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Abstract 

 

Positron emission tomography (PET) has been proven very promising for the 

evaluation of malignant tumors. However, 40-50% of hepatocellular carcinoma 

(HCC), one of the most common malignancies worldwide, could not be detected 

by the well-established 18F-fluorodeoxyglucose (FDG) PET. Recent research had 

demonstrated that 11C-acetate (ACT) was a complementary tracer to FDG and 

these 2 tracers together could maximize the detection accuracy of this tumor. 

Quantitative functional imaging techniques were, therefore, conducted to further 

characterize the underlying kinetic basis of this tracer in the detection of HCC. 

To describe the 11C-acetate molecular kinetic characteristics in liver, a three-

compartment model with dual-input function was proposed and a new 

physiological parameter called the “local hepatic metabolic rate-constant of 

acetate (LHMRAct)” was introduced. Preliminary results revealed that the 

LHMRAct of HCC was significantly higher than that of the non-tumor liver tissue. 

This tracer kinetic modeling technique provided the first quantitative and kinetic 

evidence that 11C-acetate was indeed metabolically incorporated in certain types 

of HCC. 

 

Since in real pathology, both tumor and non-tumor liver tissue can be 

heterogeneous in the distribution and proportion of the two hepatic blood 

supplies: hepatic artery (HA) and portal vein (PV). To further improve the 

accuracy of quantitative analysis, the individual proportion of HA/PV in different 
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regions of interest (ROIs) was studied by investigating another parameter called 

the “relative portal venous contribution to the hepatic blood flow (av)”. Results 

showed that the new model structure could provide better characterization of the 

11C-acetate kinetic behavior in liver.  The analysis was also able to provide a 

better understanding of the blood supply mechanism in the liver, proposing that 

the new parameter av, as a quantitatively derived vascular factor, might also 

provide useful diagnostic information for the detection of HCC.   

 

In the previous quantitative studies, all the individual model parameters 

were estimated by the weighted nonlinear least squares (NLS) algorithm. 

However, relatively large number of parameters needs to be estimated, which is 

a very challenging task. The computational time-complexity is high and some 

estimates are not quite reliable or even fail to convergence, which limits its 

application in clinical environment and is not practical for the generation of 

parametric images. In addition, liver system modeling with dual-input function 

is very different from the widespread single-input biomedical system modeling. 

Therefore, most of the currently developed estimation techniques are not 

applicable for the dynamic 11C-acetate PET images in liver. Several novel 

parameter estimation techniques: graphed NLS (GNLS), dual-input-generalized 

linear least squares (D-I-GLLS) and graphed dual-input GLLS (GDGLLS) 

algorithms were presented. When compared with the standard NLS fitting 

procedure, these novel methods provide better and practical ways for the clinical 

parameter estimation. In addition, GNLS and GDGLLS are extremely powerful 

for the estimation of the two potential HCC indicators: LHMRAct and av in the 

noisy clinical environment.  
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For the quantification of the dual-input liver system, both time-activity 

curves (TACs) of HA and PV are desired for the model input function. 

However, directly measuring them by the widely adopted blood sampling or 

cannulation procedure is invasive. Moreover, accurate measuring the TAC of 

PV in the human liver is difficult to achieve, as the tracer arriving at the PV is 

delayed and dispersed, and furthermore, the TAC of PV is considerably 

contaminated by the surrounding liver tissue, which makes it virtually 

impractical to differentiate the PV curve by the currently developed techniques. 

To noninvasively and efficiently access the portal venous blood flow, the 

effectiveness of modeling the dual hepatic blood supply was investigated. The 

fitting results revealed that the proposed double modeling technique could 

successfully account for the hepatic dual-input. Therefore, the tedious or even 

impractical task of measuring the PV curve could be avoided, which is very 

valuable for providing the functional parametric images to evaluate HCC. 

 

To perform the quantitative analysis, ROIs of both blood vessels and target 

regions need to be extracted. Manual placement of ROIs is subject to operator’s 

skill and time-consuming. Furthermore, the small size of some ROIs makes the 

task even more difficult. Two segmentation approaches based on cluster 

analysis were proposed to segment the dynamic 11C-acetate PET images in liver 

automatically. The curves extracted from the segmented ROIs were then fitted 

to the presented 11C-acetate liver models. With the obtainment of the HCC 

indicators, this devastating tumor can, therefore, be detected automatically.  
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Statements of Originality 

The following contributions reported in this thesis are claimed to be original. 

 

1. A new compartment model consisting of three compartments four 

parameters with dual-input function was proposed to describe the kinetic 

characteristics of 11C-acetate in hepatocellular carcinoma (HCC) and non-

tumor liver tissue. Clinical dynamic PET images of 11C-acetate in liver 

were used to test the models. The forward clearance rate K = 

K1*k3/(k2+k3) was estimated and defined as a new physiological 

parameter called the local hepatic metabolic rate-constant of acetate 

(LHMRAct) to different HCC from the non-tumor liver tissue. 

Preliminary results demonstrate that the LHMRAct of HCC is 

significantly higher than that of the non-tumor liver tissue. The model 

parameters could provide quantitative evidence and understanding on the 

kinetic basis of 11C-acetate for its potential role in the imaging of HCC 

using PET.  

 

2. A new model structure with an extra parameter included in the model 

dual-input function to account for the relative PV/HA contribution to the 

liver blood flow was presented. This new model structure and modeling 

technique can further improve the accuracy of quantitative analysis, 

provide a better understanding of the blood supply mechanism in liver 

and useful diagnostic information for detection of HCC, particularly in 
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situations when confounding hyperaemic variables such as dysplastic and 

regenerative nodules coexist in the setting of severe cirrhosis. 

 

3. A dual-input-generalized linear least squares (D-I-GLLS) algorithm was 

proposed to identify the parameters of 11C-acetate model with dual 

hepatic blood supply system. The quantitative analysis results suggest 

that the proposed technique could provide comparable reliability of the 

parameter estimation with NLS fitting and accurately identify the 

parameter in the dual-input function of 11C-acetate liver model. This 

method may be potentially applicable to other dual-input biomedical 

system parameter estimation as well. 

 

4. Two novel parameter estimation techniques: graphed NLS (GNLS) and 

graphed dual-input generalized linear least squares (GDGLLS) 

algorithms were presented for 11C-acetate dual-input liver model. Clinical 

and simulated data were utilized to test the proposed algorithms by a 

systematic statistical analysis. In comparison to the NLS fitting 

procedure, these two novel methods achieve better estimation reliability 

and are computationally efficient, which provides better and practical 

ways for the clinical parameter estimation, and they are extremely 

powerful for the estimation of the two potential HCC indicators: 

LHMRAct and av in the noisy clinical environment. 

 

5. To noninvasively and efficiently access the portal venous blood flow, we 

investigated the effectiveness of modeling the dual hepatic blood supply 



 x

with dynamic 11C-acetate PET. Clinical data fitting results reveal that the 

proposed double modeling technique could successfully account for the 

hepatic dual-input. Therefore, the tedious or even impractical task of 

measuring the PV curve could be avoided. In addition, this new model 

structure is very valuable for providing the functional parametric images 

to evaluate HCC in a much early stage.  

 

6. Two segmentation approaches based on cluster analysis were adopted to 

segment the dynamic 11C-acetate PET liver images to avoid manual 

placement of ROIs for 11C-acetate PET quantitative analysis.  
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Chapter 1      Introduction 

 

 

1.1    Introduction 

 

The last two decades have witnessed extraordinary innovation in medical 

imaging and its clinical significance in diagnosis and treatment of diseases is 

overwhelming. The medical imaging is often thought of visualization of 

anatomic structures and to evaluate malignant tumors it mostly emphasizes the 

relationship of structural changes in the body, as exemplified by detection of 

“masses” [1]. Indeed, x-ray computed tomography (CT) and magnetic resonance 

imaging (MRI) yield exquisitely detailed images of such changes which 

generally occur at the advanced stages of malignant tumors [2]. Up to the present 

day, the diagnosis and treatment of cancer have been primarily surgical. When a 

mass of an enlarged lymph node is detected somewhere in the body, immediate 

surgical attempts are made to remove it or to obtain a histological diagnosis by 

biopsy. Now things are changing, as we become increasingly able to characterize 

lesions by their molecular characteristics known as functional information by the 

use of medical imaging procedures as nuclear medicine.  
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We were taught that functional impairment precedes structural changes in all 

forms of human diseases and earlier detection and aggressive surgical treatment 

of a cancer would consistently lead to a better outcome for the patient. Nuclear 

medicine contributes significantly to the initial diagnosis of disease, assessment 

of response to therapy, and exploration of the natural history of disease, and is 

beginning to have an expanded role in therapy [3]. An area of the field of nuclear 

medicine with many applications and great potential is especially positron 

emission tomography (PET). The progression from the first experimental animal 

studies of 14C-labeled deoxyglucose used to measure functional brain activity by 

means of postmortem autoradiography in the early 1970s to the application of 

18F-fluorodeoxyglucose (FDG) PET on a routine clinical basis has been 

exhilarating for many diseases and physiologic evaluation, PET has shown itself 

to be superior to other imaging techniques [3]. Functional PET imaging with its 

unique capability of extracting quantitative physiological information from 

complex dynamic processes has opened a new window for scientific and 

biomedical research. It is well known that of all the existing imaging modalities, 

PET is the best instrumentation for absolute quantification of the 

functional/molecular status of the pathological and physiological systems of the 

human body. Based on this principle, PET has been documented by a significant 

amount of data in the literature for its ability to establish the diagnosis at a much 

earlier stage. Today, characterization of molecular processes in cancerous lesions 

by PET can additionally help to determine whether therapy should be aggressive 

or “watch and wait”. Furthermore, once active treatment is decided, PET imaging 

is increasingly used to determine the extent of the disease for treatment planning, 
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and when treatment has been undertaken, PET is used to monitor treatment effect 

and then to follow the patient, to look for signs of recurrence.  

 

Over the past 20 years, PET has matured into a powerful tool to 

quantitatively study regional metabolism, blood flow etc. of brain, heart and 

some other organs. However, studies of liver metabolism have been limited, in 

spite of the key role of the liver in the regulation of the metabolism and the 

unique possibility of studying metabolism in vivo by positron-labeled substrates 

[4]. Hepatocellular carcinoma is the predominant type of primary liver cancer 

and the most common malignancy worldwide in males. It is especially prevalent 

in parts of Asia and Africa. In Hong Kong, HCC is the second most common 

cancer in men and the sixth in women. It constitutes 9.5% of all new cancer cases 

and 12.5% of all cancer deaths per year. The definitive diagnosis of hepatoma is 

by histopathology. However, biopsy is often considered invasive and not a 

recommended procedure in patients with advanced liver disease and 

coagulopathy. Therefore, noninvasive alternatives to needle biopsy are required. 

The conventional methods for investigation of hepatoma include diagnostic 

imaging procedures using ultrasonography (USG), CT and MRI, evaluating the 

structural changes in the body.  In situations when the background hepatic 

parenchyma has severe cirrhosis, often intermixing with a variable degree of 

regenerative and dysplastic nodules, the diagnosis of HCC by these structural 

imaging modalities will be greatly limited. 

 

HCC is curable by surgery or liver transplantation only if the tumor is small, 

but tumor recurrence and /or metastasis are the major problems. Surgery or liver 
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transplantation may not be possible in all cases, usually if the tumor is very large 

or has spread beyond the liver. For large tumors or cancer that has spread beyond 

the liver, all the currently adopted treatment options are not curative. Most cases 

of HCC are discovered late and less than 10% are cured with surgical resection. 

Therefore, curative treatment of this aggressive tumor may be only at potentially 

early stages.  

 

The use of PET for the studying of liver diseases remains on cancer detection. 

It is well known that FDG is the most popular tracer for the measurement of 

malignancies due to the fact that cancer cells have a generally increased uptake 

of glucose. Therefore, most clinical PET scanning is performed with FDG as the 

radiotracer. However, 40-50% of HCC do not show increased FDG uptake. 

Therefore, innovative design of the tracer is desired for the evaluation of HCC. 

11C-labeled acetate traces the tricarboxylic acid cycle and has been shown to be 

closely correlated to oxidative metabolism and, thus, to be a marker of 

myocardial oxygen consumption [5]. Increasing number of clinical studies are 

performed with 11C tracers in oncology. The study by Ho et al. [6], [7] using a 

dual-isotope PET protocol: FDG and 11C-acetate, has suggested that the 

evaluation of HCC could be greatly aided by the introduction of 11C-acetate. 

Dynamic data would potentially resolve the time-related characteristics of the 

tumor status from other nontumorous processes, which are “lumped” together 

during static imaging. Therefore, quantitative studies would become crucial for 

accurately applying functional imaging techniques for establishing diagnosis of 

HCC. A suitable compartment model for describing the tracer kinetics and 

understanding the tracer biochemical mechanism in liver and HCC is the premise 
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for this research. Computer-aided kinetic modeling can hopefully resolve the 

model-related functional parameters, which would provide a better understanding 

on and correlation with the variable histopathology of this devastating tumor. 

Intelligent approaches of model-based quantitative image analysis for 

computerized diagnosis would in addition improve the sensitivity and specificity 

of the radiological PET images.  

 

In the following sections of this chapter, the general overview of PET, the 

principles of tracer kinetic modeling in PET and the parameter estimation 

techniques would be briefly described, followed by the introduction of the work 

which is to be presented in the subsequent chapters of this thesis. 

 

  

1.2    Principles of Positron Emission Tomography 

Imaging 

 
This section is designed to give the reader a general understanding of PET. 

PET is a noninvasive medical imaging technology that can generate high-

resolution images of human and animal physiologic functions. Figure 1-1 is a 

photograph of ECAT EXAT clinical PET scanner. PET is used for a variety of 

clinical applications in oncology, neurology, and cardiology, but the principal 

clinical application of PET is in oncology [3] since many oncologic questions 

have been addressed and most elegantly answered by employing PET. Figure 1-2 

displays a whole-body FDG image acquired on the GE Advance clinical PET 
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Figure 1-1: Photograph of ECAT EXACT clinical PET scanner (Courtesy of 
CTI Inc., Knoxville, TN.). 

 

 

scanner. PET is a technique for measuring the concentrations of positron-

emitting radioisotopes within the object by the use of external measurements of 

the radiation from these isotopes [8]. A PET study begins with the injection of 

inhalation of a positron-emitting radionuclide (tracer). The scan is begun to 

measure the distribution of tracers after a decay ranging from seconds to minutes 

to allow for transport to and uptake by the organ of interest. Positron-emitting 

radionuclides are used for imaging because of their unique tomographic 

capability and the availability of a group of metabolically important  
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Figure 1-2: Whole-body FDG image acquired on the GE Advance clinical PET 
scanner (Courtesy of GE Medical Systems, Waukesha, WI.). 

 

 

radionuclides [3]. The unique tomographic capability lies in the simultaneous 

emission of two back-to-back, 511-KeV gamma rays from a positron-labeled 

molecule and the tracer uptakes could be accurately quantified with its 

attenuation-correction. A PET scanner consists of a set of detectors that surround 

the object to be imaged and are designed to convert these high energy photons 

into an electrical signal that can be fed to subsequent electronics [9]. The signals 

are corrected for a number of factors and then reconstructed into a tomographic 

imaging using mathematical algorithms [9]. The medical importance of PET 

derives from the availability of many useful isotopes (11C, 13N, 15O, 18F), which 
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are essential elements of all living organisms and their physiological processes. 

Hence, tissue-specific and chemistry-specific tracers can be synthesized and 

injected into humans/animals to study the physiological functions of normal or 

pathological tissues in vivo. By taking a time sequence of images, the tissue 

concentration of the radiolabeled molecules as a function of time is measured, 

and with proper tracer kinetic modeling, the distribution of these positron-labeled 

compounds, as depicted by the tomographic images, may be converted into 

images of functional parameters such as metabolic rates, blood perfusion rates, 

and receptor densities [1]. 

 

1.2.1  Basic Physics of PET  

 

The nucleus of an atom consists of two types of nucleons: protons and 

neutrons. If a nucleus has either an excess number of protons or neutrons, it is 

unstable and prone to radioactive decay, leading to a change in the number of 

protons or neutrons in the nucleus and a more stable configuration [9]. One 

common method by which nuclei with an excess of protons may decay is through 

positron emission. Radionuclides that decay predominantly by positron emission 

are preferred for PET imaging. When the radio-isotope decays, it emits a positron, 

which travels a short distance before annihilating with an electron, producing two 

high-energy (511 KeV) photons (gamma rays) propagating in nearly opposite 

directions, which was shown schematically in Figure 1-3. The movement of 

information from one place to another by means of electromagnetic radiation in 

the form of photons forms the basis of PET imaging. If two photons are detected 

within a short (about 10ns) timing window (the coincidence timing window), an  
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Figure 1-3: The process of positron emission and subsequent positron-electron 
annihilation results in two 511 KeV annihilation photons emitted 180° apart. The 
site of annihilation is usually very close to the point of positron emission. 
 

 

event (called a true coincidence if neither photon is scattered) is recorded alone 

the line connecting the two detectors (sometimes referred to as a line of response 

(LOR)) [2].  

 

A PET scanner is designed to detect and localize the simultaneous back-to-

back annihilation photons that are emitted following decay of a radionuclide 

(Figure 1-4) [9]. With the detection of gamma-ray pairs by detectors outside the 

human body, tomographic images of the distribution of positron-labeled  
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Figure 1-4: Schematic drawing of a PET scanner consisting of a ring of high-
energy photon (gamma-ray) detectors. The detectors are designed to record as 
many of the annihilation photons as possible and to locate the line along which 
the decay occurred by determining the two interaction vertices. Typically, 106 to 
109 events are needed in a PET scan to reconstruct a statistically meaningful 
image of the distribution of radioactivity in the body. 

 
 

 

compounds can be generated by summing many true coincidences to 

approximate line integrals through the radioisotope distribution. For two-

dimensional (2D) imaging, these line integrals form a discrete approximation of 

the Radon transform of a cross-section of the object presented as a gray scale 

image with the detected count intensity of each pixel [8], which is the theory 

basis for image reconstruction. Figure 1-5 depicts the basic physics of PET. 
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Figure 1-5: Diagram of the basic physics of PET. 

 

1.2.2  Measurement of Radioisotope Concentrations 

 

As aforementioned, the end result of PET acquisition and image 

reconstruction is an image representing the count density of each pixel. One of 

the advantages of PET over some other imaging modalities is that it can 

accurately determine the activity concentration of the radiotracer [9]. To do this, 

it is necessary to calibrate the efficiency of the system since a PET system will 

detect only a fraction of the emitted radiation. The usual method of calibration 

requires the measurement of a source of positron emitter by the PET system, 

usually as a uniform solution of activity in a cylindrical container much larger in 
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all dimensions than the spatial resolution of the tomograph. This is followed by 

the measurement of the amount of activity in an aliquot of the solution with a 

calibrated radiation detector, such as a well counter. This type of calibration will 

give the efficiency of the response of the system in terms of activity per unit 

volume or concentration. Thus, every picture element in the PET image can be 

scaled by this calibration factor to equal to the activity at that location in the 

subject and the activity in an organ can be determined by summing over an 

appropriate region of interest (ROI) in the image itself. If they are suitably 

calibrated, PET images yield quantitative estimates of the concentration of the 

radiopharmaceutical at specific locations within the body.  

 

1.2.3  Limitations of PET 

 

The major limitations of PET are 1) the cost of providing PET imaging, 2) 

the technical and logistic complexities, all resulting in a limited availability of 

PET facilities [5]. Ideally, the value in each pixel of a PET image is equal to the 

concentration of positron emitter at that point in the subject’s body. In practice, 

as in all measurements, there are sources of error in the technique, and an 

understanding of these sources of error is required for the proper interpretation of 

results of PET measurements.  
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1.3    Principles of Tracer Kinetic Modeling in PET 

 

As stated above, of all the existing imaging modalities, PET is the best 

instrumentation for absolute quantification of the functional/molecular status of 

the pathological and physiological systems by using tracer kinetic modeling 

techniques. If a dynamic sequence of images has been acquired, the kinetics of 

the radiopharmaceutical can be modeled as a linear dynamic system with the 

arterial concentration of radioisotope in the blood as the input and the PET 

measurement as the output. The state variables are the concentrations in different 

compartments of the tissue. The exchange rates between the compartments are 

parameters of the models. Acquiring a series of images sequentially after 

injection yields a time-course of the sum of the quantity of tracer in each 

compartment, i.e., of the output of the model, which can be used to estimate the 

model’s parameters. These parameters can then be used to calculate 

physiological parameters of interest, such as blood flow, glucose metabolism, 

receptor binding characteristics, etc. thus, PET can be used for precise 

quantitative measurements of specific physiological quantities [2].  

 

1.3.1  Tracer Kinetic Techniques 

 

Tracer kinetic techniques have its roots in pharmacokinetics, and are 

generally used in physiology and biochemistry as well to trace dynamic 

processes, such as blood flow, substrate transport, and biochemical reactions [8]. 

In tracer kinetic techniques, an appropriate tracer is required to follow the 
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dynamic process of interest. Usually, a tracer must either be structurally related 

to the natural substance involved in the dynamic process or have similar transport 

properties. Furthermore, the tracer must be measurable and distinguishable from 

the natural substance that it intends to trace. The tracer introduced is assumed to 

be in a trace amount, so that the process being measured is not perturbed by the 

introduction of the tracer. The dynamic process being evaluated with a tracer 

kinetic technique is usually assumed to be in a steady stage. It has been 

demonstrated that the diagnostic modeled parametric images can be far superior 

to simple static maps of tracer uptake. In the context of clinical applications, the 

generation of parametric images should be emphasized over ROI-based 

modeling. To interpret the data, tracer kinetic models are developed for each 

radiopharmaceutical to convert the radioactivity images into measurements of 

physiologically relevant variables such as blood flow, metabolism, and receptor 

number etc.. The time-activity function can be substituted with any tracer kinetic 

model that is linear in the unknown parameters.  

 

For tracer kinetics, there exist various kinds of mathematical models of 

different mathematical characteristics --- deterministic versus stochastic, 

distributed versus nondistributed, compartmental [10] versus noncompartmental 

[11], and linear versus nonlinear [8]. For most PET analysis, linear 

compartmental models are most preferred, because of their attractive 

mathematical properties to provide adequate parameter estimates.  
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1.3.2  Compartment Model 

 

The basis of a compartment in a system is one of lumping material with 

similar characteristics into discrete collections that are homogeneous and behave 

identically [12]. Compartment models attempt to describe the kinetics of an 

underlying process through the use of interconnected pools of a tracer in a 

particular form or space [9], [12]. The interconnections represent a flux of 

material, which physiologically, represent transport or a chemical transformation, 

or both. Linear interconnections are often constant values which can vary from 

tissue region to region but are not dependent on tracer mass or time. Although 

most physiological and biomedical processes are nonlinear, as far as tracers are 

concerned they often behave linearly (or approximately linearly) with regards to 

transport or chemical reactions due to the fact that the mass of tracer is typically 

much less than its natural counterpart [13]. The fundamental property that 

governs a complete tracer kinetic model is mass balance, which means that the 

rate of change of mass for a given compartment must equal the net mass coming 

in per unit time into a pool minus the net mass leaving per unit time. The related 

mathematical equations describing the compartment models are often referred to 

as state equations. The most general two-pool model structure was shown in 

Figure 1-6. This model has 6 nonnegative parameters: k21, k12, k01, k02, V1, V2; a 

maximum of two independent input variables u1(t) and u2(t); and a maximum of 

two possible independent measurement (output) variables y1(t) and y2(t) in pools 

1 and 2, denoted by broken lines. The k’s are (fractional) rate constants, with 

dimensions of time-1; the V’s are volumes; the u’s are mass flux rates (mass/time); 

and the y’s may be concentrations (mass/vol) or amounts (mass/vol).  
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Figure 1-6: The most general two-pool model structure. 

 

 

The two major factors that determine the tracer kinetics in tissue are the input 

function and the model configuration. In general, tracer kinetic models cannot be 

developed from tracer kinetic measurements alone. A priori knowledge must be 

utilized to determine the model structure. Kinetic measurements then can 

evaluate the validation of the model structure. When an accurate compartment 

model has been validated, accurate estimates of the biochemical and/or 

physiological parameters can be provided. 

 

1.3.3  Measurement of the Input Function  

 

As stated above, tracer kinetic modeling with PET requires measurements of 

the time-activity curves (TACs) in both blood and tissue to estimate the 

parameters. The blood TAC is usually referred as the model input function. The 
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usual method of obtaining the input function is to catheterize an artery of the 

subject and to take a series of blood samples following the injection of the 

positron emitter. The blood samples must be obtained with a frequency and over 

a length of time adequate to define the level of activity and shape of the input 

function. The frequency of sampling depends on the rate of injection and the rate 

of clearance of the activity from the blood. The length of time of sampling 

depends on the kinetics of the process being measured. The requirements of the 

sampling must be determined on an individual basis for each procedure.  

 

The cannulation procedure is in general very invasive and time-consuming. 

Two methods have been developed to avoid arterial puncture in the measurement 

of the input function. The first takes advantage of the fact that, when the 

temperature of the hand is raised, there is dilation of the blood vessels and the 

blood in the surface veins is effectively arterialized [14]. This produces a very 

high blood flow in the hand without an increase in metabolic function, and the 

extraction of substrate in the hand is typically small. This method will probably 

be valid in those cases in which the rate of injection and rate of change of activity 

in the blood are relatively slow and the normal temperature extraction of the 

tracer into the tissue of the hand is relatively low. The second method uses the 

PET system to measure the amount of activity in the left ventricle, aorta, or other 

large artery as a function of time [15]-[19]. These image-based approaches have 

the advantages of being noninvasive but always require that the system be 

capable of accumulating images rapidly enough to satisfy the temporal sampling 

requirements of the particular input function. 
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1.3.4  Model Validation  

 

Validation of a model is an important step before using it to extract 

information from the measured data. Kinetic validation aims to determine if the 

model prediction of TACs is consistent with the observed data. If the difference 

between the predication and the observation are randomly distributed about zero, 

which would indicate that the model is a good representation of the data. Large 

standard errors of the parameter estimates usually imply that the model has too 

many parameter unless the data are extremely noisy [9]. Regardless of the exact 

methods used to perform model validation, it is never the case that a model is 

proven to be true by the validation process. The validation process simply helps 

support to use the model to estimate the process. 

 

 

1.4    Parameter Estimation in PET 

 

To perform quantitative study and generate the physiological parametric 

image, parameter estimation is required. The goal of parameter estimation is to 

mathematically extract useful “information” from measured data. In PET, 

parameter estimation techniques are employed both in the validation of new 

tracer kinetic model and in its subsequent application to patient protocols. The 

most robust method for the estimation of model parameters is weighted nonlinear 

regression [20]. Weighted nonlinear regression is an iterative process in which 

starting estimates of all parameters along with equations that govern a particular 
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model are used to generate a refined estimate of the parameter. This approach is 

repeated until some criteria are met for achieving convergence [9]. Typically, we 

aim to minimize the square of the difference between the observation and model 

prediction for all observations referred to as the weighted residual sum of squares 

(WRSS). For analyzing the estimation results, some common procedures, 

including the tests for significance of parameter estimates, model differentiation 

and validation and goodness of fit, etc., could be adopted. Image-wide parameter 

estimation for parametric imaging has stimulated the exploration of many fast 

algorithms due to the time-complexity of the nonlinear regression and its 

difficulty in convergence when the data are very noisy.  

 

Tracer kinetic modeling and parametric quantification techniques for FDG, 

the most clinically useful cancer imaging tracer today, have been studies 

extensively with different degrees of refinement, simplification, and compromise 

between practicality and accuracy [2]. Figure 1-7 gives an example of key 

requirements and processes in generating brain parametric or quantitative 

functional images using PET and glucose tracer FDG. 
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Figure 1-7: Main requirements for quantitative physiological parameter 
estimation. The activity of the radiotracer is measured quantitatively over time 
along with the activity in plasma, after the introduction of FDG. The 
physiological parameters of interest are estimated by applying a mathematical 
model (compartment model) to the data.  

 

  

1.5    Organization of the Thesis 

 

This thesis will be organized into eight chapters. Chapter 1 presents the 

general background of the application of PET in oncology, the clinical difficulty 

in detecting HCC in a much early stage, the principles of PET imaging, tracer 

kinetic modeling techniques, and the parameter estimation techniques used for in 

vivo measurement of physiological parameters.  
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Chapter 2 conducts quantitative dynamic modeling to evaluate the kinetic 

characteristics of 11C-acetate in HCC and non-tumor liver tissue. The model 

parameters could provide quantitative evidence and understanding on the kinetic 

basis of 11C-acetate for its potential role in the imaging of HCC using PET. A 

three-compartment model consisting of four parameters with fixed weight dual-

input function is proposed and compared with that of five parameters. Clinical 

dynamic datasets extracted from six patients are used to test the presented model 

candidates. Estimation of the adequacy of these models is based on Akaike 

Information Criteria (AIC) and Schwarz Criteria (SC) by statistical study. The 

forward clearance K=K1*k3/(k2+k3) is estimated and defined as a new parameter 

called the local hepatic metabolic rate-constant of acetate (LHMRAct) to find 

whether it could be used to differentiate HCC from the surrounding liver tissue.  

 

Chapter 3 quantifies the individual contribution ratio of the hepatic artery 

(HA)/portal vein (PV) to the dual hepatic blood supply in different ROIs to 

further improve the accuracy of quantitative analysis since in real pathology, 

both tumor and non-tumor liver tissue can be heterogeneous in the distribution 

and proportion of the two blood supplies. A new model structure is presented by 

including an extra parameter av in the model input function to describe the 

contribution of PV to the liver. The new model structure is also intended to find 

more diagnostic information for the early detection of hepatic metastases.  

 

Chapter 4 develops a novel fast algorithm: dual-input-generalized linear least 

squares (D-I-GLLS) to identify the 11C-acetate dual-input model parameters 

including the parameter in the dual-input function. Although a variety of fast 
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parametric imaging techniques have been developed, most of them focus on 

single input systems, which do not provide optimal solution for dual-input 

biomedical system parameter estimation, which is the case of liver metabolism.  

 

Chapter 5 presents two novel statistically reliable and computationally 

efficient parameter estimation techniques: graphed NLS (GNLS) and graphed 

dual-input generalized linear least squares (GDGLLS) algorithms for 11C-acetate 

dual-input liver model. The computational time-complexity of NLS method is 

high and some estimates are not quite reliable or even fail to convergence, which 

limits its application in clinical environment and is not practical for the 

generation of parametric images. In addition, liver system modeling with dual-

input function is very different from the widespread single-input biomedical 

system modeling. Therefore, most of the currently developed estimation 

techniques are not applicable for the liver 11C-acetate-PET images.  

 

Chapter 6 investigates the effectiveness of modeling the dual hepatic blood 

supply with dynamic 11C-acetate PET to noninvasively and efficiently access the 

portal venous blood flow. Measurement of the PV curve is a tedious or even 

impractical task, therefore, the new model structure will be very valuable for 

providing the functional parametric images to evaluate HCC in a much early 

stage.  

 

Chapter 7 applies the cluster analysis to segment the dynamic 11C-acetate 

PET images in liver automatically. Manual placement of ROIs is subject to 

operator’s skill and time-consuming. Furthermore, the small size of some ROIs 
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makes the task even more difficult. Two approaches based on cluster analysis 

will be adopted to segment the dynamic images.  

 

Chapter 8 concludes the work described in this thesis. A brief discussion of 

future work that relates to the present work will also be provided.  
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Chapter 2      Tracer Kinetic Modeling of 11C-
Acetate Applied in the Liver with Positron 
Emission Tomography 
 

 

 

2.1    Introduction 

 

The hallmark of positron emission tomography (PET) is its ability to quantify 

in vivo the physiological and biochemical processes in humans using 

intravascularly injected PET tracers. Kinetic modeling using 18F-

fluorodeoxyglucose (FDG) is well established for measurements of many 

physiological parameters, but little attention has been given to the quantitative 

evaluation of liver metabolism, in spite of its central role as the “power house” of 

the human body. The use of PET for the studying of liver disease has been 

mostly in the detection of liver tumors [4]. Hepatocellular carcinoma (HCC) is 

the most common malignancy worldwide in men. Its occurrence is much higher 

in the Asian and African locality due to the prevalence of hepatitis B and C, in 

addition to other associated factors including cirrhosis and mycotoxins. Chronic 

infection with the hepatitis B virus and hepatitis C virus also increases the risk of 

developing HCC. It is one of the top three causes of cancer death in many Asian 

localities including China, Taiwan, Singapore and Japan. The disease is also 

believed to be in an upward trend in America due to the increasing frequency of 
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hepatitis C viral infection [21] and it is also a common cause of cancer deaths 

among Asian immigrants. Since the majority of patients present with advanced-

stage malignancy are common associated with chronic liver disease and 

underlying cirrhosis, treatment options remain limited [7]. Poor hepatic 

functional reserve due to underlying cirrhosis is the major factor which limits 

extended surgical resection in many cases [22]. In these circumstances, less than 

10% could be cured with surgical resection. Overall 5-year survival rate is less 

than 5% [23], [24]. Therefore, early and accurate diagnosis of HCC will increase 

the chance of cure and survival in these patients, lower the rate of recurrence and, 

hopefully, may prolong survival. 

 

The rate of glucose metabolism (glycolysis) is increased in many forms of 

malignant tumors. It is directly correlated with tumor proliferation. The 

investigation of tumor kinetics by FDG-PET imaging has recently suggested that 

HCC has a non-zero dephosphorylation kinetic constant k4 [25]. A non-zero k4 is 

due to the presence of the enzyme glucose-6-phosphatase in HCC, the abundance 

of which leads to leakage of the trapped FDG metabolite back to the circulation. 

This may account for one of the reasons that 40-50% of HCC are not FDG-avid. 

This is regarded as the Achilles’ heel of FDG-PET in the evaluation of liver 

tumors and is clearly not acceptable in countries where this tumor is one of the 

top three causes of cancer deaths.  

 

Recently we have investigated the usefulness of 11C-acetate in imaging HCC 

and other liver masses. Preliminary research findings have suggested that this 

agent might have a great potential role as a complementary tracer to and perhaps 

 25



 

Figure 2- 1: CT demonstrates a hypervascular lesion in the L lobe of liver (status 
post R lobectomy for HCC); FDG imaging shows no abnormal FDG uptake; 11C-
acetate imaging shows increased metabolism. 

 

 

a better tracer than FDG [6] [7]. Figure 2-1 demonstrates a case of recurrent 

HCC in the left lobe of liver after right lobectomy. CT shows hypervascularity 

within the tumor. FDG-PET imaging shows no abnormal FDG uptake by the 

tumor, whereas 11C-acetate PET imaging shows increased metabolism. 

 

11C-acetate has been extensively validated as a PET tracer for the 

noninvasive assessment of regional myocardial oxygen consumption and 

myocardial blood flow [26]-[36]. It is also a useful tracer for urologic tumors 
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[37]. However, little data exist in the literature regarding the investigation of 11C-

acetate on HCC before Ho et al. [6]. The exact metabolic pathway of 11C-acetate 

within tumors such as HCC is not well understood, although participation 

through acetyl-CoA in Beta oxidation for free fatty acid synthesis is thought to 

be the preferred biochemical method of incorporation. Application of kinetic 

modeling techniques may in addition provide improved understanding of these 

complex biokinetic processes [38]. In this chapter, a three-compartment four-

parameter (4-P) kinetic model with dual inputs for evaluation of 11C-acetate 

metabolism in liver was proposed. Comparison of this 4-P model and a three-

compartment five-parameter (5-P) model with dual inputs was conducted. A new 

physiological parameter called the “local hepatic metabolic rate-constant of 

acetate (LHMRAct)” was introduced to characterize the regional consumption of 

acetate by both tumor and non-tumor tissue of the liver.  

 

 

2.2    Methods 

2.2.1  PET Scanning 

      

An ECAT-EXACT 47 PET scanner (CTI/Siemens, Inc., TN, USA) was used 

for transaxial (septa-extended) dynamic image acquisition. Full sets of dynamic 

data in one single position, covering the liver dome and apical half of the left 

ventricle to the inferior part of liver, were obtained for 10 min immediately 

following bolus IV injection of 11C-acetate. Sampling acquisition sequence was 

as follows: 4 sec frames x 10, 10 sec frames x 8, 30 sec frames x 2; 60 sec frames 
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x 3 and 120 sec frames x 2, a total of 25 frames. Standard static PET imaging 

covering the entire liver was also performed from 10-20 minutes. Then FDG was 

injected and FDG-PET imaging was performed 1 hour later (allowing more than 

4 half-life decay for 11C-acetate). 

      

2.2.2  Human Studies 

 

Six patients, all are hepatitis B carriers, including two with HCC, were 

recruited into the study. Ten regions of dynamic datasets, two from HCC regions, 

were extracted. 

 

2.2.3  Blood Time-Activity Dual-Input Functions 

      

The tracer time-activity curve (TAC) in blood (BTAC) cb(t) was used as the 

input function in the kinetic model. BTAC is usually represented by a sequence 

of arterial or arterialized blood samples. However, blood sampling is in general 

very invasive and requires extra personnel and processing time. Several 

noninvasive techniques have been proposed by some researchers. One was 

proposed to extract the input function together with the physiological parameters 

from the dynamic images [39], [40]. Chen et al. [41] had reported using TAC 

obtained from the region of interest (ROI) drawn on the target organ during 

dynamic PET imaging as an input function. The utilization of image-derived 

input function has been more commonly used in quantitative PET studies of the 

heart [42]. The reliability of using BTAC obtained directly by drawing a ROI 
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over the left ventricle (LV) or the left arterial region were investigated in [43]. 

Double modeling approach for dynamic cardiac studies with PET to estimate 

physiological parameter was also proposed [44].  

 

The liver has a dual source of blood supply, receiving oxygenated blood from 

the common left and right hepatic arteries (HAs) and nutrient-rich blood via the 

portal vein (PV) [45]. Therefore, the use of arterial input may, however, 

introduce systematic errors in the estimated kinetic parameters because of the 

ignorance of the hepatic dual blood supply from the HA and the PV to the liver 

[4]. It is highly invasive and virtually impossible in clinical settings to count the 

radioactivity of the portal venous blood by direct catheterization and sampling. 

For the modeling method, the existence of dual blood supply in the liver would 

necessitate twice the number of parameters required for full characterization. For 

preliminary investigation, this method of modeling appears impractical. 

Therefore image-derived BTAC appears to be the only option at the moment. 

 

In this work, the BTAC was obtained directly from PET images 

measurements. To reduce the scattering effect of radioactivity from the adjacent 

tissue, the contribution from the HA was approximated by evaluating the TAC of 

the abdominal aorta adjacent to the liver instead of the LV. The contribution 

from the PV was evaluated by direct activity-time measurement. The tracer 

arriving at the PV is delayed and dispersed when compared with that of the HA, 

making its activity similar to that of the tracer in the non-tumor liver tissue. 

Therefore, it is difficult to differentiate the PV from the surrounding hepatic 

parenchyma. However, its location may still be identified by its invariable 
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anatomical position being posterior to the pancreatic head that shows the most 

intense physiological uptake of 11C-acetate, or by direct reference to the CT 

images. The radioactivity spillover from the surrounding tissue to the PV is 

significant, especially at the later part of the study when the tracer concentration 

in tissue is much higher than that in the PV. Munk, et al. [4] suggested that the 

difference between the two blood TACs was most pronounced around the peak 

and immediately after the bolus injection. After some time they are virtually 

identical. Therefore, the last five measurements of the TACs of the PV from PET 

images were replaced by the HA data in this study. To strike a reasonable 

statistical balance without compromising physiological requirement, in this 

chapter, the BTAC was measured empirically by using fixed weights from these 

two blood supply inputs, viz. 20% contribution from HA and 80% from PV 

according to their approximate percentage perfusion to the non-tumor liver tissue. 

Thus the dual-input function was calculated according to 

              ( ) %80)(%20)( ×+×= tctctc vab                                                         (1) 
 
where ca(t) is the tracer concentration in the HA and cv(t) is the tracer 

concentration in the PV. However, the majority of the blood supply to the tumor 

is from the HA rather than the PV, accordingly, the weights of tumor used was 

80% or 60% contribution from HA. The weight determination for different ROIs 

would be further studied in Chapter 3. Figure 2-2 shows an example of typical 

blood TACs from the HA, the PV and the weighted dual-input function for the 

non-tumor liver tissue. 
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Figure 2- 2: Typical TACs of the HA, PV and weighted dual-input function of 
the non-tumor tissue. Solid line stands for the weighted dual-input, solid line 
marked by “�” is for the HA and “×” for the PV. The greatest activity difference 
among these 3 curves is during the initial radionuclide angiographic phase. 

                           

 

In this preliminary study, the metabolites of 11C-acetate in blood were not 

taken into consideration in order not to complicate the issue of defining the 

suitable model. Also no correction was made for the noise scatters of the inputs. 

 

2.2.4  Liver Kinetic Model for 11C-Acetate    

 

It is not just a clinical observation that HCC may display variable tumor 

kinetics. Early research on rat hepatomas had suggested that the patterns of 

 31



glycolytic enzymes might reflect hepatoma cell growth, function, and graded 

dedifferentiation [46]. Preliminary study shows that in some cases, FDG and 11C-

acetate are taken up by different parts of the tumor, suggesting that mixed 

pathology with dual tracer kinetics could exist within these tumors. Past 

researches on PET tracer kinetic modeling have been reported [47]-[49], but 

there is no data on kinetic modeling of 11C-acetate PET images in liver. Acetate 

is enzymatically converted into acetyl-CoA in the liver [50], and then enters the 

Kreb’s Cycle. In the liver, the role of Kreb’s Cycle is more complex than in heart 

muscles [50]. Although the exact biochemical mechanism of 11C-acetate 

accumulation within HCC is not completely defined, there is evidence that 

acetate is channeled to acetyl-CoA for fatty acid (lipid) synthesis in tumor cells, 

instead of being metabolized to CO2 through the Kreb’s cycle [51].  It is 

therefore reasonable to assume that only one compartment is needed for all of the 

metabolites in the liver/tumor tissue. A three-compartment model, as shown in 

Figure 2-3, was proposed in this study. The left compartment of this model 

represents the intravascular 11C-acetate concentration. The center compartment 

represents the intracellular 11C-acetate concentration. The right compartment 

represents the intracellular products/metabolites converted from 11C-acetate 

(acetyl-CoA, and metabolites of fatty acid synthesis). K1 represents the first order 

rate constant for the transport of 11C-acetate from blood to tissue, k2 for reverse 

transport of 11C-acetate from tissue to blood, k3 for conversion of 11C-acetate to 

its products/metabolites, and k4 for back conversion from the 

products/metabolites to 11C-acetate. It should be noted that although the real 

biological system is complex, this compartmental approach, nonetheless, 

represents a rather reasonable estimation for global physiological function [38].  
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Figure 2- 3: Three-compartment liver kinetic model for 11C-acetate. 

 

 

Since the number of compartments of this proposed 11C-acetate liver model is the 

same as that of the FDG model originally proposed by Sokoloff et al. [47] and 

further extended by Huang et al. [49] and Phelps et al. [48], the differential 

equations to the 11C-acetate liver model share the same form as the FDG model 

               )()()()()( 4321 tcktckktcKtc
dt
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mebe ++−=                                         (2) 
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where cb(t) is the 11C-acetate concentration in the whole blood calculated by 

equation (1), ce(t) is the free 11C-acetate concentration in intracellular space, cm(t) 

is the intracellular products/metabolites concentration, ci(t) is the sum of ce(t) and 

cm(t). The solution of ci(t) in terms of macroparameters is 
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B1, B2, L1, L2 are the macroparameters in the model and ⊗  denotes the operation 

of temporal convolution. If k4 approaches zero, for simplicity, letting k4 be zero, 

thus the macroparameters of the model were given by 
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The total activity of tracer in tissue includes both the activity of hepatic 

parenchyma and the activity within vascular/sinus space of liver tissue. As the 

blood volume in the liver is fairly large, a hepatic blood volume (HBV) term was 

included in our proposed 11C-acetate model to account for this effect. The 

observed total tissue activity cT(t), is  

               )()()( tcHBVtctc biT ×+= .                                                                 (7) 
 
 
With the measurements of both BTAC cb(t) and TTAC cT(t), the parameters of 

the 4-P (without k4) and 5-P (with k4) models were estimated by the weighted 

non-linear least square (NLS) method. 

  

2.2.5  Statistical Study    

 

The weighted NLS algorithm was used to numerically evaluate all the 

individual parameters. Statistical analysis, such as standard deviation (SD), 
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coefficient of variation (CV) etc., was performed. The CV of a parameter 

estimate was calculated from 

              %100×=
P

SDP
PCV                                                                              (8) 

 
where P is the parameter estimate and SDP is the standard deviation of P. Model 

parameters were estimated by minimizing the weighted residual sum of squares 

(WRSS) [4]. In this chapter, the weights used were proportional to the frame 

duration divided by the concentration value of that time point. The three-

compartment 4-P and 5-P models were used to fit the clinical data. The best 

model fitted to the data is not necessarily the model producing the smallest 

WRSS, because adding more parameters generally decreases the WRSS [4]. The 

Akaike Information Criteria (AIC) [52] and Schwarz Criteria (SC) [53] were 

used to test which one is better. The AIC and the SC were given by (We assume 

that the data variances are known up to a constant) 

              PNWRSSNAIC 2)ln( +=                                                                    (9) 
 
              NNWRSSNSC P ln)ln( +=                                                                (10) 
 
where NP is the number of parameters in the model, and N is the number of data 

points. The best model by the AIC or SC is the one that minimizes the AIC or SC 

respectively. The AIC or SC provides a balance between data fitting precision in 

the first term and minimum dimensionality in the second [52], [53]. 

 

2.2.6  Model Estimation of the LHMRAct 

 

The newly proposed physiological parameter LHMRAct was calculated using 

the following formula 
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where K1 to k3 can be derived from the results of NLS fitting. When k4 is 

assumed to be zero, Patlak analysis [54] can also be applied to this study. The 

ratio of cT(t) and cb(t) can be calculated by 
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The data points within the period 3 min to 10 min were chosen to estimate the 

LHMRAct using Patlak method. The fitting results were compared with those 

obtained from the NLS methods by correlation analysis. 

  

 

2.3    Results and Conclusion 

      

Both the weighted NLS algorithm and the linear Patlak analysis were used 

for parameter estimation. The 11C-acetate clinical data from ten ROIs were 

analyzed to test the 4-P and 5-P models and several statistical criteria were used 

to validate their adequacy. Results were given as the estimated value ± SD. The 

parameter estimates by the weighted NLS algorithm for the 4-P and 5-P models 

were summarized in Tables 2-1 and 2-2. As seen in Tables 2-1 and 2-2, the 

estimated values of the same parameter for the two models are approximated to 

each other, but the CVs of the estimated parameters for the 4-P model are far 

smaller than those for the 5-P model. For the 5-P model, the CVs of the estimated  
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Table 2- 1: Estimation results of the three-compartment 4-P 11C-acetate liver 
model with dual-input function. 

 
Estimated                                    Parameters Criteria Datasets 

number K1 (ml/min/ml) k2 (min-1) k3 (min-1) HBV AIC SC 
1 0.652±0.048 0.312±0.059 0.085±0.030 0.038±0.020 181.1 185.9 
2 0.731±0.064 0.284±0.065 0.064±0.035 0.047±0.027 197.4 202.3 
3 0.759±0.033 0.290±0.031 0.051±0.016 0.036±0.015 164.0 168.9 
4 0.456±0.019 0.237±0.029 0.075±0.020 0.383±0.012 144.2 149.1 
5 0.461±0.034 0.245±0.052 0.072±0.035 0.367±0.023 173.6 178.5 
6 0.709±0.068 0.509±0.090 0.170±0.023 0.362±0.030 165.2 170.0 
7* 1.251±0.068 0.364±0.046 0.113±0.019 0.125±0.028 189.1 194.0 
8 0.996±0.055 0.254±0.038 0.042±0.024 0.140±0.028 176.5 181.4 
9 0.704±0.073 0.344±0.087 0.102±0.039 0.030±0.029 178.4 183.3 

10* 0.806±0.071 0.280±0.124 0.472±0.132 0.100±0.022 168.5 173.3 
 
* Regions 7 and 10 represent HCC. The input functions of regions 7 and 10 are 
80% and 60% contribution from HA respectively. 

 

Table 2- 2: Estimation results of the three-compartment 5-P 11C-acetate liver 
model with dual-input function 

 
Estimated                                     Parameters Criteria Datasets 

number K1 (ml/min/ml) k2 (min-1) k3 (min-1) k4 (min-1) HBV AIC SC 
1 0.660±0.063 0.327±0.122 0.101±0.184 0.015±0.285 0.037±0.023 184.0 190.1 
2 0.747±0.460 0.314±0.182 0.090±0.290 0.019±0.245 0.045±0.031 200.3 206.4 
3 0.780±0.199 0.321±0.045 0.078±0.125 0.046±0.265 0.029±0.018 165.7 171.8 
4 0.455±0.094 0.238±0.137 0.085±0.102 0.039±0.237 0.383±0.016 146.7 152.8 
5 0.463±0.361 0.254±0.250 0.084±0.035 0.023±0.252 0.365±0.029 176.0 182.1 
6 0.722±0.093 0.540±0.280 0.196±0.038 0.025±0.069 0.359±0.035 166.0 172.1 
7* 1.262±0.246 0.378±0.219 0.130±0.024 0.024±0.103 0.120±0.031 190.6 196.7 
8 1.015±1.223 0.257±0.156 0.042±0.088 0.018±0.342 0.130±0.031 178.2 184.3 
9 0.743±0.356 0.372±0.212 0.109±.0.276 0.028±0.399 0.021±0.035 178.8 184.9 

10* 0.804±1.142 0.283±0.557 0.498±0.209 0.010±0.018 0.096±0.023 170.0 176.1 
 
* Regions 7 and 10 represent HCC. The input functions of regions 7 and 10 are 
80% and 60% contribution from HA respectively. 

 

 

K1 range from 9.5% to 77.8% except regions 8 and 10, where CVs of K1 are 

121% and 142% respectively. The CVs of the estimated k2 range from 13.9% to 

98.5% except region 10 (where CV of k2 = 197%). Only four CVs of the 

estimated k3 among the ten sets of data are less than 100% and the CVs of the 

estimated k4 are far from acceptable. The CVs of the estimated HBV are generally 
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acceptable except region 9. Since the estimated k4 values for the 5-P model are 

very small and are less reliable for interpretation, it is reasonable to assume k4 to 

be zero during the first 10 min dynamic scan. For the 4-P model, the maximum 

CV of the estimated K1 is 10.4% (for region 9). The CVs of the estimated k2 range 

from 10.7% to 25.2% except region 10 (where CV of k2 = 44.2%). The CVs of 

the estimated k3 range from 13.5% to 56.8%. All of the CVs of the estimated 

HBV are smaller than those of the 5-P model. Since the vascularity of cirrhotic 

liver is heterogeneous, the estimated HBV values exhibit moderate variability. As 

indicated by Tables 2-1 and 2-2, the parameter estimates of the 4-P model are 

significantly reliable than those of the 5-P model.  

 

The model fitted curves according to the 4-P and 5-P models chosen from the 

ten clinical datasets were shown in Figure 2-4. Although among the ten datasets 

six WRSS values of the 5-P model are slightly smaller than those of the 4-P 

model, the CVs, AICs and SCs of the 4-P model are all generally less than those 

of the 5-P model, suggesting that the 4-P model is the better model to 

characterize the kinetics of 11C-acetate in the liver. Moreover, the fitting results 

of the 4-P model are less affected by the initial values whereas those of 5-P 

model are greatly affected. From compartment analysis using the NLS algorithm 

for the 4-P model, the following physiological parameters were obtained: for the 

eight non-tumor liver tissue ROIs, the estimated K1 is 0.684±0.173 ml/min/ml, k2 

is 0.309±0.088 /min and k3 is 0.083±0.040 /min.  
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Figure 2- 4: Graph shows the generated TACs of the HCC ROI and the non-
tumor liver tissue ROI with symbols * and □ respectively. While, dashed lines 
are the results of the fitted TACs using the 5-P model; dotted lines are the results 
of the fitted TACs using the 4-P model. 

 

 

Table 2-3 provides the results of the estimated LHMRAct by the NLS and 

linear Patlak methods. The correlation coefficients between the results of Patlak 

method and those of the 4-P and 5-P models using the NLS method are 97.67% 

and 97.70% respectively. For the eight non-tumor liver regions, the estimated 

LHMRAct values for the 4-P and 5-P models by NLS method are 0.1351±0.0256 

ml/min/ml and 0.1515±0.0255 ml/min/ml respectively, and the estimate by 

Patlak method is 0.1612±0.0200 ml/min/ml. As revealed in Table 2-3, the 

LHMRAct values of the non-FDG-avid type of HCC (regions 7 and 10) are 

significantly higher than those of the non-tumor liver parenchyma (p<0.05), 

which shows statistically significant difference of this functional parameter of  
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Table 2- 3: Estimation results of the LHMRAct for the 4-P and 5-P models with 
fixed weight dual-input function using the NLS and Patlak methods.  

 
Estimated    LHMRAct  (K1*k3/(k2+k3)) Datasets 

number NLS method for 5-P model NLS method for 4-P model Patlak method 
1 0.1559 0.1398 0.1642 
2 0.1663 0.1345 0.1826 
3 0.1518 0.1130 0.1548 
4 0.1201 0.1095 0.1562 
5 0.1155 0.1046 0.1495 
6 0.1921 0.1775 0.1664 
7* 0.3227 0.2969 0.2694 
8 0.1420 0.1405 0.1259 
9 0.1683 0.1609 0.1903 

10* 0.5126 0.5057 0.4945 
 
* Regions 7 and 10 represent HCC. The input functions of regions 7 and 10 are 
80% and 60% contribution from HA respectively. 
    

      

11C-acetate in this tumor. Therefore, parametric imaging with 11C-acetate 

metabolism measured quantitatively (LHMRAct) may add supportive evidence of 

the usefulness of this tracer to HCC detection.     

 

In summary, this three-compartment four-parameter model with dual-input 

function has been found suitable in mapping the kinetic characters of 11C-acetate 

in a 10 min dynamic PET imaging of the liver. The model has provided a better 

understanding of the complexity and biochemistry of the behavior of this tracer 

in HCC and non-tumor liver tissue. A 10 min dynamic acquisition of 11C-acetate 

PET imaging may provide enough valuable quantitative data. The parameter 

LHMRAct could be considered as potential indicator of metabolism (other than 

SUV) for evaluating HCC. 11C-acetate is not just a complementary tracer to FDG, 

in fact a better tracer than FDG for detection of HCC.  

 

 

 40



 

Chapter 3      Noninvasive Quantification of 
the Differential Portal and Arterial 
Contribution to the Liver Blood Supply from 
PET Measurements Using the 11C-Acetate 
Kinetic Model 
 

 

 

3.1    Introduction 

 

As stated in Chapter 2, hepatocellular carcinoma (HCC) is the most frequent 

malignant tumor of the liver. Patients with HCC are often unaware of its 

presence until the tumor has reached an advanced stage [22] and less than 10% 

are cured with surgical resection. Therefore, it is important to detect HCC at its 

early stage for curative treatment. Positron emission tomography (PET) enables 

extracting quantitative physiological information in vivo from complex dynamic 

processes by using the tracer kinetic modeling techniques, which makes it useful 

for early detection of malignant tumors. Our recent research has demonstrated 

that 11C-acetate could be a complementary tracer to FDG in PET imaging of 

HCC [6], [55]. To get a better understanding of the characteristics of 11C-acetate 

in the imaging of HCC in liver, quantitative dynamic modeling has been 

conducted in Chapter 2.  
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In Chapter 2, a three-compartment four-parameter (4-P) model was presented 

and a new physiological parameter called the “local hepatic metabolic rate-

constant of acetate (LHMRAct)” (the forward clearance K) was introduced to 

characterize the regional consumption of acetate by HCC and non-tumor liver 

tissue. The tracer time-activity curve in blood (BTAC) was used as the model 

input function. To account for the liver’s dual source of blood supply from the 

hepatic artery (HA) and portal vein (PV), we initially assumed a fixed 

contribution ratio of HA and PV in formulating the input function, viz. 20% 

contribution from HA and 80% from PV according to their approximate 

percentage perfusion to the non-tumor liver tissue, 60% or 80% contribution 

from HA for HCC due to the generally accepted fact that the majority of the 

blood supply to established liver metastases is derived from the HA [22], [56], 

[57]. However, early stage metastases may not be easily differentiated on 

dynamic PET images, therefore, it may be difficult to choose the fixed weight for 

quantitative study. Furthermore, in real pathology, both the tumor and non-tumor 

liver tissue can be heterogeneous in the distribution and proportion of the two 

blood supplies. Small liver tumors (<5mm) are mainly fed by PV; while for 

larger tumors, these lesions receive up to 95% of their blood supply from HA 

[58]. For non-tumor liver tissue, the two blood supplies may also vary within the 

liver and among individual patients due to many factors. Various liver diseases 

alter hepatic arterial circulation [59]. HCC is associated with liver cirrhosis in 

80% of cases [56], it is stated that normal liver parenchyma obtains about 75% of 

its blood supply from the PVs and 25% from the HAs whereas in cirrhotic livers 

the blood supply is obtained from the arteries in a proportion up to 75% [57]. The 

presence of regenerating and dysplastic nodules will also change the liver blood 
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supply. Therefore, the fixed weighted dual-input function would increase the 

statistical uncertainties and reduce the accuracy in the estimated model 

parameters. The individual proportion of the two blood supplies in different 

regions of interest (ROIs) is needed to achieve more accurate quantitative 

analysis. In addition, measurement of the relative PV or HA contribution to liver 

blood flow might provide an alternative method for the detection of liver tumors 

[57].  

 

Various kinds of methods have been used to distinguish PV and HA’s 

distribution. Direct measurements usually involve cannulation procedures, which 

are very invasive and always performed on anaesthetized animals [60]. Breedis 

and Young [61] injected dyes and plastic into the blood vessels for postmortem 

studies. And later Lin et al. [62] used colored silicone rubber injected into the PV 

and HA to determine the different distribution. All these techniques are too 

invasive to perform on humans. Alternative noninvasive techniques are therefore 

of great interest.  

 

Sarper et al. [63] presented a noninvasive indirect measurement by using 

dynamic scintigraphy: measuring the first pass of an intravenous bolus injection 

of a radioactive colloid through the liver and kidney to obtain the hepatic 

perfusion index (HPI) from the time-activity curve (TAC) of the liver [57], [64]. 

Technetium-99m is often used to conduct the scintigraphy [65], [66]. However, 

this technique is well-recognized to be susceptible to numerous errors in the 

derivation of the index, such as the overlap of the hepatic arterial and portal 

venous phases, the presence of intrahepatic portosystemic shunting etc. [57]. 
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Chen et al. [67] reported non-invasive quantification of hepatic arterial blood 

flow with Nitrogen-13-Ammonia and dynamic PET. All these techniques require 

extra examination and processing time, and would cause more discomforts to the 

patients. Additionally, it is impossible to get the real-time PV and HA’s 

distribution during the PET scan. 

 

In this work, we study the feasibility of including an extra parameter in the 

vascular input function of 11C-acetate liver model to obtain the differential portal 

and arterial contribution to the liver blood supply and evaluate the performance 

of this new modeling technique. 

 

 

3.2    Methods 

3.2.1  Data Acquisition 

         

The study population comprised six subjects, all were hepatitis B carriers, 

including two with HCC. The transaxial (septa extended) dynamic PET images 

were obtained on an ECAT-EXACT 47 PET scanner (CTI/Siemens, Inc., TN, 

USA), which simultaneously recorded 47 contiguous planes. Each patient was 

positioned to allow image acquisition of the liver dome and apical half of the left 

ventricle to the inferior part of liver. A Hanning filter was used for image 

reconstruction, resulting in an in-plane spatial resolution of 4.119 mm. The axial 

resolution was 3.375 mm.  
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Serial images were obtained immediately following bolus IV injection of 11C-

acetate. The dynamic sequence consisted of ten frames of 4 s, eight frames of 10 

s, two frames of 30 s, three frames of 60 s and two frames of 120 s, totaling 25 

frames for a total scan time of 10 min. 

 

3.2.2  Image Analysis 

 

ROIs were defined using single transverse slice of the full sets of dynamic 

11C-acetate images. Ten regions of dynamic datasets, two from HCC regions, 

others from non-tumor liver regions, were extracted. In general, tracer kinetic 

modeling with PET requires the measurements of both BTAC and tracer time-

activity curve in tissue (TTAC) to quantitatively estimate the model parameters, 

using BTAC and TTAC as the input and output functions in the kinetic model. 

Although the arterial blood measurements are considered the most accurate 

representation of the BTAC and arterialized venous samples have been validated 

as a replacement of arterial samples [48], it is generally accepted that the 

insertion of arterial lines and the subsequent collection and processing of arterial 

blood are not compatible with the practice of clinical PET [68]. Moreover, it is 

highly invasive and virtually impossible in clinical settings to count the 

radioactivity of the portal venous blood by direct catheterization and sampling 

[55]. Therefore, in this work, the TACs of both HA and PV were evaluated using 

the image-derived method described in Chapter 2. The PVs are small in size and 

not very distinguishable from the surrounding tissue, the two-step segmentation 

method based on cluster analysis proposed in Chapter 7 was also used to 

facilitate the extraction of the PV region [69].  

 45



3.2.3  11C-Acetate Liver Model with a Non-Fixed Weighted Dual-

Input Function 

       

The 11C-acetate liver model was shown in Figure 3-1. The differential 

equations for the model are  
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where K1-k3 are the rate constants, cb(t) is the 11C-acetate concentration in the 

whole blood, ce(t) is the free 11C-acetate concentration in intracellular space, cm(t) 

is the intracellular products/metabolites concentration, and ci(t) is the sum of ce(t) 

and cm(t). As seen in Figure 3-1, another parameter “hepatic blood volume 

(HBV)” was included in the model to account for the contribution of the tracer 

within vascular/sinus space of liver tissue to the observed total tissue activity, 

then the observed total tissue activity cT(t), was given by 

              )()()( tcHBVtctc biT ×+=                                                                      (4) 

The solution of cT(t) in terms of macroparameters is 

                                                         (5) )()()()( 1
21 tcHBVtceBBtc bb

tL
T ×+⊗+= −

 
where  
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are the macroparameters in the 11C-acetate liver model and ⊗  denotes the 

operation of temporal convolution. 
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Figure 3- 1: Three-compartment liver kinetic model for 11C-acetate with an extra 
parameter in the dual-input function. Typical TACs of HA and PV were 
illustrated in the BATC measurements. The last five points of PV measurements 
were replaced by the corresponding HA data. Solid line marked by asterisk 
stands for the HA, triangle for the PV. The greatest activity difference between 
these two curves is during the early radionuclide angiographic phase. Typical 
TACs of non-tumor liver tissue and HCC were illustrated in the TTAC 
measurements. Solid line marked by asterisk stands for the non-tumor liver tissue, 
triangle for the HCC. 

 
 

In this study, to obtain the proportion of the portal or arterial contribution to 

the liver blood supply and provide more accurate physiological parameter 

estimates, a new parameter called the “relative portal venous contribution to the 

hepatic blood flow (av)” was included in the model input function to describe the 

contribution of PV to the total hepatic blood supply. Therefore, the contribution 
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of HA would be (1 - av). Thus the dual-input function was calculated according 

to 

              ( ) )()()1( tcatcatc vvavb ×+×−=                                                          (6) 

 

where ca(t) is the tracer concentration in the HA and cv(t) is the tracer 

concentration in the PV. Substituting cb(t) in equation (5) by equation (6), the 

equation 

))()()1(())()()1(()()( 1
21 tcatcaHBVtcatcaeBBtc vvavvvav

tL
T +−×++−⊗+= −     (7)                              

could be obtained. 

   

3.2.4  Parameter Estimation and Statistical Analysis 

 

Three-compartment 4-P model with an extra parameter av in the dual-input 

function was used to fit the clinical data and compared with the fitting results of 

the 4-P model using fixed weighted dual-input function. With the measurements 

of ca(t), cv(t) and cT(t) from dynamic PET images, the weighted non-linear least 

squares (NLS) algorithm was used to numerically evaluate all the individual 

parameters. Model parameters were estimated by minimizing the weighted 

residual sum of squares (WRSS), which is a direct measurement of the fitting 

quality. WRSS is given by 

       WRSS                                              (8) [
225

1

)(),()( ∑
=

−=
k

kkTk tzptcwp ]
where p is the vector of parameters to be estimated, wk is the weight adopted, 

which is proportional to the length of the scanning interval and inversely 

proportional to the radioactivity concentration, cT is the model output, which is a 
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function of p, and z is the PET measurement. The superscript 25 is the total data 

points to be fitted in this study. LHMRAct could be calculated by 

               
32

31

kk
kKLHMRAct
+

=                                                                              (9) 

from NLS fitting results.  

 

Patlak analysis [54] was also provided to estimate LHMRAct for the two 

models (with/without av) to fit the data between 3 - 10 min. Since Patlak method 

could not estimate parameter av, for the non-fixed weighted dual-input model, the 

input function was calculated according to the estimated value of av by using 

NLS method. The estimated LHMRAct of both models were compared with those 

obtained from NLS method respectively by correlation analysis.  

 

Apart from WRSS, parameter standard deviation (SD) and coefficient of 

variation (CV), which are the computed measurements of variability of parameter 

estimation, were utilized as the statistical criteria. Besides, Akaike Information 

Criteria (AIC) [52] and Schwarz Criteria (SC) [53] were used to test which 

model is better. It was assumed that the data variances were known up to a 

proportionality constant, therefore the AIC and the SC are given by  

              PNWRSSNAIC 2)ln( +=                                                                  (10) 

              NNWRSSNSC P ln)ln( +=                                                               (11) 

where NP is the number of parameters in the model, and N is the number of data 

points, and WRSS is the weighted residual sum of squares. 
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3.2.5  Simulation Study 

 

Computer simulation was also conducted to test the accuracy and reliability 

of the estimated parameters of the non-fixed weighted dual-input model. The 

TACs of both PV and HA were extracted from one clinical dataset. The TTAC 

was calculated according to (4) by using K1 = 0.47, k2 = 0.26, k3 = 0.09, HBV = 

0.33, av = 0.72. The scanning intervals were the same as those in clinical data 

acquisition. A pseudorandom number generator was used to generate the 

Gaussian noise added to the calculated TTAC and the noise level was set to 0.1, 

0.5 and 1.0 respectively. The mean value of the estimated parameters was 

calculated from 100 simulation runs, and the bias was calculated by 

                        true

true

P
PPBias
−

−
=                                                                  (12) 

where Ptrue is the true value of the parameter,  and 
−

P  is the mean value from the 

NLS fitting results of the computer simulation. 

 

 

3.3    Results and Discussion 

 

The 11C-acetate clinical data of ten ROIs extracted from six patients were 

analyzed to test the models with fixed/non-fixed weighted dual-input function. 

The estimated results of the models with 70%, 80% and 85% contribution from 

PV were summarized in Tables 3-1, 3-2 and 3-3 respectively. In Table 3-2, 80% 

and 60% contribution from HA for regions 7 and 10 respectively were used; 
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Table 3- 1: Estimated parameters of the three-compartment 4-P 11C-acetate liver 
model with 70% contribution from PV using NLS method. 

 
Rate                           constants Datasets 

 
number K1 (ml/min/ml) k2 (min-1) k3 (min-1) HBV (ml/ml) 

1 0.531 ± 0.035 0.232 ± 0.052 0.079 ± 0.040 0.026 ± 0.016 
2 0.645 ± 0.046 0.232 ± 0.053 0.058 ± 0.038 0.044 ± 0.022 
3 0.696 ± 0.031 0.252 ± 0.031 0.044 ± 0.018 0.015 ± 0.013 
4 0.479 ± 0.013 0.262 ± 0.020 0.088 ± 0.013 0.316 ± 0.009 
5 0.472 ± 0.029 0.255 ± 0.043 0.077 ± 0.027 0.307 ± 0.018 
6 0.791 ± 0.072 0.584 ± 0.092 0.175 ± 0.020 0.262 ± 0.029 

7* 1.458 ± 0.129 0.454 ± 0.075 0.115 ± 0.021 0.426 ± 0.059 
8 0.920 ± 0.050 0.221 ± 0.037 0.035 ± 0.027 0.074 ± 0.018 
9 0.615 ± 0.056 0.283 ± 0.072 0.091 ± 0.042 0.007 ± 0.022 

10* 1.185 ± 0.110 0.420 ± 0.117 0.350 ± 0.060 0.234 ± 0.037 
 

* Regions 7 and 10 represent HCC. 

 

 

Table 3- 2: Estimated parameters of the three-compartment 4-P 11C-acetate liver 
model with 80% contribution from PV using NLS method. 

 
Rate                           constants Datasets 

number K1 (ml/min/ml) k2 (min-1) k3 (min-1) HBV (ml/ml) 
1 0.652 ± 0.048 0.312 ± 0.059 0.085 ± 0.030 0.038 ± 0.020 
2 0.731 ± 0.064 0.284 ± 0.065 0.064 ± 0.035 0.047 ± 0.027 
3 0.759 ± 0.033 0.290 ± 0.031 0.051 ± 0.016 0.036 ± 0.015 
4 0.456 ± 0.019 0.237 ± 0.029 0.075 ± 0.020 0.383 ± 0.012 
5 0.461 ± 0.034 0.245 ± 0.052 0.072 ± 0.035 0.367 ± 0.023 
6 0.709 ± 0.068 0.509 ± 0.090 0.170 ± 0.023 0.362 ± 0.030 
7* 1.251 ± 0.068 0.364 ± 0.046 0.113 ± 0.019 0.125 ± 0.028 
8 0.996 ± 0.055 0.254 ± 0.038 0.042 ± 0.024 0.140 ± 0.028 
9 0.704 ± 0.073 0.344 ± 0.087 0.102 ± 0.039 0.030 ± 0.029 

10* 0.806 ± 0.071 0.280 ± 0.124 0.472 ± 0.132 0.100 ± 0.022 
 
* Regions 7 and 10 represent HCC. The input functions of regions 7 and 10 are 
80% and 60% contribution from HA respectively. 
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Table 3- 3: Estimated parameters of the three-compartment 4-P 11C-acetate liver 
model with 85% contribution from PV using NLS method. 

 
Rate                           constants Datasets 

 
number K1 (ml/min/ml) k2 (min-1) k3 (min-1) HBV (ml/ml) 

1 0.723 ± 0.061 0.379 ± 0.072 0.104 ± 0.028 0.059 ± 0.024 
2 0.740 ± 0.061 0.280 ± 0.063 0.057 ± 0.036 0.063 ± 0.030 
3 0.795 ± 0.034 0.316 ± 0.033 0.057 ± 0.016 0.050 ± 0.017 
4 0.449 ± 0.028 0.231 ± 0.043 0.072 ± 0.031 0.415 ± 0.018 
5 0.462 ± 0.048 0.253 ± 0.070 0.078 ± 0.042 0.394 ± 0.029 
6 0.649 ± 0.064 0.448 ± 0.087 0.163 ± 0.025 0.426 ± 0.030 

7* 1.396 ± 0.089 0.426 ± 0.056 0.119 ± 0.018 0.185 ± 0.037 
8 0.975 ± 0.038 0.224 ± 0.032 0.017 ± 0.028 0.207 ± 0.028 
9 0.762 ± 0.080 0.358 ± 0.084 0.083 ± 0.034 0.052 ± 0.033 

10* 0.920 ± 0.080 0.334 ± 0.119 0.433 ± 0.097 0.123 ± 0.025 
 
* Regions 7 and 10 represent HCC. The input functions of regions 7 and 10 are 
60% and 50% contribution from HA respectively. 
 

 

60% and 50% contribution from HA was adopted for regions 7 and 10 

respectively in Table 3-3. Comparison of the three groups of estimation results 

according to their CV and WRSS was conducted. It could be found that generally 

if the datasets achieving best fitting are from Table 3-1, they always show the 

worst fitting quality in Table 3-3. On the contrary, if the datasets of best quality 

are from Table 3-3, they always demonstrate the worst fitting results in Table 3-1. 

The estimated parameters in Table 3-2 exhibit moderate fitting quality. 

 

The parameter estimates for the model with non-fixed weighted dual-input 

function were summarized in Table 3-4. It was demonstrated that the estimated 

av value showed moderate variability among different ROIs from non-tumor liver 

tissue and significant difference between HCC and non-tumor regions (p <0.05). 

Therefore, non-fixed weighted dual-input function has significant importance to 
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Table 3- 4: Estimated parameters of the three-compartment 11C-acetate liver 
model with an extra parameter av in the dual-input function using NLS method. 

 
 

Rate                                                           constants 
Datasets 

 
number K1 (ml/min/ml) k2 (min-1) k3 (min-1) HBV (ml/ml) av 

1 0.761 ± 0.140 0.362 ± 0.110 0.071 ± 0.025 0.088 ± 0.046 0.900 ± 0.069 
2 0.659 ± 0.102 0.242 ± 0.083 0.059 ± 0.042 0.042 ± 0.028 0.705 ± 0.136 
3 0.804 ± 0.064 0.322 ± 0.050 0.058 ± 0.017 0.055 ± 0.030 0.863 ± 0.073 
4 0.474 ± 0.016 0.256 ± 0.024 0.085 ± 0.014 0.328 ± 0.018 0.717 ± 0.024 
5 0.530 ± 0.052 0.369 ± 0.079 0.142 ± 0.032 0.291 ± 0.054 0.697 ± 0.073 
6 0.664 ± 0.105 0.505 ± 0.131 0.187 ± 0.027 0.468 ± 0.078 0.899 ± 0.048 

7* 1.360 ± 0.214 0.411 ± 0.101 0.118 ± 0.020 0.157 ± 0.082 0.333 ± 0.247 
8 0.979 ± 0.096 0.244 ± 0.046 0.037 ± 0.027 0.136 ± 0.082 0.790 ± 0.106 
9 0.827 ± 0.186 0.419 ± 0.151 0.099 ± 0.033 0.048 ± 0.083 0.866 ± 0.110 

10* 1.005 ± 0.441 0.366 ± 0.234 0.405 ± 0.118 0.147 ± 0.114 0.568 ± 0.291 

 

* Regions 7 and 10 represent HCC. 

 

the parameter estimation. The mean value of the estimated av for non-tumor 

regions is 0.805, which is comparable with our previous hypothesis in Chapter 2 

for the fixed weight 4-P and 5-P models, and the SD is 0.088. The estimated av 

values of the two HCC ROIs are much less than those of the non-tumor liver 

tissue, indicating that the measurement of av might be an alternative noninvasive 

method to detect HCC. As aforementioned, in cirrhotic livers the blood supply 

could be obtained from the arteries in a proportion up to 75%, therefore, the 

measurement of av may also provide an indirect way of reflecting cirrhosis using 

PET (which is normally evaluated by CT). Regarding the comparison stated in 

the above paragraph, for every dataset, the most accurate estimation among the 

three fixed-weight fittings is always with the assumed weight that is closest to 

the estimated av value in Table 3-4. For example, the estimated av value of 

region 4 is 0.717 (shown in Table 3-4), the model with 70% contribution from 
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PV could achieve best fitting quality in terms of WRSS and CV compared to the 

other two weight assumptions for region 4; the estimated av value of region 9 is 

0.866 (shown in Table 3-4), for region 9, the model with 85% contribution from 

PV could achieve most accurate estimation, which may indicate that the 

estimated av value could be accurate.  

 

The fitting results using the fixed weights in Table 3-2 were focused to be 

compared with those using non-fixed weighted input model. Compared with the 

results in Table 3-2, the estimated value of K1, k2, k3 of non-tumor regions in 

Table 3-4 shows no significant difference respectively, which may due to the 

fact that the estimated av value demonstrates relatively less variance from 80%. 

For non-tumor liver tissue, the estimated K1 expressed as mean ± SD is 0.684 ± 

0.173 ml/min/ml in Table 3-2 and 0.712 ± 0.165 ml/min/ml in Table 3-4; k2 is 

0.309±0.088 /min in Table 3-2 and 0.340 ± 0.094 /min in Table 3-4; k3 is 0.083 ± 

0.040 /min in Table 3-2 and 0.092 ± 0.050 /min in Table 3-4. However, the 

fitting results of the two HCC regions exhibit relatively great difference 

especially for region 10, which may due to the significant difference between the 

estimated av value and the fixed weight assumed. It could be found that the two 

sets of estimated HBV value in Tables 3-2 and 3-4 differ greatly because HBV is 

the hepatic blood volume term which is directly affected by the contribution of 

the hepatic dual inputs. Since the vascularity of cirrhotic liver is heterogeneous, 

the estimated HBV value also exhibits moderate variability [55]. 
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Table 3- 5: Comparison of the WRSS, AIC and SC of the models using 
fixed/non-fixed weighted dual-input function. 

 
WRSS_change (%) AIC** SC** Datasets 

number Table 3-1 Table 3-2 Table3-3 F*** NF*** F NF 

1 51.0 29.9 25.4 181.1 176.5 185.9 182.6 
2 -0.8 14.1 22.3 197.4 196.1 202.3 202.2 
3 6.0 0.3 -0.2 164.0 166.0 168.9 172.1 
4 4.1 84.8 269.0 144.2 130.9 149.1 137.0 
5 -39.5 -15.5 21.7 173.6 179.8 178.5 185.9 
6 30.5 15.2 2.3 165.2 163.6 170.0 169.7 

7* 19.9 -5.5 3.5 189.1 192.5 194.0 198.6 
8 -13.4 3.7 -6.0 176.5 177.6 181.4 183.7 
9 25.8 17.8 8.0 178.4 176.3 183.3 182.4 

10* -6.2 4.2 2.1 168.5 169.4 173.3 175.5 

 

* Regions 7 and 10 represent HCC.  
**Comparison of AIC and SC was between the results with the weights in Table 
3-2 and those with the non-fixed weight in Table 3-4.  
*** “F” stands for the fixed weight and “NF” stands for the non-fixed weight. 

 

 

Comparison of the WRSS, AIC and SC of the fixed (weights in Table 3-

2)/non-fixed weighted models was conducted, the results were summarized in 

Table 3-5. The “WRSS_change” term in Table 3-5 was calculated by 

%100_ ×
−

=
N

NF

WRSS
WRSSWRSSchangeWRSS                                              (13) 

where WRSSN is the WRSS using the non-fixed input model and WRSSF is the 

WRSS using the fixed input model. As shown in Table 3-5, when parameter av 

was used, WRSS (refer to the second column of WRSS_change) for all regions 

except regions 5 and 7 is reduced. Compared to the AIC and SC of the fixed-

weight model, half of them in Table 3-4 are smaller. Table 3-6 summarizes the 

comparison of the CV of the estimated parameters in Tables 3-2 and 3-4. 

Although there is one more parameter in the non-fixed weighted input model, the 
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Table 3- 6: Comparison of the CV of the estimated parameters in Tables 3-2 and 

3-4. 

 
K1 (%) k2 (%) k3 (%) HBV (%) av (%) Datasets 

number F** NF** F NF F NF F NF NF 

1 7.38 18.40 19.02 30.45 34.97 35.64 53.25 52.80 7.70 
2 8.73 15.42 23.04 34.36 54.82 70.92 57.73 66.07 19.31 
3 4.30 8.01 10.75 15.65 31.75 29.84 42.40 53.97 8.46 
4 4.19 3.47 12.11 9.20 26.28 16.56 3.26 5.51 3.30 
5 7.38 9.74 21.04 21.46 48.03 22.40 6.19 18.45 10.45 
6 9.61 15.87 17.61 25.88 13.46 14.66 8.34 16.65 5.31 

7* 5.43 15.71 12.67 24.53 16.79 17.08 22.60 52.18 74.25 
8 5.48 9.80 15.17 18.86 56.79 71.47 20.25 60.41 13.39 
9 10.37 22.44 25.18 36.03 38.01 33.22 96.86 172.6 12.74 

10* 8.82 43.88 44.23 63.92 27.91 29.20 21.60 77.70 51.17 

 
* Regions 7 and 10 represent HCC.  
** “F” stands for the fixed weight and “NF” stands for the non-fixed weight.  
 

 

CV value is still acceptable and additionally about one fourth CVs of the 

estimated parameters (excluding av) even decrease. The fitting result of av is very 

reliable since a majority of CVs are less than 20%. The model fitted curves 

according to the fix/non-fixed weighted input models for two datasets: one from 

HCC, another from non-tumor region, were drawn in Figure 3-2. The 4-P model 

plus a weight parameter in the required model input function is the better model 

to characterize the kinetics of 11C-acetate in the liver. The fitting result of the 

non-fixed weighted model is satisfactory and parameter av could be identified by 

using the tracer kinetic modeling techniques. 

 

The NLS fitting results of the computer simulation using the non-fixed 

weighted dual-input model were presented in Table 3-7. Parameter estimates  
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Figure 3- 2: Graph shows the generated TACs of the HCC ROI with symbol “*” 
and the non-tumor liver tissue ROI with symbol “∆”. While, dashed lines 
demonstrate the fitting results using the fixed weights in the dual-input function; 
dotted lines stand for the fitting results using an extra parameter in the input 
function of the 11C-acetate liver model. 

 
 
 

Table 3- 7: NLS fitting results of the computer simulation using non-fixed 
weighted dual-input model. The mean value, SD and Bias of K1-k3, HBV, av, K 
were calculated from 100 simulation runs. 

 
Rate                                                                                constants 

Noise 
 

level K1 Bias k2 Bias k3 Bias HBV Bias av Bias K Bias 

0.1 0.4699±0.0034 0.0002 0.2600±0.0045 0.0000 0.0901±0.0023 0.0007 0.3305±0.0050 0.0016 0.7205±0.0067 0.0007 0.1209±0.0016 0.0002

0.5 0.4693±0.0173 0.0015 0.2597±0.0226 0.0011 0.0897±0.0118 0.0028 0.3323±0.0251 0.0071 0.7210±0.0343 0.0014 0.1202±0.0085 0.0054

1 0.4692±0.0352 0.0016 0.2606±0.0454 0.0023 0.0890±0.0231 0.0115 0.3336±0.0500 0.0110 0.7180±0.0703 0.0028 0.1181±0.0176 0.0228
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were expressed as mean ± SD. As seen in Table 3-7, both the CV and bias of all 

the estimated parameters from 100 simulation runs are very small, therefore 

reliable and accurate parameter estimation of the non-fixed weighted dual-input 

model could be achieved by using NLS method.  

 

The ten clinical datasets were also fitted with the Patlak method using the 

fixed (weights in Table 3-2)/non-fixed weighted dual-input function. Due to the 

nature of Patlak method, the data of the early phase (< 3 min) were not included 

in the analysis. The results of the estimated LHMRAct (the forward clearance K) 

for the two models using the NLS and Patlak methods were presented in Table 3-

8. Since the TACs of the HA and PV are similar after the dynamic phase [4], the 

estimated K using the Patlak method is affected less by the duall-input function, 

the non-fixed input model shows less difference with the fixed input model. For 

the eight ROIs from the non-tumor liver tissue, the estimated K value expressed 

as mean ± SD with/without av is 0.1611±0189 and 0.1612±0.0200 ml/min/ml 

respectively. For the two ROIs of HCC, the estimated forward clearance K by the 

Patlak method with/without weight parameter is 0.2728 and 0.2694 ml/min/ml 

(region 7), 0.5066 and 0.4945 ml/min/ml (region 10). For NLS analysis, the 

results do show a little difference between the two models. For the eight ROIs 

from the non-tumor liver tissue, the estimated K value expressed as mean ± SD 

with/without av is 0.1388±0.0212 and 0.1351±0.0256 ml/min/ml respectively. 

For the two ROIs of HCC, the estimated K value with/without weight parameter 

is 0.3025 and 0.2969 ml/min/ml (region 7), 0.5278 and 0.5057 ml/min/ml (region 

10). The correlation coefficients between the estimated K value of Patlak and 

NLS methods for the fixed and non-fixed input models is 97.67% and 98.21% 
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Table 3- 8: Estimated K value for the models with fixed (weights in Table 3-2) 
/non-fixed weighted dual-input function using the NLS and Patlak methods 
respectively. 

 
Estimated      K    (K1k3/(k2+k3)) Datasets 

 
number NLS method using 

fixed weighted inputs 
Patlak method using 

fixed weighted inputs
NLS method using non- 
fixed weighted inputs 

Patlak method using non-
fixed weighted inputs 

1 0.1398 0.1642 0.1250 0.1642 
2 0.1345 0.1826 0.1300 0.1773 
3 0.1130 0.1548 0.1228 0.1587 
4 0.1095 0.1562 0.1182 0.1552 
5 0.1046 0.1495 0.1472 0.1483 
6 0.1775 0.1664 0.1797 0.1679 

7* 0.2969 0.2694 0.3025 0.2728 
8 0.1405 0.1259 0.1296 0.1270 
9 0.1609 0.1903 0.1580 0.1898 

10* 0.5057 0.4945 0.5278 0.5066 

 
* Regions 7 and 10 represent HCC. 

 

 

respectively. Same as in Chapter 2, the K value of the non-FDG-avid type of 

HCC (regions 7 and 10) is significantly higher than those of the non-tumor liver 

parenchyma (p <0.05). Therefore, quantitative parametric imaging of LHMRAct 

could be a potential functional imaging technique to detect HCC. 

 

 

3.4    Conclusion 

 

This study suggests that the differential portal and arterial contribution to the 

liver blood supply could be extracted from the dynamic PET measurements 

noninvasively using tracer kinetic modeling techniques. The estimated av value is 

reasonable and concordant with the clinical, radiological and pathological 
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conditions. It adds supportive evidence to the observation that liver metastases 

derive a much greater proportion of their blood supply from the hepatic arterial 

flow when neovascularization is a common cancer growth characteristic, with a 

smaller proportion from the portal venous flow. Whether the estimated av value 

might have an alternative role as a vascular indicator that can reflect subtle 

neovascularization in early HCC tumor growth requires more research. In the 

presence of pathological changes of cirrhosis, the background liver parenchyma 

shows heterogeneous vascular changes such as significant arterioportal and 

portovenous systemic shunting. All these confounding factors will add to the 

complexity of background noise, making it difficult to evaluate for small and 

well- differentiated HCC lesions. This is the same reason for a low detection 

accuracy even by the most advanced triple-phase CT technology when severe 

hepatic cirrhosis is encountered.  The measurement of av, however, may directly 

provide a measure of the “vascular deviation” status from the normal liver 

vasculature, and, therefore, may provide an indirect way of reflecting cirrhosis 

using PET (which is normally evaluated by CT). The presented results show that 

all the required parameters can be quantified simultaneously and the parameter 

estimates are reliable and accurate. The three-compartment four-parameter model 

plus an extra weight parameter in the dual-input function is a more appropriate 

representation of the physiological system by describing the kinetic characters of 

11C-acetate in a 10-minute dynamic PET imaging of the liver, including a more 

consistent estimation of LHMRAct. In summary, the above findings and proposal 

may provide a better understanding of the perfusion and metabolic function of 

normal liver and liver cancer.  
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Chapter 4      Fast Parametric Imaging 
Algorithm for Dual-Input Biomedical System 
Parameter Estimation 
 

 

 

4.1    Introduction 

 

Quantitative functional imaging with dynamic positron emission tomography 

(PET) has been playing an important role in modern biomedical research and has 

revolutionized clinical diagnosis [70]. Dynamic PET imaging provides the ability 

to construct functional images of various kinds of physiological and biochemical 

parameters [71], [72]. One of the key issues in functional imaging is to estimate 

parameters at the pixel-by-pixel level from certain processes described by 

dynamic continuous-time models for certain biosystems, which is widely 

acknowledged as biomedical system identification [73]-[75]. In biosystem 

identification, the task is to develop a valid mathematical model, usually 

represented by a set of differential equations, capable of describing the essential 

properties of the system with sufficient accuracy and in useful form [76] and 

estimate the parameters within the dynamic models [77].  

 

The present algorithms to construct parametric images with nonuniformly 

sampled PET data are based on the kinetic analysis of changes in the tracer 

 61



concentration in regional tissue [78]. The classic nonlinear least squares 

regression (NLS) algorithm is widely adopted and can provide optimum 

estimation quality [79]. Nevertheless, when the number of parameters to be 

estimated is relatively large, “good” initial guess is required and the 

computational burden is considerable, which limits its application in clinical 

environments for image-wide parameter estimation. For the generation of 

parametric images, computationally efficient and statistically reliable algorithms 

have been developed. The well-known Patlak graphical approach [54] assumes 

that the dynamic process is linear when a unidirectional transfer process is 

dominant during the scanning period and could estimate the combination of the 

rate constants. However, this simplification may cause underestimation when the 

reverse transfer process could not be ignored and this method could not provide 

estimates for individual kinetic parameters. The linear least squares (LLS) 

method is potential to be optimal when the measurement noise is low [80], which 

may not be true in the clinical PET studies, and the estimation is biased due to 

the colored noise. The integrated projection [81] and weighted integration 

methods (WIM) [82] could provide the parameter estimates efficiently. However, 

the estimation results are biased and it is infeasible to predetermine the optimal 

weighting functions in WIM fitting procedure. Feng et al. [74] proposed an 

unbiased parametric imaging algorithm: generalized linear least squares (GLLS) 

for nonuniformly sampled biomedical system parameter estimation. However, 

when the clinical PET data is very noisy, parameter estimation may not converge 

to reasonable values. Later, a bound GLLS (B-GLLS) algorithm for parametric 

imaging was presented to guarantee the convergence [72]. All these 

computationally efficient techniques focus on single input systems and could not 
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provide optimal solution for dual-input biomedical systems, such as the 

metabolic system of the “power house” of the human body: liver. 

 

The liver has a dual source of blood supply, receiving oxygenated blood from 

the common left and right hepatic arteries (HAs) and nutrient-rich blood via the 

portal vein (PV) [45]. Therefore, the use of arterial input may, however, 

introduce systematic errors in the estimated kinetic parameters because of the 

ignorance of the hepatic dual blood supply from the HA and PV to the liver [4]. 

To achieve more accurate quantitative analysis, in Chapter 3, the actual 

proportion of portal/arterial contribution to the liver dual blood supply was 

investigated and a parameter denoted as the relative portal venous contribution 

to the hepatic blood flow (av) was introduced into the dual-input function. 

Previous modeling studies in Chapters 2 and 3 have suggested that the “local 

hepatic metabolic rate-constant of acetate (LHMRAct)” (the forward clearance K) 

and av could be the potential indicators to detect hepatocellular carcinoma (HCC). 

Therefore, it is of great interest to develop fast parametric imaging algorithms for 

the dual-input biomedical system identification. 

 

In this chapter, a rapid estimation algorithm of dual-input-GLLS (D-I-GLLS) 

for dual-input liver system was proposed. 11C-acetate kinetic model in liver with 

Parameter av in the dual-input function presented in Chapter 3 was utilized to test 

the algorithm. Its performance was evaluated by comparison with the fitting 

quality of NLS method. 
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4.2    Methods 

4.2.1  Dual-Input Generalized Linear Least Squares Algorithm 

 

The tracer kinetic model that describes the behavior of 11C-acetate in liver 

has been presented in Chapter 3. The model consists of three compartments and 

five parameters including parameter av in the dual-input function. The 

differential equations for the continuous-time model could be referred to section 

3.2.3 “11C-Acetate Liver Model with a Non-fixed Weighted Dual-input 

Function”. 

 

The D-I-GLLS technique involves the D-I-LLS estimation and refining the 

linear estimation results. The dual-input-single-output (DISO) linear 11C-acetate 

liver kinetic model can be described by the following second-order differential 

equation  
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Substitute cb(t) in equation (2) by the dual-input function in section 3.2.3, and 

assume zero initial condition which holds for most cases [74], we obtain 
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where P4=HBV×av. To provide the LLS solution for the dual-input model, 

assume av= “initial guess” in the third and fourth terms of equation (3), digitalize 

equation (3) at the sampling time ti (i=0, 1, 2, … , m), the linear equation in 

matrix form is 

                ξθ += Xy                                                                                           (4) 

where ξ=[ξ0, ξ1, … , ξm]T are the equation errors, y=[cT(t0), cT(t1), … , cT(tm)]T are 

the PET measurements at time t0, t1, … , and tm, θ=[P0, P1, P2, P3, P4]T are the 

parameters to be estimated and X is the coefficient matrix 
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The dual-input function in the second and third columns of X was calculated by 

the initial guess of av. The D-I-LLS solution for θ is  

( ) yXXX TT
LLSID
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−− =θ                                                                                          (6) 

where  denotes the estimated θ in the D-I-LLS sense. LLSID −−θ̂
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To refine the D-I-LLS estimation results, the correlated equation noise should 

be whitened. The second-order differential equation of the DISO linear 11C-

acetate liver kinetic model is  
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Two terms are “redundant” since there are only five independent variables, 

whereas seven terms are included in the right hand side of the above equation. 

Those “redundant” terms can be eliminated by assuming 

 in the second, fourth and sixth terms of equation (7), 

where , and  are the estimated parameters from the previous iteration, then 

we have 
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Take the Laplace transform of equation (8), whiten the correlated equation errors 

using Filter in s domain [74], and then take the inverse Laplace 

transform, the time domain input-output relationship could be given by 
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Digitalize equation (9) at the sampling time as in D-I-LLS fitting procedure, we 

have 
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                    ζθ += Zr                                                                                     (10) 

 where θ=[P0, P1, P2, P3, av]T are the parameters to be estimated, ζ is the filtered 

equation noise, r is filtered PET measurements 
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and Z is the coefficient matrix 
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where 
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 The parameter estimates are 
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where  represents the estimated parameters in the D-I-GLLS sense. The 

estimation results of D-I-LLS would be used as the initial values for the first 

iteration of the above estimation procedures and the subsequent estimates are 

refined by the same procedure until the convergence criteria are satisfied. The 

flow chart of the proposed D-I-GLLS algorithm for dual-input continuous system 

parameter estimation was shown in Figure 4-1. 
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Figure 4- 1: The flow chart of the D-I-GLLS algorithm for the dual-input 

continuous system parameter estimation. 

 

 

4.2.2  Simulation Study 

 

Computer simulation was conducted to test the D-I-GLLS algorithm. Two 

computer simulated datasets representing HCC and non-tumor liver tissue with 

two image-derived dual-input functions obtained from clinical data, were 

recruited in this study. The simulation data were generated by the sampling 
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protocol which is the same as the image acquisition sequences in Chapter 2. A 

pseudorandom number generator was employed to generate the Gaussian noise 

added to the calculated tissue time-activity curves (TTACs) with the noise levels 

0.1, 0.5 and 1.0. The noise level represents the proportional constant in the 

variance of the generated noise. 

 

4.2.3  Statistical Criteria 

 

The reliability and accuracy of the parameter estimates obtained by the 

proposed D-I-GLLS technique were evaluated by the coefficient of variation 

(CV) and bias calculated from 200 simulation runs for each noise level. The CV 

of a parameter estimate was defined as  

              %100×=
P

SDP
PCV                                                                              (14) 

 
where P  is the mean value of the parameter estimates over 200 runs and PSD is 

the standard deviation of P , and the bias is calculated by  

            %100×
−

=
−

true

true

P
PPBias                                                                        (15)     

where trueP  denotes the true value of P, and P  is the mean value. The simulation 

runs were also conducted with NLS fitting for comparisons. 
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4.3    Results and Discussion 

 

Estimation results of K1-k3, HBV, av and LHMRAct (the forward clearance K) 

by D-I-GLLS and NLS methods were summarized in Table 4-1. As seen in Table 

4-1, the reliability of the estimated parameters by the two methods is generally 

comparable with each other; while the accuracy of the parameter estimates 

provided by the D-I-GLLS is generally slightly worse than that by NLS fitting 

procedure.  

 

The accuracy of the estimated rate constant parameters K1-k3 by D-I-GLLS is 

satisfactory since the maximum bias of these estimated parameters is 5% when 

the noise level is 1 for the estimation of k2 of the HCC data. The fitting quality in 

terms of CV and bias of these parameters estimated by the D-I-GLLS technique 

are satisfactory. The accuracy of the estimation of HBV is moderately worse than 

that provided by NLS method. As revealed by Table 4-1, although the bias of the 

estimated av is generally slightly more than that by NLS, the accuracy is still 

satisfactory since the maximum bias is 3.4%. Furthermore, Parameter av for the 

non-tumor liver tissue data could be more accurately estimated by D-I-GLLS 

algorithm when the noise level is 1. The reliability of the estimated av is 

satisfactory as well especially for the non-tumor liver tissue data. As indicated in 

Table 4-1, Parameter LHMRAct (the forward clearance K) could be estimated 

accurately and reliably and the estimation quality is comparable with the most 

optimum NLS estimation.  
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Table 4- 1: Estimation results of K1-k3, HBV, av and K from two sets of 
simulation. Pt-true and Pn-true represent the true values of the parameters for HCC 
and non-tumor liver tissue respectively. The estimated parameters in the table are 
their mean values. The values of CV and bias are the percentage values. The 
mean values, biases (bias1, bias2, bias3, biasH, biasa, biasK), and CVs (CV1, CV2, 
CV3, CVH, CVa, CVK) were calculated from 200 simulation runs. “D-G” is the 
abbreviation of “D-I-GLLS”. 

 
 
 
Method K1 bias1 CV1 k2 bias2 CV2 k3 bias3 CV3 HBV biasH CVH av biasa CVa K biasK CVK

Pt-true 1.35 --- --- 0.40 --- --- 0.11 --- --- 0.20 --- --- 0.40 --- --- 0.2912 --- ---
 Noise level α=0.1 

NLS 1.34990.0061 1.39 0.40000.0081 2.10 0.11000.0202 1.38 0.19970.1685 5.56 0.39930.1869 6.44 0.29120.0038 0.66
D-G 1.33780.9013 1.25 0.39660.8481 1.91 0.10990.1090 1.28 0.21879.3508 5.58 0.40701.7474 6.36 0.29020.3226 0.60

              Noise level α=0.5 
NLS 1.34570.3163 6.82 0.39910.226210.400.10970.2290 6.99 0.20311.564828.230.39202.0015 32.41 0.29030.3126 3.38
D-G 1.32621.7603 6.04 0.39172.0725 9.34 0.10881.1317 6.60 0.228814.41327.820.40380.9539 32.39 0.28821.0202 3.12

 Noise level α=1 
NLS 1.33650.998811.700.39770.566018.160.10920.748814.130.226213.12462.080.39202.0104 60.15 0.28751.2671 7.12
D-G 1.29803.850711.820.38004.991418.330.10583.779614.390.249824.89855.780.38623.4444 69.20 0.28252.9679 7.06
Pn-true 0.50 --- --- 0.30 --- --- 0.10 --- --- 0.30 --- --- 0.70 --- --- 0.1250 --- ---

 Noise level α=0.1 
NLS 0.50000.0052 0.68 0.30010.0189 1.62 0.10000.0442 2.30 0.30000.0142 1.70 0.70000.0054 1.22 0.12500.0067 1.12
D-G 0.49540.9279 0.83 0.29621.2709 2.06 0.09910.9074 2.99 0.30461.5315 1.93 0.70230.3271 1.25 0.12420.6663 1.46

 Noise level α=0.5 
NLS 0.49940.1156 3.47 0.29990.0185 8.33 0.09970.258811.770.30010.0373 8.54 0.69790.2996 6.33 0.12440.4807 5.83
D-G 0.49680.6494 4.33 0.29750.830610.350.09861.358915.200.30622.0605 9.64 0.70400.5744 6.32 0.12331.3789 7.90

 Noise level α=1 
NLS 0.49760.4839 7.10 0.29910.300816.980.09841.594523.840.30040.123617.520.69021.4006 14.45 0.12222.245912.33
D-G 0.49341.3233 8.71 0.29451.842221.130.09504.953832.540.30732.444019.400.69860.2068 14.32 0.11805.572920.34
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All the estimated parameters could be expressed analytically in terms of the 

PET measurements by the D-I-GLLS technique, therefore, the fitting procedure 

is significantly faster than NLS regression. The number of the iteration needed is 

generally less than 5, which would be very practical for image-wide parameter 

estimation in the clinical environments. 

 

 

4.4    Conclusion 

 

In this chapter, a fast parametric imaging algorithm of D-I-GLLS for dual-

input biomedical system identification was proposed. It achieves a comparable 

estimation quality in terms of coefficient of variance with NLS method. The 

accuracy of most of the parameter estimates for 11C-Acetate liver kinetic model 

is satisfactory. This computationally efficient algorithm could reliably identify all 

the parameters including the parameter in the dual-input function. Only one 

initial guess is required for the fitting procedure and the results are not sensitive 

to this initial guess. Therefore, this D-I-GLLS algorithm is potentially useful for 

the construction of parametric images from 11C-acetate dynamic liver PET 

images and is generally applicable to other dual-input biomedical system 

parameter estimation. 
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Chapter 5      Novel Parameter Estimation 
Methods for 11C-Acetate Dual-Input Liver 
Model with Dynamic PET  
 

 

 

5.1    Introduction 

 

The extraordinary innovation in modern molecular imaging techniques used 

to explore the inner world of cells, such as positron emission tomography (PET), 

makes them increasingly formidable in clinical settings. Due to its great potential 

for high quality imaging and its ability to extract in vivo the molecular and 

quantitative physiological information from complex dynamic processes in 

humans using various PET tracers, PET has been proven very promising for the 

early evaluation of the distribution of malignant tumors. The main focus of PET 

for the study of liver diseases remains on the detection of liver tumors [6], [25], 

[84], [85]. Recent clinical studies [6] revealed that the detection of hepatocellular 

carcinoma (HCC) could be greatly aided by the introduction of a dual-isotope 

PET protocol: 18F-fluorodeoxyglucose (FDG) and 11C-acetate. In the succedent 

11C-acetate liver modeling studies in Chapter 2, the “local hepatic metabolic 

rate-constant of acetate (LHMRAct)” was introduced and validated as the 

potential indicator for detecting HCC. Chapter 3 improved the parameter 

estimation accuracy and quantified the individual relative PV/HA contribution to 
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the total liver blood supply by involving a parameter called the “relative portal 

venous contribution to the hepatic blood flow (av)” in the model dual-input 

function. It was proved that the measurement of av using dynamic 11C-acetate-

PET images could provide an alternative method for the detection of HCC.  

 

In the previous quantitative studies, all the individual parameters were 

estimated by the weighted nonlinear least squares (NLS) algorithm. However, 

five parameters need to be estimated simultaneously, which is a difficult task for 

the weighted NLS fitting procedure. The computational burden is considerable, 

the fitting results are sensitive to the initial guess, and some estimates are not 

quite reliable, which limits its application in the clinical environment and is not 

practical for generating the parametric images. Therefore, statistically reliable 

and computationally efficient estimation algorithms are much desired for the 11C-

acetate liver model with dual hepatic blood supply.  

 

With the development of high spatial and temporal resolution PET, several 

alternative rapid parameter estimation schemes for the use of dynamic PET 

molecular images were proposed [54], [74], [80] - [82], [86] - [88]. As concluded 

in Chapter 2, the back conversion from the 11C-acetate products/metabolites to 

the free 11C-acetate in liver cells could be ignored, the well-known Patlak method 

[54] could be applied to estimate LHMRAct. However, the individual parameters 

are not obtainable, especially av which has superior diagnostic value for 

evaluating HCC. In addition, more accurate estimation of LHMRAct requires the 

individual av value rather than the predetermined fixed av value to calculate the 

dual-input function. The integrated projection [81] and the linear least squares 
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(LLS) methods could provide the parameter estimates efficiently, however, they 

are very biased when applied to the clinical PET images which are noisy and 

nonuniformly sampled. Although the weighted integration method (WIM) [82] is 

generally applicable in clinical settings, it is infeasible to predetermine the 

optimal weighting functions [74]. Feng et al. [74] proposed an unbiased fast 

parameter estimation algorithm: generalized linear least squares (GLLS) for 

nonuniformly sampled biomedical system, which is particularly useful in image-

wide (pixel-by-pixel based) parameter estimation. Despite all the advances in 

computationally efficient techniques, they are limited in their clinical application 

to identify the conventional single-input systems, which are not applicable for the 

dual blood supply liver system, therefore, extra effort is needed to develop 

parameter estimation methods for the dual-input biomedical systems. 

 

As revealed in Chapter 2, the model with no account for the back conversion 

from the 11C-acetate products/metabolites to the free 11C-acetate in liver cells 

could better describe the tracer molecular kinetics in liver, therefore, it may be 

very valuable to extract the information that could be provided by the linear 

graphical analysis and consider the result as a prior. In this chapter, two potential 

parameter estimation techniques: graphed nonlinear least squares (GNLS) and 

graphed dual-input generalized linear least squares (GDGLLS) were proposed. 

The performance of these two novel algorithms was tested by the clinical PET 

images and simulated data with comparison to the standard NLS method for the 

measurement of LHMRAct, av and all the other individual model parameters.  
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5.2    Methods 

5.2.1  11C-Acetate Dual-Input Model in Liver 

 

The tracer kinetic model describing distribution of labeled 11C-acetate in liver 

was shown in Figure 5-1. cb(t) is the weighted 11C-acetate concentration from the 

dual hepatic blood supply in intravascular space, ce(t) is the free 11C-acetate 

concentration in intracellular space, cm(t) is the intracellular 11C-acetate 

products/metabolites concentration, and cT(t) is the observed total tissue time 

activity. The first-order mathematical equations governing the model were 

described by section 3.2.3. In terms of macroparameters, the observed total tissue 

time activity cT(t) could be expressed as 
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are the macroparameters of the model and ⊗  denotes the operation of temporal 

convolution. When K1 - k3 are estimated, the physiological parameter LHMRAct 

can be calculated by 
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which has the same form as the forward clearance K. 
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Figure 5- 1: The three-compartment 11C-acetate liver kinetic model with 
parameter av in the dual-input function. e(t) denotes the PET measurement noise. 

 

 

5.2.2  Graphed Nonlinear Least Squares Algorithm 

 

As aforementioned, 11C-acetate is metabolized irreversibly in liver cells with 

a rate constant of k3 during the scanning period, therefore, beyond the dynamic 

phase of the dual-input, the ratio of cT(t) to cb(t) could be described by 
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which is denoted as LHMRAct as well. As shown in equation (3), it might be 

very useful to obtain the forward clearance K by a graph of the ratio of the total 

tracer concentration in tissue at the midtimes of sampling to the tracer 

concentration in blood at the respective times versus the ratio of the blood tracer 
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concentration time integral to the tracer multiple-time (midtimes of sampling) 

activity data in blood. As illustrated in equation (1), B1 has the same form as the 

forward clearance K, therefore, B1 may be estimated by this linear graphical 

analysis.  

 

Our proposed GNLS approach applied to the dual-input 11C-acetate liver 

model is a cascaded estimation algorithm, which has three steps, whose flow 

chart was shown in Figure 5-2. In the first step, linear graphical analysis is 

applied to estimate B1 by equation (3). The ratio of cT(t) to cb(t) changes rapidly 

during the dynamic phase of the tracer activity in blood, therefore, the data to be 

fitted should belong to the input steady-state space. In this study, the fitting 

period was from 3 min to 10 min. To calculate the dual-input function in 

equation (3), av was empirically set to be 0.8 for the first iteration. During the 

graphical fitting period, the two blood time-activity curves (TACs) are almost 

virtually identical [4], therefore, the estimated B1 is less affected by the actual PV 

contribution ratio (av), and furthermore, it is well accepted that the estimates by 

the linear graphical analysis are very robust [54]. Therefore, it is reasonable to 

consider the estimated B1 by step 1 as a prior for the subsequent estimation 

schemes. In the second step, the weighted NLS algorithm is utilized to estimate 

HBV, av and the other two macroparameters: B2 and L1 with the known B1, which 

aims to minimize the weighted residual sum of squares (WRSS). The weight 

used in this step was  

                       
)( iT

i
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where ∆ti = t’
i – t’

i-1 is the scanning interval and cT(ti) is the total tracer 

concentration in tissue at the midtimes of sampling time t’
i. As seen in Figure 5-2, 
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Figure 5- 2: The flow chart of the GNLS estimation procedure. 

 

 

the first two steps would not cease until the difference between the estimated av 

in step 2 and the initial value of av utilized in step 1 is less than 0.2. In the 

successive first step estimation, the initial value of av would be set to the latest 

estimated av. For non-tumor cases, the iteration generally would not be repeated; 

for tumor cases, one more iteration is generally needed. In the third step, 

parameter K would be estimated by the graphical Gjedde-Patlak analysis with the 
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most updated av value to calculate the dual-input function. By using GNLS 

method, estimates of HBV, av and K (LHMRAct) could be obtained directly and 

the model rate constant parameters K1 – k3 could be calculated by  
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5.2.3  Graphed Dual-Input Generalized Linear Least Squares 

Algorithm 

 

The first step of our proposed GDGLLS algorithm applied to the dual-input 

11C-acetate liver cellular model is the same as the first step GNLS estimation. 

The model expressed by the second-order differential equation is 
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Substitute cb(t) in the first term of equation (6) with the dual-input function 

equation in section 3.2.3 and assume the initial conditions were all zeros, we 

obtain 
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Discretize equation (7) at the midtimes of sampling ti = (t’
i + t’

i-1)/2 (i = 1, 2, … , 

25), the linear equation in matrix form is 

                        ξθ += Xy                                                                                   (8) 

where y = [cT(t1), cT(t2), … , cT(t25)]T are the total tracer concentration in tissue, θ 

= [P0, P1, P2, P3]T are the parameters to be estimated, ξ = [ξ1, ξ2, … , ξ25]T are the 

equation noise, and X is the coefficient matrix. Assume , then vv aaKK →→ ˆ,ˆ
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where K̂

(

is the parameter estimate provided by step 1, a is  the initial guess of avˆ v 

and )ˆ τbc is calculated by the dual-input function equation with the initial guess 

of av. In the second step of GDGLLS, the parameters are estimated by  

                                                                                         (9) ( ) yXXX TT
GDLLS

1ˆ −=θ

where  represents the estimated θ in this GDLLS sense. With the estimate 

of the forward clearance K by step 1 and the estimates of P

GDLLSθ̂

0 – P3 by equation (9), 

all the individual parameters K1 – k3, HBV and av could be obtained. 
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The estimation results in step 2 would be used as the initial values of step 3 

that aims to refine the fitting results of step 2. If all the dual-input function terms 

were substituted by the dual-input function equation, the dual-input 11C-acetate 

model could be described       
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To obtain the GDGLLS solution, assume  and  

in the second, fourth and sixth terms of equation (10) respectively, we have, 
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where K̂  is the parameter estimate by step 1 and  represent the most 

updated estimates of P

210
ˆ,ˆ,ˆ PPP

0, P1, P2 respectively. Take the Laplace transform of the 

above equation with the assumption that the initial conditions were all zeros, 

whiten the correlated equation errors with an autoregressive filter s  [74], 

and then take the inverse Laplace transform, the time domain output function is 

)ˆ( 2Ps +

 82



( ) ( )
( )))()((ˆˆ))()(()ˆˆˆ())()((ˆ

)()(ˆ)()(ˆ)()(ˆ)(

2212010

1221112012

tctcPKtctcPPPtctcPa

tctcKPtcPtcPtcPtcPtc

avavavv

TaaaaTT

−⊗+−⊗−+−

+⊗−⊗+⊗+⊗−=⊗−

ψψ

ψψψψψ

                                                                                                                            (12) 

where 

                    tPe 2̂

1
−=ψ  

                   )1(ˆ
1

2̂

2

2
tPe

P
−−=ψ  

Discretize equation (12) at the midtimes of sampling ti = (t’
i + t’

i-1)/2 (i = 1, 2, … 

25), the equation could be obtained as 

                        ζθ += Zr                                                                                 (13) 

 where r is the filtered output at the midtimes of sampling, θ=[P0, P1, P2, av]T are 

the parameters to be estimated, ζ=[ζ1, ζ2, … , ζ25]T are the filtered equation errors, 

and Z is the coefficient matrix. In the third step of GDGLLS, the parameters 

would be estimated by 

                                                                                        (14) ( ) rZZZ TT
GDGLLS

1ˆ −=θ

where  represents the estimated θ in this GDGLLS sense. The weight used 

in equation (14) was calculated by equation (4) as well. Equation (14) would not 

cease until termination criteria are satisfied. In this study, the termination 

criterion was that either maximum iteration of 10 was reached or the Euclidean 

norm of difference of parameter estimates between two successive iterations was 

less than 0.0001. The flow chart of the GDGLLS algorithm was illustrated in 

Figure 5-3. All the individual parameters could be estimated by GDGLLS 

method in the first three steps. In the fourth step, parameter K would be estimated 

by the graphical Gjedde-Patlak analysis with the most updated a

GDGLLSθ̂

v value to 

calculate the dual-input function. 
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Figure 5- 3: The flow chart of the GDGLLS algorithm. 

 

 

5.2.4  Clinical Study 

 

The dynamic PET images were recorded with an ECAT EXACT 47 PET 

scanner (model 921; CTI/Siemens, Inc., Knoxville, TN), which simultaneously 

acquired 47 contiguous transverse slices (septa extended). Each patient was 
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positioned to allow image acquisition of the liver dome and apical half of the left 

ventricle to the inferior part of liver. Serial images were obtained immediately 

after the bolus IV injection of 11C-acetate. The image acquisition sequences were 

as follows: ten frames of 4 sec each, eight frames of 10 sec each, two frames of 

30 sec each, followed by three frames of 60 sec each and two frames of 120 sec 

each, a total of 25 frames for 10 min. Reconstruction and attenuation correction 

was performed with the standardized ordered-subsets expectation maximization 

technique. Reconstructed transaxial spatial resolution was about 4.4 mm.  

 

Six patients with liver masses were studied, all were hepatitis B carriers, 

including two with HCC. Regions of interests (ROIs) were defined using single 

transverse slice of the full set of dynamic images. For each patient, one non-

tumor liver tissue ROI was extracted. Two HCC regions were extracted from the 

two patients suffered from HCC. The TAC of PV was evaluated by direct 

activity-time measurement. To reduce the radioactivity spillover effect from the 

adjacent tissue, the TAC of HA was approximated by evaluating the TAC of the 

abdominal aorta adjacent to the liver [15] [16] and the last five measurements of 

the TAC of PV were replaced by the corresponding HA data as in Chapters 2 and 

3.  

 

5.2.5  Simulation Study 

 

All the parameter estimation methods including NLS, GNLS and GDGLLS 

were tested by computer simulated data. Two simulated datasets with the same 

image-derived dual-input extracted from clinical data were generated in this 
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study, including one representing HCC. The scanning intervals were the same as 

those of clinical data acquisition. A pseudorandom number generator was used to 

generate the Gaussian noise added to the calculated TAC and the variance 

structure could be described as 

                 
i

iT
i t

tct
∆
×

=
)()(2 ασ                 25,...,2,1=i                                   (15) 

where cT(ti) is the calculated TAC, ∆ti is the scanning interval, σ2(ti) is the 

variance of cT(ti), and α is the proportional constant representing the noise level. 

In this study, the noise levels are set to 0.1, 0.5, 1 and 2. 

 

5.2.6  Statistical Criteria 
 

 

The correlation analysis was conducted for the estimated K1 - k3, av, HBV and 

K provided by NLS and GNLS methods for the clinical datasets. In addition, the 

Akaike Information Criteria (AIC) [52] and Schwarz Criteria (SC) [53] were 

utilized to test the “goodness of fit”. It was assumed that the data variances were 

known up to a proportionality constant, therefore, the AIC and SC are given by  

              PNWRSSNAIC 2)ln( +=                                                                   (16) 
 
              NNWRSSNSC P ln)ln( +=                                                               (17) 
 
where NP is the number of parameters, and N is the number of data points, and 

WRSS is the weighted residual sum of squares. The reliability of parameter 

estimation was accessed by the coefficient of variation (CV), which is the 

computed measurements of the estimates’ variability and formulated as 

              %100×=
P

SDP
PCV                                                                         (18) 
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where P is the parameter estimate and SDP is the standard deviation (SD) of P. In 

NLS and GNLS fitting procedure, SDs were estimated as the square roots of the 

diagonal elements of the covariance matrix and the covariance matrix was 

estimated based on sensitivity functions. For the simulation study, the accuracy 

of the estimated parameters was evaluated by bias, which is calculated by 

                %100×
−

=

−

true

true

P
PPBias                                                              (19) 

where Ptrue is the true value of the parameter,  and 
−

P  is the mean value 

calculated from 200 simulation runs.  

 

 

5.3    Results and Discussion 

 

Figure 5-4 shows one slice of dynamic 11C-acetate-PET images of HCC. The 

HCC region demonstrates significantly increased 11C-acetate uptake in the last 

several frames. The quantitative studies of this molecular imaging were 

performed by modeling the 11C-acetate kinetics in liver cells and estimating the 

corresponding characteristic parameters.  

 

To evaluate the performance of GNLS, comparison between the estimation 

by NLS and GNLS for clinical datasets was conducted. The parameter estimates 

of K1 - k3, HBV, av and K (LHMRAct) by these two methods were listed in Table 

5-1. As seen in Table 5-1, the estimation results predicted by the two methods are 

comparable with each other. The correlation coefficients by the correlation 
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Figure 5- 4: One slice of dynamic 11C-acetate-PET images of HCC. The images 
were displayed row by row, from left to right.  The enclosed area indicates HCC. 

 

 

analysis of the two sets of K1, k2, k3, HBV, av and K (LHMRAct) for each defined 

ROI are 0.9872, 0.9563, 0.9868, 0.9920, 0.9987 and 0.9847 respectively. The 

two sets of estimated av in Table 5-1 were approximately the same. For the six 

non-tumor liver tissue regions, the estimated av expressed as mean value ± SD 

are 0.8495 ± 0.0752 and 0.8361 ± 0.0790 by GNLS and NLS methods 

respectively. The estimated K by GNLS and NLS methods are 0.1602 ± 0.0225 

and 0.1437 ± 0.0224 respectively for datasets 1 to 6. The correlation of these 

estimated parameters by the two methods was plotted in Figure 5-5. As shown in 
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Table 5- 1: The parameter estimates of K1, k2, k3, HBV, av and K by NLS and 
GNLS methods for the clinical datasets. 

 
Datasets NLS GNLS 

Number K1 k2 k3 HBV av K K1 k2 k3 HBV av K 

1 0.7815 0.3822 0.0728 0.0880 0.9004 0.1250 0.8307 0.4006 0.0987 0.0817 0.9085 0.1642

2 0.8073 0.3355 0.0602 0.0548 0.8634 0.1228 0.8790 0.3443 0.0768 0.0539 0.8899 0.1603

3 0.5300 0.3694 0.1421 0.2908 0.6972 0.1472 0.5156 0.3573 0.1446 0.3077 0.7192 0.1485

4 0.6687 0.4849 0.1782 0.4680 0.8994 0.1797 0.6749 0.4739 0.1569 0.4568 0.8978 0.1679

5 0.9794 0.2435 0.0371 0.1358 0.7903 0.1296 0.9896 0.2504 0.0366 0.1567 0.7980 0.1261

6 0.8269 0.4194 0.0990 0.0480 0.8657 0.1580 0.8660 0.4316 0.1249 0.0715 0.8837 0.1944

7 1.3601 0.4113 0.1176 0.1573 0.3330 0.3025 1.3055 0.3730 0.0987 0.2006 0.3433 0.2731

8 0.9935 0.3398 0.3852 0.1473 0.5684 0.5278 0.9635 0.3083 0.3547 0.1528 0.5661 0.5154

 
Note: Datasets 1 to 6 represent non-tumor liver tissue ROIs extracted from six 
patients’ data. Datasets 7 and 8 represent HCC ROIs extracted from patients 4 
and 6. 
 

 

Figure 5-5, all the estimated parameters by the two approaches correlated closely 

with each other.  

 

The CVs of the estimated K1, k2, k3, HBV and av by NLS fitting and the 

estimated K, B2, L1, HBV and av by GNLS fitting for the clinical datasets were 

summarized in Table 5-2. As seen in Table 5-2, the results of GNLS have 

conclusively demonstrated that the estimation reliability of K, B2, and L1 is 

satisfactory since most CVs are less than 20%. The average CVs of K, B2, and L1 

are much less than the mean CVs of K1, k2 and k3 by NLS in Table 5-2. With the 

estimated K, B2, and L1 by GNLS, the model rate constant parameters K1 - k3 

could be calculated by equation (5). Therefore, K1, k2 and k3 could be much more 

reliably estimated by the proposed GNLS method. It is worth noting in Table 5-2 

that the estimation of av by GNLS is very reliable since most CVs are less than 

20% and half of them are less than 10%. Majority CVs of the estimated av by  
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Figure 5- 5: Correlation of the estimated (a) K1, (b) k2, (c) k3, (d) HBV, (e) av and 
(f) K for the eight clinical ROIs by using GNLS and NLS methods. 

 

 
 

Table 5- 2: Comparison of the CVs of the estimated K1, k2, k3, HBV and av by 
NLS and the estimated K, B2, L1, HBV and av by GNLS for the clinical datasets. 

 
Datasets NLS GNLS 

Number K1 k2 k3 HBV av K B2 L1 HBV av 

1 18.40 30.45 35.64 52.80 7.70 9.70 24.79 22.16 59.45 7.86 

2 8.01 15.65 29.84 53.97 8.46 25.01 8.54 8.69 59.19 7.56 

3 9.74 21.46 22.40 18.45 10.45 9.20 10.27 9.18 15.33 8.94 

4 15.87 25.88 14.66 16.65 5.31 8.39 13.73 10.02 14.23 4.99 

5 9.80 18.86 71.47 60.41 13.39 38.95 10.17 12.38 51.14 11.89 

6 22.44 36.03 33.22 172.6 12.74 10.06 23.47 19.99 141.7 11.44 

7 15.71 24.53 17.08 52.18 74.25 12.17 15.96 13.88 50.16 73.23 

8 43.88 63.92 29.20 77.70 51.17 2.82 31.96 18.79 39.51 21.12 

Average 17.98 29.60 31.69 63.10 22.93 14.54 17.36 14.39 53.84 18.38 
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GNLS are less than those by NLS, and the estimation of av of region 8 is 

considerably more reliable. As illustrated in Table 5-2, the estimation of HBV by 

GNLS is generally more reliable than that by NLS especially for region 8. All 

these findings suggest that GNLS method could provide more reliable parameter 

estimation for 11C-acetate dual-input liver model.  

 

As shown in Table 5-3, when compared with NLS method, all SCs of clinical 

datasets by GNLS except those of regions 1 and 7 are smaller, which may 

indicate that GNLS could provide better fit. The two sets of AICs are comparable 

with each other.  

 

It is widely acknowledged that the initial guess and computational burden 

issues limit the application of NLS algorithm in the clinical environment, though 

its fitting results are generally considered as the gold standard. During the GNLS 

fitting procedure, owing to the reduced number of parameters to be estimated by 

the recursive NLS procedure, the computational burden is reduced. Since one of 

the model macroparameters B1 are predetermined and considered as a prior, the 

fitting results of the second step NLS regression are less affected by the initial 

guess.  

 

Computer simulation was utilized to examine both GNLS and GDGLLS 

methods as well. The estimation results of the mean values, biases, and CVs of 

K1 - k3, HBV, av and K (LHMRAct) calculated from 200 simulation runs by NLS, 

GNLS and GDGLLS were presented in Table 5-4. When compared with NLS 

method, the rate constant parameters K1 - k3 could be considerably more reliably 
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Table 5- 3: The AICs and SCs by NLS and GNLS algorithms for the clinical 
datasets. 

Datasets NLS GNLS 

Number AIC SC AIC SC 

1 176.51 182.61 178.74 183.61 

2 165.97 172.07 166.68 171.56 

3 179.84 185.94 178.58 183.45 

4 163.61 169.71 163.82 168.70 

5 177.61 183.71 177.12 182.00 

6 176.32 182.41 176.46 181.34 

7 192.54 198.63 194.04 198.92 

8 169.44 175.54 167.60 172.47 

 

 

estimated by both GNLS and GDGLLS especially when the noise level is high. 

Nevertheless, NLS could provide more accurate estimates of K1 - k3. As shown in 

Table 5-4, the estimation of av and HBV by the two proposed methods is 

moderately more reliable than that by NLS. The accuracy of the estimated av and 

HBV using the two presented approaches is in general comparable with that of 

NLS. The estimation of K in Table 5-4 by both GNLS and GDGLLS is much 

more reliable for all the cases when compared to the results of NLS, especially 

when the noise level is 2. The estimation accuracy of Parameter K is satisfactory 

since all biases are around 1% for dataset 1 and less than 1% for dataset 2. When 

the noise level is 2, both methods could achieve better fitting accuracy for this 

HCC indicator (Parameter K). It could be concluded from Table 5-4 that the 

estimation accuracy of all the parameters by the two presented techniques is 

generally not sensitive to the noise level: higher noise level would not definitely 

mean worse fitting results, which may be extremely useful in clinical settings 

whose noise level is generally high. Besides, by using GDGLLS algorithm all the 

individual model parameters could be expressed analytically in terms of the PET 
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Table 5- 4: Estimation results of K1 - k3, HBV, av and K from two sets of 
simulation, in which the second dataset represents HCC. The true value of the 
two datasets is K1=0.65, k2 =0.40, k3=0.15, HBV=0.30, av=0.75 and K1=1.35, k2 
=0.35, k3=0.13, HBV=0.30, av=0.40 respectively. The estimated parameters in 
this table represent their mean values. The mean values, biases (percentage 
value), and CVs (percentage value) were calculated from 200 simulation runs. 

 
 

Method K1 bias1 CV1 k2 bias2 CV2 k3 bias3 CV3 HBV biasH CVH av biasa CVa K biasK CVK

 Noise level α=0.1
NLS 0.6504 0.06 0.75 0.4007 0.17 1.45 0.1502 0.17 1.19 0.2998 0.07 1.77 0.7498 0.02 0.96 0.1774 0.06 0.48

GNLS 0.6587 1.34 0.45 0.4157 3.93 0.62 0.1559 3.94 0.72 0.2952 1.59 1.59 0.7472 0.37 0.94 0.1796 1.32 0.30
GDG 0.6505 0.07 0.57 0.4090 2.24 0.90 0.1568 4.55 0.72 0.3040 1.34 1.67 0.7508 0.11 1.04 0.1796 1.31 0.31

 Noise level α=0.5 
NLS 0.6516 0.24 3.90 0.4030 0.75 7.51 0.1510 0.63 5.99 0.2992 0.28 8.93 0.7479 0.28 4.92 0.1776 0.16 2.39

GNLS 0.6577 1.19 2.32 0.4153 3.82 3.21 0.1562 4.14 3.58 0.2953 1.56 8.55 0.7453 0.62 4.30 0.1797 1.37 1.53
GDG 0.6504 0.05 2.98 0.4083 2.07 4.61 0.1562 4.16 3.59 0.3018 0.61 8.90 0.7441 0.79 4.58 0.1791 1.05 1.56

 Noise level α=1 
NLS 0.6526 0.40 8.21 0.4054 1.36 15.80 0.1509 0.58 12.22 0.2973 0.89 18.14 0.7410 1.21 10.62 0.1771 0.13 4.97

GNLS 0.6543 0.66 5.02 0.4125 3.12 7.08 0.1566 4.39 7.26 0.2954 1.53 16.20 0.7386 1.52 10.08 0.1797 1.38 3.06
GDG 0.6448 0.80 6.11 0.4029 0.73 9.57 0.1557 3.82 7.19 0.2978 0.72 18.12 0.7268 3.09 12.00 0.1785 0.70 3.15

 Noise level α=2 
NLS 0.6527 0.42 17.89 0.4100 2.50 33.56 0.1492 0.54 25.41 0.2932 2.27 36.45 0.7088 5.50 28.83 0.1740 1.87 11.31

GNLS 0.6421 1.22 10.25 0.3993 0.18 14.87 0.1562 4.14 14.99 0.2880 4.00 35.28 0.7003 6.63 26.12 0.1794 1.18 6.24
GDG 0.6185 4.85 13.01 0.3822 4.44 22.28 0.1585 5.69 16.34 0.2877 4.09 36.00 0.6826 8.98 30.26 0.1785 0.70 5.81

Method K1 bias1 CV1 k2 bias2 CV2 k3 bias3 CV3 HBV biasH CVH av biasa CVa K biasK CVK

 Noise level α=0.1
NLS 1.3504 0.03 0.89 0.3503 0.09 1.58 0.1301 0.10 1.29 0.3000 0.01 2.39 0.4000 0.00 3.56 0.3658 0.04 0.55

GNLS 1.3556 0.41 0.73 0.3544 1.25 1.01 0.1320 1.56 0.68 0.2997 0.11 2.04 0.4016 0.40 3.01 0.3680 0.64 0.32
GDG 1.3770 2.00 0.64 0.3733 6.65 0.85 0.1421 9.31 0.74 0.3111 3.71 2.01 0.4144 3.60 3.34 0.3684 0.77 0.32

 Noise level α=0.5 
NLS 1.3507 0.05 4.54 0.3515 0.42 8.04 0.1305 0.39 6.49 0.3000 0.00 11.70 0.3960 1.01 18.39 0.3657 0.03 2.80

GNLS 1.3531 0.23 3.73 0.3538 1.08 5.14 0.1321 1.60 3.44 0.3000 0.01 10.46 0.3972 0.70 16.05 0.3677 0.57 1.63
GDG 1.3724 1.66 3.24 0.3720 6.29 4.29 0.1423 9.46 3.78 0.3102 3.39 10.61 0.4146 3.65 16.86 0.3681 0.68 1.61

 Noise level α=1 
NLS 1.3501 0.01 9.31 0.3533 0.95 16.49 0.1308 0.58 13.19 0.3009 0.31 23.01 0.3842 3.96 39.52 0.3645 0.30 5.82

GNLS 1.3471 0.21 7.70 0.3531 0.88 10.82 0.1326 2.00 7.10 0.3011 0.39 20.60 0.3844 3.90 36.20 0.3673 0.46 3.28
GDG 1.3630 0.96 6.45 0.3695 5.57 8.56 0.1429 9.93 7.88 0.3125 4.17 21.51 0.4007 0.17 35.73 0.3674 0.50 3.22

 Noise level α=2 
NLS 1.3509 0.07 17.82 0.3596 2.76 31.15 0.1313 0.98 26.34 0.3071 2.36 44.60 0.3475 13.12 91.11 0.3588 1.86 12.69

GNLS 1.3283 1.61 15.27 0.3502 0.06 21.41 0.1344 3.38 14.90 0.3087 2.91 40.53 0.3477 13.08 86.68 0.3658 0.05 6.65
GDG 1.3309 1.41 13.02 0.3619 3.39 17.30 0.1467 12.83 19.20 0.3203 6.76 40.63 0.3497 12.57 86.67 0.3658 0.06 6.46

 
Notes: “GDG” are the abbreviations of “GDGLLS”. 

 

 

measurements. The average number of iterations needed for step 3 of GDGLLS 

in the simulation study is generally less than 4 (shown in Table 5-5), therefore, 

the fitting procedure is significantly faster than NLS method. As shown in Table  

 95



 
Table 5- 5: The average number of iterations needed by GDGLLS in simulation 
study. 

Datasets Noise level 

Number 0.1 0.5 1 2 

1 2.99 2.77 3.23 4.12 

2 3.98 3.58 3.48 3.91 

 

 

5-5, when the noise level increases, the number of iterations needed would not 

increase which is very valuable for the generation of parametric images.  

 

 

5.4    Conclusion 

 

Two novel parameter estimation techniques for 11C-acetate liver kinetic 

model with dual hepatic blood supply using dynamic PET images were presented 

in this chapter. When compared with NLS approach, more reliable parameter 

estimates and better fitting quality in terms of SC could be provided by GNLS 

method for clinical study. Due to the reduced number of parameters to be 

estimated by NLS regression, the computational burden of GNLS is reduced 

when compared with the standard NLS method and the fitting results are less 

affected by the initial guess because the predetermined B1 is considered as a 

prior. GDGLLS algorithm could generally identify all the parameters more 

reliably including the parameter in the dual-input function and the fitting 

procedure is drastically faster than NLS method. Compared with NLS fitting, 

both presented algorithms could achieve a comparable estimation accuracy of the 
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two HCC indicators. When the noise level is high, both methods could even 

achieve better fitting accuracy of Parameter K. Due to the robustness and 

computational efficiency, the two presented algorithms might be promising for 

providing the functional physiological parametric images of the two HCC 

markers. Therefore, the two estimation algorithms could provide better ways in 

the noisy clinical environment for the early detection of HCC and are generally 

applicable for other dual-input biomedical systems.  
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Chapter 6      Use of Modeling the Dual 
Hepatic Blood Supply for Liver Studies with 
Dynamic 11C-Acetate PET  
 

 

 

6.1    Introduction 

 

As pointed in Chapter 5, the use of positron emission tomography (PET) for 

the studying of liver disease has been mostly in the detection of liver tumors [6], 

[25], [84], [85], [89]. The investigation of tumor kinetics by 18F-

fluorodeoxyglucose (FDG) PET imaging has suggested that the detection of liver 

tumors, especially hepatocellular carcinoma (HCC), is hampered due to the 

abundance of the enzyme glucose-6-phosphatase in HCC leading to leakage of 

FDG metabolites back to the circulation [25], [90], [91]. The evaluation of HCC 

could be aided by dynamic FDG PET quantitative studies [25], [90]. Besides, 

recent introduction of 11C-acetate in imaging HCC and other liver masses by Ho 

et al. [6], [7] and the successive quantification studies of dynamic 11C-acetate 

PET images using tracer kinetic modeling techniques in Chapters 2 and 3 could 

significantly improve the in vivo assessment of HCC. 
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As aforementioned, for the quantification studies of dynamic 11C-

acetate/FDG PET using tracer kinetic modeling techniques, both measurements 

of tracer concentration in the hepatic artery (HA) and portal vein (PV), the dual 

hepatic blood supply, should be considered [4], [55], [83], [90]. Directly 

measuring them by the widely adopted blood sampling or cannulation procedure 

is invasive, as it is invasive to the subject and exposes personnel to the risks 

associated with the handling of patient blood and radiation dose [68]. In addition, 

measurement of blood flow in the human liver is difficult as gaining proper 

access to the organ is virtually impractical and it is highly invasive in clinical 

settings to measure the portal venous blood flow by direct catheterization and 

sampling.   

 

Many efforts have been paid to reduce the invasiveness of the blood sampling 

procedure. PET-acquired input function has been validated by many researchers 

for various clinical quantitative studies [15], [16], [18], [19], [92]-[94], where 

manual placement of the location of blood vessels is always required. However, 

the tracer arriving at the PV is delayed and dispersed, and furthermore, the 

radioactivity spillover from the surrounding tissue to the PV is significant, 

making it difficult to differentiate the individual PV region from the liver tissue 

[55]. Besides, it is possible that the PV region is inaccessible on some PET scans. 

The requirement of user drawn region-of-interest (ROI) makes this image-

derived method operator dependent and lack of reproducibility.  

  

To avoid the spillover correction problem and improve the reliability and 

reproducibility, alternative methods of extracting the time-activity curves (TACs) 
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of blood vessels were developed. Factor analysis of dynamic structures (FADS) 

algorithm based on principal component analysis (PCA) with positivity 

constraints was found sufficient to extract the blood factor from the composite 

dynamic images without blood sampling or ROI drawing [95]. However, as 

aforementioned the TACs of PV and normal liver tissue show no much 

difference and the decomposed factors themselves may not represent the true 

physiological factors, which makes the portal venous blood factor is 

indiscernible. In addition, due to the small size of HA and PV, the accuracy of 

blood TAC extraction would be affected [96]. To improve the accuracy, a spatial 

independent component analysis (ICA) was proposed [96]. However, the spatial 

distribution of vessels is desired on PET images by using this method, which is 

impossible for PV as it is difficult to separate it from the surrounding tissue and 

it is even inaccessible on some PET scans. Another negative aspect of both 

FADS and spatial ICA is the computation burden, which is impractical in clinical 

settings.  

 

Some researchers has proposed an eigenvector-based algorithm for the blind 

deconvolution of input signals [97], however, it is not applicable for the dual-

input hepatic system since the input function is ROI or even pixel different [83].  

 

Another type of solution to acquire the input function noninvasively is 

modeling approach [38], [39], [44]. Feng et al. proposed a blood TAC model to 

describe the tracer kinetics in blood vessels, however, it is not adaptable for the 

dual-input liver system, since the model could only estimate the TAC of HA. 

Little attention has been paid to modeling the tracer kinetics in the PV. The 
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portal venous input is generally predicted by convolution of the arterial input 

with a notional system function with five parameters [90], [98]. However, in 

addition to the five parameters of 11C-acetate dual-input liver model as stated in 

Chapter 3, ten parameters need to be estimated simultaneously, which would be 

an extremely difficult task for convergence. 

 

With regard to all the negative aspects of the aforementioned techniques 

when applied to the quantification of dynamic 11C-acetate PET in liver, in this 

chapter we investigated whether the quantification could be accessed reliably and 

accurately by using a simple model accounting for the tracer kinetics in the PV. 

Therefore, the tedious or even unsolvable task of measuring the PV curve could 

be eliminated, which would be very meaningful for the clinical evaluation of 

HCC in vivo.  

 

 

6.2    Materials and Methods 

6.2.1  PET Examination  

 

Dynamic 11C-acetate PET studies were performed on five human subjects, 

including two with HCC, lying in the position that allows image acquisition of 

the liver dome and apical half of the left ventricle to the inferior part of liver. 

Before the emission scan, transmission scan was performed with a total of 10 

min acquisition time. Immediately after the bolus IV injection of 11C-acetate, 

dynamic PET images were recorded with an ECAT EXACT 47 PET scanner 

 101



(model 921; CTI/Siemens, Inc., Knoxville, TN), which simultaneously acquired 

47 contiguous transverse slices (septa extended) over a period of 10 min by 

measuring ten 4 sec frames, eight 10 sec frames, two 30 sec frames, followed by 

three 60 sec frames and two 120 sec frames, a total of 25 frames. Reconstruction 

and attenuation correction was performed with the standardized ordered-subsets 

expectation maximization technique.  

 

6.2.2  Analysis of 11C-Acetate PET Images 
 

For quantitative analysis, ROIs were defined on single transverse slice on a 

frame-by-frame basis. The TAC of each ROI was created by averaging the 

activity in each region. For each patient, two ROIs were defined, thus, a total of 

eight nontumor liver tissue ROIs and two HCC ROIs (from two HCC patients) 

were extracted from the five patients for this study. To be relatively free of the 

radioactivity spillover from the liver tissue, the TAC of HA was approximated by 

defining ROI over the abdominal aorta adjacent to the liver.  

 

6.2.3  Modeling the Dual Hepatic Blood Supply 

 

As aforementioned in contrast to other organs or tissues, which are supplied 

only by arterial blood, the liver has a dual source of blood supply: receiving 

oxygenated blood from the common left and right HAs and nutrient-rich blood 

from the gastrointestinal tract via the PV. When the tracer concentration of the 
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arterial blood entering the gastrointestinal tract was approximated to that of HA, 

according to Fick principle [99], we obtain 

                      ))()((
)(

tctcF
dt

tdQ
va

g −=                                                         (1) 

where Qg(t) is the quantity of 11C-acetate in gastrointestinal tract, ca(t) and cv(t) 

are the tracer concentration in HA and PV respectively, and it is assumed that the 

arterial flow is equal to venous flow, denoted by F (ml/min/ml).  The assumption 

was also made that the blood in the gastrointestinal tissue forms only a small 

percentage of the total tissue volume. If W (g) denotes the weight of the tissue in 

gastrointestinal tract, the concentration of 11C-acetate in the gastrointestinal 

tissue cg (t) could be given by the equation 

                          ))()((
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tdQ

Wdt
tdc

va
gg −== ,                               (2) 

and we also assume 

                           )()( tctc vg λ=                                                                         (3) 

where λ is the partition coefficient describing ratio of the solubility of 11C-acetate 

in gastrointestinal tissue and blood [99]. Substituting cg (t) is equation (2) with 

equation (3), we have  

                  ))()((
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W
F
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tdc
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v −=

λ
                                                         (4) 

then, the differentiation of cv(t) (the tracer concentration in PV) could be 

expressed as 

                  ))()((
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tctc
W
F

dt
tdc
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v −=

λ
                                                           (5) 
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Take the Laplace transform of equation (5), and then take the inverse Laplace 

transform, the portal venous concentration of 11C-acetate cv(t) could be predicted 

by 

                  ,  )()( tcpetc a
pt

v ⊗= −

W
Fp
λ

=                                                        (6) 

where ca(t)  was measured by defining ROI over the abdominal aorta adjacent to 

the liver and ⊗  denotes the operation of temporal convolution.   

 

In Chapter 3, the model dual-input function cb(t) was calculated by 

                    ( ) )()()1( tcatcatc vvavb ×+×−=                                                   (7) 

where av is the “relative portal venous contribution to the hepatic blood flow”, 

one of the HCC indicator. Substitute cv(t) in equation (7) with equation (6), the 

hepatic dual-input could be modeled by 

                  c                             (8) ( ) ))(()()1( tcpeatcat a
pt

vavb ⊗×+×−= −

where av and p are the parameters to be estimated. 

  

6.2.4  Parameter Estimation for the Dual-Model of 11C-Acetate 

  

When the dual hepatic blood supply was accounted by the model expressed 

by equation (8) with image-derived TAC of HA, all the parameters of the 11C-

acetate liver model could be estimated by fitting the model output TACs. Figure 

6-1 illustrates the skeleton of this double modeling approach named as the dual-

model of 11C-acetate for dynamic PET studies in liver. The portal venous 

concentration cv(t) was determined with 11C-acetate using one-compartment 

model relating arterial input as demonstrated at the upper left of Figure 6-1. The 
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Figure 6-1. As provided by Chapter 2, the mathematical equations for the 11C-

acetate model in liver could be given by  

                    )()()(
)(

321 tckktcK
dt

tdc
eb

e +−=                                                     (9) 

                    )(
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where ce(t) is the free 11C-acetate concentration in intracellular space, cm(t) is the 

intracellular 11C-acetate products/metabolites concentration, K1 - k3 are the rate 

constants, and  HBV is to account for the contribution of 11C-acetate within 

vascular/sinus space of liver tissue to the observed total tissue activity. In terms 

of macroparameters, cT(t) could be expressed as 

                                                      (12) )()()()( 1
21 tcHBVtceBBtc bb

tL
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where  
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are the macroparameters. In addition to parameters av and p of the hepatic dual-

input model, the dual-model of 11C-acetate totally has six parameters to be 

estimated.  

 

As seen in equation (12), B1 has the same form as the forward clearance K 

and the “local hepatic metabolic rate-constant of acetate (LHMRAct)”, another 

HCC marker. Due to the relatively large number of parameters to be estimated, 

instead of the nonlinear least squares (NLS) algorithm, graphed NLS (GNLS) 
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method [100] was applied for more reliable parameter estimation and to ensure 

the convergence. The flow chart of the estimation procedure for the 6-P dual 

model of 11C-acetate using GNLS algorithm was shown in Figure 6-2. 

 

6.2.5  Simulation Study 

 

To test the effectiveness of the proposed 6-P dual-model of 11C-acetate for 

hepatic PET study, computer simulation was performed as well. Two datasets 

representing HCC and non-tumor liver tissue were generated with two image-

derived arterial input functions extracted from two clinical patients’ data 

respectively. A pseudorandom number generator was applied to generate the 

Gaussian noise added to the calculated TAC and the variance structure was 

described as 

                     
i

iT
i t

tct
∆
×

=
)()(2 ασ                    25,...,2,1=i                                 (13) 

where ti is the sampling time, which is the same as that of the clinical 

examination in this study, cT(ti) is the calculated TAC, σ2(ti)  is the variance of 

cT(ti), and α is the proportional constant representing the noise level, which is set 

to 0.1, 0.5 and 1 in this simulation. 
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Figure 6- 2: The flow chart of the estimation procedure for the 6-P dual model of 
11C-acetate using GNLS method. 

 

 

6.2.6  Data Analysis 

 

To statistically examine this double modeling technique, coefficient of 

variation (CV) was used to access the reliability of parameter estimation, which 

is the computed measurements of the estimates’ variability and given by 
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                 %100×=
P

SDP
PCV                                                                      (14) 

where P is the parameter estimate and SDP is the standard deviation (SD) of P. In 

clinical study, SD was estimated as the square roots of the diagonal elements of 

the covariance matrix and the covariance matrix was estimated based on 

sensitivity functions. The correlation analysis was conducted in clinical study for 

the estimation of the two HCC indicators: the LHMRAct and av of the 6-P dual-

model with image-derived arterial input and the 5-parameter (5-P) model 

presented previously with image-derived dual inputs with the help of experienced 

clinicians or the CT reference. The estimation accuracy of the 6-P dual-model in 

simulation study was evaluated by bias, which was calculated by 

                  %100×
−

=

−

true

true

P
PPBias                                                               (15) 

where Ptrue is the true value of the parameter,  and 
−

P  is the mean value of the 

estimated parameter.  

 

 

6.3    Results and Discussion 

 

The aim of this study was to eliminate measuring the PV curve for 

quantitative hepatic studies with 11C-acetate PET by modeling the dual hepatic 

blood supply with image-derived arterial input. The parameter estimates of av 

and p of the 6-P dual-model with image-derived TAC of HA and the estimation 

results of av of the 5-P model with image-derived TACs of both HA and PV by 
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GNLS method for clinical study were summarized in Table 6-1. Results were 

given as the estimated value ± SD. As shown in Table 6-1, the two sets of 

estimated av are approximated to each other. For the eight non-tumor liver tissue 

regions, the estimated av expressed by the mean value ± SD are 0.8304 ± 0.0942 

and 0.8452 ± 0.0694 for the 5-P model and 6-P dual-model respectively; for the 

two HCC regions, the estimated av are 0.4547 ± 0.1575 and 0.4332 ± 0.1272 for 

the 5-P model and 6-P dual-model respectively. As revealed in Table 6-1, for the 

6-P dual-model, the estimated av of the two HCC regions is much less than that 

of the non-tumor liver parenchyma, which is case of the 5-P model as well, and 

its significance by t-means test is 0.0002. The estimated p values listed in Table 

6-1 are case-dependent. For each patient, the p values of the two ROIs show little 

difference as shown in Figure 6-3, which is of great value for the computation of 

parametric images since parameter p can be estimated only once for each serial 

dynamic images and set as a prior for thereafter pixel-by-pixel-based parameter 

estimation. Figure 6-4 depicts the PV curve calculated by equation (6) with the 

estimated p and image-derived arterial input of one clinical dataset. As seen in 

Figure 6-4, the calculated PV curve agrees well with the image-derived PV curve 

for the first 11 points and the last 4 points. Some unsatisfied fitted points might 

be partially due to the noisy measurements.  

 

The parameter estimates of K of the two models by GNLS method for 

clinical study were listed in Table 6-2. For the eight nontumor liver tissue ROIs, 

the estimated K values for the 5-P model and 6-P dual-model are 0.1681 ± 

0.0146 and 0.1592 ± 0.0190 respectively; whereas, for the two HCC ROIs, the 

estimated K are 0.3942 ± 0.1714 and 0.3799 ± 0.1184 for the 5-P model and 6-P  
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Table 6- 1: Results of the estimated av of the 5-P model with image-derived dual 
inputs and estimated av and p of the 6-P dual-model with image-derived arterial 
input for the clinical datasets using GNLS method. 

 
Datasets 5-P model 6-P dual-model
Number1 av av p

1 0.9085±0.0714 0.9127±0.6158 0.4743±0.2450 
2 0.9117±0.1089 0.9194±0.2854 0.4109±0.2194 
3 0.8899±0.0673 0.8482±0.1311 0.3292±0.0787 
4 0.7196±0.1384 0.7620±0.4194 0.3019±0.2096 
5 0.7192±0.0643 0.7618±0.6960 0.3414±0.1177 
6 0.7127±0.0391 0.7798±0.7311 0.3620±0.1239 
7 0.8978±0.0448 0.8605±0.4968 1.2046±1.1279 
82 0.3433±0.2514 0.3433±0.2238 1.1790±0.9876 
9 0.8837±0.1012 0.9175±0.3065 0.4751±0.1583 

102 0.5661±0.1196 0.5231±0.3462 0.5029±0.8233 
 

Notes:       1. Two ROIs were extracted from each patient. The datasets 
were numbered like this: 1 and 2 from patient 1, 3 and 4 from 
patient 2 and so on. 

            2.  Datasets 8 and 10 represent HCC. 
 
 
 
 

 
 
 

Figure 6- 3: The parameter estimates of p of the 6-P dual-model for clinical 
study. The estimated p of the two ROIs from the same patient was differentiated 
by symbols asterisk and square. 
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Figure 6- 4: Calculated PV curve (the dashed line) with the estimated p and 
image-derived TAC of HA of one clinical dataset. The points denoted by symbol 
asterisk are the image-derived PV measurements. 

 

 

Table 6- 2: Estimation results of parameter K of the 5-P model with image-
derived dual inputs and 6-P dual-model with image-derived arterial input for the 
clinical datasets using GNLS method. 

 
 

Datasets 5-P model 6-P dual-model
Number K CV K      CV

1 0.1642 9.71 0.1651 2.26 
2 0.1764 10.80 0.1765 2.70 
3 0.1603 25.61 0.1496 6.88 
4 0.1781 30.31 0.1605 16.99 
5 0.1485 10.86 0.1291 4.92 
6 0.1551 9.20 0.1391 3.75 
7 0.1679 8.39 0.1859 4.52 
8 0.2731 12.17 0.2962 9.53 
9 0.1944 10.06 0.1682 5.43 
10 0.5154 2.82 0.4636 1.19 

 

         Note:    See notes of Table 6-1. 
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dual-model respectively. Same as the 5-P model, the estimated LHMRAct (the 

forward clearance K) of the two HCC regions of the 6-P dual-model is 

significantly higher than that of the nontumor liver tissue and its significance by 

t-means test is 0.0003. 

 

As shown in Tables 6-1 and 6-2, the two sets of estimates of both av and K of 

the 5-P model and 6-P dual-model agree well with each other. The correlation 

coefficients by the correlation analysis of the two sets of estimated av and K for 

each defined ROI are 0.9784 and 0.9831 respectively. The regression equations 

relating av and K measured with the 5-P model and 6-P dual-model for the ten 

clinical ROIs were depicted in Figure 6-5. As illustrated in Figure 6-5, the 

estimated av and K of the two models correlate closely with each other. All the 

above findings might indicate that the tough issue of obtaining the PV curve for 

hepatic quantitative study might be addressed by the presented 6-P dual-model. 

The model fitted curves according to the 5-P model and 6-P dual-model for one 

patient data including one HCC ROI and one non-tumor liver tissue ROI, were 

shown in Figure 6-6. For the non-tumor liver tissue ROI, the two fitted curves of 

the two models show no much difference at the beginning and ending stages and 

some difference at the middle stages; while for the HCC ROI, the two fitted 

TACs show little difference with each other. 

 

As revealed in Table 6.1, the CVs of the estimated av increase modestly when 

compared with those of the 5-P model, which could be explained that more 

number of parameters to be estimated reduces the estimation reliability. 

Nevertheless, the estimates of av of the 6-P dual-model are still generally reliably  
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(a) 

 

(b) 

Figure 6- 5: Relationship between the estimated av (a) and K (b) of the 5-P 
model with image-derived TACs of both HA and PV and the 6-P dual-model 
with image-derived TAC of HA for the ten clinical ROIs. 
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(a) 

 

(b) 

Figure 6- 6: Graphs show the generated TACs of the nontumor liver tissue ROI 
(a) and the HCC ROI (b). The points denoted by symbols triangle and diamond 
represent the nontumor liver tissue and HCC measurements respectively. The 
dashed lines are the fitted TACs using the 6-P dual-model; while the dotted lines 
are the fitted TACs using the 5-P model. 

 
 
 
attainable. The reliability of the estimated p is acceptable as well since most CVs 

are less than or around 50%. As listed in Table 6-2, nine CVs of the estimated K 
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of the 6-P dual-model are less than 10%, indicating very reliable estimation. 

When compared with the CVs of the 5-P model, the estimated K derived from the 

6-P dual-model are much more reliable as demonstrated in Figure 6-7. The 

average CV values of the estimated K of the 6-P dual-model and 5-P model are 

5.82% and 12.99% respectively. In addition, as mentioned above, for each 

patient, parameter p need to be estimated only once and then could be set as a 

prior for other ROIs or pixels, therefore, the CVs of both av and K could be 

further reduced.  

 

Computer simulation was performed to test the 6-P dual-model of 11C-acetate 

as well. Two simulation studies, including one HCC study, were conducted with 

two image-derived arterial TACs from two patients. The GNLS estimation 

results of the mean values, biases, and CVs of the parameters K1, k2, k3, HBV, av, 

p and K (LHMRAct) of the 6-P dual-model calculated from 100 simulation runs 

were presented in Table 6-3. As seen in Table 6-3, all CVs are less than 20% for 

non-tumor liver tissue case and less than 36% for HCC case. All biases are less 

than or around 5%. Therefore, reliable and accurate parameter estimation of the 

6-P dual-model with image-derived arterial input could be achieved. As shown in 

Table 6-3, the reliability and accuracy of the estimated rate constant parameters 

K1, k2 and k3 are comparable with one another for the same dataset. Though the 

estimation of HBV and p shows less reliable than that of other parameters 

(referred to Table 6-3), the reliability is still acceptable and the accuracy is 

satisfied especially for the estimated p of the nontumor liver tissue dataset. 

Concerning the two HCC indicators: the LHMRAct (the forward clearance K) and 

av, they could be accurately and reliably estimated according to the provided data 
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Figure 6- 7: Comparison of the CVs of the estimated K of the 5-P model with 
image-derived dual inputs and the 6-P dual-model with image-derived arterial 
input for the ten clinical ROIs. Solid line marked by asterisk stands for the results 
of the 5-P model and solid line marked by square stands for the results of the 6-P 
dual-model. 

 

 

in Table 6-3. In particular, K is the most reliably and accurately estimated 

parameter among all of the parameters of the 6-P dual-model, since the CVs are 

all less than 5% and the biases are all less than 2.5%, furthermore, the biases of 

dataset 1 are even less than 0.5%. The presented results show that all the required 

parameters of this 6-P dual-model without the known PV curve could be 

identified and the parameter estimates are reliable and accurate. The fitting 

examples of the simulation study with different noise levels as 0.1, 0.5, and 1, 

were drawn in Figure 6-8. It could be seen that the simulation data of the 6-P 

dual-model could be fitted very well. 
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Table 6- 3: Estimation results of the parameters of the 6-P dual-model using 
GNLS method for two simulation studies, where the second dataset (b) 
represents HCC case. The estimated parameters in this table represent their mean 
values. The mean values, biases, and CVs were calculated from 100 simulation 
runs. 

(a) true value: K1 = 0.85, k2 = 0.75, k3 = 0.20, HBV = 0.30, av = 0.75, p = 1.00, K 
= 0.1789 

 
Noise level K1 bias1(%) CV1(%) k2 bias2(%) CV2(%) k3 bias3(%) CV3(%) 

0.1 0.8666 1.96 0.64 0.7774 3.65 0.49 0.2027 1.33 0.71
0.5 0.8487 0.16 5.54 0.7643 1.90 3.66 0.2057 2.87 5.81 
1.0 0.8304 2.31 8.98 0.7450 0.67 7.29 0.2074 3.70 9.31 

 
Noise level HBV biasH(%) CVH(%) av biasa(%) CVa(%) p Biasp(%)CVp(%) K biasK(%) CVK(%)

0.1 0.2919 2.70 1.41 0.7459 0.54 0.54 0.9996 0.04 0.87 0.1792 0.14 0.25
0.5 0.3062 2.08 14.43 0.7565 0.87 4.28 0.9990 0.10 4.41 0.1795 0.29 1.30 
1.0 0.3167 5.56 19.80 0.7662 2.16 6.51 1.0083 0.83 11.73 0.1796 0.35 2.43 

 
(b) true value: K1 = 1.65, k2 = 0.70, k3 = 0.14, HBV = 0.30, av = 0.36, p = 0.40, K 

= 0.2750 
 

Noise level K1 bias1(%) CV1(%) k2 bias2(%) CV2(%) k3 bias3(%) CV3(%) 
0.1 1.6637 0.83 2.06 0.6899 1.44 1.64 0.1392 0.86 2.77
0.5 1.6780 1.69 9.22 0.6987 0.19 10.76 0.1401 0.09 7.97 
1.0 1.7023 3.17 14.93 0.7157 2.24 15.33 0.1434 2.44 14.58 

 
Noise level HBV biasH(%) CVH(%) av biasa(%) CVa(%) p Biasp(%) CVp(%) K biasK(%) CVK(%)

0.1 0.2994 0.21 2.88 0.3607 0.18 2.81 0.3830 4.24 7.24 0.2792 1.53 0.67
0.5 0.3038 1.28 15.63 0.3674 2.04 13.89 0.3930 1.75 20.59 0.2793 1.58 2.29 
1.0 0.3120 3.99 29.30 0.3824 6.22 21.30 0.4209 5.23 35.90 0.2808 2.10 4.09 
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(a) 

 
(b) 

 
(c) 

 
Figure 6- 8: Fitting results of the randomly chosen simulation data denoted by 
asterisk with the noise levels 0.1 (a), 0.5 (b) and 1 (c) for HCC study. 
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6.4    Conclusion 

 

In this chapter, modeling the dual hepatic blood supply was proved very 

effective with respect to the adequacy of fitting the clinical 11C-acetate PET data 

in liver, to eliminate the PV curve extraction for the hepatic quantitative study, 

which is a very challenging task in the literature. The parameter estimates of the 

6-P dual-model are approximated and closely related with the fitting results of 

the 5-P model with image-derived dual inputs, which might indicate that the 6-P 

dual-model could successfully account for the hepatic dual blood supply. In 

addition, it allows more reliable estimation of the parameter LHMRAct. The 

simulation study suggests that all the parameters of the 6-P dual-model could be 

estimated reliably and accurately, especially for the two HCC indicators: the 

LHMRAct and av. Therefore, this new model structure is an appropriate 

representation of the system and proposes a better way for the early detection of 

HCC in vivo. Besides, with the obtainment of the parameter p, the described 

modeling approach shows great potency for providing the functional 

physiological parametric images of the two HCC indicators.  
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Chapter 7     Automatic Detection Approaches 
for Hepatocellular Carcinoma Using 11C-
Acetate Positron Emission Tomography 
 

 

 

7.1    Introduction 

 

As mentioned in the previous chapters that the model input function BTAC, 

is usually represented by a sequence of arterial or arterialized blood samples, 

which is in general very invasive and requires extra personnel and processing 

time. Moreover, the liver has a dual source of blood supply: the hepatic artery 

(HA) and the portal vein (PV), it is highly invasive and virtually impossible in 

clinical settings to count the radioactivity of the portal venous blood by direct 

catheterization and sampling. Therefore, regions-of-interest (ROIs) delineation of 

HA and PV is required from the dynamic PET images. However, PET cannot 

provide precise anatomic localization due to its relatively poor spatial resolution 

and high noise level. Manual placement of ROIs is subject to operator’s skill and 

lacks of reproducibility [101]. It is also time consuming. Furthermore, the sizes 

of both HA and PV are very small, which makes the delineation even more 

difficult. Therefore, automatic segmentation should be our preliminary step for 

enhancement of visualization and ROI analysis. In addition, automatic 
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segmentation could provide consistent and reproducible results and an overall 

reduction in time for data analysis [101].  

 

Clustering algorithms [102] achieve region segmentation by partitioning the 

image into sets of clusters of pixels that have strong similarity in the feature 

space. This approach has been used with some success in segmentation of PET 

images [103] - [106]. For dynamic PET images, each pixel of a slice could be 

represented by a time-activity curve (TAC). In our study, cluster analysis is used 

to segment the dynamic PET images by merging a number of TACs according to 

their shapes and magnitudes into a small number of distinct characteristic classes 

so that the TACs within a cluster showing the greatest similarity to each other but 

are dissimilar to those extracted from other clusters [101]. Little published data 

in the literature regarding segmenting the clinical dynamic 11C-acetate PET 

images in liver by cluster algorithms. In this chapter, we would perform cluster 

analysis to these clinical images and fit the curves of the segmented regions of 

HCC and non-tumor liver tissue with the TAC of the segmented arterial region 

for the 6-P dual-model proposed in Chapter 6. The effectiveness of this method 

would be evaluated by the comparison between the fitting results of the manual-

drawn ROIs and auto-drawn ROIs. 

  

As mentioned in Chapter 2, the tracer arriving at the PV is delayed and 

dispersed in comparison with that of the HA, which makes its activity in PV 

similar to that in the normal liver tissue. If the number of clusters is insufficient, 

the region of PV would be merged into the surrounding hepatic parenchyma and 

cannot be distinguishable; if the number of clusters is adequate to identify the PV, 
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several “meaningless” clusters would appear. A two-step segmentation method 

based on clustering algorithm and with the combination of spatial and temporal 

information provided by the dynamic PET liver images, was proposed as well.  

 

 
 

7.2    Segmentation Schemes 

 

The data acquisition procedure is the same as that in the previous chapters. 

Our aims of the segmentation are to differentiate image pixels of the pathological 

regions: HCC, from other liver masses, at the same time extract the specific 

anatomic structures: blood vessels, liver etc from the dynamic images.  

 

7.2.1  Cluster Algorithm Applied to Segment the Clinical 
Dynamic 11C-Acetate PET Images in Liver 
 

The presented segmentation method based on cluster analysis was applied to 

the clinical dynamic 11C-acetate PET images in liver. The segmentation was 

performed independently on each slice. The basic idea of the segmentation 

method is to utilize clustering algorithm to merge all the pixels’ TACs according 

to their shapes and magnitudes into a small number of distinct characteristic 

clusters. The cluster centroid is the average of all pixels’ TACs in the cluster. 

Assume that there are totally n pixels’ TACs of p time frames in the dynamic 

PET data and m distinct characteristic curves (m << n). Each pixel’s TAC 

belongs to only one of the m curves. The clustering algorithm can segment the 
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dynamic PET data into m curves automatically based on a least squares distance 
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where zi is the ith pixel’s TAC in the PET data; µj is the centroid of jth cluster 

[101]. Each pixel’s TAC is allocated to its nearest cluster centroid according to 
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where zl is the lth pixel’s TAC in the PET data; µi and µj are the ith and  jth 

cluster centroid respectively. The cluster centroids will be updated by averaging 

all pixels’ TACs in the cluster after each round of allocation based on equation (2) 

to minimize D. Then, the n TACs are needed to be reallocated according to the 

new cluster centroids. The allocation and updating iteration wouldn’t cease until 

no TAC is needed to be reallocated from a cluster to another. The number of 

clusters was assumed as 8 (excluding the background) as a prior in this 

segmentation according to [101]. 

 

7.2.2  Two-Step Segmentation Method Based-on Cluster Analysis 

 

In the first step of the segmentation, we aim to extract the PV, which has very 

similar characteristic with the surrounding liver tissue. An option to cluster the 

similar objects is to increase the number of clusters. Therefore, we performed the 

segmentation on the dynamic 11C-acetate PET liver images with a relatively large 

number of clusters k by using the above-mentioned method in section 7.2.1. k 
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was assigned to a value that the PV can be distinguished from its surroundings. 

The segmented PV may be validated by the spatial information: its invariable 

anatomical position being posterior to the pancreatic head that shows the most 

intense physiological uptake of 11C-acetate, or by direct reference to the CT 

images. Since PV could not be recognized clearly on the 11C-acetate PET liver 

images, contrast enhancement techniques were conducted to help validate the 

segmentation result. After the first round of segmentation, the PV would be 

identified; all the clusters will be labeled and isolated. The remaining clusters 

were then put into a queue. In this stage, the PET images were over-segmented. 

 

In the first step of segmentation, each cluster has equal significance to the 

result, however it is unnecessary to retain all the other clusters and some clusters 

are even “meaningless”. Therefore, in the second step, cluster analysis was again 

performed, but only to the pixels belong to the clusters inside the queue. This 

time, the number of clusters was set to be 8 (excluding the background) as well. 

Since the cluster of the PV was labeled and isolated, it would not affect the result 

of the second step segmentation. In addition, it will not be interfered. Finally, 9 

clusters would be obtained and all the ROIs needed for the quantitative analysis 

of the 11C-acetate PET liver images could be extracted. 
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7.3    Parameter Estimation 

 

With the extraction of HA curves, the two HCC indicators: the “local hepatic 

metabolic rate-constant of acetate (LHMRAct)” (the forward clearance K) and the 

“relative portal venous contribution to the hepatic blood flow (av)” would be 

estimated by the GNLS algorithm presented in Chapter 5 for the 6-P dual-model. 

The data points chosen for the graphical analysis in GNLS are from 3 - 10 min.  

 

 

7.4    Results 

7.4.1  Segmentation and Estimation Results for the 6-P Dual-
Model Using Cluster Analysis 
 

Figure 7-1 depicts the console for segmenting the clinical dynamic 11C-

acetate PET images in liver using cluster analysis. Figure 7-2 displays its 

segmentation results for one slice of clinical dataset suffered from HCC. The 

enclosed region in the center of the image is the HA region and the enclosed 

region in the left upper of the image represents HCC region. As shown in Figure 

7-2, the anatomic structures such as the liver, kidney, spleen etc. could be well 

recognized. The region of PV could not be segmented using this method. The 

activity concentration value for each region could be obtained by clicking any 

area in that region and the results would be displayed in the blank area of the 

right bottom of Figure 7-2.  
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Figure 7- 1: The console for segmenting the clinical dynamic 11C-acetate PET 
images in liver using cluster analysis.  

 

 

 

The extracted HCC and non-tumor liver tissue curves were then fitted to the 

6-P dual-model by GNLS algorithm with the auto-extracted TAC of HA. Table 

7-1 summarized the estimation results of av, K and p of the 6-P dual-model with 

the manual-delineated and auto-delineated HA region respectively. As listed in 

Table 7-1, the two sets of estimated values with the two kinds of TACs of HA 

are comparable with each other. 
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Figure 7- 2: The segmentation results of one slice of clinical dynamic 11C-
acetate PET images in liver using cluster analysis. 

 

 

 

Table 7- 1: The parameter estimates of av, K and p of the 6-P dual-model. 

 
ROIs manual auto

 av K p av K p 
Liver 0.9175 0.1682 0.4751 0.8818 0.1490 0.5043 
HCC 0.5065 0.3768 0.4358 0.4226 0.3175 0.4006 
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7.4.2  Results of the Two-Step Segmentation Method Based-on 
Cluster Analysis 
 

Figure 7-3 demonstrates the proposed two-step segmentation results of 

another slice of clinical dynamic 11C-acetate PET liver images in comparison to 

the segmentation results by using the first segmentation method. From Figure 7-

3 (a), it could be seen that the liver, HA, HCC etc. could be identified, but the 

PV were merged into the surrounding hepatic parenchyma. The results are also 

of 8 clusters. 24 clusters were adopted in the first step segmentation whose result 

was shown in Figure 7-3 (b). The PV can be differentiated clearly, however, 

some anatomical structures were distorted and some clusters were even 

“meaningless” compared to Figure 7-3 (a). Figure 7-3 (c) illustrates the result for 

the two-step segmentation using 9 clusters totally. The PV still could be seen; 

other ROIs in Figure 7-3 (a) also appear in Figure 7-3 (c) and their respective 

locations and shapes are nearly unchanged when compared with Figure 7-3 (a). 

Therefore, all the ROIs needed for the quantitative study could be extracted. 

Figure 7-4 shows the TACs of the clusters of HA, PV, HCC and non-tumor liver 

tissue obtained from the segmentation results. 
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(a) 
 

     
 

(b) (c) 
 

Figure 7- 3: (a) The segmentation result of another slice of clinical dynamic 11C-
acetate PET images using the first segmentation method; (b) result of the first 
step segmentation of the two-step segmentation method; (c) final result of the 
two-step segmentation. A = HA, L = liver, P = PV, T = HCC. 
 
 
                                                                    

 
 

Figure 7- 4: TACs extracted from the results of the proposed two-step 
segmentation method. Pure solid line stands for the curve of HA; solid line 
marked by triangle is for the PV, square for HCC and asterisk for the non-tumor 
liver tissue. 
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7.5    Conclusion 
 

The approaches presented in this chapter could segment the dynamic 11C-

acetate PET liver images automatically. All the ROIs for the quantitative study 

of 11C-acetate liver characteristics could be obtained by using the proposed 

segmentation methods. This segmentation may also be useful as a preprocessing 

step before fast generation of the parametric images of these two physiological 

parameters of the liver, which could be of great value to detect HCC 

automatically. Additionally, the proposed segmentation methods may open a 

window for automatic detection of other PET studies. 
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Chapter 8      Conclusions and Future Works 

 

 

8.1    Conclusions 

 

Functional imaging techniques such as positron emission tomography (PET) 

have been proven very promising for the evaluation of distribution of malignant 

tumors. Hepatocellular carcinoma (HCC), the most frequent malignant tumor in 

liver, is the most common malignancy worldwide in males. Most cases of HCC 

are discovered late and less than 10% are cured with surgical resection. 

Therefore, early and accurate detection of HCC will greatly increase the chance 

of cure and survival in patients. However, 40-50% of HCC could not be detected 

by the well-established FDG-PET. The investigation of 11C-acetate on HCC by 

Ho et al. [6] revealed that the detection of HCC could be greatly aided by the 

introduction of this tracer. No data exist in the literature regarding this study 

before Ho and preliminary results are highly encouraging, along with the dual 

hepatic blood supply (hepatic artery and portal vein). Therefore, further studies 

on the tracer kinetic modeling, model validation and discrimination; 

quantification of 11C-acetate metabolism in the liver and the dual hepatic blood 

supply so as to extract the maximum quantitative information during the scan 

period; computer assisted diagnosis; efficient and reliable algorithms to estimate 
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the model parameters, are essential for the detection of HCC, and form the major 

objectives of this study.  

 

Quantitative studies are crucial for accurately applying techniques for the 

evaluation of HCC. In theory, dynamic data may add an incremental value to 

earlier disease detection than simple static data acquisition. Thus a suitable 

dynamic compartment model describing the kinetics of 11C-acetate in liver is the 

premise for quantification. Resolving the model-related functional (kinetic) 

parameters will provide a better understanding on and correlation with the 

variable histopathology of this devastating tumor. In Chapter 2, a three-

compartment model consisting of four parameters with dual inputs was proposed 

and compared with that of five parameters. Estimation of the adequacy of these 

models is based on some statistical study. A new physiological parameter called 

the “local hepatic metabolic rate-constant of acetate (LHMRAct)” was introduced. 

It was concluded that this three-compartment four-parameter model with dual 

input functions was suitable in mapping the kinetic characters of 11C-acetate in a 

10 min dynamic PET imaging of the liver. The model has provided a better 

understanding of the complexity and biochemistry of the behavior of this tracer 

in HCC and non-tumor liver tissue. A 10 min dynamic acquisition of 11C-acetate 

PET imaging may provide enough valuable quantitative data. The parameter 

LHMRAct could be considered as potential indicator of metabolism (other than 

SUV) for evaluating HCC. 11C-acetate is not just a complementary tracer to FDG, 

in fact a better tracer than FDG for detection of HCC.  
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Since in real pathology, both tumor and non-tumor liver tissue can be 

heterogeneous in the distribution and proportion of the two blood supplies. To 

further improve the accuracy of quantitative analysis, Chapter 3 presents a new 

model structure to investigate the individual proportion of the hepatic artery 

(HA) and portal vein (PV) in different regions of interest (ROIs). An extra 

parameter av was included in the model input function to describe the 

contribution of PV to the total liver blood flow. This study suggests that the 

differential portal and arterial contribution to the liver blood supply could be 

extracted from the dynamic PET measurements noninvasively using tracer 

kinetic modeling techniques. The estimated av value is reasonable and 

concordant with the clinical, radiological and pathological conditions. It adds 

supportive evidence to the observation that liver metastases derive a much 

greater proportion of their blood supply from the hepatic arterial flow when 

neovascularization is a common cancer growth characteristic, with a smaller 

proportion from the portal venous flow. Whether the estimated av value might 

have an alternative role as a vascular indicator that can reflect subtle 

neovascularization in early HCC tumor growth requires more research. In the 

presence of pathological changes of cirrhosis, the background liver parenchyma 

shows heterogeneous vascular changes such as significant arterioportal and 

portovenous systemic shunting. All these confounding factors will add to the 

complexity of background noise, making it difficult to evaluate for small and 

well- differentiated HCC lesions. This is the same reason for a low detection 

accuracy even by the most advanced triple-phase CT technology when severe 

hepatic cirrhosis is encountered.  The measurement of av, however, may directly 

provide a measure of the “vascular deviation” status from the normal liver 
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vasculature, and, therefore, may provide an indirect way of reflecting cirrhosis 

using PET (which is normally evaluated by CT). The presented results show that 

all the required parameters can be quantified simultaneously and the parameter 

estimates are reliable and accurate. The three-compartment four-parameter model 

plus an extra weight parameter in the dual-input function is a more appropriate 

representation of the physiological system by describing the kinetic characters of 

11C-acetate in a 10-minute dynamic PET imaging of the liver, including a more 

consistent estimation of LHMRAct. In summary, the above findings and proposal 

may provide a better understanding of the perfusion and metabolic function of 

normal liver and liver cancer.  

 

In Chapters 2 and 3, the model parameters were estimated by the classic 

nonlinear least squares regression (NLS) algorithm. Nevertheless, when the 

number of parameters to be estimated is relatively large, “good” initial guess is 

required and the computational burden is considerable, which limits its 

application in clinical environments for image-wide parameter estimation. 

Although a variety of fast parametric imaging techniques have been developed, 

most of them focus on single input systems, which do not provide optimal 

solution for dual-input liver system parameter estimation. In Chapter 4, a dual-

input-generalized linear least squares (D-I-GLLS) algorithm was proposed to 

identify the model parameters including the parameter in the dual-input function. 

It achieves a comparable estimation quality in terms of coefficient of variance 

(CV) with NLS method by computer simulation. The accuracy of most of the 

parameter estimates for 11C-acetate liver kinetic model is satisfactory. This 

computationally efficient algorithm could reliably identify all the parameters 
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including the parameter in the dual-input function. Only one initial guess is 

required for the fitting procedure and the results are not sensitive to this initial 

guess. Therefore, this D-I-GLLS algorithm is potentially useful for the 

construction of parametric images from 11C-acetate dynamic PET liver images 

and is generally applicable to other dual-input biomedical system parameter 

estimation.  

 

Chapter 5 proposes two novel parameter estimation techniques: graphed NLS 

(GNLS) and graphed dual-input generalized linear least squares (GDGLLS) 

algorithms, for 11C-acetate liver kinetic model with dual hepatic blood supply 

using dynamic PET images. Clinical and simulated data were utilized to test the 

proposed algorithms by a systematic statistical analysis. When compared with 

the NLS approach, more reliable parameter estimates could be provided by 

GNLS method for clinical study. Due to the reduced number of parameters to be 

estimated by NLS regression, the computational burden of GNLS is reduced 

when compared with the standard NLS method and the fitting results are less 

affected by the initial guess because the predetermined B1 was considered as a 

prior. GDGLLS algorithm could generally identify all the parameters more 

reliably including the parameter in the dual-input function and the fitting 

procedure is drastically faster than NLS method. Compared with NLS fitting, 

both presented algorithms could achieve a comparable estimation accuracy of the 

two HCC indicators. When the noise level is high, both methods could even 

achieve better fitting accuracy of Parameter K. Due to the robustness and 

computational efficiency, the two presented algorithms might be promising for 

providing the functional physiological parametric images of the two HCC 
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markers. Therefore, the two estimation algorithms could provide better ways in 

the noisy clinical environment for the early detection of HCC. 

 

For quantification of the 11C-acetate liver studies, both time-activity curves 

(TACs) of HA and PV are desired. However, directly measuring them by the 

widely adopted blood sampling or cannulation procedure is invasive. Moreover, 

accurate measuring the TAC of PV in the human liver is difficult to achieve, as 

the tracer arriving at the PV is delayed and dispersed, and furthermore, the TAC 

of PV is considerably contaminated by the surrounding liver tissue, which makes 

it virtually impractical to differentiate the PV curve by the currently developed 

techniques. To noninvasively and efficiently access the portal venous blood flow, 

Chapter 6 investigates the effectiveness of modeling the dual hepatic blood 

supply with dynamic 11C-acetate PET. Clinical data fitting results revealed that 

the proposed double modeling technique could successfully account for the 

hepatic dual-input. The presented 6-P dual-model allows more reliable estimation 

of the LHMRAct. The simulation study suggests that all the parameters of the 6-P 

dual-model could be estimated reliably and accurately, especially for the two 

HCC indicators: av and LHMRAct. Therefore, this new model structure is an 

appropriate representation of the system and proposes a better way for the early 

detection of HCC in vivo. Besides, with the obtainment of parameter p, the 

described modeling approach shows great potency for providing the functional 

physiological parametric images of the two HCC indicators.  

 

To avoid manual placement of ROI, Chapter 7 proposes two approaches to 

extract the target ROIs on the dynamic 11C-acetate PET images in liver 
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automatically. All the ROIs for the quantitative study of 11C-acetate liver 

characteristics could be obtained by using the proposed segmentation methods. 

This segmentation may also be useful as a preprocessing step before fast 

generation of the parametric images of these two physiological parameters of the 

liver, which is of great value to detect HCC automatically. Additionally, the 

proposed segmentation methods may open a window for automatic detection of 

other PET studies. 

 

 

8.2    Future Works 

 

It is anticipated that the following works can be built based on the theory and 

the results reported in this thesis. 

 

As stated in the previous chapters, series of quantitative studies have been 

conducted and state-of-the-art quantitative diagnostic information could be 

provided by applying series functional imaging technologies proposed in this 

thesis to the dynamic 11C-acetate PET images in liver. In the future, more clinical 

data would be used to further validate our whole quantification procedure for its 

potential role of clinical diagnosis. The comparison between the two-step 

segmentation approach and the PV modeling (referred to Chapter 6) for the 

quantitative hepatic study using 11C-acetate PET would be performed. Finally, 

parametric images (pixel-by-pixel based) of the two HCC indicators: the 
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LHMRAct and av would be generated in a computationally feasible way for 

routine clinical diagnosis.  

 

The previous exciting outcome in this thesis is not the end of this research but 

the beginning for applying information techniques in oncology. In the future, 

suitable mathematical models for the quantification of specific characteristics of 

cancers to provide objective (quantitative) diagnostic information for the 

evaluation of a variety of cancers, such as lung cancer, prostate cancer [37] etc. 

would be developed. Lung cancer is the most frequent cancer in the world, and 

the prevalence of lung caner is increasing globally. The survival rate is poor, 

largely because lung cancer is usually diagnosed at an advanced stage. The 

overall 5-year survival of patients with lung cancer is approximately 14%. A cure 

may be achieved by surgery, which is feasible only in patients who present at an 

early stage and approximately 75% patients will die of recurrent diseases. The 

biochemical differences of FDG between normal and neoplastic tissue have 

resulted in its routine use for characterizing lesions that are indeterminate by 

conventional imaging modalities and to stage the tumors [107]-[108]. 

Quantification is very important for characterizing tumor kinetics, therefore 

further studies on computer-aided kinetic modeling describing the kinetics of 

FDG in lung cancer are essential. Efficient and reliable algorithms would be 

investigated to generate accurate quantitative physiological (parametric) images 

for the detection of cancer, staging and monitoring treatment of response. 

 

Medical imaging is an essential aspect of radiological sciences for 

visualization of anatomical structures and metabolic information of the human 
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body. Structural and functional imaging of a human body is important for 

understanding human anatomy, function of organs and associated physiological 

processes. PET have been proven very promising for the evaluation of diseases 

far earlier, whereas lack of anatomical information to locate the disease 

accurately. To both identify disease earlier and anatomically localize disease to 

optimize therapy, a highly powerful diagnostic imaging system PET/CT was 

created to collect both anatomical and biological information during a single 

examination [109]-[112]. This integrated information permits accurate tumor 

detection and localization for a variety of cancers and the duration of 

transmission scan is much reduced with CT in place of Germanium, therefore, it 

is more practical to perform whole-body scan than the conventional PET-alone 

imaging.  

 

Whole-Body PET/CT has recently attracted a significant amount of interest 

for its application in oncology providing comprehensive diagnostic information 

to the patient’s health care team quickly, as shown in Figures 8-1 and 8-2. It has 

been proven very promising for the evaluation of the whole-body distribution of 

malignancies. We believe that quantification is very important for the proper 

evaluation of whole-body PET/CT particularly in characterizing tumor kinetics. 

Nowadays, the most commonly used method for estimating tumor metabolism is 

by using a semiquantitative parameter called the SUV (standardized uptake value, 

a decay-corrected measurement of activity per unit volume of tissue adjusted for 

administered activity per unit body weight). This parameter suffers from known 
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Figure 8- 1: Pancreatic carcinoma in the head of pancreas. 

 

 

quantitative inaccuracies [113]. In addition, it has been reported by many clinical 

doctors that the measurement of SUV is less stable than the traditional PET-alone 

imaging. Therefore, use of the semiquantitative SUV is considered a simple but 

suboptimal approach for differentiating benignity from malignancy. A more 

rigorous approach involving accurate quantification with efficient and reliable 

algorithms for the detection of cancers would be investigated soon. We believe 

that the combined modality PET/CT technique would result in both enhanced 

diagnosis and identification of early response by therapy. The outcome of the 

continuing research would have a significant scientific and social impact. 
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Figure 8- 2: Metastatic lymph note at the root of mesentery. 
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