Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

A Workflow Automation Tool for
ISO 9000 Compliant Quality Management
with Applications in

Software Development

YAN CHING YING

M. PHIL.
The Hong Kong Polytechnic University
1999

£ Pao Yue-Kong Library
PolyU Hong Kong

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my supervisor, Dr. Keith Chan, for his advice
and guidance while this project was in progress. He is helpful and gives me useful

suggestions.

Special thanks go to my external examiners, Dr. Michael R. Lyu from The Chinese
University of Hong Kong and Dr. H. Q. Wang from The City University of Hong Kong,
for their valuable time and effort in reviewing my thesis and providing insightful

comments and recommendations.

I am especially grateful for the support that I have received from the director of my
company, C.K. To, who gives me the chance to gain practical experiences in software

development. And, I have been fortunate to learn and share ideas from my colleagues.

I have been particularly lucky to have the continuing love and support from my dearest
friends. It is difficult to name them all, but I will try. Thank you Silva, for her patience
and confidence in me, keeping me company. Thank you Janis, for her kindness and help,
sharing and laughing with me. Thank you Ewina, for her trust and encouragerﬁent. Thank
you Venise, for her understanding, care and support. Thank you Jimmy, for his opinions
and constructive criticisms. Thank you Boris, for his kindness and patience to listen to me.
Thank you Kitty, for her frequent warm visits. Thanks also to Po Kan, Amice and Justina

for their care and trust.

Last but not least, I was fortunate to have my parents and grandmother to take care of me
and put trust in me. Thank you my sister and brother-in-law, Rachel and Danny, for their
confidence and patience. Thank you my brother, On, for his love, continuing support and

suggestions.

ABSTRACT

Quality management involves defining quality goals, establishing plans to achieve these
goals, and monitoring activities according to the plans: To have an effective quality
management system (QMS), reéognized international standards, such as that of the popular
ISO 9000 series, are often deployed both for business requirement and for product and
process excellence. The essence of the ISO standard is to ‘say what you do and do what
you say’. For a QMS to achieve this, it is not only important to focus on the design of the
right processes but also to ensure all tasks are carried out according to the design. In this
thesis, we present a workflow automation tool called WAT that can be used to facilitate the
construction of such a system. It is a client-server tool equipped with a number of unique
features to allow ISO 9000 compliant procedures to be specified and enacted with minimal
investment of time and effort. It has two major components : the workflow capturing
(WC) component and the workflow enactment (WE) component. The WC component
allows users ‘say what they do’ whereas the WE component makes sure that users ‘do

what they say’.

The WC component provides users with a graphical user interface (GUI) to define
workflow elements such as actors, tasks, forms, and the relationships between them. Users
can define 1SQ 9000 compliant procedures by specifying the sequences of tasks and the
actor(s) assigned to each task. Also, the role of each actor and the interactions within and
between them can be made explicit. Unlike many workflow software which focus mainly
on one particular model, WAT supports three different models : (1) an actor model which
makes it easy for the responsibilities of individual members be defined according to the
organizational structure; (ii) an information model which allows processes to be defined
based on the forms that shared among tasks, and (i1i) a process model which allows
procedures be defined in terms of task sequence. Users can define processes by the actor
or process model. The WC component allows these models to be transformed from one to
the other to provide a rich conceptual framework for the capturing of ISO 9000 compliant
Processes. If allows users to view the details of the defined procedures from different
perspectives so that they can understand better the flow of tasks and the interaction among

actors.

After the details of the procedures are captured, WAT can translate them into workflow
specifications using a imodified version of the WIDE language. Based on the
specifications, the WE component, which is a groupware application implemented with
Lotus Notes/Domino Release 4.65, ensures that all actors ‘do what they say’ by automating
the flow of tasks according to the definition made in the WC component. The WE
component, through its many features, brings responsible actors into and out of the
process. Actors are informed and reminded of their responsibilities by their to-do list
being updated and by receiving email reminders, etc. In addition, this component also
provides a set of quality procedure templates and an efficient and reliable document
manipulation environment to store information and facilitate automatic document routing.
WAT has been completely implemented and has been put to test in different real scenarios
in a number of different software development environments. It has been found to be a
useful tool for quality management and in addition, it has also been found to be able to
help improving and streamlining existing procedures by avoiding redundant data gathering

and processing.

1.

TABLE OF CONTENTS

INTRODUCTION ..o evercrireeressseessenassssssnssorassanessansssnsesanassassssssesssssanssssnas sessasossasons resteesassentrensenssenerees 1
1.1, THE PROBLEMS ..oeiiiuiiittsisrisisseriarsisssssnteiassaissesasssrssssisssssnsessssas s iastessnsssassassnsssniassssssesnsessssisssesssessssrsns 3
1.2, THE PROPOSED SOLUTION . iviuitveaierteirresarssessesssssestesassssastasesesssosassssasssensessasses saratsrsnsssanserasssssssansesssesans 5
B3, CONTRIBUTIONS 1. ceeitiet et eeieate e teeteaseeraeastarsbartasssaesaeartesamssressntessnt srsasansarsnssaseearsasantas esstsresartassersesraens 7
1.4, OUTLINE OF THESIS ..ot cteicteeeeeteemeieeseemeeeseteeses e st eesessentesetesasssassesaesamtesansesassesases snsnssamssennensnssannsnsaes 8

LITERATURE SURVEY .oevvirrrirersssnsersiessisssiscssrsssssssisivssssanmsansessasesssresssansessssassessessasessssssoresssessbisossesssss 9
b DR 1L I o T) IR O OSSOSO 9
2.2, WORKFLOW PRODUCTS . 1eictvririeieeresteisiesarssisiarasssessastsiasssessessossessssstasintesosssessssesssssessesoninesianassnsnnesrans 14
2.3, ISO AND WORKELOW PRODUCTS e it visivisriessissseiniscaessssssssssesssesssssssssasessmsosssesnssrsssnsassarssessssrsssssesnes 16

DESIGN OF THE WORKFLOW AUTOMATION TOOL......ccoocevsimerserscsnsseresarscssssrsnsesesssarsnsssanes 19
3.1, SOME DESIGN CONSIDERATIONSciisuiiteiieiesiisesiasestesaseeranestassstesasesstassstesansestesssossssstesscossossesresssasns 19
3.2, THEISO 000 APPROACH. ...t i oteeiieiteeeiie et eee s seeessesesteaa e s aasssassennessaesssnsnsesssasssanstsantensrsssntessssnnnes 21

F 200 8P WHAL YOU A0 ...ttt ec ettt a et sttt ee ettt st e b a et reeaas 23

3.22. Do wWhat YOUSAY....c.cvocueeeeeeeeeeeeeee vt e oo 25
3.3, A SURVEY OF WORKFLOW MODELING TECHNIQUESceevereeeeeeeeetereeeeeeeeeesremesseeaesesemenesesearseamessersnen 27
3.4, THE PROPOSED WORKFLOW IMODEL ...vvieiuiieeississeieseasessseesssessssessesiassressessassesssassssinsersssssasssassrsaseranes 32

340 Anformation MOGe!ccccooviiiiiiiieiie et s et 33

3420 ACtOr MOdel..............c..ioviviioeieoeeee e ettt et e ettt 34

Fid. 3. PrOCESS MOGEL ... oot e er e et e e s e et e e e areran e e et e s et vaarenan 36

3.44. Transformation between Process and Actor Modelco........ bbb 38
3.5. MAJOR DIFFERENCES BETWEEN QUR MODEL AND WIDE ..ottt eeenan 41

WORKFLOW SPECIFICATION ..o vvircirieicensstessttensesmsessresssraresssssesssssrasssasonsessassssssnsasesessssssssrssnes 43
4.1. OUR WORKFLOW SPECIFICATION ...cooiitiiticiniteieiataisismestetes teeeteeesaeeeme e emeeeeeseeomeeetesesemeemeeeeemeseesenanenen 43

4.0, The ACtOr SPECHTCATION ...t e e see e s s snnsrnse e 43

4.1.2. The Iformation SPECifiCationcc.c.ccoiu i iict sttt 45

4.1.3. The Process SPecifiCarionccccciiimiimmmeeeeeceeeeeeeee e veeee e ne e 46

SYSTEM IMPLEMENTATION ..ooovviieiniiisirnsseesrnsessssssessessrnsssassensssssssssasssssranss eesresesarasasnsarase 51
5.1. THE WORKFLOW CAPTURING COMPONENT.........octirveriteeotisseinerssesssseassenssesassesstsssssassesrassesssesasssssones 51

6. TEST CASES....ciiiisisinsciniminsssissessisi s s ssabesssse sissrsanssssss assson sassasenssnssnssis ss st soasisssansssasiss soss 69

6.1, REAL CASES oot essatais ittt st e bbb 084444005 0480444 b d bbb b e s E e b 70
6.1.1. New Service ReGUESE PPOCESS.......occcoviiieeirreciiseer et ce s s anie e st ava s ra st 70
6.1.2. Software Development CYClecooviiiiererciciieieie s sme et e 78

6.2, SIMULATED CASES (.ot r et et s et en s asan s bbb b s 101
6.2.1. Design Change ProCe@ure ... ress ittt stssas st 101
6.2.2. Software Change CoOntrol............ccoocmiiiiiioioinnsinssesn e s sse s s e ssssnssns 109

6.3. EVALUATION AND DISCUSSION Lcocviiiiimiisiiesminisii s s sesasiss s msessatisesssssnssnsasstssassssssssis i e 113

T. CONCLUSIONS. it h 4454444148541 4000 148 L0810 ST SRR RS T AR e 119

Todl. SUMMARY Lottt e e s s e e ase e e e an e ae e n e nea e R RE e r e e e aE bt e R Rt e R e Rt 119

T.2. FUTURE WORK c.cotieecttteieiceteietteceteee et e eme st ee e et et emams 1o emas st emsmtemamteeame st asassnsessntesbnserenbebeserentateseneres 12t
7.2.1. Workflow improvement and OPUIHZALON. ...t 121
7.2.2. Knowledge-based workflowcocooiiceiiimicciiieneeceeee e et 121
7.2.3. Process MeasUrementcc.cccccoiniiiieiiiiniciini ittt tae e s e saa s 122
7.2.4. Internet Workflow APPIICALIONc.coocvrveeeierece st csis st ar et ssnesrasas e v ssanentone 122

8. BIBLIOGRAPHY ...t eesesesnisnsssnesmsssasssisssssansssssassesssnsssssassssssssnesssns snsssssssmstnsistassssssbsss 123

TABLE 2-1
TABLE 3-1
TABLE 3-2
TABLE 4-1
TABLE 4-2
TABLE 4-3
TABLE 4-4
TABLE 4-5
TABLE 5-1
TABLE 5-2
TABLE 6-1
TABLE 6-2
TABLE 6-3
TABLE 6-4
TABLE 6-5
TABLE 6-6
TABLE 6-7
TABLE 6-8
TABLE 6-9
TABLE 6-10
TABLE 6-11
TABLE 6-12
TABLE 6-13
TABLE 6-14
TABLE 6-15
TABLE 6-16
TABLE 6-17
TABLE 6-18
TABLE 6-19
TABLE 6-20
TABLE 6-21
TABLE 6-22
TABLE 6-23
TABLE 6-24
TABLE 6-25
TABLE 6-26
TABLE 6-27
TABLE 6-28

LISTS OF TABLES

SUMMARY OF IS0 TOOLS. ... etieteriesesesineestesstessenrasmesss e e seesnsessseseiansanasiasasantassssnsenssesamssnensess 12
TEMPLATES IN QUALITY MANUAL. vvevticitrineciaerrsrrnrercesseeeserecrmesssassmssssesansssssssssissarsssssssmsniasases 23
TEMPLATES IN PROCEDURES......ccvicrrireearrerreeransnraesersseesnteenmessiessasasnessternsssssansnssssssssassmnsssiaiasas 24
SAMPLE ACTORS. ..o.vviverisraessrsssresemsesseassesseeasceaeeasssssssastsastes st snstsantsoensirassstassntessmmssntsssesssbinsnas 44
ACTOR SPECIFICATION, ...ociteuieeeeieeeimieeeebestesassssesananeasensessnsenseeseontassanenssseremsmensisssiatassnsesninas 44
FORMS USED [N THE DESIGN PROCESS. 1.vee.trteeeeesistarerisiarsesssesenessesrescebonanistanssssissasssnssssasass 45
INFORMATION SPECIFICATION. 1.0 veieierestorensersiaiesisiarseserensemereesseiaststastosisiasasssssinsassstsssssssasasessses 45
PROCESS SPECIFICATION. 1.01ei1eresescareessraseseaaneeseemsteiastoteseueassananisoanseranissassntermsessmaneatsistassnases 49
ICONS IN THE TOOLBAR OF THE TASK VIEW. ...cutitiariretiniariniessaiarerssemsasammmsseoms s tasassnsasssassnnsns 53
TCONS IN THE ACTOR VIEW. ...oueiireeeuiecrerersevsessesesnsoresssscsmtissssmesanstesiestsassssasansasssnessasissssasarenes 58
TASK DESCRIPTIONS OF NSR PROTESS.cocviiieeresienissssesanserensisseseesnenssssnsssessneenssssasssessnssnens 71
ACTORS AND FORMS REFERENCED IN NSR PROCESS.overeecrceennens teereeebere e arans 72
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF NSR PROCESS.cocvvieemicrnrnans 73
THE WORKFLOW SPECIFICATION OF THE NSR PROCESS. ..c.cvvecreeeerenereccricissssns s imsmssssmsnessasssans 75
TASKS IN DESIGN PROCESS WITH RESPECTIVE ACTORS AND FORM REFERENCED......coceomimecnnea 79
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF DESIGN PROCESS.ocoovvviminnnnn. 30
THE WORKFLOW SPECIFICATION OF THE DESIGN PROCESS. ...covoccnrirriciiiniimins s sasssseans 81
TASKS IN TESTING PROCESS WITH RESPECTIVE ACTORS AND FORM REFERENCED.oovvvi, 83
SUMMARY OF CONNECTOR 1N ACTOR-BASED WORKFLOW OF TESTING PROCESS.cocvvevuinnnin. 84
THE WORKFLOW SPECIFICATION OF THE TESTING PROTESS. «..eceevvimriermccicrieimeccieacissssasinisisssnses 87

TASKS IN PROBLEM LOGGING PROCESS WITH RESPECTIVE ACTORS AND FORM REFERENCED. .. 89
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF PROBLEM LOGGING PROCESS.....90
THE WORKFLOW SPECIFICATION OF PROBLEM LOGGING PROCESS.c.oiuerinsiressmceaemencinessisons 50
TASKS IN CHANGE CONTROL PROCESS WITH RElSPEC’I'IVE ACTORS AND FORM REFERENCED. ... 92
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF CHANGE CONTROL PROCESS. 92

THE WORKFLOW SPECIFICATION OF THE CHANGE CONTROL PROCESS. ...ocvvieiiiniiinsinssnaninees 95
TASKS [N PROJECT MANAGEMENT WITH RESPECTIVE ACTORS AND FORM REFERENCED........... 98
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF PROJECT.MANAGEMENT. 98
THE WORKFLOW SPECIFICATION OF PROJECT MANAGEMENT PROCESS. ..c..ociiiiiinininrinniinisnnnnns 100
DETAIL WRITTEN DESCRIPTION OF THE DCP. ...cccoviiiiiivierrrrc et s 102
TASK DESCRIPTIONS OF DICP. .ot ien it esieean e e srn s pant e s s amaes e 102
ACTORS AND FORMS REFERENCED IN DCP......coriiriri i e e siss st st st st 103
SUMMARY OF CONNECTOR IN ACTOR VIEW OF DCP. ..oviiiir e snnssivisis s 104
WORKFLOW SPECIFICATION OF THE DCP. ..o nerere s e 106

TASKS IN SOFTWARE CHANGE CONTROL PROCESS WITH ACTORS AND FORM REFERENCED. .. 109
SUMMARY OF CONNECTOR IN ACTOR-BASED WORKFLOW OF SOFTWARE CHANGE CONTROL. | 10
THE WORKFLOW SPECIFICATION OF SOFTWARE CHANGE CONTROL PROCESS. ...cocvovinimnrninies 111

THE DECOMPOSITION OF THE THREE PRIMARY GOALS. cvviviveirirmierasiariiecieieiasisninnresessianrenans 114

FiG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FiG.
FIG.
FIG.
FIG.
Fie.
FiG.
FIG.
FiG.
FIG.
FIG.
FiG.
FiG.
FigG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FiG.
FiG.
FiG.
FIG.
FiG.
FIG.
FiG.
FiG.
FiG.
FIG.
FiG.
FiG.

5-6
5-7
5-8

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21]
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
3-31
5-32
5-33
5-34

LIST OF FIGURES

SUPPORTING GROUP WORKS IN DISTRIBUTED ENVIRONMENT. ...ocovviirurennes ereraeeere e et sne e nres 26
AN ILLUSTRATIVE EXAMPLE OF ACTOR MODEL. ©.evvicviiitiireiareiissisesnessiniassnessisimsarassssassraressansesesns 40
AN ILLUSTRATIVE EXAMPLE OF PROCESS MODELL. ...ovuvtiuetiantiiresmrersvisiarsnessinmersareesasrescssesrassesns 40
A SAMPLE PROCESS MODEL. «..veiitetioitistieieseseessrenesreeserssaenssassssasessssessassssesassesnesssessesrassnsssnenseencens 48
TCON OF THE WiC COMPONENT . ..c.veitietireeieitireestssressecsssssesassessserassnsasssssnsnsessessssanessnssensensasesscnserees 51
THE WORKFLOW EDITOR oottt eeeeetemee e eeesae e sseeemseneteeessnsaesnsassbessnsensranasessnssassers 51
DEFINING A NEW PROCESS. ..iciiiiiieieetiiieseietsissentebesieaststssissassessasisassssesssosatatssressaesesrasscasssresasans 52
IMPORTING ACTOR FILE. «oviuieveveereeinisraressssersaeinsisessessesersessrsissssassessessesassssmssesmsestsssanesestesssessesaens 52
IMPORTING FORM FILE. «..oiiieiieiiiiieeeesteeemaeeemteeeimteestmtansnenenessansentessababaasenensaresssnserinnaresasnsssinses 52
THE WORKFLOW EDITOR AFTER IMPORTING FILES. ...ooviiiiiiiiciiicieecree e smeseeeresiesrassssesseenaseesesamans 52
A PREVIOUSLY DEFINED CHANGE REQUEST PROCESS. ..ccvivicvieaerirsreenesessteeesseeseesnacsiasssssisinsasans 53
SHORTCUT MENE BY RIGHT MOUSE CLICK.ecteticrirecieiiecarerieisesssansersssssasserss snsarensesssssarsssssasasess 53
DIALOG BOX FOR USERS TO SPECIFY TASK PROPERTIES.covvrueimiiieseermeeniescasaeesenienmsencsessmsanssiesssene 54
GENERAL TAB PAGE OF TASK PROPERTYooeiiiiiitiiieciiietis st censstassssasssaanssasesaresansassesmsesassnsesesssass 54
CREATE FORMS TAB PAGE OF TASK PROPERTYccooviiiieietrrieeeriaiesieesseernssaessessmsssentesmesesneenssieseenss 54
MODIFIED FORMS TAB PAGE OF TASK PROPERTY. ..ocooiiiiiceiceeceeeetee sttt cctssnsssaasnscrs s rasessnsanees 55
REFERENCED FORMS TAB PAGE OF TASK PROPERTY . ..ooiviiuicieiiinietinsrinissesinesresensssssessesasnsssnsansanes 55
ACTORS TAB PAGE OF TASK PROPERTY. L..ooviimiiiitiieieeieee e eeeeeeeeeeesesesiesbetasesssasansnssasessnsesssasanses 55
EXCEPTION HANDLING TAB PAGE OF TASK PROPERTY . .cutovurueenieierieessesseeseeeneeoessennesesassesnesiassnons 55
CONDITIONAL TASK RELATIONSHIP DIALOG BOX. cvoovivenmiiriiiianierearinsanessesiasaserenrensnesssrasarasersssacens 56
AN EXAMPLE OF AUTOR VIEW .11eotveicteeitieicieeetisioreseeiesssssressntesassesassasansessssnssssnssssssssnssssrsssnsssnsssssas 56
GENERAL TAB PAGE OF ACTOR PROPERTY ...cuoiviiiieitiriesiieseeetesesaeetseseesesrsesaessessessasseenceseansensesesmeene 57
SUBORDINATES TAB PAGE OF ACTOR PROPERTY. ..oovenioeieieieeeceeeeeim et aess et ansssansenennsnsesananenses 57
SUPERORDINATES TAB PAGE OF ACTOR PROPERTYcceiuiieiiinieiereiecsesssastessesnssnsessemsesasasemensnansnnes 57
GENERAL TAB PAGE OF FORM PROPERTYovioiiieieeeeee e e e e eeeeeasctsesne st s s et s na s ssnsanntas 57
TASK COOPERATION IN ACTOR RELATIONSHIP.ocvuiiiiiriieisieccrrinieisesssseinsesaessnsssassnsssnssnseemecseennes 58
TASK DEPENDENCY IN ACTOR RELATIONSHIP.......oootieeiiicttececiieeeeteesssessassasrossansnresssansnsesaressasesanes 58
TASK DEPENDENCY IN ACTOR RELATIONSHIP.oiiiiiiiieciateeaesiteeesieereeeeesscmseesesnsssessinesasiasessasnssanses 58
INFORMATION SHARING [N ACTOR RELATIONSHIP. ...cecviciirrireniaraereiniraesseamesseeseseeesesesmesssassssseesas 58
WORKFLOW ENACTMENT COMPONENT.ceictiicieecriteeinteeereecstaesisesssesesssessssarnssnsesssessnnasansessscomnen 61
QUALITY MANUAL VIEW. oottt e trias e e e em e caneseenee e se e emeanesesbes s e e ambebebe st asba s b abananins 61
SAMPLE DOCUMENT IN THE QUALITY MANUAL. ..ceie it veec s vais s stesretseme e s e 62
QMS PROCEDURES VIEW.....cooiiiiciuiaiarsieeaieneascerieeiasenaraseareasessnencarsesanenee oo 62
AN EXAMPLE OF DOCUMENT IN PROCEDURES.ooiiiiiiote et aveense et et se st sses s 62
ACTOR VIEW IN LOTUS INOTES. ..eeieieteeeeieteeee et ee et e eeeeteee e s aeaeteaeeasaeeaestesansaennneesebantesatseaiabanassne 62
AN EXAMPLE OF DOCUMENT [N ORGANIZATIONAL STRUCTUREccccceevreveercerieriasncerisessnensniasseens 63
WORKFLOW SPECIFICATION IN DATABASE.cooiiiiiiiiee et srie it esee s rtasaesmesna st s esaese s e enas 64
AN EXAMPLE OF PROCESS DEFINITION. .1iiiiieetiiieeisiiieeesinteeasiseniniosnsanens saseses ssrerssssssansesansessansssonens 64

FI1G.
FIG.
FIG.
FI1G.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FI1G.
FiG.
Fic.
FIG.
FiG.
FiG.
FIG.
FiG.
FIG.
FiG.
FIG.
FIG.
FIG.
FIG.
FiG.
FIG.
FIG.
FiG.
FiG.
FiG.

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22

AN EXAMPLE OF TASK DEFINITION. 1.eciiiii i i n et s st s ra s s n s s e re s an e e ar e aanas 64

AN EXAMPLE OF PROCESS TRACKING DOCUMENT. ..cc.tviiniriiirievnesiarssnecenrmsnssnsssssarstasassesssmsmsnnans 64
AN EXAMPLE OF TASK NOTIFICATION.ecititieieecterieeae et s e eies et st cen e smncoreseesomn s be s bt sas st e ranatass 65
BUTTONS AND DIALOG BOX IN TRACKING DOCUMENT. .c.vrveiuriecneriorasrerrmecsimeamsnemissssssssssssnsniassans 65
COMMENT DIALOG BOX. 1ovievivivieeeirie et et ca et se et tesmeee e seesme et s stasan et e neesne s e navareatsansasans 66
TASK COMPLETED MESSAGE BOX.oeiii ettt st s s n st e e 66
THE PROCESS TRACKING VIEW BY CURRENT ACTORS. ...cvoviiieririnririsensessnresmsssssssnssssresssssmmssnsonsens 67
THE PROCESS TRACKING VIEW BY PROCESS NAME. ...covvitierniaimrinsranenecrsresiesessesssssssorsnssesnsensasesens 67
THE PROCESS TRACKING VIEW BY REQUEST DATE.....ccvvevereereviersesnranisneneesessoremsesnmamesissssiississssnssnans 68
THE EXPIRED PROCESS VIEW. ..coruniirimimscsensecsenemcr e et sd bbb 68
THE TASK-BASED WORKFLOW OF THE NSR PROCESSoc.coitvcrieemeseceeressmesresnesssssnssnnersiasasesseas 70
STARTUP SCREEN OF NSR PROCESS. 1vevevereesiteeenieranrersresinsensesenssrmesesssnsessssesseneesssststosesssissasiesssass 72
TASK-BASED WORKFLOW OF NSR PROCESS. ...ucciieiiiiiriinieiasieienitesie s e saressassaeesincsasssssnssaessssncs 72
ACTOR VIEW OF NSR PROCESS. 1vervvvieerarrerersrimessaresrerresaseomesmensesessssressssmensanieniassssesissassssssassssesns 73
TLLUSTRATIVE ACTOR DIAGRAM OF NSR PROCESS.octiiiiiiinioniierinsssscssnsrensrsesmses s sesssssssesasas ses 73
NSR IN THE APPLICATION DATABASE. ...cvieiiieietieiasiriar e sarasssissensessnseseensonssssassserserasassmenesesseresacnes 78
TASK-BASED WORKFLOW OF DESIGN PROCESS. oovevrieiaeeriemieeereiesinoesneessmeereressessseesasastssssssararasses 79
ACTOR-BASED WORKFLOW OF DESIGN PROCESS.ectiietiiiiesiteisisesesnsessesnsarentnsnsesseresaassasasesesenses 79
TASK-BASED WORKFLOW OF TESTING PROCESS. «.oi ittt eee et eeeemse s saassaia s sanesass s 84
ACTOR-BASED WORKFLOW OF TESTING PROCESS.....cciteureicrinrerraseeresnessnsnrsssnereseoresssasessasssessmncsarns 84
TASK-BASED PROBLEM LOGGING PROCESS.coveeieviririnieisisisississssesssssssssessssssssasansssnsasssansnsnins 89
ACTOR-BASED PROBLEM LOGGING PROCESS. ...vevereereiaereruriersaessonsssersesemescneessremeesmiesbes tanssis ssanins 29
TASK-BASED CHANGE CONTROL PROCESS. ...cuvevitevriritieririerasesissssisiasissssesrasansssinssnesssentasasassmsasnssns 92
ACTOR-BASED CHANGE CONTROL PROCESS. «.uvevvrreesiereecnrnrssserarreresiessesuessessesasseraesmsnsssscscaresesesns 92
TASK-BASED OF PROJECT MANAGEMENT. _...cootimiiiieiiiiemiietietietesensnessesiessesansassssnssssssssessesmsnsneens 98
ACTOR-BASED OF PROJECT MANAGEMENT.vtvuriiierreesneensersaassesnsssesnssnarseresseseonssssncescasessseenssons 98
TASK-BASED WORKFLOW OF DICP. ..ot en e et esmnens 101
TASK-BASED WORKFLOW OF DICP IN WORKFLOW EDITOR.vcvvuvivesiarariasisrsrosraresinrareresssscsesesens 103
ILLUSTRATIVE ACTOR DIAGRAM OF DICP. ..ot eeeiabe i 104
DCR IN THE APPLICATION DATABASE.......ccvitiierinresneraeinearesseressersnrassainsessasesserresesaenes R 108
TASK-BASED SOFTWARE CHANGE CONTROL. ..ouoveveeiieceieeeeeeee e e s sa s s bbb s arasene s 109
ACTOR-BASED SOFTWARE CHANGE CONTROL.ccvvrvetverrineresveresseeseseereonsosnanessesessessomcamensasesenss 109

Chapter 1 - Introduction

1. Introduction

Quality management is concerned with the achieving, sustaining and improving of quality
in an organization. It includes such things as quality control, quality improvement and
quality assurance [Hoyle, 1994]. The International Organization of Standardization defines
quality control to be the operational techniques and activities that are used to fulfill
requirements for quality [ISO, 1994]. It deals, in other words, with the maintaining of
standards and the prevention of undesirable changes. This differs from quality
improvement that is concerned with a process to improve quality by better control of
existing standards or by creating new standards. And quality assurance, which is
concerned with all the planned and systematic actions necessary to provide adequate

confidence that a product or service will satisfy given requirements for quality.

While finding the best definitions for the many terms concerning quality management, it
may not be of concern to many people. The actual requirement for the development of an
effective quality management system (QMS) has been regarded by many as an important
element for an organization to be competitive and successful in the commercial world
nowadays. A QMS is the encapsulation of the management controls needed for helping
staff deliver quality products and services in a repeatable manner [Fulton and Myers,
1995). To avoid problems such as project delay, over-budgeting and failure to meet
customer requirements, it is important for companies to establish and maintain an effective
QMS. This is because this will enable them to achieve, sustain and improve quality.
Directly and indirectly, this is also expected to facilitate management and control processes

within these companies.

Chapter 1 - Introduction

To properly establish and manage a QMS, it is important that a group of collaborating
individuals respond to relévant activities at the right time and that proper resources be
allocated to them whenever necessary. To ensure that this can be achieved, it involves
complex interactions and dependencies among activities and people. Therefore, good
workflow, proper document controi, effective communication as well as clear roles and
responsibilities are essential in implementing a QMS. An organization should support and

determine what each staff should do in a process and how they perform their tasks.

To develop effective QMSs, much recent emphasis has been put on the use of international
quality standards, and in particuiar, on the ISO 9000 series of standards. [ISO 9000 is an
international quality management standard developed by the International Standardization
Organization (ISO) which defines what an organization must do to confirm with the
standards for a QMS. The ISO 9000 series has become a symbol of good quality and many
companies deploy it both for business requirement and for product and process excellence
in order to satisfy marketing requirements, to manage quality and achieve continual quality
improvement. In this thesis, we describe the effort we have made towards the design and

implementation of a tool that can be used to develop ISO 9000 compliant QMS.

Chapter 1 - Introduction

1.1. The Problems

The ISO 9000 series of standard states the requirements for a generic quality management
system. The essence of 1SO 9000 certification is to “say what you do and do what you say”
[Gianluigi 1993, Schmauch, 1995]). In other words, to comply with this standard,
organizations should describe clearly proper procedures that they follow and conform to
specified requirements [Gianluigi 1993]. Saying what you do is often difficult and this is
especially true in the case of software development. In some cases, such as in the case of
software development, some tasks are inherently complicated and challenging to
implement and control [Armenise et al, 1992]. These tasks often involve complex
cooperation, coordination and communication of activities that occur within people in an
organization [Gulla and Lindland 1994]. Also, tasks such as those related to software
development and implementation may require constant modification. They may need to be
expanded during and after development. And these characteristics make quality
management under such circumstances very difficult. For example, it is difficult to
document what and how the processes and responsible staff do. And, correct and
consistent process execution is not easy to enforce. As a result, how to capture and enact

process plays an important role in establishing and maintaining a QMS.

For some cases, such as those related to software development, the practices of QM
involve defining, understanding, implementing and managing software processes.
Therefore, software processes have to be planned and well defined so that sofiware qualitS/
can be managed and controlled [Chan 1993]. Since software are recognized to be dynamic
which is subjected to frequent changes during and after the developrﬁent life cycle [Welsh
and Han 1994], software processes should be visible, flexible and subject to constant
improvement. That is, the relationship between the activities, how people perform the
activities and interact with others, as well as the resources required and exception-handling
mechanisms should be clearly stated. To fulfill the ISO requirements and establish a QMS,
a comprehensive process model is thus required to describe processes in order to make
them complete and effective. Then, people can easily describe and understand what they
do. Therefore, one of our objectives is to build an effective model for processes so as to

incorporate process improvement.

Chapter 1 - Introduction

The successful completion of a process and its quality depends highly on the coordination
of people in completing a set of activities in a particular sequence and within expected time
constraints. In software development, one of the common obstacles to the achievement of
high product quality is the ineffective communication between people. To ensure adequate
and correct information flow throughout development life cycle, another objectives of our
project is to provide a balanced and comprehensive approach to facilitate group

coordination and communication.

Also, in cases that there 1s a need to produce various documents and intensive information
sharing [Welsh and Han 1994], management of quality is all the more difficult. For
example, owing to the dynamic nature of software processes, information is also subjected
to continued changes. To manage process also means to take care of efficient document
flow between actors and the control of creation, modification and referencing of
documents. Moreover, a QMS requires documentation of quality manual and a
comprehensive set of procedures in the company, as well as associated quality records.
Therefore, document control has been regarded as one of the essential activity in a QMS to

determine the correctness and quality of processes.

Chapter 1 - Introduction

1.2. The Proposed Solution

Since it is important, to achieve ISO 9001, by saying what you do and doing what you say,
a good solution to the above problem is to develop a system to facilitate this. To say what
you do is to specify 1SO 9000 compliant procedures that are to be adopted by the
organization. In other words, we not only need to ensure that proper processes be
_developed, we need also to make sure that they are visible and understandable. Recently,
workflow automation has made dramatic impacts in improving productivity and quality of
product [Georgakopoulos et al 1995]. It is a technology that guides sequences of tasks in a
process and performs automatic tasks that do not need human intervention. It is capable of
handling rich process structures, controlling complex control flow and automatic task
assignment. Therefore, to build a QMS, we propose to enact and manage processes based

on a workflow paradigm.

In this thesis, we propose to use a workflow approach to allow ISO 9000 compliant
processes to be specified and managed. A process is considered to be a sequence of tasks
that depend on the cooperation and communication within and between groups of
collaborating individuals. Based on this, a workflow automation tool (WAT) has been
developed to assist companies to build a QMS to facilitate the implementation of ISO 9000
compliant procedures with minimal investment of time and effort. The tool makes process
visible through well defined workflow elements, structure and representation. And, it is

able to support group work by helping actors to cooperate and communicate.

To automate processes in company’s workflow, WAT provides a standard environment to
capture processes and their explicit information so as to make sure that the required
information is accessible by responsible staff members. It provides a central repository of
quality templates in shared databases for documentation and data recording. To facilitate
document control, WAT provides an effective environment to create, edit, automatic
routing as well as keep track of documents. In order to ensure orderly editing of the
documents concerned in different tasks, it supports access control of documents, version
control mechanism to keep track of document versions and editing histories. Also, it takes

advantage of the messaging facilities of groupware for document routing and notification

Chapter 1 - Introduction

among members of a project team. All these features provide a group of collaborators a

shared, distributed environment to support and control processes.

WAT has two components : workflow capturing (WC) and workflow enactment (WE).
The WC component provides graphical interfaces for users to describe workflow. With
modification to the WIDE workflow model, WAT provides a rich conceptual model to
capture processes and support features that are required, such as organization structure and
information model. It supports i) an actor model that captures organizational structure, ii)
an information model that records presentation details, iii} a process model which supports
workflow automation. Also, transformation between process and actor models is allowed
to provide multi-perspectives when capturing and understanding processes and the

interaction between actors. This can fulfill ‘say what to do’ in the ISO philosophy.

Workflow details are translated into specification ‘with reference to the WIDE workflow
specification. Based on these, the WE component ensures consistent process
implementation across the organization by implementing procedures through groupware.
It takes advantage of useful groupware features to streamline communication, enhance
collaboration and facilitate cooperation of team members, as well as manage and control
the interactions between processes. Also, it handles task exceptions whenever necessary
and provides easy status tracking of processes and tasks. Moreover, it allows distributed
process management across time and space, and supports personal task management by

sending work reminder. This helps companies to ‘do what they say’.

As a result, the WC component is useful in supporting process modeling, and concepts like
process instances and rich organizational models. Whereas, the WE component is
responsible for supporting process instances, routing of documents, integration with other

applications, and cooperative work in distributed environment.

Chapter 1 - Introduction

1.3. Contributions

In this thesis, we propose to use workflow approach to help organization to build an ISO
9000 compliant quality management system. To achieve this, we have developed a
workflow model to capture necessary and useful workflow information, a workflow
specification language to formally describe workflow so as to facilitate workflow
implementation. And, as a proof of our proposed solution, a workflow automation tool
(WAT) has been developed, which is an implementation based on our workflow model and
specification language. WAT makes process visible and supports group work by well-
defined workflow elements and groupware functions. It also provides a central repository
of quality templates for documentation {e.g. company policy, work procedures, quality
manuals) and data recording [Yan and Chan, 1998]. In summary, WAT is able to provide

the following functions :

e workflow capturing functions to retrieve process information
s process control functions to raise exceptions

e work-to-do list function for notification of task assignment

e process status functions to keep tracks of process or task

e process maintenance functions to modify process or task

e data handling functions to reirieve workflow data

e application integration functions to invoke other external applications

WAT provides a shared working environment and graphical user-interface to capture
organizational processes. By utilizing object-oriented representation, workflow elements
can be defined in an well-organized and systemic way. WAT supports two workflow
models : task-based and actor-based. However, therc requires no programming
background to define workflow and involves user-friendly visual programming
development environment in Lotus Notes. From the graphical workflow editor, workflow
designers can easily locate loop back problems and aware of incompleteness of workflow.
Also, it helps to detect complex part of the workflow (facilitate the evaluation of the
feasibility and difficulties in the implementation tasks) [Chan and Yan 1998, Yan and
Chan 1998].

Chapter 1 - Introduction

To ensure consistent process implementation across the entire organization, workflow
definitions are centrally stored in a database. It also supports distributed process
management across time and space. Apart from that, WAT provides users a lot of
workflow functions such as automatic process initiation, task notification and assignment.
From the workflow tracking database, users can track status of processes and tasks, trigger
exceptions whenever necessary and check current workload and performance of staff
easily. To support better navigation between databases, there are links in the workflow
specification database to directly points to any application database {Chan and Yan 1998,
Yan and Chan 1998].

Moreover, as workflow elements are component-based, they can easily be customized and
reused. Therefore, respective adjustmenté and modification to the workflow could be done
easily. Since maintenance and modification of processes can be simplified, the time for the

management and developers to modify a workflow would be greatly reduced.

1.4. Outline of Thesis

The structure of the thesis is as follow. Chapter 2 is a comprehensive literature survey on
different existing commercially available ISO tools, workflow products produced by major
software vendors and the attempts that have been made to develop QMS systems with
workflow management capabilities for ISO certification. In Chapter 3, a workflow
approach will be described as our solution to manage processes. And, Chapter 4
concentrates on workflow specification to facilitate workflow enactment by the WIDE
specification language that includes well-defined elements, relationships and model
transformation. Chapter 5 describes system implementation of WAT to illustrate how
workflow can be enacted. And, several test cases will be discussed in Chapter 6 to
demonstrate how the system automates workflow and improves quality. Lastly, Chapter 7
gives the concluding remarks by summarizing all the above mentioned and suggesting

possible future work.

Chapter 2 - Literature Survey

2. LITERATURE SURVEY

In the past decade, many software products have been developed for QMS in general and
for ISO 9000 certification in particular. However, very few of them have a focus on
software development or information technology and even fewer of them utilizes concepts
in workflow management. In this chapter, we first present the results of a comprehensive
survey we have performed on some currently available commercial ISO tools. We then
describe the workflow products produced by major software vendors such as Lotus, IBM,
Xerox and Action Technologies. Lastly, we discuss the attempts that have been made to

develop QMS systems with workflow management capabilities for ISO certification.

2.1. I1SO Tools

There are currently many different tools developed to facilitate 1SO certification from
different vendors. They have different features focus and functionality. In this survey, we
present twenty-two of them. Their features can be grouped into five major categories : 1)
those that assists users in the documentation of the QMS, such as the provision of
facilitates for writing quality manuals, and procedures; ii) those for document control, such
as the provision of forms and the support of report generation; iii) those to assess ISO
readiness such as the provision of checklists; iv) those that facilitate system audit, such as
the maintaining of audit schedule and corrective action request; and v) those of others,
such as network-enablement and on-line help. Table 2-1 shows more detailed information

of these tools.

Of the twenty-two tools, only five of them have both quality manual and procedure
templates to assists users to document their QMSs. They are : 1) ISO 9000 Educator/Auditor;
1)) Powerway Tools; iii) Quality System Development Kit; iv) Multimedia 1ISO 9000 Logic for
Windows; and v) ISO Ps. And, a few tools only have one of the features. For example, ISO
in a can has only quality manual templates and Quality Control System 9000, Self-Assessment
Utility Program, Q-Pulse, ISO 9000 Self Generating Quality Procedures and Essential SET only

have procedure templates.

Chapter 2 - Literature Survey

Of the twenty-two tools, seven of them have features to facilitate document control so that
document can be created, modified, tracked and controlled easily. These seven tools are :
Documentation Control System, I1SO in a can, ALl Internal Audit Tracker, Powerway Tools, Quality
Workbench, Q-Pulse and QMS/9000+ Compliance Group. Only three of the twenty-two tools
provide forms to create quality records. They are Powerway Tools, Q-Pulse and Essential
SET. Unlike other features, report generation is a feature that most of the tools have. In
fact, except, 1SO in a can, 1SO 9000 Quality System Checklist, Audit Master Checklist, ISO 9000
Self Generating Quality Procedures, Multimedia 1SO 9000 Logic for Windows, I1SO Ps and Essential
SET, the rest of the other tools are all equipped with report generation features.

To evaluate ISO readiness, self-assessment questionnaires and checklists are often used.
However, only three of the twenty-two tools, namely SO 9000 Internal Audit Management,
Powerway Tools and Self Assessment Utility Program provides users with both and only eight
of them provide checklists : ISO 9000 Quality System Checklist, How to Implement ISO 2000,
Audit Master Checklist, Self Assessment Utility Program, iSO 9000 Educator/Auditor, ISO 9000
Internal Audit Management, Quality Workbench and Quality System Development Kit.

Half of the tools surveyed provide facilities for audit against the ISO standard. These tools
usually allow all audit documents to be stored in a central repository so that they can be
tracked and managed easily. Also, many of them have reporting capabilities fo allow
summary of audit results. In addition, ten of the twelve tools support corrective action to a
certain degree : Corrective Action System, ids Correct Action Tracking System, ISO 9000
Educator/Auditor, ISO in a can, ISO 9000 Quality System Checklist, Audit Master, Quality
Workbench, Q-Pulse, QMS/2000+ Compliance Group and I1SO plus,

There are nine tools that are network enabled so that information between different
divisions, suppliers or customers that are geographically apart can be communicated and
exchanged. These tools are : ISO in a can, ISO 9000 Educator/Auditor, ids Correct Action
Tracking System, ISO 9000 Internal Audit Management, Documentation Control System, Corrective
Action System, Quality Control System 9000, Audit Master and Quality Workbench. Half of these

tools have on-iine help.

10

Chapter 2 - Literature Survey

The features and functions mentioned above are useful and important for [SO certification.
However, none of the tools surveyed contain all of them. Also, only three out of the
twenty-two tools are developed for the software industry but unfortunately they are not
developed for all different clauses required. For example, though Document Control System
is relatively easy to be adopted in the software industry, it is solely for document control.
ISO Pus only provides some documentation templates for the documentation of a software
QMS. And similarly, Essential SET provides a set of sample document templates for
software development, project management and quality assurance. But, in addition, it also
has features to help companies plan new projects and track development process.
Unfortunately, it does not contain enough to completely meet the requirements for ISO
9000. In other words, therefore, there 1s currently a lack of comprehensive ISO tools in the

market for the software industry.

11

'S1003 OS] Jo Areunumg

1-Z 919l

X X X X X X X $6 U SSAUISNE [RISUSN) s|00], AemIamoyg
IS HPNY SoUM
ynm aerodiosur 01 pasn X X JUE U SSIUISNE [RISUIL) 1SHYIBYD) JAISE 1IpRY
OSI1 £6 UTA
u Suiuel] X X X /1°€ VLM ssaulsny jetauan 0006 OS] wwswadiug 03 moH
X'ty MoN smoT Surnoddns
suogerd (e w uns o) QY x X X SON I3« SS3UIShE [BIAUAD) Inzel] NpNY [BWIS] [TV
S6 UM
X X X /17 HIM Ssaulsng [elauany 1511y22y watsAg Aufend) 0006 OS]
1€°¢ IN
X X X X X X /56 ULA Suuniagjauepy ued e ut QOS]
X X X X X X X S6 UM 553uIsng] [BISUD) 10JIpnV A01ENpT 0006 OSI
) { X X $6 UM BuunosnuRp wsAg Jurjoel | UOLDY 1200107 SPI
igum
X X X X X 66 UM Fuunjoeynuepy JuswaSBURA] MY [BWB] 0006 OS]
ssauIsNg 1€ Ulm
|eseusd ()} s|qestjdde X X X X G6 LUIM Fuunorynuepy Wa)54S |0NUO) UOIEIUSLNIO]
1€ UM
X X X X 66 UIM Fuumoeynuep WASAS UOHOY 3ANIAI0D
|[eumewm 1€ UM
jo nd X x| x| x| x 56 UM Buuneynuey 0006 WAsAg jonuo) A1jend)
sajo 5 c
N £ 8 2 o | e g
<] B [o o £ uIopEly urewo(] uoneayddy Pnpodd
o © o a 5| € @
¢ o = e g @ © @ 2 3
2 lzieieisla|e|slel2 3
o x = 8 Q T o W _ ©
° |21 E1E|ElESE15|5|5]z
slotagslolaglpglol>|&l@la

5100} OS] Jo Areunung {pJuo)) I-7 2qeL
S6 UM (saejdwa], SuusswBug aremyog)
pannbal 2A0qe 10 "7 PIOA X X JTE Ui Ansnpuj 2IEmiyog 13§ [enuassg
$6 UIM
paimbai anoqe 10 (°Z piop, X X X X /17 UM Ansnpu] alemyos sy OSI
JUAUUOIAUZ
S6 WA W oung 3q jouued X X X '€ uim ssguisng [eisuany | Smopuig 10) 915077 0006 OSI BIPAWRIRIN
66 Ulpm sampasord
X J1°E WM ssauisng [elouay | Anpend) Sunesuan J1O5 0006 OS]
Ansapuy aremiyos 1006081
Jo wadse awos soa0) | w Buimes] X X X X X x 6 MM ssauisng [elauan) Yy wewdoaaag wajsig Aeng)
Suraodas
uondaoaxa
s BN | X X X X X S6 Ul SSIUISTIY [B4IUSD) dnoiny souendwo)) +0006/SIAD
uonsaond $6 Ulm
PIOMSSEJ X x x X x X e ulm SSauIsSTy [R1duIn) s[ng-O
x X X X X X $6 UTAY S5aUISN [BIAUI0) youagiom Anjend)
SEUIM
X X X X X g uim ssauIsng [BIAUAN ISEN ApPNY
X X X X SSOUISTIE] [RIDUIE) wesBo1g A1 0[) WUIWSSISSY J|95
sajoN ° c -
= 5 2 o | 2 g
=} o 2] it 8 £ waojeyg urewog uonenddy Pnpodg
Q © m a M c 0
2 21 = 2 gl s | @ ¢ | 2 [
£ 212|235 |3|2(5i2]3 @
o |83 |5|¢e|8|8|E12 (% e
= o 3 G <4 @ = © 2 b)
&) o < 2 L. Ivd Q = [& 1 T 12}

Chapter 2 - Literature Survey

2.2. Workflow Products

The workflow market has been the focus of many major software producers including
Lotus, IBM, Xerox and Action Technologies. The reason for their development is mainly
because of the recent realization of the need to use computer-based system to smooth out
business processes in many organizations. Many of the workflow software have an engine
to automate process executions and provide various capabilities, such as task assignment,
notification and process tracking, to support the flow of work in an organization. In the
following, we discuss the major players in the market and describe what the current state-

of-the-art is regarding commercial development of workflow.

Lotus Notes is a product optimized for developing databases. Databases in Notes consist
of documents, rather than traditional records. Lotus Notes is ideal for document tracking
applications. It offers useful workflow features such as serial routing for notification,
automation for scheduled and automatic tasks, and document tracking for status
monitoring. In particular, Notes allows the development of agents which, when combined
with these features, can emulate rule-based workflow routing and management. To build a
workflow application using Notes, the application developers have to understand the
details of the organization or be given detailed specifications. Lotus Notes has become
existing proof of the concept that business users want to develop group applications that

reflect how their businesses run [Coleman and Khanna, 1995].

IBM’s workflow product is named FlowMark. FlowMark is an object-oriented workflow
builder and manager. It has a client-server architecture and it also supports automatic task
execution based on the specifications of processes given by its users [Mohan et al 1995].
In addition, FlowMark supports flexible assignment by roles and organization. The
disadvantage about FlowMark is that, it is not a stand-alone product. It must be integrated
with external software to provide a complete document management solution.
Furthermore, application access to databases is not modeled in FlowMark and it has
limited mechanism to support exception handling. Compared to Notes, FlowMark can
only serve as a front-end for the capturing of workflow details. FlowMark lacks database
and communication functions and it requires one or more application as a back-end to

drive the flow.

14

Chapter 2 - Literature Survey

Xerox Xsoft also has an object-oriented client-server workflow management system which
is called InConcert. It is relational DBMS-based and is thus unlike Notes, which is form-
based. InConcert is designed to build document-related workflow applications {Coleman
and Khanna, 1995). For a given application, an InConcert solution typically involves
configuring workflow process definitions, and integrating desktop and other software tools
used in different tasks that comprise the processes. InConcert can help organizations
perform their current operations, and to a certain extent support process reengineering and
improvement over time. Despite these advantages, unfortunately, it does not provide

quality templates and does not handle actor relationships.

ActionWorkflow by Action Technologies does not use DBMS as the basis. It uses Lotus
Notes for storage instead. The system specifies workflow based on speech act, i.e. on
specific communication patterns between actors that require the performance of tasks and
actors. Workflow applications are modeled in business process maps, consisting of
interlinked workflow loops specified by the ActionWorkﬂdw Analyst. The
ActionWorkflow Builder then takes the map and generates the base code for the
application. ActionWorkflow has the advantage of being flexible but the trade-off is a
steeper learning curve and a harder formalization of simple, repetitive processes. Task
relationships in ActionWorkflow are also difficult to express and understand. And, the
process map representation makes complex processes very complicated. Furthermore, task

sequences and conditional branching cannot be easily captured.

JetForm Corporation produces workflow product to provide functionalities for designing,
filling, sending, printing and managing of forms. It is supposed to help organizations
reduce costs and increase efficiency by automating forms processing. JetForm’s Print and
Output Solutions provide printing capabilities so that quality records and reports can be
produced easily. It’s Administrative Workflow Solutions allow organizations to automate
their internal and administrative processes by defining the flow of doéuments in the course
of workflow. In addition, JetForm’s Web Solutions provide end-to-end applications to
allow organizations to extend existing systems to Intranet, Extranet, or the Internet. The
disadvantage with JetForm is that it is mainly document-driven. It does not focus on actor
relationships and quality issues. Also, like all the other tools, it is not tailor-made for the

software industry.

15

Chapter 2 - Literature Survey

It should be noted that all these workflow products have different focuses about workflow.
Lotus Notes is document and database oriented and workflow in the Notes environment
mainly involves routing of documents and electronic mails. FlowMark is an object-
oriented client-server workflow system that cannot be a stand-alone product. A backend
database 1s required for use with it. Since application access to database is not modeled in
FlowMark, its support for exception handling is limited. For InConcert, it is data-oriented
and it does not address actor relationship and quality management. ActionWorkflow is
based on speed act that focuses on communication patterns between actors. It is not
developed for task completion and is too complex to model software processes since task
sequence and conditional branching are difficult to represent in it. Lastly, JetForm focuses
on document control in distributed environment. It does not capture actor relationship. Of
all these tools, Lotus Notes is better because it has rich build-in database capabilities as
well as electronic messaging functions. This is perhaps the reason why Notes is the most

popular workflow and groupware tools now available commercially.

2.3. ISO and Workflow Products

Most of the ISO tools are not developed in respect of workflow. However, some attempts
have been made to try to take such aspect into consideration. In particular, QMX Quality
Management Software by DPI Services is a suite of integrated workflow-enabled Lotus
Notes applications designed to facilitate certain aspects of ISO certification. QMX attempts
to help users create, review and control quality system documents such as quality manuals,
operating procedures and work instructions. It has built-in procedures to support the
management of corrective actions and audit tracking and it allows remote users to
participate in the software through Notes communication features. Changes to the
documentation can be made remotely through replications. As most of the tools, it does

not address relationships between actors. Also, exception-handling mechanism is absence.

Other than QMX, 1SO Achiever Plus by Bywater and Triangle claims to be able to help
companies to plan and implement a business process-based ISO 9000 quality system. It
starts by providing a framework for the design, generation and management of

documentation. It helps to create the quality manual, procedures, work instructions and

16

Chapter 2 - Literature Survey

other controlled documents. Audits can be carried out against procedures and it stores
corrective action requests as well as customer complaints, supplier information and
training records. In addition, ISO Achiever Plus offers automatic routing of outstanding
activity requiring attention. Since it focuses on business processes, much implementation

effort is required when applied in the software industry.

In ISO Expert by Management Software International Inc., there are different components
that contain the clauses, the forms, reports, templates, and processing logic (or workflow)
needed to automate the management process. Templates of quality manuals, procedures
and work instructions are provided for companies to document their own quality
management system. Furthermore, the project management database provides a suggested
implementation plan and the workflow management database allows the definition and
control of document flow. ISO Expert provides also some audit questions and allows
company to track audit results. However, it does not support task assignment and
notification. Like the QMX, actor relationships and exception handling mechanism are not

handled.

ISO Pro by Business Challenge Limited has five components which is designed for the
implementation of ISO 9000. The seminar module introduces user to the ISO 9000
philosophy and background. The assessment module monitors the quality system through
performance, measurement and analysis. The workshop module shows user how to
prepare documentation by providing guidance and quality manuals, procedures and quality
plans. The implement module contains elements of the implementation process. The
configure module, users allow users to customize the system operations. The ISO Pro also
prepares internal audit and management review schedules. Although it allows users to
custormze the system operations, it is not flexible enough to handle complex software

processes.

17

Chapter 2 - Literature Survey

From all the above, we notice that all of the ISO and workflow products have quality
templates to facilitate the documentation of QMS and they have system audit facility to
assess the current readiness of ISO 9000. As QMX Quality Management Software is a Notes
application, it has build-in communication functions and supports remote database access.
The I1SO Achiever Plus is workflow-enabled and supports routing of outstanding activities.
Also, customers, training and suppliers information can be stored in the system. For ISO
Expert, it supports project management but lacks of corrective action. And, SO Pro
provides ISO training which other tools do not have. Unfortunately, none of them is tailor-
made for the software industry. And, they do not address the importance of actor

relationships and the handling of exceptions.

18

Chapter 3 - Design of The Workflow Automation Tool

3. Design of The Workflow Automation Tool

3.1. Some Design Considerations

Quality management in general is concerned with managing the organization in order to
improve the systems and processes so that continual improvement of quality can be
achieved. In this project, we particularly focus on the ISO 9001. It presents a model of
quality management activities based on which an organization can use to maintain a

quality management system (QMS).

The ISO 9000 requires an organization's quality management system to be established.
Each of the elements of a quality management system to be designed, developed, and
maintained by the developer are identified, with the objective of ensuring that all products
or services meet the requirements of contracts, purchase orders and other agreements. For
software development, it involves complex and dynamic interactions of software processes
that requires the engagement of many specialists for specific activities. Therefore, the
qua]ity- of software products is dependent upon the processes used to develop the products.
The lack of a well-defined process has thus a direct impact on the organization’s quality
and productivity. It is hence important that the procedures, tasks and the personnel
involved in some complex tasks, such as software development tasks, be precisely defined,
established and maintained. We believe that improving process is one of the pre-requisites

for achieving the ISO S001.

Having a QMS in place, both the culture and practices of the organization may be changed.
Everyone will understand the principles of quality and have a focus on the quality
perception of customers and users. By introducing practical quality techniques,
organization will gain substantial benefits. Quality of products and services can be
improved which leads to increased competitiveness and better customer satisfaction. Also,

rework will be eliminated and costs will be lowered.

19

Chapter 3 - Design of The Workflow Automation Tool

To facilitate quality management, we, therefore, propose to automate workflow.
Workflow i1s a notation to describe processes that involve the coordinated execution of
muitiple tasks performed by different processing entities. It is a concept closely related to
reengineering and automating processes in an organization. By capturing tasks in software
process, for example, workflow can describe process requirements and task relationships

for information system functionality and human skills.

Workflow management is a rapidly growing area that comprises of the automated
coordination, control, and communication of work in processes. It coordinates people who
interact to complete a process and manages the flow of work so that it is carried out
quickly, and efficiency, producing the highest quality of end results. Also, it manages staff
and resources in a way that ensures process definition is followed and provides the

mechanisms for planning and controlling workflow.

The Workflow Management Coalition (WEMC) defines workflow as “The computerized
facilitation or automated component of a process” [Casati et al, 1996]. A workflow
management system is a system that completely defines, manages and executes workflow
through the execution of software whose order of execution is driven by a computer
representation of the workflow logic. Such a system can save time, reduce redundancy,
and ensure that processes are followed correctly. Workflow management system ensures
that all the information to do the associated work is readily available by routing documents
to the relevant workers and make them easier to access. Also, it tracks how far the process
has gone towards completion and who it is with at any point in time thereby speeding up
and ensuring the appropriate coordination in all processes. Therefore, it is useful to
support flexible and repeatable process automation and re-engineering so as to improve
quality of processes. To achieve these, process modeling is useful in the analysis of
existing processes and how they may contribute towards the design and implementation of

new and improved processes.

20

Chapter 3 - Design of The Workflow Automation Tool

3.2. The ISO 9000 Approach

International Standards for Quality Assurance ISO 9000 is a set of five universal standards
for a Quality Assurance system. The standards allow companies to demonstrate that they
have specific processes in place to maintain an efficient quality system. The most
comprehensive of the standards is ISO 9001. It applies to industries involved in the design

and development, manufacturing, installation and servicing of products or services.

The ISO 9000 approach enforces organizations to create and follow procedures. It requires
a documented quality system. The documented processes and procedures together with the
quality manual form the bulk of the documented quality system. As most software
processes are amenable to change, the documents involved are subject to continued change
throughout their lifetime. The need for formal understanding of software process has been
critical to the success of the software. Proper documented processes can not only reduce
supervision as people can understand what and how they should do instead of having
supervisors telling them all the time, but also provide evidence of continued improvement
throughout management review. The following points out the role of documentation in the
1SO 9000 approach [Gianluigi, 1993]:

1. Say what you do
A well documented quality systems and software covering all phases and processes is
needed. That is, a comprehensive methodology must exist, cover all phases of the life
cycle, including maintenance, and incorporate, besides the constructive tasks, the

quality assurance activities.

2. Record what you did
Records are kept of the execution of all quality-related activities and of the outcome of
that execution. That means that record of all verification and validation activities; and

software defect records are maintained,

21

Chapter 3 - Design of The Workflow Automation Tool

Besides documenting and recording what the company do, companies in compliance with
the ISO 9001 must ensure that they are doing what the documented procedures said and
perform them in a controllable manner. It is important and essential to demonstrate that
what the company is doing is efficient and effective. The quality system should be
organized in such a way that adequate and continuous control is exercised over all
activities affecting quality. And, documented operational procedures coordinating
different activities with respect to an effective quality system should be developed, issued
and maintained to implement the quality policy and objectives. The interpretation in

process enactment can be synthesized as follows [Gianluigi, 1993]:

1. Do what you say
The execution of quality related activities should be distributed and well understood
throughout the organization. That is, processes are clearly assigned to the appropriate
people, and the execution is monitored in order to ensure the conformance of the

enacted process to the documented process.

2. Review your records and act
There should be procedures for periodic reviews of the performance of the quality
system and for the enactment of subsequent corrective actions. It is important to make
sure that processes are executed properly, and if this is not the case, they are

appropriately corrected.

22

Chapter 3 - Design of The Workflow Automation Tool

3.2.1. Say what you do

Based on a standard groupware interface, WAT provides document manipulation
environment through user-friendly interface. It integrates messaging, document storage
and a rich application development environment that supports the sharing of all types of
data across disparate networks and computing platforms. Also, WAT provides templates
of quality manual and procedures in setting up a QMS to facilitate the preparation of ISO
required documents. With well-organized databases, quality manual, procedures and
records can be referenced and tracked promptly and easily. Table 3-1 and 3-2 list all the

templates in quality manual and procedure databases respectively.

Company Policy
Quality Policy Statement
Distribution Revision and Re-issue
Organization - Authority and Responsibilities
Organization Chart

System Outlines
Contract Review
Document Control
Design Control
Purchasing
Purchaser-supplied Product
Product ldentification and Traceability
Process Control
Inspection and Testing
Inspection, Measuring and Test Equipment
Inspection and Test Status
Control of Nonconforming Product
Corrective Action
Handling, Storage, Packaging and Delivery
Quality Records
Quality Audits
Training
Servicing
Statistical Techniques

Table 3-1 Templates in quality manual.

23

Chapter 3 - Design of The Workflow Automation Tool

Writing Quality System and Work Procedures
Management Responsibility
Quality System
Contract Review
Design Control
Document and Data Control
Purchasing
Customer Supplied Product
Product Identification and Traceability
Process Control
Inspection and Testing
Inspection and Measuring and Test Equipment
Inspection and Test Status
Control of Non-conforming Product
Corrective and Preventive Action
Replication and Delivery and Installation
Quality Records
Internal Quality Audits
Training
Servicing
Statistical Techniques
Table 3-2 Templates in procedures.

Besides, WAT also allows the flow of work within processes in the organization to be
specified through a graphical user-interface. It is able to capture information of
organizational members and their relationships so that their responsibilities as well as the
lines of command can be well defined and understood. Also, it is capable of recording
information presentation details and supporting workflow automation and management by
sub-models in the workflow model. To better model coordinated activities, it adopts an
multi-perspectives approach to capture workflow either by process or actor and support
transformation between them. These include well-defined elements, structure and
representation scheme to address different dimensions of a process. In this way, it ensures
that all information required to perform different tasks in a process is properly documented
and be made readily available. In brief, WAT helps users to say what they do by
providing: i) documentation templates to support preparation of quality manual and

records; and ii) graphical user-interface to capture processes and actors information.

24

Chapter 3 - Design of The Workflow Automation Tool

3.2.2. Do what you say

As manual implementation of processes is often time consuming and process cannot be
easily managed and monitored, WAT employ workflow automation to help companies to
do what they said and standardize process execution. In our approach, managing quality
starts with automating workflow given the process is known, understood, and defined
which is required by 1SO 9001. WAT guides sequences of tasks thét COmMpOoSe a process
and perform automatic tasks that do not need human intervention. Implementation can
begin with simple repetitive tasks, such as notification, tracking of status, and scheduling
of assignments. Then, additional tasks to consider can be notifying users which task has
been initiated when to perform a task, automatic task delegation and handling task
exceptions. There is also a need to provide an intelligent document routing capability, as
well as an ability to orchestrate access to the database and application tools needed to
complete a given task. It is destined to improve organizational productivity and simplify
access to conventional database applications. Combining it with electronic mail,
sophisticated database support and document-based workflow applications, it is expected

to truly take the place of traditional paper-based processes.

In our design philosophy, to provide an unified task management system for groups of
people, a flexible mechanism of communication between the system and actors is required.
It is seemingly that organizations need large-scale workflow solutions that can
accommodate a growing need of distributed environment. It is because organizational and
multi-departmental workflow applications are made up of several disparate processes that
may include technologies that currently do not interoperate. For example, database or
transaction-oriented workflow applications currently do not interoperate with messaging
applications that are based on store-and-forward technology. With organizations becoming
more distributed, they need to replicate and synchronize data and workflow definitions
across departments and physical sites. Distribution is a main issue because workflow
management is a distributed application by nature, and distribution opens the way to
scalability of the architecture. This can be achieved through a client/server architecture.
Messaging can accommodate many of these issues through a variety of technologies. For

this reason, there should be a central repository to store the workflow details and process

25

Chapter 3 - Design of The Workflow Automation Tool

instances in detail. Fig. 3-1 illustrates these by showing how our system supports and

coordinates group work in the course of a workflow in a distributed environment,

Usar-mtardfacs l]‘i“\ ﬁ [[j] T
A A
Wark-to-da % 1
List In Maibox |: | [,__

g
v
b Systams |

. Convoloau[,_ 1 E Worklaw [! | —
: : Defruion | |

: Appikcation | - 7
: : ¥
Data . J I A
. 4,
tnvoked -
llwir.alnn P e e
ST ey Wenitow EnacimentSeners -
__________________ 1
: Y v
I
h A4
Pt D

Fig. 3-1 Supporting group works in distributed environment,

In the implementation of WAT, our design is based on the above design philosophies.
Workflow details are defined and stored in a central shared database to ensure consistency.
Based on them, the workflow enactment services evaluate the routes and determine which
actors are responsible for the next task. A task notification will then be sent to the
mailboxes of the appropriate actors so that there is a universal inbox (tasks appear in the
same inbox as mails) which eliminate the need to check multiple sources of work. In this

way, actors can be aware of the task instant independent of their physical locations.

In the course of workflow, different system, control and application data may be required.
Actors can retrieve these data through the workflow enactment services and invoke other
applications when necessary. It is not only applicable locally, but also in a distributed
environment. All workflow details in the organization can either be centralized on one
server or distributed over multiple servers and workflow engine can instantiate a process
instance based on the location of the definition. Alternatively, multiple workflow engines
can be used. Each of them is responsible for part of the workflows. Process actors are not
necessary to be restricted within a single domain. Sending task notifications to actors and
keeping track of process status in other domains can be achieved by bridging multiple
workflow engines. As a result, distributed workflow management across time and space

can be supported.

26

Chapter 3 - Design of The Workflow Automation Tool

Therefore, to help users do what they say and support group work, WAT provides them

with numerous benefits including :

¢ workflow details operations to retrieve process information;

o work-to-do list handling functions for notification of assignment of a task;

e process status functions to keep tracks of a specific process or task;

e process maintenance functions to modify process and/or task definitions;

e data handling functions to retrieve workflow relevant system or control data;
¢ application integration to invoke other external applications;

e process control functions to raise exceptions when necessary.

Through the above capabilities, our system can keep track of the status of all processes that
has been initiated. Users can check status of a particular process instance easily.
Information such as the number of a particular process has been initiated, the total number
of process that has been initiated on a particular date can be collected. Also, users can
check process status from their own point of view and needs [Yan and Chan 1998, Chan et
al 1998].

3.3. A Survey of Workflow Modeling Techniques

Recently, a number of workflow modeling techniques with different focuses have been
proposed. For example, some researchers advocate the use of rules to model work
processes [Ciancarini 1995, Kappel et al 1995, Bussler and Jablonski 1994]. Typically,
rules are used in the specification of different conditions in mutually exclusive cases.
Rules are also used to define possible automatic actions so as to trigger the initiation of
tasks during a process. In some cases, rules are used to select responsible staff and to
manage agent worklists [Kappel et al, 1995]. An advantage of rule based techniques is
that the rules can be collected in a knowledge base to describe a work. Also, the
declarative expressive power of rule-based languages can be an impbrtant technology for

process specification, modeling, and coordination [Ciancarini 1995].

27

Chapter 3 - Design of The Workflow Automation Tool

Object-oriented technology has also been used for workflow modeling [Kappel et al 1995,
Hartel 1993, Meichun and Charly 1996]. A workflow management system on an object-
oriented database was proposed in [Kappel et al, 1995]. The database provided some
functionality for modeling and reusing complex process objects. Another example of the
use of object-oriented technology was found in Object-Flow [Meichun and Charly 1996].
It supported an. object-oriented specification that included different task types (static and
dynamic compound tasks). In addition, there were some proposed approaches for the
integration of concepts for the modeling of applications and business processes in
cooperative information systems. A typical example was that of the framework of a formal

object-oriented specification language (TROLL) described in [Hartel, 1995].

Over the past decade, many researchers model work processes on the basics of “activities”
(Gary 1994, Kari and Tuula 1992, Raul et al 1992, Gruhn 1995, Christoph and Stefan
1994, Thomas et al 1995, Gerhard and Stefan 1996, Rusinkiewicz and Sheth 1994). The
Quality Process Language (QPL), for example, which supported ownership of processes,
communication and compliance with requirements, was used to represent and analyze
processes within an organization [Gary 1994]. Also, the Activity Theory that was
proposed by [Kari and Tuula 1992] was used to identify potential computer supported
cooperative work application. In addition, an action workflow approach proposed by [Raul
et al 1992] was used as a design methodology. Based on the construction of action loops,
a new approach to characterizing workflow was developed according to it. Other than
these approaches, Gruhn discussed an approach to business process modeling and
workflow management that was based on data modeling, activity modeling, and
organization modeling [Gruhn 1995]. In a model developed at Bellcore, tasks were
assigned different characteristics according to their transactional behavior and flow control
was determined by scheduling conditions [Rusinkiewicz and Sheth 1994]. Similar activity
based workflow model could also be found in (Christoph and Stefan 1994, Thomas et al
1995, Gerhard and Stefan 1996).

28

Chapter 3 - Design of The Workflow Automation Tool

Although activity based models usefully abstract the sequence of work and information
flow, they do not adequately explain how and why the actors communicate. Since
organizations are viewed as being made up of actors who have motivations, it is suggested
that processes be modeled based on actors [Eric 1995, Kevin 1992, Gulla and Lindland
1994, Alassane et al 1996]. A framework which supports formal modeling of network of
dependency relationships among actors has been proposed [Eric 1995]. Also, an actor
service model was developed to address actor relationships in coordination activities
[Kevin 1992, Jon and Odd 1994). It described how actors interact and cooperate in
accordance with intentions and goals. Other than these work, there are also effort to
develop system to analyze the action done by actors in their cognitive shared space,
derived from a process model, through the events generated by their actions and

interactions [Alassane et al 1996].

As workflow systems became recognized as a category of computer system, it was
recognized that all workflow management products have some common characteristics,
giving them the potential to achieve a level of interoperability through the adoption of
standards for various functions [Lawrence, 1997]. It is important as standards enable
interoperability between heterogeneous workflow products and improved integration of
workflow applications with other IT services such as electronic mail and document

management.

To avoid the potential for conflict in the development of standards, the Workflow
Management Coalition (WfMC) has started early in the life of workflow technology. It is
an organization of more than 170 members located in 24 countries around the world. It
focuses on the advancement of the workflow management technology and its use in
industry. One of its initial activities centered on groundwork for the definition of a
universal reference model for workflow systems. As the WIMC has a wide coverage of
workflow (characteristics, terminology and components of workflow management systems
as well as the interfaces and information flows between the major functional components),

it has been chosen as the basis of the model and specifications of WAT.

29

Chapter 3 - Design of The Workflow Automation Tool

WIDE (Workflow on Intelligent Distributed database Environment} is one of the projects
of the WIMC [Casati et al, 1996]. The WIDE consortium includes 5 partners from Spain,
Italy and The Netherlands. They include the Sema Group sae (Spain) which is the
software integrator and the technology providers which are represented by two well known
university groups : Politecnico di Milano (Italy) and University of Twente (The
Netherlands).

As part of the WIDE project, a rich conceptual workflow model has been proposed. Its
objective is to extend the technology of distributed and active databases, in order to extend
workflow capabilities of software products according to requirements that were set by
collaborating individuals within organizations. The main goals are i) to define an
advanced conceptual model for describing both the flow of activities and the organizational
environment in which these activities are performed; and ii) to provide an advanced
technological support to workflow management through advanced database systems in a

distributed environment.

The WIDE workflow model is structured along three loosely coupled sub-models :
organizational, process and information models. Flexibility was obtained by incorporating
an independence between the three models it consists of, allowing modification of any one
of these models without affecting others [Casati et al, 1996]. And, such flexibility that
provided by the WIDE workflow model allows organizations to quickly anticipate on the

ever-changing environment.

The organizational model describes the part of the organization involved in workflow
execution in terms of persons, positions, organizational units, organizational roles and
authorities [Lawrence, 1997]. It determines division of labor, communication and the
assignment of organization. This model has sufficient expressive power to describe real

enterprise organizational structures.

30

Chapter 3 - Design of The Workflow Automation Tool

The information model captures the set of information managed by the workflow. It
identifies and describes the documentation elements involved in a process [Casati et al,
1996]. Information used in workflows can either be defined at the workflow schema level
by variables, based on databases which are shared among all persons involved in the
workflow, or consist of documents exchanged through' the workflow management system

(WFMS).

The process model determines process steps (tasks) and their dependencies in a process.
Tasks are the elementary work units that collectively achieve the workflow goal and
process flow is modeled by interactions between tasks. The workflow engine determines
when a certain task must start being executed, and of assigning it to agents, according to

the task assignment rules [Casati et al, 1996).

The introduction of this model has improved and strengthened the specification of
workflows at the conceptual level, by formalizing within a unique model the interaction
and cooperation between tasks, the assignment of tasks to actors and the accesses to
external databases. Examples of successful adoption of the model include the
enhancement of FORO, an existing workflow management system supporting the
management of enterprise-wide processes and their constraints in a cooperative, distributed
environment, developed by Sema Group sae. Also, the ING Bank from Amsterdam and
the Manresa Hospital (Manresa, Spain) are the major users of WIDE that enables the

experimentation and evaluation in different application contexts.

For the above reasons, the WIDE workflow model has been chosen as the basis of our
workflow model in implementing the workflow system. However, our workflow model
has been enhanced to address relationships between people as well as task relationships. In
order to provide a better understanding of workflow in an organization, it supports model
transformation that is capable to capture relationships between people from task

relationships and vice versa.

31

Chapter 3 - Design of The Workflow Automﬁtion Tool

3.4. The Proposed Workflow Model

As previously discussed, a company say what it does is important in the ISO philosophy.
This is closely related to the definition and execution of workflow. In this section, we will

describe how WAT models workflow.

To model workflow, WAT address processes, tasks, dependencies among tasks, the actors
that perform the tasks and forms used in the tasks. With some modifications and
enhancements to the WIDE workflow model by the WfMC, WAT is able to capture all the
workflow details by three models. The information model to identify and describe the
documentation elements involved in a workflow. The actor model to capture actor
relationships and facilitate assignment of tasks to actors. And, the process model to model
cooperation and dependency among tasks. Workflow can be captured by either process or
actor models and WAT supports transformation from one to another. This provides multi-
perspective to capture and understand processes, actors and their relationships in an

organization.

WAT defines objects and connectors to link objects in the process and actor models. In
process model, connectors define task sequence and conditional task branching. While in
actor model, connectors show different relationships between actors. For each type of
connector, there are one or more attributes associated with it, which defines the properties
of that connector. In the following sections, the information model, actor model and
process model as well as the transformation between process and actor models will be

discussed.

32

Chapter 3 - Design of The Workflow Automation Tool

3.4.1. Information Model

The information model identifies the information objects involved in workflow.
Information is identified here as useful data in processes. The object in this model is
defined in WAT as a set of forms which is characterized by : form name, description, field
labels and fields. Owing to the interactive nature of workflow system, there often involves
the routing of physical documents and a lot of information are presented and captured
usin'g forms displayed on user-interface. System and workflow definition as well as
control data are stored to facilitate the flow of process, such as the process definition,
organization data, workflow control data and work-to-do list, etc. Forms are the
documents or records used in the quality management system. For example, in an ISO
9000 compliance system, the various forms provide the ability to create the required QMS
documentation and to record the actual level of quality performance via the records. After
forms are defined, they are eventually linked to tasks and workflow participants will use

information contained in them.

A form in WAT mainly consists of static texts and fields. Static texts are used as
annotation and field labels. And fields are used to reference workflow data. With all the
form elements defined and positioned, the layout of the form can be described. To
enhance readability and enforce access control, part of the form can be grouped to form
section. Sections can be collapsed or expanded under different circumstances and based on
different users. This provides different focuses and facilitates quick information retrieval.
For access-controlled sections, they can control edit right for different members in a group

to prevent unauthorized editing.

33

Chapter 3 - Design of The Workflow Automation Tool

3.4.2. Actor Model

In order for the organization members to perform within the environment as expected, it is
essential to model these individuals. Flexibility is needed in an ever-changing
organizational environment. It can be accommodated through the uncoupling of the actor
model] from the other models. Actors are the building block and processing entities of an
organization in which tasks are passed around. Manual tasks can only be performed with
the cooperation of actors. Interactions between actors are thus inevitable and essential in
the quality of work. Therefore, it is valuable and interesting to investigate into the
relationships and dependencies between actors in an organization. It will facilitate the
understanding of how actors work together and help to characterize the working model and
behavior of actors. Actor definition entails more than identifying people at the
organization. For each person defined, WAT specifies his/her department, subordinates,

superordinates and roles.

This model adopts the concept of role for specifying the responsibility for an actor to
perform a given task. It is valuable in independence between actors and definition of tasks
to support dynamic task assignment to actors with suitable role. In the actor model, WAT
allows three types of actor relationship between roles to be defined : i) information sharing,

11) task cooperation and iii) task dependency.

INFORMATION SHARING

As discussed in the information model, information is useful data that are needed in tasks.
They may exist in different forms, such as a physical document, a file or an electronic
mail. Information sharing refers to the referencing of document content and knowledge
among actors. It is the time for actors to retrieve information for them to accomplish
certain tasks. For example, a system specification is shared among system analysts and
programmers. Therefore, referencing the same document implies actors are doing the
same or at least related tasks. And information sharing relationship is then useful in

analyzing workflow.

34

Chapter 3 - Design of The Workflow Automation Tool

TASK COOPERATION

Since several actors with different roles may engage in the same task, they are work in
cooperation. For example, both project manager and system analyst may participate in
project planning and scheduling. Therefore, if more than one actor is responsible for a
task, we consider they have task cooperation relationship. As the number of involved
actors in a task increases, the effort needed to ensure and control the quality of work
increases as well. Also, if a actor work and cooperates with many other actors, it may
imply an uneven workload distribution, insufficient human resources or extra on-the-job
training is required. As a result, task cooperation relationship among actors can also

provide meaningful and significant information in the current workflow.

TASK DEPENDENCY

In a workflow, there is well-defined possible ordering of tasks in a process. A task can
only start after the completion of its preceding task(s). So, when actor(s) responsible for
the coming task(s) can start working depends on when the actor(s) in the preceding task(s)
finished their work. Qur system considers the actor(s) in the coming task depend on
actor(s) in the preceding task(s). For example, the programmer can start coding if the
system analyst has finalized the design. It should be notice that task dependency has
different scope from task cooperation. Task cooperation focuses on actors in a task while
task dependency stresses on the sequence among consecutive tasks. This type of

relationship is important especially in those time critical tasks.

35

Chapter 3 - Design of The Workflow Automation Tool

3.4.3. Process Model

The process model supports the modeling of process in organizations. WAT captures
process by a flowchart and process is modeled as a combination of tasks with well-defined
sequences. This model expresses execution of tasks in a process and focuses on modeling
of the work instead of the commitments among humans. Object in this model is a task.
Apart from general attributes, such as task name and description, runtime relevant
attributes may be defined for each task. For example, task type (manual, automatic),
maximum time allowed, time unit (day, hour, minute), form created, modified and
referenced, actors (in terms of roles) responsible for the task as well as actors that will be
notified and method to handle exceptions (ignore, stop immediately, send error message,
start recovery task). Runtime evaluation of these attributes allows tasks to be dispatched
on a dynamic basis and allows exceptions to be raised. For example, the system handles
manual and automatic tasks differently. Manual tasks must have at least one actor to
perform the job while automatic tasks required an agent, an automatic element in our
system, to get the job done. So, actor(s) will be informed in manual tasks and agent will
start in automatic tasks. However, in both types of task, it is allowed to notify other actors
for the initiation of that task. WAT navigates a process by evaluating task relationships. It
allows three types of task relationship to be defined : i) sequential, ii} parallel and iii)

conditional,

36

Chapter 3 - Design of The Workflow Automation Tool

SEQUENTIAL RELATIONSHIP

Sequential relationship is the fundamental and simplest task relationship that involves
consecutive execution of task. A series of sequential relationship forms a possible path in
a process. It models working procedures that people pass the work to the other after they
have finished their own jobs. It is mandatory in process model in order to represent the
order of tasks and indicate the flow of work or data. For two tasks A and B connected

sequentially, task B is ready to start only if task A completes successfully.

PARALLEL RELATIONSHIP

Parallel relationship involves simultaneous task execution. There will be more than one
task in their active state. Usually, this kind of relationship is established between
independent but cooperative tasks. Executing one of the tasks does not depend on others
and will not affect others execution as well. If task A is connected to task B and C in
paraltel and task D follows, both task B and C are ready for execution after task A
accomplishes. Then, task D can be initiated after both tasks B and C have been completed.

This relationship supports task parallelism and tries to minimize investment of time.

CONDITIONAL RELATIONSHIP

Conditional relationship selects process execution path is based on conditions. This
relationship splits process execution path into two or more. Although there may be
multiple execution paths, only one of them can be in active state at a time depending on
different circumstances. For instance, after executing task A, task B may follow at this
time but at the next time, task C may start instead. A task-based workflow can have many
conditional task relationships and the number of relationship determines the number of

execution paths.

37

Chapter 3 - Design of The Workflow Automation Tool

3.4.4. Transformation between Process and Actor Model

WAT supports transformation between process and actor models. Such a transformation
enables the analysis of different aspects in an organization and accommodates a greater
variety of organizational needs. Given a process model, with all the actors, form used and
task sequences or branches defined, the system is able to construct respective actor model
showing actor relationships if there is any as described in the previous sub-sections. On
the other hand, we can also build a process model from an actor model. Respective task
relationships can be deduced from well-defined actor relationships by specifying
cooperated tasks, referenced forms and dependent tasks. In this way, WAT allows two

different approaches to describe an organization and processes involved.

Specifically, in the process model, adding actors in a task creates task cooperation
relationship and defining form referenced builds information sharing relationship among
actors. That is, if there 1s more than one actor in a task, task cooperation relationship is
built between each pair of actor. And, when several actors are responsible for a task and
there is at least one referenced form, each pair of actor will have an information sharing
relationship. For task cooperation, connector links two actors having task name as
attribute. Whereas, for information sharing, connector attributes are the referenced form
name and the task names that the two actors participate and reference the same form.
These two relationships are non-directional. As there is no dependency between actors,

connector indicates only a relationship between them.

However, task dependency is directional. When two tasks are connected, it is important to
specify actors in the succeeding task depends on actors in preceding task. Apart from its
directional nature, task dependency is further classified as conditional and unconditional.
In sequential and parallel task relationships, task dependency is unconditional. And, in
conditional task relationship, depends on which condition is matched in a particular
instance of process, actor will work differently and different actors would be followed.
Then, task sequence will change accordingly and connector attributes as well as values are
thus varied. WAT supports conditions to be specified and evaluated in terms of agent,
automatics event-driven tasks, and form value. Using agent to evaluate condition, the

agent name and name of next task should be given. After successful running of the agent,

38

Chapter 3 - Design of The Workflow Automation Tool

it returns a true/false value for the system to determine whether the next task should be
started. For example, an agent called ‘CheckResource’ is used to check if all the resources
are available. If a true value is returned, the task ‘NotifyActors’ will be started to inform
all the responsible actors to perform their works. On the other hand, when condition is
specified using form value, form name, field name, operator (includes, =, <>, >, <, >=,
<=), field value and name of next task are required. It is used to check if the content of a
particular field in a particular form satisfies a particular value so that a particular task can
be followed. Here is an example of such a condition : if field ‘severity’ in form ‘problem
report’ equals (=) to high, then task ‘report to project manager’ starts. Similarly,
different condition statements can be built to control execution path. Currently, WAT
allows a maximum of five different conditions to be specified in each task. Conditions will
be evaluated in their input sequence. Whenever a condition is satisfied, the next task for

that condition will be followed and other conditions will not be evaluated.

In the unconditional case, connector specifies which actor depends on which actor and the
names of preceding and succeeding tasks are included. Whereas in the conditional case,
apart from all the unconditional attributes just described, condition for that dependency is
specified as well. With all these information, an actor model can be built from a process

model. The above is summarized as follows;

Task creation Task connection
Assigning actors = Task cooperation Unconditional task relationships = Task dependency
Task1, Actor 1 Actor 2
Actor 1 Taskd Actor 2 Task 1 >Task 3

Defining form referenced = Information sharing | Conditional task relationships = Task dependency

Actorl form 1 Actor2 Actor 1_ conditon _ Actor3
Task 1 form 2 Task 2, Task 4 Task ! statement =~ Task 4

Through transformation from actor model to process model, task properties and
relationships can be deduced from actor relationships. Defining task cooperation and
information sharing relationships captures task properties. Actors are determined through
task cooperation and forms referenced are defined when creating information sharing
relationship. That is, whenever two actors have task cooperation relationship, they must be
responsible for at least one common task. And, if there is information sharing relationship

between them, they must reference at least one common form in the same or different task.

39

Chapter 3 - Design of The Workflow Automation Tool

Through task dependency relationships, our system determines the sequence of tasks and
possible conditional branchés. Unconditional task dependencies (sequential and parallel
task relationships) ensure a restricted task sequence that an actor must follow the actors in
the preceding task. However, conditional task dependency only provides possible task
dependency by defining different combination of condition and next task. Therefore, in
different instances of the same process, different condition will be satisfied which leads to
different task to be followed. Task sequences is then varied. Take the following
transformation as an example. Given the actor model in Fig. 3-2, the process model as in
Fig. 3-3 can be deduced.

Uneconditional

Dependency”
Actar 2 {Task 2) depends on Actord {Task #}
Actord of. Task 1 . Aclor2 of Task 2

Condionat” Actor 3 (Task 3) depends on Actor 2 (Task 2)

/ . I _Task3
Dependency conduion 1
-~

Aclor 4 (‘rmu)gmnmmmwznasu) TaSk 1 TaSK 2\ .
- - condition 2
Actord of Task 4 Actord of Task 3 Task 4
Fig. 3-2 An illustrative example of actor model. Fig. 3-3 An illustrative example of process model.

Actors in Task 2 must depend on Actor 1 in Task 1 because there 1s a sequential task
relationship between Task 1 and Task 2. However, based on different conditions, either
Task 3 or Task 4 will follow Task 2. So, if condition 1 is true, Actor 3 in Task 3 will
depend on Actor 2 in Task 2. And if condition 2 is true, Actor 4 in Task 4 will depend on
Actor 2 in Task 2 instead.

40

Chapter 3 - Design of The Workflow Automation Tool

Connector attributes in actor model are similar to process model. - Having all the task

properties, ordering and branching, our system car build a process model from an actor

model. The transformation algorithm is summarized as follows :

information sharing Task cooperation Task dependency
‘ Actor1- - —prActor2
Form 1 Task 1,
Actor | Form 2 Actor 2 Actor 1 Task 2 Actor2 | Task 1 Task 3
Task | Task 1, Actor 1 is an actor in Task 1 and Actor 2 is an actor in Task
Task 4

Actor 1 is an actor in Task
1 and Actor 2 is an actor
in Task 2 and 4. Form 1
and 2 are the referenced
forms of Task 1, 2 and 4.

Actor 1 and 2 are one of
the actors in Task 1 and
Task 2,

3. Task1 can starts only after Task 3.

condition _ Actor2

Actor 1-—-
statement

Task 1
Actor 1 is an actor in Task 1 and Actor 2 is an actor in Task

Task 3

3. Task 1 starts after Task 3 if the condition is satisfied.

3.5. Major differences between Our Model and WIDE

Although the WIDE workflow model has been chosen as the basis of our workflow model,
there are number of differences between them. One of the major enhancements in our
workflow model is the development of actor relationships. Most of the current workflow
models, as well as WIDE, only address the importance of tasks. However, in our
workflow model, apart from capturing task relationships, the importance of relationships
between people (actors) is also addressed. Therefore, three types of actor relationship have
been established, namely information sharing, task dependency and task cooperation.
Moreover, in order to provide a better understanding of workflow in an organization, it
supports model transformation that is capable to capture relationships between people from
task relationships and vice versa. As a result, in a given task-based workflow, respective

actor relationships can be deduced. Also, a set of actor relationships can be transformed to

a task-based workflow [Chan and Yan 1998, Yan and Chan 1998].

41

Chapter 3 - Design of The Workflow Automation Tool

WIDE model aims at modeling and implementing workflow in an organization. It does not
address quality issues. In our workflow model, our objectives are not only model
workflow, but also aims at building an ISO compliance quality management system.
Therefore, our actor model supports different relationships to capture clear responsibilities
and lines of command between organizational staff. Apart from that, our form model has
also been enhanced. It captures the layout and information of foﬁn as well as linking
forms to task. In this way, users are aware of different form(s) created/ modified/

referenced throughout the course of workflow [Chan and Yan 1998, Yan and Chan 1996].

Our workflow model not only focuses on actor relationships, but also aware of the
importance of collaboration, cooperation and communication between group of people.
For example, in our process model, it captures people who are responsible for
accomplishing each task as well as other people that should be notified. In our
implementation, automatic notifications will be sent to responsible staff and people who
should be notified. In this way, workflow applications are able to bring responsible people
to the correct task and maximize the value of the existing information by delivering them
to the people who need them at the correct time [Chan and Yan 1998, Yan and Chan
1998].

42

Chapter 4 - Workflow Specification

4. Workflow Specification
4.1. Our Workflow Specification

Workflow specification is required to act as an interface between the two components of
WAT : the workflow capturing component and workflow enactment component. To
define a new workflow, actor ahd information specifications must first be imported from
the workflow enactment component to the workflow capturing component. After the
workflow has been defined, respective process specification can be generated from the
workflow capturing component and import to the workflow enactment component. Our
workflow specification references to but simplifies the WIDE specification. With similar
approach to the WIDE specification and based on our workflow model previously
described, our workflow specification is divided into i) actor specification, ii) information
specification, and iii) process specification. In the following subsections, these three

specifications will be presented and illustrated with examples.

4.1.1. The Actor Specification

For each actor in an organization, our specification captures the following attributes using

the ACTOR definition :

1. Name - Fully distinguishable Lotus Notes user name of the actor
2. Role : Position which the actor holds

3. Department : Department or location that the actor works at

4. Subordinates : List of actor names that are his/her subordinate

5. Superordinates : List of actor names that are his/her superordinate

Each attribute is assigned to a data type specified after the attribute and separated with a
colon. For example, ‘name’ is in string type whereas ‘subordinates’ is a list of string.

Therefore, the complete actor definition is as follows :

ACTOR HAS
name : STRING;
role : STRING;
department : STRING;
subordinates : LIST OF STRING;
superordinates : LIST OF STRING;
END_ACTOR;

43

Chapter 4 - Workflow Specification

Moreover, each actor is assigned to a role. All the roles in the organization are captured

under the ROLE definition. For each role, there are a role name and description. For

example, the role definition for a project director 1s like this :

ROLE Project Director

desc : Manage and Controf Projects;

END_ROLE;

With all these actor information well defined, the model can be populated with instances
using the REGISTER ACTOR statements with all the attributes. Then, all the actors in the

organization can be characterized. Given four sample actors in Table 4-1, the actor

specification is shown as in Table 4-2.

Name Role Depart. Suhordinates Superordinates
Ying/POLYU Test Manager | ITS User1/POLYU, User2/POLYU
Keith Chan/POLYU Project Computing Ka Fai Cheng/POLYU,
Director Ricky Lee/POLYU
Gloria Cheung/POLYU | Tester Computing Ricky Lee/POLYU
Table 4-1 Sample Actors.

END_MODEL

ACTOR_MODEL DEVELOPMENT
ACTOR HAS

name : STRING;
role : STRING;
department ; STRING;

subordinates : LIST OF STRING;
superordinates : LIST OF STRING;

END_ACTOR;

ROLE Project Director

desc : Manage and Control Projects;

END_ROLE;

ROLE Test Manager

desc : Unit and System Test;

END_RCLE;

ROLE Tester

desc : General testing;

END_ROLE;

REGISTER ACTOR OF DEVELOPMENT
{name, role, department, subcrdinates, superardinates)
[(¥ing/POLY V), Test Manager,ITS, [User1/POLYU,User2POLYU], 1),

(Keith Chan/POLYU Project Director, Computing,[Ka Fai Cheng/POLYU, Ricky Lee/POLYU] . [},
(Gloria Cheung/POLYU, Tester,Computing,[] , [Ricky Lee/POLYU})} |;

Table 4-2

Actor Specification.

44

Chapter 4 - Workflow Specification

4.1.2. The Information Specification

For each form used in the process, our specification captures the following attributes using
the FORM definition :

1. Name : The name of the form
2. Description : Detail description about the form
3. Procedures : List of procedure names that will create, modify or reference this form.

Similar to the actor definition, the form definition is formalized like this :

FORM HAS
name : STRING;
description : STRING;
procedures : LIST OF STRING;
END_FORM;
In Lotus Notes, form design is completely hidden from other applications. It is so far
impossible to obtain the layout of a Notes form (such as the text captions, field names and
their respective position) and export to the other applications. Therefore, our information
specification is different from the WIDE information specification. As in the actor
specification, the information model can also be populated with instances using the
REGISTER statements with all the forms attributes. For example, Table 4-3 shows all the

forms used in the design process. And, Table 4-4 shows the information specification.

Name Description Procedures
Discussion Record For Discussion Document and Data Control,
' Process Control
Functional Specification Detail description of functions Design Control, Inspection and Testing
Technical Specification Detail specification Design Control, Statistical Techniques
Table 4-3 Forms used in the design process.

INFORMATION_MODEL Design
FORM HAS
name : STRING;
description : STRING;
pracedures : LIST OF STRING;
END_FORM;
END_MODEL

REGISTER FORM OF Design
{name, description, procedures)
f(Discussian Record For Discussion [Document and Data Control,Process Control}) ,
(Functional Specification,Detaif description of functions,[Design Control,Inspection and Testing] } ,
{Technical Specification, Detail specification [Design Control,Statistical Techniques]) |

Table 4-4 Information Specification.

45

Chapter 4 - Workflow Specification

4.1.3. The Process Specification

The process specification captures task relationships, as well as control flows and data

flows in process. For each process, our specification captures the following as parameters :

1. Name : The name of the process
2. Description : Detail description about the process
3. Database : Name of application database used in the process

For exampie, the process specification of a software change request process implemented

in database wfi\demo is like this ;

WORKFLOW_MODEL Software Change Request (name, description, database)
{Software Change Request, Standard procedures to handfe change request, widemo]

Relevant actor and information model have to be imported into this specification using the
USES statement. In the software change request process, actor model ReqActor and

information model ReqForm are used. Therefore, the following statements are required :

USES ACTOR_MODEL ReqActor;
USES INFORMATION_MODEL ReqForm;

The START statement is used to specify the first task to in the process. That is, if “Initiate
change request” is the first task in the software change request process, the START

statement should like the following :

START Initiate change request;

Task is specified using the TASK definition, the following GENERAL information will be
captured :

1. Name : The name of the task

2. Description : Detail description about the task

3. Type : Type of the task

4. Time : Maximum time allowed for the task
5. Unit : Time unit used

46

Chapter 4 - Workflow Specification

In addition, the following information will also be included :

1. ACTOR : List of actor names who is responsible for the task

2. NOTIFY : List of names that will be informed apart from the responsible actors

3. FORM CREATE : List of form names that will be created in the task

4. FORM MODIFY : List of form names that will be modified in the task

5. FORM_REF : List of form names that will be referenced in the task

6. EXCEPTION : Method to handle exception and respective argument

7. COMPLETE : How to proceed upon completion of the task. It is used to determine
the control flow and task sequences.

For each type of information, the required arguments are included between a pair of
bracket with comma as separator. And, the actual content of the arguments are listed in the
same order as the arguments between a pair of square bracket and separated by comma.

The following is the task specification of Initiate change request :

TASK Initiate change request :
GENERAL {description, type, precede, time, unit} flest, , 1, 30, Minute]
ACTOR (actor list) [User]
NOTIFY (actor fist)]
FORM_CREATE (form list) {Change Request Form]
FORM_MODIFY {form list) []
FORM_REF (form list) []
EXCEPTION {method, argument) flgnore,]
COMPLETE (method, argument) [Start Single Task, Approve change request]
END TASK;

Except COMPLETE, the number of arguments for all information is fixed. Based on the
workflow captured in the workflow editor, after the completion of a task, there are four
possible ways to proceed : i} End Process; ii) Start Single Task; iii) Start Single Task
Based on Condition and iv) Start Multiple Tasks. Therefore, the number of arguments will

vary. No argument is required for End Process. Like this :

COMPLETE (method, argument) [End Process, |

47

Chapter 4 - Workflow Specification

For Start Single Task and Start Multiple Task, the task name or list of task names is need.
The number of arguments in Start Multiple Task depends on the number of tasks that run

in parallel. For example :

COMPLETE (method, argument) [Start Single Task, Approve change request]
COMPLETE {method, argument) {Start Multiple Task, Schedule change request, Schedule UAT]

For Start Single Task Based on Condition, the number of conditions and the detailed
conditions are required. Conditions are specified by agent or form value as described in
Chapter 3. And, they are included inside a pair of bracket. For example, there are two

possible ways to proceed :

COMPLETE {method, argument) [Start Single Task Based on Condition, 2,
(By Form, Change Request Form, stafus, =, disapproved, Archive change request),
(By Form, Change Request Form, status, =, approved, Impact analysis)]

The following example is used to illustrate the complete workflow specification described

above. Given a workflow as in Fig. 4-1, its workflow specification is shown in Table 4-5.

= g —

[- Warkfirw Mamigar - [Sefreurs Chosga Reguant] (ay.=fd)
s.Eb Dnoerr Tools. Yiow belp T s

HRE IR

Q6] BB - 7 o

-} Sousxce code ' i

v ! -
- TR ITT) 'L!f:'-":lu_!:lu‘::f_u‘vlilr"'_'»:;.-.‘_l‘;lz.“_'jkit,lll‘?_’%
e — - U Cpt s i o

mki™ %

PR BTN
Fig. 4-1 A sample process model.

48

Chapter 4 - Workflow Specification

WORKFLOW_MODEL Software Change Request (name, description, database)
[Software Change Request, Standard procedures to handle change request, wiidemo]
USES ACTOR_MODEL RegéActor;

USES INFORMATION_MODEL ReqFornt;

START Initiate change request;

TASK Initiate change request

GENERAL (description, type, precede, time, unit) test, , 1, 30, Minute]

ACTOR (actor list} [User]

NOTIFY (actor list))

FORM_CREATE (form fist) [Change Request Form}

FORM_MODIFY (form lisf) [J

FORM_REF {form list) []

EXCEPTION (method, argument) (lgnore,]

COMPLETE (method, argument) [Start Single Task, Approve change request]
END TASK;

TASK Approve change request

GENERAL {description, type, precede, time, unit) [test, , 1, 2, Day]

ACTOR {actor list) [Project Manager]

NOTIFY (actor list} [|

FORM_CREATE (form list) [}

FORM_MODIFY (form list) []

FORM_REF (form list) [Change Request Form)

EXCEPTION (method, argument) [ignore,]

COMPLETE {method, argument) [Stari Single Task Based on Condition, 2, (By Form, Change Request Form, status, =, disapproved,

Archive change request), (By Form, Change Request Form, status, =, approved, Impact analysis)]

END TASK;

TASK Archive change request
GENERAL (description, type, precede, time, unit} [test, , 1, 2, Day]
ACTOR (actor list) {Support}
NOTIFY (actor list) (]
FORM_CREATE (form list} [)
FORM_MODIFY (form Eist) {)
FORM_REF (form list) []
EXCEPTION (method, argument] [Ignore, |
COMPLETE {method, argument) [End Process,]
END TASK;

TASK Impact analysis

GENERAL (description, type, precede, time, unit) [test, , 1, 4, Day]

ACTOR (actor list) [Support]

NOTIFY (actor list)]

FORM_CREATE (form list} [}

FORM_MOCDIFY (form list)]

FORM_REF {form list) [Change Request Form)

EXCEPTION {method, argument) {{gnore, {

COMPLETE (method, argument) [Start Multiple Task, Schedule change request, Schedule UAT)
END TASK,

TASK Schedute change request
GENERAL {description, type, precede, time, unit) [test, , 1, 1, Day]
ACTOR {actor list} [Project Manager]
NOTIFY (actor list)]
FORM_CREATE (form list) (]
FORM_MODIFY (form list) [}
FORM_REF (form list) [Staff schedule, Project schedule]
EXCEPTION (method, argument} [lgnere, |
COMPLETE (method, argument) {Start Single Task, Do the changes]
END TASK;

Table 4-5 Process Specification.

49

Chapter 4 - Workflow Specification

TASK Schedule UAT

GENERAL {description, type, precede, time, unit} [test, , 1, 1, Day]

ACTOR {actor list) [Project Manager]

NOTIFY (actor listy §

FORM_CREATE (form list)]

FORM_MODIFY {form list) [}

FORM_REF {form list) [Staff schedule]

EXCEPTION (method, argument} {lgnore,]

COMPLETE {method, argumeni} [Start Single Task, Do the changes)
END TASK;

TASK Do the changes
GENERAL {description, type, precede, time, unif} [test, , 2, 10, Day]
ACTOR (actor list} [Programmer, Support]
NOTIFY {actor list) [}
FORM_CREATE (form fist) []
FORM_MODIFY (form list} [J
FORM_REF (form list) [Change Request Form, Source code]
EXCEPTION {method, argument} [Ignore,]
COMPLETE (mathod, argument) [Start Single Task, Test the changes]
END TASK;

TASK Test the changes
GENERAL (description, type, precede, time, unit} [test, , 1, 8, Day]
ACTOR (actor list) [Programmer, Tester]
NOTIFY (actor list) [
FORM_CREATE (form list) [)
FORM_MODIFY (form fist) [J
FORM_REF {form list) [Source code, User requirements)
EXCEPTION (method, argument) [lgnore,]
COMPLETE (method, argument) [Start Single Task, Perform UAT)
END TASK;

TASK Perform UAT
GENERAL (description, type, precede, time, unit) [test, , 1, 5, Day]
ACTOR (attor list} [User]
NOTIFY (actor list)]
FORM_CREATE (form fist) []
FORM_MODIFY (form list) f)
FORM_REF {form [ist) {Change Request Form]
EXCEPTION (method, argument} [ignore,]
COMPLETE {method, argument) [End Process, |
END TASK;

Table 4-5 (Cont’d) Process Specification.

50

Chapter 5 - System Implementation

5. System Implementation
5.1. The Workflow Capturing Component

The workflow capturing (WC) component of WAT is designed based on object-oriented
concepts and implemented using Visual C++. It consists of a workflow editor which
provides a easy-to-use graphical interface for the definition of objeéts such as processes,

tasks, actors, forms and the connections between them.

In order to define a workflow, a user should start the WC component by clicking on the
icon shown in Fig 5-1. Once the user brings up the WC component, he/she will be given
access to the workflow editor (Fig. 5-2). With the workflow editor, the user can either

define a new process or modify a previously defined one.

|
] m@mga;&y

1@@ w7

B 3# Workilow Elemants| ||

! B Taskes y Iry
|
|

.Iﬁ"! ___ ' =i i

Li—% Acton i i_i
i Forms ey

: F
A |
Fdr ! l'neadw‘fg"r -4
Fig. 5-1 Icon of the WC component. Fig. 5-2 The workﬂow edltor

To define a new process, the user will be asked to give the process a name and a brief
description. He will also be asked to give the name of the database in which this process is
linked to (Fig. 5-3). The database, which is maintained by Lotus Notes, contains the
implementation logic and design of forms in which the process may need to create, modify
or refer to. Then, the WC component will prompt user to input the actor and form files,
which are the actor and information specification generated from the WE component (Fig.
5-4 and Fig. 5-5). It is because actors are registered and forms and designed in the WE
component. Based on the specifications, a lists of actors and forms may be involved in the
process will be imported in the WC component for the purpose of process definition. An

example is given in Fig. 5-6.

51

Chapter 5 - System Implementation

pan actor |mpor1' fila IEZI

DRI —— T
Sactordo IQ_IPMFom.da-r

[} ProbForm.dat
@pmc.dat

[testform.dat

R

oftware change process

B ETW i T bas D

R
) [F’iocedwe handles all change lequest ‘i ‘

= R

Fie:o{ype Wmmmuia[dat) '“_

_r. N

PRSI

Flg 5-3 Deﬁﬁihg a né\,{r ;ﬁrocess. Fig. 5-4 Importlng actor ﬁle

L E'E Insert " Tools \!Iw Thalp - o e tE o
D[R E'Béir TR wl: l_ia ard iR
NS BIA i 25 A
28 Workflow Elermants
i E R Tasks
LI -
L—‘,I_Ellmomot Ig]pmmm : ' li,:_‘.“‘:f -
3] ehgForm dar [3] ProbForm dat * i ng/PO)
L] [Z}destormdat @pmc.daf & % E: @K@::;MLYEYU 1
|1 %tjﬁ:ﬁm [testformdat ;,3 : i] r. ::kyr_.mnu i
|£' n !:_. E-@ Discussion Record
E ! i~ Panctional Spacification i
S S VT A T T T T —[@) Technical Specification s
Fdenm'-e< fomdw 1 e “ -—lwoﬂm‘pm. ?I o _I;I
. .. T 2 Ay
,mam F fhe "ot i A
Yot fomsimeetliel) - Reody " r‘rrmf—*,;
Flg 55]mportmg form file. Fig. 5-6 The workﬂow editor after importing files.

If a user needs to modify a previously defined process instead of creating a new one, a user
can open a workflow file defaulted to have type “wfd”. An example of it is given in Fig. 5-
7. The file change.wfd contains a previously defined change request process. Once it is
opened, the features of the workflow editor become more obvious. Based on this example,

we discuss these features in the following.

The workflow editor is divided into two panels as in Fig. 5-7. The left-hand panel shows
the workflow elements of tasks, actors and forms. The nodes on the left-hand panel can be
expanded and collapsed when the user double clicks on them. If it is expanded, a user can
view all the currently available tasks, actors and forms. By double clicking on any of these
workflow elements, or by clicking the right button to bring up a shortcut menu, a user can
bring up the details of the properties associated with it (Fig. 5-8). Once this shortcut menu
is brought up, the user can choose to view or modify the properties of the element or delete
them from the process. A user can also delete a workflow element by selecting it in the

left panel and pressing the DEL key.

52

Chapter 5 - System Implementation

I oics[n 212 r‘,,] ['_J‘
ggi olatd
ER]

—Evﬂ;

Flg 5-7 A prevnously deﬁned change request process

= Worldflaw Manoger - [Chungﬂ Contrel] (chango .wid) EEIB

GJ Inser? 3 Jools . , “‘: R

s B|.i

!f: B :ﬂ) Workflow Elsrants

il SR Tek

an 5 8 —Shortcut menu by nght nmouse Clle

The right hand panel, as shown in Fig. 5-7, shows a task-based view of a process. In this

view, users can find several different types of icons. They can use the start and end icons

(Entries 1 and 2 respectively in Table 5-1) to indicate the beginning and end of a process.

The task icon (Entry 3 in Table 5-1) is used to create tasks and the “arrows” icons (Entries

4 and 5 in Table 5-1) establish sequential and conditional relationships between the tasks.

Entry Explanations

1 Create the Starticon

2 Create the End icon

3 Create a new task

4 Establish unconditional {sequential or parallel) task relationship
5 Establish conditional task relationship
B Create a new workflow

7 Open an existing workflow

8 Save the current workflow

9 Close the existing workflow

10 Switch to task view

11 Switch to actor view

12 Selection pointer

13 Create a new form

Table 5-1

Icons in the toolbar of the task view.

53

Chapter 5 - System Implementation

To create a new task, a user can simply click on the task icon on the toolbar and then click
on any place on the right panel. Once the user releases the button, he/she will be prompted
for the detailed attributes of the task. Fig 5-9 shows the dialog box containing six different
tab pages on which the user can specify the task attributes. In our system, the attributes of
all the tasks are group into six different categories and the six tab pages are organized
accordingly. These six tab pages are : “General”, "Forms Created",
"Forms Modified", "Forms Referenced", "Actors" and "Exception Handling". The
"General" tab page allows users to enter task name, a brief description of the task, task
type, expected maximum duration (see Fig. 5-10). The “Forms Created” tab page allows
users to select from a list the form(s) that is or are to be created during the task (see Fig. 5-
11). The “Forms Modified” tab pages enables users to select from a list the form(s) that is
or are to be modified during the task (see Fig. 5-12). The “Forms Referenced” supports
users to select from a list the form(s) that is or are to be referenced during the task (see Fig.
5-13). The “Actors” tab page allows users to select from a list of actor(s) that is or are
responsible for the task (see Fig. 5-14). And, the “Exception Handling” tab page helps

users to specify how the task will be proceeded when exception is raised.

xl o e ¥

7 Aclm
S .. Mo «Mod'ﬁed Fozms .
—

Fig. 5-9 Dialog box for users te specify task properties.

foscbropery @]

HdummdFunm
,Gmd °
i| oy

» ,mk Name

’ Desmmn

Flg 5-10 Gencral tab page of task property Flg 5—11 Create Forms tab page of task property.

54

Chapter 5 - System Implementation

Flg 5-14 Actors tab page of task property Flg 5—15 Exceptwn Handllng tab page of lask property.

Once entered, a new task icon will be added in the right panel and the user can move the
icon around by drag and drop. Also, task properties can be viewed or modified by double
clicking on the task icon or by right clicking on it to bring up the shortcut menu. The task

properties can only be modified through the tab pages associated with the task icon.

To specify the flow of work from tasks to tasks, a user can define the relationship between
them. The relationship between two tasks is sequential if one task is to be executed after
the other unconditionally. To define such a relationship between two tasks, a user can first
click on the “solid-arrow” icon on the toolbar (Entry 4 in Table 5-1). Then, user can click
on the task icon of the one that is to be executed first and then click on the icon of the one
to be executed after. The relationship between two tasks is conditional if one task is
executed after the other only when a certain condition occurs. In such case, to define a
relationship between two tasks, a user can click on the “broken-arrow” icon (Entry 5 in
Table 5-1). And then, user should click on the task icon of the one to be executed first and
then click on the icon of the one to be executed after when some conditions are met. As
soon as the user releases the button, a dialog box will be created requesting the user to give

the conditions under which the second task should be executed. Condition can be specified

55

Chapter 5 - System Implementation

by agent or form value as mentioned in the previous chapter. Fig. 5-16 shows a sample
dialog box of conditional task relationship. This condition is evaluated by a form called
‘DCR’ and when the field ‘continue’ equals (=) to ‘adopt’, the result is true. Otherwise,

the result 1s false.

| ¢ Waekfhw Managar « [Tarting] (I‘nl{n.wﬁ)
{an Irm:ri I-aefs "yfwu T

Condrhannl :unnc:tnn ProPﬂrﬂf I F—‘JJJ—LJB = rﬁ'ﬂ-’"’ ’_..J 3; STl S
Uy T ‘;f 0 R LA :

=8 ﬁ} Warkshwe Dty
D) Tl
2 Wl Actem |
i—g YirgPOLYY; |
& GaldeLte ;
) CuRPOLYY i
] & Tt CoaBOLYY
§ R0 ¥ CungPOLYD ;
] G!omChu\:WLTUi
-§ Stahen LurPOLYY |
!— g Bicky LewPOLYY
1. § Simon WerghOLYY -
v) Formu !

T

: - piddy, o T W
Flg 5 16 Condmonal task relationship dialog box. Fig.5-17 An example of actor view.

I iNUA\l 14

As discussed in the previous chapters, a user can swap between the task view and the actor
view any time during editing. To switch from the task view to the actor view, a user can
click on the actor view icon (Entry 11 in Table 5-1). Once in the actor view, the user will
see different icons corresponding to the different actors on the left-hand panel (see Fig.
5.17).

The actor property dialog box is shown from Fig. 5-18 to Fig. 5-20. The three tab pages
includes : i) “General” on which a user enters actor name, title, department and task
involved (see Fig. 5-18); ii) “Subordinates” on which a user select from a list of the
actor(s) that is or are the subordinates of the current actor (see Fig. 5-19); and iii)
“Superordinates” on which a user select from a list of the actor(s) that is or are the
superordinates of the current actor (see Fig. 5-20). And, Fig. 5-21 is a sample of form
property dialog box. It has only one tab page that is “General”. On this page, a user can

specify the title, description and related procedures of the form.

56

Chapter 5 - System Implementation

e

I Actor Proporty] X]

B JTask nvolved in sequenm
EAssign investigator %

v+ '[Ciese and submA DOR |

 {|tovestigate DCR I
|Acieet .

5| Submit change request I i—-‘—J

+ |Update -]g |

p—— S ——

A:hlr Pﬂtpaﬂy .

ot et~

fia Radioos 3|
|g(:<7 ﬁé;.;?u]
|. ﬁ FlermveAl! |

Fig. 5-20 Superordmates tab page of actor property Flg 5-21 General tab page of form property

Some of the actors may be connected if they are defined in the task view to 1) be
responsible for the same task; ii) depend on the other; or iii) reference the same form(s).
Fig. 5-22 to Fig. 5-25 are examples of tab pages in an actor relationship dialog box. This
four-tab pages are : i) “Task cooperation” on which it lists all the available tasks in the
current process and all the tasks that the two actors are involved (see Fig. 5-22); ii) “Task
dependency” on which they indicate which actor depends on which actor and their
corresponding tasks (see Fig. 5-23 and Fig. 5-24); and iii) “Information sharing” on which
it lists all the available forms in the process and those are referenced by both actors in
different tasks (see Fig. 5-25). And, Table 5-2 lists three more icons in the toolbar in this

view for users to specify these kinds of actor relationships.

57

Chapter 5 - System Implementation

(" Avaibls Task:~ ™t - iRl
%mmm-: I :1DCR board vote
:|Assign investigate | " | Bibtain management | |
‘| Investigate DCR \P\ i -1 | Fulure
AR i

Fig. 5—2‘2” Taék cboﬁérétion in actor relati;mship. Flg 5 23 Task dependency in actor relatlonshlp

A:fnr rolotienship proparty []
= 1 .

Actor rclationship proporty

e A ok Tl

3 Related task: 4 K- - L

. ~. |DCR board vote
y Ubtammanagerm

i | N [e | il

1g 5-24 Task dependency in actor relationship. Flg 5-25 Informatlon sharmg in actor relationship.

Entry Icons Explanations
1 '.@ Create information sharing relationship
2 r% Create task cooperation relationship
|
3 : Create task dependency relationship

Table 5-2 Icons in the actor view.

Since all valid users must first be created in Lotus Notes and all actor information will then
imported to the WC component, therefore, users need not create a new actor in the
workflow editor. In the actor view, users can check whether actors have any kind of
relationship between them and if so, how they are related. As all these actor relationships
are derived from the workflow defined in the task view, they will be changed accordingly
when the properties or sequence of tasks change. As a result, users are able to view
updated actor relationships. In order to support different viewpoints and requirements of
different users, users can drag actor icons around in the actor view as if task icons in the

task view.

58

Chapter 5 - System Implementation

To specify the relationships between actors, a user can define the links between the actor
icons. As described in the previous chapter, two actors have information sharing
relationship if they reference the same form in the course of the process. To define such a
relationship between two actors, a user can first click on the “information sharing” icon on
the toolbar (Entry | in Table 5-2) and then click on the actor icon of the one of the actors
and then click on the icon of the other. As soon as the user releases the button, a link will
be created between the two actors. User can select the link and invoke the shortcut menu
by the right mouse click to specify the name of the form(s) shared and the name of the
tasks which each actor is responsible for. Similarly, two actors have task cooperation
relationship if they work in the same task. In such case, to define a relationship between
two actors, a user can click on the “task cooperation” icon (Entry 2 in Table 5-2), and then
click on the actor icon of the one of the actors and then click on the icon of the other. To
specify the task cooperation properties, user can use the shortcut menu to give the task
names(s) that both actors are responsible for. When one actor works after the actor, they
have task dependency relationship. In this case, a user should click on the “task
dependency” icon (Entry 3 in Table 5-2), and then click on the actor icon of the one to start
working first and then click on the icon of the one to work afterwards. Through the

shortcut menu, user can specify the name of the task(s) that start first and later.

After viewing or modifying the actor relationships, user can click on the task view icon
(Entry 10 in Table 5-1) to switch back to the task view. And when the flow of work and
all actor relationships have been confirmed, user can export the process specification,
which will be imported and used in the workflow enactment component later, by the ‘File -

Export’ menu.

59

Chapter 5 - System Implementation

5.2. The Workflow Enactment Component

The workflow enactment (WE) component is an application implemented on top of Lotus
Notes Release 4.6. This is to take advantage of some of the unique features of the
groupware. In addition to the provision of a medium for communication, Lotus Notes also
provides an easy way to track processes and a secure environment for the sharing of

information.

Lotus Notes has a document oriented data model for compound multimedia documents,
and a Notes application typically consists of documents, views, and forms [Reinwald and
Mohan 1996]. In Notes, documents are used to refer to data stored in databases, views are
used to refer to lists of documents taken from different viewpoints, and forms are used to

refer to the interfaces for the display and editing of the documents.

For enactment of the workflow defined in the WC component, we have to make use of
several Notes features including links, agents and LotusScripts. As far as links is
concerned, Notes has three different types : document links, view links and database links.
Document links are used to link a Notes document to another Notes document in the same
or in a different database. These links allow users to have direct access from one
document to another most effectively. The document link concept used in Notes can be
considered as ‘call by reference’ in programming language design. In a similar manner,
Notes also provides view links and database links to link together views and databases

respectively.

Notes agenfs are event-driven automation design elements. They are programmable and
can be programmed in such a way that they can be triggered automatically to accomplish
pre-defined tasks when certain events occurred. Lotus Notes allows users to decide when
to start an agent, which documents the agent should act on and what tasks the agent
performs. Agents can also be executed manually, according to schedules or whenever
certain changes occur. Based on different combinations of criteria and settings, Notes

agents can be used to extend an application's workflow capability.

60

Chapter 5 - System Implementation

LotusScript is an object-oriented basic-like language. It can be used for the programming
of agents or applications in response to user actions. For script programming, Notes
provides a set of object class libraries that are accessible at script-level. In addition, it also
provides OLE2 automation support and an integrated environment for development and

debugging purposes [Reinwald and Mohan 1996).

With these Lotus Notes features, the WE component was constructed. It uses such features
as links, agents and scripts in forms and databases and it consists of six core databases: (i)
the quality manual database; (ii) the quality procedures database; (iii) the organizational
structure database; (iv) the workflow specification database; (v) the application database;

and {v1) the users’ mailboxes. Fig. 5-26 shows these databases m the Notes environment.

Access to these databases can be made through double clicking on the respective icons.
For example, by double clicking on the quality manual database, users can view the quality
manual as shown in Fig 5-27. The window is divided into the left and right panel. In the
left panel, there are nodes that users can double click to expand or collapse the different
views in the database. By expanding on a node, the users can view information displayed
in different logical format. If a user clicks on any view, e.g. on “Folders and Views”, all
the documents in the respective view {documents which match the selection criteria of that
particular view) will be displayed in the right panel. By double clicking a document/row,
e.g. when “1.3 Organization - Authority and Responsibilities” is double clicked, the

document will be opened so that users can see the details as in Fig. 5-28.

,_.LWarInpnl:a at Of‘ﬁ:ﬂ - Ln'h.ls No1’\== B ! 7

, hd Cl FM:’ adVee s Sdmocatunoq. ﬂwnduuhlc-cﬁckh‘
S | [CAG A E
. [3] ooty " {]
b i Otten 1 Compauny Policy .
x 1.1 Oualhy Pelcy Swalenient |
* 1.2 Dislitulicn Revisien eadf
v * 1.3 0rgonization-Arkgriyen
. i . * 1.4 Oranizeson Chart
ORI K 5 2 Syslem Qullines
- " Application [t Ulganlzatsonal - - ;: c;,:net:j an
‘Databasa j © Suucture . K ¢ x 2.2Camewew

| Y T " ',\'.-'_ s A L o - * | 230owmemCewol g
P e I IﬂlfIce U S e
Fig. 5-26 Workflow Enactment Component. Fig. 5-27 Quahty Manual view.

61

Chapter 5 - System Implementation

!
v
|

: - Je)

[@_aow fﬁ*!ndu | VFnd] Pwl'” - P] B Hen l'ijlm ""::
) Cuslty Moruid 5}
31 Comoany Poiy {l
Chapter 1 Hj
1.3 Organization - Authority and Responsibilities il
1.3.3 Quality Manager 51

The quality menagar is the fina} aurthority on &1l marars relatng io Guelty and quaity
palicy trroughout the company’s operation. He/she is direcdy respantible 1o the
managing diracio? and is the compamy’s representative for ansuring that ofl the
raguirements oullined in this manual ara efipctively implemenigd and meintained.

Tha quality manager has the prime responsibility to develop and maintain the quality
Systgm i endue pli wath quality Ha/she is ragponsible far, bul
not limited t the lolowing actvities

1. Mainlaining quelity system doc

2 Reviewing the A
prupusa!! kar mptwement

3. Monitoring the compeny’s quality system o datermine compliance with the
raguirements of IS0 9001.

ips a4 they atac quakty end devalapment

4. Devetoping ard mainaining e company's guality raining programme.
6. Rosomng all matters assooetad with quality in tho company.
6. Monitoring the campany’s quality sysiem by means of auditing. to deleming -
= that quality policies are being adherad to;
s whera improvements ere needed;
« vantying mgfememnuun aithe necassary mrreclrvo acton,
7. Liniting wilh cu qua!lty SUF&NCa rapra vas, 1o ensure that aciual of

[N T

T TR P Yy =) [T DM o)

» Quality System

» Design Control

¥ Purchasing

» Contract Review

» Muarlasnnare Coannl

» Docement and Data Control

Fig. 5- 28 Sample document in the Quality Manual.

Flg S 29 QMS Procedures view.,

2 Feders end Vieus ff-f' I* {5850 TR oy JHhtn dUblis ek it
o [» writing Quality System and v~
b o Dpsin |» Management Respansibilily

il Craels imt .!.l

N A I b SN TN | 1

Similarly, by double clicking on the icon of the “QMS Procedures” database (see Fig. 5-

26), users can view all the procedures in the organization.

Again, by expanding and

collapsing the nodes on the left panel as shown in Fig 5-29, users can view document

containing different procedures and users can click on a triangle in the right panel to

expand or collapse that category to see all documents belonging to that category. An

example of document in the Procedures database is shown in Fig. 5-30. Note that the tool

bar contains icons for users to edit the current procedure, find keywords, print out the

current procedure, and go to previous and next procedures as well as exit from the current

procedure.
[2F (uasitiad) + Latua Hares I [-BI=]}
P T Bla-~Ed1 - Yiear Craate: “detions ' Winkw el "l

1%

[Pinvas B | S] T > oo [aFea] _mj

(Lol iagl 2l T] P11 s [

_ Preewdan | ;] o
,‘.';
Management Responsibility L
4. Procodur Yy
4.7 Varification Rogources u!

Set Duality Racords wre and Training oxx

<Job title> defines where @ the process tesing and inspectien

occuz, <Job bile™ trams the operators to test or inspecl their

work. N
o

Truining records for inspection and test are maintained venfiing . 1

training, <Iob title> is responsible For there records. The <names '

of training records™ are stored in <department™ and mamticned by

b L

A

e

T uruad doncrtly ek S 0s T

Fig. 5-30 An example of document in Procedures.

w2 Ferdets and Views

v 2 ;':’"h bt Ting/POLYU
g Use) POLYY
9 a r.i {UsardPOLYU
bl Desn Keilh ChanfPOLYU

Ko Fai Chong/POLYL
Gloria Cherung/POLYU
Staphea LemPOLYLY
Ricky Laa/POLYV
Simagn Wong/POLYU

A —T T

= :
| SRR [b

Fig. 5-31 Actor view in Lotus Notes

62

Chapter S - System Implementation

‘Staff Record
YING/POLYU

i GnLeava Te: Emplopec

Porsanal Opteils | .
Emploment Date 0141175
Siall Hama O Wi, YingPOLYU
3™
Cisin

e [y
i ns
| Adhe
¥ 0 Frizpat Mo
Phont M5
wnark 1
| ssb-ominote a1 " Super-Ordinate List
Urs | FOLYU, e POLYU Fuih CharwPCLYU
H — -
7 B RS Y. ST T RO <1 TR 1

Fig. 5-32 An example of document ﬂibrganizatidﬁal Structure.

By double clicking on the icon for the “organizational structure” database, users can view
all the actors in the organization. As shown in Fig 5-31, users are given both the left and
right panel. As you double-click on a name in the right panel, a staff record as shown in
Fig. 5-32 is displayed. It is an example of document describing an actor in the
organizational structure database. As described before, users are required to export actor
specifications from the WE component to the WC component for the definition of a
workflow and the organizational structure database is the place where actor specifications
are generated. To facilitate the export of the specification, we provide users with an
“Export Actofr” button on the toolbar so that they can export actor specifications from any

view in the database.

The workflow defined in the WC component are imported in the workflow specification
database of the WE component in the form of a set of workflow specifications described in
the previous;chapter. For security purpose, only process administrator (a special role
defined in the workflow specification database) can import workflow specifications into
the WE component. Once a user double-clicks on the workflow specification database
icon, the uscitr will see its contents (Fig. 5-33). The specification includes high-level
process information as well as low level task specifications. The view lists all the
processes in ﬁle organization with all the tasks that belong to each process. By clicking the
triangle next to a process name in the right panel, the process can be expanded and
collapsed to show and hide all the tasks in that process. To see the detailed definition of a
process or taék, users can double click the selected process/task document in the view. Fig.

5-34 and Fig. 5-35 show an example of a process and task definition respectively.

63

Chapter 5 - System Implementation

DE-Iw._Edlt gm Cmm: Actll:m ﬁlndw H\zlp ¥R

,.L(Unﬂﬂad) I.nhn Natos

'!{}I@Fﬁl%ml#?ﬂ‘fﬂ@l

“"'*F £y leml{ eﬂmmﬁ o 1S

Q 1. Process Defintion }

» Chunge Control

Nor=mrnfl

b Q 3 Process Tascking | T Design s
© Agerts Process Definiticn
b b Design ’_ Start-» Drait Funcational Spac
|‘ interview
f Refine Funconal Spec ?
N ‘ Frepere Technicel Spec Process Nome - Chunge Corkla
[Eveluate Functional Spec . Description Standard procedites to control
) ‘ Detsil Interview Manual i boltwers change
End < Revise Technicel Spec Menual B : Database ' workfiowhehgetr 5
* Prablem Log ¢
. NG | N | l' Sultwu.re Chnnga Cunlrul . . {..:.:T'T e ik
o o o e s ey o 1;@}0,;“; Ry B E .1 wan g0 ’}V_Juiﬁcol i

Fig. 5-33 Workflow Specification in Database. Fig. 5-34 An example of process definition.

i rnm-n - DO . . umum s
Lﬂ Eiles Edites y_lw‘\.ﬁnaﬂ Ac‘im: Window . b
T : Irn-Mr i mzﬂ“e i l
L SR B EJ'
. ,, !
Dotationn T [th y = ‘ |”l
Tawk Oetatls g7 0 3 T Mr ?;?:r RN l
Stost Up Tark Yezx | 5' i m
_Ho. of Precooding tock 0 [AP A BT T AN R A I
Totk Hamo___Prepas o Lokt . LT DE;_L-L_\ ISR e | 1||II
Tark Gosc dosc I ’ Desciiption __ Design Chango Procedue f
) L.a ;E.. r;w o Databasa workflowhdcp ”F
i ax._dwation 1 Doy _ o ; FRequest DatoTame 11719707 (50506 PML
' Fosy (:nul«_:d Changs Contol Migration Checkitt il 1 Cunent Task (uoste and pbomd DLA 1"
:""'f"_"'“" _ " | Teas cwration 30 Mrwes S
om it ! T ask Complection List ?[
Acloiz Keith Chan/POLYU Y I
Hotify ... '-u :
= - 1. Provious Actors
Frconinm Haniiny —fgrs g @,m—HWh!!
| \pon Comgletien .. R TF T T
| Ston. Singlo Tesh i Ceeated By Ving/POLYU on 1471947 05053 PY
' Tack Hamo Chenge Reques! 5] q tem Fdiled By Yeg/POLYU an L1/15/97 0507 40 P "
: - P i - ———— S
B h‘ . I T NN == !_1 T N T N Y =~ T |

Fig. 5-35 An example of task definition. Fig. 5-36 An example of process tracking document.

Having workflow specifications defined, instance of the process can be initiated by the
process owner (another role of the workflow specification database) whenever required.
Upon process initiation or task completion, WAT generates a process tracking document
for that process instance. It is a Notes document that contains all the necessary information
to start the process. Also, a unique reference number called Request ID will be created and
stored for each process tracking document for document indexing and searching. In the
course of the process, this document will be updated and additional information will be
inserted accordingly. Information includes process name, description, name of application
database, maximum allowable duration, requester, previous as well as current tasks and
Fig. 5-36 shows an example of such a process tracking

actors, and completed tasks.

document.

64

Chapter 5 - System Implementation

Apart from the process tracking document, a task notification message will be generated.
Each responsible staff will receive one message through electronic mail so that they know
the task that they are responsible for has been started and requires them to work for. They
will receive this message in their mailboxes as a task notification. Such a notification

includes appropriate ‘pointer’ (Doclink in Notes) so that users can get required information

directly. Fig. 5-37 is an example of task notification.

______,,_,___.__.__.._.._.__..,..
I J‘.C‘B"-M, thq_rda{_] ;(;"3.‘;:'-:_,-" :
o Task 4 Rogento vRGIMPS
H - Ma
Sl 1 a1k Flotke ion . 1
Pedy, Bifew G MGl Costedum d) ClowlR ;
]
DueDae: [EAES ! 1
T | Owmae vokodds |
fudoy |6 yw? | § Tegoan ousime vy EEERL -
oyl j| CCuesl Task ook anc mbrd OCA | g
. S I ey % Mruds it M coton imotafiuntindatun s nits Sl Sinen
Azsred iy 4 Vask Complotion Lisl ’
e C i
Previous Actirs
Addlond wd g = f('-“"—j [|m--:=mncn -~ UrafGered]
Pracess Dofinfion annanofrsuun ‘o] Pracass Tracking 2 2]_ al. = = = ‘J
l

T e e Snmet e T e e e T e
Fig. 5—37 An example of task notification. Fig. 5-38 Buttons and d1alog box in trackmg document.

Responsible actors can go directly to the process tracking document through Doclinks in
the task notification message or from the process tracking view in the workflow
specification database. Through buttons on the top of the slip, actors can raise exception
when necessary, mark task to be completed, and view previous comments from other
actors if there is any. Also, actors can create, modify and reference forms. By looking up
the current task definition, the system can check if there is any form to create/ modify/

reference.

If there is any form to be created in the current task, a dialog box as Fig. 5-38 will be
prompted to let users to choose which form to create. Otherwise, a message will be
prompted to inform users that no form is required to create in the current task. Similarly,
the ‘Modify Form’ and ‘Reference Form’ buttons behave the same way. Using the
Request ID as a key, WAT will put actors directly to the required or selected form. All
documents created under the same process instance will inherit the same Request ID.
However, only current actors that have not finish their respective tasks will see these
buttons and be authorized to perform all the above functions. Other actors can only

reference the information.

65

Chapter 5 - System Implementation

Upon task completion, actor should mark the task as completed by clicking the
“Completed” button in the process tracking docunienit. Then, WAT will check if all the
forms to be created, if there is any, before proceeding to the next task. Actor will be
prompted if some required forms have not been created. Otherwise, WAT will prompt
actor to enter his/her comment. Fig. 5-39 shows the dialog box to input comment. Then,

there is a message box such as Fig. 5-40 indicating that the current actor has completed the

task.

. DLy

: Pooi)] : !
| [tev; lhaNSRhubommm ~i'f i
| Eoed) \’) T
1 L e
| . R ATV MY 1
| _ProcessMama sA 0

Desciiption Niws bohvich fiaguesl ricesa 'i'l‘[-
j| Daizhaa wortflowhrst :

_Roguest Dalol me 12713/57 05 34T PM i
| Cument Tak __PM geneioes KSA i
b Max, chrathon 1 Dq A
| Tak Conglet !

A B
FMDLYU I_\,Im I::)‘Pummnsa = Proyoct I ”

P9 B :'_LAI RN |=-:S-°‘"" _L—[l L - - -
Fig. 5-39 Comment Dialog Box F ig. 5-40 Task Completed Message Box.

WAT will wait until all the responsible actors have completed their works and mark
completed in the process tracking document. In order to start next task(s), all the forms
required to create in the current task must be created. Also, WAT will check the
availability of responsible actors, to see if any of them is currently on leave or has already
not work for the company. If so, current actor will be prompted to decide whether to select
other actor for substitution or just skip that actor. After checking all these, the next task(s)

can be started.

If there are several parallel tasks running and the current actor involved in more than one
task, the system will ask which task has been completed by the actor. When all the actors
of the task have finished their tasks, the process will navigate to the next task according to

the process specification.

66

Chapter 5 - System Implementation

The process tracking document will be updated by looking up the next task to follow. All
actors responsible for the hext task will receive a task notification with links to that process
tracking docﬁment and respective process and task definitions. Similarly, process instance
will propagate from task to task until completion. Through WAT, all tasks can be
completed according to pre-defined sequence, by the right people and based on different
conditions. Users only have to concentrate on human interaction - without involving in

any repetitive and administrative tasks that is handled automatically by the system.

The WE component 1s able to keep track of the status of all procésses that have been
initiated in the organization by different views, such as a sorted or a categorized view by
the current responsible actors, process name or request date (see Fig. 5-41 to Fig. 5-43).
Information such as the number of a particular process that has been initiated, the total

number of process that has been initiated on a particular date can also be obtained.

d B oL Warkfisw Specificatien - 1. Procan Tracking \ Dy Curront Actors « I.nh:!
D Elic E‘f ; Ylow - _Crvcn_u Action¥, . Window, . I_-[ez!p e)
|u|.-A B A P b e Tl f‘ﬁﬁrlmﬁa .

0 Folders and Views

A Q 2 Pocess b Tacks |
w Q 2 Pocess Tracking |

2 1. Process Defrition [

b Glorin Chaung/POLYLU
» K& Fai Cheng/POLYU

IHeque:lDa!e ||Tnak4‘: e d e Al

T Xeith Chan/POLYU

'k

» Qm nnaKr Prepara Change Control Checkfiicl -

; Q ByProcess Hame 10729797 ntesview - kezh Chan/POLYUY

‘ Q ByRequest Dets| Interview - Ricky Lee/POLYU

N b Q aEpicdProcess | 10/28/97 fnkenview - Keith Chan/POLYU

1 9 agents : Intesview = Ricky Lee/PDLYU y
1) B, Design w2787 Inkerviw - Keith ChanPOL *
i = ' Inkerview ~ Ricky Lea/POLYU W
J | 10722097 Inkerview - Keith Chan/POLYY *. &
g ; Interview - Ricky Lea/POLYL i
! , oam a7 Piepuuﬂwmﬁuwdﬁe:kiﬂ— -

" | __camirar_____ _prense Chanoe Cotrol Checkist - __l
il LT AT 2 e st i S0 Officed o JET Y

Fig. 5-41 The process tracking view by current actors.

L L}_Wﬂrlrﬁl- Spﬂtlﬁruhun -1 lrlnﬂl Tracking \ By Pracaxs Nomo - Letea Matox

rL:]Eiln Edit’: ww Creata . Aetions wlndaw Help kS lu.

_H“@’i A AL (e IHY*F"fﬂ RN

w 2 Folders and Views il
T 1. Procest Definiion i -
2 Process & Tasks

w Q, 3 Procass Tracking l

Q B_l,ll.'.memActmt

Q BEPm:anle

Q Byﬂemulbml-

b Q 4 ExpiedProcess |
@ Agents !
1

WIT%J&‘J I"]wﬂ

]ﬂeque:t Date’ |C|m=nl Task [Cumemt Actoes © .

¥ Change Conlrol

+ DCP

¥ Design

¥ Prohlem Log
10/29/97 UAT

UAT -- Lses1 POLYU
UAT - Leer2/P0LYU
10/29/57 Problem Log Problem Log - CN-RdyLeﬂ!D-PDL\I
Problem Log - CN=Simon Worw'D-PC

g Y T Desgn - Software Change Cantrol
10729497 impact snabis Impack anslysis - CN-KeFuD-eﬂQa“U
Impact analysts - CN-S[WLHN’U
10/29/97 intiste change Indiate change request ~ CHeltzer] /00
! } request
: ! 10/29/97 Impact analysis lnmma&sis-DN-KaFaiMJ
_ | o .. Impsct anasis - Cxllier AOPOLYL
T P N T S AT N <. -~ P i §

Fig. 5-42 The process tracking view by process name.

67

Chapter 5 - System Implementation

.}, Workflew Spacification - 3. Procoss Truthug \ Dy Raguozt Dote - Lotuz Notos !Elﬂ

lﬂ Eile.-"Edit Yiew Create Actions ﬂindow ﬁe!p,_, s X ., i
ORIl A Bl AP LA R l‘ﬁ»w
I' ~ (2 Folders and Views H -]Pmceu - Tﬂunent Tazk 'Cum:n! Acters” o F
[@ 1. Process Definion I » 11719797
I; Q 2 Process & Tasks » 11714537 N
| w Q3 Piocess Tracking v 10
\ 129197
X Q By&rrertAl:lms] b 10/28/37 A
" Q ByPracmName /287 !
§ Qgmemesbe] Pi0277 |
J ¥) 4 Expred Process ~09/01/97] i
X Q Agents Fi Change Control Prepaie Change Prepata Changs Control Chacklist:
’1) ., ! Coritial Checklsl i
I b [Design f Change Control mﬂ I.‘.hanE Prepara Changs Contrd Checkist
; Il Change Control Changs Recuest Changs Request - Ricky Lee/PO
ii s e o ! Changs Request - Glmal:hamﬂ

et LR wai) . 4 =30t~ HEH]

Fig. 5-43 The process tracking view by request date.

By comparing the maximum duration defined in the task definition and the elapsed

duration since the task has started, a process instance is said to be ‘expired’ if the elapsed

time exceeds the maximum duration. To monitor these expired process instances, an agent

is designed to run on a scheduled basis (such as daily or weekly). After running the agent,

those process instances satisfy the expiration condition will be marked as expired and

moved to another view, expired process view. As more and more process instances start

and execute, 1t 1s useful to help administrators to better manage and control all the

processes, as well as prompt them to take action. Fig. 5-44 is an example of the expired

Process view.

Eile s Edit " Yiew . Qfeate

“Aetiois L Wirdol: Helpi ¥

@’I*I%Iﬂlmlwfl 171@”@!1”’3*“

a f“”*ﬁ-lif I

u

Q, 1. Process Defindion

w Q, 3 Process Tracking
Q, By Curent Actors*
Q By Process Name-

N

W 0, 4. Expired Process

¥ 1 Folders and Views =l |

Q, 2 Process& Tasks

2, ByRequestiDate. ~

Iﬂequed%leent Totk: 1Cum:nl Actnu " BT

¥ Change Control

03/01/37 Prepare l:hmge Prepate Change Contiol Checkdist - Ké
Control Chec!

09/01/97 Prepare Chmge Prepae Change Conticd Checkbst - Keal
Caontsal Checl

09/01/97 Chargs Fleq_mst Dnnge Request - HmkvLee.vFDLYUJ

Change Request - Gloda Qmm/POlr

* Design
3, [By Process Name, TW27/57 Trieriew Talorviow — Vrg/POLYU i
Q' Agents Intervisw - Ricky Lee/POLYU i
T |
NS TN N T & e IGC_DJ Ifics ST

Fig. 5-44 The explred process view.

68

Chapter 6 - Test Cases

6. Test Cases

In this chapter, four test cases will be given to illustrate how WAT can be used to build a
QMS and automate documented procedures in an organization. They are categorized into
real and simulated cases. Real cases are processes that are practically implemented and
used, while simulated cases are well-designed processes. For the real cases, a new service
request process and a software development life cycle will be described. The new service
request process is used in a bank to automate the initiation and approval of service
requests. It starts from the initiation of a new service request and ends with sign-off of
new service agreement. For the software development cycle, it is used by a software
company in Hong Kong. It involves multiple processes from design, testing to user
acceptance. Also, project management, change control and discussion will be included. It

gives an integrated approach towards process quality and management.

For simulated cases, a design change procedure and a software change control process will
be described. The design change procedure can be used to ensure that changes to the
programming specifications are managed and controlled to maintain product quality and
development productivity. And, the software change control process serves as another

example to demonstrate the implementation of a process and how WAT works.

69

Chapter 6 - Test Cases

6.1. Real Cases

6.1.1. New Service Request Process

In this section, a new service request (NSR) process used in a bank will be discussed to
demonstrate how a process can be implemented and automated by WAT. The following
lists all the tasks in this NSR process. And, the process will be described and explained by

a task-based workflow with detailed task descriptions.

» Project Manager (PM) generates new service request (NSR)
. Agreement of NSR from Business Sponsor (BS)

« PM revises NSR

« New service office (NSO) receives NSR

« PM provides additional information to NSO

« NSO forwards NSR to unit heads (UHs) for estimates
« UHs do the estimates

» UHs make changes to their estimates

« NSO generates costing agreement

« Financial controller (Fincon) signoff of agreement

- BS signoff agreement

« Fincon comments on agreement

» NSO marks completion of project

¥, —_—
%y
‘ Unadotm i““__’{ """‘:"m]
S e
v
| e of e |
1
30 rany
campletion el
ropect
|
------------------------ et EE R S - T I |

Fig. 6-1 The task-based workflow of the NSR process.

70

Chapter 6 - Test Cases

Fig. 6-1 shows the task-based workflow of the NSR process. Table 6-1 lists the task

description of the process and Table 6-2 summarizes the actors and forms referenced in all

the tasks.

Project Manager (PM)
generates new service
request {NSR)

Agreement of NSR from
Business Sponsor (BS)

PM revises NSR

New service office (NSO)
receives NSR

PM provides additional

information to NSO

NSO forwards NSR to
Unit Heads (UHs) for
estimates

UHs do the estimates

UHs make changes to
their estimates

NSO generates costing
agreement

Financial controlier

(Fincon) signoff of
agreement

BS signoff agreement

Fincon comments on
agreement

NSO marks completion
of project

NSR can be generated by any Project Manager (PM). Only hefshe and the
Business Sponsor (BS) for this project are allowed to read or edit the NSR. Upon
the NSR is saved, all mandatory fields will be validated. Once the NSR is complete,
it wili be forwarded to Business Sponsor through mail for hisfher agreement.

After receiving the NSR from NSO, the BS will notify the NSO for his/her agreement
to sponsor the project. At that time, only BS is able to edit the NSR. If the BS
agrees 1o this NSR, a mail will be sent to the PM and NSO. Otherwise, a mail will be
sent to the PM for further action, such as revisions.

PM should revise the NSR if BS rejects the NSR and requests he/she to revise it.
After revising the NSR, the NSR will send back to the BS for hisfher agreement.

Once agreed by the BS, the NSR will be reviewed by NSO. Only NSO can edit and
perform actions.

The NSO can send the NSR back to the PM to request more information. After the
PM has provided additional information, NSR will be forwarded to the NSO. Only
PM is allowed to make revision on the NSR.

NSO will identify appropriate UHs to provide cost and resource estimates on the
NSR. Selected UHs and members of the support teams will receive mail notification
with escalation dates included.

UHs will provide the effort and resource estimates and the estimates can only be
confirmed by them. Once costing agreement is generated, UH is not allowed to
update any estimate.

There should be a mechanism to make changes to resource estimates. Once the
agreement has been generated, UH is not allowed to change his estimates.

Once ali estimates are received, costing agreement can be generated. It can only
be edited by NSO and Financial controller {Fincon).

Only Fincon can signoff or reject the agreement. Upon signoff, a mail will be sent to
PM and BS to indicate the NSR has been financially approved. The mail will also
indicate that the agreement has been forwarded to the BS for histher signoff. If the
agreement is rejected, the NSR will be canceled. No further action is required.

Only BS can signoff or reject the agreement after Fincon has signed off. A mail will
be sent to the Fincon, NSO, Direct SRPC, support team members and PM indicaling
that the signoff of agreement. 1If the agreement is rejected, the NSR will be
canceled. No further action is required on this NSR.

When agreement is signed off by BS, Fincon should add comments about when and
how the MiSing is done. The comment part can only be edited by the Fincon.

After the agreement has been signed off by the BS, the NSO can mark the
completion of the project to freeze the NSR. No further action is required on this
NSR.

Table 6-1 Task descriptions of NSR process.

71

Chapter 6 - Test Cases

Tack Name i At R Rt | ActorSIRMIE orm. Referénced
PM generates NSR PM -
Agreement of NSR from BS BS NSR
PM revises NSR PM NSR
NSO receives NSR NSO -
PM provides additional information fo NSO M NSR
NSO forwards NSR to UHs for estimates UH -
UHs do the estimates UH NSR
UHs make changes to their estimates UH Estimate
NSO generates costing agreement NSO NSR, Eslimate
Fincon signoff of agreement Fincon Agreement
BS signoff agreement BS Agreement
Fincon comments on agreement Fincon Agreement
NSO marks completion of project NSO -
Table 6-2 Actors and forms referenced in NSR process.

After importing the actors (such as PM, BS, NSO, UH, Fincon) and forms (such as NSR,
estimate, agreement) from the databases of workflow enactment component, the workflow,
actors and forms created, modified and referenced can be specified. Fig. 6-2 is the startup
screen of the workflow editor after importing these actors and forms details. And, Fig. 6-3

is the task-based workflow of NSR process in the workflow editor.

o Mabopar - [N30] mn-m o

i = :ﬂ‘ Workflow Elamants

' (R Tasks

i Ii_'}lil Actors 4 AL

3 { V - Project ManagefIT - 1| ‘c

| i i- @& Buriness SpomsorfGen Rar =20
I»-—-‘ Mo Sarvice Offleed] |- e

. i o Ouik HeadDnit 1 G ’

¢ E —-‘ Financial Cantrodlet! r uH ,

L B- @ Forws 4 L L mn, e

f b NS 1 o S el

| .!:nmulu ' L_‘ |) Aomamms G—;G’----B---G N

: . wl'g'i Amumni -',—_._l" o -_J-'J ; _‘ e Tom e | et
— = L] ORI ..L,‘f.}f L Stk o S 13 || P P i el Sk K SO

Baady oo Ty P ETE LT NUR 4 T N TR

Fig. 6-2 Startup screen of NSR process. Fig. 6-3 Task-based workflow of NSR process.

Based on the above information, respective actor view can be built as in Fig. 6-4 and Table

6-3 illustrates all the actor relationships in Fig. 6-5 with appropriate attributes.

72

Chapter 6 - Test Cases

b EI - Workfiow Elernants
& Pl Tasks

Ar2 ArS ArT

4‘ Fouoncial ControBecth et

£ mm—ge L

_AB-
) ArB

A o ’I‘

B mie

[s
T P u‘:ﬁ';;“ ﬁ-ﬁ;& ”?-r;,& + """w” .

Ar1 Unconditional Task Dependency
Fincon {Fincon signoff) — NSO (NSO generates agreement)
NSO (NSO marks completion of project) — Fincon (Fincon comments on agreement)

Ar2 Information Sharing
Agreement - BS (BS signoff)
- Fincon {Fincon comments on agreement , Fincon signoff)

Conditional Task Dependency
BS (BS signoff) — Fincon (Fincon signoff)

Form Agreement
field FinconSign
operator =
field value Y

nexttask BS signoff

Fincon (Fincon comments on agreement) — BS (BS signoff}

Form Agreement

field BSSign

operator =

field value Y

next task Fincon comments on agreement
Ar3 Information Sharing

NSR - PM (PM provides additional information to NSO, PM revises NSR)
- BS (Agreement of NSR from BS)

Unconditional Task Dependency
BS (Agreement of NSR from BS) — PM (PM generates NSR, PM revises NSR)

Conditional Task Dependency
PM (PM revises NSR) — BS (Agreement of NSR from BS)

Form NSR
field BSDecision
operator =

field value Revise
nexitask PM revises NSR

Table 6-3 Summary of connector in actor-based workflow of NSR process.

73

Chapter 6 - Test Cases

FiCabel?1] Connector AiTbUtES WP Ry
Ard Information Sharing

NSR - NSO{NSO generates agreement)
- PM {PM provides additional information to NSO, PM revises NSR)

Uncenditional Task Dependency
NSO (NSO receives NSR) — PM (PM provides additional information to NSO)

Conditional Task Dependency
PM (PM pravides additional information to NSO) — NSQ (NSO receives NSR)

Form NSR
field Addinfo
operator =
fieldvalue Y

nexttask PM provides additional information to NSO

Ar5

Information Sharing
NSR - NSO (NSO generates agreement)
- BS {Agreement of NSR from BS)

Conditional Task Dependency
NSO (NSO receives NSR) — BS {Agreement of NSR from BS}

Form NSR

field BSDecision
operator =
fieldvalue OK

nexttask NSO receives NSR

H

Aré

Information Sharing
NSR - UH (UHs do the estimates)
- BS {Agreement of NSR from BS)

Ar?

Information Sharing
NSR - UH {UHs do the estimates)
- NSO (NSO generates agreement)

Estimales - NSO (NSO generales agreement)
- UH (UHs make changes to their estimates)

Unconditional Task Dependency
UH {UHs do the estimales) — NSO (NSO forwards NSR to UHs)

Conditional Task Dependency
NSO (NSO generates agreement) —-» UH (UHs do the estimales)

Form Estimates
field NeedChanges
operalor =
fieldvalue N

nexttask NSO generates agreement

Ar8

Information Sharing
NSR - UH (UHs do the estimates)
- PM (PM provides additional information to NSO, PM revises NSR)

Table 6-3 (Cont’d) Summary of connector in actor-based workflow of NSR process.

74

Chapter 6 - Test Cases

After capturing workflow in the workflow editor, workflow specification is imported into
the database of the WE component. Only authorized actors have rights to import and
modify workflow specification (process and task information). Table 6-4 is the workflow
specification of the NSR process. And, Fig. 6-6 is a sample NSR in the application

database.

WORKFLOW_MODEL NSR (name, descriplion, database} [NSR, New service request process, workfiowinsr)

USES ACTOR_MODEL DEVELOPMENT;
USES INFORMATION_MODE!L NSR;
START PM generates NSR;

TASK PM generates NSR

GENERAL {description, type, preceds, time, unit} [create NSR, , 1, 1, Day]

ACTOR (actor list) [Project ManageriT]

NQTIFY (actor list) [j

FORM_CREATE (form list) {NSR]

FORM_MODIFY {form list}

FORM_REF (form Est) {

EXCEPTION (method, argument} [Ignore, |

COMPLETE (method, argumant) [Start Single Task, Agreemnent of NSR from BS]
END TASK;

TASK Agreement of NSR from BS

GENERAL (description, type, precede, time, unit) [BS agreesirejects NSR, , 2, 2, Day]

ACTOR (actor list) [Business Sponsor/General]

NOTIFY {actor list} [}

FORM_CREATE (form list) i

FORM_MODIFY {form list) [NSR]

FORM_REF (form list) [NSR}

EXCEPTION (method, argument) [Ignore,]

COMPLETE (method, argument) {Start Single Task Based on Condition, 3, (By Form, NSR, BSDecisian, =, OK, NSO receives NSR), (By

Form, NSR, BSDecision, =, Revise, PM ravises NSR), (By Form, NSR, BSDecision, =, Cancel, End Process)]

END TASK;

TASK PM revises NSR
GENERAL {description, type, precede, time, unit) [revises NSR after rejection, , 1, 3, Day]
ACTOR (actor list} [Project Manager/IT}
NOTIFY (actor fisf))
FORM_CREATE {form list} []
FORM_MODIFY (form list) {NSR]
FORM_REF (form list} [NSR)
EXCEPTION {method, argument} [lgnore, |
COMPLETE (method, argument) (Start Single Task, Agreement of NSR fram BS)
END TASK;

TASK NSO receives NSR
GENERAL (description, type, precede, {ime, unit) [Complete NSR afier agreement, , 2, 2, Hour]
ACTOR (actor list} [New Service Officer/IT]
NOTIFY {actor list)]|
FORM_CREATE (form list) []
FORM_MODIFY (form list) [NSR]
FORM_REF (form list) [I
EXCEPTION (method, argument} [ignore, | .
COMPLETE {method, argument) [Start Single Task Based on Condition, 2, {By Form, NSR, Addinfo, =, Y, PM provides additional
information to NSQ), {By Form, NSR, AddInfo, =, N, NSO forwards NSR to UHs)]
END TASK;

Table 6-4 The workflow specification of the NSR process.

75

Chapter 6 - Test Cases

TASK PM provides additional information to NSO '
GENERAL (description, type, prétéde, time, unit) [Gives additional info, , 1, 1, Day]
ACTOR (actor list) [Project Manager/IT]
NOTIFY (actor list)
FORM_CREATE {form list) [}
FORM_MODIFY {form list) [NSR]
FORM_REF {form list) [NSR]
EXCEPTION (method, argument) [Ignore, |
COMPLETE {method, argument) [Start Single Task, NSO receives NSR]
END TASK;

TASK NSO forwards NSR to UHs
GENERAL {description, type, precede, time, unit) [forwards for estimates, , 1, 30, Minute]
ACTOR (actor list) [New Service Officer/[T)
NOTIFY (actor list)]
FORM_CREATE (form list)]
FORM_MODIFY {form list) [)
FORM_REF {form list) [}
EXCEPTION (method, argument) [Ignore, |
COMPLETE (method, argument) [Start Single Task, UHs do the estimates)
END TASK;

TASK UHs do the estimates

GENERAL (description, type, precede, time, unit) [Provides estimates, , 2, 3, Day]

ACTOR {actor list) [Unil Head/Unif]

NOTIFY {actor list)]

FORM_CREATE (form list) [Estimates]

FORM_MODIFY (form list) []

FORM_REF (form list) [NSR]

EXCEPTION (methed, argument} [ignore,]

COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Estimates,
NeedChanges, =, Y, UHs make changes to their estimates), (By Form, Estimates, NeedChanges,
=, N, NSO generates agreement))

END TASK;

TASK UHs make changes to their estimates
GENERAL (description, type, precede, time, unit) [Change estimates, , 1, 2, Day]
ACTOR (actor fist) [Unit Head/Unit}
NOTIFY (actor list) []
FORM_CREATE {form list) []
FORM_MODIFY (form list} []
FORM_REF (form list} [Estimates})
EXCEPTION (method, argument} [lgnore,]
COMPLETE (method, argument) [Start Single Task, UHs do the estimates]
END TASK;

TASK NSO generates agreement
GENERAL (description, type, precede, time, unit) {Create agreement, , 1, 1, Day]
ACTOR {actor list) [New Service Officer/iT]
NOTIFY ({actor list) [J
FORM_CREATE (form list) [Agreement]
FORM_MODIFY (form list} []
FORM_REF (form list} [Estimates, NSR]
EXCEPTION (method, argument) [Ignore, |
COMPLETE {method, argument) {Start Single Task, Fincon signoff]
END TASK;

Table 6-4 (Cont’d) The workflow specification of the NSR process.

76

Chapter 6 - Test Cases

TASK Fincon signoff
GENERAL (description, type, precede, time, unit) [agreement signed off by Fincon, , 1, 1, Day]
ACTOR (actor list} [Financial ControllerfAcct]
NOTIFY (actor list)]
FORM_CREATE {form list) [)
FORM_MODIFY (form list} {]
FORM_REF (form list) [Agreement]
EXCEPTION (method, argument) [lgnore,]
COMPLETE {method, argument} [Start Single Task Based on Condition, 2, (By Form, Agreement, FinconSign,
=, 'Y, BS signoff), (By Form, Agreement, FinconSign, =, N, End Process)]
END TASK;

TASK BS signoff

GENERAL (description, type, precede, time, unit} [Agreement signed off by BS, , 1, 1, Day]

ACTOR (actor list) [Business Sponsor/General]

NOTIFY (actor list) [}

FORM_CREATE {form fist) []

FORM_MODIFY {form list) [Agreement]

FORM_REF (form list) [Agreement]

EXCEPTION (method, argument) {lgnore,]

COMPLETE (method, argument} [Start Single Task Based on Condition, 2, (By Form, Agreement, BSSign, =, Y,

Fincon comments on agreement), {By Form, Agreement, BSSign, =, N, End Process))

END TASK;

TASK Fincon comments on agreement
GENERAL (description, type, precede, time, unit) [Gives comments on agreement, , 1, 2, Day]
ACTOR (actor list) [Financial Controller/Acct]
NOTIFY (actor list)]
FORM_CREATE (form list} {]
FORM_MODIFY {form list) [Agreement]
FORM_REF {form list) [Agreement]
EXCEPTION (method, argument) [ignore,]
COMPLETE (method, argument) [Start Single Task, NSO marks completion of project]
END TASK;

TASK NSO marks completion of project
GENERAL {description, type, precede, time, unit) [Freeze NSR, , 1, 2, Day)
ACTOR (actor list) [New Service Officer/IT)
NOTIFY (actor list}]
FORM_CREATE {form list} []
FORM_MODIFY (form list) [NSR]
FORM_REF (form list} f]
EXCEPTION (methed, argument} [Ignore,]
COMPLETE (method, argument) [End Process, |
END TASK;

Table 6-4 (Cont’d) The workflow specification of the NSR process.

77

Chapter 6 - Test Cases

! Nﬂ-ﬁN Illwl‘ I.n.Nn R _
g oz~ LRI
RS A A0 1 e | St luusgg
! 1N
{ MNew Sorvice Requast System =
2=
i New Service Request - New SR Craaied On 121127 <
! o
f
f
T e

J| Genesl tmemation:
)| tustacirems v
Y Eminep iy s Py
i| snaPPS Requenitd L]
I } YingPoLYY

Requerty Lecatien [
I RemuersTisshanatie ;3
1| urunewm Spacmas tateimatten :
} Eams Cwrwiness Sywnem Hame:

Fancdenal Thle Ta
t| BMalEnabied N

Binlnes Segment :
i? e ':
| wow Servicn Retamea sterciation -
|| Endubogend — :l

Launty ol Serdcy Plax
| 20y

Fig. 6 6 NSR in the apphcatlon database.

6.1.2. Software Development Cycle

To build a more comprehensive test case, we base on similar mechanism in the previous
test case to model a software development cycle in a software company in Hong Kong.
The development cycle consists of the following processes and the details of will be

discussed in the following sub-sections:

Design This covers the design stage that is responsible for the production of
functional and technical specifications. Meeting reports with users as well as other

working papers will also be stored.

Testing This is the testing stage to detect program variations from
specification. Unit test and system test will be covered and modifications to program

codes are required.

Problem Logging This handles user acceptance, problem logging, problem fixing and

testing after problem is fixed,

Change Control This involves four levels of change control approval - i) peer review
by developers; ii) internal review by internal management; iii) external review by external

management; and vi) user acceptance by users.

78

Chapter 6 - Test Cases

Project Management This is résponsiblé for project management tasks. Management
can create escalation and exception reports when necessary. Also, management bi-weekly

report can be used to monitor progress of projects.
DESIGN

Fig. 6-7 shows the task-based workflow of the design process and Table 6-5 summarizes
the actors and forms referenced in all the tasks. Based on this information, respective
actor-based workflow 1s built as in Fig. 6-8 and Table 6-6 illustrates all the actor
relationships with appropriate attributes. And, Table 6-7 is the workflow specification of

the described design process.

ETaskNamet Til bk W Actors e Wi be e sa kv B % 7] Form Referenced van it by
Draft Functional Spec. System Engineer -
Interview System Engineer, Project Manager Functional Spec.
Refine Functional Spec. System Engineer Discussion Record, Working Paper
Evaluate Functional Spec. } Project Manager Functional Spec., Discussion Record
‘ Working Paper
Detail Interview Project Manager, System Engineer Functional Spec.
Prepare Technical Spec. System Engineer, Software Engineer Functional Spec., Discussion Record
Working Paper
Evaluate Technical Spec. Project Manger Functional Spec., Technical Spec.
Detail Analysis Project Manager, System Engineer Technical Spec.
Software Engineer
Revise Technical Spec. Software Engineer, System Engineer Technical Spec., Discussion Record
Working Paper
Table 6-5 Tasks in design process with respective actors and form referenced.

llﬂll ‘I;mr'l Innls y.ln H‘Jp =

lelElel) @!Jr_f" R A

®[°|) /si/:[A < ot G
i [[=- 20 Wotkfiow Flomext i
| =B Tes .
M e ot Pocinatsee 1] @ &
l ot Iaterrien eyt
| - ‘-g Tafirm Penctional Spec T - -
I ¢ b Prapin Techaiat fpae At -
i i Bvaluts Tockucal Spec a3 — R N
— % Evakate Fanctionl Spee Dirzh Imerview ¥mm Emn;m)!,
i g:f-!;::;u,u | e Spre s * Projoct
- Ug b hirs & Marger SystemErgioer
5 Wl et I - ,
;) e | T}t h
i Shee ! K
i
| -
r I‘
} -
T ‘ — 'l" Sottwarg Engineor
Ready .- e

Flg 6-7 Task based workﬂow of dcsngn process. Fig. 6-8 Actor-based workflow of design process.

79

Chapter 6 - Test Cases

HELaber ey

c'a‘ﬁﬁ‘éét&r"?ﬁﬁ?ijﬁfﬁt"e‘_s‘m% s

Art

Information Sharing
Functional Spec - System Engineer (Interview, Detail Interview, Prepare Technical Spec)
- Project Manager (Interview, Evaluate Functional Spec, Detail Inferview, Evaluate
Technical Spec)
Discussion Record - System Engineer {Refine Functional Spec, Prepare Technical Spec, Revise
Technical Spec)
- Project Manager (Evaluate Funclional Spec)
Working Paper - Syslem Engineer (Refine Functicnal Spec, Prepare Technical Spec, Revise Technical
Spec)
- Project Manager (Evaluate Functional Spec)
Technical Spec - System Engineer (Detail Analysis, Revise Technical Spec)
- Project Manager (Evaluate Technical Spec, Detail Analysis)
Task Cooperation
Interview, Detall Interview, Detaif Analysis
Unconditional Task Dependency
Project Manager (Interview) — System Engineer (Draft Functional Spec)
System Engineer (Refine Functional Spec) — Project Manager (Interview)
Syslem Engineer (Detail Interview) — Project Manager (Evaluate Functional Spec)
System Engineer (Refine Funclional Spec) — Project Manager (Detail Interview)
Project Manager (Evaluate Technical Spec) — System Engineer (Prepare Technical Spec)
System Engineer (Revise Technical Spec) — Project Manager (Detail Analysis)
Project Manager (Evaluate Technical Spec) — System Engineer (Revise Technical Spec)
Conditional Task Dependency
Project Manager (Evaluate Functional Spec) — System Engineer {Refine Functional Spec)

Form Functional Spec
field status
operator =

field value Need to revise
next task Evaluate Functional Spec

Ar?

Information Sharing
Functional Spec - System Engineer {Interview, Detail Interview, Prepare Technical Spec)
- Software Engineer (Prepare Technical Spec)
Discussion Record - System Engineer (Refine Functional Spec, Prepare Technical Spec, Revise
Technical Spec)
- Software Engineer (Prepare Technical, Revise Technical Spec)
Working Paper - Syslem Engineer (Refine Functional Spec, Prepare Technical Spec, Revise Technical
Spec)
- Software Engineer (Prepare Technical, Revise Technical Spec)
Technical Spec - System Engineer (Detail Analysis, Revise Technical Spec)
- Software Engineer (Detail Analysis, Revise Technical Spec)
Task Cooperation
Prepare Technical Spec, Detail Analysis, Revise Technical Spec
Unconditional Task Dependency
Software Engineer (Revise Technical Spec) —» System Engineer (Detail Analysis)
System Engineer (Revise Technical Spec) — Software Engineer {Detail Analysis)
Conditional Task Dependency
Software Engineer (Prepare Technical Spec) —» System Engineer {Refine Functional Spec)

Form Functional Spec
field status
aperator =

field value Completed
nexttask Prepare Technical Spec

Table 6-6 Summary of connector in actor-based workflow of design process.

80

Chapter 6 - Test Cases

ELabelE&] Connector Attributes #ot Sl S AR IR
Ar3 Information Sharing

Technical Spec)
- Software Engineer (Prepare Technical Spec)
Discussion Record - Project Manager (Evaluate Functional Spec)
- Software Engineer (Prepare Technical, Revise Technicat Spec)

Waorking Paper - Project Manager (Evaluate Functional Spec)

- Software Engineer (Prepare Technical, Revise Technical Spec)
Technical Spec - Project Manager (Evaluate Technical Spec, Delail Analysis)

- Software Engineer (Detail Analysis, Revise Technical Spec)

Task Cooperation
Detail Analysis
Unconditional Task Dependency
Project Manager (Evaluate Technical Spec) — Software Engineer (Prepare Technical Spec)
Project Manager (Evaluate Technical Spec) — Software Engineer (Revise Technical Spec)
Software Engineer (Revise Technical Spec) — Project Manager (Detail Analysis)
Conditional Task Dependency
Software Engineer (Detail Analysis) —» Project Manager (Evaluate Technical Spec)

Form Technical Spec
field status
operator =

field vatue Need to revise
next task Detail Analysis

Functional Spec - Project Manager {Inlerview, Evaluate Functional Spec, Detail Interview, Evaluate

Table 6-6 (Cont’d) Summary of connector in actor-based workflow of design process.

WORKFLOW_MODEL Design (name, description, database)
[Design, Standard procedure for system design, Workflow\design]

USES ACTOR_MODEL Design_Actors;
USES INFORMATION_MODEL Design_Forms;
START Draft Functional Spec;

TASK Draft Functional Spec
GENERAL (description, type, precede, time, unil) [Create first draft of functional specification, M, 1, 3, Day]
ACTOR (actor fist) [System Engineer/ Development]
NOTIFY (actor list) []
FORM_CREATE (form list) [Functional Specification}
FORM_MODIFY (form list) {]
FORM_REF (form list) {]
EXCEPTION {method, argument) [Ignore,]
COMPLETE {method, argument} [Start Single Task, Interview]
END TASK;

TASK Interview
GENERAL {description, type, precede, time, unit) [Review spec. with users, M, 1, 1, Day]
ACTOR (actor list) [System Engineer/ Development, Project Manager/ Development]
NOTIFY (actor list} []
FORM_CREATE (form list) [Discussion Record, Working Paper]
FORM_MODIFY {form list} [|
FORM_REF {form list) [Functional Specification]
EXCEPTION {method, argument} [lgnore,]
COMPLETE (method, argument) {Start Single Task, Refine Functional Spec)
END TASK;

Table 6-7 The workflow specification of the design process.

81

Chapter 6 - Test Cases

TASK Refine Functional Spec

GENERAL {description, type, precede, time, unit) [Refine Functional Spec, M, 2, 2, Day]

ACTOR (actor list) {System Engineer/ Development]

NOTIFY (actor list) [)

FORM_CREATE (form list)]

FORM_MODIFY (form list} fFunctional Specification]

FORM_REF (form list) [Discussion Recard, Working Paper]

EXCEPTION (method, argument) [Ignore,]

COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Functional Specification,
status, =, Completed, Prepare Technical Spec), (By Form, Functional Specification, status, =, Need
to revise, Evaluate Functional Spec)]

END TASK;

TASK Prepare Technical Spec
GENERAL (description, type, precede, time, unit) [Prepare Technical Spec, M, 1, 3, Day]
ACTOR (actor list) [System Engineer/ Development, Software Engineer Development]
NOTIFY {(actor list) []
FORM_CREATE (form list} [Technical Specification)
FORM_MODIFY {form list) [}
FORM_REF (form list) [Functional Specification, Discussion Record, Working Paper]
EXCEPTION {method, argument} [Ignore,]
COMPLETE (method, argument) [Start Single Task, Evatuate Technical Spec)

END TASK;

TASK Evaluate Technical Spec
GENERAL (description, type, precede, time, unit) [Evaluate Technical Spec, M, 2, 2, Day)
ACTOR (actor list} [Project Manager/ Development]
NOTIFY (actor list)]
FORM_CREATE (form list) {]
FORM_MODIFY (form list} [Technical Specification]
FORM_REF (form list) [Functional Specification, Technical Specification]
EXCEPTION (method, argument) [ignore,]
COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Technical Specification,
status, =, Completed, End Process), (By Form, Functional Specification, status, =, Need to revise,
Detail Analysis))
END TASK;

TASK Evaluate Functional Spec
GENERAL (description, type, precede, time, unit) [Evaluate Functional Spec, M, 1, 2, Day]
ACTOR (actor list) [System Engineer/ Development]
NOTIFY (actor list) [J
FORM_CREATE {form list) []
FORM_MODIFY {form fist) [Functional Specification]
FORM_REF (form list} [Discussion Record, Working Paper, Functional Specification]
EXCEPTION (method, argument) [ignore, |
COMPLETE {method, argument) {Start Single Task, Detail Interview]
END TASK;

TASK Detail Interview
GENERAL (description, type, precede, time, unit) [Detail Interview, M, 1, 2, Hour]
ACTOR (actor list) [Project Manager/ Development, System Engineer/ Development)
NOTIFY (actor list)]
FORM_CREATE (form list} {Discussion Record, Working Paper]
FORM_MODIFY (form list} []
FORM_REF (form list) {Functional Specification]
EXCEPTION {method, argument) [Ignore, |
COMPLETE (method, argument) [Start Single Task, Refine Functional Spec]
END TASK;

* Table 6-7 (Cont’d) The workflow specification of the design process.

82

Chapter 6 - Test Cases

TASK Revise Technical Spec
GENERAL (description, type, precede, time, unit) [Revise Technical Spec, M, 1, 5, Day]
ACTOR (actor list) [Software Engineer! Development, System Engineer/ Development]
NOTIFY {actor list)]]
FORM_CREATE (form list) {]
FORM_MODIFY (form list} [Technical Specification}
FORM_REF (form list} [Working Paper, Discussion Record, Technical Specification]
EXCEPTION (method, argument} [Ignore,]
COMPLETE {method, argument) [Start Single Task, Evaluate Technical Spec]

END TASK;

TASK Detail Analysis
GENERAL {description, type, precede, time, unit) [Detail Analysis, M, 1, 3, Day]
ACTOR (actor list) [Project Manager/Development, System Engineer/ Development, Software Engineer/
Development]
NOTIFY (actor list} []
FORM_CREATE (form list) []
FORM_MODIFY (form list) [}
FORM_REF (form list) [Technical Specification, Discussion Record, Working Paper]
EXCEPTION (method, argument) {Ignore,]
COMPLETE {method, argument) [Start Single Task, Revise Technical Spec]
END TASK;

Table 6-7 (Cont’d) The workflow specification of the design process.

TESTING

The task-based workflow of the testing process is shown in Fig. 6-9. Table 6-8
summarizes the actors and forms referenced in all the tasks. The respective actor-based
workflow is built as in Fig. 6-10 and Table 6-9 illustrates all the actor relationships with
appropriate attributes. The workflow specification of this testing process is shown as in
Table 6-10.

rTask:Name aiey ol B 2oy | Actors il Baiay il :Form Referenced' SNSRI
Program variation Software Engineer -
Unit Test Tester, Programmer Program variation from Spec
Pian System Test Project Manager Program variation from Spec
Evaluate Unit Test Result Software Engineer, Programmer Unit Test result
System Test Tester, Programmer System Test Plan
Change Code affer unit test Programmer Unit Test result
Evaluate system test result Software Engineer System Test result
Change code after system test Programmer System Test result
Integration Test Tester, Programmer -
Table 6-8 Tasks in testing process with respective actors and form referenced.

83

Chapter 6 - Test Cases

B - rr.n,] (Tanting.mit)
, Dle " Jn3aer “Tools “Ylew™ Halp- - * T 7 3 N
N EEEN T c
L@lelblabd. - L L B :
i e
5 5 Werkflow Elusects 1+ |
Fiae= ® .0 :
i I~ Progeam rassti P -] i - -
' b Txct Ter b ?““‘" . I - -Ar
i"ﬂ PlanSyriem Terl [s [
| L. e Totment Y] (3 eeoeo. 3 wh L
1 g Syrlesss Tast !; B Um;;ﬁ‘-.‘ B - acs .
- (3 Chuspn Coda afhar wmit lest -+ ' .
!--a Evadaate ryyiem terl medl e B 5 Sysiem Engnaer ™ oject
i “ {3 Changa code far syriem dast ot || - anager
! L. tenation for ar i | i
Ml o o i ,
U @) oo i : i Ard 5 A2
: i = fli ’ Al ,
i Tt ik il
! H Ewahuste ;
| H e ull - P
i : resuit
! 0 -] "" A3
i Integratlen Ind l |
I Hl T Process e
[e et Tostr Programves
Theady -, L BTG T el ML AT AN

Fig. 6-9 Task-based workflow of testing process.

Fig. 6-10 Actor-based workflow of testing process.

Filabel £:41] Connector AtFibules & e e

Art information Sharing
System Test Result - Project Manager (Evaluate system test result)
- Software Engineer (Evaluate system test result)
Task Cooperation
Evaluate System Test Result
“Ar2 Information Sharing

Program variation from Spec - Project Manager (Pian System Test)
- Programmer {Unit Test)

System Test Result - Project Manager (Evaluate system test result)
- Programmer {Change code after system test)

Unconditional Task Dependency
Programmer {System test) — Project Manager (Plan system test)
Programmer (Change code after system fest) — Project Manager (Evaluate system test result)

Conditional Task Dependency
Project Manager (Plan System Test) — Programmer (Unit Test)

Form Unit Test Result
field RevStatus
operator =

field value Completed
nexttask Plan System Test

Project Manager (Evaluate System Test Result) — Programmer (System Test)

Form System Test Resuit
field RevSlatus
operator =

field value Need to revise
next{ask Evaluate System Test Result

Table 6-9 Summary of connector in actor-based workflow of testing process.

84

Chapter 6 - Test Cases

SLabel® AP Connector Attributes e B e A e o o MR A
Ar3 Information Sharing
Program variation from Spec - Tester (Unit Test)
- Programmer (Unit Test)
Systern Test Plan - Tester (System Test)
- Programmer (System Test)

Task Cooperation
Unit Test, System Test, Integration Test

Uncaenditional Task Dependency
Tester (Unit Test} — Programmer {Change code after unit test)
Tester {System test} —» Programmer {Change code after system test)

Conditional Task Dependency
Programmer {Evaluate Unit Test Result) — Tester (Unit Test)

Form Unit Test Result

field RevStatus

operator =

field value Need to revise

next task Evaluate Unit Test Result

Programmer (Integration Test) — Tester (System Test)

Form System Test Result
field RevStatus
operator =

field value Completed

next task Integration Test

Tester {Integration Test) — Programmer {System Test)

Form System Test Result

field RevStatus

operator =

field value Completed

next task Integration Test
Ard Unconditional Task Dependency

Tester {Unit Test) — System Engineer (Program variation)

Conditional Task Dependency
Software Engineer (Evaluate Unit Test Result) — Tester (Unit Test)

Form Unit Test Result

field RevStatus

operator =

field value Need to revise

next task Evaluate Unit Test Result

Software Engineer {Evaluate Unit Test Result} — Tester (System Test)

Form System Test Result

field RevStatus

operator =

field value Need fo revise

next task Evaluate System Test Result

Table 6-9 (Cont’d} Summary of connector in actor-based workflow of testing process.

85

Chapter 6 - Test Cases

Bt abel- > ®|: Cohinector Attribiites o

R R P

Arb Information Sharing
Program variation from Spec - Project Manager (Plan System Test)
- Tester (Unit Tesf)
Unconditional Task Dependency
Tesler (System test) — Project Manager(Plan system test)
Conditional Task Dependency
Project Manager (Plan System Test) — Tester {Unit Test)
Form Unit Test Result
field RevSiatus
operator =
field value Completed
next task Plan System Test
Project Manager (Evaluate System Test Result) — Tester (System Test) .
Form System Test Result
field RevStatus
operator =
field value Need fo revise
next task Evaluate System Test Result
Arb information Sharing

Unit Test Result - Software Engineer (Evaluate Unit Test Result)
- Programmer (Evaluate Unit Test Result, Change code after unit test)
System Test Result - Software Engineer (Evaluate system test result)
- Programmer (Change code after system test)

Task Cooperation
Evaluale Unit Test Result

Unconditional Task Dependency
Programmer (Unit Test) — System Engineer (Program variation)
Programmer (Change code after unit test) — System Engineer {Evaluate unit test result)
Programmer (Change code after system test) — System Engineer (Evaluate system test result)

Conditional Task Dependency
Software Engineer (Evaluate Unit Test Resulf) — Programmer (Unit Test)

Form Unit Test Result

field RevStatus

operator =

field value Need to revise

next task Evaluate Unit Test Result

Software Engineer (Evaluate System Test Result) — Programmer (System Test)

Form System Test Result

field RevStatus

operator =

field value Need to revise

next task Evaluate System Tesl Result

Table 6-9 (Cont’d) Summary of connector in actor-based workflow of testing process.

86

Chapter 6 - Test Cases

WORKFLOW_MODEL Testing (name, description, database) [Testing, , workflowitest)

USES ACTOR_MODEL Test_Actors;
USES INFORMATION_MODEL Test_Forms;
START Program variation; .

TASK Program variation
GENERAL (description, type, precede, time, unit) [Program variation, M, 1, 2, Day]
ACTOR (actor fist) [Software Engineer/Development]
NOTIFY {actor list)]
FORM_CREATE (form list) [Program Variation from Spec.]
FORM_MODIFY (form list) {]
FORM_REF (form list) {]
EXCEPTION (method, argument) [lgnore, |
COMPLETE (method, argument) [Start Single Task, Unit Test]
END TASK;

TASK Unit Test
GENERAL {description, type, precede, time, unit) [Perform Unit Test, M, 2, 5, Day)
ACTOR {actor list) [Tester/Developmeni, Programmer/Development]
NOTIFY (actor list)]
FORM_CREATE (form list) {Test Result]
FORM_MODIFY ({form list)]
FORM_REF (form list) [Program Variation from Spec.]
EXCEPTION (method, argument) [ignore, | _
COMPLETE (method, argument} [Start Single Task Based on Condition, 2, (By Form, Test Result, RevStatus,
=, Need to revise, Evaluate Unil Test Result), (By Form, Test Result, RevStatus, =, Completed,
Plan System Test)]
END TASK;

TASK Plan System Test
GENERAL {description, type, precede, time, unit) [Create System Test, M, 1, 2, Day]
ACTOR (actor list) [Project Manager/Development]
NOTIFY (actor list) [}
FORM_CREATE {form list) [System Test Pian]
FORM_MODIFY {form list} {]
FORM_REF (form fist) {Program Variation from Spec.]
EXCEPTION {method, argument) (Ignore,]
COMPLETE (method, argument) [Start Single Task, System Test]
END TASK;

TASK Evaluate Unit Test Resuit
GENERAL (description, type, precede, time, unit} [Evaluate Unit Test Result, M, 1, 1, Day]
ACTOR (actor list) [Software Engineer/Development, Programmer/Development]
NOTIFY {actor list) []
FORM_CREATE {(form list) [|
FORM_MODIFY (form list))
FORM_REF (form list} [Test Result]
EXCEPTION {method, argument) [ignore,]

COMPLETE (method, argument} [Start Single Task, Change Code after unit test]
END TASK;

Table 6-10 The workflow specification of the testing process.

87

Chapter 6 - Test Cases

TASK System Test
GENERAL (description, type, precede, time, unit) [Perform System Test, M, 2, 3, Day]
ACTOR (actor list) [Tester/Development, Programmer/Development]
NOTIFY (actor list))
FORM_CREATE {form list) [Test Result]
FORM_MODIFY (form fist)]
FORM_REF {form list) [System Test Plan]
EXCEPTION {method, argument) [lgnore,]
COMPLETE {method, argument) {Start Single Task Based on Condition, 2, (By Form, Test Result, RevStatus,
=, Need fo revise, Evaluate system test result), (By Form, Test Result, RevStatus, = Completed,
Integration Test))
END TASK;

TASK Change Code after unit test
GENERAL {description, type, precede, time, unit) [Change Code after unit test, M, 1, 10, Day]
ACTOR {actor list) [Programmer/Development]
NOTIFY {actor fist)]
FORM_CREATE (form list) []
FORM_MODIFY {form list) [
FORM_REF (form list) [Test Result]
EXCEPTION {methed, argument) [Ignore, |
COMPLETE {method, argument) [Start Single Task, Unit Tesl]
END TASK;

TASK Evaluate system test result
GENERAL (description, type, precede, time, unit) [Evaiuate system test result, M, 1, 3, Day]
ACTOR (actor list) [Software Engineer/Development]
NOTIFY (actorlist) []
FORM_CREATE (form list} [J
FORM_MODIFY {form list} []
FORM_REF (form list) [Test Resuli]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Change code after system lest]
END TASK; :

TASK Change code after system lest
GENERAL (description, type, precede, time, unit) [Change code after system test, M, 1, 10, Day]
ACTOR (actor list) {Prograrnmer/Development]
NOTIFY (actor list) []
FORM_CREATE {form list) []
FORM_MODIFY (form list) []
FORM_REF {form list) [Test Resuli]
EXCEPTION {method, argument) [Ignore, |
COMPLETE {method, argument) {Start Single Task, System Test]
END TASK;

TASK Integration Test
GENERAL (description, type, precede, time, unit) [Perform Integration Test, M, 1, 5, Day]
ACTOR {(actor list) [Tester/Development, Programmer/Development]
NOTIFY {actor list)]
FORM_CREATE (form list) [Test Result]
FORM_MODIFY (form list) []
FORM_REF (form list) []
EXCEPTION {method, argument) [Ignore,]
COMPLETE (method, argument) [End Process, |
END TASK;

Table 6-10 (Cont’d) The workflow specification of the testing process.

88

Chapter 6 - Test Cases

PROBLEM LOGGING

The task-based workflow of the problem logging process is shown in Fig. 6-11. Table 6-
11 summarizes the actors and forms referenced in all the tasks. Fig. 6-12 shows the
respective actor-based workflow and Table 6-12 lists all the actor relationships with
appropriate attributes. And, Table 6-13 is the workflow specification of this process
generated by the WC component.

—i@ |17
L w1
()

|
EE A
?

£>

= e

|
r Tpstng i,
J
i

Bt

. o I
- ‘l' :" |u|| |l| e ,Lu A Y

Thiady e ' W e o (NUR SERL 4

Fig. 6-11 Task-based problem loggmg process.

ETaskName; e srmge | Act s 3 FForm;Referenced :

User Acceptance Test (UAT) User -

Problem Log Programmer -

Problem Analysis Software Engineer, Programmer Bug Repori, Problem Log
Fix Problem Programmer Bug Repon, Problem Log
Testing Tester Fix Report

Evaluate Test Resuft Software Engineer, Programmer Fix Report

Table 6-11 Tasks in problem logging process with respective actors and form referenced.

T "
s,mr,,.,..\ b

Ard

Ar AJI'S
L] -
T Arz w
Testor Programmas

Fig. 6-12 Actor-based problem logging process.

89

Chapter 6 - Test Cases

LabaIE B e[Connector AtHbutes 7 D R e e T e e D A s R,
Art Information Sharing
Fix Report - Software Engineer (Evaluate Test Result)
- Tester (Testing)
Conditional Task Dependency
Software Engineer (Evaluate Test Result) — Tester (Testing)

Form Fix Report

field RevStatus

operator =

field value Need to revise

next task Evaluate Test Result
Ar? Information Sharing

Fix Report - Tester (Testing}
- Programmer {Evaluate Test Result)
Unconditional Task Dependency
Tester (Testing) — Programmer (Fix Problem)
Conditional Task Dependency
Programmer (Evaluate Test Result) — Tester (Testing)

Form Fix Report

field RevStatus

operator =

field value Need to revise

next task Evaluate Test Result
Ar3 Unconditional Task Dependency

Programmer (Problem Log) — User (UAT)
Ard Information Sharing

Bug Report - Programmer (Problem Analysis, Fix Problem)
- Software Engineer (Problem Analysis)
Problem Log - Programmer {Problem Analysis, Fix Problem)
- Software Engineer (Problem Analysis)
Fix Report - Software Engineer (Evaluate Test Result)
- Programmer (Evaluate Test Result)
Task Cooperation
Problem Analysis, Evaluate Test Result
Unconditionai Task Dependency
System Engineer (Problem Analysis) — Programmer (Problem Log)
Programmer (Fix Problem) — System Engineer (Problem Analysis)
Programmer (Fix Problem) — System Engineer (Evaluate Test Result)
Table 6-12 Summary of connector in actor-based workflow of problem logging process.

WORKFLOW_MODEL Problem Log (name, description, database) [Problem Log, , Workflow\ProbLog]
USES ACTOR_MODEL Prob_»Actors;

USES INFORMATION_MODEL Prob_Forms;

START UAT,

TASK UAT
GENERAL (description, type, precede, time, unit) [Perform user acceptance test, M, 1, 2, Day]
ACTOR (actor fist) [User/Development]
NOTIFY (actor list) [J
FORM_CREATE (form list}]
FORM_MODIFY (form list) []
FORM_REF (form list) []
EXCEPTION {method, argument) [Ignore, |
COMPLETE (method, argument) [Start Single Task, Problem Log]
END TASK;

Table 6-13 The workflow specification of problem logging process.

90

Chapter 6 - Test Cases

TASK Praoblem Log
GENERAL (description, type, precede, time, unit) [Create problem log or bug report, M, 1, 30, Minute]
ACTOR (actor list) [Programmer/Development]
NOTIFY (actor list}]
FORM_CREATE (form list) {Bug Report, Problem Log]
FORM_MODIFY (form list) []
FORM_REF {form fist)]
EXCEPTION {method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Problem Analysis]
END TASK;

TASK Problem Analysis
GENERAL (description, type, precede, time, unit) [Problem Analysis, M, 1, 2, Day]
ACTOR (aclor list) [Software Engineer/Development,Programmer/Development]
NOTIFY (actor list) [}
FORM_CREATE (form list) []
FORM_MODIFY (form list) {]
FORM_REF (form list) [Bug Report, Problem Log)
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) {Start Single Task, Fix Problem]
END TASK;

TASK Fix Problem
GENERAL (description, type, precede, time, unit) [Fix Problem, M, 2, 10, Day)
ACTOR (actor list) [Programmer/Development]
NOTIFY (actor list) []
FORM_CREATE (form list) [Fix Report]
FORM_MODIFY {form list) [}
FORM_REF (form list) [Bug Report, Problem Log]
EXCEPTION {methed, argument) [Ignore,]
COMPLETE {method, argument) [Start Single Task, Testing]
END TASK;

TASK Testing
GENERAL (description, type, precede, time, unit) [Testing, M, 1, 2, Day]
ACTOR (actor list) [Tester/Development]
NOTIFY (actor fist}]
FORM_CREATE (form list) []
FORM_MODIFY (form fis) []
FORM_REF (form list) [Fix Report]
EXCEPTION {method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Fix Report, RevStatus, =,

Completed, End Process), (By Form, Fix Report, RevStatus, =, Need to revise, Evaluate Test Result)]
END TASK;

TASK Evaluate Test Result
GENERAL (description, type, precede, time, unit) [Evaluate Test Result, M, 1, 1, Day)
ACTOR (actor list} [Software Engineer/Development, Programmer/Development]
NOTIFY (actor list) {]
FORM_CREATE (form list}]
FORM_MODIFY (form list) {]
FORM_REF (form list) {Fix Report]
EXCEPTION {method, argument) [ignore, }
COMPLETE (method, argument) [Start Single Task, Fix Problem]
END TASK;

Table 6-13 (Cont’d) The workflow specification of problem logging process.

91

Chapter 6 - Test Cases

CHANGE CONTROL

The task-based workflow of the change control process is shown in Fig. 6-13. Table 6-14
summarizes the actors and forms referenced in all the tasks. Fig. 6-14 shows the
respective actor-based workflow and Table 6-15 lists all the actor rélationships with

appropriate attributes. And, Table 6-16 is the workflow specification of this change

control process.

e

g

@

Frogemre
| a2
|

NiO Ads

I
Ari2
LAl

—o— >
\...)
\\!1

() i b oy st Ranloa

ot

H

i =3' —i—

T IR e T

Flg 6-13 Task—bascd change control process. Fig. 6-14 Actor-based change control process.
ETask Name R ZZi D isrmns < g, | ctors 8 i e T80 "Formy Referénced; ™4 3 Vion X
Prepare Change Controf Checkhst Project Manager -
Change Request User Change control migration checklist
Peer Review Programmer, Software Engineer Change request form
Internal Review Project Manager, IT Manager Change request form
_External Review Client Change requesl form
User Acceptance User Change request form
“UserRevise User Change request form
Developer Revise Programmer, Software Engineer Change request form
Internal Management Revise Project Manager, IT Manager Change request form
External Management Revise Client Change request form
Table 6-14 Tasks in change control process with respective actors and form referenced.

[FCabel- 5w Connactor ARTIBULES Th i it Wi
Art Information Sharing
Change request form - Programmer {Peer Review, Developer Revise)

- Software Engineer (Peer Review, Developer Revise)

,-H‘%m%tfﬁﬁmﬁi'% ,e '» y

Task Cooperation
Peer Review, ntemal Review
Ar2 Information Sharing
Change request form - Programmer (Peer Review, Developer Revise)
: - IT Manager (Internal Review, Internal Management Revise)
Unconditional Task Dependency
IT Manager (Internal Review) — Programmer (Developer Revise)
Conditional Task Dependency
IT Manager (Internal Review) — Programmer (Peer Review)

Form Change request form
field DevApproval
operator =
field value Approved
next task Internal Review
Table 6-15 Summary of connector in actor-based workflow of change control process.

92

Chapter 6 - Test Cases

#8 | 1:Connector Attributés’ 24
Information Sharing

Change request form - IT Manager (Infemal Review, Infernal Management Revise)

- Client (External Review, External Management Revise)

Unconditional Task Dependency

Client (External Review) — IT Manager {Internal Management Revise)
Conditional Task Dependency

Client {(External Review) — IT Manager (Internal Review)

Form Change request form
field InternalManApproval
operator =

field value Approved

next task External Review

IT Manager (Internal Management Revise) — Client (External Review)

Form Change request form
field ExtemnalManApproval
operator =
field value Send back to Internal Management for review
next task Intemal Management Revise
Ard information Sharing

Change request form - User (User Acceptance, User Revise)
- Client (External Review, External Management Revise)
Unconditional Task Dependency
User (User Acceptance) — Client {External Revise)
Conditional Task Dependency
User (User Acceptance) — Client {External Review)

Form Change request form
field ExtemnalManApproval
operator =

field value Approved
next task User Acceptance

Client (External Management Revise) — User (User Acceptance)

Form Change request form
field UserApproval
operator =

field value Send back to External Management for review
next task External Management Revise
Ar5 Information Sharing

Change request form - User (User Acceptance, User Revise)

- Software Engineer (Peer Review, Developer Revise)

Unconditional Task Dependency

Software Engineer (Peer Review) — User (Change Request)

Software Engineer (Peer Review) — User (User Revise)
Conditional Task Dependency

User {User Revise) — Software Engineer (Peer Review)

Form Change request form
field DevApproval
operator =

fieldvalue Send back to User for review
next task User Revise
Table 6-15 (Cont’d) Summary of connector in actor-based workflow of change control process.

93

Chapter 6 - Test Cases

+E] ‘CohnéctorAttriblites B ¥R 4

Information Sharing
Change request form - IT Manager (Intemal Review, Internal Management Revise)
- Software Engineer (Peer Review, Developer Revise)
Unconditional Task Dependency
IT Manager (Intemal Review) — Software Engineer {Developer Revise)
Conditional Task Dependency
- IT Manager {Internal Review) -> Software Engineer (Peer Review)
Form Change request form
field DevApproval
operator =
field value Approved
next task Internal Review

Ar7

Information Sharing
Change request form - IT Manager (Intemal Review, Internal Management Revise)
- Project Manager (Internal Review, Internal Management Revise)
Task Cooperation
Intemal Review , Intemal Management Revise

Ar8

Information Sharing
Change request form - Project Manager (Internal Review, internal Management Revise)
- Client (External Review, External Management Revise)
Unconditional Task Dependency
Client (Extemal Review) — Project Manager (Internal Management Revise)
Conditional Task Dependency
Client (External Review) — Project Manager (Internal Review)
Form Change request form
field InternalManApproval
operator =
field value Approved
next task External Review

Project Manager (Internal Management Revise) — Client (External Review)
Form Change request form
field ExternalManApproval
operator =
field value Send back to Internal Management for review
next task Internal Management Revise

Ar9

Information Sharing
Change request form - Project Manager {Internal Review, Internal Management Revise)
- User (User Acceptance, User Revise)

Unconditional Task Dependency
User {Change Request) — Project Manager (Prepare Change Controt Checklist)

Ar10

Information Sharing
Change request form - Project Manager (Internal Review, Internal Management Revise)
- Programmer {Peer Review, Developer Revise)
Unconditional Task Dependency
Project Manager {Internal Review) ~» Programmer (Developer Revise)
Conditional Task Dependency
Project Manager (Internal Review) — Programmer (Peer Review)
Form Change request form
field DevApproval
operator =
field value Approved
next task Internal Review

Table 6-15 (Cant’d) Summary of connector in actor-based workflow of change control process.

94

Chapter 6 - Test Cases

FLabelr 5] Connector Atfributes S SRR % ¥ i ot e
Art1 information Sharing
Change request form - Project Manager (Internal Review, Internal Management Revise)
- Software Engineer (Peer Review, Developer Revise)

Unconditional Task Dependency

Project Manager (Internal Review) — Software Engineer (Developer Revise)
Conditional Task Dependency

Project Manager (Intemal Review) — Software Engineer (Peer Review)

Form Change request form

field DevApproval

operator =

field value Approved

next task internal Review
Ar12 Information Sharing

Change request form - Programmer (Peer Review, Developer Revise)
- User (User Acceptance, User Revise)
Unconditiona) Task Dependency
Programmer (Peer Review) — User (Change Request)
Programmer (Peer Review) — User (User Revise)
Conditional Task Dependency
User (User Revise) -» Programmer (Peer Review)

Form Change request form
field DevApproval
operator =
field value Send back to User for review
next task User Revise
Table 6-15 (Cont’d) Summary of connector in actor-based workflow of change control process.

WORKFLOW_MODEL Change Control {name, description, database)
[Change Control, Standard process for software change, workflow\chgetri]

USES ACTOR_MODEL Change_Actors;
USES INFORMATION_MODEL Change_Forms;
START Prepare Change Control Checklist;

TASK Prepare Change Control Checklist
GENERAL (description, type, precede, time, unit) [New Checklist, M, 1, 1, Day]
ACTOR (actor list) [Project Manager/Development]
NOTIFY (actor list) []
FORM_CREATE (form list) [Change Control Migration Checklist)
FORM_MODIFY (form list)]
FORM_REF {form list)]
EXCEPTION {method, argument) [Ignore, |
COMPLETE {method, argument) [Start Single Task, Change Request]
END TASK;

TASK Change Request
GENERAL {description, type, precede, time, unit) [Submit request, M, 1, 30, Minute]
ACTOR (actor list) [User/Development]
NOTIFY (actor list)]
FORM_CREATE (form tist) {)
FORM_MODIFY (form list)]
FORM_REF (form list) [Change Control Migration Checklist]
EXCEPTION {method, argument) [ignore, |
COMPLETE (method, argument) [Start Single Task, Peer Review]
END TASK,;

Table 6-16 The workflow specification of the change control process.

95

Chapter 6 - Test Cases

TASK Peer Review

GENERAL (description, type, precede, time, unit) (Review request, M, 2, 3, Day]

ACTOR (actor list) [Programmer/Development, Software Engineer/Development]

NOTIFY (actor list)]

FORM_CREATE (form list) []

FORM_MODIFY (form list) [)

FORM_REF (form list) [Change Reguest Form)

EXCEPTION {method, argumeni) [ignore,]

COMPLETE (method, argument) [Start Single Task Based on Condition, 3, (By Form, Change Request Form,
RevStatus, =, Need to Revise, User Revise), (By Form, Change Request Form, RevStatus, =
Completed, Internal Review), (By Form, Change Request Form, RevStatus, =, Rejected, End Process)]

END TASK;

TASK User Revise
GENERAL {description, type, precede, time, unit) [User review and revise, M, 1, 5, Day]
ACTOR (actor list) [User/Development]
NOTIFY (actor list) (]
FORM_CREATE {form list) [J
FORM_MODIFY {form list) [J
FORM_REF (form list} [Change Request Form)
EXCEPTION (method, argument) [lgnore, |
COMPLETE (method, argument) [Start Single Task, Peer Review)
END TASK;

TASK internal Review

GENERAL (description, type, precede, time, unit) [Internal management approval, M, 2, 3, Day]

ACTOR (actor list) [Project Manager/Development, IT Manager/Development]

NOTIFY (actor list)]

FORM_CREATE (form list)]

FORM_MODIFY (form list)]

FORM_REF (form list) [Change Request Form]

EXCEPTION {method, argument) fignore,]

COMPLETE (method, argument) [Start Single Task Based on Cendition, 3, (By Form, Change Request Form
RevStatus, =, Need to Revise, Developer Revise), (By Form, Change Request Form, RevStatus, =
Completed, External Review), (By Form, Change Request Form, RevStatus, =, Rejected, End Process)]

1

END TASK;

TASK Developer Revise
GENERAL {description, type, precede, time, unil) {Developers approval, M, 1, 2, Day]
ACTOR f(actor list) [Programmer/Development, Software Engineer/Development]
NOTIFY (actor list) []
FORM_CREATE (form list) [J
FORM_MODIFY (form list) []
FORM_REF (form list) [Change Request Form)
EXCEPTION (methed, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Intemal Review]
END TASK;

Table 6-16 (Cont’d) The workflow specification of the change contro! process.

96

Chapter 6 - Test Cases

TASK External Review
GENERAL {description, type, precede, time, unit) [External management approval, M, 2, 3, Dayj
ACTOR {actor list) [Client/Development]
NOTIFY {actor fist) (]
FORM_CREATE (form list) {]
FORM_MODIFY (form list)]
FORM_REF (form list) {Change Request Form)
EXCEPTION {method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task Based on Condition, 3, (By Form, Change Request Form,
RevStatus, =, Need to Revise, Intemal Management Revise), (By Form, Change Request Form,
RevStatus, =, Rejected, End Process), (By Form, Change Request Form, RevSiatus, =, Completed,
User Acceptance)) :
END TASK;

TASK Internal Management Revise
GENERAL (description, type, precede, time, unit} finternal management revise request, M, 1, 3, Day]
ACTOR (actor list) [Project Manager/Development, IT Manager/Development]
NOTIFY (actor list) [}
FORM_CREATE {form list) []
FORM_MODIFY {form list)]
FORM_REF {form fist)]
EXCEPTION {method, argument) [ignore, |
COMPLETE (method, argument) [Start Single Task, Extemal Review|
END TASK;

TASK User Acceptance
GENERAL (description, type, precede, time, unit) [Perform UAT, M, 2, 5, Day}
ACTOR (actor list) [User/Development]
NOTIFY {actor list} []
FORM_CREATE (form list} []
FORM_MODIFY (form list) []
FORM_REF (form list) [Change Request Form}
EXCEPTION (method, argument) [lgnore, |
COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Change Request Form,
RevStatus, =, Need to Revise, External Management Revise), (By Form, Change Request Form,
RevStatus, =, Rejected, End Process)]
END TASK;

TASK External Management Revise
GENERAL (description, type, precede, time, unit) [External management revise request, M, 1, 3, Day]
ACTOR (actor list} [Client/Development]
NOTIFY (actor list) 3
FORM_CREATE (form fist} [I
FORM_MODIFY {form list) [}
FORM_REF (form list) [Change Request Form)
EXCEPTION (method, argument) [Ignore, |
COMPLETE (method, argument) [Start Single Task, User Acceplance]
END TASK;

Table 6-16 (Cont’d) The workflow specification of the change control process.

97

Chapter 6 - Test Cases

PROJECT MANAGEMENT

Fig. 6-15 and Fig. 6-16 show the task-based and actor-based workflow of project
management respectively. Whereas, Table 6-17 summarizes the actors and forms
referenced in all the tasks. And, Table 6-18 lists all the actor relationships in the actor-
based workflow with appropriate attributes. The workflow specification of this process is

shown in Table 6-19.

BTaskNamen e R T a0 o | Actors, - Ll P g - | Form Referenced: rowd o
Raise Exception User -
Review Exception System Analyst Exception Report
Task Escalation Project Manager Exception Report
Problem Solving Programmer, Exception Report,
System Analyst Escalation Report
Testing Tester Exception Report, Escalation Report
Amendment Programmer, Exception Report,
System Analyst Escalalion Report
Table 6-17 Tasks in project management with respective actors and form referenced.

g}_w.-lcn-- Mnm:v' - [Prqnf nng-unv] (r.-uuan w’dj
,ﬁfllu Insert | Tools™” Yiew: Help: ., 4 ‘.—' I

g@@@@ryv_l RS
@S| B4 - S
| I 5 T \An

53t Workfiow Enmests

“m
hy
T

®
§
§
[

t - f
Ard ./ - /
\ TT . T

Fig. 6-15 Task%based of project management. Fig. 6-16 Actor-based of project management.

“Label' g5 1 Connector'Attributes * Wi %t W I BT B IR AT T v

Arl Unconditional Task Dependency
System Analyst {Review Exceplion} —» User (Raise Exception)
Ar2 Information Sharing

Exception Report - Programmer (Problem Solving, Amendment)

- System Analyst (Problem Solving, Amendment)
Escalation Report - Programmer {Problem Solving, Amendment)

- System Analyst (Problem Solving, Amendment)

Task Cooperation
Problem Solving, Amendment
Table 6-18 Summary of connector in actor-based workflow of project management.

98

Chapter 6 - Test Cases

l-abél 2l & | ¥Connettor! Attribute's Al
Ar3 Information Sharing
Exception Report - Programmer {(Problem Solving, Amendment}
- Tester (Testing)
Escalation Report - Programmer (Problem Solving, Amendment)
- Tester (Testing)
Unconditional Task Dependency
Tester (Testing) — Programmer (Problem Solving)
Tester (Testing) — Programmer (Amendment)
Conditional Task Dependency
Programmer (Amendment} — Tester (Testing)

Form Escalation Report
field Completed
operator =

field value no
next task Amendment

Ard Information Sharing
Exception Report - Project Manager (Task Escalation)
- Tester (Testing)
Ard Information Sharing

Exception Report - Project Manager {Task Escalation)
- System Analyst (Review Exception, Amendment)
Unconditional Task Dependency
Syslem Analyst (Problem Solving) — Project Manager (Task Escalation)
Conditional Task Dependency
Project Manager (Task Escalation) —» System Analyst {Review Exceplion)

Form Exceplion Report
field Conlinue
operator =

field value yes
next task Task Escalation
Ar6 Information Sharing
Exception Report - System Analyst (Review Exception, Problem Solving, Amendment)
- Tester (Testing)
Escalation Report - System Analyst (Review Exception, Problem Solving, Amendment)
- Tester {Tesling)
Unconditional Task Dependency
Tester {Testing) — System Analyst (Problem Solving, Amendment)
Conditional Task Dependency
System Analyst (Amendment) —» Tester (Testing)

Form Escalation Report
field Completed
operator =

field value no
next task Amendment
Ar7 Information Sharing
Exception Report - Project Manager (Task Escalation)
- Programmer {Review Exception, Amendment)

Unconditional Task Dependency

Programmer (Problem Solving) — Project Manager (Task Escalation)
Conditional Task Dependency

Project Manager (Task Escalation) — Programmer {Review Exceplion)

Form Exception Report
field Continue
operator =

field value yes
next task Task Escalation
Table 6-18 (Cont’d) Summary of connector in actor-based workflow of project management.

72\ Pao Yue-Kong Library 99
& PolyU e« Hong Kong

Chapter 6 - Test Cases

WORKFLOW_MODEL Project Management (name, description, database)
[Project Management, , Workflow\PriMat]

USES ACTOR_MODEL ProjMan_Actors;
USES INFORMATION_MODEL ProjMan_Forms;

START Raise Exception;

TASK Raise Exceplion
GENERAL (description, type, precede, time, unit) [User raise exception, M, 1, 3, Dayj
ACTOR (actor list) [User/Development]
NOTIFY (actor list) []
FORM_CREATE (formi list} {Exception Report]
FORM_MODIFY (form list) {]
FORM_REF (form list)]
EXCEPTION {method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Review Exception)
END TASK;

TASK Review Exception

GENERAL {description, type, precede, time, unit) [Review exception report, M, 1, 1, Day]

ACTOR (actor list) [System Analyst/Development]

NOTIFY (actor list))

FORM_CREATE {form list) []

FORM_MODIFY {form list) []

FORM_REF (form list) [Exception Report]

EXCEPTION (method, argument} fignore, |

COMPLETE (method, argument} [Start Single Task Based on Condition, 2, (By Form, Exceplion Report,

Conlinue, =, no, End Process), (By Form, Exception Report, Continue, =, yes, Task Escalation}]

END TASK;

-| TASK Task Escalation
GENERAL {description, type, precede, time, unit) [Assign task to responsible staff, M, 1, 3, Day)
ACTOR (actor list} [Project Manager/Development]
NOTIFY {actor list}]
FORM_CREATE (form list) [Escalation Report]
FORM_MODIFY (form list) []
FORM_REF (form list} [Exception Report}
EXCEPTION {method, argument) [lgnore,]
COMPLETE (method, argument} [Start Single Task, Problem Solving]
END TASK;

TASK Problem Solving

GENERAL (description, type, precede, time, unit) [Solve problem based on exception report, M, 1, 10, Day]
ACTOR (actor list} [Programmer/Development, System Analyst/Development]
NOTIFY (actor list) []
FORM_CREATE (form list) {]
FORM_MOUDIFY (form list) []
FORM_REF (form list) [Escalation Report, Exception Report]
EXCEPTION {method, argument) [ignore,]
COMPLETE (method, argument) [Start Single Task, Tesling]
END TASK;

Table 6-19 The workflow specification of project management process.

100

Chapter 6 - Test Cases

TASK Testing

GENERAL (description, type, precede, time, unit) [Test programs after modification, M, 2, 5, Day]

ACTOR (actor list) [Tester/Development]

NOTIFY (actor list} []

FORM_CREATE (form list) [j

FORM_MODIFY (form list) []

FORM_REF (form list) [Escalation Report, Exception Report]

EXCEPTION {method, argument) [Ignore,]

COMPLETE ({method, argument) [Start Single Task Based on Condition, 2, (By Form, Escalation Report,

Completed, =, yes, End Process), (By Form, Escalation Repori, Completed, =, no, Amendment))

END TASK;

TASK Amendment
GENERAL (description, type, precede, time, unit) [Carry out Amendment, M, 1, 3, Day]
ACTOR (actor list) [Programmer/Development, System Analyst/Development]
NOTIFY (actor list) [)
FORM_CREATE (form lisf) []
FORM_MODIFY {form list)]
FORM_REF {form list) [Escalation Report, Exception Report]
EXCEPTION (method, argument} [Ignore, }
COMPLETE {method, argument) [Start Single Task, Testing]
END TASK;

Table 6-19 {Cont’d) The workflow specification of project management process.

6.2. Simulated Cases

6.2.1. Design Change Procedure

In this section, a design change procedure (DCP) is used to demonstrate how WAT works.
The details of the written procedure is first given and the activities (tasks) in the
procedures will then be described and explained in the form of task-based workflow.
Table 6-20 gives a detail written description. While Fig. 6-17 is the traditional workflow of
the DCP and Table 6-21 is all the task descriptions.

L ot I ’ _
P e
=] / ;
e N - omin
AR .
I”“’m;“’ \""""’""'mr [t
] == tmmPs] ;
| | \sw'l‘ E
m:'““’ | crocend | \ra.w"f
=]z
CtRbard I| | !
{ &s)

| T
—— # crond trnd ey

Fig. 6-17 Task-based workflow of DCP.

101

Chapter 6 - Test Cases

Purpose The design change procedure (DCP) is to ensure that changes to the programming specifications
(PS) are managed and controlled to maintain product quality and development productivity. This
procedure covers the following :

s Submission of a request for change to the PS. The requesl contains all the information to
enable an investigator to make recommendation about the proposed change.

e Actions required to make a decision on the proposed change.

» Ensuring that all items impacted by the proposed change are identified and changed.

The DCP is aclivated for a project as soon as the PS is ready for approval, at which time change
requesis can be submitted.

Owner The DCP is owned by the manager of the product design department. Hefshe is the final arbiter
refative to all changes to the design for which there is not uranimity.

Input A design change request (DCR) is submitted to propose a change to the PS during the development
process after the PS is ready for approval. DCRs can only be submitted to request changes to the
design; they will not be accepted for proposed additional function. DCRs are submitted 1o the
product design department and may be submitted by anyone.

Output The output from the DCP is a closed DCR. DCRs are closed with one of three dispositions.

1. Reject. Proposed change is rejected and is not recommended for future consideration.

2. Future. Proposed change is rejected for this release but should be considered for inclusion in
some future release of the product.

3. Adopt. Proposed change is accepted for inclusion in this release of the product. Updates to the
PS plus change requests for other impacted items must be made before the DCR is closed.

Table 6-20 Detatl written description of the DCP.
Create and Fill out a DCR form requesting a change fo the PS. Submit the DCR form to the project design
submit a DCR department. Anyone can create and submit a DCR,
Assign an The change request coordinator reviews the DCR for completeness, assigns a number for
investigator tracking purposes, and assigns the DCR to an investigator for investigation.
Investigate The investigator reviews the DCR and proposed solution and recommends adopt, reject, or
DCR fulure. The investigator provides a written statement substantiating his or her

recommendation. The DCR, along with the investigator recommendation and rationale, is
forwarded to members of the DCR review board for its review and vote.

DCR Review DCR review board members are responsible for reviewing each DCR and recommendation
Board Vote and returning their vote within five days of assignment of the DCR to the investigator. Votes
must be unanimous. When they are not unanimous, a meeting may be required o resolve
disagreements. The manager of the product design department is the final arbiter on all

DCRs.
Obtain The adopted DCR must receive management agreement from all affected and impacted item
Management owners prior to being officially made part of the plan. Management agreement not only
Agreement indicales conceptual agreement with the change, but indicates commitment to implement the
changes.

Representatives from all impacted areas review the adopted DCR, assess the impact to their
area, determine if they can accommodate the required changes, and make their
recommendation to their manager. The manager approves or disapproves the change. DCRs
with agreement from all affected parties are incorporated into the plan.

Update PS When a DCR receives management agreement, the PS is updated by its owner. i sections of
the PS have different owners, each owner is responsible for making the changes to his or her
respective section,

Submit Change The project design depariment must submit change requests lo each area impacted by the
Request agreed design change.

Close DCR When the PS updates are complete and change requests to impacted areas are submitted,
the DCR coordinator closes the adopted DCR. For rejected or future DCRs, the DCR
coordinator closes the DCR as soon as the DCR review board vote is received.

Table 6-21 Task descriptions of DCP.

102

Chapter 6 - Test Cases

After importing the actors (such as users, manager, DCR coordinator, etc.) and forms (such

as DCR and PS) from the databases of workflow enactment component, the workflow,

actors and forms created, modified and referenced can be specified. Fig. 6-18 is the task-

based workflow of DCP in the work{low editor.

"'wmﬂ.-m-.n,u [5EP) fleg wte)
{Ble - Jrctrt: "TcalE. Wew SAadroliit . belp

fD|ﬁ[QE!§|EJ!]DgJﬂEim|EIj, : ‘
relgolald . - T

Theady.

2 20 Wacketiorr Dimacs
sfre

. O Asignineetics

' [—a Ohun manwa

3 Clam DI -
I3 b Actan
BA@ Farey

';If_'_"""'"_.l _!,

oo

Uy O sl ki

i @ ImveqoeeDCR
=02 Ereomnind o)
I @ DCRbsartvate

0§ Rairtvmiiigate
,—Q Famct
- () Fute
S0 Ak
I~ Updae T8
0 Sdoctthogen|

[R

T s Y

LM[_""I"“V

Fig. 6-18 Task based workﬂow of DCP in workflow editor.

With all the above information, actors and forms referenced in DCP are summarized in

Table 6-22 as follows. Table 6-23 illustrates all the actor relationships in Fig. 6-19 with

appropriate attributes.

¢Task Name y# ¥ 5 0 |"Actors™ ¥¥[iForm Referenced XA
Create and submit a DCR User -
Assign an investigator Change request coordinator DCR
Investigate DCR Investigator DCR
Recommend response to DCR Change request coordinator Manager DCR
board
DCR hoard Vote DCR review board member DCR
Obtain Management Agreement | DCR review board member DCR
Reinvestigate Investigator DCR
Reject DCR review board member DCR
Future Change request coordinator DCR
Manager
Adopt Change request coordinator DCR
Manager
Update PS Syslem analyst DCR, PS
Submit Change Request Change request coordinator -
Close DCR Change request coordinator -
Table 6-22 Actors and forms referenced in DCP.

103

Chapter 6 - Test Cases

\m \A'Q\T/Aj \"‘\
S

Fig. 6-19 Illustrative actor diagram of DCP.

FEEabel’

Connector Atlrbutes Bt » e L P e T S

Art

Information Sharing
DCR - DCR review board (Adopt, DCR board vote, Future, Obtain management agreement, Reject)
- Systern Analyst (Update PS)
Unconditional Task Dependency
System analyst (Update PS) — DCR review hoard member (Adopt)

Ar2

Information Sharing
DCR - Manager (Adopt, Future, Recommend response to DCR board)
- Investigator (Investigate DCR, Reinvestigate)
Unconditional Task Dependency
Manager (Recommend response to DCR board) — Investigator (Investigate DCR)

Ar3

Information Sharing

DCR - Manager (Adopt, Future, Recommend response to DCR hoard}

- Change request coordinator (Assign investigator, Recommend response to DCR board)

Task Cooperation

Recommend response to DCR board
Uncenditional Task Dependency

Change request coordinator (Submit change request) — Manager (Adopt)

Change request coordinator (Close DCR) — Manager (Future)

Ard

Unconditional Task Dependency
Change request coordinator (Assign investigator) — User (Create and submit DCR)

Ard

Information Sharing

DCR - DCR review board {Adopt, DCR board vote, Future, Obtain management agreement, Reject)

- Change request coordinator (Assign investigator, Recommend response to DCR board)

Unconditional Task Dependency

DCR review board member (DCR board vole) — Change request coordinator (Recommend response to

DCR board)
Change request coordinator (Submit change request) — DCR review board member (Adopt)
Change request coordinator (Close DCR) — DCR review board member (Reject, Future)

Ar6

Information Sharing
DCR - Investigator (Investigate DCR, Reinvesligate)
- Change request coordinator {Assign investigator, Recommend response to DCR board)
Unconditional Task Dependency
Investigator (Investigate DCR) — Change request coordinator (Assign investigator)
Change request coordinator {Assign investigator) —» investigator (Reinvestigate)
Change request coordinator (Recommend response to DCR board} — Investigator {Investigate DCR)

Table 6-23 Summary of connector in actor view of DCP.

104

Chapter 6 - Test Cases

ELabel=] ConnectorAtiributes Bk mors. s ke
Ar7 Information Sharing
DCR - Investigator (Investigate DCR, Reinvestigate)
- DCR review board {Adopt, DCR board vote, Future, Obtain management agreement, Reject)
Conditional Task Dependency
Investigator (Reinvestigate} — DCR review board {Obtain management agreement)

Form DCR
field continue
operator =

field value reinvestigate
nexttask Reinvestigale
Ar8 Information Sharing
DCR - Change request coordinator (Assign investigator, Recommend respanse to DCR board)
- System Analyst (Update PS)
Unconditional Task Dependency
Change request coordinator (Close DCR) — System analyst (Update PS)
Ar9 Information Sharing
DCR - Manager (Adopt, Future, Recommend response to DCR board)
- System Analyst (Update PS)
Unconditional Task Dependency
System analyst (Update PS) — Manager (Adopt)
Ar10 Information Sharing
DCR - Manager (Adopt, Future, Recommend response to DCR board)
- DCR review board {Adopt, DCR board vote, Future, Obtain management agreement, Reject)
Task Cooperation
Adopt, Future
Unconditional Task Dependency .
DCR review board member {(DCR board vote) — Manager (Recommend response to DCR board)
Conditional Task Dependency
Manager (Future) — DCR review board (Obtain management agreement)

form DCR
field continue
operator =

field value future
nexttask Future
Manager (Adopt} — DCR review board {Obtain management agreement)

Form DCR
field continue
operator =

field value adopt
nexttask Adopt
Arit Information Sharing
DCR - Investigator (Investigate DCR, Reinvestigate)
Table 6-23 (Cont’d) Summary of connector in actor view of DCP.

After workflow is captured, it is translated into workflow specification and imported into
workflow specification database. Table 6-24 is the DCP workflow specification. And, Fig. 6-
20 1s an example of DCR in the application database. '

105

Chapter 6 - Test Cases

WORKFLOW_MODEL DCP (name, description, database) [OCP, Design Change Procedure, workflow\dcp]

USES ACTOR_MODEL DEVELOPMENT;
USES INFORMATION_MODEL DCP;
START Create and submit DCR;

TASK Creale and submit DCR
GENERAL (description, type, precede, time, unit) [new DCR, Manual, 1, 30, Minute)
ACTOR (actor list) [User/General]
NOTIFY (actor list))
FORM_CREATE (form list) [DCR]
FORM_MODIFY {form list)]
FORM_REF (form fist) []
EXCEPTION {method, argument) {ignore,)
COMPLETE (method, argument) [Start Single Task, Assign investigator]
END TASK;

TASK Assign investigator
GENERAL (description, type, precede, time, unit} (find suitable investigator, Manual, 2, 2, Day]
ACTOR (actor list) [Change request coordinator/Design)
NOTIFY (actor list) [j
FORM_CREATE (form list} |]
FORM_MQODIFY (form list} [J
FORM_REF (form list) [DCR]
EXCEPTION (method, argument) [Ignore, |
COMPLETE {method, argument) [Start Single Task, Investigate DCR]
END TASK;

TASK Investigate DCR

GENERAL (description, type, precede, time, unit) [study DCR, Manual, 4, 5, Day]

ACTOR (actor list) [Investigator/Design]

NOTIFY (actor list)]

FORM_CREATE (form list} []

FORM_MODIFY (form list) []

FORM_REF (form list) [DCR]

EXCEPTION (method, argument) [Ignore,]

COMPLETE {method, argument) [Start Single Task, Recommend response to DCR board)
END TASK;

TASK Recommend response to DCR board
GENERAL (description, type, precede, time, unit) [Response to DCR board, Manual, 1, 2, Day]
ACTOR (actor list) [Manager/Design, Change request coordinator/Design)
NOTIFY (actor list) {]
FORM_CREATE (form list) []
FORM_MODIFY (form list) [DCR]
FORM_REF (form list) [DCR]
EXCEPTION {method, argument) [Ignore, |
COMPLETE {method, argument) [Start Single Task, DCR board vote]
END TASK;

TASK DCR board vote

GENERAL (description, type, precede, time, unit) [DCR meeting, Manual, 1, 2, Hour]

ACTOR (actor list) [DCR review board member/Board)

NOTIFY (actor list)]

FORM_CREATE (form list} []

FORM_MQODIFY {form list} [DCR]

FORM_REF (form list) [DCR]

EXCEPTION (method, argument) [Ignore, |

COMPLETE {method, argument) [Start Single Task, Obtain management agreement]
END TASK;

Table 6-24 Workflow specification of the DCP.

106

Chapter 6 - Test Cases

TASK Obtain management agreement

GENERAL (description, type, precede, time, unif) (agree on decision on DCR, Manual, 1, 1, Day]

ACTOR (actor list} [DCR review board member/Board]

NOTIFY (actor list) []

FORM_CREATE (form list)]

FORM_MODIFY (form list) [DCR]

FORM_REF (form list) [DCR]

EXCEPTION {method, argument) [!gnore,]

COMPLETE {method, argument) [Start Single Task Based on Condition, 4, (By Form, DCR, continue, =,
reinvestigate, Reinvestigate}, (By Form, DCR, continue, =, reject, Reject), (By Form, DCR, continue, =,
future, Future), (By Form, DCR, continue, =, adopt, Adapt)]

END TASK;

TASK Reinvestigate
GENERAL (description, type, precede, time, unit) [investigate OCR again, Manual, 1, 5, Day]
ACTOR (actor list) [Investigator/Design]
NOTIFY (actor list))
FORM_CREATE (form list} {]
FORM_MODIFY {form list) [)
FORM_REF {(form list) [DCR]
EXCEPTION {method, argument) fignore, }
COMPLETE (method, argument) [Start Single Task, Assign investigator]
END TASK;

TASK Reject
GENERAL {description, type, precede, time, unit) [Reject DCR, Manual, 1, 1, Hour]
ACTOR (actor list) [DCR review board member/Board]
NOTIFY (actor list) []
FORM_CREATE (form list} []
FORM_MODIFY {form list) [DCR}
FORM_REF (form list) [DCR]
EXCEPTION {method, argument) [Ignore, |
COMPLETE (method, argument) [Start Single Task, Close DCR)]
END TASK;

TASK Future
GENERAL {description, type, precede, fime, unif) [Design change for future use, Manual, 1, 1, Hour]
ACTOR (actor list) [DCR review board member/Board, Manager/Design)
NOTIFY (actor list)]
FORM_CREATE {form: list) [J
FORM_MODIFY {form lis} {]
FORM_REF (form list) [DCR]
EXCEPTION {method, argument) [lgnore, |
COMPLETE (method, argument) [Start Single Task, Close DCR]
END TASK;

TASK Adopt

GENERAL (description, type, precede, time, unit) [adopt DCR, Manual, 1, 1, Hour]

ACTOR (actor list} [Manager/Design, DCR review board member/Board]

NOTIFY (actoriist))

FORM_CREATE (form fist)

FORM_MODIFY (form list) []

FORM_REF (form list) [DCR]

EXCEPTION {method, argument) {Ignore,]

COMPLETE (method, argument) [Start Multiple Task, Update S, Submit change request]
END TASK;

Table 6-24 (Cont’d) Workflow specification of the DCP.

107

Chapter 6 - Test Cases

TASK Update PS

GENERAL (description, type, precede, time, unit) [update PS according to DCR, Manual, 1, 5, Day]
ACTOR (actor list) {System analyst/Design]

NOTIFY (actor list) [)

FORM_CREATE (form list) []

FORM_MODIFY (form list) [PS]

FORM_REF (form list) [DCR, PS]

EXCEPTION {method, argument) (ignore, |

COMPLETE (method, argument) [Start Single Task, Close DCR]

END TASK;

TASK Submit change request

GENERAL (description, type, precede, time, unit) [Submit DCR, Manual, 1, 30, Minute)
ACTOR (actor list) [Change request coordinator/Design]

NOTIFY (actor list} []

FORM_CREATE (form list) []

FORM_MODIFY (form list) {]

FORM_REF (form list) {]

EXCEPTION (method, argument) [lgnore, |

COMPLETE {method, argument) {Start Single Task, Close DCR]

END TASK;

TASK Close DCR

GENERAL {description, type, precede, time, unit) [close, Manual, 4, 30, Minute]
ACTOR (actor list) [Change request coordinator/Design]

NOTIFY {actor list} f]

FORM_CREATE (form list} []

FORM_MODIFY (form fist) [DCR]

FORM_REF (form list)]

EXCEPTION {method, argument) [Ignare, }

COMPLETE (method, argument) [End Process, |

END TASK;

Table 6-24 (Cont’d) Workflow specification of the DCP.

e 1]

FD _al an mw ‘nu'l hetions Text o Wirdow,
%] E]s{adtu =l Iim

i Dn.lgn Change Request (DCR) form ‘-I

Fechen I (oo bu ek o721 mbwcer) n

r
1
i sehmitnraame: ¥y 4l
Duin submicied : ¥ -
i_ Prblem dercripian I
I Prasedotoen: !
Mmmnmnwmm anges : © At
i Dutails afyrepssed changa : * By
i Tther Inuuh'-ﬂndlyﬂnpnpud change ¥ iy
Additlanat commenim ;7 4 !
it
1

Saction 11 ba fd w31 Iy DCR awardmeron) ik
Daw rveabead -7y
Luvertiguiny ; '
nn!-rig-ll--ursqm L
Pl darcription :{ 1 ddoyt) Rajact G P Dmnu.l lil

j H-du.p.m;uh- L It
Date clesad -

Seation 111 (lled cxt ks DCR prpstignen) |‘f":

Dass eneaivnd : 1

S

Ratlonade o recommendation -) B
DCR review beard o £ .
Dute afvasa ;¥ '

Wlﬂul(-llmll f&.mlu&-hu‘-h) ‘-'—I

P I P B e o

Fig. 6-20 DCR in the application database.

108

Chapter 6 - Test Cases

6.2.2. Software Change Control

We use a software change control process as another simulated test case. Table 6-25
summarizes the actors and forms referenced in all the tasks. Fig. 6-21 is the task-based

workflow of this process in the workflow editor.

ET35k Naime 7 2R B e T Notors G 1, pooie o %.:| Form Referenced LRt o sty
Initiate change request User - ’
Approve change request Project Manager Change request form
Archive change request Support -
Impact analysis Support Change request form
Schedule change request Project Manager Project schedule, Staff schedules
Schedule UAT Project Manager Staff schedules
Do the changes Support and Programmer Change request form, Source code
Test the changes Tester and Programmer Source code, user requirements
Perform UAT User Change request form
Table 6-25 Tasks in software change control process with respective actors and form referenced.

- - Masrazyer -
P Bl b:urr Teohs we_belp

T e N U h—— 1
%0[@ DI/‘I E - -‘w“_.” R Ki Projoct
- Sunporl / -

T g T

o i S

b

L N s

. \.)
L%

Fig. 6-21 Task-based software change control.

Fig. 6-22 Actor-based software change control.

Respective actor-based workflow is shown as in Fig. 6-22. Table 6-26 summarizes all the
actor relationships in the actor-based workflow and Table 6-27 is the workflow

specification.

109

Chapter 6 - Test Cases

B Cabsl5% T Connector Atribuites e e i R By PO e B T L pad b DR R

Art

Information Sharing
Change request form - Support {do the changes, impact analysis)
- Projecl Manager (approve change request)
Unconditional Task Dependency
Project Manager {Schedule change request, schedule UAT) — Support (impact analysis)
Support (Do the change) -» Project Manager (Schedule change request, schedule UAT)
Conditional Task Dependency
Support (Impact Analysis) — Project Manager (Approve change request)
Form change request form
field status
operator =
field value approved
nexttask impact analysis
Support (Archive change request) — Project Manager (Approve change request)
Form change request form
field status
operator
field value disapprove
next task archive change request

Ar?

Information Sharing
Change request form - User (perform UAT)
- Project Manager (approve change request)
Unconditionai Task Dependency
Project Manager (approve change request) — User (initiate change request)

Ar3

Information Sharing
Change request form - User {perform UAT)
- Programmer (do the changes)
Unconditional Task Dependency
User (Perform UAT) — Programmer (Test the changes)

Ard

Information Sharing
Source code - Tester (test the changes)
- Programmer {do the changes, test the changes)
User requirements - Tester (test the changes)
- Programmer {test the changes)
Task Cooperation
Test the changes
Unconditional Task Dependency
Tester (Test the change) — Programmer (Do the changes)

Ars

Information Sharing
Source code - Tester (test the changes)
- Support (do the changes)
Unconditional Task Dependency
Tester {Test the change) — Support (Do the changes)

Ar6

Information Sharing
Change request form - User (perform UAT)
- Support (do the changes, impact analysis)

Ar7

Information Sharing
Change request form - Programmer (do the changes)
- Support (do the changes, impact analysis)
Source code - Programmer (do the changes, test the changes)
- Support {do the changes)
Task Cooperation
Bo the changes
Unconditional Task Dependency
Tester (Test the change) —» Programmer (Do the changes)

Table 6-26 Summary of connector in actor-based workflow of software change control process.

110

Chapter 6 - Test Cases

WORKFLOW_MODEL Software Change Request {name, description, database)
[Software Change Request, , witrequest]

USES ACTOR_MODEL Change_Actors; :
USES INFORMATION_MODEL Change_Forms; g
START Initiate change request;

TASK Initiate change request
GENERAL (description, type, precede, time, unit) [Create change request form, M, 1, 30, Minute]
ACTOR {actor list) [User/Development]
NOTIFY {actor list) {]
FORM_CREATE (form list) [Change Request Form]
FORM_MODIFY (form list) {]
FORM_REF (form list) []
EXCEPTION (method, argument) {Ignore,]
COMPLETE {method, argument) [Start Single Task, Approve change request]
END TASK;

TASK Approve change request

GENERAL (description, type, precede, time, unit) [Change request approval, M, 1, 2, Day]

ACTOR (actor list) [Project Manager/Development]

NOTIFY (actor list) []

FORM_CREATE (form list)]

FORM_MODIFY (form list) []

FORM_REF (form list} [Change Regquest Form]

EXCEPTION {method, argument) [Ignorg,]

COMPLETE (method, argument) [Starl Single Task Based on Condition, 2, (By Form, Change Request Form,
status, =, disapproved, Archive change request), (By Form, Change Request Form, status, =,
approved, Impact analysis)]

END TASK;

TASK Archive change request
GENERAL (description, type, precede, time, unit) [Archive disapproved request, M, 1, 2, Day]
ACTOR (actor list) [SupportfDevelopment]
NOTIFY {actor list))
FORM_CREATE (form fist) {]
FORM_MODIFY (form list) []
FORM_REF (form list} []
EXCEPTION {methcd, argument) [ignore,]
COMPLETE (method, argument} {End Process,)
END TASK;

TASK Impact analysis
GENERAL (description, type, precede, time, unit) [Analyse impact after changes, M, 1, 4, Day}
ACTOR (actor list) [Support/Development}
NOTIFY (actor list))
FORM_CREATE (form list) []
FORM_MODIFY (form list) []
FORM_REF (form list) [Change Request Farm)
EXCEPTION (method, argument) [ignore, |

COMPLETE {method, argument) [Start Muttiple Task, Schedule change request, Schedule UAT)
END TASK; :

Table 6-27 The workflow specification of software change control process.

111

Chapter 6 - Test Cases

TASK Schedule change request
GENERAL (description, type, precede, time, unit) [Schedule changes, M, 1, 1, Day]
ACTOR (actor list) {Project Manager/Development]
NOTIFY (actor list) [)
FORM_CREATE (form list) []
FORM_MODIFY (form list) {]
FORM_REF (form list} [Staff schedule, Project schedule]
EXCEPTION {method, argument) [ignore, |
COMPLETE (method, argument) [Start Single Task, Do the changes)
END TASK;

TASK Schedule UAT
GENERAL (description, type, precede, time, unit) [Schedule UAT, M, 1, 1, Day]
ACTOR (actor list) [Project Manager/Development]
NOTIFY (actor list) [)
FORM_CREATE (form list) []
FORM_MODIFY (form list) []
FORM_REF (form list) [Staff schedule]
EXCEPTION {method, argument) [lgnore, |
COMPLETE {method, argument) [Start Single Task, Do the changes]
END TASK;

TASK Do the changes
GENERAL (description, type, precede, time, unit) {Perform changes, M, 2, 10, Day)
ACTOR (actor list} [Programmer/Development, Support/Development]
NOTIFY {actor list) []
FORM_CREATE (form list) |]
FORM_MODIFY (form list) []
FORM_REF (form list) [Change Request Form, Source code]
EXCEPTION (method, argument) [ignore,]
COMPLETE (method, argument} [Start Single Task, Test the changes)
END TASK;

TASK Test the changes
GENERAL {description, type, precede, time, unit) [Test after changes, M, 1, 8, Day]
ACTOR (actor list) [Programmer/Development, Tester/Development]
NOTIFY (actor list) []
FORM_CREATE {form list) []
FORM_MODIFY {form list) [}
FORM_REF (form list) [Source code, User requirements]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Perform UAT]
END TASK;

TASK Perform UAT
GENERAL (description, type, precede, time, unit} [Carry out user acceptance test, M, 1, 5, Day)
ACTOR {actor list) [User/Development) ’
NOTIFY (actor list) {]
FORM_CREATE {form list) []
FORM_MODIFY (form fist) []
FORM_REF (form fist) [Change Request Farm]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) {End Process,]
END TASK;

Table 6-27 (Cont’d) The workflow specification of software change control process.

112

Chapter 6 - Test Cases

6.3. Evaluation and Discussion

In the previous sections, we have shown how WAT can be used for applications in
software development by presenting different application scenarios. With the exceptions
of two of them, the rest are real cases obtained from several software development teams in

Hong Kong and Singapore.

To evaluate the effectiveness of WAT, it was installed for use by two development teams
with members playing different roles. Members of these teams were given some initial
training and they were asked to use the tool and to note any problem they had with it.
They were also asked to evaluate how effective the various features of the tool had helped
them in the management of quality. WAT has been installed for six months and throughout
the period, some help-desk supports were provided to the users in the sense that we made

ourselves available to answer questions they had.

At the end of the period, we selectively interviewed some of the users of the tool. These
users include project managers, developers and testers. Their opinion, therefore, represent
management and technical developers involved in design to coding to testing in the
development life cycle. Our original intention was to also interview the quality manager,
however, none of any member of these teams was assigned the responsibility for quality
assurance. Such a role is played by the project manager and to a less extent, the test team

leaders.

Before the interview, we have developed a questionnaire to evaluate the effectiveness of
WAT. The analysis was intended to be qualitative and it was formulated from the
Goal/Question/Metric (GQM) paradigm [Shepperd, 1995]. Such a goal driven method is
used because it aims at identifying what measures could be usefully employed in order to
evaluate goal achievement. Therefore, it can be employed for a variety of software
projects, the management of change, and also the assessment of services delivered by an IT

organization [Shepperd, 1995].

To begin with the GQM paradigm, we consider the following as the goal of our tool :

To help organizations to build a quality management system so as to facilitates ISO 9000 certification.

113

Chapter 6 - Test Cases

For applications in software industry, three primary goals were defined :

G1: Tobuild a quality management system in software organizations (short-term)
G2: Toimprove software development processes {mid-term)
G3: To facilitate the I1SO 9001 certification (long-term)

These goals were then decomposed into sub-goals and relevant questions for the
questionnaire were designed based on them. The decomposition was shown as in Table 6-

28 below :

G1: To build a quality management syslem in software organizations
G114 To document the quality management system using the tool
Q1: Is it convenient and efficient to prepare quality manual and procedures ?
Q2: is it easy 1o change the documentation ?
Q3: Is extra human effort needed for version control and edit history for the documentation ?
Q4: Can all the documentation be referenced quickly ?
G1.2: To clearly define responsibilities of each staff
Q1 Can organizational structure clearly defined ?
Q2. Can the line of command and duties easily defined and modified ?
G1.3: To implement the system based on documentation
M. Can documented procedures be implemented easily ? ,
Q2: During implementation, is it easy to delect problems or inadequacies of the documented
procedures ?
G2: To improve software development processes
G2.1: To understand the existing software development process
Q1: Can the number of sub-process in the development life-cycle be easily obtained ?
Q2: Can the number of task in each sub-process be easily obtained ?
Q3. Can the information about each task be easily obtained ?
Q4: What are the aclors, form created, referenced and modified in each task ?
Q5: Exception handling mechanism for each task ?
G2.2: To detect shortfalls of the process
Q1 Missing information in tasks can be easily detected ?
Q2: Deadlock or loop back can be easily detected ?
Q3: Improper end of process can be detected ?
G2.3; To capture in the process
Q1 Is it easy to capture process ?
Qz: Was there be a better understanding of process after the process is captured ?
Q3: Is it possible to detect problems or inadequacies of the process during capturing ?
G224 How well to automate and control the process
Q1 Do the responsible staff aware of the process ?
Q2: Can relevant forms be created, modified and referenced easily ?
Q3. Does process execution minimize human effort ?
Q4. Does process execution save time ?
Q5: Does the process performs as expected ?
Q6 : Is the execution of process under control ?
Table 6-28 The decomposition of the three primary goals.

114

Chapter 6 - Test Cases

G2.5: To evaluate process performance
Qi: Can progress and status of different process instances easily be checked ?
Q2: Can number of completed and processing process instances easily be checked ?
Q3: Can expired process instances be monitored ?
Q4: Can current workload of each staff be monitored ?

G3: To facilitate the 1SO 9001 cerification

Gl To understand the ISO 9001 requirements

Ql: Is 1SO 9001 available ?

Q2: Is there any assistant in understanding the 1SO requirements ?
Gi.2: To evaluate current readiness

Ql: Is there any method to assess the current readiness ?

Table 6-28 (Cont'd) The decomposition of the three primary goals.

With regard to document control, about all the team members agreed that the WE
component provides a central repository to store useful templates and information (quality
manual and procedures) in the organization. Management found it much easier and it
required less time to prepare, maintain and organize the quality and other documents than
before. They found that, using WAT, all the documentation in the quality management
system could be modified and referenced easily. Also, they found that the features to
support version controls and audit trails were particularly useful in building a documented
QMS.

Regarding organizational structure and staft responsibilities, the managers found that the
organizational structure database in the WE component was very useful in the definition of
actors and their relationships in the orgamization. It was found that it facilitated task
assignments and supported clear specification of lines of commands. Also, having well-
defined workflows produced by WAT, most of the team members found that the
responsibilities of each team member were better understood and this made better

collaboration possible.

System analysts commented that WAT forced them to think and plan thoroughly and
logically before the actual implementation. It is because the users we interviewed defined
a workflow in the WC component only after they have identified a set of well-defined
properties for each task. For example, they have to know what the responsible actors are
and what forms need to be created, modified and referenced in the workflow. Because of

this, system analysts and developers found that they were more disciplined as they had to

115

Chapter 6 - Test Cases

understand and found out what information were lacking and they were not allowed to
describe a workflow in an early stage without sufficient information and planning. The
possibility of rework was thus minimized. However, they found that it was difficult for
them to integrate several related workflows to model a larger workflow scenario. And,
they could not model different level of process abstraction as our model currently only

supports a single layer of process.

From the interview, the developers found WAT was very helpful and user-friendly because
they could view the workflow defined through the graphical workflow editor. And, they
could easily locate loop back problems and aware of the incompleteness of the workflow if
there was any. Such a visualization of the workflow helps them detect the complex part of
it. Also, this facilitates the evaluation of the feasibility and difficulties in the
implementation tasks. Therefore, according to the developers, WAT is useful in analysis
and design in the software development cycle. In general, less human resources and effort
are needed to model the workflow. However, the developers recommended that
consistency checking and redundancy avoidance should be available in modeling the

workflow. And, this part is not noticeable among the managers.

On the other hand, the managers found that human aspect such as communication,
coordination and dependency could be collected and highlighted from the tool. Owing to
the emphasis on the significance of actor relationships, the managers were aware of the
relationships between actors and they could use this information to plan and manage the
organization. And, respective adjustments and modification to the workflow could be done
easily. For example, the managers could modify the respective workflow diagram without
rebuilding the whole workflow if the management found problems in any existing
workflow or wanted to improve it. According to the managers and system analysts, users
could use the graphical editor to change any workflow without much effort. And, the
revised workflow specification could be generated and imported to the workflow
enactment component again easily. Then, the workflow could be implemented and
automated based on the new specification. As a result, WAT is capable of minimizing the
time for the management and developers to modify a workflow as well as to enforce the

execution of the new workflow.

116

Chapter 6 - Test Cases

When enacting workflow, users found that they could initiate a process instance simply by
the workflow definition stored in the workflow specification database in the WE
component. As there were already many workflow facilities (such as automatic process
initiation, task notification and assignment) that were built in WAT, developers found that
about one weeks’ programming effort could be saved. Also, the direct linkage between the
workflow specification and application databases could further save their development
effort so that they can concentrate on other application specific requirements. For the
users, they found those built-in facilities very important and useful to support the dynamic
nature of workflow. In particular, they found that automatic task assignment and

notification were essential and practical to enforce participation and accountability.

In addition, the managers found that WAT could help them to trace the progress of
different instances of processes that have been started. Although processes are
implemented in different databases, the managers could monitor process status, as well as
the number of completed, processing and expired process instances through the process
tracking documents in the workflow specification database. And, it is useful for them to
check the current workload and performance of each staff. For the users, they could

reference and track the required process information directly and quickly.

After the interview, the users suggested ways of improving WAT. Based on their feedback
and recommendations, we found that many problems and difficulties that they encountered
were due to their unfamiliarity with the tool. For example, in the course of defining a
workflow, they did not know task parallelism can be implemented by unconditional task
relationship, automatic tasks can be triggered by agents and complicated rules to determine
conditional task branching can be programmed and evaluated by agents. And, during
workflow enactment, some users were not aware that they could access relevant documents
and raise exception through buttons in the process tracking document, Apart from these,
we found that some of the limitations are due to Lotus Notes and we expect that they can
be corrected as Lotus Notes improves. For example, owing to the hidden design of Lotus
Notes form, our tool cannot support dynamic form design interface in the graphical editor.
Also, additional modification is required for external data access other than Notes
databases. However, good recommendations have been made to improve the functionality
of WAT, such as consistency checking and redundancy avoidance in the process model

that requires artificial intelligence. It was also a good suggestion to enhance WAT to

117

Chapter 6 - Test Cases

support process integration and task abstraction resulting in a model having multiple layer
of process. And, some users commented that exceptions should be made user-driven rather
than system-driven. Nevertheless, WAT can still support a reasonable number of real

cases obtained from several software development teams.

118

Chapter 7 - Conclusion

7. CONCLUSIONS
7.1. Summary

Quality management aims at ensuring products or services to meet the requirements and
needs of its users. For a QMS to achieve this, it is important to focus on the design of the
right processes and the actual carrying out of the tasks according to the design. The basis
for a QMS will best be based on some international quality standards as this will give the
confidence of its successful implementation, limit risk and shorten learning curve. Thus, a
QMS based on the ISO 9001 can give a firm foundation for process improvement. To
build a QMS, it is important to provide a better visualization of processes through explicit
recognition of process elements and their inter-relationships. To achieve this, we consider
a process to be a sequence of tasks that depend on the cooperation and communication
within and between groups of collaborating individuals. This involves complex interaction
between task and task, actor and actor and actor and task. In this thesis, a workflow
approach is used to manage processes. We have developed a tool, called WAT, that is able
to make process visible through well defined workflow elements, structure and
representation to support group work. It helps team members to cooperate and

communicate, and assists companies to install QMS in compliance with the ISO 9001.

WAT has two major components: workflow capturing (WC) and workflow enactment
(WE). The WC component ensures consistent process implementation by specifying
processes, task relationships and information flow. Based on the workflow reference
model from the WIMC, WAT captures both dynamic (execution paths of a process and
flow of documents) and static (task, abtor, form properties) aspects of a process.
Specifically, WAT supports three different models : (i) an actor model for capturing of
organizational structure, (ii) an information model for recording of presentation details,
and (iii) a process model for supporting workflow automation and management. Graphical
user-interface allows users say what they do and makes workflow capturing more
understandable and flexible. Therefore, processes can be more adaptive to changes, better
controlled and monitored. Organizational structure is captured as well to model the
relationships between actors and facilitates dynamic task assignment during process

execution. WAT supports both task-based and actor-based workflows. And, it allows

119

Chapter 7 - Conclusion

these models to be transformed from one to the other so as to capture different views of

organization and explores relationships between workflow elements.

After the workflow is captured, respective workflow specification, with reference to the
WIDE workflow specification language can be generated from the WC component and
import to the WE component. They are stored in database so that process instances will
follow the same specification unless it has been changed. Based on the specification, the
WE component, which is implemented with Lotus Notes Release 4.6, helps users to do
what they say and implement workflow by automating task sequences and bringing
responsible development team members into the process. The WE component supports
group work by automating task sequences and bringing responsible development team
members into process. Moreover, documents can be controlled and shared by the efficient
and reliable document manipulation environment. The WE component controls and
monitors process execution and provides current and accurate information. It also provides
a standard environment to enact processes and quality templates for documentation. As a
result, existing procedures can be improved and streamlined by removing redundant data
gathering and processing. Through WAT, capabilities to-automate and manage processes
can be enhanced. Also, quality of product and services can be improved continuously.

Therefore, WAT can help company to build a QMS in compliance to the ISO 9001.

In summary, WAT provides numerous benefits including :

¢ workflow capturing functions to retrieve process information;

e work-to-do list handling functions for notification of assignment of a task;

e process status functions to keep tracks of a specific process or task;

¢ process maintenance functions to modify process and/or task definitions;

* data handling functions to retrieve workflow relevant system or control data;
¢ application integration to invoke other external applications;

¢ process control functions to raise exceptions when necessary.

120

Chapter 7 - Conclusion

7.2. Future Work

7.2.1. Workflow improvement and optimization

Achieving workflow automation is the primary goal in workflow management, we can
proceed to workflow improvement and optimization. For example, workflow consistency
and redundancy checking can be performed with reference to line of command and actor
responsibilities in organization structure. Also, we can base on graph theory as a symbolic
representation of workflow. Then, by applying and taking advantagé of graph theory, we
would like to investigate possible improvement in the workflow. For instance, it is
possible to detect bottlenecks or uneven workload. Also, it is preferable to seek for better
workflow path so as to reduce number of task and minimize actor involvement. As a

result, processes can be better monitored and their quality can be assured.

7.2.2. Knowledge-based workflow

Having processes in an organization being well defined automated, controlled and
managed, it is desirable to apply intelligence in workflow model and is one of the most
interesting significant developments for workflow. A knowledge-based workflow system
would use statistical, heuristic, and artificial intelligence to infer correct routing,
scheduling, and exception routing, beyond its original definition. That will require some
degree of integration with Al systems. For instance, traditional message routing is either
pre-defined or condition-based, in order to make routing more effective and efficient,

message routing can be based on keywords or patterns learned from previous examples.

121

Chapter 7 - Conclusion

7.2.3. Process Measurement

Planning and controlling processes can be achieved by effective measurements, Proper
measurement allows an organization {o assess processes to ensure they adhere to original
performance requirements continuously. This will provide assistance to assessing,
monitoring, and identifying improvement actions for achieving a set of company quality
and productivity goals. We can use quantitative data collected as an indicator of process
problem areas. The measurement data provides information for investing wisely in tools
for quality and productivity improvement. They can be used as a quality threshold
mechanism, a check on conventional costing methods, a technique for monitoring project
progress and checking on the functional growth of the system, and as a method for
ensuring that quality does not degrade during maintenance. Ultimately, the inherent
quality of a product and the efficiency of a development effort can then be identified,

quantified, and improved.

7.2.4. Internet Workflow Appilication

As a growing business, companies are eager to use Internet to tap new markets, increase
efficiency and speed up communication both inside and outside the company to cement
relationships with customers and suppliers across different geographic areas. Therefore,
Internet and collaborative technologies are dri{ring key business trends. Companies can
take advantage of the Internet quickly and cost-effectively. They can gain significant
competitive advantage and bottom-line results by exploiting Internet technologies in high
value applications. These business solutions will help companies track contacts, orders,
and documents; keep customers informed; and resolve problems without picking up the
phone. Also, project information, status and on-line discussions with the entire
organization can be shared. Moreover, global enhanced, seamless communication is

established throughout the organization and related parties using Internet electronic mail.

122

Chapter 8 - Bibliography

8. BIBLIOGRAPHY

Armenise P., Bandinelli S., Ghezzi C., Morzenti A., “Software Process Representation
Languages : Survey and Assessment,” Proceedings, 4™ Conference of Software

Engineering and Knowledge Engineering, Los Alamitos, Calif., pp. 455 - 462 (1992).

Bernard Moulin, Brahim Chaib-draa, Louis Cloutier, “A Multi-Agent System Supporting
Cooperative Work Done by Persons and Machines,” 1991 IEEE International
Conference on System, Man, and Cybemetics, ‘Decision Aiding for Complex System’,
NY, USA, pp. 1889 - 1893 (1991).

Berthold Reinwald, Mohan C., “Structured Workflow Management with Lotus Notes
Release 47, Digest of Papers. COMPCON ’96. Technologies for the Information
Superhighway. Forty-First IEEE Computer Society International Conference, Santa
Clara, California, 25-28 Feb, 1996, pp. 451 - 457 (1996).

Bussler C., Jablonski S., Schuster H., “A New Generation of Workflow-Management-
Systems: beyond Taylorism with MOBILE,” SIGOIS Bulletin, 17(1), pp. 17-20 {1996).

Casati F., Grefen P., Pernici B., Pozzi G., Sanchez G., “Conceptual Modeling of
WorkFlows,” OOER’95 : Object-Oriented and Entity-relationship Modeling, 14
International conference, Bond University, Gold Coast, Queensland, Australia,
Springer-Verlag, pp. 341-353 (1995).

Casati F., Grefen P., Pemici B., Pozzi G., Sanchez G., “WIDE Workflow model and
architecture,” Workflow Management Coalition, April 1996 (1996).

Casati F., Grefen P., Pernici B., Pozzi G., Sanchez G., “Deriving Active Rules for
Workflow Enactment,” Database and Expert System Applications, 7" International

Conference, DEXA’96, Zurich, Switzerland, pp. 94 - 115, (1996). -

123

Chapter 8 - Bibliography

Chan P.W., “Installing an ISO 9001 accredited software quality management system,”
SQM’93, First International Conference on SQM, Southampton, UK, pp. 13 - 26
(1993).

Chidung Lac, Jean-Lue Raffy, “A Tool for Software Quality,” Proceedings of the IEEE
Second Symposium on assessment of quality software development tools, New Orleans,

L.A., 27-29 May, 1992, pp.144 - 150 (1992).

Christoph Bubler, Stefan Jablonki, “Implementing Agent Coordination for Workflow
Management Systems Using Active Database Systems,” Forth International Workshop
on Research Issues in Data Engineering, Active Database Systems, Los Alamitos, CA,
USA, pp.53 - 59 (1994).

Christoph Bubler, Stefan Jablonski, “An Approach to integrate workflow modeling and
organization modeling in an enterprise,” Proceedings Third Workshop on Enabling
Technologies : Infrastructure for collaborative enterprises, Los Alamites, CA, USA, pp.
81 - 95 (1994).

Ciancarini P., “Modeling the Software Process using Coordination Rules,” The Fourth
Workshop on Enabling Technologies : Infrastructure for Collaborative Enterprises, Los
Alamites, CA, USA, 20-22 April, 1995, pp. 46 -52 (1995).

Coleman D., Khanna R., “Groupware : Technology and Applications,” Prentice Hall
(1995).

Damniel K.C. Chan, Jochem Vonk, Gabriel Sanchez, Paul W. P. J. Grefen, Peter M.G.
Apers, “A Specification Language for the WIDE Workflow Model,” Conference on
Advanced Information Systems Engineering CAISE 97, Barcelona, Catalonia, Spain,
June 16-20, 1997 (1997).

Dennis R. McCarthy, Sunil K. Sarin, “Workflow and Transactions in InConcert,” Data
Engineering Bulletin, Vol. 16, No. 2, pp. 53-56 (1993).

124

Chapter 8 - Bibliography

D.K.C. Chan, K.P.H. Leung, C.Y. Yan and K.C.C. Chan, “Liaison : a Workflow Model for
Novel Applications,” In Proceedings of the 1998 Asia-Pacific Software Engineering
Conference (APSEC’98), IEEE Computer Society Press, pp. 144-152 (1998).

Dr. Keith C.C. Chan and Yan Ching Ying, “A Workflow Automation Tool for ISO 9000
Compliant Quality Management,” ISO 9000 and Total Quality Management,
Proceedings of the Third International Conference, pp. 53-61 (1998).

D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz Dittrich, “The Mentor Project: Steps
Towards Enterprise-Wide Workflow Management,” IEEE International Conference on
Data Engineering, New Orleans, LA, USA, 26 Ieb - 1 Mar, 1996, pp. 556-565 (1996).

Eric S.K. Yu, “From E-R to ‘A-R’ - Modeling Strategic Actor relationships for business
process reengineering,” International Journal of Cooperative Information Systems, Vol.
4,No.2 & 3, pp.125-144 (1995).

Friedemann Schwenkreis, “APRICOTS - Management of the Control Flow and the
Communication System,” Proceedings of the 12th IEEE Symposium on Reliable
Distributed Systems, Princeton (1993).

Gary Born, Process Management to Quality Improvement, John Wiley & Sons (1994).

Georgakopoulos D., Homick M., Sheth A., “An Overview of Workflow Management :
From Process Modeling to Workflow Automation Infrastructure,” Distributed and
Parallel Databases, 3, pp. 119-153 (1995).

Gerhard Chroust, Stefan Hardt, “Executing Process Models Activity and Project
Management,” Proceedings IEEE Symposium and Workshop on Engineering of
Computer-Based Systems, pp. 364 - 370 (1996).

Gianluigi Caldiera, “Impact of ISO 9000 on Software Maintenance,” Proceedings of
Conference on Software Maintenance, CSM-93, Montrical, 27-30 Mar 1993, pp.
228-230 (1993).

125

Chapter 8 - Bibliography

Gulla J. A, and Lindland O. 1. , “Modeling Cooperative Work for Workflow
Management,” Advanced Information System Engineering 6th Internationa! Conference

CAIiSE *94, Manchester, UK, 12-15 May, pp.53 - 65 (1994).

Hartel P., “Modeling Business Processes over Object,” International Journal of

Cooperative Information Systems, Vol. 4, No. 2 &3, pp. 165 - 188 (1995).

Helmut Wiichter, Andreas Reuter, “The ConTract model,” A.K. Elmagarmid (ed.):
Transaction Models for Advanced Applications, Morgan Kaufimann Publishers (1992).

Herb Krasner, “Groupware Research and Technology Issues with Application to Software
Process Management,” IEEE transaction on Systems, Man, and Cybernetics, Vol. 21,
No 4, pp.704-712 (1991).

ISO 9000, “Quality management and quality assurance standards : Guidelines for selection

and use, ” International Organization for Standardization, 15 March 1987 (1987).

ISO 9000-3, “Guidelines for the application of ISO 9001 to the development, supply, and
maintenance of software,” International Organization for Standardization, 1 June 1991

(1991).

ISO 9001, “Quality systems : Model for quality assurance in design, development,
production, installation, and servicing,” International Organization for Standardization,

1 July 1994 (1994).

Jablonski, Stefan, “Workflow Management : modeling, concepts, architecture and

implementation,” International Thomas Computer Press (1996).

John McCarthy, “The state-of-the-art of CSCW : CSCW systems, cooperative work and
organisation,” Journal of Information Technology, Vol. 9, No 2, pp. 73 - 83 (1994).

Kappel G., Lang. P., Rausch-Schott S., Retchitzegger W., “Workflow Management Based
on Objects, Rules and Roles,” Bulletin of the Technical Committee on Data

Engineering, IEEE Computer Society, Vol. 18, No. 1, pp. 11 -18 (1995).

126

Chapter 8 - Bibliography

Kari Kuutii, Tuula Arvonen, “Identifying Potential CSCW Applications by Means of
Activity Theory Concepts: A Case Example,” Proceedings CSCW92, Toronto, Canada,
31 Oct - 4 Nov, pp.233-240 (1992).

Kevin Crowston, “Modeling Coordination in Organizations,” Artificial Intelligence in
Organization and Management Theory, Michael Masuch, Massino Warglien, pp. 215 -
234 (1992).

Lawrence P., “Workflow Handbook 1997 Ed.,” John Wiley & Sons Ltd., (1997).

Meichun Hsu, Charly Kleissner, “ObjectFlow : Towards a Process Management
Infrastructure,” Distributed and Parallel Databases 4, pp. 169-194 (1996).

Michael G. Jenner, “Software Quality Management and 1SO 90017, John Wiley & Sons,
Inc. (1995).

Mohan C., Alonso G., Guenthoer R., Kamath M., “Exotica : A Research Perspective on
Workflow Management Systems,” Data Engineering Bulletin (Special Issue on

Infrastructure for Business Process Management), Vol. 18, No. 1, pp.19-26 (1995).

Neal Whitten, “Managing Software Development Projects : Formula for Success”, John

Wiley & Sons, Inc. (1995).

Ranjit Bose, “CMS : A Knowledge-based Tool for Intelligent Information Systems
Application Development,” IEEE International Conference on Developing and
Managing Intelligent System Projects, Washington, DC, USA, 29-31 Mar 1993, pp. 85-
92 (1993).

Raul Medina-Mora, Terry Winograd, Rodrigo Flores, Fernando Flores, “The Action
Workflow Approach to Workflow Management Technology,” Proceedings CSCW 92,

Toronto, Canada, 31 Oct - 4 Nov, pp. 281 - 288 (1992).

Schmauch, Charles H. ,“ISO 9000 for software developers,” ASQC Quality Press (1995).

127

Chapter 8 - Bibliography

Stef Joosten and Sjaak Brinkkemper, “Fundamental Concepts for Workflow Automation in
Practice,” ICIS’95 conference, Amsterdam (1995).

Sunil K. Sarin, “Object-Oriented Workflow Technology in InConcert,” Digest of Papers,
COMPCON’96, Technologies for the Information Superhighway, Forty-First IEEE
Computer Society International Conference, Santa Clara, CA, USA, pp. 446-450
{1996).

Thomas Kreifelts, Uta Pankoke-Babatz, Frank Victor, “A model for the coordination of

cooperative activities,” International Journal of Cooperative Information Systems, Vol.
4, No. 2 & 3, pp. 85 - 99 (1995).

Welsh J., Han J., “Software Documents : Concepts and Tools,” Software - Concepts and
Tools, Vol. 15, pp. 12-25 (1994).

Yan Ching Ying and Keith CC Chan, “A Lotus Notes Implementation of a Workflow
Automation Tool for ISO 9001 Certification,” Sixth International Conference on

Software Quality Management (SQM’ 98), pp. 161 — 172, April Amsterdam (1998).

128

