 9 mm and 18 mm); for 

each eccentricity value, two identical specimens were tested. All specimens had 

an outer diameter of 155 mm and a height of 465 mm, a steel inner tube with a 

Ds/ts ratio of 76/3.7, and a one-ply FRP outer tube. It should be noted that the 

outer diameter of 155 mm refers to the concrete core and does not include the 

thickness of the FRP outer tube. The details of all these specimens are 

summarized in Table 7.1. Each specimen is identified by a naming system, which 

starts with a letter “E” indicating that this is a specimen belonging to the eccentric 

compression test series, followed by a number which defines the number of plies 

of the FRP tube and then followed by a two-digit number which defines the 

eccentricity of the compressive load. The last Roman digit “I” or “II” in the 

naming system is to differentiate the two specimens of a pair loaded at the same 

eccentricity. 

 

The preparation procedure for these DSTC specimens is similar to that reported in 

Chapter 3 and included the following steps: (1) fabrication of the form, which 

consisted of a PVC tube outside and a steel tube inside; strain gauges on the steel 

tube were installed before the casting of concrete (Figure 7.1); (2) casting the 
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concrete; (3) wet-layup formation of the FRP tube after the concrete had hardened 

and the PVC form had been removed. 

 

7.2.2 Material Properties 

The FRP used in the eccentric compression tests was the same as that used in the 

concentric compression tests presented in Chapter 3. Tensile coupon test results 

showed that the FRP had an average tensile strength of 1825.5 MPa and an 

average elastic modulus of 80.1 GPa, based on a nominal thickness of 0.17 mm 

per ply. 

 

All steel tubes in these DSTCs came from the same long steel tube. Tensile tests 

on steel coupons cut from the same original steel tube were conducted to 

determine the material properties of the steel. These tests showed that the steel 

had a yield stress of 398.2 MPa, a tensile strength of 457.5 MPa, a Young’s 

modulus of 199.7 GPa and a long plastic plateau after yielding. In addition, three 

hollow steel tubes nominally identical to those used in the DSTCs and also cut 

from the same long tube were tested under compression. The steel tubes showed 

large plastic deformation before failure occurred by a combination of overall 

buckling and local buckling, as shown in Figure 7.2. The average ultimate load of 

these tubes was 356.9 kN. 

 



 262

The elastic modulus, compressive strength and compressive strain at peak stress 

of the concrete averaged from three concrete cylinder tests (152.5 mm x 305 mm) 

were 31.8 GPa, 49.7 MPa and 0.00245 respectively. 

 

7.2.3 Experimental Set-up and Instrumentation 

Eight strain rosettes with a gauge length of 20 mm were evenly distributed around 

the circumference at the mid-height of the FRP outer tube to measure the axial 

and hoop strains at different locations. Two strain rosettes were attached to the 

outer surface of steel inner tube at 180o apart. The locations of the strain rosettes 

are shown in Figure 7.3. The overlapping zone was placed farthest from the 

applied load.  

 

All specimens were tested on an MTS machine with a ball joint at the top (Figure 

7.4). The loading rate was 0.003 mm per second for all specimens. For the four 

specimens under eccentric compression, two steel plates were employed at the 

bottom. One of the steel plates had a V-block while the other had two V-shape 

grooves so that the desirable eccentricity (9 mm and 18 mm) could be accurately 

achieved. The eccentric compression test set-up is shown in Figure 7.4.  

 

For the two specimens of this series tested under concentric compression 

(eccentricity = 0 mm), two linear variable displacement transducers (LVDTs) 
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were used to measure the axial deformation of the middle region of 120 mm for 

each specimen, as explained in Chapter 3. For the four specimens tested under 

eccentric compression, seven LVDTs were adopted to measure displacements at 

different locations and in different directions. Three LVDTs (LVDTs 1-3) were 

respectively installed at the mid-height, near the bottom and near the top of each 

specimen to measure the lateral deflections at different heights (Figure 7.4). Four 

LVDTs (LVDTs 4-7) were installed to measure the axial shortening of the 

specimen at different points (Figure 7.4).  

 

7.2.4 Experimental Observations and Interpretations 

The specimens were subjected to combined axial compression and flexure during 

eccentric compression tests. As expected, the deformations of the specimens 

included axial shortening and bending (Figure 7.5). Consequently, the LVDTs 

located at different distances from the applied load recorded different axial 

shortenings and the LVDTs located at different heights recorded different lateral 

deflections. As the curvature and the lateral deflection increased, the actual load 

eccentricity/bending moment varied along the height and deviated from the initial 

value. The bending moment was the largest where the largest lateral deflection 

occurred. Tensile cracks occurred on the side farthest from the load, although the 

eccentricities were designed to be small enough so that no tension would occur 

during the initial loading stage. These tensile cracks were initially revealed by 
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white patches on the FRP tube which appeared as a result of resin damage due to 

cracks in the concrete behind the tube. With the development of tensile cracks, the 

lateral deflection of the specimen increased more rapidly, which in turn increased 

the value of the actual loading eccentricity for sections away from the ends. The 

specimens reached their ultimate state by the rupture of the FRP outer tube 

(Figure 7.5(b)) on the side nearest to the applied load, due to the expansion of 

concrete in compression. The locations of the major tensile cracks and the rupture 

of the FRP tube were recorded in terms of the distances from the top of the 

specimen, as shown in Table 7.2, in which x1 and x2 are the respective distances 

of the tensile cracks and the FRP rupture from the top end. It can be seen from 

Table 7.2 that FRP rupture occurred at approximately the same height as the 

location of a major tensile crack on the opposite side. The major tensile cracks 

normally occurred at or near the mid-height except specimen E-1-18-I.  

 

Figure 7.5 shows the specimens after test. It is not strange to find that the 

specimen tested under a larger eccentricity experienced a more significant rotation 

(Figure 7.5(a)). The FRP outer tubes of some of the specimens were removed 

after test to further examine the appearance of the concrete. It was found that there 

were many vertical cracks and a few inclined cracks in addition to the horizontal 

cracks described earlier (the cracks are marked in Figure 7.5(c)). These cracks 

were probably due to the expansion and bending of the inner steel tube. Concrete 

crushing was also found on the extreme compression side. 
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7.2.5 Experimental Results and Discussions 

7.2.5.1 Axial strain distribution over the section 

Eight strain rosettes were attached to the FRP outer tube and two strain rosettes 

were attached to the steel inner tube, to measure strains at different 

circumferential locations (Figure 7.3). The distribution of axial strain over the 

section is illustrated in Figure 7.6, in which the horizontal axis represents the 

distance to the center of the specimen and the vertical axis represents the axial 

strain value. For each specimen, several curves representing the strain 

distributions under different load or axial-shortening levels are shown. For 

instance, the curves denoted as “300 kN” and “1.5 mm” in Figure 7.6 represent 

the strain distributions under a load level of 300 kN and an axial-shortening level 

of 1.5 mm, respectively. The load and axial-shortening values were recorded by 

the MTS machine. Unless otherwise specified, a tensile strain is negative and a 

compressive strain is positive in this chapter. The following observations can be 

made from these figures. 

 

(1) Generally, the distribution of strains on the FRP outer tube remains 

approximately linear with the distance from the center of the section, 

especially in the initial stage of loading.  

(2) When the maximum compressive strain of the section exceeds 0.0025, which 
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is approximately equal to the axial strain at the peak stress of unconfined 

concrete, the strain distribution starts to become non-linear, as can be seen in 

Figures 7.6(b) and (d). This deviation may be a result of significant local 

damage of concrete after the strain exceeded 0.0025. 

(3) As the load increases, the neutral axis keeps moving toward the center of the 

section, resulting in the occurrence of tensile strains. Consequently, tensile 

cracks occurred on the side farthest from the loading point. Some strain 

gauges spanning over the cracks recorded large tensile strains, which deviate 

from the linear curve (Figures 7.6(a), (b) and (d)). It is also noted that the 

tensile strains of specimen E-1-18-I are relatively low (Figure 7.6(c)). It was 

found that in this specimen, no tensile crack crossed the strain gauges.  

(4) When the readings of the strain gauges on the steel tubes exceed a value of 

about 0.002, some of them deviate significantly from a linear strain 

distribution, as shown by the solid dots in Figures 7.6(b) and (d). These may 

be due to non-uniform plastic local deformation in the steel tube.  

 

The axial strains at the two extreme locations are compared in Figure 7.7, where 

the horizontal axis represents the axial strain at the location farthest from the 

loading point (extreme tensile fiber) while the vertical axis represents that at the 

location nearest to the loading point (extreme compressive fiber). These 

comparisons are for specimens E-1-09-I and E-1-18-II. It can be seen that both 

strains increase and are linearly related in the initial stage, indicating that the 
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specimen was elastically deformed and the location of the neutral axis did not 

change. When the strain at the extreme compressive fiber reaches about 0.002, the 

curve begins to reverse. The compressive strain at the extreme tensile fiber 

becomes increasingly smaller and finally reverses to a tensile strain, indicating the 

movement of the neutral axis towards the center of the section with an increasing 

axial load. Beside the effect of a varying neutral axis, the occurrence of tensile 

cracks and the resulting deformation localization is another factor affecting the 

curves in Figure 7.7.  

 

7.2.5.2 Axial stress-strain curves of concrete in hybrid DSTCs under concentric 

compression 

The axial stress-strain curves of concrete in hybrid DSTC specimens under 

concentric compression (i.e. specimens E-1-00-I, II) are shown in Figure 7.8. The 

average axial stress in the concrete in the DSTCs was found by dividing the load 

acting on the concrete area by the cross-sectional area of the concrete section. The 

load carried by the concrete is assumed to be equal to the difference between the 

load carried by the DSTC specimen and the load carried by the steel tube at the 

same axial strain as found from the compression tests on hollow steel tubes. It is 

clear from Figure 7.8 that both experimental curves have an approximately 

elastic-perfectly plastic shape. The peak concrete stresses of these two specimens, 

however, are a little smaller (about 8%) than that of unconfined concrete. Despite 

this small strength difference, concrete in such DSTCs has a very good ductility 
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(the axial strain reaches about 1.5%) with very small stress decreases. The small 

strength difference may be due to the different slenderness ratio of the DSTC 

specimens compared to that of standard cylinders. Standard concrete cylinder 

specimens with a diameter of 152.5 mm and a height of 305 mm were tested to 

find the unconfined concrete strength. However, the concrete component in these 

hybrid DSTC specimens had an annular shape with a thickness of about 40 mm 

and a height of 465 mm. As discussed in Chapter 3, hollow concrete cylinders 

may have a smaller unconfined strength than solid concrete cylinders, especially 

when the unconfined concrete strength is high (e.g. Batch 4 in Table 3.2).  

 

The results predicted by the design-oriented stress-strain model proposed in 

Chapter 5 are shown in Figure 7.8 for comparison, using the concrete cylinder 

strength from standard cylinder tests. It is evident that the design-oriented model 

overestimates the concrete strength. This overestimation comes from the concrete 

cylinder strength used which is greater than the unconfined concrete strength of 

hollow cylinders, as discussed earlier. To achieve a better prediction, a lower 

unconfined concrete strength (45.8 MPa) is input, which is equal to the average 

peak stress of specimens E-1-00-I and E-1-00-II. By doing so, the stress-strain 

curves of DSTCs can be closely predicted, as shown in Figure 7.8 by the curve 

denoted as “Design model (modified)”. 
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7.2.5.3 Axial load-shortening behavior 

The peak axial loads of all six specimens are summarized in Table 7.1. It is not 

surprising to find that the specimens loaded at a larger eccentricity have a smaller 

axial load capacity, due to the existence of a larger bending moment. For the two 

pairs of specimens with eccentricities of 0 mm and 9 mm respectively, there is 

only a very small difference between the two specimens of each pair. On the 

contrary, the two specimens with an eccentricity of 18 mm show a relatively large 

difference. The reason for this difference is explained later in this section.   

 

There were two ways to obtain the axial-shortenings of the specimens. One was to 

take the average of readings from the four LVDTs measuring platen-to-platen 

deformations at two opposite sides of the specimen, while the other was to use the 

machine output values. The former represents the deformation of the center line of 

the specimen while the latter represents the relative movement between the two 

loading points. It is not difficult to find that the latter is in general larger than the 

former because of the rotation of the specimen. The problem is that the 

shortenings measured by the four LVDTs are not accurate enough to give a 

reliable measurement of the center-line shortening. For instance, in specimen 

E-1-18-II, the shortenings on the two sides were found to be approximately -13 

and 10 mm using the LVDTs and the average shortening could be calculated to be 

about 3 mm. However, the difference between the readings of the two LVDTs at 

the same side (i.e. LVDTs 4, 5 in Figure 7.4) was about 1.5 mm, about 50% of the 
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obtained average shortening. Therefore, it is believed that the average shortening 

deduced from the LVDTs cannot accurately reflect the shortening of the center 

line of the specimen. The shortenings recorded by the MTS machine, however, 

are more reliable, although they include the deformation of the steel plates and as 

a result are expected to be slightly larger than the actual values. In addition, the 

initial part of the load-shortening curve is not linear when the machine readings 

are used, due to the contact problem, so the initial values need to be corrected. 

The corrected load-shortening curves, from which the deformation of the steel 

plates has been excluded, are shown in Figure 7.9.  

 

It can be found from Figure 7.9 that those specimens tested at a larger eccentricity 

had a lower initial stiffness, although all of them had the same cross section. The 

reason is that the shortenings recorded by the machine include all deformation 

between the two loading points, so both the axial shortening and the flexural 

deformation of the specimen are included. The flexural component of deformation 

is larger for a specimen tested at a larger eccentricity. It can also be found from 

Figure 7.9 that all these specimens showed good ductility (the axial shortening 

reached about 1% of the height).  

 

The two specimens (E-1-18-I, II) tested at the same designed eccentricity of 18 

mm failed at quite different loads (709.31 kN and 588.79 kN). For clarification, 

the two specimens after test were carefully examined (Figure 7.10). It was noted 
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that the failure, involving the rupture of FRP on the compression side and tensile 

cracking of concrete on the tension side, took place near the mid-height of 

specimen E-1-18-II but near the upper quarter of specimen E-1-18-I (see also 

Table 7.2). It was also noted that there was large local deformation near the failure 

region due to the development of wide tensile cracks and the crushing of concrete 

under compression. It is explained in Subsection 7.2.4 that the actual eccentricity 

varied along the height of the specimen and deviated from the initial value as the 

load increased. The local deformation occurring near the failure region 

exacerbated the amplification of eccentricity. Consequently, the actual bending 

moment at the same load level varied along the height of the specimen and this 

variation may be different even for two identical specimens under compression at 

the same initial eccentricity. A section loaded at a larger actual eccentricity 

experiences a larger bending moment at the same axial load. It was found after 

tests that the lateral deflections recorded by LVDT 3 (Figure 7.4) was 

considerably larger for specimen E-1-18-I than for specimen E-I-18-II, indicating 

a larger actual eccentricity at the mid-height section of specimen E-1-18-I. As a 

result, the actual bending moment at the mid-height section corresponding to the 

peak load, which was calculated using the actual eccentricity, was found to be 

similar for the two specimens (13.9 kNm for specimen E-1-18-II and 13.2 kNm 

for specimen E-1-18-I), although their peak loads were quite different. In addition, 

it should be noted that the maximum bending moment along the height of 

specimen E-1-18-I took place near the upper quarter (the failure region) and was 
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higher than the value given above for the mid-height section. The exact value of 

this maximum bending moment is not available as the actual eccentricity for the 

upper quarter region was not measured. The discussions above explain why 

specimen E-1-18-I had a lower ultimate axial load. 

 

7.2.5.4 Hoop strain-axial strain behavior 

As mentioned earlier (Subsection 7.2.4), all the DSTC specimens tested under 

eccentric compression failed by the hoop rupture of FRP on the compression side. 

The relationship between hoop strain and axial strain is thus important to 

determine the ultimate axial strain and ductility of such specimens. Figure 7.11 

shows the hoop strain-axial strain curves of selected specimens loaded at different 

eccentricities, in which the strain values were recorded by strain rosette SG5 

(Figure 7.3) at the extreme compressive fiber for the two eccentric compression 

specimens. For specimen E-1-00-I which was loaded under concentric 

compression, the axial strain values were averaged from the readings of eight 

strain rosettes (SGs 1-8 in Figure 7.3) and the hoop strain values were averaged 

from the readings of the five strain rosettes (SGs 3-7) outside the overlapping 

zone. It can be seen from Figure 7.11 that the in the initial stage, the curves of the 

eccentric compression specimens (i.e. specimens E-1-09-I and E-1-18-II) 

basically follow that of the concentric compression specimen (i.e. specimen 

E-1-00-I). With further increases in the axial strain, however, the hoop strains of 

specimens E-1-09-I and E-1-18-II become smaller than those of specimen 
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E-1-00-I. This could be explained by the following: (1) the strains of specimens 

under eccentric compression may include the effect of local damage which 

enlarged the strain values, while those of specimen E-1-00-I were average values 

over the section and basically without the influence of significant local damage; (2) 

the strain states in eccentric compression specimens were much more non-uniform 

(Figure 7.6). It can be expected that within an eccentric compression section, the 

concrete subjected to a larger axial strain tends to expand more significantly, 

while the remaining concrete subjected to smaller axial deformation does not have 

the same expansion. Therefore, part of the expansion on the extreme compression 

side is re-distributed to the rest of the section and the hoop strain recorded on the 

FRP outer tube is less. The higher hoop strain-axial strain curves of specimens 

under eccentric compression (Figure 7.11) consequently lead to a larger axial 

strain at the ultimate state for these specimens.       

 

7.3 THEORETICAL ANALYSIS 

7.3.1 Analysis Model 

A traditional section analysis of the so-called fiber element approach was 

developed for the specimens under eccentric compression based on the plane 

section assumption. As explained in Subsection 7.2.5.1, the experimental axial 

strain distribution follows approximately the plane section assumption, except for 

some of the strains measured on the steel tubes (e.g. Figure 7.6(d)). Deviations of 
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strain values from the plane section assumption were found to be due to the 

localization of plastic deformation and occurred after the yielding of the steel tube 

when the stress level did not change significantly with the strain. Therefore, it can 

be expected that the plane section assumption can still be used for the prediction 

of the beam-column behavior and any errors are expected to be small. The 

analytical procedure is similar to that presented in Chapter 6 for flexural analysis. 

It involves the determination of the position of the neural axis for a given strain of 

the extreme compression fiber by force equilibrium and the evaluation of the axial 

load and the bending moment by integrating the contributions of stresses over the 

section. 

 

The stress-strain behavior of the steel tubes was modeled based on their tensile 

test results. An elastic-perfectly plastic stress-strain curve was adopted with the 

elastic modulus and the yield stress given in Subsection 7.2.2, as strain hardening 

took place at a relatively large axial strain exceeding those recorded on the steel 

tubes in the eccentric compression tests. 

 

The concrete was assumed to possess the same initial elastic modulus in both 

tension and compression. Tensile cracking was assumed to occur at a tensile strain 

of 130µε  based on the beam tests presented in Chapter 6 (e.g. Figure 6.8(b)), 

and the concrete was assumed to resist no tensile stresses after cracking.  
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It has been concluded in Chapter 6 that the effectiveness of FRP confinement of 

concrete is reduced in beam specimens compared to column specimens due to the 

existence of a strain gradient over the beam section. It can thus be expected that 

the confining effect in a beam-column specimen lies between those in a beam 

specimen and in a column specimen. Mirmiran et al. (1999) suggested that the 

slope of the second linear part of the stress-strain curve, i.e. cE2 , of FRP-confined 

concrete should be a function of the axial load level for beam-column specimens. 

Fam et al. (2003) believed that the stress-strain curve of FRP-confined concrete in 

beam-column specimens is dependent on the eccentricity of the applied load, and 

lies between that for column specimens and the unconfined concrete stress-strain 

curve. Fam et al. (2003) proposed concrete stress-strain curves which take into 

account the effect of strain gradient on the effectiveness of confinement. However, 

it has been shown in Chapter 6 that the direct use of the unconfined concrete 

stress-strain curve leads to unreasonable predictions of the test results of hybrid 

double-skin beams (Figures 6.12(a) and (b)). In Chapter 6, an approximately 

elastic-perfectly plastic compressive stress-strain curve was proposed for concrete 

in beam specimens regardless of the thickness of the FRP outer tube. The analysis 

model with such a concrete stress-strain curve has also been shown to provide 

reasonably accurate predictions of the test results of hybrid double-skin beams. As 

mentioned in Chapter 6, the only difference between the stress-strain curve for 

concrete in beam specimens and that produced from the design equations given in 

Chapter 5 for column specimens lies in the cE2  value. The cE2  value for 



 276

concrete in column specimens is dependent on the FRP jacket stiffness, while that 

for concrete in beam specimens is always equal to zero. Therefore, the following 

equations are proposed for the compressive stress-strain relationship of concrete 

in beam-column specimens, with a slope of the linear second portion which lies 

between that for column specimens and that for beam specimens and is denoted 

by ecE2 . In these equations, the effect of confinement on the concrete is related to 

the eccentricity of the applied load in a manner similar to that proposed by Fam et 

al. (2003).  
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where ecE2  is the slope of the linear second portion of the stress-strain curve and 

is determined by  
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where cE2  is from the design-oriented stress-strain model presented in Chapter 5 

(Eqns 2.12-2.15, 2.20, 5.22); oD  is the outer diameter of the specimens and e  

is the eccentricity of loading. For the case of concentric compression, e =0 and 

cec EE 22 = ; for the case of pure bending, ∞=e and 02 =ecE .  
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As discussed in Subsection 7.2.5.2, the concrete cylinder strength from standard 

solid cylinder specimens tends to overestimate the strength of concrete in hybrid 

DSTCs. On the contrary, the design-oriented stress-strain model with a lower (by 

about 8%) concrete strength (45.8 MPa) can provide good predictions of the 

behavior of specimens under concentric compression. Consequently, this 

unconfined concrete strength value (45.8 MPa) was adopted in the present section 

analysis. For each specimen, the longitudinal strain of the extreme compression 

fiber at the mid-height of the FRP tube at the end of the test was taken as the 

ultimate point of the stress-strain curve of its confined concrete. This experimental 

value of ultimate axial strain was higher than that of the corresponding column 

specimen, as explained in Subsection 7.2.5.4. Due to this reason, the ultimate 

axial strain from the design-oriented stress-strain model presented in Chapter 5 

was not directly used herein.  

 

7.3.2 Comparison with Test Results 

Figure 7.12 shows the comparisons of the predicted and experimental load-strain 

curves for all four specimens under eccentric compression. The strain values 

shown are those of the extreme compressive fiber at the mid-height (i.e. readings 

of SG5 in Figure 7.3).  
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It is evident from Figure 7.12 that the theoretical predictions agree well with the 

test results for all specimens except specimen E-1-18-I. The considerably lower 

load capacity of specimen E-1-18-I is believed to be due to a localized major 

tensile crack in the upper quarter region of the specimen, as discussed in 

Subsection 7.2.5. For the other three specimens, although the theoretical analysis 

provides reasonably good predictions of the ultimate loads, it cannot predict the 

descending branch of the experimental curves. This may be attributed to the fact 

that the section analysis was conducted assuming a constant load eccentricity, and 

the effect of lateral deflection on eccentricity (i.e. second order effect) was 

ignored.   

 

7.3.3 Interaction Diagram 

The eccentricities of loading examined in the experimental program cover only a 

narrow range (from 6% to 12% of the outer diameter of the specimen). Section 

analyses were thus conducted to cover the full range, with the eccentricity of 

loading ranging from zero (concentric compression) to infinity (pure bending). 

The same section configuration and material properties as the test specimens were 

employed in these section analyses. The ultimate concrete strain was found from 

the design-oriented stress-strain model presented in Chapter 5 in all section 

analyses presented in this and the next subsection. It is shown in Subsection 

7.2.5.4 that the ultimate axial strain of concrete in specimens under eccentric 
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compression is generally higher than that in specimens under concentric 

compression (Figure 7.11). However, it is believed that this assumption for the 

ultimate strain has only a small effect on the ultimate load of specimens under 

eccentric compression, as the stress-strain curve of concrete in hybrid DSTCs has 

a small slope in the second region (e.g. Figure 7.8).  

 

The results from these section analyses and those from the experiments are shown 

in Figure 7.13. The vertical axis of Figure 7.13 represents the ultimate load while 

the horizontal axis represents the ultimate moment. Figure 7.13 is commonly 

known as an interaction diagram. It is a representation of all combinations of axial 

load and moment for a given column cross-section. In Figure 7.13, any point on 

the solid line represents the ultimate limit for a specific combination of axial load 

and moment; straight lines from the origin represent various eccentricities. It can 

be found that the shape of this interaction diagram is similar to that of a traditional 

reinforced concrete column (e.g. Spiegel and Limbrunner 2003). It can also be 

seen from Figure 7.13 that the few experimental results lie close to the predicted 

interaction diagram.   
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7.3.4 Parametric Study  

A parametric study was conducted using the developed section analysis to 

investigate the effect of confinement stiffness and void ratio on the beam-column 

behavior of hybrid DSTCs.  

 

The first series of analyses was concerned with DSTC specimens which had the 

same section configuration, unconfined concrete properties and steel tube as the 

test specimens but had a stronger FRP jacket with the confinement stiffness being 

500 MPa. The load eccentricity in this series of analyses ranged from zero 

(concentric compression) to infinity (pure bending). Figure 7.14 shows a 

comparison of two interaction diagrams. It can be seen that when the load 

eccentricity is not large, the ultimate load and moment are significantly increased 

with an increase in the confinement stiffness of the FRP outer tube. For a larger 

load eccentricity, however, this moment capacity increase becomes increasingly 

smaller until it disappears when the specimen is under pure flexure. This is a 

natural result of the stress-strain curve for concrete adopted in the theoretical 

analysis.  

 

The DSTC specimens examined in the second series of analyses had the same 

outer diameter, unconfined concrete properties and FRP outer tube as the test 

specimens but had a larger void ratio of 0.75. The steel tubes in these specimens 
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had the same cross-section area and stress-strain relationship as those in the test 

specimens. Figure 7.15 shows a comparison of the interaction diagram between 

this series of analyses and the test specimens. It can be found that a specimen with 

a larger void ratio has a smaller load capacity when subjected to concentric 

compression but has a larger moment capacity when subjected to pure flexure. 

This is easy to understand as a specimen with a larger void ratio has the same steel 

area as but a smaller concrete area than that with a small void ratio. On the other 

hand, the steel tube is located farther from the center in a specimen with a larger 

void ratio. 

 

7.4 CONCLUSIONS AND DESIGN RECOMMENDATIONS 

This chapter has presented and interpreted the results of a series of eccentric 

compression tests on hybrid double-skin tubular columns (DSTCs). A simple 

theoretical model based on the plane section assumption and the fiber element 

approach was also developed and employed to predict the responses of the test 

columns and to conduct a parametric study. Based on the results from the 

experiments and those from the theoretical analysis, the following conclusions can 

be drawn. 

 

(1) Hybrid DSTCs possess a very ductile response when loaded under combined 

flexure and axial compression.  
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(2) A load eccentricity leads to a significant reduction in the axial load capacity of 

DSTCs. 

(3) The strain distribution over the section generally conforms to the plane section 

assumption. Deviations from this assumption may occur for the strains on the 

steel tube after the yielding of steel and for those within the tensile region after 

the cracking of concrete.  

(4) The shape of interaction diagrams of hybrid DSTCs is similar to that of 

traditional reinforced concrete (RC) columns.  

(5) The effect of FRP confinement on the concrete in beam specimens is less 

significant than that in column specimens, while that in beam-column 

specimens lies in between.  

(6) In DSTCs with a larger void ratio, the steel tube is positioned farther from the 

center, leading to a more efficient use of the steel tube in resisting bending. 

 

The predictions from the theoretical model are in close agreement with the test 

results. This section analysis method is thus recommended for design use. The 

simple concrete stress-strain curve represented by Eqns 7.1-7.4 takes into account 

both the effects of confinement stiffness and strain gradient, and is also 

recommended for design use. As evident from Figure 7.11, the ultimate axial 

strain of a corresponding column may be used directly in such section analyses, as 

it leads to conservational predictions for beams and beam-columns. This ultimate 

strain value, which can be found from the design-oriented stress-strain model 



 283

presented in Chapter 5, is recommended for design use. Figure 7.16 provides a 

summary of the stress-strain model recommended for use in the design of columns, 

beam-columns and beams.  
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Table 7.1 Details of test specimens 

Specimen 
FRP 
Tube 

Concrete 
cylinder 
strength 
(MPa) 

Diameter 
(thickness) 

of steel 
tube (mm)

Eccentricity 
(mm) 

Axial load 
capacity 

(kN) 

E-1-00-I 955.4 
E-1-00-II 

0 
980.7 

E-1-09-I 868.5 
E-1-09-II 

9 
839.0 

E-1-18-I 588.8 
E-1-18-II 

1 Ply 49.7 76(3.7) 

18 
709.3 

 

Table 7.2 Locations of tensile cracks and FRP rupture 

 

 

 

 

 

 

Specimen 
x1 
(mm)

Length of the 
tensile cracks 

(mm) 

x2 
(mm)

Width of the 
FRP rupture 
zone (mm) 

E-1-09-I 205 130 170 105 
205 100 

E-1-09-II 
255 150 

185 100 

80 100 
145 120 E-1-18-I 
190 170 

140 85 

E-1-18-II 230 130 220 130 

Tension  
side 

Compression  
side 

x1 x2 

FRP 
rupture 

Tensile cracks 
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Figure 7.1 Form for casting concrete 

 

 

Figure 7.2 Buckling of hollow steel tube 
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Figure 7.3 Layout of strain gauges 

 

Figure 7.4 Set-up for eccentric compression tests 

Specimen
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(a) Schematic diagram 
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(b) Test photo 

Figure 7.4 Set-up for eccentric compression tests (Cont’d) 
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(a) Overview 

 

 

 

 

 

 

(b) Compression side 

Figure 7.5 Specimens after test 

E-1-18-II E-1-09-I E-1-00-I 
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(c) Cracks on tension side 

Figure 7.5 Specimens after test (Cont’d) 
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 (a) Specimen E-1-09-I 
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 (b) Specimen E-1-09-II 
Figure 7.6 Axial strain distributions of specimens under eccentric compression  
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(c) Specimen E-1-18-I 
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 (d) Specimen E-1-18-II 

Figure 7.6 Axial strain distributions of specimens under eccentric 
compression(Cont’d)
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(a) Specimen E-1-09-I 
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(b) Specimen E-1-09-II 

Figure 7.7 Comparisons between measured axial strains at extreme tensile and 
compressive fibers 
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Figure 7.8 Axial stress-strain curves of concrete 
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Figure 7.9 Experimental axial load-shortening curves of hybrid DSTCs 
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 (a) Compression side 

 

 

 

 

 

 

(b) Tension side 

Figure 7.10 Comparison between specimens E-1-18-I and II 
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Figure 7.11 Hoop strain-axial strain curves 
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(a) Loading eccentricity = 9 mm 
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(b) Loading eccentricity = 18 mm 

Figure 7.12 Comparisons between experimental and theoretical results 
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Figure 7.13 Column interaction diagram 
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Figure 7.14 Effect of confinement stiffness 
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Figure 7.15 Effect of void ratio 

 

 

 

 

 

 

 

 

 

Figure 7.16 Design stress-strain curve for concrete in hybrid DSTCs 
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CHAPTER 8 

CONCLUSIONS 

 

8.1 INTRODUCTION 

This thesis has presented a study into the structural behavior and modeling of a 

new form of hybrid structural members, namely hybrid FRP-concrete-steel 

double-skin tubular columns (DSTCs). The new hybrid column consists of an 

outer tube made of fiber-reinforced polymer (FRP) and an inner tube made of 

steel, with the space between filled with concrete. In this new hybrid column, the 

three constituent materials are optimally combined to achieve several advantages 

over existing columns. These advantages include good ductility, corrosion 

resistance and ease for construction. In addition, fire protection is not needed as 

the FRP outer tube is sacrificial during a fire. 

 

A large amount of experimental work has been presented in this thesis, involving 

laboratory tests of hybrid DSTCs under axial compression, bending and eccentric 

compression to study the compressive, flexural and beam-column behavior of the 

new hybrid column. In addition to axial compression tests on short hybrid DSTCs, 

tests on stub columns of circular solid and annular concrete sections confined with 
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an FRP outer tube have also been presented, to gain a better understanding of how 

the three components in a hybrid DSTC interact under axial compression. These 

test results provided not only the first insight into the structural behavior of hybrid 

DSTCs but also the means for verifying theoretical models. 

 

Apart from the experimental study, finite element (FE) analysis of hybrid DTSCs 

under axial compression has also been presented. As a basis for the FE mode, an 

assessment of existing Drucker-Prager (D-P) type concrete plasticity models for 

confined concrete was first presented. A constitutive model for concrete which 

takes into account the conclusions drawn from this assessment and other distinct 

characteristics of non-uniformly confined concrete was proposed and verified 

with test results. A parametric study by the FE model incorporating this 

constitutive model was then presented, from which a simple one-dimensional 

stress-strain model for the concrete in hybrid DSTCs for design use was 

formulated. 

 

Making use of the proposed one-dimensional stress-strain model of concrete, a 

simple theoretical method based on section analysis has also been developed for 

hybrid DSTCs under flexure or combined axial compression and flexure, and 

verified with test results.  
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8.2 AXIAL COMPRESSIVE BEHAVIOR  

The advantages of this new structural form are most obvious when used as a 

column, for which the axial compressive behavior is the main structural aspect to 

be understood. Chapter 3 presented a systematic experimental study on the 

compressive behavior of these hybrid members. In addition, compressive tests on 

specimens of other similar section forms were also presented in Chapter 3 for 

comparison, in order to reach a better understanding of the structural behavior and 

confining mechanism of this new hybrid member. The column forms examined 

include FRP-confined solid cylinders (FCSCs) which consist of a circular solid 

concrete column confined with FRP, and FRP-confined hollow cylinders (FCHCs) 

in which a circular concrete column with a circular inner void is confined with 

FRP. The main parameters examined included the section configuration, the void 

ratio, the diameter-to-thickness ratio of the steel inner tube, and the thickness of 

the FRP outer tube. Based on the test results and discussions, the following 

conclusions were drawn: 

 

(1) The concrete in hybrid DSTCs is very effectively confined by the two tubes, 

and local buckling of the steel inner tube is either delayed or suppressed by the 

surrounding concrete, leading to a very ductile response. The axial 

load-shortening behavior of hybrid DSTCs is very similar to FCSCs, which 
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exhibits an approximately bilinear shape when the confinement of the FRP 

outer tube exceeds a certain threshold value. 

(2) DSTCs are superior to FCHCs in both the general behavior and the 

effectiveness of confinement of concrete. The steel inner tube plays an 

important role by preventing the concrete near the inner surface from inward 

spalling.  

(3) The behavior of FCHCs, including their stress-strain curves, deformation 

properties and failure mechanisms, depends significantly on the void ratio. 

Specimens with a small void ratio exhibits similar behavior to that of the 

FCSC and DSTC specimens while the failure mechanism of specimens with a 

relatively large void ratio may be the inward spalling of concrete instead of 

the rupture of the FRP outer tube. 

(4) The behavior of concrete in hybrid DSTCs is generally similar to that in 

FCSCs provided the void ratio and the diameter-to-thickness ratio of the steel 

inner tube are within a reasonable range. 

(5) The behavior of concrete in FCSCs and DSTCs, including the stress-strain 

behavior and the ultimate strength and strain, depends significantly on the 

confinement stiffness of the FRP outer tube. The FCSCs or DSTCs with a 

stronger FRP outer tube possess a larger ultimate strength and strain, and a 

stress-strain curve with a larger slope of the second linear part. By contrast, 

the confinement stiffness of the FRP outer tube has a smaller significant effect 

on the behavior of concrete in FCHCs, especially when the void ratio is large. 
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When the void ratio is sufficiently large, the confining effect on the concrete 

in FCHCs may even become negligible.  

(6) The behavior of concrete in hybrid DSTCs, although in general similar to that 

in FCSCs, depends significantly on the void ratio. The concrete in hybrid 

DSTCs with a larger void ratio appears to possess a larger ultimate axial strain, 

and a stress-strain curve with a smaller slope of the second linear part.  

 

8.3 FLEXURAL BEHAVIOR  

As columns are normally subjected to combined axial and lateral loads, the 

flexural behavior is important within the overall picture of the beam-column 

behavior of the new form of hybrid members. Furthermore, such hybrid sections 

with an eccentric inner steel tube are particularly suitable for use in beams, for 

which the flexural behavior is the main structural aspect to be understood. Chapter 

6 presented a systematic experimental study on the flexural behavior of the new 

form of hybrid members. The main parameters examined in this study included 

the section configuration and the thicknesses of the steel inner tube and the FRP 

outer tube. The following conclusions were drawn based on the test results and 

discussions: 
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(1) Hybrid DSTCs possess a very ductile response under pure flexure. The FRP 

tube confines the concrete and provides additional shear resistance. The steel 

tube provides ductile longitudinal reinforcement. 

(2) A DSTC with an eccentric steel tube benefits more significantly from the FRP 

outer tube than a corresponding DSTC with a concentric steel tube, as in the 

former, a larger amount of concrete is in the compression zone. 

(3) Significant slips between the concrete and the two tubes, particularly the steel 

tube, and associated load fluctuations may occur. Improvements to the bond 

resistance at both interfaces are desirable. 

(4) The flexural response of a DSTC, including the flexural stiffness, ultimate 

load and cracking, can be substantially improved by shifting the inner steel 

tube towards the tension region or providing FRP bars as additional 

longitudinal reinforcement. 

(5) The effect of FRP confinement on concrete in beam specimens is less 

significant than that in column specimens of identical sections, because of the 

existence of a strain gradient and a relatively small concrete compression 

zone. 

 

8.4 BEAM-COLUMN BEHAVIOR  

The beam-column behavior is the main aspect of concern when columns are 

subjected to combined axial and lateral loads. Chapter 7 presented and interpreted 
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the results of a series of eccentric compression tests on hybrid DSTCs. The 

following conclusions were drawn from the test results and discussions: 

 

(1) Hybrid DSTCs possess a very ductile response when loaded under combined 

flexure and axial compression.  

(2) A load eccentricity leads to a significant reduction in the axial load capacity of 

DSTCs. 

(3) The strain distribution over the section generally conforms to the plane section 

assumption. Deviations from this assumption may occur for the strains on the 

steel tube after the yielding of steel and for those within the tensile region after 

the cracking of concrete.  

(4) The shape of interaction diagrams of hybrid DSTCs is similar to that of 

traditional reinforced concrete (RC) columns.  

(5) The effect of FRP confinement on the concrete in beam specimens is less 

significant than that in column specimens, while that in beam-column 

specimens lies in between.  

(6) In DSTCs with a larger void ratio, the steel tube is positioned farther from the 

center, leading to a more efficient use of the steel tube in resisting bending. 
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8.5 THEORETICAL MODELING  

As the proposed hybrid section has three components, it is important to 

understand the interaction between them, based on which a reasonable method of 

prediction may then be developed. In addition, the stress state of a hybrid DSTC 

section is highly non-uniform. In order to predict the stress variation over the 

annular section and the interaction between the different components, a 

three-dimensional finite element (FE) model was presented in Chapter 5 for 

hybrid DSTCs under concentric axial compression. As a basis for the FE 

modeling of hybrid DSTCs, existing Drucker-Prager (D-P) type concrete 

plasticity models for confined concrete were first assessed in Chapter 4.  

 

Based on the assessment presented in Chapter 4, it was concluded that a plasticity 

model can be expected to give reasonably accurate prediction of test results only if 

the following conditions are met: (a) a hardening rule and a flow rule that are both 

confinement-dependent, and (b) a pressure-dependent yield criterion which 

includes the effect of the third deviatoric stress invariant. A 

confinement-dependent hardening rule is necessary to reflect the difference in the 

experimental stress-strain curve between confined concrete and unconfined 

concrete, as the axial stress-strain curve of confined concrete has a more gradual 

descending branch than that of unconfined concrete. A confinement-dependent 

flow rule, in which the dilation angle is related not only to the confining pressure 
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but also to the rate of confining pressure increment, is required to capture the 

unique lateral expansion behavior of passively-confined concrete. A 

pressure-dependent yield criterion is necessary to simulate the experimental 

observation that the shear strength of concrete increases with increases in the 

hydrostatic pressure. The inclusion of the third deviatoric stress invariant in the 

yield criterion is necessary to reflect the shear strength difference between 

concrete under biaxial compression and that under triaxial compression. In 

Chapter 4, it was also shown that a D-P type plasticity model with all the above 

modifications, in which the material parameters were produced based on Teng et 

al.’s (2006a) analysis-oriented model, led to reasonably close predictions for 

confined concrete of different types.  

 

Despite the modifications explained above, a concrete plasticity model still suffers 

from a number of problems, including the inability to model the stiffness 

degradation of concrete and the possible numerical difficulty when modeling the 

softening behavior of concrete. The introduction of a damage variable to account 

for stiffness degradation in a plasticity model can overcome these problems. A 

modified plastic-damage model within the theoretical framework of the Concrete 

Damaged Plasticity Model (CDPM) in ABAQUS was thus proposed in Chapter 5. 

In this plastic-damage model, the conclusions drawn in Chapter 4 for concrete 

plasticity models were taken into account, together with the distinct deformation 

characteristics of non-uniformly confined concrete. With this plastic-damage 
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model, FE models were developed and verified with test results of concrete under 

active confinement and passive confinement, and those of hybrid DSTCs obtained 

in the present project. Using the verified FE models, a parametric study was then 

conducted to further investigate the behavior of hybrid DSTCs, including the 

interaction between the three components (i.e. FRP outer tube, concrete and steel 

outer tube) and the effect of several parameters, such as the confinement stiffness 

and rupture strain of the FRP outer tube, the void ratio and the Ds/ts ratio of the 

steel inner tube. The parametric study showed that although the void ratio does 

not significantly affect the compressive strength of concrete in hybrid DSTCs, it 

has a considerable effect on the ultimate axial strain. A simple one-dimensional 

stress-strain model for the concrete in hybrid DSTCs was also formulated for 

design use, based on this parametric study.  

 

Sectional analysis method has also been developed for the prediction of flexural 

and beam-column behavior of hybrid DSTCs, based on the so-called fiber element 

approach. The analytical procedure involves the determination of the position of 

the neural axis for a given strain of the extreme compression fiber by force 

equilibrium and the evaluation of the bending moment by integrating the 

contributions of stresses over the section. It is known that the key point 

determining the success of such sectional analysis of a hybrid structural member 

is the stress-strain model adopted for each constituent material. A simple 

stress-strain model was presented in Chapter 5 for the confined concrete in hybrid 
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DSTCs under pure axial compression. It was however found from the bending 

tests presented in Chapter 6 that the confinement is less effective when hybrid 

DSTCs are under bending, mainly due to the strain gradient over the section. This 

finding is similar to that observed for the concrete in concrete-filled FRP tubes 

(CFFTs) by previous researchers. Therefore, the so-called “variable confinement 

model” was adopted for the concrete in hybrid DSTCs. In this variable 

confinement model, the effect of strain gradient on the confinement effectiveness 

is included by relating the slope of second linear portion of the concrete 

stress-strain curve (i.e. E2c for columns or E2ec for beam-columns) to the 

eccentricity of loading. For columns in which the load eccentricity is equal to zero, 

the E2c value calculated from the stress-strain model presented in Chapter 5 can be 

directly adopted, producing the upper bound of the variable confinement model. 

For beams in which the load eccentricity is infinite, the E2ec value is assumed to 

be zero, producing the lower bound of the variable confinement model. With this 

variable confinement model, the section analysis method was verified with test 

results presented in Chapters 6 and 7 and adopted to conduct a parametric study.  

 

8.6 FURTHER RESEARCH 

This thesis has primarily been concerned with the static structural behavior of 

hybrid FRP-concrete-steel double-skin tubular columns and the theoretical 

modeling of this behavior. This research has led to a good understanding of the 
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structural behavior of this hybrid structural member, including the compressive, 

flexural and beam-column behavior. A finite element model has been developed 

for the compressive behavior, and a section analysis method has been developed 

for the flexural and beam-column behavior of hybrid DSTCs. Both modeling 

methods have been verified with test results. The results presented in this thesis 

represent a major step forward on the road towards the practical application of this 

new form of structural members and facilitate further research on the following 

issues.  

 

Experiments on hybrid DSTCs have so far been limited to small scale specimens. 

Differences in behavior may exist between these small scale specimens and 

full-scale specimens in real construction. Testing of large or full-scale specimens 

should be carried out in the future. The section analysis method proposed in this 

thesis has been verified with results from bending tests and eccentric compressive 

tests with small load eccentricities. Its applicability in modeling hybrid DSTCs 

under compression with large load eccentricities is yet to be verified. The effect of 

column slenderness should also be examined. The long-term behavior of hybrid 

DSTCs is another important issue. For example, the long-term durability of the 

FRP outer tube and the column as a whole should be investigated. Finally, the 

seismic response of hybrid DSTCs needs to be studied.  
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The present research has identified attributes which are necessary for a plasticity 

model to yield reasonably close predictions for confined concrete and led to a 

modified constitutive model for concrete. FE analyses of confined concrete using 

the proposed constitutive model were also conducted. Despite the close agreement 

between the FE and the test results, it is important to note that while the proposed 

constitutive model has a rigorous basis for uniformly confined concrete (confined 

concrete in solid circular sections), it has to rely on assumptions derived from 

empirical evidence for confined concrete in non-circular sections. While this 

approach represents a significant improvement to existing modeling approaches 

for FRP-confined concrete in non-circular sections as discussed in Chapter 5, 

further research is still needed to verify the proposed approach more fully or to 

develop a more rigorous treatment. 

 

Apart from further research, the practical application of this new form of 

structural members should be actively sought. The present research has provided 

an adequate technical basis for the design of real hybrid DSTCs, while the 

long-term health of the structural member can be monitored with modern 

technology. During practical applications, reliable construction details such as 

connections between hybrid DSTCs and beams and footings should also be 

developed.  
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