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Abstract

Water quality models with analytical solutions are developed to
simulate the transport of toxic substances in different aquatic environments.
The models take into account both the physical transport processes such as
the transport by water flows and dispersion mixings, and the chemical
processes such as the sorption kinetics between the toxic substances and
the sediment. Analytical forrﬁs in this research are being derived because
analytical solutions can act as fast predicting tools in relatively simple cases.
They also offer fundamental insights into the contributions of particular
physical or chemical parameters to the transport process. However, in order
to solve the models analytically, the governing systems must be formulated in
relatively simpie forms, while still retaining sufficient physics and chemistry to
be realistic. In accordance with the above requirements, a one dimensional,
time varying governing system has been studied and solved analytically.

The vertical axis z is chosen as the controlling dimension in the
governing system in order to include the settling and the resuspension of
sediment and toxic substances in the water column. An instantaneous
equilibrium of sorption kinetics between dissolved and particulate toxic
substances is assumed and a governing equation is written in terms of the
total toxic substance concentration. The governing system is further studied
by assuming two different flow conditions (constant and parabolic distribution
of the turbulent mixing coefficient) and the equilibrium distribution of

suspended sediment in the whole transport process.



Three analytical water quality models with constant or specific
coefficients in the goveming equations are developed based on the
governing system. The analysis of different parameters in the governing
system is carried out to identify the parameter ranges under which the
transport of toxic substances can be modeled by the developed models.

Analysis is élso conducted to identify the effects of particular
parameters on toxic substance transports. Since the particulate toxic
substances has an additional downward motion due to the particle settling.
The overall concentration is smaller for cases that have a larger fraction of
toxic substances in the particulate forms. Thus, a larger partition coefficient
and settiing velocity or a smaller mixing coefficient leads to lower
concentrations.

Finally, three cases studies are presented to demonstrate the
applications of the developed models for toxic substance transports and also
in other areas. it is found that the models are also useful for simulating the

- transport of sediment in the water column and of chemicals in soil layers.
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Notations

a = reference level

A = a/H, dimensionless reference level

A = coefficient in Equation (3.4.5.8)

e = depth average value of A

> -

, = area of bed sediment layer,

c = coefficient associated with the averaged area of turbulent bursts per unit bed area =
0.02

b

A, = coefficient in Equation (3.4.6.1.7)

|

. = coefficient in governing equation assuming sediment distribution in the form of Rouse

profile
b = maximum sorption capacity of solids
by, ba, by and by = coefficients for settfing or resuspension of sediment or confaminant at
boundaries in Model 3
B = dimensionfess coefficient for deposition velocity of contaminant at sediment waler

interface in Modef 2

B = coefficient in Equation (3.4.5.8)

B = dimensionless coefficient for deposition velocily of contaminant at sediment waler
interface

B, = dimensioniess coefficient for resuspension velocity of contaminant at sediment water

interface

B,,. = depth average value of B
B, = calibrated coefiicients in Equation (2.4.3.18)

= coefficient in Equation (3.4.6.1.7)

e

B
B, = found from the initial conditions and in Equation (2.4.4.2.7a)
B, = coefficient in governing equation assuming sediment distribution in the form of Rouse

profite
Bta(x,y) = Beta function
¢ = concentration of dissolved toxicant
¢p = initial concentration of dissolved foxic substance
¢, =reference level concentration of dissolved toxicant

c

. = concentration of toxicants in colloidal organic matter

¢, = dissolved concentration in water

¢, = concentration of dissoived toxicant at equilibrium state



ce,(x,q) = one of the Mathieu functions
¢, = calibrated coefficient in Equation (2.4.3.18)
¢, = total concentralion of toxic substance

Cro = initial fotal concentration

¢, = total toxic concentration in bed layer,
C = coefficient in Equation (3.4.5.8)
C,.. = depth average value of C

C, = coefficient in Equation (3.4.6.1.7)

I

C, = coefficient in governing equation assuming sediment distribution in the form of Rouse

profile

C"=18log(12H/3d, )

d = sediment diameter,

d,, d, = decay rate of contaminant as boundary to Model 3

ds, = median particle diameter

dgp = particle diameter that 90% particles have diameters less than dg,

D =y¢

D, =dimensionless particle parameter

D; = coefficient in Equation (2.4.4.2.7a)

D, (z) = Weber parabolic cylinder function

DA = depth average value of difference between magnitude of A along water depth and its
depth average value, A,,,

DB = depth average value of difference between magnitude of B along water depth and its
depth average value, B,,

DC = depth average value of difference between magnitude of C along water depth and its
depth average value, C,,

Ent = entrainment flux

f, = partition fraction of dissolved toxic substance
I, = dissolved fractions in the bed layer

foa =k, (k. +k,)

fo =k Mk, +k,)

f, = partition fraction of particulate toxic substance

f.» = particulate fractions in the bed layer

vi



f(u) = Fourier Transform of a function f(x)

f, = volume fraction of sediment in mud

F(a,b,c,Z} = hypergeometric function

F, =flux enters lo the control volume in the x direction

F, =filux enters to the control volume in the y direction
F, = flux enters to the controf volume in the z direction

g = gravitational acceleration
k.k, +k ks +kk,

h=
kr

H = water depth

H, =depth of bed layer

H, =H {x) = Hermite polynomial

{ = water surface slope or energy gradient

J,(x) = Bessel function of first kind

x = von Karman coefficient

k = k/k;

ko= 0.000147

k, = adsorption coefficient for transfer of foxicants from ¢, to c,

k, = adsorption coefficient for transfer of toxicants from ¢, to ¢,

k. = sorption rate constant of toxic substance to sediment particle

¢
k, = partition coefficient

ky, = first order decay coefficients of dissolved toxicant

kaq = coefficient estimated by k_1k; = kS /(1+ k4,S)

k,, = first order decay coefficients of particulate toxicant

k,r =Decay rafe of total toxic substance

koo =DOC partition coefficient

k., = the Henry constant

k.. = lurbulent mixing coefficient in the vertical direction

k, = desorption rate constant of toxic substance to sediment particle
k, = coefficient in Equation (2.4.3.15)

k, = sediment partition coefficient

koo =Ke2Sio

ksz = second order settling coefficient of sediment

vii



k,, = mixing coefficient of sediment along the x axis

kg, = mixing coefficient of sediment along the y axis

k,, = depth average value of k;

k., = mixing coefficient of sediment along the z axis
k =k +k,+v, /H

ky =k, +k, +k; +K,

k, = mixing coefficient of dissolved toxicant along the x axis

k, = mixing coefficient of dissolved toxicant along the y axis

x

k, = mixing coefficient of dissolved toxicant along the z axis

K = dimensioniess term for confaminant mixing coefficient

® v
Kb

]’ ()
Ky =2+ +f, -

L{f} = Laplace transform of a function f

L"(ﬁ(z,q)) = Inverse Laplace Transform for a function AT!(Z,q) with respect to q
L, =L, (x) = Laguerre polynornials

L7 = L7{x} =generalized Laguerre polynomials

m = conceniration of the infrinsic property

my = initial contaminant concentiration

mg = reference level contaminant concentration

M = dimensioniess contaminant concentration

My, = dimensionless initial confaminant concentration

M, = dimensionless reference level contaminant concentration

M, .(x) = one of Whittaker functions

n = coefficient.

N,=BHIA
N,,=CH*/A
N,=CHIB

p = concentration of particulate toxicant
Pa = reference level concentration of particulate toxicant

p. = concenlration of particulate toxicant at equilibrium state

p, = density of sediment.
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p, = density of water,

P, = Peclet number
P, = P,(x) = Legendre polynomials

P>#(x) = Jacobi polynomials

r = toxicant concentration sorbed onto unit mass of sediment
r, = sorption capacity of solid at equilibrium state,

rm = first order coefficient for source/sink term

R = dimensionless coefficient for source/sink term

R. = coefficient in Equation {2.4.4.2.20)

Ry = retardation factor

Re = wd/v = particle’s Reynolds number

s = sediment concentration

Semax = fMaximum volume concentration
s, = the initial sediment concentration in water
s, = reference level sediment concentration
Sp0c =DOC concentration in sediment
s, = equilibrium sediment concentration in water
se,(x.q) = one of the Mathieu functions
t = time
't, = detention time of the instantaneous source
ts0 = half life of a radionuclide
T = dimensionless time
T, = nondimensional bursting period = 100.
T, = temperature in °C
Tea Tep = tolerance val&es appearing in Section (5.2.2)
T, =T, (x) = Chebyshev polynomials
T, ={the ~Tpe M Toer
u = instantaneous velocity of waler along the x axis
us = velocitiy of sediment along the x axis
u. = shear velocity
u= depth-averagé flow velocity
U, =flow velocity at free surface
v =instantaneous velocity of water along the y axis

v = kinematics viscosity of water.



v, = velocity of sediment along the y axis.
Vv, = volume of bed sediment layer
w = instantaneous velocity of water along the z axis

W, =initial value of source,
W(t) = an exponentially decreasing function
W, .(x) =one of the Whittaker functions

X = x coordinate

X = mean sediment diameter

y =y coordinate

Y,{x) = Bessel function of second kind

Z = z coordinate

Z = dimensionless z coordinate

Z,(x)=C,(x)+C,Y,(x) =general solution of the Bessel equation
o = settling velocily of contaminant

o, = sellling velocity of sediment

s
o' = effective sediment seltling velocity

ox = arbitary constant appearing in Model 1

B = ratio of sediment mixing coefficient to momentum diffusion coefficient

B, = correction factor in Equation (2.4.4.2.19)

B, = ratio of contaminant mixing coefficient to mixing coefficient

B, =1+ 2w, lu,)

y =resuspension velocity of sediment from water-sediment inferface

¥ = resuspension velocity of contaminant from water-sediment interface

ys = specific weights of sediment

vw = Specific weights of water,

o = dimensionless factor reflecting the effect of the particle’s shape on settling velocity

oy = standard deviation of sediment distribufion

0'=mobility parameter

0. = particle mobility parameter at initiation of motion (Shields)

¢ = deposition velocity of sediment at the sediment-water interface

$,, = the deposition velocity of contaminant at level a

. = factor expresses the influence of the sediment particles on the turbulence structure of

the Auid

I'(z) = The Gamma function



A= % = dimensionless constant for setiling velocity

Bru,

,=1- % in Equation (2.4.4.2.14)
5

A, =14k 8, -~ in Equation (2.4.4.2.18)
(7]

s
€= fpru,lu

| v, = sedimentation velocity
v, =diffusive exchange velocity of dissolved toxicant

v, = rate of volatilization loss of the dissolved component

r,,.c.= effective current-related bed shear stress

T, = critical bed-shear stress according to Shields criterion

xi
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Chapter 1: Introduction

1.1 Background of water quality modeling related to toxic
substance transport in water environment

The issue of chemicals released into the environment in toxic
concentrations is a major concern in the maintenance of the integrity of the
ecosystem. The toxic substances related to the water guality problems can
be defined as the discharge of chemicals into the aguatic environment, which
results in concentrations in water or aquatic food chains at levels determined
to be hazardous. De Pinto et al (1994, p.1), Ng (2000) and other researchers
mentioned that such phenomena have both acute and chronic effects on the
ecosystem.

The environmental scientists have serious concerns for the
environmental impacts due to the toxic substances because of their special
chemical properties in the water. The toxic chemicals may be absorbed onto
the particles in the water body. Such contaminated particles after being
transported to other locations release toxic chemicals back to the aquatic
environment. Therefore, an instantaneous disposal of toxic chemicals may
generate acute impacts for several days to chronic impacts in time scales
ranging from several years to several decades. The toxic chemicals
concentrated in aquatic organisms may also be transferred up to the food
chain. Humans, thus often consume a significant level of toxic substances
from fish and other aquatic organisms. Lastly, some toxic substances can

significantly pollute the aquatic environment at relatively low concentrations.

Chapter 1, page 1



The environmental engineers should thus seriously consider the impacts
from the disposals of toxic substances.

It is impossible to provide a dense measurement network to monitor
the extremely vast aquatic environment. Instead, measurements can only be
taken at a limited number of points in the area of concemn. Water quality
models are then used to predict the distribution of contaminants in the whole
area. Actions may subsequently be formulated to alleviate the adverse
effects of the poliution. Water quality models, thus, always play an important
role in providing the whole picture of the pollution.

Using mathematical models to investigate the water quality problems
related to toxic substénces is a relatively difficult task. The “prediction”
capability of a model is always related to the properties of the problem to be
investigated. In toxic substance problems, it is important to predict the
proportions of dissolved and particulate components of toxic chemicals. The
difficulties in the formulation of a water quality model for toxic substances
include the modeling of adsorption/desorption interactions between
chemicals and particles, particle settlings and re-mobilizations within
estuaries.

Toxic substances are prone to several physio-chemical interactions in
water such as the diffusive exchange between the sediment and the water
column, the loss due to the biodegradation and volatilization, the sorption and
desorption between dissolved and particulate forms of toxic substances. Not
all required chemicals are affected by all these physio-chemical interactions.

Some chemicals are more volatile and less absorbable to solids while the

Chapter 1, page 2



converse is also true for other chemicals. Since some chemicals are sorbed
into solids and particles, the sediments of the water body become particularly
significant as a potential long-term reservoir of the chemicals. Sedirhents are
thus responsible for the transport of many toxic substances in the aquatic
environment. Therefore, transport models for sediment particles in a water
body can be incorporated into the toxic substance transport models.

It is important to understand the reactivity of toxic substances in
| aquatic sediment for environmental planning assessment. Some research
work such as that of O'Conner (1988) focused on predicting the
concentration distribution of toxic substances in the water environment and
on reaction kinetics of toxic substances in the environment. The distribution
pattern of a chemical in the aquatic environment, however, is also affected by
the dynamic transport phenomena such as the advection transport and the
turbulent mixing. In this research project, mathematical water quality models,
by taking both chemical reactions and hydrodynamic transport phenomena
" into consideration, are developed.

The contaminant transport in the aquatic environment is typically
modeled by using the generalized advection and dispersion equation (ADE).
The solution of ADE's, in most applications, requires discretized numerical
mgthods in order to simulate the transport phenomena in the coastal regions
of complex geometry. The rapid development of computer technology in the
last few decades enhances the possibility and the flexibility of using
numerical modetling for the simulation of contaminants in a complex coastal

environment. Although analytic solutions exist for only a few idealized cases,
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they have important roles in water quality modeling. Some of these roles are
briefly described here. Firstly, analytic solutions offer fundamental insights
into the governing physical processes and facilitate the delineation of the
effects of contaminants of a particular physical/chemical parameter. Secondly,
they offer validation of results using numerical methods and fast prediction
methods for relatively simple cases. Thirdly, closed form solutions provide a
generalization of solutions without the worries of different discretisation

parameters.

1.2 Objective of the project

In this project, a detailed study for the transport of toxic substances in
the aquatic environment is provided. The purpose of the study is to examine
a governing system, which describes most common transport phenomena of
toxic substances in the aquatic environment. The governing system takes
account of the sorption kinetics between toxic substances and sediment, the
hydrodynamic transport of sediment and toxic substances and the
contribution of sediment and toxic concentrations by the settling /
resuspension processes at the sediment-water interface.

Several relatively simpler models with analytic solutions are developed.
The purpose is to formulate some analytical models for toxic substance
transportation in a dynamic water environment and to predict the water
quality after the discharge of toxic substances. The proposed research

provides some useful analytic tools for scientists and engineers to predict the
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vertical concentration distribution patterns of toxic substances in the aquatic
environment of various situations.

While the developed models in the project have constant input
parameters or parameters in specific functions, they do not always
adequately represent the governing system. The governing system has been
analyzed to find the ranges of different input parameters in which the
governing system can be- further simplified with the objective to evaluate the
developed models to adequately represent the system.

Sensitivity analysis of some physical, chemical and mathematical
parameters in the governing system and in the developed models are carried
out. The purpose is to examine the effect on the toxic substance transport by

varying these physical and chemical parameters.

1.3 Scope of the project

In the project, several topics are studied to achieve the goal. Firstly,
the physics of hydrodynamics and the transport of contaminants in water are
reviewed for understanding each physical process and the physical
equations used in the simulation. Secondly, different mathematical
techniques are studied for obtaining solutions from the governing system
formed in this project. Thirdly, the limitations and the complexity of the
governing equations are examined.

A detailed study of the interaction between toxic substances and

sediment is also provided. Included are the different physical and chemical
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parameters involved in the interaction and the effects of such physical and
chemical parameters on the transport of toxic substances in water.

A review is given of previous studies of advection-dispersion
equations solved by analytical solutions. The recent development in this
research area, particularly the mathematical techniques used to solve the
governing system and possible applications of such techniques, are also
included.

A review is given of previous experimental studies related to transport
of contaminants in water. It allows the identification of useful cases or data

for verification and application of the models developed in this thesis.

1.4 Methodology used in the thesis

The thesis concentrates on the theoretical study of the interaction
between sediment and toxic substances and the solutions of the differential
equations adopted for the interaction models. Equations are written for
describing the interaction between sediment and toxic substances in terms of
sorption and desorption. The governing equations include the transport terms
such as advection, diffusion, settiing velocity. The settling and re-suspension
of sediment and toxic substances and the diffusive exchange of dissolved
toxic substances between the water column and the bottom sediment layer
are also considered in the governing equations or as boundary conditions.
Other kinetics reactions, such as the volatilization of dissolved toxicity and
decay are selectively applied either in the egquations or as boundary

conditions based on the nature of toxic substances in each case.
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The governing equations, which are generally second order partial
differential equations, are then solved by different mathematical technigues.
This thesis emphasizes the derivation of closed form solutions from the
governing equations, and therefore some assumptions / simplifications are
inevitable in order to simplify the governing equations to such a level that the
equations may be solved analytically. In addition, the parameter sensitivity
analysis has been conducted to identify how changing the magnitude of each
parameter affects the fate of contaminants. The solutions are verified by
available experimental results in the literature. Efforts have been made to

identify the application areas of the developed models.

Chapter 1, page 7



Chapter 2: Literature review of sediment and toxic
substance transport modeling

2.1 Literature review of sediment transport modeling

The distinguishing property of many toxic substances is their affinity to
surfaces that are provided by solids in suspension and in the sea bed. The
correlative effects of the toxic substanice transport and sediment transport in
the aquatic environment should be taken into account. Several theoretical
models for sediment transports have been solved by analytical techniques.
These models provide the foundation for the present research. The physical
parameters used in sediment transport modeling and models collected from
the former researches are presented in this section. The assumptions,
including the form of the govemning equations, the initial and boundary
conditions and solution techniques are described.

2.1.1 Physical parameters

There are a number of important 'physical parameters in the transport
of sediment particles in a water body. Their physical properties and their
representations must be carefully understood in order to ensure an accurate
estimation of their values or indeed to have acceptable formulae for their
evaluation for inputting into the governing equations of a model.

2.1.2 Sediment settling velocity, @s

The settling velocity of sediment is a function of the sediment size,

shape, density and water viscosity. The sizes of suspended solids found in

natural water lie between 0.0005mm (fine clay) and 6mm (fine gravel). The
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simplest formula for the settling velocity of a particle is the Stokes’ law

(Chapra, 1997, (p-300)):

_ 2
o, =0%[Mjg_ (2.1.2.4)
Yw v

where g =gravitational acceleration, y, = specific weight of sediment, y, =

specific weight of water, d = sediment diameter, ¢ = a dimensionless factor
reflecting the effect of the particle’s shape on the setting velocity (for a
sphere it is 1.0), and v = kinematic viscosity of water in m%s. The settling
velocity calculated by Stokes’ law, lies between 107 m/s and 0.6 m/s. The
value of the kinematic viscosity is a function of water temperature (Van Rijn,
1993 (p3.2)):

v=107(1.14-0.031(7, - 15)+0.00068(T, -15)°) (2.1.2.2)
where T, = temperature in °C. The terminal fall velocity of spherical sediment

particles can also be determined by the following formuiae (Van Rijn,1984):

_ 2
o, = LT | 4 qcgs<100um (2.1.2.3a)
180 v v .

5 d 2

v

3 0.5
© 2&{[”0.01(35—1)@1 J —1} for 100 < d <1000 m (2.1.2.3b)

w, =1.1(s, -1)gd]*>* for d>1000um (2.1.2.3¢)
5, =2.65
Richardson and Zaki (1954) developed an equation for effective settling

velocity (w,"), considering the effect of sediment concentration (s):

w,'=w (1-(s/p,)) (2.1.2.4a)
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j=(4.45+18d/H)Re™®' (2.1.2.4b)

where o,' = effective setlling velocity, s = sediment concentration, Re =

wsd/v = particle’s Reynolds number, H = depth of flow, p, = density of

sediment. Oliver {1961) also formulated an expression for the settling velocity

as affected by the effective sediment concentration (s} and is shown as
follows:

w,'=(1-2.15(s/ p, N(1-0.75(s/ p. )** o, (2.1.2.5)

Cheng (1997) developed a formula for the settling velocity of natural

sediment particles over a wide range of particle Reynolds number Re:

o, =§(,/25 2D,y -5)° (2.1.2.6)

in which D, =d{(p, / p—1)g/v?)¥* = dimensionless particle parameter
2.1.3 Sediment tdrbulent mixing coefficient, k.

Four commonly used distributions for the sediment turbulent mixing
coefficient with depth, namely constant, linear, parabolic and parabolic-
constant distributions, are found. The parabolic distribution is the most
physically satisfactory one because it is based on a linear shear stress
distribution and a logarithmic velocity profile. The expression for the parabolic
distribution of the sediment turbulent mixiﬁg coefficient is as follows (Van Rijnr,

1993 (p7.53)):
k, = ﬁxu,z(1—-z—J (2.1.3.1)
H
in which H is the water depth, x is the von Karman coefficient { = 0.4 for clear
water), B is the ratio of sediment mixing coefficient to momentum diffusion
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coefficient (can simply be assumed to be unity) and v, is shear velocity.
Based on the expression for the parabolic distribution of the sediment
turbulent mixing coefficient, the range of the sediment turbulent mixing
coefficients obtained by the distribution lies between 0 and 0.258xu..

The parabolic form has a weakness that the value of the mixing
coefficient near the free water surface is close to zero. This means that there
is nearly no sediment mixing near the free surface level, which is an
unrealistic situation. The expression of the parabolic-constant form assumes
that the value of the mixing coefficient from the middle level to the free
surface to be constant and equal to the value at the middle level of the water

column.

The value of the shear velocity can be found by the following formulae

(Van Rijn, 1993 (p7.27)):
U, =JT0e/Pu (2.1.3.2)
or u, = \/'gﬁ for open channel flow (2.1.3.3)
in which / = water surface slope or energy gradient, p, = density of water,
and 7, = effective current-related bed shear stress. Han and He (1999)

provided the following formula for the shear velocity:

g

u, = (2.1.3.4)

6_5(5]/(4+uog(%1}
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in which: # = depth-average flow velocity. Equation (2.1.3.3) is difficult to
apply since the value of / is not easy to identify. Equations (2.1.3.2) and
(2.1.3.4) are more useful.

The value of 8 is contributed to by two parts 8, and ¢, as follows (Van Rijn,
1993 (p7.55)):

The value of B can be found by the following formula:

2
B, =1+2[&J for O.1<—Z)—S<1 (2.1.3.6)

The factor ¢, expresses the influence of the sediment particles on the

turbulence structure of the fluid and is important for cases in which the overall

suspended sediment concentration (s) is higher than 10 kg/m®. ¢, can be

determined as follows:

0.8 0.4
b, = 14| —o ) fors>2.5kg/m®  (2.1.3.7)
0.65p, 0.65p,

2.1.4 Sediment deposition flux to bottom layer, De

The amount of sediment, which settles from a water column to a bed
sediment layer and entrains from the bed sediment layer to the water column,
should be accounted for in specifying the boundary conditions in a toxic
substance transport model. The most common approach to simulate the

deposition flux, De, is to calculate the product of the effective settling velocity

(w, ) and sediment concentration at the bottom level (s|z=o ). Some examples

using the approach include Celik and Rodi (1989) and Cheng (1984).
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De=w, xs| (2.1.4.1)

Thus, the value of De depends on the sediment concentration at the bottom

level and it varies with time owing to the changes in slz=0 until the sediment

concentration profile becomes steady.
2.1.5. Sediment entrainment flux from bed sediment, Ent

A common approach to the bed entrainment is based on the
assumption that the entrainment occurrs at the same rate as the deposition in
the case under equilibrium conditions (Celik and Rodi, 1989). The equilibrium
near-bed concentration can be computed by using empirical relationships or
transport capacity formulae with the aid of an equilibrium-concentration
profile assumption and velocity distribution.

Ent =, xs, (2.1.5.1)

The amount of the entrainment flux highly depends on the value of the
reference level equilibrium concentration s, which is discussed in the next

section.

2.1.6 Reference level equilibrium sediment concentration, s, and
reference level, a

The most logical reference level (a) of the sediment concentration
profile is the upper edge of the bed-load layer {(Van Rijn, 1993 (p7.61)), which
is defined as the moving layer with roliing, sliding and saltating of the bed
sediment (Van Rijn, 1993 (p7.2)). The reference concentration (s;) is defined
as equal to the bed-load concentration. There is a minimum value of a, which

equals 0.01 times the water depth. The value of a should be equal to 0.01H if

Chapter 2, page 13



the estimated value of the reference level by any formula is less than this
value. For a flat bed, there are several formulae to estimate the value of a
and s,. Van Rijn (1984) assumed that the motions of bed load particles were
dominated by particle saltations under the influence of hydrodynamic fluid
and the gravity force. He also assumed that the height of the reference level
as the saltation height of the bed-load particles. The expression yields a

value of the reference level in the range of 2 to10d,,. Formulae for a and s,

are as follows:

a=0.3d,D,"'T° (2.1.6.1)
s, =0.188ymm 2: 7, /D. (2.1.6.2)

S,me =Maximum volume concentration (=0.65)
d, = median particle diameter

Tr = (Tb.c T Ther )/Tb.cr
‘1, =effective current —related bed —shear slress

T, =Ccritical bed -shear stress according (o Shields criterion

v = kinematic viscosity
s, = p, !/ p, =relative density of particles

and D, =d((p, ! p -1)g/v?)" =dimensionless particle parameter
The value of the critical bed shear stress can be found from the Shields’
curves (Van Rijn, 1993 (p.4.4)). The value of the effective bed-shear stress
can be found by the following formulae:
Tpe = P, TIC"Y (2.1.6.3a)
C"=18log(12H/3dy, ) (2.1.6.3b)
dgo is a particle diameter such that 90% of the particles have diameters less

than dgg. T is the depth-averaged velocity (m/s) and C" is in m®%/s.

Chapter 2, page 14



Some other expressions for the reference level and reference level
sediment concentration are provided by Einstein (1950), Engelund and
FredsJe (1976), Smith and Mclean (1977) and Zyserman and FredsQe
(1994).

Cao (1999) computed s, by the turbulent bursting approach and

derived the following formulae:

a=108'd (2.1.6.4)
§'m—te mobility parameler (2.1.6.5)
(ps - p,)od

Two approaches, inner-scale law and outer scale law, are used to compute
the value of the entrainment flux.

For inner scale law:

Ent = p, (s —T)gd 2eoma 8719 (. 5 1, (2.1.6.6)

TV,

in which 8, = particle mobility parameter at initiation of motion (Shields),
which is a function of D., A; = coefficient associated with the average area of
turbulent bursts per unit bed area = 0.02. T/ = nondimensional bursting

period = 100. Spmax = 0.65.

For outer scale law:

A
Ent = p_.J/(s—1)gd M(@'-ac,)um (2.1.6.7)
T, e, H
where U,, = flow velocity at the free surface.
Cheng (1984) provides a semiempirica! formula for the concentration

of suspended sediment at the reference level s,, which is:

Chapter 2, page 15



»y n E3 n
s, =K s 2.16.8
’ OTS[ys_yw] l:gstj| ( ‘

where U = average flow velocity, ko = 0.000147; n = 0.92, ys=2.65y ; y =

(1000kg/m’)g.
2.2 Analytical solutions for advection and dispersion
equation (ADE)

The general form of the advection-dispersion equation for describing

contaminant transport {m) in three-dimensional space is as follows:

2 ’k,m @2
om __dum _ovm _owm + 9 k"zm +—2—+ 9 kzzm +sources/ sinks {2.2.1)
ot ox oy 0z ox oy 0z
where u, v and w are the instantaneous velocities along the x, y and z axes,

respectively. k,, k, and k, are the mixing coefficients along the x, y and z

axes, respectively. The governing equation for describing the transport in
one-dimensional space is:

om _ _oum a’k.m

+sources/sinks (2.2.2)

ot ox  ox?
As indicated in the pervious sections, ADE can often describe thé transport of
toxic substance. The following paragraphs review the former research
studies, which derive analytical soluti;:ms from different cases of ADE.
Mei (1969) developed a model for suspended sediment at steady state
condition. The model is a two dimensional model in the flow and the vertical
directions. The model assumes a constant settling velocity and turbulent

mixing coefficient. It also assumes that the effect caused by the turbulent
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mixing in the flow direction is much less than the effect of the flow velocity.
Thus the term accounting for the mixing can be neglected in the govemning
equation. There is no suspended sediment initially at x = 0. The boundary
condition at the bottom is assumed to be uniform and steady. On the water
surface level, the model assumes no diffusion exchange of sediment through
the surface. The model was finally solved analytically by using Laplace
transform as the main mathematical technique.

Hjelmfelt and Lenau (1.9?0) formulated a model similar to that of Mei
(1969), but with a major difference in that the turbulent mixing coefficient was
changed from a constant value to a parabolic distribution. The model was
solved analytically by using the method of separation of variables and the
solution of Hypergeometric Differential Equation.

Based on the model of Mei (1969), Zhang (1980) developed a solution
taking into consideration for the resuspension of sediment from the bottom
sediment layer. The model assumed a normal distribution of the sediment
concentration as the condition at the inflow boundary.

Zhang and Xie (1993) provided a model with a parabolic distribution of
the vertical turbulent mixing coefficient. The model considered the settling
and resuspension exchange of sediment at the bottom. At the entrance, two
distribution functions for sediment concentration were considered, 1. a
general deposition case and 2. a point source case at some levels of the

entrance section.
Cheng (1984) developed a one dimensional, time varying model with

analytical solutions for the non-equilibrium transport of sediment. The model
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considered the settling and resuspension exchange of sediment at the
bottom.

Barry (1989) developed a time varying, one spatial dimension in the
water flow direction advection-dispersion model for the transport of
conservative sub_stan.ces. The model allowed the flow velocity and turbulent
mixing coefficient to be functions of time.

Runkel (1996) developed an- analytical soiution to the constant
parameter advection-dispersion equation for a continuous source with finite
duration. A one dimensional, semi-infinite domain and time varying model
with first order decay term in the goveming differential equation was
presented. Zero initial concentration, zero concentration at infinite travel
distance and fixed concentration at zero travel distance were set in the
governing system.

Choy and Reible (2000) listed several advection-diffusion models with
semi-infinite domain. All models assumed zero concentration gradient at
infinity. Some models assumed a constant concentration at inlet boundary
while some models assumed a constant flux at the inlet boundary. Some
models allowed a finite-time pulse of contaminant input to the system. All
models allowed an initial value of contaminant concentration and some
models allowed uniform initial concentration cabped by a finite region of a
different uniform initial concentration.

Prakash (2000) developed a one dimensional, time varying advection-
diffusion model to simulate contaminant transport in soil, which allowed an

exponential grdwth/decay of contaminants at source. The model used a
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semi-infinite boundary and assumed initial zero concentration along the soil

column.

2.3 Analytical solution of ADE for multi-layer media

Some diffusion models as well as advection-diffusion models have
been developed for contaminant transport through two or several
homogeneous media layers. Most are used for the contaminant transport in
soil layers. The most difficult task for the development of such models is the
consideration of the interaction between layers. A review of these kinds of
“models is given below.

Al-Niami and Rushton (1979) developed analytical solutions for
dispersion in stratified porous media. Two different situations were
considered, flow parallel to the stratification and flow perpendicular to the
stratification. The first model considered a two-layered porous medium in
which the direction of flow was parallel to the interface. A model of two spatial
" dimensions, time varying transport of contaminants was developed. The
governing equation for each layer considered longitudinal velocity and
dispersion in both dimensions. Initially zero concentration of contaminants at
both layers was set. At the interface, the continuity of concentration and the
concentration gradient was set. A zero concentration gradient was set at
other boundaries. The system was solved analytically under the assumption
of equal magnitudes of lateral dispersion coefficients in both layers. The
second analytical model considered contaminant transport through a three-

layer medium. A one dimensional, time varying model was developed. The
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govemning equation for each layer considered flow velocity and diffusion of
contaminants in the medium. Zero initially concentration has been set in the
system. The model did not consider the interaction at interfaces, but used the
concentration profile generated from the first layer as the input to the 'Iayer 2
and similarly for the layer 3.

Leji and Van Genuchten (1995) developed an approximate analytical
solution for contaminant transport during steady state flow in a two-layer
medium requiring continuity of contaminant fluxes and resident
concentrations at the interface. A one dimensional, time varying model with
semi-infinite boundary was derived. The governing equation for each layer
considered the flow and diffusion 6f contaminants in the layer. The partial
differential equations were augmented by a zero initial condition, a flux type
(third type) inlet condition, continuity of concentration (first type) or continuity
of net fluxes (third type) interface conditions, and a zero gradient at infinity as
boundary conditions for the governing system. The sclutions were derived
- with Laplace transformations making use of the binomial theorem.

Liu, Ball and Ellis (1998) used a generalized integral transform method
to derive an analytical solution to the one-dimensional solute advection-
dispersion equation in multi-layer porous media. The continuity of
concentration and the concentration gradient were considered at interfaces.
A flux type inlet condition was used and the inlet flux was allowed to change
temporally.

Choy and Reible (2000) considered diffusion models for contaminants

in two or three homogenous soil layers. Governing equations of each layer
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included the diffusion ang first order decay of contaminants. All models
allowed an arbitrary initial concentration at each layer and assumed a zero
flux at the base. Some models assumed a zero concentration at the surface

while others considered mass transfer or reaction at the surface.

2.4 Literature reviews of toxic substance transport modeling

In the following sections, the basic parameters in toxic substance
transport models, followed by existing toxic substance transport models are
reviewed. The assumptions and application limits of these models are noted.

2.41 Parameters for modeling of toxicant transport in aquatic
environment

The concentration distribution of toxic substances in a flowing aquatic
environment depends hot only on general hydrodynamic transport factors,
such as advection and turbulent mixing, but also on chemical reaction
kinetics. The most important characteristic of the transport process of toxic
substances is the unsteady sorption interaction between the dissolved and
particulate components. Parameters that appear commonly in the transport
models are listed below:

1. Parameters for hydraulic transport of toxic substances:

Advection: agCT . This first order derivative term in the governing
X

equation is used to describe the transport of contaminant by water

flow.
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Diffusion/turbulent mixing:a—a{ xaaﬁ] This second order derivative
X X

term in the governing equations is used to describe the transport of

contaminants by turbulent mixing, diffusion or dispersion of water.
. Oo,p , ,
Setthng.——é-;-—. The particulate toxic substance settles to the bottom

layer due to the particle settling. The motion can be described by this
first order derivative term in the goveming equations.
Sourcefloading:w . The term for source or loading of toxic substances
to the water column can be added to the governing equations or
boundary conditions.
2. Parameters for chemical kinetic terms for toxic substance transport in
aguatic environment:

Adsorption/Desorption: k.c;k,p . The first order terms in the

governing equations are used to describe the sorption exchange
between dissolved and particulate toxic substances.

Decay due to microbial decay, photolysis and hydrolysis : k ¢, . The

first order term in the governing equations describes the loss of toxic
substances due to the above chemical processes.
3. Kinetic terms for toxic substance exchanges between an aquatic
environment and an air above water surface:
Volatilization:v,¢. Volatilization loss of dissolved contaminant can be
described by this term in the boundary conditions at water surface.

4. Exchange of toxic substances between water and bed layer:
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Diffusion exchange:v,c, u,c,
Deposition: ¢p,
Resuspension: yp,

The above first order terms in boundary conditions at the water-sediment
interface are used to describe the exchange processes of dissolved and
particulate toxic substances between the water column and the bed sediment

layer, in which ¢ and p are dissolved and particulate toxic substance

concentration, and ¢ +p =c¢, = total concentration of toxic substance. k,

sorption rate constant of toxic substances to sediment particles. k&,

desorption rate constant of toxic substances to sediment particles. k, is the
contaminant mixing coefficient in x-direction, v is the flow velocity in x-
direction. v, is the rate of volatilization loss of dissolved toxic substances. v,
is the diffusion exchange velocities at water-bed sediment interfaces. ¢, and
pa are reference level concentrations of dissclved and particulate toxic
substances at bed sediment layers respectively. ¢ is the deposition velocity
of sediment at sediment-water interfaces. y is the resuspension velocity of

sediment from water-sediment interfaces.

2.4.2 Instantaneous and noninstantaneous equilibrium for sorption
mechanics in toxic substance transport modeling

The sorption interaction between the dissolved and particulate
components tends to a state of equilibrium. The time required to achieve this
condition markedly depends on the characteristics of the chemical and

sorbent. If the rate of achieving equilibrium is much faster than the other
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kinetic routes, such as decay and volatilization, a state of instantaneous
equilibrium may be assumed.

In an instantaneous equilibrium, the governing equations of the
transport of toxic substances in the water column can be reduced to a single
equation by applying the concept of partition fractions. If instantaneous
equilibrium does not materialize, at least two governing equations must be
set for both dissolved and particulate components. The assumption thus
separates the transport models into two different kinds. As there is only one
partial differential equation when assuming instantaneous equilibrium, the
model allows the consideration of more parameters, especially some
dynamic transport terms, which are first or even second order partial
derivatives in the establishment of the analytical solution.

2.4.3 Existing models for toxic substance transport without assuming
instantaneous equilibrium for sorption mechanics

O'Conner (1988) proposed some equations and solutions for the
steady-state distribution of sediment and sorption chemicals in freshwater
systems. The first model assumes a constant concentration of suspended
sediment and considers the partition exchange between dissolved and

particulate toxicants, and loss by volatilization. The governing equations are:

dc 3
— =k +-L)+k 2.431
™ ~{k, o )c+k,p ( )
dp
L =kc-k 2432
dt ' [+ pp ( )
The initial condition is:
€ = Cg = Cro = initial total concentration (ie. p =0}
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in which v, = coefficient due to volatilization loss of chemical, ¢ = dissolved

concentration; p = particulate concentration. The solutions to the two

differential equations are:

€ =Cro(fi 8™ + £ e7h ") (2.4.3.3)
" p=cCo(-f e +f e . (2.43.4)
in which
fy =k, Ik, +k,) (2.4.3.5a)
f, =k, ik, +k) (2.4.3.5b)
k =k, +k,+ -‘fg (2.4.3.5c)

The second model is a modification of the first one, and takes further
account of the dissolved and colloidal organic matter by assuming this matter
is proportional to that of the particulate sediment concentration (s), leading to:

dcy

— = (ke +ksJos +koprkic, (2.4.3.6)
d; =k,c, —k,C, _ (24.37)
% —k,c, —k,p (2.4.3.8)

in which ¢, = dissolved concentration in water, ¢, = concentration of

toxicants in  colloidal organic matter, total concentration =

Cr=Cy,+C,+pP=C+p;Kk,= adsorption coefficient for transfer of toxicants
from ¢, to ¢ and vice versa for k,. The solutions of these three equations

are as follows:
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i—Ee——( 1 1 Je"’+ﬁ—e‘*f‘ (2.4.3.9)

c; Cr 1+kdds_1+kds 1+ kS
Ky =k, +k, +k, +K, (2.4.3.10)
Kk, +k K, +k K
hx el TR T RT (2.4.3.11)
3
Ke o KaS (2.4.3.12)
kr 1+kg,s

and c, =concentration of dissolved toxicant at equilibrium state.

There are also other models for modeling the sorption of toxic
substances to sediment. For the case of extremely low heavy metal ion
concentrations, the Henry model is similar to O'Conner's (1988) model
except that it does not consider the effect of volatilizaﬁon and decay. Th.e
system and sorption isotherm of the Henry model are given below (Huang

and Wan, 1997).

dp

— =k, c—-k 2.4.3.13
T ( )
p. =kyC, (2.4.3.14)

in which p, =concentration of particulate toxicént at equilibrium state, k,, =
the Henry constant.

Under the condition of toxic substance concentrations in common
range, either the Freundlich model or the Langmuir model can be applied.
Freundlich model uses the same reaction equation as the Henry model but a

different sorption isotherm, that is (Huang and Wan, 1997):

p,=r.s=ksc," (2.4.3.15)
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in which r, = sorption capacity of sediment at equilibrium state, &, and n are

coefficients. It is a pure empirical formula.

The system of Langmuir model is as follows {Huang and Wan, 1997):

P _gclb-r)-k,p | (2.4.3.16)

ot -

p, =2 (2.4.3.17)
ks+c,

in which r = sorption capacity of sediment, b is the maximum sorption
capacity of sediment, and k =k, /k,.
Another popular model is the BET model as follows (Chapra, 1997, (p.717)):'

bB_c

r= (2.4.3.18)
(¢, —c)1+(B, -1)c/c,)]

p=rs (2.4.3.19)

in which B and ¢, are calibrated coefficients.

Huang and Wan (1997) developed two sorption models for cases of
. extremely low and common range heavy metal concentrations in the water
phase. The models assume complete mixing of toxicants in the environment
for conservative chemicals and given initial values of the dissolved and
particulate components of toxic substances. |

2.4.4 Existing models for toxic substance transport at instantaneous
equilibrium for sorption mechanics

2.4.4.1 Partition fractions
The most important concept for toxic substance transport models is

the assumption of instantaneous equilibrium for the sorption interaction
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between dissolved and particulate components and the resulting definitions
of partition coefficients and partition fractions. Partition fractions are fractions
of dissolved and particulate toxic substances at local equilibrium conditions.

The partition fraction for dissolved components, f,, and particulate toxic

substances, f,, are respectively expressed as follows (Thomann and Mueller,

1987 (p.508)):
f, = 1+Lds, - 1:‘;:3 (2.4.4.1.1)
c=f,cip=Fc; (2.4.4.1.2)
f,=1-f (2.4.4.1.3)

k, = % (2.4.4.1.4)

where r, is the sorption capacity of sediment at equilibrium (dimensionless)
and c, is the dissolved toxicant concentration at equilibrium. These two

expressions are sufficiently general to cover various situations.

There are also other possible expressions based on sorption
interactions between. dissolved and particulate toxic substances such as the
Henry or Langmuir model. The equilibrium condition of these models can be
converted to the partition fractions for dissolved and particulate toxic

substances.
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2.4.4.2 Existing models

Several models have been developed for modeling the fate of toxic
substances in water under the cbmpiete mixing condition. In natural
environments, toxic substances in water often interact with the suspended
sediment as well as the bed sediment. The settling/resuspension of
particulate toxic sﬁbstances and diffusion exchanges of dissoived toxic
chemicals in the waterbed interface should thus be considered in the models.

O'Conner (1988) developed a model for sorption of toxic substances
in well-mixed water environments (such as reservoirs) with a settling /

resuspension of sediment at the bed layer. The fraction of the dissolved, f,,
and particulate toxic substances, f, , in water are related to the concentration

of suspended sediment in water, and should be functions of time as the
sediment concentration changes with time by settling / resuspension at the
bed layer. The concentration of suspension sediment (s) is found by solving

the foliowing governing equations:

ﬁz_%s+%sa (2.4.4.2.1)

The solution ts:

@y

s=5,+(s,-8,)e " (2.4.4.2.2)

in which s,,s,.s =% are the initial, reference level and equilibrium

al e
s

sediment concentration in water. w,and y are the settling and resuspended

velocities of sediment, and H is the water depth.
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The eqguations for total toxic concentrations in water, ¢, , and bed

sediment layers, ¢,,, are given as follows:

dc v, w, v

dtT =—fd 7 CT _fp H cT +_’-; [fdbch —deT]-f-—'%CTb (24423)
d(V,c

_(“é't_m_) = fpa’sAbcr - J’fpbAbch —UA, [fdbch “fdcr] (2.4.4.2.4)

in which: V, = volume of bed sediment layer, A, = area of bed sediment

f

» ~ 1 are dissolved and particulate fractions in the bed

layer, f,, ~1/k,,S

a
layer and are constant for constant s,, v, is the transfer coefficient of
dissolved exchange. Assuming the value of c,, is a constant and equal to
that at equilibrium, the system can then be simplified to a single equation for
Cr.

O’Conner (1988) also developed another model for constant values of

f,and f,, and instantaneous releasing of a conservative substance with the

suspension sediment at equilibrium.

dc c @, @, Y

dtT =_t—:_fp-CT +#[fdbcﬂ: _deT]'*'ECTb (2.4.4.2.5)
dc O 14 v v

d;b =1, H_bcr '—F{:fpbc?'b _H_;[fdbcm —fdcT]_H_ZCTb (2.4.4.2.6)

in which v, is the sedimentation velocity, H, is the depth of bed layer and,
f,is the detention time of the instantaneous source. The solution of ¢; is as

follows:

¢, =Be" +De" (2.4.4.2.7a)
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(% +K; +KT,,J
Lh=~20 3 (1t N) (2.4.4.2.7Db)

p!

{% "%,)
N=|1- 2 (2.4.4.2.7c)
(%} +K; +Kn,)

K, = fp%+ fd%’ (2.4.4.2.7d)
v Y g U

K. —=—t 4 ¢ L f 24427e

™ H, H, ®H, ( )

The values of B; and D; may be found from the initial conditions.

The above two modeis assume constant sediment concentration in
water. If the sediment concentration changes with time, such models are
much more difficult to be solved analytically. However, for a conservative
substance in a system with zero inflow of solid and toxic concentration, and
the solids that are introduced as a delta function settle without scour (i.e.

s, =0;t, =), the system can then be simplified by applying the initial

condition ¢; = ¢;, and becomes as follows:

dc, )
—Y =-f(t)=c 24428
p” o )H T ( )
f, = KaS (2.4.4.2.9)
1+ k,s
Dy
s=§,e ” (2.4.4.2.10)

The solution is:
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ey

L _ A AN (2.4.4.2.11)

Cro =0
For the case of an instantaneous release of sediment and a volatile non-
conservative chemical without diffusive exchange with the bed in a system

with infinite detention, the governing PDE for ¢, is changed as follows:

‘Li; - -[de +f, Uﬁ +f, %}cr (2.4.4.2.12)
The solution is:

;_TTD - e,-'["‘”%]’(r:,|,:0 +fp|t=oe_%‘ % (2.4.4.2.13)

A = 1-%5 (2.4.4.2.14)

in which k; is the decay coefficient of the total chemical concentration.

In the case where the settling of suspended sediment follows the second

order dynamics, then we have:

ds 5

% - ks 244215
dt 52 ( )
s _ ] (2.4.4.2.16)
S, T1+k,t :

Ko =K.,S, (2.4.4.2.17)

in which ks is the second order settling coefficient of sediment.
Substituting this solution of the suspended sediment to the governing

equation of the above case for non-conservative chemical fields, the

following solution of ¢, can be obtained.
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(1475, koot (2.4.4.2.18)
1+ksot

L exp[ (kg + T )t:l

Cro

in which: 3, =14k S, 2

5

O'Conner (1988) also developed a model for a non-conservative
chemical as a continuous, but time varying input to the system. An
exponentially decreasing function W(t) for the input source was assumed.
The sediment concéntration was assumed to be constant. The exchange of
the dissolved chemical between the water and the bed was considered. Thus,

the governing equation and solution are as follows:

de, W(t) ¢, o,
=l Tk o ~Bf Zfg 244219
dt H to i ﬁc ? “ ! ( ) .

W(t)=W,e™™ (2.4.4.2.20)

W,| e —exp{ ( L +ky + B, Jt}
by * H 1 R
= + Cypo €XP| — E+kﬂ+ﬁcfpﬁt

or = 1 w
H(t_ +hy + 8.1, F" _R°J

0

(2.4.42.21)

in which W, =initial value of source, 8. is a correction factor, and R; is a

coefficient.

Chen and Tay (1996) developed a numerical model taking diffusive
exchanges of toxic substances between water and the bottom layers into
consideration. The model considers dissolved toxic concentrations,
particulate concentrations, concentrations in active bottom layers, and

inactive bottom layers. Hwang, Jun, Lee and Lung (1998), investigated the
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effects of DOC, a filterable colloidal phase on the toxic concentration in the
water column. DOC binds chemicals and makes them unavailable for vertical
diffusiveé exchanges. A three-phase partitioning model that consists of free-

dissolved, DOC-bound, particulate-bound components of the chemicals is

developed. The three-phase partition fractions for dissolved free chemical, f/,

DOC-complexed chemical, f7°°, and particulate, £,, are as follows:

f = Sk (2.4.4.2.22)
sk, +1+Sp0ckpoc

fl = 1 (2.4.4.2.23)
sk, +1+Sp0ckpoc

fooc __ SoocKpoc (2.4.4.2.24)

d Sk, +1+ SpocKpoc

in which: k, =sediment partition coefficient, k,,. =DOC partition coefficient,

and s,,. =DOC concentration in sediment.

O'Conner (1988) also introduced a model for steady —state distribution
of sediment and sorptive substances in freshwater streams and rivers. The
model considers a volatile, non-degradable chemical in water in the main
flowing direction of water. The suspended sediment disperses along the
water flow direction with constant flow velocity. Analytical solutions are
derived for constant values of the coefficient of volatilization, the partition
fractions for the bottom sediment layer and constant total toxic concentration

in the bottom sediment layer.
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2.5 Mathematical techniques for solving second order partial
differential equations (PDE)

In the fields of water quality modeling and hydrodynamics, the
governing equations used to simulate the fate of contaminants are often
advection-dispersion equations (ADE). ADE is a type of second order PDE
and therefore corresponding mathematical techniques should be reviewed.
Some common solution methods are mentioned in the following paragraphs.
Generally, the way to solve a second order PDE system is to first apply
appropriate  mathematical methods, such a transform method to the
governing system. The governling system will then be transfbrmed into a
number of ordinary differential equations (ODE) and hence can be solved
analytically.

2.5.1 Separation of variables
One of the most common techniques for solving PDEs is the separation of
variables. The approach assumes the dependent variable in a system to be a
product of several functions, each of which depends on only one of the
independent variables. For example, consider a governing system which has
a dependent variable, ¢ and independent variables, x and t. The solution of ¢
is then assumed as follows:

c(x,t)=F(x)G(t) (2.5.1.1)
By differentiating the above equation we obtain

2 - 2 ..
5—2C=FG and Q—S:FG (2.5.1.2)
ot ox

in which the dots represent derivatives
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We then substitute such partial derivatives (first and second order) into the
govemning equation. The method works if all derivatives of functions F and G
can be separately grouped each group equaling the same constant. The
resulting ordinary differential equations can then be solved by standard
methods.
2.5.2 Integral Transform Method
Other than the method of separating variables, various integral transforms
are widely used to solve second order PDEs. Common integral transforms
include Laplace, Fourier, Mellin, Hankel and Meijer transforms. Some are
described in the following paragraphs.
2.5.2.1 Laplace Transform

The Laplace transform is a useful tool to solve ADEs cases of PDEs.
Goveming systems of models appeared in Mei (1969), Cheng (1984) and
many other former works are mainly solved by Laplace Transform. The

Laplace transform, L{f}, of a function f(x)defined on (0,oo) is (Lokenath,
1995, (p.83)).
F(s)=L{f}=[ e f(x)dx (2.5.2.1.1)
A function depending on more than one variable, such as, the transform of a
function M(Z,T ) with respect to T, is defined as M(Z,q),
M(Z,q)=["e""M(Z,T )dT (2.5.2.1.2)

The main properties of the Laplace transform include linearity and
expressivity of transforms of higher order derivatives in terms of those of the

lower order. For linearity, the Laplace Transform of the linear sum of two or
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several Laplace transformable functions is (Polyamin and Manzhirov, 1998,

(p-710)):
L{af(t)+bg(t)} = aL{f(t)}+bL{g(t)} (2.5.2.1.3)
in which a and b are constants.

The properties of Laplace Transform for derivatives are:

"M
aT”"

7=} =q"M(Z,q)~ q""M(Z,0) - "°M"(Z,0) -... - M""(Z,0)

(Polyamin and Manzhirov, 1998, (p.710)) (2.5.2.1.4)

2 2 254
£a® Af —a2 - L{M}—a———a M(/';',q)
oz o7z 6z

(Lokenath, 1995, (p.91)) (2.5.2.1.5)

In general, Laplace Transform and its derivative properties are applied to the

governing equation in a system. The method converts the governing equation

to a second order ODE in the variable Z. The solution of A??(Z,q) is found by
solving the secbnd order ODE. Finally, the inverse Laplace transform is

applied to convert the solution of M(Z,q}to M(Z,T ). The definition of inverse

Laplace Transform, L‘1[ﬂ{Z,q)‘, for a function A??(Z,q) with respect to g is

(Lokenath, 1995, (p.84)):

L [A"/}'(z,q )] =M(Z,T)= -éf_ [ e M(Z,q)dq (2.5.2.1.6)
7T Y

There are only limited analytical solutions for specific functions of A"/?(Z,q)

and numerical integrations is needed for other forms of M(Z,q).
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In Inverse Laplacé transform, there is also a rule that (Polyamin and

Manzhirov, 1998, (p.725)):

@R
f(x) = go' (lk)exp (2.5.2.1.7)
for Q(p) = constant™(p-11) (p-12)... (P-A7) (2.5.2.1.8)
| _Rlp)
And L[f(x)]= ) (2.5.2.1.9)

where the prime denotes derivatives. The above rule can be widely used to
find the inverse transform of L[f(x)] in terms of a polynomial. The rule is also
useful for finding the approximate solution of f(x) in which the solution of

L[f( x)] is expressed as a combination of other functions and each can be

represented by a polynomial.
2.5.2.2 Fourier Transform

Fourier Transform is another common too! for solving second order

PDEs. The definition of Fourier Transform, ?(u), of a function f{x) is:
-~ 1 .
f(u)=——=| f(x)e ™ dx i?=-1 25221
(w)==L. ( )

Useful properties of Fourier Transform include Linearity and Scaling.

The definition of inverse Fourier Transform is:
1 w = p?
f(x)=——| f({u)e™du 2.5.22.2)
(x) x/ﬂj‘“’ (u) (

Fourier Sine and Fourier Cosine transforms are developments from the

Fourier Transform and are also and they are also useful for solving second

order PDEs.
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2.5.3 Special functions and their properties

During the process of solving a second order PDE, it is common to
encounter governing equations which include special form terms. Therefore,
the solutions and properties of such functions should be reviewed. Examples
include Error function, Gamma and Beta functioné, Hyperbolic functions,
Hypergeometric fuﬁctions, Bessel functions, Hankel functions, Legendre
functions, Chebyshev functions, Hermite polynomials, Whittaker functions
and Jocobi polynomials. Some are general functions with special forms while
others are solutions of specific second order ODEs. A selection is described
in the following paragraphs.
2.5.3.1 Er;or function

The definition of an Error function, erf x, is:
erf x == [ exp(-t? )at (2.5.3.1.1)
\/; ]

The Error function often appears in the solution of second order PDEs.
Examples include the solutions of the models appearing in the work of
Alshawabkeh and Adrian (1997), Runkel (1996) and Formica et.al (1988).

2.5.3.2 Gamma and Beta functions

The Gamma function, F(z); is an analytic function of the complex
argument z everywhere except at the points z=0, -1, -2,...
I(z)= j:“tz-1e-'dt (2.5.3.2.1)
The definition of a Beta function, Bfa{x,y), is:

Bta(x,y) = [t*'(1- )"t (2.5.3.2.2)
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where x and y are both real and greater than zero. He relationship between
the Gamma and Beta Functions is |
Bta(x,y) = T(x){y)/T(x +) (2.5.3.2.3)
Gamma or Beta functions appear frequently in the solution of second order
PDEs. An example is the solution of the model in Hjelmfelt and Lenau (1970).
2.5.3.3 Hyperbolic éine, cosine and tangent functions
The general definitions of hyperbolic sine, sinh, hyperbolic cosine,

cosh and hyperbolic tangent, tanh are as follows:

sinh(x)=0.5(e* —e™) (2.5.3.3.1)
cosh(x)=0.5(e* +e™) (2.5.3.3.2)
tanh{ x) = sinh(x )/ cosh{x) (2.5.3.3.3)

Some properties of hyperbolic functions are sinh(ix) = isin(x), cosh(ix) = cos(x)
and tanh(ix) = itan(x), which are useful for modifying Mei's (1969) and
Cheng's {1984) solutions and some models developed by authors shown in
| later sections of this thesis.

2.5.3.4 Hypergeometric functions

The hypergeometric function F(a, 8,y, x) is a solution of the Gaussian

hypergeometric equation:

d*y dy
x(x—1)d > +(a+ B +1)x—y]a+aﬁy=0, for y #0,-1,-2,-3,... (2.5.3.4.1)
X

The fucntion F(a, B,y; x) can be expressed in terms of the hypergeometric

series:

F(a,ﬂ,y;x)=1+§m:;#)"%, (a), =afa+1).. (a+k-1) (2.5.3.4.2)
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There are special cases in which the hypergeometric function can be

expressed in terms of elementary functions. The solutions of the model in

Hjelmfelt and Lenau (1970) and a model developed by the author is solved

by using the hypergeometric function.

2.5.3.5 Other special functions for solving special second order ODEs
In addition to the hypergeometric functions, other special functions

have been developed to solve second order ODEs in specific forms.

The Bessel function of first kind, J,(x), and second kind Y, (x) are solutions

of the Bessel equation

d’y  dy
X2W+xa+(x2—v2)y=0 (2.5.3.5.1)
and
o £_4) . v+2k _
J(x)=3 LV XI2)77 oy duxcosmy 005 5359
ko KIT(v+k+1) sinav

The formula for J,(x) is valid for v 0,11, £ 2,.... The general solution of the

_ Bessel equation has the form

Z,(x)=CJ (x)+C,Y, (x). (2.5.3.5.3)
The Whittaker functions M. .(x) and W, (x)} are linearly independent

solutions of the Whittaker equation:
2

The Whittaker functions are expressed in terms of degenerated

hypergeometric functions.
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The Legendre polynomials P, =P,(x) and the Legendre functions Q,(x)

are solutions of the equation:

2
(1-x? )%—2x%£-+n(n+1)y ~0 (2.5.3.5.5)

The Weber parabolic cylinder function D,(z) is a solution of the linear

differential eguation:
2
—d—y+(——z2 +v +%Jy=0 (2.5.3.5.6)

where the parameter v and the variable z can assume arbitrary real or

complex values.

The Mathieu functions ce,(x,q) and se,(x,q) are periodical solutions of the

Mathieu equation

2

d y+(a—2qcost)y=0 (2.56.3.5.7)

x2

Modified Mathieu functions Ce,(x,q) and Se,(x,q) which are solutions of

the modified Mathieu equation:

d?y

x2

+(a-2gcosh2x)y =0 (2.5.3.5.8)

The Laguerre polynomials L, =L (x) satisfy the equation:

2d2}’

x2

X +(1—x)gl+ny =0 {2.5.3.5.9)
X

while the generalized Laguerre polynomials L} =L (x) (a >-1) satisfy the

equation:

2

29 y+(cx+1—x)%+ny:0 (2.5.3.5.10)

X2
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The Chebyshev polynomials T, =T, (x) satisfy the equation

2
(1—x2)37)2’-—x3—£+n2y=0

The Hermite polynomial H, = H, (x) satisfies the equation

2
d {—2x5‘1+2ny=0
dx dx

The Jacobi polynomials P**(x) satisfy the equation

(1-x*)

2
d {+[ﬁ—a—(a+ﬁ+2)x]ﬂ+n(n+a+ﬁ+1)y=0
dx dx

(2.5.3.5.11)

(2.5.3.5.12)

(2.5.3.5.13)

The above special functions provide solutions for special cases of

second order ODEs. Thus it must be noted that second order ODEs with

forms not belonging to one of the above mentioned forms may be cannot

analytically solve.
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Chapter 3: Approach, assumption and simplifications
used for the formulation of the governing
system for toxic substance transport
modeling

3.1 Instantaneous equations for transport of constituent

mass
The fundamental forms of the basic equations for the conservation of

momentum, water mass and constituent mass are the same. The equation
can be derived by writing a conservation equation for a control volume of a

small size. The quantity presented in the control volume is mdxdydz, in

which m is the concentration of the intrinsic property, dx, dy and dz are sizes
of the control volume in x, y and z directions, respectively. The time rate of
change of an intrinsic property within the control volume is equal to the sum

of the fluxes through all control surfaces. The general governing equation is:

% = Sum of fluxes through control surface in each direction +

sources/sinks (3.1.1)
For example, the flux enters the control volume {dxdydz) in the x direction as

F, . The flux then exiting another surface in the x direction is £, +(6F, /6x )dx .

The general governing equation, after considering six fluxes through the six

control surfaces of the control volume, becomes:

oF,
a(md;?’ydz) _ 9 dx ——Ldy — oF, dz+tsources/ sinks (3.1.2)
X

oy 0z

The fluxes, F,, F, and F, are contributed by two processes: advection

and mixing. When advection occurs, the intrinsic property is transported by
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the flow of water through the control volume interfaces. A flux is equal to the
product of the volumetric flux times the concentration of the intrinsic property.
The volumetric flux or flow of water is equal to the product of the cross-
sectional area of the interface, times the water velocity normal to that area.
According to Fick's first law of diffusion, the rate of mixing is proportional to
the gradient across the interfaces of a control volume and the interfacial area.

The flux terms for the three coordinate directions (x, y and z) are:

F, = udydzm—98(k dydzm)/ox (3.1.3a)
F, =vdxdzm - d(k dxdzm)/dy (3.1.3b)
F, =wdxdym — o( k,dxdym)/oz (3.1.3c)

where u, v and w are the instantaneous velocities along the x, y and z axes,

respectively. k,, k, and k, are the mixing coefficients along the x, y and z

axes, respectively. Substituting the fluxes into the general governing equation

3.1.2, it becomes:

2 0’k.m @2
. om _ _dum _ovm _owm + 9 k,;m + ”2 + 9 kzzm tsources/ sinks (3.1.4)
ot ox oy 0z ox oy 0z

This generalized equation serves as the basis to develop conservation
equations for each intrinsic property: water mass, momentum, heat, and

constituent mass.

3.2 Generalized instantaneous equations for transport of
sediment particles
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Since sediment particles will not decay or grow, there should be no
source or sink terms added in the goveming equation. The velocity of

sediment particles along z axis is often dominated by the settling velocity, o,

which is downward positive. The generalized equation developed from

Equation (3.1.4) for the transport of sediment particles should be:

6_s=_6uss_6vss+awss+£[k“§)+i k. 9s +—‘-a-(ksz§] (3.2.1)
ot ox oy 0z  ox ox) oyl Yoy) oz 0z

where s is the sediment concentration. us and v, are velocities of sediment

along the x and y axes, respectively. k., , k, and k., are the mixing

coefficients of sediment along the x, y and z axes, respectively.

3.3 Generalized instantaneous equations for transport of
toxic substances

3.3.1 Forms of toxic substance in the water'body

From the general features of the physio-chemical phases of the transport
of a toxic substance in the water body, it is common to assume that the
toxicant can exist in two basic forms, the dissolved phase and the solid
phase. Examples of previous works that use this approach include such as
Thomann and Mueller (1987, p505), Schnoor (1996, p390), Chapra (1997,
p697), Connolly et al (2000), Ng and Yip (2001), O'Conner (1988). As

described in Chapter 2, the total concentration of a toxic substance, c,, is

the sum of the concentration of the dissolved toxicant (c) and the particulate

toxicant (p). The term p can be further expressed as the product of the
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sediment concentration (s) and toxicant concentration sorbed onto unit mass
of sediment (r). Thus, the modeling environment depends on the sediment

distribution.

3.3.2 Sorption exchange between dissolved and particulate phase of
toxic substances

It is commonly assumed that somption is a reversible process between
aqueous and solid phases of a toxic substance. A simple representation of

this interaction is given by a first-order kinetics expression

op

—=kc-k 3.3.2.1a
o = K€~ KoP ( )
%?=kpp—kcc (3.3.2.1b)

in which k, and k, are respectively the sorption and desorption rate

constant of a toxic substance to sediment particles respectively. This first-
order kinetics approach is widely used in different previous models.
Examples include the transport models presented by Bahr and Rubin (1987),
| Cvetkovic and Dagan (1994), Valocchi (1985), Thomann and Mueller (1987,
p506), Connolly et al (2000), Ng (2000a and b) and O’'Conner (1988).

3.3.3 Generalized instantaneous equations for transport of dissolved
and particulate toxicants

First, it is assumed that the disposal and transport of toxicants do not
affect the transport of suspended sediment in the water body. Combining the
first-order sorption kinetics equations and the generalized, three-dimensional,

time varying equation, Equation (3.1.4), for nonconservative toxic substances
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with dissolved and particulate components, cne may obtain the following

expressions:

+— Kk, —

dc _ _duc _dvc _awc D ( acJ

o ox oy oz ox\ *ox
5l ) 8 o (3.3.3.1)
+ Lk L2 kz——(':]—kcc+k p-k,C
oy\ 'oy) oz\ ‘oz P
a_pz_ausp_avsp+6msp+_<3m(ksxa_p]
ot ox oy 0z O0x ox
(3.3.3.2)

) op) 0 apJ
+—| k, — |+—| k,— |-k, p+k.C—k
ay[ s’ 6yJ+6z( < dz P HeC~HaP

in which k,, k, and k, are the mixing coefficients of a dissolved toxicant in
the x, y and z directions respectively. k,. and k, are first order decay

coefficients of dissolved and particulate toxicants, respectively. A first order
decay term is also added to each governing equation to take into account
contaminants such as radionclides, which will decay. It can be simply
assumed that the velocities of dissolved toxicants are the same as the flow
velocities of water. Therefore, u, v and w are the flow velocities of water
along the x, y and z axes, respectively. The physical hydrodynamic transport
phenomena of particuiate toxicants can be assumed to be the same as the

transport of suspended sediment.

3.4 Simplification of the instantaneous governing system
for transport of sediment, dissolved toxicants and
particulate toxicants
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The general goveming equations described in Section (3.2} and Section
(3.3.3) are difficult to solve analytically. To avoid excessive mathematical
cpmplications, these equations must bé simplified but at the same time must
ensure the retention of sufficient physics. Different approaches of
simplification are used to study different situations of contaminant transport.
For a wide range of. problems, such as dispersion in a wide open channel
flow, one can simplify the general goveming equations into the two-
dimensional transport equations by considering only the horizontal axis, X,

parallel to the resultant horizontal flow direction, such as:

95 _ s 00,8, Of) 091, 0 kszﬁ] (3.4.1)
at ox oz ox ox,) 0z oz

E ox 625

6_p=_6£f_sp+5wsp+_6_(kﬂ 5"} 9 (k 6pJ kp+k.Cc-kpp (3.4.3)
ot ox 0z oOx ox) o0z oz

oc  duc owc a[kxaf-‘) a(k @) kcrkp-koo o (342)
ox) oz 5]

For a wide range of specific problems, one can further assume the advection

transport of dissolved toxicants along the vertical axis, éwc/dz, to be zero.

However, it is still difficult to solve the above two-dimensional governing
equations analytically and further simplification is required in order to
formulate one-dimensional governing equations that can be used to reveal
the fundamental behaviour. The following sections describe approaches used
to formulate the governing system of the present model.

3.4.1 Reasons of choosing vertical axis as the dominate spatial
dimension
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Because of the limitation of the analytical solution techniques, most
existing models consider only one spatial dimension and the choice of the
spatial dimension thus becomes an important consideration in the model
development. Many existing models consider the main fluid flow direction, for
example, Ng (2000a), Runkel {1996), Alshawabkeh and Adrian (1997),
Smedt et al (1998) and Prakash (2000). Such models are useful to predict
the transport of a toxicant disposed from a point.

In this research, however, the vertical direction, z, is considered in the
govemning system for the following reasons. The choice of a spatial
dimension in a model is based on particular physical and chemical transport
parameters that need to be considéred carefully. Researchers are concerned
with the changes of flow velocity in the horizontal direction, when choosing
the horizontal flow direction as the spatial dimension. In this project, the
settling of particles, resuspension of particles at the water-bed sediment
interface, turbulent mixing and the diffusive exchange of dissolved toxic
" substances at the water-bed sediment interface are phenomena that are of
main concerns. The settling velocity and turbulent mixing coefficients often
vary in the vertical direction. The exchange of toxic substances and particles
at the water-bed sediment interface is also a vertical transport process. Thus,
models choosing vertical directions allow the consideration of the above
transport phenomena in detail. In addition, previous work in comparison with
models considering the horizontal axis, is relatively scarce thus enhancing
the need for vertical models. An additional benefit is that the models with

relatively complicated boundary conditions developed in the research can
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also be used to study contaminant transport along the horizontal axis by
applying suitable transformation of variables and other modifications.

Another important dimension for the goveming system is time. Sorption
exchanges between toxic substances and particles, decay loss and
volatilization are transport phenomena that vary with time. These transport
processes separate the transport of toxic substances from other conservative
contaminants such as sediment. Therefore, models can only properly
simulate the toxic substance transport if such processes have been seriously
considered.

34.2 One-dim_ensional, time varying governing system for sediment
transports

The one dimensional, time varying govermning equation for the transport of

sediment in the vertical direction is:

(3.4.2.1)

0s ow,Ss © ( 0s
A +—- ksz A
ot oz oz az_

The distribution of settling velocity, »,, can be assumed to be a constant.
Even some former works (e.g. QOliver 1961) considered that the settiing
velocity is dependent on the sediment concentration. The distribution of
sediment mixing coefficients is assumed in various forms such as in a
constant” value or the parabolic distribution. The governing equation,
assuming a parabolic distribution of sediment mixing coefficient,

(ky, = pxu,z{(1-2/H))is:

2
95 _ o, + pru, (1~ 221 NS 4 Breur 2(1- 21H) 22 (3.4.2.2)
ot oz 0z
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The settling of particles and resuspension of particles at the water-bed
sediment interface is the main concern in this research. Thus, such
processes should be considered in the setting of the corresponding boundary
condition. The boundary condition describing the net sediment flux

—(k.,0s/8z + o,s) which is equal to the difference between the sediment

entrainment flux, ys,, and the sediment deposition flux, ¢s, can be written as:

_IZkSzg_j.{.mss]:—[(bs—ysa] at z=a, Vt20 (3.4.2.3)

In which a and s; are the reference level and the reference level sediment

concentration respectively. ¢ is the deposition velocity of sediment at level a
and y is the resuspension velocity of sediment from the water-sediment

interface. a is set to be zero if a constant mixing coefficient is used. At the
water surface, it is assumed that there is no net sediment flux through the

surface:

—[kszg-g-i-coss}:O at z=H, Vvitz0 (3.4.2.4)

Different solutions exist, based on substituting different distributions of the
sediment mixing coefficient and initial conditions. Cheng (1984) developed an
analytical solution with a constant mixing coefficient and constant initiai
distribution of sediment along the water column. The two-dimensional, steady
state model given by Hjelmfelt and Lenau (1970) can be transformed to a
one-dimensional, time varying model by transforming the horizontal distance,
x, to the product of time, t and flow velocity, u. The model uses a parabolic

form of k,, and a zero initial concentration. Model 1 shown in Chapter 4 also
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assumes a parabolic form of k, but allows an arbitrary initial concentration

distribution. The model formulations and solutions of Models 1 to Model 3 are

shown in Chapter 4.
3.4.3 Instantaneous equilibrium of sorption mechanics

The sorption interaction between the dissolved and particulate
components tends to an equilibrium state. The time required to achieve this
condition may vary markedly depending on the characteristics of the
chemical and sorbent. If the rate at which equilibrium is achieved is much
higher than that of other kinetic routes, such as decay, volatilization, settling
and exchange with the bed, a state of instantaneous equilibrium may be
assumed. As described in Chapter 2, the local equilibrium relations between
dissolved and particulate toxicants can be represented by the partition
fractions. The partition fractions depend on sediment concentration and thus
they may be functions of spatial variables and time, depending on the
sediment distribution in a problem. in this research, instantaneous equilibrium
| and the partition fractions are applied. They are widely used assumptions for
the development of toxic substance transport modeling. Examples are found
in the work of O'Connor (1988), Ng (2001) and Connolly et al (2000). They
are useful for toxic substances such as heavy metals that do not decay or
volatile. They are also useful to investigate long-term impacts on aquatic
environments by contaminated bed sediment. Few modeis consider the
phenomena of hydrodynamic transport without assuming the instantaneous
equilibrium. In fact, it is difficult to solve the system of Equations (3.4.1),

(3.4.2) and (3.4.3) analytically without assuming instantaneous equilibrium
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even the model is reduced to a one-dimensional model. The simplification

and assumptions are described in the following sections.

3.4.4 Generalized equations for toxic substance transport with
instantaneous equilibrium

As described in the Section 2.4.4.1, partition fractions are fractions of
dissolved and particulate toxic substances at local equilibrium conditions.

Applying Equation (2.4.4.1.2) to Equations (3.3.3.1) and (3.3.3.2), we obtain:

of,cr __oufer 9viCr _ owlyer | 0 ( i OfiCr ]

ot ox oy (74 ox ox (3.4.4.1)
+:%[ky %CLJ +—a%(kz %;_T"] K f,Cr + K f,Cr — Koo Cr
y
of c; =_8u5fpcr ~ ovf.cr N dwf,cr N 0 i of ¢y
ot ox oy oz axl ™ ox (3.4.4.2)
o ofc) af, ofCr S
+5 ksy—a— +EE ksz 57 _'kpprT +kcdeT ‘kdpprT

If it is further assumed that the vertical flow velocity (w) of water is zero and
_advection and dispersion transport coefficients of water and suspended
sediment are the same, the above system of equations can be reduced to a
single partial differential equation in terms of total concentration by adding

the above two equations and applying Equation (2.4.4.1.3), i.e.,

of c
ey __, O6r 00, e +i(kx%}ri k%
ot ox 3y oz  0x ox ) oyl ¥ oy

5 5 (3.4.4.3)
C
+EZ—[ z —a?] — ko fyCr — kdpprT

In the two-dimensional case, it becomes:
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of ¢
ﬁci=_ux aCT + O . +i(k"a_CT— +i(kzaij
ot ox 0z OX ox oz oz

-k, fcr —k

(3.4.4.4)

afoCr

The above two equations have only one term, o, of ¢ /0z, that depends on
the partition fraction, f,. However, since f, depends on the suspended

sediment distribution, the complexity of solving the above equations depends
on the applied suspended sediment distribution.

3.45 One-dimensional, time varying governing system for toxic
substance transport instantaneous equilibrium

For the one-dimensional case, the governing equations of dissolved
and particulate toxicants by further reducing Equations (3.4.4.1) and (3.4.4.2)

to equations with only the vertical axis and applying Equation (2.4.4.1 .2) are.

of,c 0 of.c
% ZE(RZ %J—kcfdcr +kpfpc:1r —kyf,Cq (3.4.5.1)

of,c, s dwf,cy L9 [ksz of ¢,

- oz

ot oz oz J_kpfch +kfer —kyfc;, (3.452)

Adding Equations (3.4.5.1) and (3.4.5.2) and applying Equation (2.4.4.1.3)

forms a single governing equation in terms of the total concentration:

cw f C of ¢
oc, _ oo, T . a(k 9¢r. L9 (k, ~k)—2T |~ (k
0z o

= f +k_f)e. (3.453
ot 8z oz\ * oz z ala )C7 )

dp'p

If we further assume a constant settling velocity and the vertical mixing

coefficient of water (k,) is the same as sediment mixing coefficient (kg ),

Equation (3.4.5.3) reduces to:
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ac, d%c 8k, \oc of
=k, i|of + T2 |2 v |0, —2 —k, f, -k f 3.4.5.4
at o (0’5 b az) oz [ oz wlo [ { )

The complexity of the governing equation depends highly on the complexity

of the concentration profile of the suspended solid and the expressions of

f,and f, to be substituted into the governing equation.
The simplest assumption is to consider f, and f, as constants. in this

way, Equation (3.4.5.4) reduces to a linear second-order partial differential
equation with constant coefficients. However, the assumption is not sufficient
to reveal the physics in many cases. In generally, the following terms can be
expanded by applying Equation (2.4.4.1.1):

afch =f dcr +Cr a_fp
oz P oz 0z

=fp%_+cri de
oz oz\ 1+k,s

oc; k, 0s

=f +C —
P oz (1+k,s) oz
of ¢
o - f, a;; +crkdfjg§ (3.4.5.5)
e o, dc 2 08
=—|f, =L +c.k,f," —
022 az(" oz 97 az]

2 af
=fpaczr+6 +k‘,_,fdzgils-aﬁ+cri kfdza—s
0z o0z 0z 0z o0z 0z oz

d%c 2 05 3¢ 2 8%s  8s of,
Y A AN Rt SRR ) §
rra ”["az oz azJ
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{ 2
0%, 2k,f," 2 Z sk 1722424, i( L ]@J

P oz’ ‘ez T az\1+k,s oz
{ 2
1 2O o P08 g g |2 OS2k (asj
oz* 0z oz 0z (1+ k,s)?
0k 20890 ok OS opk, as) (3.4.5.6)
0z* 0z az 0z° oz

f °f f -
{(k _k)a cr] (k. _k)a ,Cr , OfCr (kg —k,)
0z 0z

2
~ (kK| F, d%c; 2kf2636cT 6k f,2 o 8%s sz[asj
P 8z? 0z oz 62 0z

Ak —k [, 8c , s
52 z/) f T kf ot
T |:” oz @ CThdl azil
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=(k,, p

P oz 0z
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] T

2 —
+k £ (k,, —k,) a —2fk (as] Ok —K;) 05 |
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By substituting Equations (3.4.5.5) and (3.4.5.7) into Equation (3.4.5.3), we

2 —
k) m—i"; +[ ke, — kYo f,2 25 4 f A kz)] oy
y

obtain:

d%cy

éc; .08 , O, 6( ai}_(k k)
z sz z pazz

ocy
T omw f, =Lt C k = e ——
ot Wsle gy TOSUTRe 5 Tt ey Tz ez

2as L5 Ok —k,)]2c,
P oz 0z

0%s 0s ok, —k,)ds
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+|:2(k -k, )k 1,
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%Lr _(k, +(k,, —k, ), )ach

0s
+[cosfp+2(k k)kfza +f,

o(k,, ~k,) . ok, |ocy
0z 0z | 0z

2 ——
- 9% k1.2 (k.. k) oz O°S otk (55) +(M+ms]9§
0z 0z 0z 0z |rCy

—(kyf, +kyty)

or say:
oc; — d'c dc,
=T = A(f, Kk, T +B(f, f,,ky K, kg, 8)—L
at (T, ) (To1q s) 8z (3.45.8)
+C(cus, .l kg k z,ksz,s,kdp,kdc)cr
in which:
A(f, k, kg )=k, +(ky -k, )f, (3.4.5.9)
8s , ok, -k,) ok,
B( p? d’ d:kzl szls) CD +2(k ~-k )k f2a fp az + 7
(3.4.5.10)

C(&)s, o’ d;kd,kz!kszls kdp’kdc)

Bw ) d%s 2Y (o(k,, —k,) s
=f S v+ k. I k 2fk _t sz zs -
P oz e [( )( (62) JJ{ z e

—(kyf, +koty)

(3.4.5.11)
Coefficients in Equation (3.4.5.8) depend on the sediment concentration and
hence the distributions of the settling velocity, sediment mixing coefficient
and suspended sediment are needed for the solution of the governing
equation. It should be noted that the value of C may not be zero even the

vaiues of kg, and kq. are zeros. Thus, first order growth/decay terms should
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be considered in the governing equation for modeling toxic substances even

for one that does not decay naturally.

3.4.6 Governing equations with substituting equilibrium distributions
of suspended sediment :

In order to reveal the physics, a distribution function of suspended
sediment (s) should be substituted into the above governing equations.
However, relatively simple functions should be considered in order to reduce
the complexity of the system. A reasonable approach is that an equilibrium
concentration profile of suspended sediment is used. In this approach, there
are two assumptions made. Firstly, the aquatic environment in which the
sediment distribution has reached equilibrium is completely developed, and
remains so during the modeling period. Secondly, the discharge of toxic
substances does not affect the transport of sediment particles in the water

column.

3.4.6.1 Equilibrium sediment distribution in the form of exponential
function

For the equilibrium sediment distribution, two forms are commonly
used by environmental engineers and scientists. The first is developed by
assuming the settling velocity and sediment mixing coefficient to be constant.
The author also assumes the water mixing coefficient (k,) to be constant
based on the reason that both sediments and chemicals are transported in
the same environment. The shape of the equilibrium concentration profile is
shown in the Cheng's (1984) paper and in Models 2 and 3 developed by the

author. The equilibrium sediment distribution function, based on the above
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assumptions and developed from governing system, described in Section

(3.4.2)is:
s=egk (3.4.6.1.1)
¢
In this way, f, and f, now become:
K, e
f, = ¢ (3.4.6.1.2a)
k, Ba | g2ortta
¢
ezo’z/ksz
- f, = (3.4.6.1.2b)

k, Bo , grostha

From Equation (3.4.6.1.1), the following terms can be expanded:

~Zaw,

aﬁe ke -z
os__ ¢ =20 P e TP g (3.4.6.1.3)
oz oz k, ¢ ks,
2 _ 2 2 ~WyZ
Q_f;:i Dsg|=2e 5= 1% g (3.4.6.1.4)
0z 0z\ k, k., k,” ¢

Apply Equations (3.4.6.1.3) and (3.4.6.1.4) to Equations (3.4.5.5) and

(3.4.5.7), they become:

of ¢ Ff
pT =fp ac',r —a)SdeT (34615)
0z 0z Kk,
of,c 2 - 2k, - ko ff
i (ksz _kz)p_r =(ksz _kz)fp o CZT + fp a(ksz kz) - ( &z z)ms dn aCT
o0z o0z 0z oz k., oz

2
2 W, 8 ok, —k,) w8
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o’c, Ak, =k, Joff, oc; +(ksz ‘kz)(1‘2fp)@s2fdfp
P 8z? k oz k2

5z sz

¢, (3.4.6.1.6)

= (kg —k)

Note that since the author assumes constant values of k, and k,. Their

derivatives should be zero. By substituting Equations (3.4.6.1.5) and

(3.4.6.1.6) into Equation (3.4.5.3), it becomes:

ac; d’c ac
— =1k, kkakakfs"T
ot~ [+ (ke ke T b 20k, —h S
-{[k, = 2f (K, - k)] ;"P+(k,pp+k;cfd)c,
or say:
ac; d%c
A(fwkvk ) +B (Ct)s, psfd!k ksz) ( yfp’fd’k ksz'kdp'kdc)cT
(3.4.6.1.7)
in which:
Af, k, k. )=k, +(k, -k, (3.4.6.1.8)
a)sfIp .
B (a)s' P d" 'ksz)z(ksz +2(kz —ksz)fd )T . (34619)
_ o f,f [k, —2f (k, -k, )]
Ce(cos,fp,fd,kz,ksz,kdp,kdc)= P kdpfp+k f,
(3.4.6.1.10)

Equation (3.4.5.4) becomes:

2
f,
%T:k ‘2"; rof, %"; -[“’Sk + Ky f, +kdppr ¢, (3.4.6.1.11)
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Equation (3.4.6.1.7) is a linear second-order PDE with all coefficients
dependent on the independent variable z while Equation (3.4.6.1.11) has
coefficients at first and zero orders of derivatives dependént on Z.
3.4.6.2 Equilibrium sediment distribution in the form of Rouse profile
Another equil_ibriurﬁ distribution function of suspended sediment is the
well-known Rouse proﬁle.'The distribution at equilibrium for the model
developed by Hjelmfelt and Lenau (1970) and Model 1, developed by the
author, also has this shape. The Rouse profile was developed with the
assumptions of the constant settling velocity and parabolic distribution of the
sediment mixing coefficient. The concentration profile at steady state based

on the above assumptions as described in Section (3.4.2) is:

s=sal( 2 J”‘”‘(H‘Z)"”‘=sam[H—“-z—]"“”' (3.4.6.2.1)
p\H-a z z
where s, =s, %[Ha aj" " (3.4.6.2.2)

- By substituting Equation (3.4.6.2.1), the following terms can be obtained:

Oy

sy
05 _ Z0sHS [H ‘Z)”’“" __—eH (3.4.6.2.3)
0z pxuz z Bru,z(H - 2) :
2
Os___aH JaH 4 5ls (3.4.6.2.4)
0z Bxu,z°(H - z)* | Bxu,

Recall the parabolic distribution of sediment mixing coefficient:
k., = Bxu,z(1-z/H) (2.1.3.1)
The distribution of mixing coefficient of water should be also a parabolic

function as follows:
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k,=xu,z(1-z/H) (3.4.6.2.5)

By substituting Equations (2.1.3.1) and (3.4.6.2.5), the following terms can be

obtained:
k. -k, =(B—1k, (3.4.6.2.6)
‘Z’;z _n(1-22/H) (3.4.6.2.7)

The derivative of w, should be zero because of the constant settling velocity.

A specific governing equation for using the Rouse profile is formed by
applying Equations (3.4.6.2.1) to (3.4.6.2.7) to the governing equation set of

Equations (3.4.5.8) to (3.4.5.11). For this case, the author renames the three

coefficients A , B and C in Equation (3.4.5.8) to A, , B, and C,
respectively.

The governing Equation (3.4.5.8) is simplified to two specific equations
by substituting two different distributions of sediment concentrations (s).
However, governing equations described in Sections (3.4.6.1) and (3.4.6.2)
" are still complex and difficult to solve analytically. Instead, the author
developed mathematical models shown in Chapter 4, which have constants
or specific forms of input parameters. In order fo identify real life situations
that the m.odels in Chapter 4 are adequate for modeling toxic substance
transport. The real life situations that the coefficient A, B and C can be
simplified to constants or specific forms, which match the corresponding
coefficients in one of the developed models in Chapter 4 should be identified.
The identiﬁcation_ is described in Chapter 5.

3.4.7 Boundary conditions for transport of toxic substances
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At the water-sediment interface, the following mechanics is usually
considered to form the boundary conditions. For dissolved toxicants, diffusive
e*changes through the interface are considered. For particulate toxicants,
deposition from water to bed sediment and resuspension from bed sediment
to water column are considered. The sorption mechanics between dissolved
and particulate toxicants is also taken into account. The general boundary
conditions describing the flux from dissolved and particulate toxicants are:

oc

RZE:U,(c—ca)+kch — Kk, Hp at z=a (3.4.7.1)
op
kszé—5+wsp=¢p—;pa -k Hc +k,Hp at z=a (3.4.7.2)

in which v, is diffusive exchange velocity of dissolved toxicant at the

interface. a is the reference level. c; and p; are the reference level
concentration of dissolved and particulate toxicant respectively. ¢ is
deposition velocity of sediment at level a and y is resuspension velocity of
| sediment from water-sediment interface.

The concept of instantaneous equilibrium of the kinetics can be
applied by substituting Equations (2.4.4.1.1), (2.4.4.1.2) and (2.4.4.1.3) to
Equations (3.4.7.1) and (3.4.7.2) and then adding together Equations (3.4.7.1)
and (3.4.7.2) together, the boundary condition in terms of the total

concentration (c; ) is as follows:

of ¢,
0z

%Hksz —-k,) +w.f,c. = (S, +¢f,)c; —(vc, +yp,)at z=a(3.4.7.3)

z
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The boundary condition can be further simplified by substituting a distribution
function of suspended sediment. However, if the sediment distribution

function depends on the vertical dimension (z) only, the values of £, and f,

should be constant at a particular z coordinate and equation (3.4.7.3)

becomes:
(f kg +1;k, )%-ZT— +a,f,cr =(uf, +9¢f, )er —(v,c, +p,)at z=a (3.4.7.4)

If the decay of toxic substances in the bed sediment layer is assumed,

the boundary condition is as foliows:

(oK +fakz)%€;-+msfpcr =(u,f, +4f, ), —(v,c,e™ +yp,e™ atz=a
(3.4.7.5)
in which re and ry, are decay rates of dissolved and particulate toxic

substances respectively.
At the water surface, the volatilization loss of the dissolved component is

considered and boundary conditions of dissolved and particulate toxicants

are:
oc
k, —=-v,c+k Hc -k Hp at z=H (3.4.7.6)
zZ
ap
k326—+a)sp=—kch+kap at z=H (3.4.7.7)
74

in which v, is the rate of volatilization loss of the dissolved component.

The boundary condition in terms of total concentration after applying

the concept of instantaneous equilibrium is:
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oc,
* oz

+({k,, —k, )%‘fl+ wf.c; =-v fc; atz=H (3.4.7.8)

A complete governing system for the transport“of toxic substance has
been developed based on the general governing equations and boundary
conditions. Different initial conditions are required according to different
modeling situations. However, coefficients in the governing equations defined
in previous sections are complex and the governing equations still cannot be
solved analytically. Three different models with further simplified coefficients
are given in Chapter 4 and solved analytically. In Chapter 5, analysis of the
coefficients in the governing system is described. The purpose of the
analysis is to identify the scopes of input parameters of the governing system
that can be further simplified to show that oné of the developed models in

Chapter 4 is adequate to model the toxic substance transport in such scopes

of input parameters.
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Chapter 4: Formulations, solutions and general
analysis of developed models

Three contaminant transport models have been developed in this
research study to simulate the transport of contaminants in different transport
environments. All are one dimensional, time varying models with
consideration of the advection-diffusion effects on contaminant transport. The
governing system, solution steps and analysis of parameters for each model

are described in the following sections.

4.1 Governing system of Model 1

The first model, Model 1, is developed with reference to Hjelmfelt and
Lenau (1970) with the initial condition changed from zero concentration to a
function along the water depth. Figure 1 shows the modeling environment of
Model 1. The model considers the changes of contaminant concentration
along the vertical direction with time and the settling of contaminant particles
along the water column. It also takes into account the setting and
resuspension of contaminants at the bottom sediment layer.

The governing equation is the general advection-diffusion equation as

follows.

ot oz oz 0z

in which m = contaminant concentration, t = time, z = vertical dimension,

o =settling velocity of contaminant and k,, =turbulent mixing coefficient in
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vertical direction. A parabolic distribution of the turbulent mixing coefficient is

‘Z « 1.

in which x is the von Karman coefficient, S is the ratio of contaminant mixing
coefficient to momentum diffusion coefficient, u, is shear velocity and H is the

water depth.
AZ

—~Z

Kmz Contaminant
Concentration,

H " 4

wm

Channel bottom,
Bottom contaminant concentration, m;,

s

Figure 1: Problem Definition of Model 1

It is assumed that there is no exchange of the contaminant between water

and the air layers at water surface. Thus the boundary condition at water

surface is as follows:

k 97 om=0 at z=H, Vt>0 (4.1.3)

mz

At water-sediment interface, exchange of the contaminant by settling and
resuspension is considered. The boundary condition is as follows:

“k a—m+wm=¢mm—ymma at z=a, Vtz0 (4.1.4)

mz
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in which @ and m, are the reference level and the reference level
contaminant concentration respectively. ¢_ is the deposition wvelocity of
contaminant at the reference level. y, is resuspension velocity of the
contaminant from water-sediment interface.

The model further allows an arbitrary initial contaminant concentration
distribution (mys(z)) iﬁ the water column. The initial condition is written as

follows:

m =myp(z) at a<z<=H, t=0 (4.1.5)

4.2 Summary of solution steps of Model 1

Mathematical techniques involved to solve the system of equations
mentioned in the last Section are similar to the techniques used by Hjelmfelt
and Lenau (1970). A summary of the solution processes is shown below:
First, introduce the dimensionless variables and parameters:

@

M=mim,, My=my,/m,, A= , T=pxut/H
Bnxu,
Z=z/H: A=alH; B=—tn_. g Ym
B.xu, B.xu,

Using the dimensionless variables and parameters, the system becomes:

%ZA%,LE[ZH_Z)ﬂ] (4.2.1)
oT "oz "oz oz

with boundary conditions:

2(1—2)%’;+AM=0 atZ=1 T>0 (4.2.2)
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Z(1—Z)%+JLM=B1M—BZ atZ=A Tz0 (4.2.3)

M=M, at A<Z<1 T=0 (4.2.4)

Secondly, method of separating variables is applied to the governing

equation:
M=P(Z)G(T) (4.2.5)

The governing PDE becomes:

pr

G 1

P
G (HA-22) 5+ 2(1-2) - =—a®+ (4.2.6)
in which —a? +0.25 is an arbitrary constant.
The solution of G is:
G=C,g Tl 05 (4.2.7)

in which Cy is an arbitrary constant. Also for P(Z), we have:
Z1-ZP"'+H{1+ A -2Z)P'Ha? -1/4)P =0 (4.2.8)
Putting Z’ = 1 - Z, the above equation becomes:
Z'(1=Z' )P"'+(1- 1 -2Z' )P'+(a® -1/ 4)P =0 (4.2.9)
Noting that a general form of a hypergeometric differential equation is:
Z(1-Z)P"+{c—(a+b+1)Z)P'-abP =0 (4.2.10)
the above differential equation of P(Z’) is a hypergeometric differential

equation for:

a=12+a (4.2.11)
b=1/2-a (4.2.12)
c=1-4 ' (4.2.13)
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The general solution of the above equation, with ¢ = 7 - 4 not an integer (note:
A cannot be an integer) and by putting back Z =1 - Z’is:

P=AF(0.5+a05-al1-11-Z)+B(1-Z ) F(05+a+A0.5-a+i1+11-2Z)
(4.2.14)

where A, B are arbitrary constants, and £ is the hypergeometric function.

(a),(b), Z°
F(a,b,c,Z})=1+ ,; (c). = |Z|<1 (4.2.15)
(a), =ala+1)a+2)---(@a+n-1) fornz=1 (4.2.16)

Applying the boundary conditionat Z = 1
oM
2(1_2)8_2+le0 atZ=1,T20 (4.2.17)

= P(Z)G(T)=0
Since G(T) cannot always be zero at any T, this condition means P(71) = 0
and then:

P=AF(0.5+a,05~a1~10)+B(1-1}F(0.5+a+A05-a+A1+1,0)=0

(4.2.18)
= A14+505+2)(05-a),0")_, (4.2.19)
i (1-4), nl
and finally we get A =0,
Now, M becomes:
M=CBe 2B (1_Z)F05+a+A05-a+i1+A1-2) (4.2.20)

In the solution, only the term G(T) depends on T. Thus, the equilibrium state

forms when G({T) = constant for all 7., i.e., & = 0.5. In this case, M becomes:

M=C.B(1-Z)'F(1+ 4,21+ 2 1~Z) (4.2.21)
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F(1+ 1,41+ A1-Z)is equal to Y * based on the definition of F.

Applying the boundary condition at Z = A, we get:

Z(1—Z)Z—AZ/I+AM=B,M—82 atZ=A T20 (4.2.22)

- _ 1-1 - _ A - _ A
o _an-ae B AT e E 1A —ees(12A) _B, (4.223)
1% A A 1™~ A 2

A+1

A
c,B =Pi(i) (4.2.04)
B \1-A

For the non-equilibrium case, it is assumed that:

B,.{ A Y(1-2Y & -Ta-b
M==2—| | — a.e Y P(Z; 4.2.25
5 (1_A)[ - ) +3a, (Zay)  (42.25)

P(Za,)=(1-Z)'F(0.5+ A +0a, 0.5+A -, 1+ A1-2) (4.2.26)
where ax > 7/2 are roots of F(0.5+A+ax,0.5+1-ax, 1+1,1-Y) = 0.
{Note: The first term of the above solution is widely known as the Rouse
profile which represents the equilibrium concentration profite of contaminants.)

Applying the initial condition M=Mpat A <Z <H, T =0, we can get:

d B,( AY(1-ZY
aP(Z;0 ) =M ——2(—) (—J 4.2.27
’é K ( K) 1o 81 1-A Z ( )

It can be shown that the function P{Z,;ax) forms an orthogonal system with
respect to the weight function Z* (1-2)* i.e.,

j;P(Z,'am WP(Z,0,)Z*(1-Z)*dZ=0, m=n (4.2.28)
The steps to prove the orthogonal system can be found in Hjelmfelt and

Lenau (1970).

am can be found from Equation (4.2.27) as follows:
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From Equation (4.2.27)

0 A
= SaP(Zia 2 (1-2)* =MZ (1-2) --Bl(i) (4.2.29)
& B,\1-A

Then, both sides of Equation (4.2.29) times P(Z;a,) and then take

integration from A to 1 to become:

1 - ) B,( A Y )

[(MpZ*(1-2)*P(Z;a, )dZ—Ef[m) [,P(Z;a,)dZ

=&, Z*(1-2)*P(Z;a, )P(Z;a, JAZ +++a, [ Z*(1-Z)*P*(Z;a,, )JdZ +--
(4.2.30)

Applying the Equation (4.2.28), then finally becomes:

1 1 % . B,( ‘A e .
_LM,OZ (1-2) P(Z,am)dZ—E(T_—Z] [P(Z:an, )0z

a (4.2.31)

m

ﬂz*m-zr*PZ(z;am)dz

The steps for calculating [\ Z*(1~Z)™*P*(Z;a,,)dZ and [ P(Z;a,)dZ can

be found in Hjelmfelt and Lenau {(1970) and they are:

A rq 1-A . .
J‘1Z'1(1—Z)‘AP2(Z;am)dZ=_A (1=A)" P(Aan) 0P(Aan) (45 3)
A 2 oa oz

m

A(1-A) OP(Aa,)

(a?-0.25) dZ (4.2.33)

[[P(Z:a,)0Z =

The expressions for 0P/da and 8P /dZ can be found in Hjelmfelt and
Lenau (1970). The expression of _.:Z"(1—Z)‘1P(Z;am)dz is as follows:

First, start from Equation (46) shown in Hjelmfelt and Lenau (1970, p1577):
o | oP ; 2 1 i,
—| —=(Z;a,,)Z"(1=-2Z)* | + ——WP(Z,a, VZ*"(1-Z)* =0 4.2.34
| B @z 1-2)" |+, P2 a2 1-2) (4.2.34)
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- J- P(z a )ZA(1 Z)_}1 dZ —__..J__.-J- ___|:______(Z )Z1+A(1_Z)1—1:|dz

~-0.257%06Z| 0Z
fP(z,am)z"u—Z)-*dz=2‘—1f(z, NZvR (- Z)“11 (4.2.35)
4 a2 -0.2506Z )

The expression of 6P /8Z is roughly as foliows:

%(z,am) =—;L(1—Z)‘1+"F(%+A +am,%+l—am,1+i,1—Z)+(1—Z)"(---)
(4.2.36)

AGP

= (1-Z)" (Z, ) =—AF(= +A+am,;+l—am,1+iL,1-Z)+(1—Z)(---)

‘At Z = 1, then becomes:

(1-2) = Za, =—AF(%+A+am,%+l—am,1+/l,0)+(1—1)(---) (4.2.37)

Z=1

Based on the definition of F, the value of F(0.5+4+¢_,05+4-a,1+1,0)
should be 1 and therefore the value of .[:Z"(1—Z)"‘ P(Z;a,,)dZ becomes:

1+4 1-2
__*ATOAATOP ) (4.2.38)

am2~0.25 a,’-025 02

Then, for M, is a constant value, a, becomes;

M
2a M, - oA

o= =2 : (4.2.39)
(ai-—1jap(»‘\:am) B, A (1- A) )5P(A n
o

And therefore, the solution of M(Z,T), (Solution 1) is:
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()

Tlax’—) ' (4.2.40)
+22'°: ayP(Z;a,)e 4 D-M,, - M, A
= 1\oP N 5, 0P,
Sl aeen AT 1A 25 (Aa)
D=%=%, P(Z:a, ) =(1-Z) F(0.5+ A+ 0, 0.5+ A — a1+ 41— Z)
,

if Mo is a function of Z, a,, becomes:

1 i A .
D LM,BY (1-ZY*P(Z:a, )dZ

a_ = apza,,, : 5 (4.2.41)
v A, 2 _ 7 A1+A 1—A 1-a Y A,
6a( a,)| (e, 4) (1-A) az( op)
And therefore, the solution of M(Z, T) for this case (Solution 2) is:
A1-2)Y
M=D Al-2)
(1-A)Z
(4.2.42)

“Tla - 1 -
= a P(Zade ™ ¢ D _LM,oz*(1—2)*P(z;aK)dz

+2)°
oP 1 ., OP
K=1 ____A 2 _ 7 A1+;11_A‘|/l__
aa( !aK) (ak 4) ( ) o7

(Ao )

- The integral term in the solution is solved by the numerical integration. The

expressions for a, , 8P/ 6a and 6P /éZ can be found in Hjelmfelt and Lenau

(1970).

4.3 General Analysis for Model 1

MATLAB program codes have been developed to generate
computational results for the solutions of Model 1. An examination of the

solution shows that the contaminant concentration is controlled by four
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dimensionless factors, D, My, A and A, Each item is considered in the
following paragraphs.
4.3.1 Effectof A

In Model 1, 2 is the ratio between the settling velocity, @ and g, xu.

which controls the overall magnitude of the turbulent mixing coefficient. 1
controls the ratio between the downward motion of contaminants (settling
velocity) and the upward motion of contaminant (turbulent mixing coefficient)
in the water column. Figure 2 shows the dimensionless averaged depth
concentration average versus T for different A values with D = 1, M;; =0 and
A=0.05. As A increases, it implies an increase in the settling velocity or a
decrease in the magnitude of turbulent mixing, the depth averaged
concentration is decreased and the steady state is reached more rapidly.
Conversely, the depth avgraged concentration is increased and the steady
state is approached less rapidly with a smaller A, until the limiting case, A = 0
is reached. The time required to approach a certain percentage of steady
state concentration {e.g. 95%) decreases as A increases. Therefore, the
limiting case as A = 0 requires the maximum time to achieve the steady state.
The depth averaged concentration in the water column for smaller values of 4
is targer than cases with larger values of A at all times during the transport
process, as a smaller A represents a higher ratio of turbulent mixing to the

settling velocity of the contaminant.
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4.3.2 Effect of A

The parameter A in Model 1 represents a ratio between the reference
level, a, and water depth, H. Based on the parabolic distribution of kg, since
no flux is resuspended from the bottom sediment layer to the water column
when A=0, A cannot be.zero. Figure 3 shows the dimensionless averaged
depth concentration profile versus T for different values of A with D = 1, My
=0 and A=0.5. As A is increased, the implication is that an increase in
reference concentration level or an increase in the thickness of bed-load
layer, the average concentration is increased and the steady state is reached
‘less rapidly.' Conversely, the dimensionless depth averaged concentration is
decreased and the steady state is. attained more rapidly, as A is decreased
until the limiting case, A = 0 is reached (in this case, there is no contribution
from the sediment bed layer). The time required to approach a certain
percentage of steady state concentration (e.g. 95%) decreases as A
decreases. Therefore, the limiting case with A=7 requires the maximum time
" to approach the steady state. This is because when A is small, the value of
kmz at level A also decreases, meaning that the contribution of the shear
force to the resuspension of sediment is decreased and therefore the
contribution of sediment concentration from bottom to the water column, is
smaller.

4.3.3 Effectof D

In the model, the parameter D is the ratio between the entrainment
fluxes rate, yn, and the deposition flux rate of contaminant, ¢, at the water-

sediment interface. For some contaminants, such as sediment, the settling
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velocity depends on the sediment concentration and usually the settling
velocity at the water-sediment interface is smaller than the settling velocity in
the water column. Figure 4 shows the dimensionless depth averaged
concentration profile versus T for different values of D with A = 0.05, Mi=0
and A = 0.5. The increase of D implies an increase in the entrainment fluxes
rate or a decrease in deposition flux rate, the depth averaged concentration
is increased and the equilibrium is reached less rapidly. Conversely, as D is
decreased until the limiting case, D = 0 is reached (in this case, there is no
contribution from the sediment bed), the dimensionless depth averaged
concentration is decreased and steady state is approached more rapidly. The
time required to approach a certain percentage of steady state concentration
(e.g. 95%) decreases as D decreases and no time is required for the limiting
case D = 0. This is because when D is small, the value of yn,, which presents
the magnitude of entrance flux at level A, also decreases. The contribution of
the shear force to the resuspension of bed sediment is decreased and
therefore the contribution of sediment concentration from the bottom to the
water column is smaller.

4.3.4 Effect of My

In the model, the parameter My, represents the ratio between the initial
concentration, my, and the reference level concentration ms. Figure 5 shows
the dimensionless depth averaged concentration profile versus T for different
values of My, with A = 0.05, D = 1 and 4 = 0.5. The figure shows that, for all

cases, the same depth averaged steady state concentration,
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A
1 D( A
1-A \1-A

concentration is independent of the value of the initial concentration my. The

F)
I;(1;ZJ dZ is reached, and therefore the steady state

required time increases as the difference between the depth averaged steady

state concentration and M), increases.
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Figure 2: Dimensionless depth averaged concentration

profiles for different A values
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Figure 4: Dimensionless depth averaged concentration

profiles for different D values
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4.4 Governing system of Model 2

The second model, Model 2, is developed from the solution of Cheng
(1984) by adding a first order source / sink term to the goveming differential

equation. Figure 6 shows the modeling environment of Model 2.

AZ

N7

Contaminant
Concentration,

Channel bottom,
Bottom contaminant concentration, m,

Figure 6: Problem Definition of Model 2

The governing equation, initial condition and boundary conditions are as
- follows:
Governing equation:

2
M _oM M

-, RM (4.4.1)
oT 8z 8z?

Boundary conditions:

[Kﬂ + M] =0 (4.4.2)
74 ze1

[Kﬂ +M} =BM-M,),_, (4.4.3)
74 Z=D
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Initial condition:
M(Z,0) = 1 (4.4.4)
Note that variables used in the above equations are dimensionless with:

=£EE., T=—; B=¢'_m, R:m
wH H w w

m Z
—_“-—---—; Ma = a ; Z=_
My, My H

in which m is confarhinant concentration, my is contaminant concentration at
t = 0, m, is contaminant concentration in the bed layer, H is the depth of flow,
Kmz is the turbulent mixing coefficient, w is the contaminant settling velocity,
I'm is the coefficient for source/sink term, and ¢, is the contaminant settling
velocity at the water-bed sediment interface. In this model, the resuspension
velocity at the water-bed sediment interface is also equal to ¢p.

This is an unsteady one-dimensional (in the vertical direction) model.
The model considers the settling of contaminant particles to the bottom of the
water column. The model also takes into account the settling and
resuspension exchange of sediment at the bottom boundary. The model
-assumes a constant rate of turbulent mixing along the water column. The
growth/decay phenomenon of contaminants is considered by adding a first
order source/sink term in the governing equation. The initial concentration is

assumed to be a constant value along the water column.
4.5 Summary of solution steps of Model 2

Generally, the solution processes follow the steps in Cheng (1984).

Detailed solution steps are shown as follows:

Chapter 4, page 83



First, the concept of Laplace Transform as described in Section (2.5.2.1) is

applied to the governing equation as follows:

The Laplace Transform of M{(Z,T) is h';f(Z,q) and defines as follows:
M(Z.q) = [: e TM(Z,T)dT (4.5.1)

Then the governing equation becomes:

2
L{@ L QM}+L kML, 1 {Rum) (45.2)
oT oz oz
- oM(Z.q) L °M(Z.q) _~
MZ, _1_ -K - RM Z, =0 453
aM(Z,q) o7 77 (Z,9) (4.5.3)
2 ~ -~ — ~ —
I*M(Z.q) 1 IM(Z.q) 9-Rpg7 ) 1 (4.5.4)
dz K dz K K

The governing equation is transformed to a second order ordinary differential
equation with respect to z.

The solution of the above ordinary differential equation is:

M(Z,q)=C.e% +C,e* + % 4-R) (4.5.5)

9=—1+1f1+4(q—R)K (4.5.6)

2K

-1+ 4g-R)K (457)

2K

¢ =

in which C, and C, are arbitrary constants.

Applying Laplace Transform to the boundary conditions, they becomes:

L{[K%‘g +ML} = L{o} _ (4.5.8)
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= KEMM?] =0 (4.5.9)
Z=1

L[Kﬂ +M| =L{BM-M},, (4.5.10)
Z |,

6M 0 _ ' -qT
[Ka—z + M} =B, B[ e*"M,dT
Z=0 .

—ar |®
eq

=BM, ,-BM,

[K%% +A7!] = [BA?—BMan]H (4.5.11)
Z=0

Solutions of C, and C, are found by substituting the solution of A?(Z,q ) to
the transformed boundary conditions. The solutions are as follows:

o - Ba-(1+K¢)g+e'(Bg(1-M,)—q + BM,R))
: . (4.5.12)
a(q-R)|[1+ K¢ —B)1+K6)e’ —(1+K9 B)[1+Kp)e?|

(1+K6)(q+e (Bq(1 M,)-q+BM_R))-Bqg |
, = (4.5.13)
qlg—R|(1+Kp- B)(1+K9)e —(1+ Ko - B){1+ Kp)e*]

" The solution of n-/'I(Z,q) now becomes,

- %q R)* Lpe® + MOe*
a(q- R)(1+ K¢ —B)(1+K0)e’ —(1+ KO —B)1+ Kg)e*|
(4.5.14)
in which:
Lo = Bg—(1+Kp)q +e*(Bg(1-M,)—q + BM,R)) (4.5.15)

M6 =(1+KO)q+e’(Bg(1-M,)-q+BM,R))-Bg=-L6 (4.5.16)

Replacing q by g-1/4k, we have:
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-1 q-R

6=—o+ | —— 4517

2K VK (4517)
-1 g-R

o BNEAL 4518

$=ok K ( )

a(q - R){(1+ K¢ - B)[1+ K0)e® —(1+ K6 - B{1+K¢)e? ) becomes:

RN S
=(q-'4"}<')(Q—R—%)e%K "B(eﬁ_;;"[—_?-)ﬁ; Koge!" ek
rK20g(e" K _e k)
- BKoe' < 1 BKge K |
E Sinh\/(“'_‘ﬁ/< +2K$ sinh\/(q‘—R%(
~2Bsinh, [T~ R)/
=(q—%)(q—R—z1K)e'y x +2K95|nh\/_qT +2K*0¢ sinh \/(?R—
m@(_zf// //)
core K- J@RY)
—(g-—)g-R——)e _2(K(q R- ) S'”h\/:—Bsmh\/i
. " —ZBKF cosh \/E
i K K
(4.5.19)

The solution of M now becomes:
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M(Z,q -1/ 4K)

_ 1 . Lge® +MOe*

1 - _
q-R-7 —2(K(q—R)—%)sith¥

1 '%K 1 ; -
- -R-— -Bsinh f_”
(g 4”)9 (q 4K) sin K

- ZBK\/% cosh\jﬂ

i K |

(4.5.20)

in which:

Lé=B(q-1/4K)~(1+ Kg)q—1/4K + e*(B(g ~1/ 4K)(1-M.)

(4.5.21)
—(g—1/4K) + BM,R))

M8 = (1+ KO)(q -1/ 4K +e°(B(q -1/ 4K)(1- M, ) —(q - 1/ 4K) + BM,R))

-B(qg-1/4K)
(4.5.22)
Considering:

_ —
~2(K(q-R)- ¥)sinh [T~
(K(@-R)- ¥j)sinh p

1 L 1 , qg-R

-——)=(g-— -R-—)-Bsinh,j———

Q(q 4K) (q 4K)e (q 4K) sinh =

—2BKJQ'_Rcosh,}ﬂ
i K K |

(4.5.23)
then Q=0 has roots at q-1/4K=0 or q-R-1/4K=0, i.e., g=1/4K or qg=R+1/4K and

the roots of the equation are given by

—2(K(q—R)—%)sinh1/-(t<;R —Bsmh,fq;(—R —ZBKJQI_(R coshJ% -0

(4.5.24)
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or

[ _ 2BK./(g-R)/K
tanh |9 R = (9-R)/ for g is real and largerthan R (4.5.25)
K 0.5-2K(q-R)-B

Based on the property that tanh(ix) =itan x(x) described in Section (2.5.3.3),

then:

- 2BK.[—(q-R
tan. | (a-R) _ (@-RI/K 0 gisreal and less than R (4.5.26)
K 05-2K(q-R)-B

In the Laplace transform, as described in Section {2.5.2.1), there is a

property:
_e R
f(x)= 2T () exp (2.5.2.1.7)
for Q(p) = constant*(p-i1) (p-A2)... (P-An) (2.5.2.1.8)
_Rlp)
And L[f(x)]= o) (2.56.2.1.9)

Applying the rule of the Inverse Laplace transform to M(Z,q) with variable g-

1/4K, we get:

a, [L¢eoz + Moe® ]e{q—1/4k)7'

+ > . -

iR —2(K(q_R)-y)sith—q‘R
4 K

ai* Yo (g - R——)(q——)—Bsthq R

q

—28K1f coshwﬂ

4527

9

' [q - 2BK -R)/K
in which g = a; are roots of tanh q-R = (a-R)/ .
: K 05-2K(qg-R)-B
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The contribution from the summation when g = R +1/4K)can be calculated

by direct substitution as follows:

g ~1HVAK(R+1/4K-R) _

0 4528
2K (4.5.28)
6 =,‘1"/4K(R+”4K"R) =1/K (4.5.29)
2K
Lo =BR+—— —— ) (1+K(ED)...) = BR (4.5.30)
4K 4K K ' i
M =1*(R+— 4 e (BR+— = Y1=C.)~(R+—— - )+ BC.R)
- 4K 4K 4K 4K ' 4K 4K '
_B(RJFL_L):()
aK 2K

(4.5.31)

O g yg-r-1 _Ble’ - _Ble?
aq[(q R 4K)((1+K9)(1+K¢ Be® —(1+Kp)1+K0 - B)e )}

g=R+1/ 4K
1 -1 -1
=(R4+————)1*(1+K(—)-B)e" -(1+ K(—))(...)|=-RB 4.5.32
4)[ (+(K) Je (+(K))( )} ( )
Thus, the contribution of the summation at g=R+1/4K is:

BRBB;;Z Q(RHI4K-1AKIT _ _ o RT (4.5.33)

when g is 1/4K, we have:

o ~1+JAK(1/4K-R) —1+J1-4KR _

4.5.34
2K 2K g ( )

—1- JAK(1/4K -R) —-1—+1—4KR
6= V! 2(K ) _ = -4, (4.5.35)

gy L Y e L R R T
Lo, =Bl =) (1+K¢1)LK e (B(4K 7)1=C) 0+BC.RH

=—{1+K¢,)e*BC.R
' (4.5.36)
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M8, =(1+K6,)e"BC.R (4.5.37)

[(q _ﬁ)( -R-ﬁ)((nxa)(nm -B)e’ -(1+Kg)}1+K@ —B)e")}

VU R B\t _B)e*
= (R 4K)((1+K91)(1+K¢, Ble® —(1+ Ko, Y1+ K86, - B)e* )

= -R((1+ K8, )1+ K, - B)e® —(1+ K¢, Y1+ K6, —Ble* ) (4.5.38)
Thus, the contribution from the summation term is:

_ BM,|(1+Kg, Je¥e™ —(1+ Ko, Je"e* | (4.5.39)
a,(6,,¢,)

in which:

a,(0,,¢,) = (14 K8, X1+ K, - B)e® —(1+ K¢, 1+ K6, -B)e*  (4.5.40)
a,(0,,6,) = (KR - B(1+ K8,))e” ~(KR - B(1+ K¢, ))e*

= (KR -B/2)(e® —e*)-BJ1-4KR(e" +e*)/2 (4.5.41)

For 1 - 4KR > 0, we have:

4, _e¢1 _ —1I2K(ev‘1 -4KR [ 2K _e—J1—4KRI2K):28—1I2K Slnh( #1—4KR/2K) (4542)

e
& +e* =272 cosh(v1- 4KR /2K) (4.5.43)

While 1 - 4KR < 0, we have:

0% _gh = g V2K (@NIRRK _ o-ifEKRAIK Y _ 9jg 112K gin [T AKR 1 2K) (4.5.44)
b 4 e% =2V cos(v1- 4KR /1 2K) (4.5.45)

Thus aq(84, ¢1) become:

a,(0,,¢,)=e""* {(2}(}? -B )smh_———“_z:m - B1-4KR cosh _\,1—2’1}«?}
when 1 - 4KR > 0 (4.5.46)
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_——"‘“2(2"1 — BJ4KR -1cos ———“‘”;T}

a,(8,,¢,) = ie“’z"[(ZKR— B)sin

when 1-4KR <0 (4.5.47)
Considering (1+ K¢, Je*'e®® —(1+ K8, Je*e**:
—ehe® —eghe* +K(g,ehe’” —6,e%e*)

i—ﬂ(eﬁee,z +efet?) (4.5.48)

= 1(e°”e‘"z -e%et?)-
2 2

For 1 - 4KR > 0, we have:

ote% _ete =expl T2 exp( AR 71y _exp R (2 -1)
2K 2K 2K
{(1+Z) f _
=2e * sinh(———1 4KR (Z—1)] (4.5.49)
2K
(1+2) f _
P’ +ehe® —2¢ 2 cosh[iéiﬁq—(z—ﬂ} (4.5.50)
For 1-4KR < 0, we have: -
{1+Z) f _
ete®? —ehe? =2je sin(——-—‘”;i 1(Z—1)J (4.5.51)
2 J -
ebel? | plhgh? —2¢ 2K cos(—zl—;-}z-—1(2—1)] (4.5.52)

Thus, (1+Kg, et e —(1+K6,)e"e** become:

-{(1+Z}
Lo {sinh(—_—“‘zim(z -1)] _J1-3KR cosh{——f—“;}im?(z —1)]}

when 1-4KR >0 (4.5.53)
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—{1+Z)
- ie“(zT[sin[———“'“;i"'(z —1)}-\/4KR—1COS{—-—————VM;£_1(Z -1)]}

when 1 -4KR <0 (4.5.54)

When g =a,, for i=1, 2, ... n, the value of

| v 1 1 -2(K(q-R)- A)sth———Bsth

—ie#(q-R-—-)(q

oq 4K q_
—2BK1} coshJ

becomes:

—2(K(q-R)—%)smh‘}q—;<5

_ g1/ 4KNG-R-1/4K) S| _pgeinn [3=F
oq V K
-ZBKJq_Rcosh‘fq——E
I K K
1 5 -2(K(q-R)- A)sth——-——Bsth

Ha— ) a-R-—)e i

4K 4K 2q { f
q —2BK 9- Rcosh

Note that at poles

1, . g-R . g-R g-R g-R
-2(K(g-R)—-— hTf—ﬂ——B th——~——28kJ cosh1f——-=
(K(g-R) 4)sun K sin % e P

and thus:
. -R . g-R
~2(K(q~R)~ Vj)sinh /Q.H—_Bs;nhjd
—(q—Na-R- e = K

4K aq /" /— '
-2BK cosh
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k(g —R) - VY ycosh [A=R
2AK(@=R)= Y= R))cosh,/ <
_2ksinh9=R _g 1 )cosn [9=F

K 2yK(q@-R) K
—EBK(—1——) osh |1=R
2 K(q— K
—-2BK ) 9- Rsmh
i 2 K(q R)V K V

i | 1
( 1 ) —2(K(Q—R)-Z) cosh ﬂq—R
2yK(a-R)' | _g_2Bk K

—(2K+B)sinh‘/g;—R

for g - R is positive (4.5.57)

= _i _ __1_ ik
=(q 4K)(q R 4K)e

= _i - _i Yok
=(q 4K)(q R 4K)6‘

Based on the properties of sinh and cosh described in Section (2.5.3.3), then:

i} 1 _
AK(q—R)——)+B+2Bk
1 (K(g-R)-2)+B+ oo [R=3
-:(q——)(q R- e 2/K(R-q) K
— _
(2K +B)sin,| >4
L K i
for g - R is negative (4.5.58)
Consider Lge® +Mbe* :
=B(Q—%)(eez—e"’z)—(q——1f){(1+K¢)eﬂz—(1+Kt9)e"z]
(4.5.59)

{q——)(B BC, -1)+BC, R}[{1+K¢)e°” e - (1+ KO Je’e® |

a-R a-R, -z
e” —eg¥ =g /Mgl K ‘e ‘{ K )=2e% .s:thELEE (4.5.60)
(1+Kp)e® —(1+ Ko)e* =% z _e¥?)-JK(g—-R)e" +e*)
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-z
_ 267 Esithq—"kﬁz _ JK(g=R)cosh, }q_;(ﬁz} (4.5.61)
(1+ Kg)e*e® —(1+ KB)e’e®

—{1+Z)
=2 [%Si"hq%U—Z))+JK—(Q-—R)cosh(J%(1—Z))J (4.562)

Loe® + Mbe* now becomes:

(- e-Yysinn /IR 7 + KGRy cosh [1=F
(g 4K){(B 2)smh X Z +K{(g-R)cosh K Z}
-z
=262_K< l . q—R _
23|nh(1/——-——K (1~-2))

+e2__K[(q'Z1E)(B‘BC‘ _1)+BC.R
+JK(q —R)cosh(‘,q—;(ﬁﬁ—Z))

forg—R>0 (4.5.83)

—

.

Based on the properties that sinh(ix) = isin{x} and cosh(ix) = cos(x) as

described in Section (2.5.3.3), L¢e® + MBe? for g — R < 0 becomes:

(q—%)[A/K(R—q)cos(1fR;qZ)+(B—%)isin( /R;‘?Z)]

-2 ' 1. — o an “
_ e, {(q--&)f\/K(R q)(8-8C. 1)}003( /R;q“_z)) r

-1
+e ]| +iJK(R-q)BC.R

n's

1 1vp n~ o, BCR|.. [R-q.
L+[§(q—ﬁ)(8 BC. -1)+— }lsm( P Z))JJ

( 1 R-q 1. ., |R-q
(Q—H){\/K(R-G)COS( i Z)+(B—§)Sln( K Z)}
:E

= ie? 4 ,fK(R—q)cos(JR;"m-Z)) >

+eﬂ(q—i)(3—sc. —1)+BC.R:|
4K 1 . [R-qg
+Esm( T(1—2))
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forg—-R<0 (4.5.64)

Note: as q = R, since yK(R~-q), sm( Z) and sm(J (1 Z)) are

all equal to zero. Thus Im[L¢e*] =0 at q = R.

Finally, the solution of M(Z, T) (Solution 3) is

26" ﬁ’T%L‘(K BM,.R,Z.q)
M(Z,T)=G(K,B,M,,R, 2)+Z 1

” a*(q!—%)(qf R——)h(K B.R,Z,q)

(4.5.65)

{ _ -R)/IK
in which, a; are the roots of tanh q-R = 2BKV(9-R)/ for q larger
K 0.5-2K(g-R)-B

than R, and

-(g-R) _2BK\{-(q-R)/K

for g less than R, (4.5.66)
K 0.5~ 2K(g—-R)-B

fan

where;

sinh
—Z
e 2K

(\/1—4KR (2_1)J
2K

~J1-4KR cosh[ L Z;KR (Z —‘UJ

G(K,B,M,,R,Z) = BM, - L .
[(ZKR —B)sinh —_—”;}‘im - BJ1—4KR cosh ——"1;:’@]

when1- 4KR >0 (4.5.67)
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-Z
e 2K

[ [-J4KR-1

sin oK (Z—1)J

JAKR ~1
2K

- 4KR—1cos( (Z—1))
G(K.B.M, R.Z)=BM, =

[(ZKR —B)sin —-—"‘”;F - B\J4KR -1cos h—-—“‘”;?]

when 1 - 4KR < 0 (4.5.68)

When q is larger than R:

1
~2(K(q-R)--)-B-28BK - -
h(K,B,R,q)= 4 cosh |92 _ (2K +8)sinn IR
2JK(q-R) K K

(4.5.69)

fKBM..Z.Rq)=(q —;%)[Wcosh( %Z)HB—%)sinh( q—;(EZ)]

JK(q=R)cosh(., /%(1 ~7))

i TR 1
+zsmh( P (1-2))

-1

= 1
*|(q-——)(B-BM, -1)+BM,R
+e [(q 2 . =1)+BM,

(4.5.70)

When g is less than R:

1
2AK(q-R)-—)+B+2BK = —
4 cos R-q —(2K +B)sin RKq

2JK(R-q) K

h(K,B,R,q) =

(4.5.71)
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R

f(K'B’Ma'ZrR’qF(q-%)[WCOS( ’;qz)-t-(B—%)sin( —RIQQZ)}

JK(R=qJcos(|-2(1-2)

+-;—sin(1{5%(1 7))

The above model has a limitation of application in that the initial

+62__K[(q ——;?)(B—BME —1)+BMER]
(4.5.72)

concentration m,, cannot be set to zero. The model thus cannot simulate

cases that start with initial contaminant free condition. However, a modified
model allows for zero initial concentration. The initial and boundary
conditions are changed as foilows:

Boundary condition at bed layer level:

K—QM+M =BM-B,|,_ (4.5.73)
o0z 720 20
Initial condition:
M(Z,0}) =M;o (4.5.74)
in which M =" M, = Mo B, _In B, iy ¢, and y,are the settling
m, m, o )

and resuspensién velocity of the contaminant at the water-sediment interface,
respectively.

The system is solved analytically with similar techniques and procedures as
Model 2. The detailed solution is shown in Appendix 1 while the solution of

M(Z,T) (Solution 4) is as follows:
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[ozer5¢]
M(Z,T)=G(K,B,B,.R.Z)+ Z = 1 - B“Bz'Mm’R 22
GRSt R*——)h(K B.R.Z,q)

(4.5.75)

- 2B.K -RYK
in which a; are the roots of tanh 9-R _ K(q-Ry for q larger
. V K 05-2K(g-R)-8B,

than R, and
(g - 2B,K./- (g - R)/K '
tan @-R) _ <5 (9-RY for q less than R, (4.5.76)
K 0.5-2K(g - R)-B,
where:
B, sinh[(z V1= 4KRJ -J1- 4KRcosh((Z"1)2“:(_4KRH
G(K,B,,B,,R,Z)=

Z
K[(zKR B,)sinh Y1 28T Z;KR _B 1= 4KRcosh—_W]

2K
when 1- 4KR >0 (4.5.77)

(Z —1)\/4KR—1}_ WCOS[(Z —IWAKR -1 H
2K 2K

B [
G(KB,.B,..R.Z)=—
62| (

2K

when 1-4KR <0 (4.5.78)

[ZKR B,)s n“’“éﬁ ~B,V4KR -1 “4KR‘1}

When g is larger than R:

1
_2AK(g~R)-—)-B, - 2B,K - -
h(K,B,,R.q)= 4 cosh %-(M +1531)sinh|/3-2-’3

2{/K(g-R)

(4.5.79)
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fK.B,,B,,M,Z,R,q)

ta_ s fq—R Kia-R] fﬂ
={q 4K)M'°[(B' 2)smh x Z+.JK(q—-R)cosh P Z}

1 . qg-R

——smh(J—(1—Z))

2 K
)+82R]

+K(q—R) cosh(, /#(1 ~Z))

(4.5.80)

-1

= 1
+e% [(Q_R)(Mm& ‘Bz _Mm

When g is less than R:

1
2AK(q—R)~—~)+B, +2B,K - —
h(K,B,.R.q) = . K(4R ) cosJRK"—(2K+B,)sinJRK"
~-q

(4.5.81)

f(K,Bsz:MmsZ.R:q}

=M,o(q-%)[\/K(R—q)cos( B292)+(8, - sin( %2)}
JK(R=q)cos(,"=(1-2))
o) +B,R

] +%sfn(,/5;—q(1—2))

-1

= 1
_ +e [(q _W)(M1081 - Bz - Mf
(4.5.82)

4.6 General Analysis for Model 2

Two forms solution, Solution 3 and Solution 4, have been developed
for Model 2. MATLAB program codes have been developed for the solutions
to generate computational results of the model. For Solution 4 of Model 2, the

main input pararrieters are K, My, R, By and B,. The contributions to fate of
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the contaminant by changing above parameters are described in the
following paragraphs.

4.6.1 Effect of R

In Model 2, the dimensionless term, R, is defined as follows:
R=Hr {w

and is a function of the water depth (H), first order growth/decay term(r,, }and
settling velocity(w). The following analysis concerns the contribution by r,_ to
contaminant transport. The relationship between R and r_,is direct proportion
with reference to the above expression of R. In general, r, has been used to

represent the growth or decay property of contaminants and a negative value

of r,, represents a decay of the contaminant. In this model, since there is a

continuous unlimited exchange of contaminants with the bottom boundary, a
final steady concentration profile exists in most cases except when the
contaminant has a sufficiently large growth rate. The condition of the
existence of the steady state concentration profile is described in the
following paragraphs.
4.6.2 Existence of steady state condition

Observing the Solution 4 of Model 2, the first term of the solution,
G(K,B1,Bo,R,Z), in the model is independent of time and all other terms (the
summation sequence) in the solution are time - dependent. In most cases,
the magnitude of the summation sequence in the solution tends to become
zero as time is large and the concentration profile approaches to equilibrium

condition. Therefore, the first term represents the steady state concentration
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distribution as time goes to infinity. Observing the solutions of Model 2, the

term, exp((q —1/ 4K )T }, is the only part of the solution that depends on time
(T ) and it will tend to zero as (g -1/ 4K) is negative. Thus, the existence of

the steady state condition should satisfy the following condition:

R<1/4K-q',,, (4.6.2.1)

-and g’may is the maximum value of ¢’ found from the following equations

" 2BKJq/K
tanh |9 - 2BKJ9T forq>0  (4.6.2.2)
K = 0.5-2Kq_B,
-7 _ 28K G |
tan = for q'<0 4.6.2.3
K ~ 0.5-2Kq-B, a ( )

Therefore, the existence of the steady state condition depends on B;, K, and
R, or depends on ®, ¢m kn; and H. Table 1 shows values of q'max and
1/(4K)-q'max With different inputs of K and By. Generally, g'nax decreases as K
or By increases but 1/{4K) decreases as K increases. In conclusion, the
condition for the existence of the steady state condition is that 7/4K)-q max
decreases as K increases and increases as By increases. A larger value of
1/(4K)-q'max Means that a larger value of R can be inputted to the system,
which still maintains the existence of the steady state .

Two sets of figures have been generated using Solution 3 of Model 2.
Figure 7 shows the concentration profiles for different R with K=0.35, B=1
and M, = 2. All cases show the steady state condition. G(K,B.M,,R,Z),
indicated by dotted lines, are the steady state profiles. Figure 7 shows that
the overall magnitude of the steady state profile, G(K,B,Mj3,R,Z), increases as

R increases. Figure 8 shows the concentration profiles of some cases

Chapter 4, page 101



without a steady state for K=0.35 and B=1. Sufficient largé values of R have
been chosen in each of the cases shown in Figure 8. The large values of R
mean the growth of the contaminant concentration in the water column
(entrainment flux from the bottom boundary} cannot be balanced by the
deposition flux to the same boundary. Thus the overall magnitudes of the
concentration profiles in Figure 8 continuously grow as time increases. These
figures reveal that the effect on the concentration profile caused by changing
the value of R is more significant than it would be by changing the value of
M.
4.6.3 Effect of My,

In Solution 4 of Model 2, the dimensionless term, My, is defined as
follows:

My,=m,/m,

Thus, My is a ratio between the initial concentration and the reference level
concentration of the contaminant. Some cases have been generated using
Solution 4 of Model 2. In Figure 8, curves of constant concentration are
shown for K = 0.35 or 1 and Mp = 0 or 1. The first term of the solution,
G(K,B1,B,,R,Z)}, is not a function of the initial concentration and hence the
magnitude of the initial concentration does not affect the final solution. Thus,
comparing the results in Figures 9(a) and 9(b), a significant difference only
occurs at the beginning. The difference decreases as time increases and
finally both cases approach the same steady state concentration profile. The

same phenomenon also occurs in Figures 9(c) and 9(d). The magnitude of
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the initial concentrations only affects the required time to reach the steady

state.
4.6.4 Effect of K
in Model 2, the dimensioniess term, K, is defined as follows:
K=k, {oH
Thus, K is directly.pl‘oportional to k,, and is inversely proportional to w. The

general physical meaning of K can be described as the ratio between the

turbulent mixing coefficient, k,, , and the settling velocity, @ , of the

contaminant.

The definition of the settling velocity is that matter travels downward to
the bottom layer because of gravity. The definition of turbulent mixing is that
matter is mixed by large scale eddies or whirls in natural waters. In the model,
the turbulent mixing coefficient controls the magnitude of upward motion of
contaminants from the bottom layer to the water column and thus K
represents the ratio between upward and downward motion of the
contaminant in the water column. Comparing between Figures 9(a) and 9(c),
the figure with the greater value of K shows a higher concentration in both
the initial and final distribution and the same are observed between 9(b) and
9(d).

4.6.5 Effect of Byand B;

in Solution 4 of Model 2, the dimensionless term, B;, is the ratio

between the settling velocity of the contaminant at the water-sediment

interface to the settling velocity of the contaminant in the water column. The
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simplest assumption for the value of By is 1. However, based on former
works such as that by Richardson and Zaki (1954) and Oliver (1961), the
magnitude of the settling velocity is affected by the sediment concentration in
the water column. The value is smaliler than the one calculated by some
basic laws such as Strokes’ Law, when the sediment concentration is large
which often occufs near the bottom water-sediment interface. This is better to
set By at a value less than 1 in such cases whereas the value of B> can be
set to 1 in all cases. In the model, even the resuspension rate of the
contaminant at the bottom boundary is different from the settling velocity in
the water column. The effect can be taken into account by the value of m,,
reference level concentration in the bottom sediment layer. In Figure 10,
curves of constant concentration are shown with different values of B;. Figure
10(a) and 10(b) show cases with B equal to 0.7 and 0.5 respectively. The
figures show that the dimensionless concentration, M, near the bottom
boundary, is greater than 1 when time is sufficiently large. The phenomenon
is more obvious when a smaller value of B, is applied. Figure 10{c) shows a
case with By equal to 1.2 and in this case, values of M are always less than 1
over the water column. This is different from the cases shown in Figure 10(a)
and 10(b).

As discussed in Section (4.6.2), the allowed value of R inputs into the
system, without removing the steady state condition, increases as By
increases. Figure 10(d) shows a case for R=2, K=0.35, which does not have
a steady state condition for B=7 (shown in Figure 8(a)). It has a steady state

condition for B,=5 instead. However, the time required to reach the steady
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state condition is greater than that for the cases shown in Figure 10(a) to

10(c).
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Table 1: Value of q'max @nd {1/4K-q'max) with different values of K and B4

B~k | 03 0.5 1 2 4
0.5 -0.33129 | -0.37009 | -0.42676 | -0.46098 | -0.47984
(1.04558) | (0.87009) | (0.67676) | (0.58598) | (0.54234)

0.7 1056288 | -0.59650 | -0.64309 | -0.67003 | -0.68460
(1.27717) | (1.09659) | (0.89309) | (0.79503) | (0.74710)

1 -0.80147 | -0.85353 | -0.92196 | -0.95969 | -0.97951
(1.51576) | (1.35353) | (1.17196) | (1.08469) | (1.04201)

1.2 -0.91338 | -0.98467 | -1.08225 | -1.13822 | -1.16833
(1.62767) | (1.48467) | (1.33225) | (1.26322) | (1.23083)

2 -1.17216 | -1.32140 | -1.57235 | -1.75320 | -1.86632
(1.88644) | (1.82140) | (1.82235) | (1.87829) | (1.92882)

Figure 7: Concentration profiles for different R with K=0.35, B=1 and M,=2

(a) R=0

—h

A\

0.8 \\\\

0.4

™~

(b) R=0.5

0 05
T=0.5,1.0, 2.0 and equilibrium

(7. SR S \
0 S
0 0.5 1 1.5 2 25
M
(c)R=-0.5 state(dotted line)

1 1.5
M

(d) R=-1.0

2 25

1

0.8 1\

Chapter 4, page 106




Figure 8: Concentration profiles for cases without steady state condition
for different R with K=0.35, B=1
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Figure 9: Concentration distributions with different values of input
parameters
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Figure 10: Concentration distribution with different values of By
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4.7 Governing system of Model 3

The third model, Model 3, is developed with reference to the analytical

model given in Prakash (2000). It is also an upgraded Model 2. Model 3

considers diffusive exchanges of contaminants from both boundaries and

allows input sources at the boundaries which grow/decay exponentially.

Figure 11 shows the modeling environment of Model 3.

—dat
Lb“m“e & b,m
|

?

b,m.,e " +bﬂm

Figure 11: Problem Definition of Model 3

The governing equation and boundary conditions are as follows:

Governing equation:

om cm a’m
= = -~ T kmz A 5 rmm
ot oz oz
Boundary condition:
[ cm
k.,——um =b,m, exp(-d,t)-b,m
|_ (-“Z z=H i
m
{k,,,, {ﬁ -um -b,m—b,m, exp(-d.t)
Initial condition:
m(z,0)=m,

Chapter 4

(4.7.1)

(4.7.2)

(4.7.3)

(4.7.4)
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in which: m is the contaminant concentration. my is the contaminant
concentration at t = 0. mz is the reference contaminant concentration at z = 0.
m, is the reference contaminant concentration at z = H. H is the depth of flow.
kn, is the turbulent mixing coefficient. u is the vertical contaminant flow
velocity. ry is the coe_-fﬁcient for the source/sink term. The terms by, b,, bz and
b, are coefficients for settling or resuspending contaminants at boundaries.

The coefficients d,and d,are contaminant growth/decay rate input to the

system from the boundaries.

Model 3 has the same goveming equation of Model 2. This means
constant settling velocity, a constant turbulent coefficient and first order
source/sink term are considered in the model. Model 3 also assumes
constant value of initial concentration along the water column. The main
difference between Model 3 and Model 2 is the setting of boundary
conditions. At the boundaries, the net contaminant flux is the difference
between the incoming and outgoing contaminant fluxes. The model allows for

an exponential growth/decay of input flux at the boundaries.

4.8 Summary of solution steps of Model 3
The major mathematical techniques involved to solve the govering
system of Model 3 are Laplace transform and its inverse transform. A

summary of the steps are shown as follows:

First, the governing equation is transformed into a second order ordinary

differential equation with respect to z by applying Laplace Transform:
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o‘m  om ~
mz?—ug—(q—rm)mz—mm (4.8.1)

in which m(z,q)is the Laplace Transform of m(z,t).

The solution of mis:

m=c,e® +c,e® +my,lg-r,)

(4.8.2)
‘+4k_(g-
in which 6 ;¢ = u_g \fu + (9= 1) . €, , C, are arbitrary constants.
2k, 2k,
Applying Laplace Transform to the boundary conditions, they becomes:
koo 07 i =P _p (4.8.3)
0z lpw G+d,
L N S (4.8.4)
0z LD q+d,

Solutions of ¢, and ¢, are found by substituting the solution of m(z,q) to the

transformed boundary conditions. The solutions are as follows:

]fe'”*(kmqu —u+by)(q+d,)(q+d,)u+b)m, —bm,(q-r,)]

6. - — (k9 —u—-b)q+d, )[(q +d, )(u—b,)m, +b,m,(q-r,)] } (4.8.5)
( _r )(q+d )(q+d ) (kmze_u_b1)(kmz¢—u+b3)ew
TR RGO kb= by u 4 by ™
~ {e“”(kmze ~u+ by )(q+d,)(q+d,)u+b)my, -bm,(q-r, )]}
¢, == (k0 —t—b,)(q +d, )[(q +d U =-by)my, +b,m,(q-r,)] (4.8.6)
(@1 )G+ do)q+d,y| KO U= b =u+ by o
9= m 2 Y= (ky$ — = b, ) k,,0 -t + b, Je™
The solution of m now becomes:
frm_Mo Lge” + Moe* (4.8.7)
(@-rn) (@-r,Xqg+d,)qg+d,)Aq)
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where:

Lg = %' (Kpu U +b,Xq + 0, (G + )+ b ~bpme(@ =) 0 o)
~ (Kb 1 = b Xq + 0, )( + A ) = by +bymy(q ~r,,)]

MO = €% (k8 ~u+b,)(q +d G-+ Nu-+b)mo —bomy(q—r)] 0l
+ (ke — U~ b,)(q +d, (g +d, u - by)my, +b,m,(q —r)] -

Q(q) = (k0 —u -51 N Kped — U + b3)e? = (K, =t = b, )(K,,,0 — i + by )™
(4.8.10)

The term Q(g) can be rearranged to as follows:

2 —
:(U—i_\/u +42k'"z(q ') —U—b1}<

@ 2kn: o 2k,

[u—\/uz +4k_(q-r.)
2

uH -Hy u2+4km1(q_rm )
—u+b,

(4.8.11)

— 2 -
_(U Ju +42kmz(q r,,,)_u_bJ><

2 uH  HYo il (g-rn)
U++ju°+4k —r 5 o
{ \/ > mz(q m)_u+b3]ezkm,e 2Ky

uH
2Kz )

u H U+ 8k g (1) H e ak,(g—rm) |
(—kmz(q_rm)+5(b1_b3)—b1b3] e 2kinz —-e 2Hng

=€

24k (g-
+\/u + énz(qv ')

-H JU2+4kmz(q_"m ) H\/U?' +a4ko (G-rn }
(b, +by) e Zhime +e Zkm

r H 2 - .
(2kmz(q-rm)+2b1b3-u(b1_b3))sin,{ Ju +24:,,,Z(q r,,,)}

Qq) = e >

2
+ (b, + by WP +4kmz(q—rm)cosh[H‘/u e rm))
J

mz
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for u* +4k_(q-r)>0 (4.8.12)
For u? +4k_(g-r_)<0, Q(qg) can be expressed by applying sinh(ix) = isin(x)

and cosh(ix) = cos(x) as mentioned in Section (2.5.3.3) and becomes:

,

utf

(2k,(q—r,)+2bb, —u(b,-b, ))sin[
Q(g)=ie®=3.
+(b, + b, )\/— u® - 4k,,(q -*rm)cos[

2k

mz

Hy- 1 -—4kmz(q-rm)]

2k

mz

Hy-u? - 4k (g —rM)J

for u* +4k_(q-r,)<0 (4.8.13)
Applying the inverse Laplace Transform with the rules described by Equation

(2.5.2.1.7) to Equation (2.5.2.1.9) to m(z,q), then it becomes:

(Lge® + Moe* )e?
{(q-r,)g+d,)g+d,)Qq)}

m(z,t)=mge™ + 3" (4.8.14)
9=¥m
oq

where g = r..d,,d, and q=a,,a,, --a,are roots of the following equations:

2k

mz

(2k,(g -1, )+2b,b, —u(b, - b,)) sinh[H\/uz +4k_(q —rm)J .

2k

mz

H.u? + 4k - i
+ (b1 + b3 )‘\/uz + 4kmz(q —'rm) COSh( '\/U * mz(q rm)] = 0

for u* + 4k, (q-r,)>0 (4.8.15)

2k

mz

(2k, (g —r, )+ 2b,b, —u(b, - b, ))sin{H\/—UZ - 4Km(q —rm)J

+(by + by W17 —4kmz(q—rm)cos[H‘/_u _4k'"=(q_r"’)J -0

2k

mz

for u? +4k_(q-r)<0 (4.8.16)
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The termL¢e® + Moe? is rearranged to as follows:

= _(q + dz )[(q + d4 )(U - bs )Co + b4C4(q Ty )]{kmz(eezft' - e&e) _(u + b1 )(eez -e* )}
k. (e*e%p-e"e”0)

+(q+d,)(q+d, XU +by)c, —b,C(q +1,, )]I:‘ (u-b,)(e*e™ —e*e® J

(4.8.17)
S 2414k (g-
0% _ ¥ — pgPhn sinh[‘fu al 2;’2(" ) z] (4.8.18)
u{H+z) 2 _
ool _ oMot _ _pg Zm sinh{‘/; “;imz(q ) iy —z)} (4.8.19)

u sinh[\/u2 + 4Kng(q ~ ) z}

eka kaz
mz 2 Ak -
— Ju? + 4k, (q-r,)cosh Ju? +4kp(q rm)z
2K,
(4.8.20)
e*e”p - e*e?”g becomes:
[ 244k - —H
u(H+2) usinh{\ﬁJ + mzz(z rm)(Z )}
2k mz .
=ek (4.8.21)
" 244 _ _
—\/“2+4kmz(q—rm)cosh{\f“ i "mzz(z rm X2 H)]

Thus L¢e™ + MOe* becomes:
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ulH+2)
2k

=(q+d, (g +d, Xu+b)mg -bmy(q—r,)le * x
(u-2b, )sinh[(Juz +4k_(q-r. )H - z))/2kmz]
E Jut+ 4k (q-r,) cosh[(\[u2 +4k, (q-r, )H- z))/ 2ka]_

\/uz + 4kmz(q - rm) Z‘
_kaz |

+{q+d;)x

(u+ 2b,)sinh{

(g +d,)u~by)my Je—“i
_+ b4m4(q _rm)

2k

2 L 4k_(q-
+\E+4kmz(qr—r,,,)c;osh{‘/u + 4k, (q r’”)zJ

mz

for v +4k_{qg-r,)>0 (4.8.22)

For u®> +4k_(q-r_)<0, Lée® + MBe* can be expressed by applying sinh(ix)

= jsin(x) and cosh(ix) = cos(x) as mentioned in Section (2.5.3.3) and

becomes:

u(H+z)
2
ka x

=i(g+d, (g +d, Xu +b)m, -bm,(q-r,)e
(u —2b3)sin[J—u2 ~4k_(q-r,)H —z)/2kmz]
U7 4k (G -1 COSN U — Ak (G~ 1 )(H - 2)1 2K,

(u +2b1)sin[zJ— ut —4k_(q-r,)I2k,,
}em +y-u? —4k, (q-T,)x
cosh z\[— u* -4k, (q-r,) /2ka]

d —b;)m,
+ f(q +d2 )[:qb+c 4(3?(‘..!_ r ;)m

foru?+4k,_,(q-r,)<0 (4.823)
The contribution of the summation sequence when g = r,, can be calculated

by direct substitution as follows:

u+u+ak (., —rn, u
_usy o~ ( )=k . ¢=0 (4.8.24)

mz mz

@

Substituting to the summation sequence, then:
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Lg =0 (4.8.25)

MO =(r,, +d,)(r., +d, )m,ol— b,(u—b,)-e*by(u+b, )} (4.8.26)
;%{(q—rm g +d,)(g+d,)q)} becomes:
=(r, +d,)r, +d, ){ty(u —b,)+e*b,(u+b, )} (4.8.27)

Thus the contribution is:

= —m,, exp(rt) (4.8.28)
The contribution of the summation sequence when q = -d, can be calculated

as follows:

Lge” + MOe*” becomes:

= ~{d, - d,)b,C,(d,+ )k, (e"e™p —e™e¥8) - (u—b; (e*'e” —e™'e®)]

(4.8.29)
e"e”p -eMe*0
u(H+2) fu sinh{\ﬁ’2 — 4k (I 7, NH - Z)}
_ _g Phme J 2K, > (4.8.30)
fire +ju? -4k _(d, + rm)cosh{\/u2 _ 4k""z(2d; e NH Z)}
e _e%e¥ = —Ze%? sinhﬁu2 - 4k'“z(2c:: 1 )(H —z)} (4.8.31)

Thus becomes:
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u(H+2)

=g (d, —d,)b,c,(d, +1,)

JUE -4k (d, +r,)x

JU? -4k (d, +r, ) (H-2)

2k

mz

COSH[

|

_(u—2b3)sinh[\{? _4k’"z(2t+ ok _Z).]
(4.8.32)
%{m—rqumz Xq+d,)Q(q)} becomes:
=(d, -d,)(d, +r)eztw x
r(b1 + by WP -4k, (d, +'r,,,)cosh{H‘/uz ";i:’z(dz H’")] (4.8.33)

-4k .(d, +r,)
2k

m

H 2
— (2K, (d, +r,)-2b,b, +ulb, — b)) sinr{ VY

J

Thus the contribution of the summation sequence when q =-d, is:

uz

o Zknz

ot Ju? -4k, (d, +r,) c:osh(\/ur2 ~ a4k (d, +r, Nz-H)!2k,,
: ZL (u— 2b;)sinklfu? 4k (0, + 7, )z~ H)/ 2k,
" (b, +b, Wi — 4k (d +1,y) COS{HA? — 4k (d, +1,,) 12K, )
[- (2K + 1)~ 2,5 + (b, — by ) sinh{HAJu? — 4k, (dy +7,7) | 2K )]

when u® -4k, (d, +r,)>0 (4.8.34)

For u® +4k_,(d, -r_)<0, the contribution of the summation sequence can

be expressed by applying sinh(ix) isin(x) and cosh(ix) cos(x) as

mentioned in Section (2.5.3.3) and becomes:
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e

Y _g
2k

VaK(dy +1,) -0 co"“*(\/d'k"”’(d2 +r) Ut (2 H)]

of 2k,
b,m,

2k,

|

(b,

H. 4k —u?
_(2kmz(d2 +rm)_2b1b3+u(b1_b3))8in( \/ MZ(d2+rM) u]

2
by WAy 7 )7 COS{HWm(dZ AP ]

2k,

2k

mz

when u? — 4k, (d, +r,,) <0 (4.8.35)

Similarly, the contribution of the summation sequence when g =-d,can be

expressed by direct substitution and the contribution is:

e

u{z-H) dut

2k,
b4 m,

2k,

2 —
+(u+ 2b,)sinh[‘/u HKing (0 + ) z]

2 —
\/uz —-4k_(d, +rm)cosh{\fu uACTRLY z}

2k

mz

(b1 4“!:"3)7\/Jz -

—(2k,(d, +r,,)~2b,b, +u(b, — b, ))sinh[

4k _(d, +r_)cosh
mz( 4 m) [ 2k

H Ju? — 4k, (d, +rm)J

mz

2k

mz

H\Ju? -4k (d, +rm)J

when u® -4k _(d, +r,)>0 (4.8.36)
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2k

uz
2k,

mz

[ 7
oy 2
4kmz(d4 +rm)—U2 COS[J4ka(d4 +rm) u ZJ

—tl,t

e b4 Cq

2k

+(U+2b1)sin(‘/4kmz(d4 )= Z]

mz

| H.ak (d,+r Y-u? ]
(b1+b3)\/4km2,(d4+rm)*UZCOS( .\/ W(2;+m) U]

H.4k_(d —u?
_(2kmz(d4 +rm)_2b1b3+u(b1—b3))sin[ \/ mekda +0)— U ]

2k

mz

when u® -4k, (d, +r,)<0 (4.8.37)

0Q(q)

at g =a,,a,, --a, become:
oq

The expression of

-

2k

mz

Hu? + 4k (g - '
(2k'"z(q_’m)+2b1ba—U(bﬁbg))cosh{ Ju? + 4Kn(q rm)}(

mz

2 _ > —
L LT AR +2k,,, sinh HyU? + 4K, (q=1)
oq 2k ok

mz

uH 2 -
4k - H Ak _
e | 4 (b, +b3)a\/:+ a;z(q r’")cosh[ \ﬁl +2kmz(q rm)J

mz

H\ﬁlz + 4kmz(q - rm ) x
2k

+(b, + b, )\/u2 +4k_(q-r,) sinh[

a H"juz +4kmz(q_rm)
oq 2k

mz

mz

Hu? + 4k, (g -r,)
2k

mz

(Zkz + H(b1 + b3 ))Slnhli

uH

— g %n | {zkmzH(q—rm)+2b1b3H }
. —uH(b, - b, )+ 2k, (b, + by) cosh H\/U2+4kmz(Q—rm)

Jui + 4k, (q-r,) 2k J

mz

for u® + 4k, (q-r,)>0 (4.8.38)
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For u? +4k_(q —r,) <0, the contribution of the summation sequence can be
expressed by applying sinh(ix) = isin(x) and cosh(ix) = cos(x) as mentioned in

Section (2.5.3.3) and becomes:

(

HJ- 0 —4k_(q- ‘
(2k, + H(b, +b,))sin y-u' = Bkn(q 1)
y 2,
=ie®™ 3 Tok H(q-r,)+2bbH

|- uH(b, = b,) + 2K (b, + by) cOS{H\/— v2 _4k_(q —-rm)}

'J— u? _4kmz(q —rm) 2k

mz

for u? + 4k, (q—r,)<0 (4.8.39)

Finally, the solution of m(z,t), {Solution 5) is as follows:

uz ‘ u(z-H} oy

= E‘m 2D,,(Z-—H,d2,b2.m2,—b3)+ e Zhne Dh(z'd4'b4’m4’b1)
D.(d,) D(d,)

) {P (G, b, M, —b,.d,)P,(2,G,by) } (4.8.40)
e
+2

uMH

—e¥= P (g—b, m,,b,d,)P,(z-H,q-by)
e (@-ruNg+d; g +d,)W(q)

where g = a,, a,, ---a, are roots of the following equations:

(2kmz(q I ) + 2b1b3 - U(b1 - b3 )) Sinh[ HJU + 4kmz(q — ) ]

2k,
(4.8.41)

HJu? + 4k _

+(by + by )J” +4k, (qg-r, cosh[ T T Gk )] 0

or
tanh H\[u2+4kmz(q_rm) B (b1+b3)\/u2+4kmz(q—rm)
2kmz ) (U(b1 _b3)—2b1b3 _2kmz(q _rm ))

for u* + 4k, (q-r,)>0 (4.8.42)
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Hy-u? -4k, (q-r,)
2k

mz

(2k,(q -r,)+2b,b, —u(b, - b, ))sin(

+(b, + b, )\/‘Uz ~ 4k, (q-r) COS[H‘EU2 ~ 4Kl _r'")} =0

2k,
(4.8.43)
or
an Hy-u? -4k, (q-r,) | (b +bW-u? -4k, (q-7,)
2kmz B (U(b1 _bS)_2b1b3 _2kmz(q I ))
for u® +4k_(q-r,)<0 (4.8.44)
- — -
w/u2 -4k (d, +rm)cosh{‘/u 2;’(0“‘ LY zJ
D,(z,d,,b,,m,,b,) = b,m, :
+(u +2b,)sinh \/u ~ K (dy +1n) z
2k .
for u* -4k, (d, +r,)>0 (4.8.45)

-4k _(d, +r,)
2k

mz

2
D,(d,) = (b, + b, Wu? - 4k_(d, +7,,) cosr{H‘/”

-4k . (d, +r,)
2k

mz

2
_(2k,,(d, +7,,)— 2bb, +u(b, —b;)) sinh(H\/u

for u? -4k (d, +r,)>0 (4.8.46)

Jak(d, +r,)-u” cos(zJ4kmz(d4 Tr)-ut 2k, )J

+(u +2b,)sin(zJ4kmz(d4 +r,)—u? /2ka)
for u? ~4k_,(d, +r)<0 (4.8.47)

Dh(Z! d4=b4:m4-b1) = b4m4l:
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K g2
Dy(d,)=(b; + b, )\/4kmz(d4 +r,)-u’ coS{H\M mz(;!: — J

H'\/ikmz(d4 + rm ) - u2 ]

— (2K, {d, +1,,) = 2b,by +u(b, — b, ))Sin[ ok

for u? — 4k, (d, +r,)<0 (4.8.48)

P.(q,b,,Cai=bs, 0" = (q +d, )(q+d, J(u—by )my +b,c,(q—r)(q+d") (4.8.49)

\/u + 4kmz(q —rm) Z]

P.(z,q,b,)=(u+2b,)sinh
(2,9 1) ( » |: 2k

J;z+4km(q—rm)z
2k,

m;

+yul+ak_(qg-r,) cosh{

for u® +4k,_(q-r,)>0 (4.8.50)

H\/uz + 4kmz(q - lrm )
2k

w(q) =(2k,, + H(b, + b, ))sinh{

mz

 ZhngH(q 1)+ 2D.bgH — UH(Dy = by) + 2Ky (b1 +3) Cosh{H,ﬁT2 T4k _(q-r, )}

\/UT+ 4ka(Q"rm) 2kmz
for u? + 4k (q-r,)>0 (4.8.51)
—ut-4k_(q-
P,(z,q,b,)=(u +2b,)sin ‘f y e =) 7
2K,
_uy? -4k _
+\/_u2_-4kmz(q—rm)cos \/ u 4 mz(q rm)z
2k,
for u® +4k_,(q-r,)>0 (4.8.52)

W(Q) = (2K ... + H(b, + by ) silHy— 07 — 4k, (q —1.) 1 2K,
| 2K (G ~ 1) + 2b,b5H — UH(B, = by) + 2K (b +b3)COS[H\f— W2 —4k_(q —rm)]

J-u? -4k, (q-1,) 2k
' for u? + 4k (g -r,)<0 (4.8.53)

mz
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‘4.9 General analysis of Model 3

Model 3 is an upgraded version of Model 2. The contributions to
contaminant transport by parameters that occur in both Model 2 and Model 3
have been already described in the Section (4.6). In Model 3, parameter v is

the same as o, in Model 2, bz is the same as B, and b, is the same as f3, in

Solution 2 of Model 2. Effects on the transport by other parameters in the
model are discussed in this section.
4.9.1 Existence of steady state condition

\Based on the formulation and solution of Model 3, more necessary
conditions should be met for the existence of a steady state condition than
have been met in Model 2. In the solution, there are a total of three terms
dependent on time t. The three terms are exp(-d»t) when q = -d,, exp(-dst)
when g = -d4, and exp(qt) in the summation sequence. The steady state
condition exists only if all tend to zero when time tends to infinity. Thus, the
conditions for the existence of steady state condition are as foliows:
[
>0
>0
r ~ G max

d;
!4,
u2

<
7 4k

mz

and q’max is the maximum value of g’ found from the following equations

2k

mz

(%(q'—uz )+ 2b,b, —u(b, - b, )J sinh[ ';:/EJ +(b, + by NG cosh[ Hyq ] -0

mz

for ¢'> 0 (4.9.1.1)
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[%(q —u?)+2bb, —u(b, - b, )] sin(H _qI]+(b1 +b,W-¢q' cos(ﬂJ =0

for ¢'<0 (4.9.1.2)
Therefore, the existence of the steady state condition depends on u, k., 7,,,
H, by, bs, d» and dy4. Effects on the maximum allowed value of r,, with the
existence of the steady state of u (v is equivalent to @, in Model 2), kn; and
b; (bs is equivalent to S, in Model 2) are generally described in Section (4.6).
In addition, the value of (u® -q',, )/ 4k,, decreases as kn, increases and

increases as b; or u increases.
4.9 2 Effect of d;

The purpose of adding exponential growth/decay parameters, d» and
ds at the boundaries is to simulate the changes of contaminant input from the
boundaries. The coefficients d, and ds are commonly used to represent the
first order growth/decay properties of the contaminant input from boundaries.
In Figure 12, curves of constant concentration are shown for different values
of dy and myy. Because of the different directions between u in Model 3 and

o, in Model 2, the vertical direction (H-z)/H is equivalent to Z in Model 2. In

all cases shown in Figure 12, the concentration profiles tend to zero, as time
tends to infinity. All cases in Figure 12 assume zero net flux at the boundary,
z=0, and thus there is no contaminant input from this boundary. Positive
values of d; imply contaminant input from another boundary will decay
through time and tends to zero as time tend to infinity. In long term, there will

be no contaminant input from boundaries to the water column. In addition, all
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contaminants, originally in the water column will settle to the bottom
boundary. The water column will then be finally free from contaminants. For
input parameters satisfying the requirements for the existence of the steady
state condition and m,, my is not zero, a zero steady state concentration
profile result if both d» and dy are positive values. For the case when d3, dy,
by, b, and m., are all zero, Model 3 reduces to Solution 4 of Model 2.
Examples of contaminant transport in different cases are given in Figure 9
where the final steady state concentration profiles in different cases are
presented.

Generaily, a larger d4 represents a faster decay of the supporting
source and the concentration profile approaches zero more rapidly. The
phenomenon is already shown when. comparing Figure 12(a) with Figure
12(c) or Figure 12(b) and Figure 12(d).

As in Model 2, the magnitude of my only affects the concentration
profiles at the initial states and the concentration profile is the same if time is
sufficiently long. This is seen when comparing with Figure 12{a) with Figure
12(b) or Figure 12(c) with Figure 12(d). 1

Figure 13 shows cases with negative values of ds and these cases
have no steady state conditions. Generally, as d4 is less than zero, the
concentration profiles increase without limit as time increase. This is reflected
in all cases in Figure 13. In Figure 13(b) and Figure 13(d}), the concentration
decreases over the water column at initial states and then increases. The
decrease in concentration at initial states are due to the settling of

contaminants while the resuspension from the bottorn boundary is not
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significant at these states. As time increases, the fate of the contaminant will
be totally controlled by resuspension from the bottom boundary and the
concentration will then increase without fimit. From the mathematical point of
view, the settling and resuspension of the contaminant from the boundaries
can be separated._ into two independent motions. The settling period of the
contaminant is from =0 to the time at which minimum concentration profile is
reached. The time is around 2.3 for the case shown in Figure 13(b) and
Figure 13{(d). In other words, the concentration profile will be close to zero at
the same time for the above cases, if there is no input from the boundaries,
i.e. bs, mg and d4 are all zero.
4.9.3 Effect of d2

Generally, the contribution to contaminant transport by d; is similar to
that by ds In this section, the contribution to contaminant transport is
investigated when both d; and d, are non zero.

If u=0, d.,=ds, bs=bs, m=my and b;=b,, the system becomes
symmetric about z=0.5H. Thus, the concentration profile in this case
becomes symmetrically distributed about the mid level. The direction of u is

towards the boundary z=7 or to the input source b,m,exp(-d,t), thus,

contaminant concentrates are at that side, even when d,=ds and this case is
shown in Figure 14(a). For cases where d> is larger than d,, the contribution
of the sources at the boundary z=0 decreases more rapidly than on the
opposite side .In the case with dz=dy4, the contribution of the sources at the
boundary z=0 decreases at the same rate as the opposite side. Figure 14(b)

shows a case With d»,=0.5 while d,=0.25. When comparing Figure 12(b) with
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Figure 14(b), it can be seen that significant differences only occur at positions
where z is relatively close to 0 and t is small. There is no difference in the
concentration profiles when z is equal to 1 or tis large. In all cases shown in
Figures 12(a), 14(a) and 14(b), the concentration profiles will become zero as
time tends to infinity.

Figure 14(c) shows a case for d>=0. In this case, the final s_teady state
concentration, is the same as the case setting all input parameters on
another boundary (i.e. bs, by, my and ds) to zero. The setting of such
parameters to zero implies a zero net flux at the boundary z=17. In that case,
since d4 is positive and the source at the boundary decays to zero as time
increases, the final steady state concentration profile is thus only contributed
by the source at the boundary z=0. From the figure, the shape of the steady
state concentration profile is seen to be nearly constant over the water
column.

Figure 14(d) shows a case for a negative value of d,. Similar to the
effect of d,, the concentration profile grows without limit as time increases.
Generally, when time is large, the concentration profile is independent of the
value of ds. Therefore, in agreement with thus the concentration distribution

is almost a constant value along the water column.
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Figure 12: Concentration distribution of m(z,{), with steady state
condition for different values of ds and my.
(kmz=0.35, u=1, r, = by=by=my=d»=0, H=b3=bs=ms=1)

(Y d~0.25. Min=0 . (b) d~0.25, My=1

0 2 4 6
t Each line represents a constant value of m/m, t

Figure 13: Concentration distribution of m(zt), without steady state
condition for different values of ds and my.

(kmz =0.35, u=1, r,= bi=ba=my=d,=0, H=b3=b4=m4=1)

(a) d4=-0.25 ml0=0 (b) d4=-0.25 ml0=1

S

1

1

0.8} 0.8

0.6}
oy

0.4

t Each line represents a constant value of m/m, t
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Figure 14: Concentration distribution of m(z,t), for different values of d
( kmz =0.35, U=1, L. =0, H= b1=b2=b3=b4= m2=m4=1)

(b) d2=0.5, d4=0.25, ml0=1

Each line represents a constant value of m/m,
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Chapter 5: Analysis of the physical and mathematical
parameters in the governing system

The governing system for the transport of toxic substances is
developed in Chapter 3 with some assumptions and simplifications. The
developed governing system, however, is still too difficult to be solved
analytically and three relatively simple models are deveioped in Chapter 4.
The developed models do not always present an adéquate representation of
the governing system. In this chapter, physical and mathematical parameters
shown in Chapter 3 are analyzed to investigate the ranges of parameters,
which will render the developed models in Chapter 4 useful for the prediction

of the transport of toxic substances.

51 Reviews of the range of parameters in the natural
environment

The developed models in Chapter 4 are generally useful without any
limitation on the ranges of input parameters. However, in order for solutions
to be realistic, the range of magnitude of each parameter appearing in the
natural environment should be studied. The studies are useful to check the
conclusions made in later sections. They are obtained by mathematical and
physical means and they are reasonable and useful from the physical point of
view.

5.1.1 Range of sediment settling velocity (ws) in natural environment
As described in the Literature Review, the magnitude of the settling

velocity of a sediment particle is highly dependent on its size. Table 2 shows
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the ranges of settling velocity with different particle sizes calculated by
Equations (2.1.2.3a) to (2.1.2.3c). The range lies between 10 and 0.4 m/s.
5.1.2 Range of water depth (H) in natural environment

In the natural environment, water depth ranges from the order of 0.1m
for streams to the order of hundred meters for lakes and estuaries. Schnoor
(1996, p58-61) listed the water depth ‘for some streams and lakes in the
world. The developed model can also be applied to some experimental cases,
which have water depths from several centimeters to several meters.

5.1.3 Range of vertical mixing coefficients, k, and ks, in natural
environment

The magnitudes of vertical mixing coefficients depend on the transport
environment and are different for different coastal environments. Eddy
diffusivity is often used to describe the turbulent diffusion coefficient for
dissolved substances in lakes. The mixing coefficient in this case is usually
assumed to be constant and ranges from 102 to 10 cm?/s. Schnoor (1998,
p57) mentioned that the vertical diffusion coefficient can be correlated with
the mean depth of the lake as follows:

k, =0.0142H" {5.1.3.1)
in which k, = vertical eddy diffusivity, m?/d and H = mean depth, m.

In rivers, Jobson and Sayre (1970) reported that the vertical dispersion
coefficient can be in a parabolic form. The range lies between 10 to 1000
cm?fs. It should also be noted that k, and ks, are generally in the same order

of magnitude. From Equation (2.1.3.1), the depth averaged value of ks, k,,

is Bxu,H/6 and therefore
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Pxu, =6k, /H (5.1.3.2)

in which x is the von Karman coefficient ( = 0.4 for clear water), g is the ratio
of sediment mixing coefficient to the momentum diffusion coefficient (can
simply be assumed to be unity) and u. is the shear velocity.

The range of B in k., (Equation (2.1.3.1)), can be found from
Equation {2.1.3.5) to Equation (2.1.3.7). The value of 8, shown in Equation
(2.1.3.8) lies between 1 and 2. The value of ¢, shown in Equation (2.1.3.7)

lies between 0 and 1. Generally 8 lies between 0 and 2 from 8 =84, .

However, by limiting the range of suspended solids between 10 mg/L and

100000 mg/L (O'Connor (1988)), ¢, lies between 0.4 and 1 and B lies

between 0.4 and 2.

5.1.4 Range of suspended sediment concentration (s) in natural
environment

Chapra (1997, p.700) reported that suspended solid concentrations
range from approximately 1 mg/L for clear lakes to 100 mg/L for turbid rivers.
O’Connor (1988) mentioned that the concentration range of suspended solids
lies from less than 10 mg/L in clear water to larger than 100000 mg/L in
stable beds. The concentration of suspended sediment should not exceed
the value of the maximum volume concentration, which is 0.658 or 1722
kg/m?® for sediment density of 2650 kg/m>.

The range of reference level sediment concentration (s;) is calculated
by Equation (2.1.6.8). Using Equation (2.1.6.8) and by substituting known

values of parameters to the equation:
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_ 0.2950%"

Sa —W (5-1.4.1)

As described in Sections 5.1.1 and 5.1.2, o, ranges from 10° to 0.4 m/s and
H ranges from 0.1 to 100m. The range of w H lies between 107 to 40 m?/s.

The range of (Hw,)®% lies between 0.036 and 2.75x10%. Assuming the

depth averaged flow velocity, @@ , lying between 0 and 10 m/s, &> then lies
between 0 and 575. Therefore, s, ranges from 0 to 5x108 kg/m”.
5.1.5 Range of partition coefficient (k) in natural environment

The value of the sorption partition coefficient ( k, ) is mainly dependent

on the type of the toxic substance. Wu and Gschwend (1986) have found that
for a number of natural bed sediment, the sorption partition coefficient can be
as high as 4700 L/kg where the sorbates are chlorobenzenes. Heavy metals

and polychorinated biphenyls also have very high values of k,, in the order
of 10* — 10° L/kg. Schnoor (1996, p.427) has calculated the value of £,

~ which can exceed 0.5 at pH 7 or above in a lake where the suspended solid
concentration is only 10 kg/L. O’Connor (1988) considered that the partition
coefficient varies from approximately 500 to 500000 L/kg. Chapra (1997,
p700) mentioned that the range of partition coefficients is from 100 L/kg to
107 L/kg. The values for several radionuclides which vary from 200 L/kg for
03¢ ta 107 L/kg for 2'Pb (p.760) are also listed. Carroll and Harms (1999)
investigated the most likely value of ky for some common radionuclides. The

range lies between 10 L/kg for Strontium and 10° L/kg for Americium.
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5.1.6 Range of deposition velocity (¢) and resuspension velocity () of
sediment at the water-sediment interface

The simplest and most common approach for estimating the value of

¢ and y is to assume both values equal to the settling velocity (o, ).

However, for situations with high sediment concentration at positions near
the sediment—water interface based on some former research and formulae,

the effective settling velocity is usually smaller than » . Based on Equation
(2.1.2.5), range of ¢ lies between 0.950w_ and 0.68w, for s beMeen 1 and
100 kg/m>. ¥ can be always assumed to be the same as w,. Significantly,
the parameters s, and y always appear together in the solutions of the

developed models. From the physical point of view, the term ys, represents

the entrainment flux from the bed sediment layer to the water column and
hence should be considered as a whole. Thus, all contributions from
hydraulic transport and chemical reaction phenomena can be considered in

the estimation of s,. In conclusion, the ratio of y to ¢ lies between 1 and

1.47 for s lying between 0 and 100 kg/m>.

5.1.7 Range of the first order decay rate of dissolved toxicant (ks) and
particulate toxicant (kqp)

For toxic substances that do not decay naturally, such as heavy
metals, kqc and kqp are simply equal to zero. In general, it is assumed that the
values of kg and kg, are the same. However, more research is needed to
investigate the difference between them. For radionuclides, the following

equation is given in Chapra (1997 p.760}):
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Ky

ic

= k,, =0.693/1,, (5.1.7.1)
in which ts5g is the half-life of the radionuclide,

For example, the value of tsp of Cesium-137 (**’Cs), Strontium-90 (**Sr) and
Lead-210 (3'°Pb) given by Chapra (1997 p.760) are 30, 28.8 and 22.3 years
respectively and thus values of kg are 0.0231, 0.024 and 0.031 yr,

respectively.

For toxic organic chemicals, such as PCBs and DDT, the decay terms
kqc and kg, are contributed by biological transformations, chemical hydrolysis,
photodegradation and oxidation reaction. The range of the decay terms lies

between 0.001 d” for Benzidine and 135 d' for CgHsCHCl,.

5.2 Analysis of physical parameters in the governing system

5.2.1 Effect of suspended sediment distribution on the governing
system

Based on the two equilibrium suspended sediment concentration
profiles (Equations (3.4.6.1.1) and (3.4.6.2.1)) described in Chapter 3, the
change of the suspended sediment concentration over the water column is

mainly dependent on the sediment settling vefocity ( w, ) and sediment

vertical mixing coefficient ( k,, ).

5.2.1.1 Sediment equilibrium distribution in the form of exponential
function

The exponential function, Equation (3.4.6.1.1), is presented in Figure

15. The distribution of sediment concentration along the water column for
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different values of w H/k, is clearly shown. The figure shows that the

distribution of sediment is almost uniform along the water column for
wo,H !k, less than 0.1. Most suspended sediment concentrates is located at
the bottom part (z=0 to 0.1H) of the water column for w,H / k_, greater than
20, and it can be assumed that the toxic substance transport in the water
column is independent of the suspended sediment. The term o H/k,, is

known as the Peclet (P.) number.

P,=wH/k, (5.2.1.1.1)

For the above two extreme cases, it can be assumed that the
sediment concentration distribution is uniform over the water column and

hence f, and f, are constant. The derivatives of s are thus zero. The

coefficients A,, B, and C, in Equation (3.4.6.1.7) become constants and

Model 2 and Model 3 developed by the author match perfectly with such

cases. For a case where P, is larger than 20, f, becomes zero since the

sediment concentration s is assumed to be zero over the entire depth.

Coefficients A,, B, and C, can be further simplified to:

A, =Tk, (5.2.1.1.2)
B, =0 (5.2.1.1.3)
C, =k, f, +kyf, (5.2.1.1.4)

The Governing Equation (3.4.6.1.7) reduces to a second order diffusion

equation with a first order decay term. Based on the above estimation, the
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distributions of coefficients A,, B, and C, can be considered as functions of
z for P, between 0.1 and 20. Based on the ranges of w,, H and k,

(described in Section 5.1) the range of P, is from 10® to 4x10. Therefore, it

is possible to have real case applications even when the value of P, is

outside the range from 0.1 to 20. All analyses done in later sections will

consider P, only in the range from 0.1 to 20.

5.2.1.2 Sediment equilibrium distribution in the form of Rouse profile
Figure 16 shows the distribution of sediment concentration in from of

Rouse profile by Equation (3.4.6.2.1) along the water column for different

values of o,/ pxu, and @ = 0.1. The figure shows that the distribution of
sediment is almost uniform along the water column for values of w, / Bxu,
less than 0.02. For w,/pku, greater than 5, most suspended sediment

concentrates is located at the bottom part (z = a to 0.1H) of the water column
and it can be assumed that the toxic substance transport in the water column
is independent of the suspended sediment. For the above two extreme cases,
the sediment concentration distribution can be assumed to be uniform over

the water column and hence in, f, and f,, are constants. The derivatives of s
are zero. Thus coefficients A., B, and C, shown in Chapter 3 become:
Ag =k, (f, + pf,)
Aq =(f, + Bf, u.2(1- 21 H) (5.2.1.2.1)
B, = wf, +(f, + pf,)ok, | 6z

" B, = o,f, +(f, + Bf,)xu,(1- 22/ H) (5.2.1.2.2)
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Cr = kg, +Kyly) (5.2.1.2.3)
the term £, tends to zero as w, / Pxu, greater than 5 since the sediment
concentration s is assumed to be zero over the entire depth. Coefficient A,
and B, can be further simplified to:

A, =fk, =Fxuz(1-z/H) (5.2.1.2.4)

B, =fxu,(1-2z/H) (5.2.1.2.5)
For conservative toxic substances such as heavy metals, k,, and k, are

zero and C, also becomes zero. In this way, Model 1 developed in Chapter

4 matches perfectly with the above extreme cases. Based on the above

estimations, all analyses done in later sections will only consider o, / Bxu,

with a range from 0.02 to 5.

5.2.2 Effect of the values of partition coefficient and sediment
distribution on the distribution of 7, and f,

The range of f, and f, should lie between 0 and 1 by the definition of
partition fractions,. The shapes of f, and f, depend on the distributions of

the suspended sediment and the magnitude of the partition coefficient (kg).

The effects of £, and f, based on the two equilibrium suspended sediment

profiles (Equations (3.4.6.1.1) and (3.4.6.2.1)) is studied in the following
sections. The author focuses on the ranges of input parameters, which the

distribution of f, or f, tends to uniform distribution along the water column.

5.2.2.1 Sediment equilibrium distribution in the form of exponential
function

Chapter 5, page 138



Figure 17 shows the distribution of f, with different values of ykys./¢

and wsH/ks; by Equation (3.4.6.1.1). Firstly, it should be noted that £, =1-1,

(Equation (2.4.4.1.3)) and thus Figure 17 also represents the distribution of

f, . From the definition of f, and Figure 17, the overall magnitude of f,

increases as ykdéaffﬁ increases. For a particular value of ykzs./4, the
difference of f, between the bottom and the water surface increases with
increasing wsH/ks;. The figure shows that the values of f, at theAbottom (z/H =
0) with different values of ykys./¢ are independent of the value of wsH/ks,. In

fact, by substituting z = 0 into Equation (3.4.6.1.2a), f, becomes:

f, = ”k;Sa (”kgsa +1J (5.2.2.1.1)

which is independent of the value of wsH/ks,. The author focuses on the

range of values of ykgs./¢, which the distribution of f, or f, tends to uniform

along the water column. A tolerance value, T,s, which represents the

difference between the value of f, at the bottom (z = 0) and £, at the top (z =

H) is defined as follows:

fd|z=0/fd|z=H = Ted (5221 2)
T = 1 eH{u,/.lrsz
od =
k, P21/ k, %J’emﬂ”

Hu, fke, -
k18 e (1-Ty) (5.2.2.1.3)

He, fh,,
¢ T..e -1

Similarly, another tolerance value, Te,, is defined as follows:
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f, z=H/fp 20 T (5.2.2.1.4)
T eHm,/k_,z -1
kLo e (5.2.2.1.5)
¢ 1-T,,

Figure 18 shows the values of k,ys, /¢ with wsH/ks, by substituting different

values of Tgy in Equation (5.2.2.1.3). Each line in the figure represents the

value of k,ys, /¢ required to achieve a particular tolerance, Ty, for different

values of wsH/ks,. Lines in the figure rapidly tend to a constant value of
kqvs,/ ¢ as wsH/ks, increases. The constant values of k.ys,/ ¢ for the five
lines in Figure (18) are 0.0101, 0.0527, 0.1112, 0.1766 and 0.2502 for Ted
values at 0.99, 0.95, 0.9, 0.85 and 0.8., respectively. Therefore, f; can be
considered as a constant when the value of ksys,/ ¢ is smaller than the
corresponding value mentioned in the above sentence. From the physical
point of view, a small value of k,ys,/¢ means either the sorptive effect
between the toxic substance and sediment particles is very small (i.e. ky is
very small) or the overall magnitude of suspended sediment concentration in
the water column is likewise small (i.e. sz is very small). In both situations,
the toxic substance will mainly transports in dissolved form and the
particulate form can be neglected.

From Equation (5.2.2.1.5), it is difficult to find a value of ksvs,/¢ to
achieve a particular tolerance limit, T,, for different values of wstH/Ksz. In
general, when wsH/ks, is large enough, Equation (5.2.2.1.5) tends to be a

simple exponential function. The required value of ky¥S, /¢ to achieve the
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required tolerance limit thus can only be found case by case. A large value
of k,ys, /¢ represents a large sorptive capacity of the toxic substances (k is
very large) or a high concentration of the suspended sediment. In both cases,
most of the foxic substances travel in particular forms and dissolved forms
can be neglected. In conclusion, the distributions of fy and fp should be

considered when the value of k,ys, /¢ is greater than 0.1, assuming T to
be 0.9. As described in Section (5.2.1.1), the coefficients A, B, and C, in
Equation (3.4.6.1.7) become constant for constant values of f, and f,.
Models 2 and 3 developed by the author thus provide perfect matches with
cases when k,ys, /¢ is sn;aller than 0.1. Based on the ranges of k,, y/¢
and s, described in Section 5.1, the range of k,ys, /¢ lies from 107 to
1.47x10% and therefore it is possible to have real case applications even
when the value of k,ys, / ¢ is smaller than 0.1. In accordance with the above
conclusion, all analyse done in later sections will only c-onsider kyrs,/ ¢

above 0.1.
5.2.2.2 Sediment equilibrium distribution in the Rouse profile

For the Rouse profile given by Equation (3.4.6.2.1), Figure 19 shows
the distributions of £, with different values of ykus/¢ and wy¢/Bru.. Ali the
curves in the figure have zero value at position z = H, because the sediment
concentration at this position is zero in the Rouse profile. Generally, the
effects on f, of w/Bru. and ykss,/¢ are that the overall magnitude of f,

increases as ykyS,/$ increases and the difference of f, between the bottom
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and water surface increases as w¢/fBxu. increases. Based on the definition of
Tes (Equation (5.2.2.1.2)) given in the last section and substitution of s by

Equation (3.4.6.2.1), the equation for finding the necessary magnitude of

yksSo/¢ to achieve the tolerance Tqq iS:

fL Il =T (5.2.2.2.1)
1
T, o=
K, P2 41
ke, e 1= Tes (5.2.2.2.2)
¢ Ted

Equation (5.2.2.2.2) is independent of wy/Bxu.. For Teq = 0.9, the required
value of yksso/¢ is 0.111 and in this case, fy and f, can be assumed as
constants for ykyso/¢ less than 0.1A1 1. Another tolerance T, is also defined for
the case of the Rouse profile. However, since the value of s is always zero at

z = H. The definition of T, is changed as follows:

AT AR (5.2.2.2.3)
NS T § ) (L 1 (5.2.2.2.4)
e 1-7,| *0.9oH—-a)

As with the Equation (5.2.2.1.5) described in the last section, it is

difficult to fine a value of k_ys, /¢ to achieve a particular tolerance limit, 7¢p,
for different values of ws/fxu.. Thus, the required value of k,ys, /¢ can only

be found case by case. In conclusion, the distribution of f; and f, should be
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considered when the value of k,ys, /¢ greater than 0.1, assuming Ty to be
0.9.
If fy and f, are constant and their derivatives become zero, the terms

shown in Equation (3.4.5.3) become:

ow f C
OO _ g 8, %r (5.2.2.2.5)
0z oz
0 of ¢ ok, oc dc
—| (k. —k - T +k s (5.2.2.26
az[( 0 az ] (B )( oz oz ° azz) ( )

Combining the expressions of k, and its derivative shown in Equations
(3.4.6.2.5) and (3.4.6.2.7), can prove that the coefficients of the Governing
Equation (3.4.5.3) are the same as A., B, and C, in Equations (5.2.1.2.1)
to (56.2.1.2.3). Therefore, Model 1 matches perfectly the above extreme cases
for conservative toxic substances such as heavy metals, for further assuming

ky, and k, as zero and then C, becomes zero too.

5.3 Analysis of mathematical coefficient A in Equation
(3.4.5.8)

In Chapter 3, Equation (3.4.5.8) represents the transport of toxic
substances by assuming instantaneous equilibrium of sorptive mechanics.
The equation is further developed by assuming different sediment distribution
functions in Section (3.4.6.1) and (3.4.6.2). The coefficients A, B and C in
the governing equation are different from coefficients in the governing
equations in the developed models in Chapter 4 and they are more complex

in shape. However, some analyses have been carried out in the following
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sections for each coefficient, to identify cases where the coefficients can be

simplified to have the same value as the corresponding coefficient value in

the developed models. Coefficient A is estimated by Equation (3.4.5.9),

which is dependent on the vertical dimension z and can be rewritten as

follows:

A=k, (1+(B-1,) (5.3.1)
Since f,depends on Ky and s, the coefficient A depends on k;, B, ks and s.
In general, the magnitude of A is controlled by the turbulent mixing
coefficients of water and sediment. A should always be positive for 8 lying
between 0 and 2. The author assumes that the contribution to the variation of
coefficient A by the term (8 —1)f, can be neglected and can be replaced by
the depth averaged of (8 - 1)f,, if the maximum magnitude of (8 -1)f, along

the water depth is smaller than 0.1. This means the contribution to A by the

term (B —1)f,k, is less than ten percent of k.. Since f, must be less than 1,
the magnitude of (8 —1)f, must be smalier than 0.1 for 8 lying between 0.9
and 1.1. The maximum value of f, must occur at the reference level (a). In |

this way, the inequality that defines the condition for the negligible

contribution of (8 —1)f, is as follows:

(B-1x,,.,| <01 (5.3.2)

Z=a

As described in Section (5.1.3), B lies between 0 and 2. The

maximum value of f, is equal to (yk,s,/¢)/(1+rk,s,/¢) for both sediment
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equilibrium distributions in the form of the exponential function and Rouse

profile. Thus, Equation (5.3.2) becomes:

(B 1rksa 16
vk s, 1 +1

0.1

{ykdsa/¢<1/(10ﬂ—11) for 11<B<2 (533)

vk S, /9 <1/(9-108) for 0<B <09

The maximum value of (105 -11) or (9-108) is 9 and thus the inequality
(5.3.3) must satisfy the following inequality:

vk S, /¢ <1/9 (5.3.4)

This result is generally the same as the results concluded in Sections (5.2.2.1)

and (5.2.2.2), respectively.

Another approach to estimate the ranges of parameters that render
the distribution of A to be uniform, is to calculate the depth averaged value

of the difference between A and its depth averaged value in the region

above the reference level. The relative different function, DA, is defined as

follows:
1 1= =
pA=—[ (A-A,, )/ A,.|dz (5.3.5)
— 1 H —
Ape = Adz (5.3.6)
(H-a)"

The author assumes that the depth variation of A for a particular case study

can be neglected, if DA is less than a particular value, for example, 0.1 (10%

difference). In the following section, the distributions of A,, and DA are

investigated for different values of the input parameters.
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5.3.1 Sediment equilibrium distribution in the form of exponential
function '

Coefficient A_ estimated by Equation (3.4.6.1.8) depends on the

vertical dimension z and it can be rewritten as follows:

A _ kdysa /¢
Ae-kz[ﬂ(ﬁ ﬂ{k,,ysalme”"“”ﬂ (5.3.1.1)

From Equation (5.3.1.1), B, k., kg, and the sediment distribution are the main
physical parameters that control the magnitude of Ze. The author considers
the Equation (5.3.1.1) as a function of 8, yk,s,/¢ and o H/k,. A set of

MatLab computer codes for Equations (5.3.5) and (5.3.6) has been
developed after substituting Equation (5.3.1.1). Figure 20 shows the

distributions of A, /k, and DA by assuming the sediment concentration
distribution in exponential form for different values of 8, wsH/ks: and ykyss/¢.

From Figures 20(a) and 20(c), for cases that 8 is less than 1, the overall

magnitude of Zm/ k, increases as wsH/ks; increases and its overall

magnitude decreases as ykyS#/¢ increases. From Figures 20(e) and 20(f), for

cases that 3 is larger than 1, the overall magnitude of A, , / k, decreases as
wsH/ks; increases and its overall magnitude of A, /k, increases as ykySo/¢

increases. In general the magnitude of A, /k, increases as f§ increases.

For cases where f is less than 1, the minimum value of A, /k, is equal to

the value of . For cases where g is larger than 1, the maximum value of

A, !k, is equal to the value of 3.
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Figures 21(b), (d), (f) and {h) show the distribution of the relative
difference function DA. The value of DA decreases if the value of § is closer
to 1 and DA should be zero for 8 = 1. For particular values of 8 and yks5./9,
the value of DA increases rapidly as wsH/ks; increases until it reaches a
maximum point and then decreases gradually as wsH/ks further increases
when the value of ykgs,/¢ is sufficiently large, the value of DA decreases as
yKaSo/¢ increases. In general, the range of DA lies between 0 to 0.3. For g
lying between 1 and 2, the value of DA is maximum at g = 2 for the

particular values of ykys/¢ and wsH/Ks.

5.4 Analysis of mathematical coefficient B in Equation
(3.4.5.8)

In order to estimate the ranges of parameters that render the
distribution of B to be uniform, the relative difference function, DB, denoting
the depth averaged value of the difference between magnitude of B along

the water depth and its depth averaged value, Em in the region above the

reference level, is defined as follows:

DB - % [*|(B -B,.)/B,|oz (5.4.1)

_ 1 H—
B, = Bdz 542
= =a) [ (5.4.2)

The author assumes that the distribution of B for a particular case study can

be assumed uniform if DB is less than a particular value, for example, 0.1. In
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the following section, distributions of B,, and DB are investigated for

different values of the input parameters.

5.4.1 Sediment equilibrium distribution in the form of exponential
function

Coefficient B, estimated by Equation (3.4.6.1.9) depends on the

vertical dimension z and it can be rewritten as follows:

§;=@—ﬁ+ﬂﬁ—ﬂgp%§ (5.4.1.1)

From Equation (5.4.1.1) the seftling velocity o, is the main physical
parameter that controls the magnitude of B, . Firstly, by the following analysis,
the author proves that Ee is always positive. From Equation (5.4.1.1), Ee
may be negative if
2-B+2(B-1)f, <0
For B lying between 1 and 2, the inequality can not be satisfied for all values
of f,. For g lying between 0 and 1, Equation (5.4.1.3) becomes:
= £, >(2-B)/(2(1- B))
Since f, must lie between 0 and 1, the condition that the above inequality can
satisfy is:
(2-p)<2(1-B)
= fp<0
Therefore, the value of B, must be positive for 8 lying between 0 and 2.
Substituting the expression of f, (Equation (3.4.6.1.2a)), Equation

(5.4.1.1) becomes:
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k, e 28—k, ”:

B = ¢ 2-B+ (5.4.1.2)
_{_ezm,,"k,z kd ﬁ + ez'”"”‘"

) | ¢

The author considers Equation (5.4.1‘.2) as a function of 8, yk,s,/¢ and
w,H/k_,. A set of MatLab computer codes for Equations (5.4.1) and (5.4.2)
has been developed after substituting Equation (5.4.1.2). Figure 21 shows
the distributions of B,, and DB by assuming the sediment concentration
distribution in the exponential form for different values of 8, wsH/ks, and
ykySo/¢. From Figures 21(c), 21(e) and 21(g), the overall magnitude of

B,,, /o, decreases as wsH/ks; increases and its overall magnitude increases

as yksSo/¢ increases. The magnitudes and shapes of the distribution of

B,./®, shown in Figures 21(c), 21(e) and 21(g) are similar but the
magnitude of B,,. /», decreases slightly with increasing . Since there is no
s.igniﬁcant difference in the magnitude of B, /@, between different values of
B, it is clear that Em { @, mainly depends on the vaiue of o, and the effect

of B is relatively small for S larger than 1.

Figures 21(b), 21(d), 21(f) and 21(h) show the distribution of the
relative difference function DB. [n general, DB decreases as ykgSs/¢
increases and increases as wsH/ks; increases. From Figure 21(d), (f) and (h),
the magnitudes and shapes for the distribution of DB are similar but the

magnitude increases slightly with increasing 8. Therefore, with § ranging

from 1 to 2, the value of DB for particular values of ykgso/¢ and wsH/ks;
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increases gradually, and its value is the maximum at g = 2. The author
assumes that the distribution of B, is uniform for DB less than 0.1. For

example, DB should not exceed 0.1 for wsH/ks, less than 5.5 when yksS/¢ =

1000 and f lies between 1 and 2.

5.5 Analysis of mathematical coefficient C in Equation
(3.4.5.8)

For finding the condition that the coefficient, C, can be assumed as
constant. A relative difference function, DC, denoting the depth averaged
value of difference between the magnitude of C along the water depth and

its depth averaged value, C_).m, in the region above the reference level, is

defined as follows:

1 ¢H) = -
DC=-gj0|(c—cave)/cave dz (5.5.1)

— 1 H—
C,. = Cdz 5.5.2
ave (H—a) Iﬁ ( )

Similar to the approach in Section (5.4), the distribution of C can be
replaced by a constant value C,,, for a particular case study if DC is less
than a particular value, for example, 0.1. In the following section, distributions

of C.._ and DC are investigated for different values of the input parameters.

avg

551 Sediment equilibrium distribution in the form of exponential
function '
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Coefficient C, estimated by Equation (3.4.6.1.10) is depended on the
vertical dimension z and it can be rewritten as follows:

C, = a)sPe[1 -2(1- ﬁ)fp)fpfd/(ﬁH)+ (kg f, +Kgofy) (5.5.1.1)

The forms of f, and fy are shown in Equation (3.4.6.1.2). The water mixing

coefficient, sediment mixing coefficient, settling. velocity, decay rate of

contaminant, and partition coefficient are the main parameters that affect the
magnitude of C,. Generally, it is assumed that ks = kg and the term

k. f, + kyfy becomes kq, which is constant. Under this assumption, Equation

(5.5.2) becomes:

C,.=C +k,, (5.5.1.2)

ave ave kg =0

C.

ave

- is the depth averaged value of C when kg is zero. Thus, the

Koo
contribution to C,,, by ky is linear. In these cases, most toxic substances
can be considered to have no decay or with decay property and ky is zero or
positive. In this respect, the value of DC is maximum for the case that k4 is
zero and the analysis for C,,, and DC at kg = 0 is shown in the following
paragraphs.

A set of MatLab computer codes for Equations (5.5.1) and (5.5.2) has
been developed after substituting Equation {5.5.1.1). Figure 22 shows the

distributions of C, H/®, and DC by assuming the sediment concentration
distribution in the exponential form and k. = O for different values of g,

wsH/ks, and ykdsa/gﬁ. From Figure 22(c), 22(e) and 22{g), the overall
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magnitude of C, H/w, increases as wsH/ks; increases. From the figures, for
vkaSo/9 lying between 0.2 to 10, C, H/w, increases as ykgs»/¢ increases for

wsH/ks; greater than 5. For ykss2/¢ greater than 100, C,,H /e, decreases as
YkaSa/¢ increases for wsH/ks, less than 10. The magnitudes and shapes of the
distribution of Ea@H/ms shown in Figure 22(c), 22(e) and 22(g) are similar.
For ykss/¢ lying between 0.2 to 10, the magnitude of C, H/w, decreases
slightly with increasing B . For ykss/¢ greater than 100, the magnitude of
C,.H/o, increases slightly with increasing 8. Since there is no significant
difference in magnitude of C, H/w, between different values of 8, its
magnitude mainly depends on the value of o, and H. Figure 22(a) shows
that the value of C,, can be negative for cases that g = 0.3. From Equation
(5.5.1.1), the value of C can be negative if 1-2(1- ), is less than zero and
it is only possible for 8 less than 0.5. The range of the value of wsH/ks,, with

negative value of C,, increases as ykyS,/¢ increases.

Figure 22(b), (d}, (f) and (g) show the distributions of DC for different
values of the input parameters. Most of the values of DC shown in the figures

are greater than 0.1 and thus the distribution of C should be considered.

5.6 Comparisons of magnitudes of coefficients A, B, and C
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In order to compare the magnitude of A, B, and C , the author
defines three dimensionless numbers that can reasonably compare the

magnitudes. They are as follows:

N, =BHIA (5.6.1)
N,=CH*IA (5.6.2)
N,,=CHIB (5.6.3)

The first number (N,1) is developed based on the concept of the Peclet
number {Equation (5.2.1.1.1)) and is used to compare the magnitudes of A
and B . Number N,, and N, are developed to compare the magnitudes of A
and C and of B and C , respectively. If the difference between two
coefficients is significantly large, the distribution of the coefficient with smailer
magnitude can be neglected. It can then be assumed a constant by taking
the depth averaged value, or even assumed to be zero. The author assumes
that one of the coefficients shown in the dimensionless numbers can be

assumed as constant if the values of a dimensionless number is smaller than

0.1 or larger than 10.
5.6.1 Comparison between coefficients in Equation (3.4.6.1.11)

Equation (3.4.6.1.11) is a special case of Equation (3.4.6.1.7) by

setting 8 = 1 described in Section (3.4.6.1). The forms of the coefficients A

B, and C, in this case are:
A =k (5.6.1.1)

—o.f (5.6.1.2)
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’f.f,

__a)s

e

O

+ K fy +kyf, (5.6.1.3)

F4

All the above three coefficients are always positive and the forms of the three

numbers are:

fH
m=ﬂ%—=gg (5.6.1.4)

_mﬁQQHz*jkmg+k¢§ﬂF

N, = L K (5.6.1.5)
k. f+k, fIH
Nw=&&+(“” ol (5.6.1.6)
cosfp

in which P, is the Peclet humber mentioned in Equation (5.2.1.1.1). By

assuming k. =k, , N,, and N, become:

2
Kool (5.6.1.7)

N,, = P2ff +

e
F4

Ky

c

H

N, =Pf, + (5.6.1.8)

s'p
Since k; is assumed to be a constant value in Section (3.4.6.1), coefficient
A, is always constant. Hence, it is only necessary to determine the situations
where the magnitudes of B, and C,are both much smaller than A_. All the

coefficients can then be assumed to be constant. The corresponding

condition to achieve the goal is to set both N, and N, less than 0.1.

From Equation (5.6.1.7), the term k, H?/k, is always constant and

therefore the distribution of C, can be taken as uniform, if Pezfdfp is less than
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0.1. Based on f, =1-f,, it is easy to prove that the maximum value of f.f, is
0.25. Finally, it can be found that P, should be less than 0.632 in order to
take the distribution of C, as uniform.

The maximum value of f, is reached at the position z = 0 and is equal

to (kdysa/¢)/((kdjrsa'/¢)+1). Based on the conclusions made in Section
(5.2.2.1), the author considers only k,ys, / ¢ greater than 0.1, therefore, the
minimum value of f, at z = 0 is 1/11. By setting Nos = P,f, less than 0.1, it

can be concluded that it is possible to meet the condition for P, less than 1.1
and therefore the condition mentioned in the above paragraph is possible to
meet in real life situations. A summary of the conclusions made in this
section is that P, should be less than 0.632 and the product of P. and f, at z
= 0 should be iess than 0.1.

5.6.2 Comparison of coefficients in Equation (3.4.6.1.7)

Coefficients A, , B, and C, shown in Equation (3.4.6.1.7) are
‘functions of the vertical dimension z. Thus their depth averaged values are
used for the estimation of the numbers N,s, No2 and Ny3. For each parameter,
the author focuses on the range of parameters that the values of the
numbers are less than 0.1 or greater than 10. Figure 23 shows the
distributions of N,; with the sediment concentration distribution in the

exponential form for different values of 8, wsHrks; and ykys,/9. Coefficient Nys
is used to compare the magnitudes of A,and B, . The distribution of B, can

be taken as uniform for N,;less than 0.1, while the distribution of Ze can be
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‘taken as uniform for N,s greater than 10. For the ranges of most input
parameters, the value of N,; is greater than 0.1 and the author focus on the
ranges of parameters that N,; is gréater than 10. From the figure, the value
of Nps increases as ykyS/¢ increases. From Figure 23(b), 23(c) and 23(d),
Nyt increases as wsH/ks, increases. It is possible that N,y is larger than 10 if
the value of ykdsa/qﬁ is sufficiently large. The minimum required value of
YkaSa/¢ for Noy larger than 10 decreases as j increases. From Figure 23, it
can be concluded that the value of wsH/ks, that can make N, larger than 10,
must be larger than 10 for any values of ykgs./¢ and f3.

As described in Section (5.5.1), the distribution of 59 must be

considered for most of input parameters. The author thus only focuses on the
range of parameters that can make the value of N,2 and N3 less than 0.1.
Figure 24 shows the distributions of N,, assuming the sediment
concentration distribution in the exponential form and kg = 0 for different

values of 8, wH/ks, and ykys/¢. Coefficient N2, is used to compare the

magnitudes of A, and C,. The distribution of C_ can be taken as uniform for

N,z less than 0.1. From Figures 24(b), 24(c) and 24(d), N, increases as

wsH/ks, increases and decreases as ykyS/¢ increases for 8 greater than 1.

From Figures 24(b), (c) and (d), it can be seen that the magnitudes and
shapes of the distribution of N,; are similar but the magnitude increases

slightly with increasing 8. Therefore, with # ranging from 1 to 2, the value of
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N, for particular values of ykgs,/¢ and wsH/ks, should increase gradually, and
the value of N,, will be maximum at g =2.

Figure 25 shows the distribut.ions of N3 for assuming the sediment
concentration distribution in the exponential form and kg = 0 for different

values of B, wsH/ks, and ykaS/d. Noz is used to compare the magnitude of

B, and C,. The distribution of C, can be taken as uniform for N,3less than

0.1. From Figures 25(b), 25(c) and 25(d), Coefficient No;; increases as
wsH/ks; increases and decreaseé as ykyS,/¢ increases for g greater than 1.
From Figures 25(b), (c) and (d), the magnitudes and shapes of the
distribution of N,3 are similar but the magnitude increases slightly with
increasing B . Therefore, with 8 ranging from 1 to 2, the value of N3 for
particular values of ykss,/¢ and wsH/ks; should increase gradually, and the
value of Ny3 will be maximum at 8 = 2.

By comparing Figures 24 and 25, it is seen that the value of Ny is
larger than that of N3 for particular values of the input parameters and g
larger than 1. Therefore, with § larger than 1, the value of N,z should be
smaller than 0.1 if Nyzis smaller than 0.1. Coefficient N,z only needs to be

considered for g larger than 1.

5.7 Summary of the requirerhents on the parameters that can
simplify the governing system

In Sections (5.2) to (5.6), analysis has been done using different

mathematical and physical means to ascertain the parameters requirements,
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so that coefficients A, B and C in the Governing Equation (3.4.5.8) can be
simplified. In this section, the conclusions made in the previous sections are
re-inforced.

In Section (5.2.1), the distribution of suspended sediment
concentrations has been studied. It is concluded that the distribution of the
suspended sgdiment concentration, given by Equation (3.4.6.1.1), can be

assumed to be a uniform distribution if o H/k,, is less than 0.1 or greater

than 20. The coefficients A_, B, and C, in Equation (3.4.6.1.7) then become

constant. Therefore, Models 2 and 3 developed by the author in Chapter 4
are perfect matches with such cases. The sediment concentration distribution
in the form of the Rouse profile given by Equation (3.4.6.2.1) can also be

assumed to be a uniform distribution if o, / Bxu, is less than 0.02 or greater

than 5. Hence, Model 1 developed by the author in Chapter 4 is a perfect
match for conservative toxic substance cases (kg = kge = 0).

In Section (5.2.2), the distributions of the partition fractions have been
studied. It is concluded that the distribution of fd and f, can be assumed to be

constant for k,ys, /¢ less than 0.1 and T, = 0.9. For sediment concentration

distribution in the exponential form shown in Equation (3.4.6.1.1), f; and f,

can be assumed as -constants for k,ys,/¢ larger than
(T,,e™ = —1)/(1-T,,) (Equation (5.2.2.1.5)). For sediment concentration

distribution in the form of the Rouse profile shown in Equation (3.4.6.2.1), fy

and f, can be assumed to be constants for k,ys, /¢ larger than the value of
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kyys,/ ¢ calculated by Equation (5.2.2.2.4). The value of Ty, can be

assumed to be 0.9. Hence, coefficients A, B, and C, in Equation (3.4.6.1.7)
become constant and Models 2 and 3 match with such cases perfectly.

In Section (5.3), tﬁe distribution of the coefficient A has been studied.
A can be taken as constant for 3 lying between 0.9 and 1.1. A can also be
assumed constant for k,ys, /¢ satisfying the inequality (5.3.3). In Section
(5.3.1), the estimation for coefficient A, by Equation (3.4.6.1.8) is done using
the relative difference function DA (Equaﬁon (5.3.5)). Ze can be assumed
constant for DA less than 0.1. For § lying between 1 and 2, the value of DA
is maximum at the case 8 = 2 for particular values df vkaSa/¢ and asH/ks; and
Figure 20(h) shows the distribution of DA for 8= 2.

In Section (5.4), the distributions of the coefficients B and B, defined

by Equation (3.4.6.1.9) are estimated by the relative difference function DB
(Equation (5.4.1). Therefore, with 8 ranging from 1 to 2, the value of DB for
particular values of yksSs/¢ and wsH/ks; should increase gradually, Figure
21(h) shows that the value of DB will be the maximum for 8= 2.

In Section (5.5), the distributions of the coefficient C and C, defined

by Equation (3.4.6.1.10) are estimated by the relative difference function DC
(Equation (5.5.1). However, no range of the parameters can be found that

makes DC less than 0.1.

In Section (5.6), comparisons between the magnitudes of coefficients

A, B and C are made at the case that B=1. In conclusion, coefficients in
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Equation (3.4.6.1.11) can be taken as constants if the value of P, is less than

0.632 and the product of P, and f, at z = 0 less than 0.1.

In Section (5.6.2), the magnitudes of coefficients A,, B, and C, in
Equation (3.4.6.1.7) are compared by the analysis of three numbers, N1, No2
and N3 (Equation (5.6.1), (5.6.2) and (5.6.2)). Figure 23 shows that it is

possible for N,; to be larger than 10 for wsH/ks; equal to 10 or above and
A_can be taken as constant for N, larger than 10. After analyzing numbers
No2 and N,z with B larger than 1, the value of N,3 should be smaller than 0.1

if No2is smaller than 0.1. It is only necessary to consider Ny, for 3 larger

~than 1 and C, can be considered as constant for N, larger than 10.

Since the analysis in Section (5.6.2) only shows situations where
coefficients A, and C, can be assumed to be constants. The analysis of B,
in Section (5.4.1) should aisc be applied at the same time in order to
assuming all coefficients in constant values in the Governing Equation

(3.4.6.1.7).

5.8 Relations between parameters in the governing system
and in the developed models

In the previous sections, analysis has been done to identify the range
of parameters such that the governing system can be further simplified. The
developed models in chapter 4 can then be used to simulate the transport of
toxic substances. In this section, the relationship of parameters and

coefficients in the governing system and developed models are studied. The
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contribution to the transport of toxic substances of a particular physical or
chemical parameter is investigated based on the analyses shown in Chapter

4 and Chapter 5.

5.8.1 Relations between coefficients in governing Equation (3.4.6.1.7)
and coefficients in Model 2

The coefficients of the governing Equation (3.4.6.1.7) and that of

governing equation of Model 2 are compared. The relationship between

coefficients in Equation (3.4.6.1.7) are m=c¢,, k,,=A,, =B, and r,, =-C,.
Therefore, the following dimensionless variables in Model 2 become:

K=A IBH=1/N, (5.8.1)

R=-HC,!B,=-N, (5.8.2)
Based on the sensitivity analysis described in Section (4.6.4), the overall
toxic substance concentration increases as K increases in both the initial and
final states of the distribution. Therefore, the overall toxic substance
concentration decreases as N,y increases. Based on the analysis in Section
(5.6.2), the value of N, increases as yksS//¢ increases (Figure 23) and the
overall toxic substance concentration decreases as ykyS,/¢ increases. In
conclusion, the toxic substance concentration decreases as the value of the
partition coefficient (k;) increases. A larger value of ks means that toxic
substances are being sorbed more easily onto the sediment particles. The
settling phenomenon of sediment particles makes the particulate toxic
substance settles to the bottom layer of the water column at a faster rate than

the dissolved component. Therefore, the overall transportation rate of toxic
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substances from the water column to the bottom layer is faster for cases with
a larger value of ks and the overall concentration of toxic substances is
smaller. From Figures 23(b), 23(c) and 23(d), N,s increases as wsH/ks;
increases for B larger than 1. In this way, the concentration of toxic
substances decreases as the value of the sediment settling velocity (ws)
increases or the value of the sediment mixing coefficient (ks;) decreases for g
larger than 1. A larger value of w, represents the fact that the particulate
toxic substance settles to the bottom fayer at a faster rate. This makes the
overall concentration of toxic substance decreases at a faster rate. A larger
value of the turbulent mixing coefficient represents a rapider contaminant
mixing in the water column and helps toxic substances to be maintained in
the water column instead of settling on the bottom layer. Therefore, the
overall concentration increases with the increase in the turbulent mixing

coefficient.

Based on the sensitivity analysis described in Section (4.6.1), the
overall concentration of toxic substances decreases with time for a negative
value of R and increases with time for a positive value of R. In Section (5.4.1),
it has been shown that §e is always positive. Figure (22) shows that the
depth averaged value of 59 is positive in most situations. Therefore, the
value of R is negative in most situations considered in the analysis. From
analysis described in Section (5.6.2), Ny3 increases as wH/ks; increases and

decreases as ykyS/¢ increases for B greater than 1. Hence, the

concentration of toxic substance decreases at a faster rate as the value of
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the sediment settling velocity (ws) increases or the value of the sediment
mixing coefficient (ks;) decreases for § larger than 1. The concentration of
toxic substances decreases at a faster rate as the value of the partition
coefficient or reference level concentration increases. The value of N3
increases slightly with increasing B for B larger than 1 and therefore the
concentration of toxic substances decreases at a faster rate as g increases.

It is obvious that the value of R decreases as the decay terms k. and k,,

increases. Thus, the concentration of toxic substances decreases more
rapidly as k, and k,, increases.

5.8.2 Relations between coefficients in the boundary condition of
Equation (3.4.7.5) and coefficients in the boundary condition of
Model 3 at the sediment water interface

The coefficients in the boundary condition (Equation (3.4.7.5)) and
those in the boundary condition at z = 0 of Model 3 are compared. However,
a comparison between coefficients in the governing Equation (3.4.6.1.7) and

those in the governing equation of Model 3 is also needed. The relationship

between some parameters are m=c¢,, k,,=A,, r,=~C, andu = -B,. In
. 1- o
this way, by should be equal to v,f, +¢fp+2—~ﬁ—fdfpa)s. If it is assumed

Yoo =V then d, =y, and b, =v,c, +yp, . From the analysis of dz in

Section (4.9.3), the toxic substance input from the boundary decreases as
time increases and is close to zero for a significantly large value of time if a

positive value of d, =y, is applied. The concentration decreases more
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rapidly when a larger y,, is used. From the physical point of view, a positive
v., means that the toxic substance input from the boundary will decay with

time and the entrainment flux from the boundary decreases with time. In

general, the overall concentration at a particular time is smaller for cases with

a larger value of y,, .
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Table 2: Setiling velocity for different particle sizes

Class Name Size Range (mm) Settling velocity range (cm/s)
Clay 0.002-0.006 0.00036 ~ 0.0032
Fine Silt 0.006-0.02 0.0032 ~ 0.034
Coarse Silt 0.02-0.06 0.034~0.3
Fine Sand 0.06-0.2 0.3~25
Mediu_m Sand 0.2-0.6 25~85
Coarse Sand 0.6-2 85~20
Fine Gravel 2-6 20~ 35

Figure 15: Distribution of sediment by Equation (3.4.6.1.1) with
different values of o, H/k_,
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Figure 16: Distribution of sediment by Equation (3.4.6.2.1.) for different
values of w, / pxu, and a = 0.1
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Figure 17: Distribution of f, with different values of ykss./¢ and wsH/ks; and
with sediment distribution in exponential form Equation (3.4.6.1.1)
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Figure 18: Variation of the values of k,ys, / ¢ with wsH/ks; by
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Figure 19: Variation of the distribution of f, with different values of ykss:/¢

and aoy/Bxu. with sediment distribution in Rouse profile (3.4.6.2.1)
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Figure 20: Distributions of A, /k, and DA assuming sediment
concentration distribution in exponential form for different values of 8,

wsH/ks; and ykss/9.
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Lines with numbers from 1 to 10 represent values of y,s,/p = 0.5, 10, 100, 1000,
5000, 10000, 50000, 100000, 500000 and 1000000 respectively.
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Figure 21: Distributions of B,,/w, and DB assuming sediment
concentration distribution in exponential form for different values of §,
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Lines with numbers from 1 to 10 represent values of yk.s/¢ = 0.5, 10, 100, 1000,
5000, 10000, 50000, 100000, 500000 and 1000000 respectively.
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Figure 22: Distributions of C, ,H/w, and DC assuming sediment

concentration distribution in exponential form and ks = 0 for different
values of 8, wsH/ks; and ykgS/¢.
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Lines with numbers from 1 to 10 represent values of yk,s./¢6 = 0.2, 0.5, 1, 5, 10, 100,
1000, 10000, 100000 and 1000000 respectively.
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Figure 23: Distributions of N, for assuming sediment concentration
distribution in exponential form for different values of g, wsH/ks, and

YKaSo/ 0.

Lines with numbers from 1 to 8 represent values of ykss,/¢ = 5000, 10000, 50000,
80000, 100000, 300000, 500000 and 1000000 respectively.

Figure 24: Distributions of N, for assuming sediment concentration
distribution in exponential form and k,. = 0 for different values of 3,

wsH/ks; and ykgSo/9.
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Lines with numbers from 1 to 10 represent values of yk,s/¢ = 0.5, 10, 100, 1000,
5000, 10000, 50000, 100000, 500000 and 1000000 respectively.
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Figure 25: Distributions of No3 for assuming sediment concentration
distribution in exponential form and k4 = O for different values of 8, wsH/ks,

and ykySo/9.
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Lines with numbers from 1 to 10 represent values of ykss./¢ = 0.5, 10, 100, 1000,
5000, 10000, 50000, 100000, 500000 and 1000000 respectively.

Chapter 5, page 172



Chapter 6: Case studies

The developed models in Chapter 4 are particular cases of the
solutions of ADE. Therefore the developed models are not only useful for the
simulation of the transport of toxic substances in the water column, they are
also useful for the simulation of the sediment transport and other
contaminants in different environments, such as in soil layers. In this chapter,
the models are used to simulate the transport of sediment and chemicals in

different environments to show the possible applications of the models.

6.1 Application of Model 1 to sediment transport

The solution form of Modei 1, which allows the inputting of an arbitrary
initial sediment concentration distribution, was used to simulate an
expérimental case (data set CS21) described in Jobson and Sayre (1970). In
the experiment, coarse sediment particles were discharged continuously from
a line source located near the water surface into a fully developed channel
ﬁow. The channel had a fixed bed covered with relatively large rectangular
wooden cleats as roughness elements. Thus, there was no sediment source
from the channel bed. The flow and sediment discharge rates were adjusted
in such a way that, the deposition and resuspension of particles reaching the
bed could be studied.

Some former research studies used numerical models to simulate the
experimental case presented by Jobson and Sayre (1970), such as Celik and

Rodi (1988) and Wai and Lu (1999). The model presented by Wai and Lu
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(1999) was chosen to compare with the result generated by Model 1. Wai
and Lu's (1999) model is a two-dimensional, time varying advection-

dispersion model. It assumes a constant value of settiing velocity (w, ) and a
parabolic distribution function of the vertical mixing coefficient (k,, ). The

experiment, however, was a steady state transport of sediment particles and
the numerical model was reduced to a two-dimensional steady state model.
In order to simulate the rigid bottom that does not provide any sediment
source used in the experiment, Wai and Lu's (1999) model used the following

boundary condition:

k., § + @, S|
oz

={aos(s—sa)|z=0 forszs, (6.1.1)
220 0 for s<s,

Model 1 is a one-dimensional, time varying model and thus it is
necessary to transform the variable time, 7, to horizontal distance, X. Using
x =ut, in which v is the depth averaged flow velocity in the x direction, the
variable T in Model 1 is transformed to X =¢x/H in which ¢ = fxu, fu .
Using the information provided by Wai and Lu (1999), the magnitudes of the
input parameters chosen for this study are £=0.05376 , 1 =1.171875 ,
A=0.05 and s, =0.5645kg/m* . The initial distribution profile is a profile
simulated by the numerical model of Wai and Lu (1999). The profile
generated by the numerical model provided many more data points than the
experimental one which consists of only seven data. In the simulation, the
concentration profile taken from the numerical model of Wai and Lu (1999) at

travelling distance x/H =4 is used as the input arbitrary initial sediment
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distribution. This generates, in turn, concentration profiles at other travelling
distances. Figure 26 plots the analytical solution, numerical res‘ults of Wai
and Lu (1999) and the experimental data of Jobson and Sayre (1970).
Calibrations of the physical parameter D for each traveling distance are
required to obtain closer agreement between the analytical solutions and the
experimental data. The reason for the need of the calibration process is the
difference of the bottom boundary conditions between Model 1 and the modetl
used in Wai and Lu’'s (1999) research. Wai and Lu (1999) assumed that there
was no net sediment flux from bed layer until the concentration at the bed
layer reached the value of the reference level concentration. However, Model
1 always assumes net sediment flux from bed layer. The boundary condition
of Model 1 is ideal for simulating cases with a loose sediment layer on the
channel bottom but not for a rigid bottom. In Model 1, the parameter D
represents the ratio between the deposition velocity and the resuspension
velocity of sediment at the water-sediment interface (reference level). Thus,
choice of D as the tuning factor is the mqst satisfactory, in view of the
physical difference between the two models. This indicates that the closed
form solutions can reveal the unsteadiness of the exchange processes at the

sediment-water interface.

6.2 Application of Model 3 to transport of organic
compounds in soil layers

Model 3 is applied to simulate the modeling results given by Prakash

(2000). In the paper, a model was developed to simulate the fate of
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trichloroethylene, a volatile organic compound through vadose and saturated
soil zones. Mode! 3 has been simplified by two different assumptions and
Figure 27 shows the assumptions. It is first assumed that the soil properties
in vadose (above water table) and saturated (below water table} zone are the
same. The model is simplified to one in which contaminants are input from
the ground level (z = Om). There is no net flux from the bottom layer. The
total thickness of vadose and saturated soil zones is assumed to be twice the
9.14m depth where the water table is located. This assumption is close to the
analytical model used in Prakash (2000) which simulated the fate of the
contaminant in the vadose zone. The major difference between the two
models is that the model used in Prakash (2000} assumes an infinity dépth of
soil, with a concentration of zero at the infinity level.

In assumption 2, different soil properties between the two zones are
considered. Model 3 was used to generate the concentration profile in the
vadose zone. At the water table, the net flux through the two zones was only
contributed by contaminant transport from vadose to saturated zones.

Based on the above simplification, the input of b,, b,, m, and d, in
Model 3 should be zero. Following Prakash {2000), the values of the

following input parameters in Model 3 are the same under both assumptions:

k., =(0.001426m? /day)/1.5, u=(0.00156m/day)/1.5, r, =-0.00112/d
b, =(0.00156m/day)/1.5, m,=1100mg/L, d,=0.000419/d, m,, =0

In assumption 1, H =18.28m and b, =0 while in assumption 2, H=9.14m

and b, =(0.00156m/ day)/1.5.
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Figure 1 in Prakash's (2000) paper shows the concentration with time at the
level z = 9.14m. Model results have been generated under both assumptions
and Figure 28 shows those comparisons of the results.

The modeling results have similar shapes to that of Prakash (2000)
but are smaller in mggnitude. Thié is in line with the boundary condition used
by Prakash (2000):

m(0,t)=m,e™ (6.2.1)
The model in Prakash (2000) assumes that the concentration at the

boundary is initially equal to m, and decays with time. The concentration at

the boundary in Model 3 starts from zero and its maximum value does not
always reach the magnitude m, . The contaminant input from the boundary in
Prakash’s model is larger than that from Model 3, resulting in higher
concentrations. Figure 31 compares the concentration profiles at z=0
between the two models. The concentration broﬂles under the two different

assumptions at the boundary are almost the same.

In order to reduce the difference between the two models, some
calibration must be carried out. Minor adjustments of the overall decay
coefficient at source (d,) and retardation factor in Prakash's model are
made for calibration. In this way, value of the retardation factor is changed
thus affecting the input values of v, k,_,,b, and b; in the two assumptions
for calibration. Both assumptions then give results that agree with those of
Prakash (2000) as shown in Figure 32. The calibrated retardation factors for

assumptions 1.and 2 are 1.35 and 1.45, respectively. The retardation factor
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in the model represents the effect of contaminant sorption by soil. Generally,
a larger retardation factor, which implies a higher sorption rate, has the effect
of slowing down the entire process of pollutant migration. Thus smaller
retardation factors are assumed to speed up the transport of the contaminant.

Figures 29 and 30 show the concentration profiles along the soil depth
under the two assﬁniptions. Generally, the differences between them are
small and the concentration profiles under assumption 1 have a slightly
higher magnitude. it can be observed from Figure 29 that the contaminant
settles near the bottom level (depth close to 18.28m) because the model

assumes that there is no contaminant flow throughout the bottom layer.

6.3 Application of Model 3 to contaminated mud dumping at
East Sha Chau (ESC)

in East Sha Chau, there are several excavated pits, which are used for
collecting contaminated mud produced from different construction projects.
Mud contaminated by Lead, Copper and others poilutants is dredged from
Rambler Channel due to the development of the Tsing Yi Container Terminal
Port 9 (CT9). The contaminated mud is then dumped to the aforementioned
pits. In this case study, Lead (Pb) is chosen as the toxic substance of interest
and Mode! 3 is used to simulate the fate of the toxic substance due to thé
marine dumping.

When a hopper barge arrives at the ESC dumping pit, it will rapidly open
the bottom door and dispose the dredged contaminated mdd. Thus, a large

amount of contaminated mud is discharged from the water surface into the
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water column in a short pericd. Figure 33 shows the various processes
involved.

As described in Chapter 3, the go.verning equati'on for the fate of Pb can
be described by Equation (3.4.5.8). Also, Equation (3.4.7.4) is used to
describe the boundary condition of the problem at the sediment-water
interface. At the watér surface, Equation (3.4.7.8) is used with an additional
term representing the loading due to the marine dumping. Equation (2.4.4.1.1)
is the expression for the partition fractions for toxic substances.

With reference to the Environmental Impact Assessment report for
disposal of contaminated mud in ESC Marine Borrow Pit (Civil Engineering
Department of HKSAR, 1997, p.19), the water depth (H) of the dumping pit
can reach 17m at some area. In this case study, H is set to 15m. The report
also (Civil Engineering Department of HKSAR, 1997, (p.20)) mentions that
the magnitude of the depth averaged flow velocity (u ) is generally less than
0.4m/s but it can reach a maximum of 1.5m/s. In the study, three values of u
f0.2, 0.6 and 1m/s) are used to calculate the toxic substance concentration
profiles under different tidal conditions.

The Environmental Protection Department of HKSAR (EPD) regularly
monitors the marine water and marine sediment qualities in different areas of
Hong Kong. With reference-to the raw data of marine sediment water quality
gathered between 1997 and 2001, downloaded from the EPD website
(www.info.gov.hk/epd/), the data collected at the two closest monitoring
stations near ESC in the Rambler Channel, namely VS9 and V210, are used

to determine some essential parameters in this case study. It is assumed that
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the average values of the measured data at the two stations can adequately
represent the corresponding conditions in the Rambler Channel. The average .
concentration of Pb in the contarhinated mud from the EPD data is
67.9mg/kg. Since the total mass of heavy metal is conservative in the
environment {Schnoor, 1996, p.382). The values of kg, kg and vy in
Equation (3.4.5.11) énd Equation (3.4.7.8) can be set to zero. As described
in Section 5.1.5, the value of the partition coefficient (ky) for Pb can be up to
107L/kg. In the study, a value of 10°L/kg is assumed.

The data from EPD has provided the size fractions of sediments in each
sediment sample, which generally consists of particles with sizes less than
63um. The average size fraction of the sediments that have sizes less than
63um is 90.15%. It is assumed that the distribution of sediment follows the
Normal Distribution. The value in Standard Normal Distribution for 90.15%
less than that value is 1.2903 and the following equation is formed:

-1.290377¢0, =63um - X (6.3.1)
" Hence, X and oy are the mean and the standard deviation of the sediment
distribution. In order to find such values, it is also assumed that 0.1% of
sediment. is smaller than;0.001pm and the corresponding value in Standard
Normal Distribution is —3.09024. Thus:

-3.090240, =0.001um - x (6.3.2)
After solving Equation (6.3.1) and Equation (6.3.2), X and oy are 44.4um and
14.4um, res.pectively. Finally, the value of the settling velocity (ws) calculated

by Equation (2.1.2.3a) assuming ys = 2.65y, and T, = 20°C, is 0.001775m/s.
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As described in Sections 2.1.4 and 2.1.5, the deposition velocity {(¢)
and entrainment velocity (y) of sediment at the water-sediment interface can

be set equal to the settling velocity, 0.001775m/s.

In this case study, a hopper barge 57m long and 13m wide is considered.
It is assumed that. th.e area for disposal of the hopper barge is 45m long and
10m wide. The maximum allowable loading of the hopper barge is 1280m?® of
water. From the information provided by the Civil Engineering Department of
HKSAR, the maximum allowable volume of mud that the hopper barge can
be loaded is only 943m®. Assuming pw = 1000kg/m®, ps = 2650kg/m®, the
following information is calculated:
Maximum loading weight of the hopper barge = 1280 x 1000kg
The maximum allowable volume fraction of sediment in the contaminated
mud (fs) can be calculated as follows:

1280 x 1000kg = 943(1 - £;}1000kg/m" + 943 x 2650kg/m> f;  (6.3.3)
= fs=0.2166
Thus, the total weight of sediment in the hopper barge = 943 x 2650kg x 0.22
= 541300kg

The total weight of Pb in the hopper barge = 541300kg x 67.9mg/kg

Model 3 cannot simulate the situation that there is a source input from a
boundary for a finite duration. However, the term bmze® in the boundary
condition (Equation (4.7.3)) in Model 3 can represent a loading function from
the boundary to the water column and the term can decay exponentially. The
exponential decay function can be used to simulate the cases that most of

the mud dumps into the water column during the first several seconds. If it is
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assumed that 99.9% of sediment will get into the water column in the first 5

seconds, then, the value of d; can be calculated as follows:
0.999[ e~ dt = [eat (6.3.4)
= d,=1.3816/s
= [edt=0.7231s
Then the value of bom> can be calculated by the following equation:
0.999x541300x67.9mg = 10x45xb,m, J':e"’z‘dt (6.3.5)
bsmy = 112800mg/m°®s
if the assumption is changed to 10 seconds, the vaiues of d, jzoe*’z’dt, and

bsm, become 0.6908/s, 1.4461s and 56421 mg/m?s, respectively. Figure 34

shows the changes of the function b,m.e™ with time for the above two
assumptions.

The value of the water turbulent mixing coefficient k; can be calculated
by Equation (5.1.3.2) with the relationship ks; = Bk.. The value of u. in the
equation can be calculated by Equation (2.1.3.2). The value of the effective
bed-shear stress () in Equation (2.1.3.2} can be calculated by Equation
(2.1.6.3a&b). The vaiue of C” calculated by Equation (2.1.6.3b) is 107.6m"°/s
with dgp = 63um. Finally, the values of 7, u. and k, for various &
magnitudes (0.2, 0.6 and 1m/s) are shown in Table 3. Equation {2.1.3.6) and
Equation (2.1.3.7) are formuiae to calculate the value of 8, which depends on
the sediment concentration as shown in Equation (2.1.3.7). Since the marine

dumping discharges large amount of sediment into the water column, the
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value of ¢, calculated by Equation (2.1.3.7) is assumed as 0.7. The results of

ks; are shown in Table 3.

With reference to Equation (2.4.4.1.1) for the calculation of the partition
fractions and kg = 10° L/kg, it can be shown that the value of fp is larger than
0.99 for sediment concentration (s) larger than 0.1kg/m>. For this case study,
the sediment concentration profiles have a magnitude larger than 0.1kg/m?® in
most of the time due to the extremely large input of sediment during the
marine dumping activity. Thus, it is assumed that f, = 1 and f; =0 in the study.

Equation (2.1.6.8) is used to calculate the value of the reference level
sediment concentration s, The value of the reference level total toxic
substance concentration {(crs), which is equal to the sum of ¢, and p,, is
equal to 67.9 x s, mg/m>. Table 3 shows the results for different values of T .

It is reasonable to assume that the Pb and the sediment distributions in
the water column are in steady state before dumping. Thus, the steady state
condition is used as the initial condition for this case study. Equation
(3.4.6.1.1) calculates the steady state distribution profile of sediment.
However, in Model 3, only constant initial concentration can be used as input
to the model. Therefore, the initial Pb concentration is calculated using the
product of Pb concentration in sediment (67.9mg/kg) and the depth averaged
value of the sediment concentration calculated by Equation (.3.4.6.1.1). The
results are shown in Tabile 3.

The values of various input parameters in Model 3 are summarized

below:
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Input parameter Input value

H 15m

u, by, bz, by ws =0.001775m/s

I'm -0

b4 0

ds 0

b 57800 mg/m?s {5 seconds)
2z 28900 mg/m?s (10 seconds)

d 1.382/s (5 seconds)
2 0.691/s (10 seconds)

my CTa

kmz kSZ

Myo . Initial Pb concentration (mg/m?)

Figures 35 to 37 show the Pb concentration profiles at different points of
time for different values of u . Since the difference in concentration for
different loading functions (5 sec or 10 sec) is very small. Only the
concentration profiles for the loading function of 5 seconds are shown here.

Since, it is assumed that the initial Pb concentration profiles are in the
steady state condition before the contaminated mud is dumped into the water
column, the concentration profiles will return to the steady state again after a
sufficient long time from the disposal. All the modeling results show that the
required time for returning to the steady state are very long for various
magnitudes of v . The Pb concentration profiles do not seem to reach steady
state even 8000 seconds (more than 2 hours) after the disposal. The main
reason is that the average size of the sediment particles, 44um, classified as
coarse siit in Table 2, is relatively small. Thus, the settling velocity {ws) will be
also very small and the time to settle all dumped sediment and toxic
substances is long. This required extended period of time will limit the

performance of collecting contaminated mud by the dumping pit. The

Chapter 6, page 184



quantities of suspended toxic substances and sediment, which disperse to
the area outside the designed dumping area, will increase due to the long
settling period. Besides, the hopper barge and the tug boat when moving
away from the dumping area will also disturb the flow and turbulent
conditions. Such changes will increase the chance of the toxic materials to
disperse out from the dumping pit area. Since the results show that large
amount of the toxic substance still remains near the water surface even after
1000 seconds after the disposal, it is not economical for the hopper barge
and tug boat to stay in the dumping area until the majority of the mud has
settled to the bottom. It is suggested that the vessels should depart from the
dumping area in slow speed to minimize the impact. Besides, it is also
important to ensure that only one pair of vessels works in the area at any one
time.

When comparing the concentration profiles computed under different
values of &7 , it can be found that the overall magnitude of the toxic substance
decreases as U increases. This indicates that the speed for returning to the
steady state condition increases as U increases. Table 3 shows that the
value of ks;, cra and initial Pb concentration increases as v increases. A
larger ks; means that the toxic substance in the water column mixes more
rapidly and thus the time to steady state will be shortened. However, for a
sufficient long period of time, the overall concentration increases as u
'increases. This is because most settled toxic substances are re-entrained
from the bed by the high velocity induced bottom shear back into the water

column. As described in the pervious paragraph, the initial Pb concentration
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used in Model 3 is the same as the depth averaged Pb concentration at
steady state. Table 3 shows that when & increases 5 times from 0.2 to 1m/s,
the initial Pb concentration increases over 265 times from 1.12 to 315 mg/m’,
Thus, the overall magnitude of the steady state concentration increases
sharply as & increases. Nevertheless, the required time for the toxic
substance to recover the steady state condition decreases as E increases
due to the reason mentioned above and the larger steady state concentration
profile.

The required times to achieve steady state as v = 0.2, 0.6 and 1m/s are
around 60k, 60k and 55k seconds, respectively. The results generally agree
with the discussion given in the last paragraph but the difference between the
times approaching steady state is small. This is because the extremely large
dumpiné quantity dominates the overall fate of the toxic substances. The
magnitude of the steady state (or initial) concentration profile is very small
when compares with the dumping quantity. The mud also settles in a low
speed due to the small averaged sediment size. Therefore, the required time
is mostly controlled by the déposition of the dumping materials, which mainly
depends on the settling velocity, and the sediment turbulent mixing
coefficient. In this case study, the same settling velocity is used for different
77 values and thus the difference of the time to steady state is small.

In the study, the value of partition coefficient (ky) for Pb is assumed to be
108 L/kg and the required sediment concentration, for ensuring the value of f,
always larger than 0.99, is 0.1kg/m>. If kg is reduced to 10°and 10* L/kg, the

required sediment concentration will be increased to 1 and 10kg/m’,
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respectively. Because of the extremely large amount of sediment dumped
into the water, £, can still maintain at a magnitude larger than 0.99 for most of
the modeling period based on the aforementioned range of ky which
represents many kinds of heavy metals as described in Section 5.1.5. This
has proven that Model 3. is adequate to simulate the fate of many different

kinds of heavy metals in the water column due to marine dumping activities.
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Figure 26: Sediment concentration profile generated by Model 1 for
different distances with compared to (1) numerical modeling results by Wai
and Lu (1999) and (2) experimental results by Jobson and Sayre (1970).
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Figure 27: Simplification of Model 3 with two different assumptions
for simulating the case shown in Prakash (2000)
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Figure 28: Comparison of resuits of Prakash (2000) and of model

pollutants reaching the water table
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Figure 29: Concentration profiles along soil depth in different

days with model assumption 1, retardation factor=1.35
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Figure 30: Concentration profiles along soil depth in different

days with model assumption 2, retardation factor=1.45
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Figure 32: Concentration profiles at water table (z=9.14m)
x 10~ with adjustment of the retardation factor R,
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Figure 33: Contaminant transport processes in a dumping activity at ESC
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Figure 34: Loading functions (bgmge'*’z') for dumping action of hopper barge
assuming: most material enters to the water column within 5 sec and 10 sec,
respectively.

Table 3: Values of different physical/chemical parameters for different values
of depth average flow velocity (i)

u (m/s) 0.2 0.6 1
75 c (N/M*) 0.03388 0.3049 0.8470
u. (m/fs) 0.00582 0.01746 0.02910
k. (m*/s) 0.00582 0.01746 0.02910
ksz (M*/s) 0.00483 0.01248 0.02052
Sa (kg/m”) 0.09758 2.02407 8.2895
cra (mMg/m®) 6.6257 137.43 562.86
Initial Pb concentration 1.197 56.79 315.3
(mg/m®)
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Chapter 7: Conclusions and recommendations

7.1 Conclusions

The goveming system that describes the transport of toxic substances
in the aquatic environment has been studied in this research. The system
considers the most important physical and chemical transport phenomena of
toxic substance transport in the aquatic environment. The fate of toxic
substances is highly related to the distributions of suspended and bottom
sediment in such environments. This is owing to the fact that toxic
substances may sorb onto particles in the water body causing the
contaminated sediment, to release the toxic chemicals back to the aquatic
environment after being transported to other locations. Therefore, the
interaction between toxic substances and sediment and the sediment
transport should be considered in the governing system. From the physical
point of view, the advection and dispersion transport processes, which
always play the most important roles in the transport, should be considered.
Other phenomena such as decay of toxic substances and losses due to other
chemical and physical processes are also considered in the system. The
toxic substance is considered to have two phases in the water body,
(dissolved and particulate) and the first-order kinetics expression is used to
describe the exchange process between these two phases. Two governing
equations for dissolved and particulate toxic substances are then developed.

The generalised governing equations of the system are simplified in

order to formulate a relatively simple system that can be solved analytically,
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but still retain sufﬁcient physics and chemistry to be realistic. In this research,
the .par_ticle seitling, the turbulence, toxic substance exchange processes
between sediment and toxic substaﬁces in the water column and at the
sediment water interface are the main phenomena considered. All these
processes are ve_rtical transport processes or vary along the vertical axis,
thus even through bnly the vertical axis z is considered in the simplified
governing equations, the system can still includes tHe most important
processes involved in toxic substance transport.

Instantanecus equilibrium of sorption kinetics between dissolved and
particulate components of a toxic substance is a common and most important
assumption used in former research and is also used here. Following this
assumption, the two governing equatiohs of dissolved a.nd particulate toxic
substances can be combined into one governing equation in terms of the
total concentration. The simplified governing equation (Equation (3.4.5.8)) is
'generally a one dimensional, time varying advection-dispersion equation
(ADE) with linear coefficients that depend on the vertical coordinate z and
sediment concentration (s).

The gove.rning equation is further developed by studying two different
specific flow conditions in aquatic environments. In both cases, the
distribution of suspended sediment is assumed steady. The first case
assumes a constant distribution of the mixing coefficient while the second
case assumes a parabolic distribution. The coefficients in the governing
equation for toxic substance transport are further specified under the two

cases.
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Boundary conditions for the governing systems are based on the
concept of counting the net flux through the boundary surface. This includes
exchange processes of contamiﬁants at the interface. Setlling and
resuspension of contaminant sediment, exchange of dissolved toxic
substances and decay property of toxic substance are considered at the
sediment-water interface. At the water surface, the volatilisation loss of
dissolved toxic substances is considered.

The coefficients in the simplified governing equations are complicated
functions of the vertical coordinate z causing it to be impossible to solve the
governing system analytically. Instead, three advection-dispersion models
with governing equations having coefficients, either as constants or specific
functions, are developed. in this way analytical simulations of the fate of toxic
substances in different transport environments are provided. Analysis of the
physical and mathematical parameters in the governing system has been
carried out. The analysis has two focuses. The first is to identify the ranges of
physical/chemical parameters that can further simplify the governing system
but still be useful in the simulation of the transport of toxic substances in real
life problems. The second focus is to find the effects of particular physical or
chemical parameters on the fate of toxic substances.

Regarding the first focus, firstly, the developed models are useful
when the distribution of suspended sediment is close to complete mixing in
the water column or when most sediment remains at the bottomn. In this way,
Model 1 perfectly matches the cases for non-decay toxic substance with the

value of w,/ Bxu, described in Section (3.4.6.2) which is less than 0.02 or
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greater than 5. Model 2 and Model 3 perfectly match the cases where the
value of wsH/ks,, denoted as Pe, (described in Section (3.4.6.1)) is less than
0.1 or greater than 20. Secondly it can be concluded that the developed
models are useful for the cases where most toxic substances remain in
dissolved forms or in particulate forms. In this approach, Model 1 is
applicable to non-decay toxic substance, and the Models 2 and 3 are useful

for situations where k,ys, /¢ less than 0.1 or greater than the value

calculated by Equations (5.2.2.2.4) and (5.2.2.1.5}, respectively.
For the ratio between the sediment mixing coefficient and the mixing

coefficient of water equal to 1 (5 =1), Models 2 and 3 are useful in matching
the governing equation described in Section (3.4.6.1) for P, less than 0.632
and the product of P, and f, at z = 0 less than 0.1. |

For B not equal to 1, Models 2 and 3 match the governing system

described in Section (3.4.6.1), providing coefficients A_, B, and C, in
Equation (3.4.6.1.7) can be assumed as constant values. The requirements

for assuming B, as constant are described in Section (5.4.1). The

requirement for assuming C, to be constant is for the value of N,
introduced in Section 5.6, to be greater than 10. The requirements for
assuming Ze to be constant, are described in Section (5.3.1) or the value of

N,1, introduced in Section 5.6, is greater than 10.
Thus, the developed models are capabie of simulating the transport of
toxic substances when the values of the input parameters lie in the particular

ranges as described.
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Regarding the second focus, the following conclusions have been
made. Firstly, the contributions of the partition coefficient (kq) to the transport
of toxic substances are that the concentrationr of toxic substances in the
water column decreases, as the value of the partition coefficient increases.
Secondly, the concentration of toxic substances is smaller and decreases at
a faster rate in cases where the value of the sediment settling velocity (ws) -
increases or the value of the sediment mixing coefficient (ks,} decreases for
larger than 1. The concentration of toxic substances decreases at a faster

rate as f, k, and k,, increase. Lastly, the overall concentration at a
particular time is smaller for cases where larger values of v, and y,, (decay

coefficients of toxic substance at the sediment-water interface) are used.

The governing equations in the developed models are in the form of
the advection-dispersion equation {ADE). In this research, the author applies
the models to simulate the transport of toxic substances due to marine
dumping. Besides the author also use the models for suspended sediment
transport in the water column and transport of chemicals in soil layers to
show the possible areas of application of the models other than toxic
substance modelling.

In conclusion, three analytical models have been developed to provide
useful tools for environmental engineers and scientists to aid the prediction of
the fate of toxic substances with specific ranges of physical and chemical
parameters in specific aquatic environments. Based on the developed

governing system and models, the contributions to toxic substance transport
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of particular parameters are identified. The models are not only useful for
toxic substance transport but also for simulating the transport of sediment

and chemicals in aquatic or other areas such as in soil layers.

7.2 Recommendations

In this research, the governing system has been developed to
describe the transport of toxic substances and three models have been built
to simulate the transport in different situations based on the goveming
system. However, the three models can only be used for cases where some
of the input parameters lie in particular ranges as described in Chapter 5.
Because the developed models have coefficients that are either constants

(Model 2 and Model 3) or specific functions (Model 1), they may not always

be adequate to represent coefficients A, B and C in the goveming
Equation {3.4.5.8). These coefficients are originally complicated functions of
z

in order to find methods that can effectively describe the coefficients
and solve the system analytically, the author advises the development of a
model based on the multi-layer approach idea. The governing system can bé
divided into several subsystems along the z-axis by using this approach,
each of them having constant coefficients in the corresponding layer.
Coefficients A, B and C can then be effectively described because each
layer is then responsible for only part of the water column with corresponding

constant coefficients. A whole picture can be obtained by combining the
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effects of the coefficients of different |ayefs. The multi-layer system can
effectively represent the transport of toxic substances if the number of layers
is sufficient. Section 2.3 reviews the existing. analytical solutions for
clontaminant transport in multi-layer medias. Liu et al. (1998) developed an
analytical solution to the one-dimensional solute advection-dispersion
equation in a multi-layer porous media and it is a useful reference for the
development of the new model. However the changing of boundary
conditions to examine the exchange effects of toxic substances at the bottom
layer must be considered.

One of the advantages of analytical models is that they can provide
fundamental insight into the effects on the transport contributed by particular
parameters of the transport process. Sometimes, mathematical equations
that describe effects on the transport or requirements to achieve some
specific conditions, such as an equilibrium state, can be derived from the
analytical solutions. In this research, general contributions to transport by
most parameters have been discussed in Chapter 5. In Section (4.6.2),
requirements for the existence of steady state has been defined in Solution 4
of Model 2 and shows the advantages of analytical models. In addition an
analysis of physical and chemical parameters has been conducted based on
the developed governing system and models. Further analyses, such as
comparisons between the contributions of different parameters or
identifications for the usages of the requirements for steady states described

in Section (4.6.2), is strongly recommended by the author.
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A case study for the toxic substance transport in the water column due
to marine dumping is conducted by Model 3 in this research. However, the
accuracy of the results cannot identify due to the lack of the corresponding
monitoring data. The author expects that such monitoring will be performed in
the future for verifying the modeling results and improving the applicability to
predict the developed models in the transport of toxic substances.

In this research, the developed models are applied to two real cases in
different areas to demonstrate their usage in areas other than toxic
substance transport. As advection-dispersion models are also useful in other
areas, such as simulation of transport of BOD. The corresponding
investigations and case studies should be carried out in order to further
realize the applicability of these developed models.

In conclusion the current research provides a firm base for the conduct
of further investigation into the transport of toxic substances by analytical

solutions.
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Appendix 1
Detailed solutions of model 2 (Solution 4)

Governing equation:

2
M _M g M, pu
aT oz oz?

Boundary conditions:

KEM+M =0
oZ 7u4

M
[KEZ— + MLD =BM —Bz|2=u

Initial condition:

M(Z,0} =M,
Note that variables used in the above equations are dimensionless with:
k : Hr
M= Mm=_mi; z=2. K=ZIm. T=t£; 31=2.m. 32=7_M; R = Im
R R H wH H ® ® [

in which m is contaminant concentration, my, is contaminant concentration at t = 0, m, is
contaminant concentration in bed layer, H is the water depth, k., is the turbulent mixing
coefficient, w is the settling velocity of contaminant, r, is the coefficient for source/sink term,
and ¢, and y,are settling and resuspension velocity of contaminant at water-sediment

interface respectively.
Definition and Properties of Laplace Transform :

The Laplace Transform of M(Z,T} is A?(Z,q)and defines as follows:

e e
M(Z.q) = j:’ e M(Z,T)dT
Laplace transform of derivatives and integrals:
LEM, ~ 4"fH(Z,0)- 0" M(Z0) - g M (20) ... - M"(Z0)

aT
L{ aZM} a2 M) aa?rﬁ(z,q)

a—t=a—L{M}=
r&d oz7? 8z?

Thus:

oM ~

= qM(Z,q)- M,
Define:
oM(Z,q)
OS] M (Z
a7 2(Z,q)
°M(Z, ~
—‘géz—q)=Mzz(Z-Q)

From:
aM oM M
—=—1+K
or éZ 8zt
aM(Z,9)— M, —-M;(Z,q)—KM,(Z,q)-RM(Z,q) =0

~ 1~ G-R ~ -M
M, (Zq)+—M(Z.q)-—~M(2Z,qg)=—"2
2z2( q)+K 2(Z2.q) s (2.9) K

+RM

which is a second order ODE with respect to Z:
Consider:

-~ 1 ~ -R ~
Mzz(Z,Q)*”FMz(Z,Q)—qTM(Z.Q):0
Put:
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Thus, the general solution is:

where:

Try a particular solution as:

Therefore:

v _ rd 2 M
M(Z.q)=C,e™ +C,e* + %)—R)

From Boundary condition:

Put solution of M , we get:

From:

M(Z.q)=e*

M,(Z.q)=re"
M.,(Z.9)=e¥
1 qg-R

= e (AP +—A

12

= A=

B SuLAL Y

K K

1 g-R

FRLEY . Rt

K K

=0

—1+ 1+ aK(q -R)

2K

=C,e®” +C,e%

0 1+ 1+4(g-R)K

2K

—1-J1+4g-RK

=

:>0+0—g—-£A=

Then L{[K -‘2% + ML} = L{o}

[K%a

M

oz

2K
M(Z.q)=A

K
A=Col(a-R)

oz

[Kﬂ+M

oz

My
K

L.

Z=1

:I =0
Z=3

=C,0e" +Cpe¥

2=1

= [K(Cﬂeﬂz +Cz¢e°z)+ C.e® +Ce¥ + M% _ R)] 0

M
= K{c, 08 +C2¢e¢)+C1e° +C,ef =~ %;—R)

= (1+ K8)C,e® +{1+Kg)C,e? = —M%q _R)

~

[ oM
+
4
[ oM
Y4

—

oz

K—+M
.
K—+M

K%H\Tf

J1Z=0

AZ=0

JdZ=0

=B8M _82|z=0
=L{BM- B,}z-0

=B,L{M},., - B,L{1}
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=BM,_, ~B, fe"‘”dr

- a9 [*
=8M;, -5,
=BM,_, —Bz[o “% q)
{K%+ﬂ} _|e#i-8,1d],.,
Z=0

{K(C,Be"Z +Cz¢e‘z)+ Ce® +C,e% +h}
=0

(g-R)
=.9,[c,eﬂ'z-+(:_aeéz +ﬂ] B
@-R)zo 4
M,q(B,-1)-B,{(g-R)
1+Ke-8 1+Ké—B LA 2
= OB Ko =B )
Thus:
(1+K8)C,e +(1+Kp)C,e* = —M%—R)
(1+K9—B1)C,+(1+K¢_B1)cz___MmQ(B1—1)-Bz(Q-R)
g{g-R)
From 1:

1 M
C.= ——10 _(1+KOYC,e’
: (1+K¢)e‘[ a-r )’e}

Put this into 2, we get:
{(1+K8-B,)C, -

(1+K¢ —31)[ Mo +(1+K9)C1es] _ Mq(B, -1)-B,(q-R)
(1+Kg)e* (q-R q(g-R)
- M,Biq —(1+ K$)(gM,, + €*(q(MB, - B, — M,y )+ B,R))
" qlg-RN1+K¢-B,J1+KO)e® —(1+K6 - B, 1+ Kp)e?|
_ (1+KO)gM,, +e°(q(M,,B, — B, -M,)+B,R))-M,.B,g
27 glg-RY(1+K¢-B,)1+Ko)e® —(1+ Ko -B,J1+Kg)e*|
From the definition of inverse Laplace transform:

L [!Jf]: M= zi Yme"rﬁdq

ma Sr-k

Therefore:

V(e 4 Ce® MV )d
M—an | € (C1e +C,e™ + (q-R) 9

M = zi e (C,e® + C,e% g + L"[M % R)]
7 Ir-be -
M=Mq e

1 +iL

r Lpe®™ +MBe¥
+ — ef ] dq
2m =" | g(q-R)|(1+ K¢ - B, )1+ K6)e® —(1+ K0 - B, {1+ Kg)e?|
Where;
Lo =M, B,g-(1+Ko)(gM,, +3¢(Q(Mf081 -B, -M,)+8B,R))
M8 = (1+KO)qM,, +e°(q(M,,B, — B, —M,; )+ B,R)) - M B,q = -L8

Replace q to g-1/4k, then:
d{g-1/4K)=dq-d(1/4K)
:dq
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Consider a(q—R)|(1+Ks-B,Y1+Kele? —(1+K8 -BJ1+Kp)e* |

=(q—_1_

Y
4K e 7

)(q—R—R

= _..1_ _ _.,1_ '}/K
={(q 4K)(q R 4K)e

Kedq )"(—/ (g—R) /)
+BKeJ°R TR
-2 -R)- /’S'”hﬁ 28, s.nh\{—
=(Q“%)(Q—R-—$)e%'< i BJ“’ W _e-me)

1

1 __)e 2K

—Ng-R

=09

Now

Also:

BAeW -e
+K29¢(em —e_W)

koo™ e

- Bﬂ@em + B,K@_ﬁ

—2 sinh‘}(q 'R) i +2Ke sinh1}(qr ‘R%<
-2B, sth( y

2K
_B K ' K J(q R/ q—R%)

v _R")+K9(ed Tk -e

+2K65|nh1f(q R) +2K29¢smh1}(q R

(g=-R},
K

7,

-2AK(g-R)- A)suth——-B snth

-2BKJ cosh‘/q_

0=Y 9k
¢='%K-W

Lo = MoB(0 - 110) ~ {1+ KON~ g3 Mo +0(a ~— ) (MoB, =B, =My )+ B.R)

1 1 1
M6 = (1+K0)(q _R)Mro +e’((q _E(")(MJOB1 -B, -M;)+B,R))-M,Bi(q _R")

Thus:

Appendix 1, page 206



1 prom 0T (1 4o + Mo*® )

C=Me" +—

(q——)e”*(

in Laplace transform, there is a rule that:

k=1

g-R

P coshJ X

exp‘*"

For Q(p) = constant*(p-?u) (P-A2)... (P-An)

And L[f(x)]=

R(p)
g

; " A _ 6z 2 M
Consider M(Z,‘q)_C1e_ +Ce% + %} _R)

Put g=q-1/4K, we get:

M(Z,q -1/4K)

Mo Lge™ + Moe*

= 1 _ —
q-R-_¢ -Z(K(q-R)—%)sithqT

_-1_ Yok — _i
(g 4K)e (g-R 4K)

. g-R
-8B h‘}—w
, Sin

g-R g-R
-2B.K cosh, | ———
! \f K K

i M ........J_ = _i —}éK - _i _ h q R
Consider: Q(g 4K)-(q 4K)e {(g-R K Y - B, sin J

-2B KJ coshJ

_2K(g ~R)- %)sinh‘/%

i 1 -2AK(q-R)- }{‘)SIth——B sth

TaK
—ZBK\/

Then Q=0 has roots at g-1/4K=0, g-R-1/4K=0, or said q=1/4K, g=R+1/4K and roots of

equation:

~2K(q-R)- /)sth-—-B sth ZBK\/q Rcosh\/q “R .o

(9-R)/K

{q R 2BK\(
= tanh
K 0.5 2K{g-R)-B,

for variable g-1/4K
For g less than R, 1/(q -R)/K is not real, however:
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_|R-q . IR—q

’q—R . [R-q eV K _g VK
tanh ,/—— =tanh(/ )= — —
K K ,,Kq +e_f’ q

e

JR q+:sm1}R q_ R- q+:snnJR q
cos\{RKq +isin\{¥ +cosJRKq rstRKq

R-g

=itan

2B Kﬂ
= :tan]f

T05-2K(g- R) B,

- /—(q —R)
‘/—(q—R 2B, K.9 A _ 2B.K
J-1(0.5-2K(g-R)-B,) 0.5-2K(q- R) B
Thus, Q can be written as follows:
Q(g-1/4K) = 6 7% (q ~1/4K)(g - R—1/4K)(g - 3,).(q - 3,)
for a4,...a, are roots of

} - 2B,K. [(g-R)/K
tanh, |2 R_ K(q-R)/ for g is real and larger than R
Y K 05-2K(g-R)-8,
—-(q-R) _ 2BKy-(g-R)/K
K 05-2K(g-R)-B,
Applying the rule of Laplace transform with variable g-1/4K, we get:

tan for g is real and less than R

MZT)=L" Mic 1

q-R-—-
4K
in: [Ltﬁeoz + Mgea]e(q-.mmr
+
k=0 -2(K(q -R)-y)sithq—'ﬁ -B, sinh‘/ﬂ
0 (Q-R—-i)(q_L)e-}éK 4 K K
al —1!4Ki 4K 4K - -
q - 281K‘/ 9 KR cosh\f 9 KR

[L¢eez + Mee.ﬁzk(q-mw)r

a0 ( *2(K(q~R)-%)sinh1/%
ai‘(q )(q———) P -8, smhdq R »
q

—2BK1f coshJ

For the summation over g- 1/4k 0 to g-1/4k=a,, we can rewrite it as from g=1/4k, q-R+1/4K
2B K\ [{(g-R)/K
0.5-2K(q-R)-B,

-

to g=a’, for a’; = a;+R+1/4k, or we can say a’ are roots of tanhd q;R =
with variable q.

We, specially, separate contribution of the summation when g are 1/4K and R+1/4K, when q
is R+1/4K, we have:
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o~ —1+J4K(R+1/4K-R) _

2K
_—1-J4K(R+1/4K -R)
#= 2K

1 1 -1
m-m)—ﬁ”((?))(---)

0

=-1/K

Lé =M, B,(R+
= M,B,R
LI
4K 4K

11
-M B(R+————
B TaK 4K)

. 1 1
Mo =1*((R+ )M,o+e°((R+H-H)(M,DBi—Bz*M,D)+BzR)

=0

5 1 1 ((1+KOK1+Kp-B, )’
—g-—Ng-R-—
P [(q a9 4K {..(1+K¢)(1 +Ke -8B, )E‘H

g=R+1/4K

1 1 -1 -1
=(R+———Y1"(1+K(—)-B,)e’ - (1+K{(—)X...
(R 4= e 171 K- B — 1+ KD
=-RB,
Thus, the contribution of summation at g=R+1/4K is:
MmB-,BR:o i QIRHMAK-IAKIT . _pp oRT
-

when g is 74K, we have:

4 1+ JAK(1/4K -R) —1+1-4KR —o

= 1

2K 2K
b= -1-J4K(1/ 4K -R) _—1-41-4KR ¢
- 2K - 2K s
1 1
L¢1 =MJoB1(R"Ik")
1 1 9 1
—(1+K¢1)((“4?—ZE)M0 +eﬁ((m—ﬁ)(MmB1 -B, -M;}+B,R))
=~{1+K¢,)e*B,R
1 1 1 1
ng = (1 +K91 )((ZR-—H)MN +991((4_K"m)(MmB1 _Bz _Mro)+BzR))
1 1
M. B{— ——
oBilr ~2)

=(1+K86,)e"B,R

Clig-dvg_p_1 _Be? _ Bt
aq[(q e -R 4K)((1+K9)(1+K¢ B)e’ {1+ Kg)1+K8 -B,)e )}

g=1/4K
B, (%—R-ﬁ)((‘l +KO, X1+ Ké, —B,)e® —(1+ K, X1+ Ko, - B,)e* ]
= —R{(1+K8,J1+ K¢, - B,)e™ ~(1+ Ke, X1+ K0, - B,)e*)
Let a,(8,6,)=(1+K0,X1+ K¢, -B,)e" —(1+Kp, X1+ K8, - B, )e*

Thus, the contribution of summation from g=7/4K is:

"T[- (14 K, )e* B, Re" + (1+ K8, )e" B, Re* |

- Ra1(911¢1)
B [1+Kg,)e%e™ — (14 K0 Je"e* |
a,(0,,4,)

Therefore, M becomes:
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B,[(1+ K, )e"e® - (1+ KB, )e"e*]

M(ZT)=
a,(6,.4,)
. i [L¢eaz +Mee¢z]e(q-1f4k)r
q=a,
5 1 e AK(g-R)- A)sth——f—B sth
% (Q“R-z"k-}(q )e
-2B KJ Rcosh —
K K

where the summation is over all the poles, except g=1/4K and q=R+1/4K , those poles are
the roots of the equations

_ 2B K. j(g-R)K
tanh [I=R - 5 (q-RY for q is real and larger than R
"k 0.5-2K(q—R)-B,

—(g-R) _ 2BK{-(a-R)/K

K  05-2K(g-R)-B,

-(g-R) 2BKy-(g-R)/K
K 0.5-2K(q-R)-B,

of f(q), put gn=-m’2’K+R, m is integer, we have:

min?K
f(q )—tansznzK- B
m K 05-2K(-m’n?K)—B,

2B, Kmn
0.5+2K*m?z? -8B,
a -28B,
" 1/2Kma +2Kmx — B, | Km=
) -2B

r!:_"flmf(qm) = m
=0

This means f(g) has infinite roots, and thus M has infinite poles when g-R is less than zero.
For g-R>0 and q is real number, consider Lge® + Me* :

- M,,B,(q "I}Z)(egz —e¥)—(q ~4LK)M,D [(1+ Kp)e —(1+ KOY® |

for q is real and less than R

tan

for g-R is negative and a,_a, are roots

Consider f(g)=tan

=tan(mr)-

—[(q ——l—)(M,OB, —B,-M,4 )+BZR}[(1 rKplete® —(1+Ko)ee® |

—g¥ —e'Z’ZK(eJ_ -e "[— eZK sthqKRZ

(1+K)e% ~(1+ KO)e* = (% —¥ )= JK(g-R)(e® +¢%)

=Ze;"{ sth 1/K(q R)cosh" ]

(1+ Kple*e® —(1+ K8)e’e¥

= E[e‘e"z —e”e“]—,{K(q —R)[e¢'e°z + e”e“z]

~{ta2)
T [%mmJ%u—Z))+,/K(q~R)cosh( 5}‘(—’?(1-2))J

Lge” + M6e* now becomes:
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1. g-R |

. 1 Esmh —Z
M.oBy(q - )(Smhd Z) (q “IE)Mro

2 - JK{g-Rycosh [

=2
—s nh(,, (1-2))

eZK[(q—"“‘)(MmB -8, Mm)"‘szl
+JK(g— R)cosh(w} (1-2Z)
(oL [~ Dysinn J3F 7.4 JREG=Rycosh IR ”
{g 4K)Mm{(& 2)smh K Z +K(g-R)cosh P Z]
-Z
=202 ] _1_ g-R _ ;
A 2smh(J-—K (1-2Z))

+92K|:(q—"_)(MroB -B,-My)+B,R
+JK(@-R) cosh(J-q—’-;E(hZ))
For g-R<0 and q is real number, Then: ‘

From @ =—%K+:‘1’(R' %( ;¢=—%K—i1f(R"q)K

= 6 = § by the definition that Z = a - bi when Z = a + bi
We can easily prove that:

Lie® =L 0¥ = -Moe®
Therefore:
Loe™ + Moe™ =Lge® —Lge®
=2im{Lge® |
Then:
Lo = MBy(q )~ (14 K)(@ 5 M +%(@ - N MaB, = B, ~Myo) + BiR))

=(q ‘,L)_M”’B* , }—e“ﬁ +K$)B,R
4K'| — (14 Kp)M,, +e° (M,B, — B, - Mo ))
_MIOB1

—isin

)(MJOB1 - Bz _Mm)

1 g
Y —(1—fJK(R—q))(M,D+e2_K(cos A
_(___;./K(R q) )e“BRcos

=e 2" (cos( R-

9)

Z)+:sm(1}R};qZ))

—rsm

Thus Im{Lge™ | become:
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cos(J%Z)cosJﬁi—g

+sin(JR_qZ)sinJR-q
K K
o cos(J—R;—qZ)sinJ%
+ (q-—}M,B, -8B, ‘_Mm
2 * —sin(JﬂZ)cosJB——q
K K
-
-Z 2K _ — - -
) il cos{JR qZ)sinJM—sin(JR 97)cos [R—q >
2 K K K V K

+‘/me;—KBzR[COS(JR;qZ)COSV[R;q +sin(\/R;qZ)Sin\{R;qj|

1 il
(g ‘HNK(R -qle® (M;B,-B, -Mj

R-qz)
K

+(q - M KR os( S 02) +(q - o8, -%)sin(

|

My(q —%{JK(R Zq) cos

R-g 1. |R~-q
™ Z)+(B, 2)sm( % Z)J
i

=g 2K ] a [(q"ﬁ” (R-q}(M,B, ~B, —M;)+JK(R - qBRJcos(
+e
[E‘q‘m

My(q “z}(‘){\) K(R - Q)COS(

-

141-2))
(1-2)

B, ]sin( —91-
2 K ]

Z)+(B ——)sm( Z)J

101 2~ "o

_z .
=e¥y JK(R-q)cos{
+e [(q——)(M,OB -B,-M,)+B,R

v

21-2))

1. |R-gq
+§sm(1JT(1—Z))
R

R;qZ) , and sin(

~9(1-2)) are all equal to zero.

Note: as g = R, since K(R~-q), sin(

Thus im{L¢e®]=0at g = R.
At poles, consider:

_ _ 1 . q-—R_ . q—R
2 ) g p T 2(K(g-R) A)smh,}—K B15|th-—-—-K

Ng-—

aq 4K 4K - _
—ZB1K\F R cosh‘/ 9-R
K K
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_lg- 1I4K)(q R-1/4K) Fe - 2AK(g-R)- /)5'”"\)——'3 sunh‘}
-2B KJ costh R
}/ o | AK(G-R)- %)Sth——B suth

9 _28 KJ" Rcosh‘jq -R

+(q—i)(q— )e

Note that at pole, — 2(K(q - R)——)smh\/— Bsmh‘[— ZBqu R cosh =0,
and thus :

] y - 2(K(g - R)- /)smh\{_ B, snhr
=(Q-m)(Q-R- —

—ZBKJ coshwf
_
2K R S —
(K(g - R)- /)(2 e

—2Ksthq R—B1(__1_.)CO
K 2JK(g-R)

q-

)cosh
K

a-~

sh

(G- Ng—R-— e
(q 4':)(Q' 2 o 72K
— 2B K(

2 K(q-

BiK(

Jcosh
R)

g-R

K

q-R

qg-R

(——
- Vx| 2yK(@-R)

)e

1
=(@- g Ng-R-—0

- (2K + B, )sinh

As ¢-R is negative:

. [Hg-R}

2 K(q R) )‘f

x
1 \|-2AK@-R)-
-B, -2B,K

q

sinh\f

K

-R

_,J-m-ﬂl
+e ®

=) / -R
4 }cosh o

K

— —(g— "k
coshJu = cosh i\/ @-R) =£
K K

2

=l(cos M+isinJﬂ+cos‘/'(q_R)_isin —(q—R)]
2 u K K K ]‘—K

U K
sinh q—_ﬁ ={sin M
V K V" K
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1 y-aKka-R-pl  [R-g
)e'}/zk 2JK(qg-R) K

~B,-2BK

. IR—
—(2K +B,)isin Tq |

1
| 2AK(@q-R)-—)+B,+2BK = —
- g -—)g-R-—)e 4 cos (R=9 _(2K + B,)sin fR q
4K 4K 2JK(R-q) K K

Note: as g=R, the term 1/ g(...) =0, thus the contribution of the summation at g=R is zero.

1 1
n=lg-——Ng~-R-—
(q 4K)(q K

Therefore, solution of M as g less than R can be written as:
8,1+ K, )e"e®? —(1+ K8, )o%e* |

a1(g1s¢1)
dp 2”m[Lw&? ]e(q—1l4k)T

i (q_R_—.I—)(q—L)e_}é -2(K{g- R) /4)3|nh\/:_3 smh\{—
oq 4K 4K 08 K\{q RCOSh\{—__
K K

B,[(1+ K, )e"e™ — (14 K8, )e%e* |
61(91,¢1)

M(ZT)=

+

M(ZT)=

1 1-Z

+ i ZE[W—K)T * ]f(K BﬁBmMm 4 Q)

4= 1 " 2(K(g - R)——)+B +2B,K
(q—m)(Q—R—W) 2\/K(R 2 J —(2K + B, )smﬂ

a,(8,.4,) = (1+ K8, Y1+ Ko, - B,)e” —(1+ K¢, 1+ KO, - B, )e*
0, =(-1+JV1-4KR)/2K
$, = (—1-+V1-4KR)/ 2K
As 6, = —1+v1-4KR Ty = il 1}; 4KR . 8; and ¢, are not real numbers when 7 - 4KR<0.

2K
Consider a,{64, §,):

(01,

{1+ K8, Y1+ K¢, — B, )e® - (1+ K¢, 1+ K8, - B,)e*
(KR - B,(1+ K8,))e" — (KR - B,(1+ K¢, )Je*
= (KR - B, 12)(e” - e*) - B,J/1- 4KR(e" +e*)/2

For 1-4KR>0, we have:

2]

e™ — edﬂ - e—-h'ZK(e\H—AKR,’?K _ e—\v' —4KRI2K)

2e"* sinh(y/1- 4KR / 2K)

e’ +e% = 2e ¥ cosh(v1-4KR /2K)
While 1-4KR<0, we have:

b _eh = e—uzrf(eimmx _e-fJ4KR-1/2K)

e sin(v1- 4KR 1 2K)

b et = 29'”2“ cos{+/1—4KR / 2K)
Thus a;{8,, $41) become:
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2K
when 1-4KR >0

—"4‘:’?-8«/4KR 1cos “‘”;ﬁ }

O

a,(0,,¢,) =" [(ZKR - B,)sinh

a,(0,,¢,) = fe'””‘[(sz _B,)sin

when 1 -4KR <0
Consider (1+ K¢, e*e® —(1+Kg,)e"e*:
=ghe®™ _g%e¥ L K(pe"e® —0,eMe*)

= l(e”‘e"‘z -e“‘e“‘z)——m(e“e"’z +ehet?)

2
For 1-4KR > 0, we have:
ehe —ehet = e’xp(%{exp(‘” YR (z-1)-em Bz 1»}

=2g % sinh

va (R,
2K

ete®” Lefe%? =29 2 cos

sz h(m(z 1)

For 1-4KR < 0, we have:

ehe® _ghet exp(_(;;z))[exmi 4;? . (Z-M- eXP(%(Z 1”}
{1+2) f
=2ig & sin[—“-g—ﬁ—i(z -1)]

ehe®? +e%he* =2e X cog
2K

Thus, (1+K¢,)e*e® —(1+K6,)ee** become:

—{1+Z}
=g * {sinh —4&3(2 1)) V1 —4KRcosh[—v124KR(Z—1)]

L 2K

when 1 -4KR >0

_____"4KR'1(Z_1) —J4KR -1co _”4'(’-"_1(2_1)
2K 2K J
when 1 -4KR <0
Therefore, the contribution of the summation, let be G{K,B4,B;,R,Z} at node g=1/4K now

—{1+Z)
=je 2K |sin

N

becomes:
-z
eI [sinh[—“‘z:m (z- 1)] _J1—4KR cosh[J‘w (Z - 1)”
G(K.B,,B,,R.Z) =
{(2KR _8,)sinh —“1;_:”? _ B,J1—4KR cosh ——“1;):”:"}
when 1 -4KR >0
-Z ! f
g [sin{% (Z- 1)J —J4KR -1 cos[—% (Z - 1)”
G(K,B,,B,,R,Z) =
|i(2KR -8B, )sin% _B,y4KR—1cos ——w"‘”:ﬁ”J

when 1-4KR <0
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Solution of M(Z,T) now becomes:

29[(QTL)T%]f(K B,.8,,M,.R.Z,q)
C{ZT)=G(K, B1,BZ,RZ)+2 . 1' 2: Mg,

= (q——)(q R———)h(K B.R.q)

’ _ 2B KJ(g-R
a; are the roots of tanh 9-R = Kvlg JK for g larger than R, and
K 0.5-2K(q - R)-8B,

—(q-R) _ 2B,K{/-(q-R)/K
K 0.5 - 2K(q - R)- B,

-z N AvD {——
eﬂ{sinh{—J—z—ﬂ(—R-(Z 1)] 1/1—4KRcosh[——24—m(Z 1)}}

—”‘2:’“? _ B,+1- 4KR cosh —‘”‘Z;KR]

|:(2KR _B,)sinh

for g less than R,

tan

where:

G(K.B,.B,..R,Z)=8

when 1 - 4KR >0

-z
eﬁ[sin[—“‘“:";_1 (Z - 1)} —JaKR -1 cos[—M':R(Z 1)]}

G(K,B1,Bz..R,Z) =
[(ZKR — B,)sin

LN KR Tcon

when 1 -4KR <0
When q is larger than R;

-2{K(q - R)——) B, -2B,K
hiK.B,, R,q)= K( 3 coshJ (2K+B)sth
q-
f(K.B,,Bz,M,D,Z,R,q)=(q-R)M,G[(&—-;—)sinh q; Z+,fK(q—R)cosh1fq—;(—Z}
L /M _
2smh( P (1-2Z))

+JK(@-R)cosh(/ 1R ;R (1-2))
When qis less than R:

1
2AK(g ~R)——)+B, +28,K — -
h(K.B,.R.q) = 4 cos RKq —(2K+B1)sinJRKq

K(R-q)
f(K.B,,B,,M,.Z.R,q) = M,(q _%)I:JK(R - g)cos( R;qz)+(81 "%)Sin( }R;qz)]

JK(R-q)cos(J%n—zn
L. /M _
+251n( % (1-Z))

-1

— 1
+e |:(q ‘Z?)(Mm& —B, -My)+ BzR:|

-1

— 1
+eK [(q _K)(M'O& -B,-M,)+B,R
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