






Abstract

The main purpose of this thesis is to study penalty approaches to American option

pricing problems. We consider penalty approaches to pricing plain American options,

American options with jump diffusion processes and two-asset American options. Con-

vergence properties of these methods are investigated. Also, the numerical schemes –

finite element method and fitted finite volume method – for solving the penalized PDE

are developed. Finally, an augmented Lagrangian method is applied to solving the plain

American option pricing. Empirical tests are carried out to illustrate the effectiveness

and usefulness of our methods.

For plain American option pricing, based on the theory of variational inequalities, a

monotonic penalty approach is developed and its convergence properties are established

in some appropriate infinite dimensional spaces. We derive the convergence rate of the

combination of two power penalty functions. This convergence rate gives a unified result

on that of higher and lower order penalty functions. After that, a fitted finite volume

method is applied to finding the numerical solution of the penalized nonlinear PDE.

We then test this method empirically, and compare it with projected successive over

relaxation method (PSOR for short). We conclude that the monotonic penalty method

is roughly comparable with the PSOR method, but is more desirable for its robustness

under changes in market parameters, and furthermore the effect of the time reserving of

the monotonic penalty method becomes significantly enhanced as the number of space

steps increases.

Pricing American options with jump diffusion processes can be formulated as a

partial integro-differential complementarity problem. We propose a power penalty ap-

proach for solving this complementarity problem. The convergence analysis of this

method is established in some appropriate infinite dimensional spaces. Then, using the
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finite element method, we propose a numerical scheme to solve the penalized problem

and carry out the numerical tests to illustrate the efficiency of our method.

The two-asset American option pricing problem is formulated as a continuous com-

plementarity problem involving a two dimensional Black-Scholes operator. By using

a power penalty method, the two-asset American option model is reformulated as a

two dimensional nonlinear parabolic PDE. By introducing a weighted Sobolev space

and the corresponding norm, the coerciveness and continuity of the bilinear operator in

the variational problem are derived. Hence, the unique solvability of the original and

penalized problems is established. The convergence rate of the power penalty method

is obtained in some appropriate infinite dimensional spaces. Moreover, to overcome the

computational difficulty of the convection-dominated Black-Scholes operator, a novel

fitted finite volume method is proposed to solve the penalized nonlinear two dimen-

sional PDE. We perform numerical tests empirically to illustrate the efficiency of our

new method.

Finally, based on the fitted finite volume discretization, an algorithm is developed

by applying an augmented Lagrangian method (ALM for short) to pricing the plain

American option. Convergence properties of ALM are considered. By empirical nu-

merical experiments, we conclude that ALM is more effective than penalty method and

Lagrangian method, and comparable with the PSOR method. Furthermore, numerical

results show that ALM is more robust in terms of computation time under the changes

in market parameters: interest rate and volatility.
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Chapter 1

Introduction

1.1 Financial Models

A derivative security is a financial asset whose payoff depends on the value of some

underlying variable. The underlying variable can be traded asset, such as a stock; an

index portfolio; a future’s price; a currency; or some location or the volatility of an

index. The payoff can involve various patterns of cash flows. Payments can be spread

evenly through time, occur at specific dates, or a combination of the two. Derivatives

are also referred to as contingent claims.

An option is a derivative security that gives the right to buy or sell the underlying

asset, on or before some maturity date T , for a prespecified price K, called the striking

price or exercise price. A call (put) option is a right to buy (sell). Because exercise is a

right and not an obligation, the exercise payoff is V ∗ = max{S−K, 0} for a call option

and V ∗ = max{K −S, 0} for a put option, where S denotes the price of the underlying

asset. Option can be European style, which can only be exercised at the maturity date,

or American style, where exercise is at the discretion of the holder, at any time before

or at the maturity date.

Plain options, such as those described above, were introduced on organized op-

tion exchanges such as the Chicago Board of Option Exchange (CBOE), which was

established in 1973. Since then, different types of options have led to the creation
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of numerous products designed to fill the needs of various types of investors. Path-

dependent options, such as barrier options, Asian options, and lookbacks are examples

of contractual forms that have emerged since and are now routinely traded in markets

or quoted by financial institutions, or both. Even more exotic types of contracts, whose

payoffs depend on multiple underlying assets or on occupation times of predetermined

regions, have emerged in recent years. Because options are highly complex financial

instruments, pricing option correctly is crucial in financial management. The option

pricing problem is both computationally challenging as well as practically significant.

It has attracted great interests amongst researchers, since the publication of the pioneer

work by Black and Scholes [10] and Merton [92].

1.1.1 Pricing American Vanilla Option

In 1973, one of the most important insights of the seminal papers by Black and Scholes

[10] was to show how to derive an analytic formula to pricing options, which is based on

the no-arbitrage valuation theory. The significance of the Black-Scholes option pricing

model and its extensions are far beyond the theoretical framework. They have been

widely used by practitioners to price a variety of options. The basic Black-Scholes

analysis starts from the premise that the underlying asset price S follows a geometric

Brownian motion process
dS

S
= µdt + σdW, (1.1.1)

where µ and σ are constants, which represent the expected (total) return on the asset,

and the return volatility, respectively. The process W is a standard Brownian motion

that captures the underlying uncertainty in the market. Trading in this asset is assumed

to be unrestricted, i.e., no taxes, transactions costs, constraints, or other frictions.

Likewise, investors can invest without restrictions, at the constant risk-free rate r. By

using Ito’s lemma [64, 7] and riskless hedging principle [82, 17], it can be shown that the

European vanilla option price V (S, t) is governed by the famous Black-Scholes equation

−∂V
∂t

− 1

2
σ2S2∂

2V

∂S2
− rS

∂V

∂S
+ rV = 0 (1.1.2)
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on the domain R+ × [0, T ), along with the boundary and terminal conditions

V (S, T ) = V ∗(S),

V (0, t) = V ∗(0)e−r(T−t),

lim
S→∞

V (S, t) = V ∗(∞)e−r(T−t).

Explicit formulas for the fair price of European vanilla options are available in the

literature, see, for example, [85]. As mentioned above, American vanilla options differ

from European agreements in that they can be exercised at any time up to and including

the expiry date of the contract. Most exchange-traded options are American-style, and

they potentially have a higher value than European-style due to the extra early exercise

feature. In [127, 126], the American vanilla option price V is formulated as the solution

of a complementarity problem as follows.





LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

(1.1.3)

where L represents the Black-Scholes operator. For plain American vanilla options,

LV = −∂V
∂t

− 1

2
σ2S2∂

2V

∂S2
− rS

∂V

∂S
+ rV.

Terminal and boundary conditions need to be specified for a particular option just

as in the European case. It is well known that for an American call option without

dividends it is never optimal to exercise the option before maturity [76, 13]. Hence the

problem reduces to pricing an European option. However, for an American put option,

there may exist an optimal stopping time before maturity. Hence, in this thesis we will

restrict our attention to the pricing of American-style put options.

1.1.2 Pricing American Option with Jump Diffusion Processes

The standard Black-Scholes equation (1.1.2) is one of the most successfully and widely

used tools in financial economics. The underlying model (1.1.1) and its related as-

sumptions are simple and elegant. But as a tool for real-world applications the model

must be comparable to financial data. Deviations between the model and empirical

3



evidence offer opportunities for the development of more realistic models, which, in

turn, create new computational challenges for the pricing and hedging of derivative

securities. Recently, empirical findings have shown that the standard Black-Scholes

assumption of lognormal stock diffusion with constant volatility is not consistent with

the market price. This phenomenon is often referred to as the volatility skew or smile

[3, 34]. It exists in all the major stock index markets today. In order to capture

the existence of volatility smiles, various extensions of the Black-Scholes model have

been proposed. Generally speaking, three approaches are being studied: the stochastic

volatility approach [65, 56, 84, 26, 47, 117, 80], the jump diffusion model approach

[93, 135, 35, 137, 14, 23, 58] and the deterministic volatility function approach [34].

In [3], the advantages and disadvantages of these three approaches have been carefully

studied and the jump diffusion model is being identified to be a more adaptable ap-

proach. The jump diffusion model is introduced by Merton in [93]. Contrary to the

Black-Scholes model [10], the stock price in jump diffusion model is not a continuous

function of time. This allows to account for large changes in market prices due to rare

events. More importantly, the jump diffusion model yields implied volatility curves

similar to volatility smiles observed on markets.

For the underlying price, Merton [93] proposed the following jump diffusion model:

dS

S
= µdt+ σdW + ηdN,

where N is a Poisson process with intensity ν, η is an impulse function producing a

jump from S to (1+η)S, which is taken to be a lognormally distributed jump amplitude

with probability density

G(η) =
1√

2πδη
exp

(
(log η − µη)

2δ2

2
)
,

The process N is independent of W . This model has three additional parameters: ν

determines the arrival rate of jumps; and µη and δ determine the mean and variance

of the jumps in return respectively. In [93, 94], Merton derived that the price V (S, t)

of European option with jump diffusion processes is governed by the following partial

integro-differential equation

−∂V
∂t

− 1

2
σ2S2∂

2V

∂S2
− (r − νκ) S

∂V

∂S
+ (r + ν)V −

(∫ ∞

0

V (Sη)G(η)dη

)
= 0 (1.1.4)
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on the domain R+ × [0, T ), where κ represents the expectation E(η), along with the

boundary and terminal conditions

V (S, T ) = V ∗(S),

V (0, t) = V ∗(0)e−r(T−t),

lim
S→∞

V (S, t) = V ∗(∞)e−r(T−t).

Due to the feature of early exercising, the price V of an American option with jump

diffusion processes is formulated as the solution to a complementarity problem as fol-

lows. 



LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

where

LV = −∂V
∂t

− σ2S2

2

∂2V

∂S2
− (r − νκ)S

∂V

∂S
+ (r + ν)V −

(∫ ∞

0

V (Sη)G(η)dη

)
.

Terminal and boundary conditions need to be specified for a particular option just as

in the case of European option.

1.1.3 Pricing Two-Asset American Option

While many single-asset models work well in practice, such as (1.1.2) and (1.1.4), they

are not satisfactory for models that have payoff dependent on two or more correlated

underlying assets [55, 123, 16, 33, 49, 71]. Examples of these multi-state options include

index options, basket options, cross-currency options, exchange options, options on the

extremum of several assets, etc. Also, it is common for corporate security to contain

embedded options whose payoff depends on several state variables. Thus, if the payoff

depends on two underlying assets that are correlated in terminal conditions, then their

joint distribution depends on their correlation – a consideration that a single-factor

model cannot capture. In order to capture realistic correlation patterns, and thus

covariance structures, multi-factor models, such as two-asset models, are needed.

Pricing two-asset option starts from the premise that the two underlying assets S1

5



and S2 follow the following geometric Brownian motion processes equations.

dS1

S1
= µ1 dt+ σ1 dW1,

dS2

S2
= µ2 dt+ σ2 dW2,

where µ1 and µ2 are the drift rates, σ1 and σ2 are the deterministic local volatility

of the assets S1 and S2, respectively, W1 and W2 are the standard Brownian motions

followed by the assets S1 and S2, respectively. For the two assets, they are assumed

to be correlated by ρ ∈ [−1, 1]. By using the no-arbitrage theory and Ito’s formula,

it is derived that the two-asset European option price V (S1, S2, t) is governed by the

following two dimensional Black-Scholes equation

∂V

∂t
+

1

2

[
σ2

1S
2
1

∂2V

∂S2
1

+ 2ρσ1σ2S1S2
∂2V

∂S1∂S2
+ σ2

2S
2
2

∂2V

∂S2
2

]
+ r

[
S1
∂V

∂S1
+ S2

∂V

∂S2

]
− rV = 0,

where r is the risk free interest rate, with some appropriate boundary and terminal

conditions. For example, for European basket option, the boundary conditions can be

taken as:
V (0, S2, t) = g1(S2, t), V (S1, 0, t) = g2(S1, t),

lim
S1→∞

V (S1, S2, t) = 0, lim
S2→∞

V (S1, S2, t) = 0,

and terminal condition:

V (S1, S2, t = T ) = V ∗(S1, S2),

Here, g1 and g2 are given functions providing suitable boundary conditions, V ∗(S1, S2)

is the payoff function. Typically, g1 and g2 are determined by solving the associated

one dimensional European option problem, see [121]. For American two-asset option,

its price is formulated as the solution to a complementarity problem as follows.





LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

(1.1.5)

where L represents the Black-Scholes operator:

LV = −∂V
∂t

−1

2

[
σ2

1S
2
1

∂2V

∂S2
1

+ 2ρσ1σ2S1S2
∂2V

∂S1∂S2
+ σ2

2S
2
2

∂2V

∂S2
2

]
−r
[
S1
∂V

∂S1
+ S2

∂V

∂S2

]
+rV.

Terminal and boundary conditions need to be specified for a particular option just as

in the case of European option.
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There are also some other kinds of American-style options, such as uncertain volatil-

ity model, transaction model [83], Asian option model, barrier option model, stochastic

model, passport option model, and so on. All of them can be cast into the framework

of (1.1.5) with specified operator L. See [127, 126, 19, 43, 41] for detailed analysis.

1.2 American Option Pricing and Numerical Meth-

ods

Unlike European options, closed-form solutions are not available for pricing American

options. So the popular American options must be priced numerically, even for the

simplest case of constant coefficients. Two broad classes of numerical methods have been

developed to pricing American options: stochastic and PDE approaches. The Monte-

Carlo simulation method [12, 82, 50, 64], and tree or lattice method [105, 25, 82, 15]

are examples of stochastic approach. Explicit method [44], projected successive over-

relaxation method [127, 62, 64, 118], linear programming method [31, 32], Lagrangian

method [122], l1 and l2 penalty method [44, 35, 45, 37, 43, 41, 137], and barrier penalty

method [98, 97, 96], are examples of PDE approach.

Monte-Carlo simulation method [95] has been proved to be a powerful and ver-

satile technique [12, 82, 50]. It is basically a numerical procedure for estimating the

expected value of a random variable, and so it is suitable to derivative pricing problems

represented as expectations. Pricing a financial instrument using Monte-Carlo simula-

tion involves three steps: (i) simulate the sample paths for the underlying asset in the

derivative model over the life of the derivatives, according to the risk neutral probability

distributions; (ii) for each simulated sample path, evaluate the discounted cash flow of

the derivatives; (iii) take the sample average of the discounted cash flow over all sample

paths. One of the advantages of the Monte-Carlo simulation method is the simplicity of

the algorithm. The implementation of this method is straight forward. Another major

advantage of this method is that it is easy to accommodate terminal payoff function in

an option model [82]. The main drawback of the Monte-Carlo simulation method is the

demand for a large number of simulation trials in order to achieve a high level of ac-

curacy. Furthermore, unlike European options, American options are more difficult to
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price by using the Monte-Carlo simulation method, since they can be exercised at any

time before the expiry date. Recently, several papers have attempted to estimate the

American option price using the Monte-Carlo simulation method [120, 6, 18, 109]. Gen-

erally speaking, they attempted to estimate the expected return at exercise conditional

only on known information using sophisticated algorithms.

The lattice method for pricing derivative securities was suggested by Parkinson

[105, 107] and Cox, Ross, Rubinstein [25]. This scheme is most widely used in the fi-

nance community for the valuation of a wide variety of option models, due primarily to

its ease of implementation and pedagogical appeal. Unlike the continuous Black-Scholes

framework of analysis, the lattice method bypasses the derivation of partial differen-

tial equations and so the comprehension of the method is accessible to a much wider

audience in the finance community. In the lattice model, the asset price movement is

simulated by a discrete random walk model, which converges to a continuous lognormal

diffusion as the time interval between successive steps tends to zero. The lattice model

is consistent with the risk neutrality argument where the option price obtained from

the model depends only on the growth rate of a riskless bond but independent of the

expected rate of return of the asset price. The lattice scheme can be easily modified to

incorporate added features in an American option contract. For example, with a slight

modification of the dynamic programming procedure [82, 127, 66], we can incorporate

the effects of callable features in an American option. Some enhanced forms of the

lattice scheme have been proposed in the literature. For instance, a good survey of

these enhanced schemes can be found in Broadie and Demples’ paper [15]. The lattice

method is simple and computationally inexpensive. But some disadvantages are also

obvious, such as the lack of accuracy of the results obtained [46]. Thus, the use of these

results in the real financial market could have great adverse consequences.

Currently, the PDE approach is the most popular one. As a result of the possibility

of early exercising in American-style options, part of the valuation problem consists

of identifying the optimal exercise policy, i.e. the exercise time that maximizes value

for the holder of the security. Pricing an American option is a free boundary problem

(which is a PDE problem) [113, 91, 119, 92, 118], i.e. at any time t, there exists a

value of S that marks the boundary of two regions: one in which early exercise is

preferred and one in which the option should be held. An arbitrage-free argument
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shows that the valuation of an American option is always greater than or equal to

the payoff at the time of exercise. The return on the portfolio containing the option

should be no more than the return on a riskless asset. Further, the holder of the option

would choose to exercise early when holding the option is less valuable than exercising

it immediately and reinvesting the funds in a riskless asset. See, for example [127],

for a detailed explanation. Thus, the problem can be formulated more formally as

a partial differential complementarity problem given in the previous subsection. The

resulting partial differential complementarity problem can be equivalently regarded as

a variational inequality problem [70, 118, 17]. By using the finite difference, finite

volume or finite element discretizations, explicit method [44], projected successive over-

relaxation method (PSOR) [127, 62, 64, 118], linear programming method [31, 32],

Lagrangian method [122], l1 and l2 penalty methods [44, 35, 45, 37, 43, 41, 137], barrier

penalty method [98, 97, 96], etc, have been developed to solve this partial differential

complementarity problem or variational inequality problem.

In the current practice, the most common method of handling the early exercise

condition is simply to advance the discrete solution over a timestep ignoring the con-

straint, and then to apply the constraint explicitly, see, for example, [14, 70]. The main

disadvantage of this approach is that the solution is inconsistent at the beginning of

each timestep (i.e. the discrete form of the LCP is not approximately satisfied). Thus,

this approach can only be regarded as a first order approximation in time. On the other

hand, the explicit application of the constraint is computationally very inexpensive.

So far, the most popular algorithm has been the PSOR method. It is easy to

implement. The PSOR method was proposed by Cryer [27] to solve the linear comple-

mentarity problem. This method, which is based on the usual SOR method for solving

linear system, is modified to update only non-negative SOR solutions. In general, this

method is fast and robust for many kinds of American option pricing problems. See,

for example, [127, 126, 11, 112]. However, its convergence rate depends crucially on the

choice of the relaxation parameter and it exhibits exponential solution-time behavior

as the number of space discretization points increases, see [44, 31, 32, 11, 131, 133].

A multigrid method has been suggested in [21] to accelerate convergence of the basic

relaxation method. Although this is a promising technique, multigrid methods are usu-

ally strongly coupled to the type of discretization used, and hence they are complicated
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to implement.

Recently, Dempster, Hutton and Richards [31, 32] proposed the linear programming

method for pricing American options with an aim to overcome the problems encountered

with the PSOR technique. By showing that the complementarity problem is equivalent

to an abstract linear programming problem, the pricing problem is transformed into

a linear programming problem. This method evaluates the American option in times

that are varied linearly with respect to the space discretization. This feature is very

suitable for the use of the linear programming method to solve a sequence of one space

dimension problems. However, it is not well equipped to handle sparse matrix systems,

especially in the case of multi-asset options. Moreover, it was shown [11] that this

method is invalid for the implicit difference scheme.

Besides those methods we mentioned above, there are several other methods to price

American options, such as Lagrangian method, barrier penalty method and the nonlocal

boundary condition method in [1, 2]. Lagrangian method for the valuation of American

options was used by Vàzque in [122]. This method is used to solve an equivalent

quadratic programming problem. By applying the Uzawa’s duality method [53], an

algorithm was developed in [122] for solving the American option pricing problem. For

this method, the optimal exercise boundary can be easily obtained from Kuhn-Tucker

multipliers by taking into account the fact that the exercise boundary vanishes only

outside the active set. However, the unsatisfactory convergence rate and low accuracy

are the two major disadvantages. A barrier penalty method was first proposed by

Nielson [98, 97, 96] to solve the American vanilla option pricing problem. For the

complementarity problem resulting from the American option pricing problem, a barrier

term was added in the partial differential inequality. Some convergence properties of

this method were shown in [98, 97, 96]. However, its convergence rate has not been

obtained. For this reason, it is less popular than other methods. In [96], this method

was used to price multi-asset American options. In [60, 59], Hon applied this method

to pricing both single-asset and multi-asset American option pricing problems with a

specific numerical scheme – radial basis function method (RBF). Allegretto, Lin and

Yang in [1, 2] proposed an exact nonlocal boundary condition method, and presented

the finite element error estimates for this method. Essentially, this method introduces

a new nonlocal boundary condition, which is mathematically exact. Then the problem
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is reformulated as a variational inequality problem on a very narrow region, without

changing the solution.

There is a large number of general methods for solving linear complementarity prob-

lems [79, 100, 24]. We can divide these methods into essentially two categories: direct

methods, such as pivoting techniques [24, 78], and iterative methods, such as Newton’s

method [100, 24, 103, 22] and interior point algorithms [79]. Some of these methods,

which have been applied specifically to American option pricing, include pivoting meth-

ods [62], and interior point methods [63, 102]. As pointed out in [63], pivoting methods

(such as Lemke’s algorithm [24]) is not well equipped to handle sparse systems, espe-

cially for problems with more than one dimension (multi-factor options).

As well known, complementarity problems (both linear and nonlinear) can be posed

in the form of a set of nonlinear equations, see [103, 102, 104]. Various nonsmooth

Newton methods have been suggested for these types of problems [72, 74, 39, 101, 104].

More recently, combinations of nonsmooth Newton and smoothing methods have been

proposed [75].

It is well known that a complementarity problem (or, equivalently, a variational

inequality problem) can be solved by a penalty method [30, 51, 77, 48, 99, 114, 38].

In [8, 77, 51], the quadratic (l2) and linear (l1) penalty methods were used to solve

a variational inequality problem. With the rigorous variational analysis, it has been

shown that the solution to the penalized problem converges to that of the original

variational inequality problem. Moreover, for quadratic and l1 penalty methods, their

convergence rates have been shown to be of order O(ξ−1/4) and O(ξ−1/2) respectively in

[8, 77, 51], where ξ is the penalty parameter. Since the American option pricing problem

can be cast into the framework of complementarity problem or variational inequality

problem, quadratic and l1 penalty methods were used to price American options. In

the context of American option pricing, Forsyth and Zvan [44, 137] first developed the

penalty approach to this problem. In [44], l1 penalty method was used to price an

American vanilla option, where quadratic convergence rate was obtained in terms of

selected time steps. The quadratic and l1 penalty methods were used to price American

options with stochastic volatility in [137]. In [37, 35, 89, 88, 90], l1 penalty method was

applied to valuating American options with jump diffusion processes. Moreover, for

other American-style exotic options, such as shout options, American Asian option
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under jump diffusion, uncertain volatility models, quadratic and l1 penalty methods

were widely used, see [128], [41] and [36], respectively. In these papers, quadratic and l1

penalty methods were used to solve sequential linear complementary problems, which

are derived from the original differential complementarity problem by the discretization

scheme. An advantage of these methods is that it is simple to implement and can make

full use of the existing softwares to handle the sparse matrix structure. This technique

is suitable for any type of discretization, for any dimension, and for any unstructured

meshes. It also works for multiple-connected problems, and problems with nonlinearity,

such as uncertain volatility models, drift-dominated problems, transaction cost models

and jump diffusion models [127]. A major disadvantage is that the solution obtained

by the penalty methods only satisfies approximately the complementarity conditions.

However, the error can be controlled by adjusting the penalty parameter.

Although the error of the quadratic and l1 penalty methods can be controlled by

adjusting the penalty parameter, the convergence rates of these two penalty methods

(O(ξ−1/4) and O(ξ−1/2), respectively) imply that much larger penalty parameters should

be attained in order to obtain a desirable accuracy level of the solutions. It is widely

acknowledged [40] that, too large penalty parameters can cause computational difficul-

ties. Thus, in order to overcome this difficulty, a more general power penalty method

(lk, k > 0), especially the lower order penalty method ([·]k+, 0 < k < 1), was proposed

in [125] to solve the differential complementarity problems, based on the theories of

variational inequality and complementarity problems.

Methods based on lower order penalty functions for mathematical programs with

equilibrium constraints and nonlinear optimization problems have been under investi-

gation in the last three decades, see Luo and Pang [86], Pang [102], Luo et al. [87],

Rubinov [110], and Yang and Huang [130]. In [87], Luo et al gave a global exact

penalty function result for a lower order penalty function. Rubinov, Yang and Bagirov

[111] showed that the existence of an exact lower order penalty function requires much

weaker conditions than that of the classical l1 penalty function. Moreover, the least

exact penalty parameter of the lower order penalty function is smaller than that of the

l1 penalty function. Because of these features, the study of lower order penalty func-

tions has attracted extensive attention in recent years. The applications of lower order

penalty functions can be found in [129, 125, 130, 131, 132, 134]. It is worth pointing out
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that a lower order penalty function is in general nonsmooth and non-Lipschitz. Most

numerical methods in nonlinear programming require differentiable functions. Thus,

lower order penalty functions may cause some difficulties in numerical implementation.

However, with the help of smoothing techniques (see [129, 125]), we are able to compute

the solution of nonlinear PDE equations with lower order penalty functions.

Due to the advantages of the lower order penalty method, Wang, Yang and Teo

[125] proposed a power penalty method to price American vanilla options. They re-

formulated the American option pricing problem as a variational inequality problem

and the resulting variational inequality problem was then transformed into a nonlin-

ear parabolic partial differential equation by adding a power penalty term. In some

appropriate infinite dimensional spaces, they also obtained the rate of convergence of

the power penalty approach. It has been shown that the rate of convergence of the lk

penalty method is of order O(ξ−1/2k). This is a much faster convergence rate than that

of l1 penalty method when 0 < k < 1.

1.3 Contributions and Outlines

In this thesis, we aim to further explore the penalty approach to valuating a broad class

of problems related to American options, including the standard American option. The

fitted finite volume method and finite element method are developed to solve the pe-

nalized problem. We propose a monotonic penalty method for plain American option

pricing problem, and develop the fitted finite volume method to solve it. We develop a

power penalty method for pricing American option with jump diffusion processes, and

propose the finite element method to solve it. We also develop a power penalty method

for two-asset American option pricing problem, and propose the two-dimensional ver-

sion of the fitted finite volume method to solve it. Finally, we propose the augmented

Lagrangian method for American option pricing problem. For each method, its con-

vergence analysis is carried out. We also conducted some empirical numerical tests to

verify the effectiveness of our methods.

In Chapter 2, we first introduce the American option pricing model and its formula-

tions: differential complementarity problem and variational inequality problem. Then,
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we consider the equivalence between the complementarity problem and variational in-

equality problem. Within the framework of complementarity problem and variational

inequalities theories, a monotonic penalty method is proposed, which produces a non-

linear parabolic PDE. Based on the theory of variational inequalities, the convergence

properties of the monotonic penalty approach are established in some appropriate infi-

nite dimensional spaces. The solvability of the penalized problem is investigated. We

also point out that the quadratic penalty method, linear penalty method, lower order

penalty method, ‘value at zero’ penalty method, and the combination of two power

penalty methods are all special cases of monotonic penalty methods. We derive the

convergence rate of the combination of two power penalty methods in some appropriate

infinite dimensional spaces. After that, the fitted finite volume method is applied to

obtaining the numerical solution to the penalized nonlinear PDE. We then test this

method empirically, and compare it with the PSOR (projected successive over relax-

ation) method. First, we compare the solution times of penalty methods and PSOR

method under different time-space discretizations. We find that the monotonic penalty

method is roughly comparable with the PSOR method, and the saving in computa-

tional time of the monotonic penalty method becomes more significant as the number

of space steps increases. Second, we compare the solution times of these two methods

under changes in market parameters. we conclude that the monotonic penalty method

is more robust with respect to the changes in market parameters, such as interest rate

and volatility.

In Chapter 3, pricing of American options with jump diffusion processes is studied.

First, we present the mathematical model of the problem, which is a partial integro-

differential complementarity problem. Then, we present its equivalent form: variational

inequality problem. The equivalence between the complementarity problem and varia-

tional inequality problem is shown. With the help of the complementarity problem and

variational inequality problem, we propose a power penalty approach to this partial

integro-differential complementarity problem. The solvability of the penalized problem

is considered. After that, the convergence analysis of the power penalty approach, in

some appropriate infinite dimensional spaces, is established. We show that the conver-

gence rate of O(ξ−1/2k) can be achieved by the power penalty approach (lk, k > 0),

where ξ is the penalty parameter and k is the order of the power penalty function.

Therefore, when k is small, we need only a very small ξ to achieve a given accuracy.
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This is significantly superior over the existing theoretical results for the quadratic and

linear penalty methods. Finally, a numerical scheme is developed to solve the penalized

nonlinear equation. In this scheme, the finite element method is used in space and θ-

scheme is used in time. More specifically, a θJ -scheme time-stepping method is applied

to the jump integral term, which can overcome the difficulty caused by the convolution

term in the penalized partial integro-differential equation. To this end, two numerical

examples, i.e. an American vanilla option with jump diffusion and an American but-

terfly option with jump diffusion, are given to illustrate the efficiency and usefulness of

the power penalty method.

In Chapter 4, a two-asset American option is investigated. We first present a math-

ematical model of the two-asset American option, which is described as a partial dif-

ferential complementarity problem involving a two-dimensional Black-Scholes operator.

The divergence form of this operator is derived. For the convenience of theoretical anal-

ysis, an equivalent standard form satisfying homogenous Dirichlet boundary conditions

is derived from the original form. Then, we show that this reformulated problem is

equivalent to a variational inequality problem. For the variational inequality problem,

we introduce a weighted Sobolev space and its norm to prove the coerciveness and con-

tinuity of the corresponding bilinear operator. With the coerciveness and continuity of

the corresponding bilinear operator, the unique solvability of the variational problem

is established. On the basis of equivalence between variational inequalities of first kind

and those of second kind, we develop a power penalty method for pricing the two-asset

American option model, which is described by a high dimensional nonlinear parabolic

PDE. In some appropriate infinite dimensional spaces, the convergence rate of the power

penalty method is given. We show that the convergence rate of the lk penalty method

is of order O(ξ−1/2k), where ξ is the penalty parameter and k is the order of the power

penalty function (lk, k > 0). After that, a two-dimensional version of the fitted finite

volume method is proposed to solve the penalized nonlinear multi-dimensional PDE.

The two-dimensional version of the fitted finite volume method is parallelized to the

one-dimensional version as stated in Chapter 2, but its deduction is much more com-

plicated and nontrivial. The computational formulas for the two-dimensional version

is carefully deduced. We also develop the solution method for the resulting nonlinear

system from the fitted finite volume discretization. Finally, numerical examples are

designed to illustrate the usefulness of the power penalty methods for pricing two-asset
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American option. These power penalty methods include quadratic penalty method,

linear penalty method, and lower order penalty method.

In Chapter 5, by combining the advantages of both Lagrangian method and penalty

method, we introduce the augmented Lagrangian method (ALM) for American option

pricing. First, the continuous models of American option pricing, which are described

by a partial differential complementarity problem and a corresponding variational in-

equality problem, are discretized by using the fitted finite volume method. This leads to

a large scale finite dimensional variational inequality problem or linear complementar-

ity problem. Due to the fitted finite volume discretization, the obtained variational in-

equalities can be efficiently solved by the augmented Lagrangian method [57, 67, 68, 73].

Thus, we adapt the augmented Lagrangian method to pricing an American vanilla put

option. We present the explicit augmented Lagrangian formulation and design the corre-

sponding augmented Lagrangian algorithm. The existence of the Lagrangian multiplier

is characterized. For a penalty parameter, ξ, a linear convergence rate, i.e. of order

O(1/ξ), of the augmented Lagrangian method is given. Moreover, for fixed penalty

parameter ξ, a superlinear convergence rate is shown. To explore the advantages of the

ALM over penalty methods and the Lagrangian method, empirical tests are carried out

with two sets of problems. Furthermore, to compare the ALM method with the PSOR

method, empirical experiments with different market parameters σ and r and different

step sizes of space variable and time variable are implemented. It is observed that the

ALM method is more robust in terms of changes in market parameters than the PSOR

method.

Finally, concluding remarks are presented in Chapter 6, where some future problems

and research directions are also included.

1.4 Preliminaries

In this section, we introduce some functional spaces and notations, which will be used

later in this thesis.

For an open set S ⊂ R and 1 ≤ p ≤ ∞, let Hm,p(S) denote the Sobolev space over
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the domain S defined by

Hm,p(S) =

{
v : v ∈ Lp(S),

dαv

dxα
∈ Lp(S), ∀ 0 ≤ |α| ≤ m

}
,

where its norm ‖·‖Hm,p(S) or ‖·‖m,p,S is defined by

‖v‖m,p,S = ‖v‖Hm,p(S) =


∑

|α|≤m

∫

S

∣∣∣∣
dαv

dxα

∣∣∣∣
p

dx




1/p

,

where α is a positive integer. We simply use Hm(S) with the norm ‖ · ‖Hm(S) or ‖ · ‖m,S

to denote Hm,2(S) with the norm ‖ · ‖Hm,2(S) or ‖ · ‖m,2,S.

Let Lp(S) denote the space of all p-integrable functions on S with the norm ‖·‖Lp(S).

We put

Hm
0 (I) = {v(·, t) : v(·, t) ∈ Hm(I), v(0, t) = v(X, t) = 0} .

Finally, for any Hilbert space H(I), the norm of Lp(0, T ;H(I)) is denoted by

‖v(·, t)‖Lp(0,T ;H(I)) =

(∫ T

0

‖v(·, t)‖p
H(I) dt

)1/p

.

Obviously, Lp(0, T ;Lp(I)) = Lp(I × (0, T )) = Lp(Ω).

In the case of one dimensional space, we define the weighted Sobolev space H1
0,$(I)

as

H1
0,$(I) =

{
v(·, t) : v, xvx ∈ H1

0 (I), ∀x ∈ I
}
.

We put

K =
{
v(·, t) : v(t) ∈ H1

0,$(I), v(·, t) ≤ u∗(·, t)
}
,

where u∗(·, t) is a given function. It is easy to verify that K is a convex and closed

subset of H1
0,$(I).

In the case of two dimensional space, let Ω = (0,X)× (0, Y ) ⊂ R2 and Γ denote the

boundaries of Ω. Clearly,

Γ = {x = 0, 0 ≤ y ≤ Y }∪{y = 0, 0 ≤ x ≤ X}∪{x = X, 0 ≤ y ≤ Y }∪{y = Y, 0 ≤ x ≤ X}.

We can define the weighted Sobolev space H1
$(Ω) as

H1
$(Ω) =

{
v(·, ·, t) : v, xvx, yvy ∈ L2(Ω), ∀x, y ∈ Ω

}
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with its norm denoted by ‖ · ‖1,$. We put

H1
0,$(Ω) =

{
v(·, ·, t) : v(·, ·, t) ∈ H1

$(Ω), v|Γ = 0
}
,

K =
{
v(·, ·, t) : v(t) ∈ H1

0,$(Ω), v(·, ·, t) ≤ u∗(·, ·, t)
}
,

where u∗(·, ·, t) is a given function. It is clear that K is a convex and closed subset of

H1
0,$(Ω).
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Chapter 2

A Monotonic Penalty Method for

American Option Pricing

In this chapter, we propose a monotonic penalty method to price American vanilla

put option. The monotonic penalty function includes l2, l1, lk (0 < k < 1), and their

linear combinations as special cases. By adding a monotonic penalty term, the orig-

inal differential complementarity problem is converted into a nonlinear Black-Scholes

equation with a strong monotonic operator. We establish the convergence of the mono-

tonic penalty method within the framework of the variational inequalities under the

general situation. For a general monotonic penalty method, it is impossible to give

its explicit convergence rate. However, we are able to derive the convergence rate for

the linear combination of two different lk penalty functions (0 < k <∞). This result

unifies several convergence rates given in [38] and [125]. We shall study and compare

the performance of the higher order, l1, lk, valley at zero and the combination of power

penalty functions in solving the American option pricing problem with different mar-

ket parameters. Numerical tests show that some of the monotonic penalty methods are

particularly fast-convergent and accurate for our proposed option pricing models. From

numerical experiments, we find that solution times of the monotonic penalty methods

increase in a linear rate with respect to space steps and that these solution times do not

depend on the changes in the interest rate and volatility. This is an obvious advantage

over the PSOR method, where the exponential solution time behavior is observed when

the number of the space steps gets large.
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2.1 The Monotonic Penalty Approach

Consider an asset with price x which satisfies the following stochastic differential equa-

tion

dx = rx dt+ σx dW,

where W is a standard Brownian motion, r is the risk-free interest rate, σ denotes

a deterministic local volatility. Let V (x, t) denote the value of a standard American

put option, T the expiry time, and K the striking price. It is well known, under the

non-arbitrage assumption, that the American option pricing problem can be formally

stated as a linear differential complementarity problem [127] as follows.

(DCP ) 



LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

a.e. in the region Ω = I × (0, T ),

(2.1.1)

where

L : = − ∂

∂t
− 1

2
σ2x2 ∂

2

∂x2
− rx

∂

∂x
+ r

denotes the Black-Scholes differential operator, V ∗(x) is the payoff function defined by

V ∗(x) = max{K − x, 0}. V (x, t) at the final time T is given by

V (x, T ) = V ∗(x), (2.1.2)

and I = (0,X) ⊂ R is the variable range of the underlying asset price. Realistically,

we should choose X � K. Additionally, the boundary conditions are:

V (0, t) = K,

V (X, t) = 0.
(2.1.3)

The system of (2.1.1)–(2.1.3) is the original American option pricing model.

For convenience, we adopt the reformulation technique in [125] to transform (2.1.1)–

(2.1.3) into an equivalent standard form satisfying homogeneous Dirichlet boundary

conditions. By introducing a new variable

u(x, t) = eβt(V0(x) − V (x, t))
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with

β = σ2, V0(x) =
(
1 − x

X

)
K,

we obtain the following (LCP) which is equivalent to (DCP).

Problem 2.1.1 (LCP )




Lu ≤ f,

u− u∗ ≤ 0,

(Lu− f) · (u− u∗) = 0,

a.e. in the region Ω = I × (0, T ),

(2.1.4)

where

L : = − ∂

∂t
− ∂

∂x

[
ax2 ∂

∂x
+ bx

]
+ c

is in the self-adjoint form with

a =
1

2
σ2, b = r − σ2, c = r + b+ β, and f(x, t) = eβtLV0(x),

the payoff function becomes

u∗(x, t) = eβt(V ∗(x)− V0(x, t)), (2.1.5)

and the new boundary conditions are

u(0, t) = u(X, t) = 0, t ∈ [0, T ). (2.1.6)

In what follows, we will simply write v(t) when we regard v(·, t) as an element of

H1
0,$(I). We will also suppress the independent time variable t (or τ ), when it causes

no confusion in doing so.

In fact, the linear complementarity problem (2.1.4)–(2.1.6) can also be reformulated

as the following variational inequality problem (2.1.7).

Problem 2.1.2 Find u(t) ∈ K, such that, for all v(t) ∈ K,
(
−∂u
∂t
, v − u

)
+A(u, v − u; t) ≥ (f, v − u), a.e. in (0, T ) (2.1.7)

where

A(u, v; t) = (ax2u′ + bxu, v′) + (cu, v)
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is a bilinear form, and

K =
{
v(t) ∈ H1

0,$(I) : v(t) ≤ u∗(t)
}

is a convex and closed subset of H1
0,$(I).

Now, we prove the coerciveness and continuity of the operator A(u, v; t). Let ‖ · ‖A

be a functional on H1
0,$(I) defined by

‖v‖2
A =

(
x2v′, v′

)
+ (v, v)

for any v ∈ H1
0,$(I). It is easy to see that ‖ · ‖A is a weighted energy norm on H1

0,$(I).

Lemma 2.1.1 There exist positive constants C and M , independent of v, such that for

any v,w ∈ H1
0,$(I),

A(v, v; t) ≥ C ‖v‖2
A , (2.1.8)

|A(v,w; t)| ≤M ‖v‖A ‖w‖A , (2.1.9)

for t ∈ (0, T ).

Proof. For any v ∈ H1
0,$(I),

∫ X

0

bxvv′dx =

∫ X

0

bxvdv = bxv2|X0 −
∫ X

0

bvd (xv) = −
∫ X

0

bxvv′dx−
∫ X

0

bv2dx.

Thus, ∫ X

0

bxvv′dx = −1

2

∫ X

0

bv2dx.

Therefore, it follows from the above relationship that

A(v, v; t) = (ax2v′ + bxv, v′) + (cv, v)

= (ax2v′, v′) + ((r + b+ β − b/2)v, v)

= (ax2v′, v′) +
1

2
((3r + 2β − σ2)v, v)

≥ C[(x2v′, v′) + (v, v)].

This proves (2.1.8).

The proof of (2.1.9) is standard and is hence omitted here.

From Lemma 2.1.1, we have
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Lemma 2.1.2 Problem 2.1.2 is the variational form of Problem 2.1.1.

Proof. For any w ∈ K, it follows from the definition of K that

w − u∗ ≤ 0, a.e. on I.

Multiplying both sides of the first inequality of (2.1.4) by w−u∗ for an arbitrary w ∈ K
and integrating the second term by parts, we obtain

(
−∂u
∂t
, w − u∗

)
+A(u,w− u∗; t) ≥ (f,w − u∗), a.e. in (0, T ). (2.1.10)

SinceK is a convex and closed subset ofH1
0,$(I), we may write w as w = θv+(1−θ)u,

where u, v ∈ K and θ ∈ [0, 1]. Therefore, (2.1.10) becomes

(
−∂u
∂t
, θ (v − u)

)
+

(
−∂u
∂t
, u− u∗

)
+A(u, θ (v − u) ; t) + A(u, u− u∗; t)

≥ (f, θ (v − u)) + (f, u− u∗) , a.e. in (0, T ). (2.1.11)

On the other hand, from the third relationship of (2.1.4), we have

(Lu− f, u− u∗) = 0,

i.e. (
−∂u
∂t
, u− u∗

)
+A(u, u− u∗; t) − (f, u− u∗) = 0.

Therefore, (2.1.11) reduces to

(
−∂u
∂t
, θ (v − u)

)
+A (u, θ (v − u) ; t) ≥ (f, θ (v − u)) , a.e. in (0, T ). (2.1.12)

Since θ ∈ [0, 1], we see that (2.1.12) leads to

(
−∂u
∂t
, v − u

)
+A(u, v − u; t) ≥ (f, v − u), a.e. in (0, T ).

Lemma 2.1.3 Variational inequality (2.1.7) has a unique solution.
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Proof. In fact, by virtue of the coerciveness of the operator A(u; v; t), the conclusion

is a consequence of Theorem 2.3 in [8], in which the unique solvability of a parabolic

variational inequality problem is established.

In order to introduce the monotonic penalty approach, we first give the definition

of a monotonic operator. A function ρ : L2(Ω) → L2(Ω) is called monotonic, if for any

u, v ∈ L2(Ω), it holds

(ρ(u) − ρ(v), u− v) ≥ 0.

Now, a monotonic penalty approach to Problem 2.1.1 is stated as follows.

Problem 2.1.3

−∂uξ

∂t
− ∂

∂x

[
ax2∂uξ

∂x
+ bx

]
+ cuξ + ξ ρ(uξ(x, t)) = f(x, t), (x, t) ∈ Ω (2.1.13)

with the given boundary and final conditions

uξ(0, t) = 0 = uξ(X, t),

uξ(x, T ) = u∗(x, T ),

where ξ > 1 is the penalty parameter and ρ is a continuous, monotonic penalty function

subject to {
ρ(u) > 0, if u(·, t) /∈ K,
ρ(u) = 0, if u(·, t) ∈ K.

In the next section, we will present rigorous mathematical convergence analysis, that

is, solutions uξ(x, t) of (2.1.13) tend to that of (2.1.4) as ξ → +∞. Before proceeding,

we first give the variational form of Problem 2.1.3 as below.

Problem 2.1.4 Find uξ(t) ∈ H1
0,$(I) such that, for all v(t) ∈ H1

0,$(I),

(
−∂uξ

∂t
, v

)
+A(uξ, v; t) + ξ (ρ(uξ), v) = (f, v), a.e. in (0, T ). (2.1.14)

For Problem 2.1.3, we have the following unique solvability result.

Theorem 2.1.1 Suppose that ρ : L2(Ω) → L2(Ω) satisfies the following conditions
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1. ρ is monotonic in L2(Ω); and

2. ρ is continuous.

Then, Problem 2.1.3 has a unique solution.

Proof. First, note that f(x, t) = eβtLV0, where V0 is sufficiently smooth in (x, t). We

now prove this theorem by showing that the variational form of the nonlinear operator

on the left-hand side of (2.1.13) is strictly monotone and continuous. In fact, for any

v1, v2 ∈ H1
0,$(I) a.e. in (0, T ) with the final condition being equal to u∗(x, T ) at t = T ,

it follows from the integration by parts that

(L (v1 − v2) , v1 − v2) + ξ (ρ(v1) − ρ(v2), v1 − v2)

=

(
−∂ (v1 − v2)

∂τ
, v1 − v2

)
+A (v1 − v2, v1 − v2; t) + ξ ( ρ(v1) − ρ(v2), v1 − v2) .

(2.1.15)

First, consider the function ρ(v1). By definition, it is a monotonic function. Obviously,

this function is non-decreasing in v. Thus

ξ (ρ(v1) − ρ(v2), v1 − v2) = ξ

∫ R

−R

(ρ(v1) − ρ(v2)) (v1 − v2) dx ≥ 0.

Denote e(τ ) = v1(τ ) − v2(τ ). Integrating both sides of (2.1.15) from 0 to T , and using

the above inequality and (2.1.8), we have

∫ T

0

[(Le(τ ), e(τ )) + ξ (ρ(v1) − ρ(v2), v1 − v2)] dτ

=

∫ T

0

[(
−∂e(τ )

∂τ
, e(τ )

)
+A (e(τ ), e(τ )) + ξ (ρ(v1) − ρ(v2), v1 − v2)

]
dτ

≥
∫ T

0

(
−∂e(τ )

∂τ
, e(τ )

)
dτ + C

∫ T

0

‖e(τ )‖A dτ. (2.1.16)

However, for any t ∈ (0, T ), integrating by parts gives

∫ T

t

(
−∂e(τ )

∂τ
, e(τ )

)
dτ = (e(τ ), e(τ ))−

∫ T

t

(
−∂e (τ )

∂τ
, e(τ )

)
dτ ,

because e(T ) = 0. From this, it follows that

∫ T

t

(
−∂e(τ )

∂τ
, e(τ )

)
dτ =

1

2
(e(τ ), e(τ )) ≥ 0. (2.1.17)
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Therefore, from (2.1.16), (2.1.17), we get

∫ T

0

[(L (v1 − v2) , v1 − v2) + ξ (ρ(v1) − ρ(v2), v1 − v2)] dτ ≥ C ‖v1 − v2‖2
L2(0,T ;H1

0,$(I)) .

This implies that the operator on the left-hand side of (2.1.13) is strictly monotone.

Moreover, for any v,w ∈ L2(0, T ;H1
0,$(I)), it is easy to show by a standard argument

that ∫ T

0

|A (v,w; t)| dt ≤ C ‖v‖L2(0,T ;H1
0,$(I)) ‖w‖L2(0,T ;H1

0,$(I)),

which means that the operator A(v,w; t) is continuous in both v and w. Also, it

is obvious that (ρ(v), w) is continuous in both v and w. Therefore, using a standard

result (see, for example, page 37 in [54]), we can conclude that Problem 2.1.3 is uniquely

solvable.

2.2 Convergence Analysis of The Monotonic Penal-

ization

Many regularity results on the solution of the penalty problem can be found in several

monographs, such as [28], [8] and [106]. In brief, under the assumption that uξ and f(t)

are sufficiently smooth, we have the following regularity results.

∂uξ(x, t)

∂t
, uξ(x, t) ∈ L2(0, T ;H1

0,$(I)) ∩ L∞(0, T ;L2(I)),

and

ρ(uξ(x, t)), f(x, t) ∈ L∞(0, T ;L2(I)).

On this basis, we have the following convergence result.

Theorem 2.2.1 Let u and uξ be the solutions to Problem 2.1.2 and Problem 2.1.3,

respectively. Then,

lim
ξ→∞

(
‖uξ(x, t)− u(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)− u(x, t)‖L2(0,T ;H1

0,$(I))

)
= 0.
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Proof. The proof is divided into three parts. First, we obtain a prior estimates for

{uξ}. Then the weak convergence of {uξ}, and finally the strong convergence of {uξ}.

(I) A prior estimate for {uξ}.

We have the estimates

‖uξ(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)‖L2(0,T ;H1
0,$(I)) ≤ C, (2.2.18)

where C is independent of ξ and uξ.

Let v0(t) ∈ K. Then ρ(v0) = 0. Setting v(t) = uξ(t)− v0(t), we have

(
−∂uξ

∂t
, uξ − v0

)
+A(uξ, uξ − v0; t) + ξ (ρ(uξ) − ρ(v0), uξ − v0) = (f(t), uξ − v0).

Since ρ is monotonic, it follows that (ρ(uξ) − ρ(v0), uξ − v0) ≥ 0. Thus, we get

(
−∂uξ

∂t
, uξ − v0

)
+A(uξ, uξ − v0); t) ≤ (f, uξ − v0) ,

and hence

−1

2

d

dt
|uξ − v0|2 +A(uξ, uξ; t) ≤ (f, uξ − v0) +A(uξ, v0; t).

Therefore,

−1

2

d

dt
|uξ − v0|2 + α ‖uξ‖2 ≤ c |uξ|2 + c ‖uξ‖ ‖v0‖ + c ‖f‖ ‖uξ − v0‖ .

Since v0 is a bounded element of L2(Ω), we have

− d

dt
|uξ − v0|2 + 2α ‖uξ‖2 ≤ c |uξ − v0|2 + α ‖uξ‖2 + c(1 + ‖f‖2).

Integrating both sides of the above inequality from t to T , we obtain

|uξ − v0|2 + α

∫ T

t

‖uξ‖2 dτ

≤ c

∫ T

t

|uξ − v0|2 dτ + c (T − t) +

(∫ T

t

‖f‖2 dτ

)
+ |uξ(T )− v0(T )|2 . (2.2.19)

Now, let η(t) = |uξ(t) − v0(t)|2. Then, the above inequality can be expressed as:





η(t) ≤ c

∫ T

t

η(τ )dτ + d;

d ≤ cT + (

∫ T

0

‖f‖2dτ ) + |uξ(T ) − v0(T )|2.
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By virtue of Gronwall’s inequality, the above inequalities imply η(t) ≤ d exp(ct), i.e.

|uξ(t)− v0(t)|2 ≤ d exp(ct).

On this basis, we deduce that

‖uξ(x, t)‖L∞(0,T ;L2(I)) ≤ C, (C independent of ξ and uξ) (2.2.20)

Thus, from (2.2.19) and (2.2.20), it follows that (2.2.18) is valid.

(II) Weak convergence of {uξ}.

(2.2.18) implies that {uξ} is uniformly bounded in the space L2(0, T ;H1
0,$(I)) ∩

L∞(0, T ;L2(I)). Therefore, there exists a subsequence of {uξ}, still denoting it by

{uξ}, such that

lim
ξ→∞

uξ = u,weakly in L2(0, T ;H1
0,$(I)) ∩ L∞(0, T ;L2(I)).

Our next task is to show that u is a solution to Problem 2.1.2.

From (2.1.14), we have

∫ T

t

(ρ(uξ), v)dτ =
1

ξ

[∫ T

t

(f, v)dτ −
∫ T

t

(
∂uξ

∂τ
, v

)
dτ −

∫ T

t

A(uξ, v; τ )dτ

]
.

Thus,

‖ρ(uξ)‖L∞(0,T ;L2(I)) = O(
1

ξ
).

Therefore, when ξ → ∞, we have uξ → u, and ‖ρ(uξ)‖L∞(0,T ;L2(I)) → 0. Hence,

‖ρ(u)‖L∞(0,T ;L2(I)) = 0.

So, we obtain ρ(u) = 0. By the definition of ρ(u), we see that u(x, t) ∈ K. In addition,

u ∈ L2(0, T ;L2(I)).

For any v ∈ K, we have ρ(v) = 0. Replacing v with v − uξ in (2.1.14), it follows

that
(
−∂uξ

∂t
, v − uξ

)
+A (uξ, v − uξ; t))+ξ (ρ(uξ) − ρ(v), v − uξ) = (f, v−uξ), a.e. in (0, T ).

By the monotonicity of ρ, we get, for v ∈ K,

(ρ(uξ) − ρ(v), v− uξ) ≤ 0.
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Thus,
(
−∂uξ

∂t
, v − uξ

)
+A(uξ, v − uξ; t) − (f, v − uξ) ≥ 0, a.e. in (0, T ).

Therefore,
(
−∂uξ

∂t
, v

)
+A(uξ, v; t)− (f, v) ≥

(
−∂uξ

∂t
, uξ

)
+A(uξ, uξ; t), a.e. in (0, T ). (2.2.21)

Integrating both sides of (2.2.21) from 0 to T , we obtain

∫ T

t

(
−∂uξ

∂τ
, v

)
dτ +

∫ T

t

A(uξ, v; τ )dτ −
∫ T

t

(f, v)dτ

≥
∫ T

t

(
−∂uξ

∂τ
, uξ

)
dτ +

∫ T

t

A(uξ, uξ; τ )dτ

= (uξ, uξ) +

∫ T

t

A(uξ, uξ; τ )dτ. (2.2.22)

We deduce from the properties of weak convergence that

lim inf
ξ→∞

(
(uξ, uξ) +

∫ T

t

A(uξ, uξ; τ )dτ

)
≥ (u, u) +

∫ T

t

A(u, u; τ )dτ. (2.2.23)

From (2.2.22) and (2.2.23), we have

lim inf
ξ→∞

[∫ T

t

(
−∂uξ

∂τ
, v

)
dτ +

∫ T

t

A(uξ, v; τ )dτ −
∫ T

t

(f, v)dτ

]

≥
∫ T

t

(
−∂u
∂τ
, u

)
dτ +

∫ T

t

A(u, u; τ )dτ.

Therefore,

∫ T

t

(
−∂u
∂τ
, v

)
dτ +

∫ T

t

A(u, v; τ )dτ −
∫ T

t

(f, v)dτ

≥
∫ T

t

(
−∂u
∂τ
, u

)
dτ +

∫ T

t

A(u, u; τ )dτ.

Thus, ∫ T

t

(
−∂u
∂τ
, v − u

)
dτ +

∫ T

t

A(u, v − u; τ )dτ ≥
∫ T

t

(f, v − u)dτ,

i.e. (
−∂u
∂t
, v − u

)
+A(u, v − u; t) ≥ (f, v − u), ∀v ∈ K, a.e. in (0, T ).

This shows that u = u, and that the whole sequence {uξ} converges weakly to u.

(III) Strong convergence of {uξ}.
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We need to prove

lim
ξ→∞

(
‖uξ(x, t)− u(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)− u(x, t)‖L2(0,T ;H1

0,$(I))

)
= 0.

Setting v(t) = uξ(t) − u(t) in (2.1.14), we have

(
−∂uξ

∂t
, uξ − u

)
+A(uξ, uξ−u; t)+ξ (ρ(uξ) − ρ(u), uξ − u) = (f, uξ−u), a.e. in (0, T ).

Using the monotonic property of ρ, we have
(
−∂uξ

∂t
, uξ − u

)
+A(uξ, uξ − u; t) ≤ (f, uξ − u), a.e. in (0, T ). (2.2.24)

Reformulating (2.2.24) yields

(
−∂ (uξ − u)

∂t
, uξ − u

)
+A(uξ − u, uξ − u; t)

≤ (f, uξ − u) +

(
−∂u
∂t
, uξ − u

)
+A(u, uξ − u; t). (2.2.25)

Integrating both sides of (2.2.25) from 0 to T and then using the coerciveness property

of the operator A, we obtain

|uξ − u|2 + α

∫ T

t

‖uξ − u‖2
H1

0,$(I) dτ

≤ c

[∫ T

t

‖f‖2
L2(0,T ;L2(I)) dτ

] 1
2
[∫ T

t

‖uξ − u‖2
L2(0,T ;L2(I)) dτ

] 1
2

+ c

[∫ T

t

‖u‖2
L2(0,T ;L2(I)) dτ

] 1
2
[∫ T

t

‖uξ − u‖2
L2(0,T ;L2(I)) dτ

] 1
2

+ c

[∫ T

t

∥∥∥∥
∂u

∂τ

∥∥∥∥
2

L2(0,T ;L2(I))

dτ

] 1
2 [∫ T

t

‖uξ − u‖2
L2(0,T ;L2(I)) dτ

] 1
2

, C

[∫ T

t

‖uξ − u‖2
L2(0,T ;L2(I)) dτ

] 1
2

. (2.2.26)

Thus, we deduce from (2.2.26) that

lim
ξ→∞

(
‖uξ(x, t)− u(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)− u(x, t)‖L2(0,T ;H1

0,$(I))

)
= 0.
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2.3 Some Special Monotonic Penalty Functions

The class of monotonic penalty functions is very rich. The l2 penalty function, l1 penalty

function and lower order penalty function lk (0 < k < 1) are the most frequently used

monotonic penalty functions. These penalty methods for American option pricing have

been extensively studied in [125, 44, 137]. In this section, we shall propose two new

monotonic penalty functions, i.e. ‘valley at zero’ penalty function and a combination

of two power penalty functions.

1. ‘Valley at zero’ penalty function

ρ(u) =





1, if u ≥ 1,

u, if 0 ≤ u ≤ 1,

0, if u ≤ 0.

(2.3.27)

For a detailed study of ‘valley at zero’ penalty function, see [136]. It is easy to see that

(2.3.27) given above is a monotonic penalty function. When u ≤ 1 this penalty function

is identical to the l1 penalty function. From our numerical experiments, we find that its

convergence rate is just the same as that of the l1 penalty function. The reason for this

phenomenon is that the option pricing problem is a well-behaved initial value problem

[137]. The error at every iteration is far below one, so ρ(u) = u, as 0 ≤ u ≤ 1, plays

the dominating role. Thus, for the American option pricing problem, we conclude that

the convergence rate of the ‘valley at zero’ penalty function (2.3.27) is the same as that

of the l1 penalty function.

2. A combination of two power penalty functions

ck,m(u) = [max {u, 0}]1/k + [max {u, 0}]m , 0 < k,m <∞. (2.3.28)

It is clear that the combined function ck,m(u) given by (2.3.28) is also monotonic. The

motivation for this new kind of penalty functions is that for problems that u is not a

‘good’ initial guess, a higher order penalty term (e.g. m > 1) plays a dominating role in

the behavior of u, controlling it to converge to near zero as quickly as possible. Then,

the problem will behave as a well defined initial value problem, hence asymptotically

the lower order penalty term (e.g. k > 1) will play the dominating role. The combina-

tion of these two power penalty functions possesses a good convergence behavior with

a desirable convergence rate. These advantages are clearly seen from our numerical

experiments.
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In the following, we will establish a convergence rate of the penalty function (2.3.28).

Lemma 2.3.1 Let the combined penalty function ck,m(u) be used and uξ ∈ Lp(Ω) be

the solution to Problem 2.1.4. Then there exists a positive constant C, independent of

uξ and ξ, such that

‖[uξ − u∗]+‖Lp(Ω) ≤
C

ξ1/(p−1)
, (2.3.29)

‖[uξ − u∗]+‖L∞(0,T ;L2(I)) + ‖[uξ − u∗]+‖L∞(0,T ;H1
0,$(I)) ≤

C

ξ1/(2p−2)
, (2.3.30)

where p = 1 + m+1/k
2

.

Proof. Assume that C is a generic positive constant, independent of uξ and ξ. To

simplify the notation, we let ϕ(·, t) = [uξ(·, t)−u∗]+ ∈ H1
0,$(I) for almost all t ∈ (0, T ),

where [uξ(·, t)− u∗]+ = max{uξ(·, t)− u∗, 0}.

Now, setting v(t) = ϕ(·, t) in (2.1.14), and replacing ρ(u) with

ck,m(u) = [max {u, 0}]1/k + [max {u, 0}]m ,

we have
(
−∂uξ

∂t
, ϕ

)
+A(uξ, ϕ; t) + ξ(ϕm + ϕ1/k, ϕ) = (f, ϕ), a.e. in (0, T ). (2.3.31)

Taking −(
∂u∗

∂t
, ϕ) +A(u∗, ϕ; t) away from both sides of (2.3.31) gives

−
(
∂(uξ − u∗)

∂t
, ϕ

)
+A(uξ − u∗, ϕ; t) + ξ(ϕm + ϕ1/k, ϕ)

= (f, ϕ) +

(
∂u∗

∂t
, ϕ

)
−A(u∗, ϕ; t). (2.3.32)

Integrating both sides of (2.3.32) from t to T and using the coerciveness property of

the operator A and Hölder’s inequality, we get

1

2
(ϕ,ϕ) +

∫ T

t

||ϕ||2Adτ + ξ

∫ T

t

(
ϕm + ϕ1/k, ϕ

)
dτ

≤
∫ T

t

(f, ϕ)dτ − β

∫ T

t

eβτ(V0 − V ∗, ϕ)dτ −
∫ T

t

A(u∗, ϕ; τ )dτ

≤ C

(∫ T

t

||ϕ||pLp(I)dτ

)1/p

+ β

∫ T

t

eβτ(V0 − V ∗, ϕ)dτ −
∫ T

t

A(u∗, ϕ; τ )dτ. (2.3.33)
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Noting that a+ b ≥ 2
√
ab, if a, b ≥ 0, we have

1

2
(ϕ,ϕ) +

∫ T

t

||ϕ||2Adτ + ξ

∫ T

t

||ϕ||pLp(I)dτ

≤ 1

2
(ϕ,ϕ) +

∫ T

t

||ϕ||2Adτ + ξ

∫ T

t

(
ϕm + ϕ1/k, ϕ

)
dτ (2.3.34)

where p = m+1/k
2

.

From (2.3.33) and (2.3.34), we have

1

2
(ϕ,ϕ) +

∫ T

t

||ϕ||2Adτ + ξ

∫ T

t

||ϕ||pLp(I)dτ ≤ C

(∫ T

t

||ϕ||pLp(I)dτ

)1/p

, for all t ∈ (0, T ) .

(2.3.35)

This implies that

ξ

∫ T

t

||ϕ||pLp(I)dτ ≤ C

(∫ T

t

||ϕ||pLp(I)dτ

)1/p

.

From this, it follows that

(∫ T

t

||ϕ||pLp(I)dτ

)1/p

≤ C

ξ1/(p−1)
, where p = 1 +

m+ 1/k

2
. (2.3.36)

Now, from (2.3.35) and (2.3.36), we have

1

2
(ϕ,ϕ) +

∫ T

t

||ϕ||2Adτ ≤ C

(∫ T

t

||ϕ||pLp(I)dτ

)1/p

≤ C

ξ1/(p−1)
,

from which, it follows that

(ϕ,ϕ)
1
2 +

(∫ T

t

||ϕ||2Adτ
)1/2

≤ C

ξ1/(2p−2)

for all t ∈ (0, T ). Clearly, by replacing ϕ(·, t) with [uξ(·, t) − u∗]+, we obtain readily

(2.3.29) and (2.3.30).

Theorem 2.3.1 Assume that the assumptions of Theorem 2.2.1 are satisfied. Then,

for the combined penalty function ck,m(u) defined by (2.3.28), it holds that

‖uξ(x, t) − u(x, t)‖L∞(0,T ;L2(I)) +‖uξ(x, t)− u(x, t)‖L2(0,T ;H1
0,$(I)) ≤

C

ξ1/(m+1/k)
, (2.3.37)

as ξ → ∞.

In particular, when k = 2 and m = 2,

‖uξ(x, t)− u(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)− u(x, t)‖L2(0,T ;H1
0,$(I)) ≤

C

ξ2/5
,

as ξ → ∞.
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Proof. We still use the notation of Lemma 2.3.1. Setting v− = min(v, 0) and Rξ =

u− u∗ + [uξ − u∗]−, it follows that

u− uξ = Rξ − ϕ, and (ϕα, [uξ − u∗]−) = [uξ − u∗]α+[uξ − u∗]− ≡ 0, α > 0. (2.3.38)

Set v = u − Rξ in (2.1.7) and v = Rξ in (2.1.14). Then, by replacing ρ(u) with

ck,m(u) = [max {u, 0}]1/k + [max {u, 0}]m, we obtain
(
−∂u
∂t
,−Rξ

)
+A(u,−Rξ; t) ≥ (f,−Rξ), (2.3.39)

(
−∂uξ

∂t
,Rξ

)
+A(uξ, Rξ; t) + ξ

(
ϕm + ϕ1/k, Rξ

)
= (f,Rξ). (2.3.40)

Combining (2.3.39) and (2.3.40) gives
(
−∂(uξ − u)

∂t
,Rξ

)
+A(uξ − u,Rξ; t) + ξ(ϕm + ϕ1/k, Rξ) ≥ 0.

It follows from u ≤ u∗ that

(ϕm +ϕ1/k, Rξ) = (ϕm +ϕ1/k, u−u∗)+(ϕm +ϕ1/k, [uξ−u∗]−) = (ϕm +ϕ1/k, u−u∗) ≤ 0.

Thus, (
−∂(u− uξ)

∂t
,Rξ

)
+A(u− uξ, Rξ; t) ≤ 0.

From (2.3.38), we get
(
−∂Rξ

∂t
,Rξ

)
+A(Rξ, Rξ; t) ≤

(
−∂ϕ
∂t
,Rξ

)
+A(ϕ,Rξ; t).

Integrating both sides of the above from t to T and then using Cauchy-Schwarz in-

equality, we obtain

(Rξ, Rξ) +

∫ T

t

A(Rξ, Rξ; τ )dτ

≤
∫ T

t

(
−∂ϕ
∂τ
,Rξ

)
dτ +

∫ T

t

A(ϕ,Rξ; τ )dτ

≤ (ϕ,Rξ) +

∫ T

t

(
ϕ,
∂Rξ

∂τ

)
dτ +

∫ T

t

A(ϕ,Rξ; τ )dτ

≤ (ϕ,Rξ) +

∫ T

t

(
ϕ,
∂Rξ

∂τ

)
dτ +

∫ T

t

A(ϕ,Rξ; τ )dτ +

∫ T

t

(
ϕ,
∂u

∂τ

)
dτ

≤ ||ϕ||L∞(0,T ;L2(I))||Rξ||L∞(0,T ;L2(I)) + C1||ϕ||L2(0,T ;H1
0,$(I))||Rξ||L2(0,T ;H1

0,$(I))

+ C2||ϕ||Lp(Ω)

∥∥∥∥
∂u

∂t

∥∥∥∥
Lq(Ω)

+ ||V0 − V ∗||Lq(Ω)

≤ ||ϕ||L∞(0,T ;L2(I))||Rξ||L∞(0,T ;L2(I)) + C1||ϕ||L2(0,T ;H1
0,$(I))||Rξ||L2(0,T ;H1

0,$(I)) +
C2

ξ1/(p−1)
,
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where p = 1 + m+1/k
2

, and 1/p + 1/q = 1.

Using the coerciveness property of the operator A and (2.3.30), we obtain

(
||Rξ||L∞(0,T ;L2(I)) + ||Rξ||L2(0,T ;H1

0,$(I))

)2

≤ C

ξ1/(p−1)
,

and hence,

||Rξ||L∞(0,T ;L2(I)) + ||Rξ||L2(0,T ;H1
0,$(I)) ≤

C

ξ1/(2p−2)
.

By the triangle inequality, we finally have

||u− uξ||L∞(0,T ;L2(I)) + ||u− uξ||L2(0,T ;H1
0,$(I))

≤ ||Rξ||L∞(0,T ;L2(I)) + ||Rξ||L2(0,T ;H1
0,$(I)) + ||ϕ||L∞(0,T ;L2(I)) + ||ϕ||L2(0,T ;H1

0,$(I))

≤ C

ξ1/(2p−2)
,

This is the estimate (2.3.37).

Setting k = 2 and m = 2, and then p = 9/4, we have

‖uξ(x, t)− u(x, t)‖L∞(0,T ;L2(I)) + ‖uξ(x, t)− u(x, t)‖L2(0,T ;H1
0,$(I)) ≤

C

ξ2/5
.

Remark 2.3.1 From the proof of Theorem 2.3.1, it can be seen that if we set m = 1/k,

where k > 1, then we get the convergence rate, of order O(ξ−1/2m), of the lower order

penalty function l1/k or lm. Likewise, we obtain the convergence rates of l2 and l1 penalty

functions by setting 1/k = m = 2 and m = k = 1, respectively. Therefore, Theorem

2.3.1 actually presents a unified convergence rate for all the penalty functions considered

in [125] for American option pricing and in [38] for variational inequalities.

2.4 The Fitted Finite Volume Method

The standard finite difference method is widely applied to valuating the option pricing

problems, see [115, 118, 127]. However, it is well known [115] that when using the

standard finite difference method to solve those problems involving the convection-

diffusion operator, such as the Black-Scholes operator, some numerical difficulties may
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be encountered. The main reason is that when the volatility or the asset price is

small, the Black-Scholes operator becomes a convection-dominated operator. Hence,

the standard finite difference method will produce numerical oscillation, which will

significantly affect the accuracy of the hedging parameters. The detailed analysis of

this phenomenon can be found in [40, 115].

To overcome this numerical difficulty, the fitted finite volume discretization scheme

was proposed in [125, 124] to solve the variational problem obtained as an equiva-

lent formulation from the option pricing. The fitted finite volume method is based on

the idea proposed by Allen and Southwell for convection-diffusion problems [29]. It

has been shown in [125, 124] that the fitted finite volume method is numerically sta-

ble. Essentially, this method is based on finite volume formulation with a fitted local

approximation to the solution. The local approximation is determined by a set of two-

point boundary value problems defined on the element edges. This fitting technique

effectively eliminates the oscillation phenomenon.

In what follows, we give a brief account of the fitted finite volume method applied

to (2.1.13). To avoid overloading of symbols, in the rest of this section, we suppress the

subscript ξ of uξ used in the previous part.

Let the interval I = (0,X) be divided into N sub-intervals

Ii := (xi, xi+1), i = 0, . . . , N − 1

with 0 = x0 < x1 < · · · < xN = X. For each i = 0, 1, ..., N − 1, we put hi = xi+1 − xi

and h = max0≤i≤N−1 hi. We also let xi−1/2 = (xi−1+xi)/2 and xi+1/2 = (xi+xi+1)/2 for

each i = 1, 2, . . . , N −1. These mid-points form a second partition of (0,X) if we define

x−1/2 = x0 and xN+1/2 = xN . Finally, we set li := xi+1/2 − xi−1/2 for i = 1, . . . , N − 1.

Integrating (2.1.13) over (xi−1/2, xi+1/2) and applying the mid-point quadrature rule

to the first, third and last terms, we obtain N − 1 ‘balance equations’

−∂ui

∂t
li −

[
xi+1/2 ψ(u)|xi+1/2

− xi−1/2 ψ(u)|x−1/2

]
+ [ciui − ξρ(ui)] li = 0, (2.4.41)

for i = 1, . . . , N − 1, where ci = c(xi), ui is the nodal approximation to u(xi, t), which

is to be determined, and ψ(u) is a flux associated with u defined by

ψ(u) := ax
∂u

∂x
+ bu. (2.4.42)
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The key idea of the fitted volume method is to derive an approximation to the flux at

the two end points xi−1/2 and xi+1/2. When i 6= 0, the flux (2.4.42) can be approximated

by the following two-point boundary value problem

{ (
aux′ + bi+1/2u

)′
= 0, x ∈ Ii

u(xi) = ui, u(xi+1) = ui+1,
(2.4.43)

where bi+1/2 = b(xi+1/2). When i = 0, I0 = (0, x1), (2.4.43) is degenerated, so we cannot

use the above approximation. Instead, we consider another approximation by adding

an extra degree of freedom in the following form

{ (
aux′ + b1/2u

)′
= C1, in (0, x1)

u(0) = u0, u(x1) = u1.
(2.4.44)

Now, using (2.4.43) and (2.4.44), we can define a global piecewise constant approxima-

tion to the flux ψ(u) by ψh(u) satisfying

ψh(u) =





bi+1/2

xαi
i+1ui+1 − xαi

i ui

xαi
i+1 − xαi

i

, x ∈ Ii, i 6= 0,

1
2

[(
a+ b1/2u1

)
− (a− b0)u0

]
, x ∈ (0, x1).

(2.4.45)

Substituting (2.4.45) into (2.4.41), we obtain

−∂ui

∂t
li + ei

i−1ui−1 + ei
iui + ei

i+1ui+1 + d(ui) = 0, (2.4.46)

where 



e1
0 = −

x1(a− b1/2)

4
,

e1
1 =

x1(a− b1/2)

4
+
b1 x1+1/2 x

α1
1

xα1
2 − xα1

1

+ c1l1,

e1
2 =

bi+1/2 xi+1/2 x
αi
i+1

xαi
i+1 − xαi

i

,

and 



ei
i−1 = −

bi−1 xi−1/2 x
αi−1
i−1

xαi−1
i − xαi−1

i−1

,

ei
i =

bi−1 xi−1/2 x
αi−1
i

xαi−1
i − xαi−1

i−1

+
bi+1/2 xi+1/2 x

αi
i

xαi
i+1 − xαi

i

+ cili,

ei
i+1 =

bi+1/2 xi+1/2 x
αi
i+1

xαi
i+1 − xαi

i

,

for i = 2, . . .N − 1. The nonlinear term

d(ui) = −ξliρ(ui).
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We now discretize the time horizon [0, T ] by letting ti (i = 0, 1, . . .K) be a set of

partition points in [0, T ] satisfying T = t0 > t1, . . . , > tK = 0. Then, we apply the two-

level implicit time-stepping method with a splitting parameter θ ∈ [0, 1/2] to (2.4.46).

We can write down a compact form of the discrete system by defining





uk = (uk
1, . . . , u

k
N−1)

T ,

Ek
i = (0, . . . , 0, ei

i−1, e
i
i, e

i
i+1, 0, . . . , 0),

Ek = (Ek
1 , . . . , E

k
N−1)

T ,

Gk = diag(−l1/4tk, . . . ,−lN−1/4tk),
D(uk) = (d(u1), . . . , d(uN−1))

T ,

for k = 0, 1, . . . ,K − 1, where 4tk = tk+1 − tk < 0, Uk denotes the approximation of u

at t = tk and Ek
i = Ei(tk). Then, the final full discrete system can be written as:

(
θEk+1 +Gk

)
uk+1 + θD(uk+1) =

(
Gk − (1 − θ)Ek

)
uk − (1 − θ)D(uk), (2.4.47)

with u0 and uN satisfying the given boundary conditions (2.1.6).

2.5 Numerical Experiments

Now, we consider the numerical solution to the penalized equation (2.1.13), where the

fitted finite volume method [124] is used in the space discretization. Details of the fitted

finite volume method for the Black-Scholes differential equation can be found in [125],

[124]. Crank-Nicolson method proposed in [108] and [44] is used for the discretization of

time. It is worth noting that the lower order penalty function and the combined penalty

function are nonsmooth. Moreover, they are not even locally Lipschitz continuous at

u = 0. This, in turn, implies that the lower order penalty function is not semismooth.

Hence, the generalized Newton method [104] cannot be applied to this kind of situations.

Nonsmooth penalized equation (2.1.13) is smoothed by a polynomial function as shown

in Appendix 7.2. We will use a test problem that is the same as the one in [44]. All

the numerical results were computed in the double precision on a Pentium IV 2.8 GHz,

512M memory PC under the Visual C++.net environment.
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2.5.1 Comparison of Different Penalty Methods

The test problem is a standard American vanilla put option with the following two sets

of parameters

(i) T = 0.25, K = 100, r = 0.10, σ = 0.2.

(ii) T = 0.25, K = 100, r = 0.10, σ = 0.8.

We take the asset pricing (S) space as [0, 1000]. We divide it into 1000 sub-intervals,

that is, ∆S = 1, and divide the time interval [0, 0.25] into 100 sub-intervals, that is,

∆t = 0.0025. The value at time t = 0, and S = K = 100 are computed and compared.

Take V = 14.6747, when σ = 0.8, and V = 3.06444, when σ = 0.2 as the respective

‘reference solutions’. These reference solutions were computed in [44].

For clarity, {ξn} is denoted as a sequence of penalty parameters. For each ξn, a

solution to Problem 2.1.3 is found, denoted by Vn. Let

∆Vn = Vn − Vn−1, Rn =
∆Vn−1

∆Vn

be the difference of the solutions and the ratio of changes corresponding to the two

successive penalty parameters, respectively. Tables 2.1, 2.2, 2.3, 2.4 and 2.5 show the

details of the numerical results of the five monotonic penalty methods, where l1, l1/2

and l2 stand for the linear penalty method, 1
2
th order penalty method and quadratic

penalty method, respectively.

From Tables 2.1, 2.2, 2.3, 2.4 and 2.5, some desirable conclusions can be drawn.

1. Among the l2, l1, l1/2, ‘valley at zero’ and l2 + l1/2 penalty methods, with the same

level of accuracy, the l2 + l1/2 and l1/2 penalty methods need smaller penalty

parameters, while the l2 penalty method needs the largest. For the ‘valley at

zero’ penalty method, the results obtained are similar to those of the l1 penalty

method. These findings suggest that the combined penalty function l2 + l1/2 is

preferable to the others.

2. From the columns ξn and Rn of every table, we can observe a rough convergence

speed. For the l2 penalty method, when the penalty parameter is increased 4

times, the relative error Rn = ∆Vn−1

∆Vn
is reduced to half, see Table 2.1. For the
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Table 2.1: l2 penalty method.

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

250 3.02733 250 14.6310

1000 3.04530 0.01797 1000 14.6515 0.0205

4000 3.05481 0.00951 1.9 4000 14.6628 0.0113 1.8

16000 3.05969 0.00488 1.9 16000 14.6688 0.0060 1.9

64000 3.06215 0.00246 2.0 64000 14.6718 0.0030 2.0

256000 3.06337 0.00122 2.0 256000 14.6734 0.0016 1.9

1024000 3.06398 0.00061 2.0 1024000 14.6742 0.0008 2.0

4096000 3.06428 0.00030 2.0 4096000 14.6746 0.0004 2.0

16384000 Failed Failed Failed 16384000 Failed Failed Failed

l1 penalty method, when the penalty parameter is increased 2 times, the relative

error Rn is reduced to half, see Table 2.2. However, for the l1/2 penalty method,

when the penalty parameter is increased 2 times, the relative error Rn = ∆Vn−1

∆Vn
is

reduced to one fourth, see Table 2.3 – approximately a second order convergence

rate with respect to penalty parameter.

3. From Tables 2.5 and 2.6, we also find that there is little difference between the

convergence rates of l1/2 and l2 + l1/2. However, with the same level of penalty

parameter, the results obtained by l2 + l1/2 penalty method are more accurate

than those of l1/2, when the penalty parameters are small. However, when the

penalty parameters get larger, the results become nearly the same. In fact, when

penalty parameters are small, the situation is corresponding to a less accuracy

requirement. Thus, the initial value problem is not so well behaved. Hence, the

l2 penalty function plays the role of controlling the error of the solution obtained.

However, as the penalty parameter gets larger, a higher accuracy is required.

When u is large, the values of the functions are mainly from the contribution of

the l2 penalty function. On the other hand, when u is small, it is the l1/2 penalty

function which plays the dominating role.
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Table 2.2: l1 penalty method with smoothing interval (0, 10−3).

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

125 3.04804 125 14.6541

250 3.05622 0.01797 250 14.6641 0.0100

500 3.06039 0.00951 1.9 500 14.6695 0.0054 1.9

1000 3.06250 0.00488 1.9 1000 14.6722 0.0027 2.0

2000 3.06354 0.00246 2.0 2000 14.6736 0.0014 2.0

4000 3.06406 0.00122 2.0 4000 14.6743 0.0007 2.0

8000 3.06432 0.00061 2.0 8000 14.6746 0.0003 2.3

16000 Failed Failed Failed 16000 Failed Failed Failed

Table 2.3: Lower penalty method (l1/2) with smoothing interval (0, 10−3).

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

10 2.98285 10 14.5838

20 3.03279 0.04994 20 14.6352 0.0792

40 3.05569 0.02290 2.2 40 14.6630 0.0278 2.8

80 3.06229 0.00660 3.5 80 14.6719 0.0089 3.1

160 3.06400 0.00171 3.8 160 14.6742 0.0023 3.9

320 3.06443 0.00043 4.0 320 14.6747 0.0005 4.6

640 Failed Failed Failed 640 Failed Failed Failed
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Table 2.4: ‘Valley at zero’ penalty function with smoothing interval (0, 10−3).

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

125 3.04804 125 14.6541

250 3.05622 0.01797 250 14.6641 0.0100

500 3.06039 0.00951 1.9 500 14.6695 0.0054 1.9

1000 3.06250 0.00488 1.9 1000 14.6722 0.0027 2.0

2000 3.06354 0.00246 2.0 2000 14.6736 0.0014 2.0

4000 3.06406 0.00122 2.0 4000 14.6743 0.0007 2.0

8000 3.06432 0.00061 2.0 8000 14.6746 0.0003 2.3

16000 Failed Failed Failed 16000 Failed Failed Failed

Table 2.5: Comparison of l2 and l2 + l1/2 penalty methods with σ = 0.2 and smoothing

interval (0, 10−3).

l1/2 l1/2 + l2

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

5 2.92458 5 2.94239

10 2.98285 0.05827 10 2.99335 0.05096

20 3.03279 0.04994 1.2 20 3.03498 0.04163 1.2

40 3.05569 0.02290 2.2 40 3.05582 0.02084 2.0

80 3.06229 0.00660 3.5 80 3.06229 0.00647 3.2

160 3.06400 0.00171 3.8 160 3.06400 0.00171 3.9

320 3.06443 0.00043 4.0 320 3.06433 0.00043 4.0

640 Failed Failed Failed 640 Failed Failed Failed
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Table 2.6: Comparison of l2 and l2 + l1/2 penalty methods with σ = 0.8 and smoothing

interval (0, 10−3).

l1/2 l1/2 + l2

ξn Vn ∆Vn Rn ξn Vn ∆Vn Rn

5 14.5216 5 14.5457

10 14.5839 0.0623 10 14.5935 0.047 8

20 14.6352 0.0514 1.2 20 14.6378 0.0443 1.0

40 14.6630 0.0278 2.8 40 14.6632 0.0254 1.7

80 14.6719 0.0089 3.1 80 14.6719 0.0087 2.9

160 14.6742 0.0023 3.9 160 14.6742 0.0023 3.9

320 14.6747 0.0005 4.6 320 14.6747 0.0005 4.6

640 Failed Failed Failed 640 Failed Failed Failed

2.5.2 Comparison of Solution Times for The PSOR and Mono-

tonic Penalty Methods

In this subsection, comparison of solution times for the PSOR method and monotonic

penalty method is presented. As well, under various market parameters, the valid-

ity of the monotonic penalty method and the PSOR method is studied via numerical

experiments.

Comparison of Solution Time

As we pointed out in the introduction, the PSOR method is commonly used in American

option pricing because of its simplicity and robustness. In this section, from the numer-

ical experiments, we can give a rough comparison of solution times of the monotonic

penalty method and the PSOR method.

Example 2.5.1 An American put option with the parameters: striking price K = 100,

the interest rate r = 0.1, expiry date T = 0.25 and two different volatilities σ = 0.2 and

0.8.
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Table 2.7: Solution times of monotonic penalty method and PSOR method with differ-

ent space steps

σ = 0.2 σ = 0.8

Ns Nt Tl1/2+l2 TPSOR Tl1/2+l2 TPSOR

200 200 0.07005 0.01043 0.08750 0.26300

400 200 0.13047 0.01978 0.14765 0.13152

800 200 0.23255 0.05573 0.27995 0.86223

1600 200 0.46933 0.55182 0.56301 6.01483

Table 2.8: Solution times of monotonic penalty method and PSOR method with differ-

ent time steps

σ = 0.2 σ = 0.8

Ns Nt Tl1/2+l2 TPSOR Tl1/2+l2 TPSOR

800 100 0.16380 0.04167 0.15858 0.83438

800 200 0.26198 0.05598 0.27995 0.86233

800 400 0.42343 0.08412 0.51983 0.90027

800 800 0.72187 0.13802 0.94115 0.96355

In this example, the security maximum price is chosen to be Smax = 1000 = 10K.

Table 2.7 shows solution times of the PSOR method and monotonic penalty method

under different space steps Ns and the same time steps Nt. Figure 2.1 presents the

corresponding plots of solution times for these two methods as a function of space steps

Ns.

Similarly, Table 2.8 and Figure 2.2 show results and graphs of the PSOR method

and monotonic penalty method as the number of time steps Nt increases.

From Tables 2.7, 2.8 and Figures 2.1 and 2.2, we can draw some conclusions as

below.
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Figure 2.1: Solution times of PSOR and monotonic penalty method for different space
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1. The monotonic penalty method l1/2 + l2 gives almost linear computational time

as a function of space steps Ns. On the other hand, the PSOR method exhibits

exponential solution-time behavior as the number,Ns, of the space steps increases.

For a smaller value of Ns, the PSOR method performs faster than the monotonic

penalty method. However, as the number of the space steps increases, the effect

on the time reserving of the monotonic penalty method becomes significantly

enhanced.

2. For the monotonic penalty method, the computational time is linearly dependent

on the number, Nt, of time steps. On the other hand, the PSOR method possesses

an interesting property that the computational time is very flat as a function of

Nt.

Validity of The Monotonic Penalty Method Under Different Market Param-

eters

For a standard American vanilla option, there are two parameters to be considered –

the interest rate r and volatility σ. Here, we compare the solution times used for the

PSOR and l2 + l1/2 penalty methods when the risk-free interest rate r is a constant

taking, respectively, the value of 0.05, 0.10, 0.20, 0.40 and 0.80 for each case, while the

volatility σ is also a constant, taking, respectively, 0.10, 0.20, 0.40 and 0.80. All other

parameters are the same as those in Example 2.5.1.

Tables 2.9, 2.10 and Figure 2.3 show results and graphs of the PSOR method and

monotonic penalty method as functions of market parameters σ and r.

From Tables 2.9, 2.10 and Figure 2.3, we can observe that

1. The monotonic penalty method is much more stable and robust when compared

with the PSOR method. That is, the solution time of the monotonic penalty

method appears to be independent of the market parameters σ and r.

2. For small σ and large r, the PSOR method needs less solution time than the

monotonic penalty method. In contrast, the monotonic penalty method needs

much less solution time than the PSOR method when σ is large and r is small.
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Table 2.9: Solution times of PSOR method with different market parameters

r

σ 0.10 0.20 0.40 0.80

0.10 0.10052 0.09895 0.93483 0.97642

0.20 0.25157 0.24662 0.23438 0.90339

0.40 1.12005 1.07238 1.03125 0.92473

0.80 6.05442 6.02578 5.91875 5.65860

Table 2.10: Solution times of monotonic penalty method with different market param-

eters

r

σ 0.10 0.20 0.40 0.80

0.10 0.38750 0.34113 0.25417 0.28658

0.20 0.46442 0.41407 0.38098 0.34505

0.40 0.51772 0.47890 0.47448 0.42473

0.80 0.58152 0.55572 0.54272 0.51900
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Figure 2.3: Solution times of PSOR and monotonic penalty methods for different market
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2.6 Summary

We have studied the monotonic penalty method for pricing American options. By

using the equivalence between LCP and variational inequalities, the solvability and

convergence properties of the monotonic penalty method were proposed. We have shown

that the solution to the monotonic penalized nonlinear equation converges to that of

the original LCP. A unified convergence rate of several monotonic penalty methods was

established. Numerical experiments clearly confirmed the theoretical results obtained.

The numerical results showed that the monotonic penalty method worked better than

the PSOR method when the number of space steps is large or the parameter σ is small

or r is large.
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Chapter 3

A Power Penalty Method for

American Option Pricing with

Jump Diffusion Processes

In the original Black-Scholes analysis of the valuation of a plain option, constant volatil-

ity is assumed. Recently, empirical findings have shown that the standard Black-Scholes

assumption of lognormal stock diffusion with constant volatility is not consistent with

the market price. This phenomenon is often referred to as the volatility skew or smile [3]

and exists in all the major stock index markets today. In order to capture the existence

of volatility smiles, several extensions of the Black-Scholes model have been proposed.

Generally speaking, three approaches are being studied: the stochastic volatility ap-

proach [64], the jump diffusion model approach [93, 135, 35] and the deterministic

volatility function approach [34]. In [3], the advantages and disadvantages of these

three approaches have been carefully studied and the jump diffusion model is being

identified to be a more adaptable approach.

The jump diffusion model was introduced by Merton in [93]. Contrary to the Black-

Scholes model [10], the stock price in jump diffusion model is not a continuous function

of time. This allows to account for large changes in market prices due to rare events.

More importantly, volatility curves obtained from the jump diffusion model exhibit

behaviors similar to volatility smiles observed in markets.
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In this chapter, we aim to develop a power penalty method to price American options

arising from a jump diffusion model. Originally, this model is formulated as a partial

integro-differential complementarity problem (PIDCP). With the help of the variational

inequalities, we can transform the PIDCP into an equivalent variational form. Then, by

applying the power penalty approach, it gives rise to a penalized nonlinear equation. We

also study the convergence of the power penalty approach in some appropriate infinite

dimensional spaces and show that a rate of convergence of O(ξ−1/2k) can be achieved,

where ξ is the penalty parameter and k is the order of the power penalty function

(lk, k > 0). We also propose a numerical scheme to solving the penalized nonlinear

equation, in which the finite element method is used in space and θ-scheme is used

in time. More specifically, a θJ -scheme time-stepping method is applied to the jump

integral term. Finally, numerical examples are presented to illustrate the efficiency of

the power penalty method.

3.1 Mathematical Model

Let S denote the underlying stock price. In the Merton model, the stock price is

governed by the following stochastic differential equation (SDE)

dS

S
= µdt+ σdW + ηdN,

where

µ is the drift rate,

σ is the deterministic local volatility,

W is a standard Brownian motion,

N is a Possion process with intensity ν, dN =

{
0 with probability 1 − νdt,

1 with probability νdt,

ν is the mean arrival rate of jumps of the Possion process,

η is an impulse function producing a jump from S to (1 + η)S.

The Possion and Brownian motion processes are assumed to be uncorrelated. In

the Merton model [93], η is taken to be a lognormally distributed jump amplitude with
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probability density

G(η) =
1√

2πδη
exp

(
(log η − µη)

2δ2

2
)
,

where µη and δ denote, respectively, the mean and variance of the jumps.

Let V (S, t) represent the value of an American option with striking price K. If we

define

LV = −∂V
∂t

− σ2S2

2

∂2V

∂S2
− (r − νκ) S

∂V

∂S
+ (r + ξ)V −

(∫ ∞

0

V (Sη)G(η)dη

)
,

then the following partial integro-differential complementarity problem for the value of

V (S, t) is found in [35, 45, 118, 62]:





LV (S, t) ≥ 0,

V (S, t)− V ∗(S) ≥ 0,

LV (S, t) · (V (S, t)− V ∗(S)) = 0,

(3.1.1)

where

T is the expiry date,

r is the risk free rate,

t is the current time with 0 ≤ t ≤ T ,

κ is the expectation E(η) which is given by

κ =E(η) =

∫ ∞

0

yG(y)dy = exp
(
µη + δ2/2

)
− 1.

In the case of a put option, the boundary conditions are:

V (0, t) = K, and V (X, t) = 0, (3.1.2)

where X is chosen so that X >> K, and the payoff function V ∗(S) is defined by

V ∗(S) = V (S, T ) = max{K − S, 0}. (3.1.3)

(3.1.1) – (3.1.3) is the original partial integro-differential complementarity problem.

We define log-price of the underlying asset x = log(S), and use the changes of variables:

τ = T − t, y = log(η), η = ey and dη = eydy.
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Also, for convenience, we transform (3.1.1) – (3.1.3) into an equivalent standard form

satisfying homogeneous Dirichlet boundary conditions. For this, we define the following

operator [89] 



ABS(u) = −σ
2

2

∂2u

∂x2
+

(
σ2

2
− r

)
∂u

∂x
+ ru,

Aj(u) = ν

(
κ
∂u

∂x
+ u−

∫ ∞

−∞
u (x+ y) g (y) dy

)

L(u) =
∂u

∂τ
+ABS(u) +Aj(u),

where

g (η) =
1√
2πδ

exp
(
[(y − µη) /2δ]

2)
.

Now, by introducing a new variable

U(x, τ ) = V (x, τ )− ψ(x),

where ψ(x) = V ∗(ex), we obtain the following complementarity problem which is equiv-

alent to (3.1.1).

Problem 3.1.1 



U(x, τ ) ≥ 0,

LU(x, τ ) ≥ f(x, τ ),

(LU(x, τ ) − f(x, τ )) · U(x, τ ) = 0,

(3.1.4)

with the initial condition

U(x, 0) = 0, (3.1.5)

and the boundary conditions

U(−R, τ ) = 0 = U(R, τ ), (3.1.6)

where the domain of U is (−R,R) × (0, T ) and

f(x, τ ) = −ABS(ψ) −Aj(ψ).

Remark 3.1.1 It is worth noting that after the change of variables mentioned above,

the solution region defined by (3.1.1) – (3.1.3) is changed as well. From the computa-

tional viewpoint, we should choose a large enough R so that the result obtained by solving

Problem 3.1.1 in the region I = (−R,R) is equivalent to that of (3.1.1) – (3.1.3) in

(0, S).
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In fact, the complementarity problem (3.1.1) – (3.1.3) can also be reformulated as an

equivalent variational inequality problem. By introducing the following bilinear form

aBS(u, v; τ ) =
σ2

2

∫

I

∂u

∂x

∂v

∂x
dx+

(
σ2

2
− r

)∫

I

∂u

∂x
vdx+ r

∫

I

uvdx,

aj (u, v; τ ) = νκ

∫

I

∂u

∂x
vdx+ ν

∫

I

uvdx− ν

∫

I

∫ ∞

−∞
u(x+ y)g(y)v(x)dydx,

we obtain the equivalent variational inequality problem given by

Problem 3.1.2 Find U ∈ L2((0, T );H1
0 (I)), Uτ ∈ L2(Ω), such that U(·, τ ) ∈ K, and

for all v ∈ K,
(
∂U

∂τ
, v − U

)
+ aBS(U, v − U)) + aj(U, v − U) ≥ (f, v − U), a.e. in (0, T ), (3.1.7)

where

K =
{
v(τ ) ∈ H1

0 (I) : v(τ ) ≥ 0
}
.

Theorem 3.1.1 Problem 3.1.2 is the variational form of Problem 3.1.1.

The proof of Theorem 3.1.1 is similar to that given for Lemma 2.1.2, and hence is

omitted here.

The solvability of Problem 3.1.2 lies on the properties of the operator aBS(u, v; τ )

and aj(u, v; τ ). In [89], the properties of the operators aBS(u, v; τ ) and aj(u, v; τ ) have

been extensively studied. The following lemma presents some useful properties which

are required later in this chapter.

Lemma 3.1.1 [89] There exist positive constants C, M1, and M2, such that, for all φ,

ψ ∈ H1
0 (I),

aj(φ, φ; τ ) ≥ 0, (3.1.8)

aBS(φ, φ; τ ) ≥ Cσ2 ‖φ‖2
H1

0 (I) , (3.1.9)

and

|aj(φ,ψ; τ )| ≤M1 ‖φ‖H1
0 (I) ‖ψ‖H1

0 (I) ,

|aBS(φ,ψ; τ )| ≤M2 ‖φ‖H1
0 (I) ‖ψ‖H1

0 (I) .
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The proof of Lemma 3.1.1 can be found in [90]. Based on this lemma, the following

theorem is easily obtained.

Theorem 3.1.2 Variational inequality (3.1.7) has a unique solution, and it holds that

U,Uτ ∈ L2(0, T ;H1
0(I)) ∩ L∞(0, T ;L2(I)).

For the proof of Theorem 3.1.2, see [53].

Remark 3.1.2 If we set ξ = 0 in the operator L, then L is degenerated to the standard

Black-Scholes model with constant volatility assumption. Obviously, the analysis given

above can be carried over to this case.

In the next section, we will develop a power penalty approach to solving Problem

3.1.1.

3.2 The Power Penalty Approach

The power penalty approach to Problem 3.1.1 is stated as follows:

Problem 3.2.1

LUξ(x, t)− ξ [−Uξ]
k
+ = f(x, t), (x, t) ∈ Ω (3.2.10)

with the initial condition and boundary conditions

Uξ(x, 0) = 0,

Uξ(−R, τ ) = 0 = Uξ(R, τ ),

where ξ > 0 is the penalty parameter and [−Uξ]
k
+ is the kth (k > 0) order penalty

function defined by

[−Uξ]
k
+ = [max {−Uξ(x, t), 0}]k .
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Remark 3.2.1 Corresponding to k = 1, 0 < k < 1 and k > 1, are, respectively, the l1,

lower order and higher order penalty approaches. For example, k = 2 is the quadratic

penalty method, k = 1 is the linear penalty method and k = 1/2 is the 1/2th order

penalty method.

The variational form of Problem 3.2.1 is given below.

Problem 3.2.2 Find Uξ ∈ L2((0, T );H1
0(I)),

∂Uξ

∂τ
∈ L2(Ω), such that, for all v ∈ K,

(
∂Uξ

∂τ
, v

)
+ aBS(Uξ, v; τ ) + aj(Uξ, v; τ )− ξ

(
[−Uξ]

k
+ , v; τ

)
= (f, v), a.e. in (0, T ).

(3.2.11)

For Problem 3.2.1 (or Problem 3.2.2), we have the following unique solvability result.

Theorem 3.2.1 Problem 3.2.1 (or Problem 3.2.2) has a unique solution.

Proof. For any v1, v2 ∈ H1
0 (I) a.e. in (0, T ) with the initial conditions v1(x, 0) = 0 and

v2(x, 0) = 0, it follows from the integration by parts that

(L (v1 − v2) , v1 − v2) − ξ
(
[−v1]

k
+ − [−v2]

k
+ , v1 − v2

)

=

(
∂ (v1 − v2)

∂τ
, v1 − v2

)
+ aBS(v1 − v2, v1 − v2) (3.2.12)

+ aj(v1 − v2, v1 − v2) + ξ
(
[−v2]

k
+ − [−v1]

k
+ , v1 − v2

)
.

First, consider the function [−v]k+. By definition, it is equal to [max{−v, 0}]k. Obvi-

ously, this function is non-decreasing in v, thus

ξ
(
[−v2]

k
+ − [−v1]

k
+ , v1 − v2

)
= ξ

∫ R

−R

(
[−v2]

k
+ − [−v1]

k
+

)
(v1 − v2) dx ≥ 0. (3.2.13)

Denote e(τ ) = v1(τ ) − v2(τ ). Integrating both sides of (3.2.12) from 0 to T , and using

the inequalities (3.1.8), (3.1.9) and (3.2.13), we have
∫ T

0

[
(Le(τ ), e(τ ))− ξ

(
[−v1(τ )]

k
+ − [−v2(τ )]

k
+ , e(τ )

)]
dτ

=

∫ T

0

(
∂e(τ )

∂τ
, e(τ )

)
+ aBS (e, e; τ ) + aj (e, e; τ ) + ξ

(
[−v2]

k
+ − [−v1]

k
+ , e(τ )

)
dτ

≥
∫ T

0

(
∂e(τ )

∂τ
, e(τ )

)
dτ + C

∫ T

0

‖e(τ )‖H1(I) dτ. (3.2.14)
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However, for any t ∈ (0, T ), integrating by parts gives
∫ t

0

(
∂e(τ )

∂τ
, e(τ )

)
dτ = (e(τ ), e(τ ))−

∫ t

0

(
∂e(τ )

∂τ
, e(τ )

)
dτ .

Taking e(0) = v1(x, 0) − v2(x, 0) = 0, we have
∫ t

0

(
∂e(τ )

∂τ
, e(τ )

)
dτ =

1

2
(e(τ ), e(τ )) ≥ 0. (3.2.15)

Therefore, from (3.2.14), (3.2.15) and (3.2.12), we get

∫ T

0

[
(L (v1 − v2) , v1 − v2) − ξ

(
[−v1]

k
+ − [−v2]

k
+ , v1 − v2

)]
dτ

≥ C ‖v1 − v2‖2
L2(0,T ;H1

0(I)) .

This implies that the operator on the left-hand side of (3.2.10) is strictly monotone.

Moreover, for any v, w ∈ L2(0, T ;H1
0 (I)), it is easy to show that

∫ T

0

(aBS(v,w; τ ) + aj(v,w; τ )) dτ ≤ C ‖v‖L2(0,T ;H1
0(I)) ‖w‖L2(0,T ;H1

0(I)),

which means that the operator aBS(v,w; τ )+ aj(v,w; τ ) is continuous in both v and w.

Also, it is obvious that ([v]k+, w) is continuous in both v and w. Furthermore, it can be

easily seen that the function f(x, t) in (3.2.10) belongs to the space L2(Ω). Therefore,

using a standard result in [54], we can conclude that Problem 3.2.1 (or Problem 3.2.2)

is uniquely solvable.

Many results on the regularity of the solution to Problem 3.2.1 are now available

in the literature, see, for example [54, 28, 8]. In particular, the solution Uξ to Problem

3.2.1 is such that

U,
∂U

∂τ
∈ L2

(
0, T ;H1

0 (I)
)
∩ L∞ (0, T ;L2 (I)

)
.

3.3 Convergence Analysis of The Power Penaliza-

tion

In this section, we will show that the solution to Problem 3.2.1 converges to that of

Problem 3.1.2 as ξ → ∞ with the rate of order O(ξ−1/2k) in some appropriate norms.

We begin this discussion with the following lemma.
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Lemma 3.3.1 Let Uξ be the solution to Problem (3.2.1). If Uξ ∈ Lp(Ω), then there

exists a positive constant C > 0, independent of Uξ and ξ, such that

∥∥[−Uξ]+
∥∥

Lp(Ω)
≤ C

ξ1/k
, (3.3.16)

∥∥[−Uξ]+
∥∥

L∞(0,T ;L2(I))
+
∥∥[−Uξ]+

∥∥
L2(0,T ;H1

0(I))
≤ C

ξ1/2k
, (3.3.17)

where k is the order of the power penalty function used in (3.2.10) and p = 1 + k.

Proof. Assume that C is a generic positive constant, independent of Uξ and ξ. Let

φ(τ ) = [−Uξ(τ )]+ ∈ H1
0 (I) for almost all τ ∈ (0, T ).

Now, setting v = φ in (3.2.11) , we have

(
∂Uξ

∂τ
, φ

)
+ aBS(Uξ, φ; τ ) + aj(Uξ, v; τ )− ξ

(
[−Uξ]

k
+ , φ

)
= (f, φ), a.e. in (0, T ).

(3.3.18)

As φ(τ ) = [−Uξ(τ )]+, (3.3.18) can be reformulated as:

(
∂φ

∂τ
, φ

)
+ aBS(φ, φ; τ ) + aj(φ, φ; τ ) + ξ

(
φk, φ

)
= (−f, φ), a.e. in (0, T ).

Integrating from 0 to t, we get

1

2
(φ, φ) +

∫ t

0

aBS(φ, φ; τ )dτ +

∫ t

0

aj(φ, φ; τ )dτ + ξ

∫ t

0

(
φk, φ

)
dτ =

∫ t

0

(−f, φ)dτ.

Using (3.1.8), (3.1.9), the fact that f ∈ L2(Ω) and Hölder’s inequality, we obtain

1

2
(φ, φ) + C

∫ t

0

‖φ‖2
H1

0 (I) dτ + ξ

∫ t

0

‖φ‖p
Lp(I) dτ ≤ C

∫ t

0

‖φ‖p
Lp(I) dτ . (3.3.19)

From the above inequality, we can easily see that

ξ

∫ t

0

‖φ‖p
Lp(I) dτ ≤ C

∫ t

0

‖φ‖p
Lp(I) dτ ,

or (∫ t

0

‖φ‖p
Lp(I) dτ

)1−1/p

≤ Cξ−1.

From this, it follows that

(∫ t

0

‖φ‖p
Lp(I) dτ

)1/p

≤ Cξ
−1

p(1−1/p) =
C

ξ1/k
, (3.3.20)

since p = 1 + k. This proves (3.3.16).
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Now, from (3.3.19) and (3.3.20), we have

1

2
(φ, φ) +

∫ t

0

‖φ‖2
H1

0 (I) dτ ≤ C

∫ t

0

‖φ‖p
Lp(I) dτ ≤ C

ξ1/k
,

from which, it follows that

(φ, φ)
1/2

+

(∫ t

0

‖φ‖2
H1

0 (I) dτ

)1/2

≤ C

ξ1/2k
,

for all t ∈ (0, T ). This inequality, in turn, implies that

∥∥[−Uξ]+
∥∥

L∞(0,T ;L2(I))
+ ‖[−Uξ]+‖L2(0,T ;H1

0(I)) ≤
C

ξ1/2k
.

On the basis of Lemma 3.3.1, we next show that the solution to Problem 3.2.1

converges to that of Problem 3.1.2 as ξ → ∞ with the convergence rate of order

O(ξ−1/2k) in some appropriate norms.

Theorem 3.3.1 Suppose that the assumptions in Lemma 3.3.1 are fulfilled, and let

U and Uξ be the solutions to Problem 3.1.2 and Problem 3.2.1, respectively. If ∂U
∂τ

∈
L1/k+1(Ω), then there exists a constant C > 0, independent of ξ, U , Uξ, such that

‖U − Uξ‖L∞(0,T ;L2(I)) + ‖U − Uξ‖L2(0,T ;H1
0(I)) ≤

C

ξ1/2k
, (3.3.21)

where k is the order of the power penalty function used in (3.2.10).

Proof. We follow the notation used in Lemma 3.3.1. Now, we decompose U − Uξ as:

U − Uξ = U + [−Uξ]+ − [−Uξ]− = φ+ U − [−Uξ]− , φ+Rξ, (3.3.22)

where

φ = [−Uξ]+ ,

[−Uξ]− = −min{−Uξ, 0},

Rξ = U − [−Uξ]− .

Setting v = U −Rξ in (3.1.7) and v = Rξ in (3.2.11), we have, respectively,

(
∂U
∂τ
,−Rξ

)
+ aBS(U,−Rξ; τ )) + aj(U,−Rξ; τ ) ≥ (f,−Rξ), (3.3.23)

(
∂Uξ

∂τ
, Rξ

)
+ aBS(Uξ, Rξ; τ ) + aj(Uξ, Rξ; τ )− ξ

(
φk, Rξ

)
= (f,Rξ). (3.3.24)
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Adding up (3.3.23) and (3.3.24) gives
(

∂(Uξ−U)
∂τ

, Rξ

)
+ aBS(Uξ − U,Rξ; τ ) + aj(Uξ − U,Rξ; τ ) − ξ

(
φk, Rξ

)
≥ 0. (3.3.25)

However,

(
φk, Rξ

)
=
(
φk, U − [−Uξ]−

)
=
(
φk, U

)
−
(
φk, [−Uξ]−

)
=
(
φk, U

)
≥ 0, (3.3.26)

since U ≥ 0 (U ∈ K) and φk ≥ 0. Thus, from (3.3.25) and (3.3.26), we obtain
(

∂(Uξ−U)
∂τ

, Rξ

)
+ aBS(Uξ − U,Rξ; τ ) + aj(Uξ − U,Rξ; τ ) ≥ 0,

or (
∂(U−Uξ)

∂τ
, Rξ

)
+ aBS(U − Uξ, Rξ; τ ) + aj(U − Uξ, Rξ; τ ) ≤ 0. (3.3.27)

Using (3.3.22), (3.3.27) becomes
(
∂Rξ

∂τ
,Rξ

)
+aBS(Rξ, Rξ; τ )+aj(Rξ, Rξ; τ ) ≤

(
−∂φ
∂τ
,Rξ

)
−aBS(φ,Rξ; τ )−aj(φ,Rξ; τ ).

Integrating both sides of the above inequality from 0 to t, and using Cauchy-Schwartz’s

inequality, we obtain

1

2
(Rξ, Rξ) +

∫ t

0

aBS(Rξ, Rξ; τ )dτ +

∫ t

0

aj(Rξ, Rξ; τ )dτ

≤ (−φ,Rξ) +

∫ t

0

(
−φ, ∂Rξ

∂τ

)
dτ +

∫ t

0

(aBS(−φ,Rξ; τ ) + aj(−φ,Rξ; τ )) dτ

≤ ‖φ‖L∞(0,T ;L2(I)) ‖Rξ‖L∞(0,T ;L2(I)) + C ‖φ‖L2(0,T ;H1
0(I)) ‖rξ‖L2(0,T ;H1

0(I))

+

∫ t

0

(
−φ, ∂Rξ

∂τ

)
dτ , (3.3.28)

for all t ∈ (0, T ). Since (φ, [−Uξ]−) = 0 for almost all t ∈ (0, T ), it follows from (3.3.16)

that
∫ t

0

(
−φ, ∂Rξ

∂τ

)
dτ =

∫ t

0

(
−φ, ∂U

∂τ

)
dτ ≤ C ‖φ‖Lp(Ω)

∥∥∥∥
∂U

∂t

∥∥∥∥
Lq(Ω)

≤ C

ξ1/k
, (3.3.29)

where p = 1 + k and q = 1/k+ 1. Substituting (3.3.29) into (3.3.28), and using (3.1.8),

(3.1.9) and (3.3.17), we get
(
‖Rξ‖L∞(0,T ;L2(I)) + ‖Rξ‖L2(0,T ;H1

0(I))

)2

≤ C

(
1

2
‖Rξ‖2

L∞(0,T ;L2(I)) + ‖rξ‖2
L2(0,T ;H1

0(I))

)

≤ C
(
‖φ‖2

L∞(0,T ;L2(I)) + ‖φ‖2
L2(0,T ;H1

0(I))

)
·
(
‖Rξ‖2

L∞(0,T ;L2(I)) + ‖Rξ‖2
L2(0,T ;H1

0(I)) + ξ−1/k
)

≤ C
[
ξ−1/2k

(
‖Rξ‖L∞(0,T ;L2(I)) + ‖Rξ‖L2(0,T ;H1

0(I))

)
+ ξ−1/k

]
. (3.3.30)
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This is in the form of

y2 ≤ Cρ1/2y + Cρ,

which can be rewritten as:
(
y − 1

2
Cρ1/2

)2

≤
(
C +

C2

4

)
ρ.

Clearly, it implies that

y ≤ Cρ1/2.

Replacing y with ‖Rξ‖L∞(0,T ;L2(I)) + ‖Rξ‖L2(0,T ;H1
0,(I)) and ρ with ξ−1/k, it follows from

(3.3.30) that

‖Rξ‖L∞(0,T ;L2(I)) + ‖Rξ‖L2(0,T ;H1
0(I)) ≤

C

ξ
1
2k

.

Using the triangle inequality, the above inequality and (3.3.17), we obtain

‖U − Uξ‖L∞(0,T ;L2(I)) + ‖U − Uξ‖L2(0,T ;H1
0(I))

≤
(
‖Rξ‖L∞(0,T ;L2(I)) + ‖Rξ‖L2(0,T ;H1

0(I))

)
+
(
‖φ‖L∞(0,T ;L2(I)) + ‖φ‖L2(0,T ;H1

0(I))

)

≤ C

ξ1/2k
.

Remark 3.3.1 It is worth noting that if we set k = 1 in (3.3.21), then we can show

that the convergent rate of the l1 penalty method is O(ξ−1/2). This result is consistent

with that obtained in [8]. When 0 < k < 1, a faster convergent rate of order O(ξ−1/2k)

is achieved. This is consistent with the conclusion made in the study of minimization

problem studied in [111]. With these, we can conclude that with the same level of

accuracy, the lower order power penalty approach lk (0 < k < 1) needs much less penalty

parameter than the l1 penalty approach [35, 45, 89]. In other words, by using the

lk (0 < k < 1) penalty method, we can achieve a much higher level of accuracy with a

small penalty parameter.

3.4 Numerical Scheme for The Penalized Equation

In this section, we concentrate on the numerical solution to the penalized equation

(3.2.10). This is a nonlinear parabolic partial integro-differential equation. For its
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numerical solution, we first discretize it in time using the so-called θ-scheme and in

space by a standard linear finite element method. This yields a nonlinear algebraic

system. Then, we will give a solution algorithm for nonlinear algebraic system.

Let the space interval I = (−R,R) be divided into N + 1 sub-intervals

Ii = (xi, xi+1) , i = 1, 2, . . . , N + 1

with −R = x1 < x2 < . . . < xN+1 = R. We denote this partition as T and hi = xi+1−xi.

Let Vh be the space of continuous piecewise linear functions with respect to the partition

T . In the following, we omit the subscript ξ of Uξ when it causes no confusion in doing

so. The semi-discretization form of (3.2.10) reads:





Find Uh ∈ L2 (0, T ;Vh) , such that for all vh ∈ Vh,
d

dτ
(Uh, vh) + aBS (Uh, vh; τ ) + aj (Uh, vh; τ ) − ξ([−Uh]

k
+, vh) = (f, vh),

U1 = 0 = UN+1 and Uh(x, 0) = 0, a.e. in (0, T ),

Moreover, for computational convenience, we apply the piecewise constant element for

the nonlinear penalty term.

Let s = T/M with M ∈ N be the number of time steps. Let us denote by Um,m =

0, 1, . . . ,M , the solution to the following backward Euler discretization of (3.2.11):





Find Um+1
h ∈ Vh, m = 0, 1, . . . , M , such that for all vh ∈ Vh,

(
Um+1

h −Um
h

s
, vh) + aBS(Um+θ

h , vh; τ ) + aj(U
m+θj

h , vh; τ ) − ξ([−Um+θ
h ]k+, vh) = (fm, vh),

U0
1 = 0 = U0

N+1(R, τ ) and U0
h(x, 0) = 0, a.e. in (0, T ).

(3.4.31)

Here,

Um+θ := θUm+1 + (1 − θ)Um,

and similarly

Um+θJ := θJU
m+1 + (1 − θJ )Um,

with 0 ≤ θ, θJ ≤ 1.

The sequence of finite dimensional variational equations (3.4.31) corresponds to a

sequence of matrix form systems. Specifically, let B ={bj}1≤j≤N be a basis for Vh, i.e.

Vh = span(B). Let M denote the mass matrix with respect to B, and let ABS and Aj
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denote the stiffness matrices of aBS(·, ·) and aj(·, ·) with respect to B, respectively, i.e.





Mi,j = (bi, bj)L2(I),

ABS = aBS(bi, bj),

ABS = aj(bi, bj).

Also, let Fm be the load vector defined by

Fm
j = (fm, bj)L2(I) .

Therefore, the matrix form of (3.4.31) is written as:




Find Um+1 ∈ Vh, m = 0, 1, . . . , M , such that
1

s
M
(
Um+1 − Um

)
+ ABSU

m+θ + AjU
m+θj − ξD(Um+θ) = Fm,

U0
1 = 0 = U0

N+1(R, τ ), and U0
h(x, 0) = 0,

where Um is the coefficient vector of Um
h with respect to B and

D(Um+θ) = (h1[d1]
k
+, · · · , hi[di]

k
+, · · · , hN+1[dN+1]

k
+)T , (3.4.32)

with di = −(Um+θ)i.

Remark 3.4.1 Due to the non-local property of the operator Aj, the matrix Aj is fully

filled. In fact, it is a Toeplitz matrix. Hence, we can use the fast Fourier transform

method to calculate it. In this way, the computation time will be significantly reduced

[45, 118].

If we set θ = θj = 1
2

in the time stepping scheme, we obtain the Crank-Nicolson

method. Noting that the operator

aj(u, v) = νk

∫

I

uxvdx+ ν

∫

I

uvdx− ν

∫

I

∫ ∞

−∞
u(x+ y)g(y)v(x)dydx

is not a local operator, we can see that the stiffness matrix Aj(U
m+θj ) is a dense one.

The computation of the non-local operator is time-consuming. So, we use the so-called

‘lagging’ technique which is recommended by Tavella in [118]. That is, we can use

the Crank-Nicolson time differential in the PDE part of the equation a(u, v), and just

evaluate the integral term at the ‘old’ (lagged) time step:

1

s
M
(
Um+1 − Um

)
+ ABSU

m+θ − ξD(Um+θ) = Fm−AjU
m. (3.4.33)
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Now the unknown values at the new time step Um+1 are coupled only by the partial

differential operators, leading to a sparse system of discrete equations. The convolution

term couples U over a wide range of x, but these are all known values.

Now, we can use the classical Newton method to solve the nonlinear equation

(3.4.33). First, we reformulate (3.4.33) as:
[
1

s
M+θABS

]
Um+1−ξD(θUm+1+(1−θ)Um) = Fm− [Aj + (1 − θ)ABS]Um. (3.4.34)

Applying the damped Newton method to (3.4.34) gives
[
1

s
M+θABS − θξJD($l−1)

]
δ$l = Fm− [Aj + (1 − θ) ABS]Um + (1 − θ) ξD(Um)

− [sM+θABS]$l−1 + θξD($l−1),

$l = $l−1 + ζ · δ$l,

for l = 1, 2, . . ., with $0 a given initial guess, where JD($l−1) denotes the Jacobian of

the column vector D($), and ζ ∈ (0, 1] denotes a damping parameter. We then choose

Um+1 = lim
l→∞

$l.

It is worth noting that when taking 0 < k ≤ 1 with the lk penalty function, we can

see from (3.4.32) that ([−di]
k
+)

′ → ∞ as (−d)i → 0+. Hence, the Jacobian JD($l−1) is

singular. In order to overcome this difficulty, we use the smoothing technique, as given

in Appendix 7.2, to smooth out the term ([−di]
k
+).

Now, we can give the solution algorithm as follows:

Penalty Iteration

Let (Um+1)0 = Um

Let (Ũ)j = (Um+1)j

Let (D̃)j = D((Um+1)j)

Loop:

For j = 0, 1, 2, · · · until convergence

Solve
1

s
M
(
Um+1 − Um

)
+ ABS

(
Um+θ

)
+ Aj

(
Um+θj

)
− ξI [−U ]k+ = F,

U0 = 0,

End
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3.5 Numerical Experiments

In this section, we present two examples to illustrate the performance and convergence

of the power penalty approach. The first example is the American put option, and the

second is the American butterfly option. For these two types of options, we compare

the penalty parameters of the l1 penalty method and the lower order penalty method

(l1/2) under several different discretization schemes.

3.5.1 American Put Option Example

Put options are contingent contracts with payoff at maturity

V ∗(S) = (K − S)+ = max{K − S, 0},

where K and S are striking price and asset price, respectively.

Table 3.1: Market Parameters used in American put option examples.

T 0.25

ν 0.10

δ 0.45

µη −0.9

σ 0.15

r 0.05

K 100

B-S Implied Volatility 0.1886

We take the example which is used in [35], where the market parameters are listed

in Table 3.1. The computational results are listed in Tables 3.2, 3.3 and 3.4. In these

tables, ‘Pen. Param.’ means the penalty parameters. ‘Aver. Iterations’ means the

average number of iterations required in the penalty method during every time step.

‘Comp. Time’ is the CPU time of the computation. All the numerical results were

computed with the Matlab code on a Pentium IV PC. Finally, we depict the option

value in Figure 3.1, which is obtained by l1/2 penalty method with the discretization:

the number of time steps = 100 and the number of space steps = 256.
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Table 3.2: Computed results of American put option in the Merton model with S = 1.0

and the discretization: the number of time steps = 50 and the number of space steps

= 128.

l1 penalty method l1/2 penalty method

Pen. Param. 103 106 108 1013 20 200 2000 20000

Option Value 0.03436 0.03435 0.03435 0.03435 0.03435 0.03435 0.03435 0.03435

Free Boundary 0.91051 0.91051 0.91051 0.91051 0.91051 0.91051 0.91051 0.91051

Aver. Iteration 13 − 15 12 − 13 12 − 13 12 − 13 12 − 13 13 − 15 12 − 13 12 − 13

Comp. Time 13 10 10 10 12 10 10 10

Table 3.3: Computed results of American put option in the Merton model with S = 1.0

and the discretization: the number of time steps = 50 and the number of space steps

= 256.

l1 penalty method l1/2 penalty method

Pen. Param. 104 106 1010 1014 80 8000 80000 800000

Option Value 0.03226 0.03225 0.03225 0.03225 0.03226 0.03225 0.03225 0.03225

Free Boundary 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678

Aver. Iteration 15 − 17 12 − 13 12 − 13 12 − 13 13 − 14 12 − 13 12 − 13 12 − 13

Comp. Time 24 21 21 21 26 21 21 21

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Asset price S

Op
tio

n v
alu

e

payoff function
penalty solution

Figure 3.1: American put option value at time t = 0, obtained by l1/2 penalty method

with the discretization: the number of time steps = 100 and the number of space steps

= 256.
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Table 3.4: Computed results of American put option in the Merton model with S = 1.0

and the discretization: the number of time steps = 100 and the number of space steps

= 256.

l1 penalty method l1/2 penalty method

Pen. Param. 104 107 1010 1013 80 8000 80000 800000

Option Value 0.03238 0.03238 0.03238 0.03238 0.03438 0.03238 0.03238 0.03238

Free Boundary 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678 0.94678

Aver. Iteration 12 − 13 11 − 12 11 − 12 11 − 12 12 − 13 11 − 12 11 − 12 11 − 12

Comp. Time 40 38 38 38 40 38 38 38

3.5.2 American Butterfly Option Example

In this example, American butterfly option [127] is considered. This model is more

challenging. A butterfly option has the payoff

V ∗(S) = (S −K1)+ − 2

(
S − (K1 +K2)

2

)

+

+ (S −K2)+ ,

where K1 and K2 (K1 < K2) are striking prices specified by the contract. We can see

that the butterfly option is a combination of three put options, which can be easily seen

if we arrange the payoff in the form

V ∗(S) = (K1 − S)+ − 2

(
(K1 +K2)

2
− S

)

+

+ (K2 − S)+ .

It is clear that American butterfly option possesses two free boundaries (left one - L.

Boundary and right one - R. Boundary).

For our example, all the parameters are the same as those listed in Table 3.1, except

K1 = 90 and K2 = 110 for the butterfly option payoff. The numerical results are listed

in Table 3.5. We depict the option value in Figure 3.2, which is obtained by l1/2 penalty

method with the discretization: the number of time steps = 100 and the number of

space steps = 256.
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Table 3.5: Computed results of American butterfly option in the Merton model with

S = 1.0 and the discretization: the number of time steps = 100 and the number of

space steps = 256.

l1 penalty method l1/2 penalty method

Pen. Param. 104 107 1010 1013 80 8000 80000 800000

Option Value 0.05263 0.05261 0.05261 0.05261 0.05263 0.05261 0.05261 0.05261

L. Boundary 0.9845 0.9845 0.9845 0.9845 0.9845 0.9845 0.9845 0.9845

R. Boundary 1.0813 1.0813 1.0813 1.0813 1.0813 1.0813 1.0813 1.0813

Aver. Iteration 12 − 13 12 − 13 12 − 13 12 − 13 12 − 13 12 − 13 12 − 13 12 − 13

Comp. Time 40 40 40 40 40 40 40 40
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Figure 3.2: American Butterfly option value at time t = 0, obtained by l1/2 penalty

method with the discretization: the number of time steps = 100 and the number of

space steps = 256.
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3.5.3 Remarks

By comparing the results listed in the above two subsections, some interesting conclu-

sions can be drawn. Also, several useful results are observed.

1. Both the l1 and l1/2 penalty methods are efficient to solve the American put and

butterfly options. They are all robust with respect to the penalty parameters.

2. With the same level of accuracy, the l1/2 penalty method needs much smaller

penalty parameter than the l1 penalty method, while their computational times

are almost the same. Actually, a lower order penalty method has many advantages

over a higher order penalty method. For details, see the study of this topic in the

context of optimization theory reported in [111].

3. Exact penalty parameters are observed for both l1 and l1/2 penalty methods.

These results are consistent with those for the classic optimization theory, see

[111].

From the points 1, 2 and 3, we see that the power penalty method possesses several

good properties. In particular, the power penalty method is a robust and efficient

method to price the American option pricing with jump diffusion processes.

3.6 Summary

In this chapter, we proposed a power penalty approach to solving American option pric-

ing with jump diffusion processes, which is a more practical model than the constant

volatility Black-Scholes model. Within the framework of variational inequalities, we re-

formulated the PIDCP as a partial integro-differential equation. Then, we presented the

unique solvability and convergence analysis of the resulting partial integro-differential

equation. Moreover, a rate of convergence of this method was derived. By finite element

discretization, a numerical scheme was proposed to solve the partial integro-differential

equation. Finally, we demonstrated the efficiency of the power penalty method via

solving an American put option example and an American butterfly option example.

Desired results were obtained for both examples.
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Chapter 4

A Power Penalty Method for

Two-Asset American Option

Pricing

For a single-asset American option pricing, it has been shown in [44, 125] and [131]

that the solution obtained by the penalty approach converges to the original solution.

In [137], the quadratic penalty method and l1 penalty method were used to solve the

American options with stochastic volatility, which are two-factor models and multi-

dimensional complementarity problems. Also, in [137], a simple and intuitively equiv-

alent relationship between the penalized problem and linear complementarity problem

was given. However, there are few works that are devoted to the convergence analysis

of the penalty approach to two-asset American option pricing. In the two previous

chapters, the advantages of penalty method for American-style options over the PSOR

method has been investigated: first, it is much more stable and computationally cheaper

when compared with the PSOR method; second, it is more robust with respect to the

changes of market parameters than the PSOR method. With these advantages, in this

chapter, we develop a power penalty method for two-asset American options pricing.

We first rewrite the continuous complementarity problem in a conservative form and

give the corresponding variational form. Then, by applying variational inequalities

theory, a power penalty approach to the complementarity problem is developed. We

establish the unique solvability of the penalized nonlinear equation via the theory of
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abstract variational inequalities. After that, the convergence rate, of order O(ξ−1/2k),

of the lk penalty method is derived in some appropriate infinite dimensional spaces.

To solve the penalized nonlinear equation effectively, the fitted finite volume method

is proposed, which is known [125, 124, 131, 61] to be especially suitable for solving the

Black-Scholes equation. Empirical numerical test is implemented to verify the effective-

ness of our method.

4.1 Mathematical Model

Let x and y denote, respectively, the first and second underlying assets which follow

the geometric Brownian motion processes

dx = µ1xdt+ σ1xdW1,

dy = µ2ydt+ σ2ydW2,

where µ1 and µ2 are the drift rates of the assets x and y, σ1 and σ2 are the deterministic

local volatilities of the assets x and y, W1 and W2 are the standard Brownian motions

followed by the assets x and y, respectively. For the two assets, they are assumed to be

positively correlated by ρ ∈ [0, 1] (see [116]) .

Let V (x, y, t) represent the value of an European put option with expiry date T .

We define

LV = −∂V
∂t

− 1

2

[
σ2

1x
2∂

2V

∂x2
+ 2ρσ1σ2xy

∂2V

∂x∂y
+ σ2

2y
2∂

2V

∂y2

]
− r

[
x
∂V

∂x
+ y

∂V

∂y

]
+ rV,

(4.1.1)

where r is the risk free interest rate. Then, by the no-arbitrage theory and Ito’s formula,

we can get the two-dimensional version of the Black-Scholes equation [121]

LV = 0,

with the payoff function

V ∗(x, y) = max (K − w1x− w2y, 0) , (4.1.2)

where K > 0 is the striking price, w1, w2 ≥ 0 are the weights of the assets x and y,

respectively.
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For the case of American put options, there are possibilities of early exercise. Thus,

an additional constraint is required

V − V ∗ ≥ 0.

Consequently, the solution domain of the American option price can be divided into two

parts: the hold regions and the exercise regions. In the hold regions, we have [127, 137]

LV = 0, and V − V ∗ > 0,

while in the regions where it is optimal to exercise early, we have

LV > 0, and V − V ∗ = 0.

In a nutshell, the value of the American put option is characterized by the following

partial differential complementarity problem.




LV ≥ 0,

V − V ∗ ≥ 0,

LV · (V − V ∗) = 0,

(4.1.3)

with the boundary conditions defined by

V (0, y, t) = g1(y, t), V (x, 0, t) = g2(x, t),

V (X, y, t) = 0, V (x, Y, t) = 0,
(4.1.4)

and terminal condition

V (x, y, t = T ) = V ∗(x, y), (4.1.5)

where X >> x and Y >> y. Here, g1 and g2 are given functions that provide suitable

boundary conditions. Typically, g1 and g2 are determined via solving the associated

one dimensional American put option problems, see [121]. We will give further details

in Section 4.5.2.

For convenience of theoretical analysis, we first transform (4.1.1) into the conserva-

tive form

LV = −Vt −∇ · (D∇V + bV ) + cV, (4.1.6)

where

D =

(
a11 a12

a21 a22

)
, b =

(
b1

b2

)
.
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It is not difficult to derive the following relationships by comparing (4.1.1) and (4.1.6).

c = 3r − (σ2
1 + σ2

2 + ρσ1σ2) ,

D =

(
1
2
σ2

1x
2 1

2
ρσ1σ2xy

1
2
ρσ1σ2xy

1
2
σ2

2y
2

)
, b =

(
rx− σ2

1x− 1
2
ρσ1σ2x

ry − σ2
2y − 1

2
ρσ1σ2y

)
.

(4.1.7)

Now, we aim to transform the complementarity problem (4.1.4)–(4.1.5) into an

equivalent standard form satisfying homogeneous Dirichlet boundary conditions.

Let V0(x, y) ∈ H2(Ω) for every t such that V0 satisfies the boundary conditions given

in (4.1.4). This can be (theoretically) determined by, for example, the Laplace equation

4V0 = 0 with the boundary condition (4.1.4). In this case, ∇V0 is continuous on Ω.

With the definition of V0, we introduce a new function

u(x, y, t) = eβt (V0 − V ) ,

where β = 1
2
(σ2

1 + σ2
2 + ρσ1σ2). Taking LV0 away from both sides of the first inequality

of (4.1.3) and translating V in (4.1.3)–(4.1.5) into the new function u, it is easy to show

that the complementarity problem (4.1.3)–(4.1.5) becomes





Lu ≤ f,

u− u∗ ≤ 0,

(Lu− f) · (u− u∗) = 0,

(4.1.8)

where

Lu = −ut −∇ · (D∇u+ bu) + cV, c = c+ β

f(x, y, t) = eβtLV0, u∗ = eβt (V0 − V ∗) . (4.1.9)

The boundary conditions (4.1.4) now become

u(0, y, t) = u(X, y, t) = 0, ∀t ∈ [0, T ] and y ∈ [0, Y ],

u(x, 0, t) = u(x, Y, t) = 0, ∀t ∈ [0, T ] and x ∈ [0,X],

The terminal condition (4.1.4) becomes

u(x, y, t = T ) = u∗(x, y).
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4.2 Variational Analysis

In this section, we will give an equivalent variational inequality of (4.1.8). Before

proceeding, let us first recall some standard notation, which can be found in Section

1.4. Let Ω = [0,X]× [0, Y ] and Γ denote the boundaries of Ω. Clearly,

Γ = {x = 0, 0 ≤ y ≤ Y }∪{y = 0, 0 ≤ x ≤ X}∪{x = X, 0 ≤ y ≤ Y }∪{y = Y, 0 ≤ x ≤ X}.

We have defined the weighted Sobolev space H1
$(Ω) given by

H1
$(Ω) =

{
v(·, ·, t) : v, xvx, yvy ∈ L2(Ω),∀x, y ∈ Ω

}

with its norm denoted by ‖ · ‖1,$ . We also have

H1
0,$(Ω) =

{
v(·, ·, t) : v(·, ·, t) ∈ H1

$(Ω), v|Γ = 0
}
,

K =
{
v(·, ·, t) : v(t) ∈ H1

0,$(Ω), v(·, ·, t) ≤ u∗(·, ·, t)
}
,

where u∗(·, ·, t) is defined by (4.1.9). It is easy to verify that K is a convex and closed

subset of H1
0,$(Ω). Finally, for any Hilbert space H(Ω), the norm of Lp(0, T ;H(Ω)) is

denoted by

‖v(·, t)‖Lp(0,T ;H(Ω)) =

(∫ T

0

‖v(·, ·, t)‖p
H dt

) 1
p

.

Obviously,

Lp(0, T ;Lp(Ω)) = Lp(Ω × (0, T )) = Lp(Θ).

In what follows, we will simply write v(t) when we regard v(·, ·, , t) as an element of

H1
0,$(Ω). We will also suppress the independent time variable t (or τ ), when it causes

no confusion in doing so.

Now, we define the following variational inequality problem.

Problem 4.2.1 Find u(t) ∈ K such that, for all v ∈ K,
(
−∂u(t)

∂t
, v − u(t)

)
+B(u(t), v− u(t); t) ≥ (f, v − u(t)), a.e. in (0, T ) (4.2.10)

where B(u, v; t) is a bilinear form defined by

B(u, v; t) = (D∇u+ bu,∇v) + (cu, v), u, v ∈ H1
0,$(Ω). (4.2.11)
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For this variational inequality problem, we have the following theorem.

Theorem 4.2.1 Problem 4.2.1 is the variational form of the complementarity problem

(4.1.8).

Proof. For any w ∈ K, it follows from the definition of K that

w − u∗ ≤ 0 a.e. on Θ.

Multiplying both sides of the first inequality of (4.1.8) by w − u∗, we obtain

(
−∂u
∂t
, w − u∗

)
− (∇ · (D∇u+ bu) − cu,w − u∗) ≥ (f,w − u∗), a.e. in (0, T ).

Using the Gauss-divergence theory, we obtain
(
−∂u
∂t
, w − u∗

)
+B(u,w − u∗; t) ≥ (f,w − u∗), a.e. in (0, T ). (4.2.12)

SinceK is a convex and closed subset ofH1
0,$(Ω), we may writew as w = θv+(1−θ)u,

where u, v ∈ K and θ ∈ [0, 1]. Therefore, (4.2.12) becomes

(
−∂u
∂t
, θ (v − u)

)
+B(u, θ (v − u) ; t)

≥ (f, θ (v − u)) −
((

−∂u
∂t
, u− u∗

)
+B(u, u− u∗; t)− (f, u− u∗)

)
, a.e. in (0, T ).

(4.2.13)

On the other hand, form the third relationship of (4.1.8), we have

(Lu− f, u− u∗) = 0,

i.e. (
−∂u
∂t
, u− u∗

)
+B(u, u− u∗; t)− (f, u− u∗) = 0.

Therefore, (4.2.13) reduces to

(
−∂u
∂t
, θ (v − u)

)
+B(u, θ (v − u) ; t) ≥ (f, θ (v − u)), a.e. in (0, T ). (4.2.14)

Since θ ∈ [0, 1], we can see that (4.2.14) leads to

(
−∂u
∂t
, v − u

)
+B(u, v − u; t) ≥ (f, v − u), a.e. in (0, T ).
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In order to establish the unique solvability of Problem 4.2.1, we study the properties

of the operator B(u, v; t).

First, we define the semi-norm of B as follows:

|v|21,$ ,
∫

Ω

[
x2v2

x + ρ (xvx + yvy)
2 + y2v2

y

]
dΩ, (4.2.15)

for any v ∈ H1
0,$(Ω). It is easy to see that | · |1,$ is a weighted semi-norm on H1

0,$(Ω).

Now, ‖v‖1,$ is defined by

‖v‖2
1,$ , |v|21,$ + ‖v‖2

0,$ .

Obviously, ‖ · ‖1,$ is a weighted energy norm on H1
0,$(Ω).

With the above definitions, we have the following lemma.

Lemma 4.2.1 There exist positive constants C and M , independent of v and w, such

that for any v,w ∈ H1
0,$(Ω),

B(v, v; t) ≥ C ‖v‖2
1,$ , (coerciveness)

|B(v,w; t)| ≤ M ‖v‖1,$ ‖w‖1,$ . (continuity)

Proof. Let C and M be two generic positive constants, independent of v and w. First,

we note that for any v ∈ H1
0,$(Ω), we get by integrating by parts

∫

Ω

bv · ∇vdΩ =

∫

∂Ω

v2b · nds−
∫

Ω

v∇· (bv)dΩ = −
∫

Ω

vb ·∇vdΩ−
∫

Ω

v2∇· bdΩ. (4.2.16)

Hence, from (4.2.16), we have
∫

Ω

bv · ∇vdΩ = −1

2

∫

Ω

∇ · bv2dΩ.

Therefore, using (4.2.11), (4.2.15) and (4.2.16), we obtain

B(v, v; t) = (D∇v + bv,∇v) + c(v, v) = (D∇v,∇v) + (bv,∇v) + c (v, v)

= 1
2

∫
Ω

[
(1 − ρ)σ2

1x
2v2

x + ρ (σ1xvx + σ2yvy)
2 + (1 − ρ)σ2

2y
2v2

y

]
dΩ

+
(
c− 1

2
∇ · b

)
(v, v)

≥ C |v|21,$ +
(
β + 2r − 1

2
(σ2

1 + σ2
2 + ρσ1σ2)

)
‖v‖2

0,$

≥ C ‖v‖2
1,$ ,

75



since β = 1
2
(σ2

1 + σ2
2 + ρσ1σ2).

Now, Let us show the continuity of B. For any v,w ∈ H1
0,$(Ω), we have

|B(v,w; t)| = |(D∇v + bv,∇w) + c(v,w)| ≤ |(D∇v,∇w)| + |(bv,∇w)| + |c (v,w)| .
(4.2.17)

1. For |(D∇v,∇w)| in (4.2.17), by the Cauchy-Schwarz inequality, we have

|(D∇v,∇w)|
=

∣∣∫
Ω

(
1
2
σ2

1x
2vxwx + 1

2
σ2

2y
2vywy + ρ

2
σ1σ2xy (vxwy + vywx)

)
dΩ
∣∣

≤ 1
2

[∫
Ω
σ2

1x
2v2

xdΩ
] 1

2 ·
[∫

Ω
σ2

1x
2w2

xdΩ
] 1

2 + 1
2

[∫
Ω
σ2

2y
2v2

ydΩ
] 1

2 ·
[∫

Ω
σ2

2y
2w2

ydΩ
] 1

2 +
ρ
4

[∫
Ω
σ2

1x
2v2

xdΩ
] 1

2 ·
[∫

Ω
σ2

2y
2w2

ydΩ
] 1

2 + ρ
4

[∫
Ω
σ2

1x
2w2

xdΩ
] 1

2 ·
[∫

Ω
σ2

2y
2v2

ydΩ
] 1

2

≤
(

1
2

+ ρ
4

) [∫
Ω

(
σ2

1x
2v2

xdΩ + σ2
2y

2v2
y

)
dΩ
] 1

2 ·
[∫

Ω

(
σ2

1x
2w2

xdΩ + σ2
2y

2w2
y

)
dΩ
] 1

2

≤ M |v|1,$ |w|1,$ .

(4.2.18)

2. For |(bv,∇w)| in (4.2.17), by the expression of b in (4.1.7) and the Cauchy-Schwarz

inequality, we get

|(bv,∇w)|
=

∣∣∫
Ω
bv · ∇wdΩ

∣∣ =
∣∣∫

∂Ω
vwb · nds−

∫
Ω
w∇ · (bv) dΩ

∣∣
=

∣∣−
∫

Ω
wb · ∇vdΩ −

∫
Ω
vw∇ · bdΩ

∣∣
≤

∣∣∫
Ω
wb · ∇vdΩ

∣∣+
∣∣∫

Ω
vw∇ · bdΩ

∣∣
≤

∣∣∫
Ω
w
[(
r − σ2

1 − 1
2
ρσ1σ2

)
xvx +

(
r − σ2

2 − 1
2
ρσ1σ2

)
yvy

]
dΩ
∣∣+
∣∣∫

Ω
vw∇ · bdΩ

∣∣
≤ M ‖w‖0,$ |v|1,$ +M ‖v‖0,$ ‖w‖0,$

(4.2.19)

3. For |c(v,w)| in (4.2.17), it is easy to see

|c (v,w)| ≤M ‖v‖0,$ ‖w‖0,$ . (4.2.20)

Summarizing (4.2.17)-(4.2.20), the continuity of B is obtained as follows:

|B (v,w; t)| ≤M
(
|v|1,$ |w|1,$ + ‖w‖0,$ |v|1,$ + ‖v‖0,$ ‖w‖0,$

)
≤M ‖v‖1,$ ‖w‖1,$ .

Using Lemma 4.2.1 and the theory of abstract variational inequalities, the unique

solvability of Problem 4.2.1 is established in the following theorem.

Theorem 4.2.2 There exists a unique solution to Problem 4.2.1.

76



4.3 The Power Penalty Approach

The underlying idea of the penalty approach to solving American option pricing is

simple. Let k > 0 be a parameter. As for the single-asset option in [125], the power

penalty approach to (4.1.8) is given as the following nonlinear equation.

Luξ + ξ [uξ − u∗]
k
+ = f, (x, y, t) ∈ Θ (4.3.21)

with the given boundary and final conditions

uξ(x, y, t)|Γ = 0 and uξ(x, y, t = T ) = u∗(x, y), (4.3.22)

where ξ > 1 is the penalty parameter.

If k = 2, this penalty approach corresponds to the quadratic penalty approach.

When k = 1, the typical l1 penalty approach is obtained. When 0 < k < 1, the so-

called lower order penalty approach [111, 125] is achieved. For single-asset American

option pricing, it has been shown [125, 131] that the solution to (4.3.21) converges to

that of (4.1.8) at the rate of order O(ξ−1/2k). The same conclusion is valid for the

multi-asset American option pricing. We will verify this conclusion in the following

section.

Now, we give the rigorous mathematical derivation of the power penalty method

for the complementarity problem (4.1.8). First, we give the penalty approach to the

variational inequality (4.2.10).

Theorem 4.3.1 The variational inequality (4.2.10) of the first kind is equivalent to

the following nonlinear variational inequality of the second kind, i.e. the penalization

of (4.2.10):

Find uξ(t) ∈ H1
0,$(Ω) such that, for all v ∈ H1

0,$(Ω),

(
−∂uξ

∂t
, v − uξ

)
+B(uξ, v−uξ; t) + j(v)− j(uξ) ≥ (f, v− uξ), a.e. in (0, T ) (4.3.23)

where

j(v) =
ξ

k + 1
[v − u∗]1+k

+ . (4.3.24)
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The above theorem presents a standard result on the equivalence between the vari-

ational inequalities of the first kind and those of the second kind, see [51]. The unique

solvability is established by the coerciveness and continuity of the bilinear operator B

and the lower semi-continuity of j, see [51]. Obviously, by virtue of Lemma 4.2.1 and

(4.3.24), all the required conditions are satisfied. Hence, the penalization (4.3.23) is

uniquely solvable.

From (4.3.24), we can see that j(v) is differentiable. Hence, the penalization (4.3.23)

is equivalent to the following problem.

Problem 4.3.1 Find uξ ∈ H1
0,$(Ω) such that, for all v ∈ H1

0,$(Ω),

(
−∂uξ

∂t
, v

)
+B(uξ, v; t) + (j′(uξ), v) = (f, v), a.e. in (0, T ) (4.3.25)

where

j′(v) = ξ [v − u∗]k+ . (4.3.26)

Clearly, Problem 4.3.1 is the variational form of the nonlinear equation (4.3.21).

Hence, we obtain the power penalty approach to the complementarity problem (4.1.8).

In the next section, we will study the convergence rate of the power penalty approach.

4.4 Convergence Analysis

We now show that the solution to Problem 4.3.1 converges to that of Problem 4.2.1 as

the penalty parameter ξ → ∞ with the convergence rate of order O(ξ−1/2k) in some

proper norms. In doing so, we first give the following Lemma.

Lemma 4.4.1 Let uξ be the solution to Problem 4.3.1. If uξ ∈ Lp(Θ), then there exists

a positive constant C, independent of uξ and ξ, such that

∥∥[uξ − u∗]+
∥∥

Lp(Θ)
≤ C

ξ1/k∥∥[uξ − u∗]+
∥∥

L∞(0,T ;L2(Ω))
+
∥∥[uξ − u∗]+

∥∥
L2(0,T ;H1

0,$(Ω))
≤ C

ξ1/2k

(4.4.27)

where k is the power of the power penalty function and p = 1 + k.
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Proof. Assume that C is a generic positive constant, independent of uξ and ξ. To

simplify the notation, we let φ = [uξ − u∗]+. Obviously, φ ∈ H1
0.$(Ω) a.e. in (0, T ).

Setting v = φ in (4.3.25) and (4.3.26), we have

(
−∂uξ

∂t
, φ

)
+B(uξ, φ; t) + ξ

(
φk, φ

)
= (f, φ), a.e. in (0, T )

(
−∂ (uξ − u∗)

∂t
, φ

)
+B((uξ − u∗) , φ; t) + ξ

(
φk, φ

)
= (f, φ) +

(
∂u∗

∂t
, φ

)
−B(u∗, φ; t).

Integrating from t to T , we have

∫ T

t

(
−∂ (uξ − u∗)

∂t
, φ

)
+B((uξ − u∗) , φ; t)+ξ

(
φk, φ

)
= (f, φ)+

(
∂u∗

∂t
, φ

)
−B(u∗, φ; t)

(4.4.28)

Integrating both sides of (4.4.28) from t to T and using the coerciveness property of

the operator B and Hölder’s inequality, we get

1

2
(φ(t), φ(t)) +

∫ T

t

||φ(τ )||2Bdτ + ξ

∫ T

t

(
φk, φ

)
dτ

≤
∫ T

t

(f(τ ), φ(τ ))dτ + β

∫ T

t

eβτ(V0 − V ∗, φ(τ ))dτ −
∫ T

t

B(u∗, φ(τ ); τ )dτ

≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

+ β

∫ T

t

eβτ(V0 − V ∗, φ(τ ))dτ −
∫ T

t

B(u∗, φ(τ ); τ )dτ.

(4.4.29)

Noting that |V0 − V ∗| is uniformly bounded and β = σ2
1 + σ2

2 + 1
2
ρσ1σ2, we have

1

2
(φ(t), φ(t)) +

∫ T

t

||φ(τ )||2Bdτ + ξ

∫ T

t

||φ(τ )||pLp(Ω)dτ

≤ C

(∫ T

t

||φ||pLp(Ω)dτ

)1/p

−
∫ T

t

B(u∗, φ(τ ); τ )dτ. (4.4.30)

Since B(u, v; t) = (D∇u+ bu,∇v) + (cu, v), we have

−
∫ T

t

B(u∗, φ(τ ); τ )dτ = −
∫ T

t

(D∇u∗ + bu∗,∇φ(τ ))dτ −
∫ T

t

(cu∗, φ(τ ))dτ. (4.4.31)

Furthermore, by Green’s theorem, we obtain

−
∫ T

t
(bu∗,∇φ(τ )) dτ =

∫ T

t

∫
Ω
∇ · bu∗φ(τ )dΩdτ −

∫ T

t

∫
Γ
u∗ · nφ(τ )dΓdτ. (4.4.32)

Let Ω1 = {0 < x < K/w1, 0 < y < K/w2,K−w1x−w2y > 0} and Ω2 = Ω\Ω1. We also

let Γ0 denote the interface of Ω1 and Ω2. Therefore, Γ0 has two opposite orientations:
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Γ+
0 when it is oriented in the same direction as ∂Ω1, and Γ−

0 when it is oriented in

the same direction as ∂Ω2. Consider only the integrant (D∇u∗,∇φ) in (4.4.31). For

φ ∈ H1
0,$(Ω), note that φ = 0 on Γ, we have

− (D∇u∗,∇φ)

= −
∫

Ω

(D∇u∗)T ∇φdΩ = −
∫

Ω1

(D∇u∗)T ∇φdΩ −
∫

Ω2

(D∇u∗)T ∇φdΩ

= −
∫

Γ+
0

D∇u∗ · nφds+

∫

Ω1

∇ · (D∇u∗) φdΩ −
∫

Γ−
0

D∇u∗ · nφds +

∫

Ω2

∇ · (D∇u∗)φdΩ

= −
∫

Γ+
0

(
D∇u∗− −D∇u∗+

)
· nφds+

∫

Ω

∇ · (D∇u∗) φdΩ (4.4.33)

where n denotes the unit outward normal direction of the boundary segments and ∇u∗−
and ∇u∗+ denote, respectively, the values of ∇u∗ evaluated on the left and right sides

of Γ+
0 . From u∗ = eβt(V0 − V ∗) and (4.1.7), it is easy to see that

∇u∗ = eβt (∇V0 −∇V ∗) .

Since V0 ∈ H2(Ω), ∇V0 is continuous on Ω, as we mentioned before,

∇u∗− −∇u∗+ = eβt
[
(∇V0 −∇V ∗)− − (∇V0 −∇V ∗)+

]

= eβt
(
∇V ∗

− −∇V ∗
+

)

= eβt (−w1,−w2)
T .

Furthermore, the unit outward-normal vector to Γ+
0 is:

n = ∇ (K − w1x−w2y) / ‖∇ (K − w1x−w2y)‖ = (−w1,−w2)
T /
(
w2

1 + w2
2

)1/2
.

Therefore, estimate (4.4.33) becomes

− (D∇u∗,∇φ) = −
∫

Γ+
0

eβt (w1, w2)D
T (w1, w2)

T

(w2
1 + w2

2)
1/2

φds+

∫

Ω

∇ · (D∇u∗)φdΩ

≤ C

∫

Ω

φ(τ )dΩ,

because D is positive definite, φ is non-negative and ∇ · (D∇u∗) is bounded above on

Ω. Thus,

−
∫ T

t

(D∇u,∇φ(τ ))dτ ≤ C

∫ T

t

∫

Ω

φ(τ )dΩdτ ≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

. (4.4.34)
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Also, from (4.4.32), it follows that

−
∫ T

t

(bu∗,∇φ(τ ))dτ ≤ C

∫ T

t

∫

Ω

φ(τ )dΩdτ ≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

, (4.4.35)

because ∇ · bu∗ is bounded above on Ω.

Thus, from (4.4.29) to (4.4.35), it follows that

1

2
(φ(t), φ(t)) +

∫ T

t

||φ(τ )||2Bdτ + ξ

∫ T

t

||φ(τ )||pLp(Ω)dτ

≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

, a.e. in (0, T ) (4.4.36)

This implies that

ξ

∫ T

t

||φ(τ )||pLp(Ω)dτ ≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

, a.e. in (0, T ).

From this, it follows that

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

≤ C

ξ1/(p−1)
=

C

ξ1/k
, where p = 1 + k. (4.4.37)

Now, from (4.4.36) and (4.4.37), we have

1

2
(φ(t), φ(t)) +

∫ T

t

||φ(τ )||2Bdτ ≤ C

(∫ T

t

||φ(τ )||pLp(Ω)dτ

)1/p

≤ C

ξ1/k
,

from which, it follows that

(φ(t), φ(t))
1
2 +

(∫ T

t

||φ(τ )||2Bdτ
) 1

2

≤ C

ξ1/2k
, a.e. in (0, T ).

Clearly, by replacing φ with [uξ − u∗]+, we obtain readily (4.4.27).

Using the above Lemma, we are able to show that the solution to Problem 4.3.1

converges to that of Problem 4.2.1 at a rate of order ξ−1/2k, as given in the next theorem.

Theorem 4.4.1 Let u and uξ be the solutions to Problem 4.2.1 and Problem 4.3.1,

respectively. If uξ ∈ Lp(Θ) and ∂u
∂t

∈ L1/k+1(Θ), then there exists a positive constant C,

independent of uξ and ξ, such that

‖u− uξ‖L∞(0,T ;L2(Ω)) + ‖u− uξ‖L2(0,T ;H1
0,$(Ω)) ≤ C

ξ1/2k
(4.4.38)

where k is the power of the power penalty function.
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Proof. We still use the notation of Lemma 4.4.1. Setting v− = −min(v, 0) and

Rξ = u− u∗ + [uξ − u∗]−, it follows that

u− uξ = Rξ − ϕ,

(ϕα, [uξ − u∗]−) = [uξ − u∗]α+ [uξ − u∗]− ≡ 0, α > 0.
(4.4.39)

Set v = u−Rξ in (4.2.10) and v = Rξ in (4.3.25), we obtain

(
−∂u
∂t
,−Rξ

)
+B (u,−Rξ; t) ≥ (f,−Rξ) , (4.4.40)

(
−∂uξ

∂t
,Rξ

)
+B (uξ, Rξ; t) + ξ

(
φk, Rξ

)
= (f,Rξ) . (4.4.41)

Combining (4.4.40) and (4.4.41) gives

(
−∂(uξ − u)

∂t
,Rξ

)
+B (uξ − u,Rξ; t) + ξ

(
φk, Rξ

)
≥ 0.

It follows from u ≤ u∗ and φ ≥ 0 that

(
φk, Rξ

)
=
(
φ1/k, u− u∗

)
+
(
φk, [uξ − u∗]−

)
=
(
φk, u− u∗

)
≤ 0.

Therefore, (
−∂(u− uξ)

∂t
,Rξ

)
+B(u− uξ, Rξ; t) ≤ 0.

From (4.4.39), it follows that

(
−∂Rξ

∂t
,Rξ

)
+B(Rξ, Rξ; t) ≤

(
−∂φ
∂t
,Rξ

)
+B (φ,Rξ; t) .

Integrating both sides of the above from τ = t to τ = T and then using Cauchy-Schwarz

inequality and (ϕ, [uξ − u∗]−) = 0, we obtain

1

2
(Rξ, Rξ) +

∫ T

t

B (Rξ, Rξ; τ )dτ

≤
∫ T

t

(
−∂φ
∂τ
,Rξ

)
dτ +

∫ T

t

B (φ,Rξ; τ ) dτ

≤ (φ,Rξ) +

∫ T

t

(
φ,
∂Rξ

∂τ

)
dτ +

∫ T

t

B(φ,Rξ; τ )dτ

≤ (φ,Rξ) +

∫ T

t

B (φ,Rξ; τ ) dτ +

∫ T

t

(
φ,
∂u

∂τ

)
dτ

≤ ||φ||L∞(0,T ;L2(Ω))||Rξ||L∞(0,T ;L2(Ω)) + C||φ||L2(0,T ;H1
0,$(Ω))||Rξ||L2(0,T ;H1

0,$(Ω))

+ C||φ||Lp(Θ)

(∥∥∥∥
∂u

∂t

∥∥∥∥
Lq(Θ)

+ ||V0 − V ∗||Lq(Θ)

)
(4.4.42)

82



where p = 1 + k, and 1/p + 1/q = 1.

Since uξ ∈ Lp(Θ), and ∂u
∂t

∈ L1/k+1(Θ), it follows from (4.4.27) that

||φ||Lp(Θ)

(∥∥∥∥
∂u

∂t

∥∥∥∥
Lq(Θ)

+ ||V0 − V ∗||Lq(Θ)

)
≤ C

ξ1/k
(4.4.43)

Using the coerciveness property of the operator B, we have

1

2
(Rξ, Rξ) +

∫ T

t

B (Rξ, Rξ; τ ) dτ ≥ 1

2
||Rξ||L∞(0,T ;L2(Ω)) +C||Rξ||L2(0,T ;H1

0,$(Ω)). (4.4.44)

Therefore, from (4.4.42) to (4.4.44), we have
(
||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1

0,$(Ω))

)2

≤ C

(
1

2
||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1

0,$(Ω))

)

≤ C
[(

||φ||L∞(0,T ;L2(Ω)) + ||φ||L2(0,T ;H1
0,$(Ω))

)
.
(
||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1

0,$(Ω))

)]

+ Cξ−1/k

≤ C
[
ξ−1/2k

(
||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1

0,$(Ω))

)
+ ξ−1/k

]

Clearly, the above inequalities imply that

||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1
0,$(Ω)) ≤

C

ξ1/2k
.

Using the triangle inequality and (4.4.27), also noting that u− uξ = Rξ − ϕ, we finally

have

||u− uξ||L∞(0,T ;L2(Ω)) + ||u− uξ||L2(0,T ;H1
0,$(Ω))

≤
(
||Rξ||L∞(0,T ;L2(Ω)) + ||Rξ||L2(0,T ;H1

0,$(Ω))

)
+
(
||φ||L∞(0,T ;L2(Ω)) + ||φ||L2(0,T ;H1

0,$(Ω))

)

≤ C

ξ1/2k
.

4.5 Discretization Scheme – The Fitted Finite Vol-

ume Method

The penalty approach to the complementarity problem (4.1.8) yields a nonlinear parabolic

partial differential equation (4.3.21). In this section, we will present the fitted finite
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volume method for the Eq. (4.3.21). This method is originally proposed in [125] and

has been successfully used for solving the single-asset option pricing problem (both

European and American options).

Based on the idea of the fitted finite volume method applied to the single-asset

American option pricing, we develop the two-dimensional version of this method. The

numerical method and analysis presented in this chapter can be easily extended to

general n-dimensional American options.

For brevity, we will omit the subscript ξ in the discussion given below. But bear

in mind that we refer to V as the solution to the penalized problem rather than the

original complementarity problem. In what follows, we will give a detailed statement

of the fitted finite volume method of a two-asset American option pricing.

Since the fitted finite volume method for two-asset American options is much more

complicated, it will be described in several parts. First, we transform the penalized

equation (4.3.21) into a form with the original variable V . Then the discretization of

the space is described in the second part. In the third part, the boundary conditions are

considered. Finally, the fitted finite volume method is given for the two-asset model.

It is easy to show that the penalized equation (4.3.21) with its final and boundary

conditions (4.3.22) is equivalent to the following equation.

−Vt −∇ · (D∇V + bV ) + cV − ξ [V ∗ − V ]k+ = 0, (x, y, t) ∈ Θ (4.5.45)

with the boundary and final conditions

V (x, y, t)|Γ = 0 and V (x, y, t = T ) = V ∗(x, y).

In what follows, we will give the fitted finite volume method for (4.5.45).

4.5.1 Discretization

First, we define the meshes for (0,X). Let the interval Ix := (0,X) be divided into Nx

sub-intervals:

Ixi := (xi, xi+1), i = 0, . . . , Nx − 1

84



with 0 = x0 < x1 < · · · < xNx = X. For each i = 0, 1, ..., Nx − 1, we put hxi = xi+1 − xi

and hx = max0≤i≤Nx−1 hxi. We also let

xi−1/2 =
(xi−1 + xi)

2
and xi+1/2 =

(xi + xi+1)

2
,

for each i = 1, 2, . . . , Nx − 1. These mid-points form a second partition of (0,X) if we

define x−1/2 = x0 and xNx+1/2 = xNx . Finally, we set lxi := xi+1 − xi for i = 0, . . . , Nx.

Similarly, we define the meshes for (0, Y ). Let the interval Iy := (0, Y ) be divided

into Ny sub-intervals:

Iyj := (yj, yj+1), j = 0, . . . , Ny − 1

with 0 = y0 < y1 < · · · < yNy = Y. For each j = 0, 1, ..., Ny − 1, we put hyj = yj+1 − yj

and hy = max0≤j≤Ny−1 hyj . We also let

yj−1/2 =
(yj−1 + yj)

2
and yj+1/2 =

(yj + yj+1)

2
,

for each j = 1, 2, . . . , Ny − 1. These mid-points form a second partition of (0, Y ) if we

define y−1/2 = Y0 and yNy+1/2 = YNy . Finally, we set lyj := yj+1 − yj for j = 0, . . . , Ny.

The above two meshes define a whole mesh on Ω := Ix×Iy, where all the mesh lines

are perpendicular to one of the axes. Also, these mid-points form a second partition

of Ω, which is called boxes, denoted by Ωi,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2], for i =

0, 1, . . . , Nx − 1 and j = 0, 1, . . . , Ny − 1. We call the boxes Ωi,j = [xi−1/2, xi+1/2] ×
[yj−1/2, yj+1/2] as the dual meshes of the original partition [xi, xi+1] × [yj, yj+1].

4.5.2 Boundary Conditions

Before going on to derive the fitted finite volume method for (4.5.45), we first show how

to determine the boundary condition functions g1(y, t) and g2(x, t).

1. On the boundary x = 0, the function g1(y, t) is to be determined. In this case,

the following equation should be satisfied by V (y, t) = w2g2(y, t) :




−∂V (y, t)

∂t
− 1

2
σ2

2y
2∂

2V (y, t)

∂y2
− ry

∂V (y, t)

∂y
+ rV (y, t) − ξ [V ∗ − V ]k+ = 0,

V (0, t) = K
w2
, V (Y, t) = 0,

V (y, T ) = V ∗(0, y) = max( K
w2

− y, 0).

(4.5.46)
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2. On the boundary y = 0, the function g2(x, t) is to be determined. In this case,

the following equation should be satisfied by V (x, t) = w1g1(x, t) :





−∂V (x, t)

∂t
− 1

2
σ2

1x
2∂

2V (x, t)

∂x2
− rx

∂V (x, t)

∂x
+ rV (x, t)− ξ [V ∗ − V ]k+ = 0,

V (0, t) = K
w1
, V (X, t) = 0,

V (x, T ) = V ∗(x, 0) = max( K
w1

− x, 0).

(4.5.47)

All the above cases fall into the framework of the single-asset American option

pricing problem with the discretization defined in Section 4.5.1. Thus, we can solve

the equations (4.5.46) and (4.5.47) by the method for the single-asset American option

problem.

4.5.3 The Fitted Finite Volume Method for Two-Asset Model

Now, we concentrate on deriving the fitted finite volume method for (4.5.45) based

on the discretization defined in Section 4.5.1. Integrating (4.5.45) over the box Ωi,j =

[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] and applying the mid-point quadrature rule to the first,

third and last terms, we have (Nx − 1) × (Ny − 1) ‘balance equations’

−∂Vi,j

∂t
Ri,j −

∫

Ωi,j

(∇ · (D∇V + bV )) dΩij +
[
ci,jVi,j − ξ

[
V ∗

i,j − Vi,j

]1/k

+

]
Rij = 0,

(4.5.48)

for i = 1, . . . , Nx−1 and j = 1, . . . , Ny−1, whereRi,j = (xi+1/2−xi−1/2)×(yj+1/2−yj−1/2)

is the area of the box Ωi,j, Vi,j = V (xi, yj, t), ci,j = c(xi, yj) and V ∗
i,j = V ∗(xi, yj).

Now, we consider the approximation of the second term in Eq.(4.5.48). By Gauss’s

theorem, we have

−
∫

Ωi,j

(∇ · (D∇V + bV )) dΩij = −
∫

∂Ωi,j

(D∇V + bV ) · nds,

where ∂Ωi,j are the boundaries of the domain Ωi,j and n denotes the unit outward-

normal vector to ∂Ωi,j. As the domain Ωi,j is a rectangle, it is clear that ∂Ωi,j is the
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four edges of the rectangle. Thus, we have

−
∫

Ωi,j

(∇ · (D∇V + bV )) dΩij

= −
∫

∂Ωi,j

(D∇V + bV ) · nds

= −
∫ (xi+1/2,yj+1/2)

(xi+1/2,yj−1/2)

(a11Vx + a12Vy + b1V ) dy +

∫ (xi−1/2,yj+1/2)

(xi−1/2,yj−1/2)

(a11Vx + a12Vy + b1V ) dy

−
∫ (xi+1/2 ,yj+1/2)

(xi−1/2,yj+1/2)

(a21Vx + a22Vy + b2V ) dx+

∫ (xi+1/2 ,yj−1/2)

(xi−1/2,yj−1/2)

(a21Vx + a22Vy + b2V ) dx

, −A + B − C + D (4.5.49)

We shall look at (4.5.49) term by term. First, for the term A, we use the mid-point

quadrature rule and (4.1.7). Then, we obtain

A = hyj [a11Vx + a12Vy + b1V ](xi+1/2 ,yj)

= hyj

[
1
2
σ2

1x
2Vx + 1

2
ρσ1σ2xyVy +

(
rx − σ2

1x− 1
2
ρσ1σ2x

)
V
]
(xi+1/2,yj)

= hyjxi+1/2

[
1
2
σ2

1xVx +
(
r − σ2

1 − 1
2
ρσ1σ2

)
V
]
(xi+1/2 ,yj)

+
[

1
2
ρσ1σ2yVy

]
(xi+1/2,yj)

, hyjxi+1/2
[I + II] .

(4.5.50)

We use the forward difference to approximate Vy, i.e.,

Vy =
Vi,j+1 − Vi,j

hyj

. (4.5.51)

Hence, by denoting d = 1
2
ρσ1σ2y, the term II is rewritten as:

[
1

2
ρσ1σ2yVy

]

(xi+1/2,yj)

' di,j
Vi,j+1 − Vi,j

hyj

.

where di,j = d(xi, yj) = 1
2
ρσ1σ2yj. For the term I, we find that it is essentially the same

as (2.4.42) with the coefficients a = 1
2
σ2

1 and b = (r−σ2
1− 1

2
ρσ1σ2). Therefore, following

the discussion in Section 2.4.1, we have the following approximation to the term I
[
1

2
σ2

1xVx +

(
r − σ2

1 −
1

2
ρσ1σ2

)
V

]

(xi+1/2 ,yj)

'





bi+1/2,j
x

αi,j
i+1 Vi+1,j−x

αi,j
i Vi,j

x
αi,j
i+1 −x

αi,j
i

, i 6= 0,

1
2

[(
aj + b1/2,jV1,j

)
− (aj − b0,j)V0,j

]
, i = 0.

(4.5.52)

Here, bi+1/2,j = b(xi+1/2, yj) and αi,j = bi+1/2,j/a.
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Substituting (4.5.51) and (4.5.52) into (4.5.50), we finally obtain the approximation

of the term A in (4.5.49), i.e.,

A =

∫ (xi+1/2,yj+1/2)

(xi+1/2,yj−1/2)

(a11Vx + a12Vy + b1V ) dy

' hyjxi+1/2
(bi+1/2,j

x
αi,j
i+1 Vi+1,j−x

αi,j
i Vi,j

x
αi,j
i+1 −x

αi,j
i

+ di,j
Vi,j+1−Vi,j

hyj
), i 6= 0, (4.5.53)

Similarly, the approximation of the terms B, C and D in (4.5.49) can be achieved as

follows.

B =

∫ (xi−1/2,yj+1/2)

(xi−1/2,yj−1/2)

(a11Vx + a12Vy + b1V ) dy

'





hyjxi−1/2
(bi−1/2,j

x
αi−1,j
i Vi,j−x

αi−1,j
i−1 Vi−1,j

x
αi−1,j
i −x

αi−1,j
i−1

+ di,j
Vi,j+1−Vi,j

hyj
), i = 2, . . . Nx − 1,

hyjx1/2
(1

2
[(aj + b1/2,j)V1,j − (aj − b0,j)V0,j] + d1,j

V1,j+1−V1,j

hyj
), i = 1,

(4.5.54)

C =

∫ (xi+1/2,yj+1/2)

(xi−1/2,yj+1/2)

(a21Vx + a22Vy + b2V ) dx

' hxiyj+1/2
(bi,j+1/2

y
αi,j
j+1 Vi,j+1−y

αi,j
j Vi,j

y
αi,j
j+1 −y

αi,j
j

+ di,j
Vi+1,j−Vi,j

hxi
), j 6= 0, (4.5.55)

D =

∫ (xi+1/2,yj+1/2)

(xi+1/2 ,yj−1/2)

(a11Vx + a12Vy + b1V ) dy

'





hxiyj−1/2
(bi,j−1/2

y
αi,j−1
j Vi,j−y

αi,j−1
j−1 Vi,j−1

y
αi,j−1
j −y

αi,j−1
j−1

+ di,j
Vi+1,j−Vi,j

hxi
), j = 2, . . . Ny − 1,

hxiy1/2
(1

2
[(ai + bi,1/2)Vi,1 − (ai − bi,0)Vi,0] + di,1

Vi+1,1−Vi,1

hxi
), j = 1,

(4.5.56)

where
b = r − σ2

1 − 1
2
ρσ1σ2, a = 1

2
σ2

1, d = 1
2
ρσ1σ2y,

bi,j+1/2 = b(xi, yj+1/2), αi,j = bi,j+1/2/a, di,j = d(xi, yj),

and
b = r − σ2

2 − 1
2
ρσ1σ2, a = 1

2
σ2

2, d = 1
2
ρσ1σ2x,

bi,j+1/2 = b(xi, yj+1/2), αi,j = bi,j+1/2/a, di,j = d(xi, yj).
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Using (4.5.53), (4.5.54), (4.5.55), (4.5.56) and (4.5.49), we obtain from (4.5.48) the

following (Nx − 1) × (Ny − 1) equations.

−∂Vi,j

∂t
Ri,j + ei,j

i−1,jVi−1,j + ei,j
i,j−1Vi,j−1 + ei,j

i,jVi,j + ei,j
i,j+1Vi,j+1

+ei,j
i+1,jVi+1,j − ξ

[
V ∗

i,j − Vi,j

]1/k

+
Rij = 0

(4.5.57)

for i = 1, . . . , Nx − 1 and j = 1, . . . , Ny − 1. Here





e1,1
0,1 = −hy1

x1/2( a1−b0,1)

2
,

e1,1
1,0 = −hx1

y
1/2

(a1−b1,1/2)

2
,

e1,1
1.1 =

hy1(
b3/2,1x

3/2
x

α1,1
1

x
α1,1
2 −x

α1,1
1

+
x
1/2

(a1+b1/2,1)

2
+ d1,1)+

hx1(
b1,3/2y

3/2
y

α1,1
1

y
α1,1
2 −y

α1,1
1

+
(a1+b1,1/2)y

1/2

2
+ d1,1) + c1,1R1,1,

e1,1
1,2 = −hx1(

b1,3/2y
3/2

y
α1,1
2

y
α1,1
2 −y

α1,1
1

+ d1,1),

e1,1
2,1 = −hy1(

b3/2,1x
3/2

x
α1,1
2

x
α1,1
2 −x

α1,1
1

+ d1,1),

(4.5.58)

and




e1,j
0,j = −hyj

x1/2 (aj−b0,j)

2
,

e1,j
1,j−1 = −hx1

b1,j−1/2y
j−1/2

y
α1,j−1
j−1

y
α1,j−1
j −y

α1,j−1
j−1

,

e1,j
1.j =

hyj (
b3/2,jx

3/2
x

α1,j
1

x
α1,j
2 −x

α1,j
1

+
x
1/2

(aj+b1/2,j )

2
+ d1,j)+

hx1(
b1,j+1/2y

j+1/2
y

α1,j
j

y
α1,j
j+1 −y

α1,j
j

+
b1,j−1/2y

j−1/2
y

α1,j−1
j

y
α1,j−1
j −y

α1,j−1
j−1

+ d1,j) + c1,jR1,j,

e1,j
1,j+1 = −hx1(

b1,j+1/2y
j+1/2

y
α1,j
j+1

y
α1,j
j+1 −y

α1,j
j

) + d1,j,

e1,j
2,j = −hyj (

b3/2,jx
3/2

x
α1,j
2

x
α1,j
2 −x

α1,j
1

+ d1,j),

(4.5.59)

for j = 2, . . . , Ny − 1,




ei,1
i−1,1 = −hy1

bi−1/2,1x
i−1/2

x
αi−1,1
i−1

x
αi−1,1
i −x

αi−1,1
i−1

,

ei,1
i,0 = −hxi

y
1/2(ai−bi,1/2)

2
,

ei,1
i,1 =

hy1(
bi+1/2,1x

i+1/2
x

αi,1
i

x
αi,1
i+1 −x

αi,1
i

+
bi−1/2,1x

i−1/2
x

αi−1,1
i

x
αi−1,1
i −x

αi−1,1
i−1

+ di,1)+

hxi(
bi,3/2y

3/2
y

αi,1
1

y
αi,1
2 −y

αi,1
1

+
(ai+bi,1/2)y

1/2

2
+ di,1) + ci,1Ri,1,

ei,1
i,2 = −hxi(

bi,3/2y
3/2

y
αi,1
2

y
αi,1
2 −y

αi,1
1

+ di,1),

ei,1
i+1,1 = −hy1(

bi+1/2,1x
i+1/2

x
αi,1
i+1

x
αi,1
i+1 −x

αi,1
i

+ di,1).

(4.5.60)
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for i = 2, . . . , Nx − 1, and





ei,j
i−1,j = −hyj

bi−1/2,jx
i−1/2

x
αi−1,j
i−1

x
αi−1,j
i −x

αi−1,j
i−1

,

ei,j
i,j−1 = −hxi

bi,j−1/2y
j−1/2

y
αi,j−1
j−1

y
αi,j−1
j −y

αi,j−1
j−1

,

ei,j
i,j =

hyj (
bi+1/2,jx

i+1/2
x

αi,j
i

x
αi,j
i+1 −x

αi,j
i

+
bi−1/2,jx

i−1/2
x

αi−1,j
i

x
αi−1,j
i −x

αi−1,j
i−1

+ di,j)+

hxi(
bi,j+1/2y

j+1/2
y

αi,j
j

y
αi,j
j+1 −y

αi,j
j

+
bi,j−1/2y

j−1/2
y

αi,j−1
j

y
αi,j−1
j −y

αi,j−1
j−1

+ di,j) + ci,jRi,j,

ei,j
i,j+1 = −hxi(

bi,j+1/2y
j+1/2

y
αi,j
j+1

y
αi,j
j+1 −y

αi,j
j

+ di,j),

ei,j
i+1,j = −hyj (

bi+1/2,jx
i+1/2

x
αi,j
i+1

x
αi,j
i+1 −x

αi,j
i

+ di,j).

(4.5.61)

for i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1 and ei,j
m,n = 0 if m 6= i − 1, i, i + 1 and

n 6= j − 1, j, j + 1.

By defining

Ei,j =
(
0, · · · , 0, ei,j

i−1,j, 0, · · · , 0, e
i,j
i,j−1, e

i,j
i,j, e

i,j
i,j+1, 0, · · · , 0, e

i,j
i+1,j, 0, · · · , 0

)

for i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1, and

V =
(
V1,1, · · · , V1,Ny−1, V2,1, · · · , V2,Ny−1, · · · , VNx−1,1, · · · , VNx−1,Ny−1

)T

with Vi,0, i = 1, . . . , Nx and V0,j, j = 1, . . . , Ny in (4.5.57) being equal to the given

boundary conditions, we can rewrite (4.5.57) as:

−∂Vi,j

∂t
Ri,j + Ei,jV + p(Vi,j) = 0, (4.5.62)

where

p(Vi,j) = −ξRi,j [V
∗
i,j − Vi,j]

1/k
+ . (4.5.63)

This is a system of (Nx − 1)2 × (Ny − 1)2 linear equations with (Nx − 1) × (Ny − 1)

unknown values.

Now, as we have done in the case of the single-asset American options, we discretize

the time by letting ti (i = 0, 1, . . .M) be a set of partition points in [0, T ] satisfying

T = t0 > t1, . . . , > tM = 0. Then, we apply the two-level implicit time-stepping method

with a splitting parameter θ ∈ [0, 1/2] to (4.5.62), we get the final full discrete system

(
θEm+1 +Gm

)
Vm+1+θD(Vm+1) = (Gm − (1 − θ)Em)Vm−(1 − θ)D(Vm), (4.5.64)
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where

Vm = (V m
1,1, · · · , V m

1,Ny−1, V
m
2,1, · · · , V m

2,Ny−1, · · · , V m
Nx−1,1, · · · , V m

Nx−1,Ny−1)
T ,

Em = (Em
1,1, · · · , Em

1,Ny−1, E
m
2,1, · · · , Em

2,Ny−1, · · · , Em
Nx−1,1, · · · , Em

Nx−1,Ny−1)
T ,

Gm = diag
(
−R1,1/4tm, . . . ,−RNx−1,Ny−1/4tm

)
,

D(V m
1,1) = (p(V m

1,1), · · · , p(V m
Nx−1,Ny−1))

T ,

(4.5.65)

for m = 0, 1, . . . ,m − 1, where 4tm = tm+1 − tm < 0, Vm denotes the approximation

of V at t = tm and Em
i,j = Ei,j(tm).

4.5.4 Solution to Discrete System

After the lengthy description of the fitted finite volume method for the two-asset Amer-

ican option pricing, we finally obtain the nonlinear discrete system (4.5.64). In [125],

the solution to the discrete system for the single-asset American options has been stud-

ied. In fact, system (4.5.64) has nearly the same structure but in a higher dimension.

In the following, we will concentrate on the solution to system (4.5.64).

The Newton method will be applied to solving the nonlinear system (4.5.64). Note

that when 0 < k < 1, it follows from (4.5.63) that p′(V m
i,j ) → ∞ as V ∗

i,j −Vi,j → 0+. We

apply the smoothing technique in Appendix 7.2 to overcoming this difficulty.

Now, applying Newton’s method to (4.5.64) gives

[
θEm+1 +Gm + θJD($l−1)

]
δ$l = [Gm − (1 − θ)Em]Vm − (1 − θ)D(Vm)

−
(
θEm+1 +Gm

)
$l − θD($l−1), (4.5.66)

$l = $l−1 + ζ · δ$l

for l = 1, 2, . . . with $0 being a given initial guess, where JD($) denotes the Jacobian of

the column vector D($) and ζ ∈ (0, 1] denotes a damping parameter. We then choose

Vm+1 = lim
l→∞

$l.

We will prove that the system matrix of (4.5.66) is an M -matrix.

Theorem 4.5.1 For any given m = 1, 2, . . .M − 1, if |4tm| is sufficiently small and

c ≥ 0, then the system matrix of (4.5.66) is an M-matrix.
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Proof. From the definition of D(V), it is easy to see that the Jacobian

JD($l) = diag(p′(V m
1,1), · · · , p′(V m

Nx−1,Ny−1)),

i.e. it is a diagonal matrix. We also have p′(V m
i,j ) ≥ 0 for all i = 1, . . . Nx − 1 and

j = 1, . . . Ny − 1. Thus, to show that the system (4.5.66) is an M -matrix, it suffices to

show that θEm+1 +Gm is an M -matrix.

First, we note that ei,j
m,n ≤ 0 for all m 6= i, n 6= j since

bi+1/2,j

x
αi,j

i+1 − x
αi,j

i

=
a αi,j

x
αi,j

i+1 − x
αi,j

i

> 0,
bi,j+1/2

y
αi,j

j+1 − y
αi,j

j

=
a αi,j

y
αi,j

j+1 − y
αi,j

j

> 0, (4.5.67)

for all i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and all bi+1/2,j 6= 0, bi,j+1/2 6= 0. (4.5.67) also

holds when bi+1/2,j → 0, bi,j+1/2 → 0. Furthermore, from (4.5.61), it follows that when

ci,j ≥ 0, for all i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1,

(
ei,j

i,j

)m+1 ≥
∣∣(ei,j

i−1,j)
m+1
∣∣+
∣∣(ei,j

i,j−1)
m+1

∣∣+
∣∣(ei,j

i,j+1)
m+1
∣∣+
∣∣(ei,j

i+1,j)
m+1
∣∣+ cm+1

i,j Ri,j

=
Nx−1∑

p=1

Ny−1∑

q=1

∣∣(ei,j
p,q)

m+1
∣∣+ cm+1

i,j Ri,j,

since d and d are all non-negative. Therefore, Em+1 is diagonally dominant with respect

to its columns. When i = 1 or j = 1 or i = j = 1, it follows from (4.5.58), (4.5.59) and

(4.5.60) that

(e1,1
1,1)

m+1 ≥
Nx−1∑

p=1

Ny−1∑

q=1

∣∣(e1,1
p,q)

m+1
∣∣ ,

(e1,j
1,j)

m+1 ≥
Nx−1∑

p=1

Ny−1∑

q=1

∣∣(e1,j
p,q)

m+1
∣∣ ,

(ei,1
i,1)

m+1 ≥
Nx−1∑

p=1

Ny−1∑

q=1

∣∣(ei,1
p,q)

m+1
∣∣ ,

if c ≥ 0, am+1
j + bm+1

1/2,j ≥ 0 and am+1
i + b

m+1

i,1/2 ≥ 0. Hence, form the above analysis, we can

see that for all i, j, Em+1 is diagonally dominant and satisfies that ei,j
i,j > 0 and e < 0

for all m 6= i, n 6= j. This implies that Em+1 is an M -matrix.

For the second part, we first note that Gm of the system matrix (4.5.66) is a diagonal

matrix with positive diagonal entries. When |4tm| is sufficiently small, we also have

θci,j +
Ri,j

−4tm
> 0.
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So, θEm+1 +Gm is an M -matrix.

Theorem 4.5.1 implies that the fully discrete system (4.5.64) satisfies the discrete

maximum principle and the discretization is monotone.

4.6 Numerical Experiments

In this section, we demonstrate the efficiency and usefulness of the above penalty and

numerical method by solving the following test model problem with different values of

the parameters k and ξ. Throughout this section, the following model parameters are

used.

r = 0.1,

σ1 = 0.2, σ2 = 0.3,

ω1 = 0.6, ω2 = 0.4,

K = 1.0,

T = 1.0.

The correlation parameter ρ is chosen equal to 0 and 0.5. In order to perform simula-

tions, we must choose an upper limit for the solution domain, that is a domain where

option values outside are regarded worthless. For our model, we choose X = Y = 4.

It should be noted that in the special case when k = 1 and 2, the resulting penalty

functions are corresponding to linear and quadratic penalty functions, which have been

introduced to valuating the American option pricing problem, see [44, 35, 45, 131]. In

the case of k = 1/2, the lower order penalty function l1/2 is obtained. In [125, 131],

the lower order penalty method lk is carefully studied, where k = 1/2 is chosen. In

this chapter, we choose k = 2, 1 and 1/2 to implement the numerical tests. Some

computational details are listed below.

1. When k = 2, the nonlinear system (4.5.64) is smooth. Therefore, the Newton’s

method is applied to solving (4.5.64).
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2. When k = 1, the nonlinear system (4.5.64) is semismooth. We apply the semis-

mooth Newton’s method [104] to solving (4.5.64).

3. When k = 1/2, the nonlinear system (4.5.64) is nonsmooth. Hence, the smoothing

technique in Appendix 7.2 is adapted so as to applying the Newton’s method to

solving (4.5.64). The choice of smoothing interval ε should be moderate. It should

not be too large, otherwise the rate of convergence will be too low. On the other

hand, ε should not be too small, otherwise the Jacobian will be highly singular.

From experiments, in our numerical tests, ε is chosen moderately as 10−3.

4. We choose the timestep splitting parameter θ = 1/2 in (4.5.64) , i.e. the Crank-

Nicolson scheme.

5. The choice of the penalty parameter should be moderate. It is well known that

too large penalty parameter will lead to computational difficulty. In our numerical

tests, the attainable maximum penalty parameters are reported. From experience,

we choose ξ = 100000 when k = 2, ξ = 1000 when k = 1, ξ = 10 when k = 1/2,

respectively.

All the implementations of our numerical method are conducted within the Matlab

7.0 framework. When ρ = 0, the option value and the value of the constraint V −V ∗ at

time to maturity are depicted in Figures 4.1-4.6. Figures 4.1 and 4.2 show the results

computed by the quadratic penalty method with k = 2, ξ = 100000. Figures 4.3 and

4.4 show the results computed by the linear penalty method with k = 1, ξ = 1000.

Figures 4.5 and 4.6 depict the results computed by the lower order penalty method (l2)

with k = 1/2, ξ = 10.

When ρ = 0.5, the option value and the value of the constraint V − V ∗ at time

to maturity are depicted in Figures 4.7-4.12. Figures 4.7 and 4.8 show the results

computed by the quadratic penalty method with k = 2, ξ = 100000. Figures 4.9 and

4.10 depict the results computed by the linear penalty method with k = 1, ξ = 1000.

Figures 4.11 and 4.12 show the results computed by the lower order penalty method

(l2) with k = 1/2, ξ = 10.

From our numerical tests, we can observe that the numerical results computed by the

quadratic, l1 and l1/2 penalty methods are compatible. For quadratic penalty method,
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Figure 4.1: V at time to maturity computed by the quadratic penalty method (ρ = 0)
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Figure 4.2: V − V ∗ at time to maturity computed by the quadratic penalty method

(ρ = 0)

it needs the largest penalty parameter and is computationally most consuming. For l1/2

penalty methods, it needs the smallest penalty parameters and the least computational

time. These observations are consistent with our theoretical result (4.4.38).
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Figure 4.3: V at time to maturity computed by the linear penalty method (ρ = 0)
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Figure 4.4: V −V ∗ at time to maturity computed by the linear penalty method (ρ = 0)
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Figure 4.5: V at time to maturity computed by the lower order penalty method (ρ = 0)
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Figure 4.6: V − V ∗ at time to maturity computed by the lower order penalty method

(ρ = 0)
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Figure 4.7: V at time to maturity computed by the quadratic penalty method (ρ = 0.5)
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Figure 4.8: V − V ∗ at time to maturity computed by the quadratic penalty method

(ρ = 0.5)
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Figure 4.9: V at time to maturity computed by the linear penalty method (ρ = 0.5)
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Figure 4.10: V − V ∗ at time to maturity computed by the linear penalty method

(ρ = 0.5)
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Figure 4.11: V at time to maturity computed by the lower order penalty method

(ρ = 0.5)
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Figure 4.12: V − V ∗ at time to maturity computed by the lower order penalty method

(ρ = 0.5)

4.7 Summary

In this chapter, we have presented the power penalty method for the two-asset American

option pricing problem and developed the fitted volume method to solve the nonlinear

penalized parabolic PDE. By the variational analysis, we derived the penalty approach

to the complementarity problem which is resulted from the two-asset American option

pricing problem. The rate of convergence of the power penalty method was obtained in

some infinite dimensional spaces. To solve the penalized PDE, we have proposed the

two-dimensional version of the fitted finite volume method. Numerical procedure was

developed carefully. Numerical examples were implemented to verify the theoretical

results. The numerical results showed that the method performed very well for the test

problems.
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Chapter 5

Augmented Lagrangian Method for

American Option Pricing

In the previous chapters, we focus on studying the penalty methods for several kinds

of American-style option pricing. As we mentioned before, the convergence rates of

l1 and l2 penalty methods are fast and their accuracy is high for valuating American

option. However, to achieve a desirable accuracy, the l2 and l1 penalty methods require

large enough penalty parameters. It is well known that a large penalty parameter

could cause numerical difficulty. As for the power penalty method (lk, 0 < k < 1) for

pricing American options, although a much smaller penalty parameter is required, the

resulting nonlinear equation systems are nonsmooth and non-Lipschitz. Hence, much

more computational time is required to solve the nonsmooth equation systems.

Lagrangian method for valuating American options was used in [122]. This method

is to solve an equivalent quadratic programming problem. By using the Uzawa’s duality

method [53], an algorithm was developed in [122] for solving the American option

pricing. For this method, the optimal exercise boundary can be easily obtained from

Kuhn-Tucker multipliers by taking into account that exercise boundary vanishes only

outside the active set. However, the unsatisfactory convergence rate and low accuracy

are the two major disadvantages.

While Lagrangian method and penalty methods have been investigated to price

American options, little attention is devoted to develop augmented Lagrangian method
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(ALM) to solve those problems. It is widely known that ALM has several advantages

over Lagrangian method and penalty method, see [9, 40, 51] and the references therein.

First, to achieve the desired accuracy, the augmented Lagrangian method needs much

less iterations than the Lagrangian method. Hence, the rate of convergence of ALM is

faster than that of Lagrangian method. Second, much larger penalty parameters can

be attained by ALM such that a more accurate solution can be obtained. Third, with

the same level of accuracy, the augmented Lagrangian method requires a much smaller

penalty parameter than the penalty method.

In this chapter, we formulate the continuous models resulted from the American

put option pricing problem, that is, a partial differential complementarity problem and

a variational inequality problem. The fitted finite volume method [125] is employed for

the discretization of the variational inequality formulation. This leads to a sequence

of large scale finite dimensional variational inequality problems. We adapt the aug-

mented Lagrangian method to solving these variational inequalities. We present the

explicit augmented Lagrangian formulation and design the corresponding augmented

Lagrangian algorithm to solve the American put option pricing problem. The existence

of the Lagrangian multiplier is established. Due to the elimination of oscillation in

the fitted finite volume discretization, these resulting variational inequalities can be

effectively solved by the augmented Lagrangian method [57, 67, 68, 73]. A convergence

rate of order O(1/ξ) of the augmented Lagrangian method with respect to the penalty

parameter ξ is obtained. Moreover, for fixed penalty parameter ξ, a superlinear con-

vergence rate for each discrete variational inequality problem is established. To explore

the advantages of the augmented Lagrangian method over penalty methods and the

Lagrangian method, empirical tests are carried out with two sets of problems. Further-

more, to compare the augmented Lagrangian method with the PSOR method, empirical

experiments with different market parameters σ and r and different step sizes of space

variable and time variable are implemented. For the augmented Lagrangian method,

including robustness with respect to changes of market parameters, the advantages over

the PSOR method are revealed.
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5.1 Continuous Models of American Option Pricing

First, let us recall the Black-Scholes operator

LV : = −∂V
∂t

− 1

2
σ2S2∂

2V

∂S2
− rS

∂V

∂S
+ rV.

Then, we transform the Black-Scholes operator into the following self-adjoint form:

LV : = −∂V
∂t

− ∂

∂S

[
aS2∂V

∂S
+ bSV

]
+ c V

with a = 1
2
σ2, b = r− σ2, c = 2r−σ2, where V (S, t) is the value of American put option.

For convenience, we replace the asset price S with x. Then, the partial differential

complementarity form of the American put option pricing problem can be stated as:

Problem 5.1.1

(DCP )





LV (x, t) ≥ 0,

V (x, t)− Λ(x, t) ≥ 0,

LV (x, t) · (V (x, t) −Λ(x, t) = 0,

a.e. Ω = I × (0, T ),

(5.1.1)

where I = (0,X) ⊂ R is the variable range of the underlying asset price, and the

deterministic variable X is chosen to be large enough so as to reflect the practical

reality.

The final condition and boundary conditions are:

V (x, T ) = Λ(x, T ),

V (0, t) = K, lim
x→∞

V (x, t) = 0,

where Λ(x, t) is the payoff function defined by Λ(x, t) = max{K − x, 0}.

It is easy to prove that the following variational inequality problem is equivalent to

the partial differential complementarity problem (5.1.1).

Problem 5.1.2 Find V (t) ∈ K = {v ∈ H1
$(I) : v ≥ Λ, V (0, t) = K, V (X, t) = 0},

such that, ∀v ∈ K,
(
−∂V (t)

∂t
, v − V (t)

)
+A (V (t) , v − V (t); t) ≥ 0, a.e. in (0, T ),

V (x, T ) = Λ(x, T ),
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where

A(u, v; t) =
(
ax2u′ + bxu, v′

)
+ (cu, v)

is a bilinear form, u′ , ∂u/∂x, (·, ·) denotes the inner product on L2 (I), and H1
$(I) is

the weighted Sobolev space defined by H1
$(I) = {v(x) : v, x∂v/∂x ∈ L2(I)}.

The unique solvability of Problem 5.1.2 lies on the coerciveness and continuity prop-

erties of the operator A(u, v; t). See Lemma 2.1.1 and its proof.

The partial differential complementarity problem (5.1.1) implies that there exist an

optimal exercise boundary x∗(t) and an optimal exercise time ρ(t) defined by

x∗(t) = sup {x : V (x, t) = Λ(x, t)} ,

ρ(t) = inf {τ ∈ [t, T ] : V (x(τ ), τ ) = Λ(x(τ ), τ )} ,

respectively. The domain of the value function can thus be separated into a continuous

region C (inactive region), on which the option has the value greater than the payoff for

early exercise, and a stopping region S (active region), where the value of the option

equals the payoff, see [69, 81]. Hence,

C=
{
(x, t) ∈ R+ × (0, T ] : V (x, t) > Λ (x, t)

}
,

S=
{
(x, t) ∈ R+ × (0, T ] : V (x, t) = Λ (x, t)

}
.

In the next section, we propose a discrete form of system (5.1.1), which is based on

the fitted finite volume method.

5.2 Fitted Finite Volume Discretization

We apply the finite difference method on time and the fitted finite volume method on

space. Detailed formulation and analysis of the fitted finite volume method can be

found in Section 2.4. In what follows, we give a brief account of the fitted finite volume

discretization applied to (5.1.1).

Let the interval I = (0,X) be divided into N sub-intervals

Ii := (xi, xi+1), i = 0, . . . , N − 1,

103



with 0 = x0 < x1 < · · · < xN = X. For each i = 0, 1, ..., N − 1, we put hi = xi+1 − xi

and h = max0≤i≤N−1 hi. We also let xi−1/2 = (xi−1 + xi)/2 and xi+1/2 = (xi + xi+1)/2

for each i = 1, 2, . . . , N − 1. These mid-points form a second partition of (0,X) if we

define x−1/2 = x0 and xN+1/2 = xN .

For time discretization, let tm, m = 0, 1, . . . ,M , be a set of partition points in

[0, T ] satisfying T = t0 > t1 > · · · > tM = 0. Then, we apply the two-level implicit

time-stepping method with splitting parameter θ ∈ [1/2, 1].

Thus, by applying the fitted volume method to the variational problem 5.1.2, it

leads to the following sequential finite dimensional variational inequality problems at

times t = tm for m = M − 1,M − 2, . . . , 2, 1, 0.

Problem 5.2.1 Find Vm ∈ Km = {Vm ∈ RN−1 : Vm ≥ Λm}, such that, for all

Um ∈ Km,

(MfvmVm,Um−Vm) ≥
(
qm+1,Um−Vm

)
. (5.2.2)

In Problem 5.2.1, Vm = (V m
1 , · · · , V m

N−1)
T is the (N − 1)-vector of variables, Λm =

(Λm
1 , · · · ,Λm

N−1)
T and qm = (qm

1 , · · · , qm
N−1)

T are two (N − 1)-vectors of constants.

The boundary and final conditions for Problem 5.2.1 are:

{
V m

0 = K, V m
N = 0, m = 0, 1, . . . ,M

V0 = (Λ0
1, · · · ,Λ0

N−1)
T .

For the concise expression of the matrix Mfvm, we define

G = diag(−l1/∆tm,−l2/∆tm , · · · , − lN−1/∆tm),

Ei = (0, · · · , 0, ei i−1, ei i, ei i+1, 0, · · · , 0),
E = (E1,E2, · · · ,EN−1)

T ,

where, for i = 1,





e10 = −
x1(a− b1/2)

4
,

e11 =
x1(a− b1/2)

4
+
b1 x1+1/2 x

α1
1

xα1
2 − xα1

1

+ c1l1,

e12 =
bi+1/2 xi+1/2 x

αi
i+1

xαi
i+1 − xαi

i
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and, for i = 2, . . . N − 1,





ei i−1 = −
bi−1 xi−1/2 x

αi−1
i−1

xαi−1
i − xαi−1

i−1

,

ei i =
bi−1 xi−1/2 x

αi−1
i

xαi−1
i − xαi−1

i−1

+
bi+1/2 xi+1/2 x

αi
i

xαi
i+1 − xαi

i

+ cili,

ei i+1 =
bi+1/2 xi+1/2 x

αi
i+1

xαi
i+1 − xαi

i

,

∆tm = tm+1−tm is defined as the time-step. Here, αi = bi+1/2/a, and li = xi+1/2−xi−1/2.

Now the matrix Mfvm can be expressed as:

Mfvm= θE + G.

By virtue of Theorem 5.2 in [125], we see that the matrix Mfvm is an M -matrix.

The constant vector qm+1 is defined by

qm+1 = [G − (1 − θ)E]Vm+1 −




e10V
m+1
0

...

eN−1 NV
m+1

N




N−1

,

m = 0, 1, . . . ,M , where Vm+1 is computed from the previous time step.

Remark 5.2.1 A matrix A is said to be an M-matrix if it is monotone and if, fur-

thermore, all of its off-diagonal elements are non-positive, see [20]. Another equivalent

definition of M-matrix is that A is nonsingular and all of its off-diagonal elements are

non-positive and A−1 ≥ 0, see [68].

For clarity and readability, we omit the superscript m and m+ 1 in the rest of this

chapter.
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5.3 Augmented Lagrangian Method for American

Option Pricing

5.3.1 Augmented Lagrangian Algorithm

It is worth noting that with the number of the discrete points increases, the scale of

Problem 5.2.1 gets larger. Thus, for solving this large scale problem, a fast and effective

numerical optimization algorithm is in order. Consequently, we propose the augmented

Lagrangian method for solving the variational inequality (5.2.2). As mentioned in

Section 5.2, for time t, let tm, m = 0, 1, . . . ,M , be a set of partition points in [0, T ]

satisfying T = t0 > t1 > · · · > tM = 0. This gives a sequence of variational inequalities

(5.2.2). The augmented Lagrangian algorithm is applied to each discrete variational

inequality (5.2.2).

First, we define a vector λ ∈ RN−1
+ and a penalty parameter ξ ∈ R+. Let V k

i

and λk
j be the kth estimate for Vi and λj, where Vk = (V k

1 , · · · , V k
N−1)

T and λk =

(λk
1, · · · , λk

N−1)
T . Now, as in [57], we introduce the augmented Lagrangian formulation

for Problem 5.2.1 as follows.{
MfvmVq−q− λ= 0,

λ = max {0, λ+ξ (Λ − V)} , ∀ξ ∈ R+.
(5.3.3)

From Remark 5.2.1, it is obvious that Mfvm is monotone since it is an M -matrix. The

max operator is also monotone. Thus, by virtue of the monotone operator theory, we

see that (5.3.3) has a unique solution denoted by (Vξ, λξ), see [68].

Based on (5.3.3), the augmented Lagrangian algorithm [68] for pricing American

options is given below.

Algorithm 5.3.1 (ALM Algorithm) At each time level:

1. Let iteration step k = 0, and initialize ξ > 0, ε > 0, V0 ≥ Λ;

2. Set the inactive and active sets by

Ik+1 =
{
i ∈ N: λk

i + ξ
(
Λi − V k

i

)
≤ 0
}
,

Ak+1 =
{
i ∈ N: λk

i + ξ
(
Λi − V k

i

)
> 0
}
,
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where N = {1, 2, · · · , N − 1};

3. Solve the following problem for Vk+1:

MfvmVk+1 − λk = q;

4. Update λk+1
i ,

λk+1
i =

{
0 on Ik+1 ,

λk
i + ξ(Λi − [Vi]

k+1) on Ak+1;

5. If ‖Vk+1 − Vk‖ ≤ ε, Stop; else, let k = k + 1, and go to Step 2.

It is worth noting that ALM is ideal for solving American option pricing, since at

each time step this method only solves a sequence of linear algebraic equation system

with sparse matrices. In the next subsection, we point out that the limiting points of the

sequences {[V]k} and {λk} are, respectively, the option values V and the Lagrangian

multiplier λ. Thus, by controlling the penalty parameter, we can obtain the result

as accurately as required. Furthermore, by virtue of the Lagrangian multiplier λ, the

optimal exercise boundary can be obtained directly. In fact, in this method, we can

update Lagrangian multiplier λ automatically, which means that the optimal exercise

boundary is obtained automatically, this is an additional major advantage over the

penalty methods. On the other hand, in this method, the penalty parameter r is not

required to take very large value.

Remark 5.3.1 If we set the penalty parameter ξ = 0 in (5.3.3), then the Lagrangian

method is obtained, which has been studied in [122]. It is worth noting that the La-

grangian multiplier method is strongly problem-dependent and does not usually give rise

to an accurate solution. Moreover, the convergence of the Lagrangian method when ap-

plied to American options is very slow. All these shortcomings can be clearly observed

in the numerical examples to be presented in Section 5.4.

Remark 5.3.2 If we substitute the second relation in (5.3.3) into the first one and

then set λ = 0, then the linear penalty method is obtained, which has been studied

in [44, 125]. It is worth noting that the penalty parameter is required to be chosen

large enough if accurate results are to be obtained, see [40]. Hence, computational
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difficulty may be encountered. Furthermore, by the penalty method, the results obtained

for the American option pricing only satisfy the complementarity constraint conditions

approximately, and the optimal exercise boundary cannot be obtained directly. These

points can be seen in the numerical examples to be presented in Section 5.4.

5.3.2 Convergence Analysis of ALM

The convergence analysis of ALM applied to variational inequalities has been studied in

[51, 53, 52, 68, 73]. In fact, due to the fact that the matrix Mfvm obtained by the fitted

finite volume discretization is an M -matrix, some convergence properties of our method

can be deduced from the results presented in [51, 53, 52, 68, 73]. In this subsection, we

give the convergence results of the ALM Algorithm applied to American option pricing.

The detailed proofs of these results are omitted, as they can be found in the relevant

references.

Before going to discuss the convergence properties of the augmented Lagrangian

algorithm, we characterize the solution to Problem 5.2.1 by an equivalent linear com-

plementarity problem.

Lemma 5.3.1 Problem 5.2.1 is characterized by the existence of λ ∈ RN−1
+ , such that

the following linear complementarity problem is satisfied

(LCP )

{
MfvmV − q − λ = 0,

V − Λ ≥ 0, λ ≥ 0, (λ,V − Λ) = 0.
(5.3.4)

Proof. Since we omit the superscript m and m + 1 in (5.2.2), Problem 5.2.1 can be

rewritten as follows.

{
Find V ∈ Km = {V ∈ RN−1 : V ≥ Λ}, such that

(MfvmV,U − V) ≥ (q,U −V) , for all U ∈ Km.
(5.3.5)

1. (5.3.5) implies (5.3.4).

For any W ∈ RN−1
+ , we have

U + W ∈Km.
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Taking V = U + W in (5.3.5), it follows that ∀ W ∈RN−1
+

(MfvmV − q,W) ≥ 0, (5.3.6)

and (5.3.6) clearly implies

MfvmV − q ≥ 0.

Hence, there exists a vector λ ∈RN−1
+ such that

λ , MfvmV − q ≥ 0. (5.3.7)

Since V ∈ Km, we have V ≥ Λ, i.e., V − Λ ≥ 0. From (5.3.7), we immediately obtain

(MfvmV − q,V − Λ) ≥ 0. (5.3.8)

On the other hand, it is obvious that Λ ∈ Km. Hence, by taking U = Λ in (5.3.5), we

have

(MfvmV − q,Λ − V) ≥ 0. (5.3.9)

Thus, from (5.3.8), (5.3.9) and (5.3.7), we obtain

{
MfvmV − q − λ = 0,

V − Λ ≥ 0, λ ≥ 0, (λ,V − Λ)= 0.

2. (5.3.4) implies (5.3.5).

From (5.3.4), it is obvious that V ∈ K and

(MfvmV − q,V − Λ) = 0. (5.3.10)

Let U ∈ Km. Then, U ≥ Λ, i.e., U − Λ ≥ 0. Since

MfvmV − q = λ ≥ 0,

we obtain

(MfvmV − q,U − Λ)≥ 0. (5.3.11)

Subtracting (5.3.10) from (5.3.11), we have

(MfvmV − q,U− V)≥ 0, ∀ U ∈ Km.

Thus, (5.3.4) implies (5.3.5).

It is worth noting that, due to the fact that the matrix Mfvm is an M -matrix, (5.3.4)

has a unique solution, which is denoted by (V, λ), see [57].

109



Remark 5.3.3 From the optimization theory, we know that if Mfvm in (5.3.4) and

(5.3.3) is symmetric and positive definite, then (ALM) is the KKT condition of

(P )

{
minF (V) = 1

2
(V,MfvmV) − (q,V)

s.t. V −Λ ≥ 0.

For Problem 5.2.1, the matrix Mfvm is not symmetric. Hence, we cannot find the

corresponding form of (P ). However, motivated by the relationship between (P ) and

(5.3.3) when Mfvm is symmetric, we propose the augmented Lagrangian formulation

(5.3.3) of the complementarity system (5.3.4).

The following lemma shows that the solution to (5.3.3) is convergent to that of

(5.3.4), and hence, to that of Problem (5.2.1), when the penalty parameter tends to

infinity.

Lemma 5.3.2 Let (V, λ) and (Vξ, λξ) be the solutions to (5.3.4) and (5.3.3), respec-

tively. Then,

|λξ − λ| = O (1/ξ) ,

‖Vξ − V‖ = O (1/ξ) .

Lemma 5.3.2 presents a standard result on the ALM method applied to variational

inequalities. Here, we omit the proof. For details, see Glowinsky’s book [51], Chapter 2,

Theorem 7.2. From this lemma, we can see that the error ‖Vξ − V‖ decreases linearly

with the penalty parameter ξ. This result is verified by the numerical results in Section

5.4.

The convergence analysis of the augmented Lagrangian algorithm applied to (5.3.3)

has been studied in [57, 67, 68, 73]. Due to the fact that the matrix Mfvm obtained

by the fitted finite volume discretization is an M -matrix, the following conclusion is a

consequence of those presented in [57, 67, 68, 73].

Theorem 5.3.1 [57, Theorem 3.1] For a fixed ξ > 0, if ‖(V0
ξ, λ

0
ξ) − (Vξ, λξ)‖ is suffi-

cient small, then

(Vk
ξ , λ

k
ξ) → (Vξ, λξ) superlinearly.
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5.4 Empirical Tests

In this section, we perform some numerical tests to illustrate the performance of the

augmented Lagrangian algorithm. First, we give a detailed comparison of ALM, the

Lagrangian method and the penalty method. Then, by empirical tests, ALM is com-

pared with the PSOR method in terms of step sizes of space and time. Finally, we

show that ALM is robust with respect to changes of the market parameters: interest

rate and volatility. All the numerical results were computed in the double precision on

a Pentium IV 2.8 GHz, 512M memory PC under the Visual C++.net environment.

5.4.1 Comparison of ALM, Lagrangian Method and Penalty

Method

The test problem is an American Vanilla Put option with the following two sets of

parameters

(i) T = 0.25, K = 100, r = 0.10, σ = 0.2,

(ii) T = 0.25, K = 100, r = 0.10, σ = 0.8.

These test problems have been carefully studied in [44] and the numerical solutions

are listed there. For financial derivatives markets, the model (i) is more realistic and

standard. In order to show the strength of the ALM method, an unusually high volatility

model (ii) is also considered. The security maximum price Smax = 1000, i.e., the asset

pricing (S) space is taken as [0, 1000]. We uniformly divide it into 1000 sub-intervals

and uniformly divide the time interval [0, 0.25] into 1000 sub-intervals. The values for

time to maturity T , and S = K are computed and compared.

Table 5.1 to Table 5.4 exhibit the comparison of the results by linear penalty method,

power penalty method, ALM and Lagrangian method, respectively. Here, we choose the

power penalty method with the lower order (1/2). In Table 5.1 to Table 5.3, the column

‘V ’ indicates the option value, ‘CPU ’ denotes the computational time (minutes), {ξn}
denotes a sequence of penalty parameters, ‘∗’ represents ‘not available’. For each ξn, a

solution to Problem (ALM) is found, denoted by Vn. Let

∆Vn = Vn − Vn−1, Rn =
∆Vn−1

∆Vn
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be the difference of the solutions and the ratio of changes corresponding to the two

successive penalty parameters, respectively. As the Lagrangian method does not possess

penalty parameter, we only list the option value and computational time.

Table 5.1: Results by l1 penalty method

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn CPU ξn Vn ∆Vn Rn CPU

5 2.89463 0.206 5 14.5069 0.183

10 2.93705 0.04242 0.205 10 14.5427 0.0358 0.183

20 2.98162 0.04457 0.9 0.197 20 14.5841 0.0414 0.9 0.185

40 3.01690 0.03528 1.3 0.196 40 14.6207 0.0366 1.1 0.183

80 3.03900 0.02210 1.6 0.204 80 14.6458 0.0251 1.5 0.182

160 3.05136 0.01236 1.8 0.195 160 14.6606 0.0148 1.7 0.180

320 3.05780 0.00644 1.9 0.200 320 14.6687 0.0081 1.8 0.178

640 3.06112 0.00332 1.9 0.198 640 14.6730 0.0043 1.9 0.175

1280 3.06281 0.00169 2.0 0.168 1280 14.6751 0.0210 2.0 0.161

2560 Failed Failed Failed ∗ 2560 Failed Failed Failed ∗
Max Tolerance = 1.0 × 10−5 Max Tolerance = 1.0 × 10−5

In view of the results obtained, we can draw the following conclusions.

1. From the column ‘Rn’ of Table 5.3, the convergence rate of ALM to the penalty

parameter is estimated. The rate is of order O (1/ξ), which is consistent with

Lemma 5.3.2.

2. From the columns ‘ξn’ and ‘Vn’ of Tables 5.1 and 5.3, we observe that with the

same level of accuracy, ALM is computationally more stable and cheaper than the

linear penalty method. Moreover, ALM can attain much larger penalty parame-

ters than the linear penalty method, and hence can achieve a better accuracy of

the option values.

3. From the columns ‘CPU ’ of Tables 5.2 and 5.3, we see that although a small

penalty parameter is required and a much faster convergence rate is achieved by

the power penalty method, the computational time is still greater than that of
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Table 5.2: Results by power penalty method

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn CPU ξn Vn ∆Vn Rn CPU

5 2.92437 0.296 10 14.5339 0.292

10 2.98262 0.05825 0.297 20 14.5861 0.0522 0.292

20 3.03255 0.04993 1.2 0.297 40 14.6375 0.0514 1.0 0.292

40 3.05548 0.02323 2.1 0.299 80 14.6653 0.0278 1.8 0.292

80 3.06206 0.00658 3.5 0.295 160 14.6741 0.0088 3.2 0.290

160 Failed Failed Failed ∗ 640 Failed Faild Failed ∗
Max Tolerance = 1.0 × 10−5 Max Tolerance = 1.0 × 10−5

Table 5.3: Results by ALM

σ = 0.2 σ = 0.8

ξn Vn ∆Vn Rn CPU ξn Vn ∆Vn Rn CPU

5 3.06688 0.190 5 14.6799 0.184

10 3.06596 0.00092 0.190 10 14.6788 0.0011 1.7 0.188

20 3.06532 0.00064 1.4 0.190 20 14.6783 0.0005 2.2 0.190

40 3.06495 0.00037 1.8 0.190 40 14.6779 0.0004 1.3 0.190

80 3.06476 0.00019 1.9 0.193 80 14.6777 0.0002 2.0 0.190

160 3.06467 0.00009 2.1 0.185 160 14.6776 0.0001 2.0 0.190

320 3.06462 0.00005 1.8 0.184 320 14.6774 0.0001 ∗ 0.190

640 3.06459 0.00003 1.7 0.180 640 14.6774 0.0000 ∗ 0.183

1280 3.06457 0.00002 1.5 0.182 1280 14.6774 0.0000 ∗ 0.180

2560 3.06457 0.00001 ∗ 0.180 2560 14.6774 0.0000 ∗ 0.170

5120 3.06457 0.00001 ∗ 0.175 5120 14.6774 0.0000 ∗ 0.171

7000 3.06457 0.00001 ∗ 0.203 7000 14.6774 0.0000 ∗ 0.184

Max Tolerance = 1.0 × 10−5 Max Tolerance = 1.0 × 10−5
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Table 5.4: Results by Lagrangian method

σ = 0.2 σ = 0.8

Vn CPU Vn CPU

3.07869 0.447 14.7219 0.260

Max Tolerance = 1.0 × 10−2 Max Tolerance = 1.0 × 10−2

ALM. This is due to the non-smooth nature of the lower order penalty term. It

requires more time to solve the nonlinear and non-smooth systems.

4. From the columns ‘Vn’ and ‘CPU ’ of Tables 5.3 and 5.4, we find that, compared

with the Lagrangian method, ALM is more accurate and faster. This indicates

that ALM possesses a faster rate of convergence than the Lagrangian method.

5. By using ALM, the early exercising boundary is automatically obtained according

to the Lagrangian multiplier, during the process of computing the option value.

However, the penalty method does not possess this advantage. This is another

advantage of ALM over penalty methods.

Thus, we can conclude that ALM is the most effective method among all the four

methods. It is especially fitted to solve the American option pricing problem.

By applying ALM, the option values for the two different volatility values are de-

picted in Figure 5.1. Also, the optimal exercise boundaries are revealed explicitly from

Kuhn-Tucker multipliers obtained from the augmented Lagrangian method, which can

be seen in Figure 5.2.

5.4.2 Comparison of ALM and PSOR

The PSOR method [62, 127] is a commonly used method both in practice and in re-

search. To show that ALM is comparable with the PSOR method, we first compare

ALM with the PSOR method in computational times under different space and time
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Figure 5.1: Option values at t = 0
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Figure 5.4: Solution times of ALM and PSOR with different time steps (r = 0.10)

discretizations. Then, the comparison of computational times of these two methods

under different market parameters is investigated.

Figure 5.3 shows the computational times of ALM and PSOR under different space

steps Ns and the same time steps Nt.

Figure 5.4 shows the computational times of ALM and PSOR under different time

steps Nt and the same space steps Ns. Figure 4 gives the corresponding plots of com-

putational times for these two methods as a function of time steps Nt.
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steps = 1000, space steps = 4000)
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Figure 5.6: Solution times of ALM with different market parameters (time steps = 1000,

space steps = 4000)

Figure 5.5 and Figure 5.6 show the computational times of ALM and PSOR under

different market parameters: interest rate r and volatility σ. Figures 5.5 and 5.6 give

the corresponding plots of solution times for these two methods as a function of r and

σ.

In view of the comparison results, we can draw the following conclusions.

1. ALM gives almost linear computational time as a function of space steps Ns.

However, PSOR exhibits exponential solution time behavior as the number, Ns,
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of the space steps increases. As the space steps increase, the effect of the time

reserving of ALM becomes more significant.

2. The computational times of ALM and PSOR depend linearly on the number, Nt,

of time steps. The computational time of PSOR is a little bit greater than that

of ALM.

3. ALM is much more stable and robust when compared with PSOR. That is, the

computational time of ALM appears to be independent of the market parameters

σ and r.

4. For small r and large σ, PSOR is faster than ALM. In contrast, ALM is much

faster when r is large and σ is small.

From the numerical comparisons and empirical tests of the above two subsections,

we conclude that ALM has several notable advantages over the penalty methods, La-

grangian method and the PSOR method: (i) it is computationally more stable and

cheaper; (ii) it is much more stable and robust when compared with PSOR; (iii) ALM

is robust with respect to the changes of market parameters; and (iv) early exercising

boundary is automatically obtained during the process of computing the option value.

5.5 Summary

In this chapter, we proposed an augmented Lagrangian method in combination with the

fitted finite volume discretization scheme for the solution to the variational inequality

problem. This problem is an equivalent formulation of a stochastic optimal stopping

problem arising in the study of the American option valuation. After the discretization,

an equivalent linear complementarity problem was obtained. For the resulting LCP,

the augmented Lagrangian method and the corresponding algorithm were proposed.

Empirical tests were implemented. The numerical results obtained showed that the

augmented Lagrangian method works very well for the American option valuation, and

it is comparable with the PSOR method.
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Chapter 6

Conclusions and Suggestions For

Future Research

6.1 Conclusions

In this thesis, we have developed robust numerical methods for pricing American op-

tions under various generalizations, including American options with jump diffusion

processes and two-asset American options. Each of these methods was developed for

solving a penalized problem obtained by applying a penalty approach to a comple-

mentarity problem arising from the American option pricing. Effective algorithms for

solving these penalized problems were presented and numerical tests were implemented.

Some advantages of penalty methods over the PSOR method have been observed from

empirical numerical experiments. In addition, we have also considered the augmented

Lagrangian method for American option pricing.

Because of its early exercise feature, the pricing of an American option is a free

boundary problem for which the holder can make a decision whether to exercise or hold

it at any time during the lifetime of the option. This feature is naturally captured in

the corresponding complementarity problem, which is subsequently transformed into

a variational inequality problem. On this basis, we applied penalty approaches to

the complementarity problem or the variational inequality problem. Based on the

theories of variational inequalities, convergence properties of penalty approaches have
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been obtained in some appropriate infinite dimensional spaces. For some special penalty

methods, e.g. the power penalty method, rates of convergence have been established.

Black-Scholes operators are parabolic partial differential ones. They are convection-

diffusion operators, which can produce numerical oscillations if general numerical meth-

ods are to be used. Therefore, some effective numerical methods, including the fitted

finite volume method and finite element method, have been proposed to solve the pe-

nalized nonlinear problems. These methods have overcome the difficulty of numerical

oscillations. For the fitted finite volume method, a detailed description of the com-

putational procedure was presented. For the penalized nonlinear problems, solution

methods have been developed.

From numerical experiments, we also revealed some advantages of penalty methods

over the PSOR method. We observed that penalty methods are much more stable

and robust than the PSOR method. Penalty methods are computationally much less

expensive than the PSOR method when the number of space steps increases. Moreover,

penalty methods are more robust than the PSOR method with respect to the changes

of the market parameters, such as interest rate and volatility.

We finally proposed the augmented Lagrangian method for American option pricing

problem and developed the corresponding algorithm. In addition to having all the

advantages of penalty method for American option pricing, the augmented Lagrangian

method possesses another two major advantages: (i) rather than a nonlinear equation

system obtained by penalty methods, a linear equation system is to be solved for the

augmented Lagrangian method; and (ii) early exercising boundary is automatically

obtained during the process of computing the option value.

We believe that the general penalty approach (including augmented Lagrangian

method) can be successfully applied to pricing other more exotic options with the early

exercise feature. As mentioned in the introduction, the study of the penalty methods

and their application to option pricing are still very much in its infancy. Several further

directions are discussed in the next section.
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6.2 Future Research Directions

Several further research directions are listed in the following.

• To develop penalty approaches to a broader class of models, such as options

with stochastic volatilities and transaction costs. It is of particular interest to de-

velop penalty approaches to uncertain volatility models [5], where an optimization

problem is involved in the penalized problem. Existing numerical procedures are

computationally extremely expensive. There is thus an urgent need to develop

efficient techniques for solving this problem effectively.

• In finance, a lot of problems can be formulated to optimal control problems under

the Hamilton-Jacobi-Bellman framework [42]. Hence, to apply the penalty ap-

proach to the numerical solution of the optimal control model is both interesting

and important.

• It is of importance to study the convergence rates of our methods with respect

to both the penalty parameters (ξ) and discretization parameters (h). All the

existing results on the convergence rate are either to the penalty parameters (ξ)

or to the discretization parameters (h), see [4].

• To find the local volatility function implied by the American options via the the-

ory of mathematical programming with equilibrium constraints. This is another

important research area. It is an inverse problem where optimization methods are

to be used to deal with the estimation and adjustment of implied volatilities for

pricing American options on the Black-Scholes framework and its generalization.

Applying penalty methods to solving the resulting mathematical programming

with equilibrium constraints would appear to be of the right direction.
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Chapter 7

Appendix

7.1 The Projected SOR Method

The Successive Over Relaxation (SOR) is a method frequently used to solve a certain

class of matrix equations. The projected SOR method is discussed in detail in [38].

Consider a general linear complementarity problem (LCP):

Ax ≥ b, x ≥ c, (x − c) · (Ax − b) = 0.

We assume only that the matrix A is invertible and positive definite (i.e. x · (Ax) > 0

for any x 6= 0). Then, it can be shown that there is a unique solution vector x for this

LCP (see [38] for a proof).

The algorithm for finding the solution is an iterative procedure. Start with an initial

guess x0 ≥ c (the algorithm may not converge if x0 < c). During each iteration, we

form a new vector

xk+1 =
(
xk+1

1 , xk+1
2 , . . . , xk+1

n

)
,

from the current vector

xk =
(
xk

1, x
k
2, . . . , x

k
n

)
,

by the following two-step process:

1. For each i = 1, 2, . . . , n, we sequentially form the intermediate quantity yk+1
i ,
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given by

yk+1
i =

1

Aii

(
bi −

i−1∑

j=1

Ai,jx
k+1
j −

n∑

j=i−1

Ai,jx
k
j

)
.

2. Form xk+1 by

xk+1
i = max

(
ci, x

k
i +$

(
yk+1

i − xk
i

))
.

Note that it is important to perform these two steps in sequence. We need the new

value of xk+1
i−1 in order to find xk+1

i . The only difference between this method and the

classical SOR method is the test to make sure that xk+1
i ≥ ci. The constant $ is called

a relaxation parameter. Provided that x0 ≥ c and 0 < $ < 2, the method converges.

It can be shown that the convergence can be optimized by choosing a particular value

of $ ∈ (1, 2), which depends on the matrix A.

Each iteration defines a new vector xk+1 ≥ c such that as k → ∞, xk+1 → x, the

solution of the problem. In practice, we stop the iteration once the following condition

is satisfied
∣∣xk+1 − xk

∣∣ < ε

where ε is some pre-chosen small tolerance. We then take xk+1 as the solution.

7.2 Smoothing Techniques

The penalty approach to American option pricing problem usually leads to a nonlinear

system. In this thesis, we apply the classical Newton method to this system. When the

lower order penalty method (lk, 0 < k < 1) is used, a nonsmooth system is obtained,

which should be smoothed out by some techniques. For example, for the term

d(u) = [u]k+,

we see that d′(u) → ∞ as u→ 0+. To overcome this difficulty, we smooth out d(u) in

the neighborhood of [u]+ = 0 as follows:

d(u) =

{
uk, u ≥ ε,

W ([u]+), u < ε
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for 0 < k < 1, where 1 >> ε > 0 is a transition parameter and W (z) is a function

which smoothes out the original d(z) around z = 0. We choose

W (z) = c1 + c2z + · · · + cnz
n−1 + cn+1z

n

for n ≥ 3. To ensure that d(z) is smooth, it is required that

W (0) = W ′(0) = 0, W (ε) = εk, W
′
(ε) = 1

k
εk−1.

Using these four conditions and setting c3 = · · · = cn−1 = 0, we can easily find that

c1 = c2 = 0, cn = εk−n+1 (n − k) , cn+1 = εk−n (k − n+ 1) .

Thus,

d (u) =

{
uk, u ≥ ε,

εk−n+1 (n− k) [u]n−1
+ + εk−n (k − n+ 1) [u]n+ , u < ε.

The intuition of this choice of d is as follows. When u ≥ ε, a given tolerance, uk offers a

convergence rate of order 1
2k

. When u < ε, we choose d(u) = W ([u]+) to slow down the

convergence. It has been proved by Wang [125] that the function W ([u]+) is strictly

increasing on [0, ε] if 1/k ≥ n for n ≥ 3. Moreover, the nonlinear function d(u) is

smooth and increasing on (−∞,∞) when 1/k ≥ n for any integer n ≥ 3.
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options on Lévy driven assets. Math. Model. Numer. Anal., 38:37–72, 2004.

[91] H.P. McKean. Appendix: A free boundary problem for the heat equation, arising

from a problem in mathematical economics. Indust. Manage. Rev., 6:32–39, 1965.

[92] R.C. Merton. Theory of rational option pricing. Bell J. Econom. Management

Rev., 4:141–183, 1973.

[93] R.C. Merton. Option pricing when underlying stock return are discontinuous. J.

Financial Econ., 3:125–144, 1976.

[94] R.C. Merton. Continuous Time Finance. Blackwell Publishing, U.K., 1992.

[95] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.

Society for Industrial and Applied Mathematics, Philadelphia PA., 1992.

[96] B. Nielsen, O. Skavhaug, and A. Tveito. Penalty methods for the numerical

solution of American multi-asset option problems. Technical report, Department

of Informatics, University of Oslo, In preparation, 2000.

[97] B. Nielsen, O. Skavhaug, and A. Tveito. A penalty scheme for solving American

option problems. In: Progress in Industrial Mathematics at ECMI 2000. Springer-

Verlag, New York, 2002.

[98] B. F. Nielsen, O. Skavhaug, and A. Tveito. Penalty and front-fixing methods

for the numerical solution of American option problems. J. Comp. Fin., 5:69–97,

2002.

132



[99] R. Nochetto. Sharp l∞ error estimates for semilinear problems with free bound-

aries. Num. Math., 54:243–255, 1988.

[100] J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization

Problems with Equilibrium Constraints. Kluwer, New York, 1998.

[101] J.-S. Pang. Error bounds in mathematical programming. Math. Programming

Ser. B, 79:299–332, 1997.

[102] J.-S. Pang and F. Facchinei. Finite-Dimensional Variational Inequalities and

Complementarity Problems. Springer-Verlag, New York, 1998.

[103] J.-S. Pang and J. Huang. Pricing American Options with Transaction Costs by

Complementarity Methods: In Quantitative Analysis in Financial Markets. World

Scientific, NJ, 1999.

[104] J.-S. Pang and L. Qi. Nonsmooth equations: motivation and algorithms. SIAM

J. Optim., 3:443–465, 1993.

[105] M. Parkinson. Option pricing: The American put. J. Bus, 50:21–36, 1977.

[106] D. Pascali and S. Sburlan. Nonlinear Mappings of Monotonic Type. Springer-

Verlag, Sijthoff & Noordhoff International Publishers, 1978.

[107] S. Paskov and J. Traub. Faster valuation of financial derivatives. J. Portfolio

Management, 22:113–120, 1995.

[108] R. Rannacher. Finite element solution of diffusion problems with irregular data.

Num. Math., 43:309–327, 1984.

[109] L.C.G. Rogers. Monte Carlo valuation of American options. Mathematical Fi-

nance, 12:271–286, 2002.

[110] A.M. Rubinov and X. Q. Yang. Lagrange-type functions in constrained non-convex

optimization. Kluwer Academic, Boston, 2003.

[111] A.M. Rubinov, X.Q. Yang., and A.M. Bagirov. Penalty functions with a small

penalty parameter. Optim. Methods Softw, 17:931–964, 2002.

[112] I. Rupf, J. Dewynne, S. Howison, and P. Wilmott. Some mathematical results in

the pricing of American options. Euro. J. Appl. Math., 4:381–398, 1993.

133



[113] P.A. Samuelson. Rational theory of warrant pricing. Indust. Management Rev.,

6:13–31, 1996.

[114] R. Scholz. Numerical solution of the obstacle problem by a penalty method: Part

ii, time dependent problems. Num. Math., 49:255–268, 1986.

[115] R. Seydel. Tools for computational finance. Springer-Verlag, Berlin, 2004.

[116] O. Skavhaug, B.F. Nielsen, and A. Tveito. Mathematical Models of Financial

Models: Advance Topics in Computational Partial Differential Equations: Nu-

merical Methods and Diffpack Programming. Springer, New York, 2003.

[117] E. M. Stein and J. C. Stein. Stock price distributions with stochastic volatility:

An analytical approaches. Rev. Financial Stud., 4:727–752, 1991.

[118] D. Tavella and C. Randall. Pricing Financial Instruments: The Finite Difference

Method. John Wiley and Sons, New York, 2000.

[119] H.M. Taylor. Evaluating a call option and optimal timing strategy in the stock

market. Management Sci., 14:111–120, 1967.

[120] J.A. Tilley. Valuing American options in a path simulation model. Transactions

of the Society of Actuaries, 45:93–104, 1993.

[121] J. Topper. Financial Engineering with Finite Elements. John Wiley and Sons,

NJ, 2005.

[122] C. Vázquez. An upwind numerical approach for an American and European

option pricing model. Appl. Math. Comput, 97:273–286, 1998.

[123] S. Villaneuve. Exercise regions of American options on several assets. Finance

Stochastics, 3:295–322, 1999.

[124] S. Wang. A novel fitted finite volume method for the Black-Scholes equation

governing option pricing. IMA J. Numer. Anal., 24:699–720, 2004.

[125] S. Wang, X.Q. Yang, and K.L. Teo. A power penalty method for a linear com-

plementarity problem arising from American option valuation. J. Optim. Theory

Appl., to appear.

134



[126] P. Wilmott. Derivatives. Wiley, New York, 1998.

[127] P. Wilmott, J. Dewynne, and S. Howison. Option Pricing: Mathematical models

and computation. Oxford Financial Press, Oxford, 1993.

[128] H. Windcliff, P.A. Forsyth, K. Vetzal, A. Verma, and T. Coleman. An object

oriented framework for valuing shout options on high performance computer ar-

chitectures. J. Econ. Dyn. Con, 27:1133–1161, 2003.

[129] Z.Y. Wu, F.S. Bai, X.Q. Yang, and L.S. Zhang. An exact lower order penalty

function and its smoothing in nonlinear programming. Optim., 53:51–68, 2004.

[130] X.Q. Yang and X.X. Huang. A nonlinear Lagrangian approach to constrained

optimization problems. SIAM J. Optim., 14:1119–1144, 2001.

[131] K. Zhang, X.Q. Yang, and K.L. Teo. A monotonic penalty method for American

option pricing. Preprint, 2005.

[132] K. Zhang, X.Q. Yang, and K.L. Teo. A power penalty method for pricing Amer-

ican option with jump diffusion processes. Submitted for publication, 2006.

[133] K. Zhang, X.Q. Yang, and K.L. Teo. Augmented Lagrangian method applied to

American option pricing. Automatica, 42, 2006.

[134] K. Zhang, X.Q. Yang, S. Wang and K.L. Teo. A Power Penalty Approach to

Numerical Solutions of Two-Asset American Options. Submitted for publication,

2006.

[135] X.L. Zhang. Numerical analysis of American option pricing in a jump diffusion

model. Math. Oper. Res., 22:668–690, 1997.

[136] Y.Y. Zhou and X.Q. Yang. Some results about duality and exact penalization.

J. Global Optim., 29:497–509, 2004.

[137] R. Zvan, P.A. Forsyth, and K.R. Vetzal. Penalty methods for American options

with stochastic volatility. J. Comput. Appl. Math., 91:199–218, 1998.

135


	theses_copyright_undertaking
	b20697132

