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ABSTRACT 

Early detection of damage in engineering systems during their service life has 

been receiving increasing attention from engineers recently because of its importance. 

Though vibration-based damage detection has been developed for several decades and 

there is a large number of literature, there are still many problems refraining it from 

application. The research in this thesis is on the developments of structural damage 

detection methods based on acceleration response sensitivity via wavelet transform. The 

wavelet packet component energy (WPCE) and wavelet coefficients (WC) of acceleration 

responses, unit impulse response function (UIR) and covariance of acceleration responses 

from ambient vibration are all used in the damage detection via model updating 

techniques. Tikhonov regularization and L-curve method are also improved for the 

proposed damage detection methods to solve the ill-conditioning problem. The 

propagation of uncertainties in the damage detection procedure is also studied with a 

sensitivity analysis with respect to random variables and a reliability result is finally 

obtained for the structure. 

To avoid modal extraction via the Fourier Transform which will cause structural 

information lost, introducing errors in the identified results, in this study, wavelet packet 

component energy and wavelet coefficients of acceleration responses are adopted to 

detect damage via sensitivity analysis and model updating techniques. The sensitivity of 

WPCE with respect to structural parameters has been derived analytical and the 

distribution and properties of the WPCE are studied. They are adopted for damage 

detection in a simply supported concrete beam for numerical demonstration and in a steel 
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beam tested in the laboratory for experimental verification. The WPCE assigns the energy 

of the acceleration responses to different frequency bandwidth with good tolerance to 

noise but the associated damage detection algorithm requires more measurement 

locations especially in a structure with a large number of DOFs. The sensitivity of WC of 

acceleration response from as few as one sensor with respect to structural parameters 

under general excitation and support excitation are obtained analytically and 

computationally, and it is used for damage detection in a one-story plane frame structure 

and a three-dimensional frame structure for simulation study, and in a simply supported 

reinforced concrete beam and a three-dimensional frame structure tested in the laboratory. 

It is noted that time series data with a low sampling frequency also carries damage 

information for damage identification.  

Because most damage detection methods based on the acceleration responses rely 

on the type and the location of the force excitation, wavelet coefficient of unit impulse 

response function obtained via discrete wavelet transform (DWT) of the measured 

accelerations of a structure and the measured excitation force or measured accelerations 

at its support are used to assess the structural health condition. DWT is employed in the 

extraction procedure for UIR to avoid the end effects with Fourier transform. The 

sensitivity of wavelet coefficient of UIR is given numerically. In order to study the noise 

effect in the UIR-based method, a statistical analysis on the UIRs with measurement 

noise is conducted and the results compared favorably with those from Monte Carlo 

Technique (MCT).  The proposed methods are demonstrated successfully by a 31-bar 

plane truss and a nine-bay three-dimensional frame structural system in a simulation 

study and an experimental verification.  
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In order to have the identification method completely independent of the external 

excitation, the covariance of acceleration responses of structures under ambient excitation 

is numerically computed and its wavelet packet energy is used to identify structural 

damage such that the damage detection can be performed with the response-only 

measurement. Covariance of acceleration responses is computed based on the unit 

impulse response function. Wavelet packet transform is applied to the covariance 

functions to find the wavelet packet energy. Damage localization is carried out firstly 

using the elemental modal strain energy approach. A five-bay three-dimensional 

cantilever truss structure is used to demonstrate the efficiency of the method, and a 

nine-bay three-dimensional frame structure is tested in the laboratory for verification of 

the proposed method.  

The ill-conditioning phenomenon in the inverse problem is an important factor 

limiting the application of damage detection methods. Tikhonov regularization and 

L-curve method are improved in this thesis for a better solution of the ill-conditioned 

problem in the proposed damage detection methods. The range of percentage damage is 

limited in the determination of the regularization parameter λ  in the regularization 

method. Because there will be great similarity between the sets of results from two 

successive iterations, the convergence of results is further ensured by checking on such 

similarity using a Multiple Parameter Correlation Criteria. Numerical studies with 

one-story plane frame and thirty-one bar plane truss structure are performed with the 

proposed improved regularization techniques and satisfactory results are obtained.  

Uncertainties in the analytical model and the measured vibration data always exist 

and they affect the identified results. A statistical method for structural damage detection 
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based on measured acceleration response is proposed in this thesis. Uncertainties in the 

system parameters, such as the structural parameters of the finite element model, the 

excitation force acting on the structure and the measured acceleration response from the 

perturbed state of the structure are analyzed and the analytical formula are given. The 

effect of each of these uncertainties on the assessment results is monitored in an updating 

damage detection algorithm based on the response sensitivity approach. The probability 

density function of the stiffness parameters in both the intact and perturbed states are 

compared in a subsequent reliability assessment. A three-dimensional five-bay steel 

frame structure is studied for illustration.  

In summary, the contributions of the thesis to the engineering application include: 

(a) As few as one accelerometer is required in the vibration measurement and it makes 

the damage detection be more economical, convenient and practical especially for large 

scale structure. (b) The study of damage detection based on response-only measurement 

is very useful for the case where the actual excitations may be very difficult and 

expensive to be measured and be generated. (c) The identified results obtained from 

uncertainty analysis have the higher reliability when the measurements are subject to 

noise and the models used have model errors.     
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CHAPTER 1  INTRODUCTION 

 

1.1 General Remarks for Damage Detection 

 Early detection of damage in engineering systems during their service life is 

receiving increasing attention from researchers in the last few decades. The problem of 

detecting structural damage in mechanical, aeronautical and civil engineering systems has 

been the subject of numerous research papers and conferences over the past few years. 

The increasing interest in detecting damage as early as possible comes from the past 

catastrophic failures with great loss of life and property (Lancaster, 2000; Jones, 1998, 

2001). Catastrophes due to structural failures, such as the series of Comet I aircraft 

failures in the 1950s caused by fatigue cracks of the cabin, the capsizing of the Alexander 

L Kielland rig in 1980 started from fatigue fracture of a brace and the air crash due to in-

flight loss of the exterior skin on an Aloha Airlines flight in Hawaii in 1988, draw the 

public attention on the safety of structural and mechanical systems. The public concerns, 

in turn, urge the government for the need of health monitoring on the existing but ageing 

infrastructures. With the huge number of structures, such as bridges, built in the past 

century in the world, it is a real challenge for the technology and the economy to monitor 

them and carry out proper repair if it is needed. In another aspect, the development of 

technology in many areas, such as the increase in computer memory and the speed of 

scientific computation, advances in sensor and experimental techniques, and the 

development of finite element methods, has contributed to the development of damage 

detection methods. Information on the location and extent of damages obtained by early 
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damage detection could assist in the diagnosis of the structural health conditions and in 

the recommendation on associated maintenance work, allowing maintenance and repair 

work to be properly carried out and thus minimizing the maintenance cost. 

 

1.2 Vibration-based Damage Detection Techniques 

 Visual inspection by an expert has been the only available means of damage 

detection and structural maintenance in the early years. However, many modern 

structures, such as offshore platforms, long-span bridges and space structures are 

inaccessible during their service life.  

 Moreover, many failures start from the inside of structural components, thus they 

cannot be detected by naked eyes at an early damage stage. Therefore, non-destructive 

evaluation (NDE) techniques are developed and introduced. Traditional non-destructive 

damage detection techniques are local experimental methods, such as acoustic or 

ultrasonic methods, magnetic field methods, radiography, eddy-current methods, or 

thermal field methods (Doherty, 1993). All of these experimental techniques require that 

the location of the damage be known a priori and be readily accessible and they usually 

require that the structure/system under investigation be taken out of service for inspection 

at prescribed time intervals. The inspection procedure can be very tedious and time 

consuming, especially when it involves components at inaccessible locations. Due to 

these limitations, the application of these methods is far from satisfactory since we are 

limited to detect local damage on the surface of the structure and the size of the structure 

is also practically limited. There is a great need for local damage identification methods 

that can be applied to complex and large-scale structures. This has motivated the research 
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of new NDE techniques that can be applied to in-service structures, reducing 

maintenance costs and improving safety as well as system performance. Vibration-based 

damage methods then came into being and have been developed by many researchers.  

 The structural damage may be caused by various reasons such as operating loads, 

impact, fracture, fatigue, corrosion, manufacturing fault etc., in general, producing 

changes in the structural physical properties (i.e., stiffness, mass, and damping), and these 

changes will lead to changes in the dynamic characteristics of the structure. This fact has 

been widely noticed and used by structural engineers for damage detection or health 

monitoring of a structure. The vibration-based damage detection is found on the basis that 

the dynamic characteristics (namely frequencies, mode shapes and/or transfer functions, 

modal damping, and dynamic response and so on) are functions of the physical properties 

of the structure (mass, damping, and stiffness).  

 In general, the vibration-based damage assessment is an inverse problem to 

identify the location, pattern and quantity of the loss in structural physical properties from 

the measured structural vibration data. With the discovery of the Fast Fourier Transform 

(FFT) algorithm (Cooley and Tukey, 1965) and the use of digital computers in laboratory 

test systems, the development of techniques such as digital signal processing, modal 

testing and analysis are notably boosted. The advances in these areas in turn allowed 

researchers to investigate the possibilities for quantitatively identifying the state of a 

structure by inspecting its vibration data. This encouraging technique has received wide 

attention throughout the civil, mechanical and aerospace engineering communities due to 

its potential for solving the aforementioned inaccessibility problem of localized 
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experimental inspection methods. Doebling et al. (1998) provided an excellent summary 

of the development of the technique over the last three decades.  

 A typical scheme of vibration-based frequency-domain methods is summarized as 

follows: firstly, the vibration response of the structure is measured. For an ambient 

vibration test, only the output response of the structure aroused from ambient excitation 

sources such as wind loads, normal traffic and wave loads is measured. For a forced 

vibration test, both the input excitation force and output structural response are measured. 

Secondly, modal analysis is performed to obtain modal parameters such as natural 

frequencies, mode shapes and damping ratios from the measured time histories. Thirdly, 

a non-destructive damage detection algorithm is applied to identify damage using the 

previously estimated modal parameters. An analytical model of the structure and/or its 

predicted response may also be used as a baseline in the detection process if necessary. 

Lastly, structural safety and reliability analysis are carried out to guide the future usage of 

the structure according to the identified results.  

 

1.3 Definition of Structural Damage 

 Damage may be defined as a change introduced into a system that adversely 

affects the current or future performance of the system (Doebling et al. 1998). In the past 

three decades, research work is focused on identification of damage in the civil, 

mechanical, and aerospace engineering systems. Thus, the definition of damage will be 

confined to the changes of the material and/or geometric properties of these systems, 

including changes to the boundary conditions and system connectivity, which adversely 
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affect the performance of the systems (Farrar et al., 2001). In many existing research 

literatures, damage is mainly in the form of a loss of the stiffness of the structure.   

 Damage may be classified as linear or non-linear according to its effects on the 

dynamic response of a structure. A linear damage is defined as the case in which the 

structure retains its initial linear-elastic property after damage occurrence (Doebling et al., 

1998). The damage, in terms of changes in the geometry and/or material properties of the 

structure, changes the dynamic properties of the structure in a linear or a linear 

combination manner. Therefore, the response of the damaged structure can still be 

modeled under linear assumptions. Up to now, the majority of research work published in 

the technical literature addresses only the linear cases of damage detection.  

 Non-linear damage is defined as the case when the initially linear-elastic structure 

behaves in a non-linear manner after the damage has been introduced (Doebling et al., 

1998). These non-linear behaviors in structural response are also attributed to the changes 

in geometry and/or material properties caused by the damage. One example of the 

geometrically non-linear damage is a crack that opens and closes under the operating load. 

If a structure exhibits moderate or severe nonlinearities, conventional damage 

identification approaches will give results with large error or even wrong prediction. 

Some researchers (Topole and Tzvetkova, 1996) try to directly obtain the equations on 

the system physical properties based on the first law of thermodynamics rather than use 

modal analysis techniques for structural nonlinear damage prediction. Jin et al. (2000) 

investigates the possibility of applying an energy index approach in nonlinear finite 

element analysis for damage detection in highway bridge structures. The nonlinear 

behaviors of the bridges under dynamic loading conditions due to inelastic deformation 
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of the material and crack damages have been studied. In another study, nonlinear analysis 

and chaos theory were applied in structural health monitoring (Livingston et al., 2001). 

Chaotic behavior was observed in the bridge model. They found that the natural 

frequencies of the structure are not fixed, but wander in time in a characteristic pattern 

around a central value. 

 

1.4 Four-Level Damage Identification 

 The vibration-based damage detection approaches can be categorized according to 

various criteria. A well known classification for damage detection methods, proposed by 

Rytter (1993), defines the following four levels.  

• Level 1(Damage Detection): Determination of the presence of damage in the 

structure; 

• Level 2(Damage Localization): Level 1 plus determination of the damage 

location; 

• Level 3(Damage Quantification): Level 2 plus quantification of severity of  

damage; 

• Level 4(Life Prediction): Level 3 plus prediction of the remaining useful life 

of the structure. 

 The four-level damage identification method provides a sequence to assess the 

structural damage. Since prediction in Level 4 requires knowledge of other fields such as 

structural design, fracture mechanics, materials aging studies, and damage mechanism, it 

is therefore not included in this research. This thesis will address only the vibration-based 

damage identification methods that focus on the first three levels. 
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1.5 Non-Model-based versus Model-based Identification 

 Among the different vibration-based structural health monitoring techniques, one 

may find two distinct classes of methods: model-based techniques and non-model-based 

techniques. Each approach has its own advantages and limitations. Non-model-based 

methods have the advantage of avoiding modeling errors and computational costs 

involved in numerical simulations, which can pose severe limitations when iterative 

identification schemes are used. However, most non-model-based methods developed to 

date can only provide Level 1 and limited Level 2 damage identification. Furthermore, 

attempts of Level 2-3 diagnostics by means of non-model-based methods imply a 

considerable increase in the number of sensors and subsequent amount of signal 

processing. This indicates that, in order to achieve Level 3 identification, a mathematical 

model of the structure is necessary. The level of model refinement needed to describe 

small flaws, as in the case of fatigue cracks, can be a considerable restriction. However, 

the use of a theoretical model can be advantageous in many aspects. (1) The use of a 

mathematical structure describing the dynamic system permits the application of model-

based parameter identification methods, possibly reducing the amount of experimental 

data required. (2) It allows inexpensive off-line simulations of slight variations in the 

system, such as changes in physical parameters, boundary conditions, external influences, 

etc. These simulations can provide valuable information for pre-test procedures. (3) The 

model can be used in the test design phase to optimize the number and location of sensors, 

actuators, and excitation/measurement cycles. (4) The model can be used to easily 

generate extensive amounts of data, as needed for example, in the training phase of 
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neural-network-based monitoring schemes. (5) In addition, modeling errors inherent to 

theoretical models can be reduced by using well-established model updating techniques. 

A good compromise between the requirements of accuracy and simplicity is a desired 

characteristic of a model used in any on-line health monitoring procedure. 

 The next important question now becomes how to find the suitable model for the 

method we envision. Most of the work on dynamics of cracked members deals with the 

forward problem, either quantifying the effects of a certain damage of known extent on 

the dynamic characteristics of the structure or predicting a nonlinear signature spectrum 

that would indicate the presence of damage. The computational cost is usually not a 

concern when dealing with the forward problem. Investigations on solving the inverse 

problem (localizing and quantifying a crack from the responses) are usually based on 

simplified linear models where the effect of the damage is represented by a local 

reduction in stiffness.  

  

1.6 Frequency versus Time Series-based Methods  

 A very important aspect to consider is the choice of dynamic quantities used in the 

monitoring process. Friswell (1994) presents a discussion of damage detection methods 

in terms of the measured data used, which can basically be in three forms: time series, 

frequency response functions (FRR’s), and modal parameters. Time series are digitalized 

responses from sensors such as accelerometers, strain gauges, PZT sensors and other 

measuring devices. Frequency responses are obtained from time series by nonparametric 

estimation and signal processing techniques, usually through numerical Fourier transform. 

The FRF’s are then used as the data source to the estimation of modal parameters through 
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curve fitting methods of varying complexity level, depending on the amount of data in 

hand. Time series and FRF’s are the main components of a typical modal test, a very well 

established experimental tool for the dynamic analysis of structures. Some potentially 

useful information is lost during each step of data reduction. In some cases, modal 

parameters can be directly estimated from time responses, but the extent of data 

compression remains the same. For a linear system, it is possible to accomplish intensive 

data reduction, from time series to a modal model, without significant loss of relevant 

information in the frequency range of interest. 

 Friswell and Penny (1997a) also note that the use of FRF’s and modal parameters 

is equivalent for most linear cases. Although FRF data might contain some information 

from out of range modes, or from modes not captured during the curve fitting procedure, 

these advantages will disappear provided the modal parameter estimation phase is careful 

and thorough. This is the main reason why the vast majority of technical papers published 

recently focus on diagnosis methods based on modal parameters such as natural 

frequencies, mode shapes, modal strain energy, strain mode shapes, etc., which have the 

appealing advantage of dealing with a reduced volume of data. However, there are two 

main reasons to explain why the use of modal parameters may be a serious limitation for 

the case of crack-type damage: firstly, the effect of small flaws on modal quantities, such 

as natural frequency shifts and local changes in the mode shapes, are usually very small 

and likely to be masked by experimental uncertainties and data reduction; and secondly, 

the assumption of linearity inherent in modal methods may introduce errors in the 

identification procedure. Frequency domain data may provide a quick, qualitative 

assessment of the presence of cracks, since the nonlinearity introduces peaks due to 
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harmonics of the natural frequencies or combinations of those frequencies and the 

excitation frequency. This crack-signature analysis is limited to a Level 1 diagnostic, and 

the extension to Levels 2 and 3 would require complex nonlinear models in the frequency 

domain. 

 A promising alternative is the direct use of time responses in a model-based, 

iterative parametric identification procedure proposed by Banks, Inman and co-workers 

(1996, 1998) which is proven to be capable of detecting fairly small defects modeled as 

geometrical imperfections in the cross section of beams. The methodology involves a 

theoretical model based on a B-spline Galerkin approximation of the differential 

equations of equilibrium that provides both the accuracy and the simplicity required for a 

successful damage diagnosis. The use of time responses is less likely to be limited by 

data reduction problems, since the only differences from raw, analog data are due to the 

digital data acquisition process. Besides, the nonlinear behavior is also preserved, 

increasing the chances of a more realistic characterization of small crack-type damage. 

 

1.7 Objective and Scope 

 The primary goal of this research thesis aims to develop a simple, economical and 

yet technological feasible vibration-based evaluation procedure to assess local damage in 

existing structures using the measured structural time series data. The specific objectives 

of this research are: 

1) To develop damage detection methods using directly the measured acceleration 

via wavelet transform. The wavelet packet energy and the wavelet coefficients of 

acceleration responses of the structure under general excitation and support 
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excitation are used to identify the location and extent of local structural damage 

via a model updating and sensitivity analysis.  

2) A damage detection method based on the impulsive response function is proposed. 

The impulsive response function is computed from the measured acceleration 

responses via wavelet transform and its wavelet coefficients are used to identify 

local damage in the structure under general excitation and support excitation.   

3) To propose a method making use of the wavelet packet energy of covariance of 

acceleration responses of a structure under ambient excitation to identify structural 

damage such that the damage detection can be done with the response-only 

measurement. 

4) To investigate the regularization methods for treatment of the ill-conditioning in 

the damage identification equations based on measured acceleration responses. 

Tikhonov regularization technique is improved in the inverse problem of the 

damage detection using the time domain data.  

5) To develop a technique to include the effect of uncertainties in the damage 

identification procedure with subsequent structural reliability analysis. The 

uncertainties are assumed to exist in the system parameters, the excitation force 

and the measured acceleration response.  

 

This dissertation comprises eight chapters and is organized as follows. 

Chapter 1 introduces the motivation for the present research and lists the objectives to be 

achieved in this research thesis. 
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Chapter 2 gives a literature review on five topics associated with the present research: 

damage model, damage index method, model updating methods, wavelet transform-based 

methods and damage diagnosis based on vibration responses. After introducing the 

general concept and an overview of the structural damage detection methods, damage 

index methods that utilize modal properties before and after the damage occurrence to 

generate damage indices for damage detection are discussed. Subsequently various model 

updating methods for both model refinement and damage detection applications are 

reviewed. These methods include optimal matrix updating methods, sensitivity-based 

updating methods, eigenstructure assignment methods and statistical methods for model 

updating. The regularization techniques for mode updating are reviewed. Then the 

damage detection methods based on wavelet transform are investigated. The damage 

detection methods using time series data are also investigated specifically. A discussion 

on the critical issues and shortcomings related to existing methods is provided at the end 

of the chapter.  

 

Chapter 3 presents the general procedure of damage detection based on time series data. 

Firstly, the forward problem including the computation of time responses from an 

analytical model using numerical methods and signal analysis is introduced. Secondly, a 

simple model of damage is established for demonstration of the damage detection method. 

Thirdly, the sensitivities of time series data with respect to the structural parameters are 

computed numerically. Fourthly, the damage identification based on the model updating 

and output-error matrix was described. Fifthly, regularization technology is used to treat 
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the ill-conditioning problem and its basic theory was presented. Finally, the modeling of 

uncertainty is presented. 

 

Chapter 4 presents the damage detection methods based on model updating techniques 

using measured acceleration responses via wavelet transform. Wavelet packet energy of 

acceleration responses are computed analytically and applied to identify damage via a 

sensitivity analysis. The wavelet coefficient of acceleration responses of the structures 

under general excitation and support excitation are numerically computed and adopted 

for damage detection where the effects of model errors and noise in the coefficients from 

different frequency bands are studied and the use of subsets of the measured response at 

different resampling rates is discussed. Numerical studies and experimental verifications 

are performed for each method with satisfactory results.  

 

In Chapter 5, wavelet coefficients of the unit impulse response function of the structures 

under general excitation and support excitation are obtained from the measured 

acceleration responses via wavelet transform, and they are applied to identify damage via 

a sensitivity analysis and model updating techniques. Regularization techniques and L-

curve method with improvements are used to solve the identification equation. Numerical 

studies and experimental verifications are performed for the proposed methods and 

improved techniques.  

 

Chapter 6 extends the method developed in Chapter 5 to the damage identification of a 

structure under ambient excitation as experienced by most of the large-scale structures. 
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Firstly, covariance of acceleration responses is computed based on the unit impulse 

response function. Then, the wavelet packet energy of covariance of measured 

acceleration responses of structures under ambient excitation is used for damage 

detection assuming that the ambient excitation is of white noise distribution. To reduce 

the number of unknowns involved in the inverse problem, damage localization is carried 

out firstly with the elemental modal strain energy. A five-bay three-dimensional 

cantilever truss structure is used to demonstrate the efficiency of the method with three 

damage cases, and a nine-bay three-dimensional frame structure is test in the laboratory 

for verification of the proposed method. 

 

In Chapter 7, a statistical model updating method for the structural damage detection 

based on measured acceleration response and a reference model of the structure is 

proposed. Uncertainties in the system parameters, such as the structural parameters of the 

finite element model, the excitation force acting on the structure and the measured 

acceleration response from the perturbed state of the structure are analyzed. Analytical 

formula are given and they are included in the study for the damage detection. The effect 

of each of these uncertainties on the assessment results is studied separately in an 

updating damage detection algorithm based on the response sensitivity approach. The 

probability density function of the stiffness parameters in both the intact and perturbed 

states are compared in a subsequent reliability assessment.  A three-dimensional five-bay 

steel frame structure is studied for illustration.  
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Chapter 8 summarizes the contributions, findings and conclusions achieved in both the 

theoretical and experimental studies in this project. Recommendations for future work are 

also given. 



CHAPTER 2  LITERATURE REVIEW  

  

 Damage detection based on vibration information first appeared in the 1970s. In 

the early 1980s the subject of damage detection using vibration data has received 

enormous attention from the engineering and research communities, with emphasis on 

turbomachinery, civil engineering, and aerospace applications. A great deal of research 

has been carried out in the last two decades on the development of analytical techniques 

of vibration-based damage detection. Since vibration-based structural health monitoring 

(SHM) found its early application in aerospace and mechanical engineering, much 

research has been carried out in these fields. Research studies on the application of 

vibration-based assessment in the health monitoring of civil engineering structures are 

more recent. Doebling et al. (1996a, 1998) provide an extensive bibliography related to 

this subject. Farrar et al. (1994) have reviewed the literature on vibration testing and 

damage detection in bridges. More recent studies have been reported in the proceedings 

of a series of conferences and workshops on structural health monitoring. These include 

the 2nd, 3rd, and 4th International Workshops on Structural Health Monitoring at Stanford, 

USA (Chang, 1999, 2001, 2003), the 1st (Cachan, France) and 2nd (Munich, Germany) 

European Workshops on structural health monitoring (Balageas, 2002, Boller and 

Staszewski, 2004), the 2nd International Workshop on Structural Health Monitoring of 

Innovative Civil Engineering Structures, Winnipeg, Canada (Mufti and Ansari, 2004), 

and the 1st International Workshop on Structural Health Monitoring and Intelligent 

Infrastructure, Tokyo, Japan (Wu and Abe, 2003).  
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 This chapter aims to provide a review on recent research on vibration-based 

damage diagnostics. A complete procedure for damage diagnostics includes 

establishment of damage model of the structure, choice of vibration types (i.e linear or 

non linear vibration), using model or non-model-based damage detection methods, using 

modal methods or non-modal methods, and finally choosing corresponding vibration 

characteristics (i.e natural frequency, mode shape, modal strain energy, flexibility matrix, 

strain mode shape, modal damping, time responses, FRF and covariance of response and 

etc.) with effective signal processing techniques and numerical methods such as iteration, 

regularization, optimization and so on for damage detection. The literature review mainly 

covers the following topics. Firstly, a general review of damage model for the detection is 

given. Secondly, a survey of the investigations on damage index method is presented. 

Thirdly, the survey of model updating methods is investigated. Fourthly, wavelet 

transform based methods and regularization techniques are explored. Fifthly, the 

development of damage diagnostics based on direct use of vibration responses is 

discussed. Finally, critical issues and shortcomings in existing methods are discussed.  

 

2.1 Damage Model 

 There are a number of approaches to model damage in structures in the literature. 

Generally, these methods can be classified into two main groups: the first group is linear 

model which is often used for open crack which is the most common damage type, in 

which the crack is assumed to be permanently opened. This crack model also takes up 

different forms and there are many existing technical literature on the three categories of: 

local stiffness reduction, discrete spring models, and crack functions. The second group is 

non-linear model for an opening and closing crack or breathing crack, in which the crack 
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opens and closes alternately during vibration. Damage model can also be sorted into 

discrete and continuous models. Discrete model is often in the form of lumped flexibility 

model including a compliance matrix, discrete spring model and finite element model and 

etc. 

 There are many literatures on damage models since the emphasis of the thesis is 

not on the models, only typical work on damage model are listed in the section. 

 The first investigation on damage model is attributed to Kirmser (1944) and 

Thomson (1949). They represented the effect of a notch by equivalent forces and 

moments at the location of the geometrical discontinuity. Among the most referred 

publications in the literature we must cite the investigations by Dimarogonas (1976), who 

was arguably the first to propose the derivation of compliance constants from fracture 

mechanics for vibration analysis. 

 The typical use of finite element model was done by Thyagarajan et al. (1998) 

who used a finite element model of a bridge to calculate the nodes at which damage may 

be present. Firstly, the model was adjusted so that the measured undamaged frequencies 

matched the predicted ones. Then using the mass, stiffness and damping matrices of the 

undamaged model and the damaged mode shapes, a damage vector was calculated.   

 Continuous models were developed more recently in an attempt to explicitly 

incorporate the relevant damage parameters, i.e., location and extent, as part of the 

equation of motion of the damaged structure. Christides and Barr (1984, 1986) initially 

developed models for the transverse vibration of a symmetric, double-edge cracked 

Euler-Bernoulli beam and for the torsional vibration of a cracked bar. Both models rely 

on the characterization of the stress concentration due to the crack by means of a decay 
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function introduced in the kinematic assumptions used in a variational derivation of the 

equations of motion. 

 Because of the complexity of failure in structures, damage models are often 

established for specific structures. Ang (1988) developed a seismic damage model for 

reinforced concrete structures in which the structural damage is expressed as a linear 

combination of the maximum deformation and the hysteretic energy dissipation. From an 

extensive damage analysis of various reinforced concrete buildings, an intensity scale is 

derived to describe the potential destructiveness of ground motion. Wu and Law (2004a) 

proposed an anisotropic damage model for a thick plate element with an inclined crack. 

The cracked plate element is represented by an effective plate element with anisotropic 

material properties expressed in terms of the virgin material stiffness and a vector of 

damage variables. The orientation of the crack is directly indicated by the geometric 

parameter and the damage severity can be estimated from other variables representing the 

relative stiffness reduction along the local axes. The validity of the methodology is 

demonstrated by numerical examples and experiment results. 

 

2.2 Damage Index Method 

 Damage index method is the earliest appearing method because it is relatively 

simple and straightforward. Damage index method is a detection approach which adopts 

modal parameters as indicators to identify the structural damage location and extent.  The 

test modal data from the damaged and the intact structures, such as natural frequencies, 

mode shape, etc. are required in this approach to correlate with the corresponding 
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parameters of the analytical model or the baseline model to obtain information on the 

damage location and even the extent. Though damage index methods are applied simply 

in engineering structures, generally they do not provide quantitative information about 

the structural damage. Existing approaches may be classified into the following 

categories based on the parameters used in the damage detection: (1) methods using 

natural frequency shifts; (2) methods using mode shape changes; (3) methods using mode 

shape curvatures/strain mode shapes; (4) methods using modal flexibility changes; (5) 

methods using modal strain energy changes; and (6) methods using frequency response 

function. 

 

2.2.1 Methods based on Shifts in Modal Frequency  

 Natural frequency is the vibration characteristics which are firstly used for 

structural health monitoring, because it is the basic vibration parameters of the structure 

and can be measured easily and reliably, especially in the early days when the vibration 

testing techniques are not fully developed and other vibration parameters can not be 

obtained with satisfactory accuracy. Relevant literature for methods using modal 

frequency is plenty.  

 The earliest work published to use frequency changes for damage detection was 

done by Lifshiz and Rotem (1969) who treated the damage detection as an inverse 

problem so that the damage parameters are calculated directly from measured frequency 

changes via vibration measurements. They found the change in the dynamic modulus, 

which is related to the frequency change, could be used as an indicator of damage in 
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particle-filled elastomer. The dynamic modulus is computed by using curve fitting of the 

measured stress-strain relationships at various levels of filling.  

 Natural frequencies can be directly compared between those from the inspected 

structure and the intact structure. When the difference exists, damage has occurred in the 

structure. Vandiver (1975, 1977) detected structural failure on fixed platforms by 

examining the change in the frequencies associated with the first two bending modes and 

first torsional mode of an offshore light station tower. Wojnarowski, et al (1977) 

evaluated structural integrity of a fixed offshore lighthouse platform by examining the 

effects of eleven different parameters on the dynamic properties of the structure using 

finite element analysis. Foundation modeling assumptions, entrained water, marine 

growth, corrosion, variation in deck loads, and failed structural members are examined. 

 Direct comparison of natural frequency is limited for damage detection. Cawley 

and Adams (1979) used the ratio of natural frequency shifts between different modes to 

detect the possible damage location in composite materials. The ratio between frequency 

shifts for modes i and j can be denoted by /i jδω δω

/i j

. Because the change in the natural 

frequency of a structure is a function of the damage position vector only, but not the 

damage extent, when the analytical ratio δω δω from the simulated damage case equals 

the ratio from the measured data, the damage location is determined. However, the 

method is limited to single damage scenarios. The work was further developed via the 

error function for each mode and for each structural member based on sensitivity analysis 

of modal frequency to damage parameters by Stubbs and Osegueda (1990). Penny et al 

(1993) presented a method to determine the damage case by comparing the measured 

frequencies from the inspected structure with the computing frequency for all simulated 
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damage cases considered in a least-squares sense. Finally the possible damage case is 

determined with the minimal error. They also found that the frequency damage detection 

method is sensitive to measurement errors.  

 Ratios of frequency changes for damage detection are also adopted by Friswell et 

al (1994) who used frequencies and statistical measures to locate damage in structures. 

The damage detection method is based on a known catalogue of likely damage scenarios, 

where it is assumed that there exists a precise model of the structure and the ratios of the 

frequency changes for several lower modes using the model of the intact state and all the 

simulated damage scenarios are computed. The same ratios are also calculated for the 

inspected structure. The relationship between the two sets of values is established by a 

power law relation. When damage scenario of the structure lies in the set of assumed 

damages, the correct type of damage will produce a good fit plotted by a unity-slope line. 

For all other types of damage, the fit will be inexact. 

 Patterns of shifts in a set of modal frequencies are examined alternatively and 

applied for detecting structural parameters changes. Messina et al (1996) proposed an 

assurance criterion for detecting single damage sites from natural frequency change by 

defining the Damage Location Assurance Criterion "DLAC” for location j, 
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where is the measured frequency change vector for a structure with a single defect, 

and 

Δf

δ f j  is the theoretical frequency change vector for a damage with a known size at 

known location j. The location j with the highest DLAC value is regarded as the possible 
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damage site because it best matches the measured frequency change. The method is also 

extended for multiple damage detection known as the multiple damage location assurance 

criterion (MDLAC) and the algorithms for estimating the size of the defects are also 

introduced by Messina et al. (1998). The MDLAC is formulated as, 
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The MDLAC approach offers the practical attraction of only requiring measurements of 

the changes in a few of the structure’s natural frequencies between the undamaged and 

damaged states and is shown to provide good predictions of both the location and 

absolute size of damage at one or more sites. 

 Modal frequencies combined with sensitivity analysis are also found for damage 

detection in the literature. Stubbs and Osegueda (1990) developed a method for damage 

detection that relates changes in the resonant frequencies to changes in member stiffness 

using a sensitivity relation. They assumed that damage occurs at only one member of the 

structure, and computed an error function for each mode and each structural member 

based on sensitivity analysis of modal frequency to damage. The authors illustrated that 

this sensitivity method has difficulty when the number of modes is much fewer than the 

number of damage parameters. Sophia and Garrett (1995) presented a technique for 

identifying localized reductions in the stiffness of a structure using measurements of 

natural frequency. The sensitivities of the eigenvalues to localized changes in the 

stiffness are developed as a set of under-determined equations. The method is also 

verified using test data from an aluminum cantilever beam. Williams et al (1996) 

proposed a method for damage detection and localization by means of using natural 
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frequency sensitivity and satisfactory results are obtained. Other examples of inverse 

methods for detecting damage via modal frequency changes were reported by Adams et 

al (1978), Wang and Zhang (1987), Hearn and Testa (1991), Koh et al (1995), Morassi 

and Rovere (1997) and Salawu (1997a, 1997b). 

 There are several advantages associated with the application of frequency-based 

approaches, such as frequency information being independent of the sensor position, few 

measuring points required; the natural frequency being less contaminated by 

measurement noise than other modal parameters; the ability to be implemented to 

continuously health monitoring a structure, since ambient vibration induced by inputs of 

low energy level, such as normal traffic, are sufficient for the extracting of the resonant 

frequencies. 

 On the other hand, limitations also exist with frequency-based damage detection. 

Because modal frequencies are the global dynamic characteristics of the structure, they 

are usually not sensitive enough to identify the local changes in the structural parameters.  

The frequencies generally cannot provide spatial information on the structural changes. In 

the case of a symmetrical structure, the changes in natural frequencies due to damage at 

two symmetric locations are exactly the same. So the frequency method often fails in this 

case. One may expect that higher modal frequencies are associated with local responses, 

or that multiple frequency shifts can provide spatial damage information because 

structural changes at different locations will cause different combination of frequency 

changes. Unfortunately, there is often insufficient number of frequencies with significant 

changes to uniquely determine the damage location because of the practical limitations in 

modal test and analysis involved with excitation, modal density, etc.  
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2.2.2 Methods based on Mode Shape Changes 

 Mode shapes inherently contain the spatial information about structural changes. 

Then mode shape is more potential for the identification of damage which is the local 

change of the structure condition.  With the development of modal testing techniques 

especially in sensor technology and computing speed, many researchers devoted their 

efforts in detecting damage using measured mode shape information. 

 West (1984), who possibly published the first systematic use of mode shape 

information for locating structural damages, proposed the Modal Assurance Criteria 

(MAC) to determine the level of correlation between the modes measured from 

undamaged and damaged structures. The MAC, generally, is defined as  
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where rϕ  and sϕ  are any two eigenvectors of a structural system. The value stands for 

the correlation level between the two modes in the range of 0.0 to 1.0, with a value of 1.0 

indicating identical mode shapes and 0.0 for orthogonal ones. For the application of 

damage detection, the eigenvectors rϕ  and sϕ  often denotes a pair of mode shape vectors 

measured from the structure before and after damage occurs. In model updating cases, 

however, the mode shape pairs from a tested structure and its corresponding analytical 

model respectively are used instead to calculate the MAC values. The mode shapes often 

need to be partitioned using various schemes, and the change in MAC across the different 

partitioned schemes is used to localize the structural damage.  
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 Yuen (1985) presented a systematic study of the relationship between damage 

location, damage size and the changes in the eigenvalues and eigenvectors of a cantilever 

beam when subjected to damage in a numerical study using a finite element model of a 

uniform cross-sectioned cantilever, and it shows that the changes in the eigenvectors 

follow a definite trend in relation to the location and extent of damage.  

 Fox (1992) proposed and found that a node-line MAC, a MAC based on 

measurement point close to a node point for a particular mode, is a more sensitive 

indicator of mode shape changes due to damage. He experimentally found that the 

measurement of mode shape changes for single vibration mode, such as MAC, were 

relatively insensitive to damage in a beam with saw cut. To locate the damage, the 

relative mode shape changes at node points (in modes that show little change in natural 

frequencies) are related with the corresponding peak amplitude points (in modes that 

show relatively large changes in natural frequencies) by a simply graphical comparison 

method. He also proposed a method of scaling the relative changes in mode shapes to 

better identify the damage location. Mayes (1992) developed a method known as 

structural translational and rotational error checking (STREC) based on the changes in 

mode shapes. By using the ratios of relative modal displacements, STREC assessed the 

difference of structural stiffness between two different sets of degrees-of-freedom 

(DOFs).  

 Based on the concept of MAC, Lieven and Ewins (1988) proposed COMAC for 

damage localization, which is defined as, 
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where i
Drφ and i

Urφ  are modal component of the rth mode shape at measurement location i 

for the damaged state and the undamaged state of the structure, respectively; and m is the 

number of measured modes. The location where a COMAC value is close to zero is the 

possible damage location. The correlation value is related to structural degrees-of-

freedom (DOFs) rather than to mode indices, and obviously more helpful to show where 

are the defects in the structure than the MAC. 

 Ko et al. (1994) presented a method that uses a combination of MAC, COMAC, 

and sensitivity analysis to detect damage in steel-framed structures. The sensitivities of 

the analytically derived mode shapes to particular damage locations were first computed 

to determine which DOFs are the most relevant. The results demonstrated that particular 

mode pairs could indicate damage; but when all mode pairs were used, the indication of 

damage might be masked by modes that were not sensitive to the damage. Shi et al 

(2000a) presented a sensitivity- and statistical-based method to localize structural damage 

by direct use of incomplete mode shapes. Messina et al. (1998) developed a method 

which is an extension of the multiple damage location assurance criterion (MDLAC) by 

using incomplete mode shape instead of modal frequency. A plane truss structure is 

analyzed as a numerical example to compare the performance of the proposed method 

with the multiple damage location assurance criterion. Results indicate that the new 

method is more accurate and robust in damage localization with or without noise effect. 
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 Mode shapes combined with other parameters are also adopted to identify damage. 

Skjaeraek et al (1996) presented a method for the localization of structural damage in 

seismically excited reinforced concrete (RC) structures using the two lowest smoothed 

eigenfrequencies and mode shape coordinates which are used as an input via a 

substructure iteration technique. The optimal sensor placement issue for the method is 

also examined. Cobb and Liebst (1997) presented a method of identifying damaged 

structural elements from measured modal data using an incomplete measurement set. The 

method uses a mathematical optimization strategy to minimize deviations between 

measured and analytical modal frequencies and partial mode shapes. Damage is identified 

by determining the stiffness change to a finite element model required to match the 

measured data of the damaged structure. Ratcliffe (1997) develops and presents a 

technique for identifying the location of structural damage in a beam by applying a finite 

difference approximation of Laplace's differential operator to the mode shape, when 

damage is less severe, further processing of the Laplacian output is required before the 

location can be determined. The procedure operates solely on the mode shape from the 

damaged structure, and does not require a priori knowledge of the undamaged structure. 

Parloo et al (2003) used mode shape sensitivities to damage detection. Since the 

sensitivities are calculated on the basis of the experimentally determined mode shapes, 

there is no need for a prior finite element model of the test structure. Pascual et al (2005) 

introduces a new general procedure to the expansion of mode shape for damage 

assessment process using an optimised choice and he obtained satisfactory results.  

 

2.2.3 Methods based on Mode Shape Curvatures/Strain Mode Shapes 
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 In theory, changes in the mode shapes could be used to detect damage, however, 

the change is usually so small that detection of damage is of difficulty. An alternative to 

using mode shapes is to adopt mode shape derivatives such as curvatures for damage 

detection which still contain spatial information about changes in structural vibration 

characteristics. The mode shape curvature of a structure can be computed from the modal 

displacement or accelerations. For beams, plates, and shells, there is a direct relationship 

between curvature and bending strain, and some researchers also examine the practical 

possibility to obtain the curvature by measuring strain directly.  

 Pandey et al (1991) suggested the application of mode shape curvature for 

detecting damage. By using an analytical cantilever and a simply supported beam model, 

it is shown here that the absolute changes in the curvature mode shapes are localized in 

the region of damage and hence can be used to detect damage in a structure. Finite 

element analysis was used to obtain the displacement mode shapes of the two models. By 

using a central difference approximation, curvature mode shapes were then calculated 

from the displacement mode shapes as, 

  1, , 1,''
, 2

2q i q i q i
q i h

φ φ φ
φ − +− +

=  (2.5)  

where h is the length of each of the two elements between the DOF (q-1) and (q). An 

advantage in using Equation (2.5) is that when healthy mode shapes are also obtained 

from measurement, there is no need to develop an analytical model of the structure. In 

addition, rotational components of the mode shapes need not be measured, and the mode 

shapes can be normalized in any arbitrary manner, as long as the same procedure is used 

in the normalization for both healthy and damaged structures. 
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 Chance et al (1994) found that numerically calculated curvature for mode shapes 

could introduce unacceptable errors. Instead of measuring or computing curvature 

directly, they used measured strains and achieved dramatic improvement in the results of 

damage identification. Nwosu et al (1995) evaluated strain changes with the introduction 

of a crack in a tubular T-joint. They found these changes to be much greater than any 

frequency shifts and they can be measured even at a relatively large distance from the 

crack.  

 Though measuring the rotation of mode shapes is more difficult than measuring 

the translational mode shapes, Abdo and Hori (2002) forecasted that the rotation of mode 

shapes may be feasible to be measured in the near future and found that the rotation of 

mode shape is a sensitive indicator of damage in a numerical study where the results 

show that the rotation of mode shape has the characteristic of localization at the damaged 

region even though the displacement modes are not localized. Also, the results illustrate 

that the rotational mode shapes are robust in locating multiple damage locations with 

different sizes in a structure. Furthermore, using the changes in the rotation of mode 

shape does not need very fine grid of measurements to detect and locate damage 

effectively.  

 Despite the advantage of providing spatial information on the structural damage, 

methods using mode shapes and their derivatives suffer from several drawbacks in 

practical applications: 1) a large number of measuring points are needed in order to 

obtain the mode shapes for a complex structure; 2) mode shape measurements are 

sensitive to random errors and show more statistical variation than resonant frequencies; 

3) rotational mode shapes, though more sensitive to structural changes than translational 
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mode shapes, are still difficult to obtain with current modal test techniques; 4) the mode 

shape based methods, especially the curvature techniques, are not generally applicable to 

a structure of any shape. 

 

2.2.4 Methods based on Modal Flexibility Changes  

 In general, higher modes contain more information of local changes of structures 

than lower modes. However, it is increasingly difficult to measure higher frequency 

response data due to practical limitations in experimental modal test. To overcome this 

difficulty, another class of damage detection methods using the flexibility matrix to 

estimate changes in structural stiffness appeared. Generally the flexibility matrix can be 

estimated from the mass-normalized measured mode shapes and frequencies. The 

formulation of the flexibility by this method is called modal flexibility. A commonly 

accepted feature of modal flexibility, related to vibration-based damage detection, is the 

fact that modal flexibility can be approximately estimated from a few lower modes of the 

structure. As this feature inherently overcomes the shortcoming of mode incompleteness 

of measured modal data, many research efforts have been conducted on this subject. 

 Raghavendrachar and Aktan (1992) examined the application of modal flexibility 

for a three span concrete bridge. In their comparison, the modal flexibility is found to be 

more sensitive to local damages than natural frequencies or mode shapes. Aktan et al 

(1994) proposed the use of measured flexibility as a “condition index” to indicate the 

relative integrity of a bridge. They applied this technique to two bridges and compare the 

measured flexibility with the static deflections induced by a set of truck-load tests. 

Pandey and Biswas (1994) presented evaluation of changes in the flexibility matrix of a 
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structure as a candidate method not only for identifying the presence of the damage but 

also locating the damage. It is shown that the flexibility matrix can be easily and 

accurately estimated from a few of the lower frequency modes of vibration of the 

structure, which can be easily measured. Lu et al. (2002) pointed out that Pandey and 

Biswas’s method is difficult to locate multiple damages, and recommended the modal 

flexibility curvature for multiple damage localization due to its high sensitivity to closely 

distributed structural damages. 

 Toksoy and Aktan (1995) measured the flexibility of a bridge and examined the 

cross-sectional deflection profiles with and without a baseline data set. Mayes (1995) 

used measured flexibility to locate damage from the results of a modal test on a bridge. 

He also proposed a method for using measured flexibility as the input for a damage-

detection method (STRECH) which evaluates changes in the load-deflection behavior of 

a spring-mass model of the structure. Doebling et al (1996b) proposed a technique to 

estimate unmeasured residual flexibility matrix. The residual flexibility matrix represents 

the difference between the exact flexibility matrix and the measured dynamic flexibility 

matrix, which is contributed from modes outside the measured bandwidth. Zhao and 

Dewolf (1999) presents a sensitivity study comparing the use of natural frequencies, 

mode shapes, and modal flexibilities for monitoring. The results demonstrate that modal 

flexibilities are more likely to indicate damage than either natural frequencies or mode 

shapes.  

 Zhang and Aktan (1995 and 1998) analyzed the modal flexibility and its 

derivative, called uniform load surface (ULS), which is defined as the deformed shape of 

the structure when subjected to a uniform unit load. The ULS is found to have much less 
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truncation effect and is least sensitive to experimental error. They also discuss how to 

utilize pre-test analysis to determine the test frequency band that will lead to the least 

truncation error.  Wu and Law (2004b) developed a damage localization method based on 

changes in uniform load surface (ULS) curvature for two-dimensional plate structures. A 

new approach to compute the ULS curvature is proposed based on the Chebyshev 

polynomial approximation, instead of the central difference method.  

 The main advantage of the methods using modal flexibility attributes to the fact 

that the flexibility matrix can be approximately synthesized from a few lower natural 

frequencies and mode shapes. Furthermore, the flexibility matrix is insensitive to mass 

changes compared to the stiffness matrix (Berman and Flannelly, 1971). Computation of 

damage index based on modal flexibility is simple, fast and inexpensive through direct 

comparison of difference in modal flexibility before and after damage without the 

requirement of an analytical model of the structure. The disadvantage lies in that modal 

mass or mass-normalized mode shapes are required to estimate the modal flexibility. 

Thus, for ambient vibration tests from which the mass-normalized mode shapes cannot be 

extracted, there is no way to estimate the modal flexibility from the output-only 

measurements without certain assumptions or approximations. 

 

2.2.5 Methods based on Modal Strain Energy Changes  

 To further seek an effective approach to identify structural damage, some 

researchers start to make use of mode shapes combined with structural finite element 

model to produce a new damage indicator such as the modal strain energy. The general 
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definition of modal strain energy of a structure with respect to the ith mode can be 

expressed as, 

  1
2
φ φ= KT

i iMSE i  (2.6)  

where φi is the modal displacement shape of the ith mode, and K is the stiffness matrix of 

a structure. Chen and Garba, (1988) and Kashangaki et al., (1992) pointed out that the 

strain energy can be used for identifying structural damage.  

 This method as originally developed by Stubbs et al (1992) is applicable to beam 

type structures and is based on examining the decrease in modal strain energy between 

two structural DOFs, as defined by the curvature of the measured mode shapes. Topole 

and Stubbs (1995) adopted matrix structural analysis for obtaining a system of equations 

which relates the relative change of stiffness of structural members to a load vector 

generated from limited modal parameters of the damaged structure to perform  damage 

evaluation. Stubbs and Kim (1996) improved the method by using the modal strain 

energy to localize and estimate the severity of the damage without baseline modal 

parameters. 

Another development on the use of modal strain energy is presented by Law et al. 

(1998), named Elemental Energy Quotient (EEQ). The EEQ of the j th element and the r 

th mode is defined as, 
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where K  is the jth elemental stiffness matrix, is the jth mass matrix.   e
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j

 Shi et al. (1998) proposed the concept of the Elemental Modal Strain Energy 

(EMSE) and the Modal Strain Energy Change Ratio (MSECR) which could be a 
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meaningful indicator for damage localization. The authors also presented two damage 

quantification algorithms based on sensitivity analysis of modal strain energy (Shi et al., 

2000b; Shi et al., 2002). 

 

2.2.6 Methods based on Frequency Response Function 

 Since indirectly measured modal data contain accumulative errors caused in 

modal parameter extraction and provide much less information than FRF data, it is more 

reasonable and reliable to use directly measured FRF data for structural damage detection.  

 Samman et al (1991) used a scaled model of a typical highway bridge to 

investigate the change in FRF signals caused by the development of cracks in its girders 

by a pattern recognition method which utilized the integer slope and curvature values of 

FRF wave forms, rather than peak magnitude. Only one FRF reading per girder is 

required to detect relatively minor cracks and locate crack approximately. Wang and Liou 

(1991) presented a new method to identify joint parameters by using the two sets of 

measured FRFs of a substructure with and without the effect of joints. Some strategies 

are applied to overcome the measurement noise problem that may result in false 

identification. Law et al (1992) developed the sensitivity from a formulation based on the 

change in the FRF at any point, rather than just at the resonances. In practice, many 

points of the FRF around the resonances are taken, and a least squares fit is used to 

determine the changes in the physical parameters. 

 Biswas et al (1994) utilized the frequency response function obtained by exciting 

the structure at a selected reference point as the preferred form of vibration signature for 

interrogation. The chain code computer vision technique is modified to evaluate the 
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frequency response function signature as a waveform from a ribbed plate in the 

laboratory, similarly a highway bridge. Successful performance of the technique in the 

presence of noise indicates the potential for fault diagnosis of large outdoor structures. 

Chaudhry and Ganino (1994) used frequency response data obtained from a pieoelectric 

actuator/sensor pair bonded to a composite/aluminum beam structure with a debond 

between the interface to train an artificial neural network by back propagation to identify 

the severity and presence of delamination with substantial accuracy. Juan and Dyke (2000) 

presented and experimentally verified a new technique to identify damage based on 

changes in the component transfer functions in the floors of a structure. Multiple 

locations of damage can be identified and quantified using this approach. 

 The application of FRFs has been done by many other researchers. Park and Park 

(2003) suggested a damage detection method not based on an accurate analytical finite 

element model but based upon incompletely measured frequency responses, noting that 

the reduced dynamical system is an inverse of incompletely measured frequency 

responses. Hwang and Kim (2004) presented methods to identify the locations and 

severity of damage in structures using frequency response function (FRF) data where the 

preferred technique used only a subset of vectors from the full set of FRFs for a few 

frequencies, and it calculates the stiffness matrix and reductions in explicit form. Huynh 

et al (2005) presented a method for structural damage detection using frequency response 

functions (FRF) obtained from non-destructive vibration tests and they showed that this 

method can overcome the problems of coordinate incompatibility and noise and deliver 

encouraging results on damage detection. Ni et al (2006) presented an experimental 
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investigation of seismic damage identification of a 38-storey tall building model using 

measured frequency response functions (FRFs) and neural networks (NNs). 

 

2.3 Model Updating Methods 

 Another large class of damage identification methods is model updating methods 

whose basic idea is the modification of a structural model to reproduce as closely as the 

measured static or dynamic responses from the damaged structure. Model updating 

algorithms are the algorithms to obtain the updated matrices (or perturbations to the 

original model that produce the updated matrices) based on the governing equations of 

structural motion, the original model and the measured data. The model is usually 

constructed by the stiffness, mass, and/or damping matrices assembled based on finite 

element theory.  Comparisons of the updated matrices to the original model correlated to 

the intact structure provide an indication of the location and extent of damage.  

 In application, the model updating algorithms are usually applied in both damage 

detection applications and model improvement applications with similar purposes, i.e. to 

seek an analytical model that is as close to the real structure as possible. However, there 

are the differences in application objectives between model improvement and damage 

detection, and one should pay attention to some particular issues for discriminating and 

relating the usage to model updating methods in these two categories. 

 The purpose of model improvement is to seek an accurate model correlated to the 

real structure for predicting the response of the structure to disturbances and suggesting 

the modifications in the structural configuration for performance improvements. In the 
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construction of the original finite element model it is usual to make some simplifying 

assumptions. Often there are detailed features in the geometric representation of the 

structure that can not be modeled by a computationally economical finite element mesh, 

or the boundary conditions and joints between components are seldom fully understood. 

In such cases the analyst may, according to experienced engineering judgments, manage 

to find a compromise which acceptable results.   

 The damage detection applications aim to identify changes in stiffness, mass and 

damping matrices due to damage excluding the modeling errors. The major differences 

between the model updating and damage detection can be briefly explained as: the 

objective of the model updating is to obtain an improved finite element model so that 

model predictions match the measured data in an optimal way, while the damage 

detection is the process of locating areas of local stiffness or strength degradation in this 

context. 

 In general, the damage detection or finite element refinement approaches can be 

further classified into the following four categories: (1) Optimal matrix updating method, 

(2) Sensitivity-based updating method, (3) Eigenstructure assignment method, (4) 

Stochastic model updating method.  

 

2.3.1 Optimal Matrix Updating Method 

 Optimal matrix updating algorithms are the methods which try to find an updated 

matrix (stiffness and/or mass) that is as close as possible to the original matrix that 

produces the measured frequencies and mode shapes by using optimization of functions. 
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Smith and Beattie (1991) and Zimmerman and Smith (1992) have done relevant review 

of these methods. 

 Rodden (1967) did the early work in optimal matrix updates using measured test 

data by using ground vibration test data to determine the structural influence coefficients 

of a structure.  Brock (1968) examined the problem of determining a matrix that satisfied 

a set of measurements as well as ensuring its symmetry and positive definiteness. Hall 

(1970) presented an approach to optimize the stiffness matrix by minimizing the least-

squares difference formed between the analytical modes and experimental modes with 

the assumption that the mass matrix is exact.  

 Constrained minimization theory has also been applied to the optimal matrix 

updating algorithms. Berman and Flannelly (1971) presented the theory of incomplete 

models of dynamic structures and discussed the computation of system matrices using 

incomplete data. Baruch (1978) proposed a method by which a given stiffness matrix can 

be corrected optimally by using corrected mode shapes and natural frequencies obtained 

from vibration tests with a proper constraint, and a similar method is applied to correct 

optimally a given flexibility matrix. Berman (1979) questioned the assumption of the 

exact mass matrix, and established a so-called analytical model improvement (AMI) 

procedure to adjust the stiffness and mass matrix simultaneously. Berman and Nagy 

(1983) developed a method that uses measured normal modes and natural frequencies to 

improve an analytical mass and stiffness matrix model of a structure. The method directly 

identifies, without iteration, a set of minimum changes in the analytical matrices which 

force the eigensolutions to agree with the test measurements.  
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 Optimal matrix updating techniques for damage detection were further developed 

by Kabe (1985) who introduced a procedure to use, in addition to mode data, structural 

connectivity information to optimally adjust deficient stiffness matrices. The adjustments 

are performed such that the percentage change to each stiffness coefficient is minimized. 

The physical configuration of the analytical model is preserved and the adjusted model 

will exactly reproduce the modes used in the identification. McGowan et al (1990) also 

used structural connectivity information in their stiffness adjustment algorithms for 

damage identification, in which mode shape expansion algorithms are employed to 

extrapolate the incomplete measured mode shapes to be comparable with analytical 

predicted modes.  

 Later, iterative techniques are adopted in optimal matrix updating methods. 

Mottershead and Shao (1991) utilized a cost function minimizing output errors to tune an 

analytical model. The output errors include frequency changes and response displacement 

changes. Gauss-Newton iterative approach is applied to solve the least squares problem. 

Smith (1992) presented an iterative technique to the optimal update problem that enforces 

the sparsity of the matrix at each iteration step. The sparsity is enforced by multiplying 

each entry in the stiffness update by either one or zero, depending on the correct sparsity 

pattern. The minimum rank perturbation theory is also proposed to apply in the matrix 

updating methods. Zimmerman and Kaouk (1994) revealed that perturbation matrices 

tend to be of small rank because damage is usually located in a few structural members 

rather than distributed all over the structure. They presented an algorithm based on the 

basic minimum rank perturbation theory that a unique minimum rank matrix solution for 

an under-determined structure exists. Further research is subsequently conducted by them 
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and their colleagues. Kaouk and Zimmerman (1994, 1995) adopted the concept of the 

minimum rank perturbation theory (MRPT) to determine the damage extent on the mass 

properties of an undamped structure and proportionally damped structures. For 

proportionally damped structures, the MRPT is used to find the damage extent in any two 

of the three structural property matrices (mass, damping, or stiffness).  Doebling (1996) 

presented a method to compute a minimum-rank update for the elemental parameter 

vector, rather than for global or elemental stiffness matrices. 

 Although the optimal matrix update method, with constraints based on structural 

vibration mechanics and physical connectivity, may be useful in an engineering sense for 

the model refinement problem, its applicability for damage detection is doubtful. It is 

because the damage typically causes local changes in the stiffness matrix only at some 

locations, whereas the optimal matrix update would tend to have the changes throughout 

the entire stiffness matrix and it could not identify the damage location. 

 

2.3.2 Sensitivity-based Updating Method 

 The sensitivity-based method is another class of model updating method which is 

based on the solution of first-order Taylor series that minimizes a function of residual 

errors caused by structural matrices perturbations. The residual  characterizing the 

differences between the damaged and intact state can be formulated for modal parameters 

such as real eigenvalues

ir

iλ , mode shape iφ and so on,   frequency response functions 

(FRFs) and time response  and so on.  A linear or sequentially linearized relation is 

required of the form as, 

( )d t

  δ⋅ =S p r   (2.8) 
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δp

S

is the perturbation in the unknowns. Equation (2.8) expresses the effects of parameter 

changes due to changes of the measured vibration data included in the residual vectorr . 

is the sensitivity matrix, which is used here in general use.   

 An exhaustive classification of various sensitivity-based updating techniques was 

given by Hemez (1993). Going back to the earlier work, Jahn (1948) derived the 

complete formulae for eigenvalue and eigenvector sensitivities in a first-order Taylor 

series for a standard eigenproblem. Fox and Kappor (1968) present the exact expressions 

for the rates of change of eigenvalues and eigenvectors with respect to the design 

parameters of the actual structure, and indicates that these derivatives can be used 

successfully to approximate the analysis of new structural designs. To essentially avoid 

such difficulties, Nelson (1976) presented a simplified procedure for the determination of 

the derivatives of eigenvectors of nth order algebraic eigensystems which can be 

applicable to symmetric or nonsymmetric systems, and requires knowledge of only one 

eigenvalue and its associated right and left eigenvectors. Ting (1992) developed an 

accelerated subspace iteration method for calculating eigenvector derivatives by 

identifying factors affecting the effectiveness and the reliability of the subspace iteration, 

and presented effective strategies concerning these factors. 

 The earliest application of eigen-sensitivity analysis to finite element model 

updating is proposed by Collins et al. (1974). Based on the work of Collins et al, Chen 

and Garba (1980) proposed a matrix perturbation method to calculate the Jacobian matrix 

and to compute the new eigendata for the parameter estimation procedure with the 

advantages of the applicability to large complex structures without knowing the 

analytical expressions for the mass and stiffness matrices and the need of a cost effective 
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approach for the recomputation of the eigendata. Hajela and Soeiro (1990) used the 

sensitivity method and nonlinear optimization technique to study the damage detection 

problem. Lin et al (1995) suggested employing both analytical and experimental modal 

data to calculate the eigen-sensitivities. Such accurately determined eigensensitivity 

coefficients are then used in the classical model updating procedure to overcome the 

existing difficulties of identifying small magnitude model errors and slow convergence. 

 Zhang et al. (1987) further improved the solution condition of the inverse problem 

by reducing the number of unknowns through early localization of the significant model 

errors. Jung and Ewins (1992) suggested dividing the model updating procedure into two 

sessions, with the first session to locate major errors in grouped macro elements, then to 

refine the analytical model in the second session. Law et al (2001) applied the super-

element modeling technique to improve the finite element model of a bridge deck 

structure based on a similar consideration. The large number of DOFs in the original 

analytical model is dramatically reduced and the solution condition is improved. 

 In addition to the most popular natural frequencies and mode shapes adopted to 

estimate the sensitivity matrix, other types of data, e.g., FRF, time histories of responses, 

or combination of these, can also be used in the sensitivity-based model updating 

methods. Ziaei-Rad (1997) developed a FRF-based model updating by expanding the 

inverse matrix of FRF as a Taylor series function with respect to structural parameters. 

Numerical examples and experimental examples are applied to update the analytical 

model so that the FRFs match those obtained in testing. Ziaei-Rad and Imregun (1996) 

further discussed the experimental error bounds for convergence of this updating 

algorithm. The sensitivity of the modal strain energy (MSE) to damage is also derived 

 43



and used in damage identification (Shi et al., 2000b). Abdel (2001) studied the 

application using the sensitivity-based updating approaches, in which the sensitivity of 

the natural frequencies, mode shapes and modal curvatures to damage are combined to 

construct the sensitivity matrix.  

 A structural damage detection method through the sensitivity-based finite element 

model updating procedure was presented by Hemez and Farhat (1995). They formulated 

the sensitivities at the element level. This allows the identification to focus on the 

structural members susceptible to damage, and also improves the computational 

efficiency comparing with the sensitivity analysis in system level. Lu et al (2007) 

proposed a method directly using sensitivity of acceleration response with respect to 

structural parameters for damage detection. The merits of the method lie in the use of a 

few sensors in the measurement.  

 

2.3.3 Eigenstructure Assignment Method 

 Eigenstructure assignment method is another typed matrix updating method which 

is based on the design of a fictitious controller that would minimize the modal force error. 

The controller gains are then interpreted as parameter matrix perturbations to the 

undamaged structural model. Andry et al. (1983) presented an excellent overview of 

eigenstructure assignment theory and applications. This procedure for eigenstructure 

assignment methods will result in modifications to the stiffness and damping matrices but 

the mass matrix remains unchanged. The updated stiffness and damping matrices are 

given by 

  = + ⋅ ⋅K K B G CA o ,  A s= + ⋅ ⋅C C B G C  (2.9) 
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where G s the feedback gain matrix determined by the eigenstructure assignment method. 

B is an input distribution matrix which may be chosen arbitrarily. K  an  C  are the 

updated stiffness and damping matrices respectively, AK and are the original stiffness 

and damping matrices respectively. oC and sC a  the m trices relating the outputs and 

states. Because the obtained correction matrix o

i
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symmetric, a further process of determining the matrices oC and sC iteratively 

ded until symmetric correction matrices are acquired. 
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 Minas and Inman (1990) proposed two techniques for FEM refinement. The first 

one assigns both eigenvalue and eigenvector to produce updated damping and stiffness 

matrices. An unconstrained numerical nonlinear optimization problem is posed to enforce 

symmetry of the resulting model. The second approach uses only the eigenvalue 

information in which a state-space formulation is used to determine the state matrix that 

has the measured eigenvalues closest to the original state matrix. Zimmerman and 

Widengren (1990) developed a symmetric eigenstructure assignment algorithm to 

improve structural models by incorporating measured structural modal parameters from a 

control aspect for linear structures with non-proportional damping. Residual damping and 

stiffness matrices are determined such that the improved analytical model eigenstructure 

matches more closely to that obtained experimentally.  

 Eigenstructure assignment methods were directly used in the area of structural 

dynamics firstly by Zimmerman and Kaouk (1992) who utilize a symmetric 

eigenstructure assignment algorithm to perform the partial spectral assignment for 

detecting and locating structural damage by incorporating measured modal data into an 

existing refined finite element model. The algorithm can enhance mode shape 
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assignability and to preserve sparsity in the damaged FEM are developed. Lindner and 

Goff (1993) used an eigenstructure assignment technique to identify the damage 

coefficient defined for each structural member and demonstrated by a numerical 

simulation  with the finite element model of a ten-bay truss structure for detecting 

damage. 

 Lim (1994, 1995) applied a constrained eigenstructure assignment technique to 

process the measured incomplete modal data from a twenty bay planar truss. The 

feedback gain matrix is diagonalized, and the diagonal members are interpreted as 

element-level perturbations to the stiffness matrix so that the damage is localized directly. 

Lim and Kashangaki (1994) presented a method by computing the Euclidean distances 

between the measured mode shapes and the best achievable eigenvectors to determine the 

location and magnitude of damage in a space truss structure. The best achievable 

eigenvectors are the projection of the measured mode shapes onto the subspace defined 

by the refined analytical model of the structure and the measured frequencies. A 

technique similar to eigenstructure assignment known as FRF assignment was presented 

by Schultz et al (1996) who formulated the problem as a linear solution for element-level 

stiffness and mass perturbation factors and illustrated that using FRF measurements 

directly to solve the problem is more straightforward than extracting mode shapes. Cobb 

and Liebst (1997) made use of the cost-function minimization which is based on an 

assigned partial eigenstructure algorithm to obtain damaged elements from measured 

modal data using an incomplete measurement set. 

 

2.3.4 Stochastic Model Updating Method 
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 The efficiency of the damage identification algorithm relies on accuracy of the 

analytical model and the measured vibration data. Most studies assume that the analytical 

model is precise enough to represent the vibration properties of the structure and the 

measurements are accurate as well. In practice, however, there are many uncertainties 

during model updating procedure such as the FE modeling error and measurement noise 

(Friswell et al, 1997b). Uncertainties in the analytical model exist due to inaccurate 

physical parameters, non-ideal boundary conditions and structural non-linear properties. 

The corruption of the measured vibration data is inevitable no matter how precise the 

instrumentation is, whereby the measurement noises are generally characterized to have a 

zero mean and their magnitude depend on the experimental equipment. So it is necessary 

to study the effects on damage detection by model updating, as well as to estimate the 

resulting statistics of the identified results. For simplicity, the stochastic model updating 

or statistical system identification can be described as follows: If the statistics of 

measured vibration data were given, then determine the statistics of structural parameters 

in the updated FE model and assess the reliability of the structural safety.  

 Collins et al (1974) first derived a statistical identification procedure by treating 

the initial structural parameters as normally distributed random variables with zeros 

means and specified covariance and used experimental measurements of the natural 

frequencies and mode shapes of a structure to modify stiffness and mass characteristics of 

a finite element model and they demonstrated the convergence and versatility of the 

method by numerical examples. Using the sensitivity analysis of Collins et al, Ricles and 

Kosmatka (1992) utilized mass and stiffness uncertainties to locate potential damaged 

regions and evaluate the estimate of the damage. Tavares et al (1993) validated the work 
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of Ricles and Kosmatka using experimentally obtained modal data from a three-

dimensional four-bay truss.  

  The commonly developed approach for uncertainty propagation is the Monte 

Carlo Simulation (MCS) method which first generates large amounts of samples 

following the predefined probability density functions (PDFs) or the joint PDFs of modal 

properties. Then, model updating algorithm is repeatedly carried out for these samples to 

obtain the corresponding solution samples of updating parameters. The PDFs of updating 

parameters are finally determined based on the solution samples. Agbabian et al (1988) 

employed the MCS method to identify the statistical properties of stiffness coefficients in 

a linear system and generated the time histories of the applied excitation as well as the 

accelerations, velocities, and displacements of a system. By separately applying the 

model updating procedure to different time segments, ensembles of stiffness coefficients 

were identified. Their work has been later extended to statistical identification of a 

nonlinear system approximated by an equivalent linear system (Smyth et al., 2000). 

Banan et al (1994a, b), Sanayei and Saletnik (1996a, b), Yeo et al (2000) and Zhou et al 

(2003) adopted similar approaches for studying the effects of measurement noise on 

identification results. However, the MCS method is by itself computationally intensive as 

it requires a large number of simulations to obtain accurate and valid statistics.  

 Another technique for uncertainty propagation is perturbation method. It has been 

applied very successfully in the discipline of stochastic structural analysis where the 

perturbation technique in conjunction with the FE analysis is applied to evaluate the 

response variability and failure probabilities associated with prescribed limit states 

(Kleiber and Hien 1992). Perturbation method expands the nonlinear function in terms of 
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random variables either by a linear function or by a quadratic one at a particular point. 

Second moment technique is then applied to evaluate the mean and standard deviation of 

the response, or to evaluate the failure probabilities. Liu (1995) considered the 

measurement noise effect on the damage detection with the perturbation method and 

Monte Carlo Simulation algorithm by describing the identification of structural 

parameters as a linear least squares problem with each term expanded in a system of 

linear equations in terms of random modal properties. Papadopoulas and Garcia (1998) 

presented a two-step probabilistic method for damage assessment to determine the 

statistics of stiffness coefficients (SC) of the damaged structure. They first used the 

measured statistical changes in modal frequencies and mode shapes to obtain the statistics 

of stiffness reduction factor (SFR). These statistics of SFR along with the statistics of SC 

corresponding to healthy structure are then combined to determine the statistics of SC of 

the damaged structure. A set of graphical and statistical probability damage quotients was 

then used to assess the existence of damage by the comparison of statistics of SC before 

and after damage. Later, Xia et al (2002, 2003) developed a statistical damage 

identification algorithm based on changes of frequency and mode shape to account for 

the effects of random noise on both the vibration data and finite element model. The 

statistics of the parameters are estimated by the perturbation method and verified with 

Monte Carlo technique. Other researches addressing the statistical parameter estimation 

using uncertain modal data include the work of Katafygiotis and Beck (1998), Li and 

Roberts (1999a, b), and Yuen and Katafygiotis (2005). 

 

2.3.5 Regularization Techniques 
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 Model updating is usually adopted for damage detection. However, model 

updating is an inverse problem, and the characteristic feature of an inverse problem is 

that it may be ill-posed. A problem is well-posed if its solution exits, is unique, and 

continuously depends on errors present in problem formulation. If the problem fails to 

fulfill any of these conditions, then it is said to be ill-posed. The existence and uniqueness 

is often assured by the introduction of additional assumptions, leading to some 

generalized solution of the problem, such as the normal pseudosolution (Yagola et al., 

2002), i.e. a minimum norm solution. The solution stability, that is the dependence of the 

solution on perturbations in the data, can be violated even when the solution exists and is 

unique (Phillips, 1962). 

 Research in this area has built on the early work of Tikhonov (1977), who defined 

the regularized solution ( )x λ as the minimization of the weighted combination of the 

residual norm and the side constraint (quadratic cost function) 

  2 2

2 2
λ− + −Ax b Lx d    (2.10) 

The basic idea is to minimize the cost function in Equation (2.10) by searching for a 

solution ( )λx  which at the same time produces a small residual 2

2
−Ax b and a moderate 

value of the side constraint 2

2
−Lx d . The way in which these two terms are balanced 

depends on the size of the regularization parameterλ . 

 Early work on the application of Tikhonov method to system identification and 

model updating includes those of Rothwell and Drachman (1989), Ojalvo and Ting 

(1990), Mottershead and Foster (1991), and Fregolent et al. (1996). In these studies the 

Tikhonov parameter was determined through trial-and-error. Busby and Trujillo (1997) 
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studied the effect of Tikhonov regularization in the reconstruction of dynamic loadings 

from the strain measurement. They applied both the L-curve method (LCM) and 

generalized cross validation (GCV) to choose the optimal regularization parameter. 

Ahmadian et al (1998) investigated the ill-posed problem of selecting a side constraint 

and determining the regularization parameter in model updating by determining the 

weight attached to the constraint by the regularization parameter. The authours found that 

the method of cross validation can be used reliably to truncate the small generalized 

singular values which contain the measurement noise. The L-curve approach is similarly 

robust in locating the regularization parameter, and this is demonstrated in a physical 

experiment. Ziaei-Rad and Imregun (1999) summarized the existing regularization 

methods applied to model updating. They further examined the performance of Tikhonov 

regularization, truncated SVD, total least squared method, and the maximum entropy 

method for FRF-based model updating technique. Mares et al. (2002) explored the robust 

estimation technique and Tikhonov regularization method for the output-error-based 

model updating using measured modal frequencies, and applied an uncertainty bound 

model and LCM to determine the regularization parameters. 

 Truncated SVD is another form of regularization by truncating the last several 

smallest SVs to improve the conditioning of matrix. Likewise, the difficulty existing in 

this type of regularization is the determination of the truncation parameter. A trial-and-

error procedure is used by Mottershead and Foster (1991) to determine the truncation 

parameter. D’Ambrogio and Fregolent (1998) determined the truncation parameter by 

simultaneous minimization of the natural frequency error and the response residual error. 

Ren (2005) presented a method for determination of the truncation level. In his method, 
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those SVs, the ratios of which to residual norm are smaller than a prescribed value, are 

disregarded. However, the success of the method depends on the choice of the prescribed 

value which was not discussed in the study. A small value could cause the divergence in 

the computation, while a large value would lead to a low convergence rate. 

 Other work on regularization techniques was done by Natke (1992a, 1992b) who 

advocated the application of regularization techniques in model updating. Fregolent et al 

(1996) considered a variety of methods for determining the regularization parameter in 

the equation error problem. Friswell et al (1995) pointed out that the regularization has 

become a central issue in system identification, because the dynamic behavior is 

observed in a narrow knowledge space and, consequently, the systems of equations are 

strongly under-determined. Yeo et al (2000) presented a damage assessment algorithm 

for framed structures based on a system identification scheme with a regularization 

technique by proposing a new regularization function based on the Frobenius norm of the 

difference between the estimated and the baseline stiffness matrix.   

 

2.4 Wavelet Transform based Methods  

 All dynamic response based approaches require modal properties with the aids of 

the traditional Fourier transform (FT). In fact, there are a few inherent characteristics of 

FT that might affect the accuracy of damage identification. First, the FT is in fact a data 

reduction process and information about structural health might be lost during the process 

(Gurley and Kareem 1999). Then, FT is a global analysis. The basis functions are global 

functions. Any perturbations of the function at any point in the time domain will 

influence every point in the frequency domain. So it means that the FT cannot present the 
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time dependency of signals and it cannot capture the evolutionary characteristics that are 

commonly observed in the signals measured from naturally excited structures. Damage is 

typically a local phenomenon which tends to be captured by higher frequency modes 

(Doebling et al., 1998). These higher frequencies normally are closely spaced but poorly 

excited. All these factors add difficulty to the implementation of FT-based damage 

detection techniques. 

 There has been increasing interest in the wavelet-based approach in recent years 

due to successes of the wavelet-based methods in several applications. The wavelets 

decompose a signal using a short-duration wave allowing a refined decomposition rather 

than decomposition with infinite-duration sinusoids as with Fourier transforms. The 

short-duration wave, known as the wavelet basis, generally has a higher energy density 

than the sinusoid in Fourier transforms. Therefore, the wavelets would require fewer 

coefficients than Fourier transforms to describe a signal in many cases. The wavelet 

transform is a two-parameter transform. For time signals, the two domains of the wavelet 

transform are time t  and scale . The scale a  can be approximately related to the 

frequency w . The main advantage gained by using wavelets is the ability to perform local 

analysis of a signal, i.e. to zoom on any interval of time or space. Wavelet analysis is thus 

capable of revealing some hidden aspects of the data that other signal analysis techniques 

fail to detect. This property is particularly important for damage detection applications. 

The wavelet transform is becoming as a promising new tool for damage identification in 

structural system.  

a

 Reda Taha et al (2006) wrote an exposition on the application of the current WT 

technologies in structural health monitoring (SHM). They discussed the specific needs of 
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SHM addressed by WT, classified WT for damage detection into various fields, and 

described features unique to WT that lend itself to SHM.  

 The mathematical foundation of wavelets was developed by Meyer (1992). 

Daubechies (1992) and Mallat (1998) pushed the application of wavelet from pure 

mathematical theory by defining the connection between wavelets and digital signal 

processing. Wavelets have been applied to a number of areas, including data compression, 

image processing and time-frequency spectral estimation. The earliest work on applying 

wavelet analysis in structural damage detection dates back to the work of Yamamato and 

his group in 1995, in Kyoto, Japan. The research group of Yamamato and a group at 

Worcester Polytechnic Institute (WPI), headed by Noori and Hou, collaborated in 

advancing this new technique further in 1996. 

 The application of wavelet analysis in damage detection includes many aspects 

such as time-frequency analysis, wavelet spectrum, orthogonal or discrete wavelet 

decomposition, wavelet-based data compression, denoising and feature extraction, linear 

and nonlinear system identification and image processing. In damage detection, WT 

applications can be classified into four areas: composite plates, large-scale structures like 

bridges, civil infrastructure and mechanical systems.  

 Kumara et al. (1999) and Sohn et al. (2003) suggested using continuous wavelet 

transform (CWT) to detect delamination of composite structures. The system is designed 

to analyze the responses of an active SHM system using piezoelectric sensors. Damage 

detection is performed by observing the signal energy in a wavelet scalogram. Rus et al. 

(2004) showed that the CWT can be used to discriminate between degraded and intact 

composite. Damage occurrence in thin walled composite structures, ‘sandwich panels’, 
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can be detected using a combined WT and finite element algorithm. Qi et al. (1997) 

showed that wavelet multi-resolution analysis (WMRA) can not only detect damage but 

also detect particular levels of damage. They demonstrated that the energy computed 

from decomposed signals at three specific frequency ranges was related to three different 

damage modes in a carbon fiber reinforced polymer (CFRP) composite. Dawood et al. 

(2002) showed successful WMRA de-noising of signals with Bragg grating sensors 

contaminated with noise from thermal effects of a structural composite. Yan and Yam 

(2004) used the energy spectrum and wavelet packet analysis with an index vector to 

detect small structural damage. Their index vector is used in a non-dimensional 

comparison of intact and delaminated plates. The maximum value of the index vector at a 

particular wavelet decomposition level indicates damage due to an excited and damaged 

mode.  

 Wang and Deng (1999) discuss a structural damage detection technique based on 

wavelet analysis of spatially distributed structural response measurements. The premise 

of the technique is that damage (e.g. cracks) in a structure will cause structural response 

perturbations at damage sites. Such local perturbations, although they may not be 

apparent from the measured total response data, are often discernible from component 

wavelets. Wang and McFadden (1995) discussed the use of the orthogonal wavelet 

transform to detect abnormal transients generated by early gear damage from the 

vibration signal of a gearbox casing. Orthogonal wavelets, such as Daubechies 4 and 

harmonic wavelets, are used to transform the time domain synchronous vibration signal 

into the time-scale domain. Staszewski and Tomlinson (1997) presents an application of 
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the wavelet transform in the detection of a damaged tooth in a spur gear based on a 

similarity analysis of patterns obtained from the modulus of the wavelet transform.  

 One possible drawback of the WT is that the frequency resolution is quite poor in 

the high frequency region. The wavelet packet transform (WPT) is one extension of the 

WT that provides complete level-by-level decomposition. The wavelet packets are 

alternative bases formed by linear combinations of the usual wavelet functions (Coifman, 

1992). As a result, the WPT enables the extraction of features from signals that combine 

stationary and nonstationary characteristics with arbitrary time-frequency resolution. 

Learned and Willsky (1995) contributes to this ongoing investigation through the 

development of a non-parametric wavelet packet feature extraction procedure which 

identifies features to be used for the classification of transient signals for which explicit 

signal models are not available or appropriate. Wu and Du (1996) introduces a new 

method of feature extraction and feature assessment using a wavelet packet transform for 

the monitoring of machining processes. Four criteria are proposed To assess the 

effectiveness of the selected features in both time and frequency domains. Accordingly 

an automatic feature extraction procedure is developed. Sun et al (2002a, 2002b) 

proposed a WPT based method for the damage assessment of structures. Dynamic signals 

measured from a structure are first decomposed into wavelet packet components. 

Component energies are then calculated and used as inputs into neural network models 

for damage assessment. Chang and Sun (2005) proposed a wavelet packet based method 

for identifying damage occurrence and damage location for beam-like structures by 

calculating the wavelet packet signature (WPS) that consists of wavelet packet 

component signal energies. One advantage of the proposed method is that it does not 
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require any mathematical model for the structure being monitored and hence can 

potentially be used for practical application. 

 

2.5 Damage Identification based on Direct Use of Vibration Time Series 

Responses  

 All damage detection methods reviewed above make use of modal parameters. 

Modal extraction procedure is needed to obtain the modal parameters and it will cause the 

loss of some important structural information which affects the results of damage 

identification. There are also many publications on damage detection based on direct use 

of structural time series response without the need of modal extraction procedure.  

 Time histories of the vibration response of the structure are used to identify the 

presence of damage by Cattarius and Inmanm (1997) who presented a non-destructive 

approach based on acceleration responses to examine structural damage. They 

constructed two simple finite element models to examine axial as well as transverse 

vibrations. The knowledge gained from simulations led to a series of experiments which 

substantiated the potential of the proposed method. Comparison of time responses, e.g., 

displacement of velocity, due to different material defects revealed the existence of 

damage in cases where measured frequency shifts were minimal. 

 Earlier, Seibold and Weinert (1996) proposed a method to localize cracks in 

rotating machinery based on measured vibrations. This method used a time domain 

identification algorithm: the Extended Kalman Filter (EKF). The localization is 

performed by designing a bank of EKFs, in which each filter is tuned to a different 
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damage hypothesis. By calculating the probabilities of different hypotheses, the crack can 

be localized and its depth can be determined.  

 Recently, Shi et al. (2000) and Chen and Li (2004) presented methods to identify 

structural parameters and input time history simultaneously from output-only 

measurements. The structural parameters and the input time history are obtained in an 

iterative manner. Zhu and Law (2007) proposed an approach for damage detection in a 

concrete bridge structure in time domain. Both the damage and moving vehicular loads 

are identified successfully.  

 Majumder and Manohar (2003) proposed a time domain approach for damage 

detection in bridge structures using ambient vibration data. The force actuator induced by 

a moving vehicle on the bridge is taken to be the excitation force. It was assumed that a 

validated finite element model for the bridge structure in its undamaged state is available. 

Alterations made to this initial model, simulating damages which cause changes in bridge 

behavior, are determined using a time domain approach. Based on the work, Majumder 

and Manohar (2004) developed the time domain damage detection scheme with time 

varying structural matrices, structural nonlinearities and spatial incompleteness of 

measured data, within the finite element modeling framework. The damage parameters 

associated with changes in structural stiffness are shown to be governed by a set of over-

determined nonlinear equations which are solved iteratively. Illustrative examples on a 

geometrically nonlinear Euler–Bernoulli beam carrying a moving single degree-of-

freedom oscillator are provided.  

 Ling and Haldar (2004) proposed a system identification procedure for 

nondestructive damage detection of structures, which is a finite element based time-
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domain linear system identification technique capable of identifying structures at element 

level. The proposed algorithm can identify a structure without using input excitation 

information and can consider both viscous and Rayleigh type proportional damping in the 

dynamic model. Choi and Stubbs (2004) formed the damage index directly from the time 

response to locate and quantify damage in a structure. The measured response in the time 

domain is spatially expanded over the structure and the mean strain energy for a specified 

time interval is obtained for each element of the structure. The mean strain energy for 

each element is, in turn, used to build a damage index that represents the ratio of the 

stiffness parameter of the pre-damaged to the post-damaged structure. The damage 

indices are used to identify possible locations and corresponding severities of damage in 

the structure. Kang et al. (2005) presented a system identification scheme in time domain 

to estimate stiffness and damping parameters of a structure using measured accelerations, 

and the method is demonstrated with numerical simulation study on a two-span truss 

bridge and an experimental laboratory study on a three-story shear building model.  

 Besides the traditional means for time series damage detection, time responses are 

usually used with the aid of new techniques such as ARMA family models, genetic 

algorithm, neural network, wavelet transform etc. Sohn and Farrar (2000) applied 

statistical process control techniques to vibration based damage diagnosis. Firstly, an AR 

mode is fit to the measured acceleration time histories from an undamaged structure. 

Then, the AR coefficients obtained from subsequent new data are monitored relative to 

the baseline AR coefficients. Any significant deviation from the baseline of AR 

coefficients would indicate either a change in environmental conditions or damage. The 

statistical procedure combined with the AR time prediction model is applied to vibration 
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test data acquired from a concrete bridge column as the column is progressively damaged. 

Loh and Wu (2000) presented an experimental investigation of the Fei-Tsui arch dam 

through forced vibration tests and the analysis of seismic response data. In the 

identification of dam properties from seismic response data, the multiple input/multiple 

output discrete-time ARX model with least squares estimation was applied to consider 

the nonuniform excitation of the seismic input and the global behavior of the dam. To 

verify the accuracy of the identification results, comparisons between the discrete-time 

ARX model and a frequency domain conditioned spectral analysis were made. 

 Liu and Chen (2001) proposed an inverse identification technique to assess the 

presence, location, size and degree of flaw in the core layer of sandwich plates, where the 

time-harmonic response was used as the input for inverse analysis and the genetic 

algorithm (GA) is applied to search the parameters. Ishak et al (2001) described the 

application of Strip Element Method and adaptive Multilayer Perceptron Networks for 

inverse identification of interfacial delaminations in carbon/epoxy laminated composite 

beams. Further Ishak et al (2002) performed non-destructive evaluation of crack detection 

in beams using transverse impact with the aid of the beam model of wave propagation 

and adaptive multilayer perceptron networks. Examples showed that the procedure 

performs well for the determination of a wide range of location, depth and length of the 

crack. 

 A novel neural network-based strategy is proposed and developed for the direct 

identification of structural parameters from the time series dynamic responses of a 

structure without any eigenvalue analysis and extraction and optimization process by Xu 

et al (2004). Lu and Gao (2005) proposed a new method for damage diagnosis using 
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time-series analysis of vibration signals which is formulated in a novel form of ARX 

model with acceleration response signals.  

 With the help of the new mathematical tool-wavelet transform, Law et al. (2005) 

developed the sensitivity-based damage detection method basing on the wavelet packet 

energy of the measured accelerations and the method can identify damage of a structure 

from a few measurement locations. More recently the sensitivity matrix of response with 

respect to a system parameter is derived analytically (Lu et al 2007). But the damage 

detection results are subject to the effect of measurement noise and model error. Further, 

Law and Li (2006) used the wavelet coefficient sensitivity of structural response with 

respect to a system parameter for structural condition assessment. This sensitivity is 

shown to be more sensitive to local structural changes than the response sensitivity and it 

has the advantage in handling problem with model errors in the initial finite element 

model of the system. This is because the wavelet transform extracts separately different 

frequency component information from the response.  

 Method from direct use of acceleration responses is a promising tool for damage 

detection. There are many advantages over conventional modal methods. That is also one 

of the research focuses in the thesis. 

 

2.6 Critical Issues and Shortcomings in Existing Methods  

 Vibration-based damage detection is promising in recent years and has drawn 

much research attention. However, due to many reasons, it is still difficult, and 

sometimes even impossible to apply many of these approaches for damage detection with 

practical engineering structures, especially for large-scale or complex engineering 
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structures. The primary difficulty for reliable damage detection includes the insensitivity 

of modal properties to local damage, the uncertainty in the measured vibration data and in 

the analytical model, the incompleteness of measurement data, the ill-conditioning in 

inverse problem, the effect of the varying operational and environmental conditions.  

 The first obstacle to restrict the general application of vibration-based damage 

detection is that the global dynamic properties of the structure may not be sensitive 

enough to the local changes in stiffness or mass properties. Kashangaki et al. (1992) 

indicated that damage detection is more feasible for the structural members that 

contribute significantly to the strain energy of the measured modes, but most structural 

members have only small contributions to the strain energy of a structure. Thus it is 

difficult to detect local damage in its early stage or localize small model errors. For 

example, Creed (1987) shows that it would be necessary for natural frequency to change 

by about 5% for damage to be detected with confidence. However, even if the change of 

natural frequency is enough, the damage detection can not be performed successfully 

because statistical uncertainties in the measured vibration data exist. It is commonly 

acknowledged that modal frequencies are measured more accurately than mode shapes. 

Typical resolution for the modal frequencies of a lightly damped structure is 0.1%; 

whereas typical mode shape error is 10% or more (Friswell and Penny 1997b). It is 

presumable that these synthesized damage indices could have more uncertainty than 

those associated with mode shapes. A study by Worden et al. (2005a) indicated that those 

indices sensitive to local damage are also sensitive to environmental conditions and 

measurement noise. This severely hinders the efforts to improve identification accuracy.  
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 The second obstacle is the uncertainty associated with measured vibration data 

which also impedes reliable implementation of FE model updating algorithms. It requires 

that the damage detection methods have the ability to discriminate changes in the modal 

properties resulting from occurrence of damage from those resulting from variations in 

measurements due to changing environmental and/or test conditions and from the 

repeatability of the test. High level of uncertainty in the measurements will prevent early 

damage detection when the damage in the structure is small. As uncertainty is inevitable 

in the measurement data, it seems more natural to pursue the model updating in a 

framework of probability and statistics. However, most current investigations on system 

identification and model updating aim at developing methods for deterministic estimation 

of structural parameters on the assumption that all information on the structures (material 

properties, modal frequencies, and mode shapes, and so forth) is considered to be fixed 

quantities. These methods are incapable of accommodating the stochastic nature of 

measured modal properties and they lack robustness in dealing with uncertainties in the 

measured modal properties. In contrast to the myriad of literature addressing 

deterministic FE model updating, there is a long list of publications on the statistical 

identification of structural systems. The application of statistical methods in model 

updating has been advocated by Collins et al. (1974) although their study was originally 

intended to overcome the ill-conditioning. The necessity to incorporate statistical 

methods into model updating algorithms has been recognized by several researchers (Liu, 

1995; Papadopoulas and Garcia, 1998; Araki and Hjelmstad, 2001; Xia et al, 2002; 

Fonseca et al, 2005; Zimmerman, 2006). The current application of probabilistic methods 

in model refinement and damage detection is immature. More development and 
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exploration are needed in the direction of stochastic model updating and probabilistic 

damage detection. 

 Another major problem in damage detection is the requirement of accurate 

analytical model and the reliance on the model. Many damage detection methods are 

dependent on prior analytical models and/or prior test data for the damage detection, and 

there is a need to access a detailed finite element model of the structure, or it is assumed 

that a data set from the undamaged structure is available. However, uncertainty usually 

exists in the analytical model. Friswell and Penny (1997b) discussed the limitations of 

various SHM methods. In their opinion, the most significant limitations of SHM methods 

are the systematic error between a model and a structure as well as the nonstationarity of 

the structure. They stated that it is necessary to test any method on both simulated and 

real data. Uncertainties in the FE model exist due to inaccurate physical parameters, non-

ideal boundary conditions and structural non-linear properties. These are very true in civil 

engineering especially for concrete structures. There will undoubtedly be errors even in 

the model of the undamaged structure (Xia and Hao, 2003). Thus if the measurements on 

the damaged structures are used to identify damage locations, the deterministic damage 

detection methods will have great difficulty in distinguishing between the actual damage 

sites and the location of errors in the original model.  

 The incompleteness of measurement data and the measurement location further 

complicate the reliable damage detection. Many techniques work very well in example 

cases but perform poorly when subject to the measurement limitations imposed by 

practical modal testing. These limitations usually arise because of the fact that the 

number of measurement stations is limited by commercial consideration, and that the 
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rotational DOFs usually cannot be measured, and that some DOFs in the structures are 

inaccessible. For the damage detection based on model updating techniques, since the 

finite element models for modern civil engineering structures, such as long-span bridges 

and tall buildings, involve a large number of DOFs by assembling all the critical and 

uncritical structural components, the number of DOFs in the model will be much greater 

than the number of measured DOFs. To deal with the spatially incomplete modal data, 

the modal reduction or modal expansion techniques are often used. However, when the 

measured DOFs are far less than the analytical model DOFs, both techniques lead to 

remarkable additional errors and seriously degrade the accuracy of damage detection 

results. Damage detection is also associated with measurement selection strategy 

including mode selection and optimal sensor placement selection. Lim (1992) presented a 

method to select optimal actuator and sensor locations based on the degree of 

effectiveness and versatility of pairs of actuator/senor. Xia and Hao (2000) introduced a 

concept of damage measurability in terms of two factors, namely the sensitivity of the 

residual vector to damage and the sensitivity of damage to measurement noise. The 

modes and measuring points selected corresponding to the larger damage measurability 

values yield more accurate and reliable damage identification results. 

 Recently, although there have been attempts to deal with the ill-conditioned and 

noisy system of equations, these attempts are largely restricted to the linear least squares 

problem formulated by minimization of the equation error (Ahmadian et al., 1998; Ziaei-

Rad and Imregun, 1999; Friswell et al., 2001). However many model updating algorithms, 

especially those used in civil engineering community, leads to the nonlinear optimization 

problems in terms of updating parameters. The investigation of regularization methods in 
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this type of model updating algorithms, in particular the methods to optimize 

regularization parameters, is still limited and requires further exploration. 

  There is an issue that has received almost no attention in the previous technical 

literature when applying model updating methods to damage detection problem, which 

can be generalized as the ability to differentiate the damage patterns and then identify 

them. The damage may be caused by different factors such as operating loads, impact, 

fatigue, corrosion, etc., and therefore various damage patterns may occur. Damage of 

typical patterns, such as crack, delamination and aging, affects the structure’s behaviors 

very differently. Therefore modeling the damage itself plays a significant role in the 

detection procedure. Most of the existing approaches simply limit structural damages as 

isotropic reduction in local stiffness, involving a scalar parameter such as Young’s 

modulus. Subsequently two questions are often asked: where is the location of damage 

and what is its extent. As this over-simplified model could lead to significantly different 

modal response from the real damaged structure, additional errors is introduced into the 

model updating process and the accuracy of the detection results is decreased 

subsequently. A more satisfactory procedure to detect damage should answer the 

following questions: where is the location of damage; what kind of damage it is; then 

what is its extent. Although some efforts have been made to build a more refined model 

for damage, research work in this area is still limited.   

 Based on the existing problems and shortcomings in damage detection method, 

the following aspects deserve further exploration: 1) the time series data are directly 

adopted to identify damage for avoiding modal extraction procedure which will cause 

information lost and errors introduced; 2) implementation of vibration-based damage 
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detection which is independent of external excitation and even ambient vibration; 3) the 

treatment of ill-conditioning in output-error-based model updating; and 4) the 

quantification of influence of uncertainty in measurement data and the analytical model 

on the quality of model updating/damage detection results. The above issues will be 

addressed in this thesis.  



CHAPTER 3  INVERSE PROBLEM BASED ON FINITE 

ELEMENT MODEL AND RESPONSE SENSITIVITY  

 

 This chapter provides an overview on the procedure and existing problems of 

damage detection method based on finite element model and the sensitivity of time series 

data with respect to the structural parameter.  

 

3.1 Introduction 

 Modal method for damage detection is a matured field of study and there are 

many literatures about them as listed in Chapter 2. However, literatures on condition 

assessment from direct use of vibration response do not appear until recently and there is 

only a few of them. Cattarius and Inmanm (1997) presented a non-destructive approach 

based on acceleration responses to examine structural damage. They constructed two 

simple finite element models to examine axial as well as transverse vibrations. The 

knowledge gained from simulations led to a series of experiments which substantiated the 

potential of the proposed method. Comparison of time responses, e.g., displacement of 

velocity, due to different material defects revealed the existence of damage in cases 

where measured frequency shifts were minimal. Majumder and Manohar (2003) 

proposed a time domain approach for damage detection in bridge structures using 

vibration data. The force from a moving vehicle on the bridge is taken to be the excitation 

force. It was assumed that a validated finite element model for the bridge structure in its 

undamaged state is available. Alterations made to this initial model, simulating damage 
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which causes the changes in bridge behavior, are determined using a time domain 

approach. Based on the work, Majumder and Manohar (2004) developed the time domain 

damage detection scheme that takes account into the time varying structural matrices, 

structural nonlinearities and spatial incompleteness of measured data, within the finite 

element modeling framework. The damage parameters associated with changes in the 

structural stiffness are shown to be governed by a set of over-determined nonlinear 

equations which are solved iteratively. Illustrative examples on a geometrically nonlinear 

Euler–Bernoulli beam carrying a moving single degree-of-freedom oscillator are 

provided.  

 More recently the simple use of time response for damage detection was proposed 

by Lu and Law (2007) where the sensitivity matrix of response time history is computed 

using Newmark method, and it is used directly in an inverse problem for structural 

damage identification. This method can locate and quantify local damages accurately 

using a small number of sensors. But the results are subjected to the effect of 

measurement noise and model error. Law and Li (2006) used the wavelet coefficient 

sensitivity of structural response with respect to a system parameter for structural 

condition assessment. This sensitivity is shown to be more sensitive to local structural 

changes than the response sensitivity and it has the advantage in handling problems with 

model errors in the initial finite element model of the system. This is because the wavelet 

transform extracts separately different frequency component information from the 

response. However, all the above methods rely on the need of an externally applied 

excitation. This requirement is not possible in the case of a large civil engineering 

structure where a large amount of energy input is required. For practical applications, 
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time domain methods are further developed to apply in the structures under ambient 

excitations by the author in the thesis.  

 Comparing to modal methods, methods based on direct vibration responses have 

many advantages and they can be applied more widely. Firstly, modal parameters used in 

modal methods are global quantities of the structures. They have limited abilities to 

capture local and instantaneous changes in the systems. Secondly, because modal 

parameters are usually obtained from the measured time responses with signal processing 

techniques such as Fourier transform, some information will be lost during the 

transformation and data reduction, and this will affect the final results. Thirdly, in the 

time-domain, plenty of measured data can be obtained with increasing period of 

measurement and the information can be perfectly preserved in the time series without 

the need of modal identification. Fourthly, time-domain methods can use any sampling 

frequency in the vibration measurements, however, modal methods require a sampling 

frequencies to include several modes of the structures. Fifthly, methods based on time 

series data make use of not only the global characteristics (natural frequency, mode shape 

and so on) but also the local ones (such as the amplitude attenuation). Sixthly, because 

the condition of real structures is often time-varying, methods based on time series data 

will be more appropriate for health assessment. With the development of methods based 

on time series data, more and more merits will be found. These methods will be 

employed more widely both in linear and non-linear problems of the engineering 

structures.  

 In this chapter, the procedure of damage detection based on time series data was 

presented. Firstly, the forward problem including the computation of time responses from 

 70



an analytical model using numerical methods and signal analysis using Fourier 

Transform and Wavelet transform are introduced. Secondly, a simple damage model is 

established for demonstration of the damage detection method. Thirdly, the sensitivities 

of time series data with respect to the structural parameters are computed numerically. 

Fourthly, the damage identification based on model updating and the output-error was 

described. Fifthly, to solve the ill-conditioning in the solution in the inverse problem, 

regularization theory was used and its basic theory was presented. Finally, the uncertainty 

analysis is necessary in damage detection, and the uncertainty model was given. 

 

3.2 Forward Problem 

 Because damage detection is based on the model updating procedure, the dynamic 

response of one state of the structure needs to be simulated from the finite element model. 

To give the complete procedure and investigate the possible problems, the forward 

problem including the computation of the dynamic responses and the corresponding 

signal analysis are presented briefly. In the thesis, only the linear vibration models are 

studied.  

 

3.2.1 Computation of Dynamic Responses of the Structure  

 For a general finite element model of a linear-elastic time-invariant N degrees-of-

freedom damped structural system under general excitation, the dynamic governing 

equation is given by,  

   (3.1) ( )
•• •

+ + =M x Cx Kx DF t
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where M ,C , K  are the  mass, damping and stiffness matrices respectively. D  is 

the mapping matrix relating the force excitation location to the corresponding DOFs of 

the system. x , ,  are the displacement, velocity, acceleration vectors respectively. 

 is the force vector which acts on the structure. As we know, Rayleigh damping is 

the most popular damping model for structural dynamic analysis. In the thesis, Rayleigh 

damping model is taken, which has the form as: 

NN ×

×N
•

x
••

x 1

( )F t

1 2α α= +C M K , where 1α and 2α  are 

constants to be determined from two given damping ratios that corresponding to two 

unequal frequencies of vibration. If a more accurate estimation of the actual damping is 

required, a more general form of Rayleigh damping, the Caughey damping model (Bathe, 

1982) can be adopted.  

 The solution of Equation (3.1) can be obtained by standard techniques such as the 

Duhamel integral (Meirovitch, 1997).  In this thesis, a time-stepping technique, Newmark 

method was adopted to solve Equation (3.1). The important approximations (or basic 

principles) in Newmark method can be described as, 

  1 (1 )n n n n 1x x x t xγ γ
• • •• ••

+ t+= + − ⋅Δ + ⋅Δ  (3.2) 

  2
11

1 2
2

n nn n
2

nx x x t x t x tβ β
• •• ••

++
−

= + ⋅Δ + ⋅Δ + Δ   (3.3) 

Where the subscripts n and denote the instant point, 1n + γ and β  are constants. A stable 

solution can be obtained, when 0.5γ ≥ and 20.25(0.5 )β γ≥ + . If 0.5γ = and 0.25β = , 

the method becomes the averaging acceleration method. tΔ is the time step length used in 

the computation. The computation error can be estimated by comparing the responses 

 72



from using different time steps, say, tΔ and / 2tΔ . The error is defined by 
/ 2Δ Δ

Δ

−x x

x

ii ii

ii

t t

t

. If 

the error is limited to the given value such as 5%, it can be assumed that the acceptable 

computing responses are obtained. To start this time-stepping method both the 

displacements and velocities are required at the start time. The dynamic responses 

computed from Duhamel integral can contains arbitrary modes of the structure since 

Duhamel integral is performed via mode superposition. However, the number of modes 

involved in the dynamic responses from Newmark method is determined by the sampling 

frequency which is equal to 1
tΔ

where tΔ  is the time step in the computation of the 

responses. The sampling frequency is at least two times the maximum frequency to be 

considered (the cut-off frequency). 

  

3.2.2 Signal Analysis 

 Fourier transform is often used to obtain the modal properties such as natural 

frequency and mode shape. Though many limitations exist in the application of Fourier 

transform, it is still used widely and it is introduced briefly here. In the thesis, structural 

response time histories will be directly used for damage detection instead of the modal 

properties. The properties such as energy distribution, frequency content and amplitude 

decay and so on are needed to be comprehended more carefully. The powerful signal 

analysis tools-wavelet transform are also applied to the computed and measured 

acceleration responses and the resulted wavelet coefficients and energy will be used for 
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damage detection. The promising wavelet transform and its extension-wavelet packet 

transform are also presented simply.  

 

Fourier transform 

 The discrete Fourier transform (DFT) is used to calculate the frequency content of 

a discrete, finite-length time signal. It assumes that the frequency content remains 

unchanged during the time span of the signal. Despite this, the DFT may be used to 

predict the time-frequency properties of a signal by using the moving-window method. 

The Fourier series (FS) representation of a cyclic signal ( )x t with time period T  may be 

written as, 

   (3.4) 2 / 4 / 2 /
0 1 2

0
( ) i t T i t T i m t T

m
m

x t C C e C e C eπ π
∞

=

= + + + = ∑" π

Where the constants are the amplitudes of the sinusoids at each frequency . 

These values may be found using the equation, 

mC /m T

  
/ 2 2 /

/ 2

1 ( )
T i m t T

m T
C x t e

T
π−

−
= ∫ dt   (3.5) 

The Fourier transform (FT) of a continuous infinite signal ( )x t may be written as, 

  2 /( ) ( ) i f t TX f x t e π∞ −

−∞
= ∫ dt   (3.6) 

The signal ( )x t  can be reconstructed from the Fourier transform coefficients as, 

  2 /1( ) ( )
2

i f t Tx t X f e π

π
∞

−∞
= ∫ dt  (3.7) 

The finite discrete form of the Fourier transform may be derived from considering either 

the frequency content of the Fourier series representation, Equation (3.5), or a discretized 
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version of the Fourier transform, Equation (3.6), multiplied by a finite-length window. 

(see, for example, Randall, 1987). 

 

Wavelet transform 

 Wavelet analysis is a method of decomposing the time signal into constituent 

parts. The shape and magnitude of these constituent parts depends on the selected wavelet 

(see, for example, Newland, 1993). The wavelet can take any form provided it is 

localized in time, but for computational simplicity, it tends to be limited to a function 

which leads the signal being decomposed into orthogonal parts. Daubechies wavelets are 

adopted to decompose the time signal in the thesis.  

 A wavelet is a function with two important properties: oscillation and short 

duration. A function ( )tψ  is a wavelet if and only if its Fourier transform )(~ ωψ satisfies 

  +∞<∫ ∞+
∞− ω

ω

ωψ
d2

2)(~
  (3.8) 

This condition implies that 

   (3.9) 0dtt =∫+∞∞− )(ψ

And the function ( )tψ has to be oscillatory. For practical purposes it is also required to 

define the wavelet in a limited interval[ ]KK ,− , where K is a scalar.  

 Because dyadic wavelet is used for the present study in the thesis, the 

transformation procedure based on dyadic wavelet is provided below. Let )(tψ be the 

mother wavelet function, and )(tϕ  be the scaling function. Then they have the following 

relations as, 
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  ∑
+∞

−∞=

−=
k

ktkht )2()(2)( ϕϕ  (3.10a)  

  ∑
+∞

−∞=

−=
k

ktkgt )2()(2)( ϕψ  (3.10b) 

where and  are the low-pass and high-pass analysis filters respectively which 

are all constants related to the wavelet type.  

)(kh )(kg

 The wavelet function )(, tkjψ  is defined based on the mother wavelet 

function )(tψ  and the scaling function )t(ϕ as,  

  )()(, kt22t j
kj

2
j

−= −− ψψ  (3.11) 

where both j and k are in the integer domain. j is the scale parameter and k is the 

translation parameter. 

 Because of the orthogonality on both translation and scale of the Daubechies 

wavelets, the relationship can be obtained as,   

    (3.12) nkmjnmkj dttt ,,,, )()( δδψψ∫ =

where ,j mδ , ,k nδ  are the Dirac delta function and they satisfy the following equation, 

  , 0, ( )i j i jδ = ≠  (3.13) 

The forward decomposition of the time signal ( )f t  by Daubechies wavelets can be 

expressed as, 

   (3.14) , ,( ) ( )j k j kd f t tψ
+∞

−∞

= ∫ dt

where  is the wavelet coefficient.   k,jd
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On the other hand, the signal can be reconstructed from the wavelet coefficient and the 

wavelet function. 

  ∑=
kj

kjkj tdtf
,

,, )()( ψ  (3.15) 

 

Wavelet packet transform 

 Wavelet packet is a generalization of the wavelet transform where arbitrary time-

frequency resolution can be chosen according to the signal. This will be done, of course, 

within the bounds of Heisenberg uncertainty principle (see Coifman et al, 1992). The idea 

of separating the signal into packets is to obtain an adaptive partitioning of the time-

frequency plane depending on the signal of interest. 

 The i th wavelet packet )(tiψ can be expressed by the low-pass analysis filter  

and high-pass analysis filter as, 

)(nh

)(ng

  ∑
+∞

−∞=

−=
k

ktkht )2()(2)( 00 ψψ  (3.16) 

  ∑
+∞

−∞=

−=
k

ktkgt )2()(2)( 01 ψψ  (3.17) 

where )()(0 tt ϕψ = , )()(1 tt ψψ = . When i  is arbitrary, Equations (3.16) and (3.17) 

become 

  ∑
+∞

−∞=

−=
k

ii ktkht )2()(2)(2 ψψ  (3.18) 

  )2()(2)(12 ktkgt i

k

i −= ∑
+∞

−∞=

+ ψψ  (3.19) 

and the wavelet packet transform of a time signal  can be defined as, )(tf
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   (3.20) ∫
+∞

∞−

= dtttfc i
kj

i
kj )()( ,, ψ

with   )2(2)( 2
, ktt ji

j
i

kj −= −−
ψψ . 

The original signal can be reconstructed as, 

   (3.21) ∑
+∞

−∞=

=
k

i
kj

i
kj

i
j tctf )()( ,, ψ

   (3.22) )()(
12

0
tftf

j

i

i
j∑

−

=

=

The wavelet packet transform coefficients can be computed in detail as, 

   (3.23) ∫
+∞

∞−

= dtttfc kk )()( 0
,0

0
,0 ψ

with         )()(00
,0 ktktk −=−= ϕψψ  

or in a more general format,          ,   ∫
+∞

∞−

−= dtkttfc k )()(0
,0 ϕ

  ，2
1, ,( 2 )i i

j k j m
m

c h m k+ = −∑ c ic2 1
1, ,( 2 )i

j k j m
m

c g m k+
+ = −∑  (3.24a)  

or in matrix form,  

   2 1
1

+
+ =c H ci j i

j j  ,  2 1 1
1
+ +
+ =c Gi j ci

j j  (3.24b) 

where ,  1

(1 2) (2 2) ( max 2)

(1 2 ) (2 2 ) ( max 2 )
+

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
⎣ ⎦

H

"
" " " "

"
" " " "

j

h h h l

h k h k h l k

and    1

(1 2) (2 2) ( max 2)

(1 2 ) (2 2 ) ( max 2 )
+

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
⎣ ⎦

G

"
" " " "

"
" " " "

j

g g g l

g k g k g l k
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 ( ， )  12/,,2,1 += jNk " jNl 2/,,2,1 "=

where is the number of data points of the finite time signal . N )(tf

Equation (3.24) can also be simplified as,  

  0
0=c D ci i

j j     (3.25) 

with  2 2 0 1 1
1 1 0

+ +
+ += = =c D c H c H Di i j i j i 0

0cj j j j

i

,  

  2 1
1

+
+ =D H Di j

j j ,       2 1 1
1
+ +
+ =D G Di j i

j j  (3.26)  

where   0
1

1=D H ，          1 1
1 =D G  

 

3.3 Establishment of Damage Model  

 Damage models can be classified as discrete models (such as finite element model) 

and continuous models, and also they can be sorted as linear model and non-linear model. 

Because the author’s aims in the thesis are to investigate the techniques for damage 

detection using time series data and their sensitivities, simple finite element linear models 

are used in the research. 

 For an isotropic elastic material, the elemental stiffness matrix is proportional to 

the elastic modulus of the material and the geometric coefficient such as the length of the 

element, cross sectional area, etc., which are usually taken as the unknown parameters to 

be identified in the inverse problem. In the thesis, an approximate model on the local 

damage is adopted in which the local damage in the structural system is expressed in the 

form of , where 
1

α
=

= Δ∑ΔK
ne

i i
i

K iαΔ is the fractional change in the stiffness of an element, 
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K i  is the element stiffness matrix assembled in the  global matrix and ne is the number 

of elements in the structure.  

 When a more detailed finite element or numerical model is used for modeling the 

behavior of the cracks, the proposed methods in the thesis still work. However it must be 

noted that the computation increases with increasing number of degree-of-freedoms of 

the structure. 

 

3.4 Sensitivity Analysis  

 From the equation of motion (3.1), the time responses can be computed by 

Newmark method. In order to investigate the properties of these time series data and 

perform damage detection, the derivatives of these time series data with respect to the 

structural parameter need to be derived. For different types of time series data, the 

method for obtaining the derivatives are different. In this Chapter, only the vibration 

response sensitivities are presented and the derivatives of their ramifications with respect 

to structural parameter will be given in later Chapter in details.  

 The derivatives of the vibration responses with respect to the structural parameters 

can be obtained in an analytical approach via the sensitivity of the modal properties with 

respect to structural parameters. This method is complicated and can not avoid the modal 

extraction from the time responses which also bring errors into the data. Then the direct 

numerical approach is adopted to compute the sensitivity of the time series data.  

 We can now derive the vibration response sensitivity with respect to the physical 

parameters. Performing partial differentiations on both sides of Equation (3.1) with 

respect to the stiffness parameter of the th element, we have,  i
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α α α α α

•• •
•∂ ∂ ∂ ∂ ∂

+ + = − −
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x x x K CM C K x
i i i i

x
i

 (3.27) 

The sensitivities , ,
α α α

• •

∂ ∂ ∂
∂ ∂ ∂

x x x

i i i

•

can then be obtained from Equations (3.27) and (3.1). 

Since the displacement and velocity responses have been obtained from Equation (3.1), 

the right-hand-side of Equation (3.27) can be treated as the equivalent force input, and 

similarly, the sensitivities can also be obtained numerically by Newmark method. The 

dynamic response sensitivities of the initial conditions usually vanish because the initial 

conditions are independent of the system parameters. In the case when a structure is 

suddenly released from a static equilibrium state, the sensitivity of the initial 

displacement to the elemental Young’s modulus exists, and thus the sensitivity of initial 

velocity has a non-zero value. In this case, the sensitivity of initial displacement is 

obtained from the direct differential of the static equilibrium equation. 

 

3.5 Damage Detection 

 Damage identification can be performed with the above preparation. We consider 

a general structure which behaves linearly before and after the occurrence of damage for 

the illustration of the procedure of damage detection. The study of a non-linear system 

with time-varying damage model is not included in this study as it involves a different 

treatment of the identification problem.  

 

3.5.1 Objective Function 
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 In the forward analysis, the dynamic responses and their sensitivity with respect to 

the structural parameter of a finite element system can be obtained from Equations (3.1) 

and (3.27) for a given set of parameters iα  (i=1, 2, …, ne). In the procedure for damage 

detection, however, these parameters are required to be identified from the measured 

responses. In other words, the parameters are chosen to best fit the experiment data. 

Optimization methods according to different criteria can be used to fit the data. The least-

squares techniques are usually adopted to minimize the sum of squared errors by linear 

approximation or higher order approximation. The sensitivity-based analysis methods 

which have different formulation for different problems are also seen in applications for 

obtaining the best suitable structural parameter to match the measured responses best. 

The sensitivity adopted is often obtained approximately by neglecting the higher order of 

the Taylor series. In this thesis, the sensitivity-based methods are used to find the damage 

vector to minimize the objective function which can be defined as, 

   (3.28) 
1 1

( ) { } { }α
∧ ∧

= =

= − −∑∑ W
l nt

T
ij ijij ij

j i
J R R R R

where l is the number of measurement locations, nt is the number of time instances to 

provide the measured data. α is the vector of unknown stiffness parameter 

 to be identified, is the vector of calculated time series of the structure 

from a known set of α , which can be displacement response, acceleration response, 

wavelet coefficient of response, impulse response function, etc, and is the 

corresponding vector from measurement. W  is the weighting matrix which is taken as a 

unity matrix in this thesis. 

1 2( , , , )T
neα α α" R

∧

R
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3.5.2 Penalty Function Method 

 Penalty function method is generally used for modal sensitivity with a truncated 

Taylor series expansion in terms of the unknown parameters (Friswell and Mottershead, 

1995). The truncated series of the dynamic responses in terms of the stiffness parameter 

iα  of an element is used to derive the sensitivity-based formulation from the general 

dynamic responses. The identification problem can be expressed as follows to find the 

vector α  such that the calculated response best matches the measured response, i.e. 

  
∧

⋅ =Q R R   (3.29) 

where the selection matrix  is a constant matrix with elements of zeros or ones, 

matching the degrees-of-freedom corresponding to the measured response components. 

Vector can be obtained from Equation (3.1) for a given set ofα . 

Q

R

Let   (3.30) δ
∧ ∧

= − ⋅ = −z R Q R R Rcal

In the penalty function method, we have, 

  δ δ=z S α  (3.31) 

where δ z is the error in the measured output and δα is the perturbation in the parameters, 

is the two-dimensional sensitivity matrix which is one of the matrices at time t in the 

three-dimensional sensitivity matrix. For a finite element model with ne elements, the 

number of unknown elemental elastic modulus is ne, and only ne equations are needed to 

solve the parameters. Matrix S is on the parameter-t plane, and we can select any row of 

the three-dimensional sensitivity matrix, say, the ith row corresponding to the ith 

measurement for the purpose. When writing in full, Equation (3.30) can be written as, 

S
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 (3.32) 

with l to make sure that the set of equation is over-determined and this requirement 

is easily satisfied using the series data. Equation (3.31) can be solved according to the 

minimization criteria by different techniques such as the standard simple least-squares 

methods as follows, 

NE≥

  1[ ]δ δ−=α S S S zT T  (3.33) 

where the superscripts and indicate the inverse and the transpose of the matrix in 

this thesis. The residuals or the objective function in Equation (3.28) corresponding to 

Equation (3.33) are used to obtain the cost function is, 

1( )−i ( )Ti

  2( ) ( ) ( )δ δ δ δ δ= ⋅ − = ⋅ − ⋅ −α S z α S z α W S z αT
LSJ δ  (3.34) 

 

3.5.3 Updating the Analytical Model and Identifying Local Damages 

 The damage identification includes two separate stages of updating the analytical 

model and identifying local damages. 

 Divergence of the solution in the updating procedure not only comes from the 

large difference between the mathematical and the real model, but also stems from the 

computational error in the solution of a large number of unknowns. We need to exercise 

some engineering judgments in the case of dealing with a large structure with a large 

number of unknowns. This helps a lot in reducing the size of the problem and of course 

enhancing the convergence property of the solution.  
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 With the usual case of solving Equation (3.31) only once can only handle small 

deviations from the FEM. But with the present iterative approach to update the deviations 

by small increments at a time, large deviation from the initial model can be updated with 

the improved FEM closer to the real structure after every iteration of model improvement. 

Then iterative approach is used for updating the model.  

 The initial analytical model is adopted for model updating in the first stage of the 

study, and R and matrix S are obtained from this initial model with an initial guess  

for the unknown vector α , usually,  is taken as the original stiffness parameter. 

0α

0α
∧

R  can 

be directly obtained or computed from the measurement from the intact state of the 

structure. Through solving Equation (3.31), the initial model is then updated and the 

corresponding and its sensitivity S are again computed from the updated model for the 

next iteration. The procedure of iteration can be described as, 

R

• Step 1: Solve Equation (3.1) at the (k+1)th iteration with known αk  for R and 

compute the valueδ zk . 

• Step 2: Solve Equation (3.27) at the (k+1)th iteration with known αk for 
α
∂
∂

R

i

to 

get the sensitivity matrixS . 

• Step 3: Find { }Δαk from Equation (3.31) or Equation (3.33).  

• Step 4: Update the stiffness parameter vector by the formula: 

  1+ = + Δα α αk k k . (3.35) 

• Step 5: Repeat Steps 1 to 4 until both of the following two criteria are met: 

  1

1

1+

+

−
≤

R R
R

k k

k

toler , 1

1

2+

+

−
≤

α α
α

k k

k

toler  (3.36) 
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The tolerances equal to in this thesis unless otherwise stated. 61.0 10−×

 After the analytical model is updated to the converging state, then the updated 

analytical model is used to represent the first (intact) state of the structure. The same 

procedure in the updating analytical model can be followed for identifying the local 

damage. The updated intact model of the structure can be updated to the damaged model 

of the structure by best matching the measured dynamic responses with that from the 

damaged structure. The final set of identified parameter increments correspond to the 

changes occurred in between the intact and damaged model of the structure and the 

damage vector can be obtained. 

 

3.6 Regularization Technique   

 Like many other inverse problems, the solution of Equation (3.31) is ill-

conditioned. In order to provide bounds to the solution, regularization techniques are 

needed to be applied to the solution. The aim is to promote certain regions of parameter 

space where, we believe the model realization should be. Tikhonov achieved a controlled 

influence of the regularizing information by forming a weighted sum of the original cost 

function and a new cost function LSJ Re gJ based on the regularizing information, given by  

  δ=d C α  (3.37) 

From Equation (3.37) the residuals are used to give the second cost function, 

  2
Re ( ) ( ) (α= − = − −α Cα d Cα d W Cα dT

gJ )  (3.38) 

 86



where Wα is a symmetric positive definite weighting matrix. Thus there are two cost 

functions,  and LSJ Re gJ , that need to be minimized concurrently. A composite cost 

function is formulated as, LSRJ

  2
Reλ δ δ λ= + = ⋅ − + −S α z Cα dLSR LS gJ J J 2  (3.39) 

Where, 0λ ≥ is the regularization parameter, and Re gJ is the stabilizing/regularization 

part. The parameter λ  controls the extent to which regularization is applied to the 

nominal problem. If λ  is too small then the problem will be too close to the original ill-

posed problem, but if λ  is too large then the problem solved will have little connection 

with the original problem.  

 The matrix C  is typically either the identity matrix I  or a discrete 

approximation to a derivative operator (Phillips, 1962). The correct choice of C is 

important to obtain meaningful parameters

m

α . Varah (1983) showed that a wrong choice 

of  can lead to completely erroneous results. Additional information should be 

introduced by means of the side constraint in the model updating or damage assessment 

process. In this thesis, the damage vector is the vector with nonzeros in several elements 

and zeros in most elements and the obtained vector 

C

δα  in every updating procedure is 

small. Therefore it can be assumed that 0δ →α  and this can be used as the side constraint. 

When is chosen as the identity matrix, Equation (39) becomes, C

  2( , ) 2δ λ δ δ λ δ= − +α S α z αJ  (3.40)  

 Then the regularization solution from minimizing the function in Equation (3.40) 

can be written in the following form as, 

  1( ) ( )δ λ λ −= +α S S I S zT δT  (3.41) 
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The determination of the regularization parameter λ  can be determined by different 

techniques such as L-Curve method and cross validation. In this thesis, L-Curve method 

was adopted and some improvements were performed. 

 

3.7 Uncertainty Analysis 

 In practice, uncertainties always exist in the measured vibration data and the 

analytical model. In order to study the effect of uncertainties to the damage identification, 

the uncertainties in the analytical model are represented by variations in the structural 

parameters such as density, stiffness, damping and force data and so on. Artificial noise is 

added to the computed responses to simulate the measured responses containing the noise 

caused by environmental and other factors. 

 White noise is added to the calculated responses to simulate the polluted 

measurements as follows, 

    (3.42)  * *var(= +R R N Rmeasured calculated oise calculatedEp )

where  is the vector of polluted responses; Ep is the noise level ; is a 

standard normal distribution vector with zero mean and unit standard deviation; var(•) is 

the variance of the time history; R  is the vector of calculated responses.  

Rmeasured oiseN

calculated

 

3.8 Summaries  

 In most existing technical literature, time series data are becoming more popular 

for damage detection. Time series data can be obtained directly from the experimental 

measurement without modal extraction procedure, and it can preserve more information 

of the structure. This thesis presents the damage detection algorithm based on time series 
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data using an output error estimator based on general measurement (displacement, 

acceleration, etc.). The proposed damage detection algorithm estimates structural 

parameters through the minimization of an error function defined by the weighted least-

squared error between the measured and the calculated dynamic time series. Since the 

error function is defined only from the time history of acceleration (displacement) 

measured at a few locations, the algorithm does not require any other measured 

information other than acceleration (displacement).  

 In comparison with other damage detection methods, the proposed method has the 

following advantages: (1) the number of measurements can be very small; (2) the 

identification process is fast and the identified results are accurate; (3) the number of 

identification equation can be adjusted according to the duration of time, this indicates 

that the identification equation can always be over-determined; (4) several types of 

measurements can be used for the damage detection, i. e., displacement, acceleration, 

strain measurement etc, or any combination of these measurements can be used; (5) only 

a short duration of dynamic response measurement is needed in the identification; (6) the 

proposed method has the potential for identifying large number of structural parameters.  

 



CHAPTER 4  DAMAGE DETECTION DIRECTLY FROM 

TIME RESPONSE VIA WAVELET AND WAVELET 

PACKET TRANSFORM 

 

4.1 Introduction 

 Damage detection based on modal properties was firstly applied to engineering 

structures. However the limitations for modal damage diagnostics exist and restrict the 

practical and further application in engineering system. Many researchers tried to directly 

use the time series data without the modal extraction from measured responses for 

structural condition assessment.  

 Cattarius and Inman (1997) used the phase shift in the time history of structural 

vibration response to identify the presence of damage in smart structures. Majumder and 

Manohar (2003) proposed a time domain approach for damage detection in beam 

structures using vibration data with a moving oscillator as an excitation source. Choi and 

Stubbs (2004) formed the damage index directly from the time response to locate and size 

damage in a structure and the method tries to remove certain drawbacks associated with 

commonly used modal extraction parameter methods. Lu and Gao (2005) proposed a new 

method for damage diagnosis using time-series analysis of vibration signals which is 

formulated in a novel form of ARX model with acceleration response signals. Kang et al. 

(2005) presented a system identification scheme in time domain to estimate stiffness and 

damping parameters of a structure using measured accelerations and the method is 

demonstrated with a numerical simulation study on a two-span truss bridge and an 
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experimental laboratory study on a three-story shear building model. More recently the 

sensitivity matrix of response with respect to a system parameter is derived analytically 

(Lu and Law, 2007), and it is used directly in an inverse problem for structural damage 

identification.  Though time responses can be used to detect damage directly and easily, 

and they can locate damages and quantify the severity very accurately using as few as a 

single sensor, the results are subject to the effect of measurement noise and model error.  

 Any signal can be decomposed into wavelets and some of them can be proved to 

be sensitive to local changes in the system parameters as shown later in this section. The 

Fourier analysis transforms the signal from a time-based or space-based domain to a 

frequency-based domain. The wavelet transform has many virtues that the Fourier 

transform lacks.  

 Wavelet analysis may be viewed as an extension of the traditional Fourier 

transform with adjustable window location and size. Over the past ten years, wavelet 

theory (Wong and Chen, 2001) has become one of the emerging and fast-evolving 

mathematical and signal processing tools because of its many distinct merits. The wavelet 

transform is different from the Gabor transform in that it can be used for multi-scale 

analysis of a signal through dilation and translation, such that the time-frequency features 

of a signal can be extracted effectively. The merits of wavelet analysis also lie in its 

ability to examine local data with a ‘‘zoom lens having an adjustable focus’’ to provide 

multiple levels of details and approximations of the original signal. Therefore the 

transient characteristics of the signal can be retained. 

 A possible drawback of the wavelet transform is that the frequency resolution is 

quite poor in the high frequency region. Hence there are difficulties when discriminating 
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signals containing high frequency components. The wavelet packet transform is an 

extension of the wavelet transform that provides complete level-by-level decomposition. 

The wavelet packets are alternative bases formed by linear combinations of the usual 

wavelet functions (Coifman and Wickerhauser, 1992). As a result, the wavelet packet 

transform enables the extraction of features from signals containing stationary and non-

stationary components with arbitrary time-frequency resolution.  

 Sun and Chang (2002a) used a wavelet packet signature to detect damage. Law et 

al. (2005) developed the sensitivity-based damage detection method basing on the 

wavelet packet energy of the measured accelerations and the method can identify damage 

of a structure from a few measurement locations. To adopt the plenty time domain data 

and make the damage identification over-determined, the sensitivity of the wavelet 

coefficient from structural response is also derived to identify damage with much better 

results especially in structures with noise and model error (Law and Li, 2006). 

 All structures are subject to ambient excitations like wind, rain, ground micro-

tremor and temperature effects as well as the operation loads. Most of these excitations 

are from the environment and they are usually small, while the force from operation loads 

is significant. Most existing methods on condition assessment of structure require an 

input which may be the ambient environmental forces or artificial forced excitation. The 

operation loads are usually treated as random forces or just ignored. This practice may be 

appropriate for a large structure such as a suspension bridge but not for the usual types of 

infrastructure such as a box-section bridge deck. Method including the moving operation 

load in the system identification is scarce. The provision of sufficiently large energy input 

for the identification of such a structure is formidable. It is necessary to find a way to get 
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around the above problem by including the ground micro-tremor excitation in the 

condition assessment. Acceleration responses at only the support and at limited number 

of locations of the structure are required.  

 In order to have methods mainly used the time responses for damage detection 

more practical and powerful, time responses combined with wavelet and wavelet packet 

transform techniques are adopted to identify damage in structures in the chapter.  It 

consists of the three parts: (a) structural damage detection from wavelet packet energy of 

acceleration responses, (b) structural damage detection from wavelet coefficient of 

acceleration responses with model errors and noise, and (c) structural condition 

assessment from measured accelerations in the structure under support excitation.  

 

4.2 Structural Damage Detection from Wavelet Packet Energy of Time 

Responses 

 In this section, the sensitivity of wavelet packet transform component energy with 

respect to local change in the system parameters is derived analytically. Measured 

response signals from a structure are first decomposed into wavelet packet components. 

The (WPT) component energy sensitivity is classified into two types and their inclusion 

in the identification equation is discussed. Components that contain much of the 

structural system information are identified, and their energy and first order sensitivity to 

local damage are calculated. The identification equations are solved using measured 

responses from two states of the structure with regularization in the solution. Both 

acceleration and strain responses have been used separately or in combination, and the 

sensitivity of acceleration with respect to local change of parameter is shown both 
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analytical and numerically much better than that from strains. The proposed method is 

also shown both numerically and analytically not sensitivity to measurement noise. The 

method can differentiate damages at close proximity with good resolution from using 

very short duration of measured data from only two sensors. Experimental results from a 

steel beam also confirm the effectiveness of the proposed method. 

 

4.2.1 Dynamic Response Sensitivity  

 The equation of motion of a damped structural dynamic system is expressed as, 

   (4.1.a) ( )
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It can also be written in the state-space form as, 
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,C ,  are the mass, damping, stiffness matrices respectively. G is the mapping matrix 

relating the force  to the corresponding DOFs of the system. z , ,  are the 

displacement, velocity, acceleration vectors respectively. s is the measured acceleration 

output at the sensor location. ε is the strain vector. v  and  are the noise vectors. L  and 

 are the mapping vectors on the measured locations.  
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 Considering the finite difference approximation of xk+1, 
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where denotes the k th time instance. We note that Equation (4.1b) can also be written 

as, 

k

   1 1

•

+ + += +x Ax BFk k k  (4.1c) 

Substituting Equation (4.3) into the above equation and rearranging, we have 
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 The adopted damage model was described as in Section 3.3. Differentiate 

Equation (4.4) with respect to iα  which is the fractional stiffness of an element, we get 
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After substituting Equation (4.5) into (4.7), we have 
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We also note that Equation (4.2) gives the following responses for the kth time instance,  
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can be obtained by Equations (4.11) and (4.5) and (4.8). It is noted 

that the response sensitivities shown in Equation (4.11) indicate that the strain is less 

sensitive to a parameter change than the acceleration because the acceleration response 

sensitivity contains two terms relating to the parameter change, however the strain 

response sensitivity contains only one term. 

 

4.2.2 Sensitivity of Wavelet Packet Transform Component Energy  

 The measured response is represented by Haar wavelet basis function through the 

dyadic wavelet transformation. The bandwidths of each level of the dyadic wavelet 

transform are octaves, and this enables a direct comparison of the energy content of the 

wavelet packets as shown below. The WPT component function of the measured 

acceleration s (t) and strain ε(t) can be reconstructed from the wavelet packet coefficients, 
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3.2.2.3 or Sun and Chang, 2002b), where c  and d  are the wavelet packet coefficients 
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wavelet packet transform component energy of the acceleration s (t) and strain ε(t) at 

the j th level of decomposition,  and respectively, are defined as, i
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and ( ) (=T R D R Di i i T i i
j j j j j , which is not a function of the signal and is determined only by 

the wavelet type, and therefore / α 0∂ ∂ =Ti
j i . It is noted that the sensitivity given in 

Equation (4.13) is based on the dynamic response sensitivity in Equation (4.11) and is 
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different from the sensitivity given by Sun and Chang (2002b) which is based on the 

impulse response function. 

 

4.2.3 Equation for Damage Assessment  

 Vectors and  are the vectors of the wavelet packet transform component 

energies of the analytical model and the experimental model respectively.

aE eE

/E α∂ ∂  is the 

sensitivity with respect to the fractional stiffness from the analytical model. We have the 

equation corresponding to Equation (3.31), 

  
α
∂

− = ⋅Δ
∂

EE E αa e  (4.14) 

where  is the vector of parameter changes of the system. The damage detection 

procedure can be performed as in Section 3.5.  

Δα

When measurement from the first state of the structure is obtained, the wavelet 

packet component energy and its sensitivity are first computed basing on the analytical 

model of the structure and the input force obtained in experiment. The increment of 

parameter is then obtained from Equation (4.14) using the experimental obtained WPT 

component energy. The analytical model is then updated and the corresponding 

component energy and its sensitivity are again computed for the next iteration. The 

criteria corresponding to Equation (3.36) for convergence are, 
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where k is the kth time instance. When measurement from the second state is obtained, 

the updated analytical model is used in the iteration in the same way as that using the 

measurement from the first state. The final set of identified parameter increments 
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correspond to the changes occurred in between the two states of the structure. Because 

ill-conditioning problems exist in Equation (4.14), in the damage identification procedure, 

the regularization technique described in Section 3.6 and L-Curve method for 

determining the regularization parameter are applied to obtain the solution. 

 

4.2.4 Numerical Study 

 A 4-metre long simply supported concrete beam with 0.2 m breadth and 0.3 m 

height uniform rectangular cross-section subject to different types of excitations is 

considered. The Young’s modulus and Poisson ratio are respectively 35.8 GPa and 0.197, 

and the density of material is 2376.21 . The beam is divided into twelve equal 

Euler-Bernoulli beam elements as shown in Figure 4.1. The vertical stiffness of the 

support are simulated with springs of  1  kN/m and  kN/m. The damping 

ratios for the first six modes are respectively 3.1, 14.3, 7.6, 10.4, 1.6 and 1.4 % which are 

obtained from other experiments and used here for simulating practical situation. 

3/ mkg

81093. × 81047.0 ×

 The intact beam is first excited with a triangular impulsive force applied at one-

third point of the beam from the left support with 2197 N peak value and it lasts for 0.005 

second. The sampling rate is 2000 Hz, and acceleration response in 1.0 second obtained 

from the quarter-span of the beam (shown in Figure 4.1) is used for the identification. 

The acceleration response collected is decomposed into four levels of wavelets and the 

associated wavelet packets. The first five seconds acceleration response is Fourier 

transformed with a FFT size of 8192 for an inspection on the frequency content, and the 

frequencies of the spectral peaks observed are shown in Table 4.1. It is noted that the 

frequencies obtained are all slightly higher than those from eigenvalue analysis because 
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of the forced excitation. Mode 4 cannot be detected from the spectrum because of the 

location of the sensor. The largest shift in the natural frequency is in the first mode which 

is only 1.61 %. 

Damage is then created in the fourth element of the beam by reducing its bending 

rigidity by 20%, and the beam is subject again to the same excitation. The spectral 

frequencies obtained from the acceleration responses are also shown in Table 4.1. Shift in 

the natural frequency of the two different states occurs in all the modes. The frequency 

bandwidth of the decomposed wavelet packets are also shown in Table 4.1. All the 

packets have the same bandwidth of 62.5 Hz and it is noted that the 1st, 2nd, 3rd, 7th and 

13th wavelet packet encompass one natural frequency of the structure. 

 

Study on the packet energy distribution 

 Figure 4.2 shows the energy distribution in the sixteen wavelet packets of the 

response, and they are plotted as percentage of the total energy of the response signal. 

The first few packets with their energy content ranked in descending order are number 1, 

4, 2, 6, 3, 14, 8 and 7. It is noted that those packets contribute the larger percentage of 

energy also encompass a natural frequency of the beam, or with the frequency included in 

an adjacent packet. Since all information in the measured response has been decomposed 

into these sixteen wavelet packets, damage information in the structure will be carried in 

some or all of these wavelet packets in the form of a shift in the energy content of the 

wavelets. At the same time, those packets which have large vibration energy are 

associated with a larger signal to noise ratio, and hence they are best selected for the 

damage detection.  
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Variation of WPT component energy with damage extent 

 The flexural rigidity in element 4 is varied with 0 % to 50% reduction in 2% 

decrement, and the WPT component energy is computed from the response collected at 

node 5 of the beam under the same impulsive excitation as for last study as well as under 

the excitation of a sinusoidal excitation of )ft2sin(20F π=  at the fundamental natural 

frequency of the beam. The WPT component energy is plotted against the damage extent 

in Figures 4.3 and 4.4 for both types of excitations as percentage of the total energy in the 

response. The wavelet packet transform component energy can be categorized into two 

types: Type I energy varies monotonously with the damage extent and Type II energy 

exhibits a maximum or minimum in the variation. It is known that if Type II packet 

energy alone is used in the identification, it would give non-unique solution. Fortunately, 

the Type I energy packets contribute greatly to the total energy of the response (packets 

no. 1, 4, 2, 6, 3, 14, 8 and 7 for the case with impulsive excitation, and packet no. 1 for 

the case of sinusoidal excitation.) and they are much more sensitive to the local change in 

the physical parameter than the Type II energy packets. Then it can be concluded that the 

best wavelet packets are found mainly related with the frequency content of the structure, 

and they also depend on the characteristics of the damage because the variation curve of 

the WPE behaves from monotonously to non-monotonously with increasing damage 

extent especially when under the sinusoidal excitation. It is recommended to select those 

wavelet packets dominated by a structural vibration mode for the identification. However 

a detail study on the selection of the best wavelet packet is not a subject of this study. 
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 All sixteen packet energy sensitivities will be used in the following simulation 

studies. The accuracy and uniqueness of the solution are still dominated by the Type I 

WPT component energy based on the above observations. There is also no need to select 

the wavelet packets to be taken into account and on their respective weighting in the 

analysis. Sun and Chang (2002b) have proposed two normalized packet energy change 

parameters for the identification which enhances the sensitivity of Type II packets, and 

this will degenerate the final identified results from the above discussions. Also a scheme 

on optimizing for the best packets is needed. 

 

Damage scenario and their detection 

 Twelve damage scenarios are studied with different damage extent and from 

different types of response as listed in Table 4.2. In fact, three patterns of damage (single 

damage, two adjacent damages and three damages) are considered and each damage 

pattern is identified from acceleration response, strain response and both types of 

responses. The first nine scenarios are studied using the vertical response from node 7 

when the beam is subject to the same impulsive excitation at one-third span as for last 

study. Results shown in Figure 4.5 show that either acceleration along or both 

acceleration and strain responses together can identify the damage accurately with a very 

small error. We also notice the bad results in Scenario 8. It confirms that the strain 

response is less sensitive to local damage as predicted in its formulation in Equation 

(4.11). 

 Damage Scenarios 10 to 12 are studied using the vertical measured responses 

from nodes 7 and 8 when the beam is subject to a sinusoidal excitation at one-third span 
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at the frequency of 30Hz close to the fundamental frequency of the beam. The magnitude 

of the force is 20 N. Results in Figure 4.5 show that this arrangement could identify the 

damage very accurately with virtually no false alarms in other elements with a large error. 

And we also notice that the acceleration and strain responses when used together can get 

more accurate results than using any of the two separately as shown in Scenario 12 in 

Figure 4.5. 

 

Noise effect and model error 

 In order to study the noise effect, the polluted measured vibration data are 

simulated as in Equation (3.42). Two damage scenarios are analyzed for noise effect. 

Damage Scenarios 13 and 14 as listed in Table 4.2 are studied with 5% noise in the 

measured responses. Acceleration measurements from nodes 5 and 6 are used with 

impulsive excitation applied at node 4 as described previously, and the identified results 

are shown in Figure 4.6. The presence of noise seems not adversely affecting the 

identified result on the damaged elements. This maybe because the error is assigned to 

the different wavelet packets and the noise effect in each bandwidth is reduced. The other 

explanation maybe because the structure is simple and the damage can easily be 

identified. With the damage information distributed to a large number of time-scale 

wavelet packets, the solution of the respective system of equations implies an averaging 

of more samples, which is beneficial with respect to noise-contaminated data.  

 Scenarios 15(a) and (b) includes a model error of an under-estimation in the 

flexural rigidity of the whole beam structure in the finite element model plus two adjacent 

damages in the beam with and without 5% noise in the measured acceleration. The 
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excitation and measuring points are the same as for the last two Scenarios. The identified 

results for the no noise case show very accurate increase of approximately 3% in 

elements 3 to 5 and 9 to 11 and reduction of 2% and 7.3% for the damaged elements 6 

and 7. The identified 2% and 7.3% reductions are relative to the original modeled flexural 

rigidity. However when 5% noise is included the identified results degenerate badly, but 

the damaged elements can still be localized with no false alarm in other elements. 

 The proposed wavelet packet transform component energy sensitivity has the 

following advantages when applied to the damage detection of structures: It needs only 

short duration of measured acceleration from as few as a single sensor. The identified 

result is noise insensitive and with few false alarms in the undamaged finite elements. It 

is also not sensitive to model errors. These properties arise from the fact that the time-

scale representation of the dynamic response gives a more detailed description of the 

system characteristic properties than the information from either a time series or its 

Fourier transform. 

 

4.2.5 Experimental Study 

 The damage detection method based on the sensitivity of wavelet packet 

transform component energy was further studied with results from a steel beam tested in 

the laboratory. The test set-up is shown in Figure 4.7. The dimensions of the beam are 

1996, 50.75, 9.69mm which are the beam length, width and height of cross-section 

respectively. The Young’s modulus is 191.1GPa, and density is 7790.6  . Seven 

strain gauges are evenly distributed at the bottom of the beam. The local damage is 

simulated by removing 0.9mm thick of material on both the top and bottom of the beam 

3/ mkg
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and over a length of 9mm across the full width of the beam. This corresponds to an 

equivalent damage in element 16 of 11.5% reduction in the flexural rigidity of the 

element after applying Guyan reduction to condense the middle degrees-of-freedom to 

the end nodes of the element. The first ten natural frequencies and the associated 

damping ratios obtained from modal test before and after the damage are shown in Table 

4.3. The shift in the natural frequency is found very small, but there is significant change 

in the 1st, 2nd, 7th and 8th modal damping ratios. The damping ratio of each mode is 

calculated by using the half-power point method on the basis of the frequency response 

function. The variation of the damping ratios is complicated as it is caused by many 

factors. 

 The free vibration strain responses induced by the sudden release of a hanging 

steel block of 23.274 kg are collected. The sampling rate is 2000 Hz and the measured 

strain responses obtained from the 4th and 5th strain gauges from the left with B&K 4370 

accelerometers are used in the identification. The choice of data from the 4th and 5th strain 

gauges is because they are closest to the middle span which has large deflection and also 

larger strain. A commercial data logging system INV303 with the associated data 

analysis system DASP2003 are used in the data acquisition. The first 2000 data are used. 

The measured strain responses and the corresponding calculated responses using the 

identified local damages are shown in Figures 4.8(a) and (b). The responses match each 

other very well. The identified result on the damage is shown in Figure 4.8(c) indicating a 

fairly accurate result in element 16 but with a 4% reduction false alarm in element 15. 

This phenomenon is rather common with many existing identification techniques since 

element 15 is in immediate adjacent to the damaged element and its vibration energy will 
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be more highly affected than those in other elements (Shi et al, 2000b). It should be noted 

that the WPT component energy is a global measure of the vibrational response of the 

structure, and results identified from these energy changes would also be affected by the 

changes in the modal damping ratios. 

 

4.2.6 Conclusions 

 The wavelet packet component energy can be applied for damage detection 

successfully from the measured vibration responses. The wavelet packet transforms 

containing a structural vibration mode are most suitable for the identification with a 

larger energy content and higher sensitivity to the parameter change. Both acceleration 

and strain responses have been used separately or in combination in the simulation study, 

and the sensitivity of acceleration with respect to local change of parameter is shown both 

analytical and numerically much better than that for strains. The proposed method is also 

shown both analytically and numerically not sensitive to measurement noise. The method 

can differentiate damages at close proximity with good resolution from using very short 

duration of measured data from only two sensors.  

 

4.3 Structural Damage Detection from Wavelet Coefficient of Time 

Responses with Model Errors 

 In the above section, wavelet packet energy of time responses from several 

measurement locations can be applied for detection damage successfully. When the 

number of the structural degrees-of-freedom (DOFs) increases, the number of 

measurement sensors is also required to be increased. In order to fully make use of the 
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properties of time domain data in acceleration responses and reduce the number of 

measurement sensors, wavelet coefficients of acceleration responses are tried to identify 

damage. 

 This section presents the analytical formulation on the wavelet coefficient 

sensitivity of structural responses with respect to a system parameter for structural 

damage detection. The frequency content of the wavelets is analyzed and the selection on 

the best wavelets for the detection is discussed.  The effect of model error in the mass 

density, stiffness of elements, support stiffness, damping, excitation frequency and 

amplitudes to the damage identification is also discussed. Simulations using a single 

storey plane frame structure and experimental studies with a reinforced concrete beam in 

the laboratory are performed to demonstrate the proposed method.  

 

4.3.1 Wavelet Coefficient Sensitivity  

 The time signal ( )f t  can be decomposed by wavelet transform into the following 

series 

  ∑=
kj

kjkj tdtf
,

,, )()( ψ  (4.16) 

where  is the wavelet coefficient. If the wavelet is orthogonal,  can be obtained 

from, 

k,jd k,jd

   (4.17) ∫=
R

kjkj dtttfd )()( ,, ψ

The response signal is transformed into Daubechies wavelet of order 4 (Db4) by 4 scales 

in this study. Daubechies wavelets are compactly supported wavelets with extremal phase 

and highest number of vanishing moments for a given support width.  
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 The formulation on the wavelet coefficient sensitivity can be derived for any 

physical parameter of the structural system. In the following derivation, hα  represents a 

physical parameter of the h th finite element, e.g. the Young’s modulus of material, a 

dimension, the second moment of inertia of a cross-section, etc. Both analytical and 

computational forms of the sensitivity of wavelet coefficient are given below. 

 

Analytical approach 

 Express the responses ,z
•

z  and 
••

z  in terms of the wavelet transforms and 

substituting into the equation of motion of the structural system described as Equation 

(4.1a), we have 
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where  instead of G in Equation (4.1a) is the mapping matrix relating the force vector 

 to the corresponding degrees-of-freedom of the system, and . 

Performing inner product with

D

)(tF ∫=
R

kj
F

kj dtttFd )()( ,, ψ

)t(k,jψ  to both sides of Equation (4.18), and noting the 

orthogonal property of the wavelets, we have  

  

1
,

2
,

, ,, ,

,

( ( ) ( ) ( ) ( ) )ψ ψ ψ ψ
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d
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Since  and ∫  are functions of the wavelets only, put ∫
••

dttt kjkj )()( ,, ψψ
•

dttt kjkj )()( ,, ψψ

  ,           ∫
••

= dttta kjkjkj )()( ,,, ψψ ∫
•

= dtttb kjkjkj )()( ,,, ψψ  

and Equation (4.19) becomes 

  { }1 2
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N F

j k j k j k j k j kd d d d j k  (4.20) 

rewriting 

  { }1 2 1
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Differentiating both sides of Equation (4.20) with respect to hα , we have 

 

1
,

1
, 2

,2
,

, , , ,

,

,

( ) ( )

α

α
α α α

α

⎧ ⎫∂
⎪ ⎪
∂⎪ ⎪⎧ ⎫ ⎪ ⎪∂⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ⎪ ⎪ ⎪ ⎪+ + + + + ∂⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪∂
⎪ ⎪
∂⎪ ⎪⎩ ⎭

M C K M C K

j k

h
j k

j k
j k

j k j k j k j k h
h h h

N
j k N

j k

h

d

d
d

d
a b a b

d
d

0=  (4.22) 

Substituting Equation (4.21) into (4.22), we finally obtain the wavelet coefficient 

sensitivity in terms of the system parameter as, 
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 (4.23) 

 

Computational approach 

Differentiate Equation (4.17) with respect to hα , we get 
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  )dt)t()t(f(
d

k,j
Rhh

k,j ψ
αα ∫∂
∂

=
∂
∂

 

Since )t(k,jψ  is not related to hα , we have 

  dt)t()t(fd
k,j

R hh

k,j ψ
αα ∫ ∂

∂
=

∂
∂

 (4.24) 

where h/)t(f α∂∂  is the sensitivity of response to a local change in hα . Equation (4.24) 

can also be obtained in an alternative formulation. Express the response sensitivity 

h/)t(f α∂∂  in terms of wavelets, the wavelet coefficient  is obtained as k,jc

  dt)t()t(fc k,j
R h

k,j ψ
α∫ ∂

∂
=  (4.25) 

Comparing Equations (4.24) and (4.25), we have 

  k,j
h

k,j c
d

=
∂
∂
α

 (4.26) 

Therefore the wavelet coefficient sensitivity of function  can be computed from the 

wavelet transform of the sensitivity of response . 

)(tf

)(tf

 The response sensitivity can be easily computed from Equation (3.27). The 

response sensitivity can also be obtained through the analytical state space formulation 

shown in Equation (4.11) for a general structural system. In the measurement state, since 

  
••

= L zf  (4.27) 

where  is the response vector at an arbitrary set of measured locations, and L is the 

mapping vector relating the measured degrees-of-freedom to the total degrees-of-freedom 

of the system. We have 

f
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  ( )
α α

••

∂ ∂
=

∂ ∂
zL

h h

f t  (4.28) 

Substituting Equation (4.28) into (4.24), we have the wavelet coefficient sensitivity from 

measurement as 

  ,
, ( )ψ

α α

••
∂ ∂

=
∂ ∂∫

zLj k
j k

h hR

d
t dt  (4.29) 

 

4.3.2 Damage Identification  

 and  are vectors of the wavelet coefficient of the two states of the structure, 

e.g. the intact and damaged states respectively. 

0D Dd

0 / α∂ ∂D  are the sensitivity matrices of 

the wavelet coefficient of the first state of the system. Δα  is the vector of parameter 

changes of the system. We have the identification equation as, 

  
0

0 α
∂

− = ⋅Δ
∂

= ⋅Δ

DD D α

S α

d  (4.30) 

 When measurement from the first state of the structure is obtained, the wavelet 

coefficient and its sensitivity are first computed basing on the analytical model of the 

structure and the input force obtained in experiment. The increment of parameter is then 

obtained from Equation (4.30) using the experimental obtained wavelet coefficient. The 

analytical model is then updated and the corresponding wavelet coefficient and its 

sensitivity are again computed for the next iteration. Convergence is considered achieved 

when both the following two criteria are met, 

  , 1 ,

, 1

{ } { }
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i i
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where i  refers to the i th iteration. When measurement from the second state is obtained, 

the updated analytical model is used in the iteration in the same way as that using the 

measurement from the first state. The final set of identified parameter increments 

correspond to the changes occurred in between the two states of the structure. Both the 

response sensitivity and the wavelet coefficient sensitivity are obtained from the 

computational approach in this section. Regularization techniques described in Section 

3.6 are used in the procedure of solving Equation (4.30) to provide bounds to the solution. 

 

4.3.3 Simulation 

 The one-story plane frame structure as shown in Figure 4.9 serves for the 

numerical study. The structure is subject to a sinusoidal excitation 

NttF )12sin(10)( π= applied vertically at node 6. The columns are 1.2 m high and the 

cross-beam is 0.6 m long, and each member has 10mm depth and 20mm breadth uniform 

rectangular cross-section. The modulus of elasticity and mass density of material are 

respectively 69×109 N/m2 and 2700 . 3/ mkg

 The finite element model of the structure consists of four and three equal beam-

column elements in each vertical and horizontal member respectively. The translational 

and rotational restraints at the supports are represented by large stiffnesses of 10105.1 ×  

kN/m and   kN-m/rad respectively. Rayleigh damping is adopted for the system 

with ξ=0.01. The first 12 natural frequencies of the structure are 13.09, 57.31, 76.7, 152.4, 

196.5, 227.3, 374.7, 382.5, 580.2, 699.3, 765.3 and 983.3 . The sampling frequency is 

2000 . The tolerance limits for both convergence criteria have been set equal 

to . 

9105.1 ×

6

Hz

Hz

10×0.1 −
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Frequency and energy content of wavelet coefficients 

 Horizontal acceleration response computed at node 9 for a duration of one second 

after application of excitation is decomposed into four levels of Daubechies Db4 wavelets. 

The wavelets are divided into Groups A and D with different bandwidth as shown in 

Table 4.4. Those in Group A are the low-frequency wavelet coefficients, and those in 

Group D are the high-frequency wavelet coefficients. Wavelets A1 and D1 are the largest 

scale wavelets and A4 and D4 are the smallest scale wavelets. The large scale wavelets, 

D1 and A1, have better time resolution than the small scale wavelets, D4 and A4, because 

of their wider bandwidths. The low frequency wavelet coefficients have been checked to 

be larger compared with those for the high frequency wavelet coefficients, indicating a 

larger vibration energy in the low frequency responses. This is because the low frequency 

wavelets include the first few vibration modes of the structure, but the high frequency 

wavelets include only some of the higher vibration modes of the structure.  

 

Comparison with response sensitivity 

 The relative sensitivity of the wavelet coefficient to the parameter and the 

relative response sensitivity are defined as the following for the comparison.  

wcS

rS

  ,

,

/ α∂ ∂
=

d

d
j k h

wc
j k

S ,   
( ) /

( )
α∂ ∂

=
f

f
h

r

t
S

t
 (4.32) 

 A comparison is performed on the sensitivity of each wavelet coefficients and the 

response and they are shown in Table 4.5 for a perturbation in the flexural rigidity of 

each of the finite element. The response sensitivity is comparative low compared with 
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those from the wavelets. Large scale wavelets are always more sensitive than small scale 

wavelets, and high frequency wavelet coefficients are more sensitive than low frequency 

coefficients. Wavelet coefficient D1 has the highest sensitivity contributed by the damage 

information carried by vibration modes 9 to 12 as shown in Table 4.4. While wavelet 

coefficient D2 is second to D1 but contributed only by modes 7 and 8. This shows that 

modes 7 and 8 are the two more significant modes that carry much of the damage 

information.  

 Wavelet coefficient sensitivity is in general much higher than that of the response, 

except coefficients A3 and A4 which are contributed by the first few modes. This shows 

that the lower vibration modes do not carry significant damage information. 

 

Damage identification 

 The same plane frame structure as for last study is used. The excitation 

force N)t12sin(10)t(F π=  is applied at node 6 in the vertical direction. Horizontal 

acceleration response computed at node 9 for a duration of quarter of a second after 

application of excitation is used for the wavelet decomposition. The sampling rate is 2000 

Hz and the following damage Scenarios are with different percentage reduction in the 

flexural rigidity in an element. 

• Scenario 1 – 5% reduction in element 2. 

• Scenario 2 – 15% reduction in element 4. 

• Scenario 3 – 5% and 10% reduction in elements 3 and 4 respectively. 

• Scenario 4 – 10% reduction in element 1. 
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• Scenario 5 – 15%, 5% and 10% reduction in elements 3, 6 and 8 

respectively. 

 The identified results obtained from the response sensitivity, each of the eight 

wavelet coefficients and a combination of wavelet coefficients A4, D1, D2, D3 and D4 

which cover the whole frequency range of the response, are very close to the true value 

with a maximum error of identification in each Scenario highlighted in Table 4.6. The 

number of iteration required for convergence in the different damage Scenarios are also 

given in the table. 

 The performance of the combined group of wavelet coefficients is similar to the 

response sensitivity. Wavelet coefficients D4 and A4 perform badly in the cases of 

adjacent damages and with the damage adjacent to the support. More detail inspection 

shows that Component A4 consists of only the first two vibration modes of the structure 

and D4 consists of the 3rd vibration mode only. This again confirms previous observation 

that the first few vibration modes do not carry significant information on the changes in 

the stiffness properties of the structure. In general, small scale wavelet coefficients give 

less accurate results than the large scale wavelet coefficients, and this is consistent with 

observations from last study. 

 Figure 4.10 shows the identified stiffness change in all the elements for Scenarios 

3 to 5 using wavelet coefficients A1, A2, D1 and D2 in the identification. Both the 

damage location and severity are identified very accurately without any false alarm in 

other elements. 

 

Effect of model error  
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 The finite element model would not fully represent the real life structures with 

assumptions on the linearity, damping models, dynamic behavior, joint flexibilities and 

constitutive laws of materials, etc. These assumptions are necessary to focus on the 

problem under study and to reduce the number of unknowns in the solution, or otherwise, 

including different models on the damping, damages, semi-rigid joints and different 

forms of finite element for the structure. The latter approach complicates the problem 

leading to computational errors in the identified results. On the other hand, the violation 

of the initial assumptions on the model would lead to bias errors which cannot be 

differentiated with those from computation and measurement noise. In the present and 

many existing damage assessment techniques, engineering judgments were made on the 

structural behavior and the standard finite element model on the structure is used. 

Parameters of the model are considered prone to model inaccuracy, and this effect is 

investigated in detail with the following list of model error introduced into the finite 

element model of the plane frame. The same excitation force and sampling rate of signal 

as for last study is used. The horizontal response from node 9 is used for the 

decomposition. All the following Scenarios are with 10% reduction in the flexural 

rigidity of element 3. 

• Scenario 6– both the support rotational and translational stiffnesses have 

been over-estimated ten times 

• Scenario 7 – 5% over-estimation in the flexural stiffness of all elements 

• Scenario 8 – 2% under-estimation in the density of material 

• Scenario 9 – the Rayleigh damping is over-estimated from 0.01 to 0.02 

• Scenario 10 – 10% under-estimation in the amplitude of excitation force 
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• Scenario 11- 5% over-estimation in the excitation frequency 

• Scenario 12- includes all the model errors listed from Scenarios 6 to 11 

 The identified results on the stiffness changes in all the elements are shown in 

Figure 4.11 for Scenarios 6 to 8 where sensitivity of the response, wavelet coefficients 

D1, A4 and a combination of A4, D1, D2, D3 and D4 are used in the identification. The 

results from the response and the combination of wavelet coefficients are similar, while 

wavelet coefficient A4 gives many false alarms indicating that model error of a mass 

density change cannot be detected using low frequency and low scale wavelet 

coefficients. Wavelet coefficient D1 gives consistently very good results in these three 

damage Scenarios. Results not shown indicate that wavelet D1 can also identify the 

damage element with similar accuracy with 3% under-estimation in the mass density, but 

there are also many false alarms in other elements with up to 7% stiffness reduction. All 

other wavelet coefficients fail in the identification of this damage scenario. In the case of 

Scenario 7, all the wavelets except D3 and D4 could identify the local damage in element 

3 with similar results. 

 Figure 4.12 gives the results for Scenarios 9 to 12 using the response sensitivity 

and wavelet coefficient D1 sensitivity. The latter gives consistently very good results 

even in Scenario 12 when all the different types of model errors exist. It is noted that all 

the wavelets except wavelet D1 fail to give meaningful identified results for all the above 

Scenarios. 

 

Noise effect 
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 Noise effect to the identification is also studied.  White noise is added to the 

calculated accelerations to simulate the polluted measurements as in Equation (3.42). The 

same excitation force and sampling rate of signal as for last study is used. The horizontal 

response from node 9 is used for the decomposition. Three damage Scenarios as listed 

below are studied: 

• Scenario 13 – 10% reduction in the flexural rigidity of element 3 with 5% 

noise. 

• Scenario 14 – ditto but with 10% noise. 

• Scenario 15 – 10% reduction in element 3 with 1%, 2% and 3% noise 

respectively and with all the model errors as studied in Scenario 12. 

 The identified results from the response sensitivity, wavelet coefficient A1 and 

coefficient D1, are shown in Figure 4.13 for the first two scenarios, and only results from 

wavelet D1 are shown for Scenario 15. The 5% noise causes a smaller identified value in 

the damaged element and with false alarm in other elements. This effect becomes larger 

with noise, and high frequency wavelet coefficient D1 is found less resistant to the effect 

of random measurement noise than the response and the low frequency wavelet 

coefficient A1.  

 The random noise is noted to give random errors in the elements while the model 

errors lead to bias error in the finite elements as shown in Scenario 15. Acceptable results 

can be obtained only with 1% noise level. A small percentage of noise level can reduce 

the quality of identification greatly when model errors are included. 

 

4.3.4 Experimental Verification  
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 The proposed method was verified with results from a reinforced concrete beam 

tested in the laboratory. The experimental set-up is shown in Figure 4.14. The beam is 4 

metres long with 200.35mm width and 300.21mm depth uniform cross-section. The 

Young’s modulus and mass density of material are 30.165×109  and 2420.8  

respectively, and the flexural rigidity of the beam is calculated as 1.3574×107 kN-m2. The 

mass density is obtained by weighing the beam specimen. Seven model B&K 4370 

accelerometers are evenly distributed at the bottom of the beam. The responses are low-

pass filtered at 1000 Hz, and a commercial data logging system INV303 with the 

associated data analysis system DASP2003 are used in the data acquisition.  

2m/N 3/ mkg

 The finite element model consists of 19 beam-column elements with 17 of them 

between the supports as shown. The length of elements is not equal due to the presence of 

a rectangular steel hoop between nodes 7 and 9. This hoop is also modeled with a lump 

mass.  The local damages are cracks produced by keeping 50 kN static load at the three-

quarter point of the beam close to node 14 for half an hour. Cracks developed during the 

static test are between nodes 12 to 16, and the location and length of which are also 

shown in Figure 4.14. This corresponds to an equivalent damage in elements 12, 13, 14 

and 15 of 9.3%, 22.5%, 20.6% and 5.1% reduction in the flexural rigidity of these 

elements respectively by integrating over the finite element without considering the 

concrete between the cracks.  

 Modal test is performed before and after the static loading test with impacts from 

a Dystran Instruments 12 lbs instrumented impulse hammer model 5803A in the vertical 

direction at 5/8L of the beam as shown in Figure 4.14. The sampling frequency is 2000 

Hz. Frequency response function (FRF) is calculated for each hammer test and the natural 
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frequency and modal damping ratios are calculated from the FRF averaged over twenty 

hammer tests. The first six natural frequencies and the associated damping ratios obtained 

from the two states of the beam are shown in Table 4.7. The shift in the natural frequency 

is found very small, but there is significant change in the second and third modal 

damping ratios. The experimental damping ratios of the intact beam have been included 

in the computation of the responses for subsequent damage detection of the damaged 

beam. 

 The updating of the beam always refers the experimental sample to the finite 

element model as described in the paragraph immediately after Equation (4.30). (a) It 

refers the undamaged experimental beam to the original FEM in the updating on the 

model errors. (b) After the FEM is improved, the improved FEM is used as the reference 

model to compare with the experimental damaged sample. Therefore there is no need to 

have equal hammer force for the undamaged and the damaged samples. In the case of (a), 

the experimental impact force on the undamaged beam is recorded and included in the 

FEM as excitation to generate the analytical response D0. The experimental response Dd 

and the calculated D0 are then used in Equation (4.30) to obtain vector Δα. Similarly for 

the case of (b), the impact force acting on the damaged beam is recorded and input into 

the improved FEM as excitation force to calculate the responses D0, and the record 

experimental response of the damaged beam Dd together with D0 are then used in 

Equation (4.30). 

 

Updating the analytical model errors 
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 The beam is supported on steel blocks which in turn fixed to a large concrete 

block resting on the strong floor of the laboratory. These cannot be considered as rigid 

supports. Both the support stiffnesses and the flexural rigidity of the beam cross-section 

are prone to model error while the mass density is taken as correct from direct weighing 

of the sample. These three parameters are improved using the measured acceleration 

obtained from the intact state of the structure. The first second of acceleration responses 

obtained from the second to the sixth accelerometers after each hammer hit are 

decomposed into wavelets, and the wavelet coefficients D1, D2, D3, D4 and A4 are used 

together in the sensitivity approach as per Equation (4.30) to update the three unknowns 

giving 3.5225×109 and 5.7679×109 for the left and right vertical support 

stiffnesses and 1.8305×107  on the flexural rigidity of the beam section. This 

combination includes all possible measured information in the identification. The natural 

frequencies of the updated beam is calculated and shown in the first column of Table 4.7. 

m/N m/N

2mkN −

 

Damage identification 

 The vibration of the cracked beam is inherently nonlinear in nature. It is weakly 

nonlinear and can be approximated by the piecewise linear relation as shown in Equation 

(4.30) for a small change Δα. Acceleration responses from the second to the sixth 

accelerometers in the damaged state of the beam are decomposed into wavelets, and 

again the wavelet coefficients D1, D2, D3, D4 and A4 are used to update the elemental 

flexural rigidities. Data from the first second after a hammer hit is used. The identified 

changes in elemental flexural rigidity are shown in Figure 4.15. The large reduction in 

elements 14 and 15 are accurately identified while false alarms of 7.2% reduction exists 
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in elements 10 and 17. However the pattern of damage is clearly identified with a clear 

damage zone spreading from elements 12 to 16. 

 The accuracy of the identified results is further checked by comparing the 

acceleration response from the second accelerometer obtained in the two states of the 

beam, and the first 0.2 seconds of these responses are plotted in Figure 4.16. The 

computed responses are from the updated beam model in the undamaged state, and 

including the identified changes in the flexural rigidity in the damaged state. They are 

found matching the measured responses very well except in the first 0.02 second due to 

the presence of many transient high frequency components immediately after the hammer 

hit. Despite the relatively large convergence errors of 0.342 and 0.257 in the two stages 

of updating in this example, it may be concluded that the reinforced concrete beam has 

been updated correctly. 

 

4.3.5 Conclusions 

 The wavelet coefficient sensitivity of structural responses with respect to a system 

parameter is presented both analytically and computationally. This sensitivity is shown to 

be more sensitive to local structural changes than the response sensitivity. The frequency 

content of the wavelets is analyzed and the selection on the best wavelets for the 

detection is discussed.  The new damage indicator is shown with the help of a single 

storey plane frame structure, to be not sensitive to model errors in the mass density, 

stiffness of elements, support stiffness, damping, excitation frequency and amplitudes. 

Simulation results show that the damage information is carried mostly in the higher 

vibration modes of the structure as diagnosed with the corresponding wavelet coefficients 
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from its dynamic responses. While a combination of wavelets encompasses all the 

available frequency bandwidth is adopted to include all possible measured information in 

the successful identification of a reinforced concrete beam in the laboratory. 

 

4.4 Condition Assessment from Wavelet Coefficients of Acceleration 

Response in Structures under Support Excitation 

 Most existing methods on condition assessment of structure require an input 

which may be ambient or forced excitation. The ambient excitation is usually taken as 

random in nature. This section includes the ground micro-tremor as the forced excitation 

in the condition assessment. The capability of wavelet packet transform coefficient 

sensitivity is studied particularly with short duration of data sampled at a low frequency. 

The performance of this sensitivity and the response sensitivity is compared in the 

simulation and experimental studies with a three-dimensional steel frame structure under 

support excitation in three directions.  

 

4.4.1 Response of Structures under Support 

 The equation of motion of a N degrees-of-freedom (DOFs) damped structural 

system under support excitation is given as 

  ( )
•• • ••

+ + = − ⋅ ⋅M x Cx Kx M L sx t  (4.33) 

where M ,C , K  are the  mass, damping and stiffness matrices respectively. L  is 

the mapping vector relating the DOFs with the force input to the corresponding DOFs of 

the system. x , ,  are the 

NN ×

•

x
••

x 1N ×  displacement, velocity, acceleration vectors 
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respectively. is the support acceleration. x ,sx
•• •

x , 
••

x  is computed from Equation (4.33) 

with a time-stepping integral method such as Newmark Method. 

 Differentiating Equation (4.33) with respect to iα , we get 

  
α α α α α

•• •
•∂ ∂ ∂ ∂

+ + − −
∂ ∂ ∂ ∂

x x K CM C x x
i i i i

)

∂
∂

x

i
jf

i

=
i

t)(

K  (4.34) 

Equation (4.34) is same as Equation (3.27) and can be solved as described in Section 3.4.  

 

4.4.2 Sensitivity of Wavelet Packet Transform Coefficients  

  The original signal can also be reconstructed from the WPT coefficients as, 

  ,        and     (4.35) ()(
12

0
tftf

j

i

i
j∑

−

=

= ∑
+∞

−∞=

=
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i
kj
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where denotes the signal component in the th frequency band.  )(tf i
j

 The WPT is applied to 
α∂

∂
••

lx  and  separately, where l denotes the l th DOF of 

the structure. The relation between

lx
••

)
i

l

•

( x
α∂
∂

•

WPT and  has been given by Law and 

Li (2006) as, 

)(
••

lxWPT

  )()(
••

••

∂
∂
α

=
∂
∂

l
i

l xxWPT
α i

WPT  (4.36) 

where )(
i

lx
α∂
∂

••

WPT  and  are the WPT coefficients of )(
••

lxWPT
i

lx
α∂
∂

••

 and   respectively. 

Using Equations (4.34) and (4.36), we can form the sensitivity matrix of the WPT 

coefficients as 

••

lx
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1 2

( ) ( ) ( )
α α α

•• •• ••⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

S l l
m

WPT x WPT x WPT xl  (4.37) 

 

4.4.3 The Sensitivity-based Approach  

 We consider a general structure which behaves linearly before and after the 

occurrence of damage for the illustration of the proposed approach. The damage 

identification includes two separate stages of updating the analytical model and 

identifying local damages. and  are vectors of the WPT coefficient 

of the acceleration response at the lth DOF of the intact and damaged structures 

respectively. is the sensitivity matrix of the WPT coefficient calculated from the first 

state of the system using Equation (4.37). 

0)(
••

lxWPT dlxWPT )(
••

S

αΔ  is the vector of fractional change of the 

parameters of the system. We have the identification equation as 

   (4.38) 0( ) ( )
•• ••

⋅Δ = −S α l d lWPT x WPT x

 The initial analytical model is adopted for model updating in the first stage of the 

study, and and matrix S are obtained from this initial model. Acceleration 

measurement from the intact state of the structure is obtained and the corresponding WPT 

coefficient is computed. The initial model is then updated in Equation (4.38) 

and the corresponding and its sensitivity are again computed from the 

updated model for the next iteration. The final updated analytical model is obtained when 

both of the following two criteria are met, 

0)(
••

lxWPT

dlxWPT )(
••

0)(
••

lxWPT S
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where  refers to the m th iteration, and toler1 and toler2 are the two specified criteria 

of convergence. 

m

 Then the updated analytical model is used to represent the first (original) state of 

the structure and the damaged state of the real structure is regarded as the second state in 

the identification. Measurement from the damaged state is obtained, and the same 

iteration computations as in the first stage are carried out. The final set of identified 

parameter increments correspond to the changes occurred in between the intact and 

damaged states of the structure. Regularization techniques are applied to the solution of 

the inverse problem.  

 

4.4.4 Simulation 

 A five-bay three-dimensional frame structure as shown in Figure 4.17 serves for 

the numerical study. The finite element model consists of thirty-seven three-dimensional 

Euler beam elements and seventeen nodes. The length of all the horizontal, vertical and 

diagonal tube members between the centers of two adjacent nodes is exactly 0.5m. The 

structure orientates horizontally and is fixed into a rigid support at three nodes at one end. 

Table 4.8 gives a summary of the main material and geometrical properties of the 

members of the frame structure. Each node has six DOFs, and altogether there are 102 

DOFs for the whole structure. The elastic modulus of material of all the elements is taken 

as unknown in the identification.  
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 The translational and rotational restraints at the supports are represented by large 

stiffnesses of  kN/m and   kN-m/rad respectively in six directions. 

Rayleigh damping is adopted for the system with ξ1=0.01 and ξ2=0.005. The first 12 

natural frequencies of the structure are 9.21, 28.26, 33.71, 49.01, 49.72, 71.02, 89.80, 

153.93, 194.33, 209.80, 256.51 and 274.82  from the eigenvalue analysis of the 

structure. The sampling frequency is 200 . 

11105.1 × 10105.1 ×

Hz

Hz

 The structure is subject to the El-Centro ground motion in three directions 

decimated 100 times as plotted in Figure 4.18 to simulate a micro-tremor. The response 

of the structure is computed at all the DOFs from Equation (4.33) and is subsequently 

resampled in the ratio of 1 in 4 corresponding to a sampling rate of 50 Hz to form a 

subset of the response. The vertical acceleration response at node 5 of the structure is 

recorded for a duration of ten seconds after the excitation begins. The response is 

decomposed into four levels of Daubechies Db4 wavelet packets, which are 16 signal 

components represented by their WPT coefficients, and each has the same frequency 

bandwidth of 1.5625Hz.   

 

The Sensitivities 

 The sensitivities of the calculated response with respect to the elastic modulus of 

material are also computed from Equation (4.34) and resampled again in the ratio of 1 in 

4, and the corresponding WPT coefficients with respect to the elastic modulus of material 

of the 4th and 20th elements of the structure are shown in Figure 4.19. The WPT 

coefficient sensitivities are arranged in a vector in their order of frequency band. The 

number of WPT coefficient is seen to be more than the number of original data because 
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in the extraction of the wavelets, zero padding is performed at the end of the data series in 

case the number of original data cannot be equally divided. It can be seen from Figure 

4.19 that some of the WPT coefficients are more sensitive than the response (Lu and Law, 

2007). Hence, the WPT coefficients from the 6th to 16th sets of wavelets are used to detect 

damage in the following simulation study for a better performance (Law and Li, 2006). 

These coefficients have been checked to correspond to a higher frequency range and are 

more sensitive to a stiffness change. 

 

Local damage identification from WPT coefficient sensitivity and response 

sensitivity 

Five damage scenarios as listed in Table 4.9 are studied encompassing the cases 

with single and multiple damages, with and without noise and initial model error. Ten 

seconds of the response are used except in Scenario 5 where the first 50 seconds of 

response is used with the low sampling frequency of 10 Hz. The tolerance limits for both 

convergence criteria have been set equal to  except for Scenario 1 where 

 is adopted. The “measured” acceleration responses are obtained through 

computation using the Newmark method with a time step of 0.005s between two 

consecutive time instances.  

8100.1 −×

6100.1 −×

The identified results from WPT coefficients for Scenario 1 without noise and 

model errors are shown in Figure 4.20 and they are very close to the true values. The 

results obtained from the response sensitivity are also close to the true values at the 

damage locations, but there are a number of false alarms in other elements, such as 

element 28. The response sensitivities are obtained from Equation (4.34) using Newmark 
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method. It is noted that the convergence criteria is  for this Scenario. If the 

iteration for the identification is allowed to continue with a convergence criteria of 

, the false alarms will disappear and the results obtained would be very similar 

to those from the WPT coefficients. This indicates that the response sensitivity can also 

be used to identify damage accurately but converge more slowly than the WPT 

coefficients sensitivity. This can be explained by the fact that the selected WPT 

coefficients obtained from the higher frequency response components are more sensitive 

to damage than response sensitivity (Law and Li, 2006). This also demonstrates that by a 

proper selection of the WPT coefficients, the non-sensitive components can be removed 

resulting in a higher accuracy and faster convergence of the results. 

6100.1 −×

8100.1 −×

 

Effect of model error and noise 

 Many existing techniques on condition assessment cannot handle the problem 

when the original model carries initial model errors which may be errors with the 

boundary conditions, element connectivity and element stiffness. In this study, only an 

error in the elastic modulus of material of an element is considered. An error in the 

element connectivity will be considered in the experimental study. Scenario 2 has 1% 

over-estimation in the elastic modulus of material of each member of the structure. The 

same excitation force, sampling rate of signal, convergence criteria, measured location 

and WPT coefficients as for Scenario 1 are used. The identified results shown in Figure 

4.20 show that the method can tolerate some model error with good accuracy.  

 White noise is added to the calculated accelerations to simulate the polluted 

measurements as in Equation (3.42). The same excitation, response, sampling rate and 
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WPT coefficients as for the last study are used. Damage Scenario 3 has 5% noise in the 

“measured” acceleration. The location and extent of damage can be identified with some 

accuracy as shown in Figure 4.20, but there are also alarms in several adjacent elements. 

The random noise is noted to give error in the identified damage of the damaged element, 

though good indication on the damage location is still achieved. This shows that the 

identified results are easily corrupted by measurement noise, and noise reduction prior to 

identification is needed. 

 Scenario 4 is studied with damage in two adjacent elements to test the resolution 

capability of the proposed approach with close proximity of two damages. Results in 

Figure 4.20 indicate that WPT coefficients can identify the damage elements quite 

accurately but with some error in the damage magnitude. It is believed that more spatial 

information of the structure can be captured from using responses from more locations of 

the structure to mitigate the noise effect. 

 

Performance from a subset of the measured response 

 In practice, most of the on-line health monitoring systems is operating with a high 

sampling frequency sufficient to cover a wide range of the structural response. Scenario 5 

is on the use of a subset of the original response resampled in the ratio of 1 in 20. All the 

sixteen sets of WPT coefficients are used in the identification. The identified results in 

Figure 4.20 show that this subset of the “measured” response yields very accurate results.  

 It should be noted that for all the Scenarios in Table 4.9, the response obtained 

from Equation (4.33) contains components from all the structural vibration modes with 

frequencies below 100 Hz, and the resampling of the response only results in a subset of 
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the response measurement. The time series approach does not mainly depend on the 

frequency information of the measured response as the frequency domain method, and it 

also makes use of the vibration amplitude in the solution process as from the following 

discussions.  

 The amplitude of the structural response, when expressed in the form of Duhamel 

integral of ∑ −⋅∫
=

−n

1i
id

id

ii
dtFe τττω

ω

τωξ

)()sin( , includes the structural information in the two 

terms of )sin( τωid

)

 and . The Nyquist frequency has to be satisfied if the 

structural vibration information (both the amplitude and frequency) is sought from the 

termsin(

id
iie ωτωξ /−

τωid . However the term is an exponential function and is independent of 

the sampling frequency. The time series method is therefore less dependent on the 

Nyquist frequency and the damage detection can be performed successfully with a low 

sampling rate. 

τωξ nn−e

 Another comparison is made in Scenario 6 with two set of responses. The first set 

is computed from Equation (4.33) with a sampling rate of 200 Hz, and the other set is 

obtained from resampling the first set of response in the ratio of 1 in 2. The first eight sets 

of WPT coefficients from the first set and all the sixteen sets of WPT coefficients from 

the second  set of response are used for the identification covering the same bandwidth of  

0 ~ 50.0 Hz. Accurate identified results shown in Figure 4.20 provide further evidences 

to the above discussions. 

 Though the simulation studies shown above are discussed with reference to 

ground micro-tremor excitation, yet the proposed approach can be used for the case with 
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ground-borne blast excitation or traffic excitations which can be easily achieved in 

practice.  

 

4.4.5 Experimental Verification 

 A nine-bay three-dimensional frame structure shown in Figure 4.21(a) serves for 

the experimental study. It is fabricated in the laboratory using Meroform M12 

construction system. It consists of sixty-nine 22mm diameter alloy steel tubes jointed 

together by twenty-nine standard Meroform ball nodes. Each tube is fitted with a screwed 

end connector which, when tightened into the node, also clamps the tube by means of an 

internal compression fitting. All the connection bolts are tightened with the same 

torsional moment to avoid asymmetry or nonlinear effects caused by man-made assembly 

errors. The whole experimental setup is shown in Figure 4.21(a) and the support is 

plotted in Figure 4.21(b). The finite element model of the structure is shown in Figure 

4.22. The structure has the same material and geometric properties as shown in Table 4.8.  

 

Modeling of the structure  

 The Meroform ball joints have been installed as semi-rigid joints, and a finite 

element model of a hybrid beam with semi-rigid end connections has been proposed 

(Law et al, 2001). This section adopts this hybrid beam model for the model 

improvement of the structure. The initial model assumes a large fixity factor p for the 

rotational stiffness of the joints which is taken equal to 0.999 with 1.0 equal to that for a 

rigid joint.  
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Dynamic Test for damage detection  

 The structure is excited with impact from a Dystran Instruments 12 lbs 

instrumented impulse hammer model 5803A hitting approximately at the centroid of the 

support in the y-direction. The support is very rigid and heavy compared with the frame 

and it is hold down to the strong floor with four steel bolts. The acceleration responses of 

the support along the three principal directions are measured. Only the response in the y-

direction is significant and those in the other two directions are very small to be neglected. 

Nine accelerometers are placed at nodes 2 to 10 in the y-direction for recording the 

acceleration response time histories. The sampling frequency is 2000 Hz.The acceleration 

time history at the support in the y-direction is shown in Figure 4.23(a).  

 

Damage scenarios 

 After performing the dynamic test on the intact frame structure, local faults are 

introduced by replacing three intact members with damaged ones. The artificial damage 

is of two types. Type I is a perforated slot cut in the central length of the member. The 

length of slot is 13.7 cm, and the remaining depth of the tube in the cut-cross-section is 

14.375 mm. Type II is the removal of a layer of material from the surface of the member. 

The external diameter of the tube is reduced from 22.02mm to 21.47mm, and the length 

of the weakened section is 202 mm, located in the middle of the beam leaving 99mm and 

75mm length of original tube cross-section on both sides. Figure 4.21(c) gives a close up 

view of the damaged frame members. Type I damage is located in element 10 and Type 

II damage is located in elements 27 and 68. The equivalent damages computed by Guyon 
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method are 5% and 9.5% reduction in the modulus of elasticity of element 10 and 

elements 27 and 68 respectively.  

 

Model improvement for damage detection 

 The two-stage approach is adopted for the damage detection. The first stage 

updates the rotational stiffness at the joints and obtains an improved analytical model for 

the intact structure. Two y-direction acceleration responses obtained from nodes 6 and 7 

are used in Equation (4.38) for the identification. There are 69×6=414 unknowns in the 

identification. The first 500 data points of each acceleration response are used and the 

responses are decomposed into four levels of Daubechies Db4 wavelet packets, which are 

16 signal components represented by their WPT coefficients, and each has the same 

frequency bandwidth of 62.5Hz.  All the sixteen sets of WPT coefficients are used in the 

experimental identification procedure with 16 2 37 1184× × = identification equations. The 

measured modal damping ratios from the intact structure have been used in Equations 

(4.33) and (4.34) for the computation of the analytical responses. The first 12 measured 

natural frequencies of the intact structure are 5.202, 11.197, 15.183, 19.222, 27.716, 

39.841, 52.197, 61.052, 65.784, 78.523, 85.550, 90.484Hz. The updated rotational 

stiffness do not differ too much from the original value with the largest change in 

member 20 at node 22 with the updated p=0.86 for the x-axis rotational stiffness. After 

this updating, this model is considered accurate for the next stage of damage assessment. 

 The second stage updates the local faults in all the members of the structure in 

terms of their modulus of elasticity. Again the y-direction responses from nodes 6 and 7 

are used in Equation (4.38) for the identification. There are 69 unknowns in the 
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identification. The first 500 data points of each response are used and all WPT 

coefficients are used in Equation (4.38). The identified damage extent for all the elements 

are shown in Figure 4.24. The identified reduction in the modulus of elasticity in the 

damaged members are 5.18%, 9.65% and 9.08% for elements 10, 27 and 68 respectively 

which are quite close to the values of 5%, 9.5% and 9.5% respectively. There are 

indications of local damage in element 5 with a reduction of 1.6% and in element 69 with 

a reduction of 1.89% even though they are in real case undamaged. The measured 

responses from nodes 6 and 7 and the computed responses from the final updated 

analytical model are shown in Figure 4.23(b) and (c) and they are very close to each other. 

 

4.4.6 Conclusions 

 In this section, acceleration responses at only the support and at limited number of 

locations of the structure are required for damage detection. The performance from the 

response sensitivity approach and the WPT coefficient sensitivity approach under support 

excitation is compared. The latter is concluded to converge faster with a proper selection 

of the wavelet packets for a three-dimensional steel frame structure. The use of subsets of 

the measured response at different resampling rates is discussed and a subset would yield 

similar identified results as from the full set of measured response since similar structural 

information is included in the subset of data. Simulation results show that the location 

and the extent of damage of the structure can be identified accurately under the support 

excitation without any special artificial excitation. The multiple damage scenario with an 

experimental nine-bay three dimensional frame structure also confirms the effectiveness 

of the proposed method. 
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4.5 Summaries 

 In this chapter, acceleration responses are adopted to detect damage via sensitivity 

analysis and model updating techniques. Wavelet packet component energy and wavelet 

coefficients are computed from acceleration responses and applied in the identification 

equation. The former concentrates the energy of the acceleration responses to different 

component energy according to different frequency bandwidth with good tolerance to 

noise but requires more measurement locations especially in the structures with large 

number of DOF than the latter. The wavelet coefficient methods are studied in the 

structures under general excitation and support excitation which can be measured by 

accelerometers and increase the accuracy of the measurement of excitation force. Both of 

them can tolerate certain extent of model error and noise. Numerical studies and 

experimental verifications are performed for every method and satisfactory results 

obtained.   

 

 



 
 

Table 4.1 - Natural frequencies of the response from the two states of structure 

Natural Frequency (Hz)  

Experiment 
FEM 

Intact Damaged

Wavelet 
packet 
number

Frequency 
Bandwidth 

(Hz) 
30.94 31.01 30.52 1st 0~62.5 
100.78 104.25 103.03 2nd 62.5~ 125 
184.14 185.06 184.57 3rd 125~187.5 

- - - 4th 187.5~250 
305.29 - - 5th 250~312.5 

- - - 6th 312.5~375 
- 404.30 400.39 7th 375~437.5 

468.48 - - 8th  437.5~500 
- - - 9th  500~562.5 
- - - 10th  562.5~625 
- - - 11th  625~687.5 

706.31 - - 12th  687.5~750 
- 767.09 766.11 13th  750~812.5 
- - - 14th  812.5~875 
- - - 15th  875~937.5 
- - - 16th  937.5~1000 
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Table 4.2 - Damage Scenarios 
Damage 
Scenario 

Damage 
extent 

Damage 
locations 

Response 
type Excitation type 

1 10% 11th 

element acceleration

2 10% 11th 
element strain 

3 10% 11th 
element 

acceleration 
and strain 

4 5%,10% 6th ,7th 
element acceleration

5 5%,10% 6th ,7th 
element strain 

6 5%,10% 6th ,7th 
element 

acceleration 
and strain 

7 5%,10%,15% 3rd, 4th ,8th  
element acceleration

8 5%,10%,15% 3rd, 4th ,8th  
element strain 

9 5%,10%,15% 3rd, 4th ,8th  
element 

acceleration 
and strain 

Impulsive 
excitation at node 5 

10 5%,10% 6th ,7th 
element acceleration

11 5%,10% 6th ,7th 
element strain 

12 5%,10% 6th ,7th 
element 

acceleration 
and strain 

Sinusoidal 
excitation at node 5 

13 10% 2nd element

14 5%, 10% 6th ,7th 
element 

Impulsive 
excitation at node 4 

15(a) 5%, 10%  6th ,7th 
element 

acceleration 
with 5% 

noise 

15(b) 5%, 10% 6th ,7th 
element No noise 

Impulsive 
excitation at node 4 

with -3% model 
error in all elements 
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Table 4.3 - The experimental natural frequencies (Hz) and damping ratio of the steel 

beam 
intact damaged 

Frequency 
(Hz) 

Damping 
ratio 

Frequency 
(Hz) 

Damping 
ratio 

5.867 0.667 5.900 0.516 
23.647 0.458 23.565 0.187 
53.582 0.228 53.422 0.251 
94.453 0.380 94.010 0.359 
146.960 0.226 146.439 0.223 
213.058 0.283 212.298 0.299 
288.975 0.270 288.003 0.220 
374.510 0.253 373.979 0.207 
476.309 0.121 476.520 0.116 
587.257 0.091 587.259 0.077 

 
 
 
 
 

Table 4.4- The frequency content of the wavelet coefficients (Hz) 

Wavelet  
 response 

A4 A3 A2 A1 D4 D3 D2 D1 

Bandwidth 0~1000 0~62.5 0~125 0~250 0~500 62.5~
125 

125~ 
250 

250~ 
500 

500~ 
1000 

Modes 0f ~  12f 0f ~  2f 0f ~ 3f 0f ~ 6f 0f ~ 8f 3f  4f ~  6f 7f ,  8f 9f ~ 12f

Note: denotes the excitation frequency,  denotes the first 12 natural frequencies of the 
frame structure. 

0f 12~1 ff
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Table 4.5 - Comparison of response sensitivity to wavelet sensitivity 

Perturbation in the following finite element 
 

1 2 3 4 5 6 7 8 9 10 11 

S r
 

response 18.28 16.62 17.28 15.64 9.39 13.27 9.39 15.65 17.28 16.62 18.27

A1 17.92 16.31 17.01 15.35 9.18 13.24 9.18 15.35 17.01 16.31 17.92

A2 13.16 12.94 13.51 11.25 7.24 12.5 7.24 11.25 13.5 12.94 13.15

A3 8.38 5.23 7.33 4.67 3.56 5.93 3.56 4.67 7.33 5.23 8.36

A4 7.08 3.29 5.92 2.76 2.70 3.53 2.70 2.76 5.92 3.29 7.06

D1 52.02 46.9 45.1 44.7 28.5 18.6 28.5 44.7 45.1 46.9 52.0

D2 49.14 40.7 42.48 42.18 23.24 21.27 23.24 42.18 42.48 40.70 49.14

D3 26.49 29.74 29.06 25.69 16.0 27.76 16.0 25.68 29.06 29.74 26.49

S w
c 

D4 14.28 11.75 13.22 11.04 6.91 13.84 6.91 11.04 13.22 11.75 14.26
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Table 4.6 - Error of Identification in percentage 

Note: •/• denotes the error of identification (%)/required iteration number. 

 Scenario  1 Scenario  2 Scenario 
3 Scenario  4 Scenario 

5 
Response -2.03/7 0.00/20 0.00,0.00/20 -0.54/11 0.00,0.00,0.00/24 

D1 0.00/17 -0.35/12 -0.44,-0.68/12 -0.31/9 0.04,-0.09,-0.52/12

D2 -0.41/9 -1.00/14 0.01,-2.88/14 -1.79/11 -0.09,0.08,0.10/13 

D3 -0.57/9 0.02/16 -0.61,-0.24/16 -0.36/16 -0.25,-0.03,0.16/11

D4 -0.01/20 0.00/28 -0.03,-0.01/28 -21.51/8 fail 

A1 -1.82/8 -0.31/13 -1.20,-0.09/13 -0.60/12 -0.85,-0.05,0.12/16

A2 -0.57/7 0.00/10 -1.29,0.08/10 -3.53/10 -0.49,-0.11,0.18/14

A3 -1.07/8 -0.11/11 -0.53,0.44/11 -3.33/12 1.08,0.19,0.11/66 

A4 -0.47/9 -0.10/14 -2.60,1.24/14 -1.84/18 fail 

A4＋D1＋
D2＋D3＋

D4 
-2.12/7 -0.22/20 0.00,0.00/20 -0.66/11 -0.65,0.00,0.03/16 

 
      
 
 

  Table 4.7 - The natural frequencies (Hz) and experimental damping ratio  
 of the reinforced concrete beam 

 
computed Measured 

intact damaged intact state damaged state 
Frequency 

(Hz) 
Frequency 

(Hz) 
Frequency 

(Hz) 
Damping 
ratio (%) 

Frequency 
(Hz) 

Damping 
ratio (%) 

32.73 32.69 32.75 3.1 32.30 3.1 
130.37 129.97 133.82 4.0 134.34 5.5 
290.73 289.10 281.87 6.3 278.83 7.5 
504.97 501.34 565.88 1.1 555.57 1.8 
768.32 763.73 792.75 1.0 790.67 1.2 
976.35 974.91 983.63 0.9 981.03 1.1 
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Table 4.8 - Material and geometrical properties  

Properties Member 

Young modulus [N/m2] 2.10E11 

Area [m2] 6.597E-5 

Density [kg/m3] 1.2126E4 

Mass [kg] 0.32 

Poisson ratio 0.3 

Moment of area Iy [m4] 3.645E-9 

Moment of area Iz [m4] 3.645E-9 

Torsional rigidity J [m4] 7.290E-9 

 
 
 
 

Table 4.9 - Damage scenario 

Scenario Damage Noise Model error Sampling rate (Hz)

1 
5% in element 16 
10% in element 26 
10% in element 27 

- - 50 

2 
5% in element 16 
10% in element 26 
10% in element 27 

- 
1% increase in the 

elastic modulus of all 
elements 

50 

3 10% in element 7 5% - 50 

4 5% in element 26 
5% in element 27 5% 

1% increase in the 
elastic modulus of all 

elements 
50 

5 
5% in element 16 
10% in element 26 
10% in element 27 

- - 10 

6 
5% in element 16 
10% in element 26 
10% in element 27 

- - 100, 200 
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Figure 4.2 - The Wavelet Packet Transform Component Energy 
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Figure 4.1 - Simply supported concrete beam  
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Figure 4.3 - Variation of Wavelet Packet Transform Component Energy under impulsive 

excitation 
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Figure 4.4 - Variation of Wavelet Packet Transform Component Energy under sinusoidal 

excitation 
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Figure 4.5 - Identified results for Scenarios 1 to 12 
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Figure 4.6 - Identified results for Scenarios 13 to 15 
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Figure 4.8 - The measured and computed strain responses and the identified result 
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Figure 4.10 - Identified results for Scenarios 3 to 5 

 
 
 

12
00

 

10
m

m
 

20mm 

y  

x  
y  

z  

Figure 4.9 - The one-story plane frame structure 

Force 

 148



 

1 5 11
0

5

10
Scenario 6, response

1 5 11
0

5

10
Scenario 6,D1

1 5 11
0

5

10
Scenario 6, A4

1 5 11
0

5

10
Scenario 6, all

1 5 11
0

5

10

15
Scenario 7, response

1 5 11
0

5

10

15
Scenario 7, D1

1 5 11
0

5

10

15
Scenario 7, A4

1 5 11
0

5

10

15
Scenario 7, all

1 5 11

0

5

10
Scenario 8, response

1 5 11
0

2

4

6

8

10

12
Scenario 8, D1

1 5 11

−5

0

5

10

14
Scenario 8, A4

1 5 11

−5

0

5

10
12

                        Element no.                         

E
I r

ed
uc

tio
n 

(%
)

Scenario 8, all

E
I r

ed
uc

tio
n 

(%
)

E
I r

ed
uc

tio
n 

(%
)

 
Figure 4.11 - Identified results for Scenarios 6 to 8 
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Figure 4.12 - Identified results for Scenarios 9 to 12 

 150



1 2 3 4 5 6 7 8 9 1011

0

2
4

6
8

10
Scenario 13, response

1 2 3 4 5 6 7 8 9 1011

0
2
4
6
8

10

Element no.

Scenario 13, A1

1 2 3 4 5 6 7 8 9 1011

0
2
4
6
8

10
Scenario 13, D1

1 2 3 4 5 6 7 8 9 1011
−5

0
2
4
6
8

10

E
I r

ed
uc

tio
n 

(%
)

Scenario 14, response

1 2 3 4 5 6 7 8 9 1011

−5

0
2
4
6
8

10
Scenario 14, A1

1 2 3 4 5 6 7 8 9 1011

−5

0
2
4
6
8

10
Scenario 14, D1

1 2 3 4 5 6 7 8 9 1011

0
2
4
6
8

10
Scenario 15, D1 3%noise

1 2 3 4 5 6 7 8 9 1011

0

2

4

6

8

10
Scenario 15, D1 2%noise

1 2 3 4 5 6 7 8 9 1011

0
2
4
6
8

10
12

Scenario 15, D1 1%noise

E
I r

ed
uc

tio
n 

(%
)

E
I r

ed
uc

tio
n 

(%
)

 
Figure 4.13 - Identified results for Scenarios 13 to 15 
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Figure 4.15 - Experimental Identified results 
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Figure 4.16 - Acceleration responses from the second accelerometer 

 
 
 
 
 

N  
 
 
 
 
 
 
 
 
 
 Figure 4.17 - A five-bay three-dimensional frame structure 
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Figure 4.18 - The excitation at the support of the structure 
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Figure 4.19 - Sensitivities of the response and the WPT coefficients with respect to the 
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Figure 4.20 - Identified results for Scenarios 1 to 6 
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Figure 4.21 - The experimental set up and the damaged elements of the nine-bay frame 

structure 
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Figure 4.23 - Support acceleration and comparison of the measured and the computed 

accelerations 

Figure 4.22 – A nine-bay three-dimensional frame structure 
     (    - a damaged element) 
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Figure 4.24- Identified results from experiment 
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CHAPTER 5  STRUCTURAL DAMAGE DETECTION VIA 

WAVELET-BASED IMPULSE RESPONSE FUNCTION  

  

 Though acceleration responses can be applied for damage detection directly, 

damage detection still relied on the input excitation which will be measured and used in 

the analytical model. In order to reduce the dependence of the excitation force, wavelet-

based impulse response function is used to identify damage in this chapter. 

 

5.1 Introduction 

 To reduce the dependence of the excitation force, impulse response functions 

(IRFs) are considered instead of the acceleration responses in the damage detection 

process. Impulse response functions are intrinsic functions of the system given the 

excitation location, and they can be extracted from the measured response. Ziaei-Rad 

(1997) developed a FRF-based model updating by expanding the inverse matrix of FRF 

as a Taylor series function with respect to structural parameters. Numerical examples and 

experimental examples are applied to update the analytical model so that the FRFs match 

those obtained in testing. Ziaei-Rad and Imregun (1996) further discussed the 

experimental error bounds for convergence of this updating algorithm. Fritzen et al (1998) 

examines the problem of detecting the location and extent of structural damage using 

frequency response functions in the time domain based upon a mathematical model 

representing the undamaged vibrating structure and a local description of the damage, e.g. 

a finite element for a cracked beam. 
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 Existing impulse response extraction techniques include Laplace transform-based 

extraction, conventional time-domain extraction and FFT-based extraction and so on 

(Robertson et al., 1998a; 1998b). FFT-based extraction is most commonly used to obtain 

the impulse response function. However, it has long been recognized that FFT-based 

vibration signal analysis exhibits several weakness. In contrast to the FFT-based 

extraction procedure which must process the data both in the time and frequency domains, 

the discrete wavelet transform (DWT)-based extraction procedure (Robertson et al., 

1998a) handles the experimental data only in the time domain. This involves the forward 

and inverse DWT plus an inversion operation, and is indeed preferable. Impulse response 

function can be obtained from the measured response via the discrete wavelet transform 

to avoid errors with the Fourier Transformation of the vibration signal.  

 Amongst the many methods developed, sensitivity approach is commonly 

accepted and applied extensively in the engineering industry because of its clear 

mathematical background and quantitative indications. The inverse problem based on 

sensitivity approach is often associated with the solution of a set of linear equation, 

. But ill-conditioning problems often exist especially in the case with noise 

and model errors in practice.  Many regularization methods have been proposed for 

obtaining the stationary solution of the above linear equation. In the regularization theory, 

it is recognized that the conventional output error can be made unrealistically small if the 

underlying process to be identified, which is the damage, is allowed to behave “badly”, to 

have arbitrary large values and arbitrary large variation, or there may be infinite sets of 

solutions (ill-posed). By imposing certain constraints in the form of added penalty terms 

with adjustable weighting parameters, a stable solution scheme can be achieved. The 

0− =Ax b
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weighting parameters are adjusted based on posterior knowledge such as minimal norm 

of the damage vector. 

 One of the well-known methods is Tikhonov regularization (Tikhonov, 1963; 

Busby and Trujillo, 1997; Trujillo and Busby, 1989; Hansen, 1994). It includes a 

regularization parameter λ  which controls the degree of smoothing or regularization 

applied to the problem. The regularized solution varies with the regularization 

parameter

λx

λ . The L-curve method is usually used for determining the optimal 

regularization parameterλ . When the problem includes no noise or very little noise in the 

measurement, Tikhonov regularization method gives the optimal solution with a small 

norm. But when the damage signal to noise ratio is small, e.g. with the inclusion of noise 

and model error (Law et al. 2006), the solution obtained from a poor regularization 

parameter is bad.  

 In this chapter, wavelet coefficients of unit impulse response function of the 

structures under general excitation and support excitation are obtained from the measured 

acceleration responses via wavelet transform and are applied to identify damage via 

sensitivity analysis and model updating techniques. For solving the identification 

equation, regularization techniques and L-curve method are adopted with some 

improvements. 

 

5.2 Wavelet-based Sensitivity of Impulse Response Function for 

Damage Detection 

 In this section, the sensitivity of the discrete wavelet transform coefficient of the 

impulse response function was used for damage detection. Firstly, the analytical 
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formulation on the sensitivity of the DWT coefficient of the impulse response function 

with respect to a system parameter is deduced from an analytical model based on 

vibration theory and Newmark method. Then the method obtaining the IRFs from 

measured responses in damaged and intact states for damage detection is presented using 

DWT. Finally the damage detection equation is given and the damped least squares 

method for solving the equation is introduced, and a numerical example with a 31-bar 

truss structure is used to verify the proposed method.  

 

5.2.1 Wavelet-based Unit Impulse Response 

 The equation of motion of a N degrees-of-freedom (DOFs) damped structural 

system under the unit impulse excitation is 

  ( )δ
•• •

+ + =M x Cx Kx D t  (5.1) 

where M ,C , K  are the  mass, damping and stiffness matrices respectively. N is 

the number of degrees-of-freedom of the system. D  is the mapping matrix relating the 

force excitation location to the corresponding DOFs of the system. x , ,  are the 

displacement, velocity, acceleration vectors respectively. 

NN ×

•

x
••

x

1×N )(tδ  is the Dirac delta 

function. Assuming the system is in static equilibrium before the unit impulse excitation 

occurs, based on the vibration theory, then the forced vibration with the unit impulse 

excitation can be converted to the free vibration with the initial condition as follows, 

  0)0( =x ,  (5.2) 1(0)
•

−= M Dx

Rewrite Equations (5.1) and (5.2), the unit impulse response function can be computed 

from the following, 
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   (5.3) 
1

0

(0) 0, (0)

•• •

•
−

⎧ + + =⎪
⎨
⎪ = =⎩

M C K

M D

h h h

h h

where , ,  are the unit impulse displacement, velocity and acceleration vectors 

respectively. Using the Newmark method, the unit impulse response can easily be 

computed. 

h
•

h
••

h

 Differentiate Equation (5.3) with respect to iα , we get 

  
1(0) (0)0,

α α α α α

α α α

•• •
•

•
−

⎧ ∂ ∂ ∂ ∂ ∂⎪ + + = − −
⎪ ∂ ∂ ∂ ∂ ∂⎪
⎨
⎪ ∂ ∂ ∂

= =⎪
∂ ∂ ∂⎪⎩

h h h K CM C K h

h h M D

i i i i

i i i

h
i  (5.4) 

The sensitivities 
α
∂
∂

h

i

,
α

•

∂
∂

h

i

 and 
α

••

∂
∂

h

i

can then be obtained from Equation (5.4) with 

Newmark method.  

 It has been proved by Law and Li (2006) that wavelet coefficient sensitivity has 

advantage over the corresponding response sensitivity for the systems with noise and 

model error. Here the wavelet coefficient is used for damage detection. In this section, we 

employ Daubechies wavelets as they satisfy the two crucial requirements: the 

orthogonality of local basis functions and second-order accuracy or higher, depending on 

the dilation expression adopted.  

 A function  can therefore be approximated in terms of its DWT as )(tf

   (5.5) )2()2()()()(
2210 ktftftftftf jDWT

k
DWTDWTDWT

j −++++=
+
ψψψϕ "
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where )(tϕ and )(tψ are the scaling function and the mother wavelet function respectively. 

is the wavelet transform coefficients. Because of the orthogonality of both the 

translation and scale of the Daubechies wavelets described by Equation (3.12), we have,  

DWT
kjf

+2

  ; ∫= dtttff DWT )()(0 ϕ ∫=+
dtttff kj

DWT
kj )()( ,2

ψ  (5.6) 

Substitute Equation (5.6) to the vector of sensitivity
i

h
α∂
∂

••

,  

  ∫ ∂
∂

=
∂
∂

••

+

••

dtthh
kj

i

DWT
k

i
j )()( ,2 ψ

αα
 (5.7) 

The wavelet coefficient of the impulse response function sensitivity has been shown 

(Law and Li, 2006) equal to the first derivative of the wavelet coefficients of the impulse 

response function with respect to the system parameter iα , i.e.  

  
i

DWT

i

hhDWT
αα ∂

∂
=

∂
∂

••••

)(  (5.8) 

where )(
i

hDWT
α∂
∂

••

 is the discrete wavelet coefficient of 
i

h
α∂
∂

••

. We can form the 

sensitivity matrix from Equation (5.8) as 

  
1 2α α α

•• •• ••⎡ ⎤
∂ ∂ ∂⎢= ⎢ ∂ ∂ ∂
⎢ ⎥⎣ ⎦

S "

DWT DWT DWT

l l l

m

h h h ⎥
⎥  (5.9) 

where is the DWT coefficient of , and  denotes the acceleration impulse 

response function at location l , and is the number of structural parameters. 

DWT

lh
•• ••

lh
••

lh

m

 

5.2.2 Impulse Response Function via Discrete Wavelet Transform 
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 The unit impulse response (UIR) (or the Markov parameters) is the response 

function of the system under the input of a unit pulse (Robertson et al., 1998a; 1998b). It 

is an intrinsic function of the structural system.  Since the unit impulse is ideal and it 

cannot be directly applied onto the structure, unit impulse response function cannot be 

obtained directly from measurement. Traditionally, Fast Fourier Transform (FFT) is used 

to extract the Markov parameters from measured input and output (Juang, 1985). 

However the unit impulse response function is obtained via the Discrete Wavelet 

Transform (DWT) in this study to alleviate the Gibb’s phenomenon with the FFT-based 

methods. 

 The equation of motion of a N DOFs damped structural system under general 

excitation is 

    (5.10) ( )
•• •

+ + =M x Cx Kx DF t

where is the vector of excitation force. If the system has zero initial condition, the 

solution of Equation (5.10) can be expressed as, 

)(tF

  
0

( ) ( ) ( )τ τ τ= −∫x h
t

t t F d  (5.11) 

The acceleration response  from location  at time  is, )( nl tx
••

l nt

   (5.12) ∫ −⋅=
••••

nt

nlnl dtFhtx
0

)()()( τττ

Applying DWT to  and )(τ
••

lh )( τ−ntF respectively, we can get, 

   (5.13) )2()()()( 2,1,0, khhhh j
DWT

kl

DWT

l

DWT

ll
j −+++= +

••••••••

τψτψτϕτ "

  (5.14) )2()()()()()()(
210 ktFtFtFtF j

n
DWT

kn
DWT

n
DWT

n j −⋅++⋅+⋅=−
+

τψτψτϕτ "

Substituting Equations (5.13) and (5.14) into Equation (5.12), then 
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+

+
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Because of the orthogonal condition shown in Equation (3.12), we get 

   (5.16) 
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Substituting Equation (5.16) into (5.15), we have 
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Rewriting Equation (5.17) in the matrix form, 
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Equation (5.18) can be re-written for a time series as follows, 

   
•• ••

= ⋅x F h
DWT

DWT
ll  (5.19) 

where  ,    1 2( ) ( ) ( )
•• •• •• ••⎡= ⎢⎣ ⎦
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Finally, 
••

h
DWT

l can be computed in the form of a pseudo-inverse as 

  1( )
•• ••

−= ⋅ ⋅h F F F
T

DWT
DWT DWT DWT

l l⋅x
T

 (5.20) 
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5.2.3 Damage Identification Equation  

 0
••

h
DWT

l and 
••

h
DWT

ld  are vectors of the DWT coefficient of the impulse response 

respectively.  

function from the two states of the structure, i.e. the intact and damaged states 

0

α

••

∂h
∂

DWT

l is the sensitivity matrix of WT coefficient with respect to the 

local damage with reference to the intact state. 

 the D

αΔ  is the vector of parameter changes of 

the system. We have the identification equation as, 

  
0

0
α

••
•• •• ∂

− = ⋅
∂

= ⋅Δ

hh h α

S α

DWT
DWT DWT

l
ld l Δ  (5.21) 

When measurements from the intact state of the structure are obtained, 0
••

h
DWT

l is 

taken as the DWT coefficients computed from the analytical model. 
••

h
DWT

ld is computed 

with the measured responses and the input forces obtained in experiments from the intact 

experimentally obtained DWT coefficients of the IRF. The sensitivity matrix 

state. The left-hand-side of Equation (5.21) is the difference between the analytical and 

0

α

••

h∂
∂

DWT

l is 

computed from the analytical model of the structure at the initially assuming state. The 

analytical model is then updated and the corresponding wavelet coefficient and its 

sensitivity are again computed for the next iteration. Convergence is considered achieved 

when both the following two criteria are met, 
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1{ } { }l li ih h+ −
DWT DWT•• ••

1

1
{ }

DWT

l i

toler
h
••

+

≤ ,       1 2+ −
≤

α αi i toler   (5.22) 

where i  refers to the i th iteration.  

 When measurement from the damaged state is obtained, the updated analytical 

model is used in the iteration in the same way as that using the measurement from the 

intact state. The final set of identified parameter increments correspond to the changes 

occurred in between the two states of the structure. Like many 

1+αi

other inverse problems, 

e solution of Equation (5.21) is often ill-conditioned. In order to provide bounds to the 

ed least-squares method (DLS) (Tikhonov, 1963) is used and singular-

of

th

solution, the damp

value decomposition is used in the pseudo-inverse calculation.  

 

5.2.4 Simulation 

 The 31-bar truss, shown in Figure 5.1, was modeled using 31 finite elements 

without internal nodes in the bars giving 28 degrees of freedom. The cross-sectional area 

of the bar is 0.0025 2m . Damage in the structure was introduced as a reduction in the 

stiffness of individual bars, but the inertial properties were unchanged. The translational 

restraints at the supports are both represented by large stiffnesses 10 100.1 × kN/m. 

Rayleigh damping is adopted for the system with 01.01 =ξ and 01.02 =ξ . The first 12 

natural frequencies of the structure are 36.415, 75.839, 133.608, 222.904, 249.323, 

358.011, 372.509, 441.722, 477.834, 507.943, 538.1246 and 547.393 Hz . The sampling 

equency is 2000 Hz . The tolerance limits for both c  onvergence criteria have been setfr
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equal to 6100.1 −× . The excitation is applied in the downward direction at node 5 while 

the vertical acceleration measurement at node 4 is recorded as shown in Figure 5.1. 

 

Dependence on input excitation  

 The excitations adopted in this study are shown in Figure 5.2. The first excitation 

is a triangular impulsive force with 320.4N peak value and it lasts for 0.005 second. The 

second excitation is the sinusoidal excitation of )202sin(20 tF ⋅⋅= π  N. Figure 5.2(c) 

shows the impulse response at node 4, htt0, computed from Equation (5.3) as well as the 

impulse response functions, hw0 and hw2, computed from the proposed wavelet 

formulation in Equation (5.20) for the first and second excitation forces respectively. 

Figure 5.2(d) gives details of part of the impulse response functions in Figure 5.3(c) 

within the time interval of 0.1s to 0.125s. Both Figure 5.2(c) and (d) show that the three 

impulse response functions computed from the response and the wavelet approaches and 

with different exci

n obtained 

tations are overlapping. It may be concluded that the impulse response 

nctio using DWT extraction matches the solution from existing theoretical 

impulse response function obtained is independent of the input 

fu

analysis very well. The 

excitation, which in the present case, are the impulsive excitation and the sinusoidal 

excitation. 

 

Damage identification 

 The same truss structure as for last study is used for numerical verification of the 

proposed wavelet approach. The excitation and measurement locations are the same as in 

previous study. Two different excitations are used in the different states of the structure. 
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Excitation for the intact state is the impulsive force. The impulsive response function 

wavelet coefficient sensitivity matrix is computed from the analytical model using 

ages) are considered and each damage pattern is identified from the IRFs 

xtracted from measured acceleration response. Results in Figure 5.3 show that both the 

the severity can be identified accurately without any alarms in other 

lemen

Equations (5.4) and (5.9) without the need of the input excitation. Excitation for the 

damaged state is the sinusoidal force. The sampling rate is 2000 Hz and the first 0.25 

second of the response is used for the damage identification.  

 Four damage scenarios are studied with different damage extent listed as Scenario 

1 to 4 in Table 5.1. Local damage is modeled as a reduction in the flexural rigidity of an 

element. In fact, three patterns of damage (single damage, two adjacent damages and 

three dam

e

location and 

e ts. 

 

Noise effect 

 The same excitation force and sampling rate of signal as for last study is used. The 

vertical acceleration response from node 4 is extracted to obtain the unit impulse 

response. Damage Scenarios 5 and 6 as listed in Table 5.1 are studied with 1% and 5% 

random noise respectively. In order to reduce noise effect, some techniques are applied in 

the damage identification process. Since IRF is an intrinsic function of the structure that 

is independent of the input excitation, we repeatedly measure the acceleration response 

and excitation time histories and a set of IRFs using Equation (5.20) can be obtained. The 

final IRF obtained is from averaging the set of IRFs. When the damped least square 

method with Tikhonov regularization is used to solve the set of inverse equation, small 
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singular values contributed by noise and model error can cause perturbation in the 

solution. So during the solution process, small singular values which are smaller than a 

given threshold are truncated (Tikhonov, 1963). The identified results are shown in 

Figure 5.4. The random noise causes error in the identified value in the damaged element 

and with alarm in several other elements. The random noise is noted leading to random 

errors in the elements. Comparing the results in Figure 5.4 with those for scenarios 

without noise shown in Figure 5.3, it can be concluded that the proposed method is 

affected by noise to some extent. This can be explained that unit impulse response 

function is obtained from the measured acceleration responses and the measure input 

xcitation by wavelet transform. When noise exists in the measured acceleration or 

 noise effect in the unit impulse response function will be amplified via 

e

excitation, the

Equation (5.20). 

 

Model error 

 This effect of model error is investigated with different types of model errors 

introduced into the finite element model of the truss structure as listed under Scenarios 7 

to 10 in Table 5.1. The same excitation force and sampling rate of signal as for last study 

is used. Response from the same location as for last study is extracted for obtaining the 

impulse response functions. The identified results are shown in Figure 5.4. Acceptable 

sults are obtained in the damage element while there is alarm in other elements. The 

andom noise in the measured data is noted to amplify the erroneous effect 

re

presence of r

due to the model errors. 
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Discussions 

 From the above numerical example analysis, it can be concluded that the proposed 

method can perform damage detection successfully in structures. Especially in the 

scenarios without noise and model error, the results are perfect. But when the system 

includes noise or model error, the results obtained by this method is affected to some 

extent though acceptable results can still be obtained. When the proposed method 

applying to the real structures, it is natural that noise level and model error will influence 

its application largely. It is required that the analytical model must be updated to reduce 

the model error. In real application, noise can not be neglected. When the noise 

component is larger than the signal change due to damage, the method will fail in the 

detection. Though the method has advantages including time domain analysis, needing as 

few as one sensor measurement, not needing the same input excitation in two states, 

fforts should be paid to reducing the rely on analytical model and offering a more 

res more easily. 

ds to be measured but it is not used in the 

e

effective regularization method for separating damage and noise signal in order that the 

proposed method detects damage in real structu

 

5.3 Impulse Response Function from Structures under Support 

Excitation for Damage Identification 

 In the above section, impulse response functions are obtained from the measured 

acceleration responses. The excitation force nee

analytical model. In order to increase the robust application of the wavelet-based IRF 

method, support excitation is introduced in the structure and both the support acceleration 

responses and structural responses are needed.  
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 In this section, Unit Impulse Responses obtained from the structure under support 

excitation are used to identify local damages. The method on the extraction of UIRs from 

accelerations of the structure and the support is briefly introduced. The sensitivity matrix 

of UIRs of the structure is obtained based on the finite element model and the time-

stepping integral method. A two-step updating method is adopted for identifying the local 

amage based on the computed sensitivity matrix of UIRs from several accelerometers. 

ication procedure and measurement 

d

Statistical analysis is included in the damage identif

noise is taken as an independent random variable in the UIRs from measurement.  

 

5.3.1 Unit Impulse Response from Measurement  

 Support excitation is universal for all structures, and its effect is represented in 

terms of , ,s s sx x x� �� , which are the displacement, velocity and acceleration respectively at 

eedoms of the support of the structu

acceleration input at the support DOFs exist with zero initial conditions. The acceleration 

where is the acceleration response  from location  at time instance  is 

rom location ect only to unit im

ccele is the support acceleration.   

 Applying DWT to in Equation (5.5), we get, 

 24) 

the degrees-of re. This study assumes that -fr s

response function of the structure can be expressed as, 

  
••••••

nt   (5.23) 
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Substituting Equations (5.13) and (5.24) into Equation (5.23), we have 

 (5.25) 

Because of the orthogonal condition in Equation (5.16), we get,  

  (5.26) 

Rewriting Equation (5.26) in the matrix form, 

    (5.27) 
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Equation (5.27) can be re-written for a time series with n data,  

  
•• •• ••

= ⋅x x h
DWT DWT

s ll   (5.28) 
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••

hFinally, 
DWT

  1( )−

can be computed in the form of a pseudo-inverse as l

•• •• •• •• ••

= ⋅ ⋅ ⋅h x x x xl s s s l   (5.29) 
T TDWT DWT DWT DWT
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 The UIR, 
••

h , can be reconstructed from 
••

hl

DWT

using Equation (5.5). The authors l

found in this study that the wavelet-based unit impulse responses are accurate when the 

system is subject to continuous input signals which at least have the first-order derivative, 

such as the harmonic input signals. Non-smooth varying input signal, such as random 

unit impulse response. 

n ti ity from 

 

where  are the mass, damping and stiffness matrices respectively.  is 

the m support input to the corresponding DOFs of 

input signals, contains large discretization errors leading to a poor 

High sampling rate is therefore required to have a good accuracy when the system is 

subject to random input excitation.  

 

5.3.2 Se si v  Matrix Analytical Finite Element Model 

 The equation of motion of a N degrees-of-freedom (DOFs) damped structural 

system under support excitation is given as 

  ( )+ + = − ⋅ ⋅M x Cx Kx M L xs t   (5.30)
•• • ••

M ,

a

C , K

•

NN ×  

pping vector relating the DOFs with 

L

the system. x , x , x  are the 1×N displacement, velocity, acceleration vectors respectively. 

 When sx
••

is a unit impulse acceleration, Equation (5.30) can be written as, 

  

••

••

( )δ
•

+ + = − ⋅ ⋅M x Cx Kx M L t   (5.31) 

where )(tδ  is t . A ial condhe Dirac delta function ssuming the system has zero init itions 

e under the unit impulse support excitation can be represented by a free vibration state 

with the following initial conditions, 

before the occurrence of the unit impulse acceleration excitation, the forced vibration 

stat
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0)0( =x , 1( 0)
•

−= − ⋅ ⋅M M Lx     (5.32) 

Rewrite Equations (5.31) and (5.32), the unit impulse response function can be computed 

as 

  
1

0

(0) 0, (0)

•• •

−

⎧ + + =⎪

⎪
•⎨

= = − ⋅ ⋅⎩

M h Ch Kh

h h M M L
  (5.33) 

where ,
•

h , 
••

h  are the unit impulse displacement, velocity and acceleration vectors 

respectively. Using the 

h

time-stepping integral method such as Newmark method, the unit 

impulse response can easily be computed from the analytical finite element model.  

tiate Equation (5.33) with respect to  where iα Differen iα is the fractional stiffness 

of th element, we get 

  

i

1(0) (0)0,

α α α α α

α α α

+ + = − −
∂ ∂ ∂ ∂
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K h h

h h M M L

i i i i i

The sensitivities 

•• •

•
−

⎧ ∂ ∂ ∂ ∂ ∂⎪
⎪ ∂⎪
⎨
⎪ ∂ ∂ ∂ ⋅ ⋅

h h h C KM C

i i i

  (5.34) 

α
∂
∂

h ,
i α

•

∂
∂

h  and 
i α

••

∂
∂

h can then be obtained from Equations (5.33) and 

(5.34) with time-stepping integral method 

i

such as Newmark Method treating the right-

hand-side of Equation (5.33) as the equivalent force input. The significance of sampling 

putation of the time response and its sensitivities has been discussed in 

 and Hao, 2001). 

 The sensitivity matrix can be obtained for all the suspected elements of the 

structure as 

rate in the com

reference (Low

S  
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1 2α α α

•• •• ••⎡ ⎤∂ ∂ ∂⎢ ⎥=
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⎣ ⎦

S "l l l

m

h h h   (5.35) 

where denotes the unit impulse acceleration response of the th DOF of the system 

 the number of the structural param ters.  

can be computed using Equation (5.35), and the unit 

ration respon

 lh
••

l

eunder support excitation. m  is

 

5.3.3 Damage Identification 

 In order to identify damage from the measured vibration characteristics, a two-

step model updating method is used. Firstly, accelerations from the intact structure, 

including those obtained from the structure and at the support, are measured.  The unit 

impulse acceleration response ( )
••

h an be obtained from Equation (5.29).  Then based on 

the prior knowledge of the structure, we can establish an analytical finite element model 

from which the sensitivity matrix S

2 c

se 1( )

 

••

himpulse accele  can be obtained fr

, 

1

om Equation (5.33). From the 

following identification equation

2( ) ( )
•• •• ••

⋅Δ = Δ = −S α h h h  (5.36)   

αΔ cThe updating fractional stiffness an be obtained as, 

  1
2 1( ) (( ) ( ) )−Δ = ⋅ ⋅ −α S S S h hT T  (5.37) 

•• ••

where the superscripts T)(• and 1)( −• denotes the transpose and the inverse of the matrix. 

The intact structure is updated with Equation (5.37) to a more accurate analytical model. 

 Secondly, accelerations from the damaged structure are measured, including also 

measurements from the structure and at the support. The updated analytical model from 
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the first stage is used as the reference model. Corresponding sensitivity matrix and unit 

impulse acceleration response can be computed. The damaged structure can be updated in 

a similar way using Equation (5.37) to a more accurate analytical model. The differences 

etween the two updated analytical models for the intact structure and the damaged 

damages incurred in the structure. 

ro mean and have different types of 

t to erode the identification 

accuracy of the algorithm. In the present study, only the random error in the UIR 

obtained from measured accelerations is considered.  

b

structure is the set of local 

 

5.3.4 Statistical Analysis 

 The above algorithm is developed based on the assumption that both the finite 

element model and the measured accelerations are accurate. But in real applications, 

errors in the damage detection procedure generally include the discretization error, 

configuration error, mechanical parameter errors and measurement errors. The errors that 

occur in the measured vibration characteristics may be divided into two classes: biased 

(systematic) error and random error. Biased error is from the malfunction of equipment 

or/and environment sources. It may not have ze

distributions. Random error, on the other hand, has zero mean and is usually modeled as 

normally distributed (Robert and Casella, 1999).   

 Existing techniques of model updating can improve the finite element model 

whenever the errors are related to the stiffness of the structure, and the problem of 

incorrect initial model can be partially eliminated using the above two-stage approach. 

But errors other than those associated with stiffness related parameters and the random 

errors in measurement have to be handled carefully no
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 The uncertainties in the measurement data are assumed as normally distributed 

random variables with zero mean and given covariance. The UIR obtained from 

measurement is equal to the true UIR plus the random noise as 

  , (0 0 0
2 2 2 2( ) ( ) ( ) ( ) (1 )i i i ii ih h h X h X

•• •• •• ••

= + = + 1,2, ,i nt= " ) (5.38) 

where is the number of the data point of the UIR. Superscript “0” represents the 

corresponding true value and subscript “2” represents the data obtained from 

measurement.  denotes the th data point of the UIR, 

nt

ih
••

i iX is the random noise in the 

measured UIR. For simplicity, iX  is written as a vector [ ]1 2X " T
ntX X X= . 

 The expectation value of the identified stiffness fractional changes αΔ  can be 

obtained from Equation (5.37) as 

   (5.39) 
1
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1 0
2 1
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The derivative of Δ  with respect to the random variableα X  basing on Equations (5.37) 

and (5.38) is 
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 (5.40) 

where  in which the i th element is  with all other 

elements equal to zeros. On the other hand, 

0
20 ( ) 0

••⎡= ⎢⎣ ⎦
H " "

T

i ih ⎤
⎥

0
2( )ih

••

Δα  can also be expressed as the Taylor series 

of the random variable X with the second and higher terms neglected as 

 180



  
2

1 1 1

(0) 1 (0)( ) (0)
2

ε
= = =

∂Δ ∂ Δ
Δ = Δ + +

∂ ∂ ∂∑ ∑∑α αα α
nt nt nt

i i
i i ji i

j
j

X X X
X X X

 (5.41) 

The covariance matrix of  (Xia, et al. 2002) is, Δα

  [cov( , )] [ ] [cov( , )] [ ]
×× × ×

∂Δ
Δ Δ =

∂ ∂
α αα α X X

m nt

T
m m m nt nt ntX X

∂Δ  (5.42) 

Since random variables iX  and jX  ( )i j≠  are independent, we have 

  (5.43) 

1 1

2 2

cov( , ) 0 0
0 cov( , ) 0

[cov( , )]

0 0 cov( ,

×

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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X X

"
"
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"

nt nt

nt nt

X X
X X

X X )

0

from Equations (5.40) and (5.42). 

 In the damage identification procedure, the vector of stiffness changes of the 

intact structure obtained in the first step is 0= + Δα α αu , where  and correspond to 

the original analytical model and the updated model respectively, and Δ  is obtained by 

Equation (5.39). The corresponding vector of stiffness changes in the damaged structure 

is . Finally, the stiffness fractional changes between the intact and the 

damaged structure is, 

0α αu

0α

2= + Δα α αd 2

0 )

)

) )

   (5.44) 2 2 0(Δ = − = + Δ − + Δα α α α α α αd u

and the expectation value of is , Δα

   (5.45) 2 0 2 0

2 0 2 0

( ) ( ( )
( ) ( )

Δ = − + Δ −Δ
= − + Δ − Δ

α α α α α
α α α α

E E
E E

where and are determined from Equation (5.41). The covariance of 2(ΔαE 0(ΔαE Δα  

can be computed as, 
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which is the sum of the covariance of the stiffness changes from both the original 

structure and the damaged structure. 2 2cov( , )Δ Δα α  and 0 0cov( , )Δ Δα α can be obtained 

from Equation (5.42). 

 After the mean value and the covariance of the stiffness fractional change αΔ  are 

determined, the structural condition can be assessed. Firstly, damage localization is 

performed with a new damage localization index ( )
( )

( )
( )i

i

i

i

ασ
αμ

ασ
αμ

Δ
Δ

Δ
Δ  where ( )μ αΔ  and 

( )σ αΔ  are the mean and the standard deviation respectively. It is obvious that a large 

value of the damage index corresponds to a bigger chance of damage occurrence. Also a 

threshold value zη  can be chosen with ( )
( )

( )
( ) ηασ
αμ

ασ
αμ z

i

i

i

i ≥
Δ
Δ

Δ
Δ  indicating that the i th 

element is damaged. The threshold value zη  is related to the noise level and the system 

errors and it varies with the type of problem. After the damage locations are determined, 

the damage severity is given by the mean value ( )iμ αΔ .   

 

5.3.5 Numerical Verification 

 A nine-bay three-dimensional frame structural system shown in Figure 4.22 serves 

for the numerical study. The finite element model consists of sixty-nine three-

dimensional Euler beam elements with twenty-nine nodes. The length of all the 

horizontal, vertical and diagonal members between the centers of two adjacent nodes is 

exactly 0.5m. The structure orientates horizontally and is fixed into a rigid concrete 
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support at three nodes at one end. Table 4.8 gives a summary of the main material and 

geometrical properties of the frame structure. Each node has six DOFs, and altogether 

there are 174 DOFs for the whole structure.   

 The translational and rotational restraints at the supports are represented by large 

stiffnesses of  kN/m and   kN-m/rad respectively in six directions. 

Rayleigh damping is adopted for the system with ξ1=0.01 and ξ2=0.005 for the first two 

modes. The first twelve natural frequencies of the structure are 5.11, 10.95, 15.06, 19.27, 

27.37, 39.44, 52.19, 60.89, 65.64, 79.07, 87.45 and 91.33 . The sampling frequency is 

2000 . The structure is subject to El-Centro seismic acceleration reduced to one-tenth 

of its original value along the y-axis at the support as shown in Figure 5.5(a). The same 

acceleration is assumed acting at all the three supporting nodes. The vertical (z-direction) 

and horizontal (y-direction) acceleration responses at node 7 of the structure are recorded 

for a duration of 0.5 seconds after the support excitation begins. The UIRs obtained from 

Equation (5.29) are shown in Figures 5.5(b) and 5.5(c). It is noted that the support 

excitation is not perfectly smooth and there will be some discretization errors in the UIRs 

extracted. 

11105.1 × 10105.1 ×

Hz

Hz

 The scenario with damage occurrences in the 4th, 15th, 21st, 34th, 40th and 41st 

element with 5%, 5%, 10%, 5%, 5%, 10% reduction in the modulus of elasticity of 

material respectively is considered.  The intact structural model is assumed known as an 

accurate model without the need of updating. The statistical characteristics of the vector 

of stiffness changes of the intact state 0( )μ Δα and 0( )σ Δα are therefore equal to zeros. 

The intact structural model is then chosen as the reference analytical model of the 

damaged structure. Vector Δ  is equal to α 2Δα , and it only needs to identify the mean 
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value and the standard derivation of 2Δα . Assuming the UIRs computed from the 

“measured” accelerations contain 5%, 10% and 15% noise in turn, ( )μ αΔ and ( )σ αΔ are 

identified for each case, and the results for the case with 15% random noise level are 

compared with those obtained by Monte Carlo Technique (MCT) (Robert and Casella, 

1999) in Figure 5.6.   

 Table 5.2 gives the identified percentage reduction in the modulus of elasticity of 

the damaged elements with noise and without noise. The noise level has been shown not 

having any effects on the identified result in Equation (5.39) and therefore only one set of 

results is shown in column 3 of the Table. Columns 4 to 6 are results obtained from the 

MCT with different level of noise. A conclusion can be made that the mean values 

obtained from UIRs with different level of noise and without noise from the proposed 

method and those from MCT are all very close to each other and have slight difference 

with the true value. This slight difference is due to the dicretization error and the error 

caused by the linear Taylor series expansion in Equation (5.41). Figure 5.6(a) also 

indicates that the results from both the proposed and MCT techniques are close together 

and both methods do not give false alarm in the undamaged elements. 

 The standard deviations for each element obtained from the two methods are close 

to each other as shown in Figure 5.6(b) indicating the correctness of the proposed method. 

The standard deviation increases with an increase in the noise level which is as expected. 

Further inspection on the results (not shown) obtained from using 5% and 10% random 

noise show that the pattern of the standard deviation in the different elements is 

maintained no matter what the noise level is. The magnitudes change by a scalar which is 

equal to the fractional change in the noise level included in the analysis. This can be 
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explained by an inspection of Equations (5.42) and (5.43). The derivatives on the right-

hand-side of Equation (5.42) are independent of the noise level, while the covariance 

term in Equation (4.3) includes the noise level which can be extracted as a scalar when 

the random variables are of the same types of distribution. 

 The damage localization indices of all the elements are shown in Figure 5.6(c). 

The indices for the damaged elements are much larger than those for the undamaged 

element and there is no false warning in all the undamaged elements. The formulation of 

the damage index includes the two statistical moments giving strong indications on those 

elements with damages. The variation of the magnitude of the indices for each element 

with the noise level also has a fixed pattern but with different magnitude with the same 

reason as explained for the standard deviation. In spite of 15% noise in UIRs, the index 

for the damaged 15th element is less than 0.1, but it is still far larger than those for the 

undamaged elements. This shows that this new damage index is robust in the damage 

localization. A threshold value zη can be selected from the distribution but there is no 

need to do so with the present tidy set of damage indices. 

 

5.3.6 Experimental Verification 

The nine-bay three-dimensional frame structure described in the numerical study 

is fabricated in the laboratory using Meroform M12 construction system. It consists of 

sixty-nine 22mm diameter alloy steel tubes jointed together by twenty-nine standard 

Meroform ball nodes. Each tube is fitted with a screwed end connector which, when 

tightened into the node, also clamps the tube by means of an internal compression fitting. 

All the connection bolts are tightened with the same torsional moment to avoid 
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asymmetry or nonlinear effects caused by man-made assembly errors. The whole 

experimental setup is shown in Figure 4.21(a) and the support is shown in Figure 4.21(b). 

The structure has the material and geometric properties as listed in Table 4.8.  

 

The Modal analysis 

 The modal test is performed with a dynamic hammer model B&K 8202 hitting 

horizontally along the y-direction near node 11 of the frame. Only the horizontal (y-

direction) and vertical (z-direction) accelerations at all the nodes, excluding those at the 

supports, are recorded with a total of 52 DOFs. They are measured with nine B&K 4371 

piezoelectric accelerometers in six sets of measurements with all nine sensors in a set for 

the DOFs in the upper members and seven sensors in a set for the DOFs in the lower 

member. All sensors are orientated in either the vertical or horizontal direction in each set 

of measurement. An additional mass of 72 g weight is added to each joint to balance the 

effect of the moving accelerometers. The sampling frequency is 2000 Hz. The responses 

are low-pass filtered at 1000 Hz, and a commercial data logging system INV303 with the 

associated data analysis system DASP2003 are used in the data acquisition. Frequency 

response function (FRF) is calculated for all the measured responses, and the first twelve 

natural frequencies and modal damping ratios averaged over twenty FRFs are listed in the 

fifth column of Table 5.3. The corresponding measured mode shapes are given in Figure 

5.7. Only a few pure bending modes are identified while most of them have coupled 

bending and torsional vibrations. 

 

Modelling of the structure  
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 The Meroform ball joints have been treated as semi-rigid joints, and a finite 

element model of a hybrid beam with semi-rigid end connections has been proposed 

(Law et al, 2001). This section adopts this hybrid beam model for the model 

improvement of the structure. The initial model assumes a large fixity factor p for the 

rotational stiffness of the joints which is taken equal to 0.999 with 1.0 equal to that for a 

rigid joint. The total weight of the ball and half of the weight of the bolt connecting the 

ball with the frame element are placed at each node as lump mass. The other half of the 

weight of the bolt is considered as part of the finite element. In additional, another lump 

mass of 72 g weight is added to each node to represent the weight of the moving 

accelerometers.  The first twelve analytical natural frequencies are listed in the second 

column of Table 5.3. It is noted that the finite element model is in general more stiffer 

than the real structure with larger difference in the higher modes. 

 

Dynamic test for damage detection 

 The structure is excited with impact from a Dystran Instruments 12 lbs 

instrumented impulse hammer model 5803A hitting approximately at the centroid of the 

support in the y-direction. The support is very rigid and heavy compared with the frame 

and it is hold down to the strong floor of the laboratory with four steel bolts. The 

acceleration responses of the support along the three principal directions are measured. 

Only the response in the y-direction is significant and those in the other two directions are 

very small. Nine accelerometers are placed at nodes 2 to 10 in the y-direction for 

recording the acceleration response time histories. The sampling frequency is 2000 Hz. 

The typical acceleration time history at the support in the y-direction is shown in Figure 
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5.8(a) and the UIR obtained from the acceleration in the y-direction at node 6 is shown in 

Figure 5.8(b). This test is repeated for many times for the statistical mean. 

 

Damage scenario 

 After performing the dynamic test on the intact frame structure, local faults are 

introduced by replacing three intact members with damaged ones. The artificial damage 

is of two types. Type I is a perforated slot cut in the central length of the member. The 

length of slot is 13.7 cm, and the remaining depth of the tube in the cross-section is 

14.375 mm. Type II is the removal of a layer of material from the surface of the member. 

The external diameter of the tube is reduced from 22.02mm to 21.47mm, and the length 

of the weakened section is 202 mm, located in the middle of the beam leaving 99mm and 

75mm length of original tube cross-section on both sides. Figure 4.21(c) gives a close up 

view of the damaged frame members. Type I damage is located in element 10 and Type 

II damage is located in elements 27 and 68. They are illustrated with a solid star on the 

member in Figure 4.22. The equivalent damages computed by Guyon method are 5% and 

9.5% reduction in the modulus of elasticity of element 10 and elements 27 and 68 

respectively. The three members cluster together at the end of the structure with small 

strain energy under deformation. The damage in each member is difficult to resolve with 

most existing damage detection algorithms. 

 

Modal analysis on the damaged structure 

 Modal analysis is performed on the damaged structure in a similar way as for the 

original structure. The first twelve natural frequencies and the damping ratios averaged 
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over twenty FRFs are listed in the last two columns of Table 5.3. There are cases of 

increase and decrease in the natural frequencies compared to those of the intact structure. 

The damping ratios are in general smaller than those of the intact structure. This may be 

due to the release of hidden frictional elements during the process of testing. 

 

Model improvement for damage detection 

 The two-stage approach is adopted for the damage detection. The first stage 

updates the rotational stiffness at the member ends for an updated analytical model of the 

intact structure. Three UIRs obtained from nodes 5, 6 and 7 are used for the identification. 

There are 69×6=414 unknown rotational stiffness in the identification. The first 500 data 

points of each UIR are used and there are 1500 equations in Equation (5.36). The 

measured modal damping ratios from the intact structure have been used in Equations 

(5.30) and (5.34) for the computation of the analytical UIRs. For simplicity, the updated 

analytical model in section 4.4.5 is directly used here which have the updated rotational 

stiffnesses not differing too much from the original value with the largest change in 

member 20 at node 22 with the updated p=0.86 for the x-axis rotational stiffness (see 

section 4.4.5). The natural frequencies of the updated structure are shown in the third 

column of Table 5.3. They are close to the measured values with a maximum error of 

approximately 1% in modes 6 and 12. This model is therefore considered accurate for the 

next stage of damage assessment. 

 The second stage updates the local faults in all the members of the structure in 

terms of their modulus of elasticity with the updated finite element model from the first 

stage as the reference model. Again the UIRs from nodes 5, 6 and 7 are used for the 
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identification. There are 69 unknowns in the identification. The first 500 data points of 

each UIR are used and there are 1500 equations in Equation (5.36). The identification is 

conducted with results from 60 sets of measurement, and the mean and standard deviation 

of the identified Δα  are computed. The damage location indices are obtained and shown 

in Figure 5.9(a) and the identified damage extent for all the elements are also shown in 

Figure 5.9(b). The identified reduction in the modulus of elasticity in the damaged 

members are 5.14%, 8.62% and 10.14% for elements 10, 27 and 68 respectively which 

are quite close to the calculated values of 5%, 9.5% and 9.5% respectively. There is an 

indication of local damage in element 47 with a reduction of 3.23% even though it is in 

real case undamaged. Its existence cannot be explained with the two sets of results from 

the two stages of model improvement. The natural frequencies calculated from the 

updated model of the damaged structure are list in the fourth column of Table 5.3. The 

errors between the measured frequencies are in general larger than those found for the 

updated model for Stage I with an error larger than 1% in the 10th mode and upwards. 

 

5.3.7 Discussions 

 The proposed technique theoretically should give satisfactory results from using 

different types of support excitation. However further study with natural ground 

excitation with similar order of vibration magnitude in the laboratory fails. This raises an 

important requirement on the type of excitation for the use of this technique. Both the 

simulation study and the laboratory example make use of excitations with plenty of low-

frequency components. The natural random excitation consisting of plenty of high 

frequency components and it could not generate sufficient responses from the structure. 
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Also the non-smooth random input signal, as discussed previously, would lead to large 

discretization error causing further deterioration in the identified results.  

 The unit impulse response functions extracted via discrete wavelet transform from 

measured accelerations of a structure and at its support are used to assess the structural 

health condition. Discrete wavelet transform is employed in the extraction procedure to 

avoid the end effects with Fourier transform. Support excitation is commonly 

encountered and man-made ground excitation and low-level seismic tremor are very 

suitable for this approach. Random environmental excitation is not preferred as it 

contains mainly of high frequency components which have little effect in exciting the 

structure. The UIRs are obtained in the time domain and therefore the damage detection 

can be conducted with measurement from a few sensors. A statistical analysis on the 

UIRs with measurement noise is conducted and the results compared favorably with 

those from MCT.  A new damage localization index is proposed based on the statistical 

moments of the identified results. 

 A nine-bay three-dimensional frame structure is studied numerically and 

experimentally with damage scenarios of multiple damages and different level of noise. 

Measured accelerations from only three sensors are used in the experimental study with 

satisfactory results indicating the effectiveness of the proposed approach.  

 

5.4 Improved Regularization Techniques for IRF-based Damage Detection  

 This section used unit impulse response function for damage detection with 

improved regularization techniques. The improvements include additional constraints on 

the regularization solution  to determine the regularization parameter. Constraints λx
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added to the regularization solution include a small norm λx  and a limited range for . 

Similarity between successive sets of computed  is ensured by checking on their 

correlation using a Multiple Parameter Correlation Coefficient (MPCC). A one-story 

plane frame and a thirty-one bar plane truss structure are used to demonstrate the 

proposed techniques.  

λx

λx

 

5.4.1 Regularization Method for Identification Equation 

 The identification equation based on the sensitivity approach for damage detection 

described in the thesis can be written as, 

  0− =Ax b  (5.47a) 

where ×∈A A xN NR  is the sensitivity matrix with respect to the structural parameters, 

∈b ANR is the vector of measured structural characteristic changes, ∈x xNR  is the 

solution vector representing the damages which are the changes in the structural 

parameters. Equation (5.47a) is linear and usually over-determined when the time series 

data are used directly in the Equation. It is often solved with the least-squares method 

based on the minimization of the weighted norm 2−Ax b
W

 or the Euclidian 

norm 2

2
−Ax b . For simplicity, the Euclidian norm is adopted in this section, that is, 

  2

2
( ) ( )−x b T ( )= − = ⋅ −x Ax b A Ax bLSJ     (5.48) 

From the minimization of Equation (5.48), i.e ( )
=

∂
x

x
LS

A

∂ 0J

bT

, the least squares solution of 

Equation (5.47a) can be obtained as, 

   (5.49a) 1( )−=x A AT
LS
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However, in many cases, the least squares solution is not satisfactory due to ill-

conditioning problems. In order to obtain the steady unique solution of Equation (5.47a) 

which is often ill-conditioning, the regularization condition is needed as, 

  ( ) 0C x =  (5.50) 

Where contains equations. In this section we assume takes the 

form , with and

( )C i

( ) =C x

cN

C

( )C i

−Cx d ×∈ C xN NR ∈d CNR , which represents the general linear 

problemCx . For implementation in iterative model updating, the incremental form of 

this equation is 

d=

δ =C x dk , where = −d d Cxk k . The residuals corresponding to this 

equation are used to give the second cost function, 

  2
Re 2

( ) ( ) ( )= − = − ⋅ −Cx d Cx d Cx dT
gJ x  (5.51) 

Thus there are two cost functions, andLSJ Re gJ , that need to be minimized concurrently. 

A composite cost function is formulated as, LSRJ

  2
Re 2

λ λ= + = − + −Ax b Cx dLSR LS gJ J J 2

2
 (5.52) 

where, 0λ ≥ is the regularization parameter, and Re gJ is stabilizing/regularization part. 

The parameter λ controls the extent to which regularization is applied to the nominal 

problem. Usually used Re gJ

0

in the damage identification based on model updating are 

based on engineering assumptions concerning the parameter variations during iterations. 

The most frequently used conditions include: 1) x , i.e. that the parameter values will 

be small; 2) , i.e. that the parameter changes with respect to the reference model 

will be small; and 3) 

0→

0x→x

δ →x , i.e. that the parameter step between iterations will be small. 
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In this section, condition (3) is adopted according to the engineering assumptions. 

Equation (5.50) can be written as, 

  0δ⋅ =I x  (5.53) 

This regularization conditions based on Equation (5.53) aim to reduce the magnitude of 

the parameter change at the iteration step towards zero. This condition results in a smooth 

transition between the non-Regularized least squares solution and ( ) 0δ λ →x in the 

direction as LSJ−∇ λ →∞ . From Equation (5.53), the cost function  in Equation 

(5.52) can be written as, 

LSRJ

  2
Re 2

λ= + = − +Ax b xLSR LS gJ J J 2

2
λ  (5.54) 

From the minimization of Equation (5.54) ( ) 0∂
=

∂
x

x
LSRJ , the regularization solution of 

Equation (5.47a) can be obtained as, 

   (5.55a) 1
Re ( )λ −= +A A I A bT

gx T

To display the influence of the regularization parameter in the solution, then the singular 

value decomposition of the matrix  is firstly performed as, A

   or  [ , , ] csvd( )Σ =U V A Tdiag( )= ⋅ Σ ⋅A U V  (5.56) 

where “csvd” denotes the compact singular value decomposition. “diag(Σ)” denotes the 

diagonal matrix formed from the vector of singular values Σ . The vector of singular 

values Σ can be expressed as, 

  [ ]nσσσ "21=Σ ,      n21 σσσ ≥≥≥ "  (5.57) 

where σi is the ith singular value.  

Substituting Equation (5.56) into Equation (5.49a), the least squares solution can also be 

written as, 
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  ( )ϑ= ⋅ ⋅ ⋅x V U bT
LS diag  (5.49b) 

Where 
1 2

1 1 1

n

ϑ
σ σ σ
⎡ ⎤

=
⎦

"   (5.58) 

Similarly, substituting Equation (5.56) into Equation (5.55a), having 

  b  (5.55b) 

⎢ ⎥
⎣

Re ( )= ⋅ ⋅x V f UT
g diag

with
1 22 2

1 2
2

1

(1 ) (1 ) (1 )λ λ λσ σ σ
σ σ σ
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⎢ ⎥⎣ ⎦

"
n

n

     

paring Equation (5.49b) and Equation (5.55b), the influence of the regularization 

parameter 

1 1⎢ ⎥
⎢ ⎥=f (5.59) 

⎡ ⎤

Com

λ  can be seen. The following cases can be derived from Equation (5.55b),  

Case (1): When 0=λ , 
1 2

1 1 1ϑ
σ σ σ
⎡ ⎤

=x xReg LS  = == ⎢ ⎥
⎣ ⎦n

f " , and 

Case (2): When 2
nλ σ= , 2 2

1 22 2
1 2

1 1 1

(1 ) (1 ) (1 )σ σσ σ σ
σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥+ + +⎢ ⎥
⎣ ⎦

f "
n n

n
n

2

2
σ
σ

n

, and −Ax breg  

is very small and close to −Ax b  

2 2
1 1

1 22 2
1 2

1 1 1

(1 ) (1 ) (1 )σ σσ σ σ
σ σ

⎡ ⎤
⎢ ⎥

Case (3): When 2
1λ σ= , 2

1
2

σ
σ

⎥
⎢ ⎥+ + +⎢ ⎥
⎣ ⎦

"
n

n

 which is close 

to 

⎢=f

1

1⎡
0 0

2σ⎢ ⎥
⎣ ⎦

, and 
⎤

" xreg  is very small but −Ax breg  is comparative large. 

Case (4): Whenλ = ∞ , [ ]0 0 0=f " , then x  and are zeros.  xregreg

 195



 The vect the value of the solor is the filter vector that affects ution with the f

regularization parameterλ . This shows that how to determine the value of λ  is important. 

 

5.4.2 Determination of regularization parameters 

mal value of  From the above analysis, there exists an opti λ  which ensures both 

xreg  and −Ax breg  are small. The optimal λ  can be determined with the cross 

 L-curve method. In this section, L-curve method is adopted. In L-

curve method, the optimal 

validation method and

λ  corresponds to a point on the L-curve as shown in Figure 

5.10 with 
2

η = xreg  and 
2

ρ −Ax breg , and both are functions of = λ . The inflexional 

point on the curve corresp nce between onds to a bala xreg  and −Ax breg . The optimal 

λ  corresponds to the physical inflexional point whe e cur smallest. The 

bsequent computational process for determining the optimal 

re th v is ature 

su λ  is based on the fact that 

the curvature of the curve is smallest at this point. 

 The curvature c/1 ρ  of the L-curve is defined as, 

  

2ηd

5.12

2

))(1(

1

ρ
η
ρθ

ρ
d
d
d

ds
d

c +
==  (5.60a) 

In order to determine the optimalλ , the term 5.12
2

2

))(1/(
ρ
η

ρ
η

d
d

d
d

+  has to be minimized. 

From the above definition, we have 
2

η = =x x ⋅xT
reg reg reg , 

2
ρ = −b , and 

 

Axreg

2
( ( )= ⋅ = ⋅ ⋅ ⋅x x x VT diag

2
) ) ( ( )⋅ ⋅ ⋅ ⋅f U b V f U bT T T

reg reg reg diag  
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                 (5.61) 2( ) ( ( )) ( )= ⋅ ⋅U b f U bT T Tdiag

  
2

2
( ) ( )− = −Ax b Ax b AxT

reg reg

Equation (5.62a) can be expressed as, 

−breg  (5.62a) 

Since =b Ax , 

2

2
( ( )) ( ( )) (− = − − =b A x x A x x xreg reg reg

2

) ( )

( ) ( ( ) ( )) ( )ϑ

− ⋅ ⋅ −

= − ⋅

Ax x A A x x

U b f Σ U b

T T T
reg reg

T T Tdiag diag
    (5.62b) 

he first derivatives of

 

 η  and ρ  with respect to parameter λT  are defined as, 

. Substitu g, the curvature in Equation (5.60a) we get, 

  

ληη dd /' = , λρρ dd /' = tin

2 2

2 2
d d
d d
η η
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η η
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λ

η ηρ ρ
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= =
+

+
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+
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 (5.63) 

Also we have the second differential as 
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inally the curvature in Equation (5.60a) becomes 
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The optimal λ  can be obtained by maximizing Equation (5.60b), and the optimal 

tion xreg is determined from Equation (5.55b).  

 In damage detection, the system carries no noise and no model errors,  would 

regularized solu

xReg

be very close to xLS , because it corresponds to a small −Ax b . But when the system 

rs in the iteration process, 

and 

carries noise or model error, the regularization solution xReg  deviates from  least-

squares solution due to the presence of noise and model erro

 the

−Ax b  is not small. In this case, Equation (5.47a) can be rewritten as 

  0− =A x br r  (5.64) 

where are for the system with noise or model errors. It is noted thaAr ,br  

Ar

t even if the 

system has noise or model errors (it is noted that model errors are limited to the small 

ranges ),  is close to . i.e. A ≈A Ar . But will comprise of three parts, 

  

br

= + +b b b br d n m

where bd bn oise, and bm is due to model error. 

, (5.65) 

 is due to damage,  is due to n

Equation (5.64) is then rewritten approximately as  

  0  or  − =Ax br = + +Ax b b bd n m  (5.66) 

The engineering solution (which denotes the correct parameter change vector) will xe  

all xe −Ax behave two objectives: a sm  and mizedmini . But there is a contradiction 

with the least-squares solution as it only minimizes −Ax br  but not −Ax be d .  

 Then the regularization solution in Equation (5.55b) becomes, 

  Reg d n m

T T

( ) ( )

( ) ( ) ( )

= ⋅ ⋅ ⋅ + +

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

x V f U b b b

V f U b V f U b V f U

T

d n

diag

diag diag diag bT
m

(5.67)  
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H Reg composes of three terms. The first term is xe  which correspere onds to the system 

e and model errors.  The sec s are perturbed terms 

ing respectively to the noise and model errors. In the iterative sensitivity 

 x

correspond

with no nois ond and third term

approach of damage detection, the signal to noise ratio will decrease dramatically after a 

few iterations, and the noise or model error dominates in the vector br  causing ( )λxReg  

deviates from x . The aim of this section is to find a value 'λ  that can make '( )λ ≈x x

regularization parameter must be provided. In order to f d the appropri

e Reg e . 

 The above discussions show that the Tikhonov method with L-curve technique 

cannot be used effectively in all iterations and an improved method for determining the 

in at , we add 

me c

e 'λ

so onstraints to the regularization process. Since in the inverse damage detection 

problem, damage is often represented by a percentage change in the system parameters, 

and each component of the damage vector is always less than unity, i.e. 

  1)(x ireg <λ  (5.68a) 

 It is also well known that satisfactory results, which may be exact, can be obtained 

when the solution is convergent. In other words there is great similarity in the solutions 

cessive iterations. Therefore we can

  

obtained in suc  make use of this property to improve 

the performance of the Tikhonov method.  The similarity is computed according to the 

Multiple Parameter Correlation Criteria (MPCC),  

( )

( ) ( )

( )
( )( )

T 2
reg i 1 regi

reg i 1 reg i 1 regi regi

x x
i 1 T T

MPCC 1
x x x x

+

+ +

Δ
= −

Δ Δ

which has been referred to as Multiple Damage Lo

+  (5.68b) 

cation Assurance Criterion (MDLAC) 

(Shi and Law, 2000a) for damage location correlation. Such a rename is to justify its use 

as a correlation criterion for measuring the resemblance of two patterns of parameters in 
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the iterative process.  The resemblance is assured with proportional changes in xReg  in 

successive iterations as noted in Equation (5.68b). optλ  is obtained in the improved 

below as 

Step 1: Parameter

regularization by minimizing the MPCC. The improved regularization process is shown 

optλ  is obtained by Tikhonov method with Equation (5.68a) as the 

constraint. Then calculate ( )reg ix  with i=1 . Repeat for i=2. Then calculate MPCCi. 

Step 2: Compare the value of MPCCi with a prescribed threshold value MPCCth which is 

 

taken to be 0.5. Discussion on this threshold value can be found towards the end 

of this paper.  

 If MPCCi < MPCCth , the solution is stable and go to Step 3. 

If MPCCi  ≥ MPCCth , the solution is considered diverged and the optimal optλ  is 

recalculated from minimizing MPCC . The new ( )reg ix and the new MPCC  are 

computed, and go to Step 3. 

Step 3: Compare with the termination criteria such as those in Equation (5.22). If they are 

If th

with th

i

not satisfied, go to Step 2 for the next iteration. ey are satisfied, stop the 

iteration.  

 The optimal identification results xreg can be obtained from the above process 

e corresponding optλ . 

 

5.4.3 Noise Reduction prior to Regularization 

rie oise, Equation (5.47a) can be expressed as, 

 

 If the system car s n

= +Ax b bd n  (5.47b)  
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Equation (5.47b) can also be expressed as, 

  ( )+ = +A x x b bd n d n  (5.47c) 

 To find the expected vawhere =Ax bd d lue of Equation (5.47c), we have , =Ax bn n .

  ( ( )) ( )+ = +b bd n d nEA x xE  (5.69a) 

with zero mean is assumed, both a

on (5.69a becomes 

)

If white noise nd b  are random variables, and xn  n

Equati ) 

( ( )) (+ = +A x E x b E bd n d  n  (5.69b) 

Since ( ) ( ) 0= =x bn nE E , Equation (5.69b) can be rewritten as 

  =Ax bd d  (5.69c) 

c) shows that when the structural cha

 noise effect.  

ity of 

pulse response function for damage detection is adopted here to demonstrate the 

ation method in the model updating procedure. The expected value of 

Equation (5.69 racteristics can be measured 

repeatedly, using expected value of the measurement can reduce

 

5.4.4 Simulation  

 The method described in section 5.2 using the wavelet-based sensitiv

im

improved regulariz

unit impulse response function is used to take advantage of the fact that it can be 

measured repeatedly to find the mean and thus reducing the noise effect.  

 Two structural systems serve for the numerical study. The first system is a one-

story plane frame as shown in Figure 4.9. The structure is subject to a sinusoidal 

excitation NttF )12sin(10)( π= applied vertically at node 6. The horizontal acceleration 

at node 9 is collected for the study. The columns are 1.2 m high and the cross-beam is 0.6 
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m long, and each member has 10mm depth and 20mm breadth uniform rectangular cross-

section. The modulus of elasticity and the mass density of materials are respectively 

69×109 N/m

 The finite element model of the structure consists of four and three equal beam-

column elements in each vertical and horizontal member respectively. The translational 

and rotational restraints at the supports are represented by large stiffnesses of 10105.1

2 and 2700 3/ mkg . 

×  

kN/m and  9105.1 ×  kN-m/rad respectively. Rayleigh damping is adopted for the system 

ith w 01.01 =ξ and 2 0.01ξ =  for the first two modes. The first 12 natural frequencies of 

the structure are 13.09, 57.31, 76.7, 152.4, 196.5, 227.3, 374.7, 382.5, 580.2, 699.3, 765.3 

and 983.3 Hz . The sampling frequency is 2000 Hz  and 0.25 s of measured data is used. 

The limits for both convergence criteria have been set equal to 6100.1 −× . The 

measu errors lated by adding white noise to the calculated accelerations to 

simulate the polluted measurements as described in Equation (3.42). 

 Four damage scenarios listed in Table 5.4 are studied. These scenarios include the 

cases without noise and model errors, with 5% noise, with 10% noise and with noise and 

model errors. The results are shown in Figure 5.11.  In the first case without noise and 

model errors, the proposed techniques do not have advantage over th

rement  ar

e Tikhonov method. 

e simu

But when the system includes noise and model errors (Scenarios 2 to 4), the inclusion of 

the proposed techniques has significant improvements in the identification results. It is 

noted that the existence of noise in the measurement greatly increases the identification 

errors due to the model errors when the original Tikhonov method is used. 

 The second structural system is the thirty-one bar plane truss structure as shown in 

Figure 5.1, which is modeled using 31 finite elements without internal nodes giving 28 
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degrees of freedom. The cross-sectional area of the bar is 0.0025 2m . Damage in the 

structure is introduced as a reduction in the axial stiffness of individual bars, but the 

inertial properties are unchanged.  

 Both the vertical and horizontal translational restraints at the supports are modeled 

by large springs of 10100.1 × kN/m. Rayleigh damping is adopted for the system 

with 01.01 =ξ and 02.02 =ξ for the first two modes. The first 12 natural frequencies of the 

structure are 36.415, 75.839, 133.608, 222.904, 249.323, 358.011, 372.509, 441.722, 

477.834, 507.943, 538.125 and 547.393 Hz . The sampling frequency is 2000 Hz . The 

limits for both convergence criteria have been set equal to 6100.1 −× . The excitation force 

is app tical  5 and vertical acceleration measurement is recorded at node 4 

as shown in Figure 5.1. The excitation adopted in the structure is a triangular impulsive 

force with 320.4N peak value and it lasts for 0.005 second and 0.25 s of measured data is 

used. Damage Scenarios 5 to 10 as listed in Table 5.4 are studied to demonstrate the 

efficiency of the proposed techniques, and results are shown in Figure 5.12. Scenario 5 

involves no noise and model errors in the system. There is very small difference in the 

identification results obtained using the proposed techniques or not. Scenarios 6 and 7 

carry 5% and 10% noise in the system respectively, and the damage locations and extent 

can be determined by using a combination of Tikhonov regularization and the proposed 

techniques. If the Tikhonov regularization method is used only, the identified result 

begins to diverge from the 7th iteration onwards for both Scenarios 6 and 7. Scenario 8 

has 1% model error in the material density. The results begin to diverge from the 6th 

iteration and fail to detect damage when only the Tikhonov regularization is used. 

Scenarios 9 and 10 are the case with both noise and model errors and they have the same 

lied ver ly at node
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problem as Scenarios 6 and 7 in that the results will diverge after several iterations when 

only Tikhonov method is used. But the damages can be identified fairly accurately with 

the proposed techniques. 

 The above numerical studies show that the combined use of Equation (5.68a) and 

the similarity requirement in the successively sets of identified results from the 

conventional Tikhonov method can give satisfactory results in damage detection problem 

when the system carries model and noise errors and with no divergence in the iteration 

process. 

 

Discussions  

 To further illustrate the effectiveness of the proposed improved regularization 

techniques, Figure 5.13 is plotted to show the variation of the convergence norm 

1

1+Δαi

+Δ −Δα αi i  and the MPCC with iterations for the second example. The norm decreases 

parameter vector in iterations 3 and 7 is small and Tikhonov regularization can give an 

appropriate  but with a relatively large norm. The deviation of parameter vector 

with iteration with peaks each corresponds to a slight deviation of resemblance of two 

successively identified solution as noted in the curve of MPCC. The deviation of 

obtained from Tikhonov regularization in iteration 10 is very large according to the 

MPCC curve and a new 

regx

optλ is obtained from minimizing MPCC leading to a small norm 

-5of 1.73×10 . If nothing is done to avoid divergence of solution, Tikhonov regularization 

fails here. Subsequent iterations 11, 14 and 15 also need the recalculation of optλ to put the 

solution back on the path of convergence. The solution obtain after iteration 16 is stable 
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and with a norm equals 6 ×10-6. The threshold value for MPCC is arbitrary selected to 

be 0.5 to signify the degree of parameter change deviation from Tikhonov regularization 

which needs the proposed stabilization process. A larger threshold value would allow 

more variations with the parameter change such that the solution would not fall in the 

.4

local minimum. However a small threshold value can be selected as it is known that the 

pattern of parameter change x has been approximately determined in the first few cycles 

of iteration. 

 It should also be noted that only small model error is studied in this work. The 

proposed technique and all existing model-based approach of model updating for damage 

detection have the limitation of dealing with small local damages and small model errors. 

This leads to the need of another stage of initial model improvement prior to the second 

stage of damage detection as adopted in this study. The initial finite element model has to 

be sufficiently accurate for the second stage of local damage detection. Furthermore, 

large perturbation of the system parameters would lead to non-linear responses which 

cannot be handled appropriately using the proposed approach which is a linear approach.  

 

5.5 Summaries 

pport excitations. The unit impulse response functions obtained via discrete wavelet 

structure and the measured excitation force 

or measured accelerations at its support are used to assess the structural health condition. 

Discrete wavelet transform is employed in the extraction procedure to avoid the end 

 In this chapter, unit impulse response functions via wavelet-based sensitivity and 

model updating are used to detect damage in the structures under general excitations and 

su

transform of the measured accelerations of a 
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effects with Fourier transform. The UIRs are obtained in the time domain and therefore 

the damage detection can be conducted with measurement from a few sensors. In order to 

study the noise effect in the UIR-based method, a statistical analysis on the UIRs with 

measurement noise is conducted and the results compared favorably with those from 

Monte Carlo Technique (MCT).  A new damage localization index is proposed based on 

the statistical moments of the identified results. Since the damage detection is also based 

on model updating, the ill-conditioning problem is solved with an improved 

regularization techniques in the inverse problem with noise and model errors for damage 

detection. The range of percentage damage is limited in the determination of the 

regularization parameter λ  in the regularization method. Also there will be large 

similarity between the sets of results from two successive iterations. The convergence of 

results is further ensured by checking on such similarity using a Multiple Parameter 

Correlation Criteria. Numerical studies and experimental verifications are performed with 

the proposed methods and improved techniques. Satisfactory results are obtained 

indicating the effectiveness of the proposed approach. 
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Table 5.1 – Damage scenarios  

Damage 

Scenario 

Damage 

extent 

Damage 

locations 
Noise Model error 

1 10% 28th element no no 

2 10% 31st element no no 

3 5%,10% 
22nd, 26th 

element 
no no 

4 5%,10%,10% 
28th, 30th, 

31st element
no no 

5 10% 28th element 1% no 

6 10% 28th element 5% no 

7 5%,10% 
22nd, 26th 

element 
no 

2% reduction in the stiffness 

in all elements 

8 5%,10% 
22nd, 26th 

element 
no 

50% increase in  the support 

stiffness at two supports 

9 5%,10% 
22nd, 26th 

element 
no 

2% decrease in the Rayleigh 

damping coefficients 

10 5%,10% 
22nd, 26th 

element 
5% 

Include all the above model 

errors 

 

Table 5.2 – Identified percentage reduction in the modulus of elasticity  

Noise level * Damaged 
Element 

No. 

True 
value

no 
noise 5% 10% 15%

4 5 4.56 4.10 4.56 4.68

15 5 4.90 5.00 4.93 4.42

21 10 11.96 11.85 11.97 12.94

34 5 4.74 4.84 4.62 4.40

40 5 4.81 4.71 5.35 5.19

41 10 11.35 11.24 11.04 10.82

Note: Superscript * denotes results obtained from MCT. 
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Table 5.3 – The natural frequencies (Hz) and damping ratio of the frame structure 
 

FEM Measured 
Frequency (Hz)/error (%) intact damaged Mode 

type 
intact Stage I Stage II frequency

(Hz) 
damping 

ratio 
frequency 

(Hz) 
damping 

ratio 
1H 5.207 5.165/-0.58% 5.184/-0.61% 5.196 0.443 5.216 0.196 

1V 11.076 10.951/0.09% 10.870/0.70% 10.942 0.928 10.794 0.418 

2H 15.305 15.063/-0.72% 15.108/-0.38% 15.172 0.282 15.166 0.251 

V+T 19.493 19.276/-0.59% 19.352/-0.18% 19.390 0.155 19.387 0.155 

3H 27.888 27.646/-0.20% 27.253/-0.76% 27.702 0.307 27.462 0.299 

H 40.211 39.445/-0.93% 39.052/-0.19% 39.815 0.335 39.127 0.346 

H 53.234 52.203/0.11% 51.426/0.80% 52.146 0.423 51.018 0.403 

2V 61.565 61.517/-0.68% 61.371/-0.15% 61.938 0.155 61.463 0.432 

H+T 66.979 65.655/-0.23% 64.514/0.58% 65.806 0.258 64.142 0.253 

H+T 80.706 79.088/0.76% 77.788/1.53% 78.491 0.356 76.616 0.333 

T 88.239 87.462/0.20% 87.706/-1.76% 87.287 0.908 89.277 0.333 

H+T 93.269 91.334/0.98% 96.918/-1.23% 90.448 0.340 98.125 0.312 

Note: (2H) – second horizontal mode; (1V) –first vertical mode; (V+T)- coupled vertical and torsional 
mode. 
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   Table 5.4 – Damage scenarios  

Damage 
Scenario 

Damage 
extent 

Damage 
locations Noise Model error 

1 10% 2nd element No No 

2 10% 2nd element 5% No 

3 10% 2nd element 10% No 

pl
an

e 
fr

am
e 

4 10% 2nd element 5% 1% reduction in the flexural 
stiffness in all elements. 1% 
increase in the density. 10% 

increase in the Rayleigh 
damping coefficients 

5 5%,5% 8th, 15th 
element 

No No 

6 5%,5% 8th, 15th 
element 

5% No 

7 5%,5% 8th, 15th 
element 

10% No 

8 5%,5% 8th, 15th 
element 

No 1% increase in the material 
density 

9 5%,5% 8th, 15th 
element 

5% 1% reduction in the stiffness 
in all elements, 5% reduction 

in the Rayleigh damping 
coefficients, 0.1% increase 

in the density 

pl
an

e 
tru

ss
 

10 5%,5% 8th, 15th 
element 

10% 1% reduction in the stiffness 
in all elements, 5% reduction 

in the Rayleigh damping 
coefficients, 0.1% increase 
in the density, 1% reduction 

in the stiffness support 
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Figure 5.2 - The Impulsive response functions from different excitations 

 
 
 
 

Figure 5.1 - Thirty-one bar plane truss structure 
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Figure 5.3 - Identified results for Scenarios 1 to 4 
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Figure 5.4 -Identified results for Scenarios 5 to 10 
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Figure 5.5 - The support acceleration and UIRs obtained at Node 7 
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Figure 5.6 - Identified results from response with 15% noise level 
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Figure 5.7 - The measured mode shapes of the intact steel frame structure 
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Figure 5.8 - Measured support acceleration and UIR at Node 6 
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Figure 5.9 - Identified experimental results 
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Figure 5.10 - The L-Curve  
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Figure 5.11 - Identified results for Scenarios 1 to 4 

 
 
 
 
 

 218



0 5 10 15 20 25 31

0
1

3

5

0 5 10 15 20 25 31

0

1

3

5

0 5 10 15 20 25 31

0
1

3

5

0 5 10 15 20 25 31

0
1

3

5

0 5 10 15 20 25 31

0
1

3

5

0 5 10 15 20 25 31

0
1

3

5
D

am
ag

e 
re

du
ct

io
n 

(%
)

Tikhonov
proposed

Scenario 5 Scenario 6 

Scenario 7 Scenario 8 

Scenario 9 Scenario 10 

D
am

ag
e 

re
du

ct
io

n 
(%

)
D

am
ag

e 
re

du
ct

io
n 

(%
)

D
am

ag
e 

re
du

ct
io

n 
(%

)
D

am
ag

e 
re

du
ct

io
n 

(%
)

D
am

ag
e 

re
du

ct
io

n 
(%

)

Element No. Element No. 
 

Figure 5.12 - Identified results for Scenarios 5 to 10 
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Figure 5.13 - The convergence norm and MPCC 
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CHAPTER 6  STRUCTURAL DAMAGE DETECTION 

UNDER AMBIENT EXCITATION  

 

6.1 Introduction 

 The information required for system identification or damage detection of a 

dynamic system generally consists of both the input force and the resulting responses. 

However, it would be very difficult and expensive to measure the actual excitation (such 

as wind, vehicular and wave excitation) (Shen et al 2003) for a large structure (such as 

bridges, offshore platforms, and wind turbines). The huge amount of energy necessary to 

create structural vibrations may cause local damage in the structure if it can be generated 

artificially. Therefore, system identification or damage detection is preferably to be done 

with the response-only measurement. For large engineering structures, such as bridges, 

offshore platform and high-rise buildings, structural health monitoring based on ambient 

excitation (environmental excitation or traffic vibration) seems to be the most desirable 

approach with the advantages of low cost and easy operation. For practical monitoring of 

operating structures, the ideal system should include non-contact and embedded 

measurements taken from a structure from excitation under the operation environment 

together with automated or semi-automated signal processing (Farrar and Doebling, 

1997). It is noted that most of the existing health monitoring of civil structures are 

operating continuously, and only ambient excitation can be used for the damage detection 

of these structures (Peters, 2000). 
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 There are methods on system identification from output-only data. The method of 

system identification from ambient response measurements has been summarized by 

Bendat and Piersol (1980). The covariance of responses obtained from ambient excitation 

has been used to estimate modal parameter and further assess the structural health 

condition. Methods on the estimate of the modal parameter from the covariance of 

responses include peak-picking from power spectral density (PSD) functions (Luz and 

Wallaschek, 1992), least-squares curve fitting techniques (Chalko and Haritos, 1997), 

autoregressive moving average (ARMA) models (Larbi and Lardies  2000), the subspace 

techniques (Hermans and Auweraer, 1999, Lardies, 1998), and the natural excitation 

technique coupled with some time-domain modal identification schemes such as the 

random decrement processing with the Ibrahim time-domain (ITD) technique (Chiang 

and Cheng, 1999), the maximum entropy method (MEM) (Desforges et al., 1995), and 

the polyreference least-squares complex exponential (PRLSCE) method (Hermans and 

Auweraer, 1999). The natural excitation technique using cross-correlation functions in 

time domain has been a very powerful tool for the modal analysis of structures under 

ambient excitation. The peak-picking method has been a typical frequency-domain 

method on response-only, but it suffers from some disadvantages. For example, the 

modes of the structure should be sufficiently far apart and requires a lot of engineering 

skills to select the peaks that correspond to system resonances. Although the curve-fitting 

technique can eliminate these disadvantages, it often meets the minimization problem that 

is strongly non-linear and methods of linear algebra are not directly applicable to get the 

solution.  
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 In Chapter 5, the author has developed an approach for damage assessment 

making use of the unit impulse response function of a structure in the wavelet domain. 

This Chapter attempts to extent this method with the structure under ambient excitation 

as experienced by most of the large-scale structures. Firstly, covariance of acceleration 

responses is computed based on the unit impulse response function. Then, the wavelet 

packet energy of covariance of measured acceleration responses of structures under 

ambient excitation was adopted for damage detection assuming that the ambient 

excitation is of white noise distribution.  

 

6.2 Covariance of Responses under Ambient Excitation 

 The covariance of responses from ambient excitation is expressed explicitly as a 

function of the impulse response function of the system under single or multiple ambient 

excitations. The sensitivity of the covariance of responses with respect to the physical 

parameters of the structure is derived analytically. Two numerical examples are studied 

to illustrate the accuracy of the proposed formulation on the correlation functions with 

accurate results. 

 

6.2.1 Covariance of Measured Responses 

 The equation of motion of a N  DOFs damped structural system under general 

excitation from the th DOF is k

    (6.1) ( )
•• •

+ + =M x Cx Kx Dk kF t

where is the excitation force at k th DOF. If the system has zero initial conditions, 

the solution of Equation (6.1) can be expressed as,  

)(tFk
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   (6.2) ∫ ∞−
−=

t

kkk dFthtx τττ )()()(

where is the vector of impulse response of the system under a unit impulse 

excitation at the k th DOF. The measured acceleration responses  from location

)(thk

)(tx pk

••

p  

at time  and from location at time t )τ
••

xqk ( +t q τ+t  are respectively, 

∫ ∞−

••••

⋅−=
t

kpkpk dFthtx σσσ )()()( ,            (6.3) ∫
+

∞−

••••

⋅−+=+
τ

σσσττ
t

kqkqk dFthtx )()()(

The cross-correlation function )(τpqkR  relating the two measured responses is given by 

Bendat and Piersol (1980) as 

   (6.4) 
⎭
⎬
⎫

⎩
⎨
⎧ +=

••••

)t(x)t(xE)(R qkpkpqk ττ

where indicates the expectation operator. Equation (6.4) can further be written as, { }E

  
)tn(x)tn(x

NN
1lim

dt)t(x)t(x
T
1lim)(R

qk

NN

0n
pk

NN

T

0
qkpk

Tpqk

τ

ττ

+Δ⋅Δ⋅=

+=

••

=

••

∞→

••••

∞→

∑

∫
 (6.5) 

where NN is the number of data point within the duration T under studied. The cross-

correlation function )(τpqkR  is then obtained from two measured responses of a structure. 

 

6.2.2 Covariance of Responses based on the Structural System  

Under single random excitation 

 Alternatively, )(τpqkR  can be formulated in terms of the physical structural 

parameters of the system. The accelerations )  and )  are calculated for the  (tx pk

••

 ( τ+
••

txqk

 224



N DOFs damped structural system defined by Equation (6.1) using Equation (6.2). 

Substituting the calculated accelerations into Equation (6.4), we have, 

⎭
⎬
⎫

⎩
⎨
⎧ ⋅−+⋅−= ∫ ∫∞−

+

∞−

••••t t
22k2qk11k1pkpqk d)(F)t(hd)(F)t(hE)(R

τ
σσστσσστ  (6.6) 

 With random excitation, )(•kF is random in Equation (6.6), and the equation can 

be re-written as, 

  (6.7) 212k1k

t t

2qk1pkpqk dd))(F)(F(E)t(h)t(h)(R σσσσστστ
τ

∫ ∫
∞−

+

∞−

••••

⋅−+−=

kF

F

is assumed to be of white noise distribution, the autocorrelation function 

of becomes, k

)())()(( 2121 σσδσσ −= kkk SFFE  (6.8)   

where  is a constant and kS )(tδ  is the Dirac delta function. Substituting Equation (6.8) 

into (6.7) with ∫ , we have 
+∞

∞−
)0()t()t(f δ = fdt

  (6.9a) 

∫

∫ ∫

∞−

••••

∞−

+

∞−

••••

−+−=

−⋅−+−=

t
11qk1pkk

t t
2212qk11pkkpqk

d)t(h)t(hS

d)()t(hd)t(hS)(R

σστσ

σσσδστσστ
τ

or,   (6.9b) ∫
∞+ ••••

+=
0

qkpkkpqk dt)t(h)t(hS)(R ττ

 It should be noted that is an intrinsic function of the structure and is 

dependent only on the excitation location. Equation (6.9b) also shows that 

)(th pk

••

)(τpqkR  has 

the same property as . The auto-correlation function can also be derived in the 

same way by putting q=p in Equation (6.9). Equation (6.9b) can then be computed 

directly by integration.   

)(th pk

••
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 )(τpqkR

(hqk

••

can also be obtained by discrete wavelet transform. Applying DWT to 

 and respectively, we can get, )(th pk

••

)t+τ

   (6.10) )2()()()( 2,1,0, lthththth j
DWT

lpk

DWT

pk

DWT

pkpk j −+++= +

••••••••

ψψϕ

  (6.11) )2()()()()()()( 2,1,0, lthththth j
DWT

lqk

DWT

qk

DWT

qkqk j −+++=+ +

••••••••

ψτψτϕττ

Substituting Equations (6.10) and (6.11) into Equation (6.9b), we have 

∫
∞+

+

••••••

+

••••••

−⋅++⋅+⋅

−⋅++⋅+⋅
=

0

2,1,0,

2,1,0,

))2()()()()()((

))2()()((
)(
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j
DWT
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DWT

qk

DWT

qk

j
DWT

lpk

DWT

pk

DWT

pk
kpqk

j

j

ψτψτϕτ

ψψϕ
τ (6.12) 

Because of the orthogonal condition of the wavelets described in Equation (3.12), 

Equation (6.12) can be expressed as,  

)2/)(hh)(hh)(hh(S)(R j
DWT

lj2,qk

DWT

lj2,pk

DWT

1,qk

DWT

1,pk

DWT

0,qk

DWT

0,pkkpqk ττττ +

••

+

••••••••••

+++=  (6.13) 

Rewriting in matrix form, we have the cross-correlation function expressed in terms of 

the discrete wavelet coefficient as 

  
•• ••

=R h h
DWT DWT

qk pkpqk kS  (6.14) 

where  
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This formulation relates the cross-correlation function with the physical structural system 

via the impulse response function. 
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Under multiple random excitations 

 When the N DOFs damped structural system is under multiple excitations, 

Equation (6.1) can be written as, 

   (6.15) 1 1 2 2( ) ( ) ( )
•• •

+ + = + +M x Cx Kx D D DN NF t F t F t

where , with the i th element in D  equals one and others equal 

zero. If there is no excitation at the i th DOF of the structure

[0,0, ,1, ,0]=D T
i i

0)( =tFi . Based on linear 

superposition theory and from zero initial conditions, Equation (6.3) gives, 
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 (6.16) 

where and are the acceleration responses from locations )(tx p

••

)(txq

••

p and q respectively, 

and are unit impulse acceleration responses at time t from locations )(th pi

••

)(thqi

••

p and 

respectively. Then the cross-correlation functions of and can be obtained 

similar to Equation (6.6) as, 

q )(tx p

••

)τ
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x ( +tq

⎭
⎬
⎫

⎩
⎨
⎧
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σσστσσστ (6.17a) 

Equation (6.17a) can be rewritten similar to Equation (6.7) as, 

21

N

1i

N

1j

t t
2j1i2qj1pipqk dd))(F)(F(E)t(h)t(h)(R σσσσσσττ

τ
∑∑∫ ∫
= =

+

∞− ∞−

••••

−−+=  (6.17b) 

 With random excitation, )( 1σiF  and )( 2σjF are white noise functions, and we 

have, 
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)()())()(( 2121 σσδδσσ −−= jiSFFE iji  (6.18)   

where is a constant determined from the amplitude level of the random excitation. 

Substituting Equation (6.18) into Equation (6.17b), we have, 

iS

21
1 1
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Considering the property of the Dirac delta function, Equation (6.17c) can be written as, 

   (6.17d) ∑ ∫
=

∞+ ••••

+=
N

1k
0

qkpkkpq dt)t(h)t(hS)(R ττ

Comparing Equation (6.17d) with (6.9b), Equation (6.9b) is a special case in Equation 

(6.17d) with ( ) indicating single excitation. Equation (6.17d) can further be 

simplified similar to Equation (6.14) as, 
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6.2.3 Sensitivity of the Cross-Correlation Function  

 The sensitivity of the cross-correlation function )(τpqR can be obtained from 

Equation (6.17d) as, 
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where 
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)(  are obtained numerically from Equation (6.4). 

 Alternatively the sensitivity can be obtained from Equation (6.19) with the aid of 

DWT as,  
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where  )(
i

qk

i

DWT

qk hDWTh
αα ∂

∂
=

∂
∂

••••

 and )(
i

pk

i

DWT

pk hDWTh
αα ∂

∂
=

∂
∂

••••

 indicating that the wavelet 

coefficient of the sensitivity 
i

qkh
α∂

∂
••

is equal to the first derivative of the wavelet 

coefficients of with respect to the system parameterqkh
••

iα (Law and Li, 2006). 

 

6.2.4 Numerical Experiments 

 The accuracy of the covariance in terms of the structural parameters is checked in 

the following examples. The first structure is a one-story plane frame, and the second one 

is a 31-bar plane truss. The two structures are all subjected to ambient excitations. The 

“measured” acceleration responses are obtained by Newmark method instead of from 

experiment. The covariance obtained from signal processing is compared with the 

covariance computed from the unit impulse response function.  

 The one-story plane frame structure is shown in Figure 6.1. The columns are 1.2 

m high and the cross beam is 0.6 m long, and each member has 10mm depth and 20mm 

 229



breadth uniform rectangular cross-section. The modulus of elasticity and the mass density 

of materials are respectively 69×109 N/m2 and 2700 . Random excitation is applied 

vertically at node 6 with a magnitude of 10N. The horizontal accelerations at nodes 9 and 

10 are collected for the study.  

3/ mkg

 The finite element model of the structure consists of four and three equal beam-

column elements in each vertical and horizontal member respectively. The translational 

and rotational restraints at the supports are represented by large stiffness of 10105.1 ×  

kN/m and   kN-m/rad respectively. Rayleigh damping is adopted for the system 

with 

9105.1 ×

01.01 =ξ and 02.02 =ξ for the first two modes. The first 12 natural frequencies of the 

structure are 13.09, 57.31, 76.7, 152.4, 196.5, 227.3, 374.7, 382.5, 580.2, 699.3, 765.3 

and 983.3 Hz . The sampling frequency is 2000 Hz . In order to obtain stationary 

statistical data, the first 70 seconds responses after load application are collected to 

compute the covariance. The acceleration responses are also random in nature. The auto- 

and cross-correlations of the two acceleration responses for the first 0.25 s at nodes 9 and 

10 are shown in Figure 6.2. The solid line denotes the results from the proposed 

formulation in Equation (6.14), while the dashed line denotes the results obtained from 

signal processing of the measured responses (Equation (6.5)). The auto- and cross- 

correlations obtained from the measured responses are very close to those obtained from 

the proposed formulation with the norm of the percentage difference equal to 2.36%, 

1.8%, 2.14% for the auto-correlations at nodes 9 and 10 and their cross-correlation 

function as shown in Fig. 6.2. This confirms that the accuracy of the proposed 

formulation of the correlation functions in terms of the unit impulse response function of 

the system.  
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 The second structure of a 31-bar plane truss is shown in Figure 6.3. It is modeled 

with 31 truss elements without internal nodes in the bars giving 28 degrees-of-freedom. 

The cross-sectional area of the bar is 0.0025 . The translational restraints at the 

supports are both represented by large stiffnesses of kN/m. Rayleigh damping is 

adopted for the system with

2m

9100.1 ×

01.01 =ξ and 01.02 =ξ for the first two modes. The first 12 

natural frequencies of the structure are 36.415, 75.839, 133.608, 222.904, 249.323, 

358.011, 372.509, 441.722, 477.834, 507.943, 538.1246 and 547.393 Hz . Three random 

excitations are applied in the horizontal and vertical direction at node 1 and in the vertical 

direction at node 14 as shown in Figure 6.3 to simulate ambient excitation at the supports. 

The vector of amplitude level S  of the excitation inputs 

is with non-zero values at the three DOFs under excitation. 

Vertical accelerations at nodes 7 and 11 are measured for the analysis. The sampling 

frequency is 2000

[ TS 1000...0100100=

H

]

z . The first 70 seconds responses after load application are recorded 

to compute the covariance. The auto- and cross-correlations of the two acceleration 

responses at nodes 7 and 11 are shown in Figure 6.4. The solid line denotes that the 

values calculated from the proposed formulation with multiple inputs from Equation 

(6.19), while the dashed line denotes the results obtained from signal processing of the 

measured responses. The auto- and cross- correlations obtained from the measured 

responses are compared with those obtained from the proposed formulation for multiple 

inputs with the norm of the percentage difference of 1.78%, 1.63% and 2.37% for the 

auto-correlations at nodes 7 and 11 and the cross-correlation as shown in Figure 6.4. It 

can be seen that large differences exist between the calculated and measured auto-

correlation from Node 11 especially for the long duration response from Figure 6.4(b). 
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This can be explained that the covariances are computed from Equation (6.5) which 

denotes that a longer period T will give the better results. The results shown in Figure 

6.4(b) are still not stationary, and the time-history responses of period  much longer 

than 70 seconds are required to compute the accurate covariance. On the whole, this case 

of study still demonstrates the accuracy of the correlation function in terms of the unit 

impulse response function when under multiple ambient excitation.  

T

 

6.2.5 Conclusions 

 The covariance of responses of a dynamic system under ambient excitation has 

been shown to be a function of the physical structural parameters of the system in terms 

of its unit impulse response functions. The accuracy of the proposed formulation with 

good results was checked by two numerical examples. Since most of the large-scale 

structures are experiencing ambient excitation under service, the proposed formulation on 

the auto- and cross- correlation functions provides a possibility of in-service system 

identification or damage detection of the structure. It is noted that the covariance 

inherently contains measurement noise contaminating the identified results. The abundant 

random response provides unlimited data for repeated measurement to minimize the 

noise effect. 

 

6.3 Condition Assessment of Structures under Ambient Excitation 

 In this section, a damage index is proposed for damage localization based on the 

elemental modal strain energy changes of the structure under ambient excitation which is 

assumed to be white noise. The damage severity quantification relies on the measured 
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acceleration responses of the structure before and after damage occurrence. The 

covariance of “measured” acceleration responses is simulated from finite element 

analysis. Wavelet packet transform (WPT) is applied to the covariance functions to find 

the wavelet packet energy. The sensitivity of this packet energy with respect to local 

damages is used in a linear identification equation for solving the unknowns. A five-bay 

cantilever truss structure is used to demonstrate the efficiency of the method with three 

damage scenarios. A nine-bay experimental structure is also tested with the proposed 

method using incomplete and noisy measurements and with initial model error. 

 

6.3.1 The Wavelet Packet Energy of Cross-covariance of Acceleration Responses 

 The equation of motion can be rewritten for a N DOFs damped structural system 

under ground ambient excitation as 

   ( )
•• • ••

+ + = −M x Cx Kx ML sx t  (6.22) 

where is the ground acceleration. If the system has zero initial conditions, the solution 

of Equation (6.22) can be expressed as,  

sx
••

  ( ) ( ) ( )
t

p p sx t h t x dτ τ τ
•• •• ••

−∞
= −∫  (6.23)  

where ( )ph τ
••

is the impulse response of the p th DOF of the system under the unit impulse 

excitation. ( )px t
••

is the acceleration responses from p th DOF at time . Assuming the 

system is under ambient excitation, 

t

sx
••

is assumed to be of white noise distribution, and 

the autocorrelation function of sx
••

 is similar to Equation (6.8) as, 

  1 2 1( ( ) ( )) ( )s sE x x S 2σ σ δ σ σ
•• ••

= −  (6.24) 
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where  is a constant defining the magnitude of excitation of S sx
••

 when σ1=σ2, and )(tδ  

is the Dirac delta function. Then the cross-covariance of the accelerations from p th and 

th DOFs of the system, q ( )pqR τ , is as, 

  
0

( ) ( ) ( )p qpqR S h t h t dtτ τ
•• ••+∞

= ∫ +  (6.25) 

The corresponding sensitivity of the cross-correlation function )(τpqR with respect to the 

structural parameter iα can be obtained in the same way as Equation (6.20) as, 

  
0 0

( ) ( ) ( )( ( ) ( )p qpq
q p

i i i

R h t h tS h t dt h t
τ ττ

α α α

•• ••
•• ••+∞ +∞∂ ∂ ∂

= + +
∂ ∂ ∂∫ ∫ )dt+  (6.26)  

where ( )p

i

h t
α

••

∂
∂

and (q

i

h t )τ
α

••

∂ +
∂

 are obtained numerically by the method described in 

Section 5.2.1.  

 The covariance of acceleration response obtained above can be represented by 

Daubechies (db4) wavelet basis function through the dyadic wavelet transformation. The 

bandwidths of each level of the dyadic wavelet transform are octaves. The wavelet packet 

transform (WPT) component function of the covariance ( )pqR t can be reconstructed from 

the wavelet packet coefficients as 

  , , ,( ) ( ) ( )ψ
+∞

=−∞

= = =∑ Q c Q Di i i i i i i
pq j j k j k j j j j pq

k
R t c t R t   (6.27)   

where ,0 ,2 ,[ ]ψ ψ ψ=Qi i i i
j j j j l ,               )/,,,( 12N10l j −=

and , ,2 1
1

+
+ =D H Di j

j j
i 2 1 1

1
+ +
+ =D G Di j

j
i
j

0 1
1 =D H , 1 1

1 =D G , 1+H j  and 1+G j  are matrices 

formed from the low-pass and high-pass filter functions. c are the wavelet packet i
j
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coefficients for the covariance response with ( )=c Di i
j j pqR t . The i th WPT component 

energy of the covariance ( )pqR t  at the j th level of decomposition, i
jE , is defined as, 

   (6.28) 
, ,( )

( )Q D R

T i
pq j

T i i
j j pq

( )

( )

= R R

D

R

i i
q j

T i i
p j j

pq pq

=

=

E

)Di i
j j

i
jE

R Q

R T

j p

q

T i
j

where  is not a function of the signal and is determined only by the 

wavelet type.  

( ) (=T Q D Qi i i T
j j j

 The sensitivity of with respect to the structural parameters  is computed as, iα

  2
α α
∂ ∂

∂ ∂

i T
j p

α α
∂ ∂

=
∂ ∂

R R
T R R T T R

T
q pq pqi T i= +

R i
j pq pq j j

i i

E
pq

i i

 (6.29) 

where and RT
pq α

∂

∂

RT
pq

i

 can be obtained from Equations (6.25) and (6.26). The sensitivity 

matrix S can then be obtained as, p

  
0 1 2 1

α α α

−⎡ ⎤∂ ∂ ∂
= ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

j

j j j

i i i

E E E
S p  (6.30) 

and the damage detection can then be performed as follows. 

 

6.3.2 Damage Identification 

Damage localization based on mode shape 

The structural modal parameters (mode shape and natural frequencies) can be 

identified from the ambient vibration responses using the Natural Excitation Technique 

(Next) (James et al, 1995) in conjunction with the Eigensystem Realization Algorithm 

(ERA) (Juang and Pappa, 1985), or using the conventional peak-picking technique. The 
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obtained mode shapesΦ  are then used for the damage localization as shown below. Since 

mode shapes of higher order are usually obtained with difficulties in real measurement, 

only the first mode shape is employed for the damage localization. 

The modal strain energy of the i th element corresponding to the first mode shape 

from the healthy structure is defined as 

  (6.31) 
11 =Φ K ΦT

i is 1

where  is the th elemental stiffness matrix and iK i 1Φ is the first mode shape of the 

system. Then the total modal strain energy of the structure corresponding to the first 

mode is obtained as, 

   (6.32) 
11 =Φ KΦTs 1

 The fractional contribution to the modal strain energy from the i th member is 

denoted as, 

  1
1

1

i
i

sF
s

=  (6.33) 

Similarly, for a damaged structure, the corresponding  is defined as, 1
d
iF

  1
1

1

d
d i
i d

sF
s

=  (6.34) 

where   ( )11 = Φ K Φ
Td d d

is
1

d
i  (6.35a) 

and   ( )11 = Φ K Φ
Td d ds

1

d  (6.36) 

where K  and are the i th elemental stiffness matrix and the global stiffness matrix of 

the damaged structure respectively. is the first mode shape of the damaged structure. 

d
i K d

1
Φd

 Equation (6.35a) can be expressed as, 
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  ( )11 α= Φ K Φ
Td d

i i is
1

d

i

 (6.35b) 

For the case with relatively small damage in the structure, it can be assumed that 

   (6.37) 1 1
d

iF F≈

We further assume that   for the cases with small local damages with dK K≈

  ( ) ( )1 1 11 = ≈Φ K Φ Φ KΦ
Td d d d ds

1

T d  (6.38) 

Substituting Equations (6.31) to (6.36) into Equation (6.37) yields a damage index as, 

  
( )

( )
1 1

1 1 1

1

1

( )(
1

( )(
αΔ = −

Φ K Φ Φ KΦ

Φ K Φ Φ KΦ

TT d
i

i Td d T
i

1
)

)

d

 (6.39) 

 It is noted that the above formulation on the damage index needs full 

measurement to obtain the mode shape. In the case of incomplete measurement, the 

measured information can be expanded to the full mode shape, or, only the measured 

information is taken into account in Equation (6.39). Both of these practices would lead 

to errors of different extent which is a feature with mode shape-based approach. It should 

be stated here that the localization stage serves to reduce the candidate set of possible 

damage elements for the next stage of damage quantification. Other frequency-domain or 

time-domain methods can also be used for this purpose. 

 

Damage severity identification based on the sensitivity of the covariance 

 Because two assumptions have been made in Equations (6.37) and (6.38), the 

damage severity obtained from Equation (6.39) is not accurate. A refined damage 

severity quantification based on the sensitivity of the covariance with the reduced set of 

possible damaged elements is pursued here. We consider a general structure which 
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behaves linearly before and after the occurrence of damage for the illustration of the 

proposed approach.  

 The damage quantification includes two separate phases of updating the analytical 

model and identifying local damages. Each phase consists of the two stages of damage 

localization and quantification. and  are vectors of the WPT component 

energy of the covariance of the acceleration responses at the 

0( )jE ( )j dE

p th and q th DOFs of the 

intact and damaged structures respectively. is the sensitivity matrix of the WPT 

component energy calculated from the intact state of the system using Equation (6.30). 

pS

αΔ  is the vector of fractional change of the parameters of the system. We have the 

identification equation as 

  0( ) ( )⋅Δ = −S α E Ep j d j  (6.40) 

 Since the solution of Equation (6.40) is ill-conditioned, regularization is used with 

the L-curve method for determining the optimal regularization parameter.   

 The initial analytical model is adopted for model updating in the first stage of the 

study. Vector  and matrix are obtained from this initial model. Acceleration 

measurement from the intact state of the structure is obtained, and the covariance as well 

as its WPT component energy vector 

0( )E j S p

( )E j d  is computed. The initial model is then 

updated in Equation (6.40) and the corresponding and its sensitivity S are again 

computed from the updated model for the next iteration. The final updated analytical 

model is obtained when both of the following two criteria are met, 

0( )E j p

1

1

{ } { }
1

{ }
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+
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where  refers to the m th iteration, and toler1 and toler2 are the two specified criteria 

of convergence.  

m

 Then the updated analytical model is used to represent the first (intact) state of the 

structure and the damaged state of the real structure is regarded as the second state in the 

identification. Measurement from the damaged state is obtained, and the same iteration 

computations as in the first stage are carried out. The final set of identified parameter 

increments correspond to the changes occurred in between the intact and damaged states 

of the structure. 

 

6.3.3 Numerical Study 

 A five-bay three-dimensional frame structure as shown in Figure 4.17 serves for 

the numerical study. The finite element model consists of thirty-seven three-dimensional 

Euler beam elements and seventeen nodes. The length of all the horizontal, vertical and 

diagonal tube members between the centers of two adjacent nodes is exactly 0.5m. The 

structure orientates horizontally and is fixed into a rigid support at three nodes at one end. 

Table 4.8 gives a summary of the main material and geometrical properties of the 

members of the frame structure. Each node has six DOFs, and altogether there are 102 

DOFs for the whole structure. 

 The translational and rotational restraints at the supports are represented by large 

stiffnesses of  kN/m and   kN-m/rad respectively in six directions. 

Rayleigh damping is adopted for the system with ξ1=0.01 and ξ2=0.005 for the first two 

modes. The first 12 natural frequencies of the intact structure are 9.21, 28.26, 33.71, 

11105.1 × 10105.1 ×
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49.01, 49.72, 71.02, 89.80, 153.93, 194.33, 209.80, 256.51 and 274.82  from the 

eigenvalue analysis of the structure. The sampling frequency is 500 . 

Hz

Hz

 The finite element model of the structure is used directly for the identification 

without updating. The structure is subject to an ideal white noise support motion in the y-

direction with zero mean and a magnitude of 0.01 . The first mode shape is 

obtained before and after damage occurrence for localizing the damages. The acceleration 

responses from nodes 5 and 6 in the y-direction are calculated for a duration of 300 

seconds for both the healthy and the damaged structure to simulate the “measured” 

acceleration responses for the calculation of the cross-covariance. Three damage cases 

shown in Table 6.1 are studied to illustrate the proposed approach.  

2 4/m s

 The flexural stiffness of element 2 is reduced by 10% in damage Scenario 1. In 

order to analyze the error introduced by the assumption in Equation (6.37), the fractional 

contributions of the modal strain energy ,  for both the intact and the damage states 

respectively are computed and compared in 

1iF 1
d
iF

( )1 1 1/d
i iF F F− i  and the result is shown in 

Figure 6.5(a). It shows that the relative error caused by the assumption is less than 4% in 

this case. The damage localization vector is obtained by using all the translational and 

rotational DOFs of the first mode shape. The vector shown in Figure 6.5(b) is not 

accurate although it still can identify the range of the damage location. However there 

exist false alarms in elements 7, 22, 23, 24 and 25. These elements are noted to be 

adjacent to and in the same bay as the damaged element. The cross-covariance is 

calculated from the “measured” acceleration responses and is decomposed by Daubechies 

(db4) wavelet in four levels with 16 wavelet packets. All the 16 WPT component energy 

constitute the measurement vector and sixteen equations are used in the identification. 
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Elements 2, 7, 22, 23, 24 and 25 are chosen to be the possible candidates for the next 

stage of quantification. The identified results from using the covariance sensitivity 

approach in Equation (6.40) are shown in Figure 6.5(c) with 9.82%, 0.14%, -0.38%, 

0.52%, -0.36% and 0.34% of stiffness reduction in Elements 2, 7, 22, 23, 24 and 25 

respectively, indicating the damage severity of element 2 can be obtained accurately 

without false alarming in other elements. 

 To study the case of multiple damages in different types of elements, damage 

Scenario 2 is studied where the flexural stiffness of elements 12, 16, 25 are reduced by 

5% and that in element 27 is reduced by 10%. The fractional contribution  is 

computed and compared with  as for damage Scenario 1. The error introduced by the 

assumption in Equation (6.37) has a maximum of 4.96% as shown in Figure 6.6(a). The 

damage localization vector is computed similarly and shown in Figure 6.6(b) from which 

it can be seen that the assumption is valid but it affects the accuracy of the identified 

results. The identified damage localization vector contains both the real damage locations 

and false alarms in adjacent elements. These results are still useful for the damage 

quantification because the group of possible candidate has been reduced. Elements 12, 16, 

24, 25, 26 and 27 are chosen as the possible damage elements for the quantification 

identification. The identified damage magnitudes are shown in Figure 6.6(c) with 4.95%, 

5.02%, 0.05%, 4.96%, -0.01% and 9.99% of the flexural stiffness reduction in elements 

12, 16, 24, 25, 26 and 27 respectively,  indicating that the identified value are very 

accurate.  

1
d
iF

1iF

 Despite the capability of the cross-covariance computation in reducing the noise 

effect, 10% noise is added to the “measured” acceleration responses while the damage 
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elements and severity are the same as in Scenario 2. White noise is added to the 

calculated accelerations to simulate the polluted measurements as described in Equation 

(3.42). This forms Scenario 3 in Table 6.1. The identified damage magnitudes are also 

shown in Figure 6.6(c) for comparison with those from without noise. The identified 

stiffness reduction in elements 12, 16, 24, 25, 26 and 27 are 4.12%, 5.29%, 0.72%, 4.25%, 

-0.07% and 9.90% respectively. The identified results are noted to be only slightly 

affected with noise in the “measured” acceleration.  

 It is always noted that the effect of model error would smear the identified 

damages throughout the structure with many of the existing damage quantification 

methods giving false alarms in other undamaged elements. This is a matter of accuracy 

with the identification method. Experiences with the author when using the wavelet 

approach for the damage identification (Law and Li, 2006) show that model errors related 

to the stiffness terms of the structure can also be identified as local damages while those 

related to the mass or damping terms would not show up clearly because of the lack of a 

clear relationship between the measured responses and these parameters with existing 

methods.  

 The results shown in Figures 6.5 and 6.6 indicate that the covariance approach can 

quantify local damage accurately provided that the number of unknowns in the 

identification is small. This can be improved by using more sets of covariance responses 

from different pairs of measured acceleration time histories. However the inclusion of the 

localization stage could eliminate some intact elements leaving a smaller candidate set of 

unknowns for a more accurate damage quantification in the next stage. 
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 In the case of a structure where a few critical components are needed to be 

monitored continuously, the proposed covariance approach would be most suitable 

provided that a satisfactory finite element model of the intact structure has been updated 

prior to the implementation of the structural health monitoring. 

 

6.3.4 Experimental Verification  

The Structure 

 A nine-bay three-dimensional frame structure shown in Figure 4.21(a) serves for 

the experimental study. It is fabricated in the laboratory using Meroform M12 

construction system. It consists of sixty-nine 22mm diameter alloy steel tubes jointed 

together by twenty-nine standard Meroform ball nodes. Each tube is fitted with a screwed 

end connector which, when tightened into the node, also clamps the tube by means of an 

internal compression fitting. All the connection bolts are tightened with the same 

torsional moment to avoid asymmetry or nonlinear effects caused by man-made assembly 

errors. The experimental setup is also shown in Figure 4.21(a) and the support is shown 

in Figure 4.21(b). The finite element model of the structure is shown in Figure 4.22. The 

structure has the same material and geometric properties as shown in Table 4.8.  

 

The Modal test 

 The modal test on the both the intact and damaged structure is performed using 

SIMO method with a dynamic hammer model B&K 8202 hitting on element 10 along the 

y-direction and close to node 11 of the frame. A total of 52 translation DOFs at the 

unconstrained nodes are measured. An additional mass of 72 g weight is added to each 
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joint to balance the effect of the moving accelerometers. The sampling frequency is 2000 

Hz. The responses are low-pass filtered at 1000 Hz, and a commercial data logging 

system INV303 with the associated data analysis system DASP2003 are used in the data 

acquisition. Frequency response function (FRF) is calculated for all the measured 

responses, and the first twelve natural frequencies and modal damping ratios averaged 

over twenty FRFs are listed in the second and third columns of Table 6.2. The 

corresponding measured mode shapes are given in Figure 5.7. Only a few pure bending 

modes are identified while most of them have coupled bending and torsional vibrations.  

 

Modelling of the structure  

 The Meroform ball joints have been modeled as semi-rigid joints, and a finite 

element model of a hybrid beam with semi-rigid end connections has been proposed 

(Law et al, 2001). This section adopts this hybrid beam model for the model 

improvement of the structure. The initial model assumes a large fixity factor p for the 

rotational stiffness of the joints which is taken equal to 0.999 with 1.0 equal to that for a 

rigid joint.  

 The total weight of the ball and half of the weight of the bolt connecting the ball 

with the frame element are placed at each node as lump mass. The other half of the 

weight of the bolt is considered as part of the finite element. In additional, another lump 

mass of 72 g weight is added to each node to represent the weight of the moving 

accelerometers.   

 

Ambient vibration test for damage detection 
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 The structure is excited with a random white noise signal through a LING PO 300 

exciter approximately at the centroid of the support in the y-direction. The support is very 

rigid and heavy compared with the frame and it is hold down to the strong floor with four 

steel bolts. The acceleration responses of the support along the three principal directions 

are measured. Only the response in the y-direction is significant and those in the other 

two directions are very small to be neglected. Nine accelerometers are placed at nodes 2 

to 10 in the y-direction for recording the acceleration response time histories. The 

sampling frequency is 2000 Hz and the responses for a duration of 800s are used to 

calculate the auto-covariance. The auto-covariance of acceleration time history at the 

support in the y-direction has a magnitude of 0.0031 at t=0 and small values for 

other time instances as shown in Figure 6.7(a) indicating a close to white noise excitation 

at the support (Equation (6.24)). The auto-covariance of acceleration time history from 

Node 8 before and after the damage occurrence is shown in Figures 6.7(b) and 6.7(c) 

respectively. The covariances are noted to be relatively smooth with a low noise level. 

2 4/m s

 

Damage scenarios 

 After performing the dynamic test on the intact frame structure, local faults are 

introduced by replacing three intact members with damaged ones. The artificial damage 

is of two types. Type I is a perforated slot cut in the central length of the member. The 

length of slot is 13.7 cm, and the remaining depth of the tube in the damaged cross-

section is 14.375 mm. Type II is the removal of a layer of material from the surface of the 

member. The external diameter of the tube is reduced from 22.02mm to 21.47mm, and 

the length of the weakened section is 202 mm, located in the middle of the beam leaving 
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99mm and 75mm length of original tube cross-section on both sides. Figure 4.21(c) gives 

a close up view of the damaged frame members. Type I damage is located in element 10 

and Type II damage is located in elements 27 and 68. The equivalent damages computed 

by Guyon method are 5% and 9.5% reduction in the modulus of elasticity of element 10 

and elements 27 and 68 respectively.  

 

Model improvement for damage detection 

 The two-stage approach is adopted for the damage detection. The first stage 

updates the rotational stiffness at the joints to obtain an improved analytical model for the 

intact structure. Nine y-direction acceleration responses obtained from nodes 2 to 10 are 

measured and the corresponding auto-covariance WPT energy components are computed 

for use in Equation (6.40). There are 69×6=414 unknown rotational stiffnesses in the 

identification. The first 2000 data points of auto-covariance of each acceleration response 

are decomposed into six levels of Daubechies Db4 wavelet packets to have 64 covariance 

WPT energy components, and each packet has the same frequency bandwidth of 

15.625Hz. All the 64 WPT energy components are used in the experimental identification 

procedure and there are 9×64=576 equations in Equation (6.40). The measured modal 

damping ratios from the intact structure have been used in Equation (6.22) for the 

computation of the analytical auto-covariance. The updated rotational stiffness do not 

differ too much from the original value with the largest change in member 15 at node 17 

with the updated p=0.9 for the x-axis rotational stiffness. This updated model is then 

considered accurate for the next stage of damage assessment. 
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 The second stage updates the local faults in all the members of the structure in 

terms of their modulus of elasticity. The damage localization is performed firstly. The 

measured first mode shape with 52 translational DOFs from the intact and the damaged 

states of the structure are expanded to the full degrees-of-freedom by the dynamic 

condensation method with Gauss-Jordan elimination (Mario, 1997) and the obtained 

damage localization vector is shown in Figure 6.8(a) indicating that the real damaged 

members can be identified but with false alarming in other undamaged members because 

of the error due to measurement noise and the mode shape expansion.    

 The auto-covariance calculated from the y-direction response from nodes 2 and 10 

are used in Equation (6.40) for the identification. There are 26 unknowns shown in Table 

6.3 which are the suspected damaged elements shown in Figure 6.8(a) in the 

identification. The first 2000 data points of auto-covariance of each response are used and 

all 64×9=576 WPT energy components are used in Equation (6.40). The identified 

damage extent for all the elements are shown in Figure 6.8(b). The identified reduction in 

the modulus of elasticity in the damaged members are 4.76%, 7.09% and 6.73% for 

elements 10, 27 and 68 respectively which are fairly close to the values of 5%, 9.5% and 

9.5% respectively. There are false alarms in elements 9, 50, 67 shown in Table 6.3 with a 

reduction of more than 2% even though they are in fact undamaged.  

 Further attempt has been made in using accelerations from 3, 5 and 7 sensors in 

the same group of sensors in the identification. The accuracy of the identified results is 

poorer than the above one. The combination of accelerations in both the vertical and 

lateral directions may be a better one but it has not been studied due to limitations with 

the test results. It may be concluded from the limited study that the measurement noise 
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and model errors have a significant effect on the identification with the proposed 

identification method using random input excitation.   

 

6.4 Summaries 

 In this chapter, the covariance of responses of a dynamic system under ambient 

excitation has been shown to be a function of the physical structural parameters of the 

system in terms of its unit impulse response functions. A damage detection method is 

proposed based on the wavelet packet energy of the covariance calculated from the 

measured acceleration responses of structures under ambient excitation which is assumed 

to be white noise. Wavelet packet transform is applied to the covariance functions to find 

the wavelet packet energy. To reduce the number of the unknowns involved in the 

inverse problem, damage localization is carried out firstly using the elemental modal 

strain energy. The much reduced set of potential damage element then undergoes the next 

state of damage quantification. The proposed damage quantification method based on the 

sensitivity of the WPT energy of covariance has good capability in dealing with model 

error and measurement noise. A five-bay three-dimensional cantilever truss structure is 

used to demonstrate the efficiency of the method with three simulated damage cases, and 

a nine-bay three-dimensional frame structure is test in the laboratory with the proposed 

method. The identified results show that the method is applicable to locate and quantify 

local damages with incomplete and noisy measurement and with initial model error. 



 
Table 6.1 - Damage scenarios 

Scenario Damaged 
member 

Damage 
severity 

Noise in 
acceleration 
responses 

1 2th element 10% No 

2 12th ,16th , 25th 
and 27th element

5%, 5%, 5%, 
10% No 

3 12th, 16th, 25th 
and 27th element

5%, 5%, 5%, 
10% 10% 

 

 

 

Table 6.2 - The experimental natural frequencies (Hz) and damping ratio of the frame 
structure 

 
Measured 

intact damaged Mode 
type frequency

(Hz) 
damping 

ratio 
frequency

(Hz) 
damping 

ratio 
1H 5.196 0.443 5.216 0.196 

1V 10.942 0.928 10.794 0.418 

2H 15.172 0.282 15.166 0.251 

V+T 19.390 0.155 19.387 0.155 

3H 27.702 0.307 27.462 0.299 

H 39.815 0.335 39.127 0.346 

H 52.146 0.423 51.018 0.403 

2V 61.938 0.155 61.463 0.432 

H+T 65.806 0.258 64.142 0.253 

H+T 78.491 0.356 76.616 0.333 

T 87.287 0.908 89.277 0.333 

H+T 90.448 0.340 98.125 0.312 

Note: (2H) – second horizontal mode; (1V) –first vertical mode; (V+T)- coupled vertical and torsional 
mode. 
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Table 6.3 - The identified results on the suspected damaged elements 

Element No. 9 10 11 25 26 27 28 29 40 41 

Identified 
value (%) 2.23 4.76 -0.34 1.66 0.84 7.09 -1.02 1.12 -2.02 0.49

Element No. 44 45 48 49 50 52 55 57 60 61 
Identified 
value (%) -0.02 -0.15 0.04 -0.76 0.23 0.28 -0.34 0.06 -1.32 1.1 

Element No. 62 63 66 67 68 69     

Identified 
value (%) -0.04 1.48 -2.61 2.19 6.73 1.5     
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Figure 6.5 - Identified results for Damage Scenario 1 
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Figure 6.8 - Identified results for the experimental structure 
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CHAPTER 7  STRUCTURAL DAMAGE DETECTION 

USING STATISTICAL ANALYSIS WITH TIME SERIES 

DATA 

  

 In the previous chapters, deterministic damage detection methods based on time 

series data are presented. However, uncertainties always exist in the measured vibration 

data and in the analytical model, and the study of their effects to the damage detection 

methods is necessary. In this chapter, structural damage detection based on time series 

data and statistical analysis will be introduced.  

   

7.1. Introduction  

  In practice, noise always exists in the measured vibration data and there are also 

uncertainties with the initial analytical model (which will be used in the damage detection 

methods based on model updating) leading to incorrect damage identification. Many 

current research efforts are paid to the study of influence of uncertainty on the results of 

vibration based damage detection (Collins et al, 1974; Papadopoulas and Garcia, 1998; 

Beck and Au, 2002; Xia et al, 2002; Xia and Hao, 2003; Zhou et al, 2003). Some of them 

have considered the effect of uncertainty on the model updating (Papadopoulas and 

Garcia, 1998; Beck and Au, 2002) where measured statistical changes in the natural 

frequencies and mode shapes along with a correlated analytical stochastic finite element 

model are used to assess the integrity of a structure. Later, Xia et al (2002, 2003) 

developed a statistical damage identification algorithm based on changes of frequency 
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and mode shape to account for the effects of random noise on both the vibration data and 

finite element model. The statistics of the parameters are estimated by the perturbation 

method and verified with Monte Carlo technique. However all existing works are on the 

uncertainty with the system parameter and natural frequencies and mode shapes, and the 

effects of uncertainties from other practical influencing parameters of the system in a 

time domain damage identification algorithm are not considered yet. 

 A statistical method for the structural damage detection based on measured 

acceleration response with a reference model is proposed in this section. Uncertainties in 

the system parameters, such as the structural parameters of the finite element model, the 

excitation force acting on the structure and the measured acceleration response from the 

perturbed state of the structure are analyzed and the analytical formula are given. They 

are included in the study for the damage detection. Each of these uncertainties is assumed 

to have a zero mean and normally distributed statistical characteristics. The effect of each 

of these uncertainties on the assessment results is studied incrementally in an updating 

damage detection algorithm based on the response sensitivity approach. The probability 

density function of the stiffness parameters in both the intact and perturbed states are 

compared in a subsequent reliability assessment. A three-dimensional five-bay steel 

frame structure is studied for illustration. The damaged state is simulated with the loss of 

stiffness in two members. The mean value and standard deviation of the stiffness 

parameters are computed with the proposed method and they are compared with those 

from Monte Carlo technique. The probability of the identified local damage is then 

computed giving a probability prediction on the identified results. 
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7.2. Theoretical Formulation  

7.2.1 Damage Detection Procedure  

 The procedure of damage detection is described briefly as follows and it can be 

found in detail in reference (Lu and Law, 2007). The equation of motion of a N degrees-

of-freedom (DOFs) damped structural system under general excitation is given as, 

   (7.1) ( )
•• •

+ + =M x Cx Kx DF t

where M ,C , K  are the  mass, damping and stiffness matrices respectively. D  is 

the mapping vector relating the DOFs with the force input to the corresponding DOFs of 

the system. x , ,  are the 

NN ×

•

x
••

x 1N ×  displacement, velocity, acceleration vectors 

respectively. is the force excitation. x ,(F t)
•

x , 
••

x  can be computed from Equation (7.1) 

using a time-stepping integral method such as Newmark Method.  

 The damage identification equation from the damage identification method based 

on the acceleration response sensitivity (Lu and Law, 2007) is, 

 ⋅Δ = Δ = −S α x x x
ii ii ii

d u  (7.2) 

where
1 2α α

•• •• ••⎡ ⎤∂ ∂ ∂⎢=
⎢∂ ∂ ∂
⎣ ⎦

S "l l l

mα
⎥
⎥

x x x , which is the sensitivity matrix of the acceleration 

response lx
••

Δ

 with respect to the structural parameters. m is the number of the structural 

parameters to be identified and l denotes the location of the measured acceleration 

responses.  is the vector of fractional change in the stiffness of the system. x and x  

are vectors of the acceleration response at the lth DOF of the damaged and intact 

structures respectively. In general, the acceleration response x  from the intact structure 

α
ii

d
ii

u

ii
u
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is computed from an analytical model by dynamic analysis.  is measured directly from 

the damaged structure. The damage vector

x
ii

d

αΔ  can be obtained from Equation (7.2) using 

least-squares method as, 

   (7.3) 1( )− ST T (Δ = −α S S x x
ii ii

d u )

Here and are computed from the analytical model. After S x
ii

u Δα is obtained, the 

analytical model is updated and the computation of Equations (7.1-7.3) is updated until 

convergence.  

 

7.2.2 Uncertainties of the System 

 The above sensitivity algorithm has been developed basing on the assumption that 

both the finite element model and the measured dynamic characteristics are accurate. But 

in practice, errors in the damage detection procedure always exist which generally 

include the discretization error, configuration error, mechanical parameter errors and 

measurement errors. The errors that occur in the measured structural physical parameters 

and the measured vibration characteristics may be divided into two categories: biased 

(systematic) error and random error. Biased error is from the malfunction of equipment 

and/or environment sources. It may not have zero mean and have different types of 

distributions. Random error, on the other hand, has zero mean and is usually modeled as 

normally distributed (Ang and Tang, 1975).   

 In the above sensitivity method, there exist several types of random errors which 

arise from different sources. Since an initial analytical model is used, random errors will 

be introduced into the structural parameters which form the stiffness matrix, mass matrix 

and even the damping matrix leading to errors in the damage detection results. On the 
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other hand, the acceleration response from the reference analytical model of the structure 

is computed with the same force excitation as in the damaged state, the force excitation 

needs to be measured from the damaged structure and noise will be incurred during the 

measurement. The errors associated with the measured force data will unavoidably bring 

in some errors to the identified results. The acceleration response x  in Equation (7.2) is 

directly measured from the damaged state. The measured acceleration response will 

contain noise and it needs to be considered in the statistical analysis. Since model 

updating technique is utilized in the proposed damage detection procedure, all the above 

random errors will be involved in the computation and they need to be analyzed further in 

the iteration process to check on how these errors would erode the identification results. 

ii
d

 The above discussions show that the different uncertainties or random variables 

may originate from the structural parameters, the exciting forces and from the 

measurement. Assuming pX denotes the random variables associated with the structural 

parameters of the initial analytical model. Broadly speaking, many parameters such as 

mass density, geometric parameters and the material elastic modulus, etc. can be regarded 

as an uncertain parameter of the initial analytical model. However only the parameters 

associated with the mass (the material density) and stiffness (the elastic modulus of 

material) are studied for illustration of the statistical analysis and they are denoted by X ρ  

and EX  respectively as, 

  
~

(1 )
ii i X ρρ ρ= + ,   

~
(1 )

i
i i EE E X= +  (7.4) 

where   denotes the measured or assumed value, 
~
• iρ  and denote the real value of the 

mass and stiffness parameters, i denotes the i th element. Every element is assigned these 

iE
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random variables representing the uncertainties in the mass and stiffness properties of the 

element. The uncertainties with other structural parameters can be similarly defined.  

 The second type of uncertainty arising from the measured exciting forces is 

denoted with the random variable FX , and the measured force excitation is related to the 

random variables as, 

   (7.5) 
~

ii iF F X= + F

where i denotes the th data of the excitation. i

 Similarly, the third type of uncertainty arising from the measured acceleration 

response is denoted with the random variable
x

X ii  and it is related to the measured 

acceleration response as 

  
~

di
di di

x
x x X= + ii

ii ii
 (7.6) 

where i  denotes the i th data of the measured response. 

 

7.2.3 Derivatives of local damage with respect to the uncertainties 

 The first derivative of Equation (7.2) with respect to the random variables X  is 

give as 

  

~

∂ ∂Δ ∂
⋅Δ + ⋅ = −

∂ ∂ ∂
S α x xα S

ii ii
d ∂

∂
u

X X X X
 (7.7) 

Substituting Equation (7.3) into Equation (7.7), 
X
α∂Δ

∂
 can be obtained as, 

  

~
~

1 1( ) ( ( ) ( )− −∂Δ ∂ ∂ ∂
= − − ⋅

∂ ∂ ∂ ∂
α x x SS S S S S S x x

ii ii
ii iid uT T T T

d u
X X X X

)−  (7.8) 
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It is noted that all the random variables are assumed independent and no coupling effect 

is involved in the analysis. 

 

Uncertainties in the system parameter  

 The sensitivity of local damage with respect to the system parameter uncertainty 

is obtained when only the random variable pX  is considered in Equation (7.8). The 

measured response is independent of the system parameter giving 

~

0∂
=

∂
x
ii

d

pX
. The 

sensitivity of the analytical response with respect to pX , ∂
∂

x
ii

u

pX
, can be obtained by taking 

the first derivation on Equation (7.1) with respect to pX  as, 

  
•• •

•• •∂ ∂ ∂ ∂ ∂ ∂
+ + = − − −

∂ ∂ ∂ ∂ ∂ ∂
x x x M C KM C K x x

p p p p pX X X X X X
x

p

 (7.9) 

The sensitivity ∂
∂

x
ii

u

pX
 can be computed (Lu and Law, 2007) from Equations (7.1) and (7.9) 

using a time-stepping integral method, such as Newmark method.  

 The derivation of Equation (7.1) with respect to the stiffness fractional change 

α is 

   
α α α α

•• •

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
x x x KM C K x  (7.10) 

from which the sensitivity matrix S can be obtained. Further differentiation of Equation 

(7.10) with respect to the random variable pX  gives 
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2 2 2

2

α α α α

α α α

•• • •• •

∂ ∂ ∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
− − −
∂ ∂ ∂ ∂ ∂ ∂

x x x M x CM C K

K x K x K x

p p p p p

p p

X X X X X

X X X

α
∂ x

p

 (7.11) 

Since ∂
∂

x

pX
 and 

•

∂
∂

x

pX
 have been obtained from Equation (7.9), 

α
∂
∂

x ,
α

•

∂
∂

x  and 
α

••

∂
∂

x  are 

obtained from Equation (7.10) and x  from Equation (7.1), 
2

α

••

∂
∂ ∂

x

pX
 can be finally 

computed from Equation (7.11). And the sensitivity ∂
∂

S

pX
 can be determined as, 

  
2 2 2

1 2α α α

•• •• ••⎡ ⎤∂ ∂ ∂∂ ⎢ ⎥=
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂
⎣ ⎦

S "l l

p p p m

x x xl

pX X X X
 (7.12) 

and ∂Δ
∂
α

pX
can be finally computed from Equation (7.8). 

 

Uncertainty in the exciting force  

FX When we consider the uncertainty in the exciting force , we also have 

~

0∂
=

∂ FX
, and  Equation (7.8) can be rewritten as, x

ii
d

  
~

1 1( ) ( ( ) ( )− −∂Δ ∂ ∂
= − + ⋅ −

∂ ∂ ∂
α x SS S S S S S x x

ii
ii iiuT T T T

d u

F F FX X X
)  (7.13) 

∂
∂

x
ii

u

FX
 can be computed from the derivation of Equation (7.1) with respect to FX  as, 

 264



  
~•• •

∂ ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂ ∂
x x x KM C K D
F F F F

F
X X X X X

x
F

 (7.14) 

We have from Equation (7.5) 

  
~
( ) [0 0 1 0 0]

i

T

F

F t
X

∂
=

∂
" "  (7.15) 

where i denotes the i th time instance, and only the i th component of the vector is one 

with zeros in all the other components. For the initial analytical model, 0∂
=

∂
K

FX
. But in 

the updated analytical model, the effect of force uncertainty has been accounted for in the 

updated value with 0∂Δ
∂X

≠
α

F

, then 0∂
≠

∂
K

FX
. The sensitivity ∂

∂
x
ii

u

FX
 can be computed from 

Equations (7.14) and (7.15) by Newmark method. 

 Differentiating Equation (7.10) with respect to the random variable FX  we get 

 
2 2 2 2

α α α α α

•• •

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
x x x K x K x KM C K

F F F F F FX X X X X X α
x           (7.16) 

which is similar to Equation (7.11). ∂
∂

S

FX
 can then be computed from Equations (7.15) 

and (7.16) using Newmark method and the sensitivity ∂Δ
∂
α

FX
can be obtained from 

Equation (7.13). 

 

Uncertainty in the structural response  
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 The sensitivity of  with respect to the random variable Δα
x

X ii can also be obtained 

similar to that for the structural parameters. Since x  and are not related with
ii

u S
x

X ii  in the 

initial analytical model, 0∂
∂

x
ii

ii
u

x
X

= and 0∂
=

∂
S
ii
x

X
. Equation (7.8) then gives 

  

~

1( )−∂Δ
=

∂
∂ ∂
α xS S S
ii ii

ii
dT T

x x
X X

 (7.17a) 

However, for the updated analytical model, both  and are related tox
ii

u S
x

X ii with the 

uncertainties propagate in the system. Derivation of Equation (7.1) with respect to 

x
X ii gives 

  
•• •

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
x x x KM C K
ii ii ii ii
x x x

X X X X
x

x

 (7.18) 

The sensitivities ∂
∂

x
ii
x

X
 and 

••

∂
∂

x
ii
x

X
 can be obtained from Equation (7.18) by Newmark 

method. Derivation of Equation (7.10) with respect to 
x

X ii gives 

  
2 2 2 2

α α α α α

•• •

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
x x x K x K KM C K x

ii ii ii ii ii ii
x x x x x x

X X X X X X α
∂x          (7.19) 

and ∂Δ
∂
α
ii
x

X
 can be written as following incorporating Equations (7.18) and (7.19)  

  

~
~

1 1( ) ( ( ) ( )− −∂Δ ∂ ∂ ∂
= − − ⋅

∂ ∂ ∂ ∂
α x x SS S S S S S x x
ii ii ii ii

ii ii
ii iid uT T T T

d u

x x x x
X X X X

)−  (7.17b) 
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Equation (7.20) is obtained from Equation (7.6) as 

  

~

( ) [0 0 1 0 0]d T

x

x t
X

∂
=

∂ ii

ii

" "  (7.20) 

and the sensitivity ∂Δ
∂
α
ii
x

X
is obtained from Equations (7.17) and (7.20). 

 In summary, the vector of sensitivity ∂Δ
∂
α

X
can be obtained from Equations (7.8), 

(7.13) and (7.17) as, 

  [∂Δ ∂Δ ∂Δ ∂Δ
=

∂ ∂ ∂ ∂
α α α

iip F

]α

x
X X X X

 (7.21) 

 

7.2.4 The Statistical Characteristics of the Damage Vector 

 The mean value of the damage vector αΔ  can be obtained directly from Equation 

(7.3) as 

   (7.22) 1( ) ( ) ( )−Δ = −α S S S x x
ii ii

T T
d uE

The damage vector αΔ  can be regarded as a function of the random variables, and it can 

be expressed as a truncated second order Taylor series as, 

 
2

1 1 1

(0) 1 (0)( ) (0)
2

ε
= = =

∂Δ ∂ Δ
Δ = Δ + +

∂ ∂ ∂∑ ∑∑α αα α
nt nt nt

i i
i i ji i

j
j

X X X
X X X

 (7.23) 

The covariance matrix of may be obtained as (Papadopoulas and Garcia, 1998) 

  

Δα

[cov( , )] [ ] [cov( , )] [ ]∂
×× × ×

Δ ∂Δ
≈

∂ ∂
α αX X

m nt

T
m m m nt nt ntX X

Δ Δα α  (7.24) 

Since the random variables iX  and jX  (i j)≠  are independent, we have 
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  (7.25) 

1 1

2 2

cov( , ) 0 0
0 cov( , ) 0

[cov( , )]

0 0 cov( ,

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X

"
"

" " " "
"

mt mt

mt mt

X X
X X

X X )

where  is the number of the random variables in the statistical analysis. It is noted that 

the covariance of each random variable needs to be computed separately.  

mt

cov( , )X X

 Random variables pX  is usually assumed to take up the following form in the 

computation as 

  *=X Np Ep oise  (7.26) 

where is the noise level ; N is a standard normal distribution vector with zero mean 

and unit standard deviation. We have 

Ep oise

  

2

2

2

( ) 0 0
0 ( ) 0

cov( , )

0 0 ( )

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X

"
"

" " " "
"

p p

Ep
Ep

Ep

 (7.27) 

 For the random variable  with the excitation force in simulation, it is modeled 

as 

XF

   (7.28) 
~

* * var(=X NF oiseEp F )

( ))

where  is the vector of the polluted force excitation; var(•) is the variance of the time 

history. We have 

~
F

  (7.29) 

~
2

~
2

~
2

( *var( )) 0 0

0 ( *var( )) 0cov( , )

0 0 ( *var

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X X

"

"
" " " "

"

F F

Ep F

Ep F

Ep F
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 For the random variables X ii
x
, which is the measurement noise in the acceleration 

response, we have 

   (7.30) 
~

* *var(=X Nii

ii

oise d
x

Ep )x

Then the covariance of X ii
x
 is, 

   (7.31) 

~

2

~

2

~

2

( * var( )) 0 0

0 ( *var( )) 0cov( , )

0 0 ( *var(

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X Xii ii

ii

ii

ii

"

"
" " " "

"

d

d
x x

d

Ep x

Ep x

Ep x ))

1

Hence Equations (7.27), (7.29) and (7.31) give the covariance matrix of all the random 

variables studied in this work. 

 

7.2.5 Statistical Analysis in Damage Detection 

 When damage detection is performed using Equation (7.3), statistical analysis on 

the identified results can be performed using Equations (7.22) and (7.24). Assuming that 

corresponds to the initial set of local damage with the analytical model, the updated set 

of local damage, , will be given as  

0α

1α

  1 0= + Δα α α  (7.32) 

with an expectation value of  

  1 0( ) ( ) ( )1= + Δα α αE E E  (7.33) 

and a covariance of 
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1 1 0 1 0 1

0 0 0 1 1 0 1 1

[cov( , )] cov( , )
cov( , ) cov( , ) cov( , ) cov( , )

× = + Δ + Δ
= + Δ + Δ + Δ

α α α α α α
α α α α α α α α

m m

Δ
     (7.34) 

It is noted that Equations (7.33-7.34) will remain valid during the whole process of 

convergence of the identified results.  

 

7.2.6 Reliability of the Identified Damage 

 Once the statistical properties of the estimated stiffness changes are determined, it 

is possible to yield an estimate on the probability of damage. There are several techniques 

employed to determine the probability of damage (Papadopoulas and Garcia, 1998). The 

probability damage quotient method (Papadopoulas and Garcia, 1998) is adopted for the 

assessment.  

 A normal probability density function (PDF) is defined as, 

  21 1( ) exp[ ( ) ]
22

x

xx

xx μφ
σσ π
−

= −             for x−∞ < < +∞  (7.35) 

 The probability of damage is assessed by comparing the PDF of the intact 

structural parameter and that of the damaged parameter. Two normal PDF distributions, 

( )u xφ and ( )d xφ , with parameters ( uμ , uσ ) and ( dμ , dσ ), denote the distributions of the 

undamaged structural parameters and the damaged parameters respectively and they are 

shown in Figure 7.1. If the damage is a loss in the structural stiffness, it is obvious from 

Equation (7.33) that u dμ μ> , u dσ σ< . To find the intersection of the two distributions, 

distributions (u )xφ  and ( )d xφ are equated with combining terms to get the following 

quadratic equation, 

  2 0a x b x c
∧ ∧ ∧

+ + =  (7.36) 

 270



where 2 2
d ua σ σ

∧

= − , 22( )d u u db 2μ σ μ σ
∧

= − , and 2 2 2 2 2 22 ln( /u d d u u d d uc )μ σ μ σ σ σ σ σ
∧

= − − , with 

roots 1x and 2x  

  
2

1
1 4

2
x b b a c

a

∧ ∧ ∧ ∧

∧

⎡ ⎤
= − + −⎢ ⎥

⎢ ⎥⎣ ⎦
,         

2

2
1 4

2
x b b a c

a

∧ ∧ ∧ ∧

∧

⎡ ⎤
= − − −⎢ ⎥

⎢ ⎥⎣ ⎦
 (7.37) 

1x and 2x  are in fact the two intersection points of the two PDFs. 1x is the point between 

dμ and uμ  and 2x  is between uμ  and +∞ as shown in Figure 7.1. They are used to 

calculate the probability damage quotient DP , defined as, 

  DP = 1 - 1 2 1( ) ( ) ( ) (u d d u

u d d u

2 )x x xμ μ μ μ
σ σ σ σ

⎡ ⎤− − − −
Φ +Φ −Φ +Φ⎢ ⎥
⎣ ⎦

x  (7.38) 

where  denotes the probability of a normal distribution. The reliability of the 

identified damage information can then be assessed with Equation (7.38) with a 

probability prediction. 

( )Φ •

 

7.3. Numerical Study 

7.3.1 The Structure 

 A three-dimensional five-bay steel frame structure as shown in Figure 7.2 serves 

for the numerical study. The finite element model consists of thirty-seven three-

dimensional Euler beam elements and seventeen nodes. The length of all the horizontal, 

vertical and diagonal tube members between the centers of two adjacent nodes is exactly 

0.5m. The structure orientates horizontally and is fixed into a rigid concrete support at 

three nodes at one end. Table 4.8 gives a summary of the main material and geometrical 

properties of members of the frame structure. Each node has six DOFs, and altogether 
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there are 102 DOFs for the whole structure. The elastic modulus of material of all the 

elements is taken as unknown in the damaged state.  

 The translational and rotational restraints at the supports are represented by large 

stiffnesses of  kN/m and   kN-m/rad respectively in the translation and 

the rotational DOFs. Rayleigh damping is adopted for the system with ξ1=0.01 and 

ξ2=0.005 for the first two modes. The first tweleve natural frequencies of the structure are 

9.21, 28.26, 33.71, 49.01, 49.72, 71.02, 89.80, 153.93, 194.33, 209.80, 256.51 and 

274.82

11105.1 × 10105.1 ×

Hz  from the eigenvalue analysis of the structure. The sampling frequency is 

2000 Hz . 

 

7.3.2 Damage Detection 

 A sinusoidal excitation is applied onto the structure at the 8th node in the z-

direction with the amplitude of 3N and at a frequency of 30Hz. The acceleration response 

computed at the 5th node in the z-direction is taken as the “measured” response and the 

first 500 data points are used to identify the damage. The sampling rate is 2000Hz. A 

damage case with 5% and 10% reduction of the flexural stiffness in the 7th member and 

the 26th member respectively is studied. The effect of individual type of uncertainties will 

be discussed as follows. 

 

Uncertainty with the mass density 

 The uncertainty of mass density of material is assumed to have 1% amplitude 

from Equation (7.26), and damage detection is performed on the structure using the 

proposed approach. The mean value obtained from Equation (7.3) for all the elements in 
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the structure are shown in Figure 7.3(a) after the first and second iteration of computation. 

The standard deviations for all the elements obtained from the proposed method after the 

first and second iterations are shown in Figure 7.4. They are compared with the standard 

deviations computed from the Monte Carlo method (Robert and Casella, 1999) from 

1000 samples of data. The mean values converge to the true values after four iterations. It 

is seen that the two sets of standard deviations are very close indicating the proposed 

statistical method is correct. The standard deviation from the first iteration ranges from 

0.9594% to 3.3378% of the identified elastic modulus of material with only 1% 

amplitude in the variation of the mass density of the analytical model. This indicates that 

the noise amplifies the error in the identified results. The standard deviation in Figure 

7.4(b) after the second iteration ranges from 1.01% to 3.77% and they are not too far 

away from the range after the first iteration. This indicates that the amplifying effect of 

the noise is not significant in the second iteration.  This corresponds to the fact that the 

bulk of the damage vector has been updated in the first iteration.   

 To study the propagation of the noise effect throughout the iterations, 10 iterations 

are performed and the mean values and the standard deviations are shown in Figures 7.3 

(b) and (c)  for the damaged elements and in Figure 5 for the 7th, 18th and 26th elements. 

The damage parameters converge quickly to the true values with only 4 iterations.  The 

standard deviation in Figure 7.5 also converges quickly to a constant with increasing 

iterations in all the elements. This corresponds to the usual observation with stiffness 

identification when the error is with a non-stiffness component. The uncertainty with the 

mass density of the finite element model cannot be represented in the updated results, and 

its detrimental effect on the model updating will be carried forward to the next iteration. 
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The convergence criteria of the identification process are difficult to meet. Here only the 

noise with the amplitude of 1% is considered. As seen in Equation (7.24), the standard 

deviation of the damage vector is linearly related with the amplitude of noise. When the 

amplitudes of noise are different, the standard deviation of the damage vector can be 

obtained by multiplying the results from 1% noise with a corresponding coefficient. Then 

it is unnecessary to repeat the computation in this study. It should be noted that all the 

statistical analysis has the assumption that the extent of the uncertainty in finite element 

model or measured dynamic characteristics is small to have a valid linear approximation 

in Equation (7.2). When the noise is too large, the assumption of linear approximation in 

Equation (7.2) is not valid and it will lead to failure to solve the inverse problem. 

 

Uncertainty with the elastic modulus of material 

 When 1% random noise is added to the elastic modulus of material of the initial 

analytical model, the mean value of the stiffness parameters are the same as shown in 

Figure 7.3 as they are also computed from Equation (7.3). The standard deviations are 

shown in Figure 6 alongside with those obtained from the Monte Carlo technique. The 

standard deviation of all 37 elements has a maximum value of 1.6813% after the first 

iteration, and it drops to 0.2605% after the second iteration. This observation shows that 

(a) the noise effect on the elastic modulus is comparable to that of the mass density after 

the first iteration, and (b) the significant reduction after the second iteration shows that 

the stiffness parameter, which is closely related to the elastic modulus, has been updated 

with the mitigation in the associated noise effect in the subsequent iterations. To study 

the propagation of the noise effect throughout the iterations, 10 iterations are performed 
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and the mean values and the standard deviations are shown in Figures 7.3 (b) and (c)  for 

the damaged elements and in Figure 7.7 for the 7th, 18th and 26th elements. The damage 

parameters converge quickly to the true values with only 4 iterations and the standard 

deviations for all the elements in Figure 7.7 also converge quickly to zero with about 4 

iterations. It indicates that the noise effect introduced by the stiffness parameter in the 

finite element model can be neglected after several iterations.  

 

Uncertainty with the excitation force 

 1% random noise is added into the excitation force for the dynamic analysis in the 

intact state. The mean value of the stiffness parameters are the same as those in Figure 

7.3, and the standard deviations of all the elements after the first and second iteration are 

shown in Figure 7.8 alongside with those from the Monte Carlo technique. The standard 

deviation of all 37 elements after the first iteration has a maximum value of 3.85% which 

increases slightly to 4.4524% after the second iteration. The error in the damage vector 

has been amplified with 1% noise in the input excitation. To further investigate the 

propagation of this uncertainty in the identified results throughout the updating process, 

10 iterations are performed and the standard deviations for 7th, 18th and 26th elements are 

shown in Figure 7.9. The standard deviations for the three elements converge quickly to a 

constant in 4 iterations similarly as that seen in uncertainty in mass density. This 

observation indicates that (a) the noise effect with the excitation force is similar to that 

with the mass density but with larger amplitudes in the noise effect, where the stiffness 

parameter of the damaged element can be updated with iterations leading to a reduction 

in the standard deviations, while that of the undamaged element cannot be updated with 

 275



the noise effect carried forward to the subsequent iterations, and (b) the bulk of the 

damage vector has been updated and corresponding noise effect accounted for in the first 

few iterations as shown in Figure 7.9.  

 

Uncertainty with the measured structural response 

 1% random noise is added into the “measured” acceleration responses from the 

damaged structures to simulate the measurement noise. The standard deviation of all the 

elements after the first iteration is shown in Figure 7.10 (a) with a maximum value of 

3.7942% which increase to 4.4190% after the second iteration shown in Figure 7.10 (b). 

The error in the identified results has been amplified with the 1% noise in the “measured” 

acceleration responses. The standard deviation for the three selected elements in all the 

10 iterations shown in Figure 7.11 indicates the propagation of the standard deviation 

similar to what has been observed with the noise effect in the mass density. The 

undamaged element suffers most with a drifting in the standard deviation. Other 

discussions are similar to those for the noise effect with the mass density and the 

excitation force.  

 As a summary to the above discussions, it can be concluded that the noise effect 

on the stiffness parameters in the finite element model of the structure under study is least 

significant and it can be mitigated with increasing iterations of model updating. The noise 

effect on the mass density of the finite element is more significant, and that for the 

excitation force and the structural response are highly significant. The last three sources 

of uncertainty affects more on the undamaged elements than the damaged elements, i.e. 

they would likely lead to false-positive in the identified results.  
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7.3.3 Reliability Assessment 

 When all the above noises (uncertainty in mass density, elastic modulus, 

excitation force and measured acceleration responses with the extent of 1%) are involved, 

the above damage case with 5% loss of stiffness in 7th element and 10% loss of stiffness 

in 26th element is studied to perform the reliability assessment.  From the above studies, 

the updating process needs only five iterations to get some stable results. The mean 

values after 5 iterations are shown in Table 7.1 and the standard deviations for all 

elements and the PDF curves for 7th, 18th and 26th elements are shown in Figure 7.12. 

From Figure 7.12 (a), the max value of the standard deviation is 7.26% at the 9th member 

which indicates that the noise effects affect the identified results severely. The PDF 

curves of the three elements obviously show that due to noise effect, the distribution 

becomes flat and the intersection area of the two PDF curves from intact and damaged 

states become smaller leading to an increase in the damage probability and or false-

positive. The identified damage probability for all elements are shown in Table 7.2 in 

which 26th member has the max value of 98.8% indicating that the element is damaged. 

The second big value of 79.4% occurs at 7th element indicating the element is possible to 

be damaged, at the same time, 9th and 4th elements have high damage possibility of 73.8% 

and 72.3% respectively that cause false alarm in the damage detection due to the 

uncertainties in the finite element and measured acceleration responses. On a whole, the 

proposed method can identify damage successfully with few false positive in other 

undamaged elements in the structures when there are uncertainties in the analytical model 

and the measured dynamic characteristics.   
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7.4. Conclusions  

 This chapter proposed a statistical method for damage detection in structures with 

uncertainties in the analytical model and measured dynamic characteristics. The 

analytical formula for noise effect into the structure and the identified results are given. 

The uncertainties from the mass density and elastic modulus, excitation force which need 

to be used in the analytical model and measured acceleration responses from the damaged 

structure are studied separately. The results show that the uncertainties in the updated 

stiffness parameters in the analytical model will be mitigated to zeros, while the 

uncertainties in other parameters will be kept in the updating process and affect the 

identified results. The uncertainties will propagate in the iterations for updating the 

system and the standard deviation does not increase when the bulk of the damage vector 

is obtained after the first several iterations. In the simulation study with a three-

dimensional 5-bay frame structure with uncertainties, reliability assessment is performed 

based on the statistical analysis and the identified results show that the proposed method 

can identify damage successfully with few alarms in the structure with uncertainties of all 

types. 

  



Table 7.1 – Identified Damage Probability and Mean Value (%) 

Elements No. 1 2 3 4 5 6 7 8 9 10 

Damage prob. 54.4 59.5 59.3 72.3 58.6 55.0 79.4 60.6 73.8   59.7

Mean value 0 0 0 0 0 0 5 0 0 0 

Elements No. 11 12 13 14 15 16 17 18 19 20 

Damage prob. 60.9 62.7 51.2 30.5 56.0 48.4 64.6 60.4 53.5 51.3

Mean value 0 0 0 0 0 0 0 0 0 0 

Elements No. 21 22 23 24 25 26 27 28 29 30 

Damage prob. 52.3 35.6 49.4 45.0 31.6 98.8 53.4 57.9 59.8 54.8

Mean Value 0 0 0 0 0 10 0 0 0 0 

Elements No. 31 32 33 34 35 36 37    

Damage prob. 41.2 42.6 43.6 58.0 49.5 56.4 53.4    

Mean Value 0 0 0 0 0 0 0    
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Figure 7.1- the PDFs of the structural parameter under two states  
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Figure 7.3 - the mean values of all elements, 7th and 26th elements for all iterations 
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Figure 7.4 - the standard deviation of all elements due to noise in density 
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Figure 7.5 - the standard deviations for 10 iterations due to noise in mass density 
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Figure 7.6 - the standard deviation of all elements due to noise in stiffness 
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Figure 7.7 - the standard deviations for 10 iterations due to noise in stiffness 
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Figure 7.8 - the standard deviation of all elements due to noise in excitation 
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Figure 7.9 - the standard deviations for 10 iterations due to noise in measured force 

excitation 
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Figure 7.10 - the standard deviation of all elements due to noise in measured acceleration 
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Figure 7.11 - the standard deviations for 10 iterations due to noise in measured 

acceleration 
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Figure 7.12 - the identified results with all types of noise 
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CHAPTER 8  CONCLUSIONS AND 

RECOMMENDATIONS 

 

8.1 Conclusions 

 The subject of this study is to propose and develop damage detection methods 

using wavelet-based acceleration responses sensitivities and model updating techniques. 

The research aim has been to (a) reduce the number of sensors and make the inverse 

problem being over-determined in the damage detection methods based on model 

updating and dynamic response sensitivity. (b) reduce the dependence of the methods to 

the excitation such that the damage detection method is more practical. and (c) ensure the 

damage detection method to be more robust even with uncertainties in both the analytical 

model and measured vibration data.  

 A systematic approach for health monitoring and condition assessment has been 

developed in this study. This approach enables both structural damage identification and 

monitoring-based reliability assessment to be explored in the model updating procedure 

using the sensitivity of the time series data with respect to the structural parameter, and 

taking into account uncertainty and randomness inherent in the measurement data and 

structures. Though the numerical examples presented in this study are derived from 

bridge structures, yet most of the developed methods are general and can be used in 

connection with other engineering structures such as high-rise buildings and offshore 

platforms. The major contributions of this thesis are as follows: 
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(a) Investigate the direct use of acceleration responses in the damage detection via 

the wavelet transform when under support excitation 

 Acceleration responses at only the support and at limited number of locations of 

the structure are required for damage detection. The performance from the WPT 

coefficient sensitivity approach under support excitation is concluded to converge faster 

than the response sensitivity approach with a proper selection of the wavelet packets for a 

three-dimensional steel frame structure. The use of subsets of the measured response at 

different resampling rates would yield identified results similar to those from the full set 

of measured response since similar structural information is included in the subset of data. 

Simulation results show that the location and extent of damage of the structure can be 

identified accurately under the support excitation without any special artificial excitation.  

 

(b) Damage detection using wavelet-based impulse response function in the time 

domain 

 The effect of different excitation force is removed when the impulse response 

functions are used instead of the acceleration response in the damage detection process. 

Impulse response functions are intrinsic functions of the system given the excitation 

location and they can be extracted from the measured response and support excitation. 

The analytical formulation on the sensitivity of the DWT coefficient of the impulse 

response function with respect to a system parameter is deduced from an analytical model 

based on vibration theory and Newmark method. The identification equation is solved 

with regularization techniques and L-curve method with some improvements.  
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 The method on the extraction of UIRs from the accelerations of the structure and 

the support excitation is introduced. The sensitivity matrix of UIRs of the structure is 

obtained based on the finite element model and the time-stepping integral method. A two-

step updating method is adopted for identifying the local damage based on the computed 

sensitivity matrix of UIRs from several accelerometers. Statistical analysis is included in 

the damage identification procedure and measurement noise is taken as an independent 

random variable in the UIRs from measurement. A nine-bay three-dimensional frame 

structure is studied numerically and experimentally with damage scenarios of multiple 

damages and different level of noise.  

 

(c) Improved regularization for damage detection with noise and model errors 

 New techniques for improving Tikhonov regularization in an inverse structural 

damage detection problem with noise and model errors are proposed. The identification 

equation is based on the sensitivity approach with iterations. Tikhonov regularization 

works successfully with small noise in the system. But when the system involves both 

noise and model errors, the identified results often diverge after a few iterations. This 

arises from the fact that the signal to noise ratio decreases dramatically after a few 

iterations. Divergence of the regularized solution is prevented in this study by limiting the 

range of percentage changes with resemblance of parameter vectors from two successive 

iterations with the Multiple Parameter Correlation criteria. The final optimal 

regularization parameter optλ corresponds to a stable and converged solution satisfying the 

convergence criteria. Two numerical examples with a one-story plane frame and a thirty-

one bar plane truss structure are studied with ten damage scenarios. Results from 
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different combinations of model errors and noise show that the proposed techniques 

could effectively improve the Tikhonov regularization method in the identification of 

local damages with noise and model errors in the system. 

 

(d) Development of damage detection method based on covariance of acceleration 

responses of the structure when under ambient excitation  

 A damage detection method is proposed based on the wavelet packet energy of the 

covariance calculated from the measured acceleration responses of structures under 

ambient excitation which is assumed to be white noise distribution. To reduce the number 

of the unknowns involved in the inverse problem, damage localization is carried out 

firstly using the elemental modal strain energy. The much reduced set of potential 

damage element then undergoes the next state of damage quantification. The proposed 

damage quantification method based on the sensitivity of the WPT energy of covariance 

has good capability in dealing with model error and measurement noise. A five-bay three-

dimensional cantilever truss structure is used to demonstrate the efficiency of the method 

with three damage cases, and a nine-bay three-dimensional frame structure is tested in the 

laboratory with the proposed method, and the identified results shows that the method is 

applicable to locate and quantify local damages with incomplete and noisy measurement 

and with initial model error. 

 

(e) Uncertainty analysis in the damage detection method using the time domain data 

and model updating 
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 A statistical method for damage detection in structures with uncertainties in the 

analytical model and measured dynamic characteristics is proposed. The analytical 

relationship between the noise effect and the identified results is given. The uncertainties 

from the mass density and elastic modulus, excitation force which need to be included in 

the analytical model and measured acceleration responses from the damaged structure are 

studied separately. Results show that the uncertainties in the updated parameters of the 

analytical model will be mitigated to zeros, while the uncertainties in other parameters 

will be retained in the updating process and affect the identified results. The uncertainties 

will propagate in the iterations when in updating the system and the standard deviation of 

results does not increase when the bulk of the damage vector is updated in the first 

several iterations. In the simulation study with a three-dimensional five-bay frame 

structure with uncertainties, reliability assessment is performed based on the statistical 

analysis and the identified results show that the proposed method can identify damage 

successfully with few false positives in the structure. 

 

8.2 Recommendations 

 Methods for damage identification and condition assessment of bridge structures 

making use of acceleration responses via wavelet transform and statistical model 

updating have been developed. However, there are some limitations on the developed 

methods: (a) the inverse problem based on acceleration responses are affected largely by 

uncertainties in the engineering application. (b) model updating methods require an 

accurate model of the structure and this adds difficulty to the application of the damage 

detection in practice. (c) the sensitivity method based on Taylor series truncation may not 
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give accurate statistical model updating results in the case of high level of uncertainty; (d) 

the ingredients of the developed probabilistic method for bridge health monitoring and 

reliability assessment have been validated with numerical examples only and it still needs 

to be verified using the real-world data; The following recommendations are provided for 

further research and exploration. 

1. The proposed methods in the thesis have the advantage of requiring as few as one 

sensor for damage detection. But computation in the simulation shows that 

measurements from multiple sensor combinations will result not only in a 

reduction in iteration steps but also an improvement in the identified results. 

Therefore, the issues on optimal sensor number and the optimal sensor location 

for the damage detection worth further research. 

2. Since noise always exists in the measured data, in solving the identification 

equation in the inverse problem and obtaining the accurate and stable solution, the 

study of a more effective regularization condition and any recommendations to 

find the regularization parameters are desirable.  

3. Only the vibration of translational degree-of-freedom is used in this thesis. 

Although it is still difficult to measure the vibration of rotational degree-of-

freedom in most practical structures, it is suggested that both theories of vibration 

from rotational degree-of-freedom in a damage detection method worth further 

research. 

4. Rayleigh damping model is used in this thesis. And the damping is assumed to 

remain unchanged before and after the damage occurrence. In fact, the damping 
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may change after the occurrence of damage, and therefore further research should 

identify the damping coefficients as well as the structural damage as time varies. 

5. The limitation of the proposed methods includes the large computation 

requirement especially for large scale structures with large number of degrees-of-

freedom, and a more efficient method needs to be used for computing the 

dynamic responses.  

6. One obstacle of the proposed method which restricts general application for 

complex structures is the dependence on an accurate analytical model. It is 

necessary to reduce this dependence and to develop the method making use of 

ambient vibration excitation, or perform the on-line health monitoring for bridges 

under ambient vibration, which is in most cases, pink noise excitation. 

7. Another problem is that the study of this thesis is limited to the assumption of the 

linearity in the structure. In practice, non-linearity often exists in the real 

structures, and the methods need to be developed for the nonlinear cases. 

8. In this thesis, a simple damage model and finite elements are used for the study. A 

more detailed finite element or other numerical models can be used in the damage 

detection with the proposed methods and better results will be obtained. It must be 

noted that when the number of degrees-of-freedom increases, and computation 

requirement of the method will also increase. 

9. It is necessary to integrate research on structural health monitoring and structural 

reliability analysis. The established linkage between structural health monitoring 

technologies and bridge inspection/maintenance exercises is still preliminary, and 

more thorough research is required to completely realize the potential of this 
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linkage to benefit bridge authorities from health monitoring technologies. This 

goal can be achieved by developing coordinated research programs involving 

participation of the researchers from both structural health monitoring and 

structural reliability disciplines. 
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