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Abstract

Using Texture Analysis on

Biometric Technology for Personal Identification

Using texture analysis as a tool to extract biometric features for personal identification is the
main goal of this thesis. In this study, three biometrics, the iris, palmprint and ear are

investigated. Each of them shows a different level of achievement.

As far as iris recognition is concerned, we propose a new noise detection model for
accurate segmentation of an iris. Eyelashes, the eyelids and reflection are the three main
sources of noise. The eyelid issue has been solved by the traditional eye model; however,
eyelashes and reflection have yet to be addressed. To determinate a pixel belonging to an
eyelash, our modei follows three criteria: 1) separable eyelash condition, 2) non-informative
condition and 3) connective criterion. For reflection, strong reflection points are detected by a
threshold and the weak reflection areas around the strong points are determined by a
connective criterion and a statistical test. Using Boles’s [47-49] texture-based iris recognition

approach to evaluate the accuracy and usefulness of our detection model, we find the

experimental results encouraging.

For palmprint identification, we develop a novel textured feature extraction technique,
in which a 2-D Gabor filter is used to obtain the texture information and two palmprint
images are compared by their hamming distance. The experiments give impressive results and
show that our method is effective and comparable with fingerprint (FingerCode), iris

(IrisCode) and 3-D hand geometry.
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For ear recognition, we consider two issues: 1) image acquisition and 2) textured
feature extraction technique. We have developed a special device for image acquisition. We
also propose a novel feature extraction for ear recognition that measures two ear features by a

simple vector norm. The experimental results show that ear recognition can provide middle

level security.
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Chapter 1.

Introduction to Biometric Technology

1.1 Weakness of traditional personal identification methods

In recent years, biometric technology is one of the hottest research topics the in IT field
because there is more critical demand for accurate personal identification or verification in
security systems of various applications such as e-commence, Internet banking, access control,
immigration, attendance control, and law enforcement.

Although we have widely applied traditional tools including password, physical key
and smart card in security systems, high level security standard and requirements in our
sophisticated society still cannot be fulfilled because these tools are subject to easy loss,
duplication, high cost and low accuracy. In current Internet-based applications, the password
is the most common tool to identify a person; nevertheless, its reliability is very limited.
Generally, since users cannot remember long, complex, meaningless passwords, their
passwords should be some meaningful text or numbers, such as their name, telephone number
and birthday. This lets hackers easily guess or obtain their passwords. Besides, users tend to
write the passwords down if web managers or administrators force them to use very
complicated passwords. Thus, the password is subject to the same limitations as the physical
key. Another problem is that Internet-based applications are supported by numerous service
providers and companies, which have their own authentication systems. If users receive
unique passwords from each of the companies, they will probably forget their own passwords.
Therefore, they tend to solve this problem by writing down all their passwords or by using a

particular password for all applications. This greatly reduces the reliability of the security

systems.



Thorough discussions on the weaknesses of the password are mentioned in [1]. Some
security systems are supported by smart card or physical key, which can be easily stolen, lost
or duplicated. On the other hand, an authorized user can share his’/her access right with
unauthorized users. For the above reasons, biometric technology has become one of the

hottest topics in the IT field in recent years.

1.2 Overview of Biometrics

Computer-based personal identification, also known as biometric computing, attempts to
recognize a person by his/her body or behavioral characteristics. It has more than 30 years of
history. The first commercial system, called Identimat, which measured the shape of the hand
and the lengths of the fingers, was developed in 1970s. At the same time, fingerprint-based
automatic checking systems were widely used in law enforcement. Rapid development of
hardware, particularly in the speed of computers and in capture devices drives, the iris, retina,

face, voice, palmprint, signature and DNA to join the biometric family [2-3].

1.2.1 Biometric Classification

Based on features, biometric technology is divided into two categories: physiological and
behavioral technologies. The physiological technology verifies or identifies a person by
means of his/her physical features, such as fingerprints, iris, hand geometry, face and retina.

The behavioral technology relies on our customs like signature, keyboard typing and voice.

The two technologies have their own advantages and disadvantages so they have
different applications. In general, physiological recognition systems are more stable and
accurate than behavioral recognition systems. However, the capture devices for behavioral
technology, such as voice and keyboard typing, are cheaper than those for physiological
technology. However, many physiological recognition systems, e.g., fingerprint, hand and
retina recognition systems, require users to touch the equipment. This may make some users
feel psychologically uncomfortable. Nevertheless, physiological biometric technology still
shared about 90% of the total sales volume in the biometric industry [27] in 1999.

Based on applications, biometric technologies can be classified into personal

identification and automatic diagnosis. In this thesis, we only concentrate on personal



identification using iris, palmprint and ear. Fingerprint recognition systems deployed in
various applications including law enforcement, computer securities, network securities are
the most mature personal identification technology. Automatic diagnosis observes the
changes in human bodies, similar to Traditional Chinese Medicine, iridology and palmprint
diagnosis [2-4, 7]. Recently, Traditional Chinese Medicine is the most active member. It
includes two main parts, tongue and blood pulse diagnoses. Iridology is a subject that studies
the iris pattern to identify the weaknesses of the body. Palmprint diagnosis is implemented by
observing the change in or the appearance of the lines in our palms. In fact, it is a new
research area in medicine and computer science so we do not get any international papers on

this. One of the active researchers is a medical doctor named Chenxia Wang, who has

published a number of Chinese books and papers to explore her research results.

1.3  Biometric System Architecture

A biometric system for personal identification consists of five main parts: Signal Acquisition,

Preprocessing, Feature Extraction, Pattern Matching and Feature Storage. The functions of

each part are described as follows:

1) Signal Acquisition — Collects biometric signal such as an iris’ image, voice
and signature motion. It is an important part in the whole process. If the
signal is contaminated by noise or is blur, the overall performance of the
system will be affected.

2) Preprocessing — Serves several purposes including segmentation, noise
reduction, rotational normalization and translation normalization.

3) Feature Extraction — Extracts a set of stable and unique features for personal
identification.

4) Pattern Matching— A classifier to make a final decision whether two features
belonged to the same person or not.

5) Data Storage — Stores the features extracted from registered signals possibly

in smart cards or hard disks for later comparisons.

A biometric recognition system runs on three modes — enrollment, identification and
verification. In the enrollment mode, a new user’s biometric feature is extracted and then

stored in a database for later comparisons. In the identification mode, an input biometric must



pass through Image Acquisition, Preprocessing and Feature Extraction. The feature extracted
is compared with all records in a given database. The difference between the identification
and verification modes is that in the verification mode, each user must have a user ID and
his/her biometric feature can only be compared with all the features belonging to the same

user ID. Fig. 1.1 summarizes the information about these three modes.
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Fig. 1.1 Process of identification, enrollment and verification



1.4 Evaluation of Biometrics and Biometric System

A good biometric and a good biometric system should have a high degree of universality,

uniqueness, permanence, collectability, performance and acceptability [2-3].

1)

2)

3)

4)

3)

6)

Universality — A biometric is a set of features extracted from the human
body or behavior. Some people do not have certain biometrics. A worker may
have lost his/her fingerprint in accident. A dumb person does not have voice
print. Universality points out the ratio of people possessing a particular
biometric.

Uniqueness — If a biometric is unique to a person, it can be used to
distinguish him/her from another person in the world. Twins with the same
genetic genotype contribute an important case to the test for uniqueness.
Observing the similarity of any 2 biometric records in a large database is also
a useful indicator for uniqueness.

Permanence — Permanence implies the stability of a biometric. Iris and
fingerprint are relatively permanent biometrics because of their stability over
time. However, many biometrics will change over time, for exampie, voice
print and face.

Collectability — Although some biometrics have high permanence,
unigueness and universality, they cannot be used for the public because of
collectability. If the data collection process .is too complex or requires high
cost input devices, the collectability of that biometric is low. DNA and retina
suffer from this problem.

Performance — “Performance” implies accuracy. It is measured by two rates,
1) False Acceptance Rate V(FAR) and 2) False Rejection Rate (FRR), which
are controlled by a threshold. Reducing FAR (FRR) means increasing FRR
(FAR). Equal Error Rate (EER) or crossover rate also implies accuracy. A
system with 1% EER or crossover rate means that this system has 1% FRR
and 1% FAR [8].

Acceptability — To be computer scientists, we should try our best to produce
a user-friendly biometric system. In fact, almost all the current biometric
systems are not physically intrusive to users although some of them, such as

retina-based recognition system, are psychologically invasive systems.



Retina-based recognition system requires a user to put his/her eye very close
to the equipment and then have infrared light passing through his/her eye in

order to illuminate his/her retina for capturing an image [9-12].

1.5 Different Biometrics |

In this section, we introduce different biometrics including fingerprint, dental, 3-D hand

geometry and retina.

1) Fingerprint — It is one of the most mature biometric technologies. Automatic
fingerprint identification began in the early 1970s. At that time, fingerprint
verification was used for law enforcement. In the 1980s, with rapid
development of personal computer and fingerprint scanner; fingerprint
identification started to be used for non-criminal applications [14]. Current
Ningerprint systems utilize minutiae and singular points as the features [15-
20]. Fingerprint has high performance, uniqueness and user acceptance.
However, some people’s fingerprints are not easy to be clearly captured. Fig

1.2 illustrates fingerprint images with different quality.

Fig 1.2 Fingerprint images with different quality



2}

1)

Dental — Dental recognition mainly takes place when a disaster happens in
which many fatalities have occurred in a hectic environment. High-energy
disasters such as bombings and plane crashes are often accompanied by
massive destruction and fire. This may result in the destruction of identifiable
biometrics such as facial features, fingerprints and 1D tags. Consequently, we
can only rely on dental characteristics as a “hard fingerprint” to identify the
victims. Fig. 1.3 shows several dental images. For more information about

this, please refer to [99-101]

Fig. 1.3 Radiographs of skull

Hand geometry — Hand geometry measures on the length and width of the
finger and the width and thickness of the hand. Compared with other
biometrics, hand geometry has several advantages including small feature
size, low-cost computational algorithm and using low-resolution image [ 102-
103]. Mevertheless, the current hand geometry svstem suffers from high cost
and low accuracy [26]). Due to the low accuracy of hand geometry, current
systems normally combine sman cards or passwords with hand geometry
recognition o provide tghter security. Fig 1.4 shows one of the current

svstems called Hand Key 1l from Recognition System Inc.
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15 computational efficiency [9-12]. Figs. 1.5(a} and (b} show a retinal image

and a retinal recognition system produced by EveDentify, respectively.
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Total revenue in 1999 was US$ 58.4 million and the projected revenue in 2003 is
$594.0 million. Finger Scan (fingerprint recognition) obtained the highest revenue
because it was the most mature technology in the industry. Hand geometry suffers
from high-cost and low recognition rate; however, it still got about a quarter of the
total revenue because of high end-users acceptance. Face recognition also gets high
acceptance from end-users and only needs low-cost input devices, but it suffers from
low accuracy. Nevertheless, it took up 15% in 1999. Although speaker verification
and eye-scan shared the same amount of revenue, their target markets are different.
Speaker verification is for the market that accepts low recognition rates using low cost
products. On the other hand, eye-scan including iris recognition and retina recognition
focuses on high-security markets such as nuclear power station security and automatic

teller machines (ATMs) [2-3].

1.7  Organization of this Thesis

This thesis is organized as follows: Chapter 1 provides an introduction to biometric
technologies. Chapter 2 describes some mathematical tools for texture analysis. A novel noise
detection model for iris recognition is given in Chapter 3. Chapter 4 explains a new
biometrics, palmprint and Chapter 5 discusses a palmprint identification system. The
explanation of another new biometric, the ear, is given in Chapter 6. Finally, conclusions and

suggestions for further research are made in Chapter 7.

10



Chapter 2

The Mathematical Tools for Texture Analysis

Objective — In this Chapter, we introduce some mathematical tools for texture analysis,
including statistical and wavelet approaches. Various statistical approaches for texture
analysis such as co-occurrence, gradient analysis and the autocorrelation function, are given.
Then several 1-D wavelet approaches will be discussed. Some wavelets and Gabor functions

are discussed thoroughly towards in the end of this Chapter since they will be utilized in the

following chapters.

2.1 Definition of Texture

Texture is a term that is widely used in image processing and computer viston fields but it
does not have a universal definition. Some researchers have given their own definitions. Their
main ideas are that texture is a spatial self-similar or spatial repetitive object. Julesz thinks
that texture is constituted by a set of basic elements called textons {79]; Haralick and Shapiro
have similar idea but they name the basic elements texels [80]. Fig. 2.1 shows 12 typical .
texture images illustrating the properties of spatial self-similarity and repetitiveness. The term,
texture, is extended in this thesis. It represents an image with some basic elements that may
not be spatial-similar and repetitive throughout the whole piece of texture. Taking a palmprint
image as an example, we find that line is the basic element but a patch in the image may not
be similar to another patch in the same image. Fig. 2.2 gives three palmprint images
illustrating our definition. Since the application of our research is personal identification, we

do not expect images with severe spatial repetitiveness, which would reduce information in

the images.
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2.2 Statistical Features for Texture Analysis

In this section, we will introduce some basic statistical methods for texture analysis including
autocorrelation, gradient analysis, relative extrema density, co-occurrence, moments of the
gray-level histogram and gray-tone co-occurrence. They have been applied to texture
classification and texture segmentation. Although these tools will not be used in the following

chapters, it is worth giving their background knowledge here.

2.2.1 Autocorrelation

Autocorrelation is a function measuring the size of the tonal primitives (textons). Large and
small textons are indicative of coarser and fine textures, respectively. The autocorrelation

function is,

1 w oo
L, o o e e s

l m:»oo2
P 1°(x, y)dudv
L, 11 y)du

; 2-1)

A(x,y)

where / is a texture image; L. and L, are the width and length of the image, respectively. Here,
we are assuming the image with mean zero. If a texton is small, then the response of the
autocorrelation function will decay quickly and then rise. On the other hand, provided that a

texton is large, the response of the autocorrelation function will drop slowly [82].

2.2.2 Gradient Analysis

Gradient analysis is an edge-based approach proposed by Rosenfeld, Troy, Rosenfeld and
Thurston [83-84]. According to their idea; texture is regarded as the amount of “edge” per
unit area. The edge operators, such as Roberts and Laplacian operators extract the edge

information of the texture in a small window. Then, it takes the mean of the results as a

texture feature.

2.2.3 Relative Extrema Density

Rosenfeld and Troy also proposed an extrema-based approach — the number of extrema per

unit image area for texture measure [83). Besides, several other researchers including Ledlely



and Rotola [86-87] had similar ideas. They suggested implementing this technique on

smoothed images so as to eliminate extrema caused by noise.

2.2.4 Moments of the Gray-Level Histogram

In this approach, texture feature is described by the texture moment of the gray-level
histogram in an image [85]. Let z be 2 random variable representing discrete image intensity
and let p(zy), i=1, 2, ...L be the corresponding histogram, where L is the number of i‘ntensity

levels. The m™ order moment can be computed by the following equation,

L .
o = ;l(z,- -1)" p(z;), (2-2)

where u is the mean of the histogram. However, this approach does not consider the relative

positions amongst pixels so some researchers proposed to use gray-tone co-occurrence.,

2.2.5 Gray-Tone Co-Occurrence

Gray-tone Co-occurrence is represented by an occurrence matrix C whose element is,

= ﬁ_ (2-3)

k& ’
ZZG,-,-

i=l j=I1

C‘j

where a;; is the number of times that points with gray level z; and points with gray level z;
occur under a specified relative position, where 1 < i, j < k [82, 85). From the co-occurrence

matrix, several descriptors are computed to represent different texture including:

1) maximum probability
n}a}_X(c,;,-) . (2-4)
2) element different moment of order &
ST Nrey, (2-5)
iJ
3 inverse element different moment of order &,
Cy
2X—> (2-6)
i i i-Jj)

14



4)- entropy,
- Z_',Z.c,}. logcy 2-7)
iJ

5) energy,
ZZcj- 2-8)
ij

23 Wavelets and Gabor Functions

Wavelets and Gabor functions are powerful multiresolution analysis techniques widely
implemented in the fields of image processing, computer vision and compression. Because of
their multi-resolution property, they have been applied to different areas in texture analysis,
namely texture classification and texture segmentation {95-98]. In this section, we briefly give

a review of wavelets, Several 1-D wavelets and 2-D Gabor functions will be discussed.

Details of their theory can be referred to in [88-89].

2.3.1 Wavelet Transform

Wavelet decomposes an image by dilating and translating its mother wavelet. It is an effective

tool to analyze an image at different scales. A wavelet is a function, { € L2 (R) with a zero
mean and its norm "l/}“ =1. A set of time-frequency atoms is generated by scaling y by s and

translating by u:

1 t—u
f)=—=y|—21I. 2-9
Vs () J;w( - ) 2-9)
The wavelet transform of fat the time u and scale s is
Wf(us S) J. f(t) Wu 5 (Iﬂt (2'1 0)
J‘
In fact, wavelet transform can be regarded as a convolution:
Wf(u,s)= If(r)fw“(r)dr v, 2-11)
with
= ('—'J @12)
y/,.s \/; 4 5 »



where ™ denotes complex conjugate. When s and u are set to power of 2, the wavelet

transform is called dyadic wavelet.

2.3.2 1-D Wavelets

In this sub-section, we introduce several 1-D wavelets, which will be used in Chapter 3 to test
our noise segmentation model. The wavelets include normalized Mexican hat, Shannon and
Haar. Their formulas are mentioned in Eq. 2-13 to Eq. 2-15. The Mexican hat wavelets are
second derivatives of a Gaussian. They have been applied to an multi-scale edge detection
[90]. The Shannon wavelets are generated by Shannon multi-resolution approximation [89].
Haar wavelet is the simplest wavelet, which is generated by a box function and it has been
implemented on many areas, such as segmentation, clustering, and image coding [91-94).

Normalized Mexican hat:

wy{t,o) = 2 —ti—l ex ——{2— (2-13)
M 74 3o | o2 P 262 )
Shannon:
) 1 ) 1
sin(27x(t —5)) sin{(z(t — 5))
w, (1) = T —, 2-14)
2t —— in(z(t - —
7 2) sin(7r( 2))
Haar:
1 if0<t<0.5
w,(t)=42 if0.5<r<«1. (2-15)

0 otherwise

2.3.3 Gabor Functions

Gabor filters, Gabor filter banks, Gabor transform and Gabor wavelets are widely applied to
image processing, compute vision and pattern recognition fields. The Gabor function was first
investigated by Gabor in 1946 [64]. This function can provide accurate time-frequency
location, which is governed by the “Uncertainty Principle” [65]. Originally, Gabor only

investigated 1-D case:

16



2
-t
w_(t,o,n)= exp| — |expli2znt ). (2-17)
(o = I{zazJ p(i27mt)

The Gabor function was extended to 2-D case by Daugman in 1980 [66-67]. A 2-D circular

Gabor filter in the spatial domain has the following general form,

1 x4+ yz . .
G(x,y,6,u,0)= T eXpy————5— exp{2m(ux cosd +uysind)}, (2-18)
2ro 20

where u is the frequency of the sinusoidal wave; & controls the orientation of the function; &
is the standard deviation of the Gaussian envelope and i is defined as i’=1. Fig. 2.3 gives a
graphic representation of the Gabor function. Gabor filters have several important
characteristics so many researchers utilize them to solve problems in computer vision and
biometric technology. Firstly, it can capture local information, which is governed by the
“Uncertainty Principle”. It also provides robustness against varying brightness and contrast in
images. Moreover, it can model the receptive fields of a simple cell in the primary visual
cortex. The above features motivate many researchers to apply Gabor filters to-many areas
[68-70]. In biometric research, Gabor filters have been applied to iris, face and fingerprint

recognition [30, 71-76].



x 10

Fig.2.3 A graphical representation of a Gabor function ( #=0.05, 8=90 and c=100 ), (a) Real

part of a Gabor function and (b) Imaginary part of a Gabor function
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Chapter 3

Accurate Iris Segmentation Based on Novel Reflection

and Eyelash Detection Model for Iris Recognition

Objective — In this chapter, we propose a novel noise detection model for accurate
segmentation of an iris from an image. Eyelashes, eyelid and reflection are the three main
sources of noise. The eyelid has been detected by the traditional eye model; however, eyelash
and reflection have not been regarded. To determinate a pixel belonging to an eyelash, our
model follows three criteria: 1) separable eyelash condition, 2) non-informative condition and
3) connective criterion. The first condition handles separable eyelash and the second one
manages multiple eyelashes. The last criterion avoids misclassifying strong iris texture as a
single and separable eyelash. For reflection, strong reflection points are detected by a pre-
defined threshold and the weak reflection areas around the strong points are determined by a
connective criterion and a statistical test. A number of images are selected to evaluate the

accuracy and usefulness of the proposed model and the experimental results are encouraging.

In addition, Boles’ approach [48-49] using 1-D wavelet is evaluated in this chapter.

Since it was only tested on a small database, the accuracy of this approach cannot be proved.

3.1  Iris Recognition History

In 1987, two ophthalmologists, Flom and Safir, proposed that the iris can be used as a

biometric signature. They discovered that every iris has highly complex and unique texture,



which remains unchanged over a decade. They obtained a US patent for their discoveries;

nevertheless, they did not develop an automatic recognition algorithm.

In 1989, Ophthalmoloy Associate of Connecticut cooperated with Daugman to setup
a photographic iris database. Then, a frame grabber board, a video camera and lens
constituted an iris capture device. From 1992 to 1995, Daugman published several papers to
prove the accuracy and effectiveness of his iris recognition method [29-33]). The most
important paper was published in 1993 [30], which deeply discussed his algorithm and results.
In his papers, he claimed that his algorithm got very high recognition rate and it only needed

very short computation time. In 1994, he obtained a US patent for his algorithm{31].

At the same time, Flom, Safir and Daugman established a company called Iriscan.
From 1993 to now, several reports have proved the accuracy of his method [34-39].
Nowadays, many companies apply Daugman’s algorithm to producing various iris
recognition systems. They focus on hardware development in order to get high user

acceptance [40-42].

Another research team also developed. an iris recognition system, which also got very
high recognition rate {43-46]. They put a lot of effort to control the light source so as to

capture high quality images and to ensure that users feel comfortable. Same as Daugman, they

got a US patent [46].

The third research team proposed a new recognition algorithm based on wavelet
transformation [47-48]). However, their testing database is very small. Thus, their
experimental results cannot show the reliability and accuracy of their algorithm. Nowadays,

some Chinese researchers are working on iris recognition but they are still working on a small

database [50].

3.2 Advantages of Recognizing a Person by Iris Pattern

The iris possesses many good characteristics for personal identification. According to Flom
and Safir research results, every iris has highly complex and unique texture. Fig. 3.1 displays
the detailed texture of nine irises, which were captured by a special device and were
downloaded from http://www.cl.cam.ac.uk/users/jgd1000/. Based on the unique

characteristics of the pattern, Flom and Safir proposed that iris can be used for personal
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identification. Even left and rght inses of the same person or irses from two twins also
contain a lot of distinguishable features. Fig. 3.2 shows two inses from the sume person
Ohhservable features include contraction furrows, striations, pits, collagenous fibers, filaments
crypts, serpenfine vasculnture, nngs and freckles. Among the visible features in the iris, some
of them can be observed in Fig. 3.2. Also, the iris is an internal organ, which is protected by
the comen so it cannod be -.'.|r_|1|,_';|||:. modiled without |.||1.'||.|..|:|:|I.||IJ|: risk o vision. Hesides, i

fc--.p-..:n._l.-. En) E'.:_'hl_ which can be atilveed as a natural test AEaiins artifice

Fig. 3.1 lrises with highly comples and unigue iexir
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Fig. 3.2 Left and right eyes of the same person have different iris pattern;

(a) left eye and (b) right eye

1.3 Difficulties of Using Iris Pattern for Personal ldentification

Alithough the iris has many good features, using the ins for personal identification sull has
many difficulties. First of all, the comea may cause serious reflection. Some parts of the iris
may be covered by evelids and eyelashes. Furthermore, a user’s contact lens cannot easily be
removed when using an iris recognition system. Everyone iends to protect his or her eyves
against flash and close objects such as capture devices. So flash and short distance between
the equipment and the user are not suitable, The sizc of the iris will change under differem
lighting conditions, However, we generally cannot control the conditions of lighting
Therefore, if an iris recognition system cannot handle this property, it cannot be used o test

against artifice or dead ns.

34 Features Inside Our Iris

Chur iris can be divided into two parts, pupillary zone and cillary zone. [hese two 2ones arc
separated by collaretie. In the cillary zone, we have mole, crypt and penipheral crypt [51]
Ihese features are shown in Fig. 1.3, The texture in the pupillary zone is clearer than that in

Cillary Fone
People of different nationalities have different classes of inses. According to [51], the

surface of an iris has rich texture information (refer 1o Fig. 3.4). A darker s has more

>



pigment so the surface is smoother. Fig. 3.5 shows three irises from three people of different

nationalities,

Milicska
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Fig. 3.4 Vaneties of human iris A) deeply pigmented.

B} Medium Evropean; C) Blonde European. From|[51]



{a) (b)

“ig. 3.5 People of different counirics have ditle classes of te s
Fig. 3.5 People of different countries have different classes of texture
(a) Western inis: (b)) Chinese s {e) korean iris

1.5 Literature Review

3.5.1 Iris System Architecture

Basically, existing iris recognition approsches [30-34.43-48] have similar architectures

including the five steps described as follows

1] Imragre Acqguisition s to vield a high quality image contmning a cler irs

2) fris Localization points out the position of the iris in the scquired image

3} Iris Normolization standardiees the vanation of ins size.

d) Feanere Extraction is to extract the texture information by a set of filters or
wavelet

51 Comparivon makes a final decision whether two ins features belong to the

same person or not, based on a classifier

3.52 Daugman's Approach

This method can be divided into four parts: 1) Iris Localization, 2) Doubly DMimensionless
Projection, 3) Iris Code and 4) Companson, Details of this approach are mentioned in [30-34]
His experimental results were obtained from the images with 480640 pixels and the outer

diameters of the irses were greater than 60 pixels. They were usually between (00 and 200

pixels

I} Iris Localization
Daugman designed a special integrodiffererntial operator to search the pupil

and limbus boundanes over the image domain. In order o accurately locate



1)

1)

the boundary of the limbus, the operator only searches the left and right parts
of the limbus boundary. Besides, he applies a non-lincar enhancement

technigue to detect the boundary of the pupil.

Doubly Dimensionless Projection

The optical size of an iris in an image would change because of pupillary
constriction, variation of distance between the camera and the eve, and
different wvideo zoom factors. Thus, Daugman proposed a  doubly
dimensionless non-conceniric polar coordinate system to normalize all the

effects. Under this transformation, the optical sizes of the nses are

standardized.

IrisCode

lexture information in transformed irs images 15 extracied by a 2-D Gabor
filter. The phase information in the filtered image is coded by a set of
inequalities, producing IrisCodes. Fig. 3.6 shows an iris image and its

Irislode

Comparizon
The similarity berween two InsCodes s measured by their normalized

hamming distance.

Fig. 3.6 shows an iris image and its IrisCode



3.5.3 Wildes’s Approach

In this subsection, we would mention the key ideas of Wildes’s approaches [43-46]. Wildes’s
approach has very good performance. After an image is captured, Hough Transform is applied
to locate the boundaries of the iris {52]. Then, an image-registration technique is used to align
two images [53]. Afterwards, the Wildes’s system employs an isotropic band-pass
decomposition derived from the application of Laplacian of Gaussian filters in order to get
four different frequency bands [54]. Each frequency band is cut down into a lot of small
blocks. The size of a small block is 8x8 pixels. The similarity between two small blocks is

measured by normalized correlation. At the end, a Fister’s linear discriminant makes the final

decision [55].

3.5.4 Boles’ Approach

Boles’ approach uses Wavelet Transform to extract iris features [47-48]. Same as Daugman
and Wildes’s approaches, his approach models the iris as a circular object. The circular part of
the iris is cut down and considered as a one dimension period signal. Then, he applies 1-D
Wavelet Transform to this signal to decompose it into several levels. At the end, two
dissimilarity functions are defined for making the final decision. The database is very small so

the experiment cannot demonstrate the accuracy of his approach.

3.6  Usefulness of Accurate Iris Segmentation

Automatic personal identification using iris, iris diagnosis (iridology) and determination of
human ocular torsion are three different applications that require accurate iris segmentation
[29-34, 43-48, 56]. It is widely accepted that the boundaries of an iris in an image are
modeled by two circles for the pupil and limbus (the outer boundary of the iris), and two
parabolas for the upper and lower eyelids. This model has been used in several areas,
including iris recognition, eye tracking and animation [29-34, 43-48, 59-60]. However,
eyelashes and reflection detection are not considered. If the eyelashes or reflection are
considered as a part of the iris, the accuracy for automatic personal identification is reduced.
This problem is especially serious for people with small eyes and dense eyelashes because the
percentage of eyelashes classified as the iris is large. In the following sub-sections, we
propose a noise detection model for accurate iris segmentation. The model is divided into two

parts, eyelash detectionl and reflection detection.
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3.7  Traditional Iris Segmentation Model

In general, an eye is modeled by two circles, the pupil and limbus, and two parabolas,
the upper and lower eyelids. The circles are defined as
(=) +ly=p ) =¢*, (3-1)
where (x, v,) is its center and #, is its mdius { i = p, f; p — pupil and [ - limbus ). The two
parabolas have the following general form,
(i —hysind; +(y -k Joosd i =al{x—h/hcosd; +(y—k;)sind;) (3-2)
where a;, (< 0) is used to control the curvature of the parabola, (A, &) is the vertex of the

parabola and & is an angle between the x-axis and the principal axis of the parabola { /= m. m;

m — upper eyelids and m ~ lower evelids).

Fitting the contours of both the pupil and the limbus can be divided into two steps. To
remove the noise, an image would be convoluted by a lowpass filter. such as a two-

dimensional Gaussian. Then, a gradient operator, (V = (¢ /dx @ / dy ) , is imposed to select
the edge points. Mathematically, it can be represented by (VGix, v)* fix, v) . where G, v

i a wo-dimensional lowpass filier and fx, vl is a raw image. 1§ any point with the magnitude
of the intensity gradient image 15 greater than a certain threshold, it is considered as an edge

peint. Hough Transform is applied to find out the three parameters, (v, v,.r,) [52]. Fig. 3.7

shows an image that is implemented by this traditional segmentation method. Similar

fechmgques are able to determine the parmmeters of the parabolis

F I|.'h 1.7 Hustration of traditional s seriErmenlatnen l:-;_-.;|||'|||_|u|;_'




1.8 Evelash Detection

[here are two types of eyelashes defined in our evelash detection model (see Fig. 3.8). One is
separable evelashies that are able o be distingmished from other evelashes, Another one s
multiple evelashes of which the evelashes will overlap one another in a small area so they are

impossible to be separated

P _bb}'-
Slrorsg Rafecion
Wik Plafocian

Fig. 3.8 Two tvpes of eyelashes and reflections

18.1 Separable Evelash Condition

A real part of a Gabor filter captures the separable evelashes such that a 1-1D Gabor filter in

the spatial domain has the following general form,
4 -

Cxu o) =expp™/ 2o~ jcos(Ime) | (3-3)
where w is the frequency of the sinusoidal wave, and o is the standard deviation of the
Gaussian envelope. The convolution of a separable eyelash with Ceix, o, e would be very small.
In fact, the Gabor filter serves as an edge detector, Thus, if a resultant value of a point is
smaller than a threshold, it is noted that this point belongs to an evelash, Mathematically, it
can be represented by

Fix)*Gixu,o0)< K, (3-4)
where K; is a pre-defined threshold that is = 45 for the following experiments and ="

represents an operator of convolution,



3.8.2. Non-Informative Condition

Non-Informative Condition manages multiple eyelashes. When many eyelashes overlap in a
small area, the pixels in the small area have similar intensity values. Thus, if the variance of
intensity in a small window is smaller than a threshold, the center of the window is considered
as a point in an eyelash. This criterion is described by,

N N 2

L X(f(x+iy+j)-M)

i==N j=-N <K,
QN +1? -1 '

(3-5)

where M is the mean of intensity in the small window, (2N+1) is the size of the window and

K; is a threshold. In our following experiments, K; and (2N+1)° are defined as 6 and 5x5,

respectively.

3.8.3. Connective Criterion

In order to provide more robust and high accuracy detection methods, the connective property
of an eyelash is utilized to avoid misclassification from the previous criteria. Each point in an
eyelash should connect to another point in the eyelash or in the eyelid. If any point fulfills one
of the two previous criteria, its neighbor pixels are required to check whether they belong to
the eyelash or eyelid. If none of the neighbor pixels has been classified as a point in an eyelid

or an eyelash, it is not classified as a pixel in an eyelash.

3.9. Reflection Detection Model

We also give two definitions for strong and weak reflection (see Fig. 3.8). A pixel belongs to
strong reflection if its intensity is larger than a certain threshold. Weak reflection is a
transition region from strong reflection to the iris. Mathematically, strong reflection is
recognized by the following equation,

Ixy)>K,, (3-6)
where I(x,y) is the intensity value of an image at point (x,y) and K; is a threshold which is

taken as 180 in the following experiments.
According to our discovery, the intensity of the iris pixel close to a normal

distribution. In order to prove the statement, we have selected 50 iris images to build Fig 3.9,

where the black line and the gray line represent a standard normal cumulative distribution and
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an empirical cumulative distribution, respectively. The empirical cumulative distribution is

generated by the normalized intensity pixels which are computed by the following equation,

d(x, y) = M (3_7)

S

r

where x and § are the sample mean and sample standard derivation of an iris intensity,
respectively. Strictly speaking, according to Kolmogorov — Smimov goodness of test,

intensity of the iris pixels does not follow normal distribution [61]

45
5.0 §
5.5

Fig. 3.9 Comparison between cumulative distribution of a normal distribution and a
cumulative distribution of intensity of an iris image. The black and gray curves represent the

normal and iris distribution respectively. Their means and standard deviations are the same.

Since the iris distribution is close to a normal distribution, we propose to impose a
statistical test to determinate the weak reflection points. This test is based on the following
equation,

p+ao<ifxy), (3-8)
where 4 and o are the mean and standard deviation of the intensity distribution of the iris
pixels, respectively; o is a parameter to control type I and type II errors. If any point around
the strong reflection points satisfies Eq. 3-8, it will be noted as a weak reflection point.
According to this equation, we need to estimate x and o. Generally ¢ and o are approximated
by sample mean, X , and sample standard deviation, S, respectively. They can be obtained by

the following equations,
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,?:—*;‘; , (3-9)
P
SI-N, X’
S= "E‘"N e (3-10)
P

where P represents a set of pixels that only belongs to the iris and N, is the number of pixels

in P and Iy is the intensity value of pixel, £.

Originally, we want to detect the weak reflection points, which are formulated to a

statistical test. The test requires estimating the mean u and standard deviation & by X and S,

respectively. However, in order to compute X and S, we should construct a set P, which is the

original goal in our detection mode. Our formulation forms a close loop that can be solved by

an iterative approach. The steps are briefly described as below:

)

2)

3)

Set P=P;andj=0. P; is a set of pixels which does not belong to the eyelash, strong

reflection and the eyelid; &, is defined as the number of pixels in P;. Compute x ; and

S; by Eq. 3-9 and Eq. 3-10, respectively. Let O; be a set of pixels that belongs to

strong reflection.
According to Eq. 3-8, test all pixels in P; which connect to any pixel in set Q,. If a

pixel with intensity x satisfies Eq. 3-8, it is removed from set P; and inserted into ;.

Update X ;, S;and N, by the following equations,

Niew=Nr-1, G-11)
— N. X, -
X jnew A S A x, (3-12)
jnew

= —2
2 Njnew(Sﬁ_Xjnewz)'*'Nij—xz
S jnew = N . (3-13)

Jjnew
If none of the pixels is removed from P; in Step 2, set P=P; and exit the loop.

Otherwise, repeat Step 2.
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L10 Experimental Resulis

Many different s images have been selected to test the proposed model. Some typical
examples are shown in Fig. 3.10. Figs. 3.10(a) and (c) give the segmentation results using the
tradinional model and Figs. 3. 10(b) and (d) show the detection results using the proposed
model. The white regions in Figs, 3.10{b) and {d} are marked as the evelashes and reflection
by our detection model, Comparing these two types of the results mentioned above, we can
see that many eyelashes and large reflection area still remain in the segmented part in Figs
3.10¢a) and (c) but in Figs. 3.10(d) and {d), almost all the eyelashes and reflection areas are
recognized by the proposed model. The resuliant images demonstrate the effectiveness and

accuracy of our model

(c)

Fig. 3.10 DifTerent segmentation resulis from the traditional model with and without the
proposed model. (a) and (c) are the results using the traditional model, (b) and (d) are the

results using the proposed model

3.10.1 ldentification Test

I'he purpose of this test is to investigate the effect of the proposed model to iris recognition.
Boles' recognition engine can be modified to test our model. His approach assumes that the

eyelids do not cover the iris 50 his approach can use the periodic property of the iris. However,



this assumption does not always hold and the size of the images in Boles’ database is different

from that of our images. Therefore, some parameters in his approaches should be adjusted.

The functions of each part are briefly described as follows:

3.10.1.1

)

2)

Modified Boles’ Approach

Segmentation

Firstly, the traditional model, which detects the boundaries of the pupil,
limbus, upper and lower eyelids, is applied to the input image. The second
step is to recognize the eyelashes and reflection by the proposed method. The
computational details have been discussed in the previous sections.
Normalization

There are two functions in this part. One is to select the region of an iris
which will be utilized for feature extraction in the next section. This region is
decomposed into eight rings and each ring is normalized to a standard size.
Fig. 3.11 demonstrates the region and rings that are separated by the white
circles. The centers and radii are obtained by linear interpolation of the
centers and radii of the pupil and limbus. Mathematically, they can be

described by,

Xy =g+ jTt (3-14)
¥, =yo+jl'—“;—y°, (3-15)
’, =r0+jr8;r°, (3-16)

where j=1 2,.., 7 and (x; y;) and r; are the center and radius of the white
circles, respectively. The outmost and inmost circles are the limbus (xg, ys, 73)
and the pupil (xo, yo rg), respectively, and are obtained from the previous
section. Then each ring is normalized to a 1-D signal with a fixed length. Fig.

3.12 illustrates the four 1-D signals, which are generated by the first four

inmost rings from Fig. 3.11
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Fig 311 Demaonstration of the region [or feature extraction in the fest method
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Fig 512 Hustration of the four -0 signals that are generated by the four inmost rings
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3)

4)

3.10.1.2

Wavelet-based feature extraction

Same as Boles’ approaches, 1-D wavelet is applied to each ring. Four
different wavelets with different parameters are implemented on the
normalized 1-D signals. However, we cannot use the circular property of the

iris so we do not apply circular convolution to the wavelet transformation.

Matching

The matching process relies on a vector norm. Let the p; and g; be tha sets of
normalized 1-D signals from the two irises, where j=1,2, .... 8 represent
different rings in the irises. The wi(p; n) denotes a function value of a wavelet

transform at the ring j in the iris p at the level k in the position n. Each

‘normalized 1-D signals associates with a mask M,; which is generated by the

two different segmentation models discussed in the previous sections. In the
traditional iris segmentation model, the mask only denotes the eyelids. In the
proposed segmentation technique, the mask points out the areas of the eyelids,

eyelashes and reflection. The matching score of two irises at level k is

computed by,
g MZM ’wk(pj!n)_wk(q_j’n)’
ne LW
S(p.g.k)=3—2—4 (3-17)
Jj=1 Z 1
‘ neMpjuMgf

In order to provide rotational invariant matching, the above matching’

equation is improved to be,

S | (pm—wilg,n+m)

nEij& m+n¢Mq,~

8
D(p,q,k)=min 3 3-18
P-q,.k) min 2 1 (3-18)

nszj & m+nqu,-

Experimental Results

Our testing database has 238 images from 48 persons. All the irises are lighted up by infrared
light and captured by a CCD camera. Fig. 3.13 shows eight iris images in our database. In the
experiment, four different wavelets, Haar, Gabor, Shannon and Mexican hat, are tested. This
has been discussed in Chapter 2. Gabor and Mexican hat wavelets are tested under 3 and 6
sets of parameters, respectively. All the wavelets and their parameters are mentioned in Table
3.1. The equal error rates of different wavelets at different levels prove the usefulness of the

proposed segmentation model, as shown in Table 3. The numbers in the brackets are the
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percentages of improvements in terms of equal error rates using our method. The equal error
rates using our proposed segmentation technique are smaller than or equal to the
corresponding equal error rates without using our model. Some wavelets at some levels are
not sensitive to eyelashes and reflection; however, they only provide relative low recognition
rates. For example, the smallest equal rate that was not improved by the proposed model is

21%. The best equal error rate is 11%, which also obtains the greatest improvement (3%

equal error rate) using our method.

For comparing the wavelets, we list the best equal error rates in Table 3.3. From this
table, we can see that Shannon wavelet was not improved by our segmentation technique and
different levels do not affect the recognition results. Besides, all the best recognitioh results
appear in Level 3 or 4, which conform to Boles’ research result. In addition, except Shannon,
all the best results reply on our model. The imaginery part of Gabor wavelets provide the best

result, at 11% equal error rate; however, it is still far away from Daugman’s result.

3.11 Conclusions

A new eyelash and reflection detection model has been developed and reported in this chapter.
Three conditions, separable eyelash, non-informative condition and connective condition
provide accurate iris segmentation. A number of images are selected to evaluate the accuracy
segmentation model and the results are encouraging. Based on the modified Boles’
recognition engine using several wavelets with different parameters, the usefulness of our

segmentation technique is ascertained and our proposed model can reduce equal error rate by

3%.
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Table 3.1 Different wavelets and parameters used in the identification test

Symbol Wavelets Parameters

Wyt Mexican Hat wylx, 0.2), 0=0.2

Wi Mexican Hat wifx, 0.3), 0=0.3

Wi Mexican Hat wilx, 0.4}, 0=0.4

Wty Mexican Hat wafx, 0.75), 0=0.75

Wass Mexican Hat wax, 2), 0=2.0

Wy Haar Wavelet Wy{x)

Wy Shannon w,(x)

Wer Gabor W(x, 0.3512, 1.4663), 0=0.3512, n=1.4663
Wy2 Gabor we(x, 0.7023, 0.7332), 0=0.7023, n=0.7332
We3 Gabor we(x, 1.4046, 0.3666), o=1.4046, n=0.3666

Table 3.2 The equal error rates are generated from wavelets at different levels. Each wavelet

at one certain level produces two equal error rates. One imposes our proposed model and one

does not. The numbers in the brackets are the percentages of improvement in equal error rates

using our method

Equal Error Rate (%)

Wavelets | Level | Level 2 Level 3 Level 4

Without [ Using | Without | Using | Without | Using Without | Using

Using Our Using Our Using Our Using Our

our Model | our Model { our Model | our Model

Model Model Model Model
Wagy 23 23 (0) 22 22 (0) 30 29 (1) 21 19(2)
War 23 23 (0) 31 31(0) 24 22 (2) 16 13 (3)
Wags 22 22 (0) 30 29 (1) 21 19 (2) 18 16 (2)
Wagy 31 30 (1) 22 20 (2) 16 14 (2) 24 24 (0)
Wass 18 16 (2) 21 21 (0) 24 24 (0) 24 24 (0)
Wi, 28 27 (1) 21 21 (0) 19 18 (1) 15 12 (3)
Wy 23 23 (0) 23 23 () 23 23 (0) 23 23 (0)
Re(w,,) 23 23 (0) 23 23 (0) 36 34 (2) 24 23 (1)
Re(w,,) 23 23 (0) 36 34 (2) 24 23 (1) 18 16 (2)
Re(w,s) 36 34 (2) 24 23 (1) 18 16 (2) 23 23 (D)
Im(wy,) 21 20 (1) 21 20 (1) 35 34 (1) 26 24 (2)
Im(w,;) 21 20(D) 35 34 (1) 26 24 (2) 14 11{3)
Im(w,;) 35 34 (1) 26 24 (2) 14 11 (3) 13 11(2)
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Table 3.3 Summary the best results from different wavelets and levels

Wavelets Levels Equal Error Rates (%) Improvement (%)
Ws 1,2,3,4 23 0,0,0,0

Re(w,;), Refw,;) 4.3 16 2,2

Im(w,,), Im(wys), Im(w,;) 4,3,4 11 3,3,2
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Chapter 4

Palmprint Feature Extraction Using a 2-D Gabor
Filter

Objective — A branch of biometric technology, palmprint recognition, whereby the lines
and points can be extracted from our palms for personal identification has been proposed
several years ago. In this chapter, we develop a novel textured feature extraction technique for
palmprint identification — a 2-D Gabor filter is used to obtain the texture information and
two palmprint images are compared in terms of their hamming distance. The experimental
results show that our method is effective and comparable with fingerprint (FingerCode), iris

(IrisCode) and 3-D hand geometry.

4.1 Introduction

Computer-based personal identification, also known as biometric computing, which to
recognize a person by his/her body or behavioral characteristics, has more than 30 years of
history. The first commercial system called /dentimat, which measured the shape of the hand
and the length of fingers, was developed in the 1970s. At the same time, fingerprint-based
automatic checking systerns were widely used in law enforcement. Because of the rapid
development of hardware, including computation speed and capture devices, iris, retina, face,

voice, signature and DNA have joined the biometrics family [2-3].

Fingerprint identification has drawn considerable attention over the last 25 years.

However, some people do not have clear fingerprint because of physical work or problematic
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skin. lris and retina recognition can provide o very high sccuracy but suffer from hgh costs o
il devices or intrusion into users Rr.'-..‘:!l:tl_:.-. muiny researchers focus on face and vouce
identiRieation EWSIEIE; nevertheless, their ;h.'rr'mln.m..u i s0ill far from satisfachion |:'r|_l [he
pccurpcy and uniqueness of 3-13 hand geometry are stll open questions [2, 102, 26|
Compared with other physical characienistics, palmprint has several advantages: 1) low-

resolution maging; 2) low cost capture device; 3) low intrusivencss; 4) stable line feature and

5) high user acceptance,

Palmprint identification can be divided into two categories, off-line and on-line. For
off-line dentification, all palmprint samples are inked, which are then transmitted inlo a
computer with a scanner. For on-line wdentification, the samples are caplured with a palmprint
seanner which directly connects (o o computer. Off-line palmprnt recognition was the main
focus in past palmprint researches [3, 62-63]. Recently, a CCD camera-based palmprim
capture device has been developed [3]. Fig. 4.1 shows an image captured with the device,
Real-time applications of this on-line palmprint recognition device are possible. Because of
the relative high-resolution of ofl-line palmprint image (400 dpi), some technigues applied 1o
fingerprint recognition can be used for the off-line palmprint recognition, where lines, datum
points and singular points are extracted [62-63]. In this chapter, we use low-resolution on-line

images (65 dpi), so we atlempl a new approach to extract fexture features from palmprint

images.

Fig. 4.1 A palmprint image with line definition
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An on-line palmprint identification system can be examined under the five functions area
summarized below:
1) Image Acquisition — Capture a palmprint by a palmprint scanner [3].
2) Preprocessing — Determine a coordinate system and extract the central part of the
palmprint image.
3) Feature Extraction — Extract some stable and unique features.
4) Pattern Matching — Decide whether two palmprints belong to the same person.

5) Data Storage — Store the features from the registered images for later comparisons.

This chapter is organized as follows: a preprocessing part is mentioned in Section 4.2.
Palmprint feature extraction by texture analysis is explained in Section 4.3. Section 4.4
discusses Gabor filters selection and parameter tests. Experimental results and the analysis of
our palmprint feature (PalmCode) are given in Section 4.5 and Section 4.6, respectively. In
Section 4.7, we compare the proposed PalmCode with other biometrics, including off-line
palmprint, on-line palmprint, iris, fingerprint and other hand-based biometrics. Finally, our

conclusions are given in Section 4.8.

4.2. Palmprint Image Preprocessing

The goal of preprocessing is to obtain a sub-palmprint image for feature extraction and to
eliminate the variation caused by rotation and translation. This preprocessing method is
improved from [107], which was proposed by W. Li and D. Zhang. In fact, the two

preprocessing methods are very similar. Five main steps are given below (see Fig. 4.2):

Step 1: Apply a lowpass filter to the original image. Then, use a threshold, 7, » tO convert
this original image to a binary image as shown in Fig. 4.2(b). Mathematically, this

transformation can be represented as

B(x, y)=1if O(x,y)* L(x,y)> T, (4-1)
B(x, y)=0if O(x, y)* L(x,y) < T, (4-2)

where B(x,y) and Ofx,y) are the binary image and the original image, respectively; L(x,y) is a

lowpass filter such as Gaussian, and “+” represents an operator of convolution.
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Step 2: Extract the boundaries of the holes, (Fix; Fy), (i=1,2,3), between fingers using a
boundary tracking algorithm. The start points, (Sx; Sy;), and end points, (Ex; Ey,, of the holes

are then marked in the process (see Fig. 4.2(c)).

Step 3: Compute the center of gravity, (Cx, CyJ, of each hole with the following

equations:
M)
2 Fi-xj
Cx, =, (4-3)
M)
M)
.Z] Fiy;
Cy, = £——, (4-4)
YT M

where M(i) represents the number of boundary points of the hole, i. Then, construct a line that
passes through (Cx, Cy) and the midpoint of (Sx;, Sy) and (Ex;, Ey,). The line equation is

defined as

4-5)

_ x(cy;‘ ~My;) n My,Cx, — Mx,Cy,
(Cx, — Mx,) Cx, = Mx,

b}

where (Mx, My, is the midpoint of (Sx; Sy and (Ex, Ey,). Based on these lines, three key
points, (k;, k;, k;), can easily be detected (see Fig. 4.2(d)).

Step 4: Line up k; and 4; to get the Y-axis of the paimprint coordinate system, and make a
line through &, which is perpendicular to the Y-axis to determine the origin of the palmprint

coordinate system (see Fig. 4.2(e)). This coordinate system can align different palmprint

images.

Step 5: Extract a sub image with a fixed size on the basis of the coordinate system,

which is located at a certain part of the palmprint for feature extraction (see Fig. 4.2(f)).
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Fig 4.2 The muin steps of our preprocessing. (a) Original image, (b) Binary tmage,

(¢) Boundary racking, (d) Key points (&, k; and k) detecting,

e} Coordinate system, and () Central part of a palmprint



4.3 Palmprint Feature Extraction By Texture Analysis

This section defines our palmprint feature extraction method, which includes filtering and

matching. The motivation for using a Gabor filter on our paimprint research is discussed in

Chapter 2.

4.3.1 Filtering and Feature Extraction

Generally, a palmprint has some principal lines, wrinkles and ridges (see Fig. 4.1). Some
algorithms such as the stack filter [107] can extract the principal lines. However, these
principal lines do not contribute adequately to high accuracy because of their similarity
amongst different people. Wrinkles play an important role in palmprint identification but

accurately extracting them is a difficult task. This motivates us to apply texture analysis to

palmprint recognition.

in fact, a Gabor function, G(x, y,8,u,0) with a special set of parameters (o; 6 u),

is transformed to a discrete Gabor filter, G[x, y,8,u,&]. The parameters will be chosen from
12 sets of parameters based on an accuracy test in the next section. In order to provide more
robustness to brightness, the Gabor filter is turned to zero DC with the application of the
following formula:

S 3Gl j,6,u,0]

G[x,y,8,u,0] =G[x,y,0,u,c] - i=onjmn , 4-6
] . (2n+1)* @)

where (2n+1)7 is the size of the filter. In fact, the imaginary part of the Gabor filter
automatically has zero DC because of odd symmetry. This adjusted Gabor filter will

convolute with the central part of a palmprint. Each point in the filtered image is coded to two

bits, (b,, &), by the following inequalities,

b=1if Re[g; [x,y,6,u,c]*1]= 0, 4-7)
b=0if Re[&[x, v,.0,u,cl*I]< 0, (4-8)
b=1if Im[a[x, yv,0,u,c]*1]1= 0, (4-9)
b=0if Im[&[ic,y,ﬁ,u,a]"‘ I1< 0, (4-10)
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where I is the central part of a palmprint. Using this coding method, only the phase

information in palmprint images is stored in the feature vector.

4.3.2 Palmprint Matching

In order to describe clearly the matching process, each feature vector is considered as two 2-D
feature matrixes, real and imaginary. Palmprint matching is based on a normalized hamming
distance. Let P and Q be two palmprint feature matrixes. The normalized hamming distance
can be described as,

N
S(Pr(t ) ® @iy )+ P (1, ) ®Q, G, )

i=l j=

T [M=

—_

(#-11)

D, =

b

2N?
where Pg(Qr)and P; (Q)) are the real part and the imaginary part of P (Q), respectively; the
Boolean operator, “® ”, is equal to zero if and only if the two bits, Pgy(i,j) and Qrg(ij) are
equal and the size of the feature matrixes is NxN. It is noted that D, is between 1 and 0. The
matching score for perfect matching is zero. In order to provide translation invariance

matching, Eq. 4-12 can be improved as
min(N, N+s)} min{N,N+t) . . o . . o

(Peli+5,j +0)® QG )+ B, (i +5, j + B Q, (i, /)
D .. = min i=max(q,l+s) j=max{,l+¢} , (4_12)
M (deSfler 2H()H(t)

where S and 7 control the range of horizontal and vertical translation of a feature in the
matching process, respectively and,

H(s)=min(N, N +s)—max(l,1+5). (4-13)
The matching score, D,;, can support translation matching; nevertheless, it is not a rotational
invariant matching. Therefore, all registered images are rotated with some degrees. Their
features will then be extracted and stored. Finally, combining the effect of preprocessing and
rotated images, Eq. 4-13 can provide rotational and translation invariance matching. How to
choose the degrees will rely on rotational robustness of the filter. The following sections will

answer this question.

4.4 Parameter Selection and Rotational Test

The above section solely gives the architecture of the proposed method. In this section,
parameter selection and rotational robustness are two main issues. Twelve filters with

different parameters are selected to test their robustness. Gabor filters with these sets of

46



parameters constitute a filter band and their real parts could be applied to texture analysis [68].
The parameters of all the filters are shown in Table 4.1. For presentation convenience, Filters
1-4 are marked as Level 1; Filters 5-8 and 9-12 are noted as Level 2 and Level 3, respectively.
In order to investigate the relationship between feature size and accurate rate, two sets of
images will be tested. The size of the first set is defined as 128 by 128 (Database 1) and the
size of the second set is defined as 64 by 64 (Database II), which is resized from the first ones.
The parameters, S and 7, are 12 for Database [ and 6 for Database 1I. The databases for testing
contain 425 images from 95 persons. Fig. 4.3 shows nine typical images in our database with
various texture features. Fig. 4.4 illustrates the real and imaginary parts of our features
(PalmCode) described in Eq. 4-12. Those features are generated by the best filter, Filter 7

(will be proved in the following sub-sections) and the corresponding preprocessed images.

Table 4.1: The filter’s parameters and their definitions..

Levels No Sizes o u o
1 9by9 -45 0.3666 1.4045

2 9by9 0 0.3666 1.4045

i 3 9by9 45 0.3666 1.4045
4 9by9 90 0.3666 1.4045

5 17by 17 -45 0.1833 2.8090

6 17 by 17 -0 0.1833 2.8090

2 7 17 by 17 45 0.1833 2.8090
8 17 by 17 90 0.1833 2.8090

9 35 by 35 -45 0.0916 5.6179

10 35 by 35 0 0.0916 5.6179

3 11 35 by 35 45 0.0916 5.6179
12 35 by 35 90 0.0916 5.6179
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Fig. 4.3 Tvpical images from our databases
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(b}
(c)

Fig. 4.4 {:lrigiln.nl images and their features captured by Filter 7 in the given rectangle. (a)
Original images with the effective area, (b) Features from the real part of Filter 7 and (c)

Features from the imaginary part of Filter 7.

4.4.1 Accuracy Test

We apply the twelve filters to the two dambases to observe the relationship between
parameters and accuracy. Each imposter distnibution and genuine distribution are generated
by 1.083 and 769 comparisons, respectively. When o increases and w decreases, we can
obtain several properties from Fig. 4.5, which shows the means of the imposter and genuine
distributions on the two databases. The standard deviations of both imposter and genuine
distributions on Databases | and 1l are given in Fig. 4.6. It is noted that the means of the
imposter and genuine distributions decrease when o increases and w decreases. As a result, the
similarity between two palmprints increases no matter the two palmprints come from the

same subject or not. According to Fig. 4.6, it is clear that the standard deviation of the
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imposter distributions becomes larger. Intuitively, the number of the degree-of-freedom
reduces because of the large size of the Gaussian envelope in the Gabor filter. The recognition
rates of this test are shown in Table 4.2; the recognition rates using the Level 3 filters on
Database [ are similar to using the Level 2 filters on Database II. This is because the ratios of
the length (width) of the images in Database I to o in Level 3 filters and those in Database II
to oin Level 2 filters are the same. For Database I, in Table 4.2, the faise reject rate decreases
when the size of filter and & increase. However, this statement is not true for Database II. In
the optimal case, using Filter 7 on Database II, the falsé reject rate is 2.5% with 0% false
accept rate. Different fiiters produce different sizes of feature, as mentioned in Table 4.3. The

sizes of features are between 210 and 3,540 bytes.
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Fig. 4.5 Mean of genuine and imposter distribution generated by the filters.

(a) Results from Database 1 and (b} Results from Database I1.
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Table 4.2: Summary of accuracy rate for the different filters on two databases.

Database | Database 11
Filter No. False accept rate False reject False accept rate False reject
(%) rate (%) (%) rate (%)
1 0 42.4 0 15.8
2 0 41.4 0 17.9
3 0 41.1 0 15.0
4 0 68.8 0 12.4
5 0 46.4 0 5.9
6 0 17.7 0 5.0
7 0 19.2 0 2.5
8 0 13.9 0 7.2
9 0 6.4 0 293
10 0 5.6 0 28.2
1 0 2.9 0 18.7
12 0 7.3 0 36.0

Table 4.3: Size of the defined features for the different filters and the databases.

Feature size in bytes

Filter Level Database | Database II
7 3540 756
2 3080 552
3 2162 210
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4.4.2 Rotational Test

The rotational robustness of our method is investigated in this test. In each database, fifty
images with different rotation degrees are selected and each of them will match with its
original image. Same as the previous experiments, the twelve filters will be applied to the
original images and the rotated images. The means of matching scores are illustrated in Fig.
4.7. Obviously, the means of matching scores increase if the degree of rotation increases.
Besides, according to Fig. 4.7, a small image is more robust to rotation than a large one using

the same filter. Level 3 filters are very robust to rotation for Database II; nevertheless, their

recognition rates are very low.

As a summary of parameter selections and rotational tests mentioned above, Filter 7
is the best one in terms of accuracy in Database II, and it provides a certain level of
robustness to rotation. On Database I, its feature size is also only 552 bytes. From the
experimental results, using Filter 7 on Database II yields the best results in the experiments.

Thus, we only apply Filter 7 to Database I1 in the following sections.
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4.5 Experimental Results

Database H is used to test the overall performance of our method. From the rotational test, we
can see that Filter 7 cannot accept more than 3° as angular intervals because the genuine
matching score would be greatly increased if it is larger than 3°. Despite providing small
genuine matching scores by smaller angular intervals, at the same time, the imposter matching
score also becomes smaller and the computation time will increase for each decision. To
balance all the above issues, we take 2° as angular intervals. Combined with assistance of
hardware with preprocessing, the maximum rotational range is set between —6° to 6° which is
enough to bound all possible rotations in the central part of a palmprint. This means that all
registered images are rotated with —6°, -4°, -2°, 0°, 2°, 4° and 6° degrees. At each angle, the
features are extracted and stored. After combining the effect of the preprocessing with
robustness of the filter, these rotated images can provide rotational invariance matching. Let
Q" be a feature extracted from a registered image. The features from the rotated images are
denoted by Q' Q%,.... Q°. The whole matching process can be described by,
mingV,N+5) min{¥,N+t)

> (PeGi 5.+ DB G )+ B i +5,j +) ® L} G )

Deic = min i=max{,|+s) j=max(,i+r) (4-15)
s, 2H(s)H(r)

~

Using Eq. 4-15 in the matching process, we show the distribution of imposter and genuine in
Fig. 4.8(a), but Fig. 4.8(b) is generated by Eq. 4-13. In fact, Eqs. 4-13 and 4-15 are modified
from Eg. 4-12. Let Eq. 4-12 be a unit of matchings. The number of matching units of Eq. 4-15
is seven times of Eq. 4-13. As a result, the distribution of imposter shifts to the left in Fig.
4.8(a). Compared with the two genuine distributions, it has almost the same shape but right
tail of the genuine distribution in Fig. 4.8(a) is thinner than that of the genuine distribution in
Fig. 4.8(b). It is reflected that some previous matchings have been improved. Their important

statistics are summarized in Table 4.4.

Table 4.4: Comparisons of mean and standard deviation of

both imposter and genuine distributions.

Generated by Eq. 4-13 Generated by Eq. 4-15
Statistics Imposter Genuine Imposter (Genuine
Mean 0.416 0.184 0.414 0.155
Standard 0.021 0.067 0.022 0.052
deviation
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The performance of the proposed method under different thresholds to control the
false accept rate and false reject rate is shown in Table 4.5. When the threshold is 0.335, the-
false reject rate is 0.9% with 0% false accept rate. The false reject rate is 1% less than the
method using Eq. 4-13 in the matching process. Some images are still not recognized by the

proposed method because of the non-linear distortion.

Table 4.5: False acceptance and false reject rates with different threshold values

Threshold value False acceptance rate (%) False reject rate (%)
0.325 0.00 1.56
0.335 0.00 0.91
1 0.345 037 0.65
0.355 0.92 0.65
0.365 2.50 0.39
0.375 5.36 0.13
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Fig. 4.8 Imposter and genuine distribution using Filter 7, (a) considering rotational problem

and (b) without considering rotational problem.
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4.6. A Study of Correlation, Capacity and Performance of PalmCode

In this section, we want to investigate the correlation between PalmCodes across the
popuiation, the capability and the performance of PalmCode. The capacity of PalmCodes,
which can reflect the uniqueness of a PalmCode, is defined as the maximum number of
palmprints a PalmCode can represent. To investigate the correlation between PalmCodes
across the population, we need to study information entropy at different positions of the
PalmCodes, as well as the degrees-of-freedom of the imposter and genuine to understand the
statistical independence of PalmCode. Based on the degrees-of-freedom, the capability can be

estimated. At the end of this section, we will evaluate the performance of PalmCode.

4.6.1 Information Entropy and Correlation across the Population

Using Shannon entropy measure [105], information in a bit of PalmCode can be computed by,
E; = p;log(p;)+(1- p;)log(1- p,), (4-15)
where p; is the probability of its value in a bit equal to | at the position, i. When £, reaches the
maximum, all p; should be equal to 0.5. Figs. 4.9(a) and (b} illustrate the p; values of the first
100 bits of PalmCode in the real part and the imaginary part, respectively. Fig. 4.9 is
generated by 95 independent PalmCodes from different persons. All the p,’s are around 0.5. It

means that a bit of a code is close to the maximum information entropy. It also reflects that

there is no systemic correlation across the population.
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4.6.2 Statistical Independence and Capacity of PalmCodes

A palmprint can generate different PalmCodes. Also, we know that the bits in a PalmCode are
not completely independent because of the intrinsic correlation from systemic line features in
a palmprint. The statistical independence and capacity can be estimated by the degrees-of-

freedom of a Binomial Distribution.

Each bit of PalmCode is zero or one and the bits are compared by the Boolean
operator, @, so each comparison of bit can be modeled by the Bernoulli trial. Then, the
maiching processing can be modeled by a Binomial Distribution {77]. A matching score and

a Binomial Distribution follow,

s=%, 4-17)
f(@y=—2__ Za-p? (4-18)
“mv-zyP VTR :

The mean and variance of a Binomial Distribution can be described as

#=Np, (4-19)

and

Oy = \/Np(l -p). (4-20)

Using the same database as in the previous experiments, we generate an imposter distribution
which does not consider translation and rotation. Its mean and standard deviation are 0.495
and 0.039, respectively. According to the Egs. 4-17 to 4-20, the degrees-of-freedom, N,
should be 164. The empirical and theoretical distributions of the imposter are shown in F ig.

4.10. This means that the probability of completely matching two independent (from different
subjects) PalmCodes is 1 over 2'% (~ 2.3x 10*?). Thus, the capacity of PalmCode is 2'%,

which is totally enough to store all palmprints in the world. Since the theoretical distribution
of the genuine part will be analyzed by understanding the performance of PalmCode in the
next section, the corresponding degree-of-freedom and the probability, p, are given at the end
of this sub-section. Based on Table 4.4, the mean and standard deviation of the genuine
distribution are 0.155 and 0.052, respectively. Similarly, the corresponding degree-of-
freedom and the probability, p, are 48 and 0.155, respectively. The empirical and theoretical

distributions of the genuine part also are shown in Fig. 4.10.
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Percentage (%)

4.6.3 Performance of PalmCode

Because of translation and rotation problems, PalmCodes are required to be shifted, rotated
and matched. The number of matching unit in one decision depends on the accuracy of the
preprocessing. Thus, analysis of the original performance of PalmCode should assume that
the central part can be correctly located after the preprocessing; one matching is enough to
make the final decision. Based on this assumption, the imposter and genuine distributions in
Fig. 4.10 are imposed to investigate the discrimination power. Table 4.6 lists the theoretical
and empirical performance of PalmCode under different thresholds. The equal error rates of
the empirical and theoretical performance are 0.00% and 0.03%, respectively. The results

show that our PalmCode is powerful.
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Fig. 4.10 Empirical and theoretical genuine and imposter distributions. The smooth curve on
the left-hand side and the smooth curve on the right-hand side are the theoretical genuine and
imposter distributions, respectively. The other two are empirical distributions. The imposter

distributions do not consider rotation and translation problems.
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Table 4.6: Performance of PalmCode proposed in this chapter.

Empirical result Theoretical result
False accept rate False reject False accept rate False reject
Threshold (%)p rate (‘VJo) (%)p Rate (“JA:)
0.34 0.00 0.78 0.00 0.11
0.35 0.00 0.65 0.01 0.06
0.36 0.00 0.39 0.03 0.03
0.37 0.00 0.13 0.06 0.02
0.38 0.00 0.00 0.17 0.01
0.39 0.28 0.00 0.28 0.01
0.40 0.56 0.00 0.70 0.00

4.7  Comparisons with Other Biometrics

We will first compare our feature extraction method with off-line and on-line palmprint
approaches [62, 63]. Then, similar comparisons with iris and fingerprint [29, 71] are
discussed. Since hand geometry and palmprint are both hand-based biometric technology so

we also give their comparisons at the end of this section.

Off-line palfnprint identification uses lines as feature [62, 105-106). This approach
requires high-resolution image (compared with the proposed method), 400 by 400 pixels, for
the whole palm. The proposed method only uses 64 by 64 image for the center part of a palm.
Besides, the off-line approach requires a set of filters or operations to extract line and point
information, but our method only imposes two filters to extract texture information. Based on
the above two reasons, feature extraction using our method should be much faster than the
off-line approach. The discrimination power of our texture-based method is very high because
it can handle palmprint images with unclear lines (see Fig. 4.11) and similar principal lines

(see Fig 4.12). Importantly, the accuracy rate of the method is higher than that of the off-line

one and our method can support real-time applications.

Compare with the current on-line palmprint approach [107}, which considers the local
mean of amplitude in frequency domain as the feature, our proposed features extracting
method can provide better recognition rate. The frequency-based approach has 5% rank one
error. Although two different databases are used to test the two methods, according to current

experimental results, the accuracy of our method is higher.
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As a comparison, the features extracted by similar methods for the iris and fingerprint
are marked as InsCode and FingerCode, respectively. Table 4.7 summarizes their different
performance. In fact, our PalmCode only requires very small image so the computation time
for filtering is very short. In terms of accuracy, IrisCode is the best. However, it suffers from
high costs of input devices. According to the current experimental results, PalmCode is better
than FingerCode but we are still using a relative small database.

Hand and finger{s) geometry shared 26% of the biometric technology market in 1999
[27]. This sales volume is only lower than finger scan (fingerprint) but higher than iris. There
are a lot of business reasons (o supporting this sales volume. In terms of technology, hand and
fingen(s) geometry associates with low accuracy approaches [26]. High user acceptance is one
of the important technical reasons why the geometry approaches shared 26% of total sales in
1999, Palmprint and the geometry approaches are hand-based biometrics and generally, all of
them are not used in law enforcement. As a result, we believe that they obtain the same level
of user acceptance. Several biometrics experts have commented on the unigueness of hand
geometry [102]. According to our analysis, the unigueness of PalmCode 15 very high. Its
capacily is enough to store all the palms in the world. For the above reasons, we think that
palmprint and geometry approaches will compete with each other in the market of biometic
technology.




Fig. 4.11 Three typical images with unclear lines




Fig. 4.12 S5ome palmprints with similar principal lines




Table 4.7. Comparisons of PalmCode, IrisCode and FingerCode.

PalmCode IrisCode [27] FingerCode [71]
. # 640 bytes or 896
Feature size 552 bytes 256 bytes or 512 bytes bytes
Number of filter using for 2 (real and Multiple 8
feature extraction imaginary)
Filter size 17 by 17 Unknown 33 by 33
Feature extrz.acted from Phase Phase Averagt? apsolute
filtered image deviation
Translation invariance Yes Yes Yes
Rotation invariance Yes Yes Approximate
Cost of input equipment Low High Low
. Depending on capture .
User acceptance High device High

# Originally, the size of IrisCode is 256. The current products in the market use extra 256

bytes to mark the eyelashes, reflections and boundary artifacts of hand contact lenses.

4.8 Conclusions

This chapter reports a novel feature extraction method for palmprint identification. A
palmprint image is considered as a texture image, so an adjusted Gabor filter is imposed to
capture the texture information. Proved by our many experiments, Filter 7 is the best one in
terms of accuracy. Combined with the effects of preprocessing and rotational robustness of
the filter, our matching process is translation and rotational invariance. As shown in the
analysis of PalmCode, it has very large capacity, which is enough for all beople in the world
to be coded; and the uniqueness of PalmCodes and the palmprints is proved. In reference to
current experimental results, the accuracy rate of PalmCode is higher than fingerprint using
similar approaches [71]. The false reject rate for the optimal cases in our databases is 0.91%,
with 0% false accept rate from our databases. Because of low-resolution imaging and easy
self-positioning, a capture device at low-cost can be used to overcome the weakness of iris
identification. Besides, palmprint and hand geometry approaches have the same user level of
acceptance but the uniqueness of palmprint is higher than geometry approaches. In fact, we
do believe that iris, fingerprint and palmprint will have different applications. However,

palmprint and the geometry approaches will compete with each other.
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Chapter 5.

On-Line Palmprint Identification

Objective — Using palmprint recognition as a method for personal identification is a new
biometric technology. Previous palmprint researches focused on inked palmprint images; and
by now, some companies have developed high-resolution palmprint scanners and
identification systems. However, inked palmprint images are not suitable for general
applications such as access control and ATM verification. For high-resolution palmprint
images, high performance computers are needed for real-time identification. This Chapter
describes the design and implementation of an on-line palmprint identification system using
low-resolution palmprint images for real-time personal identification. The system consist of
two parts: a capture device and recognition algorithm. A novel CCD camera-based palmprint
scanner has been developed for capturing high-quality palmprint images. Also, a low-
computational cost recognition algorithm is proposed. The verification accuracy is found to
be comparable with high-performance automatic fingerprint verification systems: For the 1-
against-100 identification accuracy, the system can operate at reasonable genuine acceptance
(94%) and low false acceptance rates (0.5%). On an embedded Intel Pentium III processor

(500Hz) Pc, the computation time of verification and identification of 1-against-100 are 0.6

and 1.1 seconds, respectively.

5.1. Introduction

——
1

Because of the rapid development of electronic banking and e-commerce, and for many
security reasons, there has been a great demand for automatic personal identification.
Traditional automatic personal identification has been divided into two categories: token-

based, such as physical key, [D card, passport, and knowledge-based, such as password. Both
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approaches have some fundamentai problems. For the token-based approach, “the token” is
easily stolen and lost; for the knowledge-based approach, “the knowledge” can easily be
guessed or forgotten. Thus, biometric technology, identifying a person by his/her
physiological characteristics such as iris pattern, retina, palmprint, fingerprint, hand geometry
and face or by some aspects of behavior such as voice, signature and gesture [2-3], is an
emerging technology for solving personal identification problems. Fingerprint-based personal
identification has drawn considerable attention over the last 25 years. Recently, voice, face
and iris-based verifications have been studied extensively. As a result, biometric systems for
commercial applications have successfully been developed. Compared with other biometric

technologies, work reported on palmprint identification and verification has been limited,

A palmprint has different features suitable for personal identification including
principal lines, wrinkles, ridges, minutiae points, singular points and texture. Fig. 5.1
illustrates the features. Different features require different image resolutions and have
different applications. For minutiae points, ridges and singular points, extracting them
requires images with resolution of 400 dpi [111, 113]; for principal lines and wrinkles, they
can be obtained from middle-resolution palmprint images, 100 dpi [62-63, 113]. The high-
resolution images are suitable for criminal applications since ridges, singular points and
minutiae points can be extracted and matched with the features in latent prints. Some
companies including NEC and PRINTRAK have developed automatic palmprint
identification/verification systems for criminal applications [114, 116]. For civil and
commercial applications, low-resolution palmprint images are more suitable than high-
resolution images because low-resolution images produce small file size, which results in
short computation time for preprocessing and feature extraction and therefore, they are useful
for real-time applications. In order to implement a real-time palmprint identification system
on low-performance computers, we take advantages of low-resolution images to develop our

system. It uses palmprint images with resolution of 75 dpi.

In the literature, an automatic palmprint identification system can be classified into
two categories, off-line and on-line. An off-line palmprint identification system uses inked
palmprints, which are transmitted into the computer by a digital scanner. An on-line palmprint
identification system captures palmprint images by a palmprint capture sensor that is directly
connected to a computer. Fig. 5.2 shows the examples of inked and an inkless images. [n the
past few years, the pioneers of palmprint recognition worked on off-line palmprint images and

obtained many useful results. Zhang and Shu proposed to use straight lines to represent a
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palmprint [62-63, 111, 113, 115). Dute et al. and You et al. proposed to use feature points for
recognition [103, 106]. You et al. also used texture as features for palmprint retrieval [106].
Chen et al. were interested in using crease for recognition and Wu ef al. proposed to use stack
filter for extracting the line features [104]. Recently, several researchers have staned o work
on on-line palmprint images, which are captured by CCD cameras or digital scanners [107,
117). Besides, several companies, such as NEC, have developed high-resolution on-line
palmprint identification/verification systems for criminal applications [114]. Dur low
resolution on-line palmprint identification system s designed for civil and commercial

applications such as access control. Thercfore, the system is different from the current

producis.

(@) (b}
Fig. 5.1 Palmprint with feature definitons. (a) Wnnkles and principal lines and (b) Ridges,

minutie pomis and !1I'Ii§lIJ|.'lr ponis

(o) ihl

Fig. 5.2 Examples of (a) inkless and (b) inked palmpring
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Fig. 5.3 A palmprint image obiained by a plattorm scanner
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Fig 5.4 A palmprint image obained by our palmprint capture device
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our system for comparing with other biometric verification systems. In the palmprint
recognition literature, only You et al. [106] consider identification; other researchers are
interested in verification. Although You et al.’s paper and this Chapter both consider
palmprint identification, their paper and this Chapter greatly differ. Firstly, their interest is in
inked palmprint, but we have designed a CCD-based palmprint scanner to capture inkless
palmprint for supporting on-line and real-time applications. Moreover, they use points and
texture as features for recognition; but we only use texture features throughout the whole

identification process.

In this Chapter, we develop an on-line palmprint identification system, whose goal is
to use on-line low-resolution palmprint images for real-time personal identification. Fig. 5.5
illustrates the architecture of our on-line palmprint system. The operations of our system are

described as follows:

1) Enrollment. Our palmprint identification system takes three palmprint images of
a person for registration. They are processed by preprocessing and feature
extraction modules. Finally, the features are stored as templates in a database for

later comparisons.

2) Identification: An individual to be identified puts his/her palm on our palmprint
scanner. Features are extracted from it. They are then matched against all the

templates in the database.
Our on-line identification system has four main components:

1) Palmprint Acquisition: transmitting a palmprint to the computer by our CCD-
camera-based palmprint scanner.

2) Preprocessing: determining a coordinate system for reducing the translational and
rotational variations of palmprint image input and then dynamically extracting the
central part of the palmprint on basis of the coordinate system. Qur preprocessing
method is modified from [107].

3) Texture Feature Extraction: Obtaining some texture features for recognition. We
expect the feature sizes from all palmprint images to be fixed. If the feature sizes
vary, matching the features would take much time, just like minutia matching in

the fingerprint verification process [16].
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4) Matching: Deciding whether two palmprints are from the same person. The
matching speed is one of our concerns for deciding a classifier for doing this task

since our on-line palmprint system needs to do a hundred comparisons within a

second.
Enrollment

. Textured
Palmprirﬂ Palmgrint . N Feature Database
Acguisition Pre-processing Extraction

- >

. Textured

Peimprint Palmprint \ Feature . .
) . Metching Matching Result

Acnuisition —| Preprocessing Extraction ﬁ

Identification

Fig. 5.5 Block diagram of our palmprint identification system.

In the following sections, we will thoroughly describe our on-line palmprint
identification system. First of all, we will give the architecture of our CCD camera-based
palmprint scanner in Section 5.2. Then we will present the algorithms of palmprint
preprocessing, texture feature extraction and matching. Experimental results including
verification and identification tests are mentioned in Section 5.3. Finally, Section 5.4 provides

our conclusion and summaries.

5.2 Feature Extraction and Matching

5.2.1 Image Capture

Our CCD camera-based palmprint scanner comprises a circular light source, a CCD camera,
a lens, a frame grabber, a power supply, a transformer, a platform with six pegs on it, a cover
and a case. The frame grabber is connected to a computer so that the images captured by the
CCD camera are directly transmitted to the computer by the frame grabber. The case and the
cover form a semi-closed environment and the circular light source provides uniform lighting
condition for capturing high-quality palmprint. Also, the six pegs on the platform serve as
control points for placement of a user’s hand. Fig. 5.4(b) has shown the outlook of our CCD

camera-based palmprint scanner and Fig. 5.6 depicts the parts of the device. In fact, some
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ideis of this device are inspired by the devices for capturing iris and hand images [45. 102
I20]. In the current prototvpe rmplementation, two different image siees, 38d=2184 and

T ShE can be .'.||1r||||.'|.|

L VT

Cirenlar hphi sowrce

LD camera

ani kens

Transformer

sl PR plv

rJ*. E

Flatform

{a) (k)

Fig. 5.6 The pans of our capture device

5.2.1 Preprocessing

Our palmprint preprocessing approach uses the holes between fingers as the parameters o
build a coordinate system for aligning different palmprint images. This preprocessing

dynamically defines the central part for feature extraction. It has six main steps, which are

given as follows (see Fig. 5.7)

Siep 1: Apply a lowpass filter, Lin, v}, such as Gaussian, to an original image, (3(x, )
Ihen, a threshold, T, is used to convert the convoluted image 10 a binary mmage. ffx, vi, ns

shown in Fig. 5.7(h)

Step 2: Obtain the boundaries of the holes, (Fa, Fay (=1, I), between fingers using
a boundary tracking algorithm. The boundary of the hole between ring and middle fingers is

not extracted since it is not useful for the following processing (see Fig. 5.7(¢))

Step 3: Compute the tangent of the two holes, Let fx,, vy and (x; v2) be any pomnts on
{Fx, Fiyy and (Fox, Fa, respectively. If the line (y=mx+c) passing though these two points

satisfies the inequality, FysmFx+c, for all { and § (see Fig. 5.7(d)), then the line (y=mx +c}) is

considered as the tangent of the two holes.

|
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Step 4: Line up fxp, vy and fx; v to get the Y-axis of the palmprint coordinate
system, Construct a line passing through the midpoint of the two points perpendicular to the

Y -axis 1o determine the origin of the system (see Fig. 5. 7{d})

Step 5: Extract a sub-image with a dynamic size on the basis of the coordinate system
and compute the Euclidean distance, D, between (x;, vy) and (x; vy, The sub-image is located

at a certain part of the palmprint image (see Figs. 5.7(d) and 5.7(e))

Step 6: Mormalize the sub-image 1o a fixed size image by using bilinear interpolation

fior feature extraction (sec Fig, 5.7

(e} (1)
Fig. 5.7 The main steps of preprocessing, (a) Orniginal image, (b)) Binary image, (¢) Boundary

tracking, (d) Building a coordinate system, (¢) Central part extraction and () Preprocessed

result.
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5.2.3 Texture Feature Extraction

Generally, a palmprint has some principal lines, wrinkles, singular points and minutiae. Some
algorithms such as the stack filter [104] can extract the principal hnes. However, these
principal lines do not contribute adequately 1o high accuracy because of their similarity
amongst different people. Fig. 5.8 shows 3 preprocessed images with similar principal lines,
In our low-resolution palmprint images, singular points and minutiae cannot be observed by
human vision. Thus, wrinkles play an imporant role in palmprint identification. However, in
our low-resolution palmprint images, some images do not have clear wrinkles. Fig. 5.9 gives
three palmprint images o illustrate this. Thus, it motivales us 1o apply texture analysis to

palmprint recognition. Because of the successful application of the Gabor filter to iris
recognition by Daugman [30, 121], we exploit ns idea for palmprint recognition.

Fig. 5.9 Three preprocessed palmprint images without clear wrinkles.

The circular Gabor filter is an effective tool for texture analysis, and has the
following general form:



G(x,,6,,0) =—— ex X4y exp{27i(toxcosd +uysind)}, (5-1)
T 0P 207

where ;= /—1; u is the frequency of the sinusoidal wave; & controls the orientation of the
function and & is the standard deviation of the Gaussian envelope. Gabor filters are widely
used in texture analysis and biometrics [112-115]. In order to provide more robust to
brightness, a discrete Gabor filter, G[x,y,8u, 4] is tuned to zero DC with the application of
the following formula:

> ¥Gli,j,6,u,0]

Gix, 9,0.1,0) = Glx, .0, u,¢] - =2 2= , (5-2)
[x,3,0,u,0] = Glx,,0,u,0] e

where (2n+1)’ is the size of the filter. In fact, the imaginary part of the Gabor filter
automatically has zero DC because of odd symmetry. The use of the adjusted Gabor filter is
to filter the preprocessed images. Then, the phase information is coded by the following

inequalities, which are the same as the Eqs. 14-17 in [30]:

b, =1 if Rc{ Z Z@[i,y,ﬁ,u,a]l(x+ X, y+ ya)J 20, (5-3)
ya=pre=n
n L —~— \
b =0 if Rt{z > Glx,y,0,u,6l(x+x,,y+¥,) <0, (5-4)
y=—ni=-n y;
n n — \
b =1 if lm(z Y Glx, y.0.u,0)(x+x,.y+y,) |20, (5-5)
y=-nx=-n J
b=0 if [m(z > Glx, y,0,u,0)(x+x,,y+,) | <0, (5-6)
y=—-ni=-n )

where I(x, 3) is a preprocessed image and (xy, yg) is center of filtering.

Since some users do not place their hands correctly, the preprocessed images contain
some non-palmprint pixels. Fig. 5.10 illustrates an incorrect placement of a user palm and the
corresponding preprocessed image. We generate a mask to point out the location of the non-
palmprint pixels. Since our palmprint scanner forms a semi-closed environment, the non-
palmprint pixels come from the black boundaries of the platform. Thus, we can easily use a
threshold to segment the non-palmprint pixels. The feature size including mask and palmprint
features is 384 bytes. Fig. 5.11 depicts the preprocessed images, the corresponding texture

features and the corresponding masks.
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Fig. 5.10 Incorrect placement of a palm and the corresponding preprocessed image
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5.2.4 Palmprint Matching

In order to describe clearly the matching process, each feature vector will be considered as
two feature matrixes, real and imaginary. Palmprint matching is based on a normalized

hamming distance. Let P and Q be two palmprint feature matrixes. The normalized hamming

distance can be described as,

N

> > Pus i ) Dy (s (PGl Ok i 1)+ Pr Gy NOQ, (i 1)

D, = = % >
23 Y P Q0 G )

=t j=]

where Pr(Qr). P; () and Pp(Q)y are the real part, the imaginary part and mask of P (),

respectively; the result of Boolean operator, “® ”, is equal to zero if and only if the two bits,

(5-7)

Pruy(ij), equal to Ora(if); M represents an AND operator and the size of the feature matrixes
is NxN. It is noted that D, is between 1 and 0. For perfect matching, the matching score is
zero. Because of imperfect preprocessing, we need to vertically and horizontally translate one
of the features and then match again. Then, the ranges of vertical and horizontal translation

are -2 to 2. The minimum of Dy’s obtained by translated matchings is considered as the final

matching score.

5.3  Experimental Results

5.3.1 Database

We have collected palmprint images from 154 subjects using our palmprint scanner. The
subjects mainly consist of students and staff of the Department of Computing, The Hong
Kong Polytechnic University and their friends. All are volunteers. 99 of them are male,
making up approximately 65% of all subjects. The age distribution of the subjects is shown in
Table 1. We collected the palmprint images in two rounds. In each round, the subjects were
asked to provide around 10 images of their left palm and 10 images of their right palm.
Totally, a person provided about 40 images and our database contains 6191 palmprints of 308
different palms. The average time difference between the first and second collections 1s 57
days. The maximum and minimum time differences are 90 and 4 days, respectively. After
finishing the first collection, we changed the light source and adjusted the focus of the CCD
camera to simulate that the first and second collected images were captured by two different
palmprint scaﬁners. Fig. 5.12(a) and (b) illustrate preprocessed palmprint images captured at

the first and second collections. Since palmprint recognition is new for almost all the subjects,
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we provide the subjects with guidance for uwsing the palmprint scanner. Onginally, the
collected images have two sizes, 384=284 and ToR=568. The large images are resized to

184 =284, consequently, the size of all the test images 15 384=284 with 73dpi resolution

Fable 1. Age distnbution of the subjects constituting our database

_Ranges of Ages J Percentage
[0-20 2%
21-30 B
1140 1 2%
11-50 % |

5160 | 2%

) S | | %

&) ()

Fig. 5.12 Nustration of the difference in image qualities between the first and second
collections. (a) First collected and (b)) Second ool lected images

5312 Verification

To obtain the verification accuracy of our palmprint system, each palmprint image is matched
with all palmprint images in the database. A maiching 15 noted as a correct matching if the
two palmprint images are from the same palm and as incorrect iF otherwase, The wial number
of maichings is 19,161,145, None of the matching scores are zero. The number of
comparisons with commect mafching 15 5%,176 and the rest of them are incormect matchings
The probability distributions [or the genuine and imposter parts are estimated by the comect
and incorrect matchings, respectively, as shown in Fig. 5.13{a). Fig. 5.13(b) depicts the
cormesponding  receiver operating curve [(ROC), bemmg a plot of genuine acceplance rale
against false acceptance rate for all possible operating points. From Fig. 5.13(b), we can see

that our sysiem can operale at %% genuine acceptance rate and (0. 1% false acceptance rate
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the corresponding threshold is 0.35. This result is comparable with previous palmprint
approaches and other hand-based biometric technologies including hand geometry and

fingerprint verification [6-9, 12, 15, 18, 20, 21, 25].
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Fig. 5.13 Verification test results. (a) Genuine and imposter distributions for verification test

and (b) the receiver operator curve (ROC).

5.3.3 [Identification

Identification is a comparison process of one against many, V. To establish the identification
accuracy of our palmprint system, we need to specify the V. In the folldwing identification
tests, we are interested in N=(50, 100 and 200) which are similar to the number of employees
in small or middle size companies. A practical biometric identification system, generally,
stores several users’ templates in its database for training the system or for obtaining varied
and deformed templates so that the system can recognize the noise or deformed features. in
" the followings tests, we setup three registration databases for V=50, 100 and 200. The first
database contains 150 templates from 50 different palms; each palmprint has three templates.
Similarly for =100 and 200, the second and third registration databases have 300 and 600
templates, respectively. We also set up a testing database with 5591 templates from 308
different palms. None of palmprint images in the testing database are contained in any
registration databases. Each palmprint image in the testing database is matched with all the
palmprint images in the registration databases for generating incorrect and correct
identification matching scores. Since a registered palm has three templates in the registration
databases, a palmprint image of a registered palm in the testing database is matched with its
three templates in the registration databases to produce three correct matching scores. We take
the minimum of them for the correct identification matching score. Similarly, a palmprint

image in the testing database is compared with all palmprint images in any registration
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database to produce 3N incorrect matching scores if the testing palmprint does not have
registered images, or 3/¥-3 incorrect matching scores if the testing palmprint has registered
images. We take the minimum of them for the incorrect identification matching score. All the
imposter identification distributions are generated by 5591 incorrect matching identification
scores. The genuine identification distributions are established by 864, 1714 and 3420 for
N=50, 100 and 200, respectively. Fig. 5.14(a)-(c) illustrate the genuine and imposter
distributions and the corresponding receiver operating curves are obtained in Fig. 5.14(d). To
compare the imposter distributions of Fig. 5.14(a)-(c), when N increases, the imposter
distribution moves to the left. It means that the average of incorrect identification scores
reduces. In the experiments, increasing NV is equivalent to increasing the number of correct
identification matching scores for establishing smoother genuine distributions. Fig. 5.14(d)

illustrates that increasing /V is equivalent to decreasing the accuracy of the system.

5.3.4 Speed

Using Visual C++ 6.0 on an embedded Intel Pentium III processor (500MHz) PC, we obtain
the execution time for the preprocessing, feature extraction and matching, as shown in Table 2.
The total execution time is about 0.6 second, which is fast enough for real-time verification.
For identification, if the database contains 100 persons and each person registers 3 palmprint
images, the total identification time is about 1.1s. In fact, we have not optimized the code so

further reduction in the computation time is possible.

Table 2. Execution time for palmprint identification system.

Operation Execution Time
Preprocessing 538ms

Feature Extraction 64ms

Matching 1.7ms
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54 Conclusion

We have developed an on-line palmprint identification system for real-time personal
identification. We have designed a novel CCD camera-based palmprint scanner that is
directly connected to a computer for capturing palmpint images for on-line recognition
support. A preprocessing algorithm dynamically extracts the central part of a palmprint for
feature extraction. To represent a low-resolution palmprint image and match different
palmprint images, we exploit Daugman’s idea [30, 121] to represent a palmprint image by
texture feature and use the normalized hamming distance as a distance measure. Using this
representation, we manage to confine the total size of a palmprint feature and its mask to only
384 bytes. On our palmprint database containing 6191 palmpint images from 308 different

palms, we can achieve high genuine (98%) and low false acceptance (1%) verification rates.
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These result are comparable with those of all other palmprint recognition approaches and
other hand-based biometrics such as hand geometry and fingerprint verification [16, 71, 102,
120, 122, 123]. For identification, our system can stili operate at low false acceptance and
reasonably high genuine rates. Using Visual C++ 6.0 on an embedded Intel Pentium Il
processor (500MHz) PC, the Il-against-100 identification time including preprocessing,

feature extraction and matching is about 1.1 second.

From the experimental results, we observe that our palmprint identification system
can achieve a reasonable performance in speed and accuracy. However, it still needs some
improvements: 1) Our CCD-based palmprint scanner is relatively large; to reduce the size is
an advance for some applications. 2) To improve the accuracy of the system, we need to

combine the texture energy or other texture features for coarse-level classification and the

proposed texture representation.
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Chapter 6

An Idea of Ear Recognition

Objective — A branch of biometric technology that measures the shape of our ear for
personal identification was proposed about ten years ago. However, research and discussion
in this biometric feature are very limited; only several conference papers are related to this
technology. In this chapter, we consider two issues 1) image acquisition and 2) textured
feature extraction technique for ear recognition. We have developed a special device for
image acquisition. We use a 2-D Gabor filter to extract the texture information and two
features are measured by a vector norm. The experimental results show that ear recognition

can provide middle level security.

6.1 Introduction to Ear Recognition

lannarelli is the first researcher who proposed to use ear for personal identification. Based on
two studies reported in 1989, he claimed that ear shape is a unique object, which can be used
for authentication. The first study compared over 10,000 ears drawn from randomly selected
samples in California. The similarity of ears from fraternal or identical twins was observed in
the second [78]. In addition, lannarelli reported that ear growth afier the first four months of
birth is proportional. Although the ear grows proportionally, the ear stretches in the vertical
direction because of gravity. This non-linear stretching is most pronounced in the lobe of the

car,
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6.2 Recent Ear Recognition Approaches

There were two ear recognition approaches from lannarelli, Burge and Hurley [21-24, 78].
However, they did not test their approaches in a large database; also they did not give the
false acceptance rate and false rejection rate of their approaches. As a result, our method

cannot be compared with these two approaches.

6.2.1 Iannarelli’s Approach

lannarelli’s approach, which requires the exact alignment and normalization of the ear photos,
is based on the 12 measurements illustrated in Fig. 6.1. Besides, the feature displayed in Fig
6.1 is measured in a unit of 3mm and assigned an integer value. Since the feature space is too
small, this approach only provides limited classification power. Another flaw of this approach
is that all the measurements are dependent on the origin so this approach requires the origin to

be accurately located. In fact, lannarelli was also aware of this weakness of his approach.

Fig. 6.1 The locations of the measurements used in the “lannarelli System”. From [2].
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6.2.2 Burge’s Approach

This approach, containing six main steps, uses a Voronoi diagram to represent the shape of

the ear.

1.

Acquisition:

Segmentation:

A 300 by 500 grayscale ear image is taken from the subject’s
head by using a CCD camera.

An active contour is used to locate the ear boundary

Edge extraction:  Edges are extracted by Canny operator.

Curve extraction: Edge relaxation is used to form larger curve segments, and

Graph model:

Matching:

the remaining small curve segments will be removed (Fig.
6.2b). After that, a Voronoi neighborhood graph of the
curves will be formed.

A generalized Voronoi diagram of the curves is built and a
neighborhood graph is then extracted (Fig. 6.2c).

It is based on the topological relation between two features.

Fig. 6.2 Defining Voronoi diagram and extracting neighborhood graph. From [23]
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device to caplure the image. It can provide flexibility to obtnin ear image from different

directions, Fig 0.3 shows two ears with different shapes and direcions. Fig b S(ad shows an

ear whose inmer parts are covered by 115 outer parts,

(i)

(b}

Fig. 6.3 Two different ears with different shapes
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[hiis, we propose o caplure @ segquence of images and then select the best of them for
recognition, Since the head-to-ear angle s different among individuals (see Fig. 6.4), we
design a device with a digital camera rotsting around the user’s ear horizontally. The outlook

and draft of the devioe are shown in Figs. 6.5(a] and 6.53(b], respectively

Fig. 6.4 |-.-|l view of a client using the device

Fie. .30} The outlook of the device
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Fig. 6.5(b) Draft of the device design (used for capturing the left ear)

6.5 Image Selection

In this section, we propose a method to select the best image from the image sequence but we
do not implement this idea in our program. For the steps from normalization to matching, we
have implemented and tested them. The important points of our image selection are illustrated

in Fig. 6.6. The steps of image selection are shown below:

Step 1 Outer boundary of the ear is detected by an active contour.

Step 2 Search the two points, (x;, ¥;) and (x, y;), on the boundary with maximum
distance. The two points form a major axis.

Step3 Compute the reference point, @, which is the mid-point of (x;, y;) and (x,, y,).

Step4 Compute the distance from the mid-point to the outer reference point.

Step 5 Select the image with maximum b, for recognition.
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6.7.2 Regional Decomposition

To compensate for the variation of the optical size of the ears in the image due to different
distances between the camera and the users and the different zoom factors of the video
camera, a convoluted ear image would be decomposed into many small areas where local
features are extracted. Firstly, a convoluted ear image is decomposed into five clliptic rings
and then each ring is separated into 12 regions. Based on the length of the major and minor
axes, we employ linear interpolation to decompose the convoluted image. The ellipses can be

computed by the following formulas,

A A— (5-2)

where a,, and b, are illustrated in Fig. 6.6 and i=1,2,3,4,5. However, the left (right) lower
part of the elliptic mask will not be used since it is not always covered by our right (left) ear.

The effective area is shown in Fig. 6.7. The filled part will not be imposed for extracted

feature.

Fig. 6.7 Effective area for feature extraction in ear recognition
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6.7.3 Feature Computation

Three statistical features 1) average energy, 2) variance and 3) average absolute deviation will

be used for the following experiments. The computational formula of average energy is

Z Ik [xay]Z
ER = {x,y)eR

Bp

(5-3)

where J is a convoluted image and R is a small region. Also, let 1, be the number of pixels

in the region R. Variance can be obtained by the following equation,

(1 (5 9) - M)

Vg = &2k (5-4)

ng
where M, is the mean of intensity in the region R of the filtered image /.. In addition, the

formula of average absolute deviation is shown below,

T (e p)— My
D, = &R . (5-5)
ng

6.8 Ears Matching

Since the coordinate system normalizing translation and rotation provides invariant
matching, we use a sample vector norm to measure the similarity between two feature

vectors. The matching score can be computed by,

§= i'xi =X

i=l

(5-6)

?

where x and y represent two feature vectors and # is the length of the feature vector.

6.9 Experimentﬁl Results and Discussion

In this section, we apply the twelve filters to our database containing 60 images from 20
persons. The number of comparisons for imposter and genuine distributions are 459 and 54,
respectively. Their equal error rates are shown in Table 6.1 and a graphical representation of
the equal error rates is illustrated in Fig. 6.8. From these, we can discover that average

absolute deviation is the best feature. The average difference between variance and average
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absolute deviation is 4%. Based on the average absolute deviation, the minimum error is 9%

generated by Filter 7.

Compared with the recognition rates of palmprint, iris and fingerprint, the recognition
rate of ear is relatively low. In our experiment, our method uses a very simple classifier and
one scale texture analysis. Using multiscale analysis and complex classifiers such as neural

networks and support vector machine, will improve the recognition rate.

6.10 Conclusion

In this Chapter, we report ear recognition using texture information. Three kinds of features,
energy and average absolute deviation are extracted from the filtered images and two features
are measured by a simple vector norm. According to our experimental results, average

absolute deviation provides the best result with a 9% equal error rate. We have also designed

a device for ear recognition
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Table 6.1 The Equal error rate of different features and different filters

Filter No. Energy Variance Average absolute deviation
| 22% 22% 17%
2 35% 25% 22%
3 21% 16% 17%
4 25% 21% 19%
5 21% 21% 17%
6 20% 15% 14%
7 15% 17% 9%
8 17% 19% 12%
9 15% 15% 12%
10 21% 17% 12%
11 14% 19% 12%
12 15% 15% 10%

Equal error rate (%)

B Energy

B Variance

Filter Number

O Average absolute
deviation

1 2 3 4 5 6 7 8 9 10 11 12

Fig 6.8 A graphic representation of the equal error rates of our method
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Chapter 7.

Conclusions and Further Research

7.1 Conclusions

In this study, we have applied texture analysis techniques including Gabor filters and
wavelets to three different biometrics, iris, palmprint and ear. Through a series of experiments,

we have attained different levels of achievement in these three biometrics technologies.

For the iris, we have proposed an eyelash and reflection model and evaluated Boles’
approach by various 1-D wavelets. According to the experimental results, our detection model
is effective in segmenting eyelashes and reflection; consequently, the accuracy rate of Boles’
approach can be improved by our proposed model. The maximum improvement is 3% equal
error rates. Various wavelets including Gabor, Haar, Shannon and normalized Mexican hat
have also been applied to Boles’ approach but none of them can provide as accurate a result

as Daugman’s approach, which is used in almost all iris recognition technologies in the

market.

For the palmprint, we have developed a texture-based feature extraction technique.
Using a 2-D Gabor filter on palmprints to obtain the phase information as feature vectors, we
have proved through experimentation that the palmprint is an information density object,
which contains more than 170 degrees-of-freedom that can be used for personal identification.
From accuracy, user acceptance and hardware cost points of view, our proposed palmprint
recognition method is better than, or at least comparable with, the iris and fingerprint

approaches. We expect that palmprint will take over 3-D hand geometry in the market
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because of its high accuracy and user acceptance. According to published or accepted papers
on palmprint recognition, this method is the state of the art, and because of the result
described in this thesis, some construction companies are considering using our palmprint

system to solve their security problems.

For the ear, we were to design a capture device and to develop a feature extraction
method for ear recognition. In Chapter 6, we have developed a special device for image

. acquisition. We have also proposed a novel feature extraction for ear recognition, which

measures two ear features by /, norm. The experimental results show that ear recognition can

provide middie level security.

7.2 Further Research

We have proposed several approaches that solve a range of problems in different biometric
technologies. Some of them provide impressive results. Nevertheless, further research is still

necessary to improve their accuracy and to ensure high user acceptance.

In the personal identification area, Daugman made great advances in iris recognition,
and came close to solving all the technical problems. However, iris recognition still suffers
from high cost and low user acceptance. Modifying the current capture device and image
acquisition process is a further improvement that can be made. There are also many
opportunities. For example, extraction of the structural features from the iris, and

classification of structural features and feature description can be used to extend iris

recognition to iris diagnosis.

Using palmprints for personal identification is one of the successful achievements in
this study. However, it still needs some improvements: 1) Our CCD-based palmprint scanner
is relatively large; to reduce the size is an advance for some applications. 2) To improve the

accuracy of the system, we need to combine the texture energy or other texture features for

coarse-level classification and the proposed texture representation.
Ear recognition is a new member of the biometric technology family. With just a

classifier, vector norm and one scale analysis, the recognition rate only supports middle

security. In order to improve its accuracy, multiscale analysis and a complex classifier,
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including a support vector machine and neural networks, should be applied to the current ear

recognition architecture.
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