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Database Supports for High-Dimensional 
Data Indexing: Locality-based Embeddings 
and Ensemble of Rules 
 

Abstract  
 
Database Management Systems (DBMS) create index structures to help with data 
retrieval and analysis. Developing the state-of-the-art indexing techniques is the 
fundamental issue in computer science and engineering.  
 
A critical problem to be tackled in data indexing concerns the high dimensionality of the 
data. As we know that for low-dimensional data with only a small number of attributes, 
one can simply index with a key attribute in one-dimensional space. Further, for multi-
dimensional data with lower hundred attributes, spatial indexing methods, e.g. KD-tree, 
can be employed to speedup the searching and retrievial based on similarity metrics. 
However, in many real world applications, such as time series analysis, content based 
multi-media retrieival, Microarray analysis, and brain electroencephalogram maps, the 
data we encounter can be of much higher dimensions, say, thousands of attributes. The 
traditional methods like B-tree and KD-tree loose their effectiveness due to the curse-of-
dimensionality.  
 
To address this difficulty, we can reduce the dimensionality by either feature extraction 
or selection. By feature extraction, we seek the embedding subspaces for optimal 
transform to get the low-dimensional representation (the index features) of the original 
data. By feature selection we choose only a subset of the attributes, the significant 
features, and use them to characterize the distribution of the data samples. Among these, 
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are 
popular for feature extraction. They have been successfully applied to facial image 
databases for biometric authentication. The optimal embedding subspaces are known as 
Eigenfaces and Fisherfaces for PCA and LDA respectively. Also, they prove to work 
effectively on the handwritten digit databases for postcode recognition. On the other hand, 
the feature selection methods, such as the decision tree and its variants, reduce the 
dimensionality without transforms, thus avoiding the loss of the semantic meaning of the 
attributes in the problem domain. The selected features and the rules extracted from the 
decision trees are therefore human understandable, and helpful to make interpretations on 
the processes underlying the data. 
 
Recent advances in dimensionality reduction highlight three techniques, namely, the 
image-based projection, the locality-based embedding, and the ensemble of decision trees. 
By image-based projection, we needn’t have to convert the 2-dimensional input images 
(or other types of samples given in the matrix form) to the 1-dimensional vectors before 
the training step. Moreover, it can reduce significantly the size of the matrix in the 
associated eigenproblems. Based on this technique the 2-dimensional PCA (2DPCA) and 
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LDA (2DLDA) have been developed, and evaluated on a variety of the facial image 
databases. The experimental results indicate that the computational efficiency and the 
recognition accuracy are both improved dramatically.  
 
Locality-based embedding on the other hand is a natural extension of the manifold 
learning methods, which stress to preserve the local information of data density during 
embedding. The key idea is that we can infer the global structure of the dataset by 
maximally preserving the patterns of the data in local neighborhoods. The index features 
extracted describe the local geometry of the samples, desirable for the nearest neighbor 
based searches which rely mainly on the local information for retrieval. By locality-based 
embedding, the recently proposed Laplacianfaces method proves to outperform the PCA 
and the LDA on facial data. It has aroused considerable interests as an alternative to 
support high-dimensional data indexing.  
 
Another technique is the ensemble of decision trees, specifically, the CS4 algorithm. This 
method involves the construction and utilization of a committee of trees, instead of only 
one tree, for feature selection and prediction. It is plausible in Bioinformatics applications 
as it can derive the product rules that are biologically meaningful to interpret and guide 
the wet lab experiments by biologists. Moreover, it turns out to be more accurate than the 
traditional decision tree method in cancer prediction based on Microarrays.  
 
In this work, we contribute to develop 4 new techniques for dimensionality reduction 
based on the above mentioned methods. 
 
Firstly, we develop 2-dimensional Laplacianfaces. It is known that 2DPCA, 2DLDA and 
Laplacianfaces can outperform PCA and LDA respectively. However, it is unclear 
whether the Laplacianfaces, by leveraging image-based projection, can be further 
improved against 2DPCA and 2DLDA. Thereby, we develop the 2D Laplacianfaces by 
intergrating the two techniques, locality preserving and image-based projection. The 
algorithm is evaluated on the facial image databases, FERET and AR. We find that the 
computational efficiency is significantly improved compared with Laplacianfaces. The 
training time and memory complexity is reduced from )nm(O 22 ×  to only )nm(O × , 
where m and n are the number of rows and columns of the sample image. 2D 
Laplacianfaces is also more accurate than 2DPCA and 2DLDA by utilizing the local 
information to help with recognition.  
 
Secondly, we develop a technique, unsupervised discriminant projection (UDP). In 
addition to the local information, we also consider the global information in formulating 
the optimizing criterion. The goal is set to preserve the local density of the data while 
maximizing the non-local global scatter. On facial image databases UDP outperforms 
consistently the Locality Preserving Projections (LPP) and PCA, and outperforms LDA 
when the training sample size per class is small. On the PolyU Palmprint database, UDP 
achieves the top query accuracy of 99.7%, compared with 86.0%, 95.7%, and 99.0% of 
PCA, LDA and Laplacianfaces. 
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Thirdly, based on the idea of locality preserving we also propose another method called 
Mutual Neighborhood based Discrimiant Projection (MNDP). As the errors of 
classification derive mainly from the samples on the class boundaries, it is important that 
the geometry of the class boundary should be better preserved for projection. We 
construct the mutual neighborhoods to highlight those samples that are on the boundary 
and most likely contribute to the prediction errors. The features extracted from the facial 
and the handwritten database indicates that it is significantly better than PCA and LDA 
when the size of the training sample is modest. The problem of singularity in LDA can 
also be successfully addressed.   
 
Finally, besides 2D Laplacianfaces and UDP, we also present an algorithm, adaptive CS4 
(ACS4), for feature selection and prediction. ACS4 can identify the most discriminant 
features and grow a committee of trees for prediction. We evaluate ACS4 on the biology 
database for DNA methylation analysis. The number of the index features for cell line 
classification is reduced significantly from 49 to only 2. The computational and the wet-
lab costs for cancer diagnosis can thus be reduced by about 20 times in contrast to the 
previously reports. Meanwhile, we also propose a strategy for adaptive clustering on the 
gene methylation database. The results of clustering confirm that DNA methylation plays 
the dominant role in the process of tumourgenesis and embryogenesis in human cells. 
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Chapter 1. Introduction  
 
Over the past few years, Web Search Engines, Internet File Sharing, XML Databases, 
Biometrics, and Bioinformatics have aroused considerable interests in Computer Science, 
Molecular Biology, and Software Engineering. These technologies not only facilitate our 
daily lives but also excite new ideas in fundamental research. A central problem in 
Database and Internet Information Retrieval is the management of high-dimensional data. 
Consider that in biomedical research the human genome sequence consists of about 3 
billion letters of A, G, C, and T. A typical SNP array contains more than 500,000 testing 
locis to be analyzed. The access, the storage and the exchange of such high dimensional 
data is chanlleging.  
 
To address the difficulty, we can reduce the dimensionality of the data while avoiding the 
loss of the useful information. A spectrum of techniques for dimensionlity reduction has 
been developed over the past few years. They fall into two categories, feature extraction 
and feature selection. The algorithms for feature extraction consist of Principal 
Component Analysis (PCA), Linear Discriminant Analysis (LDA), manifold learning, 
Locality Preserving Projections (LPP), and Two-dimensional PCA (2DPCA), while 
feature selection covers the ensemeble of trees and the association rules in our context.  
 
Based on these methods, we develop 3 approaches for feature extraction. They are the 
Two-dimesional Laplacianfaces, Unsupervised Discriminant Projection, and Mutual 
Neighborhood based Discriminant Projection. They have been applied to the facial image 
databases for evaluation. Also, we propose an algorithm for feature selection, called 
adaptive CS4 (ACS4) and apply it analyze the profile of DNA methytion in human 
cancer and embryonic stem cells. Extensive experiments have been performed to 
demonstrate the effectiveness of the proposed methods. 
 

1.1 Background 
 
XML Databases, Internet Information Retrievial, Biometrics, and Bioinformatics are the 
leading technologies underlying the next generation of Internet applications. Intelligent 
features will add more efficiencies, flexibilities and reliabilities to the information system 
to guide users’ consumption by satisfying their information needs.  
 
Extensible Markup Lanaguage (XML) language is a simple, very flexible text format to 
facilitate the exchanges of a wide variety of data on the web. XML databases allow data 
to be imported, accessed and exported in the XML format so that different information 
systems can share the structured data via the Internet. XML files can contain not only the 
text data, but also the serilized multimedia information, like graphics, images, audios and 
videos. XML databases are more suitable in handling the data of complex structures 
compared with the relational databases. This makes them ideal for advanced applications 
such as Computer Aided Design (CAD), Digital Entertainments, Geographical 
Information System, and e-Commerce (for details please see appendix). As XML is 
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mainly designed to facilitate data exchange, the techniques of dimensionality reduction is 
thus important to save the cost for data transfer. 
 
We can also use dimensionality reduction to help with Internet File Sharing. Distributed 
computing allows us to share file and data over Internet for free (freedom and free-of-
charge). Though there are still some legal arguments, many leading IT organizations, 
companies, and Universities have began to invest fundings into this research area. Several 
prototype systems have been established to enable the Peer-to-Peer data searching and 
sharing. Current infrastructure for indexing in P2P network are still based on the text 
keywords, the audio and video features, for example, the text in an image or the facial 
image of a movie character, cannot be utilized directly to help with data retrieval. 
Hopefully, we expect that dimensionlity reduction and pattern recognition can be 
combined together to offer users with more flexibility and usability in P2P data sharing.     
 
Biometrics is the area where dimensionality reduction is most extensively used. Iris, 
palmprint, and face are the physical traits characterizing the human identity. In biometric 
databases it is necessary to reduce the dimensionality of the sample images so that the 
traditional indexing methods can be utilized to accelerate the searching process for real-
time authentication. For Biometric problems, recognition accuracy is the most important 
performance indicator of the system. It is ideal that one can achieve the top accuracy 
using the fewest features.   
 
There are more than one thousand Bioinformatic databases in the public domain. The 
data are of great value for biomedical researches. The Gene Expression Ominibus (GEO) 
Mircroarray database maintains the data of gene expression gathered from 6,839 wet-lab 
experiments and 174,333 samples. A big part of the data show the gene expression levels 
in human diseases. The array data are high-dimensional, containing typically the 
expression dosage of hundreds of genes. With the advance of the Gene Chip technology, 
the dimensionality can increase further as more genes are being included for testing. An 
important task in array analysis is to detect the genetic patterns that are associated with 
the human diseases. By feature selection, the genes that are irrelevant to the diseases can 
be filtered, thus the relation among the marker genes can be detected. Based on the 
patterns of gene expression we can interpret how the diseases arise from the aberrant 
changes of DNA.  
   

1.2 Research problems 
    
There are a number of methods for feature extraction and selection. Principal Component 
Analysis is an unsupervised method. It doesn’t utilize the class information to help with 
dimensionality reduction. The optimizing criterion of PCA is to find a subspace for 
projection where the variance of the data can be maximized. The projected data are 
decorrelated thus the redundant information can be removed. PCA is popular due to its 
mathematic simplicity and computational efficiency. It proves to be the method that is 
most energy compact with the minimal reconstruction error. It is optimal for data 
representation. When applied to human facial image data, PCA is well known as the 
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Eigenfaces method. PCA however is unsupervised. It is sensitive to the variation of the 
lighting conditions, facial expressions and poses in face recognition. It is widely accepted 
that PCA is more suitable for data compression than for pattern recognition. 
 
Linear Discriminant Analysis in contrasted to PCA is a supervised method for feature 
extraction. It seeks the subspace for projection where the between-class scatter can be 
maximized while the within-class scatter is minimized. The optimizing criterion of LDA 
reflects actually the Bayesian error of classification. By maximing the LDA criterion the 
error classification can be minimized. LDA has been applied to face recognition and 
compared with PCA. When the size of the training data is large enough the class centers 
can be estimated accurately and LDA can outperform PCA significantly. PCA and LDA 
analyze the global patterns of the training data for feature extraction. The local geometry 
around the training samples is not well preserved after reducing the dimensionality. The 
nearest neighbor based classifiers however rely heavily on the local information for 
classification.   
 
Manifold learning, i.e., Locally Linear Embedding, Isometric Mapping, and Laplacian 
Eigenmap assume that the distribution of the samples is on the manifold. LLE finds the 
low dimensional representation of the samples so they can be reconstructed by its closest 
neighbors in the feature space. Isometric mapping is an extension of Multi-Dimensional 
Scaling (MDS) where the affinity among the training samples is measure by the geodesic 
distance, i.e., the length of the shortest path on the neighborhood graph. Laplacian 
Eigenmap preserves the local density by imposing a penalty function such that if the 
training samples are near neighbors in the original space they are kept still close to each 
other in the feature space. Manifold learning is better than PCA and LDA because it 
captures the nonlinear structure of the sample data. However, it doesn’t provide an 
explicit transform for dimension reduction when the test samples are presented. To 
overcome this problem the Laplacianfaces method has been developed. 
 
Laplacianfaces extends the idea of manifold learning. It preserves the locality of the 
sample space and constructs the projections for dimension reduction on new testing 
samples. On the facial image data, Laplacianfaces outperforms PCA, LDA in accuracy. It 
has also been utilized for handwritten character recognition. The classes are better 
separated with Laplacianfaces method than with PCA and LDA. 
 

1.3 Methodology and results 
 
To reduce the computational complexity of Laplacianfaces, we first develop a method 
called 2D Laplacianfaces by leveraging the technique of image based projection. This 
technique has been successfully applied to PCA and LDA generating 2DPCA and 
2DLDA. The size of the matrix in the associated eigen equation decreases dramatically 
from )nm(O 22 ×  to only )nm(O × , where m and n are the number of rows and columns 
of the sample image. 2D Laplacianfaces is also more accurate than 2DPCA and 2DLDA 
by utilizing the local information to help with recognition.  
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Also, we develop unsupervised discriminant projection (UDP). Besides the local 
information, we consider the global information in formulating the optimizing criterion. 
The goal is to preserve the local density of the data while maximizing the non-local 
global scatter. UDP outperforms consistently the Locality Preserving Projections (LPP) 
and PCA, and outperforms LDA when the training sample size per class is small on facial 
data. On the PolyU Palmprint database, UDP achieves the top query accuracy of 99.7%, 
compared with 86.0%, 95.7%, and 99.0% of PCA, LDA and Laplacianfaces. 
 
Based on the idea of locality preserving we also propose another method called Mutual 
Neighborhood based Discrimiant Projection (MNDP). As the errors of classification 
derive mainly from the samples on the class boundaries, it is important that the geometry 
of the class boundary should be better preserved for projection. We construct the mutual 
neighborhoods to highlight those samples that are on the boundary and most likely 
contribute to the prediction errors. The features extracted from the facial and the 
handwritten database indicates that it is significantly better than PCA and LDA when the 
size of the training sample is modest. The problem of singularity in LDA can also be 
successfully addressed.   
 
Finally, we present adaptive CS4 (ACS4) for feature selection and classification. ACS4 
can identify the most discriminant features and grow a committee of trees for prediction. 
We evaluate ACS4 on the biology database for DNA methylation analysis. The number 
of the index features for cell line classification is reduced significantly from 49 to only 2. 
The computational and the wet-lab costs for cancer diagnosis can thus be reduced by 
about 20 times in contrast to the previously reports. Meanwhile, we also propose a 
strategy for adaptive clustering on the gene methylation database. The results of 
clustering confirm that DNA methylation plays the dominant role in the process of 
tumourgenesis and embryogenesis in human cells. 
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Chapter 2. Problems of indexing in high-dimensional space 
 
Indexing high-dimensional data is essential for large-scale information retrievial and data 
mining. Consider the human brains, perhaps the most complex and powerful system on 
earth. It consists of a huge number of neurons, more than 1011 at the scale, and each of 
them is connected with the tens of thousands of others to concert the brain work. It is 
estimated that there are more than 1015 such connections, the adaptation of which raises 
the high-level human intelligence. Our brains operate efficiently storing and processing 
the inputs from the biological sensors. Our daily experiences and knowledge are 
represented in the form of the chemical states of the neurons and their connections, which 
characterizes the low-dimensional features of the original inputs. They are the index 
features to recall our memory and experiences and aid our decisions.  
 
It is chanllenging to understand and model the human brains in computers. The current 
state-of-the-art of computational methods is still quite primitive. Yet, to make machines 
learn there have been a number of the plausible works developed during the past. For 
example, Artificial Neural Networks (ANNs) and Decision Trees (DTs) are two 
successful methods with real world applications. They can be utilized to index the high-
dimensional data for classification and clustering. In web mining, biometrics, and 
bioinformatics, ANNs, DTs and other machine learning methods have gained widespread 
popularities as database supports for decision making.  
 
In section 2.1, we will first go through several applications where the indexing of high-
dimensional data is involved. We then discuss in section 2.2 the problem of curse-of-
dimensionality to highlight the necessity of high-dimensional indexing to support 
database applications.     
 

2.1 Indexing data in high-dimensional space  
 
With the rapid growth of the semiconductor and the software industry, the expenses of 
the digital equipments, digital cameras, music and digital video players, and the 
associated storage devices have dropped significantly. This has spawned a variety of 
applications, such as Multimedia Information Systems, CAD/CAM, Geographical 
Information Systems, Bio-medical Imaging, Biometrics, Stock Market and Time Serie 
Analysis. The applications require storing large amounts of high-dimensional data to be 
later searched, retrieved, and analyzed. The costs of the bandwidth, the CPU and the 
storage resources rocket high, making it inscalable for large domains, e.g., web search 
engine. Also, the useful information can be easily overwhelmed in the high-dimensional 
space by noises, and hardly be detected. To address this problem, we can reduce the 
dimensionality of data while maxmimally preserving their most useful features, which 
can be utilized as index to improve the speed of retrieval and accuracy of classification. 
They also help to detect the hidden patterns of the true processes underlying the data. 
Here we cover two problems that involve the processing of high-dimensional data in 
Biometrics and Bioinformatics. 
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2.1.1 Biometrics 
 
Biometrics studies how to automatically recognize a person based on his/her 
physiological or behavioral characteristics. Fingerprint recognition systems, for example, 
have been widely used for years. Other human traits for identity recognition are face, 
palm print, iris, DNA sequence, speech and signatures, as illustrated in Figure 2.1. Also 
different biometric schemes can be combined to increase the accuracy of authentication. 
 

 
Figure 2. 1 Biometric identity based on human facial features, fingerprint, palmprint, iris, DNA, 
signature, and voices (from left to right) 
 
Bioinformatics systems are applicable to a wide variety of institutions and organizations. 
For instance, in constructing the criminal justice system, the U.S. customs departments at 
the international airports accept the fingerprints as the identity. For military and 
government services, speech and iris recognition adds a security layer to the sensitive 
information. Recently, Biometics has found new applications in the World Wide Web, 
such as search engines, and more recently in digital entertainment. A Bioinformatric 
system has the typical structure as indicated in Figure 2.2, 
 

 
Figure 2. 2 Diagram of Biometric system 
 
Basically, a biometric DBMS manages all the collected biometic patterns. These sample 
patterns are matched against the inputs to answer the users’ queries. There are usually 6 
subcomponents in the system. The pattern detection module detects and extracts the 
patterns from the raw inputs, e.g., it can indentify which part in a given image is a human 
face, or a road sign. The detected patterns are then segmented and extracted by 
preprocessing, before taking the steps of feature extraction, and recognition. Then, the set 

PreprocessingTraining patterns 

Testing patterns

Feature Extractor Matcher

Pattern detection 

Biometrics

Behavioral Physiological
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of the patterns will be split into two parts, one for training the classifier and the other for 
testing and evaluation. 
 
In biometrics, face detection, face recognition, and face synthesis are the problems in 
focus. Indexing is highly plausible for such applications because the size of the facial 
data can be large due to the dimensionality and the huge number of samples. It also 
requires the real time response to queries, making it necessary to have the compact 
representation of the images for efficiency. 
 
Face detection 
 
Face detection determines the locations and the sizes of human faces in the digital images, 
ignoring anything else such as buildings, trees, and bodies in the background. Ideally, it 
can work effectively regardless of the variation of the facil orientations, sizes, colors, and 
illuminations, as illustrated in Figure 2.3. 
 

 
 
Figure 2. 3 Face detection in gray scale image 
 
The faces are detected. Then, they are segmented out from the image and stored into the 
database for later use. The face detection method can also be utilized for the content 
based image retrieval by infering whether an image contains the human face(s). This 
technique has been recently adopted by the Google search engine to refine its feedbacks 
to users based on the contents of images. It allows the users to narrow down their 
searches to only those images that contain the human faces. This is achieved by enabling 
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the face detection functions, as shown in Figure 2.4 the results returned from the Google 
search engine. 
 

 
(a) 

 

 
 

(b) 
 

Figure 2. 4 Face detection capability provided by Google Search Engine (a) searching with 
keyword ‘London’ returns city photos (b) searching  keyword ‘London’ with face detection 
enabled returns only facial images. 
 
Figure 2.4 (a) is the case when the keyword, city name ‘London’, is the query term. None 
of the returned images contain human faces but buildings, roads, and maps about the city. 
After face detection is enabled, only those images with human faces are returned, shown 
in (b). The results are informative to help find out those people who have the links to the 
city ‘London’, with their facial identities. 
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As the size of the Web is huge, so is the number of the images, dimensionality reduction 
has to be utilized to meet the real-time requirement. The ANN model can be trained for 
such purpose in face detection. In doing so, 2 datasets, facial, and non-facial, can be 
created for ANN training and testing. After training, given a testing input, the network 
fires its neurons through the connections to predict whether the image contains human 
face(s) or not. The learned connection weights attached to the neurons are the features for 
classification.  
 
Face recognition 
 
Face recognition is easy for humans, but difficult for machines. One is still capable of 
recognizing his/her friend without seeing each other over 20 or 30 years. Computers, 
however, are incapable of doing this. As the complex nature of the neural activities 
involved in face recognition is still not fully understood, it remains a challenge to the 
computer scientists to construct the facial recognition systems as competitive as humans. 
Though still quite primitive, there have been a number of efforts to improve the 
performance of face recognition, among which Eigenfaces and Fisherfaces are the 
methods most widely known.  
 
The central problem in face recognition is to achieve the most compact representation of 
the facial images that can lead to the best performance of recognition. Also, like in face 
detection, it should be able to handle effectively the environment changes including the 
variations of illuminations, poses, expressions, and ages. This is trivial for humans but 
chanllenging for computers. Ideally, they should not degrade the performance of the 
recognition. Figure 2.5 lists the facial images involving the above mentioned conditions.  
Figure 2.5 (a) shows the front view of a subject. Computers can extract the features of the 
image by using either the Eignfaces or Fisherfaces method. Yet, as the pose of the face 
shifts toward left, Figure 2.5 (b, d, e), or right (c, f), the low dimensional feature of the 
images can loose tis effectiveness and be biased for recognition.  
 
When the facial images are rendered with both the texture and the color, as shown in 
Figure 2.6, dimensionality reduction can be performed on each of them first. The 
obtained features containing both the texture and the color information can then be 
combined and utilized for recognition. 
 

 
(a) 

 
 (b) 

 
   (c) 
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(d) 

 
 (e) 

 
   (f) 

 

Figure 2. 5 Two dimensional grayscale sample face images from M2VTS database (a) Frontal 
view (b) Slight left view (c) Slight right view (d) Full left view (e) Left view (f) Full right view 
 
 

 
 
Figure 2. 6 A sample of two dimensional facial image with texture. 
 
A critical problem in face recognition based on 2D still image is that pose variations can 
radically change the recognition rates. Features extracted from the frontview of the 
images cannot be successfully applied to recognize the same person in the sideviews to 
the left or right. This problem can be avoided by adopting the 3 dimensional depth 
images.  By adding one more dimension to feature extraction, we can rotate the facial 
images to register them to a template for pose normalization. Figure 2.7 demonstrates the 
3D facial images of an individual in various poses. The Iterative Closest Point (ICP) 
algorithm widely used in computer graphics can then be employed to normalize the faces. 
Hence, feature extraction can be taken in a similar way for 2D faces. Likewise, the 
textures and the colors can be combined with the geometry of the depth images to train 
the classifier, as shown in Figure2.8 of a 3D facial image with the texture and the color 
maps. 
 

 
(a) 

 
       (b) 

 
(c) 
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(d) 

 
     (e) 

 
(f) 

 
Figure 2. 7 Three dimensional facial images without texture. (a) Frontal view (b) Upper left view 
(c) Upper right view (d) With Facial Expression (e) Lower left view (f) Lower right view 
 
 

 
 
Figure 2. 8 A sample of three dimensional facial image with texture. 
 
Though 3D tends to be better than 2D in handling poses, we still lack the knowledge 
whether the human vision system work truely in 3D. Moreover, capturing the 3D face 
images in outdoor from faraway is still quite difficult at the present stage due to the limits 
of sensors. In addition, efficient algorithm has to be developed and implemented to 
enable the fast normalization of high-resolution 3D point clouds. The problem of 3D face 
recognition is still challenging, yet it has arrested intensive attentions in recent years in 
biometrics. We can expect that the next generation of face recognition systems will be a 
composition of the advanced sensory technologies for face image production and 
detection, highly efficient graphic algorithms for face registration, and the effective 
algorithms for face feature extraction and recognition.  
 
Face (character) synthesis in digital entertainments 
 
Digital entertainment is a highly profitable industry with billions of dollars of 
investiments every year, and it is still growing fast. A major type of the computer games 
involves the online role playing, where game players are the virtual characters with 
custom-designed physical lookings, such as the equipments they have, the clothes they 
wear, and the hair styles. This flexibility makes the game more immersive and playable, 
giving the full experience to users for fun, and the game producers for market. 
 
Particulary, the industry is starting to integrate the facial elements into the games’ virtual 
world to add more reality. A recent example is given by the release of the online Golf 
game ‘Tiger Woods PGA Tour 08’. Game players are allowed to upload their 2D digital 
images to the game website, where the game software can synthesize and convert them to 
the 3D face models. The depth facial images are then assembled with the avatars to 
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produce the virtual characters that represent the players in the virtual world, as shown in 
Figure 2.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As more and more players join the game online, there can be millions of users world-
wide with their established 3D face images in the database. Thus, it is intriguing to 
collect the facial data from the virtual-world, extract the discriminant features for 
indexing, storage, transmission, and matching. Game users hence can search over the 
Internet based on the physical appearances of other game players to either team-up or 
make friends in the virtual world.  

2.1.2 Microarray data analysis 
 

 
(a) 

   
(b) (c) (d) 

 
(e) 

Figure 2. 9 (a) Tiger Wood 3D image designed and implemented by artists in the game (b, c) 
frontal and side images uploaded by the a game player (d) 3D face models synthized from 2D 
images (e) Player in the game 
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Bioinformatics is another research area where we have to deal with the high-dimensional 
data. Human genome consists of the 23 pairs of chromosomes containing about 3 billion 
base pairs of A, T, C, and G. These letters encode the instructions of human life, the 
genes. Genes are transcribed and translated to the proteins which are the building blocks 
of the cells in human body. In Figure 2.10, we indicate the central dogma in molecular 
biology to show how this happens. Fundamentally, DNA is transcribed to RNA. Some of 
the RNAs are the messangers to be translated into the proteins. Some others act as the 
machinearies to interact with the proteins and DNAs to regulate the transcription of DNA. 
Proteins can also inter-play with DNA to modulate the expressions of genes. And DNA 
can duplicate during cell proliferations. 
 

 
 
Figure 2. 10 Central dogma of molecular biology 
 
Many types of human diseases, cancers, PD (Parkinson’s disease), heart strokes, and 
hyper tensions, are susceptible to the genetic mutations. These malfunctioned genes are 
aberrently suppressed for expression or they are unable to be repaired from the damages 
in the sequence. The proteins thereby cannot be produced for normal cell functions. For 
instance, cancer cells are most likely depleted of the immunological genes. Without the 
control, the cells can reproduce infinitely and develop into tumors, whereas for the cells 
with the genes a procedure called apoptosis can be started to kill the tumor cells by 
mediating them to suicide.    

 
There are several types of Microarray technologies to measure the cells’ molecular 
activities. Gene expression array tests the dosages of the gene expressions by reading the 
RNA level. Protein array quantifies the intensity of proteins to compare the functions of 
the cells. SNP array tests whether there is any mutational change at some specified loci 
on the chromosomes. As there are about 20,000 to 30,000 human genes and millions of 
SNPs in the genome, the array data are usually of high-dimensions and small-sample-size, 

 
(a) 

 
 
 
 
 
 
 
 

 
               (b) 

Figure 2. 11 Differentiation of normal and cancer cells (a) normal cells mediate Apoptosis to  stop 
tumor progress (b) cells with defected genes reproduce infinitely to become tumors 

Replication 

DNA RNA Protein 
Transcription Translation

Apoptosis 
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as shown in Figure 2.12 and 2.13 the gene expression and the SNP arraies, where each 
spot represents a gene or SNP.  
 

 
 
Figure 2. 12 A sample image of gene expression array 
 

 
 
Figure 2. 13 A sample image of SNP array 
 
It is important to identify the genes and the SNPs associated with the human diseases. As 
the dimensionality is high and the sample size is small, it is chanllenging to detect the 
useful genetic patterns buried in the high-dimensional space for prediction. Clustering 
analysis ablso becomes difficult due to the noises.      
 

2.2 Problem: KD-tree indexing and curse of dimensionality 
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To highlight the effects of dimensionality, we can consider the case of k-dimensional tree 
(KD-tree) for data retrieval. In the KD-tree algorithm, the efficient measurement of 
similarity between to objects is important. It is analogous to human memory. We can 
recall the previous experiences, or facts, to support the current decisions based on the 
similarities between two events or scenarios, like finding the K nearest neighbors of the 
present case. KD-tree can work efficiently to an extent to help with the classification and 
retrieval of the similar patterns of users’ interest. However, KD-tree is not quite scalable 
to the dimensionality of data, making it necessary to introduce the techniques for 
dimension reduction to overcome the curse of dimensionality. 

2.2.1 k-Nearest neighbor search 
 
kNN chooses first a similarity metric, usually the person’s correlation score, or other 
types of norms to measure the closeness of 2 instances. Given a query, it calculates its 
distance to all the samples in the database. The closest ones to the query are the nearest 
‘neighbors’. They can be used for classification, or simply returned to the users for 
further analysis. 
 

 
 
Figure 2. 14 K nearest neighbor classifier 
 
For example, Figure 2.14 illustrates the case where kNN is applied for binary 
classification in 2-dimensional space. The closest 9 neighbors to the query pattern are 
found by calculating the similarities. As there are 7 votes from class one, more than 2 
from class two, the query sample is classified to class one. 
 
kNN is quite effective for classification on the data set with large number of samples. 
However, it is a lazy learning method and the query has to be matched against all the 
training samples for classification. This is time consuming and computationaly expensive. 
A solution to address this deficiency is to create an index by using the KD-tree. 
 

2.2.2 KD-tree 
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The kD-tree is a natural generalization of the standard one-dimensional binary search tree. 
It partitions the searching space by using the splitting planes perpendicular to the 
coordinate axes. In construting the tree, one goes down from the root to the leaf cycling 
through the axes to select the point that generates the splitting planes. Given a list of N 
points, the algorithm to construct the KD-tree is as follows: 
 
Algorithm KD-tree Construction 
Input: list of points pointList; depth; dimension k 
Output: IDs of matched nodes 
Begin 
   If pointlist is empty 
       return nil; 
   Else 
       axis = dept mod k; 
       sort point list on axis and choose median as pivot element; 
       select median from pointList; 
       create tree node; 
       node.location =  median; 
       node.leftChild = kdtree(points in pointList before median, depth+1); 
       node.rightChild = kdtree(points in pointList after median, depth+1);   
       return node; 
    Endif 
End 
 
The time and the storage complexity of KD-tree construction is )log( NNO  and )(NkO  
respectively. To find out the nearest neighbors to a query, the root node is examined first. 
The subtrees containing the target point are then tranversed. Recursively, it browses from 
the root to the leaf nodes to match. Because in each step of searching a large portion of 
the samples are discarded, the query time complexity reduces to )(log NO . Nearest 
neighbor search with KD-Tree can work effectively on the dataset of moderate 
dimensions, say, about 30 or 40. Yet, as the dimensionality of the sample space rises, it 
becomes increasingly difficult to get the closest neighbors as the size of the tree become 
too huge to be searched. The curse of dimensionality has to be addressed to support the 
database applications (see appendix). The development of the technologies that can 
reduce the dimensionality of data while retaining their useful features is thus necessary. 
They should help to reduce the computation time, the storage, and the bandwidth costs, 
without trading off the accuracy of retrieval. During the past years, 2 techniques have 
been developed for this purpose, namely, feature extraction and feature selection.  
 
Feature extraction reduces the dimensionality of data through linear transforms. 
Nonlinear extensions can be made by kernel method. In Chapter 3 and 4, we will present 
2 classical techniques for feature extraction. Chapter 3 contributes to two baseline 
systems, Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA), 
and their kernel extensions. Some recent works are discussed in Chapter 4 about artificial 
neural network, manifold learning, locality based embedding, and 2D image based 
projection. Based on the results in Chapter 3 and 4 we develop 2D Laplacianfaces and 
evaluate it on the facial image databases. 
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Chapter 3. Classical methods: PCA and LDA  
 
PCA and LDA are two simple yet powerful methods for feature extraction and 
dimensionality reduction. PCA seeks the projections that maximize the variance of the 
data, while LDA optimizes the Fisher’s criteria to extract the features that generate the 
low Bayesian errors in classification. 
 

3.1 PCA and Kernel PCA with applications to face and handwritten digit 
databases 

3.1.1 Method 

Given a set of centered observations N
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by solving the eigenvalue equation, 
 

       Cvv =λ . (3.2) 
 
The first p  eigenvectors with the largest eigenvalues are selected for embedding to 
extract the features. However, PCA fails to capture the nonlinear structure of the dataset. 
To address the deficiency kernel PCA (KPCA) is developed by using the kernel based 
method. In linear PCA, for the eigenvalues 0≥λ  and the associated eigenvectors NRv∈ , 
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All solutions v  with 0≠λ  thereby must lie in the span of Mxx ,...,1 . In KPCA, the dot 
product is computed in a high dimensional space induced by a nonlinear map, 
 

XxFR N a,: →Φ  (3.4) 
 
The dimensionality of the feature space F can be infinite. Assume that the data are 
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Thereby, we need to find out the eigenvalues λ  and eigenvectors }0{/ −∈ FV  satisfying, 
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VCV =λ  (3.6) 
 
Similar to Eq. 3.3, all solutions V  with 0≠λ  must lie in the span of )(),...,( 1 Mxx ΦΦ ,  
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So, there are the coefficients iα  ( Mi ,...,1= ) satisfying, 
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For all Mk ,...,1= , define an MM ×  matrix K  by ( ))()( jiij xxK Φ⋅Φ= , the Eigen 
equation  in the projected space with respect to V  can be written as, 
 

α=αλ 2KKM , (3.9) 
 
where α  denotes the column vector with entries Mαα ,...,1 . To find solutions of Eq. (9), 
we can solve the eigen problem, 
 

α=λα KM , (3.10) 
 
Let Mλ≤≤λ≤λ ...21  denote the eigenvalues of K , Mαα ,...,1 the eigenvectors, with pλ  
being the first p  leading eigenvalues.  
 
In KPCA, we can compute the nonlinear projections onto the eigenvectors kV  in F 
( pk ,...,1= ). Let x  be a test point, with an image )(xΦ  in F, then  
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Ther are several popular kernel functions in use, e.g., the Gaussian RBF kernel and the 
polynomial kernel, where c  is the window width for the RBF kernel function, and the 
number of degree for the polynomial kernel. 
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To summarize, the steps of KPCA are as follows, note that linear PCA is a special case of 
KPCA when the kernel function is the inner product. 
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Algorithm 
 
Algorithm Kernel Principal Component Analysis 
Input: M training samples of N dimensions 
Output: M feature vectors of p dimensions 
Begin 

Compute the centralized kernel matrix K~  from the training samples.  
Diagonalize K~  to extract the principal components MVV ,...,1 . 
Project the samples onto the first p  components to get the p-dimensional feature 
vectors. 

End 
 
To centralize the kernel matrix, consider in the feature space F, given any Φ  and any set 
of observations Mxx ,...,1 , the points, 
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we go on to define the covariance matrix K~  , where 
 
Computational complexity 
 
Suppose we have M training samples of N dimensions and we are going to reduce them 
to p dimensions, the memory cost is ( )2MO  to maintain the kernel matrix. Solving the 
associated equation will take ( )pMO 2  time using numerical methods such as SVD or 
Lanczos’ method. 
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Thus K~  can be computed directly from K to solve the eigenproblem. For feature 
extraction, we compute projections of centered Φ  images of test patterns t  
onto the eigenvectors of the covariance matrix of the centered points, 
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Consider a set of test points Ltt ,...,1 , and define two ML×  matrices by 
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where '1M  is the ML×  matrix with all entries equal to M/1 . 
 

3.1.2 Applications 
 
As KPCA finds the directions that maximize the variance of data, it can help to remove 
the noises from data. We will use first the handwritten digit dataset to demonstrate its 
effectiveness for denoise. PCA can also be utilized for pattern recognition. It reduces the 
dimensionality of the input signals while retaining their low-dimnesional features for 
classification. 
 
Denoise 
 
KPCA is successful when applied to denoise the handwritten digit dataset compared with 
linear PCA. To do so, the first step is to construct the principal components and the 
nonlinear projections. The images with noises can then be projected onto the components 
to get the coefficients of KPCA. Then we select only those leading components, 
discarding those minor ones to reconstruct the image. The reconstruction procedure is 
based on the least square method to minimize the information loss between the original 
and the reconstructed images. 
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Figure 3. 1 De-Noising of USPS data. The left half: top: the first occurrence of each digit in the 
test set, second row: the upper digit with additive Gaussian noise, following five rows: the 
reconstruction for linear PCA using n = 1, 4, 16, 64, 256 components, and, last five rows: the 
results of KPCA using the same number of components. The righft half shows the same but for 
‘speckle’ noise. (Taken from [3.1]) 
 
By using the nonlinear kernels, KPCA achieves better results of reconstruction than 
linear PCA with the same number of components. 
 
Handwritten digit recognition 
 
In addition, KPCA is also widely used for handwritten digit recognition. By reducing the 
dimensionality of the data, it becomes computationally more efficient to retrieve the 
matched patterns for recognition. Similar to denoise, in the first step, KPCA projections 
will be constructed by computing the principal components. All the images are then 
projected into a lower dimensional space for retrieval. Given an input pattern for testing, 
it is mapped to the feature space where kNN can match its closest neighbors for 
classification. When the linear kernels are adopted, the components computed from the 
handwritten dataset can be viewed as images, as shown in Figure 3.2. 
 

 
Figure 3. 2 First 10 components computed from the UCI handwritten digit dataset (Taken from 
[3.2]) 

 
Figure 3. 3 Two dimensional PCA visualization of the training data after projection onto the first 
2 components (Taken from [3.3]) 
 
Since KPCA is unsupervised, the class information of the data is not fully utilized for 
training. As illustrated in Figure 3.3., there are overlaps among the digits 1-10, and this 
will cause prediction errors. To summarize, KPCA is better for data compression and 
denoise processing but not necessarily suitable for classification. 
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3.2 LDA and KFDA with applications to face and handwritten digit 
databases 
 
LDA and its kernel extension KFDA are supervised methods for dimensionality 
reduction. Different from Kernel PCA, they use the class information to train the models, 
so that the ratio of the between-class scatter to the within-class scatter can be maximized 
to reduce the Bayesian error of classification. 

3.2.1 Method 
 
Let },...,{ 11

11 1l
xxX =  and },...,{ 22

12 2l
xxX =  be samples from two different classes. Fisher’s 

linear discriminant (LDA) is given by the vector w  which maximizes the fisher’s 
criterion 
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are the between and within class scatter matrices respectively and im  is defined by 
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1 . Intuitively, maximizing )(wJ  is to find a direction which maximizes the 

distance among the projected class means while minimizing the data variance within each 
class. 
 
The Fisher’s criterion is actually a simplified version of the Baysian error assuming the 
conditional covariance is normal and equal. Even with these assumptions, it turns out that 
the simplified criterion is quite effective in real world applications. The fisher’s 
discriminant components w  can be obtained by solving the associated equation derived 
from (16), i.e., 

wwSS BW λ=⋅−1 , (3.19) 
 
But real world data can be complex and the linear discriminant method is inadequate to 
make good separations between classes. To address this deficiency, like what we have 
done on Kernel PCA, we can play the kernel tricks. In a similiar fashion, the data in the 
original space will be mapped to a high dimensional space by a nonlinear function. 
 
Let Φ  be a nonlinear mapping to the feature space F . To find the linear discriminant 
projection in F , we need to maximize 
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Now, we need to find a formulation for Eq. 3.20 so the dot products of the input patterns 
can be computed by using the kernel functions. Again, from the theory of reproducing 
kernels we know that any solution Fw∈  must lie in the span of all training samples in 
F . Thereby, we can have an expansion for w  in the form, 
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Using formula 3.23 and according to the definition of Φ
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b MMMMK ))(( 2121 −−= . Considering the denominator, by using (23) we 
arrive at  
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jl1  the matrix with all entries jl/1 . Combining 3.25 and 3.26 we can rewrite 

Fisher’s linear discriminant in F  by maximizing  
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Eq. 3.27 can be solved by finding the leading eigenvector of bw KK 1− . The projection of a 
test pattern t  onto w  is given by 
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(3.28) 

 
It should be noted that the matrix wK  can be singular when the number of the training 
samples is small, and normalization has to be carried out in order to make it invertible to 
get the solution. There are basically two strategies for this purpose. One is that we simply 
add a multiple of the identity matrix to wK , i.e., replace wK  by wK , where, 
 

                       μ+= ww KK . (3.29) 
 
μ  is a small positive number. 
 
The other approach is that we can perform KPCA first to remove the null space of wK , 
then LDA is carried out in the KPCA transformed space to reduce the dimensionality 
further. The null space of wK  yet can contain discriminative information and should not 
be simply discarded. Yang [3.4] et al has recently developed a method to combine the 
discriminant information derived from both the regular space (with non-zero eigenvalues) 
and the irregular space (null space) to help with classification.  
 
After we get the discriminant components, we can select those with the largest 
eigenvalues for feature extraction. To have p dimensional feature vectors we can choose 
p fisher components for projections. To summarize, the KFDA method takes the 
following steps. 
 
Algorithm 
 
Algorithm Kernel Fisher Discriminant Analysis 
Input: li (i = 1, 2) training samples of N dimensions from 2 classes 
Output: l  feature vectors of p dimensions 
Begin 

Compute the between class kernel matrix bK .  
Compute the within class kernel matrix wK . 
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Normalize the within class kernel matrix to get wK . 
Diagonalize bw KK 1−  to extract the discriminant components pww ,...,1 . 
Project the samples onto the first p  components to get the p-dimensional feature 
vectors. 

End 
 
Computational complexity 
 
The memory and time complexity of KFDA is at the same level as KPCA, i.e., )( 2LO  
and )( 2 pLO  respectively. The actual memory consumption of KFDA is twice of that of 
the KPCA as it has to maintain both the between and the within class kernel matrices, 
while KPCA needs only to keep the total scatter in memory. To solve the equation, a 
variety of the numerical methods such as SVD, QR and Lanczos’ method can be utilized. 
 

3.2.2 Applications 
 
KFDA have be used widely in pattern recognition and machine learning due to its 
mathematical simplicity and global optimality. It is well accustomed to several problems 
including face recognition and handwritten digit prediction. 
 
Face recognition 
 
When LDA is applied to human facial data, it is called Fisherfaces, which is an important 
method in Biometrics. Specifically, compared with the eigenfaces method based on linear 
PCA, LDA proves to be more robust to the variations of pose, facial expression, and 
particularly the illumination of the facial images. 
 

 

Figure 3. 4 Sample images from the Harvard Database with variations of illuminations (Taken from 
[3.5]) 
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Experiment results indicate that Eigenfaces and Fisherfaces both perform perfectly when 
lighting is nearly frontal, as shown in Figure 3.4, however, as lighting is moved off the 
axis, there is a significant difference between the performances of the two methods. The 
Fisherfaces method produces lower error rates than the Eigenfaces. 
 
Handwritten digit prediction 
 
Yang et al. [3.4] experimented on the Concordia University CENPARMI handwritten 
numeral database as shown in Figure 3.5 to compare KFDA with LDA. The input images 
include 256-dimensional Gabor transformation features. 100 samples are randomly 
chosen from each of the ten classes for training, while the remaining 500 samples are 
used for testing. They run the system 10 times for evaluation. Their results indicate that 
KFDA is significantly bettern than LDA in accuracy. 

 
KPCA and KFDA are two statistical methods for dimensionality reduction and feature 
extraction. KPCA is well suited for data compression, representation and denoising, 
while KFDA by virtue of class information can extract the features more suitable for 
classification. They have been successfully applied to solve the handwritten digit and the 
face recognition problems. The kernel extension of LDA, KFDA, can outperform 
significantly LDA. On human facial database, LDA turns out to be more robust than PCA 
in handling the illuminations. 
 
Recently, several nonparametric methods have been proposed for dimensionality 
reduction and feature extraction as new alternatives. They are the GA based ANN, the 
manifold learning, the locality based embedding, and the 2D image projections, based on 
which we developed our own methods. 
 
 
 

Figure 3. 5 Sample images from the CENPAMI handwritten digit database 
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Chapter 4. Recent advances: GA-based neural networks,   
Manifold Learning, locality based embedding, and 2D image 
projections  
 
In this chapter, we investigate 4 approaches recently developed for dimensionality 
reduction. Artificial Neural Networks can adapt the strength of its connections among the 
neurons to represent the high-dimensional inputs in a compact form, much like how the 
human brains work. The integration of the genetic algorithm with ANNs computationally 
mimics the evolution of our neural systems in struggling against the natural environment 
for survival and development. Manifold learning, locally linear embedding, and Isometric 
Mapping, has aroused considerable interests recently in the area of cognitive science and 
computation. It establishes a theoretical framework based on the concept of locality 
preserving. Extensions have been made by leveraging the local features of data to help 
solve the recognition problems. Moreover, the advances in image based projection allow 
us to reduce significantly the memory and the computational complexities of PCA and 
LDA. Based on these approaches, particularly manifold learning and image based 
projection we develop a new method 2D Laplacianfaces in Chapter 5. 

4.1 Construction of neural networks: an evolutionary approach 
 
The human brains are the highly optimized machinnaries of evolution. They control the 
central nervous system (CNS), by way of the cranial nerves and spinal cord, the 
peripheral nervous system (PNS). They regulate virtually all human activities ranging 
from the lower unconscious actions such as heart rate, respiration, and digestion and 
higher civilized mental activities such as thought, reason, and abstraction.  
 
Physically, the human brains work through the collaborations of the neurons firing in 
concert for actions. Recent functional magnetic resonance imaging (fMRI) technology 
has shown us how the neural systems operate and correlate with each other for functions 
in spatial time, as illustrated in Figure 4.1. Evidences indicate that the approximately 100 
billion neurons in human brain are partitioned into the functional groups and these 
regional functional components are not independent from each other. Figure 4.2 
illustrates the active areas of human cerebral when a blind subject read Braille characters. 
It is intriguing that the vision domain is also highly active for blind subjects in addition to 
the language sections. This implies that the human cognition process is highly complex 
and involves multiple functional groups to co-work in human behavior.  
 
Due to this complexity it is still a long way from the full understanding of the brain 
model by computational means. But plausible efforts have been made by computer 
scientists and neurologists to establish the simplified models of human brains in-silico. 
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Researchers have developed the Artificial Neural Networks (ANNs) which can learn the 
connection weights among the neurons to represent our daily experiences and knowledge. 
Though still quite primitive at the present stage ANNs can solve the problems such as 
image compression and object recognition effectively. It is important to understand how 
neural networks evolve and diversify in nature. It is already known that the genetic 
factors, such as DNA mutaions, must have played an important role in upgrading our 

 
 
Figure 4. 1 3D FMRI image of neural activities in human brain (Taken from [4.1]) 

 

Figure 4. 2 FMRI image of blind subjects reading Braille characters (Taken from [4.2]) 
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neural abilities over the other species for civilization. Figure 4.3 illustrates how the brain 
capacity of Homo Sapiens and its ancestors changes gradually under the force of natural 
selection in 4 millions of years. The genetic changes contribute a lot to the more 
advanced human brains and the intelligence. 
 

 
Figure 4. 3 Evolution of brain capacity (Taken from [4.3]) 
 
It is thus intriguing to combine the state-of-the-art evolutionary computation, e.g., genetic 
algorithm, with the ANNs to help understand how the neural networks can advance to the 
current stage in natural evolution.  

4.1.1 Neural networks for compression and object recognition 
 
The Neural networks consist of a huge number of neurons that are connected with each 
other for perception, memory, reasoning and other human activites, as illustrated in Fig 
4.4 (a) and (b) the basic structures of the neural nets. For vision problems, it is believed 
that vision nerve cells can process the visual stimuli in 2 modes. In the passive mode, the 
neurons sense the input signal and decompose it into subbands, like taking a Gabor 
transform [4.4]. The response coefficients encoding the frequency and the orientation are 
transmitted to the cerebral for memory and further processing. In the active mode, we 
need to tell the difference between 2 similar objects. The cerebral actively instructs the 
nerves to focus and extract the discriminant features for memory and better accuracy of 
recognition. 
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Figure 4. 4 Image of neurons (a) a single neuron (b) inter-connected neurons (Taken from [4.5]) 

 

 
Figure 4. 5 Artificial neural network with input, hidden and output layers (Taken from [4.6]) 
 
Figure 4.5 depicts the structure of a typical artifical neural. The input can be the Gabor 
filtered features or the raw input images, the outputs are usually the class labels for 
classification or the attribute values to be predicted. The first layer in the network takes 
the input. The hidden layer contains the computing units and forwards the result to the 
third layer, the output layer. The connections among the neurons are trained to reduce the 
error between the actual and the expected outputs. There are a variety of training 
algorithms for training neural networks. Two popular ANN models are the Back 
Propagation and the Radial Basis Function nets, which utilize the gradient descent rule, 
as shown Eq. 4.1, to learn the weights of connections. 
 

                   ijijij www Δ+←  

                   
ij

ij w
Ew

∂
∂

μ−=Δ . 

 
(4.1) 

 
where ijw  is the weight between the i-th and the j-th neuron, μ  is the step length, E  is 
the error function.  

 
(a) 

 
(b) 
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ANNs have been successfully applied to solve real world problems. In handwritten digit 
recognition, custom designed multilayer ANNs by human experts can work effectively 
and outperforms Support Vector Machines [4.7] in accuracy. Also, it can be applied to 
face recognition. RBF neural networks [4.8] can be trained very fast to reduce the 
dimensionality of data for recognition. 

4.1.2 Training neural networks by evolutionary computation 
 
Genetic algorithm [4.9] basically involves 4 opertors: selection, crossover, mutation, and 
reproduction. It is established based on the law of ‘survival the fittest’. During the 
millions years of evolution, the neural systems of the species diversified to the 
environmental changes for survival and development. This adaptation is stimulated under 
the force of both the genetic variations and the natural selections, where the nerual 
system is highly optimized to achieve the fitness of better life. A computational model 
can be much helpful to highlight this process by applying the genetic algorithm to the 
construction of the ANNs. 
 
Pal et al. [4.10] presented an evolutionary design of neural networks and demonstrate its 
effectiveness for classification tasks. The fundamental idea is to encode the connection 
weights of the network as the chromosomes for selection, crossover, mutation and 
reproduction. The fitness values of the chromosomes are calculated based on the 
accuracy performance of classification. 
 
Chromosome representation 
 
The connection weights of the neural network are encoded into a binary string of 16 bit 
length, where ]0...000[  decodes to -128 and ]1...111[  decodes to 128. The chromosome is 
formed by concatenating all the strings. A population of 64 chromosomes was initialized. 
 
Crossover 
 
Because the length of the chromosome is large, single point crossover is not effective. 
Multiple point crossover is adopted, where the distance between two crossover points is a 
random variable between 8 and 24 bits and the crossover probability is fixed at 0.7. 
 
Mutation 
 
The mutation rate is allocated according to the fitness value. For the chromosomes 
already good enough the mutation probability is set as low as 0.01, and for those of low 
fitness value it is as high as 0.4, where 1 is switch to 0 and vice versa. 
 
Choice of fitness function 
 
The fitness of the chromosome is calculated based on the accuracy of classification f , 
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After a number of iterations, the training procedure of the network is terminated with the 
accuracy of classification being above a specified threshold. It is generally accepted that 
GA based ANN is better than those trained with the gradient methods only if the size of 
the problem is very large. In other words, it can converge faster and be more optimized 
when the number of the neurons in the network is large. For problem involving only a 
small number of neurons it is better to use the gradient based method to converge faster 
and generate more optimized results.  
 

4.2 Isometric mapping 
 
Human brains can extract from its high-dimensional sensory inputs-30,000 auditory 
nerve fibers or 106 optic nerve fibers-a manageably small number of perceptually relevant 
features. Manifolding learning seeks to discover the nonlinear degrees of freedom that 
underlie complex natural observations, such as human handwriting or images of a face 
under different viewing conditions. In the following sections, we investigate 3 manifold 
learning methods, Isometric Mapping (Isomap), Locality based Linear Embeddings 
(LLE), Laplacian Eigenmap (LE). 
 
A manifold is a topological space which is locally Euclidean. Generally, any object 
which is nearly ‘flat’ on small scales is a manifold, Figure 4.6 shows an example. 

Figure 4. 6 A manifold surface in 3-dimensional space (Taken from [4.11]) 
 
The problem of manifold learning is defined as follows: 
 
Let dRY ⊂  be a low dimensional manifold, DRYf →:  is a continuous mapping, where 

dD > . The dataset }{ iy  is randomly generated, and )}({ ii yfx = . The problem of 
manifold learning is to reconstruct }{ iy , when }{ ix  is given. 
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Isomap is in fact a natural extension of the classic Mutli-dimensional scaling (MDS) 
algorithm, which is a general technique for display D-dimensional data in 2 dimensional 
space. It is simple to implement, efficiently computable, and guarantee to discover the 
true structure of data lying on or near a linear subspace of the high dimensional input 
space. Classical MDS finds an embedding that preserves the interpoint distances, 
equivalent to PCA when those distances are Euclidean. However, in real world 
applications many data sets contain essential nonlinear structures that are invisible to 
MDS or PCA, as shown in Figure 4.7 the challenge of nonlinearity with data on a 2-
dimensional ‘Swiss roll’. The Isomap method has to be proposed to address this 
deficiency. 

 
Figure 4. 7 Swiss roll (Taken from [4.12]) 
 
The key idea of Isomap is the utilization of the geodesic manifold distance instead of the 
Euclidean metric to reflect the true low dimensional geometry of the manifold. For 
neighboring points, input space distance provides a good approximation to geodesic 
distance. For faraway points, geodesic distance derived from the shortest path can be 
approximated by adding up a sequence of ‘short hops’ between neighboring points.  A 
distance matrix based on the computation of the geodesic distances is then constructed 
based on which the classical MDS is carried out. The complete isometric feature mapping 
has three steps as summarized below. 
 
Algorithm 
 
Algorithm Isometric Mapping 
Input: l training samples of N dimensions 
Output: l feature vectors of d dimensions 
Begin 

Define the graph G over all data points by connecting points i and j if they are 
mutually the closest neighbors. 
 
For any two nodes on G, x  and y , compute the shortest path between them, the 
distance ),( yxd  is the length of the path. Construct the distance matrix )(Gτ  
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Let pλ  be the p-th eigenvalue (in decreasing order) of the matrix )(Gτ , and i
pv  be the 

i-th component of the p-th eigenvector. Then set the p-th component of the d-
dimensional coordinate vector equal to i

pp vλ . 
End 
 
By utilizing the geodesic distance the nonlinear structure of the data on the manifold can 
be preserved after projection. In Figure 4.8 (a) and (b), the swiss roll data cannot be 
unfolded with the traditional linear method such as PCA and LDA. This problem can be 
solved by using the Isomap method. The result after projecting the Swill roll data onto a 2 
dimensional space is shown in Figure 4.8 (c). 

 
Figure 4. 8 Swiss roll unfolded using Isomap. Red path: approximation of the shortest path to 
compute the geodesic distance, Blue path: the shortest path on the manifold (Taken from [4.13]) 
 

4.3 Locally linear embedding 
 
Another important method for unsupervised nonlinear dimensionality reduction on 
manifold is locally linear embedding (LLE). The fundamental idea of LLE is to compute 
a neighborhood-preserving embeddings that is globally optimal. By exploiting the local 
symmetries of linear reconstructions, LLE is able to learn the global structure of 
nonlinear manifold, such as those generated by images of faces or documents of text. 
Different from Isomap as presented in Section 4.2 LLE recovers the global nonlinear 
structure from locally linear fits, eliminating the need to estimate the pairwise distances 
between widely separated data points. LLE is based on simple geometric intuitions. 
Suppose the data consist of N real valued vectors iX , each of dimensionality D, sampled 
from some underlying manifold. Provided there is sufficient data, and each data point and 
its neighbors lie on or close to a locally linear patch of the manifold. The local geometry 
of these patches can be characterized by linear coefficients that reconstruct each data 
point from its neighbors. Reconstruction errors are measured by the cost function, 
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(4.3) 
 
which adds up the squared distanes between all the data points and their reconstructions. 
The weights ijW  summarize the contribution of the j-th data point to the i-th 
reconstruction. The weights ijW  can be computed by minimizing the cost function 
subjecto to two constraints: first, that each data point iX  is reconstructed only from its 
neighbors, enforcing 0=ijW  if jX  does not blong to the set of neighbors of iX ; second 

that the rows of the weight matrix sum to one: ∑ =
j

ijW 1 . The optimal weights ijW  

subject to these constraints are found by solving a least-squares problem. The constrained 
weights that minimize these reconstruction errors for a data point are invariant to 
rotations, rescalings, and translations of that data point and its neighbors. LLE can 
construct a neighborhood-preserving mapping to reduce the dimensionality of data. After 
we get the weights ijW  which reflect the intrinsic geometric properties of the data, we can 
use them to seek the optimal LLE transform. In the final step of the algorithm, each high-
dimensional observation iX  is mapped to a low-dimensional vector iY  representing 
global internal coordinates on the manifold. This is done by choosing d-dimensional 
coordinates iY  to minimize the embedding cost function, 

2

)( ∑ ∑−=Φ
i j

jiji YWYY . 
 

(4.4) 

 
The cost function is based on locally linear reconstruction errors, but here what to be 
optimized is no the weights ijW  but the coordinates iY . Eq. 4.4 defines a quadratic form 
in the vectors iY , which can be minimized by solving a sparse NN ×  eigenvalue 
problem, whose bottom d nonzero eigenvectors provide an ordered set of orthogonal 
coordinates centered on the origin. Implementation of the algorithm is straightforward. 
The data points were reconstructed from their K nearest neighbors, as measured by 
Euclidean distance or normalized dot products. Once neighbors are chosen the optimal 
weights ijW  and coordinates iY  are computed by standard methods in linear algebra. The 
LLE and the Isomap methods share a common feature in that both of them characterize 
the global geometry of data by examining the local patterns of the manifolds. One 
advantage of LLE over Isomap is that it avoids the needs to find the shortest path to 
compute the geodesic distance. So for sparse data where the distance derived from the 
shortest path can be highly biased LLE tends to be more effective. Figure 4.9 illustrates 
the idea of ‘locality persevering’ in LLE. 
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Figure 4. 9 Data points are constructed from their closest neighbors on the manifold (Taken from 
[4.12]) 
 
The Swiss roll can be unfolded successfully with LLE, as shown in Figure 4.10 

 
Figure 4. 10 Swiss roll unfolded with LLE (Taken from [4.12]) 
 
Algorithm 
 
Algorithm Locally linear embedding 
Input: l training samples of N dimensions 
Output: l feature vectors of d dimensions 
Begin 
Identify the K closest neighbors for each point in the training set. 

Optimize to compute the weights W  in the error function ∑ ∑−=ε
i j

jiji XWXW
2

)( . 

Fix the weight W , compute the first d coordinates Y  by minimizing the reconstruction 

error.
2

)( ∑ ∑−=Φ
i j

jiji YWYY  
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End 
 
On facial data, LLE method can identify the two dimensions, facial expression and pose, 
to characterize the distribution of the images, as illustrated in Figure 4.11. 
 

 

 

4.4 Laplacian Eigenmap 
 
Laplacian Eigenmap (LE) is another approach based on the idea of locality preserving for 
dimensionality reduction and feature extraction. Similar but different from LLE, it 
doesn’t seek to preserve the exact local geometry of data. Instead, the optimizing 
criterion is set to maintain the ‘closeness’ of the samples to their neighbors. 
 
The core algorithm is as straightforward as LLE, involving a few local computations and 
one sparse eigenvalue problem. The solution reflects the intrinsic geometric structure of 
the manifold since the embedding maps for the data come from approximations to a 
natural map that is defined on the entire dataset. Moreover, the locality preserving 
character of the LE algorithm makes it relatively insensitive to outliers and noise. Also, 
the algorithm implicitly emphasizes the natural clusters in the data. Such clustering 
structure can be biologically plausible in serving as the basis for the development of 
categories in perception. 
 
Given k points kxx ,...,1  in lR , a weighted graph with k nodes, one for each point, is 
constructed. A set of edges connect the neighboring points to each other. 
 
Algorithm Laplacian Eigenmap 
Input: l training samples of N dimensions 
Output: l feature vectors of d dimensions 
Begin 
 
For i, j = 1,…,l 

   Figure 4. 11 LLE representation of facial images in 2D expression-pose space (Taken from [4.12]) 
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     If ix  and jx  are mutually the closest neighbors 
          Connect ix  to jx  with an edge; 
     Endif 
Endfor 
 
For i, j = 1,…,l 
     If ix  and jx  are connected 
              The weight Wij of edge connecting ix  and jx  is 1; 
          Else 
               Wij = 0. 
     Endif 
Endfor 
 
Compute eigenvalues and eigenvectors for the generalized eigenvector problem: 

DyLy λ= , where D is diagonal weight matrix, its entries are column sums of W, 

∑=
j

jiii WD , WDL −=  is called the Laplacian matrix which is symmetric, and positive 

semidefinite.  
 
Let dYY ,...,0  be the solutions of equation, ordered according to their eigenvalues with 0y  
having the smallest eigenvalue. The low dimensional representation of a given input iX  
is thus ),...,( 1 idi YY . 
End 
 
Consider the problem of mapping the weighted connected graph G to a line so that 
connected points stay as close together as possible. The objective is to choose Ryi ∈  to 
minimize 

∑ −
ji

ijji Wyy
,

2)(  (4.5) 

 
with appropriate constraints. Let T

lyyY ),...,( 1=  be the map from the graph to the real 
line. First, note that for any Y , we have 
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where WDL −= . Note that ijW  is symmetric and ∑=

j
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Also, a constraint 1=DYY T  is added to remove an arbitrary scaling factor in the 
embedding. Figure 4.12 shows the result of LE embedding of the handwritten digits. 
Compare with PCA we can see clearly that the global geometry of the dataset is better 
preserved, and the overlapping among the digit features is reduced. This can help with the 
classifications to reduce the prediction errors. 

 
Figure 4. 12 Two dimensional LE visualization of the training data after projection onto the first 
2 components (Taken from [4.14]) 
 
In summary, deriving the global structure of the dataset from the local patterns of data 
distribution is a brilliant idea in embedding. By doing so we can unfold the manifold to 
transform the data to a space where they are linearly separable. 
 
Another important technique for embedding is called image based projection which can 
be used to improve significantly the computational efficiency for dimensionality 
reduction and feature extraction. Accordingly, two algorithms by leveraging this 
technique, i.e., two dimensional eigenfaces and fisherfaces, have been developed and 
tested on the facial image databases. 
 

4.5 Image based projection: Two dimensional PCA  
 
The image based projection is proposed by Yang [4.15] et al. It can be applied to reduce 
significantly the storage and the computation complexities. By using this technique, the 
recognition accuracy can also be improved on the facial image database. 

4.5.1 Idea and algorithm 
 
Let X  denote an n-dimensional unitary column vector. Our idea is to project image A, an 

nm×  random matrix, onto X  by the following linear transformation:  
 

AXY =  (4.8) 
 
Thus, we have an m-dimensional projected vector Y , which is called the projected 
feature vector of image A. To determine a good projection vector X, the total scatter of 
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the projected samples can be introduced to measure the discriminatory power of the 
projection vector X. The total scatter of the projected samples can be characterized by the 
trace of the covariance matrix of the projected feature vectors. From this point of view, 
the following criterion is adopted:  

             )()( xStrXJ =  (4.9) 
 
where Sx denotes the covariance matrix of the projected feature vectors of the training 
samples and )( xStr  denotes the trace of Sx. The physical significance of maximizing the 
criterion in formula 4.9 is to find a projection direction X, onto which all samples are 
projected, so that the total scatter of the resulting projected samples is maximized. The 
covariance matrix Sx can be denoted by 
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So, 
        [ ]XEAAEAAEXStr TT

x )()()( −−=  (4.11) 
 
Let us define the following matrix 
 

             [ ])()( EAAEAAEG T
t −−=  (4.12) 

 
The matrix Gt is called the image covariance (scatter) matrix. It is easy to verify that Gt is 
an nn×  nonnegative definite matrix from its definition. Gt can be evaluated directly 
using the training image samples. Suppose that there are M training image samples in 
total, the j-th training image is denoted by an nm×  matrix ),...,1( MjAj = , and the 

average image of all training samples is denoted by A . Then, Gt can be evaluated by 
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Alternatively, the criterion in (2) can be expressed by 
 

                       XGXXJ t
T=)(  (4.14) 

 
where X is a unitary column vector. This criterion is called the generalized total scatter 
criterion. The unitary vector X that maximizes the criterion is called the optimal 
projection axis. Intuitively, this means that the total scatter of the projected samples is 
maximized after the projection of an image matrix onto X. The optimal projection axis 
Xopt is the unitary vector that maximizes J(X), i.e., the eigenvector of Gt corresponding to 
the largest eigenvalue. In general, it is not enough to have only one optimal projection 
axis. A set of projection axes, dXX ,...,1 , can be selected subjected to the orthonormal 
constraints and maximizing the criterion )(XJ , that is, 
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In fact, the optimal projection axes, dXX ,...,1 , are the orthonormal eigenvectors of Gt 
corresponding to the first d largest eigenvalues. 

4.5.2 Feature extraction 
 
The optimal projection vectors of 2DPCA, dXX ,...,1 , are used for feature extraction. For 
a given image sample A, let 

                    ,kk AXY =  .,...,2,1 dk =  (4.16) 
 
Then, a family of projected feature vectors, dYY ,...,1 , which are called the principal 
component (vectors) of the sample image A can be obtained. It should be noted that each 
principal component of 2DPCA is a vector, whereas the principal component of PCA is a 
scalar. The principal component vectors obtained are used to form an dm×  
matrix, [ ]dYYB ,...,1= , which is called the feature matrix or feature image of the image 
sample A. After a transformation by 2DPCA, a feature matrix is obtained for each image. 
Then, a nearest neighbor classifier is used for classification. Here, the distance between 
two arbitrary feature matrices, [ ]i

d
i

i YYB ,...,)(
1=  and [ ]j

d
j

j YYB ,...,)(
1= , is defined by 

 

                  ∑
=

−=
d

k

j
k

i
kji YYBBd

1
2

)()(),(  
 

(4.17) 

 
where denotes the Euclidean distance between the two principal component vectors i

kY  
and j

kY . Suppose that the training samples are MBBB ,...,, 21  (where M is the total number 
of training samples), and that each of these samples is assigned a given identity (class) 

kω . Given a test sample B, if ),(min),( jjl BBdBBd =  and klB ω∈  then the resulting 

decision is .kB ω∈  By virture of the image based projection, the recognition rate has 
been improved significantly while the computational cost is reduced, as shown in Table 
4.1 and 4.2. The dimension and the number of components used are also listed. 
 
Table 4. 1 Recognition rate: 2DPCA compared with PCA 

# Training samples/class 1 2 3 4 5 
PCA (Eigenfaces) 66.9(39) 84.7(79) 88.2(95) 90.8(60) 93.5(37) 

2DPCA 76.7(112,2) 89.1(112,2) 91.8(112,6) 95.0(112,5) 96.0(112,3) 
 
Table 4. 2 Computational efficiency: 2DPCA compared with PCA 

# Training samples/class 1 2 3 4 5 
PCA (Eigenfaces) 44.45 89.00 139.36 198.95 304.61 

2DPCA 10.76 11.23 12.59 13.40 14.03 
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Chapter 5. Two dimensional Laplacianfaces,   Unsupervised 
Discriminant Projection and Mutual neighborhood based 
discriminant projections 
 
Based on the methods discussed in Chapter 4, we proposed three methods: two 
dimensional Laplacianfaces, unsupervised discriminant projection (UDP), and mutual 
neighborhood based projection (MNDP), by using the ideas of locality preserving and 
image based projection. 2D laplacianfaces is not only computatinally more efficient but 
also more accurate than the other methods in comparision. Also, the other two methods, 
UDP and MNDP based on the concept of locality can outperform the PCA and LDA on 
the facial and the palmprint databases. 
 

5.1 Two dimensional Laplacianfaces 
 
Recently, the Laplacianfaces method is developed and tested for face recognition [5.1]. It 
is a generalization of the locally linear embedding (LLE) [5.2] algorithm, which handle 
effectively the nonlinearity of the image space for dimensionality reduction. The main 
idea of the Laplacianfaces is to find a low dimensional representation of the data that can 
maximally preserve their locality, the pattern of distribution of the data around the local 
neighborhoods. Different from the Eigenfaces and the Fisherfaces, which search for the 
optimal projections by analyzing the global patterns of the data density, the 
Laplacianfaces method seeks the projection that can best preserve the local geometry of 
the training samples. The features learned maintain the locality of the training data, 
making it robust to the outlier samples for training and suitable for classification with the 
kNN method. The Laplacianfaces can outperform significantly the popular Eigenfaces 
and Fisherfaces methods on the Yale, the MSRA and the PIE face databases [5.1]. Yet, 
all of these methods are computationally inefficient due to the size of the matrix to be 
handled in the associated eigen equations.  
 
To address the deficiency, Liu et al. [5.3] and Yang et al. [5.4] developed the two 
dimensional Eigenfaces, whereas Yang et al. [5.5], [5.6], Xiong et al. [5.7], and Jing et al. 
[5.8] developed the two dimensional Fisherfaces methods. Both of these methods 
dramatically reduced the complexity of the algorithms from )( 22 nmO ×  to )( 2mO , or 

)( 2nO . These methods also reduce the size of the matrices in the eigen equations, 
allowing them to be more accurately evaluated. The two dimensional Eigenfaces and the 
Fisherfaces methods prove to be effective, but it is still unclear whether image based 
projection can also be applied to improve the performance of Laplacianfaces. We develop 
the two dimensional Laplacianfaces method to answer the question. The result of 
extensive experiments on a variety of the benchmark databases shows that this method 
can outperform the one-dimensional Laplacianfaces, the two dimensional Eigenfaces and 
Fisherfaces methods respectively. We first provide a detailed description on the proposed 
2D Laplacianfaces algorithm, then show how it differs from the standard Laplacianfaces 
method.  
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5.1.1 Idea and algorithm 
 
Let X  denote an n - dimensional unitary column vector. A  represents an image of m  
rows and n  columns. In the one dimensional Laplacianfaces method, the sample image, 
A , has to be transformed to form a vector of nm×  dimensions prior to training. Instead, 
in the new algorithm, the two dimensional Laplacianfaces method, we project the image 
matrix directly onto the vector X   

                       AXY = . (5.1) 

The obtained m - dimensional vector Y is called the projection feature vector, which is 
the horizontal projection of the image A . Given a set of training images 

},,,,,,{ 1 Nji AAAAT KKK=  the objective function of the two dimensional 
Laplacianfaces method is defined as 

                          ij
ij

jiX
SYYMin

2
∑ −  (5.2) 

where iY  is the projection feature vector corresponding to the image iA , ⋅  is the 2L  
norm and ijS  is the similarity between the image iA  and jA  in the observation space and 
is defined as 
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where k  is the size of the local neighborhood, and t  is the window width determining the 
rate of decay of the similarity function. As shown in Eq. 5.2, the objective function 
imposes a heavy penalty if two arbitrary neighboring samples iA  and jA  in the original 
space are mapped far apart. Minimizing this function ensures that if iA  and jA  are near 
each other, their projection feature vectors iY  and jY  are close to each other as well. 
Therefore, the locality of the sample space can be maximally preserved when the original 
data are transformed to the feature space through projections. By taking several algebraic 
steps, the two dimensional Laplacianfaces method is formulated to minimize the 
following objective function 
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where ],,[ 1

T
N

TT AAA K=  and T
NAAA ],,[ 1 K=  takes the mathematical operations as 

the N×1  and the 1×N  block matrix, whose row and column consists of the image 
matrix T

iA  and iA , Ni ...,,1= , respectively. D  is the NN ×  block diagonal matrix, 
whose diagonal element is iid , ∑=

j
ijii Sd , which is the sum of the similarity values of 

all the sample images to the i-th image in the original space. S  is the similarity matrix, 
and L  is called the Laplacian matrix. Both of these two matrices are of NN ×  
dimensions. The entry of the matrix D  indicates how important each point is. A 
constraint is imposed as follows 

      1=DAXAX TT . (5.5) 

Hence, the two dimensional Laplacianfaces method is formulated as 
 

       LAXAXMin TT

X
 

         s.t. 1=DAXAX TT . 

 

(5.6) 

In Eq. 5.5, the matrix D  provides a natural measure on the importance of the training 
samples. In the original data space, the outlier samples have fewer close neighbors than 
those in the regions of high density of distribution. Some distortion of the local geometry 
near around these outliers after transformation is unlikely to have the significant impact 
on the result of classification. Hence, they are less important than those samples that have 
more close neighbors in determining the optimal directions of projection. In Eq. 5.6, by 
using the constraint, we are able to not only remove the arbitrary scaling factor of the 
projection vectors, but also take into consideration the importance of each sample for 
optimization [5.1]. 
 
By applying the Lagrange multiplier method, we are able to reduce Eq. 5.6 to a 
generalized eigen problem, as shown in Eq. 5.7  
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DAXALAXA TT λ= , (5.7) 
 

where the matrices LAAT  and DAAT  are both of NN ×  dimensions, and L  and D  is 
symmetric and positive semidefinite. We can work out the optimal projection vector X  
by solving this equation. The eigenvectors associated with the first d  smallest 
eigenvalues will be utilized for feature extraction. 

5.1.2 Feature extraction 
 
Let us denote the optimal projection vectors as dXX ,...,1 . For a given input image A , let 

ii AXY = , di ,,1 L= . A set of the projection feature vectors, dYY ,,1 K  can then be 
obtained. Note that the features extracted in the two dimensional Laplacianfaces method 
are vectors, while in the original algorithm they are scalars. The projection vectors are 
used to form an dm ×  matrix ],,[ 1 dYYB K=  called the feature matrix of the sample 
image A . 

5.1.3 Classification  
 
After obtaining the feature matrix of all the training images, the one nearest neighbor 
classifier is then used for classification. The distance between any two feature matrices 

],,[ 1 idii YYB K=  and ],,[ 1 jdjj YYB K=  is defined by 
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Suppose that the feature matrices are NBB ,,1 K  and each of these samples is assigned a 
class label C. Given an input testing image B, if ),(min),( jl BBdBBd =  and lB  belongs 
to class C, then B  is classified as belonging to C. 
 

5.1.4 Experimental results 
 
In this section, we experimentally evaluate the proposed two dimensional Laplacianfaces 
method on two well known face databases, FERET and AR. The FERET database is 
employed to test the performance of the face recognition algorithms when various 
numbers of samples are selected for training, while the AR database is used to assess its 
performance when the face images are taken with the variations of illuminations, facial 
expressions, and time sessions. The experiments are performed on a Pentium 4 2.6GHz 
PC with 512MB RAM memory under Matlab 7.1 platform. 
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Results on FERET database 

The FERET face image database is a result of the FERET program that is sponsored by 
the US Department of Defense, through the Defense Advanced Research Products 
Agency (DARPA) [5.9]. In our evaluation, we choose a subset of the database that 
contains 1400 images collected from 200 individuals for examination. Specifically, seven 
facial images are captured for each subject with varying facial expressions, poses, and 
illumination conditions. In the preprocessing stage, the images are histogram equalized, 
manually cropped, and resized from the size of 8080×  to 4040× , to further reduce the 
computation and the memory costs of experiments. We perform six tests with various 
numbers of samples for training. Hence, in the k -th test, we select the first k  images of 
each individual for training, and use the others for testing purpose. For Fisherfaces we 
add a regulatory term to avoid the singularity, so it is in fact the regularized Fisherfaces 
in our implemenations. The top recognition rates achieved in the six tests and the 
numbers of the projection vectors used for classification are presented in Table 5.1. 
 
Table 5. 1 Top recognition rate (%) and number of components used 

Number of training samples of each class  
Method 1 2 3 4 5 6 

Eigenfaces 69.5 
(64) 

73.6 
(77) 

81.8 
(78) 

87.7 
(55) 

90.8 
(48) 

90.8 
(72) 

Regularized Fisherfaces _ 75.3 
(40) 

83.6 
(44) 

89.3 
(39) 

92.2 
(55) 

92.7 
(70) 

Laplacianfaces 72.3 
(66) 

76.1 
(45) 

84.9 
(50) 

89.5 
(42) 

92.9 
(60) 

93.2 
(60) 

2D Eigenfaces 71.8 
(2) 

75.7 
(2) 

83.7 
(3) 

88.2 
(4) 

90.8 
(3) 

91.2 
(3) 

2D Fisherfaces _ 77.5 
(3) 

84.5 
(2) 

90.6 
(4) 

92.4 
(3) 

92.6 
(2) 

2D Laplacianfaces 73.2 
(2) 

78.1 
(3) 

85.2 
(3) 

91.1 
(2) 

93.1 
(2) 

93.4 
(2) 

 
It can be observed that when we choose only one sample from each class for training, the 
recognition rates of all the six methods are about 70% on average. Of all the methods, the 
proposed 2D Laplacianfaces is consistently better than the rest. Also, we note that the 
Fisherfaces (1D and 2D) fail to construct the within-class scatter matrix for feature 
extraction, as there is only one sample in each class available for training. When we 
increase the number of training samples from 1 to 6, the recognition rate gets improved. 
When we choose six samples for training and leave one sample for testing, the 
recognition rate reaches to its maximum of over 90% averagely. In all the six tests, the 
proposed 2D Laplacianfaces outperforms the 2D Eigenfaces and the 2D Fisherfaces, 
significantly and consistently. On the other hand, we also note that all the 2D methods 
show better performance than the 1D methods in terms of accuracy, which is consistent 
with the results obtained in [5.4-5.8]. In Figure 5.1, we show the average recognition 
rates of the first 40 projection vectors used for classification. For each dimension, the 
curve depicts the mean average of the recognition rates achieved using the various 
numbers of samples for training. 
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Figure 5. 1 Average recognition rate with varying dimension of projection vectors 
 
In Figure5.1, the 2D Laplacianfaces is consistently more accurate than the 2D Fisherfaces 
and the 2D Eigenfaces methods. The 1D Laplacianfaces also outperforms the 1D 
Fisherfaces and the 1D Laplacianfaces. Here, we may note that for the 2D methods, an 
optimal number of projection vectors have to be carefully chosen in order to achieve the 
best result of classification. After testing on the first several eigenvectors, we can hardly 
improve the recognition rate by simply recruiting more projection vectors for 
classification. The reason why there is such performance loss is that for 2D methods, the 
selected leading eigenvectors (with the largest eigen values for 2D Eigenfaces and 2D 
Fisherfaces, and the smallest eigen values for 2D Laplacianfaces) are quite effective in 
explaining most of the discriminative information of the training data, yet, the remaining 
suboptimal eigenvectors are far less informative and incapable of providing further useful 
information for classification. The employment of these vectors can only bring up more 
noises that reduce the signal-to-noise ratio, which leads to the slight decreases of the 
recognition rates. In Table 5.2, we compare the computational and the memory space 
complexities of the six methods. Here, m  and n  is the number of the rows and the 
columns of the image matrix. L , M , and N  is the number of the projection vectors, the 
testing and the training samples, respectively. 
 
Table 5. 2 Time and memory complexities 

    Complexity  
Method Time (training) Time (testing) Memory 

Eigenfaces/Fisherfaces )Lnm(O 22
 )MNL(O  )nm(O 22

 
Laplacianfaces )mnNLnm(O 222 +  )MNL(O  )nm(O 22

 
2D Eigenfaces/2D Fisherfaces )Ln(O 2

 )mMNL(O  )n(O 2
 

2D Laplacianfaces  )mnNLn(O 22 +  )mMNL(O  )n(O 2
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In Table 5.2, for the Eigenfaces and the Fisherfaces (1D and 2D), since we need to 
perform )(MNO  tests when using the nearest neighbor rule for classification and for 
each test it has the time complexity of )(LO  and )(mLO , the testing time is )(MNLO  
and )(mMNLO  for the 1D and the 2D method, respectively. The memory cost is 
determined by the size of the matrices of the associated eigen equations, which is 

)( 22 nmO  and )( 2nO  for the two types of methods. The training time complexity depends 
on both the size of the matrices in the eigen equations and the number of the projection 
vectors that are required to be computed. For Eigenfaces and Fisherfaces (1D and 2D), 
this is )( 22 LnmO  and )( 2LnO , respectively. For the Laplacianfaces method, an extra time 
cost to construct the similarity matrix, i.e., )( 2mnNO , will be taken into account. 
Specifically, for the 1D and the 2D Laplacianfaces, we present and compare in Table 5.3 
the CPU time for training and testing, and the size of the matrices of the eigen equations. 
 
Table 5. 3 Time and memory space used for training and testing 

Average time (sec.) and memory cost  
Method Time 

(training) 
Time 

(testing) 
Time 

(testing KDT) 
Time 

(Total) 
Size of 
matrix 

Laplacianfaces 977.22 4.86 0.14 977.36 16001600 ×  
2D Laplacianfaces 1.59 7.72 0.18 1.77 4040×  

 
In Table 5.3, while the one dimensional Laplacianfaces method takes averagely 977.22 
seconds for training, our proposed two dimensional Laplacianfaces uses only 1.59 
seconds. Moreover, the size of the matrix is reduced from 16001600×  to 4040× , which 
significantly improves the memory efficiency of the algorithm. We may also note that the 
testing time of the 2D Laplacianfaces is 7.72, slightly higher than that of the 1D 
Laplacianfaces, 4.86 seconds. To improve the testing efficiency of the algorithm, we can 
exploit the k-dimensional tree method (KDT) [5.12] to accelerate the searching process of 
the nearest neighbor classification. The KDT method is a popular decision tree algorithm. 
It can recursively partition the sample space into a number of the smaller subsets for 
efficient pattern indexing and query. Given some input pattern for matching, it 
transverses the tree structure while making simple test at each branching node to discard 
a large portion of the data, so as to speed up the searching process. The query time 
complexity of the KDT algorithm is at worst )(MNO  and at best )log( NMO , which is 
much lower than that of the simple kNN retrieval. In our experiment, by taking advantage 
of the KDT algorithm [5.10], the testing time of the two methods is reduced significantly 
from 4.86 to 0.14, and 7.72 to 0.18 (second), respectively, which makes 2D 
Laplacianfaces a practical choice for real world applications. 
 
Results on AR database 
 
The AR face database [5.11] consists of over 4,000 face images of 126 individuals taken 
in two time sessions under the variations of illuminations, facial expressions, and 
occlusion conditions. Each person has 26 images. In our experiment we consider using a 
subset of 14 images of each person for training and testing. Figure 5.2 shows the selected 
sample images of one subject. 
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(a) (b) (c) (d) (e) (f) (g) 

       

(n) (o) (p) (q) (r) (s) (t) 
 
Figure 5. 2 Sample images for one subject of the AR database 
 
In Figure 5.2, the images (a)-(g) and (n)-(t) are drawn from the first and the second time 
sessions respectively. For each session the first four images (a)-(d) and (n)-(q) involve the 
variation of facial expressions (neutral, smile, anger, scream) while the images (e)-(g) 
and (r)-(t) are taken under different lighting conditions (left light on, right light on, all 
sides light on). The images are manually cropped and scaled down to 4050×  pixels to 
reduce the computation and the memory costs of the experiment in the preprocessing 
stage. We design and perform three experiments to examine the performance of 2D 
Eigefaces, 2D Fisherfaces and 2D Laplacianfaces, under the variations of facial 
expressions, time sessions, and illumination conditions. The indices of the images of each 
person used in the three tests are listed in Table 5.4. 
 
Table 5. 4 Indices of training and testing images 

Experiment conditions  
Data set Illumination Expression Time 

Training set {e, s} {a, n} {a, b, c, d, e, f, g} 
Testing set {f, g, r, t} {b, c, d, o, p, q} {n, o, p, q, r, s, t} 

 
Table 5.5 shows the top recognition rate, the number of the dimensions of feature vectors 
used for classification, and the testing time of the three algorithms.  
 
Table 5. 5 Performance of three algorithms using image based projection technique 

Experiment Top recognition rate 
(%) 

Dimension Classification time 
(sec.) 

2D Eigenfaces 95.4 10 5.547 
2D Fisherfaces 95.6 10 5.281 

 
Expression 

2D Laplacianfaces 97.8 4 4.765 
2D Eigenfaces 65.2 22 42.42 
2D Fisherfaces 68.6 14 28.75 

 
Time 

2D Laplacianfaces 71.5 4 17.66 
2D Eigenfaces 80.2 27 12.375 
2D Fisherfaces 91.4 9 3.765 

 
Illumination 

2D Laplacianfaces 93.7 3 1.975 
 
It can be seen that the proposed 2D Laplacianfaces method outperforms the 2D 
Fisherfaces and the 2D Eigenfaces methods in all the three tests. It improves the 
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recognition rate by 2.4%, 6.3%, 3.5% over the 2D Eigenfaces, and 2.2%, 2.9%, 2.3% 
over the 2D Fisherfaces, respectively. It requires fewer dimensions of projection vectors 
and time to achieve the top recognition rate as shown in column 5 of Table 5.5. Further, 
in Figure 5.3 to Figure 5.5 we also show the relationship between the accuracy rate of the 
three algorithms and the dimension of the feature vectors used for recognition. 
 

 
 
Figure 5. 3 Recognition rate over dimensions of feature vectors (Expressions) 
 

 
Figure 5. 4 Recognition rate over dimensions of feature vectors (Time) 
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Figure 5. 5 Recognition rate over dimensions of feature vectors (Illumination) 
 
In these figures, we can observe that the 2D Laplacianfaces method can explain most of 
the effective discriminative information with only a small number of projection vectors, 
as opposed to the other two methods, where more features have to be provided to achieve 
the top recognition rate. The 2D Laplacianfaces is also quite stable and consistent in 
outperforming the 2D Eigenfaces and the 2D Fisherfaces methods with various number 
of feature vectors, as indicated in the figures. 

5.1.5 Conclusion 
 
We developed the two dimensional Laplacianfaces method and applied it to the face 
recognition problem. The proposed method has the following three properties: First, it 
can maximally preserve the locality of the geometric structure of the sample space to 
extract the most salient features for classification. The learned local patterns of the 
training data are suitable for the neighborhood based kNN queries in the projected low 
dimensional feature space. Experimental results on the two well known face image 
databases, FERET and AR, indicate that the proposed 2D Laplacianfaces is more 
accurate than the 2D Eigenfaces and the 2D Fisherfaces that rely on the global 
information of the data space for analysis. Second, by taking advantage of the image 
based projection technique, 2D Laplacianfaces is computationally more efficient than the 
1D Laplacianfaces for training. Both the training time and the memory efficiency of the 
algorithm are improved significantly. The recognition accuracy of the 2D Laplacianfaces 
is also better than that of the 1D Laplacianfaces as the size of the matrix is small, 
enabling the full optimization of the objective function. Third, the utilization of the k-d 
tree algorithm is quite effective in speeding up the kNN query process. By adopting the 
k-d tree method, the 2D Laplacianfaces is improved to be not only more efficient for 
training, but also as competitively fast as other methods for query and classification. 
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Finally, it should be pointed out that the application of our proposed 2D Laplacianfaces 
method is not limited to the face recognition problem. It can also be potentially utilized to 
address many other types of problems in pattern recognition, such as palm and finger 
print recognition, gesture recognition, audio and video clustering, gene microarray 
analysis, financial time-series predictions, and web document classification, etc., where 
the analysis of the high dimensional data is required.  
 

5.2 Unsupervised Discriminant Projection (UDP) 
 
Dimensionality reduction is the construction of a meaningful low-dimensional 
representation of high-dimensional data. Since there are large volumes of high-
dimensional data in numerous real-world applications, dimensionality reduction is a 
fundamental problem in many scientific fields. From the perspective of pattern 
recognition, dimensionality reduction is an effective means of avoiding the “curse of 
dimensionality” [5.13] and improving the computational efficiency of pattern matching.  

Researchers have developed many useful dimensionality reduction techniques. These 
techniques can be broadly categorized into two classes: linear and nonlinear. Linear 
dimensionality reduction seeks to find a meaningful low-dimensional subspace in a high-
dimensional input space. This subspace can provide a compact representation of higher-
dimensional data when the structure of data embedded in the input space is linear. PCA 
and LDA are two well-known linear subspace learning methods which have been 
extensively used in pattern recognition and computer vision areas and have become the 
most popular techniques for face recognition and other biometric applications [5.14-26, 
5.51].  

Linear models, however, may fail to discover essential data structures that are nonlinear. 
A number of nonlinear dimensionality reduction techniques have been developed to 
address this problem, with two in particular attracting wide attention: kernel-based 
techniques and manifold learning-based techniques. The basic idea of kernel-based 
techniques is to implicitly map observed patterns into potentially much higher 
dimensional feature vectors by using a nonlinear mapping determined by a kernel. This 
makes it possible for the nonlinear structure of data in observation space to become linear 
in feature space, allowing the use of linear techniques to deal with the data. The 
representative techniques are kernel principal component analysis (KPCA) [5.27] and 
kernel Fisher discriminant (KFD) [5.28, 5.29]. Both have proven to be effective in many 
real-world applications [5.30, 5.31, 5.32]. 

In contrast with kernel-based techniques, the motivation of manifold learning is 
straightforward, as it seeks to directly find the intrinsic low-dimensional nonlinear data 
structures hidden in observation space. The past few years have seen proposed many 
manifold-based learning algorithms for discovering intrinsic low-dimensional embedding 
of data. Among the most well-known are isometric feature mapping (ISOMAP) [5.34], 
local linear embedding (LLE) [5.35], and Laplacian Eigenmap [5.36]. Some experiments 
have shown that these methods can find perceptually meaningful embeddings for face or 
digit images. They also yielded impressive results on other artificial and real-world data 
sets. Recently, Yan et al. [5.35] proposed a general dimensionality reduction framework 
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called graph embedding. LLE, ISOMAP, and Laplacian Eigenmap can all be 
reformulated as a unified model in this framework.  

One problem with current manifold learning techniques is that they might be unsuitable 
for pattern recognition tasks. There are two reasons for this. First, as it is currently 
conceived, manifold learning is limited in that it is modeled based on a characterization 
of “locality”, a modeling that has no direct connection to classification. This is 
unproblematic for existing manifold learning algorithms as they seek to model a simple 
manifold, for example, to recover an embedding of one person’s face images [5.33, 5.34, 
5.35]. However, if face images do exist on a manifold, different persons’ face images 
could lie on different manifolds. To recognize faces, it would be necessary to distinguish 
between images from different manifolds. For achieving an optimal recognition result, 
the recovered embeddings corresponding to different face manifolds should be as 
separate as possible in the final embedding space. This poses a problem that we might 
call “classification-oriented multi-manifolds learning”. This problem cannot be addressed 
by current manifold learning algorithms, including some supervised versions [5.37-39], 
because they are all based on the characterization of “locality”. The local quantity 
suffices for modeling a single manifold, but does not suffice for modeling multi-
manifolds for classification purposes. To make different embeddings corresponding to 
different classes mutually separate, however, it is crucial to have the “non-local” quantity, 
which embodies the distance between embeddings. In short, it is necessary to characterize 
the “non-locality” when modeling multi-manifolds. 

The second reason why most manifold learning algorithms, for example, ISOMAP, LLE 
and Laplacian Eigenmap, are unsuitable for pattern recognition tasks is that they can 
yield an embedding directly based on the training data set but, because of the implicitness 
of the nonlinear map, when applied to a new sample, they cannot find the sample’s image 
in the embedding space. This limits the applications of these algorithms to pattern 
recognition problems. Although some research has shown that it is possible to construct 
an explicit map from input space to embedding space [5.40-42], the effectiveness of these 
kinds of maps on real-world classification problems still needs to be demonstrated.  

Recently, He et al. [5.43, 5.44] proposed Locality Preserving Projections (LPP), which is 
a linear subspace learning method derived from Laplacian Eigenmap. In contrast to most 
manifold learning algorithms, LPP possesses the remarkable advantage that it can 
generate an explicit map. This map is linear and easily-computable, like that of PCA or 
LDA. It is also effective, yielding encouraging results on face recognition tasks. Yet as it 
is modeled on the basis of “locality”, LPP, like most manifold learning algorithms, has 
the weakness of having no direct connection to classification. The objective function of 
LPP is to minimize the local quantity, i.e., the local scatter of the projected data. In some 
cases, this criterion cannot be guaranteed to yield a good projection for classification 
purposes. Assume, for example, that there exist two clusters of two-dimensional samples 
scattering uniformly in two ellipses 1C  and 2C  , as shown in Figure 5.6. If the locality 
radius δ  is set as the length of the semi-major axis of the larger ellipse, the direction 1w  
is a nice projection according to the criterion of LPP, since after all samples are projected 
onto 1w , the local scatter is minimal. But, it is obvious that 1w  is not good in terms of 
classification; the projected samples overlap in this direction. This example also shows 
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that the non-local quantity, i.e. the inter-cluster scatter, may provide crucial information 
for discrimination. In this chapter, we will address this issue and explore more effective 
projections for classification purposes.  

Motivated by the idea of classification-oriented multi-manifolds learning, we consider 
two quantities, local and non-local, at the same time in the modeling process. It should be 
pointed out that we don’t attempt to build a framework for multi-manifolds based 
learning in this chapter (although it is very interesting). We are more interested in its 
linear approximation, i.e., finding a simple and practical linear map for biometrics 
applications. To this end, we first present the techniques to characterize the local and 
non-local scatters of data. Then, based on this characterization, we propose a criterion, 
which seeks to maximize the ratio of the non-local scatter to the local scatter. This 
criterion, similar to the classical Fisher criterion, is a Rayleigh quotient in form. Thus, it 
is not hard to find its optimal solutions by solving a generalized eigen-equation. Since the 
proposed method does not use the class-label information of samples in the learning 
process, this method is called the unsupervised discriminant projection (UDP), in contrast 
with the supervised discriminant projection of LDA.  

    2C  

1C  

1w

2w

1x  

2x

δ

 
Figure 5. 6 Illustration of two clusters of samples in two-dimensional space and the projection 
directions 
 
In contrast with LPP, UDP has direct relations to classification since it utilizes the 
information of the “non-locality”. Provided that each cluster of samples in the 
observation space is exactly within a local neighbor, UDP can yield an optimal projection 
for clustering in the projected space, while LPP cannot. As shown in Figure 5.6, 2w  is a 
good projection direction according the criterion of UDP, which is more discriminative 
than 1w . In addition, UDP will be demonstrated more effective than LPP in real-world 
biometrics applications, based on our experiments with three face image databases and 
one palmprint database.  
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In the literature, besides LPP, there are two methods most relevant to ours. One is 
Marginal Fisher Analysis (MFA) presented by Yan et al. [5.45], and the other is Local 
Discriminant Embedding (LDE) suggested by Chen et al. [5.46]. The two methods are 
very similar in formulation. Both of them combine locality and class label information to 
represent the intra-class compactness and inter-class separability. So, MFA and LDE can 
be viewed as supervised variants of LPP, or as localized variants of LDA since both 
methods focus on the characterization of intra-class locality and inter-class locality. In 
contrast, the proposed UDP retains the unsupervised characteristic of LPP and seeks to 
combine locality and globality information for discriminator design.  

The remainder of this paper is organized as follows. Section 5.2.1 outlines PCA and LDA. 
Section 5.2.2 develops the idea of UDP and the relevant theory and algorithm. Section 
5.2.3 describes a kernel weighted version of UDP. Section 5.2.4 discusses the relations 
between UDP and LDA/LPP. Section 6 describes some biometrics applications and the 
related experiments. Section 7 offers our conclusions. 

5.2.1 Outline of PCA 
 
PCA seeks to find a projection axis such that the global scatter is maximized after the 
projection of samples. The global scatter can be characterized by the mean square of the 
Euclidean distance between any pair of the projected sample points. Specifically, given a 
set of M training samples (pattern vectors) MXXX ,,, 21 L  in NR , we get their images 

Myyy ,,, 21 L  after the projection onto the projection axis w .  The global scatter is 
defined by 
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Eq. 5.12 indicates that TS  is essentially the covariance matrix of data. So, the projection 
axis w  that maximizes Eq. 5.10 can be selected as the eigenvector of TS  corresponding 
to the largest eigenvalue. Similarly, we can obtain a set of projection axes of PCA by 
selecting the d eigenvectors of TS  corresponding to d largest eigenvalues. 
 

5.2.2 Outline of LDA 
 
LDA seeks to find a projection axis such that the Fisher criterion (i.e., the ratio of the 
between-class scatter to the within-class scatter) is maximized after the projection of 
samples. The between-class and within-class scatter matrices  BS  and WS  are defined by   
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where ijX  denotes the j-th training sample in class i; c is the number of classes; il  is the 
number of training samples in class i; im  is the mean of the training samples in class i ; 

)(i
WS  denotes the covariance matrix of samples in class i. It is easy to show that BS  and 

WS  are both non-negative definite matrix and satisfy WBT SSS += . The Fisher criterion 
is defined by                                                                                                 
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The stationary points of )(wJ F  are the generalized eigenvectors dwww ,,, 21 L  of 

wSwS WB λ=  corresponding to d largest eigenvalues. These stationary points form the 
coordinate system of LDA.  
 

5.2.3 Basic Idea of UDP 
 
As discussed in Introduction, the locality characterization-based model does not 
guarantee a good projection for classification purposes. To address this, we will introduce 
the concept of non-locality and give the characterizations of the non-local scatter and the 
local scatter. This will allow us to obtain a concise criterion for feature extraction by 
maximizing the ratio of non-local scatter to local scatter. 
 

 Characterize the Local Scatter 
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Recall that in PCA, in order to preserve the global geometric structure of data in a 
transformed low-dimensional space, account is taken of the global scatter of samples. 
Correspondingly, if we aim to discover the local structure of data, we should take account 
of the local scatter (or intra-locality scatter) of samples. The local scatter can be 
characterized by the mean square of the Euclidean distance between any pair of the 
projected sample points that are within any local δ -neighborhood ( 0>δ ). Specifically, 
two samples iX  and jX  are viewed within a local δ -neighborhood provided that 

δ<− 2|||| ji XX . Let us denote the set }||||),{( 2 δ<−=δ
ji XXjiU . After the 

projection of iX  and jX  onto a direction w , we get their images iy  and jy . The local 
scatter is then defined by  
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where LM  is the number of sample pairs satisfying δ<− 2|||| ji XX . Let us define the 
adjacency matrix H , whose elements are given below: 
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It is obvious that the adjacency matrix H  is a symmetric matrix. By virtue of the 
adjacency matrix H , Eq. 5.16 can be rewritten by 
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It follows from Eq. 5.18 that  
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LS  is called the local scatter (covariance) matrix. Due to the symmetry of H , we have              
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where ),,,( 21 MXXXX L= , and D  is a diagonal matrix whose elements on diagonal 

are column (or row since H  is a symmetric matrix) sum of H , i.e., ∑
=

=
M

j
ijii HD

1
. 

HDL −=  is called the local scatter kernel (LSK) matrix in this chapter (this matrix is 
called the Laplacian matrix in [5.36]). 
 
It is obvious that L and LS  are both real symmetric matrices. From Eqs. 5.19 and 5.21, 
we know that 0≥wSw L

T  for any nonzero vector w . So, the local scatter matrix LS  must 
be non-negative definite.  
 
In the above discussion, we use δ -neighborhoods to characterize the “locality” and the 
local scatter. This way is geometrically intuitive but unpopular because in practice it is 
hard to choose a proper neighborhood radius δ . To avoid this difficulty, the method of 
K-nearest neighbors is always used instead in real-world applications. The K-nearest 
neighbors method can determine the following adjacency matrix H , with elements given 
by: 
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The local scatter can be characterized similarly by a K-nearest neighbor adjacency matrix 
if Eq. 5.17 is replaced by Eq. 5.22. 
 

 Characterize the Non-local Scatter 
The non-local scatter (i.e., the inter-locality scatter) can be characterized by the mean 
square of the Euclidean distance between any pair of the projected sample points that are 
outside any local δ -neighborhood ( 0>δ ). The non-local scatter is defined by 
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where NM  is the number of sample pairs satisfying δ≥− 2|||| ji XX . By virtue of the 
adjacency matrix H  in Eq. 5.17 or 5.22, the non-local scatter can be rewritten by 
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It follows from Eq. 5.24 that  
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NS  is called the non-local scatter (covariance) matrix. It is easy to show NS  is also a 

non-negative definite matrix. And, it follows that  
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That is, TS = LS + NS . Thus, we have =)(wJT )(wJ L + )(wJ N . 
 

Determine a Criterion: Maximizing the Ratio of Non-local Scatter to Local Scatter 

 
The technique of Locality Preserving Projection (LPP) [5.43] seeks to find a linear 
subspace which can preserve the local structure of data. The objective of LPP is actually 
to minimize the local scatter )(wJ L . Obviously, the projection direction determined by 
LPP can ensure that, if samples iX  and jX  are close, their projections iy  and jy  are 
close as well. But LPP cannot guarantee that if samples iX  and jX  are not close their 
projections iy  and jy  are not either. This means that it may happen that two mutually 
distant samples belonging to different classes may result in close images after the 
projection of LPP. Therefore, LPP does not necessarily yield a good projection suitable 
for classification.  
 
For the purpose of classification, we try is to find a projection which will draw the close 
samples closer together while simultaneously making the mutually distant samples even 
more distant from each other. From this point of view, a desirable projection should be 
the one that at the same time minimizes the local scatter )(wJ L  and maximizes the non-
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local scatter )(wJ N . As it happens, we can obtain just such a projection by maximizing 
the following criterion:                                                                                 
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Since =)(wJT )(wJ L + )(wJ N  and TS = LS + NS , the above criterion is equivalent to 
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The criterion in Eq. 5.28 indicates that we can find the projection by at the same time 
globally maximizing (maximizing the global scatter) and locally minimizing (minimizing 
the local scatter). 
 
The criterion in Eq. 5.27 or 5.28 is formally similar to the Fisher criterion in Eq. 5.15 
since they are both Rayleigh quotients. Differently, the matrices LS  and NS  in Eq. 5.27 
can be constructed without knowing the class-label of samples while BS  and WS  in Eq. 
5.15 cannot be so constructed. This means Fisher discriminant projection is supervised 
while the projection determined by )(wJ  can be obtained in an unsupervised manner. In 
this chapter, then, this projection is called an Unsupervised Discriminant Projection 
(UDP). The criterion in Eq. 5.27 can be maximized directly by calculating the 
generalized eigenvectors of the following generalized eigen-equation: 
 

               wSwS LN λ=  (5.30) 
 
The projection axes of UDP can be selected as the generalized eigenvectors dwww ,,, 21 L  
of wSwS LN λ=  corresponding to d largest positive eigenvalues dλλλ ≥≥≥ L21  . 

5.2.4 UDP Algorithm 
 
In summary of the preceding description, the following provides the UDP algorithm: 
 
Step 1. Construct the adjacency matrix: For the given training data set },,1|{ MiX i L= , 

find K nearest neighbors of each data point and construct the adjacency matrix 
MMijHH ×= )(  using Eq. 5.22.  

Step 2. Construct the local scatter kernel (LSK) matrix: Form an MM × diagonal matrix 

D , whose elements on the diagonal are given by ∑
=

=
M

j
ijii HD

1

, Mi ,,1L= . Then, 

the LSK matrix is HDL −= .  
Step 3. Perform PCA transform of data: Calculate TS ’s m largest positive eigenvalues 

mμμ ,,1 L  and the associated m orthonormal eigenvectors mββ ,,1 L  using the 
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technique presented in [5.14, 5.15]. Let TS~ = ),,(diag 1 mμμ L  and ),,( 1 mP ββ= L . 

Then we get XPX T=~ , where ),,,( 21 MXXXX L= .  
Step 4. Construct the two matrices LS~ = 2~~ MXLX T  and NS~ = TS~ − NS~ . Calculate the 

generalized eigenvectors dvvv ,,, 21 L  of vSλvS LN
~~

= corresponding to d largest 
positive eigenvalues dλλλ ≥≥≥ L21 . Then, the d projection axes of UDP are 

jj Pvw = , dj ,,1L= .  
 
After obtaining the projection axes, we can form the following linear transform for a 
given sample iX :  

i
T

i XWY = , where ),,,( 21 dwwwW L=  (5.31) 
 

The feature vector iY  is used to represent the sample iX  for recognition purposes. 
Concerning the UDP Algorithm, a remark should be made on the choice of m in Step 3. 
Liu and Wechsler [5.22] suggested a criterion for choosing the number of principal 
components in the PCA phase of their enhanced Fisher discriminant models. That is, a 
proper balance should be preserved between the data energy and the eigenvalue 
magnitude of the within-class scatter matrix [5.22]. This criterion can be borrowed here 
for the choice of m. First, to make LS~  non-singular, an m should be chosen that is less 
than the rank of LSK matrix L . Second, to avoid overfitting, the trailing eigenvalues of 

LS~  should not be too small.  

5.2.5. Extension: UDP with Kernel Weighting 
 
In this section, we will build a kernel-weighted version of UDP. We know that Laplacian 
Eigenmap [5.36] and LPP [5.43, 5.44] use kernel coefficients to weight the edges of the 
adjacency graph, where a heat kernel (Gaussian kernel) is defined by  
 

             ( )tXXXXk jiji
2||||exp),( −−=  (5.32) 

 
Obviously, for any iX , jX  and parameter t, 1),(0 ≤< ji XXk  always holds. Further, the 
kernel function is a strictly monotone decreasing function with respect to the distance 
between two variables iX  and jX . 
 
The purpose of the kernel weighting is to indicate the degree of iX  and jX  belonging to 

a local δ -neighborhood. If δ<− 2|||| ji XX , the smaller the distance is, the larger the 
degree would be. Otherwise, the degree is zero. The kernel weighting, like other similar 
weightings, may be helpful in alleviating the effect of the outliers on the projection 
directions of the linear models and thus makes these models more robust to outliers 
[5.47].  
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Fundamentals 
 
Let ijK = ),( ji XXk . The kernel weighted global scatter can be characterized by 
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Here, we can view that all training samples are within a δ -neighborhood (it is possible 
as long as δ  is large enough). ijK  indicates the degree of iX  and jX  belonging to such 
a neighborhood. Let us denote 
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Similar to the derivation of Eq. 5.21, we have 
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where MMijKK ×= )( , and TD  is a diagonal matrix whose elements on the diagonal are 

column (or row) sum of K , i.e., ∑
=

=
M

j
ijiiT KD

1
)( . KDL TT −=  is called the global 

scatter kernel (GSK) matrix. If the matrix TS  defined in Eq. 5.35 is used as the 
generation matrix and its principal eigenvectors are selected as projection axes, the kernel 
weighted version of PCA can be obtained. If we redefine the adjacency matrix as                                   
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the kernel-weighted local scatter can still be characterized by Eq. 5.18 or 5.19, and the 
kernel-weighted local scatter matrix can be expressed by Eq. 5.21. The kernel-weighted 
non-local scatter is characterized by  
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and the corresponding non-local scatter matrix is  
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Algorithm of UDP with Kernel Weighting 
 
The UDP algorithm in Section 5.2.4 can be modified to obtain its kernel weighted version. 
In Step 1, the adjacency matrix MMijHH ×= )(  is constructed instead using Eq. 5.37 and, 
in Step 3, the PCA transform is replaced by its kernel-weighted version. For 
computational efficiency, the eigenvectors of TS  defined in Eq. 5.35 can be calculated in 
the following way. 
 
Since TL  is a real symmetric matrix, its eigenvalues are all real. Calculate all of its 
eigenvalues and the corresponding eigenvectors. Suppose Λ is the diagonal matrix of 
eigenvalues of TL  and Q is the full matrix whose columns are the corresponding 
eigenvectors, TL  can be decomposed by  
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Λ= QQL .  From Eq. 5.40, it follows that TS = T
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R = , which is an MM ×  non-negative definite matrix. Calculate 

R ’s orthonormal eigenvectors dααα ,,, 21 L  which correspond to d largest nonzero 
eigenvlaues dμμμ ≥≥≥ L21 . Then, from the theorem of singular value decomposition 
(SVD) [5.48], the orthonormal eigenvectors dβββ ,,, 21 L  of TS  corresponding to d 
largest nonzero eigenvlaues dμμμ ≥≥≥ L21  are  
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We should make the claim that the UDP algorithm given in Section 5.2.4 is a special case 
of its kernel weighted version since when the kernel parameter +∞=t , the weight ijK = 1 
for any i and j. For convenience, we also refer to the kernel weighted UDP version simply 
as UDP , and the UDP algorithm in Section 5.2.4 is denoted by UDP ( +∞=t ).   
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5.2.6. Links to other Linear Projection Techniques: LDA and LPP 
 
Comparisons with LPP 
 
UDP and LPP are both unsupervised subspace learning techniques. Their criteria, 
however, are quite different. UDP maximizes the ratio of the non-local scatter (or the 
global scatter) to the local scatter whereas LPP minimizes the local scatter. 
 
The local scatter criterion can be minimized in different ways subject to different 
constraints. One way is to assume that the projection axes are mutually orthogonal (PCA 
is actually based on this constraint so as to maximize the global scatter criterion). These 
constraint based optimization model is 
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By solving this optimization model, we get a set of orthogonal projection axes 

dwww ,,, 21 L . The other way to minimize the local scatter criterion is to assume that the 
projection axes are conjugately-orthogonal. LPP is in fact based on these constraints. Let 
us define the matrix T

D XDXS = . Then, the optimization model of LPP (based on the 

DS -orthogonality constraints) is given by 
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which is equivalent to  
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Therefore, LPP essentially maximizes the ratio of wSw D
T  to the local scatter. But, this 

criterion has no direct link to classification. Since the purpose of the constraint 
wXDXwwSw TT

D
T = = 1S =YY D

T  is just to remove an arbitrary scaling factor in the 
embedding and that of the matrix D  is to provide a natural measure of the vertices of the 
adjacency graph [5.36], maximizing (or normalizing) wSw D

T  does not make sense with 
respect to discrimination. In contrast, the criterion of UDP has a more transparent link to 
classification or clustering. Its physical meaning is very clear: if samples belong to a 
same cluster, they become closer after the projection; otherwise, they become as far as 
possible. 
 

Connections to LDA 

Compared with LPP, UDP has a more straightforward connection to LDA. Actually, 
LDA can be regarded as a special case of UDP if we assume that each class has the same 
number of training samples (i.e., the class priori probabilities are same). When the data 
has an ideal clustering, i.e., each local neighborhood contains exactly the same number of 
training samples belonging to the same class, UDP is LDA. In this case, the adjacency 
matrix is  
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And in this case, there exist c local neighborhoods, each of which corresponds to a 
cluster of samples in one pattern class. Suppose that the k-th neighborhood is formed by 
all l samples of Class k. Then, the local scatter matrix of the samples in the k-th 
neighborhood is 
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Following the derivation of TS  in Eq. 5.12, we have 
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So, )(k

LS  = )(k
WS , where )(k

WS  is the covariance matrix of samples in Class k. From the 
above derivation and Eq. 5.20, the whole local scatter matrix is 
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Then, the non-local scatter matrix is  

NS = TS － LS = TS － WS
M
l  

 
(5.49) 

 
Further, it can be shown that the following equivalent relationships hold: 
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(5.50) 
 

 
Therefore, UDP is LDA in the case where each local neighborhood contains exactly the 
same number of training samples belonging to the same class. The connection between 
LPP and LDA was disclosed in [5.44] provided that an Eq. (41)-like adjacency 
relationship is given. In addition, LPP needs another assumption, i.e., the sample mean of 
the data set is zero, to connect itself to LDA, while UDP does not. So, the connection 
between UDP and LDA is more straightforward.   
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5.2.7 Biometrics Applications: Experiments and Analysis 
 
In this section, the performance of UDP is evaluated on the Yale, FERET and AR face 
image databases and PolyU Palmprint database and compared with the performances of 
PCA, LDA, and Laplacianface (LPP). 
 

Experiment Using the Yale Database 

The Yale face database contains 165 images of 15 individuals (each person providing 11 
different images) under various facial expressions and lighting conditions. In our 
experiments, each image was manually cropped and resized to 100×80 pixels. Figure 5.7 
shows sample images of one person. 
 

      
 

     
 
Figure 5. 7 Sample images of one person in the Yale database. 
 
Table 5. 6 The maximal recognition rates (%) of PCA, LDA, Laplacianface, and UDP on the 
Yale database and the corresponding dimensions (shown in parentheses) when the first 6 samples 
per class are used for training 
 
  Measure PCA LDA Laplacianface 

(t = +∞ ) 
UDP 

(t = +∞ ) 
Laplacianface 

(t* = 800) 
UDP 

(t* = 800) 
Euclidean 90.7  (28) 86.7  (14) 90.7  (30) 96.0  (18) 90.7  (24) 97.3  (18) 
  Cosine 90.7  (40) 96.0  (14) 97.3  (30) 98.7  (18) 98.7  (24) 100   (18) 
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Figure 5. 8 The recognition rates of PCA, LDA, Laplacianface, and UDP versus the dimensions 
when (a) Euclidean distance is used and, (b) Cosine distance is used 
 
The first experiment was performed using the first six images (i.e., center-light, with 
glasses, happy, left-light, without glasses, and normal) per class for training, and the 
remaining five images (i.e., right-light, sad, sleepy, surprised, and winking) for testing. 
For feature extraction, we used, respectively, PCA (eigenface), LDA (Fisherface), LPP 
(Laplacianface) and the proposed UDP. Note that Fisherface, Laplacianface, and UDP all 
involve a PCA phase. In this phase, we keep nearly 98% image energy and select the 
number of principal components, m, as 60 for each method. The K-nearest neighborhood 
parameter K in UDP and Laplacianface can be chosen as K = 1−l = 5, where l denotes 
the number of training samples per class. The justification for this choice is that each 
sample should connect with the remaining 1−l  samples of the same class provided that 
within-class samples are well clustered in the observation space. There are generally two 
ways to select the Gaussian kernel parameter t. One way is to choose +∞=t , which 
represents a special case of  LPP (or UDP). The other way is to determine a proper 
parameter t* within the interval (0, ∞+ ) using the global-to-local strategy [5.32] to make 
the recognition result optimal. Finally, the nearest neighbor (NN) classifiers with 
Euclidean distance and cosine distance are respectively employed for classification. The 
maximal recognition rate of each method and the corresponding dimension are given in 
Table 5.6. The recognition rates versus the variation of dimensions are illustrated in 
Figure5.8. The recognition rates of Laplacianface and UDP versus the variation of the 
kernel parameter t and those versus the K-nearest neighborhood parameter K are, 
respectively, illustrated in Figure 5.9 (a) and (b). 
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Figure 5. 9 (a) The maximal recognition rates of Laplacianface and UDP versus the variation of 
kernel parameter t; (b) The maximal recognition rates of Laplacianface and UDP versus the 
variation of K-nearest neighborhood parameter K 
 
From Table 5.6 we can see three main points. First, UDP outperforms Laplacianface 
under each distance measure, whether the kernel parameter t is infinity or optimally 
chosen (t* = 800). Second, UDP and Laplacianface with cosine distances both perform 
better than LDA and PCA with cosine or Euclidean distances. Third, the cosine distance 
metric can significantly improve the performance of LDA, Laplacianface, and UDP but it 
has no substantial effect on the performance of PCA. Figure 5.8 shows that UDP (t* = 
800) outperforms Laplacianface (t* = 800), LDA and PCA when the dimension is over 
16, no matter what distance metric is used. Further, the recognition rate of UDP with 
cosine distance retains 100% as the dimension varies from 18 to 32. Figure 5.9 (a) 
indicates that the performances of UDP and Laplacianface (with cosine distance) become 
robust when the parameter t is over 200 and, UDP consistently outperforms 
Laplacianface when t is larger than 400. The recognition rate of UDP retains 100% as t 
varies from 600 to 10,000. Figure 5.9 (b) shows that the performances of UDP and 
Laplacianface vary with the variation of the K-nearest neighborhood parameter K. When 
K is chosen as 1−l = 5, both methods achieve their top recognition rates. So, we will 
choose K = 1−l  for our experiments. 
 
Why can the unsupervised method UDP (or Laplacianface) outperform the supervised 
method LDA? In our opinion, the possible reason is that UDP (or Laplacianface) is more 
robust than LDA to outliers. In the training set of this experiment, the “left-light” image 
of each class can be viewed as an outlier. The outlier images may cause errors in the 
estimate of within-class scatter and thus make LDA projection inaccurate. In contrast, 
UDP builds the adjacency relationship of data points using k-nearest neighbors and 
groups the data in a natural way. Most outlier images of different persons are grouped 
into new different clusters. By this means, the number of clusters increases, but the 
negative influence of outliers onto within-class scatter is eliminated. So, the resulting 
projection of UDP is more accurate and discriminative. Since the number of clusters 
increases, UDP generally needs more features than LDA to achieve its best performance. 
This also explains why LDA outperforms UDP using a few features, as shown in Figure 
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5.8.  
 
In the second experiment, 20-fold cross-validation tests are performed to re-evaluate the 
performance of PCA, LDA, Laplacianface, and UDP. In each test, six images of each 
subject are randomly chosen for training while the remaining five images are used for 
testing. The parameters involved in each method are set as the same as those used in the 
first experiment. Table 5.7 shows the maximal average recognition rates across 20 runs of 
each method under nearest neighbor classifiers with two distance metrics and their 
corresponding standard deviations (std) and dimensions. From Table 5.7, it can be seen 
that UDP outperforms other methods and, the cosine distance metric is still helpful in 
improving the performance of LDA, Laplacianface, and UDP. These conclusions are on 
the whole consistent with those drawn from the first experiment. 
 
Table 5. 7 The maximal average recognition rates (%) of PCA, LDA, Laplacianface, and UDP 
across 20 runs on the Yale database and the corresponding standard deviations (std) and 
dimensions (shown in parentheses) 
 
  Measure PCA LDA Laplacianface 

(t = +∞ ) 
UDP 

(t = +∞ ) 
Laplacianface 

(t* = 800) 
UDP 

(t* = 800) 
Euclidean 91.7 ± 5.4   

(28) 
87.1 ± 9.8  

(14) 
89.2 ± 4.7 

(44) 
91.9 ± 5.1  

(28) 
90.3 ± 5.1 

(24) 
92.3 ± 5.9   

(28) 
  Cosine 90.1 ± 6.9   

(24) 
92.1 ± 6.7  

(14) 
94.2 ± 3.3 

(48) 
95.1 ± 4.3  

(28) 
95.0 ± 2.9 

(24) 
95.5 ± 4.1   

(28) 

Since the cosine distance is more effective than the Euclidean distance for LDA, 
Laplacianface, and UDP, in the following experiments we use only this distance metric. 

Experiment Using the FERET Database 
 
The FERET face image database has become a standard database for testing and 
evaluating state-of-the-art face recognition algorithms [5.49-51]. The proposed method 
was tested on a subset of the FERET database. This subset includes 1000 images of 200 
individuals (each one has 5 images). It is composed of the images whose names are 
marked with two-character strings: “ba”, “bj”, “bk”, “be”, “bf”. This subset involves 
variations in facial expression, illumination, and pose. In our experiment, the facial 
portion of each original image was automatically cropped based on the location of eyes 
and mouth, and the cropped image was resized to 80×80 pixels and further pre-processed 
by histogram equalization. Some sample images of one person are shown in Figure 5.10. 
 

     
 

Figure 5. 10 Samples of the cropped images in a subset of FERET database 
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Table 5. 8 The maximal recognition rates (%) of PCA, LDA, Laplacianface, and UDP on a subset 
of FERET database and the corresponding dimensions  
 

Method PCA LDA Laplacianface 
(t = +∞ ) 

UDP 
(t = +∞ ) 

Laplacianface 
(t* = 300) 

UDP 
(t* =7000) 

Recognition rate 73.3 75.0 77.0 80.7 78.5 81.2 
Dimension 85 100 105 90 90 110 
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Figure 5. 11 The recognition rates of PCA, LDA, Laplacianface, and UDP versus the dimensions 
when cosine distance is used on a subset of FERET database 

In our test, we use the first two images (i.e., “ba” and “bj”) per class for training, and the 
remaining three images (i.e., “bk”, “be” and “bf”) for testing. PCA, LDA, Laplacianface 
and UDP are used for feature extraction. In the PCA phase of LDA, Laplacianface and 
UDP, the number of principal components, m, is set as 120. The K-nearest neighborhood 
parameter K in Laplacianface and UDP is chosen as K = 1−l =1. After feature extraction, 
a nearest neighbor classifier with cosine distance is employed for classification. The 
maximal recognition rate of each method and the corresponding dimension are given in 
Table 5.8. The recognition rate curve versus the variation of dimensions is shown in 
Figure5.11. Table 5.8 demonstrates again that UDP outperforms PCA, LDA and 
Laplacianface, whether the kernel parameter t is infinity or optimally chosen (t* = 7000 
for UDP and t* = 300 for Laplacianface). Figure 5.11 indicates that UDP consistently 
performs better than other methods when the dimension is over 45. 
 

Experiment Using the AR Database 

The AR face [5.52, 5.53] contains over 4,000 color face images of 126 people (70 men 
and 56 women), including frontal views of faces with different facial expressions, 
lighting conditions and occlusions. The pictures of 120 individuals (65 men and 55 
women) were taken in two sessions (separated by two weeks) and each section contains 
13 color images. 20 face images (each session containing 10) of these 120 individuals are 
selected and used in our experiment. The face portion of each image is manually cropped 
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and then normalized to 50×40 pixels. The sample images of one person are shown in 
Figure 5.12. These images vary as follows: (a) neutral expression, (b) smiling, (c) angry, 
(d) screaming, (e) left light on, (f) right light on, (g) all sides light on; (h) wearing sun 
glasses, (i) wearing sun glasses and left light on, and (j) wearing sun glasses and right 
light on.  
 

          

          
 

Figure 5. 12 Samples of the cropped images of one person in the AR database 
 
Table 5. 9 The maximal average recognition rates (%) and standard deviations (std) of PCA, 
LDA, Laplacianface and UDP with different training sample sizes on the AR database 
 

# /class PCA LDA Laplacianface 
(t = +∞ ) 

UDP 
(t = +∞ ) 

Laplacianface 
(t* = 300) 

UDP 
(t* = 500) 

2 71.2 ± 6.0 70.7 ± 11.5 75.5 ± 8.1 76.7 ± 7.7 75.6 ± 8.1 76.6 ± 7.9 
3 74.4 ± 5.7 82.1 ± 13.5 85.1 ± 7.4 86.9 ± 8.0 85.2 ± 7.5 86.8 ± 7.9 

  4 80.2 ± 6.0 91.2 ± 11.4 91.7 ± 4.5 93.3 ± 4.7 91.7 ± 4.5 93.2 ± 4.9 
 5 81.4 ± 6.2 93.9 ± 8.0 92.6 ± 4.9 93.9 ± 5.1 92.5 ± 5.0 93.9 ± 5.0 
 6 84.5 ± 4.3 96.7 ± 2.4 94.2 ± 2.7 95.5 ± 2.0 94.1 ± 2.9 95.6 ± 2.0 

 

 
Figure 5. 13 The maximal average recognition rates of PCA, LDA, Laplacianface and UDP 
versus the variation of the training sample size 
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In our experiments, l images (l varies from 2 to 6) are randomly selected from the image 
gallery of each individual to form the training sample set. The remaining l−20  images 
are used for testing. For each l, we perform cross-validation tests and run the system 20 
times. PCA, LDA, Laplacianface and UDP are, respectively, used for face representation. 
In the PCA phase of LDA, Laplacianface and UDP, the number of principal components, 
m, is set as 50, 120, 180, 240, and 300, respectively corresponding to l = 2, 3, 4, 5, and 6. 
The K-nearest neighborhood parameter K in Laplacianface and UDP is chosen as K = 

1−l . Finally, a nearest-neighbor classifier with cosine distance is employed for 
classification. The maximal average recognition rate and the std across 20 runs of tests of 
each method are shown in Table 5.9. The recognition rate curve versus the variation of 
training sample sizes is shown in Figure 5.13. 

From Table 5.9 and Figure 5.13, we can see first that UDP overall outperforms 
Laplacianface, whether the kernel parameter is infinity or optimally chosen and second 
that as unsupervised methods, UDP and Laplacianface both significantly outperform 
PCA, irrespective of the variation in training sample size. These two points are consistent 
with the experimental results on the Yale and the FERET databases. In addition, we can 
see some inconsistent results. First, with reference to the impact of the kernel weighting 
on the performance of UDP and Laplacianface, in this experiment, UDP and 
Laplacianface both perform well without kernel weighting (i.e. +∞=t ). The heat-kernel 
(i.e. Gaussian kernel) weighting, by optimally choosing t* = 300 for Laplacianface and t* 
= 500 for UDP from the interval (0, ∞+ ), however, does little to improve the recognition 
accuracy.  

Another inconsistent point that is worth remarking concerns the performance comparison 
of UDP and LDA. UDP outperforms LDA when l is less than 5, while LDA outperforms 
UDP when l is over 5. This means that once the given training sample size per class 
becomes large, LDA may achieve better results than UDP. It is not hard to interpret this 
phenomenon from a statistical point of view. While there are more and more samples per 
class provided for training, the within-class scatter matrix can be evaluated more 
accurately and becomes better-conditioned, so LDA will become more robust. However, 
with the increase of the training sample size, more boundary points might exist between 
arbitrary two data clusters in input space. This makes it more difficult for UDP (or LPP) 
to choose a proper locality radius or the K-nearest neighborhood parameter K to 
characterize the “locality”.  

Nevertheless, UDP does have an advantage over LDA with respect to a specific 
biometrics problem like face recognition. Figure 8 indicates that the smaller the training 
sample size is, the more significant the performance difference between UDP and LDA 
becomes. This advantage of UDP in small sample size cases is really helpful in practice. 
This is because face recognition is typically a small sample size problem. There are 
generally few images of one person provided for training in many real-world applications.  
 

Experiment Using the PolyU Palmprint database  

The PolyU palmprint database contains 600 grayscale images of 100 different palms with 
six samples for each palm (http://www4.comp.polyu.edu.hk/~biometrics/). Six samples 
from each of these palms were collected in two sessions, where the first three were 
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captured in the first session and the other three in the second session. The average 
interval between the first and the second sessions is two months. In our experiments, the 
central part of each original image was automatically cropped using the algorithm 
mentioned in [5.54]. The cropped images were resized to 128×128 pixels and pre-
processed using histogram equalization. Figure 5.14 shows some sample images of two 
palms.  

 
 
Figure 5. 14 Samples of the cropped images in PolyU Palmprint database 

 

According to the protocol of this database, the images captured in the first session are 
used for training and the images captured in the second session for testing. Thus, for each 
palm class, there are three training samples and three testing samples. PCA, LDA, 
Laplacianface and UDP are used for palm feature extraction. In the PCA phase of LDA, 
Laplacianface and UDP, the number of principal components, m, is set as 150. The K-
nearest neighborhood parameter K in Laplacianface and UDP is chosen as K = 1−l  = 2. 
After feature extraction, a nearest neighbor classifier with cosine distance is employed for 
classification. The maximal recognition rate of each method and the corresponding 
dimension are listed in Table 5.10. The recognition rate curve versus the variation of 
dimensions is shown in Figure 5.15 
 
Table 5. 10 The maximal recognition rates (%) of PCA, LDA, Laplacianface, and UDP on PolyU 
Palmprint database and the corresponding dimensions  
 

Method PCA LDA Laplacianface 
(t = +∞ ) 

UDP 
(t = +∞ ) 

Laplacianface 
(t* = 300) 

UDP 
(t* =200) 

Recognition rate 86.0 95.7 98.3 99.3 99.0 99.7 
Dimension 90 90 140 90 100 100 
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Figure 5. 15 The recognition rates of PCA, LDA, Laplacianface, and UDP versus the dimensions 
when cosine distance is used on PolyU Palmprint database 

From Table 5.6, we can see that UDP outperforms PCA, LDA and Laplacianface. The 
recognition rate of UDP (when t* = 200) is up to 99.7%, i.e., only one sample was missed. 
Figure 5.11 shows that UDP consistently performs better than other methods, irrespective 
of the dimensional variation. These results demonstrate that UDP is also a good tool for 
palm recognition. 

5.2.8 Conclusions and Future Work 
 
In this chapter, we develop an unsupervised discriminant projection (UDP) technique for 
dimensionality reduction of high-dimensional data in small sample size cases. The 
projection of UDP can be viewed as a linear approximation of the nonlinear map that 
uncovers and separates embeddings corresponding to different manifolds in the final 
embedding space. UDP considers the local and non-local scatters at the same time and 
seeks to find a projection maximizing the ratio of the non-local scatter to the local scatter. 
The consideration of the non-local quantity makes UDP more intuitive and more 
powerful than LPP for classification or clustering tasks. Our experimental results on three 
popular face image databases and one palmprint database demonstrate that UDP is more 
effective than LPP and PCA. In addition, UDP is more discriminative than LDA when 
the training sample size per class is small. 
 
Our experimental results on the AR database, however, also reveal a drawback of UDP 
(LPP actually has the same problem). That is, as the training sample size per class 
becomes large, LDA can outperform UDP. This problem is unnoticeable in most real-
world biometrics applications since the given training sample size is always very small. 
But, it may become prominent once UDP is applied to large sample size problems. To 
address this, we need a more precise characterization of the local scatter and the non-
local scatter when the given training sample size per class is relatively large. A possible 
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way is to use the provided class label information (for example, borrowing Yan [5.45]’s 
and Chen [5.46]’s ideas) to facilitate this characterization and then to build a semi-
supervised hybrid system.  
 
As a generator of weighting coefficients, the Gaussian kernel (or heat kernel) is examined 
in this chapter. It is demonstrated to be effective in most cases. But, in some cases, it fails 
to improve the performance of UDP or LPP. Are there more effective kernels for 
weighting the proposed method? This is a problem deserving further investigation. In 
addition, in this chapter, we focus on developing a linear projection technique and 
applying it to biometrics but do not address another interesting problem, i.e., modeling 
multi-manifolds for classification purposes. When different classes of data lie on different 
manifolds, it is of central importance to uncover the embeddings corresponding to 
different manifolds and, at the same time, to make different embeddings as separable as 
possible in the final embedding space. We will address this problem and try to build a 
general framework for classification-oriented multi-manifolds learning in the near future. 
This framework may result in more effective features for biometrics tasks. 
 

5.3 Mutual neighborhood based discriminant projections 
 
Many machine learning and data mining applications, dimension reduction is used to 
transform the high dimensional data to a low dimensional space so that the retrieval 
[5.55], [5.64], [5.88], [5.90], [5.93], the storage [5.56], [5.63] and the analysis [5.57], 
[5.61], [5.62], [5.65] of data can be made more efficient. Over the last few years, the 
technique of dimension reduction has aroused considerable interests in the areas of data 
mining, machine learning, and pattern recognition [5.68], [5.71], [5.86]. 
 
In literature, linear discriminant analysis [5.66] is perhaps one of the most popular 
methods for supervised dimension reduction. It utilizes the variance and the center 
information for feature analysis. The Fisher-Raleigh criterion of LDA is theoretically 
optimal in the Bayes sense when the class conditional densities of the data set are 
Gaussian and share the same covariance. It is popular in practice due to its mathematical 
simplicity and computational efficiency. However, there is a problem in LDA that arises 
from its parametric nature. It is generally known that in real world applications the 
training data obtained may sometimes be under-sampled or not strictly Gaussian. In such 
case, the employment of the LDA criterion, which has its root from the Bayes error 
probability, cannot be expected to indicate accurately which features should be extracted 
to preserve the complex data structure for classification. The obtained projection vectors 
might be sub-optimal and generate large classification errors. In the experimental section, 
we demonstrate this fact in several application domains. 
 
Fukunaga developed a nonparametric form of discriminant analysis (NDA) to address 
this problem [5.66, 5.67]. The NDA model does not rely on any assumption concerning 
the structure of the data density. It is more flexible and robust than LDA for practical 
applications. But in NDA a heuristic based weighting function has to be introduced to 
deemphasize the samples that are far away from the class boundaries. This weighting 
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function takes a free control parameter whose value may range from zero to the infinity. 
It is however quite difficult in practice to choose an optimal value for this parameter 
without the prior knowledge of the density structure of the sample space. Yan et al. [5.89] 
also suggested using the boundary samples for feature analysis but they did not show how 
to effectively find out such sample vectors for training. 
 
Recently, the algorithms based on the locality preserving projections have provided an 
alternative for nonparametric discriminant analysis. They are the natural extensions of the 
manifold learning theory where the concept of ‘locality preserving’ is central [5.58], 
[5.79], [5.82]. The basic idea of these algorithms is that global nonlinear data structures 
are locally linear. By using the kNN algorithm the sample space is partitioned into a 
number of small size neighborhoods. The discriminant information that exists in the 
global nonlinear data structure can be better analyzed at the local scale and extracted for 
classification. Using the locality preserving projections He et al. has developed the 
Laplacianfaces method (LPP) [5.69] which is an unsupervised dimension reduction 
technique that can preserve the local affinity of the observations in the transformed low 
dimensional space. Yu et al. made extensions to this method by utilizing the class 
information for training and developed the discriminant locality preserving projection 
algorithm (DLPP) for supervised dimension reduction [5.94]. 
 
The locality based methods are quite effective for linear feature extraction [5.69], [5.94]. 
But in these methods it is required to determine not only the optimal size of the kNN 
neighborhood but also the parameters of the kernel functions that control the degrading 
rate of the affinity of the neighboring samples. This increases the difficulty for model 
selection and the computation cost is also high especially for large scale applications. 
 
To overcome these problems we propose in this chapter a new method called mutual 
neighborhood based discriminant projection (MNDP) for nonparametric dimension 
reduction. The main characteristic of the new algorithm is that it constructs and utilizes 
the mutual k nearest neighborhoods to describe the boundary structure of the data classes 
for supervised dimension reduction. By constructing the between class mutual 
neighborhoods we can efficiently find out those samples that are close to the class 
boundaries and select them for training. The discriminant features can then be learned by 
maximizing the average distances between the marginal vectors of different classes. 
 
The MNDP is nonparametric, so, it needs not to make any assumption on the data density. 
Moreover, it has the following advantages over the existing methods. First, compared 
with the conventional LDA the number of the discriminant components that can be 
obtained in MNDP is not restricted by the number of the data classes (or the rank of the 
between-class scatter matrice). Second, compared with NDA, the MNDP does not have 
to use the weighting function for training sample selection. Thus, we need not have to 
estimate the control parameter in the weighting function, making MNDP more 
convenient and efficient for real world applications. Third, unlike the methods based on 
the locality preserving projections the new algorithm does not involve any parameter to 
be specified for the kernel functions. In fact, in MNDP there is only one parameter that 
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needs to be controlled, i.e., the neighborhood size k, a small positive integer that can be 
easily configured and adjusted in practice. 
 
Extensive experiments have been performed on a variety of benchmark databases to test 
the performance of MNDP. First, it is evaluated on the two well known face image 
databases, the Yale, and the AR. The popular Eigenfaces and the Fisherfaces methods are 
implemented for comparison. Then, we generalize the linear algorithm for nonlinear 
feature extraction by utilizing the kernel based method. The USPS handwritten digit 
database is used for testing and evaluation. The effectiveness of the proposed MNDP and 
the kernel MNDP methods have been demonstrated in the experiments. 
 
The remaining of this paper is organized as follows. Section 2 will introduce briefly the 
two methods closely related to our work, LDA and NDA. In Section 3 the proposed 
algorithm MNDP will be described in detail. The kernel MNDP is developed for 
nonlinear discriminant analysis by using the kernel based method. In Section 4, the 
experiments on the face and the handwritten digit databases are performed for 
performance evaluation. Finally, conclusion will be drawn in Section 5.  
 

5.3.1 Related works 
 

In this section, we introduce briefly the two methods closely related to our work, LDA 
and NDA. LDA is a parametric method that makes Gaussian assumptions on the data 
density for feature analysis, whereas NDA is nonparametric and makes no density 
assumption. The key notations used in the remainder of this paper are listed in Table I. 
 

Table 5. 11 Summary of key notations used in the paper 
Notation Description Notation Description 
A coefficients of the projection 

vectors of kernel MNDP 
Q k farthest neighborhood 

C number of data classes W projection vectors of MNDP 
D number of features after 

dimension reduction 
BS  between-class scatter matrix of 

LDA 
L number of sample pairs in k 

farthest neighborhood 
WS  within-class scatter matrix of 

LDA 
M number of sample pairs in 

mutual neighborhood 
BS~  between-class scatter matrix of 

NDA 
N number of training samples NS  mutual kNN scatter matrix of 

MNDP 
P mutual k nearest 

neighborhood 
FS  kFN scatter matrix of MNDP 

 
Nonparametric discriminant analysis 
 
Fukunaga et al. [5.66, 5.67] developed a nonparametric discriminant analysis method to 
address the problem in LDA. In NDA, a weighting function is introduced to assign 
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weights to the between-class sample pairs to deemphasize those samples that are far away 
from the class boundaries. For a typical two class problem, the objective function of 
NDA is defined as, 

WSW

WSW
W

W
T

B
T

Wopt

~
maxarg= , 

 
(5.52)

where 

∑ ∑
= =

−−+−−=
1 2

1 1

2
1

22
1

2

2

1
2

1
2

1

1

))())(((1))())(((1~ N

u

N

v

T
vvvvv

T
u

l
uuuuB xmxxmxw

N
xmxxmxw

N
S . 

1N  and 2N  are the number of samples of class 1 and class 2. 1
ux  and 2

vx  denote the 
samples of class 1 and class 2. )( 1

2 uxm  and )x(m 2
v1  are the mean centers of the k nearest 

neighbors of 1
ux  and 2

vx  in class 2 and class 1, respectively. uw  is the weight used to 
deemphasize the sample far away from the class boundary, 
 

   
),(),(
)},(),,(min{

21

21

kNNukNNu

kNNukNNu
u xxdxxd

xxdxxd
w

αα

αα

+
= . 

(5.53)

 
In formula 5.53, 1

kNNx  and 2
kNNx  are the k-th nearest neighbor of ux  in class 1 and class 2, 

),( ⋅⋅d  is a distance measure, ),( 1
kNNu xxd  and ),( 2

kNNu xxd  are the radii of the kNN 
neighborhoods, α  is a free control parameter that ranges from zero to the infinity. This 
weighting function is expected to have the property that near the classification boundary 
it takes on large values and drops off to zero as we move away. The control parameter, α , 
adjusts how rapidly uw  will fall to zero. However, there are problems in using such a 
weighting function for NDA. First, in formula 5.53 there are two parameters, i.e., the 
control parameter α  and the size of the neighborhood k  that have to be both identified. 
We have to try all the possibilities of the combination of α  and k  to find out the optimal 
one leading to the best performance. This is computationally expensive and inconvenient 
for users in large scale applications. Second, for the data that are not strictly Gaussian it is 
quite possible that the data density near to the class boundary is high whereas when we 
move away from the boundary the density will drop. In such a case, formula 5.53 will 
assign large weights to the samples that are far away from the class boundary because in 
the regions of low density the radius of the kNN neighborhood is large, thus generating 
large weight using formula 5.53. The training samples that are far away from the class 
boundary, though providing no useful information for classification, will be mistakenly 
emphasized. Third, the control parameter α  determines the distance measure 
exponentially. It is important to choose a correct value for α  carefully to ensure that the 
weight will drop neither too slowly nor too fast. But in practice α  is a real number whose 
value ranges from zero to the infinity, it is not easy to find out exactly the optimal value 
for it. It is also computationally inefficient in extending the NDA algorithm to handle the 
mutli-class problem by using the one-against-all strategy. The one-against-all strategy has 
been previously applied to the training of Support Vector Machines for classification 
[5.86]. When using it for NDA, however, we have to find out the proper value of α for 
each data class in order to fine-tune the performance of the algorithm. When the number 
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of the data classes is large a considerable amount of computation resources has to be 
allocated for the model selection. 
 

5.3.2 Proposed algorithm 
 
To address the problems in the existing methods, we describe in detail the proposed 
MNDP method in this section. The main feature of the new algorithm is that it constructs 
and utilizes the mutual k nearest neighborhoods to characterize the boundary structure of 
the data classes. The dimension of data is reduced by maximizing the average distance of 
the boundary sample vectors while minimizing the k farthest within class scatter. 
 
Concept of mutual k-nearest neighborhood 
 
First, let’s consider the simple two class problem. Let X  denote the space of 
observations, nRX ⊆ . 1X , 2X X⊂ , φ=∩ 21 XX  are the two classes of training 
samples. We define the between-class mutual k-nearest neighborhood as the set of the 
neighboring sample pairs, i.e., 
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where 1

ix  and 2
jx  denote the i-th and the j-th sample in classes 1X  and 2X , respectively. 

)( 1
ixkNN  represents the set of the k-nearest neighbors of the sample 1

ix  in 2X . Likewise, 
)( 2

jxkNN  is the set of the k nearest neighbors of 2
jx  in 1X . By choosing the proper 

neighborhood size k  we can efficiently find out the samples lying close to the boundaries 
of the two data classes, as illustrated in Figure 5.16. 

 
Figure 5. 16 Mutual k-nearest neighborhood of two data classes. 
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Figure 5.16 shows the two classes of data that are not strictly Gaussian. For each sample 
vector in class 1 (diamond), x , we can find out its k-nearest neighbors in class 2 (circle). 
On the other hand, if any of the neighbors of x , say y , has also x  as one of its k-nearest 
neighbors in class 1, we then pair-up x  with y  (straight line) and add this new sample 
pair to the mutual neighborhood of the data set. The sample pairs in the mutual 
neighborhood will then be used for training. 
 
For the multi-class problem we can construct the mutual neighborhood in two steps. First, 
we use the one-against-all strategy to construct the mutual neighborhood for each data 
class. Then, we take the union set to obtain the mutual neighborhood for the entire 
training set. To describe it mathematically, let there be C classes, XXX C ⊂...,,1 , and 

let mP be the mutual neighborhood constructed for the class mX , i.e., 
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where m

ix  represents the i-th sample in the m-th class and jy  is the j-th sample that 
belongs to mXX − . The mutual neighborhood constructed for the entire data set is thus 
defined as, 

             CPPPP ∪∪∪= ...21 . (5.56)
 
Within-class Mutual k farthest neighborhood 
 
To describe the nonparametric within-class scatter we construct and utilize the k farthest 
neighborhood. For the C-class problem the k farthest neighborhood for the entire training 
set is defined as, 

             CQQQQ ∪∪∪= ...21 , (5.57)
 
where mQ is the k farthest neighborhood constructed for the m-th class, i.e., 
 

         )}(,,|),{( jimjmijim xkFNxXxXxxxQ ∈∈∈= , (5.58)
 
here )( ji xkFNx ∈  indicates that ix  is among the k farthest neighbors of jx , 

mX represents the m-th data class.  
 

5.3.3 Formulation of MNDP 
 
The objective function of MNDP is to maximize the average distance between the 
neighboring sample pairs in the constructed mutual neighborhood while minimizing the 
nonparametric within-class scatter. The proposed MNDP criterion is formulated as, 
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where NS  is called the between-class mutual kNN scatter matrix, 
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neighborhood, and ( ) Qxx jj ∈21 , . The optimal transformation of MNDP, optW , consists of 

the leading eigenvectors of the matrix NF SS 1− . Given a testing pattern x , we can obtain 
its features by taking the projection xWf T

opt=  and use this feature vector for 
classification. Figure 5.17 uses the simulated two dimensional data to visualize the first 
discriminant component (eigen vector) corresponding to the largest eigenvalue obtained 
in LDA and MNDP, respectively. 

(a) (b) 
Figure 5. 17 Illustration of the first component of LDA (dot line) and MNDP (solid line) on two 
dimensional data set (diamonds and circles). (a) two classes of Gaussian data, both LDA and 
MNDP can work effectively (b) two classes of data that do not follow the Gaussian distribution 
strictly, LDA fails whereas MNDP can still work effectively to separate the classes 
 
In Figure 5.17 the two classes of data are linearly separable. Each class contains one 
hundred samples. In Figure5.17 (a), the two classes are both Gaussian. We can see that 
both the LDA and the proposed MNDP method can work effectively to find out the 
correct projection vectors. In Figure 5.17 (b), it illustrates the case when the two classes 
of data are not strictly Gaussian. The LDA fails to separate the two classes because for 
this set of data the estimated class centers do not reflect its true density anymore, the 
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LDA component obtained is biased from the optimal direction of the projection. In 
contrast, our proposed MNDP method is robust to the variation of the data density. It can 
still work well to separate the two data classes because it does not rely on the density but 
the boundary information of the data for feature analysis. 
 

5.3.4 Kernel MNDP 
 
The proposed linear MNDP algorithm is effective in separating the data classes that are 
linearly separable. But like other linear algorithms it fails to separate the data that may 
have strong nonlinearity. Recently, the kernel based method has received a lot of 
attentions, leading to the development of a spectrum of the kernel based methods [5.59], 
[5.73], [5.75], [5.76], [5.77], [5.80], [5.81], [5.84], [5.85], [5.91], [5.92], [5.95] for 
dimension reduction and classification, e.g., the kernel PCA , the kernel FDA, and the 
Support Vector Machines. In this section, we apply the kernel technique to develop the 
kernel MNDP algorithm for nonlinear dimension reduction.  
 
Fundamentals of kernel method 
 
Given a training sample nRx∈  in the observation space, which is possibly nonlinearly 
mixed, we transform it to the feature space H  via the following implicit nonlinear 
mapping, 

      HRn →Φ :  
    )(xx Φa . 

 
(5.60) 

 
From Cover’s theorem [5.84, 85] on the separability of patterns, it is known that the 
nonlinearly separable patterns in an input space are linearly separable with high 
probability if the input space is transformed nonlinearly to a high dimensional feature 
space. So after performing the nonlinear mapping we just need to do linear MNDP in the 
space H  to compute the optimal projection vectors. Let us denote the MNDP 
transformation in the high dimensional space as )()(,: xWxFHW Φ⋅Φ→ ΦΦ a . 
From the theory of reproducing kernel Hilbert space [5.80, 81], we also know that any 
solution HWk ∈Φ  must lie in the span of all the training samples.  Thus, there exists an 
expansion for Φ

kW  of the form,  

                ∑
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ikik xW
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(5.61)

 
In matrix form, we have Φ=Φ AW , where TT

D
TA ),...,( 1 αα= , NT

kNkk R∈αα=α ),...,( 1  

and ( )TT
N

T xx )(,...,)( 1 ΦΦ=Φ , D is the number of the features. Now in the high 
dimensional space H  , for a given pattern )(xΦ  ΦW  transforms it to the L -dimensional 
feature vector Y , 

              )(xAY Φ⋅Φ= . (5.62)
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Kernelizing the MNDP criterion 
 
In the kernel induced high dimension space we can reformulate the MNDP in the kernel 
induced high dimensional space, i.e., 
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where we define the between-class mutual kNN scatter matrice Φ

NS  as, 
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Similarly, the within-class kFN scatter matrice is, 
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Kernel trick 
 
Note that in order to find out the optimal ΦW  we have to evaluate the two matrices Φ

NS  
and Φ

FS . Since we do not know the explicit form of the nonlinear mapping )(⋅Φ  the dot 
product cannot be directly computed. Fortunately, by taking advantage of the Mercer’s 
theorem [5.80, 5.81] we can obtain the result of the dot product by using the kernel trick. 
Let us denote ),( ⋅⋅K  as the mercer kernel, a continuous, symmetric and semi-positive 
function. The inner product of the two patterns in the high dimensional space is thus 
equal to, 

)()(),( jiji xxxxK Φ⋅Φ= . (5.66)
 
In practice several types of kernel functions such as the Gaussian RBF kernel function, 
the Inverse multi-quadric function and the polynomial function, can be adopted [5.55], 
[5.76], [5.80], [5.81], [5.84], [5.85]. By applying the kernel trick, we convert the 
objective function of kernel MNDP into the following form, 
 

T

T

Aopt AA

AA
A

Ψ

Ξ
= max  

 
(5.67)

where  
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and Pxx ji ∈),( . In a similar way, we can construct the matrice Ψ , where 
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where Qxx vu ∈),( . iK  denotes the i-th row vector of the kernel matrice whose elements 
are the inner products of the training samples in the high dimensional space. Finally, the 
optimal solution of can be found by solving the following eigen equation, 
 

AA Γ=ΞΨ−1 . (5.70)
 
where Γ  is the diagonal matrice of the eigen values of the matrice ΞΨ−1 . After we solve 
Eq. 5.70 we can reduce the dimension of a presented pattern by taking the transformation, 
 

XAs T
opt ⋅Φ= . (5.71)

 
where optA  is the matrice whose column vectors are the leading vectors of the matrice 

ΞΨ−1 . 

5.3.5 Experimental result 
 
We performed extensive experiments on three real world benchmark databases to test and 
evaluate the performance of the proposed MNDP and the kernel MNDP methods. The 
MNDP algorithm has demonstrated its effectiveness, as compared with the popular 
Eigenfaces and the Fisherfaces methods, in solving the face recognition problems on the 
AR and the Yale face image databases [5.74], [5.87], respectively. The kernel MNDP 
algorithm was tested by using the U.S. Postal Service handwritten numeral database 
[5.70]. The LDA, the kernel FDA and the MNDA were implemented for comparison. 
The statistics of the databases used in our experiments is listed in Table 5.12. 
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Table 5. 12 Statistics of databases used in experiments 
Experiments Num. of 

classes 
Num. of training 
samples of each 

class 

Num. of 
dimensions of 

data 
AR 126 14 2000 Face recognition 

Yale 15 11 2000 
Handwritten digit 

recognition 
USPS 
digits 

 
10 

 
100 

 
256 

 
The experiments were performed on a Pentium 4 2.6GHz PC with 512MB RAM memory 
under Matlab 7.1 platform.   
 
MNDP for Face Recognition: AR Database 
 
The AR face database contains over 4,000 face images of 126 individuals taken in two 
time sessions under the variations of illumination, facial expression and occlusion 
conditions. Each person has 26 images. In our experiment we consider using a subset of 
14 images of each person for training and testing. Figure 5.18 shows the selected sample 
images of one subject. 
 

       
(a) (b) (c) (d) (e) (f) (g) 

       
(n) (o) (p) (q) (r) (s) (t) 

Figure 5. 18 Sample images for one subject of the AR database 
 
In Figure 5.18, the images (a)-(g) and (n)-(t) are drawn from the first and the second time 
sessions respectively. For each session the first four images (a)-(d) and (n)-(q) involve the 
variation of facial expressions (neutral, smile, anger, scream) while the images (e)-(g) 
and (r)-(t) are taken under different lighting conditions (left light on, right light on, all 
sides light on). The images are manually cropped and normalized to 4050×  pixels. We 
perform twenty fold cross validations in the experiments and set the neighborhood size to 
be 3. For each round of testing, seven images are randomly chosen to generate the 
training set and the remaining samples are used for testing purpose. Therefore, there are 
totally 882 images in the training and the testing sets. After reducing the dimensionality 
of the data the three distance measures, the 1L  and the 2L  norms and the Cosine are used 
for pattern matching. We compute the average top recognition rate of the twenty folds of 
tests. The accuracy rate, the standard deviation, and the number of the discriminant 
components used for classification are shown in Table 5.13. 
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Table 5. 13 Top average recognition rate (%)  on AR database 
Distance measures  

Method L1 L2 Cosine 
Eigenfaces 92.08 ± 1.23(80) 80.92 ± 1.23(80) 85.48 ± 1.23(80) 
Fisherfaces 84.61 ± 1.32(79) 82.74 ± 1.21(80) 87.59 ± 1.28(55) 

MNDP 95.14 ± 1.12(40) 90.81 ± 0.81(41) 95.57 ± 0.81(40) 
 
In Table 5.132, we observe that first the proposed MNDP method outperforms 
significantly the Eigenfaces and the Fisherfaces methods using three types of distance 
measures. The accuracy improvement over the Eigenfaces is 3.06%, 9.89%, and 10.09%, 
while for Fisherfaces it is 10.53%, 8.07% and 7.98%. Second, our method achieves the 
highest recognition rate with the fewest number of features. Compared with the other two 
methods it requires only about a half of the number of the dimensions (40/80) in 
achieving the top accuracy. Third, as shown in TableIII the standard deviation of the 
accuracy rate of MNDP is 1.12, 0.84 and 0.81 respectively. They are smaller than those 
of the two other methods, indicating that the performance of MNDP is more stable than 
those of the Fisherfaces and Eigenfaces methods in achieving the high recognition rate 
accuracy when the number of the features used for classification changes. In Figure 5.19 
we show the statistics on the average recognition rate of the three methods,  
 

  
(a)  (b)   
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(c)   (d)   
Figure 5. 19 Statistics on the recognition rate of MNDP, Eigenfaces and Fisherfaces. (a)-(c) 
Recognition rates with the L1 norm, L2 norm and the Cosine similarity. (d) Recognition rates of 
MNDP with varying size of the neighborhood k when the Cosine similarity is used for 
classification. 
 
From Figure 5.19 (a), (b) and (c), we can see that, averagely, our proposed MNDP 
method shows better performance than the other two algorithms in the twenty folds tests. 
Especially, it outperforms the popular Fisherfaces method significantly. The reason is 
that face recognition is typically a small sample size problem. It is difficult to make 
accurate estimations on the density parameters using only a limited number of training 
samples. Our MNDP method can overcome this problem by dropping the assumption on 
the data density. It utilizes the boundary instead of the density information of data for 
dimension reduction, which is more suitable for small sample sized problems. In Figure 
5.19 (d) we show the accuracy rate of MNDP changing over the neighborhood size k 
when using the Cosine similarity measure for classification. We can see that when the 
neighborhood size is set to be 1 the recognition rate is still low. As we increase the 
neighborhood size from 1 to 2 and 2 to 3 the accuracy rates jump from 93% to 94%, and 
94% to 95%. However, when we further increase the size of the neighborhood to include 
more samples for training the recognition accuracy will not change too much any more. 
This indicates that there may exist a minimal neighborhood size k (in our case, 3k = ). It 
determines a smallest set of the training sample vectors that are most effective in 
describing the class information of the data. Increasing the size of the neighborhood can 
only bring into the training process the samples that are far away from the class 
boundaries. These sample vectors however provide no further useful information to help 
improve the accuracy of the algorithm. 
 
MNDP for Face Recognition:Yale face database 
 
The Yale face database [5.87] contains 165 images of 15 individuals, each subject has 11 
images of the size 800100× , manually cropped and resized to 4050× . Here, five tests are 
performed using different number of samples for training. More specifically, in the k -th 
test, we used the first k  image samples per class for training and the remaining samples 
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for testing. The mutual neighborhood size is set to be 1. The Eigenfaces [5.72, 5.73] and 
the Fisherfaces methods [5.60] are implemented for performance comparison. The top 
recognition rate for each testing and the number of the projection vectors used for feature 
extraction are listed in Table 5.14. 
 
Table 5. 14 Top recognition rate (%) and number of components used 

Number of training samples of each class  
Method 2 3 4 5 6 

Eigenfaces 92.6 (28) 92.5 (32) 95.2 (34) 92.2 (72) 90.7 (24) 
Fisherfaces 91.1 (11) 89.2 (10) 94.3 (12) 95.6 (8) 94.7 (10) 

MNDP 92.9 (15) 92.7 (11) 98.1 (12) 97.8 (7) 97.3 (10) 
 
We use the cosine similarity measure for classification. In Table IV it can be seen that in 
all the five tests the proposed MNDP algorithm achieves the highest recognition rates 
among the three algorithms. Specifically, compared with the Fisherfaces the MNDP 
method improves the recognition accuracy by 1.8%, 3.5%, 3.8%, 2.2% and 2.6%, 
respectively. It also outperforms the Eigenfaces method significantly with the increase of 
accuracy 2.9%, 5.6% and 6.6% when 4, 5 and 6 samples are used for training. Figure 
5.20 shows the average recognition accuracy of the three algorithms changing over the 
number of dimension of the projection vectors.  
 

 
 
Figure 5. 20 Average accuracies of MNDP, Fisherfaces and Eigenfaces changing over the 
number of feature dimensions. 
 
We can see that the accuracy rate of the MNDP method keeps the highest when more 
than 10 components are utilized for classification. Unlike the Fisherfaces it can obtain 
more than 1−C  discriminant components for classification, where C  is the number of 
the data classes. So, more projection vectors can be used to achieve better accuracy of 
classification. We also show the performance of MNDP when different types of similariy 
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measures, the 1L  the 2L  norms and the Cosine similarity measures are employed for 
classification. The result is shown in Figure 5.21. 

 
 
Figure 5. 21 Average accuracy of MNDP using L1 , L2, and Cosine similarity measures 
 
We can see that the Cosine similarity measure generates significantly better results than 
the 1L  and the 2L  norms on the Yale face database, while the 2L  norm is consistently 
better than the 1L  norm. We conclude that the cosine similarity is more preferable in 
MNDP than the 1L  and 2L  norms. Figure 5.22 shows the recognition rate when the 
neighborhood size is set to be 1, 3, and 5 respectively. Six samples are drawn from each 
class for training. 

 
 
Figure 5. 22. Recognition rate of MNDP on Yale database with varying size of neighborhood 
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It can be seen that as we increase the size of the neighborhood from 1 to 5, more samples 
lying close to the boundaries of the data classes will be selected for training. The 
recognition rate of MNDP is also improved. 
 
Kernel MNDP for Handwritten Digit Recognition: multi-class digit recognition 
 
In this section, we use the U.S. Postal Service handwritten numeral database to analyze 
the performance of the Kernel MNDP algorithm. The LDA, the linear MNDP, and the 
KFDA methods are implemented for comparison.  
 
The USPS handwritten digit database contains 7291 training observations and 2007 test 
observations of the digits 0 to 9. Each digit is represented as the grey scale image of 

1616× dimensions. In our experiment, all the images are converted to the one 
dimensional vectors and normalized to have the unit length. We design two experiments 
on the USPS database. In the first experiment, we perform the ten fold cross validations 
to evaluate the standard multi-class KMNDP method for digit recognition. In the second 
experiment, we test the two-class KMNDP for digit pair separation. Eight pairs of digit 
are selected for training and testing. The Kernel MNDP and the linear MNDP are 
compared with the LDA and the kernel FDA methods that have been previously used for 
handwritten digit recognition [5.92]. 
 
We perform the ten fold cross validation for testing. For each fold of testing, 100 samples 
are drawn randomly from each class to create the training set. So, we have totally 1,000 
samples for training. The testing set that contains 2007 samples are used to compute the 
recognition accuracy. In our experiment the Cosine similarity is used for classification. 
The neighborhood size k is set to be 10. The average top recognition rate, the standard 
deviation of the accuracy rate and the number of the features used for classification are 
listed in Table V (with Gaussian RBF kernel). 
 
Table 5. 15 Average top recognition rate with Gaussian kernel function 

Method  
Accuracy KFDA KMNDP LDA MNDP 

equ. Num. of features 90.8 ± 0.71 (9) 92.4 ± 0.60 (9) 86.4 ± 0.75(9) 87.5 ± 0.66 (9) 

opt. num. of features 90.8 ± 0.71 (9) 94.1 ± 0.28 (11) 86.4 ± 0.75(9) 89.7 ± 0.27 (10) 

 
In Table 5.15, the first row shows the average top recognition rate of the ten fold cross 
validation with equal number of features being used for classification. We can see that 
KMNDP achieves the top accuracy rate among the four algorithms. The linear MNDP 
algorithm outperforms the LDA as well. The second row of the table shows the optimal 
number of dimensions used for each method in achieving the top accuracy. For KFDA 
and LDA, there are at most 9 components available for feature extraction due to the rank 
limit of the between class scatter matrix, whereas for KMNDP and MNDP there are no 
such restriction and we can obtain more features to achieve better classification accuracy. 
Figure 5.23 shows the average accuracy of the algorithms changing over the number of 
the feature dimension. 
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Figure 5. 23 Average accuracies of KFDA, KMNDP, LDA and MNDP changing over the 
number of feature dimensions 
 
We can see that the KMNDP (with Gaussian RBF kernel) outperforms the other three 
methods consistently. However, the linear MNDP while being more accurate than LDA is 
not as competitive as the KFDA method on the USPS data set. This suggests that the 
handwritten digit dataset has strong nonlinearity that cannot be easily handled through 
using the linear projections. The kernel MNDP and the kernel FDA by taking advantage 
of the kernel method can address this deficiency by taking the nonlinear projection in 
separating the classes.  
 
Kernel MNDP for Handwritten Digit Recognition: two-class digit recognition 
 
In the second experiment, we test the two-class KMNDP for the recognition of digit pairs. 
Eight digit pairs, i.e., {0, 1}, {1, 8}, {2, 0}, {3, 4}, {4, 5}, {1, 5}, {6, 7} and {8, 6} are 
selected for training and testing. For each digit 100 samples are chosen randomly for 
training, while the samples in the testing set are used for validation. In our experiment, 
we set the mutual neighborhood size to be 15. The cosine similarity measure is used for 
the nearest neighbor classification. The top recognition rates of LDA, MNDP, KFDA and 
KMNDP are shown in Table 5.16. 

 
Table 5. 16 Top recognition rate of KMNDP, KFDA, MNDP and LDA. 

Method  
Digit-pairs KMNDP KMNDPopt KFDA MNDP MNDPopt LDA 

{0, 1} 99.2 99.2 (1) 99.2 85.2 95.3 (2)  83.9 
{1, 8} 88.7 99.1 (2) 87.9 85.6 92.5 (2) 84.2 
{2, 0} 97.3 97.3 (1) 96.2 93.4 93.4 (1) 92.6 
{3, 4} 98.3 98.3 (1) 97.8 97.5 97.5 (1) 96.7 
{4, 5} 98.2 98.2 (1) 96.9 84.4 90.5 (2) 83.1 
{1, 5} 89.8 98.1 (2) 88.1 82.7 85.4 (2) 82.7 
{6, 7} 98.7 98.7 (1) 97.5 94.7 94.7 (1) 93.1 
{8, 6} 95.4 97.7 (2) 94.6 89.4 92.8 (2) 88.2 
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Average 95.8 (1) 98.5 (1.4) 94.4 (1) 89.9 (1) 93.6 (1.6) 88.1 (1) 
 
When only one dimension of component is used, as shown in the columns 1, 3, 4, and 6 
in Table 5.15, the average accuracy of KMNDP is 95.8%, higher than that of the KFDA 
94.4%, while for linear MNDP it is 89.9% higher than that of the LDA, 88.1%. If we use 
the optimal number of features for classification, as shown in the columns 2 and 5, for the 
digit pairs {1, 8}, {1, 5} and {8, 6} the recognition rate can be further improved. It takes 
averagely 1.4 and 1.6 dimensions in achieving the accuracy rate of 98.5% and 93.6% for 
KMNDP and linear MNDP, significantly better than that of KFDA and LDA.  
 
Now, taking digit pair {1, 5} as an example, we plot the scatter of 424 testing samples 
(264 samples from digit 1 and 160 samples from digit 5) as they are projected onto the 
discriminant space, as shown in Figure 5.24. For LDA and KFDA, since there is only one 
discriminant axis, the projected samples scatter on a line. Differently, the proposed 
MNDP and Kernel MNDP methods enable the data to scatter on a plane. 
 

 
(a) (b) 

  
(c) (d) 
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Figure 5. 24 The scatter plots of two class samples, digit 1 and digit 5 using LDA, KFDA, 
MNDP and KMNDP. (a) The scatter plot of LDA, where 73 out of 424 samples are misclassified. 
(b) The scatter plot of KFDA, where 51 samples are misclassified. (c) The scatter plot of MNDP, 
where 62 samples are misclassified. (d) The scatter plot of KMNDP, where 8 samples are 
misclassified 

 
It can obviously be seen from Figure 5.24 that the data are more separable in the two 
dimensional KMNDP space than in the one dimensional LDA, KFDA and the two 
dimensional MNDP spaces. Actually, this separability can be simply measured by the 
classification errors. There are only 8 errors for KMNDP while 51, 73, and 62 samples 
are misclassified in KFDA, LDA, and MNDP. We also observe that compared with the 
linear MNDP projection the scatter of the kernel MNDP features are more tightly 
clustered by using the nonlinear projections. The separability of the two classes can thus 
be increased to reduce the error of classification. 
 

5.3.5 Conclusion 
 
In this chapter, we developed a new method called mutual neighborhood based 
discriminant projection for dimension reduction (MNDP). The proposed method has the 
following advantages over the existing ones. First, it is nonparametric in nature. By 
dropping the assumption on the data density, MNDP is reliable and suitable to be used to 
handle the data that are not necessarily Gaussian. Second, unlike LDA, the number of the 
projection vectors that can be obtained in MNDP is not restricted by the number of the 
data classes. More projection vectors are available for use to achieve better classification 
accuracy. Third, compared with the other nonparametric methods such as NDA, LPP and 
DLPP, there is only one parameter in MNDP, i.e., the neighborhood size k to be 
configured. It is convinenet for users to choose the proper parameters for model selection. 
Finally, we generalize the linear MNDP method for nonlinear dimension reduction by 
utilizing the kernel based method. It is shown to be more effective than the linear 
algorithm in processing the nonlinear patterns in the dataset. 
 
Extensive experiments have been performed on a variety of benchmark databases for face 
and handwritten digit recognition. The experiment results on the AR and the Yale face 
database show that the linear MNDP method is more accurate than the popular 
Eigenfaces and the Fisherfaces methods. Meanwhile, it requires fewer discriminant 
components for the pattern matching and retrieval. For the handwritten digit recognition 
problem the kernel MNDP outperforms the KFDA, the LDA and the linear MNDP 
algorithms consistently and significantly. The effectiveness of the linear MNDP and the 
kernel MNDP methods has been demonstrated in our experiments. 
 
It should be noted that the kernel MNDP algorithm, like other kernel based methods such 
as KPCA and KFDA, has high computational complexity when the size of the training 
data scales up. To reduce the computational complexity Mitra et al. [5.78] have 
developed a density based technique for multi-scale data condensation. By choosing only 
a subset of the data for training based on the kNN density estimation the computation and 
the memory efficiency can be improved. But their algorithm is designed mainly for 
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unsupervised algorithms where the class information is not utilized. The boundary 
information of the data classes may be lost during data reduction. It is an interesting topic 
for future study if we can integrate our mutual neighborhood based method with the 
density based data condensation technique for data reduction, so that the efficiency of the 
kernel MNDP algorithm can be improved. 
 
 
 
 
 
 
 
 
 
 

Chapter 6. Adaptive CS4 algorithm  
 
DNA methylation is the chemical modification of DNA that can be inherited without 
changing the DNA sequence. Methylation occurring at gene promoter CpG sites is one of 
the mechanisms for regulating the transcription of genes in human embryogenesis and 
tumourgenesis. Recently, it was discovered that a selected subset of 49 promoter CpG 
sites drawn from 40 cancer-related genes can be utilized as the biomarkers to differentiate 
human embryonic cells from cancer and normally differentiated cells. In this chapter, we 
perform a meta-level analysis on the methylation profile of three types of cells to address 
the two classification related questions: i) What is the minimal set of the CpG markers 
that we can learn to fully differentiate the three types of cells? Answers to this question 
can shed light into the critical subset of biomarkers useful to biologists; and ii) What is 
the specific pattern of gene co-methylation in human cancer and embryonic stem cells?  
Answers to this question can help biologists understand the nature of such cells. 
 
In addressing the questions, we develop the Adaptive CS4 and clustering methods for 
rule-based cell classification and co-methylation analysis. By applying Adaptive CS4, we 
can reduce the number of CpG markers from 49 to only two without sacrificing the 
accuracy of classification. The expenses for lab array test can thus be reduced. The 
discovered methylation rules imply the logic of DNA methylation in programming the 
cells’ development. On the other hand, by adaptive clustering we detect the patterns of 
gene co-methylation in human cancer and embryonic stem cells. The distinct patterns of 
co-methylation highlight the multifunctional and dominant role of DNA methylation in 
human embryogenesis and tumourgenesis. We show further that co-methylation depends 
on not only the locations of genes in the genome space but also the phenotypes of cells. 
 
It is critical task to investigate the molecular mechanism underlying the DNA 
methylation rules. The clustering patterns of co-methylation identified the groups of 
genes orchestrated epigenetically for similar cell functions. Experiments in wet labs can 
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be designed to find out the co-methylation pathways in human cancer and embryonic 
stem cells.  

6.1 Background  
 
A genome is the program book of a life. Human genome consists of approximately 
20,000~30,000 genes that encode the various types of proteins making up the human 
body. These genes are programmed to concert the production of proteins so that when 
given external stimuli, they can behave appropriately for function over time and space. 
One of the molecular mechanisms that are involved in such programming is DNA 
methylation [6.1]. Unlike gene mutations [6.2, 6.3], which regulate the transcription of 
genes by altering their coding sequence, DNA methylation defines the landscape of 
protein production by restricting the accessibility of the gene transcriptional factors to the 
transcription starting sites near the gene promoters. These promoter sequences, at the 5’ 
end of the genes, are the regulatory elements for gene expression. Physically, the 
methylated CpG sites in the promoters will attract the methyl-binding domain proteins 
(MBD) such as the MBD1 to MBD4, and the MeCP1, MeCP2. The MBDs, in association 
with the DNA methyltransferases enzymes (DNMTs), will then recruit the histone 
deacetylases (HDAC) to deacetylate the histones by removing the electronegative acetyl 
groups from the nucleosomes [6.4]. As a result, the histone cores become positively 
charged so that the electronegative DNA strands will be tightly wrapped around them 
through the interaction of the static electromagnetic force. The transcription starting sites 
are thus made inaccessible to the RNA polymerase and other transcriptional factors, 
suppressing the transcription of the genes. 
 
DNA methylation is considered to play important roles in the self-renewal and 
differentiation of human embryonic stem cells (hESC) [6.5]. When receiving the cellular 
signal inputs, they can transform to differentiate into any type of the adult cells with 
specialized functions and structures. This unlimited potency makes it an ideal solution to 
treat a host of the congenital, developmental, and degenerative diseases such as cancers, 
Parkinson’s disease, spinal cord injuries and muscle damage. It is thus important for us to 
better understand the mechanism of DNA methylation to pave the way for the safe and 
effective use of hESC in medicine. 
 
Over the past few years, the computational analysis of DNA methylation in human cells 
is becoming an increasingly important topic in the areas of statistical pattern recognition, 
data mining, and bioinformatics. These works are closely related to the classification and 
clustering of the methylation profiles of human cancer and normal tissue cells. 
Specifically, Fabian et al. [6.6] apply Support Vector Machines (SVMs) for tumour 
classifications using the Microarray-based methylation data. Das et al. [6.7] perform 
Linear Discriminant Analysis (LDA), Logistic Regression (LR) and use SVMs to predict 
the methylation status of the CpG sites, where SVMs achieve the best accuracy rate of 
classification. Bhasin et al. [6.8] also train SVMs to predict the state of CpG methylation 
at the genome-wide scale. Recently, Marjoram et al. [6.9] perform cluster analysis on the 
DNA methylation profiles of cancers. Some of the CpG sites are found to be co-
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methylated. All the methods developed and used so far in DNA methylation analysis, 
including SVMs, LDA, and LR, are based on linear transformations.  
 
In the previous works, the knowledge that we learn from these data is presented in the 
form of the weight coefficients that optimally define the decision functions. They are 
simply the numerical values without any semantic meanings, making it rather difficult for 
human experts to understand and interpret the result obtained in biological context. To 
address this deficiency, we propose a new algorithm, called Adaptive CS4 (ACS4) as a 
natural extension of the decision tree algorithm. Compared with the classical CS4 
algorithm, the ACS4 can be utilized to discover and formulate the methylation rules in 
the form of human natural language. The knowledge learned on DNA methylation can 
thus be readily understood and interpreted by human experts. Moreover, by using the 
ACS4 algorithm we can select and use only 2 CpG biomarkers, instead of 49 markers 
[6.10], to predict accurately the class labels of the cells. The expenses for lab array tests 
and diagnosis can thus be reduced. This also allows biologists to work more efficiently 
by narrowing down their focus onto a much smaller set of biomarkers for analysis.  
 
In addition, Marjoram et al. [6.9] recently study the clustering structure of the 
methylation profile in human tumour cells. Many CpG sites are found co-methylated. 
However, for hESC little is known about the clustering property of the gene CpG sites. 
To answer this question, we develop an adaptive clustering method and use it to find out 
the natural divisions of the CpG functional groups in the methylation profile of hESC. 
Our result shows that co-methylation exhibits different patterns for hESC and cancer cells. 
DNA methylation plays a multifunctional and dominant role in regulating the behaviour 
of these two types of cells. 

6.2 Adaptive CS4 and clustering 

6.2.1 ACS4 methylation rule discovery 
 
The main idea of ACS4 is that instead of creating only a single decision tree, we can 
generate a committee of trees and use them for classification by voting, in a quite similar 
way as the boosted C4.5 algorithm [6.43]. The ACS4 can optimally find out the natural 
division of the attribute values and adaptively assign a set of the human linguistic 
variables with semantic meanings, such as ‘high’, ‘medium’, or ‘low’ to the attribute 
domain, so that the methylation rules in ACS4 can be learned and presented in human 
natural language for better utilization. To achieve this goal, we first cluster the 
methylation data to find out the optimal partitions of the attribute domains. We then sort 
the clusters according to their centres and assign the linguistic variables to the attributes 
for rule induction.  
 
Given a training data set D  having two classes of samples, positive and negative, the 
ACS4 algorithm consists of the following steps to derive iteratively k  trees from D  for 
classification. 
 
Algorithm Adaptive CS4 
Input: Profile of DNA methylation  
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Output: Association rules of methylation for classification 
begin 
    for each CpG attribute in DNA methylation profile 
        Perform c-Means clustering with c = 2, 3, and 5 initial centres. 
        Take each cluster as one class and compute the Fisher’s discriminant score, 2f ,   
       3f , 5f , on the results of clustering. 
        Find out the clusters with the greatest Fisher’s discriminant score, max_kf . 
        Rank the clusters according to cluster centres. 
        Assign linguistic variables max_kL  to numerical domain of CpG attribute.  
        case  k_max  of 
            2: max_kL  set to {‘high’, ‘low’} 
            3: max_kL  set to {‘high’, ‘medium’,   ‘low’} 
            5: max_kL  set to {‘very_high’, ‘high’, ‘medium’, ‘low’, ‘very_low’} 
         end case 
    end for  
    Compute the Shannon entropy and the information gain to rank all the features into     
    an ordered list with the best feature at the first position. 
    for each feature 
          Use it as the root node to construct the decision tree. 
           Extract the DNA methylation rules by traversing the decision tree structure.  
   end for 
end 
 
The rules learned in ACS4 are more intuitive than those of the CS4 [6.44] in highlighting 
the semantics of the results obtained. For instance, one rule built in CS4 may take the 
form “IF the methylation level of CpG_1 ≥  8280.25 AND the methylation level of 
CpG_2≤ 6821.75 THEN this sample is type_1”. It however cannot tell us if the values 
‘8280.25’ and ‘6821.75’ is either ‘high’, ‘medium’, or ‘low’ in the attribute domain of 
CpG_1 and CpG_2. The rules are not intuitive for human understanding and biological 
interpretation. In ACS4, instead, we can present the rules in human natural language to 
address this deficiency, hence, “IF the methylation level of CpG_1 is high AND the 
methylation level of CpG_2 is low THEN this sample is type_1”. The utilization of the 
linguistic variables is based on the adaptive clustering of the attribute values, where the 
Fisher’s discriminant scores are computed to evaluate the quality of the clustering results, 
so we can always choose the best one to partition the data most naturally.  

6.2.2 Class prediction 
 
By using the methylation rules, we are then able to make predictions on new testing 
patterns. Given a testing sample T , each of the k trees in the committee will have a 
specific rule to tell us its predicted class label. Denote the k rules in the tree committee as, 
 

      1rule ,  2rule ,…, krule . (6.1)
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For each irule  ( ki ≤≤1 ) we assign it a prediction value, ip , hence,  
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We then evaluate the contribution of each rule to the final prediction. A weight, wi, is 
assigned to the rulei, according to its Coverage value, i.e., 
 

      ( )ii ruleCoveragew = . (6.3) 
 
The Coverage is the percentage of the samples in a class satisfying the rule. The greater 
the Coverage, the more reliable the rule can be used for prediction. The decision is made 
based on voting by computing the total score of prediction, 
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where the signum function Sign extract the sign of the real number, it is defined as, 
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Thereby, if the prediction Score is +1, then the testing pattern is predicted to be in the 
positive class, if it is -1, then it is predicted to be in the negative class. We can also show 
how confident we are in making this prediction by Eq. 6.6. 
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making the positive and the negative prediction, respectively. 1k  and 2k  is the number of 
the rules of the positive and the negative predictions. Therefore, the larger the confidence 
value is the more confident we are in making the predictions. Specifically, if posα  
equals negα , which is the case for Sign being zero, the Confidence value of the prediction 
will be down to zero as well, meaning that more information has to be given to make the 
judgment on the class label of the testing pattern.  

6.2.3 Adaptive clustering for co-methylation analysis 
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Suppose we have m CpG sites and each of them has n observations (sample cell lines), 
the adaptive clustering algorithm consists of the following steps. 
 
Algorithm Adaptive Clustering 
Input: Profile of DNA Methylation 
Output: Clusters of gene promoter CpG sites 
begin 
    Define a distance measure d. 
    for c from 2 to N 
          Perform c-Means clustering with c initial cluster centres. 
          Take each cluster as a single class. Compute the Fisher’s discriminant score of  
          clustering results. 
    end for 
    Find out the best result of clustering with the greatest Fisher’s discriminant score. 
    Find out the CpG sites in the same clusters to examine the co-methylation patterns 
    of genes. 
end 
 
We can define the distance measure d by using the Euclidean distance or the Pearson’s 
correlation coefficients. The rules learned can guide biologist to design new experiments 
in wet-lab to find out exactly the molecular mechanism that underlies the epigenetic 
programming system. 
 
Additional files: 
 

 
(a) 

 
(b) 

(c) 
 

(d) 
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Low High 

Normal CTLA4-373 

Low High 

Cancer hESC 

PI3-504 
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Figure 6. 1 Two committees of trees TC1(a,b) and TC2(c,d)  (a) T1 (b) T2 (c) T3 (d) T4 
 
Between Group Analysis (BGA): 
 
The BGA method can be used for classification and gene selection. The idea is quite 
simple. For a data set with K samples, },...,{ K1 xxD =  where N

i Rx ∈ , N1i ,...,= , the 
covariance matrix C  of D which is of NN × dimensions is constructed and factorized by 
singular value decomposition, thus TVUC Λ= , and U,  V contain the K-1 principal 
components that maximize the variations of the data. The most discriminating genes for 
classification are determined as those most influential to the variations of data. For the ith 
gene, its significance is in proportional to the absolute value of the ith element of the first 
principle component. By ranking the elements of the principle component, the genes that 
dominate the sample distributions and hence the prediction rates in the projected low 
dimension space can be identified. 

6.3 Results 
 
Dataset 
 
The advance of the BeadArray-based technology has enabled the efficient high 
throughput profiling of DNA methylation at a genome-wide scale [6.11]. Recently, 
Bibikova et al. [6.10] performed an analysis on DNA methylation using the data acquired 
with this technology. They identified 49 CpG markers that can be used to classify the 
embryonic stem cells, the cancer and the normally differentiated cells. We show that with 
our proposed ACS4 algorithm the number of the biomarkers can be reduced to only two, 
without sacrificing the accuracy of classification.  
 
The methylation profile used in our study consists of 37 hESC and 33 non-hESC sample 
cells lines (24 cancer and 9 normally differentiated), where 1,536 CpG sites in the 5’ 
regulatory regions of 371 genes will be examined. These genes play important roles in 
cell proliferation, differentiation, apoptosis, DNA repair, oxidative metabolism, and other 
critical cellular activities. The profiling of the promoter CpG sites is based on the Qiagen 
DNeasy kit [6.12] for DNA extraction, the Bisulfite treatment for Cytosines-to-Uracils 
conversion [6.13], and the BeadArray-based GoldenGate assay [6.14] for the 
measurement of methylation intensities. Finally, we have 70 records with 1,536 
numerical CpG attributes that range from 0 to 1.  
 
ACS4 rule discovery  
 
The proposed ACS4 algorithm differs from both the classical CS4 and the C4.5 methods. 
In CS4, the algorithm first ranks the data attributes according to their discriminative 
powers, then sets the leading attributes at the root nodes to grow a committee of trees. 
The C4.5 algorithm actually can be considered as a special case of CS4, where only the 
first decision tree in the committee will be trained and utilized for classification. 
Compared with CS4, ACS4 is different in that it can not only learn the association rules 



 111

for classification but also optimally assign a set of the linguistic variables to the 
numerical domains of attributes. Hence, the ACS4 rules can be presented in the form of 
human natural language to facilitate our understanding and interpretation on the results 
obtained. 
 
In our experiments to learn the ACS4 rules, we partitioned the data set into two parts, i.e., 
the hESC (37 samples) and the non-hESC (33 samples). We first evaluated the 
performance of the algorithm through the 10-fold cross validation. We then picked out 
the most significant DNA methylation rules to make the biological interpretations. In the 
10-fold cross validation, the data are split into 10 subsets for each category. Hence, in 
each round of test, nine subsets are used for training and the remaining one is utilized for 
testing. In Table 6.1, we present the rules discovered with the ACS4 algorithm in one of 
the 10 tests. The rules are all of high Coverage values and prediction accuracies, 
indicating that they are quite reliable in telling the difference between the hESC and the 
non-hESC with the methylation features of genes. 
 
Table 6. 1 Significant rules of ACS4 with best Coverage 

Tree number Rule content Coverage (%) 
IF PI3-504 = high THEN hESC 100.0 1 
IF PI3-504 = low THEN non-hESC 100.0 
IF CTSH-1148 = high THEN hESC 99.7 2 
IF CTSH-1148 = low THEN non-hESC 98.4 
IF HLA-DRA-1353 = high THEN hESC 99.2 3 
IF HLA-DRA-1353 = low THEN non-hESC 98.7 

 
The Coverage value here is the percentage of the samples in a class satisfying a rule. 
Suppose that a class consists of 100 positive samples and a rule is satisfied by 95 of them. 
The Coverage of this rule is then 95%. We also note that the non-hESC consists of the 
cancer and the normally differentiated cells. It is also convenient to find out the rules that 
can classify these two types of cells by applying the ACS4 algorithm. In Table 6.2, we 
show the most significant rule that is sufficient to achieve the full classification. 
 
Table 6. 2 Significant rule distinguish cancer cells from normally differentiated cells 

Tree number Rule content Coverage (%) 
IF NPY-1009 = high THEN cancer  100.0 1 
IF NPY-1009 = low THEN normal  100.0 

 
Finally, we are able to assemble the rules in both Tables 6.1 and 6.2 to derive the 
following decision tree to classify all the three types of cells. 
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Figure 6. 2 Significant rules with two CpG sites fully separate three types of cells 
 
Given a testing input data instance, we first measure its methylation status at the CpG 
sites PI3-504. If it is high at these sites, then the cell must be of the hESC type.  
Otherwise, we examine the CpG site NPY-1009. If it is hypermethylated, then it must be 
cancer type.  Otherwise, it is a normally differentiated cell. In doing so, the three types of 
cells can be classified by using only 2 CpG markers, instead of 49 in [6.10].  
 
There are two advantages in reducing the number of the CpG markers. First, as there are 
only two CpG sites to be examined, the expenses for lab array test can be reduced 
significantly. When the number of the sample cells is large, say, in the order of hundreds 
or thousands in scale, the reduction of the experiment costs will be quite remarkable. 
Second, as the marker set is narrowed down to only 2 CpG sites, biologists can analyze 
the methylation profile with less time and resource, while doing this without sacrificing 
the accuracy of prediction. These two advantages make our proposed ACS4 algorithm an 
effective method for DNA methylation analysis in hESC, cancer and normally 
differentiated cells. To better understand the ACS4 algorithm, in Figure 6.3, we illustrate 
the result of the clustering step in ACS4 on the attribute domain of CpG site PI3-504. 
 

Figure 6. 3 Adaptive clustering of attribute domain of PI3-504. (a) Two clusters: fisher score 
0.48. (b) Three clusters: fisher score 0.33. (c) Fiver clusters: fisher score 0.30. 
 
The clustering is based on the c-means algorithm, where c is the number of clusters to be 
generated. For each observation of the attribute the c-means algorithm first finds its 
nearest neighbour in the c initial centres and makes a link to it. The initial centres are then 

PI3-504 

High Low 

hESC NPY-1009 

High Low 

Cancer Normal 
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updated by taking the average of all the observations with links to them. These steps 
repeat until the initialized centres converge to the fixed points, forming the clusters that 
best describe the natural division of the attribute domain.  
 
Figure 6.3 shows the identified clusters with the c-means method and the associated 
Fisher’s discriminate score when the number of the initial cluster centres is set to 2, 3, 
and 5, respectively. The Fisher’s score reaches to its maximum of 0.478 when the number 
of clusters is set to 2, corresponding to the optimal assignment of {‘high’, ‘low’} to the 
attribute domain of PI3-504. For the other two results of clustering analysis, which have 
the Fisher’s scores of 0.38 and 0.41, respectively, the results are suboptimal in the two-
cluster case. Therefore, the methylation intensities of the CpG site PI3-504 take one of 
the two linguistic variables, either ‘high’ or ‘low’, in formulating the methylation rules. 
 
Furthermore, let’s examine closely the two CpG markers based on which the decision 
tree of Figure 6.2 is constructed. As illustrated in Figure 6.3, the horizontal and the 
vertical dimension represent the observation and the methylation intensity, respectively. 
Each symbol (circle or square) corresponds to one type of cell (hESC or non-hESC; 
cancer or normally differentiated cells). For the CpG site PI3-504, which is located at the 
root of the decision tree, the two clusters generated in Figure 6.3 fit very well to the two 
different types of cells. Therefore, if the methylation intensity is high, it must be hESC; 
otherwise, if it is low, it must be non-hESC. Similarly, for the CpG site NPY-1009, if the 
methylation intensity is high, it must be the cancer cells; otherwise, if it is low, it must be 
the normally differentiated cells.  
 

 
Figure 6. 4  Optimal clustering of attribute domain of CpG sites PI3-504 and NPY-1009 hESC 
(circle), non-hESC (square) (b) cancer (circle), normally differentiated (square). 
 
When examining the results in biological contexts, the gene PI3 encodes the 
Phosphoinositide 3-kinases. This family of enzymes is recruited upon the growth factor 
receptor activation and produces 3’ phosphoinositide lipids. The lipid products of PI3 act 
as the second messengers by binding to and activating diverse cellular target proteins, 
which ultimately mediates the cellular activities such as proliferation, differentiation, 
chemotaxis, survival, intracellular trafficking, and glucose homeostasis [6.15]. In hESC, 
the DNA is programmed in order to maintain a stable state of cellular environment, 
where the growth, the proliferation, and the differentiation of cells are negatively 
modulated. The methylation of the gene PI3 plays a critical role in down-regulating the 
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expression of the Phosphoinositide 3-kinases to fulfil such purpose.  At the same time, 
the function of NPY (Neuropeptide Y) in regulating the energy balance of the cellular life 
is well known. Li et al. [6.16] demonstrate that the NPY expression level is low in 
patients with gastric and colorectal carcinomas. But the underlying mechanism is unclear. 
Our result indicates that DNA methylation of the gene NPY may be the leading cause of 
these two types of cancers.  
 
But it is inadequate to justify the performance of ACS4 by examining the results from 
only 1 of the 10 tests. To determine whether the rules learned can work consistently 
across all the 10 folds, we need to show statistics on the tree models and the feature set.  
Assuming that the structures of the trees change from time to time across the 10 folds and 
involve even more features than 49, we can then hardly be able to apply them to achieve 
consistent predictions given new data. Conversely, if all the trees have the same structure, 
we can then be more confident that the trees capture the distribution of the dataset. It can 
work consistently and effectively for prediction and interpretation. To perform the 
statistics, we can count on the number of the distinct tree committees derived from the 10 
folds data. If the leading tree members of a committee TCi, trained in  foldi , share the 
same structure as those in TCj built in foldj, where i, j = 1, …, 10, then TCi  and TCj are 
identical, and for the common tree structure we have two counts.  
 
In our test, we examine the rate of occurrence of the distinct tree committees by 
comparing the structures of the first two leading trees, which are most effective for 
prediction. Our result as indicated in Table 6.3 shows that there exist two distinct tree 
committees derived from the 10 folds training. While TC1 includes Tree 1 and 2 (T1 and 
T2 for short), TC2 has T3 and T4 (see appendix for the tree structures).  
 
Table 6. 3 Consistency and accuracy of ACS4 across 10 fold CV 

 
 

Tree Committee Accuracy 
T1 / T3 

Accuracy 
T2 / T4 

Accuracy 
T1,2 / T3,4 

Occur. 
Rate 

 

T1 
 

T2 
 

97.31 (0.12) 
 

 

96.83 (0.06) 
 

97.59 (0.07) 
 

8/10 
 

T3 
 

T4 
 

96.41 (0.06) 
 

 

95.77 (0.08) 
 

97.18 (0.14) 
 

2/10 
 
Table 6.3 indicates that TC1 occurs most frequently, in 8 out of the 10 folds, as compared 
with the other tree committee, TC2, which has only 2 occurrences. So, TC1 dominates the 
prediction process, it is quite robust to the change of data.  
 
In addition, as there are only two distinct tree committees, and each of them has only two 
member trees, the number of the distinct features involved is quite low (see appendix for 
features in TC1 and TC2). The average accuracy and the standard deviation (in bracket) of 
ACS4 are also listed in the table. There are three columns on the accuracy performance of 
ACS4. The first and the second column are the predication rates when the first and the 
second tree member is used for prediction separately, the third one is the accuracy when 
the whole committees of trees are utilized. We can observe that using more trees can 
improve the prediction rates. The adaptive clustering of the attributes and the voting 
procedure contribute most likely to the reduction of the prediction errors. 
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By using only one tree, T1 encompassing two features, we can achieve even quite 
satisfactory result for prediction. The trained tree structure is robust to the changes of the 
data, reaching 97.31 prediction rates on average. It can also reduce the number of the 
features from 49 to 2 without distorting the result of prediction and interpretation. What 
is more important than simply reducing the number of the features is that we can use 
ACS4 to find out the dependency relations (logical rules) among the features and get to 
know how the rules determine the fates of the various types of cells. These rules are 
valuable to biologists. They can help us to understand the logic program of DNA 
methylation in chromatin remodelling. By analyzing the methylation circuits we can gain 
more controls to regulate cells’ development through the methylation/ demethylation of 
the corresponding CpG sites presented in the methylation rules. 
 
Besides consistency, another critical concern arises from the generalability of the ACS4 
method. Can it predict well across different datasets? To evaluate, we have chosen a wide 
range of medical data that are publicly available, including LEUKEMIA [6.17], ALL 
[6.18], SRBCT [6.19], LYMPHOMA [6.20], COLON [6.21], and PROSTATE [6.22]. 
The detail information about the data is shown in Table. 6.4.  
 
 
Table 6. 4 Statistics of the datasets utilized for 10 fold CV 

Dataset LEUK. ALL SRBCT LYMP. COLON PROS. 
Num. Instances 72 248 83 62 62 102 

Num. Genes 7129 12558 2308 4026 2000 6033 
Num. Classes 2 6 4 3 2 2 

 
We run 10 folds CV and compare different algorithms, including the lazy learning 
method (kNN), the function based method (SVMs), and the tree based method (CS4, 
ACS4) based on Weka platform [6.23]. Specifically, for kNN, k is set to 1, for SVM we 
use the linear kernel, and for CS4 and ACS4 the number of the tree members in each 
committee is initialized to 20. The average accuracies and the standard deviation of each 
method are presented in Table 6.5. 
 
Table 6. 5 Generalability and accuracy of ACS4 across 10 fold CV 

Dataset kNN SVMs CS4 ACS4 
LEUK. 97.15 (3.29) 97.68 (2.73) 97.32 (2.25) 97.57 (1.87)* 

ALL 96.57 (1.86) 97.26 (1.52) 96.90 (1.48) 97.18 (1.05)* 
SRBCT 98.91 (2.40) 100.0 (0.00) 98.55 (1.23) 100.0 (0.00) 
LYMP. 98.82 (2.47)* 99.83 (1.61) 97.77 (2.59) 98.36 (1.86) 

COLON 82.36 (6.48) 89.08 (6.82) 88.12 (4.20) 88.34 (3.77)* 
PROS. 89.14 (4.73)* 92.55 (3.98) 87.95 (3.75) 88.21 (3.59) 

 
As shown in Table 6.5, SVMs achieves the top performance across all the 6 datasets, the 
best prediction accuracies are highlighted in the bold font. ACS4 ranks in the first and the 
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second places (with asterisks) in 1 and 3 out of the 6 datasets respectively. We can see 
that SVMs outperforms ACS4 in accuracy, but it is unable to generate the human 
understandable knowledge to assist the experiment designs in wet lab.  
 
Compared with CS4, ACS4 cannot only give the interpretations intuitive to our 
understanding but also achieves better result of prediction across all the 6 datasets. 
Moreover, by doing clustering adaptively in the attribute domain, ACS4 can readily 
adjust its tree structures to the variations of data distribution. CS4 however lacks these 
abilities. Its outputs are numerical, thus not as intuitive as those of ACS4 to ease human 
understanding.  Further, we can see that the kNN method ranks in the second place on 
two datasets, but it has to rely on all of the attributes in the data set to predict accurately. 
 
The ACS4 algorithm, hence, can work consistently across the 10 folds cross validations. 
Also, it has good generalability when applied to the datasets with different distributions. 
 
Co-methylation analysis 
 
Marjoram et al. [6.9] recently analyzed the methylation profile of the lung and the 
colorectal cancers. They found that some of the CpG sites are co-methylated and form 
clusters. However, for hESC little is known about its clustering property of the CpG sites. 
To examine closely the patterns of co-methylation in hESC, we propose an adaptive 
clustering technique. In using this method, we initialize 2 to 60 cluster centres to cluster 
the 1536 CpG sites. The Fisher’s discriminant scores are computed to find out the best 
result of clustering. In Figure 6.5, we illustrate how the Fisher’s discriminant score varies 
over the number of initial clusters. 
 

 
 
Figure 6. 5 Fisher discriminant scores vary over number of CpG clusters 
 
Initially, the Fisher’s discriminant score is low, 0.6 and 0.4 only for the hESC and the 
cancer cells, when there are two clusters for each category. As we increase the number of 
clusters, the discriminant score gets improved gradually. However, it still fluctuates when 
searching for the optimal clusters that can best describe the natural division of the CpG 
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sample space. Finally, the best result of clustering is identified, where 59 and 41 clusters 
are generated for the hESC and the cancer cells, respectively. In Figs. 6.6 and 6.7, we 
show the clusters that exhibit strong patterns of co-methylation in hESC and cancer cells. 
 

 
(a) 

   

 
 

(b) 
Figure 6. 6 Clustering of hESC CpG sites. Green: negative, Black: zero, Red: positive. (a) 
Cluster of Genes on Chromosome X (b) Co-methylation in the first 8 clusters 
 
 

 
 

(a) 

 
 

 
 

(b) 
Figure 6. 7 Clustering of cancer cell CpG sites. Green: negative, Black: zero, Red: positive. (a) 
Cluster of genes contains RASGRF1 (b) Eight clusters exhibit strong patterns of co-methylation. 
 
In Figure 6.6 (a), each row of the image corresponds to one sample cell line and each 
column represents a single CpG site. The image shows the patterns of strong co-
methylations among the gene CpG sites. The full list of the names of the CpG sites and 
the clusters can be found in the supplemental files.   
 
For each category of cells, we can observe that the genes are co-methylated and show the 
distinct patterns of clusters according to cell functions. For instance, in Figure 6.6 on 
hESC, we find that the genes in the same cluster, MAGEA1 [6.24], STK23 [6.25], 
EFNB1 [6.26], MKN3 [6.27], NPY [6.28], TMEFF2 [6.29], AR [6.30], FMR1 [6.31], are 
most related to differentiation, self-renewal, and migration of hESC, while in Figure 6.7 
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for cancer cells, the oncogenes, RASGRF1 [6.32], MYC [6.33], and CFTR [6.34] form 
the clusters with those highly involved in cell apoptosis (PLAGL1 [6.35], YWHAH 
[6.36], EP300 [6.37], BRCA1 [6.38], ERN1 [6.39]), alternative splicing of pre-mRNA 
(RPS26 [6.40]), DNA repair (BRCA1 [6.41], FEN1 [6.42]), tumour suppressing (TSSC4 
[6.43], BCL6 [6.44], ST7 [6.45]), and ion transportation (MT1A [6.46], KCNK4 [6.47]), 
which characterize the immunological activities of cells in defending against DNA 
damages. Another example illustrating the function of co-methylation is that in cancer 
cells, the CFTR gene (7q31), a gene of great concern for two decades [6.34], is co-
methylated with MT1A (16q13) and KCNK4 (11q13). The CFTR and KCNK4 proteins 
are the necessary building blocks in forming the ion channels across cell membranes, 
while MT1A proteins bind with the ions as the storage and transport tools. These three 
genes are in the same cluster. They are co-regulated epigenetically in modulating the 
intercellular traffics. The distinct patterns of the CpG clusters between the hESC and the 
cancer cells highlight the multifunctional and the dominant role of DNA methylation 
(demethylation) in human embryogenesis and tumourgenesis. 
 
However, it is known that the adjacent genes in the genome space are functionally linked, 
and DNA methylation can spread across the DNA strand [6.48]. Our result of clustering 
confirms that the most highly co-methylated genes are near each other on the 
chromosomes. The location of the genes tends to have significant impact on the pattern of 
co-methylation. In Figure 6.8 (a), most of the genes highly co-methylated are located on 
the chromosome X. But this doesn’t imply that co-methylation of genes depends simply 
on their locations. The epigenetic mechanism also works in a selective fashion according 
to cell functions. For example, we observe that the two neighbouring genes, EFNB1 
(Xq12) [6.26] and BAP31 (Xq28) [6.49], both involved in the development of nervous 
system, located on the chromosome X, are co-methylated in hESC, but not in cancer cells, 
as shown in Figure 6.8. Besides the gene location there are other factors to be identified 
in determining which set of genes should be co-methylated, and which should not. 
 

(a) (b) 
Figure 6. 8 Co-methylation of gene EFNB1 and BCAP31 on Chromosome X. (a) EFNB1 and 
BCAP31 co-methylated in hESC (b) Not co-methylated in cancer cells 
 

6.4 Discussions  
 
We have developed the ACS4 algorithm to discover the rules of DNA methylation in 
human embryogenesis and tumourgenesis. With ACS4, we can use only 2, instead of 49 
CpG markers to predict accurately the class labels of the hESC, the cancer and the 
normally differentiated cells. The expenses for lab array test can thus be reduced 
significantly. Moreover, the learned ACS4 rules are formulated in human natural 
language. This makes it convenient for understanding and interpretation by human 
experts. Moreover, the distinct patterns of the CpG clusters, discovered by using our 
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adaptive clustering technique, highlight the multifunctional and the dominant role of 
DNA methylation in human embryogensis and tumourgenesis. We also confirm that the 
co-methylation status of the genes is largely dependent on their locations in the genome 
space, where adjacent genes tend to be highly co-methylated. Yet, we also find that co-
methylation is a selective and function-oriented procedure. Two adjacent genes located 
on the same chromosme, highly co-methylated in hESC, are not co-methylated in cancer 
cells. The co-methylation status of genes depends not only on their locations, but also 
other factors to be identified in determining which set of genes should be co-methylated, 
and which ones should not.  
 
Our proposed ACS4 algorithm and the adaptive clustering method are effective in 
detecting the patterns of DNA methylation in hESC. New evidence is presented to 
biologists as a potential guidance on new experiment designs in wet labs, to answer the 
following questions: i) How do we explain the logical structure of the decision tree in 
Figure 1 at the molecular level? What are the epigenetic pathways underlying such 
decision process? ii) How does the methylation mechanism decide which set of genes 
should be co-methylated, and which set of genes should not? How can we explain that 
two genes adjacent to each other are co-methylated in hESC, but not in cancer cells? iii) 
What is the relation between the epigenetic events (e.g., methylation, histone 
deacetylation) and the genetic events (e.g., gene mutation and transposition), and the role 
of DNA methylation in evolution? All these questions are to be answered to fully 
understand the epigenetic nature of cellular life.   
 
Additional file 1 – Name list of CpG clusters for hESC cells 
http://www.cse.ust.hk/~csniuben/embryonic_stem_cell_cluster.txt 
 
Additional file 2 – Array image of CpG clusters for hESC cells  
http://www.cse.ust.hk/~csniuben/additional_image_stem_cell_CpG_clusters.bmp 
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Additional file 3 – Name list and Array image of CpG clusters for cancer cells:  
http://www.cse.ust.hk/~csniuben/cancer_cell_cluster.txt 
 
Additional file 4 – Array image of CpG clusters for cancer cells:  
http://www.cse.ust.hk/~csniuben/additional_image_cancer_cell_CpG_clusters. 
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Chapter 7. Conclusions and future works  
 
Advanced database applications, XML databases, Internet File Sharing, Biometrics and 
Bioinformatics, requires intelligent software to be developed for high-dimensional data 
indexing and searching. In this work, we presented 4 cmoputer algorithms to address the 
problem of dimensionality reduction. They are the two-dimensional Laplacianfaces, the 
Unsupervised Discriminant Projection, the Mutual Neighborhood based Discriminant 
Projection, and the Adaptive CS4 ensemble rules. 
 
The 2D Laplacianfaces method is based on the two techniques, locality preserving and 
image-based projection. We improve the computational efficiency. The training time and 
the memory complexity is reduced from )nm(O 22 ×  to only )nm(O × , where m and n 
are the number of rows and columns of the sample image. It is also more accurate than 
2DPCA and 2DLDA by using the local information to help with recognition. In our 
experiment we also add a regulatory term to avoid the singularity problem in Fisherfaces, 
so, it is in fact regularized Fisherfaces in our implementations.  
 
Unsupervised discriminant projection (UDP) considers not only the local but also the 
global information for optimization. It preserves the local density of the data while 
maximizing the non-local global scatter. UDP outperforms consistently the Locality 
Preserving Projections (LPP) and PCA, and outperforms LDA when the training sample 
size per class is relatively small.  
 
We also developed Mutual Neighborhood based Discrimiant Projection (MNDP). As the 
errors of classification derive mainly from the samples on the class boundaries, we 
establish MNDP to best preserve the data geometry near the class boundary. We 
construct the mutual neighborhoods to highlight those samples on the boundaries which 
most likely contribute to the prediction errors. The extracted features from the facial and 
handwritten data indicate that MNDP is significantly and csonsistantly better than PCA 
and LDA. Moreover, the problem of singularity in LDA was successfully addressed.   
 
Adaptive CS4 (ACS4) was designed for feature selection and prediction. It can be used to 
identify the most discriminant features and generates a committee of trees for prediction. 
We evaluate ACS4 on the biology database for DNA methylation analysis. The number 
of the index features for cell line classification is reduced significantly from 49 to only 2. 
The computational and the wet-lab costs for cancer diagnosis can thus be reduced by 
about 20 times in contrast to the previously reports. Meanwhile, we also propose a 
strategy for adaptive clustering on the gene methylation database. The results of 
clustering confirm that DNA methylation plays the dominant role in the process of 
tumourgenesis and embryogenesis in human cells. 
 
These 4 methods are developed to deal with different kinds of problems. 
2DLaplacianfaces, by employing image-based projection, is computationally more 
efficient than others. The traditional 1DLaplacianfaces method incurs high computation 
and storage costs on large images. 2DLaplacianfaces address this problem by reducing 
significantly the size of the matrix in the associated eigen problems. 
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Unsupervised Discriminant Projection is capable of feature extraction without using the 
class information. It transforms the data points to a low dimensional space where the 
neighboring samples remain still close and those faraway are mapped even farther. The 
local features help the classifiers, such as kNN, to retrieve data points more accurately by 
examining the local neighborhoods. The non-local features, on the other hand, help to 
achieve better separability of data class to reduce the Bayesian error. 
 
MNDP is based on the geometry intuition that recognition errors derive mainly from the 
samples nearby the class boundaries. So, we focus on the sample pairs within and 
between the class boundaries in formulating MNDP. Also, MNDP can work effectively 
on the under-sampled dataset. In LDA, we can obtain at most N-1 projections on N class 
problem. But in MNDP the between-class scatter is constructed by using the boundary 
samples rather than the class mean vectors. Thereby, the rank of the between-class scatter 
is not restricted to N-1 anymore. We can have more useful projection vectors for feature 
extraction in MNDP. 
 
The adaptive CS4 algorithm is developed to uncover the rules regulating the transcription 
of genes. The rules should be made human understandable. To achieve this goal, we 
perform adaptive clustering to discretize the numerical attributes into the human 
linguistic variables. The DNA methylation rules we discovered tell us the difference 
between the human embryonic stem cells, the cancer cells, and the somatic cells in the 
epigenetic context. They advance our knowledge about embryogensis and tumorgenesis. 
Moreover, by using ACS4 we have reduced the number of CpG markers from 39 to only 
3 without degrading the prediction accuracy. ACS4 is a useful tool to help us understand 
the epigenetic events in cell development. 
 
To summarize, these 4 methods are designed to solve different kinds of problems. 
2DLaplacianfaces is computationally more efficient than others on large images. UDP is 
unsupervised, thus requiring no class information to be provided for feature extraction. It 
analyzes both the local and the non-local features of data to help with classification. 
MNDP focus on the boundary samples to improve the recognition rate. Also, we can use 
it to achieve more projections than LDA when the number of data classes is quite limited. 
With ACS4 we can uncover the DNA methylation rules that are human understandable. 
The rules can explain how the transcriptions of the genes are epigenetically regulated in 
cells’ development, informative to the biologists for wet-lab design to discover the 
underlying pathways. 
 
In ACS4, choosing the correct number of clusters is important. Clustering is performed 
for 2 purposes. First, it is used for discretization to declare the linguistic variables. With 
these variables, we are able to build the ACS4 rules in human natural language. These 
rules explain how the epigenetic mechanism regulates the transcription of genes in cells’ 
development. We define five linguistic variables: “Very High”, “High”, 
“Medium”,”Low”, “Very Low”, in a same manner as in fuzzy logic and controls. We 
then create three sets of linguistic variables, {“High”, “Low”}, {“High”, “Medium”, 
“Low”} and {“Very High”, “High”, “Medium”, “Low”, “Very Low”} for rule 
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construction. Given a numerical attribute, we cluster with 2, 3, and 5 initial centers, 
respectively. We then take each cluster as a class. The clustering result with the best 
fisher’s discriminant score is the reference for discretization. We assign then the 
linguistic variables to the clusters. For example, if there are 2 clusters, we choose 
{“High”, “Low”} while if there are 5 clusters, we use {“Very High”, “High”, “Medium”, 
“Low”, “Very Low”} instead. 
 
The recognition rate can be related with the number of clusters. It is possible that the 
accuracy of classification can be improved if we increase the number of clusters. But in 
doing so the number of rules may also be increased, and some of them may be redundant 
due to the loss of generalability. There can be a tradeoff between specificity and 
generalability. We intend to achieve the satisfactory accuracy with as few rules as 
possible. 
 
Also, by using genetic algorithms we may find out the best result of clustering without 
specifying the number of clusters beforehand. The adjacent matrix consists of 0-1 
elements indicating whether 2 samples belong to the same cluster. The matrix can be 
encoded as a chromosome of binary string. For each chromosome/binary string we can 
compute its fisher’s discriminant score to evaluate its fitness. All the adjacent matrices 
form a population of chromosomes. After a number of iterations of selection, 
reproduction, crossover, and mutation, the optimal/near-optimal solutions, the best result 
of clustering can be achieved. 
 
Second, we perform clustering to analyze the epigenetic interactions among the gene 
promoters. The epigenetic process such as DNA methylation, histone modification and 
RNAi, dominates the process of gene transcription in cells’ development. By clustering 
we can find out which groups of genes are functionally related for cell life. The patterns 
of co-methylation/co-regulation of genes can help us to detect the underlying pathways in 
tumorgenesis and embryogensis. To identify the gene clusters, we search exhaustively for 
the highest fisher’s discriminant score. The computational cost in doing so is high. We 
can consider using heuristic based search to accelerate. For example, we can use the 
above mentioned GA method.  
 
In MNDP, it does not perform very well for smaller dimensions. The possibility is that, 
First, the leading components of MNDP may be less energy compact than those of 
Fisherfaces. Since Fisher’s criterion seeks to maximize the between-class variance its 
leading eigenvectors are quite capable of capturing the global pattern of the conditional 
densities. Thus, they provide a better accuracy than those of MNDP at the initial stage. 
But MNDP can examine more closely and make full use of the boundary information for 
classification. Its trailing components are more effective than those of Fisherfaces in 
characterizing the local density patterns near around each data point, thus, it can 
outperform Fisherfaces as more components are included. The distance metrics for 
classification affect the accuracy as well. When L1 and L2 norms are utilized for 
matching, we can observe the difference of accuracy between Fisherfaces and MNDP. 
But when we use the Cosine measure, this difference is quite small. Hence, if we choose 
different metrics the error rates can also be different. It is not impossible that MNDP can 
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outperform Fisherfaces with the leading vectors by using other distance metrics. Another 
issue is the dataset we use. We do experiments on the human facial image and 
handwritten digit databases and observe the above phenomenon. Whether or not this 
occurs on other types of data is to be investigated. 
 
Using kernel functions may improve the robustness of the MNDP method. It is possible 
that two samples in a mutual neighborhood can be far away from each other as mutuality 
doesn’t necessarily imply locality. In such special case a minority of the ‘faraway 
neighbors’, the outliers, can dominate the discriminant function, making the classifier too 
generic and be pruned to outliers. This problem hopefully can be solved by using the 
kernel functions. With the Gaussian kernel, we can measure the distance between 2 
samples in the kernel induced space. Hence, the samples in the same mutual 
neighborhood but farway from each other will be assigned a small weight to alleviate its 
effect on the discriminant function. This can help to minimize the distortion of the local 
densities around the data points. Actually, Loog et al. have proposed a method [7.1] 
“Multiclass linear dimension reduction by weighted pairwise fisher criteria” based this 
idea. They weight the sample pairs based on their distances to handle the noises. 
 
Also a question is why do the performances of 2D Laplacianfaces, Fisherfaces, and 
Eigenfaces deteriorate with dimension after 5-dimensions? I searched the literature and 
found 3 papers [7.2-7.4] describing this as the “peak phenomenon”. Hughes [7.2] first 
confirmed the existence of the relationship between the dimensionality, the number of the 
training samples and the accuracy of recognition. He found that an optimal number of 
dimension exist and can lead to the best performance of recognition. With the number of 
training samples m fixed, the accuracy first begins to rise with the increase of dimension 
n, as shown in Figure 7.1. It must then fall back as ∞→mn /  as the precision of the 
probability estimates monotonically degrades.  
 

        
Figure 7. 1 Relation between m, n and recognition accuracy. (Taken from [7.2]) 

 
In Figure 7.1, horizontally it is the number of dimensions. Vertically, it is the recognition 
accuracy, the number of training samples ranges from 2 to 1000. Classification is based 
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on the Bayesian method. Also, Hamamoto et al. [7.3] showed that no increase in the 
generalization error of multilayer ANN classifiers is observed if the number of training 
samples increases linearly with the dimensionality. But for other methods, QDF, 1-NN 
and Parzen classifier, there is the increase of error when the number of training samples is 
fixed but the dimension increases, as shown in Figure 7.2. 
 

 
Figure 7. 2  Error and dimensionality for different types of classifiers (Taken from [7.3]) 
 
Figure 7.2. indicates that the generalization error of 1-NN, QDF, and Parzen classifiers 
increases after 8 dimensions. ANN turns out to be more robust than others with more 
neurons (m) being employed in the hidden layer. Hua et al. [7.4] also showed this peak 
phenomenon on QDA, as shown in Figure 7.3. 
 

 
Figure 7. 3 Relation between generalization error, dimensionality and number of training samples 
for QDA classifier. (Taken from [7.4]) 
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Figure 7.3. shows that when the sample size is fixed, the error rate grows along with 
feature size. When the feature size is fixed the error rates decreases if the sample size 
increases. So the error rate depends on both the number of dimensions and the sample 
sizes. 
 
In the thesis, it might be a little bit misleading as we should have used “the number of 
components” instead of “the number of dimensions” in the Figure caption. In fact, a 
component of the 2D method is a multi-dimensional vector, while that of the 1-D method 
is a scalar. As each component in 2D version is multi-dimensional we can achieve the 
peak performance with fewer components, but not necessarily fewer dimensions. For 
clarity, we show the first 40 dimensions of the 1-D method. The curves arrive at their 
peak performance. They then stabilize and drop slightly as the dimension increases. 
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Chapter 8. Appendix – Database supports on Indexing: 
applications, computing architectures, and algorithms 
 
Index structures help users to access data efficiently. We review in this Chapter the 
techniques for indexing in 2 types of information systems, Relational DBMS and Internet 
Information Retrieval. Methods for dimensionality reduction are essential to give support 
for such types of systems to achieve better performance in data indexing and retrieval. In 
Section 8.1 we discuss about RDBMS, its advanced applications, data models, computing 
architectures, and the indexing methods. In Section 8.2, we investigate the architecture of 
indexing and query processing regarding Information Retrieval. We study 2 of its major 
applications in Web Search Engine and Internet File Sharing.  
 

8.1 Relational DBMS  

8.1.1 Fundamentals of RDBMS 
 
A database reflects the logic relations among the real world entities. It is populated with 
many data instances to be consumed by users. A database management system (DBMS) 
is a collection of the Computer softwares to facilitate the design, creation, modification, 
and communication of databases. To interpret the complexity of the real world various 
types of data models have been developed. The hierarchical, the network, the relational, 
and the object oriented models are most popular, among which the relational model is in 
the dominant place due to its flexibility to handle the complex queries.    
 
The relation model is based on the set-theoretic relation, which is defined as a subset of 
the cross product of a list of domains k21 D,...,D,D , i.e., k21 D...DDC ×××= . In other 
words, it is the set of all k-tuples k21 v...,,v,v , where kk2211 Dv...,,Dv,Dv ∈∈∈ . A 
relation is any subset of the cross product of one or more domains, i.e., CT ⊆ . In 
addition, a relation scheme R  is a finite set of attributes k21 A,...,A,A , where for each 
of them iA , i = 1,…,k, there is a corresponding domain iD  containing all its possible 
values. 
 
To handle user queries the Relational Algebra, a set of operations on relations, was 
proposed by E.F. Codd in 1972, including mainly the operations SELECT, PROJECT, 
PRODUCT, UNION, INTERSECT, and JOIN . 
 
SELECT: σ  
Let T  and R  be the Relation and its scheme, respectively, A is an attribute, RA∈ . 
Hence, }a)A(t|Tt{)T(aA =∈=σ = , where )A(t  denotes the value of attribute A of tuple t. 
 
PROJECT: π  
Let T  and R  be the Relation and its scheme, respectively, A is an attribute, RA∈ . 
Hence, }Tt|)A(t{)T(X ∈=π , where )A(t  denotes the value of attribute A of tuple t 
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INTERSECT: ∩  
Given the two relations T  and S having the same scheme, }STTt|t{ST ∉∈=∩ ， .  
 
UNION: ∪  
Given the two relations T  and S having the same scheme, }SorTt|t{ST ∈=∪ .  
 
DIFFERENCE : − 
Given the two relations T  and S having the same scheme, }StTt|t{ST ∉∈=− ， .  
 
PRODUCT: ×  
Let T  and S  be two relations of arity 1k  and 2k  respectively, where arity is the 
cardinality of the relation scheme. ST×  is the set of all 21 kk + - tuples, whose first 1k  
components form a tuple in T  and whose last 2k  components form a tuple in S . 
 
JOIN: Π  
Let T  be a relation with the attributes A, B and C. Let S be a table with the attributes C, 
D and E. ))ST((ST C.SC.TE.S,D.S,C.T,B.T,A.T ×σπ=Π = . 
 
The operations retrieve data based on the primary-foreign keys defined in the relation 
model. A primary key is defined as an attribute or a set of attributes uniquely identifying 
a specific tuple, while the foreign key establishes the logic relations among the entities in 
the model. There are three types of logic relations, many-to-many, one-to-many, and one-
to-one. 
 
To define the Many-to-Many relation, where many tuples from one relation can match 
many tuples in the other, a junction relation, whose primary key is composed of the 2 
foreign keys from the two tables can be created. For the simpler yet more common case 
of one-to-many relation, it only adds the primary key of the relation on the “one” side to 
the “many” side as the foreign key for reference, the junction relation is not required. For 
the simplest one-to-one relation, one needn’t to define the primary-foreign key relations 
because the data can be put into one table without information redundancy. 
 
The operations for data modeling and manipulations are implemented by the Structured 
Query Language (SQL). The main SQL commands fall into three categories. The Data 
Definition Language (DDL) contains the commands used to create and modify the data 
model. After the data model is established database administrators and users can then use 
the Data Manipulation Language (DML) to insert, retrieve and change the data contained 
in relations. There are also other types of commands for data administration and 
transactional controls, as listed in Table 8.1. 
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Table 8.1 Core SQL commands 

Data Definition Language CREATE TABLE; ALTER TABLE; DROP TABLE; 
CREATE INDEX; ALTER INDEX; DROP INDEX; 
CREATE VIEW; DROP VIEW 

Data Manipulation Language SELECT; INSERT; DELETE; UPDATE 
Administration and transactional 
control 

ALTER PASSWORD; GRANT; REVOKE; CREATE SYNONYM; 
START AUDIT; STOP AUDIT 

 
Recently, the Web Service Technology has aroused considerable interests as a protocal 
for Enterprise Application Integration (EAI) and Business to Business (B2B) computing. 
Large enterprises and business organizations usually maintain applications that are 
heterogeneous in languages, data structures, and platforms. This makes it difficult to 
exchange the data and services to share the resources. The vendor dependent SQL 
standard turns out to be inadequate to address this difficulty. 
 
In the Client/Server model, web services expose the RPC-like programming interfaces to 
the application developers. For example, StockInfor is a web service that allows the 
programmers and financial analysts to retrieve the information about the stock names, the 
stock prices in an exchange center. It publishes the operations of query, insert, and delete 
to the users. Each operation can take input parameters and produces an output to the 
remote user end.  
 
By web service, the client application doesn’t have to be aware of the implementation 
details of the service providers, but only the specifications of the programming interfaces. 
Built on top of the eXtensible Markup Language (XML), the three fundamental 
technologies, Web Service Description Language (WSDL), Simple Object Access 
Protocol (SOAP), Universal Description Discovery and Integration (UDDI) provide the 
core functions of Web services. Their relationship is shown in Figure 8.1. 
 

Figure 8.1 Architecture of Web services for Database applications. 
 
In Figure 8.1, we demonstrate a typical scenario for database applications, where the 
service user wants to retrieve data from the service provider, and store the retrieved 
information into its own database for analysis. To get the data they needn’t have to be 
aware of which type of RDBS is running at the remote end.  
 

Service Registry (UDDI)

Service Requester Service Provider 

Provider DB 
(Oracle) 

Requester DB  
(MS SQL Server) 

WSDL WSDL
SOAP

SQL/XML SQL/XML
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To achieve this goal, the service providers will use the WSDL protocol to describe the 
interfaces of their services and then publish them by registering at the UDDI servers. The 
users can then search the UDDI server to find out the services they want. By reading the 
WSDL document it can learn the interface of the remote function and make calls to the 
service provider with a SOAP request. The service providers in response search their 
local DB by the SQL/XML operations. The data are returned in XML format to the users 
in the SOAP protocal. The users can then perform the SQL/XML operations to check out 
the XML data and insert them into their own RDBMS. 
 
The SQL/XML operations can convert the data from the XML format to the relation 
tables, and reverse. For instance, Oracle implement its API called XML SQL (XSU) to 
enable java to convert XML to SQL. Consider a simple example where we have the 
following relation table employee, 
 
CREATE TABLE employee  
( 
   EMPNO NUMBER, 
   ENAME VARCHAR2(20), 
   JOB VARCHAR2(20), 
   MGR  NUMBER, 
   HIREDATE DATE, 
   SAL NUMBER, 
   DEPTNO NUMBER  
); 
 
After mapping the result of SQL query “select * from employee” to XML document, the 
XSU generates the following output. 
 
<?xml version='1.0'?> 
<ROWSET> 

<ROW num="1"> 
      <EMPNO>7369</EMPNO> 
      <ENAME>Smith</ENAME> 
      <JOB>CLERK</JOB> 
      <MGR>7902</MGR> 
      <HIREDATE>12/17/1980 0:0:0</HIREDATE> 
      <SAL>800</SAL> 
      <DEPTNO>20</DEPTNO> 
      </ROW> 
  <!-- additional rows ... --> 
</ROWSET> 
 
The tag ROWSET corresponds to the name of the relation table, each ROW element 
represents one tuple. The tag names of the ROW elements refer to the attributes of the 
relation scheme. The SQL-XML conversion is made by the OracleXMLQuery java class. 
Its object takes in the SQL query on a relation table as the input parameter, and returns 
the result directly in the format of XML document. 
 
Import oracle.jdbc.driver.*; 
import oracle.xml.sql.query.OracleXMLQuery; 
import java.lang.*; 
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import java.sql.*; 
 
class testXMLSQL { 
   public static void main(String[] argv) 
   { 
      Connection conn  = getConnection(,);  

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver()); 
      String username = "scott"; String password ="tiger";  

Connection conn = 
      DriverManager.getConnection("jdbc:oracle:oci8:@",username,password); 
      OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from employee"); 
    String str = qry.getXMLString(); 

      System.out.println(" The XML output is:\n"+str); 
      qry.close(); 
     }  
} 
 
The java statements as highlighted in the bold font illustrate the operations for SQL-XML 
mapping, where a new object of the java class OracleXMLQuery is initialized to convert 
the SQL query result to the XML format. Conversely, if we have the XML document in 
the first place, we can transform it to the RDBMS table with the following statements.  
 
import oracle.xml.sql.dml.OracleXMLSave; 

…… 
OracleXMLSave sav = new OracleXMLSave(conn, "scott.employee"); 

      sav.insertXML(argv[0]); 
      sav.close(); 
 
The XML-SQL mapping is implemented in the java class OracleXMLSave. Its instance 
can take the name of the XML document as the input parameter, then extract and insert 
the XML data into the RDBMS table. The Web services architecture, by taking 
advantage of the XML technology, enhances the interoperability of the RDBMS and 
relational data model, making them the highly effective solutions for real world 
applications. 
 
To summarize, we present here an example to illustrate the logic design of RDBMS by 
using the Unified Modeling Language (UML). As shown in Figure 8.2, our sample 
database, SaleDB, contains four relation tables, Customer, Employee, Department, and 
Transaction. There are three relationships established among these four tables, as shown 
by the primary key (PK) - foreign key (FK) connections. A customer may ask for many 
Employees for service and one Employee can serve different customers, the relationship 
between the Customer and the Employee is thus many-to-many. Hence, a junction table, 
Transaction, containing the CustomerID and EmployeeID as foreign keys, is created to 
define this relation. On the other hand, the Department relation has the one-to-many 
relationship to Employee because one Department can have many employees, yet, one 
employee can belong to only one department. 
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Figure 8.2 Relational data model diagram in UML 
 

8.1.2 Advanced applications of RDBMS  
 
Advanced applications of RDMS can involve the processing of data of high 
dimensionality. Real-time requirement can be the important indicator of the system 
performance. We discuss three major applications of database in bioinformatics, 
multimedia processing, and Geographic Information Retrieval. 
 
Biological Databases.  
 
Over the past few years, the advances of the high-throughput biotechnologies, e.g., 
micro-array, have made Bioinformatics an active research area. Bioinformatics addresses 
the needs of the modeling, storage, retrieval, and management of the biological 
information. Useful patterns discovered in the biological databases can highlight the 
connections between the genes and the human diseases. It can also help to find out the 
drug targets to design new drugs for treatments. 
 
By 2006, there are over 1,000 public and commercial biological databases. Usually, these 
databases contain the genomics and proteomics data, some of them also maintain the 
information of protein-to-protein interactions and gene expressions. Basically, the data 
are kept in the form of genome sequence or the protein sequence of amino acids. 
Information about the sequences including their biological functions, locis, SNP patterns, 
and the three dimensional structures can be annoted for reference. We list in Table 8.2 
some of the most highly cited biological databases. 
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Table 8.2 Highly cited biological databases in bioinformatics study 

Database type Name Major content 
DNA sequence GeneBank Contains the current knowledge about the 

sequence information of all organisms. 
 

Protein sequence 
 

Uniprot 
Comprehensive resource on protein 
sequence information, the combination of 
other three DBs, Swiss-Prot, TrEMBL and 
PIR. 

 
Protein 3D structure 

 
PDB 

Contains the 3D structural information of 
43,633 Proteins, Nucleic Acids, and 
protein/NA complex as of May 22 2007. 

Protein and gene interactions BioGrid Includes more than 116,000 protein/ gene 
interactions of four species. 

 
Micro-array 

 
Gene Expression 

Omnibus 

A comprehensive repository for gene 
expression data browsing, query and 
retrieval. 

 
With the biological data are being generated everyday, how to manage the data efficiently 
is a challenge. For example, as of May 22 2007, the PDB database contains the 3D 
structural information of 43,633 types of macromolecules. This number still grows by 
more than 20% every year, and will reach to 2 millions in the near future.  The present 
queries to the protein database are based on text keywords, such as the name of the 
protein or its function. It is insufficient for more advanced applications, e.g., drug design 
and protein interaction analysis, where the queries are based on the 3D structures of the 
proteins. New indexing methods have to be developed to enable such applications for 
efficient retrieval. The processing of high-throughput micro-array data is another case. A 
Micro-array record can contain 500,000 testing spot, or attributes, showing the gene 
expression/protein profiles. How to build the index to speed up the accurate retrieval of 
the array data is also important. 
 
Multimedia Databases  
 
The rapid growth of the World Wide Web saw the explosion of the multimedia data, 
video and audio clips, texts and images. These data need to be stored, indexed and 
retrieved efficiently for users. Multimedia information processing is important to a 
number of the real world applications, such as digital entertainments (Computer games, 
movies, and animations), face and palmprint recognition, medical imaging and diagnosis, 
and military. In Figure 8.3 and 8.4, we illustrate two cases where the still images are 
utilized to support the hyperspectral airborne target and the human face recognitions. 
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(a)  

(b) 
Figure 8.3 Hyperspectral dimensionality reduction for affordable spectral systems. (a) Electro-
optical targeting system (b) Left. Hyperspectral Fisher discriminant subspace scatterplots 
showing color-coded target class clusters; Right. Hyperspectral image overlayed with color-
coded target classes 

 
The electro-optical targeting system (EOTS) (Figure 8.3 (a)) is deployed to detect and 
recognize the potential air/ ground targets to aid pilot decision. Real time analysis and 
response to the EOTS sensor inputs is of high priority for military tasks. A database 
containing the hyperspectral images of various types of the manmade and the natural 
objects, such as bridges, trees, soils, enemy vehicles, etc., is constructed. The labeled data 
(Figure 8.3(b) Right) are used as the training samples to learn the Fisher discriminant 
subspaces for dimensionality reduction (Figure 8.3 (b) Left), thereby, given some new 
testing images the recognition time can be reduced significantly in the lower dimensional 
space. The goal for real time recognition on decision support can be achieved. 
 

 
(a) 

 
(b) 

Figure 8.4 Face recognition with Yale facial image database (a) Sample face images of one 
subject captured with changing facial expressions and illuminations. (b) From top to down. 
PCA, Fisher discriminant and Laplacian subspaces for dimensionality reduction.  

 
Face recognition is one of the most fundamental and challenging problems to solve in 
computer science. Human can quickly recognize the human faces under various 
conditions, but it is difficult for computers to reach such level of competence. The current 
state-of-the-art face recognition technology such as the eigenfaces and the fisherfaces can 
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be effective when applied to the 2D/ 3D facial image databases in experiments. For the 
Yale face image database containing a modest number of training sampes (in Figure 8.4 
(a) shown several of the sample images), Figure 8.4 (b) illustrates the PCA, the LDA and 
the Locality Preserving Subspaces constructed for dimensionality reduction. For small 
database the accuracy performance can be quite satisfactory, but more advanced 
techniques for feature extraction has to be developed to handle the large facial image 
databases. 
 
Besides the 2D/ 3D images, the wealth of the video and audio information in World Wide 
Web also poses the challenges for dimensionality reduction.  
 
Geographic Information System (GIS) 
 
A GIS can answer the geographic questions, like ‘What is the average house-price in 
district A over the last three years?’ or ‘Which is the nearest hospital to the central bus 
stop?’ To do so, the GIS builds links between the map features and the attribute tables as 
depicted in Figure 8.5. A map feature represents an object on the map, such as a tree, a 
house, or a bridge, etc. It has a location, a shape, and a symbol describing its 
characteristics. There are three major types of features, point, line and polygon in a 
typical GIS, defining the geometries of the various kinds of objects. A set of the features 
and tables make up a theme, and a couple of the themes form a geographic database. 
 

 
 
Figure 8.5 Attribute tables are linked to the map features to form a geographic database 
 
To query the spatial information in GIS, extensions have been made to the spatial SQL 
language. In spatial SQL, a set of the spatial operators are designed and implemented to 
add the spatial constraints to SQL queries. For example, the following statements will 
return the information on the hospitals that are less than 2 miles away from the central 
bus stop.  
 
SELECT * 
FROM  bus_stop, hospital 
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WHERE 
DISTANCE(hospital.location, bus_stop.location) < 2 
AND bus_stop.name = ‘central’ 
 
For GIS, indexing the map features can help to speedup query processing. Minimal 
bound rectangle method has been implemented in spatial SQL for such purpose. Also, the 
machine learning methods, such as the clustering algorithms and the dimensionality 
reduction techniques, can potentially be employed to give additional supports. 
 

8.1.3 Computing architecture of DBMS 
 
The computing architecture of DBMS follows a trend of decentralization. There exist 3 
types of architecturs, centralized, Client/Server, and Peer to Peer.  
 
Centralized DBMS maintains the data in a single database server (server farm) to support 
user queries. The centralized architecture is highly reliable and secure, preferred by the 
Banks and hospitals where everything has to be put tightly under the control. The data 
integrity can also be well maintained in the centralized structure. 
 
A distributed database is a network of the database servers that may distribute across a 
wide area. Users can simultaneously access and manipulate the data in several databases, 
and each database in the system is managed by its local database server, as depicted in 
Figure 8.6, an illustration of the Oracle DBMS architecture.  
 

 
Figure 8.6 Computing architecture of distributed DBMS 

 
Two database servers A and B in the Oracle system are connected through the Net8 
protocol for communication. They host the database HQ and SALE, which contains the 
table DEPT and EMP respectively. The user applications that login into the local Server 
A can access the data in Server B as well. All the database servers in the Oracle network 
are addressed by their global names defined in a hierarchical structure maintained by the 
name server. Figure 8.7 depicts the hierarchical namespace of two sample databases 
‘STOCK’ hosted by two different database servers.  
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Figure 8.7 Hierarchical namespace of distributed DBMS in Oracle system 
 
Oracle creates database links based on the global names to define a one-way 
communication path from an Oracle database to another. For example, the global names 
of the two STOCK databases are stock.division2.exchange.com and 
stock.division2.investor.com. The following SQL statements creates a database link to 
the remote site, 
 
CREATE DATABSE LINK stock.division2.investor.com; 
 
After creating the database link, user applications on the local database, 
stock.division2.exchange.com, can retrieve data from the remote database 
stock.division2.investor.com. In the case we need to check out all the stock accounts 
created by the same customers we can launch the query, 
 
SELECT * 
FROM ACCOUNT a1, ACCOUNT@stock.division2.investor.com a2; 
WHERE a1.customerID = a2.customerID; 
 
Recently, Peer-to-Peer (P2P) has appeared as a new architecture of distributed computing. 
In P2P, all the peers are born equal. There are two generations of P2P networks so far. In 
the first generation P2P, e.g., Gnutella, query and routing are done through broadcast. 
The flooding of message causes the network overhead. In the second generation, 
structured P2P, such as Kademila and Chord, querying and routing are based on the 
distributed hash tables, where each peer can reach its target for data exchange within a 
number of hops. The indexing of the data on each peer is locally managed to facilitate the 
query processing.  
 

8.1.4 Indexing algorithm in RDBMS 
 
DBMS index addresses the physical locations for direct data access. The tree based 
structures, Hash tables, and Linked list are the popular index models widely in use. 
 
In describing the indexing mechanism, a search key is an attribute or a set of attributes 
used to look up records in the database. An index file consists of the records (index 
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entries) in the form <search-key, pointer>, where search-key is the indexing attribute(s) 
and pointer indicates the physical locations of the data for direct access. There are two 
major types of indexes, the Ordered and the Hash indexes. The ordered indexes sort out 
the values of the search-keys in the numerical or alphabetical order, whereas the hash 
indexes are distributed uniformly across the physical storage space of data by using a 
‘hash function.’ 
 
The Balanced trees such as the Binary and the Binary plus trees (B tree and B+ trees) are 
ordered indexes.  
 
B tree 
 
Formally, a B tree of order p (i.e., maximally allowed number of pointers to the child 
nodes), is defined to satisfy the following conditions, 
 
i) Each internal node in the B-tree is of the form 

q1q1q222111 P,Pr,K,...,Pr,K,P,Pr,K,P ><><>< −− , where pq ≤ . Each iP  is a tree 

pointer to the child node in the B tree. Each iPr  is a data pointer, a pointer to the 
record whose search key field value is equal to iK  (or to the data file block 
containing that record). 

ii) Within each node, 1q21 K...KK −<<<  and for all search key field values X  in the 
subtree pointed by iP , we have, i1i KXK <<−  for qi1 << ; iKX <  for 1i = ; and 

XK 1i <−  for qi = . 
iii) Each node, except the root and leaf nodes, has at least Roundup(p/2) tree pointers. 

The root node has at least two tree pointers and all leaf nodes are at the same level. 
 
Figure 8 illustrates a B tree of order 3p = , containing eight elements in two levels. 
 

Figure 8.8 B tree of two levels order 3 containing 8 elements 
 
There are two types of pointers, the subtree and the data pointers, in each node of the B 
tree. The data pointer shows the storage location of the record(s) whose key values equal 
to those of the tree node, and the subtree pointer segments the data range into a number of 
the intervals to reduce the time complexity of search. 
 
 

6 9

10 112 4 7 8
Tree node pointer

Data pointer 



 140

B+ tree 
 
Most implementations of the tree structure indexes in real world applications are based 
on the improved B+ method, a variant of the B tree. In a B+ tree, data pointers are stored 
only at the leaf nodes of the tree, which are linked to provide ordered access on the search 
field to the records. The internal nodes do not contain the data pointers and some of them 
have repeated values of the search field to guide the search. Since the internal nodes and 
the leaf nodes are different in structure, a B+ tree of order p is defined as follows, 
 
i) Each internal node is of the form q1q1q2211 P,K,P,...,K,P,K,P −− , where pq ≤  

and each iP  is a tree pointer. 
ii) Within each internal node, 1q21 K...KK −<<< , and for all search field values X 

in the subtree pointed by iP , we have i1i KXK ≤<− , for qi1 << ; iKX ≤  for 
1i = ; and XK 1i <−  for qi = . 

iii) Each internal node, except the root, has at least Roundup(p/2) tree pointers, the 
root node has at least two tree pointers if it is an internal node. 

 
The structure of the leaf nodes of a B+ tree of order p is as follows, 
 
i) Each leaf node is of the form next1q1q2211 P,Pr,K,...,Pr,KPrK ><><>< −−，， , 

where pq ≤ , each iPr  is a data pointer, and nextP  points to the next leaf node of 
the B+ tree. 

ii) Within each leaf node, 1q21 K,...,KK −≤ , pq ≤ . Each iPr  is a data pointer that 
points to the record(s) whose search field value is iK . 

iii) Each leaf node has at least Roundup(p/2) values, and all leaf nodes are at the same 
level. 

 
Figure 8.9 illustrates a B+ tree of order 3p =  containing nine elements in two levels. 
 

Figure 8.9 B+ tree of two levels containing 9 elements, internal and leaf node order is 3 and 3, 
respectively. 
 
The order of a B+ tree is determined by the allocated memory size of the tree nodes, the 
size of the key variables, and the pointers. Suppose the size of the tree nodes is limited to 
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B = 512 Bytes, a data pointer Pr = 7 Bytes, a search key V = 9 Bytes, a subtree pointer P 
= 6 Byptes, and a next pointer in the leaf node Pnext = 6 Byptes. The orders of the tree 
with respect to the internal and the leaf nodes can be computed by evaluating the two 
inequalities, 
 

( ) ( )( ) BV1pPp ernalinternalint ≤⋅−+⋅  (8.1)
( )( ) BPVPrp nextleaf ≤++⋅  (8.2)

 
Thus, we have pinternal = 34, and pleaf = 31. Because the internal nodes of B+ tree do not 
contain the data pointers, the memory space can be saved to fan out more subtrees linking 
more data. 
In processing a query, a path is traversed in the tree from the root to the leaf node. If there 
are K search-key values in the file the path is no longer than ( )Klog 2/p . A node is 
generally the same size as a disk block, typically 4 Kilobytes, and p is typically around 
100. With 1 million search key values and p = 100, at most ( ) 410log 6

50 =  nodes are 
accessed in a look up. The insertion and deletion operations are recursive in nature and 
can cascade up or down the B+ tree to reshape its structure. 
 
The insertion operation is carried out by examining the state of the tree nodes, either 
overflow or still having empty space to hold new entries. The algorithm for insertion is 
summarized as follows, 
 
Algorithm Insertion 
Begin 
Insertion() 
   Find the leaf node in which the search-key value is matched; 
   If there is room in the leaf node L 
        Insert <search-key value, record/ bucket pointer> pair into leaf node at the appropriate position; 

Else Split(L) 
Endif 

 
Split(L) 
    Sort the <search-key value, pointer> pairs in L and the one to be inserted; 
    Place the first Roundup(p/2) in the original node, and the rest in a new node; 

  Let the new node be Lnew, and let Kleast be the least key value in Lnew, insert <Kleast, Lnew> in the parent of 
the node being split； 

    If the parent Lparent is full 
      If Lparent is not root 

Split(Lparent); 
      Else 
            Split(Lparent); 
            Increase tree level by one; 

Endif 
    Endif 
End 
 
The deletion operation of B+ tree seems to be more complicated than insertion. It 
involves rebalancing the nodes in case of the underflow of the parent of the node being 
deleted. The underflow of the internodes means that it has only one fan out. 
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Algorithm Deletion 
Begin 
Deletion() 
   Find the leaf node in which the search-key value is matched; 
   Remove <search-key value, record/ bucket pointer> from the leaf at the appropriate position; 
   If the parent Lparent is overflow 
       Rebalance(Lparent); 

Endif 
 
Rebalance(Lparent) 
If Lparent is root 
    Collapse root and decrease tree level by one; 
  Else  
      Check number of entries in immediate neighbors (siblings) of Lparent’s only child node. 
      If current node is minimal sized 
            If sibling node has enough rooms 

Merge with sibling and remove parent of current node; 
Else  
  Redistribute the pointers between the current node and the sibling such that both have more than 

the minimum number of entries; 
  Adjust the parent nodes by propagating to upper tree levels; 

End if 
          Else 
             Split current node and remove duplicate entries in parent; 

Endif 
Endif 
End 
 
Figure 8.10-13 illustrate an example of the deletion operation in B+ tree, where the tree 
structure is rebalanced after deletion by merging or splitting the nodes of underflow. 
 

Figure 8.10 Simple deletion in leaf node with search-key value equal 5 
 
In Figure 8.10, the data with the key value equal 5 is to be deleted. The procedure first 
searches all the entries by traversing the tree. As after deletion the parent node is not 
underflow, the tree keep still the balance, so, there is no need for rebalancing. Next, 
consider deleting the data entries whose key values equal 12, shown in Figure 8.11. 
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Figure 8.11 Split to rebalance the node containing search-key value equal 8 and 9 after deletion 
of node with key value 12. 
 
Because the parent has only one fan out to the node containing the key values 8 and 9 
after deletion, the parent node is underflow and needs rebalancing. Since its child node 
has more than one key value, we can do simply split to redistribute the data, similar to the 
insertion procedure. The parent node is also modified by removing the duplicated keys 
and the associated pointers. Nevertheless, if there are not enough keys in the node for 
splitting, merging is performed for rebalancing. There are two possible ways of merging 
the sibling tree nodes. In the first case, if the sibling nodes still leave empty rooms to hold 
new data, then the two sibling nodes can be merged directly, accordingly the parent node 
will be removed, as shown in Figure 8.12 the result of merging after deleting the node 
with the key value 9. 
  

Figure 8.12. Merge to rebalance the node containing search-key value equal 7 and 8 after 
deletion of node with key value 9. Tree level also decreases by one. 
 

 
Figure 8.13. Merge with propagation to rebalance the node containing search-key value equal 
7, 7.5 and 8 after deletion of node with key value 9. Tree level increases by one. 
 
Also, it is possible that the sibling nodes do not have the enough rooms to merge with 
new data. As shown in Figure 8.13, the order of the leaf node is 2 and the sibling of the 
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node with 8 contains 7 and 7.5, which has no more rooms to merge. So we split the node 
into two, like doing insertion, to rebalance the tree structure. 
 
Hash Index 
 
Hash indexing is highly efficient in processing the point queries based on the equality of 
key value. It is suitable to be utilized to handle the database operations such as the join of 
tables, where the data in multiple tables with equal key values are to be checked out. In 
point queries, it can outperform the balanced trees, which are well designed for range 
queries. A hash function )key(h  is a function from the set of all search-key values K to 
the set of all data-block (bucket) addresses B. Records with different search-key values 
may be mapped to the same bucket for localization. An ideal hash function should be 
uniform, i.e., each bucket is assigned the same number of search-key values from the set 
of all possible values. In addition, it should be random so each bucket will have the same 
number of records assigned to it irrespective of the distribution of the search-key values. 
 
There are mainly two types of hashing algorithm, the static and the dynamic hashing. In 
static hashing, function )key(h  maps search-key values to a fixed set B of bucket 
addresses. However, as the databases grow with time, if the initial number of buckets is 
too small, performance will degrade due to too much overflows. Moreover, if the index 
size at some point in the future is anticipated and the number of buckets is predefined, or 
the database shrinks in number of records, significant amount of space will be wasted. 
The dynamic hashing algorithms were proposed to address these deficiencies. In dynamic 
hashing, the size of the index structure can grow and shrink according to the number of 
records actually stored in the database. Thus, the problem of bucket overflow can be 
solved to enable the quick searches, with the minimal tradeoff of memory space. We will 
discuss more on hashing in the section. 
 
Inverted index  
 
Inverted index is in fact the sum of all possible searches stored in advance to speed up 
query processing. It is especially useful to index text data in database, such as emails, 
web documents, and DNA/Protein sequences. By establishing the inverted index, we can 
not only gain rapid access to the searched entries, but also learn useful statistic features of 
the document, such as the pattern of distribution, the frequency, and the relations among 
the text terms in the document. For instance, a gene sequence may contain hundreds of 
thousands of nucleotides, A, T, C, and G. Every three associated base pairs, encodes a 
type of the amino acid. There are totally twenty types of protein amino acid, and 
approximately 300 types of non-protein amino acid. These encoding sequences together 
with other features such as the CG pairs may play the dominant role in defining the 
biological functions of the genes. Taking these brilliant sequences as feature terms, the 
inverted index can be used to highlight the statistical differences among the different 
types of genes, to reveal the hidden mechanism behind the true biological process. Also, 
inverted index is the core component underlying the fast advancing technology of 
information retrieval, which we will examine closely in the next section. 
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8.2 Information retrieval  
 
Web search engines and Internet File Sharing are the 2 major applications of Information 
Retrievial. Dimensionality reduction can help to reduce the bandwidth and the storage 
overheads in retrieving the high-dimensional data over Internet. 

8.2.1 Web search engines  
 
The World Wide Web is growing fast. By 2005, there are more than 19.2 billion web 
pages and 70 million websites in the world. By February 2007, the number of the web 
pages has reached to at least 29.7 billion. More than 100 million distinct web sites exist, 
each hosting 273 pages on average. The number still grows at the pace of about 2-3 
million sites, and 0.54 to 0.81 billion pages each month according to the survey of 
Netcraft web server. Due to the scale of the problem, web users need to have the index to 
help browse the web. 
 
Web search engines build index for the texts, the images, the videos in web pages. They 
can be centralized or de-centralized. The client/server model is the industry standard at 
present, while the distributed model becomes increasingly popular as the Internet is 
growing fast. We will investigate the client/server model and use ‘Google’ as a case for 
illustration. We then discuss the distributed models of search engines proposed recently. 
 
Search engines in Client/Server architecture  
 
The company Google was started in 1996 by Larry Page and Sergey Brin, two PhD 
students then at Stanford. It is now the number one search engine widely used around the 
world. Google maintains a Client/Server model. The engine consists of millions of 
commodity-class PCs orignaized as clusters of servers. It can support a peak request 
stream of thousands of queries per second by reading hundreds of megabytes of data in 
tens of billions of CPU cycles. 
 
When user queries Google, his/her web browser look up the domain name system (DNS) 
to map www.google.com to a particular IP address. As the Google services are installed 
world wide, a DNS-based load-balancing system can choose a cluster with the highest 
geographic proximity to the user to perform the task. After receive the query, a cluster 
load balancer that monitor the workload of the Google Web servers (GWSs) will forward 
the request to the most appropriate one. The GWS then coordinate to search for the query 
and merge the results to be returned in Hypertext Markup Language (HTML) to the 
browsers. 
 
The procedure of searching consists of two steps. First, the index servers in the cluster 
look up the inverted index that maps each query keyword to a list of the document IDs. 
Then they merge the ID lists, and rank the matched documents to find the matched web 
pages. Because the data can be tens of terabytes in the raw format and the index file can 
be several terabytes in itself, the query has to be performed in parallel by dividing the 
index into small parts called index shards. Each shard is handled by a number of the 
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index servers. Each PC has its own CPU, and hard disk, and the servers are 
interconnected through the high speed Ethernet switches for data transfer. Figure 8.14 
shows a type server of PCs.  
 

 
 
Figure 8.14. A Google server hosting multiple PCs. Clusters of server machines coordinate for 
searching to answer the user queries. 
 
There are mainly 5 types of servers playing different roles, the web crawlers, the URL 
servers, the store servers, the indexer and the sorter servers. Their functions are listed in 
Tables. 

Table 8.3 Names and functions of servers in Google architecture 

Server Name Server Function 
Web crawler Download web pages 
URL server Send lists of URLs to be fetched to the crawlers 
Store server Take the web pages fetched by web crawler, compress and store the pages into the 

repository. 
Indexer server Read the repository, uncompress and parse the documents to build the forward index 

and the anchor file that contain the information on the link structure of the web pages. 
Sorter server Build the inverted index of the web pages to support the keyword searches. 

 
The web pages are downloaded by the crawler servers. The store servers retrieve the web 
pages then, compress and store them into the repository. The indexers in turn read the 
repository, uncompress and parse the documents to build the forward indexes to be stored 
into the barrels. It also generates the anchor files containing the information on the link 
structure of the web pages. The new URLs parsed out by the indexer are collected by the 
URL servers to instruct a new round of crawling of webpages. The anchor files are 
analyzed with PageRank algorithm to compute the rank of the webpages. Finally, the 
sorter servers work on the Barrels data to generate the inverted index of all the web pages 
to speed up the searching process. 
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Figure 8.15. Diagram of the main components and the working flow of Google computing 
architecture in webpage crawling, indexing and ranking to facilitate user retrieval. 

 
The crawlers work in parallel to download the web pages. The URL servers dispatch lists 
of URLs to a number of crawlers each keeping about 300 connections open to download 
webpages. At the peak performance, the crawlers can download over 100 web pages per 
second. The bottleneck for download is DNS lookup. To reduce the lookup latency each 
crawler maintains a DNS cache so that it doesn’t have to look up the DNS servers before 
download. After the web pages are downloaded, the indexers parse the document to 
extract the text, the images, the URLs and build the forward index. The forward index 
consists of the document IDs assigned to each webpage and the associated text contents 
in form of word IDs. The forward index is stored into the barrels and then retrieved by 
the sorter servers to create the inverted indexes, which are searched to answer queries. 
The structures of the forward and the inverted index are illustrated in Figure 8.16 and 17. 
  

docID wordID:24 nhits:8 hit hit hit hit… 
 wordID:24 nhits:8  
 Null wordID   

docID wordID:24 nhits:8 hit hit hit hit… 
 wordID:24 nhits:8 hit hit hit hit… 
 wordID:24 nhits:8 hit hit hit hit… 
 Null wordID   

 
Figure 8.16 Forward index containing document ID, word ID, occurrences, and positions 
 
The forward index contains the document and the word IDs. The word ID and its 
occurrences are 24 and 8 bits integers respectively. The hit records the position of the 
word occurring in the document. The inverted index creates the data structure in the 
reverse order to the forward index. 
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Figure 8.17 Inverted index containing word ID, document ID, occurrences, and positions 
 
Given a keyword in query the search engine can quickly check out the relevant 
documents by looking up the inverted index. The inverted and the forwarded index are 
approximately equal in size, while the lexicon, the list of the distinct words in the 
inverted index is much smaller. The lexicon, the forwarded and the inverted indexes, 
have the ratio of size about 1:140:140 in Google.  
 
The query is processed by using the Boolean model and the page rank algorithm to 
achieve the best recall and precision. Typically, Google has about 40,000 documents 
matched on average for each query. Only those with high page ranks are returned to users. 
The PageRank algorithm is actually a Markov chain model on the web graph. It was 
developed by Sergey Brin and Larry Page to rank the quality of the web pages based on 
the link analysis.  
 
Mathematically, let u  be a web page. The let uF  be the set of pages u  points to and uB  
be the set of pages that point to u . Let uu FN =  be the number of links from u  and let 
c  be a factor used for normalization (so that the total rank of all web pages is constant). 
A simplified version of PageRank is defined in Eq. 8.3. 
 

                     ∑
∈

=
uBv vN

vRcuR )()(  
 

(8.3)

 
Starting from an initial rank the equation iterates the computation till converge. In the 
form of matrix, let A  be a square matrix with the rows and column corresponding to web 
pages. Let NA vu /1, =  if there is an edge from u  to v  and 0, =vuA  if not. R  is the initial 
page rank, then Eq. 8.3 can be rewritten as cARR = . By converge, R  is the eigenvector 
of A . It can be worked out by using the power method in linear algebra. 
 
In practice, there is the so called problem of Rank Sink. Consider the two web pages that 
point to each other but to no other page. And suppose there is some web page which 
points one of them. Then, during iteration, this loop will accumulate rank but never 
distribute any rank because there is no outedge. To overcome this problem, Eq. 8.3 is 
modified by adding a factor E . 

                       EccARR )1( −+=  (8.4)
 

wordID     ndocs docID:27     nhits:5      hit hit hit hit… 

wordID     ndocs docID:27     nhits:5     hit hit hit hit… 

docID:27     nhits:5      hit hit hit hit… 

docID:27     nhits:5      hit hit hit hit… 
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The additional factor E modeling the behavior of the web surfer in periodically ‘getting 
bored’ of the looping walks and jumping to a random page chosen based on the 
distribution in E. 
 
The PageRank algorithm is fairly straightforward mathematically.  
 
Algorithm PageRank 
Begin 
   Initialize a non-degenerative vector R0, δ  and ε ; 
   While ε>δ  
       

i1i ARR ←+
 

       
11i1i RRd +−←  

       dERR 1i1i +← ++
 

       
1i1i RR −←δ +
 

   Endwhile 
End 
  
Here 

1
⋅  is the L1 norm. the factor d  increases the rate of convergence and maintain 

1
R  

to be normalized. In practice Google chooses E to be a uniform vector with all its 
elements equal to 0.15. Beside the problem of the sink-links, the dangle-link can also be 
encoutered. Dangling links are the pages without outgoing links. Because they do not 
contribute to the ranks of other pages, they can be removed from the computation. After 
all the PageRanks are calculated, they are added back for ranking.   
 
To deal with the scale of Web, Google builds a custom file system to manage the files of 
the word-document indexes, the URLs, and the Anchors. It uses large size files to 
minimize the workload of the file servers. The queries are processed locally for quick 
responses to users. The architecture of the Google file system is shown in Figure 8.18. 
 

 
Figure 8.18. Architecture of Google file system managing index, URL, and anchor files 
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Centralized search engines, however, lack the scalability to deal with the fast growing 
Web. The entire web holds about 91,000 terabytes of information, including the 
dynamically generated webpages, the private websites with access limits, and the 
multimedia information including images, audios and videos. The surface web that can be 
easily reached by search engines is only about 167 terabytes by contrast. In other words, 
what we can see by using the current search engines is only a tiny piece of the web. As it 
is still growing (20 billion indexed pages and several millions of pages everyday) the 
centralized systems turns out to be inadequate. 
 
Distributed web search engines 
 
Distributed web search engines index the web by sharing the computing resources 
(bandwidth, storage, and CPU cycles) distributed over the Internet. There are several 
efforts to develop the distributed web search engines, Grub, Majestic-12, and Minerva. 
 
Grub – Grub is an open source distributed search crawler started in 2000 by Kord 
Campbell et al. in US.. It was recently acquired by Wikia Inc., July, 2007. Grub users 
download the grub client software and run it during the computer idle time. The client 
works in parallel indexing the URLs and sending them back to the main grub server in 
compressed form. The grub server then assembles the indexes to process the user queries. 
Grub, nevertheless, is not purely distributed because the indexing and searching is 
performed on the centralized server. Though it can achieve better coverage over the 
whole web, it still has the same problem in centralized systems. 
 
Majestic-12 – MJ12 was founded in late 2004 by Alex Chundnovsky in UK.. It works in 
a similar way as Grub. The MJ12 client software runs on the idle PCs around the world. 
It crawls, collates, and feeds back the information to the master server. The crawled data 
will be indexed and searched by MJ12 to answer the queries.  
 
Minerva – The Minerva project was launched by Matthias Bender et al. at the Max-
Planck-Institute of Informatics, Germany. In Minerva, each idle PC manages its local 
search engine to build the index from the crawled web pages. In routing the query, the 
distributed hash tables (DHT) are utilized to show which PC contains the index entry for 
the given keyword. By looking up the index, all the PCs that contain the keyword can be 
identified. Minerva can find out the web pages rapidly by employing DHT, but it still 
unable to rank and merge the web pages efficiently to answer the users. 
 

8.2.2 Internet file sharing 
 
Indexing and searching for distributed web information retrieval is still challenging. In 
contrast, for Internet file sharing, Peer-to-Peer computing has gained widespread 
popularities among the PC users. It is particularly useful for sharing large audio and 
video files over the Internet. There are 2 types of P2P models, the unstructured and the 
structured, according to the different protocols for indexing and query routing. 
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Unstructured Peer to Peer 
 
Unstructured P2P does not utilize distributed hash table for indexing and query routing. 
Typical unstructured P2P systems include Napster, Gnutella, Kazaa, and BitTorrent. 
Napster is an early example of P2P networks, but it still has a master server in central. 
Gnutella by contrast is fully decentralized without any master servers. Kazaa establishes 
an overlay network ontop of the supernodes of high processing powers to manage the 
worker peers. BitTorrent is designed to distribute large files by querying the tracker 
servers and trading with fairs among the peers. 
 
Napster – Napster was initially designed for sharing music, particularly, mp3 files. Users 
first publish a list of the mp3 that they have to the central Napster server. The server 
maintains an index to indicate which peer contains which mp3. It returns the matched IP 
addresses of the peers that host the file. The peer-to-peer communication can then be 
started and users can connect to each other for download, as illustrated in Figure 8.19. 
 

 
Figure 8.19. Napster. A centralized server maintains the index of MP3 files to coordinate the 
communications among peers 
 
As Napster relies on the central server to operate the whole network, however it can 
suffer the single point of failure on the denial-of-service attacks and censorships.  
 
Gnutella – Gnutella, unlike Napster, is a fully decentralized P2P file sharing software 
with many successful implementations like BearShare and Shareaza. The Gnutella 
protocol is quite simple yet very powerful. Its client software hosts a list of the 
audio/video files and the local index for searching. There are basically four types of 
messages operating the Gnutella network. When users start the Gnutella clients, they send 
the ‘Ping’ message to discover their neighboring nodes in the network. All the nodes 
receiving such a ping message will respond to it with a ‘Pong’ message. The pong 
messages are routed back to the node sending the message to establish the connections. A 
‘Query’ message is issued when users want to search for a file. Each node, if having the 
matching file, is supposed to respond to this message with a ‘QueryHit’ message, and 
forwards in turn the query message to its neighbor nodes. For firewalled nodes, a ‘Push’ 
message is delivered to make file downloads possible.   
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Figure 8.20. Architecture of Gnutella network. 
 
As illustrated in Figure 8.20, a query is sent from Peer1 to its neighbors Peer2,3. These two 
peers then check their local index and forward the query message to the neighbors. The 
query, in this way, is flooding through the Gnutella network and all the matched results 
with the IP addresses will be reported to Peer1 for download. To stop messages, a Time-
To-Live (TTL) tag is calculated at each hop. On every node the TTL value is decreased 
by one. When it is zero the message will be discarded to terminate the searching process. 
There are two main problems for Gnutella network. First, the response latency to return 
the query result is relatively high as usually it takes long time for the messages to be 
transferred across a huge number of peers. Second, every node in the network has to 
sustain the flooding search. When the number of users is large the denial of services can 
be triggered due to the message overhead. This leads to the development of the Kazza 
protocol to work out.  
 
Kazza – Different from Gnutella, Kazza incorporate the concept of supernodes. 
Supernodes are those peers having the stronger processing powers (bandwidth, memory, 
hard disk). They act as central nodes in a segment of the network. Kazza reduces the 
network traffic and sets up an overlay of the supernodes for indexing and searching. 

 
Figure 8.21. Architecture of Kazza network 
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Kazza flooding searches only the supernodes. If the entry matches to the supernode index 
then it checks further its member peers and returns the result. It can thus avoid the 
problems in Napster and Gnutella. 
 
BitTorrent – BitTorrent (BT) is ideal for sharing large size files. For example, many 
Linux distributions are distributed by BitTorrent. BT can save the file servers a lot of the 
bandwidth by sharing the files among the users requesting on the same file. It works like 
Napster except that BT involves a population of the volunteered servers called Trackers 
to provide the indexing services to users. The Tracker software chops the file to be 
uploaded into small pieces typically of the size 256kB. It then creates a .torrent file 
announcing the URL of the Tracker. Users download and read the .torrent file to connect 
to the Tracker server and begin the download. The Tracker records and updates an index 
from time to time to show which peer has downloaded which part of the file. So, other 
users can read the index to find the existing owners of the request content. They can then 
contact the owners and trade fairly with them for exchange. The more the users 
downloading a file, the more the partners they can trade with, and the faster the file can 
be downloaded.    
 

 
Figure 8.22. Architecture of BitTorrent 
 
In Figure 8.22, consider a simplified case where a file is chopped into five pieces and 
uploaded to the server Tracker1. A .torrent file containing the URL of Tracker1 is then 
published and downloaded by users who want to download file1. The users connect to the 
Tracker server and read the index to know which other peers have downloaded any part 
of the file before. Suppose Peer9 possesses segment1 which Peer7 hasn’t downloaded, and 
Peer7 owns segment5 that Peer9 doesn’t have. Peer9 can then negotiate with Peer7 to trade 
the stuff. After trading, P7 will have segment1 from Peer9, while Peer9 will have segment5 
from Peer7. In doing so, by trading with the current holders of the file segments, Peer9 
can have all the parts to assemble and reconstruct the whole file. Accordingly, the index 
file in the tracker server will also be updated dynamically to notify the newcomers that 
Peer9 is also a source where they can ask for download. There are many BitTorrent 
Trackers to guide the download of files by peers.  
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The unstructured P2P file sharing is quite straitforward for design and implementation. 
But they suffer the problem of the single point of failure and the overhead of message 
flooding. Distributed Hash Tables (DHTs) can potentially be utilized to address these 
problems.   
 
Structured Peer to Peer 
 
Structured Peer to Peer file sharing is based on the DHT. Basically, the peers in a DHT 
network can self-organize an overlay on top of the Internet, and each peer needs to know 
only a few other peers in the system. The network can work efficiently with thousands or 
millions of nodes. A hash function is employed to address the nodes and the resources to 
the same ID space. A distance metric is then defined and utilized to allocate the resource 
to the nodes with matched IDs. The time complexity to find a resource is factorized.   
 
The general steps of using DHT for storage and retrieval are as follows. To publish the IP 
address of a file with a given filename, the SHA1 hash function hashes the filename to 
produce a 160-bit key k. A message put(k, IP address) is sent to an existing node 
connected to the DHT network. The message is then forwarded from node to node 
through the overlay until it reaches the closest node(s), where the message will be stored. 
Any other client to retrieve the message can hash the filename to produce k, and ask any 
DHT node to find out the node containing k with the message get(k). The message is 
again routed through the overlay to the node responsible for k to reply to the users. 
 
The hash function SHA1 can uniformly and randomly partition the keyword space and 
the node space to avoid the problem of identity collision. There are different types of the 
DHT overlay networks for file sharing, depending on how the hash indices and the 
distance metric are defined. Two popular DHT based networks are the Kadmelia and the 
Chord.  
 
Kadmelia — Kadmelia now widely used is designed by Petar Maymounkov and David 
Mazieres. It uses a XOR metric to define distance. Two node IDs or a node ID and a key, 
which are usually 160 bits of binary numbers, are XORed and. The result is converted to 
integer used as the distance between them. The hash index for routing consists of a list 
for each bit of the node ID. For instance, if a node ID has 160 bits, a node will keep 128 
lists. A list has many entries which are typically the node IDs of other nodes and their IP 
addresses plus port numbers. Nodes in the n-th list must have the IDs whose n-th bit is 
different from that of the hosting node, while the first n-1 bits are the same. Therefore, its 
always easy to fill the first list by ping-pong other nodes as statistically 1/2 of the nodes 
in the network have the different value in the first bit, and 1/4 for the second list, so on 
and so forth. Thus, every list corresponds to a specific distance from the node. With an 
ID of 160 bits, every node in the network will classify other nodes in one of 128 different 
distance ranges, one specific distance range per bit. As nodes are encountered on the 
network, they are added to the lists to update the routing table, while the failure nodes 
will be removed. Figure 8.23 illustrates an example of the Kademila network. 
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Figure 8.23. Illustration of Kademila network with 3 bits hash outputs 
 
In Figure 8.23, there are seven peers in the Kademila network, forming a B-tree structure. 
Each level of the tree corresponds to a bit of the Hash index. Now, consider the node 
whose ID is ‘110’. For the first bit, the three nodes ‘000’, ‘001’, and ‘010’ will be the 
candidates to be put into its list because they all have ‘0’ rather than ‘1’ in the first place. 
For the second bit, nodes ‘100’ and ‘101’ will be the candidates because they all have the 
same value in the first bit but different in the second. Finally, for the third bit, ‘111’ will 
be listed because the first two bits are all equal but different in the third. After generating 
the routing table users can efficiently locate the nodes and the resources by checking out 
their IP addresses for the next hop.  
 
Given a keyword of the data to upload, the Kademila client software initiates a 
FIND_NODE request by querying to the closest ones to the key value. The recipients that 
receive the query in turn will lookup their routing tables to find the neighbors. Because 
every node has a better knowledge of its own neighbors than any other node, the query 
will be forwarded closer and closer to the searched key. The search continues until node 
nodes are returned that are closer than the best previous results. And the IP addresses of 
the best nodes matched in the result list will be returned to the requesters. The data can 
thus be sent to the target node for storage using the STORE message. To provide 
redundancy in case of node failures, the data are duplicated and stored in multiple nodes 
that are the close to each other. This also increases the speed of searching. 
 
To retrieve the uploaded data given some searching keyword, Kademila first maps the 
input to a key string. The key string is then used for routing to locate the node(s) that 
contain the resource. Because the nodes are hierarchically organized, the complexity of 
searching is only O(logN) for an overlay containing N nodes. Recently, the Kademila 
algorithm has been implemented in a number of the widely used file sharing software, 
such as BitTorrent, BitComet, and eMule, where its effectiveness has been demonstrated.   
 
Another DHT based file sharing system that has drawn considerable academic attentions 
is the Chord algorithm, a result of the IRIS project (Infrastructure for Resilient Internet 
Systems) by MIT, UC Berkeley, Rice U. & Microsoft, and New York U.       
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Chord — The key idea of Chord is similar to that of the Kademila except that the 
distance metric and the organization of the routing table are different. The IP addresses of 
the nodes and the keywords are mapped to the same ID space by using the SHA1 hash 
function. All the nodes are sorted according to the values of the node IDs (ascending 
order), and virtually arranged into a ring structure. Given a query keyword k, the hash 
function first computes its hash output, usually a 160 bits string. The binary string is then 
converted to an integer, say, a. The storage node can be found according to the rule of 
Chord at the node whose ID is greater than or equal to a. This node is called the 
successor of k. The routing table of a node maintains a list of the nodes in various 
distance ranges taking the factorized step length of 2n for the n-th entry. Therefore, for a 
ID space of m bits it requires only m entries to cover all the nodes. Figure 26 depicts the 
topology of a sample Chord ring having 10 nodes. 

 
Figure 8.24. Illustration of a sample Chord ring having 10 nodes 
 
As shown in Figure 8.24, the queries with the keywords whose hash value is 10 will be 
matched to its successor, the node N14, whose ID value is 14. Similarly, hash values 24 
and 30 will be matched to N32, and 38 matched N38, 54 to N56. The step length for routing 
is set to 2i-1 where i smaller than m, the number of bits of the ID space, correspond to the 
i-th entry in the routing table. The searching process proceeds as follows. When a node 
gets a query, it first checks whether it has the matched record. If not, it looks up the 
routing table to find the successor of the key and forward the query to it. The recipient 
node repeats the above steps until the records have been found, as shown in Figure 8.25. 
  

N1 

N8 

N14

N21

N32

N38

N42 

N48 

N51 

N56 
Hash(k) = 10 

Hash(k) = 24 

Hash(k) = 30 

Hash(k) = 38 

Hash(k) = 54 



 157

 
Figure 8.25. Node8  receives the query ID 39 and find the result at its successor N42 
 
In Figure 8.25, given the hash value of the query keyword 39, node8 finds that it has no 
matched result locally. It thus looks up the routing table. As it is found that the sixth entry 
with the node ID 42 is the direct successor of 39, the query will be forward to this node to 
check further. 
 
The DHT algorithms, typically Kademila and Chord, establish a robust and scalable 
framework to realize the large scale distributed indexing and searching for Internet file 
sharing and applications. The indexing and routing mechanism improves the wide area 
storage networks, and protects the widely distributed applications from malicious attacks. 
Though still the challenge, the aggregation of the storage, bandwidth, and computing 
resources upon a secure layer of indexing and routing mechanisms will revolutionize our 
concept about the new generation of Internet computing.      
 

8.3 Gabor wavelets 
 
Gabor wavelet transform, also known as windowed Fourier transform, is localized in 
space. This property makes many functions and operators using wavelets “sparse” when 
transformed into the wavelet domain. The sparseness is an advantage for a number of 
useful applications such as data compression, feature detection and de-noise in images. 
Gabor wavelet has aroused considerable interests in vision research. There is the 
evidence that the Gabor wavelets are of similar shape as the receptive fields of 
orientation-selective simple cells in the primary visual cortex (V1). Lee [8.1] modeled 
such cells by the following Gabor wavelet function: 
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The wavelet is zero centered. θ  is the orientation of the wavelet. 0ω  is the size of the 
Gaussian window and the frequency of sinusoid basis. K is a constant. A Gabor wavelet 
hence is the product of the Gaussian window function and the sinusoid basis at various 
orientations, scales and frequiencies, as illustrated in Figure 8.26. 
 

 
Figure 8.26. Gabor wavelets at various orientations, scales and frequencies (Taken 
from [8.1]) 

 
Each member of this family of Gabor wavelets models the spatial receptive field structure 
of a simple cell. The response of a simple cell is the projection of an image onto a Gabor 
wavelet, which is the inner product of the image f  with the receptive field centered at 
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