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Abstract 
 

The performance of a case-based reasoning (CBR) system depends on its problem-

solving quality, efficiency and competence. In a case base, a case can be defined as a 

piece of contextual and specific knowledge. The more the cases, the better the 

competence (coverage) of the problem domain, and therefore larger CBR systems tend to 

provide better solutions than the smaller ones. However, this is not always true because 

not all the cases collected in the system are useful for problem solving. For example, 

cases may be in conflict with each other; many cases may be redundant because of their 

close similarity; some cases may be noises in the system because they are not offering 

any help in the problem solving, and sometimes may even cause confusion. Another 

important aspect of CBR system is its efficiency (or speed) in providing helps. The 

purpose of this research is to examine closely these two aspects, and develop feasible 

computational techniques that will facilitate the development of CBR systems. This 

research question leads us to think deeply what constitute the problem solving ability of a 

CBR system; and also how to strike a balance between efficiency and problem-solving 

quality. Furthermore, in many real world situations, data and information collected are 

always incomplete, uncertain and vague, thus, the use of soft computing principles to 

achieve tractability, robustness and low solution cost is inevitable.   

 

Having the above understanding in mind, we then built up a set of soft computing based 

techniques for the extraction of case knowledge from data. They aim at (i) removing the 

redundancy and noises; (ii) reducing the size of the case base; and (iii) preserving the 

problem solving ability (or competence in CBR terminology). The developed algorithms 

deal with the processes of feature selection and reduction; similarity learning among 
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features; case selection and case generation; and competence model development. 

Specific concepts and techniques, like approximate reducts; GA-based case-matching; 

redefined case coverage and reachability measurement; boundary cases with NN guiding 

principle; fast rough set-based feature reduction; rough LVQ based case generation; 

fuzzy integral-based case base competence model, are developed, tested and compared 

with traditional methods such as KPCA and SVM. The experimental results are very 

promising, and support our objective of trying to develop a compact and competent CBR 

system through case knowledge extraction.   

 

Keywords: Case knowledge; soft computing; feature reduction; case selection; case 

generation; similarity measure; competence model; case coverage; case reachability. 
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CHAPTER 1 Introduction 
 

 

Chapter 1 

Introduction 
 

The purpose of this research is to study case knowledge extraction in the context of 

building case-based reasoning systems, and develop soft computing based techniques to 

construct both compact and competent case knowledge bases. This chapter explains the 

motivation and objectives of this research, introduces different tasks for case knowledge 

extraction and presents an overview of this thesis. 

 

The organization of this chapter is as follows: Section 1.1 explains the importance of 

conducting research in case knowledge extraction, and describes the objectives and the 

main tasks involved. Section 1.2 outlines the organization of this thesis. Section 1.3 

summarizes the contribution of this research work. The publications arising from this 

research are listed in Section 1.4. Finally, Section 1.5 concludes this chapter.  

 

1.1 Motivation and Objectives  
 

Case-based Reasoning (CBR) is a reasoning methodology that is based on prior 

experience and examples. It includes retaining a memory of previous problems and their 

solutions, and solving new problems by reference to this knowledge. Generally, a CBR 

reasoner will be presented with a problem, and it then searches its memory of past cases 

(called the case base) and attempts to find a case or multiple cases that most closely 

match the current case. In some situations, the found cases need to be adapted to meet the 

requirement of the new problems. Since the adaptation process is depended on the 

domains and problems in question, we do not consider this issue in this research. CBR 

systems usually require significantly less knowledge acquisition than rule-based systems 

since they involve the collection of a set of past experiences without requiring the 

extraction of a formal domain model from these cases. CBR systems have been widely 
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used in many applications: design, planning, prediction and classification, knowledge 

inference and evaluation, and many others. 

 

Case-based reasoning (CBR) systems are built completely based on the case bases which 

represent and store the previously solved problems. These case bases are considered as 

the knowledge bases which provide the basis for the use of the CBR systems by either a 

user or a system. The computational process of CBR always assumes that the involved 

case bases are adequate and useful. This is not necessarily true in many real-life 

applications of CBR systems, in which the case bases may be incomplete or contain 

redundancy and noisy cases. These case bases will degrade the performance of CBR 

systems with respect to three main criteria: problem-solving quality, efficiency and 

completeness.  

 

In the following, we explain the three performance criteria and how the characteristics of 

the cases being collected in the case bases affect them.  

 

The problem-solving quality of a CBR system is the average quality of the proposed 

solutions, which can be usually described by accuracy and the required adaptation effort. 

The accuracy is the percentage of the problems which can be successfully solved. The 

required adaptation effort is the cost for modifying the proposed solutions derived from 

the retrieved case(s) to solve the problems. In other words, the basic qualification of a 

CBR system is whether the proposed solution can be used to solve the new problem. The 

existence of redundant and noisy cases will cause problem in the case retrieval, i.e., the 

wrong case or cases may be retrieved even though the correct case is contained in the 

case base. As a result, the accuracy will decrease and the required adaptation effort will 

increase.  

 

Secondly, the problem-solving efficiency is also important, which can be defined as the 

average time for solving a problem. With increasing storage of cases (i.e., problems), the 

case bases tend to become larger and larger which will slow down the case retrieval 

speed.  
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Finally, the completeness of a case base is a measure of its problem solving coverage of 

all the potential problems. It can be measured using the concept of competence [Smyt 

1995 1998a 1998b], i.e., the range of problems that the case base can successfully solve. 

According to Smyth and McKenna, a case can be used to solve a target problem, if and 

only if the case must be retrieved for the target and it must be possible to adapt its 

solution to solve the target problem. The competence of a case base can be described by 

two important competence properties: the coverage set and the reachability set. The 

coverage set of a case is the set of all target problems that this case can be used to solve. 

On the other hand, the reachability set of a target problem is the set of all cases that can 

be used to solve it. Cases with large coverage sets are more important because they can 

solve many other problems and therefore should solve many of the future target problems. 

Cases with small reachability sets are more important because they represent regions of 

the target problem space that are difficult to solve.  

 

The two performance criteria of accuracy and competence are closely related. Generally 

speaking, if more cases can be successfully solved by a case base, the accuracy will 

increase. Therefore, for a given case base, larger competence achieves higher accuracy. 

Therefore, the desirable characteristics of case bases are small in size, large in 

competence, and contain no redundancy and noises. 

  

In a case base, each case is a piece of contextual knowledge, therefore they (i.e., all the 

collected cases) cover many specific situations in the given problem domain. In contrast 

to the specificity of cases, the other extreme type of knowledge representation form is 

using abstract models to capture the generality of knowledge, e.g., mathematical models, 

which represent abstract rules that are normally true in the problem domain. General 

knowledge model allows economic storage and therefore provides high problem-solving 

efficiency, and it contains no redundancy, inconsistency and noise. However, to develop 

general knowledge model usually requires much training effort, and in many situations 

the model can not be constructed successfully. This may be due to the non-linear 

characteristics of the problem domain, or the limitation of the training algorithms. 
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Comparing with constructing general knowledge models, CBR systems do not need 

training effort and can cover more possible problems as well as provide better 

understandability. Therefore, they are more operational (and with higher acceptance) by 

non-experts [Kolo 1993] [Pal 2004a]. The disadvantages of using cases are that they 

require larger storage space and much processing time in case matching and retrieval. 

Case bases tend to grow larger and larger very quickly if all incoming cases are also 

stored. However, not all the cases collected in the system are useful for problem solving. 

For example, cases may be in conflict with each other; many cases may be redundant 

because of their close similarity; some cases may be noises in the system because they 

are not offering any help in the problem solving, and sometimes may even cause 

confusion.  

 

In this research, we attempt to study the specificity and abstractness of knowledge 

representation, and especially those principles that are relevant and applicable to CBR 

systems. The objective is to develop a knowledge representation scheme for CBR system 

development. This scheme should reduce the size of the case bases to improve the 

efficiency and maintain the understandability and competence to preserve the operational 

ability and problem-solving accuracy. Therefore, the central focus of this research is the 

concept of "case knowledge" and the techniques of how to extract "case knowledge". As 

we have mentioned above, there are two traditional forms of case knowledge: (1) cases, 

which is too specific and loses the generalization power; and (2) mathematical models, 

which will lose much detail information about the specific nature of the problem domain, 

and making it less applicable in real world. 

 

In this research, we attempt to re-define the meaning this "case knowledge", and provide 

feasible techniques to extract them. This "case knowledge" can be considered as 

something in between from specific cases to generalize abstract model. For example, (i) 

after removal of irrelevant features and selection of representative cases from the original 

data, this collection can be regarded as the "case knowledge"; (ii) after generalizing a 

number of cases into a prototypical case, and a selection of a set of prototypical cases can 

also be regarded as the "case knowledge".  
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Here we give an example to illustrate the previously mentioned different knowledge 

representation forms, i.e., cases, case knowledge, and abstract knowledge. In Table 1.1, 

each row is a specific case which has 5 features. Among these features, x, y, a, b are the 

conditional attributes, and f is the decision attribute. Using some learning methods such 

as neural networks, the relationship of f and the conditional attributes can be discovered 

as two functions: f1 = x2 + y, and f2 = x1/2 + y1/2. These two functions are considered to be 

the abstract knowledge which represented by mathematical models. According to f1 and f2, 

the decision attribute value is independent to features a and b. Table 1.2 represents the 

case knowledge extracted from Table 1.1. There are fewer features and cases in this table 

than those in Table 1.1. The reduction of the two features a and b is consistent with the 

discovered mathematical models. The cases in Table 1.2 are considered to be the most 

representative cases.  

 

Table 1.1 Illustrative example of a case base 

ID f x y a b 

1 5 2 1 1 2 

2 3 1 2 1 1 

3 1.25 0.5 1 2 1 

4 1.5 1 0.5 10 0 

5 5 2 1 3 4 

6 0.75 0.5 0.5 100 50 

7 4 4 4 0 1 

8 3.5 2.25 4 3 2 

9 5 9 4 2 1 

10 3.5 2.25 4 1 1 

11 5 9 4 6 5 

 

The discovered mathematical model: 

f1 = x2 + y, and  

f2 = x1/2 + y1/2. 
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Table 1.2 Extracted case knowledge base  

ID f x y 

1’ 5 2 1 

2’ 3 1 2 

3’ 1.25 0.5 1 

4’ 1.5 1 0.5 

5’ 0.75 0.5 0.5 

6’ 4 4 4 

7’ 3.5 2.25 4 

8’ 5 9 4 

 

It can be seen from this example that, the mathematical model requires the least storage 

and therefore can achieve the highest efficiency among these three knowledge 

representation methods. Since the functions can accurately describe the relationship 

among the f values and the values of x, y, a and b, the mathematical model can also 

achieve high accuracy. Unfortunately, in most of the practical situations, it is very 

difficult to discover such functions because of the highly non-linear properties of the 

problems and the non-trivial training cost in the required learning process. Furthermore, 

compared with the specific cases, the abstract knowledge representation is more difficult 

to be understood by non-experts. Case knowledge is the compromise method of specific 

cases and the abstract knowledge. This research work involves developing different 

techniques to extract case knowledge from the raw case bases.  

  

In the following chapters, we will illustrate how this can be done. Before that, we would 

like to summarize the case knowledge extraction processes in Fig. 1.1.  
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Fig. 1.1 The methodology of case knowledge extraction 
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For removing redundancy and noises, reducing sizes and preserving the competence, we 

consider the following four tasks: (1) feature reduction (FR), (2) learning similarity 

measures, (3) case selection (CS) and case generation (CG); and (4) competence model 

development.  

 

The first two tasks aim to reduce the redundancy contained in the features and thus avoid 

the negative effect of the non-informative features. Based on the reduced feature set and 

learned similarity measures, we can remove those redundant and noisy cases, thus 

resulted a better data clustering performance. Since the dimensionality of the case bases 

has been reduced, the problem-solving efficiency is also improved.  

 

The next two tasks, i.e., CS and CG, are performed to obtain a smaller set of cases. While 

CS is to identify and remove redundant and noisy cases, CG generates new prototypical 

cases by merging multiple cases into one case and extracting the central cases from 

different clusters. 

  

Finally, in order to assess the completeness of the case bases, we develop competence 

model to describe and predict the range of problems that the CBR systems can 

successfully solve.  

 

There are much related research works which address the previously mentioned 

objectives and tasks. For example, M. A. Kramer [Kram 1991] proposed the method of 

using Kernel Principle Component Analysis (KPCA) to reduce the dimensionality of the 

case bases through discovering and extracting the uncorrelated features; K. Chidananda 

Gowda and E. Diday [Gowd 1992] presented a new similarity measure which took into 

account the “position”, “span” and “content” of both numerical and symbolic features; V. 

N. Vapnik [Vapn 1998] developed the Support Vector Machine algorithm which can be 

used for case generation; D. R. Wilson and L. Dennis [Wils 1972] used the nearest 

neighbor principle to detect and remove noisy cases. These together with other related 

work will be briefly reviewed in Chapter 2. 
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Most of the available work, however, does not consider the situations in which the case 

bases are incomplete and contain uncertainty and imprecision. In this research, soft 

computing based techniques are used to deal with such situations. In general, soft 

computing is a consortium of computing tools and techniques, including fuzzy logic (FL), 

neural network theory (NN), evolutionary computing (EC), rough set theory (RST), chaos 

theory, and parts of learning theory. The individual tool can be used synergistically, not 

competitively, in enhancing the application domain of the other. As mentioned in [Pal 

2004a], the significance of soft computing methodologies can be described as: “The 

purpose is to develop flexible information-processing systems that can exploit the 

tolerance for imprecision, uncertainty, approximate reasoning, and partial truth in order to 

achieve tractability, robustness, low solution cost, and close resemblance to human 

decision making”. Therefore, in our research, we have developed a number of soft 

computing techniques for: (1) feature reduction (FR), (2) learning similarity measures, (3) 

case selection (CS) and case generation (CG); and (4) competence model development. 

These are briefly explained in the following paragraphs. 

 

For the task of FR, we focus on rough set-based feature reduction. Rough sets allow the 

most informative features to be detected and then selected through the reduct 

computation. However, the traditional rough set-based feature reduction [Pawl 1991] 

requires much computational effort to obtain the crisp reduct. To improve the efficiency 

of feature reduction, we introduce a new concept of approximate reduct, which is a 

generalization of the crisp reduct and can be obtained very quickly. A set of informative 

features are selected through finding an approximate reduct, which can be considered as 

an approximation of the optimal feature set (i. e., the minimum set which can preserve the 

discernibility of the original case base). To demonstrate its effectiveness, the developed 

feature reduction method is compared with the widely used Kernel Principle Component 

Analysis (KPCA). KPCA is an unsupervised learning method and can be used to 

transform the cases to a high dimensional feature space and obtains a set of transformed 

features rather than a subset of the original features. The experimental results show that 

KPCA needs much more processing time, including the time for training and 
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transforming the feature spaces, in order to achieve a slightly higher problem-solving 

accuracy. 

 

The similarity measures used in case matching and case retrieval are crucial in 

identifying the most similar case or cases for a given problem (an unseen case).  Most of 

the existing related work to learning feature measures, such as the feature weighting 

methods, is used on numerical features instead of symbolic features. One type of 

symbolic features: nominal feature is even more problematic because they consist of 

totally unordered feature values. In most similarity measures for nominal features, if two 

feature values are the same, the similarity value is defined as one; otherwise, the 

similarity values is defined as zero. This similarity measure defined on the nominal 

features divides a case base into coarse-grained granules, in which all the different feature 

values are considered to be totally dissimilar to each other. In this research, we generalize 

the domain of similarity values from {0, 1} to [0, 1] through supervised learning using 

genetic algorithms. Here the genetic algorithm provides a natural search until the 

accuracy obtains its maximum. As a result, much finer similarity measures can be 

obtained which are then used in case retrieval and classifying unseen cases. Some real-

life data sets are used to conduct experiments and the results demonstrate that the 

classification accuracy is improved and better clustering performance is also achieved.  

 

Using the reduced features and learned similarity measures, case selection is 

implemented to select a subset of cases through identifying and removing the redundant 

and noisy cases. In our methods, the importance of each case is evaluated by the 

similarity measures, case coverage and case reachability, and the k-nearest neighbor (k-

NN) principle. The concepts of case coverage and reachability are redefined by 

specifying what is meant by "a case covers another case", which is based on the boundary 

cases and the similarity computation. The reachability set of a case can be derived by the 

definition of the coverage set. The larger the coverage set and the smaller the reachability 

set, the more important of the given case. Based on these concepts, a subset of cases can 

be selected which can cover the whole original case base. This subset can be considered 

 10



CHAPTER 1 Introduction 
 

as the optimal one which has the minimum number of cases while maintaining the 

original competence.  

 

The case selection method performs well when the case bases do not contain noisy cases. 

This is because the existence of noisy cases will give wrong identification of boundary 

cases which will affect the computations of case coverage and reachability. It is because a 

noisy case can be easily recognized as a boundary case. Therefore, if the case bases 

contain noisy cases, we should identify these cases first using k-NN principle, and 

remove them from the case bases. Then the cases are evaluated by the coverage set and 

reachability set and the most important cases are selected until they cover all the cases in 

the original case base. Our case selection methods are compared with Wilson Editing and 

support vector machine (SVM) and show much better performance in terms of accuracy, 

case selection speed and case retrieval time.  

 

Case generation is to extract case knowledge by generating a set of prototypical cases 

instead of selecting a subset of cases from the original case base. The case generation 

methods modify or combine or merge the original cases to form new prototypical cases. 

The generated cases are considered to be representative cases which form the case 

knowledge base. In this research, we propose a case generation method by integrating 

fuzzy sets, rough sets, and learning vector quantization (LVQ). LVQ is the supervised 

version of the Self-organizing map (SOM) which is a clustering tool of high-dimensional 

data. Compared with SOM, LVQ is more suitable to be used in classification problems 

and it is more robust to redundant features and cases as well as to the change of learning 

rate. Since the learning process of LVQ is affected by the similarity measure that is used 

for the clustering, we should identify the most informative features first. This is done by 

the rough set-based feature reduction method using our newly defined concept of 

approximate reduct. If the feature values are numeric, fuzzy sets are used to discretize the 

feature space for facilitating the rough set-based approximate reduct generation. Some 

experiments are conducted to evaluate the classification accuracy, the storage space, case 

retrieval time and clustering performance in terms of intra-similarity and inter-similarity.  
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The issue of building competence model arises from the area of case base maintenance 

(CBM), which implements policies of revising the organization and contents of the case 

bases to facilitate the future reasoning for a particular set of performance objectives. 

Since competence is one of the most important problem-solving criteria, there was a spurt 

of interest in competence-guided CBM among many researchers. Smyth and Mckenna 

[Smyt 1998a] developed a case base competence model, in which a new concept of 

competence group is introduced. For a given competence group, the group coverage is 

computed based on the size of the competence group, the case density in this group, and 

the case coverage and reachability. The overall case base coverage is obtained by simply 

sum up the group coverage. This model assumes that the cases are uniformly distributed 

and there are no overlaps among the competence groups. However, in real life, the case 

distribution is often non-uniformed, and the boundaries of the competence groups are not 

crisp. In such situations, the model is not a good predictor of case base competence. 

 

In this study, we use fuzzy integral to deal with the possible interaction among the 

competence groups and our model does not assume uniform case distribution. Fuzzy 

integral is a powerful mathematical tool which is based on a variety of fuzzy measures 

(also called non-additive measures). The traditional measures on a set of objects must 

satisfy the additive property, which assumes that there does not have any interaction 

among the objects. In contrast, fuzzy measures are non-additive and therefore can be used 

to deal with various kinds of interactions among objects. In our developed model, the 

fuzzy measure is determined first and then used to handle the possible interaction among 

different competence groups. Based on the fuzzy measure, the fuzzy integral is used to 

compute the overall competence of a given case base. Our competence model has better 

ability to deal with the overlaps among competence groups and can describe the case base 

competence more accurately.  

 

To make the research work more complete, we apply the fuzzy integral-based 

competence model to guide a query dispatching application in collaborative CBR systems. 

We assume that there are multiple CBR systems distributed in different physical locations, 

each of which can solve the coming problems independently, but with different degree of 
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competence. There are many possible dispatching strategies when a query (or an unseen 

case) occurs. We propose three policies based on the competence model and proved to be 

successful. The main idea is to select the most competent CBR system and send the 

current query to this system.  

 

1.2 Experimental Methodology and Success Metrics 
 

In this research work, some experiments are conduced to demonstrate the effectiveness of 

these techniques in terms of several given metrics.  This section firstly explains the 

experimental methodology in two aspects: (1) the used data sets; (2) the benchmark 

methods which are used to be compared with our techniques. The success metrics are 

then described which are used as evaluation criteria. 

 

We mainly use the real life data from UCI [Hett 1998] in this research, which are of 

different size and have different types of features. For example, House-votes-84 has 17 

Boolean valued features and 435 cases; Multiple Features has 10 numerical features and 

2000 cases; and Mushroom database contains 23 nominally valued features and 8124 

cases. Most of these data has relatively small number of features. Therefore, another data 

set from Reuters21578 [Lewi 1999] is also used in this research work, which shows the 

characteristic of high dimensionality. The purpose of using variety of data sets is to better 

reflect the performance of the proposed techniques through the experimental results.  

 

As mentioned in Section 1.1, after applying the proposed techniques on these given data 

sets, they can be reduced to some smaller case bases with fewer features and cases. The 

reduced case bases are considered as the extracted case knowledge bases. Some given 

metrics are then used on these case knowledge bases to test the performance of the 

proposed techniques. Here we assume the bottom-line of the performance is that using 

the original data sets (i.e., without being processed by the case knowledge extraction 

techniques). Throughout this research, we focus on classification problems. Therefore, 

one basic comparison required to be made is the classification performance with the 

original data and the extracted case knowledge.  
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Besides, some other benchmark methods are employed to demonstrate the effectiveness 

of our techniques. They are summarized as follows. For details, please refer to the related 

chapters.  

 

Kernel principle component analysis (KPCA) is one of the widely used techniques for 

feature selection. It is a non-linear version of PCA, which can discover the dominant 

nonlinear features of the original data. This technique is used as a benchmark to evaluate 

the proposed rough set-based feature reduction methods.  

 

On the other hand, Wilson Editing is a traditional case selection method built on the basis 

of k-NN principle. It has been shown to be effective to detect and remove noisy cases in 

[Wils 1972][Gate 1972][Ritt 1975][Tome 1976]. In the experiments on case selection, the 

proposed CS methods are compared with Wilson Editing method.  Support vector 

machine (SVM) or SVM ensemble are another group of promising techniques to reduce 

the size of the case bases. In this research, SVM ensemble is used together with KPCA to 

demonstrate the performance of the combination of our FR and CS methods.  

 

For the task of case generation, three methods are used as benchmarks: (1) Random 

method, which randomly selects a given number of cases; (2) Self-Organizing Map 

(SOM) algorithm, which is an unsupervised competitive algorithm to generate 

prototypical cases; (3) Learning vector quantization (LVQ), which is a supervised version 

of SOM.  

 

In these experiments, several success metrics are predefined to reflect different aspects of 

the performance.  

 

(1) Storage. It describes the size of case base in term of both the number of features and 

cases. In this research, this metric reflects the compactness of the extracted case 

knowledge bases after applying the proposed techniques. The storage values of the 

original case base with respect of features and cases are assumed to 1 (or 100%). 
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Therefore, the storage of the reduced case base is less than 1. The less the storage is 

required, the more effective the techniques for building compact case bases.  

 

(2) Accuracy. It is one of the most often used measures in performance evaluation, 

especially in classification problems. Generally, the classification accuracy is the 

percentage of the unseen cases which can be correctly classified, i.e., the ratio of the 

number of correctly classified unseen cases to the total number of unseen cases. 

Improving the accuracy is one of the most important objectives for developing the case 

knowledge extraction techniques.  

 

(3) Efficiency. The efficiency of a given technique can be described by the speed or cost 

time of implementing this technique. For a given classifier, its efficiency can be defined 

as the average time to predict the class label of an unseen case by using this classifier. In 

this research, we use the improved efficiency after applying the proposed case knowledge 

extraction techniques to demonstrate their advantages. Here the improved efficiency is 

computed as the saved time in implementing the classifiers, i.e., the difference between 

the required time to classify an unseen case using the original case base and that using the 

reduced case base after applying the proposed case knowledge extraction techniques. 

 

(4) Clustering performance. This metric can be described by the intra-similarity and inter-

similarity of the case base in question. It is expected that the intra-similarity (i.e., the 

average similarity between two cases in the same class) is as large as possible whereas 

the inter-similarity (i.e, the average similarity between two cases in different classes) is as 

small as possible.  

 

1.3 Structure of the Thesis 
 

This chapter introduces the motivation and objectives of the research work, and also 

explains the four different tasks, namely (1) feature reduction (FR), (2) learning similarity 

measures, (3) case selection (CS) and case generation (CG); and (4) competence model 
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development, to achieve these objectives. The remaining chapters of the thesis are 

organized as follows. 

 

Chapter 2 briefly presents the literature review of the relevant topics and provides some 

necessary preliminary knowledge of rough set theory which is used in the development of 

the techniques for case knowledge extraction.  

 

Chapter 3 develops a rough set-based FR which is fast and effective. The concept of a 

reduct is generalized to the approximate reduct. Correspondingly, some primary concepts 

in rough set theory, such as dispensable and indispensable attribute, reduce and core, are 

also extended. Using these modified concepts, a fast rough set-based method is developed 

to find the approximate reduct. Some experiments are conducted using several real life 

data sets to evaluate the performance of this developed FR.  

 

Chapter 4 presents a GA-based supervised learning process to determine similarity 

measures of nominal features. The domain of the similarity values is extended from the 

traditional {0, 1} to [0, 1] to obtain a fine-grained measure of nominal features. An 

artificial data set and the Balloons database are used to demonstrate the effectiveness of 

this method. 

 

Chapter 5 provides several different CS strategies based on the concepts of case coverage 

and reachability, the similarity measure, and the k-NN principle. They are also combined 

with the feature reduction approach developed in Chapter 3 to extract case knowledge 

through reducing both the dimensionality and the size of the original case base.  

 

Chapter 6 describes a CG technique where rough sets and learning vector quantization 

(LVQ) are used to extract the prototypical cases from the original case base. This 

supervised learning uses fuzzy sets and rough sets to pre-process the given case base and 

then LVQ is applied to generate the representative cases. The clustering performance is 

improved and the case retrieval time is reduced based on the generated prototypical cases. 
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Chapter 7 builds a fuzzy integral-based case base competence model which can be used 

to describe the range of problems that the given case base solves. Compared with the 

previously related work, the case distribution is taken into account and the interaction 

among different competence groups is reflected in the determined fuzzy measures.  

 

Chapter 8 presents an application of fuzzy integral-based competence model to query 

dispatching in the collaborative CBR systems. The competence model is used to guide 

the query dispatching strategies which aim to improve the efficiency and quality of the 

case retrieval.  

 

Chapter 9 provides a summary evaluation of the developed soft computing based case 

knowledge extraction techniques, and then gives the conclusions and some possible 

future work. 

 

1.4 List of Contributions 
 

In summary, we have developed the following soft computing based techniques for case 

knowledge extraction.  

 

1. A new rough set-based feature reduction method, which is based on the concept of 

approximate reduct, is developed to quickly identify and remove the non-informative 

features.  

 

2. A new GA-based supervised learning process is developed and used to determine the 

similarity measures for nominal features. 

 

3. A new case selection method is developed using the concept of case coverage, case 

reachability, similarity measures and the nearest neighbor principle to select the 

approximate optimal set of cases from the original case bases.  
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4. A new rough learning vector quantization (LVQ) method is developed and used to 

extract the most representative prototypical cases in case generation. 

 

5. A new fuzzy integral-based case base competence model is built to describe the 

completeness of a given case base. The built fuzzy integral-based competence model 

is applied in a collaborative CBR system environment to develop query dispatching 

policies. 
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Journal Papers: 

 

1. Li Y., Shiu S. C. K, and Pal S. K., Combining Feature Reduction and Case Selection in 

Building CBR Classifiers. IEEE Transactions on Knowledge and Data Engineering 

(TKDE), vol. 18, no. 3, pp. 415-429, 2006. 

 

2. Li Y., Shiu S. C. K, Pal S. K., and Liu J. N. K. A Rough Set-based Case-Based 

Reasoner for Text Categorization. International Journal of Approximate Reasoning, vol. 

41, pp. 229-255, 2006. 

 

3. Shiu S. C. K, Li Y., Zhang F. A Fuzzy Integral Based Query Dispatching Model in 

Collaborative Case-Based Reasoning. Applied Intelligence, vol. 21, no. 3, pp. 301-310, 

2004. 

 

Book Chapter: 

 

4. Li Y., Shiu S. C. K, Pal S. K, Combining Feature Reduction and Case Selection in 
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Discovery and Data Mining, edited by Sankar Pal，David Aha. 
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International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular 
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7. Li Y., Shiu S. C. K, Pal S. K, and Liu J. N. K. A Fuzzy-Rough Method for Concept-

based Document Expansion, in Proceedings of the Fourth International Conference on 

Rough Sets and Current Trends in Computing (RSCTC 2004), pp. 699-707, Uppsala , 

Sweden, June 1-5, 2004. 
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for Feature and Document Reduction in Text Categorization, in Proceedings of the Third 

International Conference on Machine Learning and Cybernetics (ICMLC 2004), vol. 4, 

pp. 2438-2443, Shanghai, China, Aug. 26-29, 2004. 

 

9. Li Y., Shiu S. C. K., Pal S. K., Liu J. N. K. Case-base Maintenance Using Soft 

Computing Techniques, in Proceedings of the Second International Conference on 

Machine Learning and Cybernetics (ICMLC 2003), vol. 3, pp. 1768-1773, Xi’an, China, 

Nov. 2-5, 2003. 

 

10. Li Y., Wang X. Z., Ha M. H. On-line Multi-CBR Agent Dispatching, 

in Proceedings of the Second International Conference on Machine Learning and 
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1.6 Summary 
 

In this chapter, we have firstly presented the motivation and objectives of the research 

work and then explained the different tasks for case knowledge extraction. This is 

followed by a description of the organization of the thesis. The list of contributions and 

publications derived from this research is given at the end of this chapter.  
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Chapter 2 

Basic Knowledge and Literature Review 
 

This chapter firstly provides a brief literature review of case knowledge extraction that is 

relevant to our four tasks of (i) feature reduction, (ii) learning similarity measures, (iii) 

case selection and case generation, and (iv) the competence model development. This is 

followed by an introduction of the basic concepts in rough set theory because rough sets 

play an important role in the developed soft computing based techniques. 

 

2.1 Literature Review of Case Knowledge Extraction 
 

As mentioned in [Kolo 1993], cases represent specific knowledge tied to specific 

situations, and therefore represent knowledge at an operational level. They make explicit 

how a task was carried out or how a piece of knowledge was applied or what particular 

strategies for accomplishing a goal were used. A case can be therefore defined as a piece 

of specific contextual knowledge corresponding to a certain situation. In many real world 

applications, a case base often has hundreds or even thousands of features and cases, 

which requires much processing time in case retrieval. The non-informative features and 

redundant cases, which are inevitably contained in a case base, may degrade problem-

solving quality and efficiency of the CBR systems. Therefore, it is highly desirable to 

extract case knowledge from the original case bases for CBR applications.  

 

In the following, we will give a brief review of the related work to case knowledge 

extraction including those soft computing based methods. The following sections are 

organized according to the previously mentioned four tasks which address different 

aspects of the overall research objective.  
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2.1.1 Feature Reduction 
 

The purpose of feature reduction (FR) is to reduce the irrelevant features and emphasize 

the importance of the informative features. This is done by detecting and removing the 

non-informative features or by extracting the most informative features.  

 

The related work to FR includes feature transformation, feature selection, and their 

combinations [Liu 1998]. Feature transformation can be further divided into feature 

extraction and construction, which transform the feature spaces and generate a new set of 

features. On the other hand, feature selection simplifies the feature spaces and selects a 

subset of the original features.   

 

Principle component analysis (PCA) [Joll 1986][Gela 1989] is one of the widely used 

unsupervised techniques of feature transformation to detect the data structure and reduce 

the data dimensionality. This technique can discover uncorrelated features while retaining 

maximum variance about the original data. Recently, a non-linear version of PCA, called 

kernel PCA (KPCA) [Kram 1991], is used to capture the dominant nonlinear features of 

the original data. It transforms the data to a high dimensional feature space and obtains a 

set of transformed features rather than a subset of the original features. However, since it 

is based on the data variance, this technique can only be used to deal with numerical 

features. One may find some of the research work of applying KPCA to feature 

extraction in [Mika 1999][Scho 1999][Kocs 2004]. Some other classical feature 

transformation techniques include linear discrimination [Gama 1998], Fourier 

transformation, wavelet transformation [Mall 1998], function decomposition [Zupa 1998].  

 

The feature selection methods based on the measure of information gain such as the 

decision trees [Quin 1986, 1987, 1993] are alternative ways to reduce the dimensionality 

of the feature spaces through feature extraction. These methods are built based on 

inductive learning and they require the computations of the information gain for each 

feature in any iteration. In a given iteration, the feature which obtains the maximum 

information gain should be selected. For a certain case base, generating the optimal 
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decision tree has been proved to be a NP-hard problem. Since the traditional decision 

trees can only deal with the crisp feature values, fuzzy decision tree algorithms [Yuan 

1995][Sing 2001][Mitr 2002][Pal 2001][Wang 2001a] are therefore developed to handle 

fuzzy feature values. However, the disadvantage of these methods is the requirement of 

much computation effort especially with high dimensionality (e. g., thousands of 

features). Another common method of feature extraction is to use an artificial neural 

network. Guo and Gelfand [Guo 1992] used an efficient small mutilayer net to reduce the 

nodes of a binary tree and extract nonlinear features. In [Hu 1998] [Seti 1998] [Utgo 

1998], the hidden unit activations are interpreted as new extracted features from the 

original data. An innovative procedure is applied in [Fore 2002] to extract invariant 

surface features from each pixel of the range image, which are robust to noise, and 

invariant to scale, shift, rotations, curvature variations, and direction of the normal. 

 

An often used approach in FR is rough sets [Pawl 1982, 1991], which allow the most 

informative features to be detected and then selected through the reduct computation. 

Different from PCA, this approach is supervised and selects a subset of the original 

features. Furthermore, rough sets are often used on symbolic features, and PCA is used 

primarily for numerical features. When handling numerical data, rough sets requires data 

discretization before generating reducts. There are two main groups of rough set-based 

FR methods: discernibility function-based and attribute dependency-based. Such methods, 

are computational intensive, i.e., in the former, during the generation of the discernibility 

matrix and in the latter, during the discovery of the positive regions.  

 

To reduce the computational load inherent in these methods, Han et al. [Han 2004] 

proposed a relative attribute dependency approach, which can generate a reduct by 

counting the distinct rows in the sub-decision tables that are generated from the attribute 

sub-sets. In this approach, however, the information systems are always assumed to be 

consistent, i.e., the cases having the same feature values must be in the same class, which 

is not necessarily true in real world applications. To solve this problem, in this research, 

we have developed a fast rough set-based method to find the approximate reduct instead 
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of the crisp reduct. In order to introduce the concept of approximate reduct, some primary 

concepts in rough set theory are also modified.  

 

Feature weighting methods can also be used in feature reduction. There are a variety of 

such methods including gradient descend methods, neural networks, genetic algorithms to 

learn and optimize the feature weights. Those features with very small weights, say, 

smaller than a given threshold, are considered as those which can be ignored. In this 

research, we do not discuss this group of methods and only focus on the rough set-based 

methods, which do not need any additional domain knowledge and can be directly used 

to reduce the dimensionality.  

 

2.1.2 Learning Similarity Measures of Nominal Features 
 

There are two main categories of features: numerical features and symbolic features. 

Nominal feature is a type of symbolic feature whose feature values are completely 

unordered such as “red”, “green” and “blue” for the feature of color. Based on these 

completely unordered values, there are only two relationships for a given pair of cases: 

either they are the same or they are different. From the point of view of information 

system, the nominal features lead to coarse information granules, which may bring the 

difficulty of determining an accurate similarity measure in case matching and retrieval.  
 

There are various forms of distance metrics and similarity measures for different types of 

features. The most often used metrics are Euclidean Distance, Hamming distance, and 

Cosine coefficients. 

 

Euclidean distance is the most common type of distance metric which is based on the 

location of objects in Euclidean space. The distance is calculated as the square root of the 

sum of the squares of the arithmetical differences between the corresponding coordinates 

of two objects. In information theory, the Hamming distance is defined as the number of 

positions in two strings of equal length for which the corresponding elements are 

different. In the context of CBR, the Hamming distance of two cases is the number of 
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features which have different feature values. In the field of information retrieval (IR), a 

variety of these metrics have been proposed for comparing the text documents, such as 

Dice’s coefficient, Jaccard’s coefficient, Cosine coefficient, and Overlap coefficient 

[Ande 1973] [Rijs 1979].  Due to the simplicity and normalization, Cosine coefficients, 

which computed based on the term frequency and inverse document frequency, are the 

most widely used similarity measures. There are also some other similarity measures 

[Liao 1998]. A useful one is proposed by Tversky [Tver 1977] which is computed as the 

ration of the number of common feature values and the total number of features. The 

similarity value between two documents reflects how relevant of one document to the 

other. Some probabilistic and statistical methods are also proposed to measure the 

relevance between a document and a query [Robe 1977][Crof 1979][Brow 1990][Fuhr 

1992][Jone 2000][Laff 2003]. 

 

In the previously mentioned distance and similarity measures, Euclidean distance is 

usually applied to cases with numerical features while Hamming distance and that 

proposed by Tversky are suitable for cases with symbolic features, and the Cosine 

coefficients are more appropriate for the text-based cases.  

 

In most of the existing work, the numerical features and symbolic features are often 

handled in separation in real world applications. To deal with these two types of features 

simultaneously, many researchers proposed various heterogonous similarity measures 

[Aha 1991, 1992][Wils 1997]. For example, Gowda and Diday [Gowd 1992] presented a 

new similarity measure for symbolic clustering which takes into account the “position”, 

“span” and “content” of both numerical and symbolic features. “Position” is the relative 

positions of two feature values on the real number line and therefore can only be used on 

numerical features. “Span” is used to indicate the relative sizes of the feature values 

without considering their common parts. “Content” is a measure of the common parts 

between two feature values. “Span” and “content” are suitable to deal with symbolic 

feature values. In these definitions, the similarity for nominal features is still determined 

as: when two feature values are equal, the similarity is defined as one; otherwise, the 

similarity is defined as zero.  
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These similarity measures for nominal features are coarse-grained which cannot provide 

enough information for case retrieval and then may affect the classification accuracy. In 

this research, we have showed that, for classification problems, the similarity should not 

always be set as zero when two nominal feature values are different. The domain of the 

similarity needs to be extended from {0, 1} to [0, 1] to obtain a fine-grained measure of 

nominal features.  

 

2.1.3 Case Selection and Case Generation 
 

Case selection (CS) and case generation (CG) are two groups of methods which can 

reduce the size of a given case base. CS is to select a subset of the cases in the original 

case base and CG is to extract prototypical cases to cover the whole case base. The CS 

methods can be divided into three main groups and most of the CG methods are 

prototypical-based, which are respectively presented as follows.  

 

The first group of CS methods is k-NN based, e.g., the Condensed Nearest Neighbor Rule 

(CNN) proposed by Hart [Hart 1968], and the Wilson Editing method developed by 

Wilson and Dennis [Wils 1972]. There are several variations of the CNN and Wilson 

Editing methods, such as Reduced Nearest Neighbor (RNN) [Gate 1972], Selective 

Nearest Neighbor Rule [Ritt 1975], Repeated Wilson Editing, and all k-NN [Tome 1976]. 

These methods are very useful in identifying noisy cases because they closely examine 

the k-nearest neighbours of each case. They are all based on the assumption that similar 

problems should have similar solutions. Therefore, they regard noisy cases as those cases 

that are very similar in their problem specifications, yet propose different (or may be 

conflicting) solutions. These methods are very useful for identifying and removing noisy 

cases because they closely examine the k-nearest neighbours of each case. In this research, 

this group of CS methods are referred to as k-NN based methods. 

 

The second group of CS methods is based on the concepts of case coverage and case 

reachability. Coverage of a case is the set of target problems (i.e., cases) that this case in 
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question can be used to solve. The reachability of a target problem (i.e., a case), on the 

other hand, is the set of all cases that can be used to solve it. These two concepts are very 

useful in identifying redundant cases because they examine the problem solving ability of 

each case. Based on these two concepts, algorithms such as the footprint set based 

method [Smyt 1999a], case addition/ deletion policies [Smyt 1999b], redundant and 

inconsistent case detection [Raci 1997], and fuzzy-rough case base maintenance 

techniques [Cao 2003] are developed. Most of these methods are sensitive to the presence 

of noise and outliers. To address this problem, Pan et al. [Pan 2005] proposed a kernel-

based greedy case selection algorithm. This algorithm has been showed to be more robust 

than the case deletion policy given by Smyth and Keane [Smyt 1995] and work better on 

nonlinear problems. This research constructs and compares different case selection 

approaches based on the similarity measure and the concepts of case coverage and 

reachability, which are closely related to the k-NN based methods.    

 

The third group of CS methods are the density-based approaches. In these, each case is 

regarded as a point in a vector space. The density of each point is estimated and points 

with higher densities are selected. One such example is the data reduction algorithm 

proposed by Astrahan [Astr 1970], in which a hyper-sphere of radius d about a point is 

used to obtain an estimate of the density at that point. The densest point is selected 

repeatedly until all the points (i.e., cases) are covered by the selected point set. Pal and 

Mitra [Mitr 2002] propose another density-based multi-resolution data reduction 

algorithm that uses a similar idea. Their approach uses hyper-spheres with adaptive radii 

for both density estimation and case pruning.  

 

Finally, the CG schemes are prototype-based approaches in which the original cases are 

modified or combined or merged to form new prototype cases. One representative 

algorithm is introduced by Chang [Chan 1974], where the nearest two cases with the 

same class label are merged into a single prototype using a weighted averaging scheme. 

The decision tree algorithms also belong to this group of case selection schemes, which 

try to extract rules as prototype cases from the case base by inductive learning. RISE 

[Domi 1995] and EACH [Salz 1991] are two systems which modify cases instead of 
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simply deciding which case should be removed or selected. Using a similar idea, Pal and 

Mitra [Pal 2004] proposed a case generation approach based on rough-fuzzy techniques. 

In their approach, the cases are in the form of cluster granules rather than sample points. 

On the other hand, the support vectors produced by SVM can be considered as cases 

selected as a subset of the original case base. Recently, SVM ensemble which consists of 

several SVMs is proposed to expand the correctly classified area by each individual SVM. 

The widely used competitive algorithms of Self-Organizing Map (SOM) and Learning 

Vector Quantization (LVQ) [Koho 1988] can be also used for prototype-based CG. LVQ 

inherits almost all the features of SOM, except that it is a supervised learning algorithm. 

LVQ is able to summarise or reduce large datasets to a smaller number of representative 

vectors suitable for classification or visualisation. It has similar advantages of SOM, such 

as the robustness with noise and missing information.  

 

2.1.4 Case Base Competence Model 
 

Most of the related work to building case base competence model arises from the area of 

case base maintenance (CBM). According to Leake and Wilson [Leak 1998], CBM 

implements policies of revising the organization and contents of the case bases to 

facilitate the future reasoning for a particular set of performance objectives. Case base 

competence (coverage) is one of the most crucial factors contributing to the performance 

of a CBR system. As pointed out in [Leak 2000], “competence is a sine qua non for 

performance: no CBR system is useful unless it can solve the problems that it confronts”. 

Case base competence has been brought sharply into focus since many maintenance 

policies are linked directly with the heuristics of measuring case based competence. The 

competence models can therefore be used to guide the construction of a case base.  

 

McKenna and Smyth [Smyt 1998] presented and evaluated a case base competence 

model. In their model, the cases in a given case base are divided into different 

competence groups. The concept of competence group is defined in such a way that there 

is no overlap of the case coverage for different competence groups. The coverage of each 

competence group can be obtained by considering the group size, the case density, and 
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the coverage of each case. Here the two important concepts of case coverage and case 

reachability are defined to compute the coverage of a case. The overall case base 

competence can then be computed simply by summing up the coverage of each group. A 

novel application of this model was demonstrated as a guide to case-based designers 

during the case visualization and authoring process. This competence model always 

assumes the cases are uniformly distributed and that there is no interaction among 

different competence groups. In this research, we build a fuzzy integral-based 

competence model for a given case base, which takes into account the non-uniform case 

distribution and the possible interaction among the competence groups by fuzzy measures.  

 

Based on their competence model, Smyth and McKenna [Smyt 1999c] proposed a novel 

retrieval technique by introducing the concept of "footprint" set, which greatly improves 

the efficiency of retrieving competence and quality cases. It divides the case base into 

two hierarchies, the first hierarchy is the footprint set which is a subset of cases that can 

cover the whole original case base. The cases in a footprint set are considered as the most 

represent cases. The second hierarchy is the whole case base which is divided into some 

competence groups by the footprint set. The retrieval process has two stages: retrieving 

cases from the footprint set first, and then from the competence group (i.e., the set of 

cases pointed by a foot print case). The footprint set is considered as a compact version of 

the original given case base.  

 

Smyth and Keane [Smyt 1995] proposed a category-based approach to depict the case 

competence and this approach was used to build case deletion policy to reduce the size of 

a case base. They describe the case competence by classifying cases into four categories 

according to their importance with respect to their neighbors. Those cases which are 

isolated and cannot be replaced by their neighboring cases for problem solving are called 

pivotal cases, which are considered to be the most important cases. If many similar cases 

are closed together, and they can provide similar solutions to the incoming query problem, 

then some of these cases can be deleted without affecting the overall competence of the 

CBR system. These deleted cases are called auxiliary cases, which are considered to be 
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totally redundant cases. Based on the case categories, the maintenance policy is to detect 

and preserve the pivotal cases and remove the auxiliary cases. 

 

This category-based competence-preserving approach is coarse-grained competence 

assessment. For example, this approach assumes the pivotal cases always make the same 

competence contribution which is not necessarily true. Furthermore, it does not consider 

the coverage overlapping between different cases, which can reduce or enhance the 

relative competence of a case. Smyth and Keane [Smyt 1999d] defined a more fine-

grained measure called relative coverage that estimates the unique competence 

contribution of an individual case. The relative coverage measure takes into account the 

local coverage of the case as well as the degree to which this coverage is affected by the 

nearby cases. The measure of the relative coverage can be used to rank cases. Based on 

this ranking, the competence-rich cases can be selected as the representative cases in the 

case base. 

 

2.2 Preliminary Knowledge of Rough Set Theory 
 

Rough sets play an important role in the developed soft computing based techniques in 

this research. The fast rough set-based feature reduction is built on the basis of the 

generalization of the concept of reduct. The reduced feature set can then affect the quality 

of the selected or generated case knowledge bases through case selection and case 

generation. For the convenience of the readers, this section gives an introduction of some 

basic concepts in rough set theory.  

 

Rough set theory, proposed by Z. Pawlak in 1982 [Pawl 1982], provides a tool for 

knowledge discovery from data. The main idea is based on the indiscernibility relation 

that describes indistinguishable objects. Concepts are represented by their lower and 

upper approximations. The observation that one cannot distinguish objects on the basis of 

given information about them is the starting point of the rough set philosophy. Imperfect 

information causes indiscernibility of objects. The indiscernibility relation (i.e., an 

equivalence relation) induces an approximation space made of equivalence classes of 
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indiscernible objects. A rough set is a pair of a lower and an upper approximation of a set 

in terms of these equivalence classes.  

 

The knowledge representation approach provided by rough sets is free of redundancies 

which is so typical for real life data bases. The algorithm and the models of objects can 

be used to support decisions concerning new objects. Using rough sets, problems such as 

decision table optimization, rule generation in expert systems, symbolic learning from 

examples, and dissimilarity analysis can be efficiently addressed. Many real life 

applications of rough set theory have been implemented with success. For example, fault 

diagnosis [Tay 2003], image processing [Pal 2002], data mining [Chan 1998], web and 

text categorizations [Jens 2004], and market decision-making [Shen 2004]. Very 

promising results have been obtained while using rough sets in voice recognition, 

approximation classification and other areas.  

 

Before we provide the definition of rough set, we present first some of the basic concepts 

and mathematical definitions related to rough set theory. For details, one can refer to 

[Pawl 1991]. 

 

2.2.1 Information Systems and Decision Systems 
 

In applying rough sets, the data used is usually represented in a flat table as follows: 

columns represent the attributes, rows represent the objects, and every cell contains the 

attribute value for the corresponding objects and attributes. In rough set terminology, 

such tables are called information systems.  

 

More formally, an information system is a triple of IS = (U, A, f), where U is a non-empty 

finite set of objects {x1, x2, …, xn}(called universe); A is a non-empty finite set of 

attributes (features) {a1, a2, …, am}. For every attribute Aa∈ , there is an attribute value 

set  associated with it, i.e., faV a: U . An example of an information system is shown 

in Table 2.1.  

aV→
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Table 2.1 An example of information system 

U a b c d 

1 3.8-3.99 Average No Poor 

2 4.0 Average Yes Poor 

3 3,8-3.99 Good No Extensive 

4 Below 3.8 Good No Extensive 

5 4.0 Poor Yes Average 

6 Below 3.8 Average No Average 

 

Table 2.1 describes an information system containing several student records. U = {1, 

2, …, 6}, and A = {a, b, c, d}, which represent the High School GPA, Extracurricular 

activities, Alumni relatives and Honor awards. For attribute b, the attribute value of the 

first student record is represented by fb, fb = Average. 

 

In many real life classification problems, the outcome (or class label) is already known. 

This class label is referred as a decision attribute. An information system that includes the 

decision attribute is called a decision system, which is denoted as DT = (U, , f), 

where  is the decision attribute. The elements of A are called conditional attributes. 

More generally, a decision system is represented by DT = (U, C, D, f), where C is the set 

of condition attributes and D is the set of decision attributes. Table 2.2 shows an example 

of a decision system.  

}{ *dA∪

Ad ∉*

 

Table 2.2 An example of decision system 

U a b c d e 

1 3.8-3.99 Average No Poor Reject 

2 4.0 Average Yes Poor Accept 

3 3,8-3.99 Good No Extensive Accept 

4 Below 3.8 Good No Extensive Reject 

5 4.0 Poor Yes Average Accept 

6 Below 3.8 Average No Average Reject 
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This table is the same as Table 2.1 except that it has the decision attribute e – Decision 

about the admission application of the students. 

  

2.2.2 Indiscernibility Relation 
 

Given an information system, each subset of attributes can be used to partition the objects 

into clusters. The objects in the same cluster have the same attribute values. These objects 

are indiscernible (or similar) based on the available information. An indiscernibility 

relation can be defined to describe this property. Before the definition of indiscernibility 

relation is given, the equivalence relation and equivalence class are firstly defined. 

 

Definition 2.1 (Equivalence relation): A binary relation  is called an 

equivalence relation, if it satisfies 

XXR ×⊆

(1) reflexivity, i.e., an object is in relation with itself, denoted as x R x; 

(2) symmetry, i.e., if x R y then y R x; and  

(3) transitivity, i.e., if x R y and y R z then x R z. 

 

Definition 2.2 (Equivalence class): The equivalence class of an element , denoted 

as [

x X∈

]Rx , consists of all objects y X∈ such that x R y. That is, [ ]Rx  = {y | x R y and y X∈ }.  

Each equivalence relation R will induce a partition on U, which is denoted by U/R. 

 

Now let us provide the definition of the indiscernibility relation. 

 

Definition 2.3 (Indiscernibility relation with respect to a subset of attributes B): Given an 

information system IS = (U, A, f), with any  there is an associated equivalence 

relation I

AB ⊆

B, 

IB = {(x, x)∈U × U | a∈B, f∀ a(x) = fa(x)}.    (2.1)

IB is called the B-indiscernibility relation.  
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If ( , ') Bx x I∈ , the objects x and are indiscernible from each other by attributes from B. 

The family of all equivalence classes of I

'x

B (i.e., the partition determined by B) will be 

denoted by U/IB, or simply U/B; an equivalence class of IB containing x will be denoted 

by [x]B. Now we use an example information system to illustrate the indiscernibility 

relation and the corresponding equivalence classes. 

 

Table 2.3 A decision system to illustrate concept of indiscernibility relation 

Stores E Q L P 

1 High Good No Profit 

2 Med. Good No Loss 

3 Med. Good No Profit 

4 Low Avg. No Loss 

5 Med. Avg. Yes Loss 

6 High Avg. Yes Profit 

 

In the decision system given by Table 2.3, there are six objects (6 stores) which described 

by three attributes, E, Q, and L, and one decision attribute P which denotes the profit 

status of the store.  

 

Considering the attribute set {E, Q}, by Equation 1, we can get the {E, Q}-

indiscernibility relation, , and the partition determined by it is as below: { , }E QI

{ , }/ {{1},{2,3},{4},{5},{6}}E QU I = . 

 

Similarly for the other attributes sets, we can also obtain their corresponding 

indiscernibility relations and equivalent classes. Below are partitions determined by the 

indiscernibility relations { , }Q LI , { }EI and , respectively.  { , , }E Q LI

{ , }/ {{1, 2,3},{4},{5,6}}Q LU I = , 

{ }/ {{1,6},{2,3,5},{4}}EU I = , 
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{ , , }/ {{1},{2,3},{4},{5},{6}}E Q LU I = . 

 

The partition induced by decision attribute set {P} is U / I{P} = {{1, 3, 6}, {2, 4, 5}}. 

By the available information, the concept of "profit" corresponds to the set {1, 3, 6}, 

while the concept of "Loss" can be characterized by the set of {2, 4, 5}. Here the 

observation is that neither of the two concepts can be defined by crisp manner, i.e., they 

can not be represented by the equivalence classes induced by the equivalence relation on 

any subset of the conditional attributes. Set approximations and rough set are introduced 

to deal with this type of concepts. 

  

2.2.3 Set Approximations 
 

Before describing the concept of rough sets, let us first give the definition of set 

approximation.  

 

Definition 2.4 (Set approximations): Consider an information system IS = (U, A, f). With 

each subset U and⊆X B A⊆ , R = IB， we associate two crisp sets 

}][|{ XxxXR B ⊆= ,   (2.2) 

}][|{ Φ≠∩= XxxXR B , (2.3)

called the R-lower and the R-upper approximations of X, respectively.  

 

The lower and upper set approximations, XIXR B=  and XIXR B= , are also represented 

by BX  and BX , respectively. The set BX (or BX ) consists of objects, which surely (or 

possibly) belong to X with respect to the knowledge provided by B. The 

set ( )BBN X BX BX= − is called the B-boundary region of X, which consists of those 

objects that cannot surely belong to X.  
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Definition 2.5 (Rough set): A set is said to be rough if the boundary region is non-empty 

with respect to B. That is, if ( )BBN X ≠ Φ , the set X is called rough (i.e., inexact) with 

respect to B; and if , the set X is crisp (i.e., exact) with respect to B, in 

contrast.  

( )BBN X = Φ

 

The set U XB− is called the B-outside region of X, and it consists of such objects that 

certainly cannot belong to X (on the basis of knowledge in B). 

 

An example of set approximation is shown below:  

Let Profit} . From Table 2.3, we then obtain X = {1, 3, 6}. Let us assume 

B = {E, Q, L}, then [  

== )(|{ xPxX

1] {1}, [2] [3] {2,3}, [4] {4}, [5] {5}, [6] {6}.B B B B B B= = = = = =

 

By the definitions of the lower and upper approximations, we have 

BX ={1, 6}, BX ={1, 2, 3, 6}, }.3,2{=XBNB  

 

It can be seen that the boundary region is not empty, and this shows that the set X is rough. 

Objects in the store set {1, 6} surely belong to those making profit, and the store set {1, 2, 

3, 6} includes objects possibly making profit, where the objects 2 and 3 included in the 

boundary region cannot be classified either as making a profit or having a loss. U XB− = 

{4, 5} shows that the stores 4 and 5 certainly do not belong to those that are making 

profit. Here the approximations of X are shown in Fig. 2.1. 
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Yes
{1,6}

{2,3} Yes/No

No

{4,5}

 

XB  XB  

 

Fig. 2.1 Approximate the set of profit stores using three conditional attributes. 

 

2.2.4 Reduct and Core 
 

A fundamental problem occurred in information systems is whether the whole available 

information (including each attribute and record) is always necessary to support the 

decisions. This problem arises in many practical applications and will be referred as 

knowledge reduction. The concepts of reduct and core play basic role in rough set theory 

to address the issue of knowledge reduction.  
 

Definition 2.6 (Positive region): Let C and D denote the indiscernibility relations on U 

induced by the condition attribute set C and the decision attribute set D. The C-positive 

region of D, denoted as POSC(D), is defined as 

POSC(D) = XC
DUX

U
/∈

   (2.4) 

 

To illustrate this concept, we use Table 2.3 as an example. Let C = {E, Q} and D = {P}. 

According to definition 2.3,  

U/C = {{1}, {2, 3}, {4}, {5}, {6}}, and  

U/D = {{1, 3, 6}, {2, 4, 5}}.  

For convenience, let X1 = {1, 3, 6}, X2 = {2, 4, 5}, then U/D can be denoted by {X1, X2}.  

Based on Definition 2.6, POSC(D) = XC
DUX

U
/∈

 = 21 XCXC ∪ . 
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Since , 1}1{]1[ XC ⊆= 1}3,2{]3[]2[ XCC ⊄== , 1}4{]4[ XC ⊄= , , and 

,  

1}5{]5[ XC ⊄=

1}6{]6[ XC ⊆=

}][|{ 11 XxxXC C ⊆= = {1, 6}.  

Similarly, }][|{ 22 XxxXC C ⊆= = {4, 5}. 

Therefore, POSC(D) = {1, 6} {4, 5} = {1, 4, 5, 6}. ∪

 

Definition 2.7 (Dispensable attributes and indispensable attributes): c∈ C is said to be 

dispensable in a decision system if  
 

POSC(D) = POSC-{c}(D),  

Otherwise, c is indispensable in C.  

 

Definition 2.8 (Reduct): The attribute set R⊆C is called a reduct of C if and only if each 

r∈R, r is indispensable POSR(D) = POSC(D). 

 

Note that it is possible that there are more than one reduct of C. Let RED(C) denote the 

set of all reducts of C.  

 

Definition 2.9 (Core): The set of all the condition attributes indispensable in a DT is 

denoted by CORE(C),  

CORE(C) = ∩RED(C).   (2.5) 

 

The concept of core can be used as a basis for computation of all reducts, for it is 

included in every reduct and its computation is straightforward. On the other hand, the 

core can be interpreted as the set of the most characteristic part of knowledge, which 

cannot be eliminated when reducing the information.  

To illustrate how to generate reduct and core, we also take the DT in Table 2.3 for 

example. Here C = {E, Q, L}, D = {P}. 

 

U /C = {{1}, {2, 3}, {4}, {5}, {6}},  
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U/C-{E} = {{1, 2, 3}, {4}, {5, 6}},  

U/C-{Q} = {{1}, {2, 3}, {4}, {5}, {6}}, 

U/C-{L} = {{1}, {2, 3}, {4}, {5}, {6}}, 

U/D = {{1, 3, 6}, {2, 4, 5}}. 

 

Therefore, according to definition 2.6,  

 

POSC(D) = XC
DUX

U
/∈

= }5,4,2{}6,3,1{ CC ∪  

= {1, 4, 5, 6}. 

 

POSC-{E}(D) = {4}≠ POSC(D), therefore, E is an indispensable attribute.  

POSC-{Q}(D) = {1, 4, 5, 6} = POSC(D), therefore, Q is dispensable. 

Similarly, L is found to be dispensable. 

The attribute E is then identified as the only indispensable attribute.  

That is, CORE = {E}, and {E, Q} and {E, L} are the two reducts. 

 

After generating the reducts, the original decision system can be reduced to two smaller 

DT as follows: 

 

Table 2.4 Reduced decision tables 

Stores E Q P Stores E L P 

1 High Good Profit 1 High No Profit 

2 Med. Good Loss 2 Med. No Loss 

3 Med. Good Profit 3 Med. No Profit 

4 Low Avg. Loss 4 Low No Loss 

5 Med. Avg. Loss 5 Med. Yes Loss 

6 High Avg. Profit 6 High Yes Profit 
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2.2.5 Discernibility Matrix 
 

The concept of discernibility matrix was proposed by A. Skowron in 1991, which enables 

simple computation of the core, reducts. In this section, the definition and its use to 

generate reducts and core are presented. 

 

Definition 2.10 (Discernibility Matrix): Let IS = (U, A) be a information system with n 

objects {x1, x2, …, xn}. The discernibility matrix of IS, denoted by DM (IS) is a n×n 

matrix desined as  

(cij) = {a∈A | a(xi) ≠ a(xj)} for i, j = 1,2, …, n. 

 

Thus entry cij is the set of all attributes which discern objects xi and xj. 

 

The core can be defined now as the set of all single element entries of the discernibility 

matrix, i.e., CORE(A) = { a∈A | cij = (a), for some i, j}. 

 

It can be easily seen that B⊆A is the reduct of A, if B is the minimal (with respect to 

inclusion) subset of A such that 

B∩c ≠ ∅ for any nonempty entry c (c≠∅) in DM. 

 

In other words, reduct is the minimal subset of attributes that discerns all objects 

discernible by the whole set of attributes. 

 

Example Here we use the IS described by Table 2.3 to demonstrate how to compute the 

reducts and core through the discernibility matrix. Table 2.5 is the corresponding 

information system which is derived from the decision system in Table 2.3.  
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Table 2.5 An example IS to illustrate reduct computation 

based on discernibility matrix 

Stores E Q L 

1 High Good No 

2 Med. Good No 

3 Med. Good No 

4 Low Avg. No 

5 Med. Avg. Yes 

6 High Avg. Yes 

 

According to the definition, DM of this table is as follows: 

 

Table 2.6 Example of Discernibility Matrix 

 1 2 3 4 5 6 

1       

2 E      

3 E ∅     

4 E, Q E, Q E, Q    

5 E, Q, L Q, L Q, L E, L   

6 Q, L E, Q, L E, Q, L E, L E  

 

Note that the discernibility matrix is symmetric so we need only half of elements in the 

matrix.  

 

From Table 2.6, CORE(A = {E, Q, L}) = {E}. {E, Q} and {E, L} is all possible reducts.  

 

2.2.6 Dependency of Attributes 
 

In data analysis, it is important to discover dependencies between the condition and 

decision attributes. Using these dependencies, one can identify and omit the unnecessary 
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attributes (which are considered to be redundant information in the decision system) and 

the corresponding values for making decision or classification.  

 

Intuitively, we say that a set of decision attributes D depends totally on a set of condition 

attributes C, denoted as , if all the values of decision attributes are uniquely 

determined by values of the condition attributes. This implies, there exists a functional 

dependency between values of C and D. Note that the dependency can also be partial, 

which means only some values of D can be determined by values of D. Now we give its 

formal definition: 

DC ⇒

 

Definition 2.11 Let C and D be subsets of A, D C∩ ≠ Φ  and D C A∪ = .  

We say that D depends on C in a degree (0 1)k k≤ ≤ , denoted , if kC D⇒

 

/

( , )
X U D

CX
k C D

U
γ

∈

= = ∑ ,   (2.6) 

 

where X means the cardinality of X, U/D denotes the partition determined by D, i.e., the 

family of all equivalence classes of ID. 

 

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially 

(with a degree k) on C. The degree k, called the degree of the dependency, means the 

ratio of all elements of the universe that can be properly classified into the partition U/D 

employing attributes from C. 

 

For example, in the decision system illustrated in Table 2.3, the attribute P depends on 

the set of attributes {E, Q, L} with a degree 2/3. This is explained below. 

 

C = {E, Q, L}, D = {P}, U/D = {{1, 3, 6}, {2, 4, 5}},  

if  X = {1, 3, 6}, =XC {1, 6};  

if  X={2, 4, 5}, =XC {4, 5}.  

 42



CHAPTER 2 Basic Knowledge and Literature Review 
 

3/2
|}6...,,2,1{

|}5,4{|
|}6...,,2,1{|

|}6,1{|
||
||),(

/
=+==γ= ∑

∈ DUX U
XCDCk . 

  

This means only four of the six objects, i.e., {1, 4, 5, 6} in U, can be identified exactly, 

by using the attributes E, Q and L. Here, the decision attribute Pf partially depends on the 

condition attributes E, Q, and L with a degree 2/3. 

 

2.3 Summary 
 

In this chapter, we have briefly reviewed the related work of feature reduction, learning 

similarity measures, case selection and case generation, and case base competence model. 

The fundamental concepts and basic knowledge in rough set theory is then introduced for 

the convenience of readers. 
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Chapter 3 

Fast Rough Set-Based Feature Reduction 
 

Feature reduction (FR) is the first task of case knowledge extraction, its purpose is to 

remove the non-informative features and facilitate the task of case selection. This chapter 

presents a novel and fast approach for FR, which is developed based on the relative 

attribute dependency among features to compute the approximate reduct instead of crisp 

reduct. The approximate reduct is considered as a generalization of the crisp reduct, 

which can be found quickly. Some fundamental concepts, such as dispensable/ 

indispensable attributes, reduct and core, are also modified. The overall experimental 

results on four real life data sets show that the proposed FR method can preserve, and 

may also improve, the solution accuracy while at the same time reduce the dimensionality 

of the case bases. The developed FR method is compared with the widely used kernel 

PCA (KPCA), and their respective storage requirement, accuracy and training time are 

discussed.  

 

3.1 Introduction 
 

The purpose of FR is to identify the most significant attributes and eliminate the 

irrelevant ones to form a good feature subset for the case bases in CBR systems. It can be 

considered as a necessary pre-process for the task of CS, its performance is closely 

depended on the involved features and feature importance (weight). In the CS methods, 

the feature importance is crucial in computing the similarity, k-Nearest Neighbours, case 

coverage and case reachability. One solution is to obtain the feature weights by 

interviewing domain experts, which is labour intensive. Another solution is to obtain 

these weights using machine learning methods, such as decision tree generation [Shiu 

2001a], or neural network training [Pal 2004]. However, these methods transform the 

feature weighting information into a set of rules or a trained neural network making them 
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unsuitable for calculating similarity and adaptation on unseen cases. Other problems of 

using these machine learning methods include the difficulty of determining a feature 

evaluation function, and the requirement of much training effort due to the presence of 

non-informative features in the training process. 

 

In this research, the feature importance in CS is addressed by rough set-based FR through 

reduct computation. The preserved features in the computed reducts are regarded as the 

most important ones, and the other features are regarded as irrelevant. The reduct 

computation does not require any domain knowledge, and the computation complexity is 

only linear with respect to the number of features and cases. If incorporating the FR in 

CS, the case representation should still be the same as that of the original case base. That 

is, each case is described by a set of features (subset of the original feature set) and a 

class label. This form of knowledge representation is easier to understand and more 

convenient for use in CBR reasoning. 

 

Therefore, in this research, we introduce a new concept, the approximate reduct, which 

can quickly identify and remove the non-informative features. The proposed FR approach 

can be considered as a generalization of the original attribute dependency-based or 

discernibility function-based techniques. This generalization is achieved by introducing a 

consistency measurement among reducts. The approach reduces the computational 

complexity to O(n×m). Furthermore, the consistency measurement can be used to control 

the size of the feature set. Compared with the widely used KPCA, our method is shown to 

be much faster. Four different data sets are used in the experiments, which have the 

number of features ranging from 17 to 2018, the number of cases ranging from 40 to 

8124. 

 

The reminder of the chapter is organized as follows. Section 3.2 presents some 

definitions and theoretical results which are related to the rough set-based FR approach. 

Based on these concepts, Section 3.3 provides two fast FR algorithms. Section 3.4 

demonstrates some experimental results with respect to the improvements of the storage 
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requirement and problem-solving accuracy. Some comparisons are also made between 

the developed FR and KPCA. Section 3.5 provides the conclusions and discussions.  

 

3.2 Relevant Concepts and Theoretical Results 
 

In Chapter 2, we have introduced some basic concepts in rough set theory, including 

information systems and decision systems, indiscernibility relation, set approximations, 

dispensable and indispensable attribute, discernibility matrix, reduct and core. Based on 

these concepts, this section provide some further definitions and properties of rough sets 

which are the preliminary knowledge for developing the fast rough set-based FR method. 

In this chapter, the same notations are used as those in Chapter 2. An information system 

and the corresponding decision table are still denoted by IS = (U, A, f) and DT = (U, 

A∪{d}, f), respectively. The conditional attribute set C = A, and the decision attribute set 

D = {d}. 

 

The concept of reduct is defined on the basis of positive region (see Definition 2.6 in 

Chapter 2). Here we give an equivalent definition which is based on the definition of 

indiscernibility relation (see definition 2.3 in Chapter 2). 

 

Definition 3.1 (Reduct)  

A sub-attribute set B ⊆ A is called a reduct of A if it is a set of indispensable attributes in 

the information system IS and IND(B) = IND(A).  

 

Traditionally, the reducts are obtained through the computation of discernibility matrix 

(see Definition 2.10 in Section 2.2.6). The discernibility matrix of an IS completely 

depicts the identification capability of the system and all reducts of the system are 

therefore hidden in some discernibility function induced by the discernibility matrix 

[Skow 1992]. 

 

Based on these definitions, it requires a considerable effort for the discernibility function-

based reduct generation methods to compute the discernibility matrix. To demonstrate the 
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computation complexity of these methods, we describe a discernibility matrix-based 

algorithm which is often used to generate reducts for a given feature set.  

 

First, the discernibility matrix DM of the decision table DT is generated in Step 1.  

Since DM is symmetric and the elements dmii = ∅ for i = 1, 2, …, n, it can be represented 

only by the elements in the lower or upper triangle of the matrix.  

 

Second, one of the reduct of the feature set A, denoted by REDU, is generated in Step 2. 

It can be further divided into several sub-steps: 

 

(1) The CORE of DT is obtained as such a set of dmij that each dmij contains a single 

attribute which can identify at least two cases, that is, CORE = {dmij ∈ DM | card 

(dmij) =1}.  

(2) REDU is initialized to CORE. 

(3) One of the attributes in A is added iteratively to REDU until the intersection of REDU 

and each dmij (1≤ i, j ≤ N) is not empty.  

 

The sub-step (1) is based on a proposition of the concept of core [Skow 1992]: 

CORE(A) = {a ∈ A: dmij = {a} for some i, j}.  

 

Proof. Let B = {a ∈ A: dmij = {a} for some i, j}. It needs to show that CORE(A) = B. The 

proof is divided into two parts: 

(⊆) Let a ∈ CORE(A). Then IND(A) ⊆ IND(A – {a}), so there exist xi and xj which are 

indiscernible with respect to A – {a} but discernible by a. Hence dmij = {a}. 

 

(⊇) If a ∈ B then for some i and j we have dmij = {a}. Hence a is indispensable in A.    � 

 

The reduct computation in sub-step (3) can be explained as follows. Since any attribute in 

dmij can distinguish cases i and j, the attributes in REDU can also discern the two cases if 

the intersection of REDU and dmij is not empty. When the iterations of adding attributes 
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to REDU stop, the discernibility power of the set of elements in REDU (i.e., a subset of 

the original attributes) is the same as that of the original set of conditional attributes A.  

 

Here we should mention that, REDU is not necessarily the minimal set of attributes that 

preserves the identification capability of the original information system. 

 

Algorithm: Generate Reduct Based on Discernibility Matrix 

 
Step 1. Create the discernibility matrix DM = [dmij], i, j = 1, 2, …, n. 

 

Step 2. Generate one reduct. 

Let A denote the set of original attributes. 

 

CORE = {dmij ∈ DM | card (dmij) =1}; 

REDU = CORE; 

A = A – REDU; 

 

While (A ≠ ∅) do 

                   If (REDU ∩ dmij ∈ DM ≠ ∅ for every i and j}, stop; 

            Else  

                   {Randomly select one attribute a∈A  

                    Add a to REDU: REDU = REDU∪{a}; 

                    A = A – {a}; 

                   } 

 

In this reduct generation algorithm, Step 1 requires O(n2) computations to create the 

discernibility matrix. This is because that DM has n2 elements of the form dmij and the 

number of steps for computing of any dmij is bounded by a constant. In Step 2, REDU has 

m elements at maximum, and DM has n2 elements. Therefore, Step 2 needs O (n2×m) 

computations to obtain the intersection of REDU and each dmij. Thus, the complexity of 

this algorithm is O (n2×m), which is rather high with large number of cases and attributes. 

 48



CHAPTER 3 Fast Rough Set-Based Feature Reduction 
 

 

To address the problem of computational complexity, Han et al. [Han 2004] have 

developed a reduct computation approach based on the concept of relative attribute 

dependency. Given a subset of condition attributes, B, the relative attribute dependency is 

a ratio between the number of distinct rows in the decision table corresponding to B only 

and the number of distinct rows in the decision table corresponding to B together with the 

decision attributes, i.e., B∪{d}.  The larger the relative attribute dependency value (i.e., 

close to 1), the more useful is the subset of condition attributes B in discriminating the 

decision attribute values. If this value equals to 1, each distinct row in the decision table 

corresponding to B maps to a distinct decision attribute value.  

 

Some further concepts [Han 2004] are defined as: 

Definition 3.2 (Projection)  

Let P ⊆ A ∪ D, where D = {d}. The projection of U on P, denoted by ∏P (U), is a sub 

table of U and is constructed as follows: 

1) remove attributes A ∪ D – P;  and  

2) merge all indiscernible rows. 

 

Definition 3.3 (Consistent Decision Table)  

A decision table DT or U is consistent when ,, Uyx ∈∀ if , then 

such that . 

)()( yfxf DD ≠

Aa∈∃ )()( yfxf aa ≠

 

Table 3.1 provides an example of consistent decision table. Here U = {c1, c2, …, c8}, A = 

{a, b, c, d} and D = {e}. In Table 3.1, for every two objects in U, if they have the same 

attribute values for all the attributes, their decision attribute must be equal. In contrast, 

Table 3.2 shows an example of inconsistent table which derived from Table 3.1. It is 

obvious that c8 and c9 have the same condition attribute values, {1, 1, 1, 2}, but different 

decision attribute value, 1 for c8 and 2 for c9.  
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Table 3.1 A consistent decision table 

Id a b c d e 
c1 1 1 2 1 2 
c2 1 2 1 2 1 
c3 2 2 2 1 2 
c4 3 1 2 2 1 
c5 3 2 2 1 1 
c6 1 2 2 1 2 
c7 3 2 1 2 1 
c8 1 1 1 2 1 

 

Table 3.2 An inconsistent decision table 

Id a b c d e 
c1 1 1 2 1 2 
c2 1 2 1 2 1 
c3 2 2 2 1 2 
c4 3 1 2 2 1 
c5 3 2 2 1 1 
c6 1 2 2 1 2 
c7 3 2 1 2 1 
c8 1 1 1 2 1 
c9 1 1 1 2 2 

 

Let P = {a, c, d}, according to Definition 3.1, the projection of U on P, ∏P (U) can be 

described by Table 3.3 which is a sub-table of Table 3.1: 

 

Table 3.3 An example of projection 

Id a c d e 
c1 1 2 1 2 
c2 1 1 2 1 
c3 2 2 1 2 
c4 3 2 2 1 
c5 3 2 1 1 
c6 1 2 1 2 
c7 3 1 2 1 
c8 1 1 2 1 
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Definition 3.4 (Relative Dependency Degree)  

Let B ⊆ A, A be the set of conditional attributes. D is the set of decision attributes. The 

relative dependency degree of B w.r.t. D is defined as , D
Bδ |)(|

|)(|
U

U

DB

BD
B

∪

=
Π
Πδ , where 

is the number of equivalence classes in U / IND(X).  |)(| UXΠ

 

The relative dependency degree  implies how well subset B discerns the objects in U 

relative to the original attribute set A. It can be computed by counting the number of 

equivalence classes induced by B and B∪D, i.e., the distinct rows in the projections of U 

on B and B∪D.  

D
Bδ

 

Take Table 3.3 for example to show the process of the computation of relative 

dependency degree .  Here B = {a, c, d}, D = {e}.  D
Bδ

 

Since 

U / IND(B) = {{c1, c6}, {c2, c8}, {c3}, {c4}, {c5}, {c7}} 

=U / IND(B∪D) = {{c1, c6}, {c2, c8}, {c3}, {c4}, {c5}, {c7}}, 

 

1
6
6

|)(|
|)(|

===
∪ U

U

DB

BD
B Π

Πδ . We can say that the sub-attribute set B has preserved the 

discernibility ability of the original feature set A.  

 

Based on the definition of the relative dependency degree, we define the dispensable and 

indispensable attributes as follows: 

 

Definition 3.5 (Dispensable and Indispensable Attributes)  

An attribute a∈ A is said to be dispensable in A w.r.t. D, if { }
D D
A a Aδ δ− = ; otherwise, a is 

indispensable in A w.r.t. D. 

 

According to Definitions 3.3-3.4, we can obtain Lemma 1. 
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Lemma 1  

AB ⊆∀ ,  is consistent if and only if )(UDB∪Π )()( UU DBB ∪= ΠΠ . 

 

Proof. We need to show (1) if  is consistent, then )(UDB∪Π )()( UU DBB ∪= ΠΠ ; and (2) 

if )()( UU DBB ∪= ΠΠ , then  is consistent. )(UDB∪Π

 

(1) We assume that  is consistent. According to the definition of consistent 

decision table (definition 3.3), if xIND(B)y, (x ∈ U, y ∈ U), then xIND(B∪D)y. Therefore, 

the number of equivalence classes of 

)(UDB∪Π

)(UDB∪Π  and )(UDB∪Π  is equal, i. e., 

)()( UU DBB ∪= ΠΠ . 

 

(2) This part of proof is by contradiction. Suppose )()( UU DBB ∪= ΠΠ  and  

is inconsistent. Then there exists at least two objects x and y, having the same condition 

attribute values but different decision attribute value. That is, x and y belong to one 

equivalence class with respect to B, and belong to two different equivalence classes with 

respect to B∪D. We have 

)(UDB∪Π

)()( UU DBB ∪< ΠΠ . This contradicts to )()( UU DBB ∪= ΠΠ . 

Therefore,  must be consistent when )(UDB∪Π )()( UU DBB ∪= ΠΠ . 

 

It is easy to prove that, if U is consistent, then ,1
|)(|

|)(|
==

∪ U
U

DA

AD
A Π

Πδ  i. e., 

. |)(||)(| UU DAA ∪= ΠΠ

 

Lemma 2  

If U is consistent, then ∀B⊂A, POSB(D) = POSA(D) if and only if )()( UU DBB ∪= ΠΠ . 
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Proof [Han 2004]. U is consistent indicates that POSA(D) = U and that 

)()( UU DBB ∪= ΠΠ  means that )(UDB∪Π  is consistent according to Lemma 1. If can 

be easily inferred that  is consistent if and only if POS)(UDB∪Π B(D) = U.  

 

Based on definitions 3.3-3.5 and Lemmas 1-2, Theorem 1 can be induced.  

 

Theorem 1  

If U is consistent, B ⊆ A is a reduct of A w.r.t. D, if and only if  and for 

.  

1== D
A

D
B δδ

D
A

D
QBQ δδ ≠⊂∀ ,

 

Proof [Han 2004]. According to definition 3.4,  means that 1== D
A

D
B δδ

)()( UU DBB ∪= ΠΠ , if and only if, by Lemma 2, POSB(D) = POSA(D). Similarly, for 

 if and only if POSD
A

D
QBQ δδ ≠⊂∀ , Q(D) ≠ POSA(D). By definition 2.6 in Chapter 2, the 

theorem holds. 

 

In order to compute the reduct quickly, we use definitions 3.4-3.5 (relative dependency 

degree, dispensable and indispensable attributes) and theorem 1. Theorem 1 gives the 

necessary and sufficient conditions for reduct computation and implies that the reduct can 

be generated by only counting the distinct rows in some projections.  

 

Here we use the example in Table 3.1 to illustrate Han’s method. As mentioned 

previously, the consistent decision table consists of 8 cases, 5 attributes including 4 

conditional attributes, A = {a, b, c, d}, and 1 decision attribute, D = {e}. We have the 

following computations: 

 

Since 1
6
5

)(

)(

},,,{

},,{
}{ <==− U

U

edcb

dcbD
aA Π

Π
δ , 1

6
6

}{ ==−
D

bAδ ,  

b is considered to be dispensable and therefore removed from A, i. e., A = {a, c, d}. 
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Next, because 1
5
5

|)(|
|)(|

},,{

},{
}{ ===− U

U

eda

daD
cA Π

Π
δ , c is then removed from A, A = {a, d}.  

Since 1
4
3

}{ <=−
D

dAδ , d is preserved in A.  

Finally, according to Theorem 1, the reduct is generated as {a, d}.  

 

However, this method can not directly used on inconsistent decision table such as that 

shown in Table 3.2. For every subset of condition attributes B ⊆ A, we always have 

|)(|
|)(|

U
U

DB

BD
B

∪

=
Π
Πδ <1. Therefore, the reduct cannot be found. In next section, we will 

introduce the concept of approximate reduct to overcome this problem.  

 

3.3 Fast Rough Set-Based FR Algorithms 
 

Based on the concepts and theoretical results in Section 3.2, this section presents the 

developed fast rough set-based FR method. Before the FR algorithms are given, the 

concept of approximate reduct is firstly defined and explained.  

 

In Theorem 1, U is always assumed to be consistent, which is not necessarily true in real 

life applications. In this section, we relax this condition to find approximate reducts 

rather than the exact reducts. The use of a relative dependency degree in reduct 

computation is extended to inconsistent information systems. Some new concepts, such 

as the β-dispensable attribute, β-indispensable attribute, β-reduct (i.e., approximate 

reduct), and β-core are introduced to modify the traditional concepts in rough set theory. 

The parameter β is used as the consistency measurement to evaluate the goodness of the 

subset of attributes currently under consideration. It can also determine the number of 

attributes which will be selected in the generated approximate reduct. These are 

explained as follows. 
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Definition 3.6 (β-dispensable attribute and β-indispensable attribute)  

If a∈A is an attribute that satisfies , a is called a β-dispensable attribute in 

A. Otherwise, a is called a β-indispensable attribute. 

D
A

D
aA δβδ ⋅≥− }{

 

The parameter β , β ∈ [0, 1], is called the consistency measurement.  

 

For example, in Table 3.1, we have 1
6
5

}{ <=−
D

aAδ , 1
4
3

}{ <=−
D

dAδ . If β is set as 0.75, then 

the attributes a and d are both considered as β-indispensable attribute. If β is set as 0.8, 

then only the attribute d is β-indispensable attribute.  

 

Definition 3.7 (β-reduct/approximate reduct and β-core)  

B is called a β-reduct or approximate reduct of conditional attribute set A if B is the 

minimal subset of A such that . The β-core of A is the set of β-indispensable 

attributes. 

D
A

D
B δβδ ⋅≥

 

The relationship between β-reduct and β-core is similar to the relationship between the 

traditional reduct and core, which is described in theorem 2.  

 

Theorem 2  

β-core can be computed as the intersection of all approximate reducts, i.e., 

β-core = , where  is the ith approximate reduct. i reduct∩ i ieductr

 

Proof: The proof is divided into two parts. 

 

(1) For every attribute a ∈ β-core, a is a β-indispensable attribute, i.e., 

. According to definition 3.7, an approximate reduct implies that 

a∈ . This can be proved using the method of contradiction as follows:  

D
A

D
aA δβδ ⋅<− }{

ii eductr∩
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If  then and ireductai ∉∃ , , { { }i
}ireduct A a⊆ − D D D

reduct A a Aδ δ β δ−< < ⋅ . This result 

contradicts the assumption that is an approximate reduct. Therefore, a ∈ 

, and then A ⊆ B holds. 

ireduct

ii eductr∩

 

(2) Let an attribute a∈ . If we assume a ∉ β-core, that is, a is a 

dispensable attribute, then ∃ i, such that a ∉ . This is not possible since a 

∈ . Therefore, a ∈ β-core.  

ii eductr∩

ieductr

ii eductr∩

 

This completes the proof. � 

 

The consistency measurement β represents how consistent the sub-decision table (with 

respect to the considered subset of attributes) is relative to the original decision table 

(with respect to the original attribute set). It also reflects the relationship of the 

approximate reduct and the exact reduct. The larger the value of β, the more similar is the 

approximate reduct to the exact reduct computed using the traditional discernibility 

function-based methods. If β = 1 (i.e., attains its maximum), the two reducts are equal 

(according to theorem 1). The reduct computation is implemented by counting the 

distinct rows in the sub-decision tables of some sub-attribute sets. β controls the end 

condition of the algorithm and therefore controls the size of reduced feature set. Based on 

Definitions 3.6-3.7, the first rough set-based FR algorithm in our developed approach is 

given in Fig. 3.1.  
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Fig. 3.1 Feature reduction algorith

Feature Reduction Algorithm 1 
 
Input: U- the entire set of objects; 
A – the entire condition attribute set; 
D – the decision attribute set. 
Output: R – the approximate reduct of A 
 
Step 1 Initialize R = ∅ (empty set). 
 
Step 2 Compute the approximate reduct. 
          While (A is not empty) 
              Compute ; D

Rδ
         If (  > β) D

Rδ
            Return R and stop; 
       Otherwise 
          R = R ∪{q}; 
          A = A – R; 
 
Step 3 Output R. 
Fig. 3.1 Feature reduction algorithm 1 
Feature Reduction Algorithm 2  
 
The inputs and output are the same as that in algorithm 1. 
 
Step 1 Initialize R = ∅; 
 
Step 2 For each a∈A 
                  Compute the significance of a;  

        Add the most significant one, q, to R:  
 R = R∪{q}; 

        A = A – {q}; 
 

Step 3 For current R 
        Compute the relative dependency degree ;  D

Rδ
 

Step 4 While (A is not empty) 
       If > β, return R and stop; D

Rδ
                 Otherwise, go to step 2 and then step 3.                 
Fig. 3.2 Feature reduction algorithm 2 

 

57



CHAPTER 3 Fast Rough Set-Based Feature Reduction 
 

In some domains, the order for selecting attributes in the reduct must be considered 

carefully. For example, when dealing with text documents, there are hundreds or 

thousands of keywords which are all regarded as attributes. If the order is randomly 

selected or if one simply makes use of the order in which keywords appear in a text 

document, the most informative attributes may not be selected initially during reduct 

computation. Therefore, the end condition  > β in algorithm 1 cannot be satisfied 

quickly. It should also be borne in mind that the final attribute set may consist of many 

non-informative features. This issue is addressed by computing the significance value of 

each attribute. These significance values are used to guide the attribute selection 

sequence. Details are given in algorithm 2 (see Fig. 3.2). 

D
Rδ

 

Notice that the significance of an attribute can be evaluated in many ways using different 

evaluation criteria such as information gain (IG), frequency of occurrence (often used in 

text documents), and dependency factors (in rough set-based methods). In this research, 

the text-based CBR classifiers are built using the frequency approach (see Section 3.4). 

 

The computation complexities of the feature reduction algorithms 1 and 2 are O(n×m), 

where m is the number of attributes in A∪D, n is the number of objects in U. In the FR 

algorithms, we consider m subsets of attributes by adding one attribute in each iteration 

until >β, and n computations are required in each iteration to calculate the different rows.  D
Rδ

 

3.4 Experimental Results 
 

In this section, we test our proposed FR algorithms mainly on classification problems and 

provide their comparisons with KPCA. To demonstrate their effectiveness, we use two 

main evaluation criteria: storage requirement and classification accuracy. Storage 

requirement is used to describe the number of attributes which need to be stored. The 

classification accuracy is the percentage of the unseen cases which can be correctly 

classify. The experiments used four real life data sets: 
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(1) House-votes-84 database [Hett 1998].  

This data set contains the voting records of members of the United States House of 

Representatives. It contains a total of 435 cases and 17 boolean valued features including 

16 conditional attributes and 1 decision attribute.  

 

(2) Text document sets (Texts 1-8).  

It is composed of eight text document sets randomly sampled from Reuters21578 [Lewi 

1999]. The number of documents ranges from 40 to 1578, and the number of distinct 

words ranges from 150 to 2018. Here, each distinct word is considered as a condition 

attribute. The topic of the documents is the class label.   

 

(3) Mushroom Database [Hett 1998].  

This data set consists of descriptions of hypothetical samples corresponding to 23 species 

of gilled mushrooms. There are 8124 samples and 23 nominally valued features. The last 

feature is the decision attribute with four possible class labels. 

 

(4) Multiple Features [Hett 1998].  

This data set consists of numerical features of handwritten numbers from “0” to “9”, 

which extracted from a collection of Dutch utility maps. There are total 2000 samples, 

649 attributes and 10 classes. Since KPCA can only handle numerical data, this data set is 

used to compare our developed FR and KPCA techniques. 

 

3.4.1 Rough Set-Based Feature Reduction 
 

In this section, we test and analyze the feature reduction capability of the rough set-based 

algorithms proposed in Section 3.3. The experimental results demonstrate not only a 

reduced storage requirement but also an improvement in the classification accuracy with 

fewer features in the generated reduct. Notice that, Storage = |Reduced feature set| / 

|Original feature set|, where |.| is the cardinality of set (.). The accuracy is the 

classification accuracy when using the reduced feature set.  
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 (1) House-votes-84. 

This data set is tested using four splits: randomly selecting 20%, 30%, 40%, and 50% of 

the original data, as the testing data; the corresponding left data are used as the training 

data. The four splits are denoted as Split 1-4. Table 3.4 shows the reduced storage 

requirement and the classification accuracy with different β values.  

 

Table 3.4 Storage and accuracy with different β values on house-votes-84 

 Split 1 Split 2 Split 3 Split 4 

β 
Storage 

(%) 

Accuracy 

(%) 

Storage

(%) 

Accuracy

(%) 

Storage

(%) 

Accuracy

(%) 

Storage 

(%) 

Accuracy

(%) 

1.00 100.00 93.10 100.00 92.31 100.00 93.68 100.00 94.01 

0.90 43.75 96.55 43.75 94.62 43.75 95.98 43.75 95.85 

0.95 56.25 97.70 50.00 94.62 50.00 95.98 56.25 96.31 

0.96 63.50 94.25 66.25 95.38 62.50 94.83 62.50 94.47 

0.97 68.75 94.25 62.50 94.62 62.50 94.83 68.75 92.63 

 

Table 3.4 provides three observations: (i) the features could not be reduced with β = 1; (ii) 

the classification accuracy is improved after the rough set-based feature reduction with 

almost all of the used β values; (iii) the accuracy attains most of its maximums for the 

four splits when β = 0.95.  

 

Table 3.5 Storage and accuracy using β = 0.95 

    

Split 
P0 

(%) 

P(FR) 

(%) 
Storage

1 93.10 97.70 56.25 

2 92.31 94.62 50.00 

3 93.68 95.98 50.00 

4 94.01 96.31 56.25 

Avg. 93.28 96.15 53.13 
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In Table 3.5, P0 represents the original accuracy with the whole data set, while P(FR) 

denotes the accuracy with the reduced feature set after applying the rough set-based 

feature reduction algorithm 1. 

 

(2) Text data sets. 

 

The fast rough set-based FR algorithm 2 was applied to the text data sets. The most 

distinct characteristic of the text domain is its high dimensionality. We randomly select 

80% documents in each text data set as the training data and the remaining 20% is used 

as the testing data.  

 

Initially, each word (term) occurred in the text data is considered as a feature, and 

therefore there are often hundreds or thousands of feature terms in a text dataset. Before 

the FR algorithm is performed, we pre-process the term feature set to filter the stop words 

or very low-frequent words. Stop words are extremely common words which appear in 

almost every document, such as “a”, “the”, and “with”. These words are often considered 

to contribute little useful information in classifying the text documents. On the other hand, 

low-frequency words - words which occur just once or twice - are filtered. The words 

which remain are considered to be the original feature terms. 

 

To facilitate the rough-set based feature term reduction, each text document is 

represented using a term vector with respect to the acquired original feature terms. 

Assume there are m terms in the set of original feature terms. A given document DOC 

can be described by an m-dimensional term vector [t1, t2, …, tm], where tk is a Boolean 

variable which is given by 

 

⎩
⎨
⎧

=
ktermcontainnotdoesDOCif

ktermcontainDOCif
tk 0

1
     k = 1, 2, …, m. (3.1)
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Each document is represented by an m-dimension vector. An example of a document 

vector is 

 

D = [t1, t2, …, tm]        tk ∈ [0, 1], k = 1, 2, …, m, (3.2)

where tk is the normalized weight of feature term k in document DOC. tk is computed by 

two steps: weight computation and weight normalization. 

 

Step 1 Weight computation. Compute the weight of each feature term in each document 

using term frequency-inverted document frequency (tf-idf). 

 

wk = - log (Nk/N)fk, k = 1, 2, …, m, 

 

where wk is the weight of term k;  

      Nk is the number of documents containing term k;  

      N is the total number of documents;  

      fk is the frequency of term k. 

 

Note that wj is the weight of the kth term in the whole set of text documents. Here, in 

order to reduce the computational load, the term weight for each term in each document 

is not computed. 

 

Step 2 Weight Normalization. Let wmax denote the maximal weight. wk is normalized to 

be 

 

wk = wk / wmax. 

That is, for each k in equation (2), tk = wk.  

 

In the FR algorithm 2, the significance of each feature tk (k = 1, 2, …, m) is evaluated by 

its term frequency-inverted document frequency, i.e., wk, which is positively proportional 
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to the frequency of occurrence of this feature and inverse proportional to the number of 

documents which contain this term.  

 

The experimental results in Table 3.6 shows that the storage requirements for all the eight 

data sets fall significantly, and the accuracy using reduced feature set is preserved for 

Text2, Text3, and Text6 and even improves for Text1, and Texts4-5. For Texts7-8, the 

accuracy decreases a little due to the reduction of features. Since the accuracy attains its 

maximum when β =1, here β  is set to be 1.  

 

Table 3.6 Reduced storage and improved accuracy 

when applying β = 1 to text data 

Text 

dataset 

P0 

(%) 

P(FR) 

(%) 

Storage 

(%) 

Text1 62.50 75.00 12.50 

Text2 62.50 62.50 9.05 

Text3 33.33 33.33 28.48 

Text4 37.93 41.38 10.51 

Text5 56.25 75.00 9.59 

Text6 77.78 77.78 31.53 

Text7 51.19 50.00 7.81 

Text8 72.79 69.39 3.37 

Avg. 56.78 60.55 14.11 

 

 

(3) Mushroom data. 

 

We randomly select 80% data as the training data and the left 20% as the testing data. It 

is shown that there are five features in the generated reduct. Therefore, the storage 

requirement with respect to the feature set is 22.73% of the original feature set. Here β =1. 

The classification accuracy is not affected after feature reduction. For this data set, P0 = 

P(FR) = 1. 

 63



CHAPTER 3 Fast Rough Set-Based Feature Reduction 
 

 

Summary:  After applying the fast rough set-based FR method to House-votes data and 

texts 1-8, the feature set is substantially reduced and the classification accuracy is 

preserved or even improved. Tables 3.4-3.6 show that the improvement in classification 

accuracy is 3.06% for House-votes-84 and 3.77% for the text data sets. The size of the 

feature set decreases from the original 100% to 53.13% for house-votes-84, 14.11% for 

text data sets, and 22.70% for mushroom data. 
                      

3.4.2 Comparisons between Rough Set-Based FR and KPCA  
 

In this section, we make some comparisons to further demonstrate the effectiveness of 

our developed FR method.  

 

The experimental setup is as follows.  

 

(1) Data - Since KPCA can only handle numerical data, the data set of Multiple Features 

is used to conduct these experiments.  

(2) Data splitting - We use the training/testing data sets in the original database of 

Multiple Features, which has 1000 training samples and 1000 testing samples.  

(3) Data preprocessing - The numerical data needs to be discretized before the use of 

rough sets in the FR process.  

(4) Performance Evaluation - Four main evaluation indices are used including training 

time, storage requirement and classification accuracy. Here the unit of time is second. 

 

In order to compare the developed rough set-based FR and KPCA methods, fuzzy 

discretization [Pal 2004] is performed before applying rough sets for feature reduction. 

Each feature is described by fuzzy sets: “high”, “medium” and “low”, and three π -

membership functions are used. Note that the discertization may cause some information 

loss, and therefore the classification accuracy may be affected. The impact of different 

fuzzification methods on the performance is not discussed in this research. For the KPCA 
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method, we select polynomial kernels of degree 3 due to the expensive training with RBF 

kernels.  

 

Table 3.7 shows the experimental results, where “T_train” is the training time; “T_trans” 

in KPCA is the required time for testing data transformation on the extracted components. 

The comparisons are made based on the same number of selected features. It is 

demonstrated that the KPCA achieve slightly higher classification accuracy, however, the 

training time and the transformation time are much more than the training time in rough 

set-based FR method.   

 

Table 3.7 Rough set-based FR vs. KPCA feature extraction 

Rough set-based FR KPCA feature extraction 

β values 
Storage 

(%) 
T_train 

Accuracy 

(%) 

Storage 

(%) 
T_train T_trans 

Accuracy 

(%) 

0.80 1.15 5.00 81.30 1.15 17.23 1291.90 85.20 

0.90 1.30 5.00 82.80 1.30 17.55 1170.10 89.40 

0.95 1.44 5.00 84.20 1.44 17.30 1171.70 90.40 

0.98 1.73 5.00 86.30 1.73 17.20 1166.10 89.10 

0.99 1.87 7.00 91.30 1.87 16.89 1167.50 92.20 

Avg. 6.33 85.20 Avg. 17.23 1193.46 89.30 

 

3.5 Discussions 
 

Although our experimental results are very promising, we need to point out that there are 

still some limitations of the developed FR and CS approaches, which may need to be 

tackled in our future work: (1) The determination of the parameters, i.e., β, is empirical 

and heuristic based during the testing and their best values are dataset dependent. The 

characteristic of these parameters is: the smaller the values of them, the more the 

reduction of features. Therefore, we do not consider the parameter values smaller than 0.5 

because it may cause much information loss. (2) The fast rough set-based FR method 
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works better with symbolic data. The numerical data needs to be discretized before 

applying FR process.  

 

3.6 Summary  
 

In this chapter, we describe a fast rough set-based FR approach for case knowledge 

extraction. The concept of a reduct is generalized to an approximate reduct which can be 

obtained quickly. In some situations, the crisp reduct is the best subset of features in 

terms of the classification accuracy, e.g., when β =1 for the Text data (Table 3.6). 

Although the generated approximate reduct is equivalent to the crisp reduct which can be 

obtained by the traditional discernibility function-based methods, the computational 

complexity has been reduced using our FR approach. In some other situations, the crisp 

reduct is not the optimal subset of features, e.g., β < 1 for the House-votes-84 (Tables 

3.4-3.5) and the Multiple Features database (Table 3.7). In this chapter, the β value is 

determined to optimize the classification accuracy, it can also be determined according to 

other performance criteria or user requirements such as the size of case bases or the case 

retrieval time.  

 

Some related concepts are also modified. Through the computation of approximate reduct, 

the original feature set is reduced and a new case base with fewer features is generated. It 

is shown that, compared with using the original case base, higher classification accuracy 

and less storage space requirement could be obtained. Comparisons are also made 

between the proposed FR and KPCA. FR shows a much better performance in terms of 

the training time.  
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Chapter 4 

Learning Similarity Measure  

of Nominal Features  
 

This chapter tackles the second task for case knowledge extraction as mentioned in 

Chapter 1, i.e., learning similarity measures of nominal features. The purpose of this task 

is to discover the relationship among different feature values to emphasize the importance 

of critical features. Similar to the previously task of FR in Chapter 3, learning similarity 

measures can reduce the effect of non-informative features, and therefore enhance the 

quality of cases selected through the process of CS. The problem-solving accuracy which 

based on the k-nearest neighbour principle can also be improved. 

  

Nominal feature is one type of symbolic features, its feature values are completely 

unordered. The most often used similarity metrics for symbolic features is the Hamming 

metric and its variances which always assume that, if two nominal feature's values are 

equal, the similarity is defined as one; otherwise, the similarity is defined as zero. This 

similarity computation is coarse-grained and may affect the quality of the retrieved cases 

and also the problem-solving accuracy. In this chapter, we extend the similarity values 

from {0, 1} to [0, 1] using a GA-based supervised method for the learning of similarities 

of nominal feature values. 

  

This chapter is organized as follows. Section 4.1 introduces some often used similarity 

measures for different types of features. Section 4.2 presents an example to show the 

importance of learning the similarity measures for different nominal feature values. 

Section 4.3 describes the GA algorithm which is applied to determine the similarity 

measure for classification problems. Section 4.4 demonstrates some experimental results 

 67



CHAPTER 4 Learning Similarity Measure of Nominal Features 
 

 
which include the learned similarity values, the improved accuracy, and the implied 

feature importance. Finally, Section 4.5 concludes this chapter. 

 

4.1 Introduction  
 

CBR systems [Kolo 1993][Pal 2004] have been successfully applied to various domains, 

among which those used in classification problems are called CBR classifiers. When a 

new problem is presented to a CBR classifier, the most similar case or cases will be 

identified and retrieved based on the given similarity measure. The solutions of these 

retrieved cases are then reused to solve the new problem. Since the basic assumption in 

CBR is that similar problems should have similar solutions, the similarity measure plays 

a critical role in case matching and retrieval. In this chapter, we develop a GA-based 

method to learning the similarity measures of nominal features for CBR classifiers.  

 

There are two main categories of features: numerical features and symbolic features. 

Symbolic features can be further divided into nominal, ordinal, and combinational 

features. The feature values of a nominal feature are completely unordered such as “red”, 

“green” and “blue” for the feature of color. The ordinal features have discrete and 

ordered values such as “1”, “2” and “3” for the feature of job rank. The feature values of 

the combinational features consist of both unordered and ordered discrete values.  

 

Obviously, the ordered values shall provide more information than the unordered ones. 

For example, based on the ordered feature values, we can identify whether a given pair of 

cases has the same feature values or not, in addition, we could also find out the ordered 

relation between these two feature values. However, based on the completely unordered 

feature values, there are only two possible relationships for a given pair of cases: either 

they are the same or they are different. From the point of view of information system, 

these unordered domain values of nominal features lead to coarse information granules, 

and may cause difficulty in determining an accurate similarity measure in the case 

matching and retrieval.  
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There are various forms of distance metrics and similarity measures for different types of 

features. The most often used metrics are Euclidean Distance, Hamming distance, and 

Cosine coefficients. They are briefly described below. 

 

Euclidean distance is the most common type of distance metric which is based on the 

location of objects in Euclidean space. The distance is calculated as the square root of the 

sum of the squares of the arithmetical differences between the corresponding coordinates 

of two objects. Let represent the Euclidean distance between two cases x and y, a 

similarity measure of x and y can be defined as:

),( yxd E

),(1
1),( yxdyxSim

E
E ⋅+= ε , where ε  

is a positive constant. The higher the value of , the lower the similarity between 

cases x and y.  

),( yxd E

 

In information theory, the Hamming distance is defined as the number of positions in two 

strings of equal length for which the corresponding elements are different. For example, 

if x = (111000) and y = (110100), then = 2. In the context of CBR, the Hamming 

distance of two cases x and y, , is the number of features which have different 

feature values. The smaller the value of , the more similar of x to y. Based on the 

Hamming distance, the corresponding similarity measure can be defined as 

),( yxd H

),( yxd H

),( yxd H

),(1
1),( yxdyxSim

E
E ⋅+= ε , which is similar to that based on Euclidean distance. 

 

In the field of information retrieval (IR), the most important task is to identify and 

retrieve relevant documents for a given query document. The relevant degree of one 

document to a query is measured by the distance and similarity metrics. A variety of 

these metrics have been proposed for the text documents, some of them are Dice, Jaccard, 

and Cosine coefficients [Ande 1973].  Due to the simplicity and normalization, Cosine 

coefficients, which computed based on the term frequency and inverse document 

frequency, are the most widely used similarity measures. In the field of CBR, there are 

many text-based case bases, where these distance and similarity metrics can be used.  
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In this research, the domain of the similarity values will be extended from {0, 1} to [0, 1] 

to obtain a fine-grained measure of nominal features. The information hidden in the 

classification labels can be incorporated to determine the similarity values of different 

nominal feature values.  

 

A GA-based supervised learning approach is developed to obtain the similarity measures 

of the nominal feature values for a given classification problem. Here we assume that 

there are only limited feature values in the domain of each nominal feature. Theoretically, 

for a given nominal feature, the similarity of each pair of feature values is required to be 

computed to determine the similarity measure of this feature. That is, if there are n 

elements in the domain of a feature, 2/)1( −⋅ nn  similarity values need to be learned, 

which may require substantial computational effort. In practice, it is not necessary to 

determine so many similarity values. In the given classification problem, if two different 

nominal feature values certainly lead to different class labels, the similarity between these 

two nominal values is assumed as zero. The GA-based method is then used to learn the 

similarity values of other nominal feature values. The learned similarity values are 

expected to improve the classification accuracy and can be used to analyze the 

importance of each feature in the given CBR classifier. 

 

4.2 Significance of Learning Nominal Feature Similarity: 

An Illustrative Example 
 

In this section, an example is presented to explain the significance of learning similarity 

measures for the nominal features. First, we explain the problems of using {0, 1} as the 

domain of the similarity measures, then we demonstrate the advantages of learning 

similarity measures. The benefits from the learned similarity measures, including the 

improvement of both classification accuracy and the understanding of the data sets, are 

discussed. 
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4.2.1 Problem Statement 
 

Table 4.1 describes a case base with nominal features. The classification problem is to 

predict which continent a person comes from according to his hair color and complexion. 

The features “Hair_Color” (H) and “Complexion” (C) are conditional features; and the 

last feature, “Place”, is the class label. },,,{ RGBrBlDH =  and are 

used to represent he domains of the two conditional features of H and C, respectively. 

},,{ WBlYeDC =

 

Table 4.1 A case base with nominal features 
 

ID Hair_Color Complexion Place 

1 Bl Ye Asia 

2 Br Bl Asia 

3 G Ye Asia 

4 G W Europe

5 Br W Europe

6 R W Europe

 

 

 

 

 

 

 

 

Table 4.2 Testing cases 

ID Hair_Color Complexion Place 

1 R Bl Asia 

2 R Ye Asia 

3 Bl W Europe

 

Traditionally, the similarity between two different nominal feature values is defined as 

zero. For the case base showed in Table 4.1, we have 

 

0),(),(),( === WBlsimWYesimBlYesim with respect to the feature C, and 

0),(),(),(),(),(),( ====== RGsimRBrsimGBrsimRBlsimGBlsimBrBlsim with 

respect to the feature H,  
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where is the similarity value of ),( 21 ••sim 1•  and 2• .  

 

However, consider feature C, it can be implied from the class labels of the cases in Table 

4.1 that Ye and Bl should be more similar than Ye and W does. This is based on the 

observation that either a person has the complexion of Ye or Bl, he comes from Asia; in 

contrast, if the person has W complexion, he surely comes from Europe. If we still 

assume that the similarity of Ye and Bl is the same as that of Ye and W (i.e., equal to zero), 

problems will arise when classifying new problems (unseen cases).  

 

Assume such a problem p is presented to the CBR classifier as: p = {H = R, C = Bl}. 

Based on the similarity metric in [Gowd 1992], cases 2 and 6 are retrieved with the 

maximum similarities, sim(e, 2) = sim(e, 6) = 0.5. Therefore, e cannot be specifically 

classified to “Asia” or “Europe”.  

 

4.2.2 Learning Similarity Measures for Nominal Features 
 

To address the problem mentioned in Section 4.2.1, we can adapt the similarity measure 

of Ye, Bl, and W for the feature C by making use of the hidden information in the class 

labels. For example, if we redefine that sim(Ye, Bl) = 1 > 0, then the retrieved cases will 

be 1, 2, 3, and 6. Based on the majority voting rule, the class label of the unseen case e is 

determined as “Asia”. This modified similarity measure has been extended from {0, 1} to 

[0, 1], which is shown to be much better compared with the traditional similarity 

measures.  

 

The determined similarity measure can also be used to analyze the goodness of each 

nominal feature in the given classification task. In this research, the contribution of a 

feature in a CBR classifier is evaluated by the inconsistent degree caused when using the 

feature for case retrieval. The smaller the degree, the more useful is the feature. The 

inconsistency arises when cases have the same feature values but belong to different 

classes. In this sense, the best two situations (when the inconsistency degree = 0) of a 
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nominal feature f are (i) all cases with different feature values are certainly classified to 

different classes; (ii) all cases with different feature values belong to the same classes. In 

the first situation, we assume that all the similarities of different feature values of f are 

equal to zero, while in the second situation, they are equal to one. Therefore, a feature f 1 

is said to be more useful than another feature f2 when its learned similarity values are 

closer to zero or one than those of f2.  

 

We define a distance d between the similarity values of a feature f and the set {0, 1} to 

describe how close the similarity values to zero or one. The distance d is denoted as  

 

d({s1, s2, …, sL}, {0,1}) = ∑ ,                     
=

−
L

i
ii ss

1
}1,min{ (4.1)

where {s1, s2, …, sL} is the learned set of similarity values of f, d is also denoted as d(f, 

{0, 1}) in the following sections. Using this definition of distance, the feature importance 

can be analyzed based on the learned similarity measure of the nominal features.  
 

Since the learning process of determining the similarity measures is supervised and it 

aims to reduce the inconsistency contained in the case base, the classification accuracy 

can be improved using the learned similarity values. On the other hand, the importance of 

each feature is reflected in its learned similarity measures and some specific domain 

knowledge can also be obtained through the similarity value of each pair of nominal 

feature values.  

 

For each nominal feature, the number of similarity values to be determined depends on 

the number of different feature values in the domain of this nominal feature. 

Theoretically, there are 4×(4-1)/2 + 3×(3-1)/2 = 9 similarities to be learned for the case 

base in Table 4.1. In fact, we do not need to determine all of these similarity values. As 

mentioned in Section 4.1, if two different feature values certainly lead to different class 

labels, the similarity between the two nominal values is set as zero. For example, 

consider the feature H. sim(Bl, R) is zero because case 1 (with Bl) and case 6 (with R) 

belong to different classes; for the feature C, only the similarity of Ye and Bl should be 
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modified from the original similarity value zero. The similarities of Ye and W, Bl and W 

are still zero because the cases with Ye or Bl surely belong to different classes from that 

of the cases with W. Therefore, there are totally 6 but not 9 similarity values that need to 

be determined.  

 

4.3 Using GA to Learn Similarity Measure for Nominal Features 
 

The genetic algorithms (GA), proposed by John Holland in the early 1970s, are adaptive 

and robust search algorithm inspired by natural evolution. They are viewed as 

randomized, yet structured optimization techniques. GAs are performed iteratively on a 

set of coded solutions, called a population, with three operators: selection, crossover, and 

mutation. To produce the optimal solution of a problem, a GA starts from a set of 

assumed solutions (i. e., chromosomes) and evolves better sets of solutions over a 

sequence of iterations. In each iteration, the objective function (i.e., fitness) determines 

the suitability of each solution, based on which some of the solutions (i.e., parent 

chromosomes) are selected for reproduction.  

 

In this section, we describe a GA algorithm for learning the similarity values of nominal 

features falling in [0, 1] instead of {0, 1}. This similarity learning method is supervised 

and the testing classification accuracy is directly used as the fitness function.  

 

Let there be a case base consisting of N cases e1, e2, …, eN, m nominal features 

. The domain of each feature has limited elements represented 

by , i = 1, 2, …, m; v

mfff ,,, 21 L

}...,,,{ ,21 ilmiii vvvD = ij is a nominal value, li is the number of 

different values in the domain of the i-th nominal feature. As we have mentioned in 

Section 4.1, Li =  similarity values should be learned at most for the i-th 

feature. In the following, we discuss the encoding rule, fitness function, and the 

constructed GA algorithm in detail.  

2/)1( −⋅ ii ll
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Encoding rule: 

 

Each chromosome is encoded as a string consisting of m parts corresponding to the m 

features. A chromosome c takes the form shown in Fig. 4.1. For the i-th part, there are  

genes represented by  decimals: 

iL

iL )1(],1,0[ iip Lps ≤≤∈ , representing the similarity 

measure for the i-th feature. The initial values of )...,,2,1( iij Ljs = is randomly 

generated for . mi ...,,2,1=

 

11s  12s  … 
11Ls   21s  22s  …

22Ls  …  1ms  2ms  … 
mmLs  

0.25 0.10 … 0.83  0.62 0.58 … 0.35  …  0.74 0.40 … 0.56 

Fig. 4.1 A chromosome c 

 

Fitness Function: 

 

In the GA-based learning process, the fitness function of a chromosome c is the 

corresponding classification accuracy using the similarity values indicated in c. Based on 

case retrieval, the class label of an unseen case can be determined by the majority of its k 

nearest neighbours. The classification accuracy is the ratio of the number of correctly 

classified cases, , over the whole number of unseen cases, . The fitness 

function is then defined as: . 

c
CorrN c

TotalN

c
Total

c
Corr NNcfitness /)( =

 

The GA Algorithm: 

 

a) Initialize the population of the chromosomes. A population set is represented by 

{ }, where P is the size of the population. Each chromosome is encoded as 

in Fig. 4.1. Each gene is a randomly initialized to be a decimal in [0, 1], representing 

the similarity value between two nominal values in the domain of each nominal 

feature.  

Pccc ...,,, 21
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b) Selection and crossover. Here the selection probability is set as 1 and the whole set of 

population is considered to be the mating pool. These settings let the modal to be 

closer to a random search. In each generation, two chromosomes are randomly 

selected to perform crossover. The cutting point for crossover is randomly generated 

and the genes in the two chromosomes that lie behind the cutting point are exchanged 

to produce an offspring. 

 

c) Mutation. Let the mutation probability be . Randomly select one gene g (with 

value v

mutap

g) in the newly generated offspring string, and convert the value vg  to (1-vg). If 

vg represents the degree of how similar of two feature values, then (1- vg) represents 

their degree of dissimilarity.  

 

d) End condition. Repeat (a)-(c) until the number of generations attains a predefined 

threshold. 

 

Here we provide some discussions about parameter control in GA. Crossover probability 

is how often crossover will be performed. If there is no crossover, offspring are exact 

copies of parents. If crossover probability is 100%, then all offspring are made by 

crossover. Crossover is made in hope that new chromosomes will contain good parts of 

old chromosomes and therefore the new chromosomes will be better. The crossover 

operator can be divided into two types: 1-point and multi-point crossover. 1-point is used 

in the traditional GA, where two mating chromosomes are each cut once at corresponding 

points, and the segments following the cuts are exchanged. In a 2-point or multi-point 

crossover, chromosomes are seen as loops formed by joining the ends together, rather 

than as linear strings. Researchers now agree that 2-point crossover produces better 

results than 1-point crossover [Beas 1993]. However, if a strict interpretation of the 

schema theorem is imposed then operators which use many crossover points should be 

avoided because they can cause extreme disruption to schema [Darr 1993]. 

 

Mutation probability is how often parts of chromosome will be mutated. If there is no 

mutation, offspring are generated immediately after crossover (or directly copied) 
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without any change. If mutation probability is 100%, whole chromosome is changed. 

Mutation generally prevents the GA from falling into local extremes. Mutation should not 

occur very often, because then GA will in fact change to random search. 

Recommendations are often results of empiric studies of GAs that were often performed 

on binary encoding only. Crossover rate should be high generally, about 80%-95%. On 

the other side, mutation rate should be very low. Best rates seem to be about 0.5%-1%.  

 

4.4 Simulation Results and Analysis 
 

Two examples are used in the simulations to show the effectiveness of learning similarity 

measure using the GA-based learning approach. The used data sets include the example 

case base in Table 4.1 and the Balloons database from the UCI repository [Hett 1998]. 

The results demonstrate that the similarity measure can enhance both the classification 

accuracy and the understanding of the databases.  

 

4.4.1 Example 1 
 

The cases in Table 4.1 are used as training data, and those in Table 4.2 are used as testing 

cases. There are totally 6 similarity values which need to be determined: 

 and for the feature H; 

 for the feature C. Therefore, each chromosome has two parts, the first of 

which consists of 5 genes and the second part has only one gene. Fig. 4.2 shows an 

example of randomly initialized chromosome: 

),(),,(),,(),,( RGsimGBrsimGBlsimBrBlsim ),( RBrsim

),( BlYesim

 

sim(Bl, Br) sim(Bl, G) sim(Br, G) sim(G, R) sim(Br, R)  sim(Ye, Bl) 

0.88 0.68 0.36 0.43 0.39  0.05 

Fig. 4.2 An initialized chromosome 
 

Here the size of population P = 10, the terminal number of generations is from 100 to 

20000, and the mutation probability Pm = 0.05.  
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Table 4.3 shows the results of the learned similarity measure for the nominal features. For 

the feature H, Bl and Br is the most similar feature values, and then comes the pair of G 

and R; and for feature C, sim(Ye, Bl) = 0.51 is much greater than sim(Ye, W) = sim(Bl, W) 

= 0. With these similarity values, all the testing cases in Table 4.2 can be correctly 

classified by the training cases, i.e., the classification accuracy is 1. It is obvious that the 

learned similarity measure is superior to the traditional similarity measure which cannot 

specifically classify the testing cases 1 and 2.  

 

Table 4.3 Learned similarity measure of nominal features (testing accuracy = 1) 

Number of 

Generations 
sim(Bl, Br) sim(Bl, G) sim(Br, G) sim(G, R) sim(Br, R) sim(Ye, Bl) 

100 0.38 0.07 0.29 0.74 0.19 0.45 

500 0.69 0.72 0.53 0.45 0.50 0.55 

1,000 0.66 0.55 0.50 0.44 0.46 0.54 

5,000 0.72 0.49 0.49 0.52 0.47 0.51 

10,000 0.76 0.50 0.50 0.50 0.51 0.50 

20,000 0.84 0.49 0.49 0.51 0.50 0.50 

Avg. 0.68 0.47 0.47 0.53 0.44 0.51 

d(*, {0, 1}) 0.36 0.16 

 

Here d(*, {0, 1}) in Table 4.3 denotes the distance of the learned similarities to the set of 

{0, 1} defined by Equation 1, where * means the feature H or C. The distances are 

computed as:  

d(H, {0, 1}) = ( (1-0.68) + 0.47 + 0.47 + (1-0.53) + 0.44))/(4×3/2) = 0.36; and  

d(C, {0, 1}) = (1-0.51)/(3×2/2) = 0.16.  

Therefore, the feature C is more important than the feature H for classifying unseen cases. 

 

4.4.2 Example 2 
 

The Balloons Database is used as the second example to demonstrate the effectiveness of 

the proposed method for learning similarity measures. This data set consists of 16 cases 
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and 4 nominal features (three conditional features and one class label). There are two 

nominal values in the domain of each conditional feature. Some example cases are shown 

in Table 4.4. It is found that there are 4 similarity values which need to be learned: 

sim(Yellow, Purple) (Color), sim(Small, Large) (Size), sim(Stretch, Dip) (Act), and 

sim(Adult, Child) (Age).  

 

Six cases are firstly selected as the training data and the remaining 10 cases are used as 

testing cases. The original classification accuracy based on the majority voting principle 

is 0.70. In the learning process of the GA algorithm, the mutation probability is also set 

as 0.05 as in Section 4.4.1.  

 

Table 4.4 Example cases in Balloons database 

ID Color Size Act Age Inflated

1 Yellow Small Stretch Adult T 

2 Purple Large Dip Child F 

 

Table 4.5 Learned similarity values on Balloons Database (Original accuracy = 0.70) 
Number of 

Generations 
sim(Yellow, Purple) sim(Small, Large) sim(Stretch, Dip) sim(Adult, Child) Accuracy 

100 0.55 0.43 0.69 0.28 1.0 

500 0.56 0.86 0.83 0.38 0.9 

1,000 0.57 0.55 0.79 0.24 0.9 

5,000 0.63 0.51 0.29 0.03 1.0 

10,000 0.65 0.31 0.84 0.25 1.0 

20,000 0.70 0.33 0.79 0.23 1.0 

Avg. 0.61 0.50 0.71 0.24 0.97 

d(*, {0, 1}) 0.39 0.36 0.23 0.23 - 

Note: * denotes the features, Color, Size, Act, and Age, respectively.  

 

Table 4.5 shows the learned similarity values for the four nominal features. With these 

similarity values, the accuracy increases from the original 0.70 to 0.97. The distances of 

similarity values to {0, 1} for “Act” and “Age” are the smallest compared with that of 

other features. Therefore, the features “Act” and “Age” are the most critical features to 
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make the classification decisions. In fact, only using these two features, all the testing 

cases can be correctly classified based on the majority voting principle. In contrast, with 

the other two features “Color” and “Size”, five out of ten cases are classified to the wrong 

classes.  

 

4.5 Summary 
 

In this chapter, we presented a GA-based approach to learn the similarity measures of 

nominal features. Two examples are used to illustrate the effectiveness of the developed 

learning method. The simulation results show that the testing accuracy increases and the 

importance of each feature can be analyzed through the learned similarity values. To 

summarize, the main contributions are as follows: (i) the similarity between the nominal 

features has been extended from {0, 1} to [0, 1], which can make the best out of the 

available information; (ii) since the use of learned similarity values can reduce the effect 

of non-informative features, this GA-based method is an alternative way to improve the 

classification accuracy; (iii) based on the learned similarity values, we can further 

analyze the importance of each nominal feature which can provide potential useful 

information to enhance the understanding of the data sets. The limitation of the GA-based 

learning approach is that it requires high computational complexity with large number of 

features.  
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Chapter 5 

Case Selection Methods for 

Case Knowledge Extraction 
 

In the previous chapters, we have addressed feature reduction and learning similarity 

measures for nominal features, which will facilitate the task of case selection (CS) for 

case knowledge extraction. In this chapter, we construct and compare different case 

selection methods based on the similarity measure and the concepts of case coverage and 

case reachability. The process of FR is incorporated in the CS process, which can reduce 

the training burden as well as enhance the performance of CS. The overall experimental 

results demonstrating on four real life data sets show that the combined FR and CS 

methods can preserve, and may also improve, the solution accuracy while at the same 

time substantially reducing the storage space. The case retrieval time is also greatly 

reduced because the CBR system contains a smaller amount of cases with fewer features. 

The developed FR and CS combination method is also compared with the kernel PCA 

and SVMs techniques. Their storage requirement, classification accuracy, and 

classification speed are presented and analyzed. 
 

This chapter is organized as follows. Section 5.1 introduces some background and related 

work of CS. Section 5.2 presents four CS algorithms and their rationales. Section 5.3 

explains the importance of FR in CS and the steps for combining them. Section 5.4 

presents and analyses experimental results on both the individual and synergistic 

performance of the FR and CS methods. Some comparisons are also made between the 

developed FR and CS methods and the combination of KPCA and SVMs techniques. 

Section 5.5 provides the conclusions and discussions. 
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5.1 Introduction 
 

In this chapter, the task of CS is discussed in the context of CBR classifiers which can be 

defined as CBR systems that are built for the classification problem - to determine 

whether or not an object is a member of a class, or which of several classes it may belong 

to. To build a CBR classifier, the cases stored in the case base are used as training data 

and the unseen cases are used as testing data. In this chapter, through combining the FR 

and CS processes, we present a novel and fast approach to extract case knowledge for 

building both efficient and competent CBR classifiers.  

 

In Chapter 3, the task of FR is implemented by the rough set-based approach which is 

fast and effective in reducing the non-informative features. Like FR, CS is economical. 

The main objective of the CS process developed in this research is to extract case 

knowledge through identifying and removing redundant and noisy cases. In the context of 

CBR, a redundant case can be defined as follows. If two cases are the same (i.e., case 

duplication) or if one case subsumes another case, one of the cases duplicated or 

subsumed cases are considered to be redundant. They can be removed from the case base 

without affecting the overall problem-solving ability of the CBR system. The meaning of 

subsumption is as follows: Given two cases ep and eq, when case ep subsumes case eq, 

case ep can be used to solve more problems than eq. In this case, eq is said to be redundant. 

On the other hand, the definition of noisy cases is very much depended on how we 

interpret the data distribution regions, and their association with the class labels. 

According to Brighton and Mellish [Brig 2002], there are two broad categories of class 

structures: the classes are defined by (1) homogenous regions; or (2) heterogeneous 

regions. In this research, we only consider the first category of data distribution. Based on 

the assumption that similar problems should have similar solutions, we define noisy cases 

as those that are very similar in their problem specifications yet propose different (or 

conflicting) solutions.  

 

CS schemes are traditionally based on the k-NN principle, e.g., the Condensed Nearest 

Neighbor Rule (CNN) [Hart 1968] and the Wilson Editing method [Wils 1972]. There are 
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several variations of the CNN and Wilson Editing method [Gate 1972][Ritt 1975][Tome 

1976]. Based on the assumption that similar problems should have similar solutions, 

these methods examine the k-nearest neighbours of each case and then identify and 

remove noisy cases. In this chapter this group of methods are referred to as k-NN based 

CS methods.  

 

Some CS strategies are derived from the area of case base maintenance (CBM), which 

includes policies of revising the organization and content of the case bases to facilitate 

the future reasoning of CBR systems. The concepts of case coverage and reachability 

[Smyt 1999a] are used to reduce redundant cases and thus build the case knowledge bases. 

As mentioned in Chapter 2, coverage of a case is the set of target problems (i.e., cases) 

that this case can be used to solve. The reachability of a target problem (i.e., a case) is the 

set of all cases that can be used to solve the target problem. The larger the coverage and 

the smaller the reachability of a case, the more important of this case in the CBR system. 

Thus, these two concepts can be used to identify redundant cases through examining the 

problem-solving ability of each case. Some such algorithms are developed in [Smyt 

1999a][Smyt 1999b][Raci 1997][Cao 2003]. This research constructs and compares 

different case selection approaches based on the similarity measure and the concepts of 

case coverage and reachability, which are closely related to the k-NN based methods.   

 

Case generation (CG) is an alternative approach of CS for reducing the size of the case 

base. New cases (or called prototypes) can be generated instead of selecting a subset of 

cases from the original case base. New cases, thus generated, has lower dimension than 

that in the original case base, for example, the fuzzy-rough method in [Pal 2004] 

generated cases of variable dimensions of lower size. On the other hand, the support 

vectors produced by SVM [Vapn 1998] or SVM ensemble [Vapn 1999][Kim 1997] can 

be also considered as cases selected as a subset of the original case base.  

 

We have explained in Chapter 3 (see Section 3.1) that the process of FR plays an 

important role in CS and CG methods. This is because the feature importance (weight) is 

very closely related to the computations of case similarity, k-NNs, case-coverage and 
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case-reachability. The non-informative features will mislead the results of these 

computations and therefore further affect the quality of selected cases.  

 

In this chapter, we address this problem by combining the rough set-based FR (see 

Chapter 3) with the CS process. The feature importance is addressed by the reduct 

generation, whose computation complexity is only linear with respect to the number of 

attributes and cases. The features in the produced reduct are considered to be critical and 

those are removed are considered to be irrelevant. Different from some machine learning 

methods (e.g., neural networks) for feature weighting, after incorporating the FR in CS, 

the case representation should still be the same as that of the original case base. That is, 

each case is described by a set of features (subset of the original feature set) and a class 

label. This form of knowledge representation is easier to understand and more convenient 

for use in CBR systems. 

 

In order to find the "best" sub-set of features (i.e., the set of features which can achieve 

the highest classification accuracy) that could be used by the CS process, we generate 

different approximate reducts in the proposed FR approach in Chapter 3 by fine-tuning 

the value of the consistency measurement of the sub-feature set. This allows the size of 

the approximate reduct to be controlled, and the "best" sub-set of features to be obtained. 

 

To summarize, in this chapter, we construct and compare four different similarity 

measure-based case selection methods. Then FR is combined with CS to extract case 

knowledge for the CBR classifiers, which reduces both the burden of training and the 

need to acquire domain knowledge. The Wilson Editing method and SVM ensembles are 

implemented in the conducted experiments to provide comparisons with the proposed 

approach. The experimental results show that our proposed FR and CS methods, used 

individually or in combination, can preserve and even improve the classification accuracy 

while at the same time reduce the storage space. Furthermore, the combination of the FR 

and CS method is much faster than the combination of KPCA and SVMs techniques. The 

same data sets as that in Section 3.4 are used in the experiments, which have the number 

of features ranging from 17 to 2018, the number of cases ranging from 40 to 8124. 
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5.2 Case Selection Approach 
 

In this section, we present four CS algorithms that are based on the similarity measure but 

that use of the case similarity in different ways. Algorithm 1 first selects cases having a 

large coverage and then, if the two cases have a similar coverage, selects the one with the 

smaller reachability set. CS algorithm 2 directly selects cases according to measurements 

of case similarity. The CS algorithms 3-4 are formed by incorporating the k-NN principle 

into CS algorithm 1 and CS algorithm 2, respectively.  

 

Each of the four CS approaches has its own rationale. For CS algorithm 1, the similarity 

concept is used to compute a case's coverage and reachability values which can be 

interpreted as a measurement of its significance with respect to all other cases. A case is 

considered to be important if it "covers" many similar cases (with a similarity value 

greater than a threshold α) all belonging to the same class. Here α is the similarity 

threshold between a particular case and its nearest boundary case. Since the cluster 

centres (cases) often have large coverage sets and the boundary cases have small 

coverage sets, this CS algorithm tends to select the cluster centres and remove the 

boundary cases.  

 

CS algorithm 2 assumes that redundant cases can be found in densely populated clusters 

in the case base, with the similarity measure being used to describe the local density 

around a case. The more densely populated the cluster, the more redundant cases should 

be removed. A threshold can then be set up to determine the number of cases which 

should be deleted. Assume ep is a case which has been already selected. A case eq is 

considered to be redundant and should be removed if the similarity of ep and eq is greater 

than the given threshold and the classification label of ep is the same as that of eq. As they 

tend to have different class labels from their neighbour cases, boundary cases will not be 

removed. Therefore, a number of representative interior cases and the boundary cases are 

preserved. This algorithm is fast, and it is suitable for case bases with high densities.  
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It is observed that, however, both CS algorithm 1 and 2 are vulnerable to noisy cases. The 

noisy cases mislead the computations of case coverage and reachability in the first CS 

algorithm, and they are often recognized as boundary cases which play important role in 

the second CS algorithm. In order to solve this problem, the k-NN principle is 

incorporated into the CS algorithms 1 and 2 to first detect and remove noisy cases, 

thereby forming algorithms 3 and 4. Here, the similarity concept is used to compute the 

k-nearest neighbors of each case. Based on the assumption that similar cases should have 

similar solutions, noisy cases are defined as cases having different class labels from the 

majority voting of their k-nearest neighbors. After the noisy cases are removed, the CS 

algorithms 1 and 2 are applied to remove the redundant cases. In this way, both noisy and 

redundant cases can be deleted from the case base. 

 

Before providing a detailed description of the four CS algorithms, we shall define some 

related concepts. Assume there is a case base CB, the condition attribute set is A, the 

decision attribute set is D. Coverage of a case is the set of target problems (i.e., cases) 

that this case can be used to solve; while reachability of a target problem (i.e., a case) is 

the set of all cases that can be used to solve the target problem.  

 

Definition 5.1 The coverage set of a case e is defined as 

CoverageSet(e) = {e’| e’ ∈ CB, e’ can be solved by e}. 

 

Definition 5.2 The reachability set of a case e is defined as 

ReachabilitySet(e) = {e’| e’ ∈ CB, e can be solved by e’}. 

 

Notice that, in different situations, the meaning that a case can “solves” another case is 

different. In this chapter, we redefine the two concepts more explicitly as follows.  

 

Definition 5.3 Coverage Set of a case e is redefined as  

Cover(e) = {e’| e’ ∈ CB, sim(e, e’) > α, d (e) = d (e’)}, 

where α is the similarity computed between case e and its nearest boundary case (the 

cases which have different class label of e); d is the decision attribute in D.  
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Here the coverage set of a case e is the set of cases which fall in the disc centred at e with 

radius α. We assume there are only one decision attribute d. It is straightforward to 

extend the definition to a situation with multiple decision attributes.  

 

Definition 5.4 Reachability Set of a case can be derived from the definition 5.3:  

Reach(e) = {e’| e’ ∈ CB, e can be covered by e’}. 

 

e’ 

e2

e4

e1

e* 

e3

Positive case      
 
      

Negative case  

Coverage Set  

 
Fig. 5.1 The CoverageSet and ReachabilitySet 

 

These definitions are illustrated in Fig. 5.1, where e* is the nearest boundary case of cases 

e1 and e2; e’ is the boundary case of e3 and e4. The dotted circle centred at a case 

represents the coverage set of this case. According to definitions 5.3-5.4, we have  

 

Cover(e1) = {e1}, Cover(e2) = {e1, e2}, Cover(e3) = {e1, e2, e3, e4}, Cover(e4) = {e4}; and  

Reach(e1) = {e1, e2, e3}, Reach(e2) = {e2, e3}, Reach(e3) = {e3}, Reach(e4) = {e3, e4}.  

 

The implication of the concepts of case coverage and reachability is that the larger the 

coverage set of a case, the more significant the case because it can correctly classify more 

cases based on the k-NN principle. In contrast, the larger the reachability set of a case, the 

less important the case in the case base because it can be reached by more existing cases.  
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In the example shown in Fig. 5.1, case e3 is the most important case due to its largest 

coverage set and then follows case e2. Notice that case e1 and e4 have the same size of 

coverage set but the reachability set of e4 is smaller, e4 is considered to be more critical. 

One focus of this research is the preservation of the competence (the number of cases the 

case base can cover) of the case bases. We attempt to build an algorithm (see Fig. 5.2) for 

selecting a subset of cases that would preserve the overall competence as compared to the 

original entire case base. 

 

Since the algorithm involves the computation of coverage set and reachability set for 

each case in the original case base, the computation complexity of this algorithm is 

O(m×n2), where m is the number of condition attributes in A; n is the number of cases in 

the case base. This algorithm must make three passes of the case base: the first to 

compute the similarity; the second to search the boundary case with the largest similarity 

α for each case; and the third pass is to find the nearest neighbors with a similarity with 

the current case that is larger than α. Case selection algorithm 2, shown in Fig. 5.3, 

addresses this problem, requiring only one pass of the case base to compute the similarity 

between each two cases.  

 

Algorithm 2 is totally similarity-based. If the similarity between a case e* and the current 

case e is larger than a given threshold η and they are with the same class label, e* will be 

considered as redundant and eliminated from the case base. This algorithm is suitable to 

the case bases with high density cases, while the CS algorithm 1 can be used on both 

sparse and dense cases. Notice that, the larger the parameter η, the more cases are 

selected by this algorithm. The value of η can be determined either by the predefined size 

of the selected case base, or by the required classification accuracy. 
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Case Selection Algorithm 1 
 
Input: CB – the entire case base;  

  A – the entire condition attribute set;  
 D – the decision attribute set. 

Output: S – the selected subset of cases.  
 
Step 1 Initialize S = ∅ (empty set).  
 
Step 2 For every case e, e ∈ CB,   

Compute the coverage set and reachability set of e.  
 

Step 3 Select the case which has the maximum coverage set. 
Ties are broken by selecting the case with smallest 
reachability set. 
 

Step 4 The process stop when the selected cases cover the 
whole original case base CB.                  
Fig. 5.2 Case Selection Algorithm 1 

 

Case Selection Algorithm 2 
 
Input: CB – the entire case base;  

  A – the entire attribute set;  
 D – the decision attribute set. 

Output: S – the selected subset of cases. 
 
Step 1 Initialize resulted subset case base S = CB. 
 
Step 2 For each case e in CB,  

 Compute the similarity between e and all the cases
in CB. 

            
 If sim(e, e’) > η, and d (e’) = d (e),  

remove e’ from S, S = S – {e’}; 
 

Step 3 Output S.  

 

Fig. 5.3 Case Selection Algorithm 2 
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Based on the concepts of coverage and reachability, case selection algorithm 1 could 

remove not only the redundant cases but also the noisy cases due to the small coverage 

sets of the noisy cases. However, the effectiveness of CS is still degraded by the 

existence of noisy cases. Cases located near the noisy cases tend to have smaller coverage 

sets than do other cases (see Fig. 5.4). As a result, cases close to noisy cases would be 

selected less often, which may lead to the loss of important information. As shown in Fig. 

5.5, case selection algorithm 2 tends to eliminate redundant cases but was not able to 

effectively deal with noisy cases. A noisy case e* may be regarded as a boundary case. 

Since its class label could not be predicted by the cases which satisfy sim(e, e*) > η, it 

could not be removed. This would result in the preservation of noisy cases (see Fig. 5.5) 

and the selection of an unsatisfactory case base. 

 

                             
              

α 

Noisy 
cases 

Original case base Selected case base 

Fig. 5.4 Case selection algorithm 1 with noisy cases 

 

                                

η 

Selected case base Original case base  

Fig. 5.5 Case selection algorithm 2 with noisy cases 
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To tackle the mentioned problems with case selection algorithm 1 and algorithm 2, the k-

NN principle is incorporated to delete both the noisy cases and the redundant cases. 

Based on the similarity computation between cases, the k-NN principle is firstly used to 

find out the noisy cases. A case is said to be a noisy case if it cannot correctly classified 

by the majority of its k-nearest neighbors. Notice that, when the value k increases, the 

possibility of a case being a noise decreases, and vice versa. In this section, k is equal to 

the small odd number, 3. After the noisy case removal, the case selection algorithms 1 

and 2 are then applied to further eliminate the redundant cases. The CS methods which 

incorporate the k-NN principle in the CS algorithms 1 and 2 are given as case selection 

algorithms 3 and 4 (see Fig. 5.6). 

 
Case Selection Algorithm 4  
 
(1) Eliminate noisy cases using k-NN 
principle based on similarity 
computation. 
(2) Remove redundant cases with 
case selection algorithm 2. 

 

 

 
 

 

 

Case Selection Algorithm 3  
 
(1) Eliminate noisy cases using k-NN 
principle based on similarity 
computation. 
(2) Remove redundant cases with 
case selection algorithm 1. 

Fig. 5.6 Case Selection Algorithms 3 and 4 

 

 5.3 Combining Feature Reduction and Case Selection 
 

In this section, we further explain the importance of combining FR and CS and gives two 

combination algorithms. 

 

In most existing CS methods, as a first step, one computes the similarity between cases 

using all features involved and then the similarities are used to compute k-nearest 

neighbours, case coverage sets and reachability sets. The feature importance can be 

determined using three different methods: all the feature weights are equal; or the feature 

weights are determined in advance with domain knowledge; or the feature weights are 

learned by training some models. Each method, however, has some limitations which 

offer challenges to both FR and CS. 
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When all the feature weights are equal, and feature importance is consequently not 

considered, the computed similarities may be misleading. This will result in wrongly-

computed k-nearest neighbours, case coverage and reachability sets. This will in turn 

directly affect the quality of the cases selected using our proposed CS algorithms.  

 

The second and third methods are also problematic to determine feature importance. 

When the feature weights must be determined in advance using required domain 

knowledge, the knowledge is obtained either by interviewing experts - which is labour 

intensive - or is extracted from the cases - which adds to the burden of training. Similarly, 

when feature weights must be learnt using models such as neural networks or decision 

trees, the burden of training is again not trivial, and even after training these models, the 

case representation is then in the form of a trained neural network or a number of rules, 

which is not convenient for directly retrieving similar cases from a case base for the 

unseen cases.  

 

We address these problems by combining the fast rough set-based FR approach with the 

CS algorithms. Feature importance is taken into account through reduct generation. The 

features in the reduct are regarded as the most important while other features are 

considered to be irrelevant. Reduct computation does not require any domain knowledge 

and the computational complexity is only linear with respect to the number of attributes 

and cases. After combining the FR method and CS algorithms, the case representation is 

still the same as that of the original case base. This form of knowledge representation is 

easier to understand and more convenient for retrieving unseen cases. Furthermore, since 

only the features in the reduct are involved in the computations in the CS algorithms, the 

running time for case selection is also reduced.  

 

For the CBR classifiers, there are three main benefits from combining FR with CS: (1) 

classification accuracy can be preserved or even improved by removing non-informative 

features and redundant and noisy cases; (2) storage requirements are reduced by deleting 

irrelevant features and redundant cases; (3) the classification decision response time can 
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be reduced because fewer features and cases will be examined when an unseen case 

occurs. 

 

In this work, we propose two ways to combine FR and CS based on different definitions 

of a "best" sub-feature set (approximate reduct) R*. The first method - called an "open 

loop" - applies the FR and CS sequentially and only once. The best approximate reduct is 

identified after applying FR alone. In construct, the second method can be regarded as a 

"close loop", which integrates FR and CS in an interactive manner, determining the best 

approximate reduct after applying both FR and CS approaches. The interaction of FR and 

CS is reflected in the identification of the suitable β value.  

 

In the first, "open loop", method, the "best" approximate reduct R* is defined as the 

approximate reduct which can achieve the highest accuracy after applying only the FR 

process. Such a best approximate reduct can be generated by iteratively tuning the value 

of the consistency measurement β (see Section 3.3). For example, we start from the exact 

reduct with β = 1, and in each iteration reduce β using a given parameter λ = 0.01. When 

the classification accuracy attains its maximum after applying FR alone, the approximate 

reduct is selected as R*. In the following CS process, R* is used to detect redundant and 

noisy cases.  

 

In the second, "close loop", method, the "best" sub-feature set is defined as the 

approximate reduct which can achieve the highest accuracy after applying both FR and 

CS. R* is determined much as in the first method. The value of consistency measurement 

β is modified with step length λ until it attains its maximum classification accuracy. 

Theoretically speaking, the "best" approximation reduct found using the second method 

is not necessarily the same as that found using the first method. The two combination 

methods are described as follows (see Figs 5.7-5.8): 
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RFRCS1 (Rough set-based Feature Reduction and Case Selection method 1): 

 
Step 1 Initialize P = ∅, Accr = ∅, and β = 1. (P will store the reduced case bases 

after FR; Accr will store the corresponding classification accuracies using 
these reduced case bases.) 

 
Step 2 While (β > 0) 

Implement Feature Reduction Algorithm; (Output the generated 
approximate reduct R) 
P ← P ∪ ∏R (U);  
Implement unseen case classification using ∏R (U); (Output the current 
accuracy, a) 
Accr ← Accr ∪ {a}; 
β = β - λ; 
 

Step 3 Find a*, a* = max{a ∈ Accr}; and find the corresponding R*.  
 
Step 4 Output the reduced final case base corresponding to R*, denoted by CB* = 

∏R*(U). 
  
Step 5 Let CB* be the input original case base. Apply the case selection algorithms 

1-4. 

Fig. 5.7 The RFRCS1 Algorithm 
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To demonstrate their effectiveness, we use three main evaluation indices: storage 

requirement, classification accuracy, and classification speed. For FR and CS processes, 

storage requirement has different meanings. The storage in FR is the percentage of 

preserved features after reducing features; in CS, storage is the percentage of selected 

cases. The classification accuracy is the percentage of the unseen cases which can be 

correctly classify. The classification speed is used in Section 5.4.2 to examine the 

efficiency of the built classifier using the FR and CS combinations. In Section 5.4.3, all 

these evaluation indices are considered in the comparisons between our approach with the 

KPCA and SVMs. The experiments used four real life data sets, House-votes-84 database, 

Text document sets, Mushroom database, and Multiple Features, which are the same as 

those used in Section 3.4.1. 

 

5.4.1 Case Selection  
 

The CS algorithms developed in Section 5.2 are applied to the real life data sets and 

compared with the traditional Wilson Editing. Note that the generation method of the 

training data and testing data is the same as that in Section 3.4.1 in Chapter 3:  

 

(1) For the House-votes-84 data, four splits are generated by randomly selecting 20%, 

30%, 40%, and 50% as the testing data; the corresponding left data are used as the 

training data. 

(2) For the Text data and Mushroom data, we randomly select 80% documents in each 

text data set as the training data and the remaining 20% is used as the testing data. 

(3) For the Multiple Features data, we use the training/ testing data sets in the original 

database, which has 1000 training samples and 1000 testing samples. 

 

Tables 5.1 and 5.2 demonstrate the reduced storage and improved accuracy when using 

different CS algorithms. P(W), P(1), P(2), and P(4) represent the classification accuracy 

using Wilson Editing, case selection algorithms 1, 2, and 4, respectively. Notice that the 

results of algorithm 3 are very similar to those of algorithm 1. Due to space limitations, 

they are not included in Tables 5.1-5.2 and related results in the following sections. Here 
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"storage" means the proportion of cases which are selected in the final case base. In case 

selection algorithm 2, the parameter η = 0.99. 

 

Table 5.1 Case selection using the house-votes-84 data set 

Split 
P0 

(%) 

P (W) 

(%) 
Storage

P(1) 

(%) 
Storage

P(2) 

(%) 
Storage

P(4) 

(%) 
Storage

1 93.10 95.40 92.82 93.10 74.43 93.10 81.03 95.40 73.85 

2 92.31 94.62 93.11 92.31 84.26 92.31 81.97 94.62 75.08 

3 93.68 95.40 92.34 94.83 67.43 93.68 85.44 95.40 77.78 

4 94.01 95.39 91.74 94.93 83.9 94.01 85.78 95.39 77.52 

Avg. 93.28 95.20 92.50 93.79 77.40 93.28 83.56 95.20 76.06 

 

Table 5.2 Case selection using text data sets 

Data 
P0 

(%) 

P(W) 

(%) 
Storage

P(1) 

(%) 
Storage

P(2) 

(%) 
Storage

P(4) 

(%) 
Storage

Text1 62.50 75.00 40.43 62.50 87.23 62.50 89.36 75.00 38.30 

Text2 62.50 75.00 17.65 62.50 54.90 75.00 41.18 75.00 17.65 

Text3 33.33 66.67 75.34 33.33 90.41 33.33 72.60 66.67 67.12 

Text4 37.93 31.03 82.86 34.48 82.86 37.93 74.29 31.03 80.00 

Text5 56.25 56.25 73.68 56.25 94.74 56.25 71.05 56.25 71.05 

Text6 77.78 33.33 8.99 77.78 14.82 77.78 10.09 33.33 6.56 

Text7 51.19 40.48 22.97 44.05 54.05 51.19 43.24 40.48 22.97 

Text8 72.79 71.09 32.20 72.11 44.00 68.37 25.20 72.45 18.40 

Avg. 56.78 56.11 44.27 55.38 65.38 57.79 53.38 56.28 40.26 

 

Table 5.1 (the house-votes data) shows that after case selection, all the CS algorithms 

were able to reduce cases while preserve or even improve classification accuracy. The 

Wilson Editing and case selection algorithm 4 attain greatest accuracy; while algorithm 4 

has more powerful capability to reduce useless cases than other algorithms do. Table 5.2 
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shows the results for the text data sets. Algorithm 2 is most accurate. Algorithm 4 

produced the smallest reduced case base with respect to the number of cases.  

 

To summarize, both Tables 5.1 and 5.2 show results for algorithm 4 that are satisfactory 

in terms of both classification accuracy and storage requirements after the case selection.  

 

5.4.2 Combining FR and CS 
 

In this section, we discuss some experiments using RFRCS1 and RFRCS2 (see Section 

5.3) that were conducted to show the positive impact of the proposed rough set-based FR 

method on the CS algorithms. The two main evaluation measurements are still storage 

and accuracy. Comparisons are made based on the k-NN classifier, using different CS 

algorithms in combination with FR. Here k is set to a small odd number, 3.  

 

In this section, let P(F+W), denote the classification accuracy of the combination of the 

rough set-based FR and Wilson Editing; and P(F+1), P(F+2), P(F+3), P(F+4) that of case 

selection algorithms 1 to 4. The final reduced case base is the case base containing the 

reduced feature set and the selected cases. The results of P(3) and P(F+3) are similar to 

those of P(1) and P(F+1) and are therefore not shown. Since the combination method 

RFRCS2 requires a greater computational effort, in this section we mainly conduct the 

experiments using the algorithm RFRCS1.  

 

RFRCS1: Storage requirement and classification accuracy  

 

(1) House-votes-84  

Table 5.3 shows the results when using RFRCS1. On this data set, RFRCS1 incorporates 

the proposed fast rough set-based FR approach into the CS algorithms. Obviously, the 

combined algorithms are more accurate and require less storage space than the 

approaches that make use of individual CS algorithms alone. Here β = 0.95. 
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RFRCS2: 

Step 1 Initialize FCB = ∅, Accr = ∅ and β = 1. (FCB will store the final 
reduced case bases after both FR and CS.) 

 
Step 2 While (β > 0) 

Implement Feature Reduction Algorithm; (Output the reduced 
feature set R) 
 
Implement Case Selection Algorithms 1-4, where  
the original input case base CB = ∏R (U); (Output final 
reduced case base FCB.) 
 
Implement unseen case classification using FCB; (Output the 
current accuracy, a) 
Accr ← Accr ∪ {a}; 
β = β - λ; 
 

Step 3 Find a*, a* = max{a ∈ Accr}; and find the corresponding R*. 
  
Step 4 Output the reduced final case base corresponding to R*, 

denoted by FCB* = ∏R* (U).  
 

 

Fig. 5.8 The RFRCS2 Algorithm 

ously, the second combination method, RFRCS2, requires more computational effort 

use the "best" approximate reduct depends on both FR and CS processes. For this 

n, we mainly use the RFRCS1 method to test the performance of FR-CS 

inations.  

Experimental results 

is section, we test our proposed CS algorithms, the combinations of the rough set-

 FR and CS, and provide comparisons with KPCA and SVMs techniques.  
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Table 5.3 Applying RFRCS1 to house-votes-84 (β = 0.95) 

Split 
P(W) 

(%) 

P(F+W) 

(%) 

P(1) 

(%) 

P(F+1) 

(%) 

P(2) 

(%) 

P(F+2)

(%) 

P(4) 

(%) 

P(F+4) 

(%) 

1 95.40 97.70 93.10 94.25 93.10 97.70 95.40 97.70 

2 94.62 96.15 92.31 94.62 92.31 94.62 94.62 96.15 

3 95.40 97.13 94.83 95.98 93.68 95.98 95.40 97.13 

4 95.39 96.77 94.93 95.39 94.01 96.31 95.39 96.77 

Avg. 95.20 96.94 93.79 95.06 93.28 96.15 95.20 96.94 

 +1.74 +1.27 +2.87 +1.74 

 

Algorithms (F+W) and (F+4) are shown to be most accurate. The (F+4) algorithm also 

has the best classification accuracy and the most reduced storage requirement. This is 

because the algorithm 4 is able to reduce the number of cases more effectively than 

algorithm that uses Wilson Editing (Table 5.1). We can conclude that the fast rough set-

based FR approach using case selection algorithm 4 is superior to other FR and CS 

algorithms used either individually or in combination.  

 

Table 5.4 Applying RFRCS1 to text data sets (β = 1) 

Data 
P(W) 

(%) 

P(F+W) 

(%) 

P(1) 

(%) 

P(F+1) 

(%) 

P(2) 

(%) 

P(F+2) 

(%) 

P(4) 

(%) 

P(F+4) 

(%) 

Text1 75.00 87.50 62.50 75.00 62.50 75.00 75.00 87.50 

Text2 75.00 75.00 62.50 62.50 75.00 62.50 75.00 75.00 

Text3 66.67 66.67 33.33 33.33 33.33 33.33 66.67 66.67 

Text4 31.03 44.83 34.48 44.83 37.93 41.38 31.03 44.83 

Text5 56.25 68.75 56.25 75.00 56.25 75.00 56.25 68.75 

Text6 33.33 44.44 77.78 77.78 77.78 77.78 33.33 44.44 

Text7 40.48 41.67 44.05 45.24 51.19 53.57 40.48 41.67 

Text8 71.09 70.75 72.11 68.71 68.37 63.27 72.45 70.41 

Avg. 56.11 62.45 55.38 60.30 57.79 60.23 56.28 62.41 

 +6.34 +4.92 +2.44 +6.13 
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(2) Text data sets 

This section examines the impact of FR on CS using the text data sets. Table 5.4 displays 

the text data set results. They are similar to those for the house-votes data set, except that 

the improvement in accuracy is much greater after incorporating FR to CS. 

 

(3) Mushroom data 

Table 5.5 shows the experimental results after applying RFRCS1 to the mushroom data 

set. Only the results of the case selection algorithm 1 and its combination with FR are 

contained in the table. This is because that, except the case selection algorithm 1, none of 

other algorithms were able to remove cases from the original case base. This is because 

that the Mushroom data is sparse and the CS algorithms 2 and 4 are suitable to the highly 

dense data. The classification accuracy of FR approach was the same as the original 

accuracy using the entire case base, 1. Therefore, P0 = P(FR) = P(W) = P(2) = P(4) = 1. 

Table 5.5 shows the impact of feature reduction on case selection algorithm 1. On 

average, the classification accuracy after applying the combination of FR and the CS 

algorithm 1 increases by 9.3% from P(1) = 89.6% to P(F+1) = 98.9%.  Here, the storage 

is with respect to cases instead of that of features. It is the percentage of cases which need 

to be stored in the final reduced case base after applying the algorithm 1. For the FR in 

algorithm (F+1), β is set to be 1. There are five features in the generated reduct so the 

storage requirement with respect to the feature set is 22.7% of the original feature set. 

 

Table 5.5 Applying RFRCS1 to mushroom data 

Split P(1) 
(%) 

P(F+1)
(%) 

Storage
(%) 

1 87.00 100.00 25.50 
2 89.33 98.67 7.43 
3 90.50 99.50 11.33 
4 91.60 97.60 10.00 

Avg. 89.61 98.94 13.57 
 +9.33% 13.57 
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To conclude, when the combination method RFRCS1 is applied, the results of almost all 

of the data sets and of all of the proposed CS algorithms are positive. The classification 

accuracy and storage space requirement show a notable improvement: when the CS 

algorithms are applied to the house-votes-84 data, the average increase in accuracy is 

1.91% (Table 5.3). Applied to the text data sets, it is 4.95% (Table 5.4), and applied to  

the mushroom data set it is 9.33% (Table 5.5). These improvements in accuracy are 

respectively achieved only with 51.13% (Table 5.4 in Chapter 3), 14.9% (Table 5.5 in 

Chapter 3), 22.73% (Section 3.4.1) of the original features for the three data sets. In 

almost all the testing, the combination of proposed rough set based FR approach with the 

CS algorithm 4, denoted by (F+4), is the most promising algorithm in terms of both 

classification accuracy and storage requirement. 

 

RFRCS1: Classification Efficiency 
 

This section describes some experiments carried out to determine the efficiency of case 

retrieval or unseen case classification after reducing both features and cases. The testing 

is also based on the algorithm RFRCS1. 

 

Table 5.6 Speed of case classification using RFRCS1 

 Data sets T_FR T_CS T0 T Ts

House-votes-84 0.343 0.004 0.10 0.07 0.03 

Text data 5.597 0.020 1.58 0.02 1.56 

Mushroom data 0.600 0.008 1.14 0.93 0.21 

 

 

 

 

 

Table 5.6 shows the average T_FR, T_CS, T0, T and Ts using the three data sets. T_FR 

and T_CS are the average time cost in the FR process and the case selection method 4, 

respectively. T0 is the average time needed to classify one unseen case using the entire 

original data sets. T is the average time needed to classify one unseen case using the 

reduced data set RFRCS1. Ts = T0 – T. Since there are much fewer features and cases in 

the reduced data sets than those in the entire data sets, the case retrieval time of CBR 
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classifiers using the reduced data sets will be much less than the time using the entire data 

sets. For this reason, Ts describes the amount of time that is saved for an unseen case 

classification due to this data compression. T_FR, T_CS, T0, T, and Ts are represented in 

seconds. The efficiency of case classification is improved using the reduced data sets. 

Although the average saved time of identifying only one unseen case is not notable, it 

could be significant using all the testing cases. For example, for the house-votes-84 data, 

the total saved time for predicting the class labels for all the 217 testing cases is 

(0.03×217) ≈ 6.51 seconds.  

 

RFRCS2: Storage requirement and classification accuracy  

 

Previously, we performed some experiments using the FR and CS combination method 

RFRCS1. The "best" β and approximate reduct were determined through only in the FR 

process. Here the RFRCS2 is applied to real life data, where the most suitable β is 

obtained when the final accuracy attains its maximum after both FR and CS. The 

experimental results show that the best β values found in RFRCS2 are not necessarily the 

same as those in RFRCS1. Compared with RFRCS1, using this kind of combination of 

FR with CS, the classification accuracy is shown to be further improved and/or the 

storage space could be further reduced.  

 

(1) house-votes-84 

The most suitable β found for this data set is 0.90, but not 0.95 in RFRCS1. There are 

seven features (43.75% of the original features) in the corresponding approximate reduct. 

Compared with RFRCS1, the classification accuracy is preserved using the reduced case 

base while the number of features is further reduced. Fig. 5.9 shows the relationship 

between P(F+4) and β values. When β ∈ [0.90, 0.95], the accuracy attains its maximum, 

0.977. Since the smaller the β value, the fewer the features in the corresponding 

approximate reduct, β is set to be 0.90 so that the accuracy can be preserved whereas the 

number of features is minimum. The similar results could be achieved using other CS 

algorithms. Table 5.7 shows the results in detail. Here "Storage" means the storage 

requirement with respect to the features instead of the cases; "Max accuracy" is the 
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highest classification accuracy obtained by combinations of FR with different CS 

algorithms. As can be seen in Table 5.7 using RFRCS2, the maximum accuracies have 

been preserved and the feature storage requirement decreases by 9.38% from 53.13 

(using RFRCS1) to 43.75 (using RFRCS2).  

P(F+4)   

 
0.977 

 

 

 

 

 
0  

β 0.90 0.95 1 
 

 
Fig. 5.9 P(F+4) vs. β values  

 

Table 5.7 Applying RFRCS2 to House-votes data (β = 0.90) 
 

 

Splits 

Storage 

(%) 

(RFRCS1)

Storage 

(%) 

(RFRCS2)

Max. 

Accuracy 

(%) 

1 56.25 43.75 97.70 

2 50.00 43.75 96.15 

3 50.00 43.75 97.13 

4 56.25 43.75 96.77 

Avg. 53.13 43.75 96.94 

 

 

 

 

 

 

 

 

 

 

(2) Text data sets 

In the experiments using RFRCS1, β is set to be 1 for the text data sets. This is because 

when β = 1, the classification accuracy attains its maximum with the case base after only 

applying a FR process to reduce the number of features.  
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Table 5.8 RFRCS2 with various β values on Text data sets 

Text 

data 
β 

Storage (%) 

(RFRCS2) 

Storage (%) 

(RFRCS1) 
Max. Accuracy (%)

Max.Accuracy (%) 

(RFRCS1) 

Text1 0.85 6.25 12.50 100.00 87.50 

Text2 0.70 5.71 9.05 87.50 75.00 

Text3 0.80 9.93 28.48 66.67 66.67 

Text4 1.00 10.51 10.51 44.83 44.83 

Text5 0.85 3.62 9.59 81.25 75.00 

Text6 1.00 31.53 31.53 77.78 77.78 

Text7 1.00 7.81 7.81 53.57 53.57 

Text8 1.00 3.37 3.37 72.10 62.45 

Avg. 0.90 9.84 14.11 72.96 67.85 

Comparisons - 4.27 +5.11 

 

In this section, using the combination method RFRCS2, various best β values are found 

for different text data sets. Table 5.8 demonstrates that with these different β values, the 

average required storage space could be further reduced from 14.11% to 9.84% of the 

original features, the average maximum accuracy increases by 5.11% from 67.85% to 

72.96%.  

 

(3) Mushroom data. 

After applying RFRCS2, the best β in the mushroom data set is the same as in RFRCS1, 

i.e., β = 1. Therefore, the results of RFRCS2 with respect to the storage requirement, 

classification accuracy are the same as with RFRCS1. 

 

Discussions: Using the combination method RFRCS2, the best β values which achieve 

the maximum accuracies after applying both FR and CS can be found for the real life data 

sets. Compared with RFRCS1, more computational efforts are required because the CS 

process is involved in tuning the β values. The accuracy is shown to be preserved (for 
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House-votes-84 and Mushroom data) and even improved (for the text data sets) and the 

storage requirement of the feature set is further reduced (for House-votes-84 and text data 

sets). The users can choose either RFRCS1 or RFRCS2 to construct the final case base 

for the CBR classifier. For some large case bases, users can select RFRCS1 which has 

less computational load with still satisfactory accuracy. 

 

5.4.3 Comparisons: Rough Set-Based FR and CS vs. KPCA and SVMs 
 

In Section 3.4.2 in Chapter 3, the fast rough set-based FR method is compared with the 

widely used KPCA. In this section, we make some comparisons to further demonstrate 

the effectiveness of our developed FR and CS methods. FRCS1 is compared with the 

combination of KPCA and SVM ensembles.  

 

The experimental setup is the same as that in Section 3.4.2 as follows. (1) Data - Since 

KPCA can only handle numerical data, the data set of Multiple Features is used to 

conduct these experiments. (2) Data splitting - We use the training/testing data sets in the 

original database of Multiple Features, which has 1000 training samples and 1000 testing 

samples. (3) Data preprocessing - The numerical data needs to be discretized before the 

use of rough sets in the FR process. (4) Performance Evaluation - Four main evaluation 

indices are used including training time, retrieval time, storage requirement and 

classification accuracy. Here the unit of time is second. 

 

In this section, RFRCS1 (see Section 5.3) is compared with the combined KPCA and 

SVM ensembles. In RFRCS1, the CS algorithm 4 is used for case selection after the FR 

process. From Table 5.6 in Chapter 3, we notice that when 1.87% features (i.e., 13 

features) are selected, the accuracy attains its maximum. Therefore, here β value is set as 

0.99 and the number of eigenvectors extracted by KPCA is determined as 13. On the 

other hand, after the feature extraction of KPCA, a transformed data set is obtained which 

has lower dimensionality. This new reduced data set is then used in constructing the 

multiple SVM classifiers. Here we use one-against-all method to deal with the multiple 
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Table 5.10 KPCA and 10 SVMs (Accuracy = 93.80%) 
 

SVM_NO T_train Vec_NUM 

1 2236 33 

2 2193 44 

3 2193 34 

4 2227 42 

5 2225 36 

6 2400 50 

7 2554 40 

8 2285 37 

9 2477 43 

10 2509 49 

SUM 23299 408 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SVM_NO: the ID number of the trained SVM classifier; Vec_NUM: 

the number of generated support vectors. The retrieval time is not listed 

in Table 11 because it is trivial compared with the training time. 

 

In RFRCS1, we use k-NN principle to classify unseen cases, where the k value may affect 

the classification accuracy. Here we report the results of some testing using different k 

values in RFRCS1 on the data set of Multiple Features. Let k = 1, 3, …, n , where n is 

the number of training samples. It is demonstrated in Fig. 5.10 that, the accuracy attains 

its maximum when k = 3. Therefore, we set k = 3 in the experiments in previous sections. 

 

107 



CHAPTER 5 Case Selection Methods for Case Knowledge Extraction 
 

 
 Fig. 5.10 The effect of k value on accuracy 
 

Table 5.11 Comparisons between FR and CS approach and KPCA and SVMs 

Comparisons FR and CS approach KPCA and SVMs 

Rationale 
Attribute 

dependency 
Data variance 

Training Type Supervised Unsupervised 

Sym. Yes No 
Data 

Type Num. 
Yes 

(need discretization) 
Yes 

Qual. Indices 

Reduced 

feature set 

A subset 

of original features 
A transformed feature set 

Training time 609.75 23299 Quan. Indices 

Accuracy 91.50 93.80 

 
 Qual. = Qualitative; Quan. = Quantitative; Sym. = Symbolic; Num. = Numerical
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Discussions: Table 5.11 shows the comprehensive comparisons between the developed 

rough set-based FR and CS approach and the combination KPCA and SVMs. They are 

based on different rationale and can be used to different data types; the rough set-based 

FR is supervised learning while KPCA is unsupervised; the rough set-based FR generates 

a subset of the original features and KPCA extracts a set of transformed features; the 

combination of FR and CS is fast while KPCA and SVMs achieve a slightly higher 

accuracy. Users can choose either of the combination methods based on the used data and 

their requirements on efficiency and accuracy.  

 

5.5 Discussion 
 

It should be pointed out that, we have only considered the case bases which consist of 

homogeneous data regions, in which the noisy cases are defined as the cases that cannot 

be correctly classified by their k-nearest neighbors. Therefore, our CS approach cannot be 

directly used on case bases containing heterogeneous data regions, which may result that 

some useful cases are misclassified as noisy cases. 

 

5.6 Summary 
 

In this chapter, we describe four similarity-based CS algorithms and their combinations 

with the fast rough set-based FR in Chapter 3. The developed CS algorithms can remove 

not only the redundant cases but also the noisy cases. It can be shown that, compared 

with using the original case base, higher classification accuracy and less storage space 

requirement could be obtained with each individual CS algorithm. By combining the FR 

and CS processes, we could further enhance the accuracy and reduce the storage. Two 

methods of combination, RFRCS1 and RFRCS2, are developed based on different 

definitions of the "best" value of the consistency measurement.  

 

The experimental results show that the case selection algorithm 4 using the proposed 

rough set-based FR algorithm, denoted by (F+4), is the most promising one which has the 

highest accuracy and the least storage requirement. The enhanced efficiency using the 
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reduced data sets is also demonstrated through the experimental results in Section 5.4.2. 

Comparisons are also made between RFRCS1 and RFRCS2 in this section. RFRCS2 

shows higher accuracy and lower storage load but requires more computational efforts. In 

section 5.4.3, some comparisons are also made between the RFRCS1 and the 

combination of KPCA and SVMs. These two combination methods have different 

characteristics, based on which users can select one of them to reduce both the 

dimensionality and size of data.  
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Chapter 6  

Rough LVQ-Based Case Generation  
 

Case generation (CG) is an alternative approach of CS for case knowledge extraction 

through reducing the size of case bases. Different from CS in Chapter 5, CG produces a 

new set of prototypical cases instead of selecting a subset of cases in the original case 

base. These generated prototypical cases are considered to be the most representative 

cases which can cover the whole case base.  

 

In this chapter, we develop a case generation approach which integrates fuzzy sets, rough 

sets and learning vector quantization (LVQ). If the feature values of the cases are 

numerical, fuzzy sets are firstly used to discretize the feature spaces. Secondly, the fast 

rough set-based FR is incorporated to identify the significant features. Finally, the 

representative cases (prototypes) are then generated through LVQ learning process on the 

case bases after FR. As a result, a few of prototypes are generated as the representative 

cases of the original case base. These prototypes can be considered as the extracted case 

knowledge which can improve the problem-solving efficiency and enhance the 

understanding of the case base. Three real life data are used in the experiments to 

demonstrate the effectiveness of this case generation approach. Several evaluation indices, 

such as classification accuracy, the storage space, case retrieval time and clustering 

performance in terms of intra-similarity and inter-similarity, are used in these testing.  

 

6.1 Introduction 
 

Similar to the task of CS, CG is to extract the most representative cases from a given case 

base, which can build a new case base with smaller number of cases (i.e., a case 

knowledge base). The cases generated by CG process are not necessarily the data points 

of the given case base. The case representation form of these produced prototypical cases 

may be different from that of the original cases. For example, the support vectors which 
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generated by SVMs and the rules learned by the decision trees, where some features may 

not exist in the newly extracted prototypical cases. Some other related work to CG 

includes [Chan 1974] [Domi 1995] [Salz 1991] which generates cases through merging 

the cases in the same class or modifying the original cases. A rough-fuzzy CG technique 

is proposed in [Pal 2004] which identifies the cluster granules as the newly generated 

cases.  

 

In this chapter, we discuss the CG techniques in the context of CBR classifiers which 

have been defined in Chapter 5. The purpose is to extract case knowledge to build both 

compact and competent CBR classifiers. Generally speaking, with more cases, the case 

bases will be more competent and therefore higher problem-solving accuracy can be 

obtained. On the other hand, it is obvious that the larger the size of a case base, the lower 

the case retrieval speed. It is difficult to achieve the optimal classification accuracy and 

case retrieval time simultaneously. If the size of a case base is reduced, the competence 

of the case base may be hurt because of the removal of some important cases. In this 

chapter, we attempt to make a trade-off by developing a rough learning vector 

quantization (LVQ)-based case generation approach. A few of prototypes are generated 

to represent the entire case base without much loss of the competence of the original case 

base.  

 

As a necessary pre-processing of LVQ-based case generation, the fast rough set-based FR 

method developed in Chapter 3 is used to select the relevant features and eliminate the 

irrelevant ones, which can modify the similarity among cases and achieve better 

clustering performance. In Chapter 3, the proposed FR method has been proved to be able 

to find approximate reducts quickly and effectively. The features in the resulted 

approximate reduct are considered to be important for the CBR classifiers. In this chapter, 

before applying FR, fuzzy sets are used to discretize the numerical attribute values to 

generate indiscernibility relation and equivalence classes of the given case base. 

Triangular membership functions are applied in the discretization of feature spaces.  
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Learning vector quantization is then applied to extract the prototypical cases to represent 

the entire case base. LVQ is a competitive algorithm, which is considered to be a 

supervised version of the Self-Organizing Map (SOM) algorithm. The SOM algorithm 

[Koho 1988][Koho 1998] constructs a stable topology preserving mapping from the high-

dimensional space onto map units in such a way that relative distances between data 

points are preserved. Mangiameli et al. [Mang 1996] demonstrated that SOM is a better 

clustering algorithm than hierarchical clustering with regard to clustering data with 

overlapped dispersion, irrelevant variables, outliers or different sized populations. Their 

study also proved that SOM is insensitive to learning rates which vary in the self-

organizing process, and the clusters resulted from SOM are robust. Pal et al. used SOM to 

extract prototypical cases in [Pal 2004] and reported a compact representation of data.  

 

Kohonen pointed out in [Koho 1988], “the SOM has not been meant for statistical pattern 

recognition; it is a clustering, visualization, and abstraction method. Anybody wishing to 

implement decision and classification processes should use Learning Vector Quantization 

(LVQ) instead of SOM”. Since we focus on the classification problems in this chapter, 

LVQ is used to generate prototypical cases.  

 

After the CG process, the original case base can be reduced to a few prototypes which 

can be directly used to predict the class label of the unseen cases. These prototypes can 

be regarded as the specific domain knowledge which is extracted from the case base. This 

will speed up the case retrieval and make the case base be more easily understood. On the 

other hand, since the most representative cases are generated, case base competence can 

be also preserved. Therefore, using our developed rough LVQ-based case generation 

approach, the retrieval speed, clustering performance, and the understanding of the case 

base are all improved without decreasing the classification accuracy. 

 

The reminder of this chapter is organized as follows. In Section 6.2, fuzzy sets are 

applied to discretize the continuous-valued attributes of the cases. Three triangular 

membership functions are used to describe each attribute. In Section 6.3, the fast rough 

set-based FR method in Chapter 3 is firstly used to reduce the irrelevant features, which 
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is considered to be the necessary pre-processing of the following LVQ learning process. 

Then the supervised learning process of LVQ is presented to generate prototypical cases 

for the given case base. To validate the developed rough LVQ case generation approach, 

section 6.4 presents the experimental results on three real life data. The classification 

accuracy, case retrieval speed, intra- similarity and inter- similarity are used as the 

indices to evaluate the performance of our approach. Comparisons are made among the 

developed rough LVQ approach, LVQ, SOM, and Random case generation methods.  

 

6.2 Fuzzy Discretization of Feature Space 
 

The rough set-based FR methods developed in Chapter 3 are all built on the basis of 

indiscernibility relation. If the attribute values are continuous, the feature space needs to 

be discretized to define the indiscernibility relations and equivalence classes on different 

subset of attribute sets.  

 

In this chapter, fuzzy sets are used for the discretization by partitioning each attribute into 

three levels: “low” (L), “medium” (M), and “high” (H). Finer partitions may lead to 

better accuracy at the cost of higher computational load. The use of fuzzy sets has several 

advantages over the traditional “hard” discertizations, such as handling the overlapped 

clusters and linguistic representation of data [Pal 2004].  

 

Triangular membership functions are used to define the fuzzy sets: L, M and H. There are 

three parameters CL, CM, and CH for each attribute which should be determined 

beforehand. They are considered as the centers of the three fuzzy sets. Here the center of 

fuzzy set M for a given attribute a is the average value of all the values occurring in the 

domain of a.  

 

Assume Va is the domain of attribute a, then
a

Vy
M V

y
C a

∑ ∈= , where ∗  is the cardinality of 

set ∗ . CL and CM are computed as  
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2/)( aML MinCC −= , 

2/)( MaH CMaxC −= ,  

where and }|min{ aa VyyMin ∈= }.|max{ aa VyyMax ∈=   

The membership functions are illustrated in Fig. 6.1.  
 

 
 

Fig. 6.1 Membership functions of L, M and H for attribute a 

 

More formally, the membership functions for a given attribute a can be formulated as: 
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where )(x∗µ is the membership value of case x to fuzzy set *. 
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6.3 Rough LVQ-Based Case Generation 
 

In this section, we present the case generation method based rough LVQ learning process. 

Firstly, Section 6.3.1 briefly introduces the characteristics of LVQ. Section 6.3.2 explains 

the reason of incorporating the rough set-based FR and describes the rough LVQ-based 

CG algorithm.  

 

6.3.1 Learning Vector Quantization 
 

LVQ derives from the Self-organizing map (SOM) which is an unsupervised learning and 

robust to handle noisy and outlier data. The SOM can serve as a clustering tool of high-

dimensional data. For classification problems, supervised learning LVQ should be 

superior to SOM since the information of classification results is incorporated to guide 

the learning process. LVQ is more robust to redundant features and cases, and more 

insensitive to the learning rate. As Kohonen pointed out in [Koho 1988], LVQ in stead of 

SOM should be used in decision and classification processes. This is the reason that LVQ 

is applied in case selection for building compact case base for CBR classifiers.  

 

The basic idea of LVQ (see Fig. 6.2) is the same as that of SOM, which is simple yet 

effective. It defines a mapping from high-dimensional input data space onto a regular 

two-dimensional array of nodes called competitive layer. Every node i of the competitive 

layer is associated with an m-dimensional vector vi = [vi1, vi2, …, vim], where m denotes 

the dimension of the cases called reference vectors. The basic assumption here is that the 

nodes near to the same input vector should locate near to each other. Given an input 

vector, the most similar node in the competitive layer can be found as the winning node. 

Other nearby nodes for the input vector can be also found through similarity computation. 

Based on the mentioned assumption, the winning node and those nearby nodes should 

locate near to the input vector. The class information is also incorporated in the learning 

process. At each learning step, if the winning node and those nearby nodes are in the 

same class of input vector, the distances among these nodes are reduced; otherwise, these 

nodes are kept intact. This is different from the unsupervised learning process of SOM, 
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where the winning node and those in its neighbourhood will move towards each other 

even they are not in the same class. The amount of decrease in distance is determined by 

the given learning rate. As a result, after the learning with the reference vectors, LVQ 

converges to a stable structure and the final weight vectors are the cluster centres. These 

weight vectors are considered as the generated prototypes which can represent the entire 

case base.  

   

     

Competitive layer

Input layer

Competitive layer

Input layer  

(nodes) 

Identifying 
winning node

N2 

N1

N’s neighborhood 

Winning 
node N   Class(N1) 

=Class(N2) 
=Class(N) 

Fig. 6.2 Outline of Learning Vector Quantization (LVQ) 

 

6.3.2 Rough LVQ Algorithm 
 

Although LVQ has similar advantages of SOM, such as the robustness with noise and 

missing information, it does not mean that the data pre-processing is not required before 

the learning process. Since the basic assumption of LVQ is that similar feature values 

should lead to similar classification results, the similarity computation is critical in the 

learning process. Feature selection is one of the most important preparations for LVQ 

which can achieve better clustering and similarity computation results.  

 

Different subset of features will result different data distribution and clusters. Take the 

Iris data [Hett 1998] for example. Fig 6.3 and Fig. 6.4 shows the two dimensional Iris 

data on two different subset of features: {PW, PL} and {SW, SL}.  
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Fig. 6.3 Iris data on SL and SW  

 

 
Fig. 6.4 Iris data on PL and PW 

 

Based on the two subsets of features, LVQ is applied to learn th

data. The generated representative cases are shown in Tables 6.1

 

Table 6.1 Prototypes extracted using PL and

Prototypes SL SW PL PW C

P1 0.619 0.777 0.224 0.099

P2 0.685 0.613 0.589 0.528

P3 0.766 0.587 0.737 0.779

Classification accuracy using P1, P2, and P3
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Table 6.2 Prototypes extracted using SL and SW 

Prototypes SL SW PL PW Class label 

P1 0.649 0.842 0.211 0.094 1 

P2 0.712 0.550 0.572 0.212 2 

P3 0.980 0.840 1.096 1.566 3 

Classification accuracy using P1, P2, and P3: 0.80 

 

It shows that different subset of attributes can affect the LVQ learning process and 

different prototypes are generated. According to the classification accuracy, the feature 

set of {PL, PW} is better than {SL, SW}.  

 

In this chapter, the feature selection is addressed using the approximate reduct-based FR 

method which developed in Chapter 3. LVQ is then applied to generate representative 

cases for the entire case base. Here the learning rate α is given in advance, and only the 

distance between the winning node and the given input vector is updated in each learning 

step. The number of weight vectors is determined as the number of classes in the given 

case base. The learning process is ended with a fixed number of iterations T, say, 5000 in 

this chapter. Assume the given case base has n cases which represented by m features, 

and there are c classes. R is the approximate reduct computed by the feature selection 

process. The LVQ algorithm is given as follows: 

 

LVQ-based Case Generation Algorithm 

 

Step 1 Initialize c weight vectors [v1, v2, …, vc] by randomly selecting one case from 

each class. 

 

Step 2 Generate prototypes through LVQ. 

t ←1;  

While (t ≤ T) 

           for k = 1 to n 

                 x∈U, xk ← x, U ← U – { xk}; 
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            1.  Compute the distances }1:{ 1, civxD
Rtik ≤≤−= − ; 

            2.  Select }}min{:arg{ 1,1,1, Ddvxvv
Rtiktitwin ∈=−= −−− ; 

            3.  If )()( 1, ktwin xClassvClass =−  

                       Update );( 1,1,, −− −+= twinktitwin vxvv α  

 

4. Output .    ],...,,[ 1,1,21,1 −−−= TcTT vvvV

 

The output vectors are not the data points in the given case base, but modified during 

the learning process based on the provided information by the data. They are 

considered to be the generated prototypes which represent the entire case base. Each 

prototype can be used to describe the corresponding class and regarded as the cluster 

center. 

 

6.4 Experimental Results 
 

To illustrate the effectiveness of the developed rough LVQ case selection method, we 

describe here some results on three real life data from UCI Machine Learning Repository 

[Hett 1998]. These databases are: Iris data, Glass data, and Pima data, whose 

characteristics are listed in Table 6.3. In all the experiments, 80% cases in each database 

are randomly selected for training and the remaining 20% cases are used for testing.  
 

Table 6.3 The characteristics of three UCI databases 

Data set 
Number of 

cases 

Number of 

features 

Category of 

features 

Iris 150 4 Numerical 

Glass 214 10 Numerical 

Pima 768 8 Numerical 

 

In this section, four indices are used to evaluate the rough LVQ case generation method. 

The classification accuracy is one of the important factors to be considered for building 

120 



CHAPTER 6 Rough LVQ-Based Case Generation
 

classifiers. On the other hand, the efficiency of CBR classifiers in terms of case retrieval 

time should not be neglected. The storage space and clustering performance (in terms of 

intra-similarity and inter-similarity) are also tested in this section. Based on these 

evaluation indices, comparisons are made between our developed method and others such 

as basic SOM, basic LVQ and Random case selection methods. 

 

As mentioned in Section 6.3, the rough set-based FR is firstly used to find the 

approximate reduct of the given case bases. In the experiments of this section, the 

parameter β is determined during the testing through populating the points in the interval 

[0.5, 1]. Initially, β is set to be 0.5. In each step, the β value increase at a constant rate 

0.01 and this value is used in the feature selection process and being tested. The steps 

stop when β attains 1. The β value which can achieve the highest classification accuracy 

is selected as the suitable β. Based on the generated subset of features, the LVQ learning 

is then applied for extracting representative cases as the prototypes of the entire case base. 

The learning rates for the three data sets are: α = 0.8 (Iris data), α = 0.8 (Glass data) and 

α = 0.5 (Pima data). In the following sections, each evaluation index is tested to show the 

effectiveness of the rough LVQ case generation approach. 

 

6.4.1 Classification Accuracy 
 

In this section, the results of classification accuracy for the three databases and four CG 

methods are demonstrated and analyzed.  The used accuracies here are defined as: 

 

Testdata
Testdataxclassfiedcorrectlybecanxx

AccuracyTest

},,{ ∈
= , 

Entiredata
Entiredataxclassfiedcorrectlybecanxx

AccuracyAll

},,{ ∈
= , 

where ∗ is the cardinality of set ∗ ; Testdata is the set of cases for testing; Entiredata is 

the set of cases in the whole data set. To be more specifically, “x can be correctly 

classified” means that x can be correctly classified by the extracted prototypes. 
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If the training cases are used for classify the testing cases, the classification accuracies on 

the three databases are: 0.980 (Iris), 0.977 (Glass), 0.662 (Pima). These accuracy values 

are called the original classification accuracies. The experimental results of using the 

generated prototypes are demonstrated in Table 6.4. It is observed that after the case 

generation, the original accuracies are preserved and even improved. The rough LVQ 

method can achieve the highest classification accuracy in most of the testing. The basic 

LVQ method performs better than the other methods: Random and SOM.  
 

Table 6.4 Comparisons of classification accuracy 

using different case generation methods 

 

 Iris data Glass data Pima data 

Methods AccuracyTest AccuracyAll AccuracyTest AccuracyAll AccuracyTest AccuracyAll

Random 0.760 0.746 0.860 0.864 0.597 0.660 

SOM 0.920 0.953 0.930 0.925 0.688 0.730 

LVQ 0.980 0.953 0.930 0.935 0.708 0.743 

Rough LVQ 1.000 0.960 0.930 0.935 0.714 0.740 

 

6.4.2 Reduced Storage Space of Rough LVQ-Based Method 
 

Due to both the feature selection and case selection processes, the storage space with 

respect to the features and cases is reduced substantially. Subsequently, the average case 

retrieval time will decrease. These results are shown in Table 6.5, where 
 

Reduce features %100)1( ×−=
featuresOriginal
featuresSelected

, 

Reduced cases %100)
Pr

1( ×−=
Entiredata

ototypes
, 

Saved time of case retrieval = )( ptrain tt − , 
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where ∗ is the number of elements in set ∗ ; Selected features is the set of features that are 

selected by the rough set-based method; Original features is the set of features in the 

original database; Prototypes is the set of extracted representative cases; is the case 

retrieval time to classify the testing cases using the training cases; is the case retrieval 

time to classify the testing cases using the extracted prototypes; Testdata is the same as 

that in Section 6.4.1. The unit of time is second. 

traint

pt

 

Table 6.5 Reduced storage and saved case retrieval time 

Data set 
Reduced 

features 

Reduced 

cases 

Saved time of 

Case retrieval 

Iris 50% 97.0% 0.600 sec 

Glass 60% 98.8% 0.989 sec 

Pima 50% 99.6% 0.924 sec 

 

From Table 6.5, the storage requirements of features and cases are reduced dramatically. 

For example, the percentage of reduced features is 60% for Glass data, and the 

percentage of reduced cases is 99.6% for Pima data. The case retrieval time also 

decreases because that there are much fewer features and cases after applying the rough 

LVQ-based case selection method. 

 

6.4.3 Intra-similarity and Inter-similarity  
 

Intra-similarity and inter-similarity are two important indices to reflect the clustering 

performance. They are used in this section to prove that the developed rough LVQ-based 

approach can achieve better clustering than using random selected prototypes.  

 

Since the similarity between two cases is inverse proportional to the distance between 

them, we use inter-distance and intra-distance to describe the inter-similarity and intra-

similarity. These distances can be directly computed based on the numerical feature 
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values. Assume there are K classes for a given case base, C1, C2, …, CK. The intra-

distance and inter-distance of the case base are defined as:  

 

Intra-Distance ∑ ∈
=

iCyx
yxd

,
),( , 

Inter-Distance jiKjiyxd
ji CyCx

≠==∑ ∈∈
,...,,2,1,,),(

,
. 

=Ratio Inter-Distance ⁄ Intra-distance. 

 

The lower the intra-distance and the higher the inter-distance, the better is the clustering 

performance. Therefore, it is obvious that the higher the ration between the inter-distance 

and the intra-distance, the better is the clustering performance.  

 

The results are shown in Table 6.6. Rough LVQ method demonstrates higher Ratio 

values and therefore achieves better clustering result. 

 

Table 6.6 Inter-distance and inter-distance: 

Comparisons between the Random and Rough LVQ methods 

Data set Methods 
Inter-

Distance 

Intra-

Distance 
Ratio 

Random 1284.52 102.13 12.577 
Iris 

Rough LVQ 1155.39 51.99 22.223 

Random 8640.20 4567.84 1.892 
Glass 

Rough LVQ 7847.37 3238.99 2.423 

Random 56462.83 54529.05 1.035 
Pima 

Rough LVQ 28011.95 25163.45 1.113 

 

6.5 Summary 
 

In this chapter, a rough LVQ approach is developed to address the case generation for 

building compact and competent CBR classifiers. Firstly, the rough set-based FR method 

is used to select features for LVQ learning. As mentioned in Chapter 3, this method is 
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built on the concept of approximate reduct instead of exact reduct. The approximate 

reduct can be found quickly and effectively. LVQ is then used to extract the prototypes to 

represent the entire case base. These prototypes are not the data points in the original case 

base, but are modified during the LVQ learning process. They are considered as the most 

representative cases for the given case base, and used to classify the unseen cases. 

Through the experimental results, using much fewer features (e.g., 40% of the original 

features for Glass data), the classification accuracies for the three real life data are higher 

using our method than those using methods of Random, basic SOM and LVQ. The case 

retrieval time for predicting class labels of unseen cases is also reduced. Furthermore, 

higher intra-similarity and lower inter-similarity are achieved using the rough LVQ 

approach than that using the random method. 
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Chapter 7 

Fuzzy Integral-Based Case 

Base Competence Model 
 

In the previous chapters, we have presented our developed techniques for the tasks of FR, 

learning similarity measures, CS and CG to extract case knowledge for building both 

compact and competent CBR systems. In this chapter, we build a case base competence 

model to evaluate the coverage of a given case base or knowledge base, where the fuzzy 

integral technique is applied for modeling the competence of a given CBR system. 

 

Case base competence has been brought sharply into focus in the area of case base 

maintenance (CBM) since many CBM policies are directly linked with the heuristics of 

measuring case base competence to guide the maintenance procedures [Smyt 1995, 1998a, 

1998b][Yang 2001][Leak 2000]. However, most of the current competence heuristics 

only provide coarse-grained estimates of competence. For example, Smyth et al. [Smyt 

1999a, 1999b, 2000a, 2000b, 2000c, 2001a, 2001b] employed a case deletion policy 

guided by a category-based competence model, where the cases are classified to only four 

basic competence categories. Zhu and Yang [Zhu 1999] provided a case addition policy 

based on the concept of case neighborhood, which is a coarse approximation of case 

coverage. Modeling case base competence becomes a crucial issue in the field of CBM. 

 

Smyth and McKenna proposed a competence model based on the concept of competence 

group, which is defined in such a way that there are no overlaps among case coverage in 

different competence groups. The group size and density have been considered in the 

definition of the group coverage. Then the overall case base competence can be computed 

by simply summing up the coverage of each group. However, the distribution of each 

group is not taken into account in this model. More specifically, it always assumes that 
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the distribution of cases in each group is uniform, which leads sometimes to over or 

under estimation of case base competence. 

 

This problem is addressed by adopting a fuzzy integral based competence model to 

compute the competence of a given CBR system more accurately. Consider a competence 

group. We first repartition it to ensure that the distribution of cases in each newly 

obtained group is nearly uniform. Since there are overlaps among the coverage of 

different new groups, fuzzy measures (non-additive set functions) can be used to describe 

these overlaps because of their non-additive characteristics. Fuzzy integrals are the 

corresponding integrals with respect to these fuzzy measures. As the most important tools 

of aggregations in information fusion, fuzzy integrals are appropriate here for computing 

the overall case base competence of a CBR system. A kind of fuzzy measure, λ-fuzzy 

measure, and a corresponding fuzzy integral, Choquet integral [Wang 1992][Pap 

1996][Wang 2000a], are adopted in this approach. 

 

For the convenience of readers, we first give a brief description of fuzzy measures and 

fuzzy integrals. 

 

7.1 Concepts of Fuzzy Measures and Fuzzy Integrals 
 

The traditional tool of aggregation for information fusion is the weighted average method, 

which is essentially a linear integral. It is based on the assumption that the information 

sources involved are non-interactive and, hence, their weighted effects are viewed as 

additive. This assumption is not realistic in many applications. To describe the interaction 

among various information sources in such cases, a new mathematical tool, namely, 

fuzzy measures or non-additive set functions, can be used instead. In other words, a 

nonlinear integral, such as the Choquet integral with respect to the non-additive set 

functions, can be used instead of the classical weighted average for information fusion. 

 

More formally, fuzzy measures and fuzzy integrals are defined as follows: 
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Definition 7.1 (Fuzzy measure)  

 

Let  be a nonempty set and P(X) be the power set of X . We use the symbol X 'µ  to 

denote a non-negative set function defined on P(X) with the properties 0)(' =Φµ . If 

',1)(' µµ =X  is said to be regular. It is a generalization of classic measure. When  is 

finite, 

X

'µ  is usually called a fuzzy measure if it satisfies monotonicity, i.e., 

 

 )(')(' BABA µµ ≤⇒⊆  for )(, XPBA ∈ . (7.1)

 

For a non-negative set function 'µ , there are some associated concepts: 

 

Definition 7.2 (Additive, super-additive, sub-additive set function) 

 

For A, B∈P(X), 'µ  is said to be additive if  

)(')(')(' BABA µµµ +=∪ , (7.2)

 

'µ  is said to be sub-additive if  

)(')(')(' BABA µµµ +≤∪ , (7.3)

 

'µ  is said to be super-additive if  

)(')(')(' BABA µµµ +≤∪ . (7.4)

 

If we regard )(' Aµ  and )(' Bµ as the importance of subsets A and B, respectively, then the 

additivity of the set function means there is no interaction between A and B, that is, the 

joint importance of A and B is just the sum of their respective importance. Super-

additivity means the joint importance of A and B is greater than or equal to the sum of 

their respective importance, which indicates that the two sets are enhancing each other. 

Sub-additivity means the joint importance of the two sets A and B is less than or equal to 

the sum of their respective importance, which indicates that the two sets are resisting 

each other. 
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Due to non-additivity of the fuzzy measures, some new types of integrals (known as 

fuzzy integrals) such as Choquet integral, Sugeno integral, and N-integral, are used. Here 

we only give the definition of Choquet integral which is used in this section: 

 

Definition 7.3 (Choquet integral) 

 

Let X = {x1, x2, …, xn}, 'µ  be a fuzzy measure defined on the power set of X, and f  be a 

function from X to [0, 1]. The Choquet integral of f with respect to 'µ  is defined by  

 

∫ ∑
=

−−=
n

i
iii AxfxfdfC

1
1 )('))()((')( µµ  (7.5)

where we assume without loss of generality that )()()(0 10 nxfxfxf ≤≤≤= L  and 

 }.,,,{ 1 niii xxxA L+=

 

Now we give an example [Wang 1999] to illustrate how fuzzy measure and fuzzy integral 

describe the interactions of different objects. 

 

Example:  

Let there be three workers a, b, and c working for f (a) = 10, f (b) = 15, and f (c) = 7 days 

respectively to manufacture a kind of products. Without a manager, they begin to work 

from the same day. Their efficiencies of working alone are 5, 6, and 8 products per day 

respectively. Their joint efficiencies are not the simple sum of the corresponding 

efficiencies given above, but are listed as follows: 

                                                    

Workers Products/ day 

{a, b} 14 

{a, c} 7 

{b, c} 16 

{a, b, c} 18 
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These efficiencies can be regarded as a fuzzy measure, 'µ , defined on the power set of 

 with },,{ cbaX = 0)(' =φµ  (the meaning is that there is no product if no worker is there).  

 

Here inequality })({'})({'}),({' baba µµµ +> means that a and b have good cooperation, 

while inequality })({'})({'}),({' caca µµµ +<  means that a and c have bad relationship 

and are not suitable for working together. Here 'µ can be considered as an efficiency 

measure.  

 

In such a simple manner, during the first 7 days, all workers work together with 

efficiency }),,({' cbaµ , and the number of products is 126187}),,({')( =×=⋅ cbacf µ , 

during the next  days, workers a and b work together with efficiency )()( cfaf −

}),({' baµ , and the number of products is 42143}),({')]()([ =×=⋅− bacfaf µ ; during 

the last days, only b works with efficiency )()( afbf − })({' bµ , and the number of 

products is 3065})({')]()([ =×=⋅− bafbf µ . Function f defined on  is 

called an information function. Thus, the value of the Choquet integral of f with respect 

to 

},,{ cbaX =

'µ , 

 

∫ =⋅−+⋅−+⋅== 198)(')]()([}),({')]()([}),,({')(')( bafbfbacfafcbacffdC µµµµ  

is just the total number of products manufactured by these workers during these days. 

 

Note that the meaning of fuzzy measures and fuzzy integrals is problem dependent. In 

this section, they are used to describe the coverage contributions of cases in a case base.  

 

Before the fuzzy integral based competence model is explained, the closely related (non-

fuzzy) competence model of Smyth [Smyt 1998a] is described for convenience, along 

with its limitations. 

 

 130



CHAPTER 7 Fuzzy Integral-Based Case Base Competence Model 
 

 

7.2 Case Base Competence 
 

Smyth and McKenna [Smyt 1995, 1998a, 1998b] explained the concept of case-base 

competence, and subsequently different concepts such as coverage and reachability for 

measuring the problem solving ability of case bases were developed. Some statistical 

properties of a case base, e.g., the size and density of cases, are used as input parameters 

for modeling the case-base competence. For convenience, their model is called the S-K 

model in this research, which will be briefly reviewed in Section 7.2.1. 

 

7.2.1 The S-K Competence Model 
 

The main idea of the S-K model is to introduce the concept of competence group as the 

fundamental computing unit of case base competence. It is defined in such a way that 

different groups have no interaction (overlap) with each other [Smyt 1998b]. Based on 

this concept, the competence of each group is computed by considering the size and 

group density, which is given as 

 

Definition 7.4 (Group competence) 

 

The competence of a group of cases (G) (i.e., group coverage of G) depends on the 

number of cases in the group and its density. This is defined as  

 

))(1(1)( GtyGroupDensiGGageGroupCover −⋅+= . (7.6)

 

Here GroupDensity is defined as the average CaseDensity of the group, i.e.,   

 

∑∈
=

Ge
GGeyCaseDensitGtyGroupDensi ||/),()( , (7.7)

where 
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∑
−∈

−=
}{*

* )1/(),(),(
eGe

GeeSMGeyCaseDensit , (7.8)

 

and |G| is the size of the competence group G, i.e. the number of cases in the group G.  

 

Different ways of computing the Similarity between two cases e and e* depend on the 

problems at hand.  

 

For a given case base CB, with competence groups { }, the total coverage or 

the case-base competence is defined by Equation (9) as 

nGGG ...,,, 21

 

∑ ∈
=

GG i
i

GageGroupCoverCBCoverage )()(  (7.9)

 

7.2.2 The Problem of the S-K Competence Model 
 

In this Section, we analyze the problems arising from the S-K competence model, which 

includes the ignorance of the case distribution and overlaps among group competence. 

 

From Equation (7.9), it is seen that the definition of case-base competence only took the 

concepts of group size and group density into account. However, the distribution of cases 

in a case base is also an important factor which influences the case-base competence. For 

example, consider Fig. 7.1 where the cases in (b) are uniformly distributed, whereas those 

in (a) & (c) are not. It is appropriate and necessary to incorporate this while computing 

the case-base competence of a case base.  

 

Suppose that in some problem domain, we have a group of non-uniformly distributed 

cases as depicted in Fig. 7.1(a), it can be shown that the S-K model is not a good 

predictor of the group competence because this model assumes that the cases are 

distributed uniformly such as those shown in Fig. 7.1(b). Assuming that 

)'()( GSizeGSize = , i.e. 'GG = , and )'()( GtyGroupDensiGtyGroupDensi = . Then, from 

Equation (7.9), we have  
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)'()( GageGroupCoverGageGroupCover = , where G  is an arbitrary competence group 

in a case-base, so similar results can be obtained between two case-bases, in which one 

has its cases non-uniformly distributed and the other uniformly distributed.  

 

However, from Figs 7.1(a) and 7.1(b), it is obvious that the coverage of the two 

competence groups cannot possibly be the same. There are coverage holes, i.e., the 

regions that cannot be covered by the case base, in Fig. 7.1(a) compared with that of Fig. 

7.1(b). If we calculate the competence of the groups in Fig. 7.1(a) using the S-K model, 

then the actual competence will be over-exaggerated. It is because, the S-K model only 

considers the group density, but ignores their distribution. There are possibly many ways 

of case distributions, therefore a more accurate way of modeling of case-base competence 

is required. 
 

 

 

 

 

 
 

 

(a) (b) 
 

 

 

 

 

 

 

 

G1 

G2 

*c  

G 

hole 
hole 

G1 

G’ 

G1 
G2 

G3 

*c

**c

(c) 

Fig. 7.1 Examples of uniform and non-uniform case distributions 
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Moreover, this model assumes that there is no overlap among different competence 

groups of cases (e.g., features interaction [Wang 2000b] is a common cause of overlaps). 

Therefore, by simply taking the sum of group competences as the overall case base 

competence, without considering the overlapping effects, the resulting group competence 

may be over or under-exaggerated. This group overlap problem has been tackled by Shiu 

et al. [Shiu 2001b] using fuzzy integral. Details are explained in the following. 

 

7.3 Fuzzy Integral Based Competence Model 
 

Consider both Figs 7.1(a) and (c), where we can easily see that cases like c* and c** play 

an important role in affecting the overall competence distribution in the group. Therefore, 

it is important to detect such cases (which are called weak-links in the following 

discussion) for possible identification of smaller competence groups, such as G1, G2, G3 

in Fig. 7.1(c), those are having more evenly distributed cases. These smaller groups’ 

competence can then be computed using Equations (7.6)-(7.8). It is worth noting that, the 

competence of weak links can be considered to be their respective individual coverage, 

which reflects the relation among the several new groups. A new way of computing the 

group competence based on this principle is described as follows. 

 

7.3.1 Competence Error 
 

In general, competence groups, such as G1 and G2 in Fig. 7.1(a), are not necessarily 

having the same strictly uniform distribution, and the weak link case c * is not necessarily a 

pivotal case (a case that cannot be solved by any other cases). To deal with this situation, 

GroupDensity(G1) (which is assumed to be equal to GroupDensity(G2)) can be replaced 

by the average group density of group G1 and G2, which can be denoted by 

}.2,1{),( ∈iGtyGroupDensi i  Let )]()([ GtyGroupDensiGtyGroupDensi i −  be denoted 

by tyGroupDensi∆ . A concept, called quasi-uniform distribution, can be used to describe 

the case base distributions which are close to uniform distribution. As mentioned, the 

other assumption that c * is a pivotal case in the example is not necessarily true in many 
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cases. To address this problem, just consider the individual competence of c as its relative 

coverage, which is defined as 

*

 

Definition 7.5 (Relative coverage) 

The relative coverage of a case e is denoted by 

 

RelativeCoverage(e) = ∑
∈ )(' )'(Re

1
etCoverageSee eSetachability

. (7.10)

 

Then define,  

CompetenceError(c ) *

= ⎜G tyGroupDensi∆  −− )( iGtyGroupDensi  RelativeCoverage(c * ) 

−≥ tyGroupDensiG ∆ (RelativeCoverage(c * ) + 1) (7.11)

 

Since  is small, we can see that it is )(Re *cragelativeCove tyGroupDensi∆  which mainly 

leads to the competence error. 

 

7.3.2 Weak Links Detection 
 

In order to tackle the problem of non-uniformly distributed cases, it is necessary, as 

mentioned before, to identify first the weak links in each competence group. The 

definition of weak link and several other concepts which are more directly related to the 

competence of the group in question are stated below: 

 

Definition 7.6 (weak link) 

 

Let be a set of competence groups in a case base CB.  is 

called a weak link if CompetenceError ( )

},,,{ 21 nGGGG L= Gc ∈*

*c α≥ , 

where α  is a parameter that is defined by the user depending on the requirement.  
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If is a weak-link, then the competence group G is called a non-uniform 

distributed competence group. Otherwise, if ∀e ∈ G, CompetenceError (e)

,* Gc ∈∃ *c

α≤ , G is 

called a quasi-uniform distributed competence group.  
 

Here a recursive method is explained to detect the weak links in a given competence 

group G, as follows: 
 

Weak-link Detection Algorithm: 

 

1. W-SET { },← G-SET { },← ;Gi =  

 

2. If ( ) 0≠i

 {Consider each given competence group G in the S-K competence model, compute   

CompetenceError(e), ∀ e ∈ G;  i = i−1;}    

 

3. If there is no weak link, add G to G−SET, end; 

 

4. If there is a weak link , identify the competence groups  in G−

{ } using the S-K competence model; add to the set of weak-links W-SET. 

*c )1(,,,, 21 ≥nGGG nL

*c *c

 

5. For ( ) { ; repeat Steps 1 to 4}. ni ≤≤1 iGG ←

Thus, we can obtain the set of weak links W−SET in a given competence group G and the 

set of new competence groups G−SET.  

 

7.3.3 Overall Coverage of Competence Group Using Fuzzy Integral 
 

After detecting the weak links in a competence group G and cutting them off, let n new 

competence groups  be produced. According to the definition of a 

weak link, each newly produced group is sure to be quasi-uniformly distributed. The next 

task is to compute the overall coverage or competence of G. In the example described in 

)1(,,, 21 ≥nGGG nL
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Fig. 7.1(a), the overall competence of G can be simply calculated by the sum of the 

competence of  and the relative coverage of c , but this method is not 

representative. There could be more complicated situations, as illustrated in Fig. 7.1(c), 

where it is difficult to clearly identify the contribution of each weak link. For example, in 

Fig. 7.1(c), c has much more influence on the coverage of G than c

iG )1( ni ≤≤ *

* ** has, which reflects 

different relations among new competence groups. Therefore, a powerful tool, called 

fuzzy integral (or non-linear integral) with respect to a fuzzy measure (a non-additive set 

function), is applied to describe this complex relationship. 

 

Determining the λ -fuzzy measure 'µ :  

 

When the fuzzy integral is used to compute the overall coverage of the original 

competence group , it is necessary to determine first the importance measure G 'µ  of the 

n small competence groups iG )1( ni ≤≤  both individually and in all possible 

combinations, the total number being (2 1−n ). For cases in Fig. 7.1(c), there will be seven 

values of such measure, e.g., 

 

)(),(),(),(),(),(),( 321323121321 GGGGGGGGGGGG ∪∪′∪′∪′∪′′′′ µµµµµµµ , 

  

where µ ′ values of the unions of small competence groups can be computed by the λ -

fuzzy measure [Wang 1992], which takes the following form: 

 

),1(),()()()()( ∞−∈′⋅′+′+′=∪′ λµµλµµµ BABABA  (7.12) 

 

If λ 0≤ , 'µ  is a sub-additive measure; if λ 0≥ , 'µ  is a super-additive measure; if and 

only if 0=λ , µ ′ is additive. So the focus of determining the λ -fuzzy measure 'µ  falls on 

the determination of the importance of each single group and λ . Note that λ 0≥  in this 

example. 
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Given )1(1)( niGi ≤≤=′µ , here the main problem in computing 'µ  is therefore to 

determine the parameterλ . It is obvious that the properties of the weak links between two 

groups are important for determiningλ . In this model, coverage of a group refers to the 

area of the target problem space covered by the group. In this sense, the value of λ is 

closely related to the coverage of weak links and the density of their coverage sets.  

 

Consider two arbitrary new groups and . Let the W-SET between them be 

={ }. The  and  are defined as follows:  

iG jG

*C **
1 ,, hcc L )( *CCoverage )( *CDensity

∑
=

=
h

i
icragelativeCoveCCoverage

1

** )(Re)( , (7.13)

 

hcCovtyGroupDensiCDensity
h

i
i /))(()(

1

** ∑
=

= , (7.14)

where is the coverage set of the ith weak link  between and . )( *
icCov *

ic iG jG

 

The coverage contribution of  must be directly proportional to  

and inversely proportional to . With these assumptions, the parameter 

ji GG ∪ )( *CCoverage

)( *CDensity λ  is 

defined as 

 

λ = , ))(1()( ** CDensityCCoverage −⋅ (7.15)

 

The λ -fuzzy measure 'µ  of  can then be determined with Equation (7.12). )( ji GG ∪

 

Using the Choquet integral to compute competence (coverage): 

 

Due to the non-additivity property of the set function 'µ , some new types of integrals 

(known as non-linear integrals) are used to compute the overall coverage of the original 

competence group G based on the 'µ  measures of the n constituting competence groups 

and their unions. A common type of nonlinear integrals with respect to non-negative 

 138



CHAPTER 7 Fuzzy Integral-Based Case Base Competence Model 
 

monotone set functions is the Choquet integral [Pap 1996]. Its use in computing the 

competence of the group G is described below. 

 

Let the competence group G = {G1, G2, …, Gn} be finite, where  are the 

new small competence groups as defined earlier. Let G* = , where  represents 

a weak link. Let , and the importance measure 

nGGG ,,, 21 L

*CG ∪ *C

)( ii GageGroupCoverf = 'µ satisfy:  

 

)1(1)(' niGi ≤≤=µ ; 

)0()(')(')(')(')(' ≥⋅⋅++=∪ λµµλµµµ BABABA ,  

 where λ  is determined by Equation (7.15). 

 

The process of calculating the value of the Choquet integral is as follows: 

 

(1) Rearrange { } into a non-decreasing order such that nfff ,,, 21 L

**
2

*
1 nfff ≤≤≤ L , 

where (  is a permutation of ( ); ),,, **
2

*
1 nfff L nfff ,,, 21 L

 

(2) Compute 

Coverage(G) = , }),,,({][ **
1

**
1

1

*
njjj

n

j
j GGGfffd L+−

=

′⋅−=′∫ ∑ µµ

where  .0*
0 =f

 

The value of the Choquet integral provides the coverage of the considered competence 

group G. For a case base with several competence groups, the sum of the individual 

group coverage gives the overall coverage of the case base. 
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7.4 Experiment Results 
 

In this section, some empirical results are provided to demonstrate the effectiveness of 

the fuzzy integral method (Section 7.3) in closely matching the actual competence of a 

case base. At the same time the S-K competence model (Section 7.2) is shown not to be a 

good predictor when the case base is not uniformly distributed. 

 

For this purpose, a small case base containing 120 cases, each of dimension two, is 

considered. Each case is chosen randomly so that the case base satisfies non-uniform 

distribution. During the investigation, 50 randomly chosen cases in the case base are used 

as unknown target problems, the remaining 70 cases are used to form the experimental 

case bases. 

 

The success criterion used is a similarity threshold: if the system does not retrieve any 

cases within this threshold, a failure is announced. True competence is regarded as the 

number of successfully solved problems. 

 

The experiment was repeated 100 different times. The results shown in Table 7.1 are the 

average values computed over these iterations. In the table, “Error_percentage” 

represents the relative error of coverage of a model with respect to the True model, and is 

defined as Error_percent = (Error_number / True_competence)×100%. 
 

Table 7.1 Comparison of the three competence models 

Index True S-K Model Fuzzy Integral Model 

Density - 0.4 0.6 

Competence 34.5 49.6 38.9 

Error_number 0 15.1 4.4 

Error_percent 0 43.8% 12.8% 
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As expected, the error_percentage of the fuzzy integral model is rather lower than that of 

the S-K competence model. When the number of cases increases, the former can 

strikingly reduce the competence error compared to the latter. 

 

In this experiment, the case base considered has a non-uniform distribution, but in the 

situation of uniform distributed case bases, the fuzzy integral competence model can still 

be used. Because, if there is no weak-link, the competence computed by the fuzzy 

integral model will be the same as that obtained using the S-K competence model.  

 

7.5 Summary 
 

In this chapter, we built a case base competence model based on fuzzy integrals, which 

are able to describe the interaction among case coverage. We have presented firstly the 

concepts of fuzzy measures (or called non-additive set functions) and fuzzy integrals. 

Then the competence model proposed by Smyth and McKenna is briefly reviewed, which 

is based on the group density and the size of given case base. Finally, one common type 

of fuzzy integral, the Choquet integral, is used to model the case base competence. 

Different from the model of Smyth and McKenna, this developed competence model has 

taken into account the interaction among the competence groups. The experimental 

results show that the fuzzy integral based model can reflect the case base competence 

more accurately. This will help to evaluate the extracted case knowledge bases through 

FR and CS in previously chapters.  
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Chapter 8 

Query Dispatching Policies in CCBR 
 

In Chapter 7, we have built a fuzzy integral based case base competence model, which 

can handle the overlaps of case coverage. This chapter presents an application of this 

developed competence model for dispatching queries in the context of distributed or 

collaborative case-based reasoning (CCBR).  

 

In a CCBR environment, multiple CBR systems are distributed in different places and 

each system can solve the problems independently. Here each CBR system is considered 

to be a problem-solving agent. An input query case could be compared with the old cases 

that are resided in the different CBR agents in the network. How to obtain the best 

solution effectively and efficiently from this distributed CBR network depends on a 

carefully designed query dispatching strategy.  

 

In this chapter, we propose a group of competence-preserving query dispatching policies 

based on the fuzzy integral based competence model developed in Chapter 7. The 

coverage of each CBR agent in the network is measured and three strategies are proposed: 

To-Top policy, Strong-Strong policy and Best-Committee policy. The experimental result 

shows that our proposed policies are comparatively better than the existing ones 

developed by Plaza and Ontañón [Plaz 1997]. 

 

8.1 Introduction 
 

Traditionally, intelligent systems are developed in a standalone and insolated manner. 

However, the recent growth of the World Wide Web and multi-agent systems triggers the 

need of designing intelligent systems in a distributed and collaborative manner. Being a 
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successful intelligent system technology, CBR also has the need to develop its 

applications into a full fledged and distributed environment. Currently, there are two 

main approaches for selecting CBR agents, the first one is proposed by Prasad et al. [Pras 

1996] based on the concept of task decomposition, and the second one is proposed by 

Plaza et al. [Plaz 1997] based on the random selection of agents. The use of task 

decomposition is only effective when the problem can be nicely decomposed into a set of 

sub-problems, and each sub-problem can be solved by an individual CBR agent. 

However if conflicts exist (e.g. the solutions from two sub-problems could not be 

integrated), additional heuristics from the users may be needed. Sometimes this way of 

collaboration may be even worse than a single and isolated system [Leak 2001]. 
 

Plaza et al. [Plaz 1997] proposed two modes of cooperation among CBR agents (i.e. 

Distributed Case-based Reasoning (DistCBR) and Collective Case-based Reasoning 

(ColCBR)). DistCBR means that a problem can be dispatched to any agent for solving, 

disregarding who generates the problem. ColCBR means that the owner of the problem 

tries to collect the useful cases and methods from other agents, and decide how to solve 

the problem. Three collaboration policies (i.e. Committee policy, Peer-Counsel Policy 

and Bounded-Counsel Policy) were developed for the DistCBR framework by Plaza and 

Ontañón [Plaz 2001]. However, these policies are all based on a random selection of the 

agents, which does not guarantee the quality of retrieved cases. Therefore, it will be very 

consuming to obtain the best solution among different CBR agents in a CCBR network. 

In 2003， Yang et al. [Yang 2003] built a service agent network (SANet) for call center 

automation, which integrates both human and software service agents in providing 

customer service in real time. For each service request, SANet selects the most 

appropriate agents according to the availability and capabilities of the agents in the 

network. The capability of a given agent is proportional to the quality of solution it 

provides, which can be described by the average number of successfully solved problems. 

In this research, we do not consider multi-agent systems which contain human agents.  

 

Instead of having random selection of agents in [Plaz 2001], we propose our policies 

based on the concept of competence, which is defined as the range of problems that a 
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particular agent (or case) could solve. Since the purpose of these policies is preserving 

the competence, they are comparatively better than most of the existing ones based on 

random agent selection.  

 

The structure of this chapter is as follows: Section 8.2 reviews two methods of 

calculating the cases competence. The first one is proposed by Smyth and McKenna 

[Smyt 1998] while the second one is proposed by our research group [Shiu 2001b]. The 

competence computation and ranking policies of CBR agents are given in Section 8.3. In 

Section 8.4, three policies for dispatching a new query case are proposed. Each of these 

policies is developed based on a different assumption of how to obtain the best solution. 

An experimental comparison of our approaches to the existing ones is provided in 

Section 8.5. Finally, Section 8.6 gives the conclusions. 

 

8.2 Modeling Case Base Competence  
 

The concept of case-based competence was first proposed by Smyth and McKenna [Smyt 

1998], (i.e. refer as the S-K model in this research), and subsequently it has been 

developed further to a whole range of concepts which are useful for measuring the 

problem solving ability of case-bases. As mentioned in Chapter 7, in the S-K model, 

many statistical properties of a case base, such as the size and density of cases, are used 

as input parameters for measuring competence. However, this model assumes that there is 

no overlap among different group of cases. Therefore, if simply taking the group 

competence as the sum of the individual case competence, and each individual case 

competence is computed independently without considering the overlapping effects, the 

resulting group competence may be over- or under-exaggerated. This feature overlap 

problem has been tackled by Shiu et al. [Shiu 2001b] using fuzzy integral (refer as the S-

L model in this chapter). These two models are used as the basis to develop our query 

case dispatching strategies.  
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In the previous chapter, we have presented in detail the S-K model (see Section 7.2) and 

the S-L model (see Section 7.3). Therefore, we will not describe them again in this 

chapter.  

 

8.3 Competence of the CBR Agents 
 

Based on the fuzzy integral approach for calculating the competence of each case group, 

we can compute the competence of the CBR agents using the S-K and the S-L models 

respectively. The policies proposed here are based on the DistCBR mode (see Section 

8.1), in which different CBR agents are able to communicate and cooperate with one 

another for recommending a solution. For instance, when agent A  is unable to solve a 

problem, will delegate its authority of solving the problem to .  jA

 

For a given CCBR system, there are n ( ) case-based reasoners, denoted 

by . These CBR reasoners can be regarded as n  agents 

 for problem solving in a distributed manner. The corresponding case-bases 

are , with competence groups  respectively. Each case in 

these competence groups are represented by m features, F

1≥n

nCBRCBRCBR ,,, 21 L

nAAA ,,, 21 L

nCBCBCB ,,, 21 L nGGG ,,, 21 L

1, F2, …, Fm.  

 

Compute the group competence: 

In computing the competence, we define the similarity between two cases p and  by the 

following equation: 

q

))(1/(1
1

2∑
=

−+=
m

j
qjpjpq xxSM , where  corresponds to the value 

of feature . 

ijx

),,2,1(),1( mimjFj L=≤≤

 

Step 1 Detecting the weak-links in the above competence group (i=1, 2, …, n): iG
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If , such that , then the competence group  is a 

non-uniform distributed competence group. Otherwise,  is a quasi-uniform distributed 

competence group (see Definition 7.6 in Chapter 7). 

iGc ∈∃ * α≥)( *cErrorCompetence iG

iG

 

Step 2 Partition the CBR agents according to their competence: 
 

(1) ||,2,1 GiCCBRCCBR =←← φφ ; where CCBR1 consists of those agents who 

have no feature interactions (or no overlaps among competence groups), while CCBR2 

consists of those agents who have feature interactions (or overlaps among competence 

groups). 
 

(2) If , compute , 0≠i )(cErrorCompetence 1, −=∈∀ iiGc ;  

 

(3) If there is no weak-link in G, then G is called a quasi-uniform distributed 

competence group, then add G to CCBR1, otherwise G is called a non-uniform 

distributed competence group, then add G to CCBR2, end;  

 

(4) For , repeat the above steps (1) to (3). jGGnj ←≤≤ ,1

 

Step 3 Compute the competence of each CBR agent in the CCBR1 & CCBR2: 
 

Assume that there are m1, m2 competence groups in CCBR1 and CCBR2, 

respectively. 
 

(1) Compute the competence of each CBR agent in the CCBR1 group according to the 

S-K model. Since the cases are distributed uniformly in each CBR agent, we can get the 

competence using the S-K competence model [Smyt 1998] directly. They are then ranked 

in a descending order according their competence, and are denoted as . 1
1

1
2

1
1 ,,, mCCC L

 

(2) Compute the competence of each CBR agent in the CCBR2 group according to the 

S-L model, and rank them as .  2
2

2
2

2
1 ,,, mCCC L
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Step 4 Rank the CBR agents according to the respective competence of each CBR agent 

in the CCBR1 & CCBR2: 
 

According to the competence, rank the CBR agents in the CCBR1 and CCBR2 system in 

a descending order as , . },,,{ 1
1

1
2

1
1 mAAA L },,,{ 2

2
2
2

2
1 mAAA L

 

8.4 Query Dispatching Policies 
 

Based on the computation of each CBR agent in CCBR, three query dispatching policies 

are proposed in this section. They are: To-Top policy; Strong-Strong policy and Best 

Committee policy, which are described in Sections 8.4.1, 8.4.2 and 8.4.3, respectively. 

 

8.4.1 To-Top Policy 
 

The main idea of this policy is to choose the CBR agent which has the maximal 

competence in the corresponding CCBR system, i.e.  in CCBR1 or in CCBR2 

system. CCBR1 is chosen as the problem-solving agent if there are no feature interactions 

among different competence groups; otherwise, CCBR2 is chosen.  

1
1A 2

1A

 

For example, in a travel-planning problem which will be described in Section 8.5, the 

hotels are classified by the number of stars, therefore when the user specify the type of 

accommodations (e.g. the number of stars), this will limit the choices of the available 

hotels. In this case, the features "accommodation" and "hotel" are interacting. The 

dispatching procedure is as follow: if agent  receives an input query, it will try to solve 

it. When the solution is satisfactory (i.e. within a user defined threshold of solution 

accuracy, and efficiency), it becomes the answer to the input query. Otherwise, it will 

dispatch the problem to  or  for solving. If  is one of the agents in CCBR1, then 

it dispatches the problem to the agent , otherwise the problem will goes to  in 

CCBR2. 

iA

1
1A 2

1A iA

1
1A 2

1A
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8.4.2 Strong-Strong Policy 
 

In this policy, we assume that we could not determine whether the features are having 

interactions or not. Consider the travel-planning problem again, we are not sure whether 

there are feature interactions or not between the features "season" and "hotel" or between 

the features "holiday duration" and "season". Thus, it is better to ask more than one 

agents to suggest the solutions. We choose the most competent agent (i.e. one from each 

collaborative CBR system). That is, if the agent  receives the problem, 

and cannot solve it satisfactorily, it will ask the agents  in the CCBR1 and agent  in 

the CCBR2 to solve it in parallel. One of these suggested solutions will be used based on 

an earlier assessment of these two agents' ability. (Note that these two agents belong to 

the two CCBR systems, therefore the selection has already considered the feature 

interaction property). 

)2,1,1( =≠ jiA j
i

1
1A 2

1A

 

8.4.3 Best-Committee policy 
 

If time is not the critical issue and getting better solution is the main concern, then the 

user can ask more agents for suggested solutions. In general, the more the agents are 

involved, the more accurate the answer will be. That is, if the agent  

receives the problem, it could follow the To-Top and Strong-Strong policies first for 

solving the problem. However, if the solution is not satisfactory, it can ask the 

agents , (i.e. those agents that are better in competence), to solve the 

problem. Each agent will offer a solution to the problem, and the final solution is chosen 

according to the user’s preference, such as preferred accuracy.  This policy provides the 

user a flexible choice, when he wants to get the best solution, then he can ask all the 

agents for suggestions. This policy is the same as the "Committee" policy proposed by 

Plaza and Ontañón.   

)2,1,1( =≠ jiA j
i

j
i

jj AAA 121 ,,, −L
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8.5 Experimental Evaluation 
 

This section demonstrates some experimental results of the proposed query dispatching 

policies (Section 8.4) and their comparisons with some existing ones. 

 

We used the travel case base that is available from AI-CBR web-site (i.e. www.ai-

cbr.org). It contains 1470 cases, and we randomly selected 1100 cases for our 

experiment. Each test case describes a holiday-package tour from Europe/ North Africa, 

and consists of 9 features. In dividing the cases into different groups for measuring 

competence, we use a random selection approach. The reason is that because in real life, 

there may be missing values in the cases, therefore a feature based grouping of cases may 

not be possible. In the experiment, 800 cases are chosen randomly as learning data, and 

300 cases are chosen as testing data. The learning data are further divided into 4, 5, 6, 7 

and 8 groups (i.e. each group represent one CBR agent, therefore if 4 agents are used, 

each of them consists of 200 cases, etc). The feature "price" is chosen as the solution 

feature. The testing is based on the evaluation of the solution accuracy and the mean cost 

of solving (i.e. time consumption).  
 

The objective of the experiment is to determine the "price" of each travel plan using our 

proposed policies. A comparison of our approach to some exiting ones [Plaz 2001] is also 

carried out. The mean relative error (i.e. the difference between the actual result and the 

predicted result and divided by the actual result) is used to compute the accuracy.  

 

In our experiment, if four agents are used to predict the "price" of a particular testing case 

(such as Case number 987), our three policies will give the following results respectively: 

$4,708.25, $3,536.72, and $4,561.35. The accuracies are 84.94%, 86.43% and 88.26% 

respectively, which are shown in Fig. 8.1. The mean cost is the relative CPU time of the 

isolated agent, and assuming the mean time cost of the isolated agent is ONE unit, then 

the mean time costs of the collaborative policies are given in Fig. 8.2. We have conducted 
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five testing runs, and each testing has different number of agents. These agents are 

formed by randomly re-organize the 800 testing cases. 
 

 

Fig. 8.1 The average accuracy of collaborative policies 
 

 

Fig. 8.2 The mean cost of the collaborative policies 
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The result shows that our policies use less time and still can achieve the same accuracy as 

the other existing ones. More specifically, Fig. 8.1 shows that all of six case dispatching 

policies are better than the isolated agent. The Strong-Strong policy is better than the To-

Top policy and the Best-Committee policy is the best one. The Strong-Strong policy has 

similar accuracy to the Bounded-Counsel policy and the Peer-Counsel policy. Here we 

did not include the Committee policy in the experiment because it can be viewed as a 

special case of Best-Committee policy.  

 

Some limitations of our experiment include: (1) since the number of cases is fixed, an 

increase of the number of agents will decrease their competence correspondingly, as the 

result, the experimental accuracy will decrease with the increasing number of the agents; 

and (2) a pre-processing of the agents' competence is required.  

 

On the other hand, the merits of our method are: (1) the computation time for finding a 

satisfactory solution is comparatively less than the current approaches; (2) our three 

policies can provide alternative case dispatching methods to users according to their 

preference; and (3) our approach can be used to model feature interaction among cases. 

 

8.6 Summary 
 

In this chapter, we have presented our approach of dispatching query to different CBR 

agents in the context of CCBR. The policies are based on the concept of case and group 

competence. The problem of feature interaction among cases is also tackled using the 

fuzzy integral model. Our approach has been demonstrated empirically with some testing 

cases from the travel domain, and the result shows that our approach is better than the 

existing ones. Further research includes a more detail investigation of case feature 

interactions, as well as their modeling in distributed CBR environments. Furthermore, a 

more theoretical analysis and evaluation of our approach can be carried out. 
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Chapter 9  

Conclusions and Future Work 
 

In previous chapters, we have developed some soft computing techniques to extract case 

knowledge in the development of CBR systems. In this chapter, we evaluate and 

conclude our research work and provide the directions of future research. Section 9.1 

presents a qualitative evaluation of each developed technique through analyzing its 

characteristics such as merits, limitations, and the situations that this technique can 

/cannot be used. Based on Section 9.1, we summarize the whole research work in Section 

9.2. The possible future work is discussed in Section 9.3. 

 

9.1 Evaluation of the Case Knowledge Extraction Techniques 
 

Since all the techniques for case knowledge extraction are developed in the context of 

CBR systems, we firstly discuss the similarity assumption in CBR which is important in 

case retrieval.  

 

9.1.1 Similarity Assumption in CBR 
 

Throughout this research work, we use the conventional similarity assumption during 

case retrieval, i.e., it is preferred to retrieve a set of cases that are maximally similar to 

the problem in question. This similarity assumption works well in most problem domains 

where similar cases have the similar solutions. However, in 2001, Barry Smyth and Paul 

McClave [Smyt 2001a] suggested that diversity can be as important as similarity in some 

other domains, such as in case-based recommender systems. In these systems, users 

prefer to obtain diverse choices for their input queries. In their work, a number of 

different retrieval strategies are proposed to improve diversity among the retrieved cases 

without compromising similarity.  
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9.1.2 Rough Set-Based Feature Reduction 
 

The advantage of using rough sets for feature reduction is that the irrelevant features can 

be removed without affecting the ability to distinguish cases in different equivalence 

classes. On the other hand, the main disadvantage of the traditional rough set-based 

feature reduction methods is the high computational complexity. For example, if there are 

n cases and m features, O(n2×m) computations are required (See Section 3.2). In this 

research, we overcome this limitation through introducing a new concept of approximate 

reduct (Definition 3.7), which can be obtained quickly. The computational complexity 

has been reduced to be linear with the number of cases and features. Therefore, the 

developed feature reduction technique in Chapter 3 is fast and effective, which has been 

demonstrated in the experimental results in Section 3.4.  

 

As mentioned in Chapter 3 and Chapter 5, the fast rough set-based feature reduction is 

different from KPCA mainly in the aspects of rationale; training type; data type; and 

required training time. For details, readers can see Table 3.6 and Table 5.11. The 

qualitative comparisons in Table 5.11 are essentially a comparison between the developed 

FR technique and KPCA. The main difference of the rough set-based FR and KPCA is 

that the former is supervised while the latter is unsupervised. Supervised methods can 

only be used to problems with known class labels (e.g, classification problems), and 

unsupervised methods can be also used to problems without knowing the class labels 

such as clustering problems. Since we mainly consider classification problems, the 

supervised methods such as the proposed FR can be used. Based on these analysis, users 

can choose either of the methods depending on the used data and the requirements on 

efficiency and accuracy.  

 

To give a better understanding of our feature reduction method, we also present the 

limitations as follows: 
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(1) It works better with symbolic data. When handling numerical data, the data need to be 

discretized firstly to induce the equivalence classes. This may result some information 

loss and therefore affect the performance in terms of accuracy.  

 

(2) The determination of the parameter β is empirical and heuristic based during the 

testing and the best values are data dependent. The finally determined parameter values 

may not the globally optimal values.  

 

9.1.3 Learning Similarity Measures of Nominal Features 
 

In Chapter 4, we presented a GA-based method to learn the similarity measures of 

nominal features. The main contribution is that the similarity between two different 

nominal feature values is described by a degree, i.e., a value in [0, 1], instead of either 

zero or one. For example, in Table 4.5, the average similarity of two different colors 

Yellow and Purple is 0.61. This improves case matching and retrieval and the clustering 

performance. The method is suitable to handle nominal data or symbolic data with 

limited feature values.  

 

There are also some limitations during the development of the GA-based learning method: 

(1) For large nominal feature set and feature value set, the computation cost is high; (2) 

the used GA algorithm can be further improved through optimizing the selection 

probability and the mutation probability (see Section 4.3).  

 

9.1.4 Case Selection Methods  
 

We built up different case selection strategies (see Figs 5.2, 5.3, and 5.6) in Chapter 5 

based on the similarity measure, the concepts of case coverage and reachability 

(Definitions 5.3-5.4), and the nearest neighbor principle. They have the abilities of 

 

(1) Reducing the size of case bases and preserving the competence;  

(2) Dealing with different case densities;  
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(3) Identifying and removing both redundant and noisy cases;  

(4) Producing a subset of cases which does not change the knowledge representation;  

(5) Improve the efficiency and the accuracy.  

 

Furthermore, it has been shown that, by combining the fast rough set-based feature 

reduction with these case selection methods, the performance can be further enhanced in 

terms of both storage and accuracy. Two combination methods, RFRCS1 (see Fig. 5.7) 

and RFRCS2 (see Fig. 5.8) are given based on different definition of the “best” 

approximate reduct in case selection. The former is fast and the latter is accurate. Users 

can choose one of them according to different requirements of the efficiency and 

accuracy to construct the final case base. 

 

It should be pointed out that, in the development of case selection methods, we have only 

considered the case bases which consist of homogeneous data regions. In these case bases, 

the noisy cases are defined as the cases that cannot be correctly classified by their k-

nearest neighbors. Therefore, our approach cannot be directly used on case bases 

containing heterogeneous data regions, which may result that some useful cases are 

misclassified as noisy cases.  

 

9.1.5 Rough LVQ-Based Case Generation 
 

Case generation is considered as an alternative way of case selection to reduce the size of 

case bases. In Chapter 6, the representative cases can be generated using fuzzy sets, 

rough sets, and learning vector quantization (LVQ). It deals with numerical data and the 

LVQ algorithm is supervised process based on the reduced feature set after FR (see the 

LVQ-based Case Generation Algorithm in Section 6.3.2). It has been shown that the 

storage decreases and the accuracy is improved comparing with case generation based on 

random, SOM and LVQ (see Tables 6.4-6.5). Better clustering performance is also 

obtained based on the generated cases (see Table 6.6). The main weakness is that, in the 

conducted experiments, the used case bases are relatively small which contain 150-768 
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cases and 4-10 features. Larger case bases are needed in the testing to further demonstrate 

the effectiveness of the developed case generation method. 

 

9.1.6 Fuzzy Integral-Based Competence Model 
 

In Chapter 7, a competence model is built based on fuzzy measures (Definition 7.1) and 

the corresponding fuzzy integral (Definition 7.3). The merits of this model include: (1) It 

is able to describe the interactions among case coverage due to the non-additive 

characteristic (Definition 7.2) of the fuzzy measure; (2) non-uniformed case distribution 

has been taken into account. Therefore, the fuzzy integral-based competence model can 

reflect the case base competence more accurately than the S-K model (see Section 7.2.1).  

 

Table 9.1 Comparisons of the fuzzy integral-based  

competence model and the S-K model 

Factors Fuzzy integral model S-K model 

Group Size √ √ 

Case density √ √ 

Case distribution √ × 

Overlaps of 

case coverage 
√ × 

 

Table 9.1 describes the comparisons between these two competence models. There are 

four factors which are considered to affect the case base competence: the size of the 

competence group; case density; case distribution; and the possible overlaps among the 

case coverage sets. Here “√” means that the factor has been taken into account; and “×” 

means that the factor has been ignored. From Table 9.1, the developed fuzzy integral-

based model is more comprehensive and can be used to case bases with different 

distributions. It can be considered as a generalization of the S-K model.  

 

However, there are various fuzzy measures and fuzzy integrals which have different 

characteristics and different number of parameters. Additional computational effort is 
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required determine the fuzzy measures, e.g., if there are n competence groups, 2n 

computations are needed. Therefore, this model can be applied when time is not the 

critical issue. On the other hand, the S-K model is appropriate when the case distribution 

is uniform and there is no overlap among case coverage sets. 

 

To summarize, this section provides a brief qualitative evaluation of the developed soft 

computing based techniques for case knowledge extraction. Firstly, we have discussed 

the similarity assumption in CBR, which works well in most CBR systems but may have 

some limitations in case-based recommender systems. The characteristics of each 

technique are then analyzed, including the advantages and disadvantages.  

 

9.2 Conclusions of the Research Work 
 

The whole research work is conducted in the context of CBR systems, especially CBR 

classifiers. We mainly consider three performance criteria: accuracy, efficiency and 

competence. Larger case bases require more case retrieval time and therefore degrade the 

problem-solving efficiency; on the other hand, these larger case bases enhance the 

competence and accuracy because they have more cases to cover the problems. How to 

make a balance between the efficiency and competence becomes a main issue in this 

research. Furthermore, in many real world situations, data and information collected are 

always incomplete, uncertain and vague, thus, the use of soft computing principles to 

achieve tractability, robustness and low solution cost is inevitable. Case knowledge 

extraction is the essential objective to build both compact and competent CBR systems. 

 

We have developed a set of soft computing based techniques for the extraction of case 

knowledge from data. They reduce the size of the case base through removing the 

redundancy and noises, as well as preserve the problem-solving ability in terms of 

competence. The built techniques include rough set based feature reduction, GA-based 

supervised algorithm for learning similarity measures, case selection based on case 

coverage and reachability and NN principle, rough LVQ based case generation, and fuzzy 

integral based competence model. Among these techniques, the rough set-based FR and 
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CS are the most important methods, which identify and remove both irrelevant features 

and noisy and redundant cases. Thus, the size of the case bases is reduced and therefore 

the efficiency is improved, and simultaneously the accuracy and competence of the case 

bases are preserved or even improved. The combination of the proposed FR and CS 

methods are tested and compared with traditional methods such as KPCA and SVM. The 

experimental results are very promising, and support our objective of trying to develop a 

compact and competent CBR system through case knowledge extraction.  Our proposed 

FRCS combination is much faster than KPCA and SVMs and can still achieves 

acceptable accuracy. When the updating of case bases and the retraining of SVMs are 

very frequent, the FRCS can also outperform KPCA and SVMs in terms of classification 

time. 

 

9.3 Future Work 
 

This section briefly discusses the possible future work in the aspects of similarity 

assumption, parameter determination, data distribution, case adaptation, and application 

to large case bases. These extensions target to overcome the limitations of the developed 

techniques for case knowledge extraction, which we have mentioned in Section 9.1. 

 

Throughout the research work, the conventional similarity assumption is used in case 

matching and retrieval. The assumption may not be applicable in situations that require 

diversity of solutions, e.g., a case-based recommender system. The future work may 

incorporate the measurement of case diversity. 

 

In the rough set-based feature reduction and case selection, the parameters, i.e., β and η, 

are determined empirically and also heuristics based. The values for these parameters 

may not be the global optimal. Therefore, in future work, we may apply some learning 

methods such as neural networks to optimize these values. However, additional training 

effort is required in the learning process. Therefore, new strategies may need to be 

developed to strike a trade-off between the “best” value and the cost of obtaining them.  
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As mentioned in Section 9.1.4, we have only considered cases from the homogeneous 

regions in the development of the case selection strategies. Therefore, our built case 

selection algorithms can not be directly used for heterogeneous data regions. We may 

tackle this problem by re-clustering the case bases to transform the heterogeneous 

distributions to homogeneous ones. Another possible solution is to enhance our 

developed prototypical case selection strategy, or combined with others.  

 

In Chapters 5 and 6, CS and CG methods are used to extract representative cases for the 

same purpose of reducing the size of case bases. The selected cases using CS forms a 

subset of the original case base and therefore have the same features. On the other hand, 

the generated prototypical cases using CG methods are not necessarily the original cases. 

A more comprehensive comparison study of the CS and CG methods is required in future 

work, which can provide readers better understanding of these techniques. Another 

straightforward further work is to consider more and larger real-life case bases in the 

testing in Chapter 6 to demonstrate the effectiveness of the GA-based learning method 

and the rough LVQ-based case generation. 

 

In the research work, three main criteria of storage requirement, classification accuracy, 

and problem-solving efficiency are taken into account in the performance evaluation of 

the developed techniques. However, adaptation ability of the solutions is also one of the 

important criteria to evaluate the problem-solving quality of the CBR systems. In the 

current research work, we have not investigated these properties much because of its 

domain-dependent characteristics. In our future work, for a given specific application 

domain, the adaptation of the retrieved cases may be considered and defined during the 

development of the soft computing techniques. This will make the whole research work 

be more complete for building efficient and effective CBR systems.  

 

A case study may be considered involving such a case base containing noise, redundancy, 

uncertainties in both features and cases. The developed techniques in this research are 

used to deal with the case base and extract case knowledge from it. This work may 

consist of the following stages: (1) selecting an appropriate problem domain such as 

 159



CHAPTER 10 Conclusions and Discussions 
 

diagnosis; (2) collecting raw data with features and solutions, i.e., symptoms and the 

corresponding diseases for the diagnosis problem; (3) applying the proposed techniques 

to handle the noise, redundancy and uncertainties that possibly contained in the collected 

data; (4) evaluating the performance based on accuracy, efficiency and solution quality; 

(5) improving the techniques based on the evaluation results. This will make the work be 

in a more consistent framework and in a more integrated manner. Note that, it does not 

necessarily using all the methods in one application. Whether a technique should be 

incorporated or not is determined by the characteristics of the problem domain and the 

requirement of systems or users. For example, if the features are carefully selected by the 

experts beforehand, the FR process can be ignored.   

 
Finally, it is a possible direction of our future work to use multi-objective optimization as 

an alternative way to achieve our objectives in case knowledge extraction. In this 

research, our main concern is to balance several different performance criteria such as 

efficiency and accuracy, either in individual task or overall task. Multi-objective 

optimization such as evolutionary computing is widely used to trade-off optimal solutions 

of multiple tasks and therefore should be appropriate method to fulfill the tasks in this 

work. Based on this idea, an optimization model is required to be built for each task in 

question. For example, in case generation, we can use GA to minimize the intra-distance 

and maximize the inter-distance. For a set of generated cases, the fitness function in GA 

may be defined as Ratio = Inter-distance/ Intra-distance. The objective is to maximize the 

Ratio value. However, it seems that the multi-objective optimization is not feasible to 

dealing with the overall task of case knowledge extraction. This is because that, (1) it is 

difficult to define a fitness function which can accurately reflect the relationship among 

efficiency, competence and accuracy; (2) the evolutionary algorithm requires substantial 

computational load. In each generation in the evolutionary algorithm, the fitness value is 

needed to be computed, which involves the computation of retrieval time, classification 

time for efficiency, case base competence and classification accuracy. Here each solution 

can be regarded as a weight vector of the features and cases, which evaluates the feature and case 

importance. 
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