






ABSTRACT

This research aims to develop a new control approach for a class of uncertain systems.

Despite intensive research efforts of many researchers, system uncertainty in model

parameters is still an existing problem in controller design. It is necessary to carry

out research for a new controller, which is able to keep a stable closed-loop system

and optimize the performance while requiring plant information as little as possible.

The new control scheme is inspired by the idea of a PID self-tuning controller

in the literature, which is able to maintain stable closed-loop regulation for a linear

time invariant (LTI) system subject to unanticipated jumps of plant parameters and

external disturbances. The controller depends on an assumption that the plant is

open-loop stable with a full-row rank for the DC-feedback gain. The plant parame-

ters are not required in the controller design. In this work, an extended high-order

self-tuning controller is developed based on the same technique. Two typical versions

are studied rigorously. One is called multi-absorber tuning control, which extends

PID control by adding multiple resonator-absorbers. The other is called tuning con-

trol with a pseudo observer, which uses filter states to approximate the plant states

within a user-defined bandwidth. Besides the stability issue, this work also ad-

dresses online optimization of the control performance. When the plant parameters

are unknown, adaptive optimal control is the only available option. In this work,

the simultaneous perturbation method (SPM) is adopted as an additional method

to optimize the controller when the plant parameters are unknown. The integration

of the stabilization algorithm and optimization control without plant parameters

is the main contribution of this work, since this integration forms an independent
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module that is suitable to collaborate with any other available adaptive methods.

The proposed control scheme is tested in both simulation and experimental ex-

amples. As far as simulation is concerned, within the assumption, all testing plant

models are selected arbitrarily for the purpose of testing the controllers without

knowing plant parameters. As for experiment, the control problem of flow induced

vibration is used to test the practical applicability of proposed control method. The

improved results in each example show the validation of the new control scheme.

When studying the control example of flow induced vibration, this work also

makes contributions on the understanding of coupled dynamics between flow vor-

tex shedding and structure motion. At the preliminary stage, traditional model-

independent methods are tested, such as resonator and variable structure control.

However, the performance of these schemes is not effective enough. Besides the

above-mentioned new controller, another control scheme is found to be effective,

which uses a phenomenological low-order vortex oscillating model as guidance. The

key idea is to effectively increase the nonlinear damping term in the model. A

new multi-frequency perturbation method is developed, which is unique among all

present control laws in fluid dynamics. Experimental results under resonant wind

condition have shown its best performance in reducing flow-induced vibration when

compared with other controllers. The robustness under different wind speed condi-

tions has also been studied. All the findings have not only shown the effectiveness

of proposed new scheme, but also validated the phenomenological model used to

describe the complex interaction between vortex shedding and structure motion.
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CHAPTER 1

INTRODUCTION

The collaboration of multidisciplinary areas has brought control and optimization

efforts on related research activities to an increasingly complex level, which emerges

from the enhancement of more unknown factors in system models. Conventionally,

effectiveness of controller design depends on the availability of plant information

beforehand. However, in most practical cases, a perfectly matching model can rarely

be constructed as a result of the lack of cognition ability for human beings. In such

cases, some model-dependent design schemes may not be applicable, and meanwhile,

some efforts should be made on the condition of the information scarcity of plant

dynamics.

1.1 Adaptive Control Motif

It is a challenge to design and implement a stable controller when the plant parame-

ters are not fully available. Åström and Hagglund (1984) first gave the automative

tuning method for adaptive control of LTI plants. Petersen (1987) proposed a Riccati

approach for linear systems with time-varying-but-bounded uncertainties in system

state equations, which requires the availability of plant states. Yeh and Youcef-

Toumi (1995) designed an adaptation law by using Taylor’s expansion for the local

expansion of nonlinear systems to cancel the uncertain vector in the state-equation

and ensure controlled state to follow the reference trajectory. Adaptive control has
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Figure 1.1: Two typical adaptive control systems, â is estimated parameters

been proven a very effective method to control uncertain or time varying plants,

whose basic idea is to estimate uncertain system parameters online based on mea-

sured signals and then use this estimation to calculate controller input parameters.

Figure 1.1 shows two typical kinds of adaptive control schemes.

1.1.1 Background

Research in adaptive control started in the early 1950’s in connection with the design

of autopilots for high-performance aircraft, which operate at a wide range of speeds

and altitudes and thus experience large parameter variations (Slotine and Li, 1991).

Unfortunately, credit in this subject soon diminished due to the lack of sights and

the crash of test flight. Nevertheless, the development of adaptive control theory

has never been stalled. With the increasing matureness of control theory during last
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decade, various tools have been explored for adaptive control purpose.

One popular design tool is called adaptive backstepping, which is developed by

Ioannis Kanellakopoulos in collaboration with Petar Kokotović and further improved

by Miroslav Krstić with the invention of tuning functions (Krstić et al., 1995).

Considering a third order pure-feedback system with unknown parameters θ,

ẋ1 = x2 + ϕT
1 (x1, x2)θ

ẋ2 = x3 + ϕT
2 (x1, x2, x3)θ

ẋ3 = u+ ϕT
3 (x1, x2, x3)θ,

(1.1)

the idea of backstepping is to design a controller recursively by recognizing some

of the state variables as ’virtual controls’. For instance, the first step is to design

intermediate control law of first equation of (1.1) and its virtual control is x2. Since

θ is unknown, this can be solved with an adaptive controller consisting of the control

law α1(x1) and the update law
˙̂
θ = τ(x1) from Lyapunov-based design. Then, the

first two equations of (1.1) are considered, and at this time x3 is virtual control.

Adaptive backstepping treats θ in the second equation of (1.1) as a new parameter

and gives another new estimate with another new update law, which causes the

overparametrization. This can also be avoided if
˙̂
θ = τ(x1) in the first step is

considered as a function τ(x1) rather than an update law. Thus, tuning function is

used in subsequent steps to compensate
˙̂
θ− τ(x1). Whenever

¨̂
θ appears in the next

step, it will be replaced by the first derivative of τ(x1).

In virtue of backstepping’s simplicity and flexibility, many research works have

been carried out on its applications and improvement. One prerequisite by Krstić

et al. (1995) is that the controlled linearizable system must be transformable into

a specified pure feedback form. Wu and Chou (1999) developed a recursive control

design method based on backstepping, which does not have previous requirement but
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needs a new restrictive condition with a constant relative degree. Furthermore, they

combined the feedforward control scheme with the backstepping design in order

to prevent unbounded signals due to parameter estimation and ensure solution’s

feasibility. Kim and Kim (2003) analyzed the tracking function selecting problem of

backstepping design procedure for slew maneuver control. Their proposed method

using nonlinear tracking function reduces both the settling time and the peak control

torque simultaneously, compared with traditional controller with linear tracking

function. Recently, the backstepping design method has also been combined with

other control methods in practice. Benaskeur and Desbiens (2002) made some efforts

on using backstepping algorithm to design robust adaptive PID controller. Stotsky

et al. (1997) simplified backstepping control by sliding modes. Wai et al. (2002);

Lin et al. (2002) also described backstepping’s combinations with fuzzy control and

neural network technique.

As mentioned above, another famous control method for uncertain systems is

called variable structure control (or called sliding mode control), which is first intro-

duced in Vadim I.Utkin’s discontinuous control systems (Utkin, 1992). The variable

structure system is such a dynamic system whose structure changes according to the

current value of its state. It can be viewed as a system composed of independent

structures together with a switching logic between each structure. With appropriate

switching logic, a variable structure system can exploit the desirable properties such

that any original structure of the system does not own. For instance, considering a

dynamic model

ẋ1 = x2

ẋ2 = −ux1,

(1.2)

there are two structures with u = 1/a and u = a, where a is positive. The phase-
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plane portraits of individual structure are shown in Figure 1.2 (a) and (b). Obviously,

neither of them are asymptotically stable but only stable. However, if a is chosen as

u =







1/a if x1x2 < 0

a if x1x2 > 0,

(1.3)

the system’s trajectory will be changed to be asymptotically stable as shown in

Figure 1.2 (c). Because of this interesting property, variable structure control has

been used in lots of applications to decouple complicated system dynamics. Park

et al. (2001) proposed the sliding mode controller with perturbation observer for a

6-DOF parallel manipulator. In order to ensure estimation errors’ convergence, a

fuzzy adaptive network was also combined with the Lyapunov-based sliding mode

design. Park and Tsuji (1999) studied a terminal sliding mode control scheme for

second-order nonlinear uncertain systems.

Indeed, there also exists other various adaptive control design schemes. Taking

PID control as an example, Ho et al. (2003) proposed a relay auto-tuning scheme

with specified bandwidth and phase margin, whose main idea results from iterative

feedback tuning. Due to two specifications, only two of the three PID parameters

(P, I) can be tuned independently. Having applied the similar preload relay in series

with a PID controller, Tan et al. (2002) studied the robustness of their proposed

tuning algorithm, which changed all three parameters of PID. Furthermore, Chang

et al. (2002) described another PID online updating method for a class of nonlinear

systems. The stability of closed-loop PID control system is guaranteed by using

Lyapunov approach with a supervisory control and a modified adaptation law with

projection.
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1.1.2 Model-Independent Motivation

Available adaptive controllers may be generally divided into two groups: the direct

and indirect approaches. A common feature of direct adaptive controllers is the use

of some closed-loop poles to cancel plant zeros (Feuer and Morse, 1978), which is only

applicable to minimum-phase plants. Indirect adaptive control is not subject to such

a limitation and the control law may be optimized according to online identification

results. These features are favored in many practical applications (Costa et al., 1999;

Milliken et al., 1999; Kawamura et al., 2004). A drawback of the indirect adaptive

control, however, is its heavy dependence on an adaptive model obtained by online

identification. The accuracy of the adaptive model may be poor in at least three

situations:

• an initial period before the convergence of the adaptive model;

• a period immediately after an unanticipated jump of plant parameters;

• the disturbance exceeds an unpredictable tolerance level.

Since these situations depend more on plant structures and noise levels than on iden-

tification algorithms, it is more reliable to introduce an extra stabilization control

module for indirect adaptive controllers in case online identification is inaccurate.

The approach of this research work is based on the second type of adaptive con-

trol scheme in Figure 1.1. A PID self-tuning controller, proposed by Chang and

Davison (2003), is able to guarantee stable closed-loop regulation while requiring

neither information on the plant model nor online identification. It can be improved

substantially to a general n-th order switching controller with an additional online

optimization mechanism (Wu et al., 2005). The n-th order switching controller does

7



not require model information nor online identification to achieve sub-optimal con-

trol performance. This important feature is used to compensate for the weakness

of indirect adaptive controllers in case of poor identification results. A new con-

trol scheme therefore has been developed here to combine this switching controller

with an indirect adaptive controller and achieve optimal linear quadratic control

performance.

1.2 Flow-Induced Vibration (FIV) Control

Flow-induced vibration (FIV) has been regarded as an interesting research topic

because of its significant interest in engineering applications, such as construction

of bridges and skyscrapers in civil engineering, design of oil-supplier tubes in ocean

engineering, and design of aircrafts and land vehicles in mechanical engineering.

Numerous fundamental research results on FIV have been reported, which can be

found from the comprehensive reviews of Sarpkaya (1979); Bearman (1984); Blevins

(1990); Williamson and Govardhan (2004). Moreover, the development of control

technique for suppressing FIV has also attracted attentions from many researchers.

In order to suppress both vortex shedding and structure vibration, active control

method may be adopted due to its effective applicability. Acoustic excitation (Pe-

terka and Richardson, 1969; Hsiao et al., 1990; Liu and Brodie, 2000) and rotational

oscillating cylinder (Berger, 1967; Warui and Fujisawa, 1996; Fujisawa et al., 2001)

are recognized as precursory methods for active flow control. Recently, Cheng et al.

(2003) have developed a novel perturbation technique using embedded piezoelectric

actuators for elastically mounted cylinder, which is able to decouple the interaction

between flow and structure. Zhang et al. (2003) further extend the idea to feedback

control using a PID controller.
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As mentioned before, in order to design a stable and effective controller, a dy-

namic model should be available. There are several analytical works on control

problems with regard to the typical Navier-Stokes equation in fluid dynamics field

(Bands and Ito, 1994; Christofides and Armaou, 1998; Min and Choi, 1999; Agrachev

and Sarychev, 2003). However, for FIV, the full enclosure of model requires the full

solution of Navier-Stokes equations with a moving structure as boundary conditions.

Although the development of computing technology brings the possibility to direct

numerical simulation (DNS) of fluid dynamics, DNS is still a painstaking and com-

pensating computational task that is not suitable for real-time control applications.

The search for a simple but representative model for FIV was quite popular in the

1970s (Sarpkaya, 1979). A phenomenological model based on a wake oscillator idea

(Bishop and Hassan, 1964) is commonly adopted. The van der pol equation is first

introduced by Hartlen and Currie (1970) to represent the wake oscillator. The idea

is improved by several researchers later (Skop and Griffin, 1973; Iwan and Blevins,

1974; Skop and Balasubramanian, 1997; Krenk and Nielsen, 1999; Facchinetti et al.,

2004). Unfortunately, considering the difficulty of identifying all unknown proper-

ties of FIV, most available models are based on a qualitative perception. There has

been a lack of a satisfactory FIV model for controller design. Consequently, there

is seldom research work employing available models for practical real-time control

purpose.

The challenge of active control is due to insufficient knowledge of the FIV model.

This research work takes this difficult problem as a testing example for model-

independent control scheme developed in the project. Furthermore, according to

the model available in the literature, another feedback closed-loop control scheme

is proposed by using high frequency perturbations. It is the first attempt to link
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a qualitatively developed model to practical controller design for FIV. Since the

model is not physically developed, such an additional controller is also regarded as

model-independent according to the traditional meaning of plant dynamic model.

1.3 Problem Statement

Due to the collective efforts of numerous researchers, the automatic control theory

has been impressively developed to propose a wide coverage of solutions to many

applications in books and scientific journals. Considering the practical procedures

to implement the control application (Emelyanov and Korovin, 2000),

• the elaboration of a mathematical model of an object

• the investigation and identification of the model parameters

• the formulation of requirements to the properties of the system

• the choice of the law of control and performance of imitation experiment

• the technological realization of the system and the conduction of a natural or

seminatural experiment

• the adjustment of the system

however, we must realize that each step requires creative efforts and most of them

involve uncertain characters. Therefore, this work mainly makes contributions on

the development of the control module design for the model-independent problem.

It should also be noticed that plant parameters are only used in the stability analy-

sis but not in any controller parameters. Moreover, flow-induced vibration (FIV)

control is used as the experimental object.
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1.3.1 Model-Independent Control Module

In modern control theory, a generalized plant is mathematically described by a

state-space model,

ẋ = Ax+Bu+ Ew

y = Cx+ Fw

e = yref − y

(1.4)

where x ∈ R
n is the state, w ∈ R

r is disturbance, u ∈ R
m is the control signal,

e ∈ R
q is the error between reference yref ∈ R

q and plant output y ∈ R
q. Both w

and yref are bounded signals. A, B, C, E, and F are parameter matrices of the

plant model. The exact values of these matrices are not available in many practical

applications. The common objective is to design a feedback control device given by

φ̇ = Auφ+Bue

u = Cuφ+Due

(1.5)

where φ ∈ R
j is the controller state, Au, Bu, Cu, and Du are parameter matrices

of the controller. The controller must stabilize the closed-loop system and provide

optimal control performance. The focus of this thesis is how to design Au, Bu, Cu

and Du without the parameter knowledge of A, B, C, E and F . Taking account

of plant uncertainty and disturbance, a new control scheme (as in Figure 1.3) is

introduced in this work.

In control practice, when plant model parameter matrices A, B, C, E and F are

unknown, a proper online identification algorithm can be applied to estimate A, B

and C from the feedback signal y and control input u. In Figure 1.3, the time scale is

divided into consecutive epochs. Depending on the accuracy of online identification,

each epoch has three or two time slots with equal durations. These time slots are
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1st Epoch 2nd Epoch nth Epoch

select C of min(J)

C1 C1C1 C2C2C2 C3C3C3

J1 J2 J3

Time

Figure 1.3: Proposed control scheme

allocated to controllers C1, C2 and, optionally, C3 respectively. The performance of

controller Ci is numerically evaluated by an index function Ji. A possible Ji is the

cost function, used in linear quadratic control, obtained by numerical integration

over time slot i, i.e. lim
T→∞

E

{
1

T

∫ T

0
eT edt

}

. At the end of an epoch, the controllers

are compared in terms of Ji and the best controller is chosen to be controller C1 in

the next epoch.

In the first epoch, the controller has minimum plant information compared with

other time epochs. A new switching controller is chosen to be C1. This controller

is able to stabilize the closed-loop quickly without depending on the plant model

or identification results, as to be detailed in section 2.1 of Chapter 2. Besides the

first epoch, there are inevitable worst cases when controllers in other epochs may

be unstable due to the inaccurate identification results or unanticipated parameter

jumps in the plant. The new switching controller will be C1 in all worst cases

to stabilize the closed-loop quickly. Controller C2 is always a randomly-perturbed

version of C1 in each epoch. The random perturbation is intended to optimize the

control performance without online identification, which will be explained in section

2.2 of Chapter 2. Controller C3 can be an indirect adaptive controller since the

plant may be non-minimum-phase and optimal control performance is expected.

This controller depends on an adaptive model available by online identification. It

consists of an observer and a state-feedback gain solved from the algebraic Riccati

12



equation. The observer is open-loop stable if the adaptive model is accurate enough.

Although controller C3 is allocated to time slot 3, its observer is always tested.

If the observer error diverges, it indicates an inaccurate adaptive model and the

corresponding epoch only has two time slots for C1 and C2. If the observer error of

C3 converges to a small level, the corresponding epoch will have three time slots for

C1, C2 and C3 respectively. As long as the adaptive model is accurate enough in one

epoch, controller C3 will be optimal and then become controller C1 in the following

epochs until the next unanticipated jump of plant parameters.

The stabilization mechanism is always on alert in case of unanticipated jumps

of plant parameters as explained in Chang and Davison (2003). Another reason for

the stabilization mechanism is the possibility of inaccurate online identification due

to an excessive but still bounded disturbance w. Available identification algorithms

may tolerate small levels of disturbance w. The exact tolerance level, however, is

unknown since it depends more on plant structures than on identification algorithms.

Even when the observer error of controller C3 converges in open-loop tests, there

is still no guarantee that C3 will be stable in the closed-loop. It is important to

stabilize the closed-loop quickly in case of inaccurate identification results. This

is made possible by improving the PID self-tuning controller (Chang and Davison,

2003) to n-th order switching controllers. The stabilization mechanism works if both

(1.4) and (1.5) are open-loop stable. This is not a problem because the observer of

C3 must be stable before C3 is allocated a time slot. The worst case controller C1 is

also open-loop stable to be explained in section 2.1 of Chapter 2.

Since the control module does not need online identification, the stability require-

ment on the adaptive controller is relaxed significantly. The new control scheme

works even in the worst case when the adaptive model never converges due to a

13



Mechanism

Stabilization
Mechanism

Plant

+

−

Control
Adaptive

Optimization

w

u

yref

y

e

Figure 1.4: Self-tuning optimal control scheme

severe disturbance w and a sensitive plant structure. In that case, all epochs will

have two time slots for C1 and C2 only. For best focus, this study only concentrates

on the design of C1 and C2. Figure 1.4 shows the functional block diagram of the

new control scheme, in which the stabilization module is in the dash-line block.

Before going further, we need to make following general assumptions as discussed

by Chang and Davison (2003).

(A1) Plant (1.4) is open-loop stable, which implies the invertibility of A.

(A2) DC steady-state gain matrix T = −CA−1B has full-row rank q and m ≥ q,

which implies the existence of solution −T K, where K ∈ R
m×q.

These assumptions match the practical situations for the design of active con-

troller of many engineering applications, such as control of electro-servomechanism

system, and the flow-induced vibration.
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Figure 1.5: The layout of control technique (Cheng et al., 2003)

1.3.2 FIV Control Implementation

Considering a typical FIV phenomenon, when flow is passing through immersed

body, the vortex shedding is formed in the wake and excites the body to vibrate.

The motion of the body will further affect vortex, and in turn the force acting on

the body itself. Especially, when vortex shedding frequency lies in certain range

near the resonant frequency of body structure, energy in both wake and structure

vibration will be magnified. This phenomenon usually occurs at the lock-in regime.

An elastically mounted square cylinder immersed in a closed-loop wind tunnel is

used as the testing object, to which case the perturbation technique of Cheng et al.

(2003) is also applicable here with some newly developed controllers. The upper

surface of the cylinder is movable and driven by embedded piezoelectric actuators,

which is shown in Figure 1.5. The surface motion transfers control actions to the

FIV system, which creates local perturbation on the flow around cylinder. Figure

1.6 shows the concept of FIV control, where Ms is upper slide mass and Mc is

cylinder mass. The objective is to suppress both structure vibration and wake vortex

shedding at lock-in regime by applying effective control methods. Due to modeling

difficulty for real-time use of control design for FIV as introduced in section 1.2,

model-independent controllers can be considered to achieve the desired objectives.

The primary motivation is therefore to prompt the investigation of suitable model-
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Figure 1.6: Concept of flow induced vibration control

independent control methods that are tested in this practical example.

1.4 Outline of Thesis

This research is carried out in two stages. Basically, it gives the mathematical

development of a novel model-independent control module for uncertain systems.

Furthermore, due to the uncertain dynamics, experiment of FIV control is adopted

as the testing object for the practical validation of developed control module. In

addition, several control studies for this practical example are also involved. The

organization of this thesis is as follows. Chapter 2 describes the control module

design, which consists of the stabilization mechanism design and the optimization

mechanism design. Chapter 3 is dedicated to the case study of FIV, which gives

preliminary knowledge of its control problem and one additional feedback scheme.

Based on the methodologies developed, both simulation and experimental results for

specific controllers are shown in respective Chapter. After that, several highlights

are drawn and useful comments for future works are addressed in Chapter 4.
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CHAPTER 2

CONTROL MODULE DESIGN

2.1 Stabilization Mechanism Design

The first and most important part of the problem is how to stabilize the closed-loop

system of plant and controller under disturbance when A, B, C are not available

and the adaptive model is inaccurate. The solution of this problem enables the

controller to optimize the performance index while maintaining a stable closed-loop.

Chang and Davison (2003) propose a self-tuning algorithm for PID 3-term controller.

The stability of their algorithm is proven by using singular perturbation method.

Inspired from this idea, an extended tuning version is developed by Wu et al. (2005).

In this section, based on the work in Wu et al. (2005), we would like to give a broader

consideration about the stabilization algorithm design1. First, a brief introduction

of singular perturbation technique is given.

2.1.1 Singular Perturbation Technique

One important tool in the analysis of controller stability is singular perturbation

technique, which is commonly used in model reduction for complex dynamics by

control engineers. Generally, the plant can be decomposed into two-time-scale sys-

tems, a fast manifold and a slow quasi-steady-state, which correspond to extraneous

1Most technical expressions in this Chapter require the basic knowledge in control engineering,

which can be referred to textbook by Ogata (1997).
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uncertainties and real plant dynamics respectively. How to achieve a satisfactory

degree of robustness and insensitivity to inevitable uncertainties is one application

of singular perturbation technique. The detailed analysis of this technique in con-

trol can be found in Kokotović et al. (1986). Here, we only apply the technique

to the analysis of system eigenvalue properties. Consider the standard singularly

perturbed system,

ẋ = (A11 + εβ1A11)x+ (A12 + εβ2A12)z

εż = (A21 + εβ3A21)x+ (A22 + εβ4A22)z

(2.1)

where βi ≥ 1 are fixed finite constants for i ∈ {1, 2, 3, 4}, and (x, z, ε) ∈ R
n1 ×R

n2 ×

R
+. The first equation represents the slow time-scale system and the second one

is for the fast time-scale system. What is the relationship between the eigenvalues

for system (2.1) and the small scalar ε ? The following Lemma in Kokotović et al.

(1986, p.57) gives the answer.

Lemma 2.1.1. For the singularly perturbed system (2.1), if A−1
22 exists, then as

ε → 0, n1 eigenvalues of (2.1) tend to eig(A0) := eig(A11 − A12A
−1
22 A21), while

the remaining n2 eigenvalues of (2.1) tend to infinity, with a rate of 1/ε, along the

asymptotes defined by eig(A22)/ε.

It reveals the disjoint of eigenvalues for system (2.1), which are of order O(1)

and O(1/ε) respectively. The smaller value of ε gives larger gap between these

two sets of eigenvalues. It is an inherent character of singular perturbed system.

Furthermore, since eigenvalue is an important indicator of system stability, Lemma

2.1.1 hereby provides a very powerful stability analysis tool. It can be found that

there exists an ε∗ > 0 such that for ε ∈ (0, ε∗] system (2.1) is asymptotically stable,

if eig(A0) and eig(A22) ⊂ C
−.
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Figure 2.1: Scheme of PID controller

2.1.2 PID Extended Tuning Controller

Brief Introduction to PID Controller

Figure 2.1 shows a PID control of a plant. P = Kp gives a proportion of the

system error to the plant, which introduces an offset error. I = Ki

1

s
accumulates

error throughout the control period, which removes the offset given by P action

but introduces a phase lag into the plant. D = Kds describes the rate of error

change, which is used to reduce overshoot and introduces a phase lead to remove

the phase lag from I action. Usually, in practical implementation, an alternative

form of D = Kd

sN

s+N
is used, where N ∈ R

+. One typical experimental approach

of tuning method is called Ziegler-Nichols rules (Ogata, 1997), which are based on

experimental step responses or based on the value of Kp that results in marginal

stability when only the proportional control action is used. However, none of them

can be designed analytically except manually when system model is not known.

Tuning Method Extended by Multiple 1st Order Terms

There have been a lot of automatic tuning methods for PID in the literature. How-

ever, for plant with uncertain parameters, it is a challenge to design a self-tuning
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rule for PID to maintain closed-loop stability, especially with disturbance partici-

pating. (Chang and Davison, 2003) propose a solution for this problem, however,

it cannot provide an optimal solution. It is an intuitive guess that only 3-term low

order controller may not be able to achieve high performance when the uncertain

plant is a higher order one. As a result, it is desired to have a high order optimizing

controller, which is stable when applied to control an uncertain plant with only (A1)

and (A2) assumptions made in section 1.3.1.

Inspired from the PID switching idea from Chang and Davison (2003), we con-

sider an extended tuning control as shown in Equation (2.2), where (βε, βρ, ε̄2, N, ρ̄) ∈

R
+ × R

+ × R
+ × R

+ × R
+ as fixed constants, ε1 = ε0/τ

k with (ε0, k, τ − 1) ∈ R
+ ×

Z
+×R

+ as tuning function, K = k̄(k) as K tuning function 2, (a1, a2, · · · , ah) ∈ C
+

and (c1, c2, · · · , ch) = (c̄1ε
βc1

+1
1 , c̄2ε

βc2
+1

1 , · · · , c̄hε
βch

+1

1 ) ∈ R. The updating time for

tuning functions is set at the time when u hits the pre-defined input constraint

boundary.

u(s) = K







PID switching
︷ ︸︸ ︷[
ε1I

s
+ ρ̄ε

βρ+1
1 I + ε̄2ε

βε+1
1

sNI

s+N

]

+

added items
︷ ︸︸ ︷

c1I

s+ a1

+
c2I

s+ a2

+ · · · +
chI

s+ ah







×e(s).

(2.2)

If one ak is complex number, then another ak+1 must exist to act as a conjugate

of ak. The corresponding ck and ck+1 form one conjugate pair. Define the PID

control input state as [ηT ξT ]T , and the additional state as Ψ ∈ R
h. The state-space

expression for (2.2) can be written as (2.3) in partial diagonal form, which means if

ak and ak+1 are complex conjugate with each other, then values −ak and −ak+1 can

be replaced by a 2 × 2 real matrix in the diagonal direction.

2reference (Chang and Davison, 2003, p.1977) gives definitions for tuning and K tuning func-

tions. One example for updating of tuning function, ε′1 = ε1/τ = ε0/τk+1.
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









η̇

ξ̇

Ψ̇











=















0 0 0 0 · · · 0

0 −NI 0 0 · · · 0

0 0 −a1 0

0 0 −a2

...
...

. . .

0 0 0 −ah





























η

ξ

ψ1

ψ2

...
ψh















+















ε1I

I

I

I
...

I















e

u = K
[

1 −ε̄2ε
βε+1
1 N2 c̄1ε

βc1
+1

1 c̄2ε
βc2

+1
1 · · · c̄hε

βch
+1

1

]











η
ξ

ψ1

ψ2

...
ψh











+
[

Kρ̄ε
βρ+1
1 +Kε̄2ε

βε+1
1 N

]

e.

(2.3)

Following the same routine as Wu et al. (2005), the closed-loop system described

by (1.4) and (2.2) is written as

˙̃x = Âx̃+ B̂v

ỹ = Ĉx̃+ D̂v,

(2.4)

[

Â B̂

Ĉ D̂

]

=











A− (ρ+ ε2N)BKC BK −ε2N
2BK BHK (ρ+ ε2N)BK E − (ρ+ ε2N)BKF

−ε1C 0 0 0 ε1I −ε1F
−C 0 −NI 0 I −F
−GC 0 0 −Ω G −GF
C 0 0 0 0 F

−(ρ+ ε2N)KC K −ε2N
2K HK (ρ+ ε2N)K −(ρ+ ε2N)KF











(2.4a)

where x̃ = [xT ηT ξT ΦT ]T , v = [yT
ref w

T ]T , ŷ = [yT uT ]T , Ω = diag{a1, a2, · · · , ah},

G = [I, I, · · · , I]T , H = [c̄1ε
βc1

+1
1 , c̄2ε

βc2
+1

1 , · · · , c̄hε
βch

+1

1 ], (ρ, ε2) = (ρ̄ε
βρ+1
1 , ε̄2ε

βε+1
1 ).

Now, we apply Lemma 2.1.1 to prove the following Theorem of stability condition

of closed-loop system (2.4).

Theorem 2.1.1. If plant (1.4) is open-loop stable with eig(A) ∈ C
− and its DC

steady-state gain matrix T has full-row rank, then the extended controller (2.2) guar-

antees the stability of the closed-loop system (2.4) if ε1 is sufficiently small.

21



Proof. By applying similarity transformation, matrix Â is rewritten as (2.5).

Â∗ =







0 −ε1C 0 0

BK A− (ε
βρ+1
1 ρ̄+ εβε+1

1 ε̄2N)BKC −εβε+1
1 ε̄2N

2BK BHK

0 −C −NI 0
0 −GC 0 −Ω






. (2.5)

The equivalence of this proof is to verify eig(Â∗/ε1) ⊂ C
−. Notice that B is one

m× 1 matrix and H is one 1 × h matrix, and for the i−th column of H there is an

ε
βci

+1
1 control action. Therefore, the resultant matrix for BHK must be a m × h

matrix with the control action ε
βci

+1
1 in its i− th column. Let (bhk)ij be element of

BHK without the ε
βci

+1
1 multiple, then BHK is written as,















ε
βc1

+1
1 (bhk)11 ε

βc2
+1

1 (bhk)12 · · · ε
βch

+1

1 (bhk)1h

ε
βc1

+1
1 (bhk)21 ε

βc2
+1

1 (bhk)22 · · · ε
βch

+1

1 (bhk)2h

...
...

. . .
...

ε
βc1

+1
1 (bhk)m1 ε

βc2
+1

1 (bhk)m2 · · · ε
βch

+1

1 (bhk)mh















BHK :=

[

ε
βc1

+1
1

−−→
bhk1 ε

βc2
+1

1

−−→
bhk2 · · · ε

βch
+1

1

−−→
bhkh

]

.

(2.6)

Now, we define the following sub-matrix,

A11 =

[

0

]

, (2.7a)

A12 = −

[

C 0 0

]

, (2.7b)

A21 =











BK

0

0











, (2.7c)

A22 =











A 0 0

−C −NI 0

−GC 0 −Ω











, (2.7d)
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A1
22 = −











−ρ̄BKC 0 0

0 0 0

0 0 0











, (2.7e)

A2
22 = −











ε̄2NBKC ε̄2N
2BK 0

0 0 0

0 0 0











, (2.7f)

Ah1
22 =











0 0
−−→
bhk1 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0











, (2.7h1)

Ah2
22 =











0 0 0
−−→
bhk2 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0











, (2.7h2)

...

Ahh
22 =











0 0 0 0 · · ·
−−→
bhkh

0 0 0 0 · · · 0

0 0 0 0 · · · 0











, (2.7hh)







A11 A12

A21 A22 + ε
βρ+1
1 A1

22 + εβε+1
1 A2

22 + ε
βc1

+1
1 Ah1

22 + ε
βc2

+1
1 Ah2

22 + · · · + ε
βch

+1

1 Ahh
22






,

(2.8)

and one singularly perturbed system matrix is written as (2.8). Obviously, from

Lemma 2.1.1, the eigenvalues of system (2.8) will tend to

{
eig(A)

ε1

∪
−N

ε1

∪
eig(−Ω)

ε1

∪ eig(−T K)

}

.

Since eig(A) ⊂ C
− and the full-row rank condition of T are assumed, and for

−Ω = −diag{a1, a2, · · · , ah} ⊂ C
−, the system matrix of (2.8) is stable, which
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exactly refers to the stability of Â∗/ε1, e.g. eig(Â∗/ε1) ⊂ C
−. Thus, the closed-loop

system (2.4) is also stable with eig(Â) ⊂ C
−.

According to Theorem 2.1.1, the PID extended tuning controller (2.2) is applica-

ble to system (1.4) as long as tuning function ε1 is kept in a value-descending tuning

direction.

Tuning Method Extended by Multiple 2nd Order Terms (Multi-Absorber

Tuning)

Alternatively, 2nd order terms can be used to extend the above tuning controller,

which is regarded as absorber tuning and more flexible in design. Here, we explain

how 2nd order absorbers can be added in the stabilization algorithm. In order to

keep the simplicity in analysis, we neglect differences in tuning parameter assignment

for PID terms, i.e. βρ = βε = β − 1 in (2.2). Consider a transfer function,

u(s) =

K






ε1F







sI

I







(s2I + Ω)−1G0 + εβ
1

(

ρ̄+ ε̄2
sN

s+N

)

I






× e(s)

(2.9)

where β − 1 ∈ R
+, Ω = diag{0, ω2

1, · · · , ω
2
r} and F = [F0 F1].

Theorem 2.1.2. If plant (1.4) is under assumptions (A1) and (A2), and G0 =

D1F
T
1 and F0 = D0G

T
0 , where D0 and D1 are diagonal matrices with positive values,

then the extended controller (2.9) guarantees the stability of the closed-loop system

(2.4) when ε1 is sufficiently small.

Proof. The ε1F







sI

I







(s2I+Ω)−1G0 term in Equation (2.9) is in fact a set of multiple

absorbers. Excluding F , it can be expressed as ϑ̇ = A11ϑ+ ε1Ge = A11ϑ− ε1GCx+

24



ε1Gyref , where ϑ = [ϑT
1 ϑ̇1

T
]T , G =







0

G0







, and A11 =







0 I

−Ω 0







. The derivative

term
sN

s+N
can be expressed as ζ̇ = −Nζ + e = −Nζ − Cx + yref in state-space

form. Thus, control signal u (2.9) is rewritten as

u = K
[

Fϑ− εβ
1 (ρ̄+ ε̄2N)y − εβ

1 ε̄2N
2ζ + εβ

1 (ρ̄+ ε̄2N)yref

]

. (2.10)

Since the reference trajectory yref and disturbance w are uniformly bounded, the

closed-loop system’s stability only depends on {ϑ, ζ, x}. To simplify the analysis,

let yref and w be zero, and (2.10) becomes

u = K
[

Fϑ− εβ
1 (ρ̄+ ε̄2N)Cx− εβ

1 ε̄2N
2ζ

]

. (2.11)

We simply substitute equation (2.11) into ẋ = Ax+Bu and get

ϑ̇ = A′

11ϑ− ǫ1GCx

ζ̇ = −Nζ − Cx

ẋ = BKFϑ+
[

A− εβ
1 (ρ̄+ ε̄2N)BKC

]

x− εβ
1 ε̄2N

2BKζ.

(2.12)

Again, the problem results in the analysis of the stability of closed-loop system

matrix Â in ν̇ = Âν, where ν = [ϑT , xT , ζT ]T and

Â =











A′

11 −ε1GC 0

BKF A− εβ
1 (ρ̄+ ε̄2N)BKC −εβ

1ε2N
2BK

0 −C −NI











=







A′

11 ε1A12

A21 A22 + εβ
1A22







(2.13)

with A′

11 =







0 I

−Ω 0







, A12 = [−GC 0], A21 =







BKF

0







, A22 =







A 0

−C −NI







and

A22 = −







(ρ̄+ ε̄2N)BKC ε̄2N
2BK

0 0







. These matrices can be deduced further to

25



getA−1
22 =







A−1 0

−N−1CA−1 −N−1I







, A12A
−1
22 A21 = −GCA−1BKF =







0 0

G0T KF0 G0T KF1







,

and A′

11 − ε1A12A
−1
22 A21 =







0 I

−Ω − ε1G0T KF0 −ε1G0T KF1







.

Consider following singularly perturbed system,

ẋ1 = A11x1 + A12x2

ε1ẋ2 = A21x1 + (A22 + εβ
1A22)x2

(2.14)

where A11 =
A′

11

ε1

, according to Lemma 2.1.1, eig(Â/ε1) → eig(A11 − A12A
−1
22 A21) ∪

eig(A22)
ε1

as ε1 → 0, i.e. eigenvalues tend to

eig













0 I

−Ω − ε1G0T KF0 −ε1G0T KF1













∪
eig(A)

ε1

∪
−N

ε1

.

From assumptions (A1) and (A2), T K is well defined and A is stable. Â/ε1 must be

stable as long as G0T KF1 > 0, where G0 and F1 are our design factors. Obviously,

if both of them are chosen as those values in Theorem 2.1.2, the stability of Â/ε1

will be assured. Since G0 = D1F
T
1 , then G0T KF1 = D1F

T
1 T KF1. Due to Assump-

tion (A2) and D1 is diagonal matrix with positive values, therefore, G0T KF1 > 0.

Consequently closed-loop system matrix Â is stable with ε1 → 0.

Following the proof, we present the extended 2nd order absorber tuning imple-

mentation of controller (2.9) for a SISO plant as an example. Let F = [f00 f01 0 f11],

26



G0 = [g0 g1]
T , and Ω = diag{0, ω2

1}, then

F







SI

I







(S2I + Ω)−1G0 =

[

f00 f01 0 f11

]
















g0

s
sg1

s2 + ω2
1

g0

s2

g1

s2 + ω2
1
















=
g0f00

s
+
sf01 + f11

s2 + ω2
1

g1.

(2.15)

Together with proportional and derivative terms in (2.9), the tuning controller with

an absorber of resonant frequency ω1 is found as

u(s) =

K







PID switching
︷ ︸︸ ︷[

ε1
g0f00

s
+ ρ̄εβ

1 + ε̄2ε
β
1

sN

s+N

]

+

single absorber
︷ ︸︸ ︷

ε1
sf01 + f11

s2 + ω2
1

g1







× e(s).

(2.16)

If f00g0 > 0, g1f01 > 0, and f11g1 > 0, from Theorem 2.1.2, the closed-loop system

of (1.4) and (2.16) is stable with sufficiently small ε1 > 0.

Remark 2.1.1. A damping matrix Ξ can also be added to relax the absorber design,

which only modifies A11 to







0 I

−Ω −Ξ






. Then, eig(ε−1

1 A11 − A12A
−1
22 A21) tends to

eig













0 I

−Ω − ε1G0T KF0 −Ξ − ε1G0T KF1













. On the complex plane, the damp-

ing effect is represented by the additional positive definite matrix Ξ, which shifts

open-loop poles away from imaginary axis without affecting the stability proof. The

merit is to relax the requirement of G0TKF1 > 0 when eig(Ξ)min is sufficiently large.

♦
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2.1.3 Tuning Controller with a Pseudo Observer

The extended tuning controller may be further modified to the one with a pseudo

observer. We notice that for controller (2.2), the first three terms for PID switching

can be omitted while the added items still keep the stabilizability of closed-loop

system. The controller may then be expressed in a transfer function form with fixed

poles in the negative complex plane and a tunable numerator.

Corollary 2.1.1. Under assumptions (A1) and (A2), the plant (1.4) can be stabi-

lized by a tuning controller

u(s) = K
b1s

h−1I + b2s
h−2I + · · · + bhI

(s+ a1)(s+ a2) · · · (s+ ah)
e(s)

= K
b1s

h−1I + b2s
h−2I + · · · + bhI

sh + a∗1s
h−1 + a∗2s

h−2 + · · · + a∗h
e(s)

(2.17)

where {a∗1, a
∗

2, · · · , a
∗

h} are fixed initial constants which ensure eigenvalues of denom-

inator all on the negative complex plane, and {b1, b2, · · · , bh} = {b̄1ε
βb1

+1

1 , b̄2ε
βb2

+1

1 ,

· · · , b̄hε
βbh

+1

1 } ⊂ R.

Proof. The proof is omitted since it is a special case of Theorem 2.1.1.

One key design point remains on how to choose suitable coefficients {a∗1,a
∗

2,· · · ,a
∗

h}

for the denominator of (2.17). We start the discussion from the steady-state observer

viewpoint. Usually, even in the control problem of the plant with a model, it is still

difficult to determine all plant states for controller implementation. Instead, only

plant output is available to measure in a more practical sense. A useful approach is

to employ the steady-state observer method to recover plant initial states by using

output y and its initial (n − 1) derivatives. If the plant is observable, then there
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exists a map (
∑

) such that

∑

: R
n−1 −→ R

n−1



















x2

x3

...

xn−1

xn



















−→



















ẏ

ÿ

...

yn−2

yn−1



















.

It is quite straightforward to implement such an observer-controller design with

plant parameters in hands. One may refer the methods to traditional state ob-

server design (Ogata, 1997) or suitable regressive observers, such as Kalman-Bucy

filter (Kokotović et al., 1986). However, for this project, we analyze the model-

independent control without plant model parameters. Therefore, if we want to use

the state-recovery idea, it is more appropriate to name such an observer as the

pseudo observer since we do not use any plant model, which differs from the design

origin of a real observer.

We assume that there exists such a map
∑

for state-recovery using derivatives

of y, namely derivatives of e. Then, the design problem remains in twofold. First,

we use suitable filter to obtain derivatives of e within the filter bandwidth. Second,

tuning method takes effects on the stabilization of such a map. Considering the
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controllable canonical form of the controller,

Ψ̇ =



















−a∗1 −a∗2 · · · −a∗h

1 0 · · · 0

0 1 · · · 0

...
...

...
...

0 · · · 1 0



















Ψ +



















I

0

0

0

0



















e

u = [b1I b2I · · · bhI]Ψ + bh+1e,

(2.18)

a set of Butterworth filter coefficients can be used as the values of
−→
a∗ . Consequently,

sk

sh + a1 ∗ sh−1 + · · · + ah∗
e(s) gives a reasonably accurate approximation of ske(s)

in a certain bandwidth. Meanwhile, the stabilizability of closed-loop system will be

maintained by the tunable parameters {b1,b2,· · · ,bh+1} as mentioned in Corollary

2.1.1.

2.1.4 Generalized Tuning Controller

After considering above special cases, we now give a more generalized view on tuning

controller in the stabilization mechanism development. Still, since yref and w are

uniformly bounded, it can give us a better focus on the closed-loop stability analysis

if we let them be zero. Define Au, Bu, Cu andDu as the state-space parameter matrix

for the dynamic feedback controller u. We find the closed-loop system matrix as

Â =







A−BDuC BCu

−CBu Au






. (2.19)

To ensure its stability, we impose tuning function εβ
1 into Cu and Du, and the closed-

loop matrix becomes

Â∗ =







A− εβ
1BDuC εβ

1BCu

−CBu Au






. (2.20)
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We can simply construct the same singular perturbed system as in Lemma 2.1.1

with A11 = A, A11 = −BDuC, A12 = 0, A12 = BCu, A21 = −ε1CBu, A21 = 0,

A22 = ε1Au, and A22 = 0. Thus, eigenvalues for this perturbed system tend to

eig(A) ∪ eig(ε1Au),

when ε1 → 0 and A−1
u exists. Obviously, the requirement for the stability is that both

A and Au are stable, which can be satisfied from assumption (A1) and controller

design.

2.2 Optimization Mechanism Design

2.2.1 Simultaneous Perturbation Gradient Searching

Now, we come to the optimization problem. An important objective of this research

work is to find an optimization controller without using plant parameters in practical

implementation process while only using some properties of these parameters to pre-

dict closed-loop stability. Thus, special optimization algorithm, which is regarded

as plant parameter independent, must be useful to accomplish our goal. Simulta-

neous Perturbation Method (SPM) based on gradient searching is such a method

in the literature (Spall, 1992; Maeda and Yoshida, 1999; Maeda and Figueiredo,

1997). Considering an unknown objective function J(χ), where χ ∈ Rn is a set of

parameters of J , the algorithm is described as follows (Maeda and Yoshida, 1999)

χt+1 = χt − α∆χt

∆χi
t =

J(χt + p̺t) − J(χt)

p
̺i

t

(2.21)

where α is a design parameter, p is the perturbation magnitude for one searching

step, χi represents the i-th element of vector χ, and ̺i denotes the i-th element of
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the sign vector ̺, which is assigned randomly and independent with each other. For

the second equation of (2.21), we expand J(χt + p̺t) with respect to χt,

J(χt + p̺t) = J(χt) + p̺T
t

∂J(χt)

∂χ
+
p2̺T

t

2

∂2J(χ̺1)

∂χ2
̺t, (2.22)

then substitute into (2.21),

∆χi
t = ̺i

t̺
T
t

∂J(χt)

∂χ
+
p̺i

t

2
̺T

t

∂2J(χ̺1)

∂χ2
̺t, (2.23)

the expectation of above equation is (Maeda and Figueiredo, 1997)

E(∆χi
t) =

∂J(χt)

∂χi
t

+ E

{
p̺i

t

2
̺T

t

∂2J(χ̺1)

∂χ2
̺t

}

(2.24)

which means that if p is sufficiently small, the second term of the right-hand side of

(2.24) is small. Then ∆χi
t ≈ ∂J(χt)/∂χ

i
t. The precious point of this method is that

objective function’s gradients can be evaluated approximately by two estimations

J(χ+ p̺) and J(χ).

For a typical selection of J(χ) in practice, the error 3 function is usually used

J(χt) =
λ∑

k=1

e2(k) (2.25)

where k is the sampling number in a block interval, and λ is the total sampling

number for one block interval as illustrated in Figure 2.2. The performance index in

SPM looks exactly the same as H2 norm. However, for available H2 design methods,

e.g. LMI design or Riccati equation approach, at least the nominal values of A, B

and C are required. While in SPM, little knowledge about A, B and C is used

during the optimizing process.

Mostly random search algorithm was proposed for feedforward controller with

FIR transfer function R(z). The perturbation of R(z) + δR(z) is always stable in

3Here, error is the difference between reference output signal yref and output signal y, which

is similar as the definition in section 1.3.
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Block Interval

Sampling Interval

2 −11=
+1

k
tt

λλ

Figure 2.2: Block interval and sampling interval

feedforward system. When applied to feedback control, however, R(s) + δR(s) may

destabilize the closed-loop system even δR(s) is sufficiently small and R(s) + δR(s)

is open-loop stable. For this reason, an additional algorithm must be designed to

safe-guard the online optimization process. To simplify the problem, we assume

disturbance w in optimization problem to be ergodic while not necessarily to be

bounded by a very small constant compared with reference signals. We concentrate

on how stabilization algorithms discussed in section 2.1 can be integrated with SPM

to achieve the optimization purpose. It should be noticed that there are two types

of perturbations:

singular perturbation It is used in stabilization algorithm development. Actu-

ally, it is the tuning action of the term ε1.

simultaneous perturbation It is used in optimization algorithm as the term p,

which gives a varying effect on the parameters that affect performance index

during gradient searching.

Remark 2.2.1. The key point is that we can consider simultaneous pertur-

bation in optimization process as interference in stabilization process. Once the

stability of system has been threatened due to optimizing, singular perturbation

will then take effects in the tuning term ε1 to drag controller parameters back to the
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stabilization region for the closed-loop system. ♦

2.2.2 Optimization on PID and its Extended Tuning Con-

trollers







(1) PID tuning (Chang and Davison, 2003)

u(s) = K

[
ε1I

s
+ ρ̄ε

βρ+1
1 I + ε̄2ε

βε+1
1

sNI

s+N

]

× e(s)

(2) extended by 1st order terms

u(s) =

K

{[
ε1I

s
+ ρ̄ε

βρ+1
1 I + ε̄2ε

βε+1
1

sNI

s+N

]

+
c̄1ε

βc1
+1

1 I

s+ a1

+
c̄2ε

βc2
+1

1 I

s+ a2

+ · · · +
c̄hε

βch
+1

1 I

s+ ah

}

× e(s)

(3) extended by 2nd order terms

u(s) = K







ε1F








sI

I








(s2I + Ω)−1G0 + εβ
1

(

ρ̄+ ε̄2
sN

s+N

)

I







× e(s)

(2.26)

We first recall and consider PID and its extended tuning controllers (2.26) as can-

didates for optimization. For each controller, there exist crucial parameters to af-

fect its performance acting on the closed-loop system. For PID tuning, they are

{ǫ0, ρ̄, ǭ2}. For 1st order extended version, other more parameters {c̄1, c̄2, · · · , c̄h}

are accounted. While for 2nd order extended version, each elements in the remaining

matrix from FG0 multiplication must also be accounted in addition to {ǫ0, ρ̄, ǭ2}.

Define the crucial parameter set as Π, we now enumerate how to optimize controller

performance with regard to Π by SPM and tuning stabilization algorithm.

Algorithm 2.2.1. 1. arbitrarily set initial values of Π
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2. examine the control input u for the corresponding initial values of Π0

(a) if u is on the boundary or outside of the constraint region, apply one

corresponding controller in (2.26) to the system and get Πi

(b) if u is inside of the constraint region, then go on

3. define the total sampling number λ, and calculate J(Πi) =
∑λ

k=1 e
2(k)

4. perform SPM of Πi to get Πi+1, examine their corresponding control input u′

(a) if u′ is on the boundary or outside of the constraint region, apply one

corresponding controller (2.26) to the system and get another set of Πi+1

(b) if u′ is inside of the constraint region, then go on

5. calculate J(Πi+1) =
∑λ

k=1 e
2(k)

6. evaluate the gradient of J for the tuning of Πi

7. start from the latest tuned Πi, and go to step 3.

It should be noticed that throughout this procedure, A,B,C matrix of plant are

not used any more but assumptions (A1) and (A2) should be assured.

2.2.3 Optimization on Tuning Controller with a Pseudo Ob-

server

Furthermore, we can also implement optimization on tuning controller with a pseudo

observer discussed in section 2.1.3. We recall the general type controller in Corollary

2.1.1,

u(s) = K
b̄1ε

βb1
+1

1 sh−1I + b̄2ε
βb2

+1

1 sh−2I + · · · + b̄hε
βbh

+1

1 I

sh + a∗1s
h−1 + a∗2s

h−2 + · · · + a∗h
e(s).
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For {a∗1, a
∗

2, · · · , a
∗

h}, we can use the states of an all-pole filter, say a Butterworth

filter, to approximate the plant states in a certain bandwidth. Thus, the remaining

crucial parameters are {b̄1, b̄2, · · · , b̄h} and b̄h+1 when using the pseudo observer idea.

We notice that when stability is threatened by tuning, stabilization algorithm will

drag parameters of controller greatly back to stable region. In turn, optimization

effort in previous epoches could be ’ruined’. Considering the optimization with Πi

must have followed a stable routine, we can use previous latest stable parameter set

of Πi instead of using stabilization algorithms in section 2.1. The steps are written

as follows.

Algorithm 2.2.2. (Option to Algorithm 2.2.1)

4. perform SPM of Πi to get Πi+1, examine their corresponding control input u′

(a) if u′ is on the boundary or outside of the constraint region, drag Πi+1 back

to Πi, and re-implement step 4

(b) if u′ is inside of the constraint region, then go on

Global Optimization Possibility

Traditionally, a state-observer based controller can achieve optimal control perfor-

mance if it minimizes a linear quadratic (LQ) function. Such a controller is known

as a linear quadratic regulator (LQR). Its gain vector K can be solved from the

algebraic Riccati equation (ARE), as quoted from Ogata (1997),

ATP + PA+ [TK − (T T )−1BTP ]T [TK − (T T )−1BTP ] − PBR−1BTP +Q = 0

where Q is a positive-definite (or semipositive-definite) matrix, R is a positive-

definite matrix, and R = T TT . The minimization of performance index with respect
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to K is the same as the minimization of

xT [TK − (T T )BTP ]T [TK − (T T )−1BTP ]x.

If the closed-loop matrix is stable, then there always exists a positive-definite ma-

trix P . Obviously, the solution of K is found optimal by letting TK = (T T )−1BTP .

Therefore, a state-observer plus a gradient searching method of suitable performance

index can solve the Linear Quadratic Gaussian (LQG) controller for a plant with

known parameter matrices A, B and C. When A, B and C are not available,

the proposed tuning controller has to be applied. It is quite interesting to analyze

whether the pseudo observer tuning method can also achieve a global optimization

solution. Considering the Laplace transform for the highest order derivative approx-

imation ỹn−1(t) by passing y(t) through a filter, whose denominator can be used in

the pseudo observer,

s(n−1)Ỹ (s) =

s(n−1)

σ(n−1)

n−1∏

i=1

ri

n−1∏

i=1

(s+ ri/σ)

Y (s) =
s(n−1)R

n−1∏

i=1

(σs+ ri)

Y (s) (2.27)

where σ ∈ R
+, {ri} are stable poles and R =

n−1∏

i=1

ri. Other lower order deriva-

tive approximations of y(t) can also be found through the same filter within its

bandwidth. Here, we give a rough consideration about the relationship between the

approximation error of y− ỹ and the positive scalar σ. For the approximation error

of 1st order derivative, E1(s) = Y1(s) − Ỹ1(s) =







1 −

n−1∏

i=1

ri

n−1∏

i=1

(σs+ ri)






Y1(s). It is

obvious that when σ → 0, E1(s) → 0 with the stabilization mechanism for y(t)

developed in section 2.1. In other words, the more stable poles of ri the filter has,

the more accurate approximation is obtained. As for other higher order derivatives,
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the conclusion also holds. If the plant dynamics can be defined by

ẋ = Apx+Bpu

y = Cpx,

(2.28)

there exists an optimal control law u = K∗x to achieve the LQ solution. Considering

the existence of the map
∑

for states x obtained from derivatives of y, we define the

transform matrix as T . Then, a controller u = K∗T−→y with −→y = {y, ẏ, · · · , yn−1}

can be obtained. Furthermore, for a sufficient small σ,
−→
ỹ filtered by y(t) can be

used to approximate the derivatives of y. Therefore, the control law u = K∗T
−→
ỹ can

be used to approximate the optimal controller solution if the plant is observable. In

fact, for the practical implementation, σ does not need to be very small and a set of

Butterworth low-pass filter coefficients can be used to achieve LQG solution within

its bandwidth, which covers that of the plant.

optional proof of global optimization We can also use singular perturbation

approach to prove this finding, since it is common in the literature when proving

parameter convergence for observer-like output feedback controller, such as the high-

gain observer (Khalil, 1996).

Proof. For a traditional observer design, the expression for the state estimation is

(Ogata, 1997)

˙̃x = (A−KeC)x̃+Bu+Key (2.29)

where Ke is the weighting matrix, and A,B need to be the same as the plant A,

B matrix, which may not be possible in practice. However, in the pseudo observer

case, it does not use the plant A, B but uses Ã, B̃, and the state estimation is

˙̃x = (Ã−KeC)x̃+ B̃u+Key. (2.30)

38



Therefore, a control input u = Kx̃ can be obtained. Define the error between real

state x and estimated state x̃ to be e. Then subtracting ẋ = Ax+Bu = Ax+BKx̃

by (2.30), we get

ė = (A− Ã+BK − B̃K)x+ (Ã−KeC −BK + B̃K)e. (2.31)

Define a transform T such that TÃT−1 = ΛA, where ΛA is the diagonal matrix with

ri as eigenvalues. Then, Ã = T−1ΛAT . The error state derivatives can be deduced

as

T ė = (−ΛAT +TA+TBK−TB̃K)x+(ΛA−TKeCT
−1−TBKT−1 +TB̃KT−1)Te.

(2.32)

Define ς = Te and ΛA = Λ/σ. We get following expressions,

ẋ = (A+BK)x+BKT−1ς

σς̇ = [−ΛT + σ(TA+ TBK − TB̃K)]x+ [Λ + σ(TB̃KT−1 − TKeCT
−1 − TBKT−1)]ς,

(2.33)

which compose a new singularly perturbed system with A11 = A + BK, A12 =

BKT−1, A21 = −ΛT , and A22 = Λ. Since Λ is the diagonal form of filter’s Ã, then

Λ−1 must exist. Therefore, from singular perturbation Lemma 2.1.1, for sufficiently

small σ → 0, the eigenvalues of system (2.33) tends to

eig
(
A11 − A12A

−1
22 A21

) ⋃

eig

(
A22

σ

)

, (2.34)

which are eig(A+2BK) and eig

(
Λ

σ

)

respectively. For original plant ẋ = Ax+Bu

and y = Cx, one K∗ can be found to keep the closed-loop stability eig(A+BK∗) ⊂

C
− and also give an optimal controller solution u = K∗x by solving the algebraic

Riccati Equation. Then, if the controller law to be u = Kx̃ = 1
2
K∗x̃, then eig(A +

2BK) = eig(A+BK∗), which is on the stable complex plane.
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Figure 2.3: An example of ordinary control loop with both disturbance and reference

signals

2.2.4 Comparison with H2 Control

Since our performance index J is equivalent to the H2 norm when 1
T

∫ T

0
w2dT =

const for sufficiently large T , we give the comparison between our method and

typical H2 optimization control.

For H2 optimization control, there are many methods to design a controller when

plant parameters are available. The Riccati and LMI are the most popular tools for

this purpose. A common feature of the two methods is to bound the H2 norm of the

closed-loop system by a conservative upper bound υ and then minimize υ subjected

to some linear constraints. The offline optimization depends on parameters of the

plant.

For proposed method, it minimizes the H2 norm of the closed-loop system di-

rectly without requiring the knowledge of plant parameters. It is an online opti-

mization based on a different principle under a more relaxed requirements.

2.3 Simulation Validation of Control Module

The ordinary control loop with both disturbance and reference signals is shown

in Figure 2.3. In this study, we consider a trajectory tracking problem subject

to the disturbance of bounded white noise. The purpose of the demonstrations is
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Figure 2.4: Optimizing PID tuning: trajectory tracking comparison

to validate the proposed control module’s ability to improve the response of the

closed-loop system under disturbance. Thus, all the plant parameters are chosen

randomly without any intention. Throughout this section, Matlab/Simulink is used

to implement the validation purpose.

2.3.1 PID Tuning

Let the reference be a pulse signal with a period of 20s and unit magnitude. The

plant has the transfer function

Hp(s) =
360

s2 + 2s+ 360
(2.35)

The 1st controller described in (2.26) is tested here. We set the initial coefficients of

{ǫ0, ρ̄, ǭ2} as {1, 1, 1}. The parameters are changed to {2.286, 3.104, 4.426} after a

period of tuning. Figure 2.4 gives comparison of trajectory tracking between original

parameters control and optimally tuned parameters control. Figure 2.5 gives the

bode diagram comparison of the closed-loop. From the graph, it is evident that the

1st controller in (2.26) can improve control performance as described in this study.
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Figure 2.5: Optimizing PID tuning: Bode diagram comparison

2.3.2 Pseudo Observer Tuning

Still let reference be unit pulse signal with a period of 20s. In order to verify the

feasibility of the extended tuning controller under more complicated conditions, the

transfer function of the plant is changed to

Hp(s) =
360

s2 + 2s+ 360
+

600

s2 + 2s+ 600
(2.36)

with an increased order. We apply controller (2.17) with the coefficients {a∗1, a
∗

2, · · · , a
∗

h}

of a 5-order Butterworth filter. Let the initial values of {b1, b2, b3, b4, b5} be {0, 0, 0, 0, 0}.

After optimizing for a while, the 1st tuned set {b′} is {−0.875,1.3324, 1.6018,

−1.1951, −2.002, 2.02}. Then, in order to see its persistence, we keep controller

tuning {b′} and get the 2nd tuned set {−2.1993, 0.7404, 0.8314, −0.5692, −2.1006,

1.8992}. From Figure 2.6 and Figure 2.7, the improved results are obtained, which

validates such a tuning optimal controller.
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Figure 2.6: Optimizing tuning control with pseudo-observer: trajectory tracking

comparison

Figure 2.7: Optimizing tuning control with pseudo-observer: Bode diagram com-

parison
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Non-Minimum Phase Plant

It is well-known that nonminimum-phase plant control is always one tough problem

when applying adaptive stabilization control. One may notice that throughout the

stability analysis in section 2.1, there is no restriction on the selection of zeros of

plant (1). That indicates the possibility of applying our suboptimal controllers

for nonminimum-phase plant control as long as assumptions (A1) and (A2) are

valid. Here, we give an example for it using previous tuning controller with 5

order butterworth filter coefficients. The plant is also chosen randomly without any

intension, which is

Hp(s) =
s− 360

s2 + 2s+ 360
+

s− 600

s2 + 2s+ 600
(2.37)

Let unit pulse signals with a period of 20s be reference signals. The initial set of {b′}

follows from preview example {−2.1993, 0.7404, 0.8314, −0.5692, −2.1006, 1.8992}.

Figure 2.8 shows time response of closed-loop system in the 1st 20s. After optimizing

for several hours, the tuned set becomes {1.3779,−1.5795,−0.5461, 0.7937,−0.0351,

0.1577}. Figure 2.9 shows a much more improved result for trajectory tracking of

closed-loop system.
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Figure 2.8: Optimizing nonminimum-phase plant control: initial 20s

Figure 2.9: Optimizing nonminimum-phase plant control: after tuning
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Figure 3.1: Model of cylinder vibration and wake oscillator for FIV

3.1.1 Phenomenological Model

Let us consider a typical 1-dof elastically mounted rigid cylinder with diameter D

and length l. The cylinder is restricted to oscillate transversely to the uniform

and stationary flow with free stream velocity U as shown in Figure 3.1. The most

commonly used model is a double oscillator model to describe FIV, which consists

of a structure oscillator y(t) for cylinder transverse motion and a wake oscillator

w(t) for vortex shedding. The equation of structure oscillator can be written as

m0(ÿ + 2ζω0ẏ + ω2
0y) =

1

2
ρU2CLDl (3.1)

wherem0 is the sum of cylinder mass and added fluid mass, ζ is the damping ratio, ω0

is the undamped natural frequency of cylinder, ρ is the fluid mass density and CL is

the nondimensional lift coefficient of the fluid flow around the cylinder. For the wake

oscillator, all available phenomenological models use a van der pol equation with a

nonlinear damping term to describe the self-sustainable fluid oscillation. There are

different modeling approaches in the literature. Here, we adopt the simplest form
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from (Krenk and Nielsen, 1999). The model is written as

mf

[

ẅ − 2ζfωs

(

1 −
w2 + ẇ2/ω2

s

w2
0

)

ẇ + ω2
sw

]

= −
1

2
ρU2FCDl (3.2)

where FC is the force term imposed by cylinder, mf is the equivalent mass of wake

oscillator, which is proportional to the fluid mass density ρ and the structure volume

Dl, ζf is the damping ratio, ωs is the vortex shedding frequency expressed in terms

of 2πStU/D with St as the Strouhal number. In the vibration interval (0, w0), the

damping term is negative to excite wake oscillation, and outside (0, w0) it is positive.

The reason for choosing this damping model will be discussed in the next section,

which is related to the controller design.

The coupling format of these two oscillators is another controversial topic. For

equation (3.1) and (3.2), CL and FC are usually regarded as coupling candidates in

the literature. The substantial research is based on how to choose the combinations

of {w, ẇ, ẅ} or {y, ẏ, ÿ} to represent CL and FC respectively (Hartlen and Currie,

1970; Krenk and Nielsen, 1999; Facchinetti et al., 2004). While in this study, we

concentrate on control problem of FIV by using only qualitative information in the

model. Therefore, the coupling effects are left open in this study.

3.1.2 Pre-design: High Frequency Perturbation Effect

After the brief introduction of the phenomenological model, we try to find some

property of FIV based on an experimental study. Consider the control technique

developed by Cheng et al. (2003) as shown in Figure 1.5. A local perturbation1 effect

1It should be noticed that the term ’perturbation’ used in this Chapter is neither singular

perturbation in stabilization mechanism design nor simultaneous perturbation in optimization

mechanism design in Chapter 2. It refers to the physical movement created by the control technique

introduced by Cheng et al. (2003). In fact, it is the practical implementation method of previous

two perturbations.
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p is imposed on the flow around the cylinder by the excitation of a movable plastic

plate driven by embedded piezoelectric actuators. Suppose p causes a sinusoidal vi-

bration component at frequency ωp to the wake oscillation signal w(t) = Apsin(ωpt).

Obviously, it should also affect the FIV model given by (3.1) and (3.2). Due to the

fact that coupling mechanism is still not clear, we only consider the perturbation

effect on the damping term in the wake oscillator. Due to the perturbation, the

damping term becomes

2ζfωs

(
A2

pω
2
ssin

2ωpt+ A2
pω

2
pcos

2ωpt

w2
0ω

2
s

− 1

)

(3.3)

with values between 2ζfωs

A2
pω

2
s − w2

0ω
2
s

w2
0ω

2
s

and 2ζfωs

A2
pω

2
p − w2

0ω
2
s

w2
0ω

2
s

. One key point is

that if perturbation frequency ωp is much higher than vortex shedding frequency ωs,

the maximum damping value of wake oscillator will be larger. This helps us make

the following conjecture.

Conjecture 3.1.1. Assume that the flow-induced vibration can be described by a

phenomenological model given by equations (3.1) and (3.2). If a control scheme

helps to increase the frequency of wake oscillation in the local flow around structure,

then this scheme will help to suppress vortex shedding in the wake.

To avoid using ambiguous findings in formulating a suitable numerical simula-

tion for the verification of this conjecture, we prefer to conduct an experiment for

the validation. Based on the perturbation technique in Figure 1.5, an open-loop

control is conducted by using sinusoidal signals with a fixed amplitude but different

frequencies. The experiment is carried out in a closed circuit wind tunnel with a

square test section of 0.6 × 0.6m2 and a length of 2.4m. One square cylinder of

height h = 15.2mm, which is supported on springs at both ends, is placed in the

downstream of wind tunnel and allowed to vibrate vertically as shown in Figure
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Figure 3.2: Open-loop control experiment setup

3.9. The free-stream velocity U∞ = 2.17ms−1 excites cylinder to vibrate due to

the occurrence of vortex shedding. The results are monitored by a laser vibrometer

for structure vibration and a hotwire for wake vortex shedding, which are shown

in Figure 3.2. The flow condition is set at FIV lock-in regime, where ωs ≈ ω0.

Define the dimensionless frequency as Stf , the dimensionless shedding frequency as

Sts ≈ 0.13, and the dimensionless perturbation frequency as Stp = fpD/U . In the

experiment, power spectrum densities (PSD) of wake velocity signals are obtained

under different perturbation frequencies Stp ∈ [0.07, 2.80]. These signals are plotted

in Figure 3.3. It is found that for Stp ≥ 0.7, the peak level of PSD drops significantly

and the overall peak level in this Stp region is much lower than that in the region

of Stp < 0.7. Besides the peak level, the rms (root-mean-square) value reduction of

signals between controlled and non-controlled cases is also plotted as in Figure 3.4

to assess the overall control effect. As for wake velocity reduction, the rms reduc-

tion level for Stp ≥ 0.7 is higher than the rms reduction level for smaller Stp. The

experimental results matches the description of Conjecture 3.1.1.

This phenomenon also agrees with other findings in flow control using acoustic

excitation. Hsiao et al. (1990); Liu and Brodie (2000) find that effective perturbation
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Figure 3.3: Power spectrum density plot of wake velocity (Stp ∈ [0.07, 2.8])
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frequency range for acoustic excitation is corresponding to shear-layer instability fre-

quency, which is of higher order than vortex shedding frequency and dependent on

the Reynolds number (Peterka and Richardson, 1969). When Stp is in the order

of 1, as mentioned by Hsiao et al. (1990), another ’lock-in’ phenomenon occurs.

The instability waves are amplified, and momentum transport and flow mixing are

enhanced, which affects wake characteristics significantly when compared to no per-

turbation condition. In our investigation, the phenomenological model also agrees

with this point. In addition, considering the frequency effect of perturbation p on

structure vibration, a higher frequency perturbation results in more energy imposed

on the structure in the same time interval. Therefore, the control of FIV must

balance between counteracting flow energy on structure by increasing damping and

imposing perturbation energy on structure by increasing frequency. Indeed, in Fig-

ure 3.4, there is an optimal frequency region Stp ∈ [0.5, 2], where both wake and
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Figure 3.5: Closed-loop control experiment setup

structure velocity have considerable reduction. This finding of high frequency per-

turbation effect gives one possible control design direction for FIV based on the

phenomenological model.

3.2 Active Control

Based on the perturbation technique, we try to find a more effective control scheme

for reduction of both structure and wake oscillations in the lock-in regime. It is

known that closed-loop control usually provides more satisfactory performance than

open-loop control (Zhang et al., 2003). Thus, this research pursues a closed-loop

control method for FIV by using structure vibration signal as feedback signal as

shown in Figure 3.5. We first study traditional control methods, and then give a

multi-frequency control scheme by the inspiration from the finding in the pre-design

section.
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3.2.1 Traditional Control Methods

variable structure control

A possible solution for structure vibration control under unknown disturbance is

called variable structure control. For FIV problems, structure vibration is induced

by the uncertain but bounded flow excitation. Considering a structure vibration

model,

ÿ + 2ζω0ẏ + ω2
0y =

d+ u

m0

(3.4)

where d is the bounded fluid force and u is the actuator control input. For a

Lyapunov energy function L = 1
2
(ẏ2 + ω2

0y
2), its derivative, evaluated along the

trajectory of equation (3.4), can be derived as

L̇ = ẏ(ÿ + ω2
0y) = −2ζω0ẏ

2 +
ẏ(d+ u)

m0

. (3.5)

We substitute a typical variable structure control law u = −sgn(ẏ)Fu into equation

(3.5), where sgn is sign function and Fu is peak force generated by actuator. The

result becomes

L̇ = −2ζω0ẏ
2 +

ẏd− |ẏ|Fu

m0

. (3.6)

Ideally, this control law forces the derivative of L negative definite when Fu ≥ ||d||.

Since L is positive definite, by the direct method of Lyapunov theory, system (3.4)

is asymptotically stable at (ẏ, y) = (0, 0). The control results will be discussed later

in this Chapter.

active resonator control

Considering vibration control in engineering applications, passive resonator method

is widely adopted. However, there also exist some limitations:
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Figure 3.6: Block diagram of closed-loop control

• A passive resonator is very effective in suppressing noise/vibration at a tuned

frequency while creating resonances at two other frequencies, which are not

desired.

• Although it is possible to improve the control performance of a traditional res-

onator by fine-tuning the coupling effects between the resonator (active/passive)

and the structure, the tuning process requires detailed model parameters of

the structure and actuators, which is not practical in this study.

Therefore, active resonator control is adopted to import a virtual resonator in the

closed-loop system, which is able to counteract the peak of plant vibration at its

natural frequency. This idea is used for structure vibration control in FIV prob-

lem. Suppose the cylinder has a transfer function P (s) =
s

s2 + 0.25s+ 1252
with

undamped natural frequency at 20Hz, which is the natural frequency of cylinder in

Figure 3.5. A possible control law may be C(s) =
s2 + 50000s+ 1252

s2 + 1000s+ 1252
and the block

diagram is shown in Figure 3.6. The simulation results are given in Figure 3.7. The

experimental results will be given in this Chapter later.
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3.2.2 Proposed Control Method: multi-high-frequency per-

turbation

Considering the finding in the pre-design section 3.1.2, the high frequency pertur-

bation approach based on the phenomenological model is preferred to design an

effective controller for FIV problem in the lock-in regime. One merit of high fre-

quency control is that since Stp is far away from the lock-in regime, the perturbation

phase design can be neglected. Recalling the results in Figure 3.4, there is an optimal

perturbation frequency region Stp ∈ [0.5, 2]. An active resonator with an optimal

frequency Stp can be adopted. However, considering the limitations of active res-

onator in closed-loop feedback control for FIV, the negative damping term has to

be used to keep the perturbation from the controller. This is also reasonable by

analyzing the phenomenological model. In the wake oscillator, a nonlinear damping

term is used to allow self-sustainable oscillation in the FIV model system. As a

result, a similar measure to allow self-sustainable oscillation in the controller should

be applied so that the controller can counteract FIV continuously. Furthermore,

in order to prevent the controller from diverging due to negative damping, a hard

limiter should also be added before feeding control input. In practice, it is possible

to use a low-frequency resonator, which actually produces multi-high-frequency per-

turbation signals when integrated with a hard limiter. The proposed control method

is shown in Figure 3.8.
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3.3 Experimental Validation

3.3.1 FIV Control by Control Module: PID Tuning

In order to see practical feasibility of control module in Chapter 2, we also give an

example for the case of PID tuning of flow induced vibration. The setup is the same

as the closed-loop control in Figure 3.5. All the experiment are carried out in a

closed circuit wind tunnel with a square test section of 0.6 × 0.6m2 and a length of

2.4m. A DSpace rapid control prototyping board is used to load control programs

(designed in Matlab/Simulink) into the hardware so that it acts as the controller

function for different applications. The control difficulty results from the uncer-

tainty about the interaction between flow vortex shedding and structure vibration.

However, as mentioned by Zhang et al. (2004), a set of PID parameters can be

found to achieve high closed-loop control performance, which indicates satisfaction

of the stable assumption. Although nonlinearity is involved when considering fluid

dynamics, it is still of interest to see whether the optimal controllers described in

this study works all the same.

Here, we test PID tuning controller and set initial PID parameters randomly as

{1, 2, 3}. The estimation of J uses the vibration signal from the laser-vibrometer

as shown in Figure 3.9 and reference signal is zero. After applying optimization for

several minutes, the tuned parameters are {1.478, 1.480, 2.887}. The comparison of

power spectrum density (PSD) plots for original and tuned parameters is shown in

Figure 3.10. It is noticed that the optimal controller really gives improvement on

the performance.
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Figure 3.11: Experimental setup for PIV measurement

3.3.2 FIV and Vortex Control by Traditional Methods

Now, we look at the control results of FIV and vortex shedding by the controllers

as discussed in Chapter 3. In this section, a new technique called Particle Image

Velocimetry (PIV) is adopted to monitor the vortex behavior. Before revealing the

results, a brief introduction is given for PIV process.

Particle Image Velocimetry (PIV) for Flow Measurement

The setup for PIV measurement is shown in Figure 3.11. The main advantages of

PIV are: (1) non-disturbance on flow; (2) instantaneous velocity distribution for

the whole wake field. The detailed theory of PIV measurement can be referred to

the guide by Raffel et al. (1998). Here, a brief introduction is drawn based on the

literature.

Particles in the fluid are illuminated by a sheet of laser, which is pulsed twice.
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Figure 3.12: Technique outline of cross-correlation

The particles scatter light into a photographic lens of camera located at 90⋄ to

the sheet, so that its in-focus object plane coincides with the illuminated slice of

fluid. Images are formed on the video array, which are then postprocessed by the

computer. Since the fundamental components of velocity are length and time, it is

supposed to be a direct method for PIV to measure velocity. However, PIV usually

can only trace the particle’s movement, which is different from air fluid particle.

Mostly, we use a kind of paraffin oil from shell, which will be vaporized and then,

mixed with air flow. It requires two properties for the tracing fluid application. On

one hand, diameter of vaporized oil particles should be small enough to follow wind

flow. On the other hand,the reflection ratio of the particles must be good enough for

camera to catch. Instead of measuring the air flow velocity directly, PIV traces the

inline moving particles’, which indicates that it is an indirect technique. The main

technique outline to get velocity vectors is shown in Figure 3.12, which is called

cross-correlation process. In practice, some additional processes can also be applied

to improve the accuracy, such as validation process and filtering process.
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Variable Structure Control

Having been discussed in section 3.2.1 of Chapter 3, one variable structure controller

u = −sgn(ẏ)Fu is theoretically proven to be suitable for FIV problem. We test the

controller in the lock-in condition. The experimental results for structure vibration

are shown in Figure 3.13. For the wake field, Figure 3.14 and Figure 3.15 show the

contours of normalized spanwise vorticity, ω∗

z = ωzD/U , under the conditions of no

control and with variable structure control respectively. The PIV vorticity contours

in this study are all instantaneous, the cutoff level is about 7% of maximum ω∗

z , and

the uncertain estimation coefficient is about 9%. Also, the vortex circulation (Γ) is

estimated as in (Zhang et al., 2004),

Γ

UD
=

∑

i,j

(ω∗

z)ij

∆A

D2
, (3.7)

where ∆A = ∆x∆y.

It is found that this ideal design does not work perfectly. The rms reduction level

of structure vibration is only around 24.4%. Considering the peak level in the Fig-

ure 3.13(b), unnecessary peaks have overwhelmed the peak in the uncontrolled case.

This phenomenon results from a commonly known chattering problem in variable

structure control (Guldner and Utkin, 2000). In practical applications, unmodeled

dynamics in closed-loop system often prevent the actuator from responding to the

control demand instantaneously, and the imperfect control signal will cause oscilla-

tions in the system. This effect causes a local unstable condition at the equilibrium

point. On accounting of the control effect on the wake field, by comparing Figure

3.14 and Figure 3.15, the spanwise vorticity level has been reduced and the reduction

of vortex circulation is around 10%.
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Figure 3.13: Experimental results of structure vibration by no control and variable

structure control
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Active Resonator Control

Following the same experiment setup, the active resonator controller designed in

section 3.2.1 is also tested. The experimental results for structure vibration are

shown in Figure 3.16. The rms reduction value of structure vibration velocity is

49%, which is not quite satisfactory and even worse than those by open-loop control

in section 3.1.2. By observation, the resonator frequency matches the natural fre-

quency of structure vibration, but also coincides with shedding frequency of wake

vortex. The unknown interaction between the control signal and flow shedding may

weaken original control effect on the structure. In this experiment, it is found that

control signal even increases the spanwise vorticity level and gives a 7% rise of vor-

tex circulation by comparing Figure 3.14 and Figure 3.17. Furthermore, since the

objective of this method is only to suppress structure vibration, flow excitation will

always exist. While vibration amplitude is approaching zero, due to feedback con-

trol, the active resonator also generates ”near zero” control input on the structure.

Thus, flow excitation will dominate the control effect again and consequently struc-

ture will tend to vibrate. The model uncertainty limits the performance of active

resonator control.

3.3.3 Multi-High-Frequency Perturbation Method

In the section, we test the proposed multi-high-frequency perturbation method,

which is based on the Conjecture 3.1.1 in section 3.1.2. As in Figure 3.8, the design

factors are kD and ω for the active resonator, and bound b for the hard limiter.

Several experiments are conducted to assess the control effect of each parameter.

In all the experiments, the testing environment is set at the lock-in regime, where

Sts ≈ St0 = 0.13 and Re ≈ 1800. Structure vibration velocity is the feedback signal.

65



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time (s)

y/
D

no control
active resonator control

(a) time domain response

10
−2

10
−1

10
0

10
1

−140

−120

−100

−80

−60

−40

dimensionless frequency

P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

 (
dB

/H
z)

no control
active resonator control

(b) power spectrum density

Figure 3.16: Experimental results of structure vibration by no control and active

resonator control
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Figure 3.17: Contour of spanwise vorticity from PIV measurement: with active

resonator control, ”-” positive, ”− −” negative

We use the rms reduction values of both structure velocity and wake velocity signals,

for the cases without control and with the proposed control method, to evaluate

control performance as shown in Figure 3.18-3.20. Most results demonstrate better

control performance than those achieved by other methods studied in the work.

The best performance of suppressing structure vibration is over 70%. Considering

individual parameter effects, from Figure 3.18, a larger kD gives more improved

result due to its contribution on increasing controller’s damping. From Figure 3.19,

there also exists certain optimal region for the selection of ω, which agrees well with

the findings on the pre-design testing using open-loop perturbation in section 3.1.2.

Closed-loop control is more steady and robust with the variation of ω. From Figure

3.20, it is seen that a larger bound b means more energy can be used to compensate

FIV system energy, and in turn better reduced result is found.
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Figure 3.18: kD effect on control performance with Stω = 0.02 and b = 0.095: RMS
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Figure 3.19: ω effect on control performance with kD = 3500 and b = 0.095: RMS

reduction values (percentage)
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Merit: interpretation of phenomenological models

By now, an effective controller has been found by using the phenomenological model

as a design guide. Moreover, together with section 3.1.2, this controller also veri-

fies Conjecture 3.1.1 derived from the model study. Take the proposed controller

with (kD, Stω, b) = (3500, 0.02, 0.095) as an example. Figure 3.21 gives experimen-

tal results of structure vibration. Clearly, in Figure 3.21(b), there are multi-high-

frequency responses around the region Stp ∈ [0.5, 2], which has been considered

as optimal perturbation frequency region in Figure 3.4. Furthermore, considering

Equation (3.3) for the wake oscillator damping term, if ωp = ωs, which means per-

turbation frequency is equal to shedding frequency, then this damping term will be

A2
p

w2
0

− 1. If perturbation amplitude Ap is moderately small, then
A2

p

w2
0

< 1 gives a

negative damping term in all situations. This will increase wake oscillation, which
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Figure 3.21: Experimental results of structure vibration by no control and proposed

control
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Figure 3.22: Contour of spanwise vorticity from PIV measurement: with multi-high-

frequency perturbation method, ”-” positive, ”− −” negative

also agrees with experimental analysis about Stp around Sts by Cheng et al. (2003).

As for the wake field, the contour of spanwise vorticity is shown in Figure 3.22. The

overall level is reduced by comparing Figure 3.14. The vortex circulation Γ is also

reduced by around 25%.

Robustness Study of Proposed Control

It is very difficult to study controller robustness for different flow conditions. Here,

we give a general attempt to verify whether the proposed controller is always work-

ing within certain flow velocity range. Figure 3.23-3.26 show the power spectrum

densities comparison of non-controlled and controlled cases for different Reynolds

numbers. In this research work, at the lock-in condition, Re = 1800. The tested

flow conditions are Re = 1000,2500,3400,4100. Improved results are found only for

those Reynolds numbers, which are near the resonant condition. The reductions
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Figure 3.23: Power Spectrum Density (PSD) comparison of structure vibration un-

der conditions without control and with proposed control (Re=1000)
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Figure 3.24: Power Spectrum Density (PSD) comparison of structure vibration un-

der conditions without control and with proposed control (Re=2500)
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Figure 3.25: Power Spectrum Density (PSD) comparison of structure vibration un-

der conditions without control and with proposed control (Re=3400)
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Figure 3.26: Power Spectrum Density (PSD) comparison of structure vibration un-

der conditions without control and with proposed control (Re=4100)
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of PSD peaks can be found in Figure 3.24 and 3.25. The rms reduction values

are around 36% and 38% respectively. The spanwise vorticity contours in Figure

3.28 and 3.29 also give reduced results due to the proposed control. And vortex

circulation reductions are 17% and 25% respectively. However, for Figure 3.23 and

Figure 3.26, control performances are not satisfactory. The results of Figure 3.23

are obtained at a low Reynolds number, and under that condition, flow energy is not

sufficient to be compensated by control input. Thus, the surplus energy of control

input generated by the negative damping term will be transferred to cylinder and

make it vibrate. Then, the wake response will be more mystery. As shown in Figure

3.27, the spanwise vorticity even increases. On the other hand, the results of Figure

3.26 are obtained at a high Reynolds number. Although perturbation makes some

contributions on the reduction of vortex shedding as shown in Figure 3.30, the wake

flow is still strong enough to excite cylinder due to the strong wind background.

Furthermore, the wake oscillator model is used to represent the flow and structure

interaction in near the lock-in regime. For the cases of Re = 1000 and Re = 4100,

the phenomenological model may not be applicable again. Thus, it is reasonable

that perturbation may not work again.

It is also observed by Krenk and Nielsen (1999) that a small variation in parame-

ters of model can cause larger change in experiment than what is predicted by the

model. The model is therefore quite sensitive to parameter variation. Although the

proposed controller is based on the study of such a sensitive model, it still achieves

moderate robustness near the resonant region, despite there are some deficiencies on

the control performance when flow condition is far away from the resonant region.
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Figure 3.27: Contours of spanwise vorticity from PIV measurement, ”-” positive,

”− −” negative (Re=1000)
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Figure 3.28: Contours of spanwise vorticity from PIV measurement, ”-” positive,

”− −” negative (Re=2500)
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Figure 3.29: Contours of spanwise vorticity from PIV measurement, ”-” positive,

”− −” negative (Re=3400)
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Figure 3.30: Contours of spanwise vorticity from PIV measurement, ”-” positive,

”− −” negative (Re=4100)
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CHAPTER 4

CONCLUSIONS AND FUTURE WORKS

4.1 Controller Development

Considering the difficulty of control problem for uncertain system, this research work

makes contributions on the development of the model-independent controller.

4.1.1 Self-Tuning Design

One approach is mathematically based. Basically, the proposed control module con-

sists of two parts: stabilization mechanism and optimization mechanism. The former

one is originated from the PID tuning method and further extended to high order

versions with the help of singular perturbation tool. One credit for the mechanism is

that closed-loop stability can be ensured while the only assumption and requirement

is the open-loop stability of the plant. The optimization mechanism is also indepen-

dent on the plant parameters while only requiring the feedback signal to estimate

the controller parameter gradients by simultaneous perturbation algorithm, which

can also be regarded as a random-searching scheme. The function of the mechanism

is to find the controller that can achieve optimal performance. The validation of

this control module has been shown by mathematical proof, numerical simulation,

and experiment. Since the control module is model-independent, another credit is

that it can be integrated with any other adaptive controller when there is an online

identification process for plant parameters.
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4.1.2 High-Frequency Perturbation Effect

Another approach is based on the study of FIV control experiment. One pertur-

bation technique developed in the literature is used as the control input. As the

testing object, FIV does not have a simple and analytical model for controller de-

sign to present knowledge extent. Traditional control methods are tested for FIV,

such as variable structure control and active resonator control. However, neither

of them produces satisfactory results. One phenomenological model, using two-

oscillator idea, is employed to study the controller development. Based on the

model, experimental studies at the lock-in condition demonstrate the possibility

to suppress the vortex by increasing the damping term of the model through a

perturbation input at a high frequency range well-exceeding resonant frequency of

structure. This also agrees well with the findings of others who try to control flow

by acoustic excitations. Therefore, besides the control module, one additional con-

troller composed by a low-frequency active resonator with a hard limiter is found

to have the best performance in the FIV control compared with those traditional

control methods. Especially near the lock-in regime, the proposed high-frequency

perturbation method even gives moderately robust property.

4.2 Design Rationale: one useful ’model’

Although this thesis concentrates on the model-independent controller design, when

discussing the case study of FIV control problem, this work first links a phenomeno-

logical model to the issue. From the point of view of controller design, the model

makes contributions on finding out an effective control method, a so-called multi-

high-frequency perturbation method. On the other hand, from the point of view of
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model validation, this study provides evidence that experimental results agree with

the predication on high-frequency effects on FIV, which verifies the eligibility to use

such a phenomenological model in practical control application. This study leads to

a brand new direction to understand and control FIV problem from a useful ’model’,

even if the model is not physically developed. Compared with traditional modeling

approaches, such as solving Navier-Stoke equations, the phenomenological model is

much easier to handle.

4.3 Comments on Future Works

Controller Improvement

This research work has already provided a set of applicable control methods for

uncertain systems based on the model-independent purpose. Indeed, there are some

aspects that can help to improve the performance of those controllers. Having

been shown in the section 2.1.4, generalized tuning is possible for the stabilization

mechanism design. In other words, more flexible design options can be made using

the tuning technique. For example, the pseudo observer tuning can employ another

type of filter rather than Butterworth filter in this study. Furthermore, for the

optimization mechanism design, other methods of random-searching-based gradient

estimation can be developed rather than the simultaneous perturbation, such as

genetic algorithm searching.

As for the improvement of control methods for FIV, efforts on both algorithmic

and technical aspects can be made. For instance, considering the improvement of

variable structure control, how to eliminate the chattering problem can be a good

approach. As for the control technique, it is conjectured that if the perturbation
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created by actuators is imposed on the four angles of cylinder rather than only on

the side surfaces, the performance might be more satisfactory since it interferes with

flow separation points. Of course, for the multi-high-frequency perturbation method,

other approaches can also be used to generate the desired signal, e.g. different

formats of the active resonator in Figure 3.8.

Integration of Control Module

One credit of the control module developed in this study is the compatibility during

implementation. One interesting approach for further attempt is to integrate the

control module with other adaptive and optimal controllers for uncertain systems,

such as backstepping, H2 control.

FIV Modeling Issue

Based on the findings in this research work, the phenomenological model is useful to

guide the controller design. However, we only employ its damping characteristic. It

is of interest to explore the coupling characteristics in the model. The merit is that

if a simple FIV model is fully revealed and admissible for describing FIV behavior,

controller design will be easily accessible by doing model simulation. Although

this research work does not provide any modeling information for it is a model-

independent control approach, an elementary guide for the modeling issue of the

FIV scheme used in the experiment is provided in Appendix.
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APPENDIX:

ELEMENTARY FIV MODELING GUIDE

With the increase of perception in controller design, it has become more and more

necessary to find out a mathematical model to develop high efficient control scheme.

As mentioned in many literatures, a van-der-pol oscillator model can be introduced

to describe the flow force behavior of FIV. In the project, the control input is driven

by embedded actuators, and detailed analysis needs to be accounted on its mathe-

matical process. Here, some highlights are drawn to give an elementary modeling

guide for FIV based on the phenomenological model. It is implemented step by step

as follows1. This modeling section is referred to the physical system as shown below.

Fixed Cylinder In Cross-flow

wake-oscillator model:

c̈y + εωs(c
2
y − 1)ċy + ω2

scy = 0 (A1)

where ε is flow damping term, ωs is the shedding frequency of fluid vortex, and cy is

fluid force exerted on the cylinder. Here, (c2y − 1) is used as the nonlinear damping

term and any other option is also possible.

1The title of each step is the experimental condition, under which the parameters of equations

in that step are identified offline.
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Mr1

u
Mr2

Votex Shedding

Y2

Y1

Cylinder Vibration With Control But No Flow

Ÿ1 + 2ζs1ωn1Ẏ1 + ω2
n1Y1 = −

cp
2Mr1

Ÿ2 =
cp

2Mr2

(A2)

where cp is the force generated by the control unit, Mr1 and Mr2 are mass ratios

M
ρf H2L

.

Cylinder Vibration When Flow Is Presented But No Control

c̈y + εωs(c
2
y − 1)ċy + ω2

scy = D1Y +D2Ẏ +D3Ÿ

Ÿ + 2ζsωnẎ + ω2
nY = −

cy
2Mr

(A3)
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Cylinder Vibration With Both Flow and Control

c̈y + εωs(c
2
y − 1)ċy + ω2

scy = D1Y1 +D2Ẏ1 +D3Ÿ1 + f(Yp, Ẏp, Ÿp)

Ÿ1 + 2ζs1ωn1Ẏ1 + ω2
n1Y1 =

cy1
− cp

2Mr1

Ÿ2 + ω2
pY2 =

cp − cy2

2Mr2

cy = cy1 − cy2

(A4)

where f(Yp, Ẏp, Ÿp) is the force that is exerted by the slice onto the fluid, cy1 is the

fluid force acting on the cylinder and cy2 is the fluid force acting on the slice.

Final Mathematical Model

The overall equations are

c̈y + εωs(c
2
y − 1)ċy + ω2

scy = D1Y1 +D2Ẏ1 +D3Ÿ1 + f(Yp, Ẏp, Ÿp)

(1 +
Mr2

Mr1

)Ÿ1 + 2ζs1
ωn1

Ẏ1 + (ω2
n1

+
Mr2

Mr1

ω2
p)Y =

cy − 2Mr2
(Ÿp + ω2

pYp)

2Mr1

(A5)

Now we can transfer them into state-space expressions.

ẋ1 = x2

ẋ2 =

(
D3

2(Mr1
+Mr2

)
− ω2

s

)

x1 + εωs(1 − x2
1)x2 +

(

D1 −
D3(ω

2
n1Mr1 + ω2

pMr2)

Mr1
+Mr2

)

x3

+

(

D2 −
2ζs1ωn1Mr1D3

Mr1 +Mr2

)

x4 −
ω2

pMr2D3

Mr1 +Mr2

x5 −
Mr2D3

Mr1 +Mr2

u+ f(x5, x6, u)

ẋ3 = x4

ẋ4 =
1

2(Mr1 +Mr2)
x1 −

ω2
n1Mr1 + ω2

pMr2

Mr1 +Mr2

x3 −
2ζs1ωn1Mr1

Mr1 +Mr2

x4 −
ω2

pMr2

Mr1 +Mr2

x5 −
Mr2

Mr1 +Mr2

u

ẋ5 = x6

ẋ6 = u

(A6)

where x1 = cy, x2 = ċy, x3 = Y1, x4 = Ẏ1, x5 = Yp, and x6 = Ẏp.
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