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Abstract

The aim of this research is to develop efficient algorithms for fractal image coding,

which can be applied in digital image compression, image magnification and image

denoising. Fractal image coding can provide a highly reconstructed image quality with a

high compression ratio, is independent of resolution, and has a fast decoding process.

The problem with fractal coding is its high computational complexity in the encoding

process. Most of the encoding time is spent on finding the best-matched domain block

from a large domain pool to represent an input range block with respect to contrast and

intensity offset, as well as the isometric transformations. The objectives of this research

are to investigate and develop efficient techniques for fractal image coding, fractal-based

image magnification and denoising.

In this thesis, four efficient fractal image coding algorithms have been proposed. The

first algorithm is based on new feature vectors and the property of zero contrast. The

proposed feature vectors can provide a better representation of image blocks, and thus

result in a more efficient search of the domain block using the k-d tree scheme. The

second algorithm is an efficient windowing scheme for fractal image coding based on

the local variances method. In this method, windows covering those domain blocks

whose variances are higher than that of the range block are considered according to a

mathematical model. The exhaustive search algorithm can obtain the optimal result by

searching all the blocks within the domain pool, but this process requires a high

computational cost, which limits its practical application. A single kick-out condition is

proposed which can avoid a large number of range-domain block matches when finding
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the best-matched domain block. An efficient method for zero contrast prediction is also

proposed, which can determine whether the contrast factor for a domain block is zero or

not, and compute the corresponding difference between the range block and the

transformed domain block efficiently and exactly. The fourth method is another fast full

search fractal image-coding algorithm, which uses the angle between an input range

block and a reference domain block to determine a tighter decision boundary for

eliminating the searching space in the domain pool. The encoding time can be further

decreased when more reference domain vectors are used.

These efficient algorithms have been further investigated to extend their applicability to

image magnification and denoising. In this thesis, an efficient image-magnification

algorithm based on the Iterated Function System (IFS) is proposed. This IFS-based

image-magnification method employs the self-similarity property instead of the

conventional interpolation approach. This self-similarity makes it possible to generate

images of higher resolution. To further improve the quality of the high-resolution images,

the error image or residual errors are considered. In addition, our algorithm can combine

with other magnification algorithms. We have also derived a new fractal-based image

denoising method, which employs the decoupling property of the fractal code instead of

the conventional fractal coding using the contrast scaling and offset parameters. In order

to improve the visual quality of a denoised image, a range-block partitioning scheme is

used to generate a set of overlapping sub-images. These sub-images are then averaged to

produce an optimal denoised image.
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Statements of Originality

The following contributions reported in this thesis are claimed to be original.

1. A new fast algorithm for fractal image compression based on new feature vectors

and the property of zero contrast is proposed. The proposed feature vectors can

provide better representation of image blocks, resulting in a more efficient search

of the domain block.

2. A fast algorithm for fractal image coding based on a single kick-out condition and

the zero contrast prediction is presented. The single kick-out condition can avoid

a large number of range-domain block matching when finding the best matched

domain block.

3. An efficient method for zero contrast prediction is also proposed, which can

determine whether the contrast factor for a domain block is zero or not, and

compute the corresponding difference between the range block and the

transformed domain block efficiently and exactly.

4. A method of modeling local variances based on a symmetrical window is derived.

5. A non-symmetric windowing scheme for fractal image coding based on the local

variances method is proposed. The original local variances method uses a

symmetric search window to search the best-matched domain block in the domain

pool for each range block. In our method, a non-symmetric search window is used

in such a way that windows cover those domain blocks where variances are

higher than that of the range block are considered.

6. A new representation of range-domain matching function is derived, which shows

the relationship between the range-domain block matching error and the angle
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between the range and domain block vectors. An inequality in terms of the sine of

the angle has been proposed. This inequality can reject impossible domain block

candidates efficiently in searching for the best-matched domain block

7. An image magnification algorithm that can achieve a high subjective and

objective quality is proposed. This algorithm improves the quality of a magnified

image based on a set of high-resolution images generated using IFS codes. A

pixel-averaging scheme and an error compensation scheme are proposed to form a

magnified image which can preserve its high-frequency information and remove

blocky artifacts. In addition, this algorithm can combine with other magnification

algorithms, such as IEUF, to further improve the quality of a magnified image

8. A super-high-resolution image magnification algorithm with high visual quality is

proposed. In order to extract the information from the original image as much as

possible, we propose generating more super-high-resolution images by adopting

more range block sizes in the encoding process. Typically, the range block sizes to

be adopted can be adjusted from 3×3 to 8×8.

9. An efficient image denoising algorithm is proposed which employs the

decoupling property of the fractal code instead of the conventional fractal code

using the contrast scaling and offset parameters. This decoupling property makes

it possible to denoise images more efficiently and flexibly. To improve the image

quality, a range-block partitioning scheme is used to generate a set of overlapping

sub-images. The range blocks of these sub-images are coded and represented by

their range-block mean values and contrast scaling parameters for removing the

noise. These sub-images are then averaged to obtain an optimal denoised image.
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The objective of this chapter is to introduce the general concepts of some well-known

still image compression techniques, which include Vector Quantization (VQ), JPEG

(Joint Photographic Experts Group), JPEG2000 and Fractal image coding. The

advantages and potential for image processing of fractal image coding over other image

coding techniques will be discussed.

1.1 Overview of some Efficient Image Coding Techniques

1.1.1 Why Image Compression?

Image compression is the process of converting an original digital image into

smaller sizes in order to efficiency achieve for storage and transmission. As one of the

enabling technologies of the multimedia revolution, image compression is a key to rapid

progress being made in information technology. It would not be practical to put images

alone on websites without compression. Image compression algorithms are used to

reduce the number of bits required to represent an image. Compression is the process of

representing image information in a compact form. After compression, image data take

up less storage space and require less bandwidth to be transmitted over the Internet.

Although increasing the bandwidth is a possible solution, the relatively high cost makes

this less attractive. Therefore, compression is a necessary and essential method for

creating image with manageable and transmittable sizes.

Chapter 1. Introduction
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Fox example, a single image captured by a digital camera with 6M Pixels 24

bits/pixel of true color, will produce a file containing more than 24 megabytes of data. At

least 17 floppy disks are required to store such an image. This image requires about 50

minutes for transmission by a typical transmission line (64k bit/second ISDN). Hence, the

need to find efficient compression and coding techniques urges on the development some

of image compression standards.

Many image coding algorithms have been devised to represent an image with some

information loss which cannot be perceived by human eyes. Thus, lossy coding has

received many research interests in the field of image compression and can be classified

into four main categories: (i) Vector Quantization (VQ) [1-23], (ii) JPEG (Joint

Photographic Experts Group) [24-27], (iii) JPEG 2000 [28-32] and (iv) fractal image

coding [11, 33-81]

1.1.2 Vector quantization

Vector Quantization (VQ) is a well-known Image compression technique, which

has been widely applied in image coding. VQ is based on the fact that grouping the

source outputs together will yield more efficient compression. In other words, it encodes

a sequence of samples instead of the individual samples. In Vector Quantization, the

input image to be encoded is divided into a set of non-overlapping image blocks. The

encoder takes an input image block and outputs the index of the corresponding codeword

that gives the minimum distortion. In this case, the minimum distortion is found by

evaluating the Euclidean distance between the input image block and each codeword in

the codebook.  Once the best-matched codeword is found, the index of that codeword is

sent through a channel. Compression is achieved by transmitting the indices associated to
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the codewords instead of the codewords because of the far fewer bits required for the

indices. The codebook is generated from a set of training images.

1.1.3 JPEG (Joint Photographic Experts Group)

JPEG is currently the most widely used image compression method. In JPEG

coding, an image to be encoded is first divided into a set of 8 by 8 pixel image blocks,

and then the discrete cosine transform (DCT) is performed on each block. A quantizer

rounds off the DCT coefficients according to the quantization matrix. This process

produces the lossy coding of the original image but allows for a large compression ratio.

Because adjacent image pixels are highly correlated, the DCT technique can achieve data

compression because most of the signal energy is concentrated in the lower spatial

frequencies. After quantization, all of the quantized coefficients are ordered into the zig-

zag sequence. JPEG compression technique uses entropy coding technique on these

quantized DCT coefficients. The entropy coding achieves additional compression

losslessly. In the decompression process, JPEG recovers the quantized DCT coefficients

from the compressed data stream, and takes the inverse transforms.

1.1.4 JPEG2000

JPEG 2000 was implemented as an entirely new way of image compression based

on the wavelet transforms, in contrast to the DCT used in the original JPEG standard.

Wavelet Transform is more flexible in representing images and is able to take into

account Human Visual System characteristics. It also has good energy compaction
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capabilities, which results in a high compression ratio. This standard will include many

modern features including improved low bit-rate compression performance, lossless and

lossy compression, etc. In JPEG2000 encoder, the discrete wavelet transform is first

applied on the source image. The wavelet coefficients are then quantized and entropy

coded, then forming the output bitstream. In the decoding process, the bitstream is first

entropy decoded, dequantized and inverse discrete wavelet transformed, thus resulting in

the reconstructed image data. JPEG2000 can achieve both lossy and lossless coding of an

image. This depends on the wavelet kernels used and the quantization applied

1.1.5 Fractal Image Coding

Fractal theory was first presented by Barnsley [33], and is based on a mathematical

theory called Iterated Function Systems (IFS). Jacquin [45, 46] proposed the first

practical fractal image compression scheme that relies on the assumption that image

redundancy could be efficiently exploited through self-transformability on a block-wise

basis. Fractal image compression is based on the representation of an image by a set of

iterated contractive transformations for which the reconstructed image is an approximate

fixed point and close to the original image.  In the fractal image coding scheme [45, 46],

an image to be encoded is partitioned into a set of non-overlapping square blocks called

range blocks. Each range block is represented by a transformed larger domain block of

the same image with respect to contrast and intensity offset, as well as the isometric

transformations. By minimizing the difference between the range block and the

transformed domain block, the corresponding contractive affine transformation can be

found for the range block. After finding the best-matched domain blocks for all range
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blocks, the corresponding contractive affine transformation parameters are stored for

each range block instead of their pixel intensities.

1.2 Motivation of Fractal Image Coding

A significant amount of research work has been done on fractal image compression

recently[11, 35-81]. Fractal image coding can provide a highly reconstructed image

quality with a high compression ratio, is independent of resolution, and has a fast

decoding process. Fractal encoding is essentially a process to find a contractive affine

transformation for each range block from the domain pool. We only need to store the

location of the best-matched domain block, and perform isometric operation as well as

the contrast scaling and luminance offset parameters at the encoding process. It is

obvious that we can save quite a lot of bits by doing this instead of their pixel intensities.

So the most valuable advantage of fractal compression is the ability to achieve a high

compression ratio. The reconstructed fractal image can retain edge sharpness well and

can generate textures that are quite often subjectively acceptable.

Both JPEG and JPEG2000 are symmetrical compression methods which require

equal processing capability for compression and decompression of an image. However,

the VQ and fractal image coding techniques can achieve very fast and simple decoding

process. Fractal image compression can be seen as a type of vector quantization with a

codebook that is extracted from the original image itself. One of the differences is that no

codebook is required for fractal image coding in the decoding process.

Another advantage of fractal coding over other image coding techniques is that it is

resolution-independent in the decoding process. After fractal image coding, the output of
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the coder is an Iterated Function Systems (IFS), which approximates the image as a fixed

point of a contractive transformation. This IFS code can be used to reconstruct the image

at any level of resolution. These magnified images are suitable for graphics systems that

are typically composed of devices of different resolutions. This type of feature is not

exploited by traditional image coders, and this is the main motivation for fractal image

coding.

In addition, fractal image coding can also be applied to denoise image. The idea of

fractal image denoising is that range blocks can be described by a small number of

contractive affine transformations based on the self-similarity structures across scales.

However, it is impossible to approximate any random noisy structures occurring in an

image [3]. Therefore, the conventional fractal image coding technique can be applied to

remove the noise in a low-noise condition.

The problem with fractal coding is its high computational complexity in the

encoding process. Most of the encoding time is spent on finding the best matched domain

block from a large domain pool to represent an input range block with respect to contrast

and intensity offset, as well as the isometric transformations. By minimizing the

difference between the range block and the transformed domain block, the corresponding

iterated contractive transformation can be found for the range block. The exhaustive

search algorithm can obtain the optimal result by searching exhaustively all the blocks

within the domain pool, but this process requires a high computational cost and limits its

practical applications. Consequently, many fast algorithms, such as Fisher’s canonical

classification [34], local variances [56], etc. have been proposed to reduce the required

computation.
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The objectives of this research are to investigate and develop efficient techniques

for fractal image coding and their applications for image processing. We have also

devised a number of efficient algorithms for fractal image compression, image

magnification and image denoising.

1.3 Organization of the thesis

The rest of this thesis will give an overview of existing techniques for fractal image

coding, as well as for fractal-based image magnification and fractal-based image

denoising.

Chapter 2 describes the principles of fractal image coding. We make a brief review

on some well-known fractal image coding techniques, which include fast full search,

domain pool reduction search, etc.

In Chapter 3, we propose a fast fractal image coding algorithm using a feature

vector which can have a better representation of the image blocks. This can make the

search of the corresponding domain block much more efficient and accurate than that of

other existing fractal algorithms. We have also proposed the use of zero contrast

condition to reduce the computational complexity and further improve the compression

efficiency of the algorithm.

In Chapter 4, a fast algorithm for fractal image coding based on a single kick-out

condition and the zero contrast prediction is presented. The single kick-out condition can

avoid a large number of range-domain block matches when finding the best matched

domain block. An efficient method for zero contrast prediction is also proposed, which

can determine whether the contrast factor for a domain block is zero or not, and compute
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the corresponding difference between the range block and the transformed domain block

efficiently and exactly.

In Chapter 5, we devise an equation to model local variances method based on a

symmetrical window. From the devised equation, we propose using a non-symmetric

window to search for the best-matched domain block based on the local variances

method.

Chapter 6 presents an algorithm to reduce the computational cost of range-domain

block matching in the fractal image encoding process based on geometric inequalities.

Our approach uses the angle between an input range block and a reference domain block

to determine a tighter decision boundary for eliminating the searching space in the

domain pool. The encoding time can be further decreased when more reference domain

vectors are used.

Chapter 7 presents an efficient image magnification algorithm based on the Iterated

Function System (IFS). This IFS-based image magnification method employs the self-

similarity property instead of the conventional interpolation approach. This self-similarity

makes it possible to generate images of higher resolution. To further improve the quality

of the high-resolution images, the error image or residual errors are considered. In

addition, our algorithm can combine with other magnification algorithms.

In Chapter 8, a new fractal-based image denoising method is proposed. This method

employs the decoupling property of the fractal code instead of the conventional fractal

coding using the contrast scaling and offset parameters. In order to improve the visual

quality of a denoised image, a range-block partitioning scheme is used to generate a set of
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overlapping sub-images. These sub-images are then averaged to produce an optimal

denoised image.

We give the conclusions of our work in Chapter 9, where some suggestions for

further development can also be found.
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Chapter 2. Review of Fractal Coding

The objective of this chapter is to introduce the general concepts of Fractal Image Coding

and its applications, such as Fractal-based image denoising and image magnification. The

state-of-the art technology for fractal image coding and its applications will be presented.

An overview of the techniques for fractal image coding, fractal-based image denosing

and , fractal-based image magnification proposed and developed in this thesis will also be

given.

2.1 History and Development of Fractal Image Coding

The term "fractal" was first used by Benoit Mandelbrot in 1975. Fractals are shapes

that exhibit the property of self-similarity, where same parts of shape are presented

recursively in different scale and position. Figure 2.1 shows an example of self-similarity

of test image Lena. If an image is truly fractal in nature, the image can be reconstructed

by using a set of affine transformations of an arbitrary input image. The basic idea of

fractal image compression came from a mathematical theory called Iterated Function

Systems (IFS). Michael Barnsley wrote a popular book called Fractals Everywhere [33]

that presents the mathematics of IFS, which is a new tool for modeling techniques in

computer graphics, called the Collage Theorem. The Collage Theorem states what

conditions an IFS must satisfy in order to represent an image.
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Figure 2-1 An example of self-similarity: the small square is similar to the larger square

The basic idea of fractal image compression using Partitioned Iterated Function Systems

(PIFSs) was first proposed in 1989 by Jacquin. In his PhD thesis, Jacquin developed the

necessary mathematical foundations and implemented the new approach in software, a

description of which appears in his paper in [45]. The algorithm was not sophisticated

and is expensive computations in the encoding process, but it was fully automatic. All

contemporary fractal image compression schemes are based upon Jacquin’s approach.

2.2 Basic Theory

The essence of most fractal-based image coding methods is to approximate each

segment of an image by applying a contractive affine transformation on some bigger

segment in the same image. One can then reconstruct the image with some error by using
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only the parameters of the contractive affine transformation [45]. In this method, most of

information in the image is basically encoded by coding relations among different

segment of the image. In this session, the mathematical theory of IFS, PIFS and Collage

Theorem are briefly introduced.

2.2.1 Iterated Function Systems (IFS)

Iterated Function Systems is the foundation for Fractal Image Compression. The

basic idea of an Iterated Function System is to create a finite set of contractive affine

transformations based on what image one desires to create. If these transformations are

contractive, applying the IFS to an arbitrary seed image will eventually produce an

attractor of that transformation [34, 45].

An affine transformation : n nR Rτ →  can always be written as Ax bτ = + , where

nnRA ×∈  and nRb ∈  is an offset vector. For example, an affine transformation defined

on gray scale image can be of the form

'

'

'

0
0

0 0

i i i

i i i i

i i

x a b x p
y c d y q
z s z o

τ

       
       = +       
             

(2.1)

where ia , ib , ic , id  controls the rotation and skewing of the image, while ip , iq  controls

the translation; is   controls contrast scaling and io  controls luminance offset of the

transformation, respectively. An affine transformation is contractive if and only if the

distance between any two points in the image plane becomes smaller after

transformation.
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An iterative function system, { }iτ= , is a finite set of affine transformations that

composes a single contractive transformation:

3 3
1

,                              :rn
i ii

R Rτ τ
=

= →U    (2.2)

( ) ( )( ) ( )1 0 1, , ,       0 <1od f f sd f f s≤ ≤    (2.3)

where the iτ  is the affine transformation, f0 and f1 are any two images at the same

dimension. The symbol d denotes a distance metric, normally the root mean square that

measures the distance between two images. Because the contractivity factor s lie  in  the

range [0, 1], the transformation τ makes these two images to become more alike. The

Banach’s fixed point theorem ensures that when applied to any input image f0, the IFS

have the following remarkable properties: (i) The dynamical system ( ){ }0f has a unique

attractor: ( )0lim n

n
f f∞ →∞

= , where n is the number of iterations. (ii) The unique attractor is

a fixed point image of transformation ( ): f f∞ ∞= . That is, starting with any image 0f

and repeatedly applying τ, after certain iterations, the process will converge to  a unique

attractor image which is independent of the input image 0f .

2.2.2 Partitioned Iterated Function Systems (PIFS)

Theoretically, each image has a unique fixed point. However, it is impossible to

find a unique fixed point for a whole image in practice. Therefore, the image should be

partitioned as different parts, and the fixed points for the corresponding parts should be

obtained through different affine transformations. The above IFS will be different from

different parts of the image, and therefore it is called a partitioned iteration function
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system (PIFS).  This is contrast to IFS that approximates each part of the image by

applying a contractive affine transformation on another part of the image. In PIFS, the

image to be encoded is partitioned into range blocks ℜ. Then, each range block iR ∈ℜ is

approximated by a transformed version of a bigger domain block jD .

The process of encoding images requires us to find a collection of contractive affine

transformations τ = iτU  such that f% is the fixed point of the map τ.  The fixed-point

equation suggests that we partition f into pieces to which we apply the affine

transformation τi to get back the original image f [33]. But finding an exact set of

transformations is impossible since arbitrary images are not self-similar. Therefore, we

find another image f%  with drms(f, f% ) less than or equal to some specified tolerance error.

The encoder finds the contractive transformation τi  that minimize the RMS error, drms(f,

f% ).

In the decoding process, an arbitrary image f0 is used as a seed image for iterating

through the collection of affine transformations. On the first iteration, 1 0( )f f= , and on

the second iteration, 2 1 0( ) ( ( ))f f f= = , etc. This process can be repeated until the

attractor resembles the original image.

2.2.3 Collage Theorem

Collage theorem states what conditions an IFS must satisfy in order to represent an

image. The IFSs are good for generating natural looking images. However, the inverse

problem is more difficult and challenging; given an arbitrary image origf  to be encoded,

find its corresponding IFS to produce another image similar to the original image origf . In
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other words, find a finite set of maps { }iτ  such that ( ),origd f f∞ is as small as possible.

However, finding such a transformation τ is a very complex problem. This problem is

solvable by the collage theorem [1]:

( ) ( )( )1, ,
1orig origd f f d f f

s∞ ∞≤
−

    (2.4)

The collage theorem [33] suggests a possible approach to this problem, i.e., the problem

of “finding a τ whose fixed point is close to the image” can be changed to “finding a

mapping the image close to itself” to guarantee that the fixed point of this transformation

is close to the original image. One thus needs only to minimize the so-called collage

distance ( )( ),origd f f∞  instead of ( ),origd f f∞ to encode a give image origf . It should be

pointed out that the transformation τ found in this way generally is not optimal, but it is a

compromise that one has to make in order to solve the above minimization problem.

2.3 Overview of Fractal Image encoding

A significant amount of research work has been done on fractal image compression

recently [11, 34-69, 71-118]. Jacquin[5] proposed the first practical fractal image

compression scheme that relies on the assumption that image redundancy could be

efficiently exploited through self-transformability on a block-wise basis. Fractal image

compression is based on the representation of an image by a set of iterated contractive

transformations for which the reconstructed image is an approximate fixed point and

close to the original image.
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2.3.1 Range Block

In the fractal image compression scheme, an image, forig, of size mx×my is

partitioned into two basic block units: the range blocks and the domain blocks. The range

blocks ℜ are a set of non-overlapping image blocks of size k=nr×nr, which are denoted as

RR N
iikii

N
ii rrrR 1211 }{}{ == = ,,, L . The number of range blocks is yx

R
r r

mmN
n n

   
= ×   

   
, and image forig

is a union of RN
iiR 1}{ = :

U
RN

i
iorig Rf

1=

=        (2.5)

Note that the range block is the primary coding unit in fractal image coding and is

encoded one by one in raster order from left to right, top to bottom. Figure 2.2 shows a

test image Lena of size 512×512 with range block of size 8×8.
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Figure 2-2: The test image Lena of size 512×512 with range block of size 8×8

2.3.2 Domain Blocks

Overlapping image blocks of forig with a size larger than that of the range blocks are

called domain blocks. These domain blocks can be obtained by sliding a window of

size d dl n n= × , where d rn n> , throughout the image to construct the domain pool. The

size of a domain block is usually four times that of a range block, i.e. 2 2r rl n n= × . To

encode a range block R, each of the blocks in the domain pool is scaled to the size of the
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range block, and is then compared to R with respect to intensity offset o and contrast

scaling s parameters, as well as the isometric transformations. The set of contracted

domain blocks is denoted as { } { } DD N
iilii

N
i dddD 1211 == = ...,,i , where ND is the number of domain

blocks in the domain pool.

As described above, for a range block, a best-matched domain block and its IFS

need to be found so that range block and domain block become the best pair with

minimum error. The domain block pool consists of 2 2r rn n× squares from the original

image and is a set of domain blocks. It can be generated by sliding 2 2r rn n× window

within the original image by skipping δ  pixels from left to right, top to bottom as shown

in Figure 2.3.

Figure 2-3  The domain pool construction process.

0,  0x yδ δ= = 1,  0x yδ δ= = 2,  0x yδ δ= =

0,  1x yδ δ= = 1,  1x yδ δ= = 2,  1x yδ δ= =
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If the image is x ym m× , then there are
2 21 * 1x r x rm n m n

δ δ
− −   + +   

   
 domain blocks in

the domain pool. For example, if the image of size 256256 × and  range block of size

4×4, the domain grid size δ  is 1, then there are

256 2 4 256 2 41 * 1
1 1
− × − ×   + +   

   
=62,001 domain blocks in the domain pool. Here we

take notation of the domain block pool as }{ jD=Ω . Comparing the range block with all

domain blocks among the domain block pool one by one, find the best-matched domain

block. To increase the probability of finding a best-matched domain blocks for a range

block, the domain pool is enlarged by including all eight isometric operations of the

original domain blocks, as shown in Figure 2.4. The transformed domain blocks are

obtained by rotating original blocks by 90, 180 and 270 degrees and flipping them

vertically. In other words, there are 256 2 4 256 2 41 1 8 496,008
1 1
− × − ×   + × + × =   

   

domain blocks in the domain pool.
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Figure 2-4. Eight isometric operations.

0: No transformation 1: Reflection in the y axis

2: Reflection in the x axis 3: 180° Rotation

4: Reflection in the line y = x 5: Rotate 90° counter-clockwise

6: Rotate 90° clockwise 7: Reflection in the line y = –x
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2.3.3 Construction of Fractal Codes

After both range blocks and domain blocks are defined, a contractive affine

transformation is defined on each range block Ri mapping a domain block to each range

block. The action of this affine transformation can be seen to consist of three parts: the

first part is to extract an approximate domain block from the domain pool, the second part

is to transform the selected domain block, and the last part places the transformed domain

block at the range block location and compare the range-domain matching error.

Mathematically, for each range block R, an affine transformation is constructed in the

following way:

The collage error minimization is carried out by exhaustive searching the domain

pool to find the best-matched domain block with an isometric operation and

corresponding parameters, contrast scaling s and luminance offset o to minimize the

distance. The domain block with its corresponding parameters and isometric operation

that gives the minimum distance is stored. The corresponding parameters for the affine

transformation τi are determined by minimizing the following equation:

( ) ( )2

1

,
k

i i
i

E R D r sd o
=

= − −∑  where o, s ∈ R    (2.6)

where ri and di are the pixels in the range block R and the transformed domain blocks D,

respectively and they are both ordered lexicographically. The contrast scaling s and

luminance offset o parameters can be calculated explicitly by selecting their

corresponding partial derivatives of  (2.6) to zero, i.e.,
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( )2

1

. 0
k

i i
i

r s d o
s =

∂  
− − = ∂  

∑      (2.7)

( )2

1

. 0
k

i i
i

r s d o
o =

∂  
− − = ∂  

∑      (2.8)

To find the minimum of the error function the partial derivatives of E(R, Di) must be set

to zero. By solving these simultaneous equations in s and o, we can obtain the explicitly

expression for the optimal parameters s and o as follows:

1 1 1
2

2

1 1

k k k

i i i i
i i i

k k

i i
i i

k rd r d
s

k d d

= = =

= =

    
−    

    =
   

−   
   

∑ ∑ ∑

∑ ∑
    (2.9)

1 1

1 k k

i i
i i

o r s d
k = =

    
= −    

    
∑ ∑      (2.10)

If
2

2

1 1

k k

i i
i i

k d d
= =

   
−   

   
∑ ∑ =0, then s=0 and

1

1 k

i
i

o r
k =

= ∑ .  The equations (2.9) and (2.10) can

be substituted into equation (2.6) to obtain the following expression:

( ) 2 2

1 1 1 1 1

1, 2 2 2
k k k k k

i i i i i i
i i i i i

E R D r s s d r d o d o ko r
k = = = = =

    
= + − + + −    

    
∑ ∑ ∑ ∑ ∑  (2.11)

The contrast scaling s and offset parameters o serve to minimize the square error between

range block R and the transformation domain block D. The contrast factor should be

−1 < s < 1 to ensure the contractivity of the transformation. The domain block which

results in the smallest difference with equation (2.11) is then chosen as the best-matched

domain block, and the corresponding parameters τi for the transformations  are encoded

and stored.
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The above encoding process is repeated to encode all of the range block one-by-one

in raster order and the corresponding contractive affine transformations are encoded and

stored {τi | i= 1,2, ,NR}. The fractal code used to represent an image is then the union of

the parameters τi of all the range blocks as follows:

1
rN

ii
τ

=
= U        (2.12)

2.3.3.1 Convolution Method

Equation  (2.6) can be rewritten to a more compact format as

( ) ( ) 2oIDsRDRE ii +−= ., , where o, s ∈ ℜ,  (2.13)

where Di is the transformed domain block under isometric  transformation, I denotes a

unity vector of dimension k, respectively. For a given range block and the corresponding

domain block, these two parameters are given as follows:

1

2 21

, , ,

,
k

k

R D R I D I
s

D D I

−
=

−
, and       (2.14)

( )IDsIRo k ,,1 −=       (2.15)

The || || is the two-norm and .,.  is inner product.

( ) ( )( ) ( )2 2, 2. ,1 , . 2 ,1E R D s s D o D R D o o k R R= + − + − +   (2.16)

The range-domain matching error can be regarded as a function of

,R D , 2D , 2R , ,1R  and ,1D . The calculation of the inner products ,R D

dominant the computational cost in the encoding process.
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2.3.3.2 Øien’s Method

In order to reduce the computational cost, equation (2.13) can be further simplified.

As advocated by Øien et al [58] and by Tong et al [73], the DC component of all image

blocks is subtracted. The full search problem becomes

( ) ( ) ( )
2

,E R D s D dI R rI= − − −     (2.17)

The contrast scaling can be rewritten as follows:

2

,R r D d
s

D d

− −
=

−
       (2.18)

In other words, the optimal scaling factor between a range block and a domain block is

their inner product divided by the domain block sum-of-squares. This value is calculated

for all candidate domain blocks, under all eight symmetry operations, in search of the

minimum error. The representation of a range block can be rewritten as follows:

( )
( ) ( )
( )
( ) IrdDs

IrdsdsdDs

IdsrdsdDs
oIdsdDs

oIDsR

i

i

i

i

i

+−=

+−+−=

−++−=

++−=

+=

.

.

.

.

.

    (2.19)

Note that the fractal parameters are now the parameters s and range block mean r ,

instead of the conventional contrast scaling s and offset parameter o. The range-domain

matching error becomes:

( ) 2 2, 2. ,E R D s D dI R rI s R rI D dI= − + − − − −  (2.20)

The computational complexity of equation (2.20) is smaller than equation (2.16).
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2.3.4 Image Partitioning

In designing fractal image compression, we should consider the partition of the

image. Image partitioning is about dividing the image into sections that are more

appropriate for the application to work on. The partition for image compression is

performed to improve the rate distortion characteristic of the encoder. Three types of

partitioning method will be described in the follow: Fixed Size Block Partitioning [45],

Quad-tree partitioning [34] and Horizontal-Vertical partitioning [34, 95]. Figure 2.5 is an

illustration of these methods.

2.3.4.1 Fixed Size Block Partitioning

In Fixed Size Block Partitioning scheme [45], the original image is only partitioned

into a fixed size of range blocks. No splitting will be carried out to the range blocks no

matter how large the distance is between a range block and a transformed domain block.

The size of the range blocks is an important parameter in the encoding scheme. An

encoding with small range blocks results in a high signal to noise ratio but a low

compression ratio. With a larger size of range blocks, the compression ratio is increased

but the details in the range block are lost. To capture fine details while preserving a high

compression ratio, the quad-tree partitioning scheme is introduced.

2.3.4.2 Quad-tree Partitioning

The Quadtree partitioning scheme [34] is the most common scheme for fractal

image coding. In this scheme, the original image to be encoded is first divided into 4

range blocks. Each of these quarters, in turn can be divided up into 4 more equal sized

range blocks. This goes on until suitable mapping of the range blocks can be found, or a
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maximum depth is reached. An adaptive partitioning of an image may hold strong

advantages over encoding range blocks of fixed size. There may be homogeneous image

regions in which a sufficient collage error can be attained using large blocks, while in

high contrast regions smaller block sizes may be required to arrive at the desired quality.

(a)     (b)      (c)

Figure 2-5  Diagrams for different partitioning schemes: (a) Fixed Block Partition, (b)
Quad-tree partition  and (c) HV partition

2.3.4.3 HV Partitioning

The horizontal-vertical (HV) partitioning scheme produces a tree-structured

partition of an image. This partitioning scheme is similar with quad-tree scheme. Instead

of recursively splitting quadrants, however, each image block is split into two by a

horizontal or vertical line. In the encoding process, the range block is split into two

smaller blocks, either horizontally or vertically if the matching error is larger than a pr-

defined threshold. In such a way, splitting positions may be constructed so that

boundaries tend to fall along prominent edges. Both the domain blocks created in this

fashion are recursively split in this manner until the matched domain block is found. The
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advantage of the HV method is that larger domain blocks are likely because at each

recursion the domain blocks are halved in size instead of quartered.

2.3.5 Coefficient Quantization

Once the best-matched domain block and the affine transformations are obtained

for each range block, the compression ratio can be further increased by reducing the

number of bits used to represent the parameters in the affine transformations. There are

five parameters for each transformation τi: the isometric operation ϕi, the location of the

best-matched domain ( ),x yp p , the contrast scaling parameters si and the luminance

offset oi. It is reasonable to store the isometric operations used as three bits, since there

are eight possible operations. The number of bits required to store the location of the

best-matched domain ( ),x yp p  depends on the domain grid δ and the corresponding

equations are ( ) ( )2 2log logxm δ−  and ( ) ( )2 2log logym δ− , respectively. There are 5 bits

and 7 bits needed to quantize the contrast scaling si and luminance offset oi parameters,

respectively, as suggested by Fisher [36].

2.4 Fractal Image Decoding

At the decoding phase, the contractive transformation parameters τ are recursively

applied to an arbitrary initial image.  The output of each step is used as the input for the

next iteration and the output will converge to a unique fixed point that is independent of

the initial input image. The fixed point is known as the attractor of the IFS. The attractor
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has details at every scale and is referred to as a fractal. Figure 2.6 illustrates the use of an

initial image of constant gray level 0. After two iterations, the original image has been

recognizable, and the output converges to the original image after eight iterations. Figures

2.7 and 2.8 illustrate the decoding processes using another constant image of value 128

and original image as initial image. Table 2.1 tabulates the PSNR after each of the

iteration with different initial images. The results show that the result converges and have

the same PSNR after 8 iterations.
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    (a) Initial Image

 (b) After one iteration     (c) After two iterations

(d) After three iterations    (e) After eight iterations

Figure 2-6. Lena of size 256×256 under different iterations with a constant initial image
of value 0.
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     (a) Initial Image

 (b) After one iteration     (c) After two iterations

(d) After three iterations    (e) After eight iterations

Figure 2-7. Lena of size 256×256 under different iterations with a constant initial image
of value 128
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     (a) Initial Image

 (b) After one iteration     (c) After two iterations

.
(d) After three iterations    (e) After eight iterations

Figure 2-8. Lena of size 256×256 under different iterations with original image as initial
image
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No. of Iteration Initial Image

0

Initial Image

128

Initial Image

Orig. Image

1 10.6 dB 19.5 dB 33.02 dB

2 14.7 dB 23.78 dB 32.76 dB

3 19.35 dB 28.01 dB 32.66 dB

4 24.51 dB 31.16 dB 32.67 dB

5 31.93 dB 32.41 dB 32.67 dB

6 32.55 dB 32.65 dB 32.67 dB

7 32.65 dB 32.67 dB 32.67 dB

8 32.67 dB 32.67 dB 32.67 dB

9 32.67 dB 32.67 dB 32.67 dB

10 32.67 dB 32.67 dB 32.67 dB

Table 2-1. Decoded image quality using different initial images.

2.5  Review of Some Fractal Image Coding Algorithms

A significant amount of research work has been done on fractal image compression

recently. Fractal image coding can provide a highly reconstructed image quality with a

high compression ratio, is independent of resolution, and has a fast decoding process. The

problem with fractal coding is its high computational complexity in the encoding process.

Most of the encoding time is spent on finding the best matched domain block from a

large domain pool to represent an input range block with respect to contrast and intensity
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offset, as well as the isometry transformations. By minimizing the difference between the

range block and the transformed domain block, the corresponding iterated contractive

transformation τi can be found for the range block. The exhaustive search algorithm can

obtain the optimal result by searching exhaustively all the blocks within the domain pool,

but this process requires a high computational cost and limits its practical applications.

2.5.1 Heavy Brute Force

The original images of size 256×256 shown in Figure 2.2, are based on a uniform

partitioning scheme of range block of size 8×8 and produces 1024 range blocks. If the

domain blocks are restricted to twice the size of range blocks, the domain pool contains

8×(256-8+1)×(256-8+1)=496,008 domain blocks. In total, 496,008×1024 508M possible

range-domain matching are required. As the size of the domain pool is very large, the

search of the optimal domain block for a range block is computationally intensive. Many

fast fractal algorithms [11, 35-81, 119, 120] have been proposed to speed up this

searching process.

2.5.2 Block classification

Block classification [34, 65, 79, 86] is the most widely used technique to speed up

the encoding process. In the block classification scheme, the original image is first

partitioned into non-overlapping range blocks and overlapping domain blocks. All the

domain blocks are divided into several classes based on some predefined features. Only

those domain blocks and range blocks with the same feature take part in the domain-
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range matching process. Block classification can lead to a substantial computational cost

saving without much fidelity loss.

Fisher et al. [34] proposed a well-known quadrant variance classification scheme, in

which an image block is divided into four subblocks. The average pixel intensity Ai and

the variance Vi, where i=1,…,4, for each of the four subblocks are computed. Based on

these techniques, the domain blocks are classified into 3 major classes, each of which is

further divided into 24 subclasses. The range blocks are also categorized using the same

method. When searching for a matching domain block, only those of the same category

as the range block are considered. However, the search complexity of this algorithm is

still linearly proportional to the domain pool size, and the number of image blocks in the

subclasses may not be even. It is possible that one subclass has more image blocks than

another. In addition, it is difficult to extend the search to any other neighboring classes in

case a domain block sufficiently similar to a range block cannot be found in one subclass.

2.5.3 Domain pool reduction

One of the simplest ways to speed-up the encoding process is to decrease the size of

the domain pool in order to reduce the number of domain blocks to be searched. Lee et

al. [56] proposed using local variances as the feature to speed up the matching of a

domain block and a range block. This method arranges the domain blocks in order

according to the magnitudes of their corresponding variances. With an input range block,

its corresponding variance is computed and the domain block with the closest variance to

this range block is identified. The best-matched domain block is then searched within a
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search window centred at the identified range block. In [56], the window covers 4.7% of

the total domain blocks in its upper and lower parts with respect to its center.

In [76], Wan et al. proposed an efficient fractal coding method that takes advantage

of the correlation between range blocks. In this method, four candidate domain blocks,

mapped by the previous neighboring blocks of the input range block, are searched. If one

of the four candidates whose range-domain matching error is smaller than the pre-defined

error threshold, then this domain block is selected to match the current range block

without any other searching in the domain pool. Otherwise, a fast fractal coding method

is performed to find the best-matched domain block to match the input range block.

In [121], Saupe  proposed a fast fractal image compression scheme, where an image

block is normalized to have zero mean and unity variance before encoding. This makes it

possible to determine the block of minimum distortion without considering the intensity

offset and contrast parameters between the two image blocks. Therefore, the search for an

optimal domain block is reduced to a nearest neighbor search in the Euclidean space.

Since all range blocks are compared against the same domain pool, the use of the k-d tree

can achieve a significant speedup.

In [43], C. He et al. proposed a new variance-based scheme to speed up the fractal

image encoding process. Firstly, range blocks are grouped into two classes according to

the variability of their intensities. If the variance of a range block is below an a priori

fixed threshold, the block is regarded as a shade block, otherwise as a non-shade block.

After classification, all intensity values in a shade range block are replaced by the mean

of the range block. In addition, they found that that the variance of a range block and the

best-matched domain block cannot differ greatly, hence the best-matched block to a
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given range block should be the neighbor of the range block in the sense of intensity

variances.

Saupe et al. [70] proposed another domain pool reduction algorithm to speed-up the

encoding process. In this method, an adjustable number of domain blocks with low

intensity variance are excluded from the domain pool. Thus, a large fraction of low

variance blocks is discarded and will affect only a few range blocks. This paper indicates

that the best-matched domain blocks are located mostly along edges and in regions of

high contrast of the image. The goal is to store this bitmap which contained the high

variance domain blocks efficiently. Then the number of bits required to identify a

particular used domain block is reduced. If the structure of the bitmap is strong, then

these savings are greater than the overhead necessary for coding the bitmap and an

overall reduced file size for the code can be achieved. Therefore, The WBS storage

scheme is adopted to encode the bitmap to reduce the bit rate.

2.5.4 Fast Full Search Algorithms

Fast Full Search Algorithms [47, 54, 67, 68, 75] for fractal image coding can

achieve the same reconstructed image quality as the exhaustive search, and can greatly

reduce the required computation or runtime. Fractal image coding via fast convolution

[68, 85] is one of these fast full search methods.  In this method, the domain block that

yield the minimum error is obtained rather than an acceptable but suboptimal one. The

domain blocks are typically defined by down-filtering the image to half its resolution.

The inner products are the finite impulse response (FIR) of the down-filtered domain

block with respect to the range blocks. Thus, the cross-correlation of the range block with
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the domain block is required. This discrete two-dimensional convolution can be carried

out more efficiently in the frequency domain when the range block is not too small.

In [75], Truong et al. proposed a fast full search coding in the frequency domain. In

fractal image coding, it is necessary to consider the eight orientations of the allocated

domain block for each input range block. That means it requires eight separate mean

square error (MSE) computations for between the input range block and selected domain

block. These eight operations are very high computational processes. Therefore, this

paper shows that the redundancies in these eight orientations can be reduced to two in

frequency domain after Discrete Cosine Transform DCT.

2.5.5 Region-based coding

This category consists of so-called region-based fractal coders. For high image-

adaptivity and better rate-distortion performance, all published region-based fractal

coders (RBFC) [35, 40, 72, 88, 122] take the split-and-merge approach to further increase

the image quality and compression. In [35], a region based coding of still image based on

fractal is proposed. Firstly, the image to be encoded is segmented into different

semantically-meaningful regions. In order to assure the encoded region can be decoded in

the receiver, both range and domain blocks must be located within the same region. In

practice, the boundary domain block does not fully enclose the range block segment.

Therefore, extrapolation is required during encoding.  These regions are then encoded

one-by-one independently. This kind of encoding scheme permits new functionalities at

the receiver. Moreover, the region of interest can be transmitted first in a transmission

channel with limited bandwidth. It also can achieve better image quality than standard
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coding since regional boundaries usually contain higher variances that are difficult to

encode.

The region-based fractal coder using heuristic search is proposed by Thomas and

Deravi [72]. This method starts by choosing one of the range blocks in uniform partition

as a seed, and attempts to search for the best-matched domain block. In a recursive

manner, the algorithm extends the region from the seed in all four principal directions of

the newly extended range block using the same coefficients as the original seed range

block. The extension of the domain block region is simply under the same direction

corresponding to that of range block extension to reduce the computational complexity.

In [122], Saupe et al. devised an adaptive partitions fractal coder that finds the

image partition by a split and merge process, yielding range blocks as unions of edge-

connected small square blocks. This fractal coder has a better rate-distortion performance

and subjective quality than the widely used quadtree-based fractal coders.

2.6 Review of Some Applications of Fractal Image Coding

Fractal image coding has already proven to be a reliable technique that exploits the

self-similarity present in an image by representing it as a collection of affine contractive

transformations [45]. In the same way, it is possible to utilize the same collection of

transformations as features which can be applied to image magnification [123-132],

image denoising [133-136], watermarking [137-141], face recognition [142-149], and

content-based image retrieval [150-158], etc. In this thesis, fractal-based image

magnification and denoising will be investigated.
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2.6.1 Fractal-based Image Magnification

One of the advantages of fractal theory is that it is resolution-independent. After

fractal image coding, the output of the coder is an IFS, which approximates the image as

a fixed point of a contractive transformation. This IFS code can be used to reconstruct the

image at any level of resolution. These magnified images are suitable for graphics

systems that are typically composed of devices of different resolutions. However, the

conventional fractal image magnification method [34] causes serious blocky artifacts due

to the independent and lossy coding of the range blocks.

The main idea of fractal image magnification is based on the resolution-

independent property of fractal. If we assume that the fractal coding is a fractal process,

the fractal code’s attractor is a fractal object. By iterating the transformation τ on  an

arbitrary initial image fo, a fractal image °f  will be obtained after a number of iterations.

This process is independent of the resolution of the final image. According to the fractal

theory, the fractal code τ has no intrinsic size, and can be used to construct an image at

any level of resolution when the coding error is rather small. These magnified images

are suitable for graphics systems that are typically composed of devices of different

resolutions. However, the conventional fractal image magnification method [34] causes

serious blocky artifacts due to the independent and lossy coding of the range blocks. A

number of fractal image magnification approaches have been proposed [123-127].

Chung et al. [127] has proposed to use an additional enhancement layer (IEUF) to

produce a magnified image without any blocky artifacts. However, that method cannot

enhance the high frequency components efficiently.



40

Figure 2-9 (a) The fractal image decoding process and (b) the conventional fractal image
magnification approach.

In this thesis, the fractal image magnification algorithm is implemented by using the

IFS in equation (2.12) with the magnification factor α a multiple of 2. To achieve a

magnification factor of α, the sizes of the range blocks and domain blocks are increased

from nr to αnr and from nd to αnd or  2αnr, respectively. Therefore, the location of the

best-matched magnified domain block for each magnified range block can be obtained by

multiplying the corresponding location in the original image by the factor α. Figure 2.9

illustrates the basic idea the conventional fractal image magnification approach. Figure

2.10 shows a magnified image generated by using this conventional fractal image

magnification algorithm.
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Figure 2-10 A magnified image of size 512×512 generated by the conventional fractal
image magnification technique, with PSNR equal to 31.40dB.

As fractal coding is a lossy process, it is impossible to obtain all the IFS with zero

collage error. Therefore, a magnified image will have a visually poor quality. Actually,

the fractal-based magnification method causes serious blocky artifacts. The collage error

should be taken into account, as this error will also be magnified during the decoding

process when performing image magnification. Consequently, this error should be

considered in order to achieve a better performance than that of the classical interpolation

approaches and conventional fractal image magnification algorithms.

In [127], Chung et al. proposed a fractal-based enlargement technique which can

preserve the high-frequency contents of a magnified image by introducing an

enhancement layer. In this method, a best-matched domain block Di for a range block Ri

of size nr× nr is obtained and the corresponding optimized affine transformations are si

and oi and ϕI. The corresponding reconstructed range block iR  is given as follows:

( ).i i i i iR s D o Iϕ= + (2.21)
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Assume that there exists an ideal domain block *
iD  for Ri, such that the original range

block can be obtained with the same affine transformation as follows:

( )*.i i i i iR s D o Iϕ= +      (2.22)

Then, the ideal domain block can be obtained by using the following equation:

( )* i i
i i

i

R o ID
s

ϕ
−

=      (2.23)

The difference Ei between the ideal domain block ( )*
i iDϕ  and the best-matched domain

block in the domain pool ( )i iDϕ  is given as follows:

( )*i i
i i i

i

R o IE D
s

ϕ
−

= −     (2.24)

The difference is an image block of size nr× nr and its magnified version will be used as

an enhancement layer for image magnification.

2.6.2 Fractal-based Image Denoising

One of the basic properties of fractal image coding is the notion of self-similarity in

the different scales of a given image. In image coding, a range block can be approximated

by a larger domain block from elsewhere in the image after applying decimation and a

non-linear intensity transformation. The computed fractal image can be recovered up to a

small distortion by an iteration procedure at the decoder. The idea of fractal image

denoising is that range blocks can be described by a small number of contractive affine

transformations based on the self-similarity structures across scales. However, it is
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impossible to approximate any random noisy structures occurring in an image [134, 135].

Therefore, the conventional fractal image coding technique can be applied to remove the

noise in a low-noise condition. However, when the noise level is significant, the denoised

images will lose their high frequency contents and suffer from blocky artifacts.

A recent fractal image denoising (FID) technique was proposed by Ghazel et al

[135], which can produce a denoised image efficiently under a heavy noisy condition.

The basic idea of the method is to estimate the fractal code of a noise-free image from the

corresponding noisy image based on a statistical approach. This fractal-based image

denoising technique (FID) can achieve a gain in PSNR of 1.19dB on average when

compared to the well-known Lee’s filter [159] under the conditions that the standard

deviation σ of the noise is larger than 20.

2.7 Conclusions

Throughout this chapter, we have given a precise description on how fractal

compression works. Details of the fractal encoding and decoding were also discussed.

Fractal image coding is an important step for many applications, such as image

magnification, image denoising, watermarking, etc.  However, the fractal encoding

process suffers from high computational complexity. A significant amount of research

work has been done on fractal image compression recently to speed-up the encoding,

including domain pool reduction techniques, block classification schemes, and fast full

search algorithms, etc. In addition, the various applications of fractal image coding have

also been studied.
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3.1 Introduction

This chapter presents a fast fractal coding algorithm based on Saupe’s coding

scheme [121]. The scheme partitions an image into image blocks of different sizes using

quadtree partitioning. In our algorithm, each of the image blocks is normalized to have

zero mean and unity variance. Instead of subsampling the image blocks, the means

and/or variances of each of their rows and columns are computed and used to form a

feature vector. The features to be extracted depend on the size of the image block, so

that the vector dimension is a constant and the feature vector itself is a good

representation of the image block. In addition, the corresponding feature vectors of the

eight symmetrical orientations of the image block can be derived without any

computation. The k-d tree structure is used to partition the feature vectors of the domain

blocks. To reduce computation required for the construction of the k-d tree, those feature

vectors under the isometric transformations are not included. An efficient encoding

approach for simple range blocks is proposed, which encodes the mean values of the

range blocks without performing any domain block matching. This can lead to an

improvement in encoding time and an increase in compression ratio, while maintaining

comparable image quality. Moreover, during the range-domain matching process, a

simple but very efficient coding method is proposed by exploiting the property of zero

contrast value, which can further improve the encoding time and compression ratio

Chapter 3. Fast Fractal Image Compression Using
Feature Vector Matching
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especially in high compression ratio. Experimental results show that the run-time of our

proposed algorithm is over 200 times faster than that of the exhaustive search with

comparable picture quality.

This chapter is organized as follows. Section 3.2 presents our new fractal image

compression algorithm based on feature vector matching. In Section 3.3, we compare the

performance of our proposed fast algorithm with the full search, Fisher [34], local

variances [56], and Saupe [121] methods. Finally, conclusions are given in Section 3.4.

3.2 Proposed Algorithm

An image is partitioned into a collection of image blocks by using quadtree

partition, and each of the partitioned image blocks are normalized to have zero mean and

unity variance. Similar to Saupe’s approach, a new feature vector is used to represent an

image block. A feature vector is composed of the variances and/or means of each of its

rows and columns, which depends on the size of the image block. The extracted means

and/or variances from a normalized image block are then concatenated to form a feature

vector. This set of means and variances should provide a much better representation of

the image blocks, so the search for a best matching domain block will become more

accurate as compared to other approaches using a single mean and variance. If the two

feature vectors are similar, this implies that the two corresponding image blocks should

be similar. For image blocks of 16×16, the variances of every two successive columns

and rows are extracted to form a feature vector. The variance of each column and each

row are extracted for image blocks of size 8×8, and both the means and variances for the

columns and rows are extracted for image blocks of size 4×4. Therefore, all the feature
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vectors also have a size of 16, irrespective of the size of an image block. A partitioned

block size of 4×4 means that the image block contains a lot of details, so we use

relatively more data to represent it. For an image block of 16×16, it should contain fewer

details and a relatively smaller amount of data can be used for its representation. The use

of the feature vector can also reduce the required computation in the search process, as

the size of the feature vector is less than or equal to the size of the image blocks. In

addition, as all the feature vectors are of the same size, this facilitates the construction of

the k-d tree for efficient search.

An nr×nr image block B={bij | i=1, ,n; j=1, ,n; B∈Rk}  is  a k-dimensional

vector, with k = nr×nr. The mean, µ, and variance, σ, of this image block are extracted

according to the following equations:

1 1

1 r rn n

ij
i j

b
k = =

= ∑∑       (3.1)

( )
r r

2n n
2

ij
i 1 j 1

b
= =

= −∑∑      (3.2)

This image is then normalized to have zero mean and unity variance as follows:

( ) ( )IBB −=
1

φ       (3.3)

where B is the original image block, represented in a vector form, φ(B) is the normalized

image block, and I denotes a vector of size 2
rn with all components equal to one. The

normalized image block has the property that the minimum distortion between two

image blocks can be determined without considering the offset and contrast factors.

In our algorithm, the variances and/or means of the columns and rows are used to

represent an image block. In the following equations, ξ represents the feature vector,
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while M and V represent the mean and variance, respectively. The superscripts “h” and

“v” denote “horizontal” the corresponding feature being extracted “horizontal” and

“vertically”, respectively. For image blocks of size 16×16 and 8×8, only the variances

are considered which are sufficient to represent the blocks. The computation of the

variances are given as follows:

Horizontal features: ( )
1

1 rn
h
i ij

jr

M b
n

φ
=

= ∑   where j=1,..,nr   (3.4)

( )( )
2

1

1
1

rn
h h

i ij i
jr

V b M
n

φ
=

= −
− ∑  where j=1,..,nr   (3.5)

Vertical features: ( )
1

1 rn
v
j ij

ir

M b
n

φ
=

= ∑   where i=1,..,nr   (3.6)

( )( )
2

1

1
1

rn
v v
j ij j

jr

V b M
n

φ
=

= −
− ∑  where i=1,..,nr   (3.7)

As mentioned previously, the feature vectors of 4×4 blocks are composed of the means

and variances, as given below:

( )Tvvvvhhhh VMVMVMVM 44114411
44 ,...,,...,=×ξ    (3.8)

For 8×8 block, the feature vector is composed of its variances only as represented below:

( )Tvvvhhh VVVVVV 821821
88 ,...,,...,=×ξ      (3.9)

For 16×16 block, the variances of every two columns and every two rows are extracted

to form the feature vector.

Horizontal features: ( ) ( )( )1
1

1
2

rn
h
i ij i j

jr

M b b
n

φ φ +
=

 = + ∑     (3.10)

   where j=1,..,nr
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( )( ) ( )( )( )22

1
1

1
2 1

rn
h h h

i ij i ii j
jr

V b M b M
n

φ φ +
=

 = − + − −  
∑  (3.11)

where j=1,3,..,nr

Vertical features: ( ) ( )( )1
1

1
2

rn
v
j ij i j

ir

M b b
n

φ φ +
=

 = + ∑     (3.12)

   where i=1,..,nr

( )( ) ( )( )( )22

1
1

1
2 1

rn
h v v
j ij j ii j

ir

V b M b M
n

φ φ +
=

 = − + − −  
∑   (3.13)

where i=1,3,..,nr -1

The corresponding feature vector is represented as follows:

( )Tvvvhhh VVVVVV 821821
1616 ,...,,...,=×ξ      (3.14)

Figures 3.1 illustrate the features horizontally and vertically to form a feature vector for

different block sizes.

Figure 3-1 Horizontal features and vertical feature for (a) 16×16, (b) 8×8, and (c) 4×4
blocks
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3.2.1 Fast computation of the feature vectors

In our approach, a feature vector is computed for each image block, as well as for

its eight symmetrical orientations. In this Section, we will show that the feature vectors

of the corresponding eight transformations can be obtained from that of the original

image block without additional computation. A feature vector is represented as

( )1 2 1 2, ..., ,...,
r r

Th h h v v v
n nξ γ γ γ γ γ γ= , where γ is the variances for image blocks of size 8×8 and

16×16 block. For 4×4 block, both the means and variances are considered, so

( )iii VM=γ . The corresponding feature vectors under the eight symmetrical orientations

are obtained by the following transformations:

1. Rotation about the center 0°:

( ) ( ) v
i

v
i

h
i

h
i γγτγγτ == 00 ,        (3.15)

2. Rotation about the center 90°:

( ) ( ) h
i

v
i

hh
i in

γγτγγτ ==
−− 11 1

,        (3.16)

3. Rotation about the center 180°:

( ) ( ) v
in

v
i

h
in

h
i −−−− == 1212 γγτγγτ ,        (3.17)

4. Rotation about the center 270°:

( ) ( ) h
in

v
i

v
i

h
i −−== 133 γγτγγτ ,        (3.18)

5. Reflection at the vertical axis:

( ) ( ) v
in

v
i

v
i

h
i −−== 144 γγτγγτ ,        (3.19)

6. Reflection at the horizontal axis:

( ) ( ) v
i

v
i

h
in

h
i γγτγγτ == −− 515 ,        (3.20)

7. Reflection at the first diagonal:
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( ) ( ) h
i

v
i

v
i

h
i γγτγγτ == 66 ,        (3.21)

8. Reflection at the second diagonal:

( ) ( ) h
in

v
i

v
in

h
i −−−− == 1717 γγτγγτ ,        (3.22)

where i=1,…,n, n=8 if 8×8 or16×16 block, n=4 for 4×4 block.

The computations required for extracting the feature vectors of the eight

orientations can be reduced by applying the above equations. The candidate domain

blocks are extracted from the domain pool and the corresponding feature vectors for the

eight transformations are generated. In the searching stage, the k-d tree is used to find a

matching domain block for each range block. The k-d tree is a data structure capable of

efficiently indexing a multi-dimensional data space.  Figure 3.2 shows an example for

fast calculation for isometric transformation.

3.2.2 An efficient fractal coding for low complexity range block

Conventional approaches search a domain block with minimum error from the

candidate domain pool for an input range block in terms of the contrast and offset

parameters by using equation (2.13). However, when the contrast factor is equal to zero,

the domain becomes irrelevant. In other words, no domain block or transformation

information needs to be encoded in this case. This can happen only when the range

block has a fairly constant gray level intensity. The detection of this zero contrast

condition can help improve coding efficiency and reduce computation.
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Figure 3-2  A 8×8 block undergoes 180° rotation.

In our algorithm, we also incorporate the detection of zero contrast condition. If

the input range block is of a smooth area, it implies that the best matching domain block

should also be smooth. Consequently, we can embed the domain block into the offset

part by setting the contrast scaling s to zero. Therefore, we seek to minimize the

distortion using the following equation:

( ) 2
i, r IE R D o= −       (3.23)

It is obvious that the minimum errors occur when the offset o is the mean value of the

smooth range block. Moreover, the distortion ( ),E R D is equal to the variance of the

range block. Both the offset and the distortion have been calculated. Therefore, when the

variance of the range block is lower than a threshold, the contrast factor is set to zero,

and only the mean of the input range block is encoded [45, 46]. This approach can

achieve a high compression ratio with high image quality. In addition, the search of the

best matching domain block is no longer performed, so the encoding process is speeded
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up. If the variance of the range block is higher than the threshold, the k-d tree is then

used to search for the best matching domain block.

3.2.3 Increase of zero contrast cases

Edge areas are encoded by using the conventional approaches to find a best

matching domain block with the contrast scaling and offset parameters. The candidates

retrieved from the domain pool using the k-d tree scheme are close to the input range

block. To exploit the possibility of using the zero contrast condition, instead of searching

a domain block with the minimum error criterion, we seek to find a domain block which

results in zero contrast while the error is less than a threshold.  If this condition is

fulfilled, the range block is coded as the zero contrast case. Experimental results show

that this proposed search approach further speeds up the encoding process and increases

the compression ratio, especially in high compression ratio.
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3.3 Experimental Results

In the experiment, a three-level quadtree partition scheme with range block sizes of 4×4,

8×8 and 16×16 pixels, and search grid of two were used. The size of a domain block is

four times of a range block. A domain block is scaled to the size of a range block by

averaging 2×2 pixels before the error is computed. Our proposed algorithm is compared

with the exhaustive search, Fisher [34], Saupe [121] and local variances [56] methods in

terms of the runtime and the peak-signal-noise ratio (PSNR). The PSNR is given as:

( ) ( )( )
10 11 2

0 0

255 25510log
1 , ,

yx mm
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i jx y

PSNR dB
f i j f i j

m m
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= =
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 

∑ ∑ %

  (3.24)

where forig and f%  represent the original image and the reconstructed image with size

x ym m× , respectively, and i,  j denote the pixel coordinates in the image block. The

experiments were conducted on a Pentium III 500 processor, using monochrome images

of size 512×512 with 256 gray levels.
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Figure 3-3 PSNR vs. Compression Ratio for the “Lena” image
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Figure 3-4 PSNR vs. Compression Ratio for the “Peppers” image.
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In our proposed approach, the mean and variance of each range block are

computed once, and stored in the normalization process, according to equations (3.1)and

(3.2). The search for the best matching domain block is skipped if the variance of the

range block is small. In this case, as the domain block becomes irrelevant, the contrast

factor is set to zero and only the mean of the range block value is coded. If the variance

is higher than a threshold, the range block is coded using equation  to find the best

matching domain block by mean of the k-d tree structure. In the k-d tree, each image

block can be viewed as a k-dimensional tree data structure in spatial domain. Using k-d

tree structure, the decoding time can be improved while the reconstructed image quality

remains relatively constant, as we can directly retrieve the best domain blocks for the

encoding of a given range block. Both our proposed algorithm and Saupe’s algorithm

also use a threshold ε to find the nearest neighbors, which is set to 3, and 30 of (1+ε)

approximate nearest neighbors are returned.

The performance of the different fractal compression algorithms are compared at

two fixed compression ratios: 20.90 and 37.32 for the image “Lena”, and 20.20 and 34.20

for the image “Peppers”. Our proposed algorithm is compared with (1) exhaustive search,

(2) local variances method, (3) Saupe’s method and (4) Fisher’s method. The local

variances method uses a search window size equal to 4.7% of the domain pool size. For

Saupe’s method, the image blocks are subsampled so that the dimension of the feature

vectors is equal to 16. Tables 3.1 and 3.2 tabulate the compression ratios, PSNR, and

runtimes for the respective approaches using the two images.
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Table 3-1 Performances of different algorithms based on the image “Lena”

Full Search Local
Variance

Fisher Saupe Proposed
Algorithm

CR 20.92 20.85 20.90 20.87 20.98
PSNR(dB) 32.82 32.45 32.44 32.11 32.33
Time(s) 2467 227 72 14 12
CR 37.32 37.38 37.37 37.32 37.37
PSNR(dB) 30.07 29.58 29.69 29.21 29.74
Time(s) 1890 173 51 9 8

Table 3-2 Performances of different algorithms based on the image “Peppers”
Full Search Local

Variance
Fisher Saupe Proposed

Algorithm
CR 20.23 20.25 20.25 20.24 20.22
PSNR(dB) 32.85 32.52 32.67 32.22 32.69
Time(s) 2546 235 76 13 12
CR 34.12 34.26 34.27 34.27 34.21
PSNR(dB) 30.50 30.13 30.27 29.50  30.35
Time(s) 1985 282 58 9 9

The experimental results show that our proposed method is faster than the other

fast algorithms at almost the same PSNR and compression ratio. In Table 3.1, when the

compression ratio is 20.9, our proposed approach achieves a PSNR of 32.33dB and

requires only 12 seconds needed for encoding. There are 471 range blocks coded using

the mean values only, and 30 range blocks are obtained with zero contrast values. That

means that only a small number of range-domain matching have to be carried out in the

proposed algorithm. For these range blocks, we only need to encode the contrast value

with 5 bits and offset value of 7 bits without any additional bit required. The runtime of

our proposed algorithm is reduced by approximately 200 times in comparison with the

full search with a slight degradation of 0.5dB in image quality. The simulation results

also show that the performance of the proposed algorithm is superior to that of Fisher’s,

local variances and Saupe approaches. Our proposed approach achieves a precision
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similar to that of the local variances and Fisher approaches, but requires less encoding

time. At comparable compression ratio and image quality, our approach can be over 12

times and 6 times faster than that of the local variances and the Fisher methods.
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Figure 3-5 Compression ratio vs. PSNR for Lena in different threshold values.

Figures 3.3 and 3.4 illustrate the PSNR against the compression ratio of the

respective fractal compression algorithms. Simulation results show that our approach

achieves a better PSNR and a shorter encoding time than the Saupe algorithm at the same

compression ratio. Experimental results also show that the new algorithm is faster than

the other fast algorithms for fractal compression. Moreover, at higher compression ratios,

our approach becomes much superior due to the fact that more range blocks will be

encoded with the zero contrast condition.

The effect of the variance threshold in the classification of low complexity range

block is also investigated. VAR_TH0, VAR_TH1 and VAR_TH2 are denoted as variance
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thresholds for image blocks of sizes 16×16,  8×8 and 4×4, respectively. Three sets of

thresholds are tested in the experiment: (VAR_TH0, VAR_TH1, VAR_TH2) =

(50,40,30), (80,50,30) and (100,800,60). From Figure 3.5, the first set of threshold can

achieve a higher PSNR, as the range blocks are coded with smaller distortion.

3.4 Conclusions

We have presented a new fast algorithm for fractal image compression based on

new feature vectors and the property of zero contrast. The proposed feature vectors can

provide better representation of image blocks, so result in a more efficient search of the

domain block. The zero contrast condition is considered and used in encoding. To

further reduce the bit rate, the smooth range blocks are coded using their mean values

only. This new algorithm is compared with the exhaustive search, local variances

approach, Fisher algorithm, and Saupe algorithm. Experimental results show that this

new algorithm outperforms the other four algorithms in terms of runtime. In addition,

our proposed approach can achieve a speed up of 200 when compared with the full

search algorithm.
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Chapter 4. A Non-Symmetric Window Search Scheme
For Fractal Image Coding

4.1 Introduction

One drawback of fractal image coding is the intensive computation required for

searching the best-matched image blocks in a large domain pool for a range block in

encoding process. Different fast fractal coding algorithms have been proposed to reduce

the searching space in the domain pool. In this chapter, we propose using a non-

symmetric window to search for the best-matched domain block based on the local

variances method [56]. Experimental results show that, by reducing the window size by

half, our proposed scheme can achieve a speedup of 50% with similar PSNR and

compression ratio, as compared to the local variances method. With the same window

size, our method can have an improvement of PSNR by about 0.25 dB, as well as a

higher compression ratio.

This chapter is organized as follows. We present our proposed non-symmetric

windowing scheme based on the local variances method in Section 4.2. In Section 4.3,

we compare the performance of our proposed fast algorithm with that using a symmetric

search window. Finally, conclusions are given in Section 4.4.
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4.2 Improved Searching Scheme

We simplify equation (2.13) by removing the mean value of each range block and

each transformed domain block. The error function between the range block and the

transformed domain block can be rewritten as follows:

( ) IdDsIrRDRE −−−= 22,     (4.1)

where 2
IdD

IdDIrR
s

−

−−
=

,
,

|| || is the two-norm and ..,  represents the inner product. As both the range blocks and

domain blocks are demeaned, these two terms, 2
R rI−  and 2

D dI− , represent the

variances of the range block and the domain block, respectively. Note that the error

function depends only on the contrast s, and s2 is less than 1. From equation (4.1), the

value of the error function depends on the variances of the range block and the domain

block. This value will be at a minimum when 2
R rI− = s2 2

D dI− . As s2 is less then 1,

2
D dI− should be larger than 2

R rI−  in order to achieve the minimum. In the local

variances method, the best-matched domain block is searched in the neighborhood of the

domain block with the closest variance to that of the range block. However, a better

match should always happen when 2

D dI−  is larger than 2
IrR − . Hence, similar search

results should be obtained if the search is conducted in the direction where 2

D dI− is

increasing. In other words, only those domain blocks with variances higher than that of

the range block will be considered when searching for the best matched range block,

instead of considering both lower and higher variances as in [56]. Figure 4.1 shows the

distribution of locating the best matched domain block away from the position where the
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variances of the range block and the domain block are closest. It is obvious that the

distribution of the best-matched domain blocks with respect to the point of closest

variance is non-symmetric. Figure 4.2 illustrates the difference in the search window

between the local variances method and our proposed method. Points A, B and  C

represent number of best-matched domain blocks within the searching window of size 0-

5%, 0- (-5)% and 5-10%, respectively. In our proposed algorithm, points A and C are

chosen instead of A and B which are chosen uses Local Variance method. Obviously, the

total number of best-matched domain blocks inside our proposed searching window is

more than that of the Local Variance method. Therefore, our algorithm can achieve better

decoded image quality with higher compression ratio.
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Figure 4-2  Search windows for (a) local variance method, and (b) our proposed scheme.

4.3 Experimental Results

In the experiment, a three-level quadtree partition scheme with range block sizes

of  4×4,  8×8 and 16×16 pixels with different error thresholds for the quadtree splitting

process and a domain grid of two were used. Four test images: Lena, peppers, Boat and

Goldhill, of size 512×512 were used to evaluate the performance of the proposed

algorithm and the local variances method. The PSNR is given as follows:

( ) ( )( )
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   (4.2)
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where forig and f%  represent the original image and the reconstructed image with size

x ym m× , respectively, and i, j denote the pixel coordinates in the image.

The computer used is a Pentium III 500MHz. In our method, different sizes of the

search window are considered, and the windows cover those domain blocks that have a

larger variance than that of the range block. The larger the search window is, the better

the decoded image quality and the compression ratio are. Table 4.1 shows the

performances of our proposed scheme in terms of the encoding time, PSNR and

compression ratio for the four different images. The error thresholds used to form the

quadtree are 36, 49, 64, 81 and 100. We found that the performance of the local variances

method can be improved by using our proposed non-symmetric searching window. In

addition, our algorithm does not impose any additional computational complexity on the

local variances method.  Experimental results confirm that our scheme achieves better

performance in all aspects compared to the local variances method with the same window

size. From the experimental results, our proposed scheme can improve the decoded image

quality by about 0.25 dB and also increase the compression ratio slightly. The encoding

time can be reduced by more than half if only the upper half of the window is used while

the decoded image quality and compression ratio are only very slightly decreased.
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Table 4.1. A comparison of coding performances of the local variances method and our
proposed scheme for the images  (a) “Lena”, (b) “Peppers”, (c) “Boat” and (d)
“Goldhill”, with error thresholds of 36, 49, 64, 81 and 100. The numbers inside the
brackets represent the window size being used. The largest window is 2×4.7%, which
means that 2×4.7% of the total domain blocks are covered by the window.

Algorithms
Error
Threshold

Local
Variamces

Propsoed
(1*4.7%)

Proposed
(1.5*4.7%)

Proposed
(2*4.7%)

Time (s) 1125 570 835 1097
PSNR (dB) 34.86 34.85 35.00 35.11

36

CR 11.92 11.67 11.91 12.07
Time(s) 1017 514 751 985
PSNR (dB) 33.55 34.09 34.21 34.31

49

CR 16.07 13.88 14.14 14.35
Time(s) 940 478 702 918
PSNR (dB) 33.55 33.58 33.67 33.77

64

CR 16.07 15.70 16.03 16.13
Time(s) 874 446 655 852
PSNR (dB) 32.87 32.98 33.07 33.08

81

CR 18.11 17.57 18.05 18.31
Time(s) 810 413 609 794
PSNR (dB 32.12 32.08 32.32 32.39

100

CR 20.32 20.05 20.40 20.69

(a)Lena of size 512×512

Algorithms
Error
Threshold

Local
Variamces

Propsoed
(1*4.7%)

Proposed
(1.5*4.7%)

Proposed
(2*4.7%)

Time (s) 1172 591 861 1122
PSNR (dB) 34.47 34.35 34.44 34.50

36

CR 11.74 11.49 11.86 12.10
Time(s) 1021 516 751 977
PSNR (dB) 33.68 33.61 33.70 33.75

49

CR 14.57 15.24 14.73 15.06
Time(s) 921 467 680 886
PSNR (dB) 33.02 32.99 33.10 33.16

64

CR 17.40 16.93 17.46 17.80
Time(s) 850 433 633 824
PSNR (dB) 32.41 32.40 32.49 32.58

81

CR 19.87 19.24 19.80 20.16
Time(s) 788 402 589 769
PSNR (dB 31.87 31.84 31.94 32.01

100

CR 22.77 22.13 22.77 23.08

(b)Peppers of size 512×512
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Algorithms
Error
Threshold

Local
Variamces

Propsoed
(1*4.7%)

Proposed
(1.5*4.7%)

Proposed
(2*4.7%)

Time (s) 1472 739 1087 1441
PSNR (dB) 34.84 34.76 34.95 35.12

36

CR 7.93 7.81 7.90 7.99
Time(s) 1389 699 1023 1352
PSNR (dB) 34.26 34.19 34.34 34.50

49

CR 8.68 8.51 8.69 8.81
Time(s) 1285 649 951 1253
PSNR (dB) 33.37 33.42 33.57 33.71

64

CR 9.83 9.58 9.79 9.96
Time(s) 1202 606 887 1160
PSNR (dB) 32.73 32.77 32.90 32.99

81

CR 11.01 10.75 11.04 11.31
Time(s) 1108 560 821 1072
PSNR (dB 31.95 32.01 32.09 32.18

100

CR 12.62 12.23 12.62 12.86

(c) Boat of size 512×512
Algorithms

Error
Threshold

Local
Variamces

Propsoed
(1*4.7%)

Proposed
(1.5*4.7%)

Proposed
(2*4.7%)

Time (s) 1668 849 1239 1620
PSNR (dB) 33.71 33.65 33.78 33.89

36

CR 6.78 6.66 6.80 6.88
Time(s) 1466 748 1094 1425
PSNR (dB) 32.78 32.79 32.90 33.00

49

CR 8.17 8.00 8.14 8.26
Time(s) 1303 671 973 1266
PSNR (dB) 31.94 32.02 32.11 32.18

64

CR 9.75 9.47 9.69 9.83
Time(s) 1166 596 870 1130
PSNR (dB) 31.27 31.30 31.41 31.46

81

CR 11.68 11.38 11.62 11.84
Time(s) 1045 537 778 1017
PSNR (dB 30.53 30.59 30.63 30.72

100

CR 13.86 13.47 13.89 14.09

(d) Goldhill of size 512×512
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4.4 Conclusions

In this chapter, an efficient windowing scheme for fractal image coding based on

the local variances method is proposed. The original local variances method uses a

symmetric search window to search for the best-matched domain block in the domain

pool for each range block. In our method, a non-symmetric search window is used in

such a way that windows cover those domain blocks where variances are higher than that

of the range block are considered. Experimental results show that this new scheme can

achieve better decoded image quality and further increase the compression ratio when

compared to the local variances method with the same window size.
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Chapter 5. A Fast Fractal Image Coding based on
Kick-out and Zero Contrast Conditions

5.1 Introduction

The problem with fractal coding is the high computational complexity in its

encoding process. Most of the encoding time is spent on finding the best matched domain

block from a large domain pool to represent an input range block with respect to contrast

and intensity offset, as well as the isometric transformations. The exhaustive search

algorithm can obtain the optimal result by searching exhaustively all the blocks within

the domain pool, but this process requires a high computational cost, which limits its

practical application. To solve this problem, extensive research on fast fractal image

encoding algorithms [11, 35-81, 119] has been carried out. In particular, Bani-Eqbal

[119] proposed a tree search method, which devised an  incremental procedure to bind

the domain block pixels, and then arranged the domain blocks in a tree structure to direct

the search. In [73], an adaptive search algorithm based on an adaptive necessary

condition to reduce the computational complexity was proposed. However, these

techniques can reduce the required computation only at the expense of additional memory

and degradation of the reconstructed image quality. So, some efficient algorithms [68, 75,

85, 120] have been developed to alleviate the computation burden, while the image

quality can be maintained at the level of that of the full search. However, these

algorithms first need to transform the image blocks into the frequency domain. In other

words, pre-processing is required.
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 In this chapter, we propose an efficient algorithm based on a single kick-out

condition and zero contrast prediction, which can greatly reduce the required computation

as compared to the exhaustive search, while maintaining the same reconstructed image

quality. Our proposed kick-out condition can determine efficiently whether a domain

block is a good representation of a range block, and so excessive computation can be

avoided in the early stage. With zero contrast prediction, the computation involved is

further reduced. In addition, the algorithm does not need any pre-processing and extra

memory for its implementation. Our proposed approach can also be combined with other

fast encoding methods, such as the DCT Inner Product [75] method, to further speed up

the encoding time. Experimental results show that the runtime can be reduced by about

75% when our algorithm is combined with the DCT Inner Product algorithm [75].

 This chapter is organized as follows. We present our new fractal image

compression algorithm based on a kick-out condition and zero contrast prediction in

Section 5.2. In Section 5.3, we compare the performance of our proposed fast algorithm

with the full search, the adaptive search scheme [73], tree search scheme [119], DCT

Inner Product algorithm [75], and our algorithm combined with the DCT algorithm.

Finally, conclusions are given in Section 5.4.

5.2 Proposed Algorithm

 The principal of our proposed algorithm is to bypass those domain blocks that

satisfy a kick-out condition, so they will no longer be considered and no further

computations will be needed. In our algorithm, we first convert the full search equation

(2.13) from two parameters, i.e. the contrast s and the offset o, to a function which only

contains the contrast s. Based on this formulation, we can successively eliminate the
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search space in the domain pool and thus decreasing the computation required to compare

a range block and a transformed domain block.

5.2.1 The Kick-out Condition

From equation (2.13), the error function can be further simplified as follows:
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−
, the error function E(R,D) can be written as follows:

   E(R,D) =  A  s2B (5.2)

where 2 21 ,kA R R I= −   and 2 21 ,kB D D I= − .

The coefficient s is limited to the range (-1,1) to ensure convergence in the decoding

process. If A is greater than B, the maximum error occurs when s=0 while minimum error

occurs when s=1. Therefore, we have:

If A-B ≥ 0, then

 (1). The maximum error occurs when s=0,

Emax = A - s2B = A      (5.3)

 (2). The minimum error occurs when s=±1,

Emin = A - s2B = A - B (5.4)

This means that, in finding the best matched domain block, the search is performed only

if the minimum error Emin for the domain block under consideration is less than the

current minimum error dmin. Thus, we propose the kick-out condition as follows:
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   Emin = A - B ≥ dmin. (5.5)

 Based on (5.5), we propose a fast search algorithm which can reject dissimilar

domain blocks efficiently for a given range block. In our algorithm, we select the domain

blocks from left to right and top to bottom. The matching errors of the first domain block

D1 with each of the eight isometric operations are calculated. The one with the minimum

error is considered to be the initial best matched domain block. The current minimum

distance dmin is then set to this minimum distortion, say E(R,D1), and the search proceeds

in a raster scan order. To determine whether the next candidate domain block D2 is closer

to R than the current best match D1, we compute Emin(R,D2) and compare it to dmin. If

Emin(R,D2) is larger than or equal to dmin, it also means that the condition E(R,D2) ≥ dmin

is always guaranteed.  The domain block D2 is therefore rejected. Otherwise, the actual

distortion E(R,D2) is calculated for the domain block D2 with the eight isometric

operations, and is compared to dmin. If all the matching errors between the transformed

domain blocks of D2 and R are larger than the current minimum error dmin, D2 is rejected

for the same reason mentioned above. Otherwise, dmin is replaced by E(R,D2) and the

current best matched domain block is set to D2 with the corresponding isometric

operation. This process is repeated for all the domain blocks Di in the domain pool to find

the best matched one for an input range block. Based on this kick-out condition, the

required computation for searching the best matched domain block will be greatly

reduced.

5.2.2 Fast Error Calculation using Zero Contrast Prediction

 In the implementation, the contrast factor s is encoded using 5 bits. Therefore, any

value of the contrast s falling within (–0.03125, 0.03125) will be set to zero after
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quantization. With (5.2), as |s|<1, this means that the zero contrast condition will happen

only when A<B:

   E(R,D) =  A  s2B ≥ 0

or s
B
A

≥ .        (5.6)

The contrast factor s is quantized to 0 if the absolute value of s is less than 0.03125, i.e.:

s
B
A

≥>031250. .        (5.7)

When s is set to zero, the corresponding error is given as follows:

   E(R,D)=A.        (5.8)

In this case, the range-domain block matching error can be obtained without performing

any calculation, and their errors can be represented by the constant value A.

5.2.3 Combining Other Approaches

Our proposed algorithm can combine with other fast fractal algorithms to further

improve their speed. One example is the DCT Inner Product [75] approach, which allows

the computation of two inner products only for the eight isometric operations of a domain

block. However, the whole domain pool still has to be considered in order to obtain the

best matched domain block. This DCT approach can combine with our algorithm to

further improve its speed. In encoding an image, the single kick-out condition (5.5) will

be checked to reject those dissimilar domain blocks. Zero contrast prediction (5.7) is then

used to determine whether the contrast factor is zero or not, and the corresponding error

function can be computed without performing the range-domain block matching.

Therefore, the required runtime for the algorithm can be further reduced.
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5.3 Experimental Results

In the experiments, we first compared the performance of our proposed schemes

with the full search scheme. A three-level quadtree partition scheme with range block

sizes of 4×4,  8×8 and 16×16 pixels, and a search grid of one are used. Three popular

512×512 images, Lena, Boat and Goldhill, are used to evaluate the performance of the

proposed algorithm and other algorithms. The computer used is a Pentium III 500MHz.

The runtimes (in seconds) for our proposed algorithm and the full search are listed in

Table 5.1. We measured the runtimes of our algorithm based on (i) the single kick-out

condition (i.e. case 1), (ii) the zero contrast prediction (i.e. case 2), and (iii) the

combination of both conditions (i.e. cases 1 and 2). Experimental results show that,

considering both conditions, our proposed algorithm can reduce the required computation

by about 50% as compared to the exhaustive search method. In other words, a large

number of domain blocks are rejected for performing the range-domain block matching

by the kick-out condition, and a number of the error functions are obtained based on the

zero contrast prediction.

The required computation of our algorithm is a function of the number of range-

domain block matching removed by the kick-out condition, and the number of error

functions computed by zero contrast prediction. However, these numbers are image-

dependent. Table 5.2 tabulates the percentages of the kick-out condition and zero contrast

prediction that occurred in encoding the three images. Experimental results show that

about 50% of the domain blocks are rejected by the kick-out condition, while 6% of the

remaining range-domain block matching can use zero contrast prediction to compute the

corresponding error functions. In (5.2), the kick-out condition has not considered the
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effect of quantizing the luminance offset, so we cannot guarantee that the optimal domain

block will be obtained. Therefore, in order to obtain the best domain block for

representing a range block, we set a tolerance of 10% more of the current minimum error

dmin when considering whether a domain block is to be rejected or not. With this setting,

we found that the reconstructed image quality will be equal to that of the exhaustive

search.

The performance of our algorithm combined with the DCT Inner Product approach

was also investigated. The size of the range blocks is set to 8×8 only. We combined the

DCT approach with the single kick-out condition and zero contrast prediction. These

combined algorithms were compared with the baseline method and the DCT Inner

Product method in terms of the encoding time and PSNR. The experimental results are

tabulated in Table 3, which shows that the runtime of the combined algorithm is about

25% of the baseline approach and 50% of the DCT approach. Furthermore, the PSNR

based on our algorithm is the same as that of the baseline method.

Our algorithm was also compared to the adaptive search algorithm [73] and the

tree search algorithm [119]. In [75], 2 bits and 6 bits were used to represent the contrast

scaling factor and the range mean. In our algorithm, the corresponding numbers of bits

used for these two factors are 5 bits and 7 bits, respectively. Experimental results show

that the adaptive search scheme suffers from a significant drop in PSNR at a high

speedup, although its compression ratio is slightly higher due to a smaller number of bits

being used  to represent the two factors.  In our proposed algorithm, only those domain

blocks satisfying the condition A–B<dmin will be considered as candidate blocks. From

Table 5.5, our proposed algorithm can achieve a speedup of 1.9 without any loss of image
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quality when compared to the conventional full search scheme. In addition, the encoding

time required by our algorithm can be further reduced by limiting the search range in the

domain pool. If these domain blocks satisfying the condition 0<A–B<dmin are considered

as candidate blocks, the speedup of our algorithm will be significantly increased. From

Tables 5.4 and 5.5, we can see that our algorithm can achieve a speedup of 15.2 with a

PSNR drop of 1.17dB. At a comparable speedup of 16.25, the PSNR drop based on [73]

is 1.75dB.

Tables 5.6 and 5.7 illustrate the performances of the tree search algorithm [119] and

our algorithm. When the speedup is 25, the corresponding relative drops in PSNR are

4.2% and 4%. At a higher speedup of 58, the relative drops become 7.18% and 7.88%,

respectively. Apparently, the tree search algorithm shows a slightly better performance

level at a very high speedup. However, the additional memory requirement of our

algorithm is small, and it can achieve the same PSNR and compression ratio (CR) as the

full search with a speedup of 1.8. According to Table 6 in [119], the tree search algorithm

has a large memory requirement. To encode an image of size 256×256, 16MB of memory

space will be required to store the leave nodes of the tree for range block size of 4×4 with

eight isometric operations and 2×2 domain grid, and 1.5MB will be required if pixel

average is considered. The experimental results shown in Tables 5.6 and 5.7 were

obtained without using the quadtree partitioning scheme, which is normally used in

fractal image coding. If the quadtree partitioning scheme is adopted, the memory

requirement of the tree search algorithm will be increased significantly.
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5.4 Conclusions

In this chapter, we have proposed a single kick-out condition and the use of zero

contrast prediction to speed up the encoding process. The efficiency of the kick-out

condition depends on how quickly the global minimum error is detected. Once this

global error is found, most of the remaining domain blocks will be rejected and range-

domain block matching will not be performed. Experimental results show that the

runtime of our algorithm is about 50% of the exhaustive search. Our algorithm can also

be combined with other fast fractal coding algorithms, such as the DCT Inner Product, to

further improve the speed. The combined algorithm can reduce the required computation

by about 75% as compared to the baseline approach. In addition, our algorithm was also

compared with an adaptive search algorithm and a tree search algorithm.
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Table 5-1 Comparison of the coding results using domain grid of one and three level
quadtree partitioning (16×16, 8×8 and 4×4).

AlgorithmsTest
Images Full Search  Proposed Algorithm

(Case 1 & 2)
Time (s) 5940 3242

PSNR (dB) 34.91 34.91

Lena

CR 15.50 15.50

Time(s) 8463 3666

PSNR (dB) 34.91 34.91

Boat

CR 9.71 9.71

Time(s) 8976 5755

PSNR (dB) 33.36 33.36

Goldhill

CR 9.11 9.11

Table 5-2 comparison of computational complexity for the full search and our proposed
algorithm.

Lena Boat Goldhill

Full Search 100% 100% 100%

Kick-out 50% 54% 45%

Zero Contrast 3% 3% 2%
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Table 5-3 Comparison of the coding results using domain grid of one and 8×8 range
block.

AlgorithmsTest
Images Baseline DCT DCT + Proposed

Algorithm case
(1)

DCT + Proposed
Algorithm cases

(1) & (2)
Time (s) 5340 2473 1540 1342Lena

PSNR (dB) 31.14 31.14 31.14 31.14

Time (s) 5340 2473 1571 1376Boat

PSNR (dB) 29.21 29.21 29.21 29.21

Time (s) 5340 2473 1625 1501Goldhill

PSNR (dB) 29.68 29.68 29.68 29.68

Table 5-4 Adaptive search algorithm [75]: the encoding results using the test image lena
of size 256×256 with range block size 4×4 and domain grid 4×4. The CPU is PII233MHz.

T0 T1 Encoding
Time (sec)

PSNR(dB) Speedup  PSNR
Drop(dB)

Full Search 65 31.01 1 0

0 std (R)/2 26 31.00 2.5 -0.01

0 std (R)/4 20 30.79 3.25 -0.22

0 std (R)/8 13 30.28 5 -0.73

3 std (R)/8 7 30.14 9.28 -0.87

3 std (R)/16 5 29.36 13 -1.75

3 std (R)/32 4 28.15 16.25 -2.86
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Table 5-5 Our proposed algorithm: the encoding results using the test image lena of size
256×256 with range block size 4×4 and domain grid 4×4. The CPU is PIII 500MHz.

Encoding
Time (sec)

PSNR(dB) Speedup PSNR
Drop(dB)

Full Search 38 31.70 1 0

A-B<dmin 20 31.70 1.9 0

0<A-B<dmin 2.5 30.53 15.2 -1.17

0<A-<0.4*dmin 1.2 29.93 31.7 -1.77

Table 5-6 Tree search algorithm [119]: the encoding results using the test image lena of
size 256×256 with range block size 4×4 and domain grid 2×2. The machine is sun
sparcstation 10 model 30

Table 5-7 Our proposed algorithm: the encoding using the test image lena of size
256×256 with range block size 4×4 and domain grid 2×2. The CPU is PIII 500MHz.

Lena PSNR(dB) Time(sec) Speedup PSNR
Drop(dB)

Full Serach 31.61 8750 1 0

Tree β=20 30.29 340 25 -1.32

Tree β=100 29.34 150 58 -2.27

Lena PSNR(dB) Time(sec) Speedup PSNR
Drop(dB)

Full Serach 33.52 586 1 0

A-B<dmin 33.52 322 1.8 0

0<A-<0.6*dmin 32.17 23 25 -1.35

0<A-<0.1*dmin 30.88 10 58 -2.64
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6.1 Introduction

Fractal image compression has recently attracted considerable attention, as it can

provide a high compression ratio with an extremely fast decoding process.In fractal

image coding scheme, equation (2.13) can be further simplified by removing the mean

value of each range block and each transformed domain block. Therefore, equation (2.13)

is converted from a two-parameter function into a function that only involves the contrast

parameter for optimization. The error function between the range block and the

transformed domain block can be rewritten as follows:

( ) 22 2, i i i iE R D R rI s D d I= − − − ,      (6.1)

where r and id are the mean value intensity of the range block and the contracted domain

block, respectively. || || is the two-norm and ..,  represents the inner product.

The application of the full search fractal image encoding is limited because of its

high computational cost, but a high compression ratio can be achieved. Therefore, many

fast fractal image-coding algorithms [11, 35-81, 119, 120] have been developed for

reducing the computational cost. In this chapter, a new algorithm is presented which can

significantly reduce the computations. This new approach uses a set of reference vectors

to confine the searching space. Our algorithm can progressively reduce the searching

space during the matching process and so can save more computations while the

Chapter 6. Fast Fractal Image Coding Using
Geometric Inequality
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corresponding best-matched domain blocks are obtained. Experimental results

demonstrate that the encoding time of the new algorithm can be reduced significantly,

while the encoding quality remains the same as the full-search scheme.

This chapter is organized as follows. A new algorithm will be presented which can

significantly reduce the computations. This new approach uses a set of reference vectors

to confine the searching space. Our algorithm can progressively reduce the searching

space during the matching process and so can save more computations while the

corresponding best-matched domain blocks are obtained. Experimental results

demonstrate that the encoding time of the new algorithm can be reduced significantly,

while the encoding quality remains the same as the full-search scheme.

6.2 The Proposed Algorithm

In this chapter, an inequality is set up to determine whether or not a range-domain

block matching is required by utilizing the property of the “sine law”. In our approach,

both the range block and the domain block are viewed as a vector. Using the relationship

between inner product and the cosine of the angle between the two vectors, we have:

, cosR rI D dI R rI D dI θ− − = − − ,  where 0≤θ ≤π.  (6.2)

As shown in Figure 6.1, θ is the angle between the range block vector and the domain

block vector. We can express the matching distortion in terms of the range block variance

and the sinusoidal function. Equation (6.1) can be rewritten as:

( ) 2 2, siniE R D R rI θ= − ,  where 0≤θ ≤ π/2.   (6.3)
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It is known that the period of sin2θ is π, and we consider its range between 0 and π.

According to the supplement identity sin(π−θ) = sinθ, this implies that sin2(π−θ) = sin2θ,

and the graph of the function sin2θ is symmetrical at the angle π/2. Therefore, we can

consider the interval from 0 to π/2 only for the function sin2θ.

R rI−

D dI−

θ

Figure 6-1. The angle between a range block and a domain block.

Figure 6.2 illustrates the effect of sin2θ on the range-domain block matching error

in equation (6.3). The points P and Q represent the maximum and the minimum matching

errors, respectively. With the derived result, we propose an efficient fractal coding

algorithm by using the sine law identity. The objective of the fractal coder is to find the

best-matched domain block to an input range block with respect to the contrast scaling s

and offset o parameters, as well as its isometric operations, in the domain pool for

representing the range block. In this section, we will establish an inequality based on

equation (6.3) to reduce the search space within the domain pool, while the optimal

domain block for each range block can still be found.
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Figure 6-2 P and Q denote the maximum and minimum range-domain block matching
errors, respectively.

At first, a reference domain block A is selected arbitrarily from the domain pool.

Let θ, θ1 and θ2 be the angles between R rI−  and i iD d I− , A and i iD d I− , and A and

R rI− , respectively, where Di and id  represent the domain block under consideration

and its corresponding mean value. The trihedral theorem [23] states that “of the three

plane angles that form a trihedral angle, any of two add together greater the third”.

According to the statement, we have 1 2θ θ θ+ ≥  and 2 1θ θ θ+ ≥  hold. It implies

that 1 2θ θ θ≥ − , i.e. the angle θ is bounded by |θ1 -θ2|. As sin2θ is a monotonic

increasing function between 0 ≤ θ ≤ π/2, so sinθ ≥ sin(θ1-θ2) and sin2θ ≥ sin2(θ1−θ2).

The minimum range-domain block matching error ( min
iE ) can be definded as follows:

( )2 2
min 1 2siniE R rI θ θ= − −       (6.4)

By expanding sin(θ1-θ2),

( )1 2 1 2 1 2sin sin cos cos sinθ θ θ θ θ θ− = − ,    (6.5)

sin2θ
P

Q θπ/2 π
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The minimum range-domain block matching error ( min
iE ) can be written as:

( )22
min 1 2 1 2sin cos cos siniE R rI θ θ θ θ= − − .     (6.6)

This min
iE  represents the minimum range-domain block matching error for the domain

block Di. In the range-domain block matching process, the range block is compared to

each of the domain blocks one by one. If min
iE  is smaller than the current minimum

range-domain block error, Emin, of those domain blocks that have been compared, the

exact error for the Di will be computed. If this error is less than Emin, Emin will be replaced

by this new error. However, if min
iE is higher than Emin, Di can be eliminated since it

cannot be closer to R than the “so far” nearest domain block.

To speed up the algorithm, a pre-processing step, as shown in Figure 6.3, is

performed. A reference vector (A) is selected arbitrarily in the domain pool. Prior to the

encoding process, the angle between the reference block A and each domain block is

calculated, and the corresponding sinθ1 and cosθ1 are stored. These tables for sinθ1 and

cosθ1 will be used repeatedly during encoding. For an input range block R, the

corresponding sinθ2 and cosθ2 between R and the reference block A are calculated, and

the computation of ( )22
1 2 1 2sin cos cos sinR rI θ θ θ θ− − is therefore simple.
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Last domain block(DM)

1st domain block (D1)

Reference domain block (A)

Figure 6-3. Pre-processing process.

Based on (6.6), candidates in the domain pool can be rejected progressively during

the encoding process. Our proposed algorithm can speed up the encoding process of

finding the best-matched domain block by eliminating impossible candidate domain

blocks before their actual errors are calculated. If a domain block has a minimum error

that exceeds the current minimum value of Emin, the domain block cannot be the best-

matched domain block, and the actual error need not be calculated. This encoding scheme

is efficient, and can achieve the same image quality as conventional full-search fractal

image coding. More reference vectors can be used to further improve the encoding speed,

but at the expense of more memory. With M reference vectors and N domain blocks in

the domain pool, the additional memory requirement is 2NM.
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6.3 Experimental Results

In the experiments, a three-level quadtree partitioning scheme with range block

sizes of 4×4, 8×8 and 16×16 pixels, and a search grid of two are used. We evaluated the

performance of our fast algorithm based on four 512×512 gray scale images: Lena,

Peppers, Boat and Goldhill. The experiments were conducted on a Pentium III 500

processor with 256MB memory.

With a minimum error Emin, the encoding speed can be further increased if a

weighting parameter λ (≥1) is used in ( ) min, iE R D Eλ≥ . With a larger value of λ, more

domain blocks will be rejected in the encoding. For the test image Lena of size 512×512,

when λ=2, the speedup of the encoding process is 2.48 when compared to the full search.

When λ=6, our proposed algorithm gives a speedup of 6.34 in the encoding process with

almost the same reconstructed image quality as the full-search fractal image coding.

From the simulation results shown in Figure 6.4, we can observe that the speedup

becomes steady when more than 10 reference vectors are used for the domain grid of 2

with the three-level quadtree partitioning scheme. The computational requirement of the

proposed algorithm using 10 reference vectors is reduced substantially, compared to that

using only one reference vector. The percentage of reduction in encoding time increases

from 17% to 60% when the number of reference vectors used is increased from 1 to 10.

The PSNR and compression ratio (CR) are the same as that of the conventional

exhaustive search approach. In order to reject the dissimilar domain block candidates in

the domain pool efficiently, the distance within these reference vectors should be as far as

possible and the searching space can be further reduced significantly.
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Table 6-1 Comparison of the coding results with different parameters using (a) Lena, (b)
Peppers, (c) Boat and (d) Goldhill of size 512×512, domain grid of two and three level
quadtree partitioning (16×16, 8×8 and 4×4).

PSNR(dB) CR Time(s) Speedup PSNR Loss CR Loss

F. S. 32.74  22.31  2303  1.00  0.00 0.00
λ=1 32.74  22.31  1427  1.61  0.00 0.00
λ=2 32.74  22.31  927  2.48  0.00 0.00
λ=3 32.73  22.27  665  3.46  0.01 0.04
λ=4 32.72  22.19  516  4.47  0.01 0.13
λ=5 32.70  22.12  423  5.44  0.04 0.19
λ=6 32.68  21.98  363  6.34  0.05 0.34
λ=7 32.63  21.87  320  7.20  0.11 0.44
λ=8 32.64  21.77  288  7.99  0.10 0.54
λ=9 32.58  21.69  265  8.70  0.16 0.62
λ=10 32.56  21.57  247  9.32  0.17 0.74

(a)

PSNR(dB) CR Time(s) Speedup PSNR Loss CR Loss

F. S. 32.22  25.07  2207  1.00  0.00  0.00
λ=1 32.22  25.07  1371  1.61  0.00  0.00
λ=2 32.22  25.07  911  2.42  0.00  0.00
λ=3 32.22  25.02  664  3.32  0.00  0.05
λ=4 32.21  24.89  516  4.28  0.01  0.19
λ=5 32.19  24.78  422  5.23  0.04  0.29
λ=6 32.18  24.62  358  6.17  0.04  0.45
λ=7 32.15  24.49  312  7.07  0.08  0.58
λ=8 32.16  24.31  280  7.88  0.07  0.76
λ=9 32.18  24.16  254  8.69  0.05  0.91
λ=10 32.15  23.92  235  9.38  0.08  1.15

(b)
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PSNR(dB) CR Time(s) Speedup PSNR Loss CR Loss

F. S. 32.48  14.07  3101  1 0.00  0.00
λ=1 32.48  14.07  2393  1.30  0.00  0.00
λ=2 32.48  14.07  1715  1.81  0.00  0.00
λ=3 32.47  14.05  1347  2.30  0.01  0.02
λ=4 32.46  14.03  1111  2.79  0.02  0.04
λ=5 32.43  13.96  945  3.28  0.05  0.11
λ=6 32.41  13.93  824  3.76  0.07  0.13
λ=7 32.38  13.88  730  4.25  0.10  0.19
λ=8 32.31  13.83  657  4.72  0.17  0.24
λ=9 32.27  13.75  600  5.17  0.21  0.32
λ=10 32.24  13.69  554  5.60  0.24  0.38

(c)

PSNR(dB) CR Time(s) Speedup PSNR Loss CR Loss

F. S. 30.93  15.46  2898  1.00  0.00  0.00
λ=1 30.93  15.46  2390  1.21  0.00  0.00
λ=2 30.93  15.46  1713  1.69  0.00  0.00
λ=3 30.92  15.45  1326  2.18  0.01  0.01
λ=4 30.92  15.38  1085  2.67  0.01  0.08
λ=5 30.90  15.36  922  3.14  0.03  0.10
λ=6 30.87  15.32  802  3.61  0.06  0.14
λ=7 30.84  15.29  714  4.06  0.09  0.17
λ=8 30.79  15.22  647  4.48  0.14  0.24
λ=9 30.76  15.13  593  4.88  0.17  0.33
λ=10 30.72  15.05  550  5.27  0.21  0.41

(d)
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6.4 Conclusions

A fast full-search fractal image-coding algorithm is proposed in this chapter. Our

algorithm is based on the relationship between the range-domain block matching error

and the angle between the range and domain block vectors. An inequality in terms of the

sine of the angle has been proposed. This inequality can reject impossible domain block

candidates efficiently in searching for the best-matched domain block. Based on the

experimental results, our algorithm can reduce more than 80% of the required

computations, as compared to the full-search algorithm, with only a slight quality

degradation in the reconstructed image.

6.5 A Summary of Our Proposed Fractal Image Coding

Techniques

Four efficient fractal image coding algorithms have been proposed. The first

algorithm is based on new feature vectors and the property of zero contrast. The

proposed feature vectors can provide a better representation of image blocks, and thus

result in a more efficient search of the domain block using the k-d tree scheme. The k-d

tree is a data structure capable of efficiently indexing a multi-dimensional data space.

Using k-d tree structure, the encoding time can be improved while the reconstructed

image quality remains relatively constant. The main drawback of this coding technique

is the huge amount of memory needed to construct the k-d tree structure for storing the

domain blocks. Additional memory of (nr×nr)ND bytes is required to store the pixel

intensity for each normalized domain block in the domain pool.
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The second algorithm is an efficient windowing scheme for fractal image coding

based on the local variances method. In this method, windows covering those domain

blocks whose variances are higher than that of the range block are considered according

to a mathematical model. In other words, only those domain blocks with variances

higher than that of the range block will be considered when searching for the best

matched range block, instead of considering both lower and higher variances. However,

there are still lots of best-matched domain blocks distributed far away from the

searching window, so that this windowing approach cannot achieve a high image quality

when compared to the full search method. Moreover, additional memory of ND bytes is

required to store the variance of each domain block in the domain pool.

The exhaustive search algorithm can obtain the optimal result by searching all the

blocks within the domain pool, but this process requires a high computational cost,

which limits its practical application. We propose an efficient algorithm based on a

single kick-out condition and zero contrast prediction, which can greatly reduce the

required computation as compared to the exhaustive search, while maintaining the same

reconstructed image quality. In addition, the algorithm does not need any pre-processing

and extra memory for its implementation. Experimental results show that the runtime of

our algorithm is about 50% of the exhaustive search. Our algorithm can also be

combined with other fast fractal coding algorithms, such as the DCT Inner Product, to

further improve the speed. The combined algorithm can reduce the required computation

by about 75% as compared to the baseline approach.

The fourth method is another fast full search fractal image-coding algorithm,

which uses the angle between the two vectors representing the input range block and a
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reference domain block to determine a tighter decision boundary for eliminating the

searching space in the domain pool. The encoding time can be further decreased when

more reference domain vectors are used. Our algorithm can reduce more than 80% of the

required computations, as compared to the full-search algorithm, with only a slight

quality degradation in the reconstructed image. With M reference vectors and ND domain

blocks in the domain pool, the additional memory requirement is 2NDM bytes.

These efficient algorithms have been further investigated to extend their

applicability to image magnification and image denoising as described in Chapter 7 and

Chapter 8.
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Chapter 7. An Efficient Image Magnification
Algorithm based on Iterated Function
Systems

7.1 Introduction

Digital image magnification techniques have an increasing demand for developing

product applications, such as for digital cameras. A magnification algorithm produces an

output image that has a greater size than that of the input image while preserving as

much visual content of the original image as possible. Enhancing the resolution of an

image is complicated due to the localized high-frequency nature of the pixel intensities

across edges. Conventionally, the amplitude of an unknown or missing pixel in a high-

resolution image is estimated from the corresponding neighboring pixels in its low-

resolution version. The bilinear and bicubic spline interpolation methods are the simplest

forms in this class. Unfortunately, these methods are unable to capture sudden changes

around edges, so visually unacceptable artifacts such as blurring or ringing will appear.

Various techniques have been proposed to improve the visual quality of magnified

images.

Fractal image magnification is one of the techniques with the most potential, which

can achieve a high-resolution enhancement for the sharpness across edges. This is

because the fractal approach yields resolution independent of the image decompression

process. After fractal image coding, the output of the coder is an IFS, which

approximates the image as a fixed point of a contractive transformation. This IFS code



93

can be used to reconstruct the image at any level of resolution. These magnified images

are suitable for graphics systems that are typically composed of devices of different

resolutions. However, the conventional fractal image magnification method [34] causes

serious blocky artifacts due to the independent and lossy coding of the range blocks. A

number of fractal image magnification approaches have been proposed [123, 125-127,

129, 131, 132, 160]. Chung et al. [127] have proposed to use an additional enhancement

layer (IEUF) to produce a magnified image without any blocky artifacts. However, that

method cannot enhance the high frequency components efficiently. In this chapter, we

propose an efficient algorithm based on the fractal properties for image magnification to

deal with this problem. In order to speed up the encoding process, the k-d tree structure

is used to direct the search. This can lead to a significant improvement in encoding time

while maintaining comparable magnified image quality.

This chapter is organized as follows. We will present the details of our proposed

image magnification algorithm based on the fractal properties in Section 7.2. In Section

7.3, we compare the performance of our proposed algorithm with the bicubic spline

interpolation, conventional fractal image magnification [34], and IEUF [127] methods.

Finally, conclusions are given in Section 7.4.

7.2 Our Proposed Algorithms

7.2.1 Adaptive Overlapped Range Block Partitioning

An efficient image magnification algorithm based on the Iterated Function System

with error compensation is proposed in this chapter. Our proposed algorithm can not only
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maintain the high frequency information to preserve the edges, but can also effectively

remove blocky artifacts from the magnified images. In a fractal image coding scheme,

Reusens [82] uses an overlapped range block partitioning scheme to construct an image

with good visual quality. In this section, we describe an extension of the overlapped

range block technique to image magnification.

In order to preserve the visual details in a magnified image without introducing

visible artifacts, the original low-resolution image forig of size mx×my, to be magnified, is

partitioned into a set of overlapping sub-images. Let ( ),i jf  denote an image whose non-

overlapping range blocks are extracted from the original image forig starting at location (i,

j), i.e.

( ) ( )
( )( ) 11

,
0 0

, ,      , =0,..., 1

ji
RR yx

NN

r r ri j
p q

f R pn i qn j i j n
−−

= =

 = + + − U U ,  (7.1)
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− 
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, which represent the number of range blocks

in the horizontal and vertical directions, respectively. In other words, there are r rn n×

possible images for ( ),i jf , which are extracted from the original image forig from i to

( )( )1 modx r rm n i n − − −   in the horizontal direction and from j to

( )( )1 mody r rm n j n − − −   in the vertical direction. Hence, there are
x y

i j
R RN N×  range

blocks, where 0 , -1ri j n≤ ≤ . Obviously, when i=0 and j=0, it is easily seen that ( )0,0f  is

equivalent to the original image forig. Otherwise, ( ),i jf  is a sub-image of forig. Fractal
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image coding is then applied to each of the images ( ),i jf  independently to obtain the

corresponding IFS codes ( ),i j . The IFS codes can be represented as follows:

( ) ( )
( ) 11

,
0 0

,      , =0,..., -1

ji
RR yx

NN

ri j
p q

p q i j nτ

 − −  

= =

 =  U U    (7.2)

To magnify an image with a factor α, each of the IFS codes ( ),i j  is applied to an

arbitrary image where the sizes of the range blocks and domain blocks are increased

from nr to rnα  and from nd to dnα  or 2 rnα , respectively. The magnified image ( ),i jM

obtained from ( ),i jf  is defined as follows:

( ) ( )
( ) 11

,
0 0

,      , =0,..., -1

ji
RR yx

NN

r r ri j
p q

M R pn i qn j i j nα α α α

 − −  

= =

 = + + U U   (7.3)

From equation (7.3), we can see that r rn n×  magnified images, ( ),i jM , are constructed

based on the respective IFS codes ( ),i j . Figure 7.1 shows the example of a magnified

image. Figure 7.1(a) shows the low-resolution image ( )3,1f  whose range blocks of size

4×4 are extracted from the original low-resolution image forig of size 256×256 at location

(3,1), while Figure 7.1(b) is the corresponding magnified image ( )3,1M  with a

magnification factor α=2.
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  (a)          (b)

Figure 7-1 (a) A low-resolution image whose range blocks are extracted at the position
(3,1), and (b) the corresponding magnified image M(3,1) with a range block size of 4×4.

7.2.2 Pixel Averaging

A set of magnified high-resolution images ( ),i jM ( )0 , -1ri j n≤ ≤  is constructed by

iterating the corresponding IFS code in the decoding process. 0,0M is equivalent to

reconstructing an image by the conventional fractal image magnification algorithm. The

image qualities of these N magnified images suffer from blocky artifacts and the loss of

high-frequency details. In our proposed algorithm, an optimal high-resolution image

optM  is obtained by the following way:

( ) ( )
0

1, ,
p

opt
s

s

M x y M x y
p =

= ∑     (7.4)
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where p (1≤ p ≤ k) denotes the number of pixels to be averaged at a pixel location (x, y).

The optimal pixel value at (x, y) in optM  is obtained by averaging p pixels from the

corresponding p of the magnified images ( ),s i jM M=  where the index s = i+j·nr. The

pixel value at (x, y) in each of the magnified image ( ),i jM  can be considered as a random

variable with the mean equal to the optimal value at that position. Consequently,

averaging the corresponding pixel values of the magnified images ( ),i jM should produce

an optimal magnified image. This should also give the best subjective and objective

quality. From Figure 7.4, we can see that the PSNR of a magnified image increases

dramatically when more corresponding pixels are averaged. An optimal magnified image

optM  with the highest PSNR is obtained by averaging k magnified images.

7.2.3 Error Compensation

The goal of this section is to present a method to further improve the visual quality

of a magnified image generated as described in Section 7.2.2 by adding a residual image.

In this error compensation scheme, the magnified high-resolution image optM

constructed as described in Section 7.2.2 is down-scaled to the size of the original low-

resolution image, which is then subtracted from the original image forig to give the

residual image that contains the high-frequency details. This residual image is then

magnified by using the bicubic spline interpolation method, and is added to the magnified

image optM  to form an image of better quality opt sM + , i.e.
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2 2opt s opt opt
origM M f M+   = + ↑ − ↓        (7.5)

where 2↑[.] and 2↓ [.] represent the 2× up- and down-scaling operations, respectively.

This error compensation scheme can significantly enhance the subjective and objective

qualities of the magnified image. In magnification of the residual image to a larger size, a

search window of size 4×4 is used in order to deal with the misalignment issue during

interpolation. Figure 7.2 illustrates the details of this error compensation process.

Original Image

Magnified Image Mopt

2↓

=
2↑

Reduced version of
magnified Image

Residual Image Interpolated Residual
Image

Magnified Image with
residual opt sM +

+

Figure 7-2 The error compensation process.
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7.2.4 Combined with Other Algorithms

Chung et al. [127] proposed a fractal-based enlargement technique which can

preserve the high-frequency contents of a magnified image by introducing an

enhancement layer. This technique can be easily adapted to our proposed algorithm to

further improve the quality of the magnified image. Firstly, a set of magnified images

( ),
e
i jM  is generated with the enhancement layer using the adaptive overlapped range block

partitioning scheme, as described in Section 7.2.2. Then, the optimal pixel selection

scheme is used to obtain an optimal magnified image e optM + . Finally, the error

compensation process is applied to e optM +  to further improve the quality and obtain the

magnified image e opt sM + + .

7.3 Experimental Results

In the experiments, our algorithm was compared to the conventional fractal method

[34], the well-known bicubic spline interpolation method, and the IEUF [127]. The

PSNRs of our algorithm were measured based on (i) the pixel-averaging scheme, (ii) the

pixel-averaging scheme with error compensation, and (iii) the combination of both

schemes with IEUF. The experiments were conducted on a Pentium IV 2.4GHz

processor, and five different 512×512 images with 256 gray levels – Lena, Boat,

Goldhill, Couple and Baboon – were used to evaluate the respective performances of the

different image magnification algorithms. To measure the performances, we first reduce

the size of the high-resolution images by a factor α. These down-scaled images will be

considered as the original low-resolution images, which are then magnified by the same
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The quality of a magnified image should improve if more pixel values are available for

estimation at each position. Therefore, the quality of 4×4 is better than 3×3. However,

when the range block size increases, the self-similarity between the blocks will decrease.

This will degrade the quality of the magnified image. Consequently, a range block size of

4×4 can achieve the best performance. In the following experiments, we will use a range

block size of 4×4 to compute the IFS code. Figure 7.4 shows the performance of our

algorithm with the number of pixels being averaged when the range block size is 4×4. As

explained in Section 7.2.2, the PSNR increases with the number of pixels being averaged.

In general, our proposed algorithm with error compensation combined with IEUF

achieves the best performance. Table 7.1 tabulates the respective performances of the

different algorithms for different images. Our pixel-averaging scheme can achieve on

average 2.6dB, 2.3dB, and 0.83dB increase in PSNR when compared to the conventional

fractal scheme, the bicubic spline interpolation, and IEUF, respectively. The PSNR of the

pixel-averaging scheme can be further improved by 0.22dB when the error compensation

scheme is applied. This is due to the fact that the high-frequency components have been

taken into account in the error compensation process. When our algorithm is combined

with IEUF, a further improvement of 0.4dB is achieved.
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Table 7-1 Performances in terms of the PSNR of our proposed algorithm and other
algorithms based on different test images using a full search.

Table 7-2 Performances in terms of the PSNR of our proposed algorithm and other
algorithms based on different test images using the k-d tree.

Conventional
Fractal
Approach

Bicubic
Spline
Interpolation

IEUF Proposed
without
residual

Proposed
with
residual

Proposed
with
residual+
IEUF

Lena 31.40  30.98  33.85  34.50  34.79  35.37

Baboon 23.00  23.88  24.08  24.66  24.86  25.20

Boat 28.34  28.45  30.36  31.41  31.63  32.06

Goldhill 29.05  29.46  30.59  31.49  31.65  31.95

Couple 26.85  27.35  28.59  29.57  29.78  30.11

Conventional
Fractal
Approach

Bicubic
Spline
Interpolation

IEUF Proposed
without
residual

Proposed
with
residual

Proposed
with
residual+
IEUF

Lena 31.15  30.98  33.78  34.32  34.66  35.33

Baboon 22.95  23.88  24.05  24.52  24.75  25.16

Boat 28.22  28.45  30.30  31.24  31.50  32.02

Goldhill 28.99  29.46  30.62  31.38  31.57  31.93

Couple 26.83  27.35  28.53  29.39  29.63  30.04
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The main drawback of our proposed algorithm is its high computational

complexity in the encoding phase to generate the IFS codes. The required encoding time

is about 17,930s to generate 16 IFS codes for each 256×256 image. Therefore, the k-d

tree is employed, which can greatly speed-up the encoding process. Table 7.2 tabulates

the PSNR of the magnified images for the different test images using the k-d tree search.

The average run-time is reduced to 198s at the expense of a small drop in quality in our

proposed algorithm. From Table 7.2, we can see that the respective average drops in

PSNR are 0.16dB, 0.12dB and 0.04dB for our proposed algorithms without residual,

with residual and with residual combined with IEUF. In other words, using the k-d tree

structure allows our algorithm with residual combined with IEUF to achieve a speed-up

of 90 with only 0.04dB loss in quality when compared to the conventional full search

scheme. This is mainly due to the use of the error compensation and enhancement layer

technique, which can also compensate for the error caused by the k-d tree search. In

additional, the average run-time can be further reduced by increasing the domain grid,

with a slight drop in PSNR. Figure 7.5 shows the average run-time required by our

algorithm with the use of the k-d tree search and different domain grid sizes versus the

average PSNR drop when compared to the full search scheme.

Figures 7.6 and 7.7 illustrate the magnified images generated by using the different

algorithms. It can be seen that the images magnified using the conventional fractal

algorithm suffer from the blocky artifacts. The details of the images are blurred when the

bicubic spline interpolation algorithm is used, as shown in Figures 7.6(c) and 7.7(c). The

edges of the magnified images obtained by using our proposed algorithms are better than

those obtained by the bicubic spline interpolation, conventional fractal algorithm and
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(a)

(  b  )     (  c  )     (  d  )

( e )    ( f )    ( g )

Figure 7-6  (a) The original high-resolution image “Lena”, and the magnified images of
Lena based on (b) the conventional fractal magnification; (c) the bicubic spline
interpolation; (d) the IEUF; (e) the pixel-averaging scheme; (f) the pixel-averaging
scheme with error compensation; and (g) the pixel-averaging scheme with error
compensation combined with IEUF.
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(a)

(  b  )     (  c  )     (  d  )

( e )     ( f )   ( g )

Figure 7-7 (a) The original high-resolution image “Baboon”, and the magnified images of
Lena based on (b) the conventional fractal magnification; (c) the bicubic spline
interpolation; (d) the IEUF; (e) the pixel-averaging scheme; (f) the pixel-averaging
scheme with error compensation; and (g) the pixel-averaging scheme with error
compensation combined with IEUF.
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7.4 Conclusions

This chapter proposes an image magnification algorithm that can achieve a high

subjective and objective quality. This algorithm improves the quality of a magnified

image based on a set of high-resolution images generated using IFS codes. A pixel-

averaging scheme and an error compensation scheme are proposed to form a magnified

image which can preserve its high-frequency information and remove blocky artifacts. In

addition, this algorithm can combine with other magnification algorithms, such as IEUF,

to further improve the quality of a magnified image. Experimental results show that our

magnification algorithm can achieve a significant improvement over the traditional

methods in terms of objective and subjective qualities. In addition, the required run-time

can be greatly reduced with the use of the k-d tree search, which will result in a slight

degradation in quality.
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Chapter 8. Adaptive Fractal-based Image Denoising

8.1 Introduction

One of the main challenges for image analysis is the reconstruction of an image

with the existence of noises, which has been investigated intensively for many years

[134-136, 159, 161]. This chapter aims to solve the problem of image denoising when an

image is corrupted by additive white Gaussian noise (AWGN). This is a valid assumption

when an image is captured by an imperfect image-capturing device, or distorted when

transmitted over a network. The presence of noise can affect visual quality, as well as the

processes of medical image analysis, object recognition, etc. Therefore, an efficient

denoising algorithm is necessary in order to remove or alleviate the annoying effects.

In this chapter, we consider the typical problem of estimating a noise-free image

forig from its noisy version fN, which is the noise-free image degraded by AWGN. The

problem is formally described as follows:

N orig Nf f G= + ,      (8.1)

where forig is the original signal and GN is AWGN. Thus, denoising is basically the

methodology of estimating the signal forig from the Gaussian noise-corrupted signal fN.

Linear filtering techniques [159] have been widely used in many image processing

applications, because of their simplicity to remove the additive white Gaussian noise.

However, this kind of linear filter tends to blur the sharp edges, and destroy lines and

other fine details in an image while failing to effectively remove heavy noise. A lot of
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research work on noise reduction is based on wavelet thresholding [161]; a simple and

very effective denoising method. The basic idea is to project a noisy image onto the

wavelet kernels to generate a set of wavelet coefficients. Then, the small high-frequency

coefficients can be set to zero, as they are most likely to be the noise. This thresholding

technique can remove the noise efficiently and can preserve the fine details of the original

image information. Other authors have combined wavelets with hidden Markov models

[162]and spatially adaptive methods [163], or used other basis functions such as curvelets

[164], so that a higher perceptual quality can be achieved when compared to the wavelet-

based image denoising methods.

A recent fractal image denoising (FID) technique was proposed by Ghazel et al.

[135], which can produce a denoised image efficiently under a heavy noise condition.

The basic is to estimate the fractal code of a noise-free image from the corresponding

noisy image based on a statistical approach. This fractal-based image denoising technique

(FID) can achieve a gain in PSNR of 1.19dB on average when compared to the well-

known Lee’s filter [159] under the conditions that the standard deviation σ of the noise is

larger than 20.

In this chapter, we propose a flexible and high-quality fractal-based image

denoising algorithm, which can not only greatly reduce the additive white Gaussian noise

(AWGN), but also maintain the high-frequency information so as to preserve the edges

and effectively remove the blocky artifacts in a denoised image. Our proposed method

can achieve increases of PSNR by 4.24dB and 1.09dB on average, when compared to the

FID method under the low-noise (σ < 20) condition and the high-noise (σ ≥ 20)

condition, respectively.
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This chapter is organized as follows. We will present the details of our new fractal-

based image denoising algorithm in Section 8.2. In Section 8.3, we compare the

performance of our proposed fractal-based image denosing algorithm with the recently

proposed FID algorithm. Finally, conclusions are given in Section 8.4.

8.2 Proposed Algorithm

In this section, we present our efficient denoising algorithm based on the fractal

property. Instead of using the conventional contrast scaling and offset parameters that are

coupled to each other, our algorithm employs the decoupling property of the fractal code

in which a range block is represented by its mean and the contrast scaling. A range-block

partitioning scheme is used to generate a set of overlapping sub-images, and each of these

sub-images is then represented by the mean values of the range blocks and the contrast

scaling parameters for removing the noise in the image. The corresponding pixels in the

respective sub-images are averaged to generate the best denoised image. Our proposed

algorithm can not only remove the noise efficiently, but can also maintain the high-

frequency contents. Therefore, the edges can be preserved in the denoised images without

any blocky artifacts.

8.2.1 The Basic Idea of Fractal-based Image Denoising

One of the basic properties of fractal image coding is the notion of self-similarity in

the different scales of a given image. In image coding, a range block can be approximated

by a larger domain block from elsewhere in the image after applying decimation and a
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non-linear intensity transformation. The computed fractal image can be recovered up to a

small distortion by an iteration procedure at the decoder. The idea of the fractal image

denoising is that range blocks can be described by a small number of contractive affine

transformations based on the self-similarity structures across scales. However, it is

impossible to approximate any random noisy structures occurring in an image [134, 135].

Therefore, the conventional fractal image coding technique can be applied to remove the

noise in a low-noise condition. However, when the noise level is significant, the denoised

images will lose their high frequency contents and suffer from blocky artifacts.

As shown in equation (2.13), a range block R is represented as a function of the

best-matched domain block, and the contrast and offset parameters as follows:

R = sDi + oI.        (8.2)

However, in encoding a noisy image, it is difficult to find the best-matched domain block

corresponding to the noise-free version of a given range block. In other words, the

contrast scaling s computed using equation (2.14), as well as the offset parameter o

computed using equation (2.15), are unable to correctly represent the noise-free range

block. The coupling effect between the contrast and offset parameters, as described in

Section 2, makes it difficult to use fractal coding to remove the noise. In order to remove

the noise in an image efficiently, equation (8.2) is decoupled into a DC term (the mean of

a range block r ) and an AC term (the contrast scaling s), as proposed by Øien et al. [58]

and Tong et al. [73]. This new representation of the range block R can be rewritten as

follows by substituting equation (2.15) into equation(8.2):

( ) ( )
( )

i

i i i i

i i

R sD oI

s D d I sd I r sd I

s D d I rI

= +

= − + + −

= − +

,     (8.3)
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where Di is the best-matched domain block and id  is the corresponding mean of the

domain block. This formulation replaces o with the mean of the range block r  that is

independent of the contrast scaling s. The first term, ( )i is D d I− , is usually small as

IdD ii ≈  and is sensitive to noise (due to the presence of Di), while the second term, rI ,

is less sensitive to noise (an average value is used) and has a larger magnitude when

compared to the first term. Therefore, in the image denoising process, both the contrast

scaling s and the mean of the range block r  are used to reconstruct R when the noise

level is low. However, when the noise level is high, the selected domain block Di may not

be the best-matched domain block of the corresponding noise-free range block. Thus,

only the second term rI  will be used in this condition. This scheme still suffers from the

same problem of the conventional fractal-based image denoising; high-frequency content

is lost and blocky artifacts appear. Therefore, we propose an Overlapped Range Block

Partitioning Scheme to solve this problem. In our proposed denoising method, the

threshold used to eliminate the noise is empirically determined by experiment.

8.2.2 Overlapped Range Block Partitioning Scheme

The fractal image coding scheme by Reusens [82] uses an overlapped range block

partitioning scheme to construct an image with good visual quality. In this section, we

will describe an extension of the overlapped range block technique for image denoising.

In order to remove the noise while preserve the visual details in a denoised image,

the noisy image fN of size mx×my is partitioned into a set of overlapping sub-images. Let

fN(i, j) denote a denoised image whose non-overlapping range blocks are extracted from

the noisy image fN starting at location (i, j), i.e.
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, which represent the number of range blocks

in the horizontal and vertical directions, respectively. In other words, there are nr×nr

possible images for fN(i, j), which are extracted from the noisy image fN from i to

( )( )1 modx r rm n i n − − −   in the horizontal direction and from j to

( )( )1 mody r rm n j n − − −   in the vertical direction. Hence, there are
x y

i j
R RN N×  range

blocks, where 0 ≤ i, j ≤ nr – 1. Obviously, when i = 0 and j = 0, it is easily seen that ( )0,0f

is equivalent to the original noisy image fN. Otherwise, fN(i, j) is a sub-image of fN. Fractal

image coding is then applied to each of the images ( ),N i jf  independently to obtain the

corresponding IFS codes ( ),i j . The IFS codes can be represented as follows:

( ) ( )
( )( ) 11

,
0 0

,      , =0,..., -1

ji
RR yx

NN

ri j
p q

p q i j nτ
−−

= =

 =  U U .   (8.5)

The new transformation τ consists of the range block mean r  instead of the offset

parameter o, i.e. ( ) { }, , , , ,x yp q s r p pτ ι= , where ι, px and py are the isometric operation,

and the location of the best-matched domain block, respectively.

8.2.3 The Best Denoised Image

A set of denoised images M(i,j), where 0 ≤ i, j ≤ nr – 1, is constructed by iterating the

corresponding IFS codes in the decoding process. M(0,0) is equivalent to reconstructing an

image by the conventional fractal image denoising algorithm. The image qualities of
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these N denoised images suffer from blocky artifacts and the loss of high-frequency

details. In our proposed algorithm, the best denoised image Mopt is obtained by averaging

those pixels at the same pixel position in the respective k images as follows:

( ) ( )
0

1, ,
z

opt
s

s
M x y M x y

z =

= ∑ ,     (8.6)

where z (1≤ z ≤ k) denotes the number of pixels to be averaged at a pixel location (x, y).

The best pixel value at (x, y) in Mopt is obtained by averaging z pixels from the

corresponding z denoised images Ms = M(i,j), where the index s = i + j·nr. For example,

with reference to Figure 8-1, the values of z are equal to 1, 2, 4, 4, and 16 when the

coordinates (x, y) are (0, 0), (1, 0), (3, 0), (0, 3) and (3, 3), respectively. In the inner part

of the image Mopt, nr×nr pixels are involved. The pixel value at (x, y) in each of the

denoised images M(i,j) can be considered as a random variable with the mean equal to the

best value at that position. Consequently, averaging the corresponding pixel values of the

denoised images M(i,j) should produce the best denoised image. This should also give both

the best subjective and objective quality. From Figures 8-3 and 8-4, we can see that the

PSNR of a denoised image increases dramatically when more corresponding pixels from

the denoised images are averaged. The best denoised image optM  with the highest PSNR

is obtained by averaging all the magnified images available.

8.3 Experimental Results

In the experiments, a single partitioning scheme with range block size of 4×4 and a

search grid of 4 is used. Eight popular 512×512 gray-level images were used to evaluate

the performance of our proposed algorithm, which was also compared to the recently
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proposed fractal-based image denoising algorithm, FID [135]. All these images were

corrupted by AWGN with the standard deviation σ varying from 5 to 40. The

performances of the different denoising algorithms were evaluated in terms of the Peak

Signal-to-Noise Ratio (PSNR):

( ) ( )( )
10 11 2

0 0

255 25510log
1 , ,

yx mm

Orig
i jx y

PSNR dB
f i j f i j

m m

−−

= =

 
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× =  
−  

 
∑ ∑ %

(8.7)

where forig and f%  represent the original image and the denoised image of size mx×my,

respectively.

The standard deviation σ of the noise is an important parameter, which affects the

numerical quality and visual quality of the denoised images. This value can be estimated

by examining the distribution of the local variances across the entire image [135]. In our

algorithm, if σ is small, the best denoised image will be constructed from those respective

denoised images generated by using both the first and second terms in equation (8.3).

However, when σ is large, the best denoised image will be constructed by considering

only the second term of equation (8.3), i.e. the means of the range blocks. Experiments

with different values of σ were conducted in order to investigate the effect of σ on the

PSNR of the denoised images. The image quality in terms of dB versus different levels of

noise (σ) based on a range-block size of 4×4 is shown in Figure 8.2. The results show

that the quality of a denoised image constructed by using both of the two terms in

equation (8.3) starts to degrade noticeably when σ ≥ 20. In these conditions, the quality

of the denoised images using the mean of the range block only is better than that using

both terms. In other words, the range mean and contrast scaling are used when the noise
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standard deviation σ < 20, while only the means of the range blocks are used when σ ≥

20.

The numerical results of our denoising scheme and the FID scheme are illustrated in

Figure 8.5. An additive white Gaussian noise (AWGN) is added to the images with the

noise standard deviation changing from 5 to 40. For FID, the chosen range-block size is

8×8, the same as that used in [135]. Experimental results show that the noise is reduced

effectively using our algorithm when compared to those denoised images obtained by the

FID scheme. For low-noise (σ < 20) and high-noise (σ ≥ 20) standard deviations, our

proposed method can achieve, on average, 4.24dB and 1.09dB increase in PSNR,

respectively, when compared to FID.

Our algorithm is always better than FID in terms of PSNR and the visual evaluation

of image quality. Figures 8.6, 8.7 and 8.8 show the results of our proposed algorithm and

the FID method. The FID eliminates most of the noise but, unfortunately, also over-

smoothes the image, producing visually annoying artifacts on the denoised images. In

Figures 8.6, 8.7 and 8.8, the first, second and third columns show the noisy images, the

denoised images obtained using FID, and those obtained using our proposed algorithm,

respectively. Our proposed algorithm outperforms the FID method in terms of image

visual quality.

It is obvious that our proposed algorithm has a remarkable capability of noise

reduction, as shown in the third column of Figures 8.6, 8.7 and 8.8. The edges of the

denoised images in our proposed algorithm appear to be sharper than those in the FID

method, as shown in the second column of Figures 8.6, 8.7 and 8.8. We can see that the

FID method causes unsatisfactory behavior at the edges, in particular under heavy noise
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conditions. For the Lena image, FID tends to blur the edges at the eyes. In contrast, the

denoised images obtained using our proposed algorithm contains noticeably fewer visual

artifacts. Similar results were observed based on the other test images.

8.4 Conclusions

In our algorithm, the noise in an image can be removed effectively while the edges

can be preserved so as to provide fewer visual distortions and artifacts. Our algorithm

employs the decoupling property of the fractal code instead of the conventional fractal

code using the contrast scaling and offset parameters. This decoupling property makes it

possible to denoise images more efficiently and flexibly. To improve the image quality, a

range-block partitioning scheme is used to generate a set of overlapping sub-images. The

range blocks of these sub-images are coded and represented by their range-block mean

values and contrast scaling parameters for removing the noise. These sub-images are then

averaged to obtain the best denoised image. A comparison of our proposed algorithm

with a recently proposed technique for removing Gaussian noise from images validates

the performance of our approach both quantitatively and visually.
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Figure 8-1. The first range blocks (represented by thick line) of size nr×nr (nr = 4)
overlapped sub-images obtained from a noise image. The starting point coordinates of the
respective sub-images are (i, j), where 0≤ x, y ≤ nr – 1, and the sub-images are denoted as
fN(i, j).

(i, j)= (0, 0) (i, j)= (1, 0) (i, j)= (3, 0)

(i, j)= (0, 3)
(i, j)= (3, 3)
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Figure 8-2 The denoising performance obtained using both the range-block mean and the
contrast scaling, and using the range-block mean only under different noise levels.
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Figure 8-3. The PSNR versus the number of pixels being averaged for different test
images when the standard deviation is 10.
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Figure 8-4 The PSNR versus the number of pixels being averaged for different test
images when the standard deviation is 30.
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Figure 8-5 The denoising performances of our algorithm and the FID in terms of PSNR
under different noise levels .
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Noise Image with σ=10   FID    Proposed Algorithm

Noise Image with σ=20   FID    Proposed Algorithm

Noise Image with σ=30   FID    Proposed Algorithm

Noise Image with σ=40   FID    Proposed Algorithm

Figure 8-6  The visual qualities of our proposed algorithm and the FID method based on
the test image “Barbara” under different noise levels .
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Noise Image with σ=10   FID    Proposed Algorithm

Noise Image with σ=20   FID    Proposed Algorithm

Noise Image with σ=30   FID    Proposed Algorithm

Noise Image with σ=40   FID    Proposed Algorithm

Figure 8-7 The visual qualities of our proposed algorithm and the FID method based on
the test image “Lena” under different noise levels .
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Noise Image with σ=10   FID    Proposed Algorithm

Noise Image with σ=20   FID    Proposed Algorithm

Noise Image with σ=30   FID    Proposed Algorithm

Noise Image with σ=40   FID    Proposed Algorithm

Figure 8-8 The visual qualities of our proposed algorithm and the FID method based on
the test image “Boat” under different noise levels .
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Chapter 9. Conclusions and Future Work

9.1 Conclusion on the current works

In this thesis, we have provided an overview of fractal image coding and a variety

of existing techniques to speed up the encoding process and some applications. Fractal

image coding is an important step for many applications, such as image magnification,

image denoising, etc. However, fractal encoding process suffers from high

computational complexity. A significant amount of research work has been done on

fractal image compression recently to speed-up the encoding, including domain pool

reduction techniques, block classification schemes, fast full search algorithms, etc. In

this thesis, we have devised four new efficient algorithms for fractal image compression

and an algorithm for image magnification and one for image denoising.

Our first proposed algorithm uses a feature vector which can have a better

representation of the image blocks is presented in Chapter3. Our algorithm can make the

search of the corresponding domain block much more efficient and accurate than that of

other existing fractal algorithms. We have also proposed the use of zero contrast

condition to reduce the computational complexity and further improve the compression

efficiency of the algorithm.

In Chapter 4, we have devised an equation to model the local variances method

which uses a symmetrical window. From the devised equation, we proposed using a non-

symmetric window to search for the best-matched domain block based on the local

variances method.
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The third approach is presented in Chapter 5 which is a fast algorithm based on a

single kick-out condition and can achieve the same image quality as the full search. We

found that almost all of the previous proposed algorithms will degrade the image quality

when compared with the full search. Therefore, the efficiency of the kick-out condition

depends on how quickly the global minimum error is detected. Once this global error is

found, most of the remaining domain blocks will be rejected and range-domain block

matching will not be performed.

A fast full-search fractal image-coding algorithm is presented in Chapter 6. Our

algorithm is based on the relationship between the range-domain block matching error

and the angle between the range and domain block vectors. An inequality in terms of the

sine of the angle has been proposed. This inequality can reject impossible domain block

candidates efficiently in searching for the best-matched domain block. Based on

experimental results, our algorithm can reduce more than 80% of the required

computations, as compared to the full-search algorithm, with only a slight quality

degradation in the reconstructed image.

Chapter 7 presents an image magnification algorithm that can achieve a high

subjective and objective quality. This algorithm improves the quality of a magnified

image based on a set of high-resolution images generated using IFS codes. A pixel-

averaging scheme and an error compensation scheme are proposed to form a magnified

image which can preserve its high-frequency information and remove blocky artifacts. In

addition, this algorithm can combine with other magnification algorithms, such as IEUF,

to further improve the quality of a magnified image.
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In Chapter 8, a new fractal-based image denoising method is presented which can

preserve the edges and remove the blocky artifacts in a denoised image. Our algorithm

employs the decoupling property of the fractal code instead of the conventional fractal

code using the contrast scaling and offset parameters. This decoupling property makes it

possible to denoise images more efficiently and flexibly. To improve the image quality, a

range-block partitioning scheme is used to generate a set of overlapping sub-images. The

range blocks of these sub-images are coded and represented by their range-block mean

values and contrast scaling parameters for removing the noise. These sub-images are then

averaged to obtain the best denoised image.

9.2 Future Work

9.2.1 Human Face Image Compression Using Fractal Coding

In the thesis, four efficient fractal coding algorithms based on feature vector

matching, single kick-out and zero contrast conditions, and a non-symmetric search

window have been devised. These efficient algorithms can be further investigated to

extend to compress facial image. By considering the structure of a face image, the

compression ratio and efficiency should be able to be further improved. The information

about the face is the most important content to be considered, while the background is not

important. Therefore, we can encode the background by boosting the use of zero contrast

property and searching within a localized domain pool. This can speed up the encoding

process and reduce the bit rate while maintaining a high reconstructed quality for the face

region. Moreover, the encoding complexity can be further reduced by classifying the face

region into two classes: edge block and smooth block. For encoding range blocks
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containing edge, the search best domain blocks is limited to the edge domain blocks only.

The coding of smooth blocks is performed in a similar manner. We believe that the face

image coding technique based on zero contrast property and classified image block is one

of the most efficient approaches to coding facial images.

9.2.2 Fractal Coding Of Video Sequences

Fractal-based image coding techniques can also be applied for coding video

sequences. The domain and range blocks are classified based on the structure of the

blocks. Then, the search of the best matched domain block is limited to those in the same

class as of the range blocks. In addition, the position of the best-matched domain block in

coding the previous frame will be used. This can further speed up the coding process.

This approach is similar to the conventional motion estimation/compensation technique,

but does not require encoding the residual errors. The complexity of the fractal image

decoder is usually much lower than that of other decoder, such as those based on the

transform methods. This makes this approach more suitable for broadcasting applications,

where the video signals are compressed once by a powerful processor and the

decompressed many times by many receivers.

9.2.3 An Efficient Fractal-based Super High Resolution Image
Reconstruction using a Single Image

Super-High-Resolution (SHR) is becoming an increasingly important topic in

digital image processing, in particular due to consumer digital photography becoming

ever more popular. SHR has many areas of application, including enhancing the imagery

for high-definition television (HDTV), medical imaging, aerial and satellite imaging,
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remote sensing, surveillance systems, digital cameras, etc. High-resolution images can be

obtained directly from high-precision optics and charge coupled devices (CCDs).

However, due to hardware and cost limitations, imaging systems often provide us with

only one or multiple low-resolution images. It has been known for some time that

classical interpolation techniques such as linear and bicubic spline interpolations cannot

produce high-resolution images of high quality, since these methods tend to blur and

smooth the edges. The faithful reconstruction of edges in a magnified image is always

important for human vision. Over the last two decades, research has been devoted to the

problem of reconstructing a high-resolution image from a set of low-quality versions of a

true image.

We propose a super-high-resolution image reconstruction algorithm, which

estimates the high-resolution data from a single image based on fractal theory. One of the

advantages of fractal theory is that it is resolution-independent. After the fractal image

coding, the output of the coder is an Iterated Function System (IFS), which approximates

the image as a fixed point of a contractive transformation. This IFS code can be used to

reconstruct the image at any level of resolution. In our proposed algorithm, a set of high-

resolution images is generated from a low-resolution image using the fractal image

coding technique, and is then combined to form a high-quality magnified image.

In order to construct a super-high-resolution image with high visual quality, it is

necessary to extract as much information as possible from the original image. Therefore,

we can generate more super-high-resolution images by adopting more range block sizes

in the encoding process. Typically, the range block sizes to be adopted can be adjust from

3×3 to 8×8. Experimental results show that the use of range block sizes of 3×3 and 4×4
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can produce magnified images with optimal visual quality when the magnification factor

α = 8. In others words, 25 super-high-resolution images are generated using traditional

fractal magnification algorithm. A set of 25 super-high-resolution images is constructed

by iterating the corresponding IFS code in the decoding process. In the experiments, the

magnified images obtained from our scheme with the adaptive pixel averaging method

can achieve a better quality visually and in terms of PSNR than both the traditional

fractal image magnification algorithm and the bicubic spline interpolation scheme.

Figures 9.1-9.6 show the example of magnified images using different magnification

methods.
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Figure 9-1 Traditional Fractal magnification Algorithm with magnification factor α=8
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Figure 9-2 Bicubic Spline Interpolation with magnification factor α=8
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Figure 9-3 Proposed Algorithm with magnification factor α=8
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Figure 9-4 Traditional Fractal magnification Algorithm with magnification factor α=8.
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Figure 9-5 Bicubic Spline Interpolation with magnification factor α=8.
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Figure 9-6 Proposed algorithm with magnifiocatin factor α=8
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