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Abstract

Typical objectives in control of dynamic syslems are to ensure stability, tracking, and
disturbance rejection. This thesis focuses on integration soft computing techniques with
modem control methodologies for the developing novel adaptive control algorithms. The
philosophy behind this study ts that soft computing methods complement and not necessarily
replace model-based control methodologies. The thesis presents extensive simulaton studies
and experimental verifications to demonstrate the characteristics of the proposed adaptive

control methodologies.

In the first part of the study, we study the problem of a class of nonlinear systems that can be
linearized around an operating point and can be represented by a lower-order model with time
delay. Many chemical and petrochemical processes fall into this category. A new algorithm to
approximate higher order systems vxlfith first order plus time delay via neural network is
proposed. An on-line proportional plus integral denvative (PID) tuning method is then applied

to control such systems.

In the second part, we address the problem of adaptive control of affine nonlinear dynamic
systems. Based on a simple variable structure control, the sliding mode control, a novel
adaptive fuzzy sliding mode control with chattering elimination has been developed. An

algorithm has also been proposed to eliminate chattering at steady state.

Next, an H-infinity control technique incorporating a fuzzy system is studied. We introduce an
adaptive fuzzy control with state observer to guarantee a robust performance of the controlied
system. The H-infinity control is used to guarantee the robustness in the presence of system

uncertainties.



We will also éonsider the-mult_iple-input multiple-output nonlinear dynamic systems. We
introduce the design of robust adaptive fuzzy control, with the aid of integrated shding mode
algorithm, an mmproved robust adaptive controller is proposed. This algorithm has been
éppiied to a robot manipulator. We have also developed a direct adaptive fuzzy control based
on a Takagi-Sugeno fuzzy system. We introduce a direct adaptive fuzzy coutrol‘wil-h state
observer to estimate the unmeasured states of the multiple-input muitiple-output controlled
system. The controller has been tested for control of a two degree-of-freedom h::%icopter to

track a given trajectory. Moreover, the system stability can be guaranteed based on

Lyapunov’s principle.

Finally, a robust adaptive fuzzy control for a class of uncertain nonlinear systems is examined.
We introduce the design of adaptive fuzzy control for a general class of strict-feedback
uncertain noniinear dynamic systems. The main idea of this method is to apply the fuzzy
system to deriv;e a novel robust_ad::tptive tracking controller by use of the input-to-state

stability and by combining the backstepping technique.
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Chapter 1 Introduction

CHAPTER ONE

INTRODUCTION

Modem process industries operate under strict regimes for improvedr productivity, more
flexibility and cost efficiency. It has been suggested that the conventional approaches have
been stretched to their limits and can not provide compatible solutions with such requirements.
To meet these demands, the role of adaptive control.schemes becomes more significant. In
addition, the fusion of linear sy.stems theory and the soft-computing ‘methodologies haé
provided a new alternative strategy for addressing the ever growing problems in advanced
process control. In this context, soft~-computing tec_hniques are broadly referred to those
» methodologies that exﬁloit fuzzy systems (FS), artificial neural networks (NN) and genetic

algonthms (GA) either standalone or in conjunction with each other.

The studies undertaken in this thesis address some of the control problems associated
_‘with the design of linear and nonlinear adaptive control systems by borrpwing ideas and
concepts from classical control systems theory, fuzzy systems, and artificial neural networks.
The direct focus of this thesis is to explore the potentials of modemn and intelligent control for

the purpose of the design of novel adaptive control systems.
In particular, the following objectives are addressed:

¢ Design of neural network and fuzzy system modeling algorithm to model a class of

nonlinear systems with lower-order model with time delay.
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Chapter | Introduction

e Design of an adaptive fuzzy sliding mode control (AFSMC) algorithm for nonlinear

systems to alleviate the problem of chattering due to sliding mode control.

¢ Design of an observer-based adaptive fuzzy -controt algorithm with H* control
performance.

* Design of an indirect adaptive fuzzy control algorithm for multi-input multi-output
nonlinear systems.

* Design of an observer-based direct adaptive fuzzy control algorithm for maulti-input
multi- output nonlinear systems.

» Design of an adaptive fuzzy control algorithm for nonlincar strict-feedback systems.
1.1 Motivation and Background

The linear control methodology has been the backbone of many industries in the last fifty
years. It incorporates multitude of powerful methods and has a long history of successful
applications. Despite many fruitful results, it may not be able to address emerging control
problems f;)r a variety of reasons. It is well known that linear control methods rely on the
assumption of small range of operations in order to be valid. Such methods fail if this range of
operations exceeds and subsequently the controlled system either performs poorly or becomes
unstable. Another important assumption is that the plant is indeed lineariazable (linearization
approximation around an equilibrium point) and linear control methodologies are to be
adopted in this thesis. In fact, there are many nonlinearities, especially dead-zone, saturation
and dead time, the discontinuous nature of which does not allow linearization and the

assumption of linearization holds only within some regions.
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Chapter | Introduction

In contrast, nonli_ﬁear control strategies relax the above assumptions. Most of the carly
methodologies of nonlinear control systems analysis utilized the phase plane method [Slotine
and Li 1991, Vidyasagar 1993], the describing function approach {Slotine and Li 1991] or
Lyapunov analysis in a trial and error fashion [Vidyasagar 1993]. Such designs were ad hoc

and limited in dealing with complex and higher dimensional systems.

Based on the differential geometry technique, ancther study in nonlinear control system is
exact feedback linearization. The basic idea of this methodology is to transform the nonlinear
si/stem into a fully or partially linejar system by using nonlinear transformation, and then use
the well known linear design techniques to complete the control designl Although, this
methodol.ogy gives a strong impetus to nonlinear systems theory, it does not guarantee

. robustness of controlled systems that are subject to uncertainties and external disturbances.

IMbdel uncertainties may also com‘e from lack of knoWledge about the controlled system
or ﬁom the choice of a simplified representation of the plant. In general, adaptive control
techniques and robust control techniques provide particularly appealing solutions to the
problem of modeling uncertainties. A good body of knowledge exists for acl_aptive control of
linear s-ystems, guaranteeing stability and robustness to uncertainties and disturbance [Miller
and Da\l/ison 1991; Sun 1993]. On the other hand, nonlinear adaptive control is rapidly
developing and promise global stability and tracking results for relatively large classes of

nonlinear systems [Marino and Tomei 1993, 1995; Krstic ef al. 1995].

The focus of intelligent control research spans to.around three decades. Zadeh (1994)
coined the term soft-computing as collective methodologies, which fuse together fuzzy logic,

neural network and genetic algorithms. The main feature of soft-computing techniques is their
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Chapter 1 [ntroduction

higher capability to tolerate imprecision, inaccuracies and partial truth. The motivation is
often that the sofl-computing techniques provide alterative solution to traditional modeling
and design of contro! systems when system knoivledge and dynamic models are incomplete.
Soft-computing has been successfully applied to many commercial products and industrial
systems, where less accurate mathematical models are available. In addition, human
knowledge or biologically motivated techniques are available to provide inference from
limited available information.

The hybrid adaptive control\ methodology is a set of techniques which combine the
modern control theory with soft-computing theories to create adaptive control for dynamical
systems. This class of adaptive controllers provide a very powerful methodology and provide
control engineers with a framework to construct superior controllers for emerging nonlinear

systems i.e. process control, mobile robot control, robot manipulation.

1.2 Research Qutline

The philosophy in this thesis is that a hybrid adaptive control system is designed to
combine the advantages from the soft-computing theory (fuzzy system, neural network) and
moderm control methodology. Bearing this philosophy in mind, the scope of studies can be
classified into two phases. In phase 1, with a viéw of the fact that the linearization around an
operating point can be represented by a lower-order model with time delay, the design of
adaptive control system via on-line neural network and fuzzy modeling is presented. In phase
2 of the thesis, the author first addresses a class of nonlinear systems in a normal form for the

design of adaptive control systems. Borrowing the concept of sliding mode control (SMC) and

H® control from the modem control theory, a new fuzzy control and observer-based fuzzy
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Chapter 1 Introduction

control are developed by using adaptive feedback linearization strategy. Moreover, the
extension from SISO nonlinear systems to MIMO nonlinear systems have also been attempted
via Integration of variable structure control with uncertainties bound estimation and observer-
based direct adaptive control scheme. Finally, the study of nonlinear strict-feedback systems
via model based adaptive fuzzy control is addressed. The control schemes in this thesis can be

illustrated diagrammatically in Figure 1.1.
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Physical
Systems

"

Nonlinear
Systems

Linearization
Approximation
{particular equilibrium Point)

Nonlinear
Models

o

. IPhase |
X=Ax(t}+ Bult)

y=Cx(t)+ Dult)

Reduced Order
Model ' \

Adaptive tuning of fixed structure
controller (Chapter 3 and 4)

i= fOou,) Phase I1
y=h(x,u,t)
Affine Nonlinear Systems \

Adaplive fuzzy sliding mode control with
chattering elimination {Chapter 5}

Observer based adaptive fuzzy control H™
performance (Chapier 6)

bdaptive fuzzy conuroller with bound
estmation {Chapter 7) /

Direct adaptive fuzzy control (Chapter 8) /

Strict-Feedback Nonlinear
Systems

Robust adaptive fuzzy for strict-feedback
nonlinear systems (Chapter 9)

Adaptation \¢

Mechanism j_l/ i

Figure 1.1 The design flow of this thesis
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1.3 Layout of thesis

The thesis is organized as follows. The first chapter states the background, motivation,
outline of the thesis, main contribution and a list of research outputs generated from this

project.

Chapter 2 presents a literature survey on theorics and principles of modem control,

including nonlinear system theory, state observer, adaptive control, sliding mode control

(SMC), H” control, backstepping control, neural networks and fuzzy systems. It should be
noted that due to the extensive literature available, the treatment in this survey is very

selective and only those relevant topics are included.

In chapter 3, a novel on-line approximation method based on a neural network
architecture is proposed for nonlinear systems that can be linearized around an operating point
and can be represented by a first order plus time delay model. An on-line proportional plus

integral derivative (PID) tuning method is then applied to control such systems.

In chapter 4, by introducing a Lyapunov function, adaptive fuzzy system modeling is
firstly developed for a class of linearized nonlinear systems, which can be represented by a
lower-order with time delay model. Then, an on-line control design is developed via a fuzzy
system with gradient descent technique. It is proved that under certain conditions, a
convergence analysis on the proposed algorithm is achievable for the closed-loop adaptive
_system. Finally, the performance of the proposed algorithm for real time control of a

temperature system with varying dominant time delay is evaluated.
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Chapter 1 Introduction

In chapter 5, an adaptive fuzzy sliding mode control is proposed for nonlinear systems in
the normal form. The controller is designed based on the fuzzy dynamic model. The control
mechanism is basically an indirect adaptive control scheme. Then, a stable fuzzy controller is
provided by using sliding mode control technique. The chattering problem of the adaptive
fuzzy control is also investigated, and an adaptive PI control method are combined for
reducing the systems chattering and zero steady tracking error can be ensured.

In chapter 6 adaptive observer-based fuzzy control is investigated for a class of affine

nonlinear systems. By using a state observer for state estimation, an output feedback controlter

is given for fuzzy systems. The control performance of the systems is guaranteed by the H#*®
performance criterion. Closed-loop stability is established by Lyapunov stability theory and

effectiveness is verified by numerical simulation.

In chapter 7 adaptive controlier ‘design is investigated for a class of MIMO nonlinear
system (Robot Manipulator). Using integral sliding mode control with estimation bound. The
linear parameterization, i.e. nonlinearities of the robot dynamics are in the forms of linear in
the parameters, can be solving using model based adaptive control techniques and the
unknown nonlinear functions be approximated using fuzzy approximation. The stability of
adaptive fuzzy control system has been analyzed by applying Lyapunov theory. The
simulation results show how the validity, the performance of the proposed method and

superiority to that of the tradition computed torque control scheme.

In chapter 8, another class of observer based fuzzy control system, i.e. TS fuzzy direct
adaptive control system has been introduced for a class of MIMO nonlinear systems. The state

vanables are formed by a state observer which is designed based on the normal form of
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nonlinear systems. Closed-loop stability i1s established by Lyapunov direct method. The
control algorithm 1s successfully applied to the laboratory scale 2-DOF helicopter on a

hardware test-bed.

In chapter 9, a new controller design ts investigated for a class of strict-feedback systems.
By introducing a small gain theorem, a robust adaptive fuzzy control structure is developed, in

which the cancellation of the nonlinearity g;(-}is not required such that the control singularity

problem can be avoided. It has been proved that the uniform ultimate boundedness is
achievable for the closed-loop adaptive systems. Simulation studies are included to verify the

perf‘ormance of the proposed method.

In chapter 10, we conclude the thesis and provide some suggestions for future research.

1.4 Statement of Orniginality

The original contributions or important developments made by the author in this thesis are

stated below:

® A method of on-ljne approximation of higher-order systems lower-order models with
time delay using neural network and fuzzy system techniques. A theorem on convergence
analysis of the on-line algorithm is presented (Chapte.:rs 3 and 4).

® A method of combiniﬁg sliding mode controller and PI controller wit.h adaptive fuzzy
algorithm is proposed. The problem of chattering is avoided and zero steady state error
can be ensure. A theorem on the stability ahalysis of adaptive fuzzy sliding mode control
scheme is proposed (Chapter 5).

®  An adaptive observer-based fuzzy control design, vanable structure control (VSS) and

H® disturbance attenuation theory are combined together to construct a hybrid indirect
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adaptive observer-based robust tracking control scheme. The problem of the unavailable
state vanables and external disturbance of the system are solved. A theorem on the
stability and robusiness of the adaptive observer-based fuzzy control is given (Chapter 6).
® A method of combining adaptive fuzzy controller and sliding mode control with
estimation bound for a class of MIMO nonlinear system is presented. The problem
nonlinearities of the robot dynamics are in the forms of linear in the parameters and the
unknown upper bound of the uncertainties are solved {Chapter 7) .
® A direct adaptive observer-based fuzzy control system for a class of MIMO nonlinear
systems is introduced. The control singularity problem and unavailable state variables
can be avoided. A theorem for the closed-loop stability of direct fuzzy adaptive control
scheme 1s established (Chapter 8).
® A robust adaptive fuzzy control scheme is proposed for a class of nonlinear strici-
feedback systems. The cancellation of the nonlinearity gain functions is not required and
the control singularity problem ca‘n be avoided. An on-line update law for the parameters
~of the fuzzy controller to compensate the unknown nonlinear and uncertainties is

developed. A theorem on the stability analysis of robust adaptive fuzzy control scheme is

- proposed (Chapter 9).

1.5 Publications

At the time of writing this thesis, two papers have been publ‘ished in international journals,
one book chapter has been published, one journal paper has been submitted to international
journals and is being review and four other papers are being prepared for submission.
Moreover, eight conference papers have been presented in internationat conferences. These

papers are listed below:
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Published/Accepted Journal Papers:

l.  H.F. Ho, A.B. Rad, Y.K. Wong and W.L. Lo, On-line lower-order modeling via neural
networks. /84 Transactions 42. 577-593, 2003.

2. HF. Ho, Y.K. Wong, AB. Rad and W.L. Lo, State Observer Based Indirect Adaptive
Fuzzy Tracking Control. Simulation Practice and Thebry, 2005. (In press. Paper No.

SIMPRA 182)

Book Chapter

3. H.F. Ho, AB. Rad, Y K. Wc;ng and W.L. Lo, Adaptive neuro-fuzzy control of systems
with unknown time delay, Tzyh-Jong Tarn, Shan Ben Chen and ‘Changjiu Zhou (Eds.), in
Robotic Welding, Intelligence and Automation, Lecture Notes in Control and Information

Sciences LNCIS, Springer, pp. 304-326, 2003.

Journal Papers Submitted/Under Review:
4. HF. Ho, YK. Wong, AB. Rad and W.L. Lo, Fuzzy sliding mode control: adaptive

approach. IEEFE transactions on industrial electronics. (Submitted in J uly 2003)

5. H.F.Ho, Y.K. Wong, A.B. Rad, and W.L. Lo, On line low-order model approximation

via fuzzy logic. (In final stages of preparation)

6. HF. Ho, YK. Wong and A.B. Rad, Robust fuzzy tracking control for robotic
manipulators. (In final stages of preparation)

7. H.F. Ho, Y.K. Wong and A.B. Rad, Direct adaptive fuzzy control for a class of nonlinear
MIMO system. (In final stages of preparation)

8. HF. Ho, YK. Wong and A.B. Rad, Robust adaptive fuzzy control for strict-feedback

nonlinear systems. (In final stages of preparation)
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Conference Papers:

9.

10.

11.

12.

13.

14.

15.

16.

"H.F. Ho, Y.K. Wong, A.B. Rad and W.L. Lo, Fuzzy Predictive Controller. The IASTED

International Conference Control and Applications, 2001, pp. 154-159

H.F. Ho, Y.K. Wong and A.B. Rad, Adaptive neuro-fuzzy control of systems with time
delay. /FSA World Congress and 20th NAFIPS International Conference, Vol. 2, 2001,
pp. 1044-1049.

H.F. Ho, Y.K. Wong and A .B. Rad, Adaptive fuzzy-neural control with state observer for

unknown nonlinear systems via H ™ approaches, Proceedings of the 9th frzter'nau'onal
Conference onlNeural Informcltt'on Processing, Vol. 4, 2002, pp. 1877-1881. |

H.F. Ho, Y .K. Won_g and A.B. Rad, Direct adaptive fuzzy control with state observer for
a class of nonlinear systems. The International Conference on Fuzzy Systems. FUZZ-
[EEE 2003, pp. 1338-1343.

H.F. Ho, Y.K. Wong and A.B.Rad, Adaptive fuzzy sliding mode control for SISO
nonlinear systems. The [nternatiénal Conference on Fuzzy Systems. FUZZ-IEEE 2003,

pp. 1344-1349.

. H.F. Ho, Y.K. Wong, A.B. Rad and W.L. Lo, On line lower order modeling using fuzzy

systems. International Symposium on Advanced Control of Chemical Processes 2003.

H.F. Ho, Y.K. Wong and A.B. Rad, Adaptive PID controlier for nonlinear systems with

H” tracking performance. fniernational Conference PHYSICS and CONTROL, PhysCon

2003 pp.1315-1319.
H.F. Ho, Y.K. Wong and A .B. Rad, Fuzzy Sliding Mode Control: Adaptive Approach.

Regional Inter-University Postgraduate Electrical and Electronic Engineering Conference.

RIUPEEEC 2003.
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CuarTErR TWwoO

LITERATURE SURVEY

2.1 Introduction

The research studie;s reported in this thesis covers a wide range of topics in linear and
nonlinear systems theory. The main contributions are expected to be on the integration of
modern and soft-computing (fuzzy systems, neural network) methodologies in order to design
novel adaptive control systems. Hence, the two domains are merged and a bridge. is formed-to
utilize both domains for the purpose of enhanced algorithms that caﬁ be applied to solve
control problems in real world with a view that the two domains complement each other.
Specifically, we propose some new design methodologies for adaptive intelligent control

algorithms for nonlinear dynamic systems. We deal with the problem of on-line adaptation

and hence tackle systems with uncertainties and provide stability and robustness analysis.

This chapter provides an overview of relevant system analysis and modern control

including the general ideas of local linearizatioin, input-output linearizatioin, state observer,

sliding mode control, adaptive control, /' control and backstepping control. The soft-
computing methods survey includes the fuzzy systems and neural network. Since the literature
in this area is exhaustive, this review is highly selective and only covers parts of modern

control and soft computing techniques which are used in the following chapters of this thesis.

This chapter is organized as follows. Section 2.2 presents topics within system theory that

will be used in the following chapters. In Section 2.3, the author describes some of modem
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control methodologies. [n Section 2.4 the soft-computing methodologies, neural network (NN}

and fuzzy system (F'S) will be discussed. Section 2.5 concludes the chapter,

2.2 Nonlinear systems

The representation of physical systems via mathematical terminology allows for a
uniform framework of analysis and synthesis. The use of ordinary differential equations is one
way of describing dynamic continuous systems. In general, a nonlinear system can be

characterized by the state-space model in the following form:

~

x= f(x,
f(xu) 2.1)
y = h(x)
[n the special case of input affine form {Khalil 2002, Sastry 1999]:
¢ = f(x)+
X = f(x)+g(x)u 2.2)

y = h(x)
where x € R" is the state vector,u and y represent the input and output. The nonlinear function

S R" —»R", g:R" > R"are a smooth (C*) vector value function and A:R" - R is a

scalar function.

2.2.1 The Local Linearization Principle

This linearization is based on a Taylor-series expansion of a smooth nonlinear

function f around an equilibrium point [Khalil 2002}. Indeed, given a nonlinear of the

formx = f(x}, the following Taylor series expansion is obtained: .

1) = f)+ L (x—xo)+ o] o’
¥, | 2l
(2.3)
:f(x0)+g (x = x3)+H.O.T.
axxO
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;
where H.O.T. denote the higher order terms and Q-—{— denotes the i-th partial derivative of the
ox

function f with respect to x. Given that.xy = 01s an equilibrium point, f(xy) =0. The linear

approximation of the original nonlinear equation x = f(x)is then obtained by neglecting the

H.O.T.

X = g (x—x)+HO.T.
ox

Xg
x=Ax (2.4)
It is easy to extend the principle for the case of a multivariate function X = f(x|,x,---,x,) to
obtain

%=DJ|, (x—x) - (2.5)

where D.J 1s the Jocobian matrix of the function f containing the partial derivative of the

function respect to the variable x evaluated at the equilibrium point,

%

A,
[

DJ (2.6)

2.2.2 Input-Output Linearization

In the middle of '1980s, the use of differential geometry led to the development of
teedback linearization as a tool for controlling particular types of nonlinear systems [Isidori
1995]. The exact linearization is the use of state feedback and change of coordinates in thé
state space in order to transform a nonlinear system into linear and controllable one. Therefore
any linear controller design method can be used to stabilize the system. Very often, feedback

linearization is applied to nonlinear systems in input-affine form;

x= f(x)+ g(x)u

» = h(x) (2.7)

Differentiating y in equation (2.7) with respect to time
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m _ ok,
d o’
- Oh
=—{f(x)+g(¥)u
S+ gl (2.8)
= %f(x) + %g(x)u
=Loh{x}+ Lyh(xu

where Lﬂz(x):R”—z»R and L ha(x):R" —» R is the Lie derivative of a scalar

function A(x) with respect to a vector function f(x) and g(x) respectively.

Suppose L A(x) # 0 for all x inside a region Q< R", the above input-output relation

between y and i is well defined. In this case, the system is said to have a relative degree of one
in region Q , because the input-output relation was obtained after one differentiation.

Suppose L, i{x) = 0 for all points inside regionQ). We differentiate y repeatedly with respect

to time. The n'" derivative of y is given by
L L7 (x)=0,  Vi=12,(n-1) (2.9)

By this, we can obtain a well-defined input-output relation after n differentiation. The

dynamics could be expressed into a normal form by the coordinate transformation.

z ¢ (x) h(x)
2| _|$2(0)] _ L h(x)

(2.10)
2] [#a0)] | LF A
In the new coordinates

z; = (x) =L h(x), 1<i<n

the systems became

Chapter 2—Page 4



Chapter 2 Literature survey

2y =123
2y =73
_ (2.11)
Zpn1 =2,
2y = Lph(x)+ L Ly h(x)u
=a{x)+b(x)u
[t is easy to see that the state feedback control law
¢ ! (—a(x)+v) (2.12)
Hw=—->y- .
blx) ..
cancels the nonlinearities to the n#-order lincar systems from input v to output z :
20 =y (2.13)

This represents a nonlinear system having relative degree r =n (exactly equal to the
dimension of the state-space), when in fact for » < n, the equation (2.11) must have rendered

(- r) internal unobservable states. This is exactly analogous to the concept of pole-zero
cancellation in linear systems theory. The (n — ) dimensional internal states are regarded as

the zero dynamics'[Isidori 1995, Sastry 1999}. A common assumption in control for feedback

lincarization systems is that the zero dynamics is exponentially stable.

2.2.3 Observer

The design of observers imply the reconstruction of the internal states from output
measurements of the system. For linear systems, the observability and detectability properties
are closely connected to the existence of observers with strong properties, such as exponential
convergence of the errors. For nonlinear systems, the problem is more difficult and
challenging. The practical approach to design of the observer based problems in nonlinear
systems is to utilize the linearization in Section 2.2.1. In Secti0n'2.2.2-, another linearization

method dealt with a class of nonlinear systems that can be transformed into linear systems by
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using feedback and change of coordinates. In this section, the idea of state observer is briefly
reviewed. Consider a state space realization of the form:

X = Ax+ Bu

2.14
y=Cx (2.14)

where 4 R™",Be R" and C' € R” . Assuming that (4,C) form an observable pair. A

observer for the system of equation (2.14) is construct as

.é:A_J?+Bu+L(y—}";)

5=Ci ~  (2.15)
where L is the observer gain. Define the observer error
¥=x—3x (2.16)
we have
¥Y=i-%
=(Ax + Bu) - (Ax + Bu + Ly — LCx) (2.17)

=(A-LCYX
The observer gain L is designed such that A — LC is Hurwitz. It is well known that if the
observability or at least detectability of the pair (4,C)is satisfied, then the eigenvalues of

A-LC can be choice by suitable selection of the observer gain [Khalil 2002].

Thus,x = Qast — .

2.3 Modern Controtl
2.3.1 Adaptive control

Research in the field of adaptive control has a long history. This goes back to early 1950’s,
with the design of autopilots for high performance aircrafts. In the 1970’s, adaptive control
was widely accepted in control applications, due to the Lyapunov’s stability theories and the
progress 1n control theories based on state space techniques [Miller and Davison 1991; Sun

1997; Hsu et al. 1997]. The concept and development of a wide class of adaptive control
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theory with well established stability properties was accompanied by several successful
applications [Sastry and Bodson 1989, loannou and Sun 1994]. Model reference adaptive
control (MRAC) techniques [Sastry and Bodson 1989, Slotine and Li 1991] were designed
and analyzed base on Lyapunov’s stability approach [Narendra 1989, Narendra and

Balakrishnan 1997, Sun and Hoo 1999].

In the late 1980’s to early 1990’s, the adaptive control theory was used t? Extend the
properties and results of the linear systems to a certain class of nonlinear systems with
.unkr_mwn system parameters. The adaptive control of nonlinear systems has undergone rapid
development. The‘ seminal works including those of [Sastry and Isidori 1989, Slotine and Li
1991] led to stabilization and tracking control for some classes of nonlinear systems. In the

late 1990’s, the focus of intelligent adaptive controllers were to further extend previous resuits

and provide more in depth analysis.

Here, we briefly illustrate basic concepts and design for adaptive control systems [Khalil
2003, Slotine and Li 1991, Narendra 1989]. The control objective is to design a feedback
control law such that all closed-loop system signals are bounded and the plant output track the
pre-specified reference asymptotically. The general approach of adaptive control systems is

iltustrated in Figure 2.1.
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Output of the
m Yo reference madel

Model ]

. /—[-\:i—-*wﬁ Error +
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o Mechanism ;)
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C ) I - Plant L
NE ontroller Input
[nnerloop

Figure 2.1 Model reference adaptive control scheme

Consider a linear time-invariant plat and reference model [Khalil 2002, Astrém and

Wittenmark 1995].

Yp=apy, +kpu

(2.18)
.}-'JHI = aﬂtyn] + k”!r

wherea and £, aré the plant parameters, a,, < 0andk,, are the model parameters of a chosen

reference model. Furthermore, » is a bounded external input. When the plant

parameters a , and k , are known, we use the feedback controller

w(t) =0, r() + 0y, (1) (2.19)
where
* « Gy —da
6, = u , 0, =2 F (2.20)
k, k,

when the plant parameters are unknown, we cannot implement the control

law u because 0; and 9; are unknown. Instead, we use estimate #, and 8, for 0; and 9; to

implement the adaptive controller

u(r) = Oyr(t) + 03y , (1) 2.21)
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. ¥ *
Define the tracking error ase =y, -y, , parameters etrordy =&, -6, andg, =6, -6, . In
term of the tracking errore, we have

€= y;} - }}m
=a,e+k, (0 =0 )r+k, (05, -0, yy) (2.22)

=daue+ kp¢’lr +kp¢2yp

The choice of adaptive law

O =@ =—yer e 023
92 = ¢2 =YYy
Introduce parameters as measure for the errors e, ¢, and ¢, :
% :i+L¢f FLIPE (2.24)
2k, 2y 2y ‘
as a Lyapunov function candidate, we obtain
y="9m,2<q (2.25)
kp

It can be proved that im,_,, e(f) = Oand the output of the plant tracks the desired model

output. Since
— [pdr = v (0)-¥(w) <o (2.26)
a
we have
fe*(0)dr <o (2.27)
[ ) .

Since é(¢) as given by equation (2.22) is bounded. Hence, ¢,é € L™, use of Barbalat’s lemma
[Sastry and Bodson 1989], the system is stable and the tracking error in the adaptive control

system converges to zero asymptotically.
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2.3.2 Sliding Mode Control (SMC)

The simplest variable structure control, the shding mode control [Utkin 1977] is widely
accepted as a powerful control method of tackling uncertain nonlinear systems. [DeCarlo ef af.
1988, Slotine et al. 1984, 1991]. This control algorithm offers good robustness against mode)
uncertainties and cxterﬁal disturbances, pfovicled that the uncertainties and disturbances lie
within a bound. The control signal can be driven the system states to the stiding plane and stay

on it. Consider an n-th order nonlinear system in the form of :

XM = r )+ g(0)u + d ()

-~

Y =X

(2.28)

Assuming that the upper bound of the disturbance d(¢) is D, that is | d(t)|< D . Without loss
of generality, we assume that g(x) # 0 and g(x) > 0. The control objective is to design a
control action for the state x to track a desired reference state y,, in the présence of model
uncertainties and external disturbanceg. The tracking error is defined as follows.

e=x-y, =[eé--,e" M er” (2.29)
The sliding surface in the error state space is defined as:

s(e)=cie+cyet-+c, " 407D

=CT€

(2.30)

where ¢ =[c;,¢;, ", ¢, 1]7 are the coefficients of the Hurwitiz polynominal. For the zero
initial conditions e(0) =0, the tracking problem x = y,, can be considered as keeping the

error state vector on the sliding surface s(e)=0 for all ¢t >0 . A sufficient condition to

achieve this condition is to select the control strategy such that
1d, 5
—— (e -n|sl, =0 2.31
S S En=nlsl /] (2.31)

The system is controlied in such a way that the state always moves towards the sliding surface

and hits it. The sign of the control value must change at the intersection belween the state
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trajectory and sliding surface. Assume the nonlinear function f(x) and g(x) are known, the

following SMC control input « can guarantee the sliding condition of (2.31).

n_l . -
d == Y e - 1)+ - G+ Dsn(s) 2.32)
g} o
where
1 for s>0
sgn(s)=9 0 for s=0 (2.33)
-1 for s<0 T

. . L -1
The final control is realized as u =u,, + g(x)  u

Suee

where
n-1

Heg =& (x)_l{— Y ocie - f(x)y+ y{) (2.34)
i=l ' .

g, =—(11+ D)sgn(s) (2.35)

#

Let the Lyapunov function candidate defined as
L 2
Y\ =55 (e) (2.36)

Differentiating (2.36) with respect to time, ¥ along the system trajectory as

I)I =58

e(n—i) + )C("J (.u))

=s-(cle+cyé+-+c -V

n—t
S el 237
:S'(Zc‘-e(f) +f(x)+g(_\-)u+d(1)_y’(1::)) ( )

=l

<-n|s|

Hence the SMC input u*guarantees the shding condition of (2.31). The controller includes
switching between two control structures: an equivalent control and a discontinuous. control.
The equivalent control governs the system dynamics when it state are on the sliding plane.

The discontinuous control handles the uncertainties. The phenomenon of chatting is caused by
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the discontinuous control action and makes the control signal unnecessary large. The genéeral
approach of SMC is illustrated in Figure 2.2. A common method to remove chattering is to
use the boundary layer [DeCarlo 1988, Slotine 1991]. This method uses a continuous control
to replace the discontinuous control when the system states are inside a pre-defined boundary
layer such that chattering is eliminated. However, a finite steady-state error must exist and
asyﬁptotically cannot be guarantee. In Chapter 3, the use of adapli\.fc fuzzy system with Pl

control to form a new adaptive fuzzy SMC with chattering elimination will be discussed.

P

A €3
cy
Reaching
Phase
ding §>0
Phasc
s=0

5<0
Figure 2.2 Sliding condition in two dimensional error states space

2.3.3 H* Control

One of the major innovations of control theory has been the development of the H#®
control by George Zames [Zames 1981, Francis and Zames 1984], which addresses the issue

of the worst-case controller design for systems subjected to unknown disturbances and system
uncertainties. The objective of a H™ controller is to find a feedback control law 1 = a(x)such

that the L, gain from an exogenous disturbance signal, w(x), to an output signal, z(x), is

minimized. Consider the system
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Xx=f(x)+g(x)w

2.38
z = (x) (2.38)
For some definite function ¥(x), the Hamilton-Jocobi inequality [Khalil 2003}
oV 12 SN AN
— SO+ — ——g(x)g7 (1)[—] +—hT {(xYh(x) <0 (2.39)
Ox 2y Ox ox 2

such that the L, gain of system must be less than or equal to y . Consider

2

1 .
)+ = Vg (g

1
w——ng(x)VxT
2y (2.40)

V. f(x)+ Vg (x)w = —%yz

| 2 2
+ — 1t
L7
where ¥V, = %K . From equation (2.40), equation (2.39) become
X

2

1 Ly g2 1 1 1
R L e e T O
Y

(2.41)
L

Differentiating ¥ ;vith respect to time, ¥ along the system trajectory as

V=V (f(x)+g(x)w) < % y3 |’ - %ﬂz”"' | (2.42)
[ { 2 L 2
VO~V (x0) < 7 IM dz~— ﬂ[zu dr (2.43)
0 0
implies

I ]”zuzdr < —1—)/2 ]”w”zdf + 2I;(x0)

25 2 (2.44)

=, <.,

In the special case of linear time-invariant systems
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X =Ax+ Bw

2.45
z=Cx ( )
Equation (2.26) can be obtained
Loy
Vix)= 5% Px (2.46)

the solution of which can be obtained by solving the following algebraic Riccati equation:

PA+ATP+LZPBTBP+C7'CSO (2.47)
y

- o

the valid solutions are ones in which 2= P > 0.

2.3.4 Backstepping Control

Backstepping control [Kanellakopoulos et af. 1991, Krstic et af. 1995] 1s a systematic
method for nonlinear control design, which can be applied to a broad class; of systems.
Backstepping refer to the recursive nature of the design procedure. The main idea is to start out
with the stabilization problem for a first-order subsystem based on Lyapunov stability
techniques and step-by-step increase the order of the subsystem considered. The idea of

backstepping is briefly reviewed in this section. Consider the system

xp = fi(x)) +x,
X2 = U (248)
y = ,l‘l

where f(x;) is known function. x|, x, € R are the state variables and u € R is the control
input. Define the first backstepping vaﬁal;le z) =), ifx; as a virtual control input, choosing
x3 =~x; — f1(x;)-would achieve global stabilization of x, . However, since X, 1s not the actual
control input, the virtual control is introduced as z, = x, —a;, whereq, is stabilizing function
to be specified later. Hence z; subsystem can be writlen as

2= filz)) + ) + 24 (2.49)
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Consider the Lyapunov function candidate for this system

b

Vl(2:)=‘2“31
"i(z)) = 2,4, (2.50)
=0 {filzp+a) + 212y
Choose the stabilizing function

such that it stabitizes the z subsystem

.t

V) =—kz{ +2,2, (2.52)

~

If z, =0 then the z, subsystem is stable. Consider the Lyapunov function candidate

for z, subsystem

1 5
Vo=V, +—z
2= o5
2 .
‘=—kl21 +2522 +2222 (253)
:—klzlz‘}‘Zz(le +Z|)
=—k|z|2+22(u—c't|+z|)

=—kz{ ~ky23 <0, (z,,2,) # (0,0)

if uis chosen as u = & —z, —k,z,,k, >0 where

a __af](xl) —kx
1 o, I A (2.54)
=_[M+li(f,(x,)+xa)
ax| )

Figure 2.3 illustrate the approach of backstepping control [Kustic et a/.1995].
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u J 2 J’ Y .
L i)
(a)
z Z =X
174 I 2 =® e i L
F 3

J

“a(xy) St

(%)

Figure 2.3 (a) The block diagram of the system (2.48) (b) “backstepping” of — &, through the
integrator and the feedback loop in the box with g,

Thus, by recursively applying backstepping, global stabilizing control laws can be constructed

for systems of the following pure-feedback system [Krstic et al.1995]

x = fi(xy,x7)
X3 j*“fz(«’flﬁ"z:-")) (2.55)
Xy = fu(X1s X220, X, 1)
Also systems which can be written on strict-feedback forni can be handled
xp = f1(xq)+g1(xy)xy
X7 .=f2(11,x2)+82(-‘€t,x2)13 (2.56)

‘trr = fn(xl !xz""’xn)+gr:(xl ,.\72,'5',1,2)!1
strict-feedback systems are also called triangular systems. In chapter 9, the use of robust
adaptive fuzzy control by backstepping will be discussed for a class of strict-feedback system

in the presence uncertainties.
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2.4 Soft-computing methods

The application of soft-computling theory (fuzzy system, neural network and genetic
algorithm) to the solution of control problems has been the focus of numerous studies and
research [Linkens et al. 1996, Song et al. 1996, Zadeh 1994). The motivation is often that the
soft-computing an altermative way to the traditional modeling, optimization a‘nd design of
control systems when system knowledge and models in the traditional sense are uncertain,

inaccurate or complex.

2.4.1 Artificial Neural Networks

Since McCulloch and Pitts in 1943 [McCulloch and Pitts 1943] studied the potential and
capabilities of the interconnection of several basic corﬁponents based on the model of neuron.
Neural system has become the focus of many research investigations by scientisté,
mathematicians and engineers from all around the world. Hebb [Hebb 1949] was concerned
with the adaptation algorithm involved in neural system. Subsequently, Rosenblatt [Rasenblatt

1958] coined the term Perceptron and devised its architecture.

Neural network are a class of technology attempt to mimic the theoretical operation of the
human brain as opposed to following the pre-programmed rules of a sequential digital
computer inspired by the ability of leaming of solving problems especially those which are not
amenable to convection programming. From control theory point of view, the advantage of
neural network is the ability to represent nonlinear mappings. Therefore, a nonlinear modeling
in the form of srimulation date or experimental data can be represented by a neural network

system, which is the feature to be most readily exploited in the synthesis of nonlinear system.

In this section, the structure of the feed-forward neural network as shown in figure 2.4
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for nonlinear mapping will be constdered. The basic elements neurons as shown in the figure
are grouped into several layers: input layer, hidden layei(s) with sigmoid function, output
layer. Thus, a multi-layer network in Figure 2.5 is usually used for nonlinear mapping
applications. The activation function used here is the standard sigmoid function
f(x)=1/1+e™" with range between Oand 1. Other choice of activation functions can be used

if it 1s required [Freeman and Skapura 1991].

Activatian funclion

Input
\_/ f(L! Output
. Summing
Junction @
Figure 2.4 Single neuron
Input Layer I Hidden Layer Qutput Layer

INPUT OUTPUT

Figure 2.5 General feed-forward network
The step by step description for a feed-forward neural network are as follows [Freeman and
Skapura 1991]:

Step 1: Calculate the NN input to the hidden layer units
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h C } #
net = ) Wji-x, + b (2.57)
=1

where x; is the input vector, # is the number of input node of the network, j is the /* hidden

unit, A superscript refers to quantities on the hidden layer and 4 is the bias term.

Step 2: Calculate the output from the hidden layer

i = j’-" (neti‘-) : (2.58)

where f"l is sigmoid function

Step 3: Calculate the output layer receives a hidden layer input

L. . .
net = Wg i (2.59)
J=l

where L is the number of hidden node of the network, & is the £* output unit,
o superscript refers to quantities on the output layer

Step 4: Calculate the output
Yi = [ (nety) (2.60)

where £ is linear activation function.

From the control theory point of view the ability of neural networks to deal with nonlinear
systems is significant. Hence to model nonlinear systems is the feature to be most readily

exploited in the synthesis of nonlinear controller.

2.4.2 Fuzzy Systems

Fuzzy logic theory was first iniroduced by Lotfi. A. Zadeh in 1965 {Zadeh 1965] as a

generalization of classical binary logic theory. Unlike the characteristic function of a
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convcctionz_il set, whicﬁ take values in True and False or 0 and 1, the membership function of
a -fuzzyrset can takes values anywhere between 0 and 1. This multi-value logic is the basis of
fuzzy logic systems. Fuzzy logic theory gave a strong impulse to the area and provided the
catalysi for much of the subsequent research and commercial products in this field. [Mendel

1995, Jamshidi et af. 1993, Sugeno 1985].

Fuzzy control, especially in nonlinear control area, 1s considered as one _of the most
altractive strategies in solving control and modeling of complex systems. In term of a logical
‘poiﬁt of view, a_ fuzzy system is a decision making machine that has a knowledge base
composed of fuzzy IF-THEN rules. Therefore, a nonlinear system with inaccurate and/or
uncertain knowledge of system can translated into fuzzy system easily. In case the
mathematical model of the controlled system is difficult to obtain, the important information
comes from numerical measurements of system variables or human experts who provide
linguistic knowledge -about the -sysiem. Hence, fuzzy systems provide a systematic and
efficient framework for incorporating linguistic fuzzy information from human experts. In
term of fnathematical'point of view, Li. X Wang [Wang 1992] coined the name fuzzy basis
functions (FBF) and fuzzy system can be regarded as a universal approximator. Therefore, a
nonlinear system in the form of experimental data or expert knowledge can be sufficient.
formulated by a fuzzy system. In coﬁtrast to convectional control, a fuzzy control system is
one, which designed based on the heuristic and experience knowledge of experts, while the
convectional control design starts with mathematical model which déscribe the behavior of a
controlled system.

The fuzzy design approach ability to provide explicit model-free control of complex

system, particularly from expert knowledge or expenmental data would be sufficient for

formulation and available for compilation of the fuzzy IF-THEN rule base [Mamdani 1974,
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Sugeno 1985]. Such designs were ad hoc and lacked the property robustness and stability
analysis of the closed-loop controlled system. On the other hand, modern control theory is
mature branch design method which is powerful for its rigorous mathematics, convincing

stability proof and rehable system analysis.

[n 1974, the earliest application of fuzzy system was to control a steam engine {Mamdani
1974], where the fuzzy IF-THEN rules were obtain from expert knowledge anrd.'/linguistic
concept. The f-uzzy logic theory and its practical realizations have become popular and
generated unprecedented research interests due to the impressive growth in consumer products
and industrial system from early 1990°s [Terano e al. 1994 and Sugeno 1985] etc, where no
accurate mathematical models of the system are available, but human experts are available to
provide linguistic information about the system. Although, fuzzy theory is widely applied in
industrial systerﬁs (blast furnace control, temperature control, automatic train operation,
speech and image recognition, etc [Térano et al. 1994, Moon et al. 2004]. Fuzzy control has

not been viewed as nigorous due to a lack of formal synthesis techniques which guarantee the

basic requirements for control systems such as robustness and global stability.

Earlier research on the stability analysis of the model base fuzzy control systems required

a mathematical model of the plant [Tanakra 1992]. This contradicted the model free or poor

understanding of the control processes. [nrfact, if the matheinatica_l model of a system is .

knéwn, then the modém model control methods should be given a higher priority. Wang

-{Wang 1994] provided an in-depth and through analysis c-)f adaptive fuzzy system. This work
gave a strong impulse to fuzzy system technology. Especially, base on the Universal

Ap;;roximation Theorem, an adaptive fuzzy control method can provide stabilizing controller

even for noniinear system with dominant nonlinearities.
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The fuzzy system regarded as knowledge based or rule based system. The main part of a
fuzzy system is a knowledge base consisting ofthe_fuzzy [F-THEN rules. A fuzzy rule is an
[F-THEN -statemént in which some words are characterized by fuzzy membership functions.
We will consider a fuzzy system consisting of the product-inference value, singleton fuzzifier,
center average defuzzifer, and Gaussian membership function. Then the resulting fuzzy
system will be denoted as a linear combination of adjustable parameters and fuzzy basis
functions. Figure 2.6 shows an adaptive fuzzy system. An adaptive fuzzy system i_s geﬁned as
a fuzzy system equipped with a adaptation or learning algorithm where the fuzzy system is
developed from a set of fuzzy_ IF-TEHN rules, and the adaptation algorithm adjusts the

‘parameters of the fuzzy system based on the training information. Adaptive fuzzy systems can
be 'vi‘ewed as fuzzy systems whose fuzzy rules are automatically generated or modified
through training process. There are four principle components for fuzzy system: Fuzzifer:
Mapping the measured crisp input variables into fuzzy sets described in linguistic expression.
Fuzzy Inference Engine: [mplementing the fuzZy implication relation expressed by the fuzzy
IF-THEN rules. Fuzzy Rule Base: Representing the coliection of a fuzzy ﬁle base or a data

base. Defuzzifier: Converting the fuzzy values into the crisp output variable,

|:|,> Fuzzifier Fuzzy Rule Defuzzifier v
Base

x in U

y in ¥
Fuzzy Sets ( Fuzzy Sets
in v Fuzzy Inference Engine in ¥

e

Figure 2.6 Adaptive fuzzy system
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2.4.2.1 Mamdani type fuzzy system
The basic configuration of a fuzzy system consists of a collection of fuzzy IF-THEN rules:

RO . F Xy 1S A{ and -+ and x, 1s A,’,

Then y 1s gl

The fuzzy system performs a mapping from U =U;x--xU, cR" to ¥ c R, where
x =[x, X, ]T e U and y eV < R are the input and output of the fuzzy system, respectively.

A,—l and B' denote the linguistic variables of the input and output of the fuzzy set in U and

V', respectively. In general, there are many different choices for the design of fuzzy system if
the mapping is static. More detailed information of these fuzzy systems can be found in
[Wang 1996]. Usually, fuzzy systems with a single value consequent are regarded as

Mamdani type fuzzy systems.

The fuzzy logic systems with singleton fuzzifier, product inference engine, center average

defuzzifier are in the following form,

m n

PR BEFIED)

Flny =t =l (2.61)

m i

NS

I=l i=l

where 1 1 (x;) is the membership function of the linguistic variable x; , and y’ represents a

crisp value at which the membership function u ' for output fuzzy set reaches its maximum.

By introducing the concept of fuzzy basis function vector or the antecedent function vector.

Equation (2.61) can be rewritten as

f(x) =67 &(x) (2.62)
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N
I_[ H (x;)

Ely=—t— (2.63)

i

PR N EEH

1= i=l
where  @=[y',-,»"]  €R™ is called the parameter  vector  and

E(x) =[EN(x), -, E™ ()T € R™ is called the fuzzy basis function vector. One of the most

important advantages of fuzzy logic system is that the fuzzy logic system has the capability to

L

approximate nonlinear mappings. The fuzzy logic system described above is for single-output
system. However, it is straightforward to show that a multi-output system can always be

approximated by a group of single-output approximation systems.

2.4.2.2 Takagi-Sugeno (TS) Type Fuzzy system

The Takagi-Sugeno fuzzy system [Takagi and Sugeno, 1985] consists of fuzzy [F-THEN

rules with the following structure

RY . IF X 1S Af' and --- and x, is A

ﬂ

P , (2.64)
Then y 1s ag+ax +---+apx,

whereaf,z’ =0,l,---,n,{=12,---,m are the unknown constant parameters. By using singleton

fuzzifier, product inference engine, center average defuzzifier, the final output value 1s

n n

2 [ Tag G

f(x)= t=1 i=} (2.65)

H n

ZH“Af(xf)

=1 i=l

where y’ = a(’] +af,x, +---+a,’,x,, and 5’(.r)=n;‘=ipA; (xf)fz;zln;pff{ (x;) 1s the fuzzy

basis function. Equation (2.65) can be rewritten as
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n

{gl
HOEDWEAE) | (2.66)
=
_a(]) a|' a,], ]
a?' (12 02
Let §(X) :[ejl(x):'”:ém (.1')] , Z =[],X|,.‘{'2,'°-,xn]r P Az = 0 _] . _" , then
o a]
equation (2.65) can be rewnitten as
S(x) = EQ)VA,Z = E()A] + E(x) A, x .. (267)
(o a) o oay]
) N -
where x =[x, x5, x, 17, A2 ={a},al -, a1 and 4, =| “! 2 e

m m m
L a1 a2y oy

The consequent of TS fuzzy sy.stem rule is a linear system. This linear system is very
useful in designing identification and controi as ccnﬁpared with a single value consequent The
main advantages of TS fuzzy system is that a stability analysis base on the linear matrix
inequality (LMI) ’techniques for the fuzzy systems. A sufficient condition to ensure the
stability of the overall closed-loop is to find a common Lyapunov function for all fuzzy sub-

systems [Tanaka 1992, 1996].

Theorem 2.1: (Universal Approximation Theorem) [Wang 1997]
For any given real continuous function fon a compact set U < R"and arbitrarye >0,

there exists a fuzzy system f *(x) in the form of equation (2.49) or equation (2.54) such that

- (x)” <e | (2.68)

supl
xelf

A general fuzzy control design does not rely on fuzzy model or adaptation algorithm in
the control system and only implement in term of trial and error approach. Hence, its design

and implementation can be very simple. Much work on fuzzy control is base on PID control
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and sliding mode control (SMC). Later on, researchers used the well-established design
method and analysis of modern control theory to aid the design of fuzzy control. A brief

review will be discussed in the following three sub-sections.

2.4.2.3 Fuzzy PID Control

Therfuzzy system is designed as a controller related to the PID or three term controller
{Ying 1990, Mizumoto 1995]. The controlled plant is a nonlinéar dynamical syste:n:, the input
varable are the outpu‘t error, the rate of change or error and the time integral of the error. The
output variable 1s the rate of change of the control value. The properties of these P1D-like
fuzzy controller can be regarded as a PID control with nonlinear gains. During the control
system design, the shape and the distributim.} of the input and output membership functions to
be non-uniformly spaced in the domain of interested. It is difficult to apply fine tuning to
specific membership functions without affecting others. Moreover, the rule base of the fuzzy
- controller is pre-defined. Such pre-defined structure may not lead to a satisfactory
performance in time-varying environments, the control rules are refined after a number of

trial-and-error cycles by experienced human expert. The system stability of these types of

fuzzy control is difficult to ensure.

2.4.2.4 Fuzzy Sliding Mode Control (FSMC)

Once the design and analysis of the fuzzy control is merged with the sliding mode control
(SMC), it can bé regarded as fuzzy shding mode control. The first kind of fuzzy sliding
control is based on the state space of inpuf error and/or change of error. The state space
paftitidns approéch is usually used [Palm 1994, Kim and Lee 1995] with the properties of

avoiding the chattering problems. The state space is divided into many small partitions
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according to the input membership functions. The analysis basically carmed out for all
partitions, the design of such fuzzy control is time consuming. Moreover, these fuzzy sliding
mode controllers are difficult to apply to higher order systems with more that two states. The
second kind of fuzzy sliding mode control with the inputs,s is a variable proportional to the
distance between the state vector and the sliding surface. These methods are similar to a
convectional sliding mode control with a boundary layer about the sliding surface. These
fuzzy shiding mode control can be handle a high order system and stability anaﬁ[}Eis can be
carried out by using Lyapunov’s analysis in term of the sliding surface and assume the system

-

model is exactly known.

2.4.2.4 Self-Organizing and Adaptive Fuizy Control

Self-organizing controller (SOC) introduced by Procky and Mandani [Procky and
Mandani 1979], which possesses self-learning and adaptation for the knowledge base such
that a given performance was minimized. The adaptation basically use a performance
evaluation and fuzzy system to access the controller’s performance and adapt the fuzzy
relations in the- controlter. Borrowing ideas from convectional model reference adaptive, fuzzy
model reference learning control (FMRLC) [Passino et.al. 1993] is introduced to deal with
nonlinear control problems with adjustment of the fuzzy control rule by using a stable
reference model and a fuzzy inverse model. However, these fuzzy controller usually focus on

improving the performance; the system stabitity may not be guaranteed.

An adaptive fuzzy control with stability consideration was proposed by Wang [Wang
1994}. According to modern adaptive control approach, model based fuzzy adaptive
controllers are designed by using certainty equivalent principle [Slotine 1991, Astrém 1995].

The unknown plant parameters are estimated by adaptive fuzzy systems. The stability analysis
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is used to prove the closed-loop system and performance. The disadvantage of this method is

that the robustness and zero steady state error of the control system cannot be guaranteed.

2.5 Conclusions

In this chapter, an attempt was made to give a informative summary and a literature
survey on various topics that will be used throughout this thesis. Some remarks and
discussions on the modern control theories have also been elaborated. Various typlasbof control
schemes based on combining the modern control and the fuzzy system counterparts in the

structure have been summarized. This coverage has been selective and by no means claimed

to be exhaustive,
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'CHAPTER THREE

ON-LINE LOWER ORDER MODELING VIA NEURAL
NETWORKS

3.1 Introduction

The ubiquitous Proportional-Integral-Derivative (PID) controller is regarded as a jack of
all trades in many process induétries and 1s the most widely used controiler due troanlts simple
structure, easy implementation apd robust performance. However, the dynamics of many

-systems exhibit cﬁomplex characteristics such as non—lineaﬁly, time-varying parameters, as
well as time- delay, efc. This often leads to a poor control performance 1f one uses a
conventional fixed parameters PID controller to handle the above mentioned problems. A
possible way to circumvent the control probl;:m in these situations is to employ some form of
adaptwe control. There are some alternatives for tuning PID controllers adaptively. Self-
Tunmg Controllers (STC) and Model Reference Adaptive Controllers (MRAC) are reported in

literature whereby the parameters of a PII> controller are adjusted on-line [Astrom et al. 1993,

Smith and Corripio 1997, Rad ef al.1997,Ho et ai.2000].

In this chapter, we present an orl-line PID tuning controller based on the parameters of a
Jirst-order plus dead-time (FOPDT) model, which are obtained by using neural networks.
Here the complete knowledge of the system may not be required especially if a fixed structure
conlroller like a PID is to be employed. PID structure is inherently a second-order and as such
can not exploit the higher dynamics, which is provided bly complete system identification. A
lower-order rlmclel of the system is sufficient and can be obtained with less comblexity and
computation. Based on this premise, the proposed on-line approximating approach is aimed at

identifying a lower-order mode! for the purpose of the controller design.

This chapter is based on the papers 1,3, Sand 9, 10 on chapter one, pages 11 and 12 Chapter 3—Page |
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The rest of this chapter is organized as follows: The approximating method of high-
order systems with a first-order plus dead fume using neural networks is described in Section
3.2. The proposed on-line PID tuning control method is derived in Section 3.3. Simulation
studies for a control system undergoing dynamic change are included in Section 3.4. The
performance of the proposed algorithm for real-time‘ﬂow control of a laboratory test rig is
evaluated in Section 3.5. Finally, the chapter is concluded in Section 3.6.

- e

3.2 Lower-order Approximation of Systems with Neural Networks

The discuséion will be restricted to Single-Input / Single-Output (SISO) systems. It is
well known that a higher order system can be approximated by a first order plus dead time

model in form of:

Y(s) . o9 bos" +bys" w4 b, _K.e®
U(s) s" +als"_l +ota, Ts+1

(3.1)

Here, K, T, 7 are the gain, dominant time constant and the apparent dead-time respectively and
msh and the system gain is assumed positive K > 0.Uf(s) and Y{s) are the Laplace transformed
input and output signals respectively. 7" is the system time delay and @; and b; are the
coefficients of the system transfer function. The parameters K, 7 and 7 can be determined
from various methods [Ziegler and Nichols 1942, Smith 1972, Sundaresan and Krishnaswamy
1978]. Smith's method [Smith 1972] is a popular approach whereby the parameters are
determined from the process reaction curve which 1s obtained by injecting a step signal to the
system. Although, this method is convenient and accurate, however, it should be carried out
off-line and it is very sensitive to noise. Furthermore, in case of time varying parameters, this

process should be repeated frequently.
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3.2.1 On-line Neural Networks modeling

The proposed methodology is inspired by the process reaction curve method which is a
popular technique in process control to obtain the step response of a higher-order system. The
architecture of the on-line approximating approach is shown in Figure 3.1. As shown in this
figure, the control signal w2} is applied to the high-order system, the neural neiwork, and the
FOPDT model generator at the same time. The outputs of neural network are the three
parameters, namely, the gain K, the time constant T, the dead-time 7 of the approximated
FOPDT model of the high-order system. These three parameters are sent to the first-order-
plus-dead-time model generator tc; get an output of the model. The error between 'output of the
plant and the output of the model is used to train ‘the weights of the neural networks. The
tratning process tends to force the output of the FOPDT model generator to approximate the
output 6!’ the system. Thus, the inputs of the FOPDT model generator are the approximating

parameters of the first-order model for the high-order system. The output of the FOPDT

model Is expected to match the output of the high-order system after the neural network

converges.
u Y
> System |
error /'>
/ \A
Neural T Ham .

Network - —
Den r

.......

FOPDT Model
Generator

Figure 3.1: The structure of the on-line lower-order modeling of high-order systems
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The transfer function of the FOPDT model generator is rewritten below:

j; - -y

ns) _K-e (3.2)
U(s) Is+1

According to the convolution theorem, the output of the FOPDT model generator can be

obtained in the time domain as:

- —-7-5
Re U(s)] (3.3)

j’m (=L l["“m—

- v

where L stands for inverse Laplace transform. Therefore, we get:

. dy,, (1)
jm ()=K -u(z‘~-'r)—T—"L

5 (3.4)

where, u(t) is the input of the FOPDT model generator. The model output y,, (¢) depends on

the parameters K, T, and 7 at each time instant.

3.2.2 Neural Network Structure and Training Algorithm

The neural network architecture used for plant modeling is a three-layer feed-forward
network with / node in the input layer, 8 nodes in the hidden layer, and 3 nodes in the output
layer. The basic structure, having one hidden tayer with sigmoid function, has been shown to
be powerful enough to broduce an arbitrary mapping'among variables [Cybenko 1989]. Thus,
a three layers network is usually used for control altpplications. In general, three layers are
sufﬁcient, however if we want the network learns faster (converge faster), the network may
more than one hidden layer. In such cases, the computation load will increase [Freeman and
Skapura 1991]. The activation function used here is the standard sigmoid function with range

between ¢ and /.

To train the above neural network, a direct learning strategy is employed for on-line

training. As the desired outputs of the neural network are unknown, the FOPDT model
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generator is considered as an additional but not modifiable layer of the neural network. Back-

Propagation (BP) algorithm is used to update the weights of the neural network.

The algorithm consists of two passes, forward pass and backward pass. The calculation
of the forward pass and updating the connection weights from the input layer to hidden layer
are the same as those in the standard BP algonithm. To update the connection weights from the
hidden layer to the output layer, the momentum technique [Battiti 1989] is employed. The

wéight adjustment in each iteration is derived below. The error function £ is defined as:
1< .2
E=52(y_ym) (3-5)
r=1

where r 1s the number of input/output pairs available for training the network, y and y,, are the
output of the plant and the output of the FOPDT model at any time instant ¢ . Within each
time interval from ¢ to ¢+/, the BP algorithm is used to update the connection weights,

according to the following re[ationshfp:

2 +a AW, (1) (3.6)

Wy =Wy 0=

Here, 1 is the leaming rate; a is the momentum factor; Awy is the amount of the previous

weight change. Using the chain rule, one has

OE _ OE  Fa() 34,0)
Wy Bu) 0 @) () -
(1)

=-(y(O) =3 @) X (1= X)X (0

0, (¢)
Here, X;is the output of the i node of the output layer, Xj s the input vector of the nodes of
the /** output layer. d(z) is 3x/ input vector of the FOPDT model ( the output of vector of the

neural network)

aj}f" (!) — aj}ﬂl (I) . aj}ﬁ‘l ([) . @’}IR (t)
o¢,(t) 8K 8T 8t

(3.8)
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a}’!u (t) alld. @;Hi (t)
or oT

Next problem is to find which are the partial derivatives of the

7

a.;;m ([)
d

output y,, (¢)of the model generator (FOPDT) w.r.t. gain (K), dominant time constant (7} and

apparent dead-time ( 7 ), respectively, are given by

a)‘)m(l) -1 e—TS
mrlo .9
oK £ ":Ts+lu(5)j| (39

Folt) | —ske™ ]

2 o . . 3.10
TR R (3.10)

X a}’)m (t) _ -l —_SKE_S ] '
—a-r—-——L __Ts+l u(s)d (3.11)

The neural network used in this chapter consists of three output nodes for the first order
with time delay model parameters (K, 7, 7) and one input node for the control signal ((r)).
The selection of the number of hidden layers; and hidden nodes of the neural network depends
on the complexity and the non-linearity of the system parameters with respect to operation
range. Selection c;f hidden layers and hidden nodes is a compromise between accuracy and
compuiation efficiency. After extensive simulation studies of slow time varying higher order
systems, we decided fo employ a neural network with one hidden layer and 8 to 10 hidden
nodes. This architecture was found to track the changes of system parameters and time delay.
Simulation and experimental studies indicated that around 10-15% change in system
parameter could be tolerated. Large number of hidden layers and hidden nodes trend to slow
down the convergence of estimated parameters. In our proposed, 1 hidden layer and 8 hidden

nodes are used for the proposed algorithm,

Remarks 3.1;
® The method can be extended to approximate a Second-Order Process with Dead Time

(SOPDT) by changing the model generator to a second-order. Such a model is especially
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useful for oscillatory systems, which are associated with the second-order-underdamped
systems. The derivation of the equations (3.9-3.11) is similar to the derivation as outlined
above.

® The proposed method can be used for self-regulating processes and can be used for non
self-regulating processes (run-away) by modifying the structure of the on-line lower-order
approximator. The method is also applicable to non-minimum phase systems. In such
cases, the numerator polynomial has zeros in the ris of the s-plane. The time delay can
incorporate the effect of numerator dynamics in such systems.

® The method can be further ;impliﬁed by reducing the number of estimated parameters.
The gain of the system can be easily calculated at steady-state conditions as the ratio of
output over input excitation.

The proposed controller can be regarded as a gain-scheduling adaptive PID controller for

which its parameters are scheduled according to input variable u(?). As such, the performance

of the controller depends on the dynamic of input signal {Rough 1997].

3.3 On-line PID Tuning Control Method using Neural Network

The controti structure for the on-line PID tuning is shown in Figure 3.2 There are two _
parts in the control structure of the on-line PID tuning method. The first part, which was
described in the previous section, is the approximation of high-order systems with FOPDT
using neural networks, and the second part is the design of the PID controller. Normally, the
parameters of 2 PID controller can be obtained after the corresponding parameters of a
FOPDT model of the high-order system are known. There are many tuning methods based on
the parameters of FOPDT model, such as, Ziegler-Nichols (ZN) ultimate cycle tuning
formulae (Ziegler and Nichols 1942], Minimum Error Integral Tuning Formulas, Minimum

IAE, 5% Overshoot tuning formulas {Smith and Corripio 1997], and Refined Ziegler-Nichols

Chapter 3—Page 7



Chapter 3 On-line lower-order modeling via neural networks

tuning formulae [Hang er af. 1991]. Although ZN ultimate cycle tuning algorithm is not the
best tuning method, it is the most widely known PID tuning algorithm. [n order to get better
control performance, the so-called refined Ziegler-Nichols tuning method [Hang er al. 1991]
can be used. In principle, any other tuning method can be integrated with the proposed
identification algorithm; however, to demonstrate the merits of this approach, we have used
the ZN method. The parameters of the PID controller suggested by ZN algorithm is:

K,=06*K, T;=05*T, T,=0125*T,  (3.12)

Here, K, T}, Ty, K, and T, are the proportional gain, integral time constant, derivative time
constant, the ultimate gain and the ultimate period respectively, which are calculated from the

FOPDT model of the high-order plant [Smith and Corripio 1997].

_ \ PID — -
Intput Controller ¥ PROCESS Ou;pul
r
I o S A
adjust Kp, Ti & Td i ?
’ Y 5
Tuning : Y :
Algorithm ' K ) :
Izased on C L] Newrat TL Model Yoo
First Oreder Plus ' Netwark] | Generator ,
Dead-time Model| ! :
4 E \_ / error for training ;
Figure 3.2: Overall structure of the auto-tuning PID controller
The output of the PID controller is in the form of -
1 dy
u(ty= K, (e(t)+ —[e()dt + T, —L
()= Kp(e()+ -] =5
e(t) =r(t) - y(t)
1
y/(8) = ——y(s) (3.13)
[+ 45
10
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where w(1), y(1), r(t), y(t) are the controller output, process outpul, set-point, and filtered
derivative. The filtered derivative term with the filter time constant 10 is generally agreed by

both academics and practitioners respectively [Astrém 1995, Tan 1999)].

3.4 Performance of the proposed on-line controller
3.4.1 System Variations

To show the adaptive behavior of the algorithm, let us consider Lwo processes as:

Y(s) 15¢ 2%

Process | =
Us)  (1+9)?
. F(s) _1-1.4s
Process UG) " (as)

The first system is a system with time delay and the second process is a non-minimum phase
system. If the time delay is approximated by a rational transfer function, it will be in the form.
of nen-minimum _phase system. Figure 3.3 shows the open loop response for the two
simulated process. Iﬁ this algorithm, we identify the exact time delay and there is no need for
approximating it with a rational transfer function, i.e., to expand the time delay as a higher
order rational transfer function approximation. The set point was chosen to be a square-wave
with amplitude of 0.5 and a lperiod of 40 s. In order to get a more realistic environment, a
Gaussian noise with mean zero and variance of 0.0/ is injected at the output of the system.
We employed a fourth-order Runge-Kutta numerical integration algorithm for all time
responses and the integration interval was selected to be 0.0/s. The NN also used the same
time interval for updating its parameters. The simulation proceeded as follows: the PID
controller was initialized with K, = t, T; = 1000, Ty = 0.0. The architecture of the NN was
(1,8,3) and a bias term of 0.5 was added to all the hidden nodes. This structure of NN is

generic for this algorithm and works well in most cases. The number of hidden layers was the

Chapter 3-—=Page 9



Chapter 3 On-line lower-order modeling via neural networks

only varnable that could be manipulated if needed. The number of hidden layers was
determined by a tnal and error procedure. The connection weights were randomly initialized.

The learning rate and the momentum parameter were set at 0.8 and 0.1 respectively. The
updating of the PID started at time ¢ = 40s based on the estimated parameters K, 7 and 7 (The

symbol * over a paramcter indicates estimated parameter) by the FOPDT neural model. K,
and T, were then calculated according to these estimated parameters [Smith and Corripio
1997]. The corresponding PID parameters K,, T; and Ty were updated from ZN ultimate cycle
method'[Equation (3.11)]. The control law like other self-tuning methods is based on certainty
equivalent [Astrom‘ et al.” 1993}, 1.e., the controller uses the estimated parameters ;snnd does not
check the validity of these estimates. However, as the time goes on, the éstirﬁated parameters
of the approximating F OPDT neural model for the corresponding systems tend to converge to
a final value. Therefore, the performance of the controller improves with time. Figure 3.-4
shows the overall performénce of the proposed algorithm. [n this figure, the set-point and the
output, the controller srignal -output of the PID controller- and the estimated parameters of
gain, apparent time delay and the dominant time constant are shown in top, middle and bottom

curves respectively.

Y

1.6 Y 1.2

14 1r

12 08 -

1+ 06 r

08 04 |

06 02 L

04 B O 1 L 1 1 1
02 | 02 0 2 4 gtis 8 10

0 04

0

Step Response of Process [ Step Response of Process 11

Figure 3.3: Open loop response for the simulated processes
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Figure 3.4: Adaptive PID control under noise and system variation
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[n order to demonstrate the adaptive property of the algorithm, at ¢ = /955, the system was
changed to process 2 and again at ¢ = 320s, it was switched back to process . Furthermore, it
shoutd be noted that the gain in system 1 and 2 is different (1.5 and [). it is known that some
adaptive controllers can not cope with change in steady-state gain of the controlled system.
However, as 1t is seen in Figure 3.4, the proposed method can successfully track the system
change. These simulation studies demonstrate thé adaptive property of the proposed algorithm.
In all these system changes, the neural networks converged and the estimated parameters of
the FOPDT also converged to their steady-state values and the closed-loop stability was also
maintained under these conditio;ls. It 1s generally accepted that a PID controller tuned by
Ziegler and Nichols algorithm exhibits good robustness and stability properties under various
conditions. Since the underlying controller in the proposed algorithm is PID, it is expected to
share these characteristics. This has already been demonstrated in simulation and later on will
be verified in experimental studies. Tables 3.1 show the parameters of FOPDT model
approximated by,seyeral other met‘hods such as Smith’s, minimized error, etc., and (he
corresponding ultimate gain and the ultimate period for process 1 and 2 respectively. It should
be noted that the parameters from all other methods except the proposed algorithm were
obtained off-line from an open-loop excitation with unit step and were noise-free. The values
quoted for the proposed algorithm is based on the last measurement before each system
changé and not the average value. Nevertheless, these measurements match the original

system very well especially with the non-minimum phase system.

3.4.2 Stability Assessment

In the preceding simulation study, the PID controller was tuned on-line bhased on the
model obtained from the neural network approximator. This model is inevitably based on

incomplete information about the dynamic behavior of the process. In the simulation study,
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the actual system was a second-order with time delay, which was switched to a third order
non-mihimum phase system. In practicdl process control applications, the paraméters may
change due to many factors such as failure or delterioration of system components, driving
components and transducers. This is related to robustness of the control system and in turn
affects the stability of the overall system. It is therefore a must for the final controlled system
nqt to be sensitive to parameter variations in order to ensure a robust and stable performance.
Here, we address this problem in a rather unconventional approach. We study a statisiical

measure of probability of instabitity of the closed-loop system via Monte Carlo simulation.

1 Process [ Process [

K [ T T K, T, K T T K, T,
Smith Method . 1.5 1.65 | 3.00 | 106 | 838 1.0 1.89 | 2.43 .93 7.22
Mininized-error 1.5 1.46 | 3.11 | 098 844 1 1.0 1.67 | 2.35 1.74 7.35
VTsang-Rad 1.5 1.5 309 | 1.0 845 1.0 178 | 244 1.85 8.45
Proposed method 1.49 l.‘33 3231 095 856 | 099 | 122 | 2.6l 1.47 7.08
Theoretical . \ - - 1.04 8.44 - - - 1.54 6.83
calculations*

*Values obtained from theoretical calculations
Table 3.1: Parameters for process I & II

The stability of the closed-loop system under the adaptive PID controlle; given by Table
3.1 are determined by calculating the eigenvalues of the cc;rresponding characteristic equation.
A Monte Carlo simulation is used to estimate the probability of instability of the closed-loop
system [Ray and Stegenl 1993].' The closed-loop eigenvalues are evaluated J times with each
element of system parameters éﬁeciﬁed by a random generator whose individual output are
shaped by a desired probﬁbility density function. The estimate probability of stability will be
more accurate as J tends toAir-lﬁnity. The estimated probability of instability is defined as the
number of cases with riéht half plane roots over total number of evaluation ./,

<
Pr(unstable) = 1 — Pr(stable)  where Pr(stable) = Lim mN(q””’ <0)

jorm J

Chapter 3—Page 13




Chapter 3 On-line lower-order modeling via neural networks

The numerator term denotes the number of cases for which all real part of eigenvalues
remains in the left half plane. The subscript “max™ indicates the maximum value of real part
of system eigenvalues. Guay is the maximum real part of all the roots of the closed-loop

characteristic equation N{o..y < 0} is the number of case for which all the roots of the

characteristic equation lie in the left-half s-plane. A step by step procedure for carrying out the

Monte Carlo simulation is as follows:

(1} Initialize a random generator ..

(2) Give a random ﬂucluation of 225% for each system parameter of the system model.

(3)  Derive the loop transfer ﬁ;nc'tion L(s)=G{(s)G.(s) where G(s) and G(s) arle model and

| PID controller transfer function, search the gain cross-over frequency of L(s) and

estimated the gain margin ¢ .

(4) Repeat step 2 and 3 for J iteration, count the number of case of unstable closed-loop
system (N; ) in which ¢,, < 0

(5) The estimated probability of instability is defined as Pr(2)= NJ/J and Pr(stable)=1-
Pr(unstable).

We first evaluated the stability of a PID controller designed by cach of the methods in
Table 3.1 (process 1 and process 2) via the above procedure using the corresponding (K, T,)
pairs. The Monte Carlo simulation was then carried out for each set of ZNPID controller.
parameters in ordér to compare the ‘robustness of the closed-loop control systems for each
method (Smith, Minimized error, Tsang-Rad). In the Monte Carlo analysis, a uniform
probability density function with £25% models the system parameter uncertainties. The first-
order with time delay model is applicable to many practical systems since this model can be
designed to cover the dominant system dynamics within the system bandwidth. The system
parameters are approximated onling by the proposed neural network algorithm. After the

system parameters converge to their optimal values, the parameter uncertainties and output
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_error, which are due to neglected dynamics and noise disturbance, should not be too large for
a proper selection of system model structure. In this chapter, the maximum uncertainty of
system parameters is chosen as £25%. Monte Carlo evaluation was then repeated for J times
(J = 25,000) for different ZNPID controllers. Tables 3.2 summarize the results of estimated
probability of instability and the interval estimates lower and upper (L. U) with 95 %
confidence interval for different off-line tuning methods for process | and process 2
respectively. .
However, the Monte Carlo analysis for the proposed method can not be carried out the
same way. This is due to thé fact t‘hat the proposed controtler is_ an adaptive PID c;)ntroller and
at each instant of time employs a new set of PID parameters. Therefore, we decided to run the
Monté Carlo simulation for the propoéed algorithm as a function of time. That is every time
new sets of PID parameters were available;, we computed the probability of instability. The
simulation in Figure 3.3 was repeated with the addition of the Monte Carlo simulation routine
(with j = 5000) to determine the probability of instability versus time (Figure 3.5). These
simulations indicated that the probability of instability (Pr(4)) approached to steady state
around 4.8x107 for 50 <t < 195. When the system was changed to process [f at t=195s, Pr(4)
jumped to 0.3 and after sometime moved to a new steady state of 0.0136 for 230 <t <320. At
t=320s, the system changed back to process I. Pr(A) increased to 0‘.25 and then back to 4.8x10°
for 320 <t < 400. These simulations demonstrate the behavior of the proposed algorithm

and verify that it exhibits very desirable robustness and stability characteristics.
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Process | -+ Process 11
Modelling Method Pr{unstable) (L.U) Pr(uanstable) (L,U)
Smith method 7.4x10° (5.92x107 8.88x10™) 0.1924 {0.15392,0.23088)
Minimized-error 5.6x107 (4.43.\:10'{6.72)(!0‘3) 0.1032 (0.08256,0.12384)
Tsang-Rad 6.8x10” (3.44x10° 8.16x10™) 0.2264 (0.18112,0.27168)
Exact Model 5.2x10° (4.16x107,6.24x107) 0.0201 (0.01608,0.02412)

Table 3.2 Process [ & 1, estimated Pr(unstable) by 25,000 Monte Carlo evaluations for +25

% system parameter uncertainties .

Pr(unstable)

06
0.5

a1
0.3 -
0.2 4
0.1 1

o LA —

0 100 - t(sec) 200 300 400

Figure 3.5: Probability of instability for simulation example

It should be noted that the Pr(unstable) is about 0.5 at t = 0, this is due to a large discrepancy
between the optimal model parameters and the initial model parameters at (=0. The large
impulse of Pr(unstable) is only a short transient and under the adaptive control of the proposed
algonthm, the Pr(unstable) drops below 0.05 after 10 sec. As there is a system change at
t=195s, the Pr(unstable) rises to 0.28 at (=195. Therefore, the Pr{unstabie) is regulated back to
0.06 within 10s. From Figufe 3.5, it can be observed that the proposed algorithm has a fast

response to system change and the Pr(unstable) is kept below 0.06 in steady state.
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3.4.3 Comparison with Relay Auto-tuning Approach

[n this section, the performance of the proposed algorithm is compared with that of the
relay auto-tuning approach [Astrom er. af. 1993]. In order to demonstraie the performance of
the proposed algorithms for system with non-linear gain, the simulation example as shown in
Figure 3.7 is considered. The sysiem process 1s a first order with time delay model and the

linear output y,(t) is then passed into a non-linear block in which the linear output y,(¢) is

medulated by the following sigmoid function s(X;). ..
Y (s) _ e™® Yo(0)
G §)==2 = ; )= max ~ J min 5| ———
( ) U(S) SOS + l Y( ) (y ) y ) max - YII'li.I.l
Y : Y l
Xy=—2e i y=— X oy ey —
yn;:lx - ymin ymnx‘ - ymin I+e 00
Yn
!
PP RS S B 7 B
-
ST YY S SV S -
02 fron o
0

0 0.2 04 Xn 0.6 0.8 1

Figure 3.6 Sigmoid function.
where X, and Y, are the normalized value of the linear output y, and the non-linear output y.
The actual output is de-normalized by multiply Y by (Vmax-Vmin). In this chapter, yp..=100%
and yu,=0%. The graph of thé sigmoid function is shown in Figure 3.6. It can be noted that
the rsigmoid function follows the “S” shape curve and simulated the non-linear gain
characteristic of pH control process [Jacobs et al.]. The relay auto-tuner PI control loop is
simulated in this example. In Figure 3.7, the switch “SW” is switched to “B” when a relay
oscillation test is triggered, the ultimate gain and ultimate period are then estimated and the PI

controller parameters can be designed based on these estimated parameters. As the process in
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Figure 3.7 exhibits non-lincar gain characteristics; the controller parameters need to be re-
tuned as the process changes its operating condition. The results of the simulation are shown
in Figure 3.8 and 3.9. In particular, Figure 3.8 shows the simulation results of a relay auto-
tuned ZN-P1 controller. Figure 3.9 shows the simulation results of the proposed algorithm
with on-line ZN-PI controller. The architecture of the NN was selected as [1,8,3] and the
learning rate and momentum factors were chosen 0.4 and 0.3 respectively. The set point
considered in this éxample covered the operating region of 20%, 40% and 80%. It should be
noted that the relay osciliation test was triggered at 7,=0s and ¢,=60s as the system changed its
operating points. The estimated Ultimate Gain and Ultimate Period for the relz{y test at t=0s
were 64.02 and 2.6s respectively whereas their estimated values at t=80s were 62.5 and 2.2s.
The output performanceAs of the two approaches are similar in term of rise time and maximum
overshool. However, fror-n the simulation results, it can be noted that the time duration for the
relay oscillation test is about five time constants as this i1s the transient period for the
oscillations to come to steady state. ‘For non-time varying non-linear system, gain scheduling
15 an effective approach but it needs human intervention for re-tuning the controller parameter
as the system change its operating points. After designing the controller parameters for the
whole operating region, Pl controller parameters can be scheduled according to the operating
point. However, in case the system components deteriorate or the system changes its
characteristics, the designed procedures have to be repeated again and usually this re-tuning
procedures needs human intervention. On the other hand, the algorithm proposed in this
chapter is an adaptive approach, which can track the changes of the system parameters and has

the ability to re-tune the Pl controller on-line.
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Figure 3.7 Auto tuning PI controller via relay feedback approach
The steps for relay auto-tuning are summarized as follows.

1. The switch SW is switched to position "B”, the system is under closed-loop control of a

P

relay.
2. After the limit cycle oscillations come to steady state, the ultimate period is estimated

and the ultimate gain is estimated by the follow formula.

_Ad

" H

aq

K T, = Oscillation Period,

3. The controller parameters can be designed according 1o the estimated ultimate gain (K,)
and period (T,). In this example, the PID controller parameters are designed by

standard ZNPI. K, =045K,; T, =085T,;
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Figure 3.8 Simulation results for relay auto-tuned ZN PI
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Figure 3.9 Simulation results for the propased PI controller

3.5 Experimental Studies

A laboratory-scale process control unit (PCU) from Bytronic [Byronic 1994] was used in
this experiment. The system rig consists of a sump, a pump, manual/computer control
diverting valve and drain valve. The sump water is pumped through the pipeliné and the
manual flow control valve to the process tank. An impeller-type flowmeter s located near the
process tank. The water is fed back to the sump via the drain valve, thus completing the cycle.
The rig can be used for level, temperature and flow control. The objective in our study was to
control the water flow by manipulating the pump voltage. Figure 3.10 shows the schematic
diagram of the process rig. The purpose of the experment was to demonstrate the
performance of the algorithm on a real time flow contro! system. The real time control
experiment is somewhat different from the simulation studies because of presence of noise
and other non-linearity due to the dead-zone in pump and other components in the system.

The flow rate is zero if the pump voltage is less than a threshold -value and the steady state

Chapter 3—Page 22



Chapter 3 On-line lower-order modeling via neural networks

flow would increase with pump voltage when the pump voltage is larger than that threshold
level. The consideration of dead-zone associated with the pump characteristics is out of the
scope of this chapter.

The set point was chosen as a staircase signal with amplitude of 0.4 #/min, 0.8 I/min and
1.2 U/min and period of 40 sec. The sample time was chosen 0.05 sec. The on-line process
computer sampled the water flow rate at every sample interval, and the system parameters
were identified by the NN from the pump voltage and the water flow rate. Due to the dead
zone 1n the motor dynamic, the pump drive voltage minimum and maximum were 0.8V and
3V respectively. The controller s‘ignal was limited (0—-5F) in order to avoid the windup
problem [Astrém and Wittenmark 1995). It was noticed that at times around 80 and 160
seconds, the change in set point-forced the control signal to within the dead-zone range. In
such cases, the pump was unable o react properly and hence oscillations occurred for few
seconds after which the operation returned to normal. This effect of this is shown in Figure
3.11 at times around 80 and 160 secor;ds. Most flow contro! systems employ a PI rather than a
PID controller. Since the derivative action amplifies the inherently noisy flow control system.
.I.n this experiment, we also modified the control structure to PI by remqving the derivative
action. The tuning algorithm was also modified to ZN-PI algorithm (K,=0.45 K,, and
T;=0.857,). The architecture of the NN was selected as [1,8,3] and the learning rate and
momentum factors were chosen 0.4 and 0.8 respectively. Figure 3.11 shows the resulis for
real-time flow control system: It can be seen that the performance of the adaptive control
system 1s very satisfactory. It should also be noted that the model of the plant changes at
different operating points. Nevertheless, the control Isystem maintains a very acceptable
performance. The measure of performance is not obtained by quantitative means such as ISE
(integral of squared error) or IAE (integral of absolute error) or similar performances index.

[nstead a qualitative measures such as “lower overshoot”, “higher risc time”, etc. are used.
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Figure 3.10: Schematic diagram of the process control unit
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Figure 3.11 Adaptive PI for flow-rate control system
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3.6 Conclusions

[n this chapter, an on-line PID tuning control algorithm based on the parameters of a
FOPDT model which are obtained by using neural networks has been proposed. The neural
network is implemented as an approximator rather than an identifier or controller. The outputs
of the neural network are the three parameters of the FOPDT model for the plant to be
controlled. Combining with a conventional ZN PID controller (or any other similar tuning
algorithm}, an on-line adaptive control using neural networks is proposed. The method can be
integrated with any other tuning algorithm, which utilizes the parameters of a FOPDT model.
The simplicity and feasibility of tl;e scheme for real-time control provides a new épproach for
implementing neural network applications for a variety of on-line industrial tracking control
problems. The same idea can be extended to fuzzy system. In the next chapter, an on-line PID

tuning algorithm based on fuzzy system will'be discussed. The algorithm combines numerical

and linguistic information to improve system performance with modest computation.
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CHAPTER FOUR

ON-LINE LOWER ORDER MODELING VIA FUZZY LOGIC

4.! Introduction

In the previous chapter, a class of on-line approximation of higher-order systems with a
FOPDT using neural networks was introduced. From this chapter onwards, fuzzy design

concepts, i.e. fuzzy logic reduced order modeling, direct, and indirect fuzzy adaptive control

will be investigated.

_In this chapter, a simple and novel fuzzy on line lower-order model approximation
method is proposed. The main idea is 'to combine a fuzzy system with a model generator for
the purpose of on-line approximation of the FOPDT model parameters. This method is useful
for the adaptive tur__ling of fixed structure PID controller and the proposed method is applicable
to the higher order systems with unknown _time delay. The parameter leaming is achieved by
using the gradient descent algorithm [Wang et. al. 1997, Lee and Teng 2000]. The proposed
ralgorithm can guarantee the system stability in Lyapunov sense if the leaming rates are
properly selected to ensure the values of lower-order model parameters converge. In contrast

to the classical fuzzy approach, the proposed algorithm has the following distinctive features:

‘e Without requiring a priori knowledge of the system, the proposed method is an on-line
adaptive Cdntrol algorithm using fuzzy system. This is achieve;d by combininé the on-line
fuzzy approximation method with the fixed structure controller (PID, IMC, etc).

« The propos_ed scheme addresses the problem of time delay identification, which is

generally overlooked in the adaptive fuzzy control research.

This chapter is based on the papers 5 and 14 on chapter one, pages 11 and 12 Chapter 4—Page |
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o The proposed method 1s charactenzed by its simplicity of controller structure and the

feasibility for real-time implementation.

The rest of this chapter is .organized as follow: Section 4.2 presents the idea of
approximating a high-order system with a FOPDT model by usli_ng the fuzzy system. In
sectton 4.3, the stability a;nalysis of the fuzzy system is given. The on-line PID tuning method
using fuzzy system is included in Section 4.4. In Section 4.5, simulation studies for
controlling a system with changing parameters are presented. The performance of the
proposed algorithm for real time C(;ﬁtroi of a temperature system with varying dominant time

delay is evaluated in Section 4.6. F inally, the chapter'is concluded in Section 4.7

4.2 Lower Order Approximation of Higher-Order Systems with Fuzzy System
As in Chapter 3, the high-order processes dynamic can be represented with sufficient

accuracy by a first order pilus delay time model (FOPDT).

Y(s) _ 58 bos” +bs" b xh, Ko™

U(s) s"ras" o ta, Ts+1

4.1

where K is the system gain, 7 is the dominant time constant, 7 is the apparent dead time and
Uts) anci ¥(s) are the Laplace transform of the system input and output signals respectively.
The proposed approach is conceptuallly stmple and is realized by cascading a fuzzy system
witill a model generator in parallel with the process to be identified ‘as shown in figure 4.1. For

further details please refer to Chapter 3, Section 3.2.1).
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Figure 4.1 The structure of the on-line lower-order modeling of higher-order systems

The transfer function of the FOPDT model generator 1s given by:

Ypls) K-e™%
U(s) Ts+1

(4.2)

4.2.1 The Fuzzy System Structure

In this section, we apply the fuzzy logic system [Wang et al. 1997] to obtain the process
model parameters. The basic configuration of the fuzzy logic system consists of a collection of

fuzzy IF-THEN rules, which can be written as:

ROF x is £ and - and x, is F/
(4.3)
Then y is B!

The fuzzy logic system performs a mapping from U = U, x---xU, < R"to R, where the input
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vector x =[x;,--,x,]" € R" and the output variable y € R denote the linguistic variables

associated with the inputs and output of the fuzzy logic systeni. F,f and B’ are labels of the

input and output fuzzy sets respectively. Let £ =1,2,---,n denotes the number of input for
fuzzy logic system and /=12,---,m denotes the number of the fuzzy [F-THEN rules. By

using the singleton fuzzification, product inference and center average defuzzification, the

output value of the fuzzy system is

i -

R B VEIEN),

O(y= !=lm k=1 ' (4.4)

ZH'“F: ()

1=t k=1

where u.i(xg ) is the membership function of the linguistic variable x; , and y‘r represents
k
a crisp value at which the membership function u s for output fuzzy set reaches it maximum

value. As a usual practice, we assume that,qu (y]) =1. By introducing the concept of fuzzy
basis function (FBF) [Wang et al. 1997], Equation (4.4) can be rewritten as
. T T
O(x)=0"{(x)=4(x)" @ (4.5)

where 8 =(8',--,6™]" is the fuzzy system parameter vector and &(x) =[&!(x),--, ™ (x)]7

1s a regressive vector defined as P

H#ka (xi)
O (4.6)

ZH#F}:(H)

I=1k=]
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4.2.2 Learning Algorithm

To-train the above fuzzy system, a direct gradient decent learning algonthm [Wang et al.
1997, Lee and Teng 2000] 1s employed. The error function £ for the learning processes is

defined as:
EQ =500~ 5,0 =50 @7)

where y(t) and y,, (¢)are the actual system output and the FOPDT model output at any time

.

instant ¢. The gradient of error in (4.7) with respect to the consequent vector is as follows:

OE(t)  OE() 0O
80 oy, () 00
_BE®) 3,0
e, © 80

4.8)

where @ =[K T r]T =[®1,®2,®3]T e R? is the input vector of the FOPDT model (the

output value of three fuzzy sub-systems) and the term

aj}m (t)
00

represents the sensitivity of the

plant with respect to its FOPDT model parameters where

- " - - T
Dl {ayg}f) 20 IOy 01,2 € B @9)

The suffices 1, 2 and 3 are used to indicate the FOPDT model parameters, system gain, time

constant and time delay. The partial derivatives of the output y,, (¢) of the FOPDT model

generator respect to system gain (X)), dominant time constant (7) and apparent dead-time (1),

respectively, are given by

aj)m (t) I [ e_ﬂ |
K F ”Ts+lu(s)] (4.10)
aj)m (t) -1 ﬁ_SKe_B '
LAY o pul .11
oT | (Ts+1)° u(s)] 10
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Bul) | —sKe™®
L= T ——u(s 4.12
or Ts+1 () (4-12)
. OE() .
Hence, from (4.8) and (4.9) the error gradient -59— can be written as
—66), -
1 o8
yp] 0 0 |
%:—e(x‘) 0 Vo2 O & (4.13)
o 06,
0 0 yﬂ}d 5@3 )
| 96y |
where
a—g-i:.f,-, i=1-3 (4.14)

With the fuzzy logic systems (4.5) and the error function defined in (4.7), derive the update

laws
Q,(z+1)=9,(:)—q,a—§% (4.15)
0,(t+1) = 6,(t) -1 a;;:) (4.16)
0, +1) = 0,(0) - Z’f;}” (4.17)

where 77; and &; for i =1,---,3 represent the learning rate and tuning parameters of each fuzzy

‘sub-system respectively. Figure 4.2 shows the membership function of each sub-system. The
value of L for the membership function is designed for covering the input domain of interest.
Each fuzzy sub-system has only one linguistic input value and two.fuzzy rules. Mdreover, the
membership functions of each fuzzy sub-system are chosen to be the same, as shown in Figure
4.2. Therefore the fuzzy system consists of three fuzzy sub-systems and the output value can

be obtained from equation (4.4).
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0, =0/ ©,=6]¢ ©;=65¢; (4.18)
where &, ={6} 641", 6, =16, 631" and 8, =[6’3I 032]T are lhe regression vector of cach

sub-system with the regressor as given in equation (4.6).

.- | Fuzzy Sub- .
1 ~ | System! gam
input 2 ; Sub Time
u | Fuzzy Sub-
*| System i . constant
-L +L
Fuzzy Sub- |- T G’: Time
(a) System M - Delay

Fuzzy System

(b)

Figure 4.2 Fuzzy logic system. (a) Fuzzy input membership function. (b) Block diagram of

fuzzy logic based FOPDT parameters identification

4.3 Stability Analysis of the Fuzzy Logic System

This section de.velops the selection criterion of' the learning rate parameters. If a small
learning rate 7 is used, convergence will be guaranteed but speed of convergence may be very
slow. On the other hand, if a large learning rate 77 may results in an unstable system. In this

section, the selection of learning rate are derived by discrete-Lyapunov function analysis,
which guarantee the convergence of estimated model parameters [Hoo ef al. 2002].

Consider a discrete Lyapunov function as follows:
V() = Et) = -;—ez ) (4.19)

where () represents the error in the learning process. The change of the Lyapunov function

due to the training process ¢an be given by
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: 1
AV(t):V(t+1)—V(t)=;[ez(t+l)—e2(t)] (4.20)
* The error difference due to the learning can Be represented by [Lee and Teng 2000]

T
Ae=e(t +1)—elt) z[%l} A

- A8, ' (4.21)
_|2et) aery sy ],
08, 06, 06, A;
3

where A@ represents a change in consequent parameter vector. From (4.15-4.17), wWé have

de(t)
AG =—n-e(f)- —=
1 -e(r) 20
o0, (¢)
m 0 Ofy, O 0 o6 (4.22)
00, (1) '
:6([) 0 772 0 0 yp2 ) HWé—gw-m—
O O 7?3‘ 0 O 'yP3_ a®32([)
| 085 |

where @ =6, ,92,6’3]T and 17 = [m,r]'z,m]r are the tuning parameters and the corresponding

learning rates in each fuzzy sub-system respectively, @ =[{©,,© 2,@)3]T is the output vector

of the fuzzy sub-system at time ¢. -

Theorem 4.1 Let n :[m,nz,ryg,]T be the learning rates for the fuzzy sub-system and let

" Pyax be defined as follows:

T
Pmax =[leax P2max P}max]

= maxla®‘| max|a®2|
(06| i |86, i

]T : (4.23)

Then asymptotic convergence is guaranteed if 17, are chosen to satisfy the following

conditions.
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2
0<ny < ——, =13 (4.24)

(¥ pi  max )
Proof: From {4.20-4.22) the change in Lyapunov function can be represents as
1
V(@)= [e* (t+1) -’ ()

= Ae(t){e(t) - % Ae(0)]

_'5_6(_!_)_ 6 de(t) . . @
_H = } -e(t)- Yo oo 9 {(t] { Y :| e(t) Yp ag}
T (4.25)
- T O
= -yp%%] ey { [ o 69] nle(t)‘yp.g._;}
2
=—g (f) Z qx(ypr()) [ ] 2= q:(ypl(t)) (23 ]
5—1182({)

where

2 -a® 2
A= Z[ Ri(yp () [ J }-{Z—m(yp@(t))z[ag_‘] } (4.26)

the convergence of the fuzzy logic system is guaranteed if 4 > 0. We obtain

2
0<n < ——— | i=1-3 (4.27)

2
(YP:'PE max )

Theorem 4.2: Let n =[n,1> ,n3]T be the learning rates for the tuning parameters of the fuzzy

sub-system. Then asymptotic convergence is guaranteed if the leaming rates satisfy the

conditions.

0<m<——-22—, i=1-3 (4.28)
(y]yi) Ri

where R; 1s the number of rules of each fuzzy sub-system.
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Proof: Let P :Q@—i =[Z,,Z, -A-ZR,]T, in which Z;; is the regressor values of each fuzzy

¢

sub-systems. Since Z;; <1 for all / and | £ |2S R; then we have Pﬁmx = R;. From Theorem

4.1, we obtain 0 < <2f((ypi)2Ri), i=1-3.

Remark 4.1: The factor représents the sensitivity of the plant to its

FIu®) Pu®) 4 Fn®
oK oT or

FOPDT model values. Once the identification process is done, we assume the sensitivity can

be approximated as

¥ _ Ful) HO _Fu) 30O _Ful)
oK oK aT 8T or ot

(4.29)

Remark 4.2: In previous discussion, the sensitivity of the plant to its FOPDT model values is
obtained by equation (4.10-4.12). However, in the convergent conditions of Theorem 4.1 and

4.2, the values of y , must be replaced.by S} max » Where

S}, max =m?X[yp,~(t)] (=13 (4.30)

4.4 On Line PID Tuning Method Using Fuzzy System

In order to show the effectiveness of the proposed method, we combine the fuzzy
algorithm with a standard PID controller to make an adaptive control algorithm. The control
structure is shown in Figure 4.3. There are two parts in the control structure of the on line PID
tuning method. The first part, which was des;cribed in the- previous section, is the
approximatioﬁ of high order systems with FOPDT using fuzzy system, and the second part is
the design of the PID controller. The parameters of the PID controller can be obtained from

the corresponding parameters of the estimated FOPDT by fuzzy system. We have used the
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Zicgler-Nichols ultimate cycle tuning method [Ziegler and Nichols 1942] to compute the

parameters of the PID controller:

K,=06K, T;=05T, T;=0125T, 4.31)

Here, K, T}, Tu, K. and T, are the proportional gain, integral time constant, derivative time

constant, the ultimate gain and the ultimate period respectively. The ultimate gain and the

ultimate period are calculated from the FOPDT model of the high order plant [Rad et al.

1997). It should be emphasized that other control algorithms could also be used. The PID

controller is implemented in the following form:

_ 1 Yy
u() =K, (e, () + fe, (0t + T, 5

i

e (t) = r(ty=y(t) (4.32)
!
yi(8) = ———y(s)
1+t
10

where u(?), y(1), r(t), y(t) and yqt) are the controller output, process output, set-point and

filtered derivative, respectively. The implementation of the adaptive PID is as follows:

I8

L

Derive the first-order with time delay model (F OPDT) parameters by fuzzy system.
Determine the ultimate gain (K,) and witimate period (T,} by the FOPDT model.

Find the PID controller parameters K, T; and Ty from equation (4.31) and calculate u(t.)
Find the FOPDT model output y,(t) from the FOPDT Model Generator.

Calculate error between the (FOPDT) model output and the process oulput.

Update & by using equation(4.15-4.17) (Gradient descent algorithm).

Update the error between the set-point and the process output. Go to step (1)
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' PID u i
Intput _’o—> Controller |—9—— PROCESS

r

adjust Kp,Ti & Td

Tuning

- .

- Algorithm . /
Based on ' pl Fuzzy I T ol Model ~ :
First Order Plus ' System I T Generato Ym :

Dead-time Model '
/ error for training o

4

/

Figure 4.3 On-line PID tuning using fuzzy system

4.5 Simulation Results

To show the performance of the proposed algorithm, let us consider the following three

processes:
2.58
Process [ (s) = L5 5
U@s)  (s+))
Process [ (s) = -1 4;
Us) (s+1)
-30s
Process T Y(s) = L.5e

Uls)  (s+1*

Process I is a second order with time delay system, the Process IT is a non-minimum
phase system and the Process Il is a fourth order time delay system. First, adaptive control of

Process I was simulated for t =120s after which the system was changed from Process I to
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Process 11. For t =320s the systeml was swifched from process II to process ITL. Furthermore, it
should be noted that the gain in Process I, ll and 1T are different (1.5 and 1.0). It is known that
some adaptive controtlers cannot (‘:ope with such‘changc in steady-state gain of the controfled
system. However, as it is seen in Figure 4.4, the proposed method can successfully track the
system change. In the simulation, the set-point was selected to be a square wave with
amplitude 0.6 and a period of 80s. A Gaussian noiser with mean zero and variance of 0.001
was injected at the output of the system. We employed a fourth order Runge Kutta numerical
-integration algorithm for all time responses’ simulation and the integration interval was
selected to be 0.1s. The fuzzy s;ystem also used the same time interval for 'updating its
- parameters. The simulation proceeded as follows: the PID controller was initialized with K, =

1, T, =1000, Ty= 0.0. The conseﬁuent values of fuzzy system were initialized with 8, =1.0,
@y =18 and ¢; =3.5. The value of L =1 and §; ., =1 for all i. The learning rates were

chosen as 77y = 0.25, 175 = 0.8 and 73 =0.8. Figure 4.4 shows the overall performance of the

three controlled systéms. In this figure, the set-point and the output, tﬁe controlier signal and
the estimated parameters of gain, apparent time delay and the dominant time constant are
shown in top, middle and bottom curves reépectively. In all these system changes, the fuzzy
system converged and the estimated parameters of the FOPDT also converged to their steady
state values. The proposed method is shown to provide stable and robust contro] under various
co-nditions. Tables 4.1, 4.2 and 4.3 show. the parameters of FOPDT model approximated by
several other methods such as Smith's [Smith et a/. 1967], minimized error [Sundaresan and
Krishnaswamy 1978], and the corresponding ultimate gain and the ultimate period for
processes‘ L II and M respectively. It should be notc(_i that the parameters from all other
methods except the proposed one were obtained off-line, from 6pen ldop excitation with unit
step and were noise free. Furthermore, the values quoted for the proposed algorithm is based

on the last measurement before each system change and not the average value.
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Figure 4.4 Simulation results of APID

Chapter 4—Page 14



Chapter 4 On-line lower-order modeling via fuzzy logic

K T T K, T,
Smith Method 1.5 1.65 3.00 1.06 7 8.38
Minimized-error 1.5 1.46 3.11 0.98 8.44
Proposed method 1.5 1.33 3.19 0.936 8.48
Process | - - - 1.036 8.438

Table 4.1: Process I FOPDT model parameters

K T T K. Ty

Smith Method 1.0 1.89 2.43 1.93 7.22
Minimized-error 1.0 1.67 2.55 1.74 7.35
Proposed method 10 139 245 164 6.91
Process I1 - - - .54 6.83

Table 4.2: Process I FOPDT model parameters

K T T K, T,
Smith Method 1.5 2.49 4.86 1.03 13.39
Minimized-error 1.5 2.057 5.1 0.923 13.49
Proposed method 1.5 2.66 4.75 1.07 13.33
Process.II[ - - | - 0.987 13.48

Table 4.3: Process I FOPDT model parameters

4.6 Experimental Studies

In this section, a process trainer PT326 from Feedback [Feedback 1982] was used to
demonstrate the performance of the algorithm on a variable time delay system. The system
consisted of an adjustable air blower, a length of tube and a heater. The air was drawn through

the throttle opening by the centrifugal blower. It was then warmed up by the heater as it
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passed through the tube length and sent back to the atmosphere. The system input was the
heater drive voltage and with its output the air temperature which was measured by a
thermistor ﬁttea to the end of the tube. The schematic diagram of the heater is shown in
Figure 4.5. An open loop test was then carried out on the system and from the process reaction

curve, a first-order model was deduced as:

Y(s) 1179333

G(s)= = ,
U(s)  0.55+1
adjustable
airflow |
+ SR
+ I thermistor
»
- E— -
.- |
+ I
] ‘ ! | 1]
power measurement
controller bridge
internal proportional
f controller .
sct point

I external

actuation signal

Figure 4.5 Block diagram for the feedback processes trainer (PT326)

The time delay of the system was fixed and very small as compared to its time constant. In
order to demonstrate the performance of the proposed algorithm for a system with dominant
time delay, a variable delay was added to the system output signal. Therefore, the system

transfer function was

_¥(s) 11e7B

Gls)= UGs)  06s+1
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r=10 - for 0<r<80
r=20 for 80<i<160
r=30 for 160<f<?240

In this experiment, we also modified the control algorithm to predictive PI controller {(PIP)
[Hagglund 1992] that is specially suited to dominant time delay systems. The sysiem is
regarded as a dominant time delay process if 7 > 57 . The output of the PIP controller is in the

from of

ut) =K, (e(z)+% je(z)anr)—}'7 j(u(:) —u(t —))d!

]

Here, K ,, T; are the proportional gain and the integral time constant, which are calculated

based on FOPDT model static gain and time constant as

K and T. =T

1
P i
the parameters of the PIP controller was obtained on-line from the cotresponding parameter of
the estimated FOPDT model. The sef—point was a square wave with. amplitude of 1.0 and

~ period of 80 second superimposed on DC offset level 6. The PIP controller was initialized

with K, = /, T; =1000. The consequent values of fuzzy system were initialized with & =10,
@, =0.5 and &; =2.0. The value of L =5 for the operating range for the control input and
S; max =1 forall . The learning rates were chosen as 77; =0.25, 7, =0.4 and 17 =0.8. We

compared the performance of the adaptive PIP with the adaptive Ziegler-Nichols Pl

(K, =045K, and T, =0.85T,, ) under the same condition. Figures 4.6 and 4.7 show the

results for real time temperature control system. It can be seen that the FOPDT fuzzy model
can track the variable time delay. It is observed that the comparison between the performance
of the adaptive PIP and adaptive PI, the tracking error of adaptive PIP is less than adaptive Pl
under the same condition and adaptive PIP control can maintain a better tracking performance

for this system.
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Figure 4.6 Experimental result for Adaptive PI with variable delay.
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Figure 4.7 Experimental result for Adaptive PIP with variable delay.
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4.7 Conclusions

In this chapter, we discussed an on-line FOPDT modeling method in which the model
parameters are obtained by using fuzzy logic system. The proposed method is different from
conventional fuzzy identification, the fuzzy system outputs are the three parameters of the
FOPDT model. Combining the proposed FOPDT identification algorithm with a fixed
structure controller, an on-line adaptive control using fuzzy system has been proposed. The
stability analysis for the FOPDT model! identification has been stated and Lyapunov direct
method has been applied to show the convergence of the identification algorithm. The
adaptive control scheme has been successfully applied to temperature control .system with
vaniable time delay. Sirmulation and experimental results show that the proposed method can
track the system parameters’ changes and gives satisfactory closed-loop perfqrmance.

This chapter also concludes the first stage of this project. In fact, both artificial neural
network and fuzzy system approaches for on-line lower-order modeling are equivalent. The
difference between them is mainly in the structure. It is noticed that the NN is highly parallel
architecture consisting of simple processing elements which are able to learn from given data.
In addition, contract (o fuzzy system, it is not possible to integrate prior knowledge to simplify
the learning process, or to extract knowledge in form of rules from the trained network.
Moreover, 1t is observed that due of the network architecture, the computation load of NN is
higher than fuzzy system.

In the next phase, general adaptive fuzzy control systems for special classes of non-

linear systems will be investigated.
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CHAPTER FIVE

ADAPTIVE FUZZY SL[DING MODE CONTROL WITH
CHATTERING ELIMINATION

5.1 Introduction

A novel fuzzy on-line lower order model approximation method was presented in Chapter
4. In the following chapters, we will move onto more general fuzzy logic syétgms. More
design methods and stability analysis techniques for nonlinear systems will be explored. In
this éhapter, we will discuss a new adaptive fuzzy control algorithm- which combine sliding
m-ode controller (SMC) and a proportional plus integral (PI) controller into a single adaptive
fuzzy sliding mode controller (AFSMC). The AFSMC can tackle the control problem of
unknown nonlinear systems and systenlls with modeling uncertainties and external
disturbance. The role of the controller is to schedule control under different operating
conditions. In this way, the advantage of each control method before combining can be
retained while any disadvantages are removed. The proposed control scheme provides good
transient and robust performance. Moreover, the drawback of chattering phenomenon in SMC
can be avoided. The AFSMC scheme will be proved to guarantee the global stability of the

closed-loop system.

The rest of this chapter is organized as follow: Section 5.2 gives a brief review of SMC.
The adaptive fuzzy sliding mode controller is included in Section 5.3. Computer simulation
results for the proposed control algorithm are illustrated in Section 5.4, Finally, the chaptér 18

concluded in Section 5.5.

This chapter is based on the papers 4 and 13, 16 on chapter one, pages 11 and 12 Chapter 5—Page |
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5.2 A Brief Review on Sliding Mode Control (SMC) for Uncertain Systems
Consider the n-th order nonlincar Single-input Single-Output (SISO) systems in the

following form:

= f0) + g(xu+d()
yEx

G.1)

where  f(x),g(x) are smooth, unknown nonlinear functions and g(x)>0

X ;[x,.t,---,.t("_”]T =[x),X5, 2 ,,] € R" is the state vector of the systems-which is
assumed to be available for measurement, 1 € Rand y € R are the input and the output of the
system, respectively, and d(¢) 1s the unknown external disturbance. Assuming that the upper

bound of the disturbance d(¢) is D, that is |d(¢)|< D. As in Chapter 2, Section 2.3.2 the

control objective i1s to design a control action for the state x to track a desired reference

state y,, in the presence of model uncertainties and external disturbances. Assume the

nonlinear function f(x) and g(x) are known, the following SMC control input u’ can

guarantee the sliding condition (for further details please refer to Section 2.3.2).

!

Zc ¢~ f(x)+ y{" —psgn(s) (5.2)

(l)

5.3 Adaptive Fuzzy Sliding Mode Control Scheme

In this section, a sliding model control (SMC) and a PI control are combined into a single
fuzzy sliding mode controller. Obviously, the nonlinear function . f(x) and g(x) are generally
unknown and the ideal controller (2.19 or 5.2) cannot be implemented in practice. Also, the
switching control term u,,, will cause chattering problem. We replace f(x) and g(x) by the

fuzzy logic system (2.49) (for further details please refer to Section 2.4.2.1). To avoid

chattering phenomenon and ensure zero steady-state error for the closed-loop system, a Pl
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controller is used. The input and output of the continuous time P[ controller is in the form of:
Uy =k,s+k; J.sdt (5.3)

where kp and k; are control gains to be designed. Equation (5.3) can be rewritten as
P(s16,)=07y(s) | (5.4)

where 6, =[kp,kf]r eR?is an adjustable parameter vector and ¥’ (s) =[5, Isdt] eR'isa

regressive vector. In order to derive the SMC law (5.2), we use fuzzy logic system to
approximate the unknown functions f(x), g(x)and an adaptive PI control term is used to

attenuate the chattering action and improve the steady state performance.

Hence, we have:

1 . n-1 ; ., ) ’
u=m{—f(x|9f)“§fif€ +)’f(n)“P(5l9p) (5.5)
f(x18,)=078(x) (5.6)
2(x]6,)=67E(x) | (5.7)

The switching control u,,, is replaced by the PI control when the state is within a

s
boundary layer | s [< ® and the coﬁtrol action is kept at the saturated value when the state is
outside the boundary layer. Hence, we set | p(s|@,) = D+n+w,, where |[s|z2d , D is the
widthness of the boundary layer and @, is the maximum approximation error of the fuzzy

systeni.

Theorem 5.1: Consider the control problem of the nonlinear system (5.1). If the control
action equation (5.5) is used, the functions f , £ and p are estimated by equation (5.4), (5.6)
and (5.7) the parameters vector &,,8, and 8, are adjusted by the adaptive law equation (5.8)-

(5.10), the closed loop system signals will be bounded and the tracking error will converge to

zero asymptotically.
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0 =11s&(x) (5.8)

B, = y25E(x)u (5.9)
8, =yysy(s) | (5.10)

The proofis given as follows:

Proof: Define the optimal parameters of fuzzy systems

6’}=arg min-(suplf(xmf)—f(x)q oL G
1S4\ xeR”
* . . ( ~
0, =arg gtjggr;’ _f:lglg(xlf?g)—g(x)l] (5.12)
s
0, = in|sup}p(s|8,)- ' 5.13
» = arg QTEIQF Szglp(l ) uml] - G1)

where Q, Q, and Q, are constraint sets for f; , 8, and 0, respectively. Define the

minimum approximation error.

o= f(x)=f(x]87)+(g(x) - §(x| 0} )u (5.14)

Assumption 5.1: Q,={0,¢ R 6, 1<M,} (5.15)
Q,={0, R |0<s 98, |<M,) (5.16)

and Q,={0,eR |0, lsM,} (5.17)

where M 1, e, M, and M p are pre-specified parameters for estimated parameters’ bound.

Assuming that the fuzzy parameters @ .6 and the PI control parameter 6, never reach

the boundanes. Then, we have
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n—I ] )
§=3 el 4 00

n
i=1

n—1

=Y e+ f(x)+ g+ d(e) -y
i=|
n~1 ) .
=Y e+ f(x) = J(x10,)+(g(x) - &(x |0 u
i=l
-1

- Zc,-em - p(s10,)+d(1)

i=l
= f(x)- f(x|8,)+(g(x) - £(x]| 6, )u = p(s16,)
+d(t)

—f(xlﬁ’f) F(x18,)+(8(x10;) - &(x |0, u -~ P(Siﬁ’)
+p(s|9 )— p(s|9 ) +d() + @

=G E(X) + g E(X) -+ w(s) = pls]6,) +d() + @
where ¢/ =9} -8r.,9, =Q; ~8y.9, =¢9; -6,
Now consider the Lyapunov candidate

Lo 17 l .7 1.7
V_ES +"2"¢f¢f +5¢g¢g +E¢p¢pl

The time derivative of ¥ along the error trajectory (5.19) is
V =55+ 974, +— 414, +— 419
Ylff ngg 73pp
=s(P;E@) + @, Eu+ Ly (s)— p(s16,) + w+d(1))
SR (RN B
@, +—P P+ 9,9,
Y s V2 y Ys
— SPTEC)+ qué}éf + sl ECu +yi¢: g, + 591w (s)
+—1—¢;¢p ~sp(s|8;)+ sw + sd(t)
Y3
| . 1 .
="}{"#(Yﬁf(ﬂ+¢'f)+y—¢;(}’zsf(x)ﬂ+¢g)

+;‘~¢;‘ (sw(s)+8,)—sp(s]02) + s(+d(©))

k)

é!’u Pao Yue-kong Library

8

& PolyU: Hong Koug

Chapter 5—

(5.18)

(5.19)
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Chapter 3 Adaptive fuzzy sliding mode control with chattering elimination

S0 (15809 07+ 9] (a5 d)
I 2

+ Lqﬁ; (sw(is)+ qﬁp) ~5(D +m)sgn{s) +sd{t) + sw

7 (5.20)

< ““¢f(7135(f)+¢5f)+ ¢g (725¢(x)u +¢g

+y¢;'(w(s)+eip)~n|s|+sw
3

where qﬁf = —Qf , gﬁg = ~9£;, and ép = —Qp. Substitut.e (5.87)—(5. 10) into (5.20), then we have
| V<so-n|s|<0 (5.21)
Since @ 1t the minimum approx1mat10n error, condition in {(5.21) 1s the best result that can be
obtained. Therefore, all signals in the system are bounded. Obviously, if ¢(0) is bounded, then
e(t) is also bounded for all.t . Since the reference signal y,, is bounded, then the system
states x(rj is bounded as well. To complete the proof and establish asympt.otic convergence of
the tracking error, we need proving that s — 0 as t — co. Assume that | s |<n_, then equation
(5-.21) can be rewritten as
Vesllal-|sln<n|e|-|s|n (5.22)

Integrating both sides of (5.22), we have

j|s|dr< (VO +r@)+ " Irwldr (5.23)
0 0

then we have s € L;. Form (5.21), we know that s is bounded and every term in (5.18) is
bounded. Hence,s,s € L, use of Barbalat’s lemma [Sastry and Bodson 1989]. We have
s(t) — 0 as £ > o0, the system 1s stable and the error wiil asymptotically convérge to zero.

The above stability result is achieved under the assumption 5.1 that all the parameters
h boundness is ensured. To guarantee the parameters are bounded. The adaptive laws (5.8)-(5.10)
can be modified by using the projection algorithm [Wang 1993, 1997]. The modified adaptive

laws are given as follows.
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For Qf, use
[ psEQ)iF (0, <))
_ , Ty
g.f _ ] ; | or.f(l Qg |-_AZ and 56:£(x) 2 0) (5.24)
rlrise(¥)l it (10, 1=M,)
and 50}5(1‘) <0)
[For Gg , use
whenever an element 0,,; of 8, equals¢, use
. ' (x if s& <0
6, Va5E () | s&(x)u _ (5.25)
0o - if s&(xu=20
where &,{x} is the i-th component of &(x). Otherwise, use
( rasé(u if (16, 1<M,)
. 0, =M, and s87&(x)u>0
4, =) cor (10 =My and SOLE20)
Pg[ylsg(‘x)u] if (I Bg I_ Mg)
and s8] £(x)u < 0)
73SW(S) if (Igp |<Mp)
. 8,=M, and s0Ty(s)2
- or (8, 1=M, ad 020
Pplyssy(s)] if (j8,1=M,)
and 59;1;/(3) <0)
where the projection operator P, [*] P, [*] and P, {*] are defined as
- 0,0/ £(x)
Prlnisé(a)) = riséx) - ns L2 (5.28)
16|
0,08 E(X)u -
Falrastud = rast(u—rps L2020 (5.29)
g
- 0,05 (s)
Plyssw(s)]=rysw(s) - y3s ’Ig” % (5.30)
P
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Chapter 5 Adaptive fuzzy sliding mode control with chattering elimination

Then, the overall adaptive fuzzy sliding mode control scheme is shown in Figure 5.1.

Plant
& = fx)+ g(xu+d(t)
y=x

.

Fuzzy Controller

A

1 R n—l .
‘= —f(x18,)=Y e + ¥ - p(s|0,)
2(x16,) d le !

Initial value
8,(0) _ Adaptive Law
8,0, 6;.6,.6, )
8,(0) {Eqs.(5.24)-(5.27)}

Figure 5.1 Overall Scheme of the Adaptive Fuzzy Sliding Mode Control System

To summarize the above analysis, the step-by-step procedure for the adaptive fuzzy sliding

mode control algorithm is proposed as follow.

Design Procedure:

Step 1. Select proper initial values of PI parameters. '

Step 2. Specify the desired coefficients ¢, ¢,,++,¢,_, such as in (2.30).
Step 3. Select the learning coefficients y |, y, and 5.

Chapter 5—I'age 8
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Step 4. Define m,; fuzzy sets F; for inguistic variable x; and the membership

functions gy 1s uniformly cover the universe of discourse, for i =12, n.
f

Step 5. Construct the fuzzy rule bases for the fuzzy system f"(x |8)andg(x |8, ).

Step 6. Construct the fuzzy systems j’(x 16,) = 9}5(@ and g(x ] 8,)= 9;5(,\-) in
(2.49).

Step 7. Construct the control taw (5.5) with the adaptive law in (5.24-5.27).

Step 8. Obtain the control and apply to the plant, then compute the adaptive law (5.24-

5.27) to adjust the barameter vector 8,0, and 0.

5.4 Simulation Examples

Iﬁ this section, we apply our proposed r:lldaptive fuzzy controller for three cases. The first
example is a regulation problem to let the output of a first order nonlinear system to track a
constant trajectory. The second example is to let a Duffing forced-oscil]ation system to track a
sin-wave trajectory. The third example is to let the inverted pendulum to track a desired

trajectory.

Example 5.1: State Regulation

In this example, we venfy at the validity of the design approach on the regulation control
of a first order nonlinear system. The dynamic equation of such system is given by [Wang
1997].

_ ()
x(z)=wl ¢
1

0 + u(t) (5.31)

Two regulation simulations (y,, =0) were used for convectional sliding mode controller and

the proposed controller. Firstly, we defined y,, =0, s = e the imtial state x(0) =1.5 and step
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size 0.02s for both controllers. Choose F) =1LA0(x) = (=2 1+ e Oy | af 1K F =2
Hence, the convectional shiding control law is n(t) = ~f"('.t)—(:;+ F)sgn(s), wheren =0.1.
For the proposed controller, the initial values of parameters €, arc set by kp(0)=4 and
k;(0) =10 . Choose six fuzzy sets over the interval [-3,3] for state x . The membership
functions are
Hyp(x) =11 +exp(5(x +2)))
g (3) = exp(~(x +1.5)%)
#ins (%) = exp(~(x +0.5)")
pps (%) = exp((x - 0.5)*)
Hpp (3) = exp(~(x = 1.5)?)
a0 = LU+ exp(50~2))
The initial consequent parameters of fuzzy are chosen randomly in the intervat {-2,2]. The
width of the boundary layer @ =0.25 and the leaming rate y; =40,y, =120. A Gaussian

noise with mean zero and variance of 0.0002 was injected at the output of the system. Figure
5.2 and Figure 5.3 show the simulation results for convectional SMC and proposed controller,
respectively. From the results, we find that for the convectional SMC can track the desired
value. However, the chattering and the control signal ringing are obvious. Comparing Figure
5.2 and Figure 5.3, we see that the chattering disappeared and the steady tracking error can be

removed using the proposed control algorithm.
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2

22 ]
0 0.5 H 1 limcz(sec) 2.5 3 35 - 4
(a)
2
! NN aaeeRRRRRANNANARARAARANT
0
I
||
22
3
_4 .
0 0.5 l 1.5 2 25 3 35 4
time (sec)
(b)

Figure 5.2 Simulation results of convectional sliding mode control applied to first order

nonlinear system: (a) desired output y,, and system output x (b) control signalu .
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2
l -
A AN———
14
) 1 L n 1 ) r L -
¢ 0.5 1 R L2 2.5 3 3.5 i
time {sec)
(a)
2 -
214
8
13
.18 1 1 1 1 L 1 1
0 0.5 1 1.5 o2 2.5 3 335 4
time (sec)

(b)

Figure 5.3 Simulation results of adaptive fuzzy sliding mode control applied to first order

nonlinear system: (a) desired output y,, and system output x (b) control signal« .
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Example 5.2: A Duffing forced-oscillation system

| In this egample, we verify at the validity of the design approach -on the tracking control of
a Duffing. forced-oscillation systerm. The dynamic equations of such system are given by
[Wang 1997].

X =X
o 3 (5.32)
Xy = —O.}xz - X +12cos(t) +ult) +d(t)

This system is chaotic without control (with sensitive dependence on initial condition. A small
difference in initial position will make the outcome completely different) [Alligood ef al.
1997). The control objective is to maintain the systein to track the desired angle trajectory,

y,, =sin(f) and 4 is assumed to be a square wave with amplitude + 0.5 and the period 27.
Choose the sliding surface as s =cyje+¢é, ¢ = 4. The initial values of parameters & are set by
k,(0)=10 and &;{0)=20. The membership functions for system siate x;, i =1,2 are chosen

as in Example 5.1, then there are 36 rules to approximate the system functions /. And initial

consequent parameters of fuzzy rules are chosen randomly in the interval [-2,2]. We select

M, =30 and M, =80 . Let the width of the boundary layer ® =0.3 and the learning

rate ¥, = 25and y; = 80. Choose the initial condition.x = [2,2]" and step size 0.02s, Moreover,

" a Gaussian noise with mean zero and variance of 0.025 was injected at the output of the

system. Figure 5.4 shows the simulation results. It can be seen that the tracking performance

can achieve.
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1.5 4
2 A
2.5 L
0 10 20
time (sec)
(a}
15
10 4
5 4
0 4
-5 4
210
-15 )
0 10 20
time (sec)
(b)
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70

8

50 4

40
30

20 -

0 . - 1 1 3 1

.0 5 10 15 ' 20
: - time {sec)

(¢

Figure 5.4 Simulation results of adaptive fuzzy sliding mode control applied to the Duffing

forced-oscillation system: (a) desired output y,, (solid line) and system output x, (dash line)

{b) control signal u (c) trajectory of gains K p (solid line) and K; (dash line)

Example 5.3: An inverted pendulum system
In this example, we test the adaptive fuzzy controller on the tracking control of the

benchmark control problem of inverted pendulum in Figure 5.5. Let x; = @ be the angle of the

pendulum with respect to the vertical line and x, = @ . The dynamic equations of such system
are given by [Wang 1997].
x| =X,

gsinx| - mix, cos x| sinx, /(m, + m)
1(4/3 — mcos? xy /(m, + m))
cosx /{(m, +m)

i(4/3 — mcos? xy lm, +m))

iy = (5.33)

u+d
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where

g acceleration due to gravity
m, mass of the cart

m mass of the pole

{ half-length of pole

u  applied force

/ . mgsinf

Figure 5.5 The inverted pendulum system.

The control objective is to maintain the system to track the desired angle trajectory,
Vm =0, =7 /10(sin{t) + 0.3sin(3¢)) . The system parameters are given as m~lkg, m=0.1kg,
[=0.5m, g=9.8m/s’, and d is assumed to be a square wave with amplitude + 0.5 and the period
2z Choose the sliding surface as s = cje+é, ¢; =6. The initial.values of parameters &, are
set by £,(0)=10and k;(0) =5.The membership functions for system state x, ,i=12 are

selected as:

tns (%) = exp{~((x; + 7/ 6) /(m / 24))*]
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pins (x;) = exp{—((x; + 7 /12) (7 1 24))°]
az(x) = expl=(x; (w1 24))]
pps () = expl~((x; — 7 112) (7w 1 24))°]

2
tprr (%) = exp~((x; — 701 6) i / 24))%]
then there are 25 rules to approximate the system functions f and g respectively. And initial
consequent parameters of fuzzy rules are chosen randomly in the interval [0.5, 2]..We select

M,=20, M, =20and M, =80. Let the width of the boundary layer ® = 0.2 and learning

rate y| =060,y, =2 and y, =200. Choose the initial condition x = [7/60,0] and step size
0.01s. A Gaussian noise with mean zero and variance of 0.04 was injected at the output of the

system. Figure 5.6 shows the simulation results. It can be seen that the tracking performance is

good even 1n the presence of noise and disturbance.

0.35

0.25 -
0.15
0.05 A
-0.05
-0.15 1

-0.25 4

-0.335 ! L

0 .5 L 15 ©20
time (sec)

(a)

Chapter 5—Page 17



Chapter 5 Adaptive fuzzy sliding mode control with chattering elimination

.10
time {sec)

(b)

70

0 1 L L

0 5 .10 15 20
time (sec) ’ ' -

(c)
Figure 5.6 Simulation results of adaptive fuzzy sliding mode control applied to the

inverted pendulum system: (a) desired output y,, (solid line) and system output x, (dash line)

(b) control stgnal {c) trajéctory of gains K , (solid line) and K (dash line)
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5.5 Conclusions

In this chapter, we introduced the fuzzy sliding mode control and proposed the robust
control using the adaptive control strategy. Moreover, based on the Lyapunov synthesis
approach, the PI control parametérs can be tuned on-line by the adaptive law. The drawback
of chattering in sliding mode control is.avoided and zero steady tracking error can be ensured.
As compared with the single controller approach, the combined adaptive control approach by
employing the adaptive fuzzy system and modern control techniques {SMC, PI) gives better
performance for a class of nonlinear systems.- The ;Iosed loop system is stable in the sense of
Lyapunov. Finally, the proposed method has been applied to control three simula;ted nonlinear
systems fo track a reference trajectﬁry. The simulation fesﬁlts show rthat the adaptive
controller achieves desired performance.

In the next chapters, we will consider the output feedback case for nonlinear systems by

using other modern control technique i.e. /* with adaptive fuzzy system.
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CHAPTER SIX

STATE OBSERVER BASED ROBUST INDIRECT
ADAPTIVE FUZZY TRACKING CONTROL

6.1 Introduction

Based on the universal approximation theorem and by incorporating fuzzy system into
adaptive control scheme, a new fuzzy sliding mode contro! was presented in Ch‘a;;éer 5. The
adaptive fuzzy control approach demonstrated a good performance under the assumption that
the state variables of the system were known, or available for feedback. However, sometimes
the state variables cannot be fully meastired. Moreover, 1t the previous chapter, the fuzzy
approximation error and external disturbance are assumed to be bounded. But in some cascs,
the external disturbance may be of finite-energy, but not bounded.

1
In this chapter, a robust adaptive fuzzy controller is designed under the constraint that

only the output of the plant is available for measurement. According to this constraint, an

adaptive observer-based fuzzy control design, variable structure control (VSS) and

H™ disturbance attenuation theory are combined together to construct a hybrid indirect

adaptive observer-based robust tracking control scheme.

The state-observer is introduced to resolve the problem of the unavatlable state variables.

Robustness of the closed-loop system is guaranteed by the incorporate of variable structure

control (VSC) and #* control techniques. In particular, the effect on the tracking error due to

fuzzy approximation error is eliminated by the use of variable structure control (VSC). The

This chapter is based on the papers 2, 12 and 15 on chapter one, pages 11 and 12 Chapter 6~~Page 1
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H® controller, computed form a Riccati type equation, is employed to attenuate efficiently

the effect on the tracking error due to the external disturbance.

The rest of this chapter is organized as follow: The observer-based control problem of the
nonlinear SISO systems is described in Section 6.2. The design and stability analysis for the
robust adaptive fuzzy control included in Section 6.3. The simulation examples for the
proposed control algorithm are included in Section 6.4. Finally, the chapter is concluded in

Section 6.5.

6.2 Description of Adaptive Control Problem

Consider the n-th order nonlinear SISO systems in the following form:

XD = f(x) + g(u+d() 6.1)
y=x '

where f(x) and g(x) are unknown but bounded nonlinear functions,u e Rand y € R are the
input and the output of the system, respectively, and 4 1s the unknown external disturbance.

In particular, we consider the nonlinear systems in the following form:

x=Ax+ Bl f(x)+g(x)u+d]

6.2
y=CTx 62)
where
0 1 0 0] 0] 1"
0 0 1 0 0 0
A=l oo o o | B=|t] Cc=|: _ (6.3)
0O 0 0 1 0 0
-O 0 0 - O-nxn I Y | -O-nxl

. -qr T . .
x =[x, %, 2" =[x,,x,,-,x,] €R" is the state vector where not all variables are

assumed to be available for measurement. Only the system output y is assumed to be
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measurable. As system (6.1) is required to be controilable, the nonzero condition of input
gaing(x) # 0 is necessary. Without loss of generality, it ts assume that0 < g, (x)<glx)<oo.
The control problem is to force the system output y to follow a given bounded reference

signal y,, . First, define the reference signal vector y,, , the tracking error vectoreand the

estimation error vector é
_ - n—1}1T RY
Ym "[ym»yma ’ a)m ] €

€=y, —X= [8,8, (n I)] eR" ﬂ (64)

where © and é denote the estimates of x and e, respectively. If the functions f{x) and
g(x) are know and the system is free of external disturbanced , the control law can be

designed [Wang 1997] as follows.

ut =)+ ke (6.5)
g(x)

where k, =[kF, k5, kE} € R™, substituting (6.5) into (6.1) we havee(r) > Qast - .
Since in general case f(x) and g(x) are unknown functions and not all sysiem states x are
measurable, we proposed to estimate f{x) and g(x) by a fuzzy logic system same as Section
5.3 and to design an observer for estimating the state vector xin this chapter. Replacing the
functions f(x), g(x) and error vector e in (6.5) by their estimates f” (¥),g(x)and &, the

certainty equivalent controller becomes:

{m +kT ] ' (6.6)

uyp =

(x)

Chapter 6—Page 3



Chapter 6 State observer based robust indirect adaptive fuzzy tracking control

Applying (6.6) to (6.1) and after some simple manipulations

¢=de— Bkl &+ BLf(X)— f(x)+(g(3) - g(), - d]

(6.7)
e, =C'e

where e, =y, —x) denotes the output tracking error. Thus, we have converted the tracking

problem into the problem of designing a state observer for estimating the error vector e in

(6.7). Consider the following observer that estimates the error vectore in (6.7)

(6.8)

where k,, =[;’cl“",J’cg’,'--,k,‘,’]]r e R" is the observer gain vector. We define the observation

errors € =e—e and ¢, = ¢, - ¢,, subtracting (6.8) from (6.7), we have

€ = 4,8+ B[f(X)~ f(x)+(8(R) - g(x)us - d] 69)
NIZCT'E .
where
[k 1 0 - 0]
-k 0
A =A-kCT=| © i i o (6.10)
-k, 0 0 - 1
_—k: O 0 O-m

Since (C,4,) is observable, the observer gain vector &, can be chosen such that the
- characteristic polynomial of 4, is strictly Hurwitz. (i.e. the roots of the closed-loop system
are in the left-half s -plane) and there exists a positive definite symmetric » x n matrix p
which satisfies the Lyapunov equation AIP%—PAO =~ , where Q is an arbitrary nxn

positive definite matnx.
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6.3 Observer-Based Robust Indirect Adaptive Fuzzy Control

The result in (6.5) is possibie only while f(x), g{x) and state vector x are well known and
free of external disturbance. However, f(x) and g(x)are unknown and not all system state
x are measurable. We replace the f(x) and g{x) by their fuzzy system (2.49) aﬁd X 1is

estimated by the observer. Due to the presence of approximation crror and external

disturbance, an equivalence control law u, cannot ensure the stability of the system. We

R

employ another control term ug and u, in order to deal with it:

ug = —Ap sen(BT P&) C (61D
1 N
up =————B' (6.12)
r-g(x]6g)

where Ap =4 +4, , A 2g; (suppglw ) and A, 2[g7'(Supsg | @y DIIE™ - (=f +

{m

y ke, @ and @, are the estimation errors of f(x) and g(x) respectively. The

parameter » > 0 is a robust control gain and the matrix P = P" >0 is a solution of the

following Riccati-like equation for any given positive matrix Q = QT >0.

ATP+ P4, +Q—EPBBTP+L2
¥

Jol

PBBTP=0 (6.13)

It is noticed that the Riccati equation (6.13) has a solution if and only if 2,02 > r[Chen ef al.

1996].

Thus the resulting control law is
u=u; +u, +u, ’ ' (6.14)
In order to adjust the parameters in the fuzzy logic systems, we have to derive adaptive laws.

Let us define the optimal parameter estimates 9} and 9;: as follows:
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6; :argmin[ sup | F(&16,) - f(x) |] (6.13)
8,e0d, | xeQ), Rel},

8, =arg min[ sup |g(x18,)-g(x) |} (6.16)
B,eQ, [ xel), 1eQ,

where er,Qg,Qar and Q ; denote the compact sets of suitable bounds on Qfﬂg,x and x
respectively. We assume that Gf,ﬂg,x and X never reach the boundary Qf,Qg,Ql. and

RIS

(2; .We can define the minimum approximation error as:

=0, +ou O (617)
where

o =167~ f(x) (6.18)

wg = §(k[8,)—g(x) -‘ (6.19)

and the parameter adaptation laws are chosen as
8p =& (R)BTPE | (6.20)

By =—y2¢,(X)B7 Péu, (6.21)

Theorem 6.1. Consider the control problem of nonlinear systems (6.2) with control law
(6.14), f’(:%|9f) and £(x{@,) are given by (2.49), and the parameter vector @, and 8, are

-adjustedlby adaptation law (6.20) and (6.21). The adaptive control scheme guarantee the
following properties:

We,x, xel,, lim,_,,e=0.

(ii) The following H® tracking performance is achieved [Francis 1997, Chen et al. 1996].

T T
[eTQzdr < &7 (0)PE(0) + 15 T(0)80) + p* [d*(dt  vTe0,w) (622)
0 r 0
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The proof is given as follows:
Proof: Taking into account the minimum approximation errors (6.17) and final control

law (6.14), the error dynamics (6.9) can be rewritten as:
e=A,e+BET(R)8) +&T (DOqu; + o+ §(R)uy + (R, —d] (6.23)
where 8, =0, -0 andd, =0, -0, .
Choose the Lyapunov function candidate

L o 1 =7 | e —
V=-=e¢'Pe+—0;0,+—8'8 6.24
2 2n e 2y, &% (624

where y,,7, are positive constant and P is a positive matnx satisfying the Riccati equation
(6.13).

The time derivative of ¥ along the error trajectory (6.23) is

; A D i ] ~5=
yot Tpe+—eTPe+i9f9f+—9gTag
-2 2 <8 ¥

= —;-[ETAOT PE +07E)BTPE +ul 0L £(%)BT P + 0" BT PE - L7 paT Py
r
u!g(x)BTPE - dTBTPE]

o7, ~ - ) ~ . ~ . N
+5[eTPAOe +eTPBET (06, +&TPBET (D)0 u; +&7 PBo> - 157 pppT pp
r

&7 PB (i, - 2T PBA)+ — 875, + L 575,
: Y )

2

< =z
¥

B | o~

ET[PAO +AlP- PBBTP}E +%[dTBTP’e“ +27 PBd]
+(wy +ou)B PE +u g(H)BT PE (6.25)

= ) P T o R
+}7!9} (rE)BT Pe + af)+;;9gf(y2§(x)BTpgu, +8,) -

~where é):'f =9f and §g =6’g

From the adaptive laws (6.20) and (6.21), and the definition of u_ in (6.11), we get
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(@ +wgiu;)BT PE +u g()B" PE 626)
<o BT PE—Wg(D)| BT PE {+wqu, BT PE - 1,¢(3)| BT PE|<0 -

Consequently take into account the Riccati-like equation (6.13), the derivative V can be

bounded as

v =%ET{—Q~L’PBBTP]E+%[—dTBTPE—ETPBd]
e

T
= _l’e“TQE ——[i BT PE ——pd} [i BT P¢ —pd} +%p2d2 .. (6.27)
p 2

If d(t) € L,, then we have e,é,x,%,u € L, and lim,_,,, ¢ =0. Integrating the above inequality

(6.27) from t =0 to ¢t =T yields

V(T)-V(0) < -

b2 | —

T T
[e7Qede + 1, [EROL! (6.28)
2
0 0 :
because V(T) =0, from (6.24), the above inequality is equivalent to the following
L7 I 1 1 I o
~T rys =T ~ 5T cna AT cond 2 (2
- di <—¢" (0)Pe(0)+—8:(0)8,(0)+—8, (18, (0) +—= d*(t)dt (6.29
zoje QZds <52 (OPE(0) + =07 (08 (0)+ =07 (000, (0) 2poj ()t (6.29)

The above inequality is equivalent to the inequality in equation (6.22) which implies the H®

tracking performance is achieved.

[n general, the adaptive laws in (6.20) and (6.21) are unable to guarantee that & reQy
and 8, € Qg . In order to guarantee them bounded, the adaptive laws have to be modified by

the projection algorithm {Wang 1997]. Define the constraint sets that the parameters

concerned belong to
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Q, =10, e R" 10, IsM g} (6.31)
where M , and M, are pre-specified parameters. The modified projection adaptive laws are

given as follows

For Qf, use
~nE®BTPE i (16, 1<M))
o ] or (|8, =M; and &' PBEL(£)8, 20) 632
LN P-ng, (BTPEYiF (16, =M ) -
' and €' PBEF()0, <0)
rFor Gg , use
whenever an element 8, of 8, equals¢, use
b —y2E ()BT PEu, if &7 PBE,(R)u; <0 633)
# 1o if 27PBE,(R)u; 20 '

where £ () is the i-th component of &, (X). Otherwise, use

—r2bg (BB PEw; i (18, |<M,)
_ ~T Tia
9g=< o f)r (18,1=M, and e PBS, (x)8gu; 2 0) (6.3)
P16, (DB PEY;Y  if (16, M)

and &7 PBEL ()0, u; <0)

Where the projection operator P, [*] and P, [*] are defined as

: o o e
Prl-1i& 7 (R)BT PE1=~5\& (BB PE + 1,2 Tpgﬁf—ef (6.35)
r
T o &g (D u;
Pg[—}/zgg(X)B PeH!]=“}/2§g(x)B Peu! +y2€ PB_"*"-'—é)g (636)

2
10, |
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Remark 6.1: In [Chen ef al. 1996, Tong et al. 2004], a robust /™ control algorithm is tried
to attenuate the influence of fuzzy logic approximation error won the tracking error to a
prescribed level by assuming that the approximation error is square-integrable. However, this
property is difficult to show for given system and this calculation may require knowledge of
system dynamics, which defects the model free approach using fuzzy system, Moreover, it is
obvious that the disturbance signal w is inﬂﬁenced by the control input {Kang ef al. 1998]. In
this case, the resulting H * formulation differs from the standard H * disturbance: attenuation

formulation. In contrast to the above work, the effect of the approximation error is
compensated by the robust controller ;. Consequently, the H* disturbance attenuation

performance from the external disturbance to the tracking error can be achieved [van der

Schaft 1992], and the attenuation level can be made arbitfarily small.

Remark 6.2: Theorem 6.1 1s based on whether there exists a positivé-deﬁnite matrix P for
Riccati-like equation (6.13). If a positive-definite matrix exists, B P& can be known and the
state- estimate ¢ and ¢, are available to make the proposed control scheme realizable, If a

positive-definite matrix P does not exist for (6.13), then (6.23) can be converted to the strictly

positive-real (SPR) [loannou and Sun 1996} dynamic-system in the same way in [Leu et al.

1999].

First, the output error dynamics of (6.27) can be expressed as
& = CT (s (4~ K,CTYBIOF £(2) + O, Gy + 0+ 3Ry + £y ) (637)
where s denotes the Laplace operator.

Let# (s)1s a known stable transfer function defined by
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1

_ATer 4T
W@)"C (sI—(A-KI')B

- By introducing the state transfer function

L(s)=s"" 4+bs" P 4. 4 b

=l

into (6.37), the error & can be written as

e =[FLV((Z))}'[§1 (D] +&E (D uy +ay +g(Bup + 2Ry —d|]

and Lﬁ/—)} 1S a proper strictly-positive-feal (SPR) transfer function with

L

[S1 011,05, dy ] =L(S)

:|[§aa)auhaus:d]

then the state-space realization of (6.40) can be rewritten as

e =

A8+ BIIEDO] +E(D] u; + o+ EEuy + 8RBy ~dy]
where
A, =[A-K,CT e R™"

'Bl =[1 bl'”bn—l]ERn
cl=[1 0---0]eR”

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

After this transformation (A4,,B,,C) is a SPR system. For the given positive

matrix O = Q" >0, a positive-definite matrix P exists for equation (6.13).

To summarize the above analysis, a step-by-step procedure for the observer-based robust

indirect adapti\;e fuzzy control algorithm is proposed as follow.

Design Procedure:
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Step 1. Select the feedback and observer gain vector £, and &, , such that the

o s
matrices A — Bk and 4 - kOCT are Hurwitz matrices.

Step 2. Select O and the desired attenuation level pand 4 .

Step 3. Solve the Riccati equation (6.13) to obtain a positive definite matrix P

Step 4. Select the parameter valuesy,y5, Mf , Mg and Ay .

Step 5. Solve the state observer in (6.8) and obtain the estimated state vector.
Step 6. Select the membership functions . (%;) and Hel (x;) fori=12,---,nand
construct the fuzzy systems f”()? 16,)= 9}:5(}) and g(x|6,) = H;cf(i) :

Step 7. Obtain the control law (6.14) and apply to the plant, then compute the adaptive law

(6.32-6.34} to adjust the parameter vectors & cand 6, .

Figure 6.1 shows the overall scheme of the observer-based indirect adaptive fuzzy logic

control proposed in this chapter.
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X = )+ g(u+d, y=x >

h 4

[+33

A
h 4 T
= Ae—BRé+k (o -8), &=CTé cr i .

X

ny
l e
Control Law - o

u R X m
U= .(‘1“? )[—f(i]@l.)—i-yf:) e ru, v, 55‘_‘;
E\X| b

¢

&

Adaptive Law
8,.6, <
{Eqs.(6.32)-(6.34)}

Figure 6.1 observer-based indirec_::t adaptive fuzzy logic control system.
6.4 Simulation Examples
In this section, wle illustrate our adaptive controller by the following examples. The first
example is letting the Duffing forced-oscillation system track a sin-wave trajectory. The

second example is to letting the inverted pendulum system track a sin-wave trajectory.

Example 6.1: A Duffing forced-oscillation system
We illustrate the validity of the design approach by an example of tracking control of a
Duffing forced-oscillation system.

Xy =x
.I ’ 3 (6.43)
Xy =—=0.1xy —x] +12cos(t) +u(t) + d(¢) :

The control objective 1s to maintain the system to track the desired angle (rajectory,

Y =sin{t), and d is assumed to be a square wave with amplitude + 0.5 and the period 27
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The feedback and observer gain vectors are given as kér =[30 50] and k; =[60 140].
Select the matrix @ in (6.20) as 107 and choose the desired attenuation level p =0.25, obtain

r=0.125, solve the Riccati equation and obtain a positive definite matrix
.75 =5
P=
-5 222

Let the learning ratey; =20, M , = 30 and step size be 0.02sec. The membership functions

for system state x; for i = 1,2 are chosen as:
#p () = V(1 exp(S(%; +2))
# 2 (57) = exp(-(%; +1.5)%)
Hps () = exp(=(%; +0.5)")
s (i) = exp(-(5; ~05)?)
Hps (%) = exp(=(¥; = 1.5)%)
H s (4) =1/ +exp(5(%; =2)))

then there are 36 rules to approximate the system functions f. The initial consequent

parameters of fuzzy rules are chosen randomly in the interval {~1,1]. The initial values of

x(0) and %(0) are given as [2 2]T and [-2 O]T, respectively. Moreover, a Gaussian noise

with mean zero and variance of 0.0004 was injected at the output of the system. Figures 6.2-

6.4 show the simulation results. It can be seen that the tracking performance can be achieved.
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2.3

(]
1

time (sec)

-2.5

0 3 10 [} 20 25 0

Figure 6.2 Trajectories of the state x,{) (dash line) of the tracking control of the desired

¥ (t) (solid line) for the Duffing forced-oscillation system.

20

time{sec)

0 5 10 15 20 25 30

Figure 6.3 Trajectories of the control input «(¢) of the tracking control for the Duffing forced-

oscillation system.
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time (sec)

25 P -

Figure 6.4 Trajectories of the state x,(¢) (solid line) and i | () (dash line) of the tracking

' control for the Duffing forced-oscillation system.

Example 6.2: An inverted pendulum system .
We test the proposed controller on the tracking controt of the benchmark control problem

of the inverted pendulum in Figure 5.5. Let x; =& be the aﬁgle of the pendulum with respect

to the vertical line and x, = @ . The dynamic equations of such a system are given by [Wang

1997].
#1 To iTx] [o |
[. :|={ }[ ]+[ :|[f(x],x2)+g(x|’x2)u+d]
Xq 0 0 x 1
T (6.44)
X
y=l 0{ }
X2
where
Flxaxy) = gsin x| - mlx; cos x| sin x; /(m.C +m) (6.45)

![4)3 — mcos? xl-/(mc + m)]
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cosxy /(m, +m)
[4/3-m cos’ X i(m, +m)]

g(,\'l s ..1'2) = (646)

where m, is the mass of cart, m is the mass of the pole, / is half length of the

pole, g=9.8m/s2 is the acceleration of gravity, u is applied force and ¢ 1s the external

disturbance. [n the simulation, the system parameters are given as m~l1kg, m=0.1kg, {=0.5m.

The control objective is to maintain the system to track the desired angle trajectory y,, if only
the system output y is measurable. For the convenience of the simulation, the referénce signal

is selected as y, =0.lsin(¢) . The feedback and observer gain vectors are given as

kg =[30 50] and kc? =[4 10]. Select the matrix O in (6.20) as 10/ and choose the desired

attenuation level p =0.15, obtain r = 0.045, solve the Riccati equation and obtain a positive

definite matrix

1375 -5
P=
-5 3375
Let the leaning rate y; =500,y, =10, M, =20, M, =20 and step size be 0.01sec. The

membership functions for system states x; fori =1,2 are chosen as:
Hp () = expl~((&; +7/6) (7 /24))°]
Hp (%) = exp[~((x; + 7/12) (7 124))*]
M (é,-) = exp[—@ el ;4))21
Hs (R) = exp(~((&; —/12) K(m 1 24))% ]

15 (%)) = expl—((&; —w/6) /(71 24))*]

then there are 25 rules to approximate the system functions f and g respectively. The initial

values of initial consequent parameters of fuzzy rules are chosen randomty in the interval [0.5,
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1]. The .nitial values of x(0) and X(0) are given as [—?T/GQ O]T and [fr;’GO O]T,

respectively. Moreover, an external disturbance d is assumed to be 0.8sin(20)e %" . A
Gaussian noise with mean zero and variance of 0.0000125 was injected at the output of the
system. Figures 6.5-6.7 are the simulation results, which show that the tracking performance

is good even In the presence of disturbance.

0.15
0.1 4 A a
~
0054 /%
od !
; |
’ !
li: :I
-0.05 4 )
0.1 - ":.V;" y ) .
time (sec)
-0.15 .
0 5 Lo 15 20 25 30

Figure 6.5 Trajectories of the state x| (¢) (dash line) of the tracking control of the desired

Ym (£} (solid line) for the inverted pendulum system.
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10 -
5
0
-5
, time (sec)
-10 : - ! . \

0 5 10 15 : 20 25 . 30

Figure 6.6 Trajectories of the control input u(¢) of the tracking control for inverted pendulum

System.

0.1 +

0.05

-0.05

0.1 4

time (sec)

-0.15 . 1 L
0 1 2 3 4 5

Figure 6.7 Trajectories of the state x,(¢) (solid line) and X, (¢) (dash line) of the tracking

control for the inverted pendulurﬁ system.
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6.5 Conclusions

In this chapter, an observer-based adaptive fuzzy control design incorporated with a VSC

algorithm and a #* control algorithm has been proposed for a class of uncertain nonlinear
system. First, a state observer is introduced to overcome the problem of state variables

unavailability. Then, VSC algorithm is introduced to attenuate efficiently the effect on

tracking error due to approximation error. Moreover, an H ™ controller whic‘h‘"isv. .computed
from a Riccati like equation is employed to attenuate the effect of the external disturbances to
a prescribed level, The adaptive fuzzy control algorithm stability is guaranteed according to
the Lyapunov stability theorem. Application of the proposed method has been applied to
control a Duffing forced-oscillation system and an in\;erted pendulum to track a reference
lréjectory. The simulation results show that the adaptive controller can achieve the desired
performance.

In the next two chapters, we will consider multi-input multi-output (MIMO) nonlinear

systems by using adaptive fuzzy system incorporate with modern control techniques.
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CHAPTER SEVEN

ADAPTIVE FUZZY CONTOLLER WITH BOUND
ESTIMATION FOR ROBOT MANIPULATORS

7.1 Introduction

In Chapter 5, we presented an adaptive fuzzy sliding mode control for a class of SISO
nonlinear systems. In this chapter, the adaptive fuzzy slidi_ng mode design method with the
bound estimation is extended to a class of MIMQ nonlinear system, i.e. robot mantpulators.
The tracking control of robot manipulators is one of the challenging tasks for control
engineers, especi.ally when manipulator are required to maneuver very quickly under

changing payload and extemnal disturbances.

Many control algorithms such as computed torque method and proportional derivative
(PD) with gravity compensation [Spong and Vidyasagar 1989] have been proposed to deal
with this robotic control problem. Computed torque control is developed on the basis of the
feedback linearization. However, these designs are possible only when the dynamics of the
robotic dynamic are well known. The conventional adaptive control schemes can be
employed to deal with the unknown robotic dynamics [Slotine and Li 1989, Craig 1989]. In
these approaches, the linear parameterizations must be assumed. i.e. the unknown parameters
must be of linear structure. Moreover, the unknown parameters are assumed to be constant or
slowly varying. However, as the robotic dynamic systems are nanlinear, highly coupled, and
time varying, the linear parameterization property may not be applicable. Also the

implementation requires a precise knowledge of the structure of the dynamic model.

Generally, uncertainties may not be known in practical robotic systems such as changing

This chapter is based on the paper 6 on chapler one, pages 11 Chapter 7—Page |
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payload, nonlinear friction, unknown disturbance, and the hri gh-frequency part of the dynamics.
Therefore, it is necessary to consider these effects containing both structured uncertainties
(parametric) and unstructured uncertainties (un-modeled dynamics). Variable structure control
(VSC) is one of the robust control strategies to compensate these uncertainties in robotic
dynamics. In these robust control design approaches [Stepanenlo and Su 1993, Su and Leung
1993], a fixed control law based on a priori bound of uncertainty is designed to compensate
the effects of system uncertaintics. However, the assumptions in these approaches may be
restrictive and difficult to be evaluated. On the other hand, extensive fuzzy control approaches
have been developed as a feasible technique to achieve consistent performance in the presence
- of configuration and uncertainties, oWing tol the adaptive and nonlinear capabilities of fuizy -

system.

In this chapter, a novel control algoﬁthm is developed by combining the fuzzy approach
with the sliding mode control method. The proposed method combines the adaptive fuzzy
algorithm and robust control technique to guarantee a robust tracking performance for
uncertain robotic system. In the proposed algorithm, the adaptive fuzzy systems are used to
cancel the nonlinear robot dynamics, which do not need to have a linear parameterized
structure as in the case of conventional adaptive control scheme’s assumption. Moreover, by
combining the integral variable structure control (IVSC} [Bail e al. 2000] with uncertainties
bound estimation, the proposed cont'rc;l scheme becomes a new robust fuzzy control algorithm
for robot manipulators. It is proved that the closed-loop system is globally stable in the
Lyapunov sense if all the signals are bour;ded and the system output can track the desired

reference output asymptotically with modeling uncertainties and external disturbances.
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This chapter is organized as follows. In Section 7.2, the robot dynamics, its property and
control design is described. A robust fuzzy control with bound estimation is developed in
Section 7.3. Simulation resuits for the proposed control algorithm are included in Section 7.4.

Finally, the paper is concluded in Section 7.6.

7.2 Robot manipulator dynamics and Control

A robotic manipulator is defined as an open kinematics chain of rigid links:- According
to the Lagrangian formulation, the dynamic equation of an n-joint robotic manipulator with

revolute joints can be formulates as dynamical mode! [Spong and Vidyasagar 1989].

M(q)j+C(q,9)¢+Glg)y =t (7.1)
where
g,q,§€R" vectors of joint position, velocities and accelerations
M(g)e R™ matrix of the moment inertia
C(g,q)g € R™" matrix of the Coriolis and centrifugal
G(g)e R" vector of gravitational force
reR" vector of applied joint torques

In general, a robotic manipulator is always presented of uncertainties such as frictions and

disturbances. Then, (7.1) can be rewritten as
Mg} +Clg.9)g+Glg)+ D=1 (7.2)
where D is the uncertainties of the dynamics, including frictions £,.(¢) and disturbance 75 .

Several fundamental properties of the robot model (7.2) have been obtained as follow:
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Property 7.1: The inertia matrix M(g) is a positive definite symmetric matrix, e.g. non-

singular and bounded by mmjn”x”z ST‘CT[W(Q).'C < mmaxllxnz , VxeR",
where myi, and #g, are minimum and maximum eigenvalues of M.
Property 7.2: M(g)-2C(q.¢) is skew-symmetric matrix, i.e., xT(M—ZC)x=0 ,
Yxe R",
Property 7.3: The unknown disturbance 74 are assumed to be unknown but bqqued. ie.
Ieall < .
Property 7.4: _'_Fhe friction in .the dynamic equation (7.2) is in | the form
F.(q)=F g+ Fzsgn(g) with F, the coefficient n1atﬁx of viscous friction and F, a

dynamic friction term. The friction is depended on the angular velocity and the bound of

the friction terms may be assumed to be in the form of ||Fv () + FC(Q)" < ﬂr] ||q'r"+,4_’3r2 ,

BBy, >0.
In the following analysis, it will be assumed that the nonlinear dynamic model of the
robot manipulator to be controlled is well known and uncertainties are negligible. As a

consequence, equation (7.1) can be rewritten as
§=Flg.q)+M " (q) | o
where F(q,Q) 15 a n x 1 vector defined by
Flad) =M @i+ 6] N CE)
If F '(q;q,_;g) and M _l(q) are kn'own, we can use the state feedback contrbl law

r = M(q)|- Flg.q)+v] _ (7.5)

to linearize and decouple the robot dynamic system (7.1), where v' is an external input vector

vi=[v], -, vy, ]T',such that the control law (7.5) apply to system (7.1) results in a clbsed-loop
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, Ei_y?amics with ¢ = v'. The objective of control is to follow a given continuously differentiable
and uniformly bounded trajectory in the joint space ¢y and the tracking error e=q—qy
should be kept as small as possible.

Define a sliding surface in the space of the error state vector § = R" as

- 7 z _‘
cie) +e) +ky Jelflt
sye) 0

S = 3 = : (7.6)

' t
s, (e ]
n{€n) cpe, +é, +k, Iendt_
0

where e; are the tacking error defined by ¢; = ¢, —g4, ¢; and g; are the joint and desired
output trajectories for each joint. The coefficients ¢;and &; (i =1,---,#) are positive constants.
The tracking problem of the robot manipulator in the joint space implies that the error states

should stay on the sliding surface $ = 0 as the time goes to infinity. A sufficient condition to .

achieve this behavior is fo select the control strategy such that
) :
Ea(ss)ﬁ—f?misi l, Ma; 20 (7.7

If the sliding condition equation (7.7) is satisfied, the system is controlled in such a way that
the trajectories of the closed-loop system moves towards the sliding surface and hit it. In order

to satisfy the sliding reachability condition, the external input vector v' is defined as

Gay — €161 —kiep —1na g sen(sy)
vig.q) = : (7.8)
Gdn —~Cnen —kney —Ma, sgn(s, )

and sgn(-) is the usual sign function. Since the control equation (7.5) contains the sign

function, direct application of such control signals to the robotic system may result in
chattering caused by the signal discontinuity. To overcome this problem, the control law is

smooth out within a-thin boundary layer @ by replacing the sign function by a saturation
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Eu—nction defined as

1 if S >(D£' _
sat(s; /®;)=14 s; if —1<s; /<1 (7.9)
—1 if §; <d)"

From (7.6) and (7.9), it can be noted (hat the steady state error due to the boundary layer can
be removed and there is no reaching phase problem.
As described above, the plant uncertainties are neglected for the controller design. In

order to eliminate the influence due to the frictions and disturbance, the positive constant 77,
are replaced by ?7: +775; to guarantec the existence of sliding condition. n; is the upper

- - . . . * . . - . - -
bound of uncertainties, i.e. | D; |<7; . Hence, differentiate equation (7.6) with respect to time,

the dynamics of the system (7.6) can be rewritten in term of § as follow

.§'[ klel + Clél + él
S={:|= : = F(q,q)+ M~ (q)r + D~ v(q,9) (7.10)
Sy k,,en +c, e, + €,
where
D =M (gUF, () +1q) (7.11)
and

kiey +e1é =4
v(g,q) = E (7.12)
knen + cnén - f.}dn

If the dynamical model of the robot manipulator to be controlled and the bounded of
uncertainties are known, then we can use the control law equation (7.4) for the robotic
dj}namic. However, the dynamics of the robotic dynamic are generally unknown in practice
and there are system uncertainties. To solve these problems, the robust fuzzy control

algorithm is proposed in Section 7.4.
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7.3 Adaptive Fuzzy Control of Robot Manipulator

In section 7.3, the dynamic model of the robot manipulator is assumed to be known, then
we can use the control law in (7.5) to linearize and control the robot dynamic system (7.2).
However, the robotic model is unknown and the control law is unrealizable. In this section,
we propose to use a fuzzy logic system lo approximate the unknown system dynamics.
Moreover, we employ the integral sliding mode control to compensate both the structured and
the unstructured uncertainties. In order to take into account the unknown uncertaintie’s bounds,

an adaptive term 77 are provided to estimate these parameters online. If the robotic dynamic
model is unknown, this implies that the elements of the matrices F(q,q)and M(g) of (7.2)

are also unknown.
ACRARIVACR ) | (7.13)
M(g) =[my(@)] (7.14)
where #, j = 1,---,n. We shall propose the fuzzy logic system to model the unknown function
fi(g,q)and mg,-(q) , with fuzzy logic system fi(q,q i) and ﬁzy-(q,q'r |0U) for n-link robotic
system defined as:

Ji(2.410,) =67 &(4.4) (7.15)

i (q.q16;) =61 E(q) (7.16)
if
Hence, the control law (7.5) can be defined as

T =M(q)-F(g,§)+v'] . (7.17)

where M(g)and F(q,4)
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iilog)] |97.£@d)

N . T . .
Fland) = f?_(q,?wh) _ Hfzg:(q,q) (7.18)
Ja@:4105) ] |67 Ea.)
’;‘] (g le ) _gr?;|§((l)q
. ny(q16 :
e B @19

(@10 | |6 E(q)
where

. . : ) T
m; =[my;{q] gmi ) "’mm'(q | gml- )]Tand gml- = [le,- ""sgmm- ]

Theorem 7.1.. Consider the control problem of the robotic system equation (7.2). If the

control law equation (7.17) is used, the nonlinear functions f;{(g,¢), m;(q) are estimated by

equation (7.15) and equation (7.10), the parameters vector [qu ,---,6?f” ]T, [9’"9‘ ,---,Bmﬁ ]T

and the uncertainties bound estimates n; are adjusted by the adaptive law equation (7.20)-

(7.22), the closed loop system signals will be bounded and the tracking error will converge to

zero asymptotically.

b5 =775:¢a,9) (7.20)
gmij = }’m,}- Siﬁ(‘])rj (7.21)
751‘ = yr;i |Si I (722)

Lj=1n

The proof is given as follows:
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Proof: Define the optimal parameters vector 9} ,8:,_ of fuzzy systems
£ g

B}i =arg min sup fl-(q,c} | Qf‘_ ) —f,-(q,(})| (7.23)
8, €\ g.5eR"
0,* =ar min sup (g6, )Y — ;g (7.24
if i\ €

where Q7 | Qm_j are constraint sets for 6., Bmy_ defined as

Qf‘ = {gfr eR" I GL IS ﬂ/[fr 5 lej = {9’"1‘] eRr” I Qm[j < Mm‘.j} (7.25)
where M 5 . M m, are pre-specified parameters for estimated parameters bound. Assume the
fuzzy parameter ve'étor B and 9,,,1_1_ are never reach the boundaries. Define the minimum

approximation error.
; = [:(a.9) - J1(a:4107,) + (m () =1y (a1 65, N1 (7.26)

and assume the approximation errors are upper bounded by | @; |< @; yax -And define

~ *

n; =n; —1;, where n,-* =| D; + W; |max 15 the upper bounded of uncertainties. Then, we have

§ =M~ Ug)yr+ Flg,9) + D -v(q,d)

=(M ™ (q) + M 7G| Oy ) =M (G | O, V]
[M(q 6, N~F(4,9167)+V)+ Fg,4) + D = ¥(4.4)

=M @) =M (g6, )] M (g1, ) (~F(q,G16,) +V)
+F(g.9)~¥g:9) - F(g:.16,)+v'+ D

=M@ -M " (q10,))e + Fq.4) - F(a.416y,) (7.27)
+¥q,4) —(p +m)sgn(S) —(g,4) + D

=M @) =M g |0 e + Fla,0) = F(a.d167) - (p+m)sgn(S)+ D

=M (g6, )~ M (q16m ) + F(a.4167) - Flg,410;,)
- (p+msen(S)+D+w

=0/ @, 0)+0, £@7—(p+msgn(S)+ D+
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= * P s ~ a7 PN P
where 9/‘1 =0}'_ _gfj :gmtj =9mg _gnly » P :[rf‘l ) "'7711] ) z[ndl a2 ""?An]

Now consider the Lyapunov candidate
V=3 (7.28)

where

1 » 5T % I 7~
Vi==si+5—0; Z O O o T (7.29)

7m 'j 27:],-
YoV and y,, arc design positive constants parameters. The time derivative of V" along the
i i i .

error trajectory (7.31) is

=5:(0] £, q)+zf9 £, = (g 10 )senls;) + @; +Dp)
j=1

T 1 _re
8 6 +—u;7;

y'?f

fi ] j=1yﬂ’i,—-

=50} §(qq)+y +Zs9 E@.qu; +Z 9"""‘

fi jlm

R 1 7+
—s5; (i +na,)sen(s;) +s;@; +5;:D; "';""'77:' i
n;

<—-9 (7, si60ad )+9 )+Z

I jlfﬂ

"‘-IT . ‘.'"‘
’".}' (7m,-j Sa‘&(Q:Q)uj + 0’".}' )

‘~<

' * * 1 7.
v s;w; 45 D=5 \mi + 1 1@ ==L si 118, + Tm-Tm
n;
1 =7 = § T ‘.
sy—f—eﬁ (v, si5a.)+0, )+21;9m iy 5i8(@: 5+, ) (7.30)
i J

| ~
+=——10; Yy, si |47~ 1 si |74,
’V'?i

where 5 7= ) 1 and Eé'm 9,,, Substitute (7.20)-(7.22) into (7.30), then we have
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V,<—ngls; <0 (7.31)
To complete the proof and establish asymptotic convergence of the tracking error, we need to

prove that s; — 0 as ¢ — w . Integrating both sides of (7.31), we have .

j[ 5; | dt < ;'m(V(O) _V(w0)) <0 (1.32)
0 - Al

Then, we have shown thats; € Ly, &om {7.31), we know that s; € L,,, because we have
proved that all the variables on the right-hand side of (7.32) are bounded, we havé st €Ly,
Using the Collary of Barbalet’s Letﬁma [Sastry and Bodson 1989], if 5;,8; e Lpand s€ L,
for some pé[l,oo].Wehave s; >0 as t > o, thus ¢ — 0 as t—>00.

" The above s:.tability result is achieved under the assumption that all the parameter vec.tors

are within the constraint sets or on the boundaries of the constraint set but moving their

interior (|8, =M, |8, KK Mm.; ). To guarantee the parameters are bounded. The adaptive

laws equation (7.20) and equation (7.21) can be modified by using the projection algorithm
[Wang 1997]. The modified adaptive laws are given as follows.

For G'f_ , We use
]

J/fisf‘:’u:((i:‘?) if (IQ;; [<Mf,.)

. or (|0, |=M, and s5.8.&(q,4)=0)
6, = . N o .
fTNP [y, 58@a)) i (8, 1=M,) (7:33)

and s8/£(g,4)<0)

For 8, , weuse
Y

) or (|6 }=M_  and 587 u, >0
g =] (.| g E M, i85, E(@Iu; 2 0) (7134)
i | B [7;:.,.1.'5‘;{5(‘])”;] if (6, FM,)
and 5,6, &(q)u; <0)
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where the projection operator, Py [*] and Pm,; [*] are defined as

Pr {75800 =y 1,564 7 5,5

: Pm,)- [Ymij Si‘f(q.)“j] = J"mq- 5:’5(‘?)“}' _ymg Si

07,07 £(4,9)
16, 17

O, 0, S

my n;

2
| gmg |

To summarize the above analysis, a step-by-step procedure for the adaptive fuzzy control

of uncertain robotic system is outlined as follow

Design Procedure:
Step 1. The design parameters- M £ M m;; aT€ specified based on practical constrains.
Step 2. Specify the desired coefficients ¢y, --,c,, k|, --,k, in equation (7.6).
Step 3. Select the learning coefficients y fi¥my and 7, .
Step 4. Define fuzzy sets A; for linguistic variable ¢,4 and the membership functions
# 4, is uniformly cover the universe of discourse.
Step 5. Construct the fuzzy rule bases for the fuzzy system f, (g.q916 1, ) and
';1{;' (q I.emﬂ,- )
Step 6. Construct the fuzzy systems F(g,) = 9}7,' E(g,4) and M(g) = 0; E(g) in
i : i
equation (7.18) and equation (7.19).
Step 7: Constnict the control law equation (7.17) with the adaptive law in equation
(7.20-722).
Step 8.

Obtain the control and apply to the robot dynamic, then compute the adaptive

law equation (7.20-7.22) to adjust the parameter vector th_ , gmg and the

estimate bound #;.
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Then, the overall adaptive fuzzy control scheme is shown in Figure 7.1.

I
qa,
Robot PR "}911,.
B 7.2 —»{
Eqn:7.2 i D)
T
Fuzzy Controller
L_|
Eqn:7.17
1
Initial value
Adaptive Law
9_,‘!_(0) .
ny O Eqn:7.22,7.33,7.34 )
R n:7.22,7.33,7.
#(0) d

Figure 7.1 Overall Scheme of the Adaptive Fuzzy Control Scheme for Robot Manipulator.

Figure 7.2 Two Degrees of Freedom Robot Manipulator
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7.4 Simulation Examples
To verify the theoretical results, simulations were carried out in two degrees of freedom
robot manipulator'as shown in Figure 7.2 described by [Ge et af. 1997).

The dynamics are given as:

M(q)g+Clq.q)g+CG(g)+ F.(g)+ Fe(g) =7 (7.35)

where
M) my +my +2m3c0sqy My + M3 COSqG,

7= iy +m3 Cosg» niy -
Clg.0) = —m3qasingy -m3(g +qy)sing,

’ ' m3q'f| sin qs 0.0

mg cosqy +ms cos(q) +q;)
G{(q) =[
ms cos(qy +4q7)

where the parameters m; are defined by

M=P+pR
T
M =[my my my my ms]

T
P=[py p2 Py Pa ps)
22 T
R=[n" rp nn n nl
where p;-1s the payload, #{ = Llm and rp, =1m are the lengths of link 1 and 2, respectively.

And P is the parameter of the robot manipulator. The parameters of the robot used for

simulation are
P=[1.66 0.42 0.63 3.75 1.25]T kg-m2
and assume that we have no payload, p; =0.0kg . F,(g) and F,(g) are the viscous and

coulomb friction have been chosen.
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kvl 41 kcl sgn(ql)

F, = | F. = .
ko, d2 ke, sgn(qs)

where &, =0.1, :’c‘,1 =02, kc, :kc! =0.15. The unknown nonlinearities f;(q,q) and

my(q) .1, j=1,---,2, are estimated using three triangular fuzzy sets for ¢ and ¢ define in
U/ ={-3,3]. No prior knowledge is assumed in this simulation and the consequent parameters

are imitialized to zero. Select Mfz‘ =40 and Mmﬁ =80. The controller parameters y 1. _s5q,
¥m. =05 and Y p, =0.1,i,j=1--2 The width of the boundary layer ®; =01,
i L

na; =0.01,i=1,---2 and the shding surface coefficient ¢; =8,¢) =5,4; =k, =0.5. The
desired reference trajectory are chosen as g4, =06 sin(¢), 44, = 0.6sin(¢}, respectively. The
tnitial conditions ¢,(0}=0.3, ¢,(0)=-0.3, ¢(0)=¢(0)=0and 7(0) =7,(0)=02. In
order to verify the robustness of the controller for payload variation, the payload p; =1.0kg

was added at time ¢ =Ssec . For comparison, the conventional computed torque control

T=k,e+k,é+G(g,q) under the same conditions is also demonstrated. The gains are chosen
as kp = diag[20,20], k,, = diag[50,50]. Figure 7.3 shows the results with computed torque

control. It can be seen the controller cannot drive the joints to reach the desired positions and
steady-state tracking error exist. Figure 7.4 shows the results for the proposed fuzzy controller.
It is observed the tracking errors go to small values after some transient, which is cause
because of the initial choice of the consequent parameters. However, the tracking error
decreases quickly since of the on-line learning of fuzzy logic system, and the effect of
uncertainties are successfully compensated by the robust control term. The simulation results -
thus demonstrate the propose robust ﬁdaptive fuzzy control can effectively control the rigid

robot system with uncertainties
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80
70 -

60 -

40 -
30 4

20

time (sec)

()

35 A

25 4

time {sec}
(d)
Figure 7.3 Simulation Results of PD-Gravity control (a) desired output g4, (solid line) and
system output g; (dash line). (b) desired output 94, (solid line) and system output g, . (c)

control torque 7 .(d) control torque 7 .
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80

70+

60

Nm

time {scc})

{c)

35 1

.15 : :

time {sec)
@
Figure 7.4 Simulation Results of Adaptive Fuzzy Control (a) desired output g4, (solid line)
and system output ¢; (dash line). (b) desired output 44, (solid line) and system output g, (c)

control torque 7, .(d) control torque 7.
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7.5 Conclusions

In this chapter, we have presented a robust fuzzy control algorithm for robotic
manipulators. The method is developed based on the fuzzy modeling techntque with integral
sliding mode robust control. The control scheme does not require the robot dynamics to be
exactly known. Fuzzy logic system has been used to implement an adaptive feedback contro!
strategy with the boundary layer integral sliding control, which compensate for unknown
uncertainties with estimated bound. Both chattering and reaching phase problem can be
avoided. The design has been proved to guarantee the closed loop stability in the sense of
Lyapunov method. Finally, the simulation results show that the proposed control algorithm is
appropriate ‘for the pract.ical controller design of robotic manipulator with uncertainties and
payload disturbance.

In the next chapters, we will consider the nonlinear MIMQ control for two degrees of

freedom helicopter by using output feedback fuzzy control scheme.
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CHAPTER EIGHT

DIRECT ADAPTIVE FUZZY CONTROL FOR A CLASS OF
NONLINEAR MIMO SYSTEM

8.1 Introduction

In this chapter, a direct adaptive fuzzy control scheme is developed for a class of
~ nonlinear multiAp[e-input—rﬁultiple—output (MIMO)‘ systems by using Takagi-Sugeno (TS)
fuzzy systems. A simple observer is designed to generate an error signal for the adaptive law.
The system states of the system are not reqﬁired to be available for measurement. The overall
adaptive scheme guarantees the all the signals involved being uniformly boundéd in the
" Lyapunov sense. Experirriental results. of a.two-dégreé—freedom helicopter are prresented to

confirm the usefulness of the proposed control scheme.

The rest of this chapter is organized as follow: The rest of this paper is organized as
~ follows: The observer 5ased control pfoblem of the nonlinear MIMO systems is described in
Section 8.2. The direct adaptive fuzzy logic controls derived in Section 8.3. The stability
analysis for the proposed adaptive fu-zzy control included in Section 8.4. The performance of
the proposed algorithm for real time two degree freedom helicopter system is evaluated in

- Section 8.5. Finally, the chapter is concluded in Section 8.6.

This chapter is based on the papers 7 and 12 on chapter one, pages L1 and 12 Chapter 8—Page |



Chapter § Direct adaptive fuzzy control for a class of nonlinear MIMO system

8.2 Problem Statement

Consider a MIMO nonlinear system of the form:
( p
AW = A+ g,
j=1

P
W = () + Y g, (0

j=!

(8.1)

P
Yo = £+ Y g (o
j=l

where f;(x) , g;(x) Gs=1-, p) are unknown but bounded nonlinear function,

w=[n, -, u T'is the contro! input, y = [y,,‘--,yp]r 1s the output vector. x =[xl,~--,x,,]ris

)]
the state vector where not all variables are assumed to be available for measurement, only the

system output is assumed to be measured. n = s, +---+n_ . In particular, we consider a MIMO
y p I P P

nonlinear system in the following form:

X = Ax+ B[ F(x)+ G(x)u]

8.2
y=CTx (82)

where

F(x) =LA, ST G() =[G(x), G, ()] with Gy ={g),(x) g ()]
A =diaglA, -, A4,),
B = diag(By, -, B,],

c’ = diag(C,,-+,C,]

and
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0 1 0 ] 0]
0 0 0. .
Ao=|oe e Bo=l) LG=L o 0 O]IX,,i
0 0 0 - 1 0
(000 0 - o) . LUl

The control objective can be stated as follows:

|. Design the fuzzy controller u;, j=1---p with adaptive law such that the states of the

plant (1) follow the reference trajectory.
2. All the signal involved in the closed Joop are uniformly bounded and the tracking errors
tend to zero.

For the given reference signals y,,, -, ¥ py - First, define the tracking error and the estimation

EITorsS
_ (n -1 (ny—-0).1
Y;n_[ylnn"'ﬂylml :"':ypm:""ypnf ]
1. (m-1) (2, DT
X—[ﬂll:_""’xli e Xy, Xyt ]
and
e=Y, —-x
| -1 (n,=1}r
:[el’”"ei(l ),...,ep,...’epp ]
é:Ym_i -
- A(n -1 n A, —1).T
:[el’-..,el(l },...,ep’-.-,epp ]

‘where & and é denote the estimates of x and e, respectively. If F(x) and G(x) are know

. and the system is free of external disturbance. The control law can be chosen as.

1 .
U'=——[-F(x)+ ¥ +K[e 8.3

, G(x)[ (x)+ ¥y, c €l (8.3)

* where K, =[k°,k_,--,kFT is the feedback. gain vector to give all roots of the polynomial

A—BKCT to be Hurwitz. Since in general case F (x) and G(x) are unknown and not all
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system states variables are available for measurement. We have to design an observer to
estimate the system state. In order o achieve the control objective, the direct fuzzy controller
15 chosen

U=U,+U, (8.4)
where U/, is the TS based fuzzy controller and U is additional term to overcome the

uncertainties. (described in section 8.3 and 8.4 ). By replacing the system stale x and error ¢

with their estimate x and é , controller (8.3) can be rewritten as

U_l

GG [-F(H)+Y" + KT8 (8.5)

Applying (8.4) and (8.5) to (8.2) and after some simple manipulations, we can obtain the error
dynamic equation

é=Ae—BKIé+B[GWU" -U)]

(8.6)
El = CTe
Design the state observer as follow:
é=Aé—BK e+ K, (E - E) 57
El - CTé -
where K, =[k°,k°_,---,k’)" is the observer gain vector to give all roots of polynomial

A-K,CT to be Hurwitz. We define the observation errors &€ =e¢—é and E, = £, - £,

subtracting (8.7) from (8.6), we have

(8.8)

where 4, =A—K0CT. Since A, is strictly Hurwitz. There exists a positive definite

symmetric matrix P which satisfies the Lyapunov equation A‘? P+ PA, =—0, where( is an

arbitrary positive definite matrix.
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8.3 Direct Adaptive Fuzzy Logic Confrol

In this section, the TS type direct adaptive fuzzy logic controller to be designed is
discussed. The basic configuration includes a fuzzy base and a collection of fuzzy IF-THEN

rules as follows:
i i i o i i
Ri:TF v is Vi Then uy =a, ta x ot x, (8.9)

where k =1,---,m, denotes the number of the fuzzy IF-THEN rules. v'-. is the fuzzy controller

input vector and v} are labels of the fuzzy sets. The output value of the ith fuzzy controller is

"y n
Py d i f
Zﬂk (v )(ako + Zaijf)
k=1 J=1
[

. — (8.10)
D)
k=

I

where ,ufc (v')is the grade of membership function of the linguistic vanable v' . The compact

. form of equation (8.12) can be rewntten as

Ug, = Sihzi : (8.11)
at al
l0 1n
where z; =[l x]7 , ¢, =| :
i {
a!ﬂ“o 7 h am,—ﬂ
and &; is a regressive vector defined as
1 S
G =l 1t (8.12)

D M
k=1

We can assume that the ith component of the direct fuzzy logic controller can be described by
TS fuzzy system plus a approximation error @, . This means that there exists parameter ¢*

such that
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ug =&,z + o, (8.13)
since the optimal parameters ¢; are unknown, the fuzzy logic system approximation of u;'_ of
the estimates ¢; is given by

My = &b z; ' (8.14)

Define ;6: =g —¢,-* as the parameters estimation errors and the parameter adaptation laws are
chosen as

8, =vuB] PEL Bz | (8.15)
84 Stability Analysis

In order to establish the stability of the proposed fuziy control system, we need the
following assumption.

Assumption 8.1: the approximation errors are bounded by @, 1.e., ®; <@; where @ are
some known constants.

Assumption 8.2: the input gains are bounded by O<g <g; <g; <® and their
derivatives are bounded by | g;; |[< H};, where g, and g,; are some known constants and ;

are some known functions.

Theorem §.1: Consider the contro! problem of nonlinear systems (8.2) with control law
(8.4),u,; are given by (8.14), and the parameters ¢; are adjusted by adaptation law (8.15). The
adaptive control scheme guaranteé the feedback system is asymptotically stable and the
tracking error converges to zero.

Proof: Consider the Lyapunov function candidate

, .
V=>4 (8.16)
i=]
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with

| 1 ~p
Vi=——¢ Beg+—ir(¢y @)
2g; 274

The time dertvative of ¥; along the error trajectory of (8.8) is

. 1. o~ N :
| P S
gii J=l
T
1 N I . ~
+g Ap€; +B:[ngf(“j —upl| Fe
ii

J

i ~Tps , 1 o7
- 3 &' re +—ur(4"4)
2g ' .

ii il

(8.17)

(8.18)

Substitutc (8.15) into (8.18), and using the fact that u; —u; = u, +&dyz, — w;, we get

. S TR -
V= *""““‘C’iTQf P guz efTP;ei
2g; 2g;

i J=1,j#i

; 1 7~ 8l ~Tp~ T
Vi S_Z_'Gi Qr i . €; Pte: — € B‘Bius
Eii 2g4
~T 8 _ > By ~
+2' PB; Zg—»vﬁ “ug{+1¢,8,2 |
f=1 25 Jehjs =i

Define

58y L gy~ H,
T?£=Z y"‘_"’j+ UU,—,p,-: ';EfTR'E'
j & j=l,j=ei§ii -2g°

P {1

[t4]

where | & jg’fﬁ}z il 7] j » and the additional control term u; are chosen as

P = .

. g — -

Uy =1 + Z _UUS ‘Sgn(eiTPfBi)'!'pi
J=1,j#i gii

and U, are chosen as

~T P P p
L LB | + _ ry
8yt * 28" 8% 952 |
i j=I =1

(8.19)

(8.20)

(8.21)
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— NEN
Us 2z max JMFL&_L 7 (8.22)
121,”',[;' 1_ Z gi
: j=lj=i 8y

such that |uy [<U,, i=1-,p.

from equation (8.18), the above inequality is equivalent to the following

. 1 . -
V< ——2 0% (8.23)

. 1
V< —ZLE}TQ;@‘ | (8.24)

Thus, ¥ is always negative if ¢ #0,then V; e L,, . Therefore, ?2”[,43:- el, fori=1--,p.

Since all variables in the right-hand side of (8.8) are bound, Ea;,- el, fori=L-- p.

Integrating both sides of (8.24) yields

s Par < —2&i_y () (8.25)
'l;D" I ,Zl: mm(Qz

where ”” is the Euclidean norm, A;,(0;)1s the minimum eigenvalue of Q,. Since the right

hand side of (8.25) is bounded, ¢; € L, for i =1,---; p Using Barbalat’s lemma [Sastry and
Bodson 1989], we have that the errors converge asymptdtically to zero. limf = w g =0 for

i=1-,p.

8.5 Experimental Studies

In this section, a two degrees of freedom helicopter CE150 from Humusoft [Humusoft

1985] was used in this experiment. The model is a multidimensional, nonlinear system with

Chapter §-~Page 8



Chapter 8 Drirect adaptive fuzzy control for a class of nonlinear MIMO system

two mamipulated input and two measured oufputs (horizontai and vertical angles) with
significant cross couplings. The system consisted of a massive support, and the main body,
carrying two propellers driven by DC motors ( 8, R, ) as shown in Figure 8.1. The model can
be described by the nonlinear state equations with four states, two inputs, which are the
control value for main and side propeller motors. The two output values are the elevationd

and azimuth angles ¢ . The dynamics of the helicopter are given by:

M(Mm +C(,0,9, é)[i}c;w’ oot 626
where
2
M(3.0) :{fos 0¢1L2 Jr(L)j
cwado-[ e o
C.0)= [mglc cos 9}

Actually , different friction terms should be added into the dynamics model in a practical
implementation, two friction are consider in our model, one is viscous friction (A force that

are proportional to the velocity)

F, = [k"¢ ﬂ
k,,0

and coloumb friction (A force with constant amplitude that are acting in the direction in the

velocity)

| & sen(4)
| kg, se0(6)
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The inertia matrix M is a positive definite symmetric matrix and M —2C is skew-symmetric

matrix. The parameters of the helicopter are: the arm length to rotor 1 /; =0.198m, the arm
length to rotor 2 /, = 0.174m ,mass of main body m; =0.35kg ,mass of rotor 1 m| = 0.42kg

mass of rotor 2 m, =0.16kg .The total mass of the main body is m =y +m +m,, the
intertia of the amin body 1s the sum of the moment of inertia for the solid bar and fro the pint

masses of the rotors /,, =m‘,/3-(t’|3 +t§)/(ll +1!’2)—i-1'n|t'|2 +n12122. The center of gravity is

{,=(m{ -L)+mi —myly)/m.

1
Elevation angle
1
1
1
1

N ¥

z

\u'%p\zimuxh angle
0 x
Y

(a) (b)

Figure 8.1 (a} The 2DOF helicopter apparatus.(b) Sketch of the helicopter model seen from the

side.

All the constant numbers are given in the Humusoft [Humusoft 1985]. The control objective
is to maintain the elevation and azimuth angles to track the desired angle. trajectory

Yim = (m/40)sin{¢) and y,,, = (7w /10)sin(¢). Assume the motors be able to generate torques

without any delay. The model can be described by the nonlinear state equations with four
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Chapter 8 Direct adaptive fuzzy control for a class of nonlinear MIMO system

states, two inputs and two outputs nonlinear system. The feedback and observer gain vector

are given as

1 1 00] , [90 180 0 o
KC: ’K0=
00 1 I 0 0 80 190

Let the learning ratey;; =5, y,, =8 and step size 0.05sec. The fuzzy controllers are defined

by the following set of rules:

FACI:

If x is Vkl

_ | | t (- l
Then uy =ay +ap X F Ay Xy tay Xy +ay Xy
FAC2:

[f .\'3 s sz

Then Ug, :afO +a,§lxl +a,‘32x2 +af}x3 +a,§4x4

Vkl and ¥ kz k =1,---,3 are the membership functions for fuzzy controllers are chosen as:

1 (£7) = expl=((%; + /15[ 130))*]
1 (%) = exp[=(%, /(7 130))*)

1,1 (%)) = exp{~((5; — x/15)(x/30))*]

Hy2 () = exp[~((; + 2/6)(x/12)))
#y2 () = expl=(% /(7 112))"]

Hy2 (R7) = exp[~((& ~ 7/ 6) (7 /12))?)
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Chapter § Direct adaptive fuzzy control for a class of nonlinear MIMO system

And initial consequent parameters of fuzzy rules are chosen randomly in the terval [0,1].

Figure 8.2-8.5 shows the results for real time 2DOF helicopter control system. It can be seen

that the tracking performance can achieve.

0.2

-0.1 A

_02 H 1 1 1
0 20 40 time (sec) 60 80 100

Figure 8.2 Trajectory of the Elevation
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0.7 4

0.6 4
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0.4 -

03 -

0.2 1

0.t -

0 1 1 1 L
0 20 40 time (sec) 60 80 100

Figure 8.3 Elevation control
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0.8
0.7 -
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o] |
0.4 -
0.3 - F“h*
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0. -
0 -
0.1 -
0.2 -
-03 i
0.4 4
0.5 4
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Figure 8.4 Trajectory of the Azimuth

0.8

0.6 +

0.4 -

0.2 +

-0.2 4

0.4
_06 A
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o time (sec) . 80 too

Figure 8.5 Azimuth control
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8.6 Concluston

In this chapter, a new observer-based direct adaptive fuzzy controller for MIMO
nonlinear systems has been proposed. Using the state observer, it does not require the system
full state to be available for measurement. Based on the TS base fuzzy systems, which show
that the adaptive controller used few rules can achieve the control performance. The stability
of the adaptive control scheme is proved in Lyapunov sense. Finally, the proposed method has
been applied to control a two degree freedom helicopter system to track a reference trajectory.
The experimental results show that the adaptive controller can achieve the desired
performance, which permits real ti me.applications.

In the next chapter, we will consider the adaptive robust fuzzy control for nonlinear
systems by using other modem control technique i.e. .Backstepping control with adaptive

fuzzy system.
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CHAPTER NINE

'ROBUST ADAPTIVE FUZZY CONTROL FOR STRICT
FEEDBACK NONLINEAR SYSTEM

9.1 Introduction

In Chapters 5-8, stable adaptive fuzzy contfo[lers were proposed for nonlinear systems in
a Byrnes-Isidori normal form [lIsidori 1995, Sastry 1999]. In this cﬁapter, using the idea of
backstepping, adaptive fuzzy backstepping control scheme-is presented for nonlinear systems
‘without satisfying matching condition. The control can not only guarantee the boundedness of
¢losed-loop system signals forrthe case of both unknown nonlinear functions and parameter
uncertainty are present in the systems, but also render that the system output follows a desired
trajectory. Note that in the literature survey; wihile the nonlinear strict-feedback systems have
been much investigated via backstepping design [Polycarpou and loannou 1995, Krstic ef a[:
1995]. Only a few results are available in the literature for the approximator-based adaptive
control of the strict-feedback nonlinear systems. with parametric uncertainties [Ge et al. 1996,
Li et al. 2004, Yang et al. 2004]. In this chapter, a direct adaptive fuzzy control scheme is
bresented by ﬁsing tile idea of backstepping control. Some of the states variables are
considered as virtual control, and the intermediate control laws are designed in constructive
design procedures. With the help of fuzzy approximation, to cancel the unknown functions in
backstepping design. It is proved that the adaptive fuzzy control sqhéme achieve semi-global

uniform uitimate boundedness of the signal in the closed loop system.

The rest of this chapter is organized as follow: Section 9.2 a description of the system is

given. Adaptive fuzzy backstepping design is included in Section 9.3 Computer simulation

This chapter is based on the paper & on chapter one, page 11 Chapter 3—Page |



Chapter 9 Robust adaptive fuzzy control for strict-feedback nonlinear systems

results for the proposed control algorithm are illustrated in Section 9.4. Finally, the chapter is

concluded in Section 9.5,

9.2 System Description
We assume that the system can be transformed into a strict-feedback canonical form
(Section 2.3.4) which is re-stated as follows:

.if,-:fl-(f,-)-kgi(f,-)x‘-ﬂ+A,~([,x), I<ign—-1
Xp =f (X )+ 8, (X Ju+A,(tx) 0.1
Y=x

where X; =[xl,x2,---,xi]T e R =12, ,n,ue R, ye Rare state variables, system input
and output, respectively. f;(-}and g;(-), i =1,2,---,n are unknown smooth function and A;are

unknown Lipschitz continuous functions. The control objective is to design an adaptive robust
fuzzy-based controller for nonlinear SISO systems (1) under plant uncertailnties and
disturbances, which guarantees boundedness of all the variables of the closed system and the
output y follow a given desired trajectory y,, . Sinceg;(-),i =1,2,---,n are smooth functions,
they have therefore bounded within somé compact set. We make the following assumptions

on system (9.1) for functions g, (") .

Assumption 9.1 The signs of g,(-)are known, and there exist b, > 5,4, >0 such

thatb, 2| g, ()2 by, Vx; € R'.
The above assumption implies that the smooth function g, (") are strictly either positive or
negative. Hence, without loss of gencrality we assume that by > g,() 2 8,5 > 0,Vx; € R'.

Assumption 9.2: There exist constants b;; > Osuch that,| g;()1< b, , Vxe R”.

Assumption 9.3: Forl £i < n, there exists unknown positive constant p,—t such that
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| A (6,0 1€ pi gl x; ), V(t,x)e R, xR"

where @; is a known nonnegative function

9.3 Adaptive Fuzzy Control

The detailed design procedure is described in the following steps. Stepl and 2 are
described with detatled explanations, while Step iand Step » are simplified, with the relevant

equations and explanations being omitted.

Step I: Definez, = x| — y, . Its derivative is

zp = filx)) + g {(x))xy + A -y,

N i 9.2)
=&10)lg ™ DA+ + g7 (8 - 9,))

by viewing x, as a virtual control input for zy subsystem in the above equation, and consider

the TS fuzzy system to approximate the uncertain term

Sila) | E ) A +E () Ay x, + 6

g1(x)
= &) A + & (x) 4z, S (X)) A4y, +& 9.3)
':Kglﬁl(xl)“ﬁ+§|(Il)f410+fft(xl)f41y,n +£

where w; = A"z and ¢ is a approximating error. Define Ko =4, ” = /“Li,ig'x (A} 4y) , such that

Al = KSIA;” a.nd ,A’m

<1 substituting equation (9.3) into equation (9.2)

2y =g (x)lxy + K gy (x)wy + v (9.4)
where v| = ¢, (xl)AIO +& (x4 vy + g +g[‘!(A, — Ym) - In the light of assumption 9.3, we

can obtain a bound forv as follows
vl < 6,61 (x1) (9.5)

wheredy = max{“filo”+|fA|.|Hlym|L6| +5'1_01 | o |, bt_olpr] and ¢ (x) =1+ ¢, ”+99| (x;).
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Consider the following Lyapunov candidate:

1 3 l o] 2

V)= zp +—| +— F 9 9.6
T ) v ST (9.6)

where I, [}, > 0. ¢, =(K§l —wl)andal =(6,-6,). ¥ andél are the estimates of

Kﬁ, and 0, , respectively. The time derivative of ¥} is

- Z|Z 7 (X)) P | A
B er 8’12(1 -0, -T1 6,4,
gilx) 2gi(x)
() 9.7)
X e
=z1[xy + Kg &1 (x))wy +v] - 312 2 T 7w, - 13360,
2g (xl)
Define z; = x5 — | and let «,
. Gy (x))z
@ = k121 = L () (1) =G ) tanh[—'?ﬁ—‘)—iJ ©8)
1 1

where k; > 0and A; > Oare the design constaﬁts. Consider the following adaptation laws:
: |
2 =ruL—2‘f:(Ii)§1T(x1)Z|2 = —‘//10)} (9:9)
4

g, =T, [¢1 (e )z - 61206, - 9{’)] (9.10)

where &),d,, > 0and w,O,HID 2 0 are design constants. The adaptive law (9.9) and (9.10) are
so-called o -modification, [loannou and Kokotovic 1983], introduced to improve the
robustness and avoid the parameters to drift to very large values.

Using (9.6), a direct substitution of x, =z, + ¢,

g1{x)) Ly
12( -z =T TR 6,6,
2gy (%)

- )
=Zi2p "[kl zggll((;l))] Zy 4 !é:l(xi)éjl (x))z; =01 (x))z, tanh[%}@_ll)

A~ . ~l= A
+ K g & (e)w 2y +viz) - I\, —056,6,

Vi = zy[zy + oy + Kgi&y (ep)wy +v, ] -

Let 7, >0, by the completing squares, we have
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Ka&i(x w2 < Z, +y) WITWI
| (9.12)
= ; glél ZI l2 ‘flflrzlz +}’|?’WITW|
Using equation (9.5) and the relative item of equation (9.11), we get
) X )z
ZI[Q[¢|(XI)—91¢[ (xl)tanh l¢] <gi¢] (xl)”Zl"_ t¢i(xl)3| tanh |¢|( 1 /<1
A (9.13)

+(6, -6 (x, B

and using the following lemma with regard to function tanh(') [Polycarpou and loannou 1995 ]

OG- 6= tm[%fﬁJ < ©.14)

1

Substituting equation (9.12)-(9.14) into equation (9.11), such that

- ® IR D . . B e -
Vi Szizy—k2f +yiwlw +Fu'w_;(4—“7§|§fzf ~W0+IR 6Tt e |- 6)) + 7, 9.15)
4! :

substituting (9.9) and (9.10) into(9.15),we get
V) < ~kj 2} Fwl wy + 87,y ~w )+ 6,,8,(6, - 60 (9.16
PETRE Az vy w0 -y )+ 81,60,(6, -6 )+ (9.16)

By completing of square, we have

. £ 9 2T | ~ 1 A 2
Vis—kizi +zizy +yiw w —5511!//12 —*2“5t29tz+51|(K91 —y)?

| (9.17)
+012(6, - 67) + 7
‘where the coupling term z,z, will be canceled in next step. Observing from (9.11) that
- b
~(hy +E)2? <~ (2d L))z We can choosek; = k, — (14 )> 0.
2g| 2biy 2%
Step 2: Differentiating z, gives
22 = .ifz _dl
:fz(:fz)+g2(f2)x3 +A2‘“a] (918)

=g:(0)e7 (50 /2(F) + x5+ 25" (g — )]
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The time derivative of @, is

: aal - aa] . aa| @ i
Q‘I = _,‘Cl + Wl 0' ))Hl
ax] 6.://[ 69] aym
dux : _
=a—\,‘(f|(x|)+gl(x.)xz+A,>+¢, 9.19)
(|
da -
=T +—!Al +¢,
6X|

where ¢ = Wy +—0 + Ym 15 Introduced as intermediate variable which is

computable. Since, fi(x))and g(x,)are unknown function, ¢ is a scalar unknown function.

Let

(f2(x 2) Sy =E,(5) 43 + 5 (X) Ay (X, ) + &,
82( X3)

=&, (%y) A7 + & () Ax(21,23) + (X)) Ay () + 64 (9.20)
=K92_§2(fz)wz +&5(3%,) A3 + 6 (X)) Ay (. 1) + &y

and substituting it into equation (9.18), we will have
2y = g2 (x)lx3 + K gy65(Ty)wy + v, ] (9.21)

where

V= E2(E)AD + & (B Ay (g an) + 5 + 254, —%f—'m ~3)) 9.22)
, | _ -t

where ”v2”_<_6'2¢2 , ¢2(x2):1+”§2]|+§02+

s‘;_”@ and 0, = max(2] + |, +

lalleall L 62 1+620 1 6y 1,650 p3 63t o1 1.

Consider the Lyapunov function candidate

1 1 [ol2
Vo =F + Z +— + - F 67 92
2=V + 22,(5) 2+ L3 5 1220 (9.23)

The derivative of ¥, is
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—2(‘—:%)—— F‘)”/fz!ﬂ'; - [-‘77979') (924)
2g5(x3)

Vi =V +25[xy + gy, (7)) ws + vy )=

Define the error variable z; = xy ~ @, taking the intermediate stabilizing function o,

d
) =-2, —kyzy - L2 5] —dug, tan h[ 2:’1”22] (9.25)

2

where &, > 0and A, > Oare the design constants. Consider the following adaptation laws:

. 1, .
ya =Ty . ZszszZzz—52:(W2“Wg)] (9.26)
72

éz = F22[¢2”22”—522 (6, —9?)] (9.27)

where 85,85, > 0and y/g,f)g 2 0 are design constants. Substituting equation (9.22) and

equation (9.25) into equation (9.24), such that

* i ~
Vy S=kjzf + 212, +ylwl w ——51|W| —5521912 +8(KG —p) + 8,6, -6)
(9.28)

g1(x3) e

T 2223+ 230 + 23K 385 (R))wy + z3vy - S5 212 —F229292
285 (xy)

‘substituting cquation (9.26) and equation (9.27) into equation (9.28),we get

2 2 ~9 ~1\ 2 N 042
' . 06 v on(Kg -wr)  6,,(0,-6)
V2 SZzZ - k! 212"' + + +
APTLER) T

o 2 2 2

+Z’h +Z}’r W.r Wi
I :

(9.29)

where &, is chosen such that ky =ky —( bzg )>0.
(0

Step i 3<i<n-1): In asimilar fashion, we can design a virtual controller to make the error
z; as small as possible. Differenting z; gives
2 = gi(FB)er GOfiE) + sy + 87 (A — )] (9:30)

we also use a TS fuzzy system to approximate the unknown function
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I _ . =
— (1%~ foy-n) = & (5 )A,O +6; (%) A4,X; + &
g{(xi)
= él(ft)Aro + 51’ (Ir )Ar'zi + éi(}i )A: (ym AR A ) +&; (93 1)
= Kg&i(x)w; + gi(:f[)AEO G (XA (Vs ) +
and substitute it into equation (9.30)

2,‘ = gf(fi)[xnl +K.9ié:i (Ei)wi + Vi] (932)

B i1 a i
where”v‘-” <G4, §;(x;) =1 +“9:r” Tt Z g I l@!-
= -

x,

Similarly, let the virtual controller to be of the form

éi¢izt'
TJ . (9.33)

i ]

a; =-z;_ | —kjz; - f‘%fiff - 0.9, tanh(

- where k; > 0and 4; > Oare the design constants. Consider the following adaptation laws:

v = - u'i—y*fﬂff i 0w, _W:‘O):l (9.34)
éf = riz[ :‘”31'”“5:'2(6)5 —‘9;0)] (9.35)

where §;,0;, > 0and y; ,90 > 0 are design constants. In a similar procedure, by considering
Lyapunov function

1 2 1 w2 1 yn
Vo =b e 2 b g 936
! 2g:(x;) b2 1V 2 2 ( )

By using equation (9.32)-(9.35) and straightforward derivation similar to those employéd in

the former steps, the derivative of ¥; becomes

; ‘6,6 6 e G -80)?
V<22, — Zklz[ _Z( 1121 12‘//1] Z( 1 Sk vi)  Ip( 12 i)
=

=]

+Z§1 +Zy, w, wy
=l

(9.37)

we can choose & = k; —(—g—%) >0,
2810
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Step n: This is the final step. Define the error variable asz, = x, —a,_,, we will have

ty = 8u(ENE E ) (E) +u+ g (B, —dy)]

(9.38)
Using the similar way, we have
n-| f— I n-| .
. O Tt oa =1 4 aan— :
Uy :Z - l(fl(\'l)'i_g!(l!)xfﬂ-l'Af)-*_z : !9[+ I Y
1=l ox 4Ji Vi {=l ag! aym
g (9.39)
.f(n -D(n-1) + Z _lAI +¢(n =){n-1})
we also use a TS fuzzy system to approximate the unknown function
( )(fn( n) f(n -{n- l)) é:n(xn)An +§,,(JC )An Xy T €,
I‘l
= én (En )A + é:n (.’C" )An nt djn ()?n )An (ym L S ) +E&y, (940)
= K.Qﬂgn (in )Wu + én (xl'l )An + 6;' (fﬂ )An (ym PR £ P ) +&,
where w, = Az, ,Kg, =|A4;'[land 4, = Kg, A and substitute it into equation (9.38)
Zﬂ = gﬂ ('fﬂ )[u + K.Qngn ('fn )wn + vﬂ (9'41)
where |v " <6,0,, b, = 1+”£j,I ” + @, 6 F,
Xy
Similarly letting
u= k!l z!l - w" §H 5!]: 9 ¢f! tanh "¢" Z" (9'42)
4y, Ay
and consider the following adaptation law
. 1 ~
Vo =Tut| =5 &nbn 25 =0 (W, - w,?)} (9.43)
L ¥ .
én = ruZ _¢n”zn “ - 5n2(én = gr? )] | (944)

whered;;,5;, > Oand y; ,9,-0 2 0 are design constants. Consider the overall Lyapunov

function candidate

Chapter 9—Page 9



Chapter 9 Robust adaptive fuzzy control for strict-feedback nonlinear systems

1 3 | -1z,

_ I S 72
V,=V._ + 22, (5) z, + > U, 2 F“gé) (9.45)

By using equation (9.41)-(9.44) and straightforward derivation similar to those employed in

the former steps, the derivative of ¥, becomes

H n 5 G2 042
7y <=3 ks 2 _2(5112‘91 512‘//: J 2[51;([\ —vr) +521(912—9;)

+ Zn, + Z}f, w, Wy (9.40)

where k; is chosen such that k: =k, - (ﬁ;—) >0.
’ 2gn0

where ﬁzz;(’?:+51:(K§z—WP)2/2+521(91—910)2/2) . w=[w,wy,,w,]" and
29172,

2
r=0i+rs+oty

Theorem 9.1:

Consider the closed-loop system consisting of equation (9.1), the controller equation (9.42}

with the intermediate stabilizing functions o;,i=/,---,n, and the update laws t,y,-,é,~. If we

choose ¥ <1 and k: =k; —{ﬁ’%—] >1, i=12,--,n in equation (9.46). Then for bounded
284

initial conditions, we have all the signals in the closed-loop system remain bounded and the

output tracking error converges to a small neighborhood around zero.

The proof is given as follows:
Proof: In order to use the smail gain theorem [Jiang et al. 1994, ] iang and Mareels 1997], it is

necessary to construct two subsystems L_ and Z,;in composite feedback form. According
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to the emor variable z;, i=12,--,n and fuzzy system to approximate the unknown
function ( /(%) = fu—nm-ny)/ &, (%,), i=12,---,n, then the closed loop systems can be
given as follows

z; = g (XX + Kg&i(x)w +v;], 1<isn-1
Z?w : Zn =&y (En Mu + K.gnén (fn )Wu + Vn] ] (9.47)
Z=H(z)=:z

where w = [w,wy,-,w,]7 is considered as the virtual input and Z as the output of the
system Xz, . If we pick k: >1, i=12,---,n from equation (9.46), we get

V, <—z2+ 7l +7 | (9.48)
By using ISpS Lyapunov thc?orem [Jiang ef al. 1994], we propose the robust fuzzy control
scheme such that the requirement of ISpS for_ system Xz can be stratified with the functions
a; (s) = s%and ay(s) = 72s2of class K., .We can get a gain function y,(s) of system I, as
follow:
v.()=a cayoa; ca, Vs>0
where a;(z) £V (x) £ ay(z).

For system X, it is static system , we have

{

w = A"z
_4m T
x4l ] (9.49)

T

kwn = A::n[zl=z2s“'°zn]

Equation (9.49) can be rewrite as

Chapler 9—Page 11



Chapter 9 Robust adaptive fuzzy coatrol for strict-feedback nonlinear systems

[ W
w=| "= K(2)
W,
p 1 (9.50)
a0 0 |z
_ A:!;:l Aé.nfl 0 2-2 — A
AJ.H‘ A;.nZ Ar.mr z,
L n Ho
we have
Il <[4l = 71l 9.51)

Then the gain function for system ;Ew;; 1s y,,(s) = 5 . Under the condition of small gain

theorem , if there is a y, oy, (s) <s, Consider the interconnected system Z_ and .5, in

fact 7 = | 4] < 1and we have 37 <1. Indeed, the small ggin type condition can be satisfied by

picking y <1, such that it can prove that the composite closed-loop system is 1SpS.

By substituting equation (9.51) into (9.46), the ISpS-Lyapunov function is satisfies

. | N T P —
vV, < —ZTka—EWTQJIW ‘§9TQ529 + ?’2?’2”2"2 7
| ~ 1= ~ _
s~zTka—5wTQ5|W —EGTQJZH Jf”"-"2 +1 - 952)

where
O = diaglk( ky, -k, 1.0y, = diagl6y(,6y,,,6,41",Qs, = diagld)2,82, 8,21
¢ =min {z(imin (Qk ) - l)/b{;l )= ’lmin (Qél )/ A’max (1—-[—1 )=;i‘r;1in (Qé'2 )/A‘R'max (FZ_I )}

Iy =0, 0 Dy ) and Ty =[5, Tag, -, Daa J7

Let p =% /cthen equation (9.52) satisfies

0<V, (1)< p+ (¥, (0) - pe™ (9.53)
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(9.53) means that V), (¢) eventually is bounded by p . This prove that all signals of the closed-
loop system are uniformly ultimately bounded. Thus, the tracking error z, = x, — y, is also

uniformly ultimately bounded. This concludes the proof,

Remark 9.1

Decreasing &, and &;, will help to reduce the size of p . However, if§; and &;, are too small,

it may not be enough to prevent the parameter estimates form drifting to very larges values in

the presence of fuzzy approximation errors. The small 4; might result in a variation of a high

_gain control. Therefore, in practical applications, the design parameters should be adjusted

carefully for achieving suitable transient performance and control action.

Remark 9.2

Comparecl with the works in [Kwan and .Lewis 2000, Choi and Farrell 2001], it isr assumed
that the gain functions are constants or known function. However, this assumption cannot be
sa‘tisﬁed in many cases. In {Zhang 2000, Yang 2004 et al ], gaiﬁ functions are assumed to be
unknown and a backstepping design is ‘proposed that incorporates adaptive approximator
techniques. However, due to the integral-type Lyapunov function introduced, this approach is
complicated and difficult to use in practice. The proposed control scheme can cope with
~ unknown gain functions and avoids controller éingularity problemn completely without the

requirement for integral-type Lyapunov functions.

9.3 Simulation Examples

In this section, we apply our proposed adaptive fuzzy controller for three cases. The first

example is a second order nonlinear system. The second example is a pendulum system plus
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driven motor. In the last one, we apply the proposed controller for a one-line robot with the

inclusion of motor dynamics.

Example 9.1: Second order system
In this example, we verify at the validity of the design approach on the tracking controt of

a second order system. The dynamic equation of such system is given by

X = xe 0 (L x0)xy + A (D)

Xy = xlxg + (B +cos(xyxy u+ A, (1) -

The control objective is to maintain the system to track the desired angle trajectory,
Y = x/lO(sin(t)+0.3siri(3t)) and A, =sin(x)) | Ay = 2x sin(t) , and ¢, =1 ,
[ A, (x,0) | p;qfvz (x), p; =2 and¢, = x; membership functions for system state x; i=12, are
cl-losen as in Example 5.1. The following initial conditions z;re controller design parameter are
adopted in the simulation: x(0) =[0.15,0]7 ,step size 0.1s, Iy =70,1,, =10, [, =T, =8,
5\ ;521 =0.03, 8 =822 =03, ) =ys =02,00 =09 =04 and A, =1, =0.5. Figure
9. 17 shows the simulation results. It can be seen that the tracking performance can achieve
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1.5

4.3
o
0 : 5 10 L] 20 25 30
time (sec)
(d)

Figure 9.1 Simulation results of robust adaptive fuzzy control: (a) desired output y,, (solid
' lih_e) and system output x| (dash line) (b) control signal u (c) trajectory of gains y; (solid

line) and él (dash line) (d) trajectory of gainsy , (solid line) and 632 (dash line).

Example 9.2: Pendulum system with motor
In this example, we verify at the validity of the design approach on the tracking control of
a pendulum systems with motor. The dynamic equation of such system is given by [Gutman

1979, Kwan 1995].

.,'.C] ZXZ
X3 = x3 —1lsin(x; ) — 2cos{x) ) + A (¢)
x3 :—X3 +M+A2(f)

The control objective is to maintain the system to track the desired angle frajectory,
Y =0.1sin(¢) and A (1) =sin(t), A,(#) = 2sin{xy) . The membcrship functions for system

state x; ,7 =1,2,3, are chosen as in Example 9.1. The following initial conditions are controller
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design parameter are adopted in the simulation: x(0) =[0.15,0" step size 0.1s, [, =70,
1_‘3[ = s Fzz =8 s 1”32 =25 . (SZI =§3| =0.01 , (522 =(532 =01 )

;y? =y/30 =O.1,8§) :{930 =03 and 4, =43 =0.2. Figure 9.2 shows that the system output

converges to a small neighborhood around zero.
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20

0 5 10 15 20
time (sec)

(d)
Figure 9.2 Simulation results of robust adaptive fuzzy control applied to the pendulum

systems with motor: (a) desired output y,, (solid line) and system output x, (dash line) (b)
control signal u (c) trajectory of gains, (solid line) and é;_ (dash line) (d) trajectory of

gainsy/;(solid line) and é3 (dash line).

Example 9.3: One-Link Robot Tracking
In this example, we consider a one-link manipulator with the inclusion of motor dynamics.
The dynamic equation of such system is given by

Dg+Bg+Nsin(g)=71+71,
Mi+Hr=u—-K,q

whereg,4,§ denote the link position, velocity and acceleration, respectively. 7 and 7 are the
motor shaft angle and velocity. 7; represents the torque disturbance. u is the control input

used to represent the motor torque. Above equation can be expressed in the form (9.1) by

noting that
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X =4¢, X :(], ;\:3 =7

X| = X,

. B N . |

Xg = —5.1'2 "'BSIHXI +B(.’C3 + Td)
. H K,, u

I3 = —ﬁ.\f:‘ —""‘M“‘—x-z +H

The control objective is to maintain the system to track the desired angle trajectory,

Y = 2/10(sin(0.5¢) + 0.5sin(1.51)) and r, = 2sin(¢) .The membership functions for system

state z;,/ = 1,2, are selected as example 9.1. The following initial conditions are controlier

-design parameter are adopted in the simulation: x(O)=[O.15,O]T ,step size 0.1s, [y, =70,

L=25  Typ=2 , Iyp=15 , §;=86=03 , &,=5,=02

1/120 =y =0.1 ,495) =9§) =0.5 and 1, =4y = 0.4. Figure 9.3 shows that the system output
converges (o a small neighborhood around zero.
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0.3

0.4

0 5. 10 15 20 25 30
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(d)

Figure 9.3 Simulation results of robust adaptive fuzzy control applied to the one-link

manipuiator with the inclusion of motor dynamics (a) desired output V,, (solid line) and
system output x| (dash line) (b) control signal u (c) trajectory of gains ¥, {solid ling)

and éz (dash line} (d) trajectory of gainsy/ (solid line) and é3 (dash line)

9.5 Conclusions

In this chaptér, by combining backstepping technique with small gain theorem and using
1S type fuzzy systems to approximate unknown functions, adaptive fﬁzzy control for a class -
-of uncertain nonlinear systems in strict-feedback form is developed. Moreover, by utilizing a
special property of the afﬁne term, the developed scheme avoids the controller singularity
problem completety. All signals in -the closed-loop system is guaranteed to be uniformly
ultimately bounded and the steady state tracking error can be made arbitrarily small. Finally,

the proposed method has been applied to control three nonlinear systems example to track a
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reference trajectory. The simulation results show that the adaptive controller can achieve

desired performance.
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Chapter 10 Conclusion and future work

CHAarTER TEN

CONCLUSIONS AND FUTURE WORK

This thesis has reported the studies undertaken to construct a systematic framework for
the design of adaptiye soft-computing based control schemes for linear and nonlinear systems.
The work ?epoﬁed in the preceding chapters outlined the direction of designing hybnd
adaptive controllers by exploiting concepts and ideas from the domains of linear, nonlinear
and soft computing methodologies. The new paradigm provides a strong potential for the
control of ill-defined systems. By combining PID control with on-line lower modeling
algor;thn1. A procedure for the design of adaptive control with guaranteed performance was
proposed in chapter 3 and 4. In chapter S to 9, the control schemes were derived for a class of
SISO and MIMO nonlinear system, transformable to a Bymes-Isidori normal form and a
parametric strict-feedback form. Nevertheless, without a concise methodology, the advantage

or ability of the combined methodology can not be fully exploited and the performance may

be degraded.

Much of the previous work has been focused on the formulation of soft-computing
algonithms for the nonlinear systems. As such, those remain as heuristic and ad hoc techniques.
The thesis, on the other hand, devotes to improve the control performance by combining soft-

computing techniques and modem control techniques such as sliding mode control (SMC),

H*® control and backstepping control. The results are significant on broadening the class of
the nonlinear systems being handled, studying the convergence, stability and improving
performance and robustness of the adaptive soft-computing based systems. To verify the
control schemes of the proposed soft-computing based control schemes. The adaptive control

systems have been applied to control some complex plants, namely flow control systems,
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heating process system, inverted pendulum system, pendulmﬁ systems with- motor, two-link
robot arm, oﬁe—link manipulator with motor dynamics, two degree-of-freedom (DOF)
helicopter. In this chapter, we provide a brief summary of this research work along with
comments we were able to draw from it. We conclude the chapter by providing some

suggestions on possible extensions and future developments of this thesis.

10.1 Main Contributions

This thesis has made the following contributions:

® l.For a clas'é of nonlinear systems that can be linearized around an equilibrium point, a new
lon—line lower order modeling based on neural network is designed for PID conirol with
parameters ‘adaptation. The neural network has been applied to approximated higher
order systems with first order plus time delay model. The relevant parameters of the
systems are obtained through neural network by back-propagation (BP) algorithm-. An
on-line PID tuning method is then applied with guaraﬁteed performance. Then, an
adaptive scheme has beeﬁ developed by combining on line lower modeling with fuzzy
system, and a theorem on convergence analysis of this identification method ilas been
studies and proved. An extensive simulation and .experiinental studies for a typical real-
time flow raté system and temperature control system have .been conducted to evaluate
and compare the performance of the proposed algorithms with PI controller. The reéults
demonstrate that the iJroposed schemes have the most satisfactory robust property in the

presence of neglected dynamics and varying time delay.

® A stable adaptive fuzzy sliding mode control (AFSMC) is presented for a class of SISO

nonlinear system in Byraes- Isidori normal form. By combining the sliding mode control
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and PI control, with adaptive fuzzy systems. A chattering elimination algorithm has been
proposed. The adaptive control 'algoritflm can eliminate chattering in steady-state by
- removing the discontinuous control signal. Besides, zero steady-state error can be
obtained. By applying Lyapunov direct method and parameter projection algorithm, it has
been pré)ved that the close-loop system is stable. Simulation results have been elaborated

to compare the conventional sliding mode control of proposed control system.

® To tackle those nonlinear systems whereby only the output of the plant is available for

measurement, an adaptive observer-based fuzzy control design, variable structure control

(VSS) and H* disturbance attenuation theory are combined together to construct hybrid

indirect adaptive observer-based robust tracking control schemes. A robust and

H® control terms are added into the adaptive controller in order to compensate the
system model uncertainties and external disturbances. Lyapunov direct method has been
applied to give the proof of the closed-loop system is globally stable. Simulation studies

have demonstrated that the algorithm can track the desired reference input asymptotically.

® A robust adaptive fuzzy control method has been proposed for .a class of MIMO
nonlinear system, i.e. robot manipulators. The adaptive control scheme is used to release
_the assumption of linear parameterization (nonlinearities of the rbbot manipulator in the
forms of linear in the parameters). The proposed method combines the adaptive fuzzy
algorithm and robust control technique with uncertainties bound estimation to guarantee

a robust tracking performance for uncertain robotic system. The design has been proved

to guarantee the closed loop stability in the sense of Lyapunov method. Simulated
examples have demonstrated and compared the performance of the proposed controller

with computed torque control with uncertainties and payload disturbance.
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® A direct adaptive fuzzy control approaches has been proposed for a class of nonlinear
MIMO systems by using Takagi-Sugeno (TS) fuzzy system. The system states of the
system are not required to be available for measurement and a simple observer is
designed to generate an error signal for the adaptive law. By introducing a novel kind of
Lyapunov function, a new observer based fuzzy control scheme is developed, in which

the cancellation of nonlinearity g(x)is not needed, and completely avoid the control

singularity problem. A TS fuzzy system is used to reduce the number of fuzzy rules, it
was show that the implementation is simple, a few fuzzy rule controller was sufficient to
achieve the control of the two degree-of-freedom (DOF) helicopter, which permits real

time applications.

° By combining backstepping technique with small gain theorem, a robust adaptive fuzzy
controller is developed for strict-feedback nonlinear systems, which completely eliminate
the possible controller singul.arity problem. The Takagi-Sugeno (TS) fuzzy systems are
used to approximate unknown function in the systems with few tuning parameters and
robust control technique is used to compensate the system uncertainties. The Lyapunov
stability method has been used to prove the robust adaptive fﬁz_zy control scheme can
achieve semi-global uniform ultimate boundedness of all the signals in the closed-loop
system. Moreover, the output of the system was proven to converge to a small
neighborhood of the desired trajectory. Simulation examples have demonstrated the

effectiveness of the developed control scheme.
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- 10.2 Future Research Direction

As with most research efforts, this thesis has probably triggered as many questions as it
has attempted to solve. We believe that the adaptive soft-computing control, many open
questions remain for future research. In the following, we present some suggestions for further

development,

®  Extending the class of lower order model handied by soft-computing techniques
As described iq chapters 3 | and 4, the proposed on-line lower order modeling
identification is suitable fo a first-order plus time delay model (FOPTD). The next step
will extend the approx1matmg algorithm to second order plus time delay model (SOPTD).
Such a model is especially useful for oscillatory systems, which are associated with the

second-order-underdamped systems.

®  Quiput feedback control for nonlinear systems
In chapters 5, 7 and 9, the systems are assumed that the full state variables arc available
for measurement. The future work will be focused on output feedback control. In
particular, the devélopment of output feedback stable adaptive control for strict-feedback

system is an important and challenging problem in the future.

®  Adaptive control for non-affine nonlinear system
In chapters 5 to 8, the systems under studies are affine, i.e. model is linear in the input
variables, and adaptive cpntrol of nonlinear systems can be solved by using feedback
linearization techniques. However, mény physical systeiﬁs, ie. PH neutralizaﬁon and
chemical reactors, are inherently nonlinear, whose inppt variables can not be expressed in

an affine nonlinear form. In future, research efforts can be directed to study for non-
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affine nonlinear systems, = f(x,u) y=h(x}. They represent an important class of

nonlinear systems that adaptive soft-computing based control should be investigated.

©®  Control of discrete time systems
The adaptive approaches developed for nonlinear systems are based on continuous time
representation. As compared with discrete base control, design and analysis of the
continuous time adaptive systems are more rtractable. In particular, the elegant metﬁods
for continuous time systems are not directly applicable to discrete time systems due to
noncausal problem in the cont?oller design procedure. However, complex systems are
hybrid dynamical systems that contain both discrete and continuous signals. Adaptive

soft-computing based control should be investigated these class of systems.

®  Adaptation algorithm for membership functions
In this thesis, the membership functions used to fuzzify the inputs of the fuzzy systems
are static. Thus, these parameters are not adjusted. In order to improve the approximation
performance, a possible way would be to derive an adaptation law to automatically tune
the parameters of these membership functions as we did for the rule base of the fuzzy

systems.

®  Type-2 fuzzy system for nonlinear systems
In the development of adaptive fuzzy nonlinear control, the ordinary type of fuzzy system
or type-1 fuzzy systems has been used. Another future research direction is to apply. a
type-2 fuzzy system [Kamik et al. 1999, Mendel and John 2002] to the control of
noqlinear systems. In general, type-2 fuzzy systems are credited to be more insensitive to

parametric and modeling imprecision then type-1 fuzzy systems. The research on type-2
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fuzzy systems and its effects on adaptive system is important topic in adaptive fuzzy

control field.

Finally, the author hopes that his modest efforts in the design of adaptive controllers is a
contribution towards designing better controllers for improved productivity in industrial plants

with subsequent effect on the quality of life for all people living on earth!
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APPENDIX

Norm of vectors and functions [Vidyasagaf 1993]

The class of L., 1s defined by

I, = Q1% 19317, peft,)
i=l

“,\c”00 =max|x;| p=o
|<i<n

the three commonly used norms are "x” I ,”1” 5 (or”x" for simplicity) and "x”oo .

For a function /' : R, ~» R", the L, norm of / is defined by

I/ p
I, =[1rora ", pelw
Ifl, = sw 1/@)], p=o

te[0,00)

By letting p = 1,2, 00, the corresponding normed spaces are called Z,,L,,L,, respectively.

Barbalat’s Lemma
Lemma Al (Barbalat) Let the function SR, >R _If lim,_,, f(t)=k < and F() is

mniformly continuous, then lim,_,, £(¢) =0.

Zorollary A1 Consider the function f : R, 5>R.Iff fe Lyand f e L, for some p e[l,0),
hen lim,_,, f(:)=0.

-orollary A2 Consider the function f: R + = RIf f(t)is uniformly continuous, such that

im, ., f f(z)dx exists and is finite, then lim,_,_, /(1) =0,
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Definition Al: Class K Functions [Khalil 2002]:

A continuous function @ :[0,a) — [0,0)1s said to belong to class K, if it is strictly increasing

and @(0) =0 It 1s said to belong to class K, if a =wand a(r) > = asr > w.

Definition A2: Class KL Functions [Khalil 2002]:

A continuous function f:[0,a)x[0,e) —> [0, ) is said to belong to class KL if for each fixed
s the mapping f#(r,s) belongs to class K with respect to#, and for each fixed #, and for each

fixed r the mapping #(r,s) is decreasing with respecttos and S(r,s) — Oas 5 — 0.

Definition A3: Stability [Khalit 2002]

—onsider an #utonomous system

x=f(x), xeR" (A1)
Nitﬁ an equilibrium x, . The point x, is a stable equilibrium if and only if for all ¢ > Othere is

t & > Osuch that for-"x(tn)—xe“ < & 1t holds that ||x(t) —xe” <g forall ¢ >¢,.

Cheorem Al: Lyapunov Stability Theorem [Khalii 2002]

“onsider the dynamical system x = f (x.) with an equilibrium point at origin and D < R"be a
* lomain containingx = 0. Let ¥ : D — R be a continuously differentiable function such that
7(0)=0 and ¥(x)> 0 in D — {0} (A2)
7(x) s 0in D | (A3
Then, x = Ois stable in the sense of Lyapunov: Moreover, if

7(x) <0 in D—{0} | , (A4)

hen, x =0 is asymptotically stable in D.
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Definition Ad:

Consider the non-autonomous system
i=f(xt), xeR" teR _ (AS)

the origin x =0 is the equilibrium point of (AS5), f(0,¢)=0forall t>0.

Definition AS:
The equilibrium point x = 0of (A5) is

i.  globally uniformly stable, if there exists a class K, function y(-) such that

D, Vezi520, Vx(ty)eR" (AO6)

[l < 7o)
it. globally uniformly asymptotically stable, if there exists a class KL function 8(-,-) such

that

@) < Bx(eo)]

J—tg), Y2ty 20, Vx(ty)e R" (A7)

il globally exponentially stable, if (A7) is satisfied with 8(r,s) =kre ™™, k> 0,a > 0.

Theorem ‘A2: (LaSalle-Yoshizawa) [Khalil 2002]

Consider (AS) and suppose ¥ :R" xR, = R, is a continuously differentiable function

such that
Coq (1) sV <aq (A8)
. oV oV
V=E+af(x,t)S—W(x)S0 (A9)

Vi 20,Yxe R", wherea| and a, are class K, functions and ¥ is a continuous function. Then

the equilibrium x = Ois globally uniformly stable and lim W (x(¢)) = 0. Moreover, if W(x)is
. {—o0

positive definite, then x = 0is globalty uniformly asymptotically stable.
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Input-to-State Stable (ISS)

Consider the system
x = f{x,u) (A10)

where x is the state and wu 1s the input.

Definition A6: system (A10) is said to be input-to-state practically stable (I[SpS) if there exist

a class XK function y, and class KL function S, such that, for any essentially bounded input
u(t)and any xgand a nonnegative constant d , the response of x(¢) are defined on [0,20) and
satisfy

@ < AQx©@]. 0+ 7)) + (A1)
where u, is tﬁe truncated function of w at ¢, when d = 0in (A11), the ISpS property collapses

to ISS property introduced in [Sontag 1995, 1989].

Definition A7: A continuou function Vs said to be an ISpS-Lyapinov function for (A10) if

there exist a,a;of class K, and a;,a40f class K and constant & > 0

a (|x) <V (x) <, (), VxeR" (Al12)
BI; ix) f(xu) < —ay (1) + ag(u + ¢ (A13)

when (A13) holds with d = 0, ¥ is referred to as ISS-Lyapunov function [Sontag 1995]. Then

it hold that the nonlinear L gain ¥ in (All) can be evaluated as

y()=af'cayoai'cay(s), ¥s>0
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Input-to-State Small Gain Condition [Jiang et al. 1994, 1997]

Consider a system in composite feedback form of two ISpS systems

= filxw)
: '{z - H) (Ald)
Jy=r0n2)
Z, .{w: K(y.2) | . (A15)

there exist two constants d;,d,; > 0and f,, 5, of class KL, and y|,7, of class K such that for
each w and z in supremum norm, each xe R” and each ye R™ |, all the solutions
X{x;w,t)and Y(y; z,t) are defined on{[0, 0} and satisfy for all ¢.

[HCx G < B0+ r i)+,

NGz < B0 + 72z, ) + 2.
under this conditions
yi1°72 <s, Vs>0

the solution of the composite system (A14) and (A15) is ISpS.
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