Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




Advances in Functional Imaging with

Emission Computer Tomography

by
LAU Chi Hoi, BEng(Hons)

A thesis submitted for the Degree of Master of Philosophy
in the Department of Electronic Engineering

of the Hong Kong Polytechnic University

Department of Electronic Engineering

The Hong Kong Polytechnic University

May 1999

,‘,b Pao Yue-Kong Library
& PolyU « Hong Kong



To my parents



Abstract

With the advent of technology for emission computer tomography, functional
imaging technique, using either Positron Emission Tomography (PET) or Single
Photon Emission Computer Tomography (SPECT), provides a powerful tool to
yield invaluable information of the physiological processes under study. Based
on this technique, quantitative portrayal of both structure and function of these
processes are obtained. It has created opportunities for researchers to examine
increasingly complex biomedical systems, thereby leading the way to a deeper
understanding of fundamental complexities of life. It has also greatly improved

the diagnosis and treatment of human diseases.

In spite of the wide applicability in both scientific researches and clinical
diagnostic procedures, functional studies are still of limited uses due to a number
of factors. For example, the cost of PET scanners is much expensive than the
other imaging modalities, which make them not commonly available in most
hospitals. Although effort has been made in studying the use of less expensive
SPECT scanner to perform the similar dynamic studies, the incompleteness of
the projection data introduces artifacts to the reconstructed images which will
affect the accuracy of subsequent parameter estimation. Furthermore, little
attention has been paid to systematically investigate the scanning duration which
usually determined based on clinician’s intuition and experience. The slow
kinetics of typical SPECT tracers may require unrealistically long total
acquisition times to obtain reliable estimation of the slower rate constants.
Finally, dynamic PET studies require the measurement of tracer concentration in
blood plasma which 1s iInvasive, time-consuming and tedious. The blood
measurement process also exposes the clinical personnel to the danger of fatal

blood infection and radiation.

In this thesis, three different techniques were presented in order to solve the
aforementioned limitations. Our primary focus is to develop computationally

efficient techniques to minimize the inconvenience of performing functional



imaging using emission computed tomography, by means of either PET or

SPECT.

In the first part of the thesis, we investigated the possibility of using rotating
detector systems to perform functional studies, rather than full ring detector
systems. The rotating detector systems are usually of much lower cost than the
full ring detector systems. We study the problem of parameter estimation using
measurements recorded by rotating detector systems and propose an approach to
improve the accuracy of parameters estimated using the above detector systems.
The method involves interpolation across projections so as to provide an
improved estimate of the projections, closer to those which would be obtained
for a stationary detector system. The interpolated projections are then
reconstructed using the conventional filtered back-projection (FBP) algorithm
and the kinetic parameters are estimated using a weighted least squares cost
function based on the integral of activity. The proposed method is based on
several previously validated techniques which, in combination, provide a simple

and computationally efficient solution.

The second part of the thesis is to systematically investigate the reliability of
parameter estimation as a function of total acquisition time, with Thalium-201
(T1-201) dynamic SPECT as our typical example. We also suggest and evaluate
a clinically practical alternative to prolonged continuous dynamic acquisitions.
In addition, the minimum number of frames and their duration are investigated
using the optimum sampling schedule (OSS) techmique. While this study
concentrates on applying the methodology to T1-201 kinetics, the methodology

developed here is also applicable to other dynamic SPECT studies.

In the final part of the thesis, we propose an approach to estimate the parameters
of a pre-assumed tracer kinetic model when performing dynamic studies,
eliminating the requirement of measuring the tracer concentration in blood
sampling. The approach involves a denoising step for the projection data. In our

case, we use a wavelet denoising approach, given its advantage of preserving the
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structural mformation of the image when filtering the noise. The denoised
projections are then reconstructed using the FBP. From the reconstructed
dynamic images, tissue time activity curves (TTACs) are extracted from regions
of interest (ROIs) and are re-sampled using linear interpolation. Based on these
TTACs, an eigen-vector based blind deconvolution technique is applied to

estimate the kinetic parameters.

On the whole, the aim of these studies is to develop computationally efficient
algorithms to reduce the inconvenience associated with functional studies using
emission computed tomography. We hope that such studies can be more

commonly and extensively used in both scientific researches and clinical

environments.
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Statement of Originality

The following contributions reported in this thesis are claimed to be original.

1. A novel approach is proposed for estimating kinetic parameters from
dynamic studies recorded by rotating detector systems. (Chapter 3, Section
3.2)

By using this approach, artifact-free dynamic images, reflecting the bio-
distnibution of radio-pharmaceuticals within the body, can be obtained by
using projection data acquired with rotating detector systems. The proposed
approach can also provide parameter estimates comparable to those obtained
with a full ring detector system, as is typical of conventional Positron
Emission Tomography (PET). The approach suggested here is intrinsically
simple. It 1s not computation intensive compared with methods where
modeling is performed directly from projections and, therefore, it has appeal
for general clinical application. In addition, this technigue should also be
applicable to data acquired using systems such as single or multi-detector
Single Photon Emission Computed Tomography (SPECT), coincidence
detection or low-cost PET systems which involve detector rotation rather

than a stattonary nng of detectors.

2. A methodology for determining the duration of image acquisition time and
for optimizing sampling schedule of dynamic SPECT studies is developed. ,
{Chapter 4, Section 4.2 and 4.3)

The methodology developed here provides a means for determining the image
acquisition time and for deriving an optimum sampling schedule for dynamic
SPECT study, such that a reliable estimation of all parameters of interest can
be obtained. The methodology applied here to Thalium-201 (Tl—201) should
also be applicable to other SPECT tracers.

3. A clinically practical alternative, consisting a short dynamic at the start of the

study and a short delayed scan, to prolonged continuous dynamic
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acquisitions is proposed for Tl-201 dynamic SPECT study. (Chapter 4,
Section 4.2)

For continuous data acquisition sampling schemes, it is found that accurate
estimates of the volume of distribution (Vd) required an acquisition time of
at least 90 minutes. This is clearly impractical for routine clinical studies and
difficult for patient to tolerate. We thus suggested and evaluated an
alternative sampling scheme, based on a short dynamic at the start of the
study and a short delayed scan. It is found that, with an additional scan at
approximately 3 hours, the initial dynamic can be reduced to 30 minutes and
we can still achieve similar accuracy for Vd as a continuous 120 minutes
acquisition. The time requirements for the split session sampling scheme are
similar to current T1-201 rest/redistribution studies, and are thus clinically
practical. Further, estimation of blood flow related parameter, K,, and Vd
should eliminate the need for 24 hours images, which may in fact reduce the

total study time.

An approach i1s proposed for the quantification of dynamic PET study,
obviating the requirement of blood sampling. (Chapter 5, Section 5.2)

By using the proposed approach, we can estimate the rate constants for a pre-
assumed tracer kinetic model using only the tissue time activity curves
(TTACs). The advantages of the approach include: (1) simplification of the
procedure for performing functional imaging; (2) markedly reduced radiation
exposure to the blood sampler; (3) non-invasiveness; and (4) minimization of
fatal blood infection. Furthermore, although we applied the proposed
technique specifically to the tomographic studies based on ['®F] labeled
fluoro-deoxy-glucose (FDG) model, the proposed technique can potentially

be applied to other tracer kinetic model.
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Chapter | Introduction Page 1

Chapter 1 Introduction

1.1 Overview of Functional Imaging

With the advent of technology, modern medical imaging techniques create the
opportunities of measuring sequence of images in which the intensity of each
pixel is proportional to the concentrations of tracers (by emission computed
tomography (ECT)), of X-ray absorbing contract materials (fast Computer
Tomography (CT)), or of native chemical substances (Nuclear Magnetic
Resonance (NMR)) in tissue regions at identifiable locations in three-
dimensional space. Mathematical analysis of such image sequence provides a
powerful tool to yield valuable insight of the physiological processes under
study, giving a quantitative portrayal of both structure and function: such is the

approach of functional imaging.

The capability of functional imaging in quantifying physiological processes has
created opportunities for researchers to examine increasingly complex
biomedical systems, thereby leading the way to a deeper understanding of
fundamental complexities of life. For example, Positron Emission Tomography
(PET) are used by researchers to relate regions of the brain to various cognitive
and visual skills; and also to psychological disorder. Furthermore, functional
imaging has also greatly improved the diagnosis and treatment of human
diseases. Some clinical applications include its uses in localizing tumor sites,
measuring myocardial perfusion, studying various cancers, grading brain tumors,

and determining the effectiveness of radiation therapy, chemotherapy, and

surgery.

To perform functional imaging, a wide range of imaging modalities are
available. In addition to the ECT (either by means of using PET or single photon
emission combuted tomography (SPECT)), fast CT and NMR described above,
other image modalities for performing functional imaging includes: magnetic

resonance spectroscopy (MRS), electron paramagnetic resonance imaging
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(EPRI), magneo-encephalography (MEG) as well as some other newer
techniques such as electrical impedance tomography (EIT), near infra-red
imaging, active microwave tomography and laser doppler imaging of blood flow.

A survey of these imaging modalities has been given in {1].

Among the various medical imaging modalities, PET is quite unique and has
been playing an important role in scientific researches and clinical studies. The
development of PET in the 1970’s has not only increased the capability to get in
vivo measurement non-invasively but also made it possible to quantitatively
characterize the features and functions of living processes. The capability of
measuring physiological characteristics of human brain and heart, such as blood
flow, utilization of oxygen, and the metabolic rate of glucose, has led PET to
become a useful patho-physiological and diagnostic tool. With PET, more
accurate differentiation of tissues with different local metabolic rate of glucose
would aid the early detection of tumors and other abnormalities. Furthermore,
improved accuracy of local metabolic rate of glucose estimation would allow
PET to measure more reliably a tumor’s response to a particular therapy. In
clinical studies, PET can provide essential information that cannot be obtained
with any of the other imaging modalities, such as, Magnetic Resonance Imaging
(MRI) and X-ray CT. They complement PET because they provide mostly

anatomical information.

1.2 PET and Functional Imaging

1.2.1 Historical development of PET

The development of PET has involved the efforts of many investigators. Positron
imaging was first suggested in 1951 by Wrenn et al {2] and Brownell, as
reported by Sweet [3]. The first successful positron scanner was described by
Brownell and Sweet in 1953 [4] (also Burham and Brownell in 1972 (5]). In
1959, Anger described his version of a positron imaging device using the
scintillation camera {6]. These systems were designed and used for two-

dimensional imaging of positron radio-nuclide distributions in the human body.
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Transverse-section imaging with positron was first described in 1962 [7,8] with a
circular array of 32 Nal(T1) detectors for studies of the brain. Similarly, Kuhl
and Edwards [9] were developing the concept of transverse- and longitudinal-
section scanning with single photon emitting radio-nuclides. Anger [10],
Muehllehner and Wetzel [11], Todd-Pokropek [12], Bowley et al [13], Tanaka
[14], and Burham and Brownell [5] also investigated and developed techniques
for performing emission tomography. All these approaches were limited by
problems encountered from inadequate mathematical reconstruction algorithm
(i.e. none were CT approaches), computational hardware, number of angular
views, and image distortions resulting from photon attenuation and statistical
limitations. These approaches employed many of the principles of focal plane or
blurring tomography originally developed for X-ray techniques by Bocage in the
1930s [15].

In 1973, Kuhl et al [16] presented a paper on quantitative section scanning in
which they employed multiplicative correction factors applied to orthogonal scan
profiles in an effort to compensate for the blurring present in their section
scanning. In 1976, Kuhl et al [17] published an article on the Mark IV scanner,
which consisted of a square array of 32 Nal(T1) detectors employing an exact
CT reconstruction algorithm. In 1974, Budinger and Gullberg {18], and in 1975,
Kay and Keyes [19], published articles describing the feasibility of single-photon

CT with rotating scintillation cameras.

The first positron computed tomography system was developed by Phelps et al
in 1975 [20,21). This system was referred to as the PETT II (Positron Emission
Transaxial Tomography). The PETT II consists of a hexagonal array of Nal(T1)
detectors connected in coincidence between bank pairs. It utilizes a Founer-
based CT algorithm, proper sampling and an exact attenuation correction. In
1975 and 1976, these investigators published results from the first whole-body
PET (PETT III) which was developed for human studies [21-24]. This system
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was subsequently redesigned by Phelps et al [25] and commercially produced as
the ECAT.

Since then, numerous PET systems were developed. The principles of the
developed PET systems that have been developed were reviewed in details
elsewhere [20,26-29). It is obvious that PET system design has involved a
variety of different strategies. However, some concepts of PET system design
have achieved general acceptance. Circumferential designs employing
hexagonal, octagonal, or circular geometries are preferred because they
maximize efficiency in the image plane. This is a key factor since the minimum
imaging time is determined by the time required to gather sufficient data for a
single plane. Sodium iodide detectors have been replaced by BGO or CsF
detectors. The advantages of BGO is its capability of providing high spatial
resolution and efficiency while CsF has a short decay time, which can be used to
reduce image noise through the use of time-of-flight measurements. Although
there are different system design approaches, a properly designed PET scanner
can provide analytical measurements of local tissue radio-activity concentrations

to allow the use of tracer kinetic techniques.

1.2.2 Advantages of PET

PET was developed for functional imaging because it offers a number of unique
features. First of all, the positron-emitting isotopes of carbon (''C), nitrogen
(°N), oxygen (**0), and fluorine (**F) can be used to label a wide variety of
substances, metabolites, drugs, and other biologically active compounds or their
analogs without disrupting their chemical or biochemical properties. Secondly,
with PET, the measurement of functional processes in the human is performed
non-invasively using external radiation detection and mathematical image
reconstruction techniques, leaving the subject under study in an undamaged and
undisturbed state. These two features, together with the tracer kinetic models,
provide a unique way of measuring local biochemical processes in the human

brain.
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In addition, the properties of positron decay are well suited to the requirement of
CT. In positron decay, the positron annihilates with an electron to emit two 511
keV photons 180° apart. This allows the use of an electronic form of photon
collimation by recording simultaneous detection of these photons in opposing
detectors. This is referred to annihilation coincidence detection (ACD). ACD
provides uniform and high spatial resolution, high detection efficiency, and
simultaneous collection of linear and angular data. ACD also provides exact or
near-exact methods for photon attenuation and a high degree of geometry
discrimination against scattered radiation, factors which reduce quantification
and can produce artifacts in CT. These properties allow PET to give a

quantitative information of the process under study.

1.2.3 Physiological characteristics that can be obtained by PET

Currently, most of the PET studies are devoted to the analysis of human brain.
There are numerous variables that one would like to measure in determining
local function of the brain. The primary vanables of interest would be cerebral
blood flow (CBF), cerebral metabolic rates of oxygen (CMRO,) and glucose
(CMRGlu), since they normally form the supply-demand basis of local function
in the brain. By assessing such variables, we can obtain an understanding of
altered states of cerebral function. In addition, PET can also be used to evaluate
specific changes in other processes such as (1) blood-brain barrier transport, (2)
cell membrane transport, (3) the distribution of the various receptors involved in
excitation or inhibition, and (4) protein synthesis for evaluation of structural
degeneration, regeneration, reorganization, or other protein synthesis

requirements of cerebral function.

1.2.4 Procedure involved in PET

The application of PET in the quantification of physiological processes requires
a number of steps:
1) Labeling a selected compound with a positron-emitting radio-nuclide.

2) Administering the labeled compound to the subject.
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3) Estimating the distribution of the labeled compound.
4) Using the estimated distribution to determine parameters of physiological

models that provide the information of interest.

The positron-emitting radio-nuclides that are used most often are ''C, “N, "0
and '"°F. These radio-nuclides are used to label compounds such as sugars, amino
acids, and neuro-transmitter receptor ligands. Because of their short half-lives,
positron-emitting radio-nuclides cannot be stored and must be generated on-site
using an accelerator (e.g., cyclotron) which requires a significant amount of

capital and technical expertise to maintain.

After 1t 1s administered to the subject, the labeled compound is absorbed by
various regions of the organ of interest. As the radio-nuclide decays, positrons
are emitted in regions of high absorption, and less positrons are emitted in
regions of low absorption. For example, labeled glucose is used more by the
regions of the brain that are more active when a certain task is performed.
Another example is cancerous tissue’s utilization of more glucose than healthy
tissue. When a positron is emitted, it annihilates with a nearby electron creating

two photons that fly off in nearly opposite, random directions.

Surrounding the organ of interest is one or several rings of detectors that are
designed such that a count is incremented whenever a pair of detectors senses
two photons in coincidence, i.e., the two photons are registered by a pair of

detector within a small time interval.

The measurements of observed photons are reconstructed into visual images that
each pixel indicates the concentration of radio-nuclide. This process is called
image reconstruction. In the beginning, the image reconstruction algorithms
were de{feloped based on deterministic projection model and based on Fourier
transform techniques. The convolution back-projection (CBP) and direct Fourier
- reconstruction (DFR) methods are two typical examples of this approach. These

algorithms were later found to be sensitive to the perturbation of measurements,
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especially in PET where the recorded projections are quite noisy. One way to
reduce noise sensitivity is to model the emission process as a random process
and develop reconstruction algorithms based on the statistical model using
statistical estimation techniques. The maximum likelihood (ML) and maximum a
posterior (MAP) methods are two typical statistical methods. However, among
other problems, these statistical algorithms are generally very computationally
demanding. Another approach to reduce noise sensitivity is to filter measurement
data before employing a deterministic model based reconstruction algorithm. It
seems to provide a satisfactory result and is the current practice in clinical

environment.

From the measurements obtained from the reconstructed images, tissue time
activity curves (TTACs) are extracted from Regions-of-Interest (ROIs). These
time activity curves in conjunction with an appropriate tracer kinetic model
allow quantitative information about physiological processes to be extracted.
Tracer kinetic model is a mathematical model which describes the dynamic
behavior of the tracer in terms of mathematical representations. The known
information on the behavior of the tracer or the system is incorporated by
restricting the representation to a limited set of functions that are consistent with
the known information. With the mathematical representation, the number of
variables required to characterize the tracer kinetic is greatly reduced. In other
words, tracer kinetic modeling can incorporate known information, such as a bio-
chemical sequence, membranes that must be crossed, etc., about the tracer or the
process to facilitate the extraction of useful physiological or bio-chemical
information from the tracer kinetic measurements. Care must be taken, however,
to ensure the correctness of the information incorporated in the models.

Otherwise, erroneous interpretation will result from the use of the models.

1.2.5 Applications of cerebral PET

PET provides the investigators and the clinician the opportunity to examine

quantitatively physiological functions as well as the anatomical distribution of
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such activities. Studies in normal subjects allow for the non-invasive and three-
dimensional investigation of functional “resting” states, in addition to sensory,
motor, and behavioral responses to specific tasks. Such data are essential in
defining the neuro-anatomical location and response characteristics of the normal
brain. They serve as a necessary prelude to future studies of pathological states
and patterns of recovery that functional brain systems undergo in their response
to injury. Studies of brain pathology using these techniques have focused on the
major clinical diagnostic problems of neurological disease. The general areas
inc_lude cerebral vascular disease, damentia, seizure disorders, degenerative

disease and neoplasm.

1.2.6 Limitations of PET

In spite of the fact that PET has a wide applicability in both medical and
physiological diagnostic procedure, PET studies are still of limited uses due to a
number of factors. First of all, the cost of a PET scanner is much expensive than
the other imaging modalities. Such a high cost limits the widespread usage of
PET scanner. In addition, positron-emitting radio-nuclides are usually of short
half-lives, requiring an on-site generator {e.g., cyclotron). The expensive cost of
cyclotron, although may be shared in case a number of PET center is set up, still
significantly increases the capital cost associated with operating a PET center

and hinders the usage of PET studies.

The second limitation is the total acquisition time for performing functional
imaging with PET. It is of great importance, especially, for clinical studies. For
example, dynamic Thalium-201 (T1-201) SPECT studies in dogs have
demonstrated the feasibility of estimating myocardial blood flow and volume of
distribution {30]. However, acquisition times in these studies were up to 4 hours,
which are impractical in daily clinical operation and also difficult for the patient

to tolerate.
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The third limitation is that one of the inherent components involved in
performing dynamic PET studies is the tracer concentration in blood plasma, i.e.
the plasma time activity curve (PTAC), which acts as the input function for the
kinetic model. The tracer concentration in blood plasma are usually obtained by
direct arterial blood sampling. This process is invasive, time-consuming and
requires extra-staff. It introduces additional radiation exposure to clinical
personnel and increases the possibility of spreading infectious diseases.
Therefore, it is desirable to have methods which enable quantification of
physiological processes with reduced number of blood samples so that the

inconvenience caused can be minimized.

1.3 Present Works

In this thesis, we focused on performing functional imaging using emission
computed tomography, including both PET and SPECT. Three techniques were
presented in order to solve the aforementioned limitations. The overall aim of
these studies is to reduce the inconvenience of performing functional imaging
studies using emission computed tomography, hoping that such studies can be
more commonly and extensively used in both academic and clinical

environments.

1.3.1 Reduction of capital cost for dynamic functional imaging

Recently there has been interest in reducing the capital cost for performing
dynamic functional imaging with the introduction of systems which acquire data
over a limited angle, with rotation over time {31,32]. Also, coincidence studies
have recently been performed using dual opposing detectors which are
conventionally used for SPECT where the detectors rotate around the patient
[33]. There is an increasing interest in deriving parametric images from these
systems. In the case of SPECT there have been significant improvements in the
quantitative accuracy of reconstruction as well as the development of multi-
detector cameras which permit efficient detection. As a consequence, acquisition

of kinetic data with associated modeling is possible on these systems and has
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been demonstrated by a number of groups [34-37]. These systems have similar
constraints to PET systems based on rotating detectors since, at any point in
time, partial data are acquired. It is possible that the radio-pharmaceutical
distribution changes during the acquisition of the set of projections necessary for
reconstruction. The resulting images may contain artifacts which influence the
accuracy of any subsequent parameter estimation [38-40]. Such artifacts may be
alleviated by reducing the acquisition time for each image. However, the
reduction of acquisition time is limited by the physical constraints of mechanical
rotation, and by the limited counts acquired by a system whose acquisition

geometry limits detection efficiency.

To avoid such kind of artifacts ansen in the reconstructed images and the
subsequent parameter estimation error, Limber et al [41] and Zeng et al [42]
have developed methods to recover the parameters of the time activity curve in
each pixel directly from the projection data. They have shown that they can
accurately recover time activity curves for a simple mono-exponential model.
Extension to more complex models may be feasible, although the solution is

likely to be computationally demanding.

Thus, in the first part of the thesis, we propose an approach for estimating the
kinetic parameters from dynamic studies recorded by rotating detector systems.
Such systems include single or multi-detector SPECT, coincidence detection
systems and low-cost PET systems which involve detector rotation rather than a
stationary ring of detector. The method involves interpolation across projections
so as to provide an improved estimate of the projections for a stationary detector
system. This interpolation process is applicable either to estimation of
parameters directly from projections or to solutions involving conventional
reconstruction prior to kinetic modeling. The interpolated projections are then
reconstructed using the conventional filtered back-projection (FBP) algorithm
and the kinetic parameters are estimated using a modified weighted least squares

cost function. The proposed method is based on several previously validated
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techniques which, in combination, provide a simple and computationally

efficient solution.

1.3.2 The sampling requirement of performing dynamic studies

Dynamic studies and compartmental modeling are well established in PET. Most
attention to the design of image frame sampling or recording schedule has thus
been directed to PET 1mage frame sampling schedules to increase the
quantitative accuracy. Hawkins et al [43] studied the effects of temporal
sampling on the glucose model using 18-ﬂuoro-deoxy-D-gli1cose (FDG).
Mazoyer et al [44] proposed a general method for estimating the precision of
parameters resulting from the use of various experimental designs, including the
rate of tomographic data collection. Delforge et al [45] applied an experimental
design optimization framework and varous criteria to the estimation of receptor-
ligand reaction model parameters with dynamic PET data. Jovkar et al [46]
addressed the general problem of finding an optimized scan schedule in PET
dynamic studies which minimizes the parameter estimation errors. They found
that there is a monotonic improvement 1n the index of parameter accuracy with
increasing sampling frequency and concluded that a higher sampling frequency
(more image samples), particularly in the early stage, should be used. The above
conclusion was mainly due to using a cost function based on the assumption that
sample points represent instantaneocus activity concentration at the sample time,
while in fact each sample point represents the integral of the changing activity
concentration over the duration of the collection frame. Based on this fact, Li et
al [47] proposed an optimum image sampling techniques using a modified cost
function based on integrated activity concentration for PET modeling. They
showed that by combining several adjacent image frames, the resulting smaller
number of image frames can produce a comparable parameter estimation

accuracy.
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However, in these studies, little attention has been paid to systematically

investigate the total scan duration which is usually decided empirically based on

the following factors:

(1) the physical and physiological half life of the radio-tracer;

(2) the existence of blood metabolites;

(3) model consideration, (For example of ''C acetate, the model is only validated
for the initial 15 - 20 minutes);

(4) the clinical consideration to keep the scan as short as possible for the

convenience of patients.

For dynamic SPECT, there are further limitations compared to PET. The lower
sensitivity and the need for mechanical rotation of the detectors limit the shortest
frame duration which can be reliably acquired. For clinical studies, the total
acquisition time is also of great importance. For example, dynamic TI1-201
SPECT studies in dogs have demonstrated the feasibility of estimating
myocardial blood flow and volume of distribution [30]. However, acquisition

times 1n these studies are up to 4 hours, which are clinically impractical.

Therefore, the second part of the thesis is to systematically investigate the
minimum required acquisition time for reliable parameter estimation, with Ti-
201 dynamic SPECT as our typical example. In addition, the minimum number
of frames and their duration were investigated using the optimum sampling
schedule technique. The optimum sampling schedule can substantially reduce the
total number of frames compared with a full dynamic study and reduce the need
for a fast dynamic collection which is difficult to achieve on rotating SPECT
cameras. The method for determining optimum sampling schedule and total
acquisition time applied here to TI-201 should also be applicable to other SPECT

tracers.



Chapter 1 Introduction Page 13

1.3.3 Quantification of physiological processes for dynamic studies without

the blood sampling procedure

Another limitation of performing functional imaging with PET is the
requirement of the tracer concentration in blood plasma, i.e. PTAC, which acts
as the input function for the kinetic model. The tracer concentration in blood
plasma is usually obtained by direct arterial blood sampling which is considered
to be invasive and time-consuming. It also exposes the clinical personnel to the
danger of fatal blood infection and radiation. Therefore, it is desirable to have
methods which enable quantification of physiological processes with reduced

number of blood samples so that the inconvenience caused can be minimized.

In that light, Stefan et al [48] proposed using a population-based input functions,
that were calibrated with two arterialized-venous blood samples, in the
measurement of regional cerebral metabolic rate of glucose (fCMRGIu). Burger
et al [49] has examined the possibility of mathematical metabolite correction.
The mathematical metabolite correction was implemented by first approximating
the input curve after its peak activity by a sum of three decaying exponentials.
The amplitudes and characteristic half-times of which were then estimated
together with the kinetic tissue parameters using a weighted least squares curve
fitting routine. Both methods, however, assumed that certain parts of the PTAC
are measured, ie., the blood sampling procedure cannot be completely
eliminated. Recently, Carson et al [S0] and Watabe et al [S51] have proposed
techniques that completely eliminate the process of blood sampling. Both
methods were developed for estimating the regional cerebral blood flow (rCBF)
using PET. Extension of these two methods to more complex model is possible

but may be computationally intensive.

Thus, in the last part of the thesis, we propose an approach to estimate the
physiological parameters for a pre-assumed tracer kinetic model when
performing dynamic PET studies, without taking arterial blood samples. The
approach involves a denoising step for the projection data. In our case, we use a

wavelet denoising approach. Wavelet denoising has the advantage of preserving
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the structural information of the image when filtering the noise. The denoised
projections are then reconstructed using FBP. From the reconstructed dynamic
images, two TTACs are extracted from ROIs and are re-sampled using
interpolation. Based on these two curves, a blind deconvolution technique is then

applied to estimate the kinetic parameters.

1.4 Organization of the thesis

This thesis is organized into six chapters. Chapter 1 (this chapter) gives firstly a
brief overview of the functional imaging. Particular attention is paid on
performing functional imaging with PET. Its procedure and limitations are
introduced. A summary of the proposed methods is also given. Chapter 2
presents some background materials on basic principles and quantification of
PET and SPECT. Then the image reconstruction algorithm, tracer kinetic
modeling, parameter estimation, mput function acquisition and noise model are
also described. In Chapter 3, a new approach for performing dynamic studies
using rotating detector system is proposed. In Chapter 4, a systematic approach
for investigating the mimimum image acquisition time for performing dynamic
studies is introduced. An alternative sampling schedule based on two sessions is
suggested. In Chapter 5, a method for the quantification of dynamic studies
without the requirement of input function is investigated. In these three chapters,
the theory of the proposed methods, simulation studies and results are detailed.
Finally, a summary of the work done is given in Chapter 6 of this thesis. Future

extensions of the present work are also discussed.
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Chapter 2 Preliminary

2.1 Introduction

In this chapter, we are going to review a number of subject areas which are
fundamental for performing functional imaging with emission tomography. The
aim of these sections is to provide the background materials to facilitate the

discussion 1n other chapters.

To perform functional imaging with emission tomography, a radio-active tracer
is usually iniroduced into the system under study. With different labeling of
radio-nuclide, the studies can be classified either as Positron Emission
Tomography (PET) or Single Photon Emission Computed Tomography
(SPECT) studies. Since the physical decay is different for these two types of
emission tomography, the quantification procedures of PET and SPECT are
different. Therefore, in section 2.2, the basic physics and quantification of PET

and SPECT are introduced.

The radio-active tracer will be delivered to and be extracted by the organ of
interest, via the blood circulation system. The imaging system placed outside the
subject can then continuously accumulate the photons emitted from the radio-
nuclide based on a sampling protocol, which is a sequence of time intervals. A
sequence of dynamic images, corresponding to the sequence of time intervals in
the sampling schedule, are then reconstructed based on the accumulated counts
from different angles. Different image reconstruction algorithms will have
different characteristics and hence, give different performance. Thus, in section
2.3, we review two different types of image reconstruction algorithms which will
be used in the subsequent chapters. Filtered back-projection (FBP) algorithm,
which is developed assuming deterministic data, has been commonly used in x-
ray tomography, and also, is the trivial choice for emission tomography. Another
emerging imaging reconstruction algorithm is the order-subset expectation

maximization (OSEM) algorithm which is based on statistical model. It has been
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found that OS-EM can provide better performance for emission tomography and

will become popularly used.

From the sequence of reconstructed images, quantitative temporal information
about the changes of tracer concentration in a localized region is obtained. The
measurements of the tracer concentration in tissue, or tissue time activity curves
(TTACs), are always obtained from the reconstructed images either by drawing a
regions of interest (ROIs) or by directly taking the values of individual pixels.
The measurements of the tracer concentration in plasma, or plasma time activity
curve (PTAC), can be obtained from peripheral blood sampling. These time
activity curves in conjunction with an appropriate tracer kinetic model are then
used to estimate regional bio-chemical or physiological parameters about the
dynamic process using parameter identification techniques. This procedure
requires effective integration of several areas, including tracer kinetic modeling,
parameter estimation and input function acquisition. Therefore, in sections 2.4 to

2.6, we will briefly describe these subjects, respectively.

To carry out simulations for the proposed methods, appropriate addition of
measurement noise in computer simulation is a necessary step in evaluating the
effect of noise to the performance of the proposed methods in real situation. In
this respect, a noise model is exploited to characterize the variance of the error in
the measurements obtained from emission tomography. This noise model will be

introduced in section 2.7.

2.2 Basic physics and quantification of Emission Tomography

2.2.1 Basic physies of PET

PET is a technique for measuring the concentrations of positron-emitting radio-
isotopes within a three-dimensional object by using external measurements of
the radiation from these isotopes. The location is sufficiently accurate to allow
the data generally to be presented as a gray scale image of a cross-section of the

object, with the intensity of each picture element or pixel proportional to the
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isotopes concentration at that position of the object. Among the readily prepared
positron-emitting radio-nuclides are isotopes of carbon, nitrogen, oxygen and
fluorine. Since these elements are contained in essentially all the compounds that
constitute or are consumed by the human body, PET is an obvious technique for

the study of the fate of these compounds in vivo.

Proton-rich radioisotopes have two means of decay that will reduce excess
positive charge on the nucleus: (1) the nucleus can capture an orbital electron
and neutralize positive charge with the negative charge of the electron, or (2) a
positiv-e electron (a positron) can emit from the nucleus. The positron is an anti-
electron that, after traveling a short distance, will combine with an electron from
the surroundings and annihilate. On annihilation, the masses of both the electron
and the positron are converted to electromagnetic radiation. In order to conserve
energy and linear momentum, the electromagnetic radiation is in the form of two
gamma rays of equal energy (511 keV), which are emitted 180° to each other
(Figure 2-1). It is this annihilation radiation that can be detected externally and is

used to measure both the quantity and the location of the positron emitter.

The external detection and localization of a positron emitter inside an object take
advantage not only of the fact that the two annihilation photons are emitted 180°
to each other, but also of the fact that they are created simultaneously. This
phenomenon is called the annihilation coincidence detection (ACD), as we
introduced in Section 1.2.2. Simultaneous or coincidence detection of two of
these photons by detectors on opposite sides of an object places the site of the
annihilation on or about a line connecting the centers of the two detectors
(Figure 2-1). If the annihilation originates outside the volume between the two
detectors, only one of the photons can be detected, and since the detection of a

single photon does not satisfy the coincidence condition, the event is rejected.

Summing many such coincidence photons results in quantities that approximate
line integrals through the radio-isotope distribution. For two-dimensional

imaging, these line integrals form a discrete approximation of the Radon
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transform of a cross-section of the radio-isotope concentration and can be

inverted to form an image of the radio-isotope distribution.

Deteclor S ' Detector
_ o 3 Annihilation
" _ <«~up Accepted by Annihilation
Coincidence Detection
< -p Rejected by Annihilation

Coincidence Detection

Figure 2-1 Principle of annihilation coincidence detection (ACD). When a
proton-rich radio-isotope decays by means of emitting a positive
electron (positron), the positron combines with a nearly electron and
annihilate to produce two 511 keV gamma rays which are 180° to
each other. If two gamma detectors are placed on opposite sides of an
object containing the radio-isotope, the detection of two annihilation
photons simultaneously, or in coincidence, places the original
position of the annihilation along the line connecting the two
detectors (solid line). Gamma rays from anmnihilation originates
outsides the volume between the two detectors will only have one
photon detected. Since the detection of a single photon does not

satisfy the coincidence condition, the event is rejected (dash line).

2.2.2 Quantification of PET

Ideally, the only coincidence events recorded by a PET are those which arise
from a unique positron annihilation that occurred along the line between two
activated detectors. These are referred to as true coincidences and they carry
useful information about the location of the positron emmtter. However, other
types of coincidence events, including accidental, scatter and multiple
coincidences, occur and degrade the measurement. Besides, PET also suffers

from the problems of attenuation, limitation of spatial resolution, partial volume
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effect, resolution uniformity and resolution losses because of patient motion.
Therefore, correction or compensation algorithms for these limitations have been
an active area of research. A survey of these limitations and the corresponding

correction algorithms can be found in [52].

2.2.3 Basic physic of SPECT

SPECT is a very similar procedure to PET. The only difference is that the decay
of the particular radio-nuclides results in one or more independent photons
instead of two annihilated photons. Individually emitted and thus spatially and
temporally un-correlated radiation, such as gamma-rays associated with 1someric
transition as well as x-rays associated with electron capture or internal
conversion, form the basis of SPECT. Since the photons from each point inside
the object under studied are emitted isotropically (equal numbers in all
directions), collimation is needed to form a projection image. The collimator,
usually made of lead, only allows x- or gamma-rays approaching the collimator
from a nearly perpendicular direction to pass through (Figure 2-2). As a result, a
projection image of the radio-nuclide distribution inside the object is formed.
Each point in such projection images is simply the summation of the counts
emitted along the projection through the body and approximates the line integral
through the radio-isotope distnibution. Therefore, as in PET, these line integral
form a discrete approximation of the Radon transform of a cross-section of the
radio-isotope concentration and can be inverted to form an image of the radio-

isotope distribution.

2.2.4 Quantification of SPECT

Due to the use of lead collimator, the limited count statistics in most clinical
studies affect the accuracy and precision of quantitative SPECT. With the advent
of multi-detector technology which allows for efficient detections, SPECT has
great potentials for the quantification of activity distribution in vivo. There are,
however, several factors that must be considered in quantitative SPECT studies.

Some of these factors are the system sensitivity and spatial resolution, dead-time
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and pulse pile-up effects, the linear and angular sampling intervals of the
projections, attenuation and scattering. Reviews of these limitations and

correction algorithms can be found in [53].

Crystal

Collimator

Figure 2-2 Collimation of a scintillation camera. The collimator forms the
projection image by permitting x- or gamma-ray photons approach
the camera from nearly perpendicular direction to reach the crystal

while absorbing most of the other photons.

2.3 Image Reconstruction

The goal of image reconstruction is to recover the radio-tracer concentration
from the measurements. Generally, image reconstruction algorithms are either
based on Fourier or statistical methods. Fourier based algorithms are developed
from a deterministic model, while statistically based ones rely on the Poisson

model.

Fourier based algorithms are extremely fast, but suffer from artifacts and
perform poorly when the number of observed coincidences is low. Low count
scenarios are common and occur when radiation doses are low and/or scan times
are short. Radiation doses are minimized for patient safety and scan times are
kept short for patient comfort. Also, Fourier based algorithms do not account for
the random nature of the PET data and fail to incorporate errors appropriately. In
contrast, statistics based algorithms perform well in low count cases and have the
ability to account for errors in the data. Unfortunately, they have the

disadvantage of requiring computationally expensive iterative methods for
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estimating the emission intenstties. This high computational expense 1s the main
reason that statistically based methods have not yet become popular in daily
clinical operation or commercial medical imaging systems. Nonetheless, with the
development of new fast algorithm as well as fast computing hardware, such
statistical methods will be popularly used in the next generation of imaging

systems.

2.3.1 Fourier based method

One of the most commonly used Fourier based reconstruction algorithms 1s the
Filtered back-projection (FBP) method. The method was discovered by
Bracewell [54] and independently by Ramachandran and Lakshminarayanan
[55], who demonstrated that the object f{x,y) is related to its projections, p, by a

simple integral
f@»)= [p(2.0)d0 @1)
o

where the function pris a “filtered” version of the projection acquired at angle 6,
and the vanables ¢ 1s related to x, y, and &by the formula

t=xsinf+ ycosd (2.2)
The filtered projection is best described in the frequency space. For a given angle
@, the Fourier Transform of pfis the product of the Founier Transform of the

projection p and the function |a):
pr(@) = p(o)o| (2.3)

Thus, the FBP method consists of four steps (Figure 2-3):

1) Compute the one dimensional Fourier Transform of each projection.
2) Multiply the transform by the frequency filter.

3) Compute the inverse Fourier Transform, yielding pf.

4) Back-project Pf
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Figure 2-3 The basic steps of the FBP algorithm. (a) One-dimensional Fourier
Transform of each projection. (b) Multiplication of the transformed
projection by the ramp filter in frequency domain. (c) Inverse
Fourier Transform of filtered projection. (d) Back-projection of

filtered projection data.

The principal advantage of FBP is its simplicity and flexibility. Moreover, when
using FBP, each projection can be processed as soon as it is measured.
Therefore, the reconstructed image can be displayed shortly afler the last view is

completed.

In the above equation, the ramp filter, |ai, by itself will reconstruct the function
exactly, but it will also enhance the high frequency components due to noise. To
eliminate the noise, we could perform high frequency filtering as a separate step.
Several commonly used filters include the Hamming filter, Parzen filter,

Butterworth filter and Metz filter. [56]
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2.3.2 Statistical based method

One of the statistical based image reconstruction algorithms is the expectation
maximization (EM) approach. The EM approach was introduced to emission
tomography by Rockmore and Macovski [57]. However, it is the development of
a stmple version of the algorithm by Shepp and Vardi [58] and independently by
Lange and Carson [59] that made EM one of the most popular image

reconstruction methods for emission tomography.

While the quality of the reconstructed image is good, the application of EM 1s
computational intensive and has slow convergence rate, even with standard
acceleration techniques [60]. Therefore, Hudson et al [61] proposed the order
subsets expectation maximization (OS-EM) algorithm that sub-divides the
available projections into ordered subsets and the standard EM algorithm 1s
applied to each subset in turn. The resulting reconstruction becomes the starting
estimate for the next subset. A single iteration through all the subsets involves an
amount of computation equivalent to one iteration of conventional EM, yet
yields a reconstruction similar to N iterations of conventional EM, where N is
the number of subsets used. Thus, the procedure accelerates convergence by a

factor proportional to the number of subsets.

More specifically, the OS-EM algorithm is summarized as follows:

Assume that the emitter activity is modeled as a Poisson point process. This
activity is assumed to be uniform within the pixels of a grid imposed on the
region. The expected number of photon emissions from pixel j is denoted by x;.
Define the image to be the vector x = {x;: j=I,....J}. The emitted photons are
binned to provide counts y; on detectors indexed by #. Also, weights agj is
defined to represent the probability that an emission from pixel j is recorded at

detector element ¢. Then, detector counts are Poisson distributed with expected

values p= Ey = Ax, where A 1s the projection mairix.
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Let £° be a pre-specified starting image, e.g. uniform. Denote £” the estimate of
x after iteration m. Let §y, ...,5; denote the chosen detector subsets in the order

selected. The algorithm 1is then as follows:
(1) m =0, x™ initialized to be positive
(2) Repeat until convergence of x™
@ xI=z" m=m+1
(a) Forsubsetsi=1,...,n
Project: Calculate expected values for cumulated counts y as
J
U= ;a,jxj. (2.4)
for detector € S;.

Back-project: Calculate

Z Y.a;
xi+l _ i 5 H (25)

., = X.

J J
Za:f
te8

for pixel j=14,...J

(3) £" =xnti, (2.6)

Further details of the OS-EM algorithm and the selection of order subsets can be
found in [61].

Figure 2-4 shows the images reconstructed using the FBP and OSEM
algorithms. In the figures, sinogram 1is firstly generated using the MCAT
phantom (as shown in Figure 2-4a) and then reconstructed to give the cross-
sectional image using the two algonthms (Figure 2-4¢ for FBP and 2-4d for
OSEM). The effects of body attenuation is also demonstrated using the
attenuation map shown in Figure 2-4b. The reconstructed images are shown in
Figure 2-4g and 2-4h for FBP and OSEM, respectively. It should be noted that
no attenuation correction is applied in both reconstruction. Also shown in Figure
2-4 are the profiles across the reconstructed images. In figures 2-4 ¢, f, 1 and j,

the solid lines are the profiles for the original MCAT phantom. The dotted lines
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are the profiles for the reconstructed images using either FBP or OSEM

algorithms.

(a) MCAT Phantom (b} Attenuation Map

{ Without Attenuation)

(c) FBP Reconstructed Image (d) OSEM Reconstructed Image
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(e) FBP Profile (f) OSEM Profile

Figure 2-4 A comparison of reconstructed images and profiles for FBP and

OSEM algorithms.
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(With Attenuation)

(g) FBP Reconstructed Image (h) OSEM Reconstructed Image
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Figure 2-4 (cont.) A comparison of reconstructed images and proﬁles for FBP

and OSEM algorithms.

(a) The onginal MCAT phantom (Slice 71).

(a) The attenuation map (Slice 71).

(a) and (g) are the reconstructed images using FBP without and with
attenuation effects, respectively.

(a) and (h) are the reconstructed images using OSEM without and
with attenuation effects, respectively.

(a) and (1) are _the profiles of the reconstructed images using FBP
without and with attenuation effects, respectively.

(a) and (j) are the profiles of the reconstructed images using OSEM
without and with attenuation effects, respectively.

In figures (e), {f), (i) and (j), the solid lines are the profiles for the

original MCAT phantom. The dotted lines are for the reconstructed

images using either FBP or OSEM algorithms.

Figure 2-4 demonstrated that both the FBP and OSEM algorithms provide

comparable performance when attenuation is not included (Figure 2-4e and 2-
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4f). However, when the body attenuation is included, the FBP reconstructed
image deviates significantly from the original image, while the OSEM

reconstructed image can still provide satisfactory result.

2.4 Tracer Kinetic Modeling in Emission Tomography

Based on the sequence of images reconstructed from the accumulated counts at
different time intervals, time functions can be extracted from either regions of
interest or pixel by pixel. Such time functions show the dynamic of the tracer
concentration in a local region. In conjunction with the tracer kinetic model and
the input function, these time functions can be used to calculate the physiological

parameters in a local region. (See Figure 2-5)

2.4.1 Basic assumption of tracer Kinetic modeling

In tracer kinetic techniques, an appropriate tracer is required to follow the
dynamic process of interest. There are several basic assumptions on applying
tracer kinetic modeling:

1. Usually, a tracer must either be structurally related to the natural substance
involved in the dynamic process (e.g. metabolic processes) or have similar
transport properties (e.g. for flow systems). Furthermore, the tracer must be
measurable and distinguished (in terms of measurements) from the natural
substance that it intends to trace.

2. The tracer introduced is assumed to be in a trace amount, so that the process
being measured is not perturbed by the introduction of the tracer. Otherwise,
the measured results would reflect the effect of the tracer introduction and
would not represent the process in its original state.

3. The dynamic process being evaluated with a tracer kinetic technique is
usually assumed to be in a steady state. In other words, the rate of transport
or reaction of the system is not changing with time, and the amount of
substance 1n any pé.rt of the system is constant during the evaluation period.
The steady-state condition is considered to be satisfied if the amount of

change within the time of evaluation is small compared to the magnitude of
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the process itself. For stable cyclic changes (e.g., pulsation of blood flow)
with a cycle much shorter than the length of the measurement time, the

method 1s still applicable, but the measurement will be the average value

over the cycles.

Blood Sampling

PTAC

<§ Time™ @ Time

(" Compartmental Modeling
{e.g. FDG Model) —

Activity

FOG i 3
plasms, K Tissus, K FYT7y
L) bl

Curve Fitting
(e.0. Non-Linear Square)

:{> (CMRGI = —— s ¢
LC Gtk

Figure 2-5 Steps involved in tracer kinetic modeling with PET. (i) Tracer
activity in blood plasma is obtained by blood sampling. (it) Tracer
activity In tissue region is obtained from the sequence of
reconstructed images. (iii) A compartmental model is assumed to
incorporate known information about the process under study and to
provide a framework to allow the interpretation of measurements.
(iv) The rate constants for the compartmental model are estimated
using parameter estimation technique, based on the measured PTAC,
TTAC and the assumed compartmental model. (v) The estimated k,-
k, are used to calculate the physiological parameter in a local region.

ke o

J"



Chapter 2 Preliminary Page 29

2.4.2 Compartmental Models

Mathematical models are generally used to incorporate known information about
a process to provide a framework or representation to allow the interpretation of
measurements. For tracer kinetics, there exist various kinds of mathematical
models of widely different mathematical characteristics: deterministic versus
stochastic, distributed versus non-distributed, compartmental versus non-
compartmental, and linear versus non-linear [62]. In biomedical applications,

linear compartmental models are most frequently used.

A compartmental model (Figure 2-6) 1s usually represented by a number of
compartments linked together by arrows indicating transport between
compartments. A compartment is defined as a space in which the tracer is
distnibuted uniformly. The amount of tracer leaving a compartment is assumed to
be proportional to the total amount in the compartment. The arrows indicate the
possible pathways the tracer can follow. The symbol k; next to the arrow is
called the rate constant, which has the unit of inverse time and the fraction of the

total tracer that would leave the compartment per unit time.

Compartment 1 k Compartment 2 K R

1T

Compartment 3

Figure 2-6 Compartment Modeling. Each square represents a compartment.
Arrows represent possible pathways of the tracer. k; (where i = 1, 2,

..., 6) represent the rate constants of the transport pathways.



Chapter 2 Preliminary Page 30

There are a number of attractive properties of using compartmental model. First
of all, it is conceptually stmple, consistent with the way we commonly describe
or think of the transfer of tracer in the tissue or in the body. In addition, based on
the descriptions and definitions of the compartments, the tracer kinetics of a
compartmental model can be described in terms of a set of linear, first-order,
constant-coefficient, ordinary differential equations as long as the tracer is in
small amount compared with its natural counterpart. Because of this linearity for
the tracer, the kinetics of a physiological or biochemical process can be
completely represented by a response function. The response function of a
system will be exactly the tracer kinetic measurements from the system, if the
tracer is delivered to the system as an impulse. For any other type of tracer
delivery condition, the kinetic measurements will be simply the convolution of
the delivery function (input function) and the response function of the system. In
other words, if the input function (i.e. arterial blood or PTAC) and kinetic
measurenmients in tissue are known, the response function of the system can be
deduced by deconvolving the input function from the measured kinetics of the
system. The response function so deduced would characterize the state of the
system and provide the physiological or biomedical information desired.
Furthermore, if certain conditions are satisfied [62], the response function of a
compartmental model will consist of a sum of exponential functions [63]. The
number of exponential components is usually equal to the number of
compartments in the model [63]. Thus, by analyzing the response function in
terms of exponential components, one can estimate the number of compartments

required for constructing a model for the system.

2.4.3 Example: 3-compartment Fluoro-deoxy-glucose (FDG) model

Figure 2-7 shows the 3-compartment FDG model which is the mathematical
model employed to determine the transport rate constants of radioactive FDG
after it has been injected intravenously into the human body. This compartment
model was proposed by Huang et al {64]. It was modified from the Sokoloff

model {65] which was onginally developed to measure the rates of glucose
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utilization in the central nervous system in conscious rats by applying the [*C]-
deoxy-glucose (DG) radio tracer and quantitative autoradiography. The three
compartments represents: (1) the concentration of FDG in plasma, Cp(?), (2) the
concentration of free FDG in tissue, Ce(?), and (3) the concentration of FDG-6-
PO, in tissue, Cm(t), respectively. The four rate constants, kj-k4, in the model
represent the tracer transport rates in this dynamic system. Parameters k7 and k)
represent forward and reverse transport rates of FDG across the capillary and
their units are ml/gm/min and 1/min, respectively. Parameters k3 and k4 are the
rate constants for phosphorylation of FDG and dephosphorylation of FDG-6-
PO,, respectively, and they have the unit of 1/min. Details of this FDG model
were reported elsewhere [64,66]. Mathematiéally, the FDG kinetics obey the.-

following first order system:

d
o Ce(t) = k,Cp(t) = (k, + &,)Ce(t) + k,Cm(t) 2.7
d
o Cm(t) = k,Ce(t) - k,Cmt) (2.8)
The solutions to these differential equations are (see [64]):
k -at —ayf
Ce(t) =————((ky —a,)e™ +(a, — k)™ )@ Cp(2) 2.9)
a, —q,
klk3 —at -yt
Cm(t)=—"—(e -} Cp(¢) (2.10)
2 T

Cit)=— ’i — (U hy— e )e™ + (e ~ ks k)™ )@ Cp(t)  (2.11)

where Ci(t) is the total '°F activity in tissue, i.e. TTAC, the symbol ® denotes the

operation of convolution integral, and

@ =k, +ky +ky = fhy + Kk, +K,) —4kyk,)[2 (2.12)

a, = (ky + ks + kg 41k, + ky + k)P - 4k, ) /2 (2.13)
Since Ci(t), or equivalently TTAC, can be measured with PET scanner, and
Cp(1), equivalently PTAC can be obtained by taking blood samples, the values of
the rate constants, k7-k4, of FDG model can be estimated by performing a non-

linear least square optimization.
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The estimated £ j-k4, namely !2, - 124, are then used to calculate the metabolic rate

of glucose in a local regton, rCMRGlu, given as

CMRGI L kk C, (2.14)
14 U=—TT"—= -~ .
LCh +h ¥

2 3

where LC denotes the lumped constant, accounting for the differences between
FDG and glucose in transportation and phosphorylation, and Cp denotes the cold
glucose concentration in plasma. Both LC and Cp are assumed constant and can
be determined in advance. We are interested in the parameter rCMRGlu because
it represents the activity of a particular part of human body. This gives a useful

information to medical practitioner in various diagnostic applications.

TTAC

measurement
o Q or Ci(t)

K, K,
FDG in * Free FDG ™ FDG-6-PO,
plasma, K in Tissue, k in tissue,
Colt)  |e— Ce(t) |l cm(t)

Figure 2-7 3-compartment FDG model. Left compartment represents vascular
space for FDG. Center compartment represents tissue space for free
FDG. Right compartment represents tissue space for FDG-6-
phosphate. The activity measured by PET scanner is the summation
of the activity from the center and right compartments, 1.e. free FDG

in tissue and FDG-6-phosphate in tissue.

2.5 Parameter Estimation in Emission Tomography

As it is stated previously, if the input function (i.e. arterial blood or PTAC) and
kinetic measurements in tissue are known, therresponse function of the system
can be deduced by deconvolving the input function from the measured kinetics
of the system [67]. Unfortunately, most deconvolution routines have inherent
computational difficulties with noisy data and are not easy to implement. The
usual strategy is to use the known input as input to the model (numeric or
analytic) representing the impulse response function and thereby fit this model

predicted output to the actual measurements. In order words, the deconvolution
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problem is converted to a curve fitting problem. One common example of these

approaches is the Non-linear Least Square Approach (NLS).

2.5.1 Non-linear Least Square Approach (NLS)

With the FDG model described above as an example, the solution of the FDG
model given in (2.11) can be expressed by the macro-parameters of the model as
Ci(t)=(Be™ + B,e™™)® Cp(t) (2.15)

where

L = (ky +hy + kg =k, + ke, + k) — 4k, )2

L = (k, + by + b, +Jky + ks + K, — 4,k )2
ky
L-1I

- ky
T -1

The resulting operational equation is non-linear with the macro-parameters, Lj,

B, = (k3+k4_L1)

B, (L = k3~ ky) (2.16)

L2, By and Bp. When the NLS method is used, the macro-parameters are varied
using certain optimization algonthm, such as the Newton-Gaussian or
Levenberg-Marquardt algorithm [68,69] until the residual sum of squares (RSS)

reaches its minimum. The RSS i1s defined as
T 2
RSS = Y |cime= et (1)~ (Bie ™" + B,e™ ) ® Cp(1)| (2.17)
=1

where T is the number of samples of TTAC, C;measureds) is the measured

sample which is usually taken as the average count-rate for the acquisition

interval, and (B,e™™ + B,e ™ )® Cp(¢) is the instantaneous model-predicted
count-rate for the acquisition interval. The RSS denotes the residual differences
between the measured tissue time activities, Cimeasured(s) and the estimated
tissue time activities. The curve fitting procedure is iterative. Once the macro-
parameters have been estimated using this procedure, the corresponding micro-

parameters of the model can be calculated as follows:

k =B + B,



Chapter 2 Preliminary Page 34

. BL +B,L,

k, =5 —
B, + B,

k“ _él£2+§2f‘l E]£2(1§1+§2)

B +B, BL +B,I,

. LL(B+8

i = Lb(B +5) 2.18)
Bl J+BZL2

where_f:,, L, ﬁ, and ffz are the estimated macro-parameters and 12,-124 are the
estimated micro-parameters of the model. The estimates obtained using this

method are expected to have optimal statistical accuracy in parameter estimation.

The above described method is the NLS. A weighted version of NLS performs

similarly except that the RSS is modified as
T
RSS = ) w,[Ci"™ ()~ (Be™™ + B,e™™)® Cp(t)| (2.19)
1=1

The weighting wy reflects the relative accuracy of the measurements made at

different times.

2.5.2 Other Approaches

In addition to NLS, there are a number of other approaches for parameter
estimation include Autoradiographic Approach (ARA), Generalized Linear Least
Squares Method (GLLS), Linear Least Squares Approach (LLS), Patlak
Graphical Approach (PGA), Weighted Integration Method (WIM). An

evaluation of these approaches, as well as NLS, is given in [70].

2.6 Input function Acquisition

In general, the amount of activity measured in an organ depends on the kinetics
of the metabolic process, the transport properties between the blood and the site
of the process in the cell, and the amount and time course of the delivery of the
activity to the organ by the blood. Therefore, it is necessary to obtain

independent measurements of the level of activity as a function of time in both



Chapter 2 Preliminary Page 35

the tissue, with the imaging system, and the arterial blood, with well counter
samples. The measurement of the arterial level of tracer as a function of time, or
equivalently PTAC, acts as the input function for the tracer kinetic model. PTAC
can be obtained in two different ways. The first one is obtained by taking blood
samples throughout the studies. This procedure is considered to be invasive and
the blood collection and processing process are both tedious and time
consuming. Therefore, an alternative approach is to model the PTAC with an
analytic function and calibrate the function with a few blood samples. Both

methods will be described in the following.

2.6.1 Acquiring the Input function by taking blood samples

The usual method of obtaining the input function is to catheterize an artery of the
subject and to take a series of blood samples following the injection of radio-
tracer. The blood samples must be obtained with a frequency and over a length
of time adequate to define the level of activity and shape of the input function.
The frequency of sampling depends on the rate of injection and the rate of
clearance of the activity from the blood. The length of time for sampling depends
on the kinetics of the process being measured. The requirements of the sampling
must be determined on an individual basis for each procedure. The weight or

volume, as well as the activity, must also be determined for each blood sample.

Two methods have been developed to avoid artenial puncture in fhe measurement
of input function. The first takes advantages of the fact that, when the
temperature of the hand is raised, there is dilation of the blood vessels and the
blood in the surface veins is effectively arterialized [71]. This produces a very
high blood flow in the hand without an increase in metabolic function, and the
extraction of the substrate in the hand is typically small. This method will
probably be valid in those cases in which the rate of injection and rate of change
of activity in the blood are relatively slow and the normal temperature extraction
of the tracer in the tissue of the hand is relatively low. In practice, the hand is

heated in a 43°C water bath and the blood samples are drawn from the vein of
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the hand. The second method uses the PET system to measure the input function
directly by measuring the amount of activity in the left ventricle, aorta, or other
large artery as a function of time. This method requires that the system be
capable of accumulating images rapidly enough to satisfy the temporal sampling
requirements of the particular input function. This method is also limited to those
cases 1n which the left ventricle or an adequately large artery intersects at least

one image plane.

2.6.2 Input function Modeling

Another approach of acquiring the input function is to model the input function
with an analytic function and calibrate the function with a few blood samples
[48,72]. The tracer behavior in the blood circulatory system can be approximated
by a compartment model, which contains four compartments or pools as shown
in Figure 2-8. The first pool can be loosely considered as a pool consisting of the
veins where the tracer is introduced; the second pool can be loosely considered
as the arteries (plus the arterialized veins) where blood samples are taken for the
measurements of tracer concentration; the third pool can be considered mainly as
the tissue vascular and interstitial space. The tracer in Pool 3 is reversibly
exchangeable with Pool 4 which consists of the cellular space of the tracer and
its reversible products in tissue. In the tissue pool, the tracer may be excreted or
sequestered. For simplicity, it is assumed that radio decay of the tracer has been
corrected. A delay unit is introduced to simulate the delay due to the time
required for the mixing of the tracer in the blood pool and for the tracer to be
transported from the input pool to the measurement pool. For simplicity, this
delay unit is assumed to be at the top of Pool 1. Based on this four-compartment
model, a PTAC model can be mathematically expressed as

[Al(t - 1') - A2 - A3 ]61"(‘-’) -+ A,Zeaz('_r) + Ajel:(!—'r) i>T1

.20
0 i<t (2.20)

Cpmodel(t) ={

where Cmed‘?l(t) is the fracer plasma concentration at time ¢; and 4}, 4, 43,

A7, A2, A3 and 7 are model parameters, with 7 representing the time delay of the

curve. Further details of this seven parameters PTAC model can be found in
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[72]. This PTAC model has also been used in several previous simulation studies

[73-75] and 1n the simulations of subsequent chapters to generate the PTAC.

a(t) e(t)
PTAC
Delay measurement
I a(tr) or Cp(t)
Ky o o
1 > 2

Figure 2-§ 4-compartment model for input function modeling.

2.7 Noise Model

Since we perform computer simulations to validate our proposed methods,
appropriately adding of measurement noise 1s necessary to simulate the actual
environment and also to investigate the robustness of the proposed approaches.
A noise model is exploited to characterize the variance of error in the

measurements obtained from emission tomography.

As indicated before, the emission tomography imaging system accumulates the
photons emitted from the radio-nuclide in a sequence of N scanning time
intervals. Let y(¢) be the tracer concentrations to be sampled by an imaging
systemn and Ny be the accumulated count (number of photons) over a certain time

interval, then

N, = ]y(:)dz +e, (2.21)

fea
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where the integral limit z4_; and #4 are the end points of the interval and ey is the

noise in Nj. The variance of this count, denoted by Var{N}}, is proportional to

_[ y(t)dt , and mathematically it can be expressed as

e

Var{N,} = Var{e,} = c x j y(t)dt (2.22)

fra
where ¢ is a proportionality constant which determines the measurement noise
level. In tracer kinetic modeling with emission tomography, it is a common

practice that averaged count over the time interval, denoted by zj, is used, that is

N, 15 e,
== t)dt+— 2.23
v Q{y( i+ (2.23)

where Aty = ¢ - #4.7 is the length of the time interval. The variance of zg,

therefore, can be derived as follows:

¢ X ’] y(t)dt

Var{N,} = (:31—)2 (2.24)

Var{z,} = Var{%} = @y
k £

In tracer kinetic modeling with emission tomography, z4 1s usually regarded as a

measurement of y at mid-scan time equals to ( #z + t5_7 )/2.

The variance structures given in (2.22) and (2.24) will be used under different
simulation environments. When the simulation noise is added directly to the
projection data, which is usually taken as the accumulated counts over certain
time interval, the variance structure in (2.22) is used. When the simulation noise
is added to the TTAC, which is usually taken as the average measurement within
a certain time interval, vanance structure in (2.24) is used. In both cases,
however, the variance structures given above only serve as a reasonable
approximation to the variance of the PET measurement. It is equivalent to an
experimental variance model [46], and it has been used in numerous studies
{75,76,77]. More complicated variance structures for the PET measurement can

be found in [78,79].
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Chapter 3 Dynamic Imaging and Tracer Kinetic
Modeling for Emission Tomography

using Rotating Detectors

3.1 Introduction

As introduced in the previous chapters, emission tomography opened the
possibility to record the bio-distribution of radio-pharmaceuticals within the
body. Using emission tomography, it is possible to reconstruct a sequence of
dynamic images which the pixel values represent the activity of regioﬁs of
interest as a function of time. From these dynamic images, information relating
to function of the living human body can be directly visualized. Furthermore,
parametric images depicting physiological parameters, such as the metabolic rate
of glucose in tissue, can be derived from these d)}namic images using
compartmental modeling [64]. A basic premise for extraction of quantitative
parameters is that the time course of tracer in tissue can be reliably recorded.
This can be achieved using stationary detectors as in the ring geometry most
commonly available for positron emission tomography (PET) and similarly
designed single photon emission computed tomography (SPECT) systems based
on detector rings [80-82].

However, the ring geometry PET scanner or SPECT systems based on detector
rings are not yet commonly available in clinical environment because of the high
capital cost associated with such scanners. The high cost also hinders the
developments of scientific research associated with PET studies. Therefore,
alternative PET éystems which acquire data using pairs of rotating detectors
[31,32] have been developed. The total number of detectors in these systems is
much lesser than their full ring equivalent which represents a significant
reduction in cost. Also, coincidence studies using dual head SPECT scanner,
with detectors rotating around the patient, have been performed recently [33].

Such system can provide the same performance achieved with present SPECT
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scanners when operating as a SPECT system for imaging single photon emitters.
It provides clearly superior performance to a 511 keV collimated SPECT scanner
when operating in the coincidence mode. Deriving parametric images from these
systems is becoming feasible. On the other side, recent advances in attenuation
and scatter correction and multi-detector gamma cameras have significantly
improved the quantitative accuracy of reconstruction for SPECT studies. As a
consequence, acquisition of kinetic data with associated modeling is possible on

these systems and has gained increased attention [34-37].

These systems, however, have similar constraints to PET systems based on
rotating detectors which, at any point in time, only partial data are acquired.
There is a possibility that the radio-pharmaceutical distribution changes during
the acquisition of the set of projections necessary for reconstruction. Such
redistribution will result in the acquisition -of inconsistent projection data,
leading to artifacts in the reconstructed image. Bok et al [83] investigated the
problems of SPECT imaging in which tracer activity changed during acquisition
and found that points of activity were smeared into ellipse that become more and
more irregular as the duration of acquisition increases. Similar smearing effect
were also reported by Links et al [39] on studying the effects of differential
tracer washout during acquisition in a model of teboroxime clearance. Nakajima
et al [84] found bands or “fails” of activity spreading across the field of view as
activity changed substantially during the acquisition. These artifacts influence

the accuracy of any subsequent parameter estimation [38-40].

One possible approach to reduce the artifacts in the reconstructed images is to
sequentially acquire multiple short acquisition instead of one long acquisition.
However, the reduction of acquisition tifne is limited by the physical constraints
of mechanical rotation, and by the limited counts acquired by a system whose
acquisition geometry limits detection efficiency. An alternative approach is to
estimate physiological parameters of the process by using parametric images
reconstructed directly from projections, rather than using a dynamic sequence of

mmages. A general approach based on the weighted integration method was
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proposed for SPECT [85] and was previously applied to PET data [86]. The third
approach is to recover the parameters of the time-activity curve in each pixel
directly from the projection data [41,42]. These approaches assume an explicit
mono-exponential model for the time-activity distribution for each pixel in the
images. They have shown that they can accurately recover the parameters of
time-activity curves using simulated data. Extension to more complex models
may be feasible, although the solution is likely to be computationally

demanding.

In this chapter, we propose an approach for estimating the kinetic parameters
from dynamic studies recorded by rotating detector systems. These systems
include single or multi-detector SPECT, coincidence detection systems or low-
cost PET systems which involve detector rotation. The method involves
interpolation across projections to provide an improved estimate of the
projections for a stationary detector system. The interpolated projections are
reconstructed using the conventional filtered back projection (FBP) algorithm
and the kinetic parameters are estimated using a modified weighted least squares
cost function. The proposed method is based on several previously validated
techniques which, in combination, provide a relatively simple and
computationaily efficient solution. To evaluate performance, we use the [°F]
labeled fluoro-deoxy-glucose (FDG) model, as introduced in Section 2.4.3,
which has well documented kinetics and potential application in both PET and

coincidence imaging.

3.2 Theory for the Proposed Method

3.2.1. A common nomenclature for PET and SPECT dynamics

To introduce the proposed approach it is useful to establish a nomenclature
which is common to both PET and SPECT, specific to rotating detector systems
as opposed to stationary systems. The usual mode of acquisition (typical of

rotating camera SPECT systems) involves acquisition of projections at



Chapter 3 Dynamic Imaging and Tracer Kinetic Modeling Page 42

for Emission Tomography using Rotating Detectors

individual angular positions with rotation of the detectors between subsequent
projection angles. It is useful to distinguish between the time taken to acquire a
single projection and the time taken to acquire all projections which constitute a
single rotation (or, more exactly, which would contribute to a single
reconstruction). A dynamic sequence consists of multiple rotations. We define

the following terms:

Frame-interval is the period of time for a complete rotation or acquisition of
one complete set of projections (contributing to a single reconstruction). For
example, a single head camera rotating over 360° between times t, and t, would
acquire all projections in the frame-interval [t,-t)). We use this term with
reference to frames in the dynamic sequence as commonly used in nuclear
medicine. For a stationary detector all projections are normally acquired
simultaneously for the complete frame-interval. However, in a rotating detector
system, each individual projection occupies a projection-interval which, for a
single head camera equals [frame-interval / number of angles]. The data for
different projections will be acquired sequentially in each frame-interval. In the
general case, neither the frame-interval nor the projection-interval are constant
for sequential rotations. For any underlying tracer kinetics a time-activity curve
can be postulated for a single pixel in the projection domain. At a given angle the
acquisition over multiple rotations results in a set of measured samples of the
undérlying time-activity curve, each sample occupying a projection-interval. We
refer to these as projection-samples. For a stationary detector, where the
projection-interval equals the frame-interval, the projection-sample is the total
counts acquired for the frame-interval, though normally considered as a sample
at the mid-point of the interval. In the case of the rotating detector the projection-
sample is the total counts for the projection-interval. However, the total counts
for the frame-interval can only be determined by interpolation between
projection-samples. We further define the selection of frame-intervals for the
complete multi-rotation study as frame-sampling to remove any ambiguity with
projection-sampling. Figure 3-1 illustrates the definition of frame-interval,

projection-interval and projection-sample.
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Figure 3-1 Definition of frame-interval, projection-interval and projection-
sample. The solid curve stimulates the actual tracer uptake curve. The
solid black rectangles represent the projection samples which are
taken as the count rates average over the projection-intervals
centered at times x,, where 1 =0,1,2,3. The times t, where 1 = 0,1,2,3,

define the boundaries between adjacent frames.

3.2.2 Basis of the method

To accurately estimate kinetic parameters from a dynamic study normally
necessitates acquisition of multiple short frames, particularly near the start of the
study. These short frames tend to be noisy and may occupy considerable
memory space. If, instead, longer acquisition times are used, then there is likely
to be tracer redistribution during early frame-intervals which may result in
artifacts. Qur proposed approach is to use the minimum number of frames,
minimizing memory space and processing time. An interpolation techmique is
used to minimize the influence of tracer redistribution on the results.
Fundamental to the approach is the adoption of a strategy where parameters are
estimated based on the total counts over the frame-interval [44,87-91]. It is
different from the traditional approach which uses the normal assumption that
measurements represent estimates of the instantaneous mid-interval values.

Using the modified premise, a more accurate interpolation scheme can be
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defined in projection space [92] so that conventional reconstruction {e.g., using
FBP) is feasible with reduced artifacts. The interpolation scheme adopted, unlike
others, e.g., use of Simpson’s rule [93], 1s not limited to acquisition with equal
frame-intervals. Consideration of the optimal frame-sampling required for a
specific model provides a solution with the minimum possible number of frame-
samples, with different duration for each frame [94]. The suggested approach is
practical, requiring a small number of rotations of the detector system, each
rotation of different duration. The detailed steps and techniques are outlined

below.

3.2.3 Estimation of projections by interpolation

The first step of the proposed approach is to estimate, as accurately as possible,
the total counts in each pixel of the projection data for each frame-interval so
that more reliable dynamic images can be reconstructed. The simplest technique
to achieve this is by linear interpolation [95] as illustrated in Figure 3-2. For each
pixel in the projection domain, we assume linear change of activity between
projection-samples. We can then calculate the total counts within each frame-
interval by summing the appropriate areas. We divide the total area by the
corresponding frame-interval to obtain an average count-rate. It is recognized
that this approach may be inaccurate for certain curve shapes (as illustrated). An
alternative approach, based on the integration of overlapped parabolas, has
therefore been developed [92]. The method is applicable to non-uniformly

sampled measurements and can be efficiently computed.
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Figure 3-2 Linear Interpolation of projection data. For illustration purpose, this
figure magnifies the early part of Figure 3-1. For linear interpolation,
we use straight lines (dotted lines) to interconnect the measured
projection-samples at x; and approximate the area under the solid
curve for the relevant frame-interval ( say, [t,,t,] ) by the area under

the straight lines (1.e., A +A, ).

The approach is illustrated in Figure 3-3. Our objective is to estimate the total
counts between times t; and t;,,, with projection-samples for a given projection
angle at times X,, X,,..., X,, where n is the number of frame-intervals. For the
projection-sample at x; located in the frame-interval between t, and t,,,, the total
counts within the segment from ¢; to x; is calculated as the average integral of the
two parabolas fitted to the projection samples at (x;,, X;,, x;) and (X, X;, X;,,),
respectively, between the limits t; and x;. The total counts within the segment
from x; to t,, is similarly calculated using the appropriate projection-samples.
The total counts between times t; and t,,, are calculated as the summation of the
integrals of these two segments. These total counts are then divided by the
corresponding frame-interval to obtain an average count-rate for the frame-
interval [t,,-t]. The above interpolation process is applied to every pixel of the
projections. The resultant projection data, which better approximate the

projections for a stationary detector system, can then be used to reconstruct the

dynamic images using filtered back projection.
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Figure 3-3 Interpolation of projection data using the overlapped parabolas
method. This figure magnifies the early part of Figure 3-1. For
overlapped parabolas, the area under the solid curve is estimated by
averaging the area under two parabolas. For example, A, is the
average of the area under the two parabolas, fitted with (origin,x,,x,)
and (X,,X,,X,), for the interval [x,-t;] and A, 1s the average of the area
under the two parabolas, fitted with (x,%,,X;) and (x,,X,,X3), for the
interval [t,-x,] (x; is not shown in the figure.) Then, the total area

under the solid line within {t,,t ] is approximated by A, +A,.

3.2.4 Tracer kinetic modeling

After we obtain dynamic set of reconstructed images, the next step is to perform
physiological parameter estimation. Conventional modeling is based on the use
of instantaneous curve values (as described in Section 2.5.1) whose estimation
may include significant error since they are derived by taking the average over
the frame-interval [87]. To reduce error, we make use of a modified approach
which is based on the area under the curve [44,87-91]. This approach differs
from the traditional technique in that a modified weighted least squares cost
function or residual sum of squares (RSS) is adopted. Traditionally, RSS is

defined as in Equation 2.17 (or Equation 2.19) and 1s given in the following:

T
RSS = ¥ w |G (1)~ (Be™ + B,e ™) ® Cp(1)| G.1)
t=1
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where T is the number of samples, w, is a weighting factor, C;/measured(y) is the

measured sample which 1s usually assumed to be the average count-rate for the

frame-interval, and (Be ™ +B,e™™)®Cp(¢) is the instantaneous model-
predicted count-rate for the frame-interval. The problem for such RSS is that,
when the dynamics change rapidly, the duration of acquisition must be
sufficiently small, otherwise C;me€asured(;) may not be a good approximation of
the instantaneous measurement at ¢ In other words, we typically need a large
number of frame~sam1ﬂes when the activity changes rapidly. To avoid this

requirement, the RSS is modified to be

2

T
RSS = ) w,|Ci™™ (1)~ th— I(B,e'L" + Be” )Y@ Cp(¢)dt (3.2)
t=1

LA
1 .
where v J.(Ble"“' +B,e™ Y@ Cp(t)dt is the average count-rate over the
v
frame-interval At;. In this case approximation error can be reduced. It has been
shown [94] that, by using the above modified fitting algorithm, only four

. dynamic images are necessary to estimate the metabolic rate of glucose using the

four-parameter FDG model. In this case Ar; may be relatively large.

3.3 Simulation Method

As indicated earlier we have chosen to validate the proposed method using the
FDG model [64], as infroduced in Section 2.4.3. The input function for the
model, i.e. the FDG concentration measured in blood plasma, was generated
numerically using the input function model introduced in Section 2.6.1, a
commonly adopted approach [96-98]. We assume that the time delay of the input
function model 1s equal to zero. The mathematical expression of this simplified
input function model, Cpmf’del(t), is given as follows:

(A=A, - A)e™ + de™ + 4,e™ t>71

o - <7 (3-3)

Cpmodel(t) — {

where, as previously published [72]:
Ay =851.1,4,=21.88, 43 =20.81 [pCi/ml]j



Chapter 3 Dynamic Imaging and Tracer Kinetic Modeling Page 48

for Emission Tomography using Rotating Detectors

Ay =-4.134, A, =-0.1191, 1;=-0.0104 [1/min]}
The proposed method was tested using the phantom shown in Figure 3-4 which
contains three regions with different kinetics. Activities 1n the left ellipse, right
ellipse and the circle were simulated to represent the kinetics which are typical of
brain white matter (Region 1), grey matter (Region 2) and an intermediate value
(Region 3). The resulting tracer time-activity curves are shown at the top right,
middle right and bottom right, respectively. The outer largest ellipse has

constant activity. The transport rate constants, k -k,, for the three regions were

obtained from [64] and are listed in Table 3-1 below:

K, k k, k, K
Rightellipse | 0.1020 [ 0.1300 | 0.0620 | 0.0068 0.0329
Leficlipse | 0.0540 | 0.1090 | 0.0450 | 0.0058 0.0157
Circle 0.0780 | 0.1195 | 0.0535 0.0063 0.0241

Table 3-1 The transport rate constants, k l-k " for the three regions. The derived

parameter, K, which equals k,*k,/(k,+k;) and is proportional to the

metabolic rate for glucose, is also shown.

-
Time

ey : W
‘-—.7 >

Time

Activity

Region 3

Activity

Figure 3-4 Simulated phantom. The activity in the left ellipse (Region 1), right
ellipse (Region 2) and the circle (Region 3) simulate the tracer
kinetics of brain white matter, grey matter and an intermediate value.
The tracer time activity curves are shown at the top right, middle

right and bottom right, respectively.
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For simplicity, K = k,*k;/(k,tk;)}, which is proportional to the metabolic rate for
glucose, is used as our final estimation result to compare the performance for

different methods.

As indicated earlier, it has previously been demonstrated that the FDG kinetics
can adequately be estimated by acquiring four frame-samples. According to [94],
the four frames are of different duration and 'they are, in minutes, [0,2.7],
[2.7,15.7), [15.7,77.1]), [77.1,120]. For each of these frame-intervals, 32

projections, each with 64 bins, were simulated, assuming 180° rotation.

Activity was simulated as the total counts detected over the complete frame-
intervals as in conventional PET using a ring of detectors (Type A) and the
counts correspond to the projection-interval for a specific projection, assuming
rotation of the detector (Type B). The simulation did not include attenuation,

scatter or distance dependent detector response.

The projection data were scaled to count densities which might be expected for
multi-detector SPECT (with 0.02k to 0.05k counts/sec in the last frame-interval),
coincidence imaging (with 0.1 to 0.2k counts/sec in the last frame-interval), and
PET (with 1k to 2k counts/sec in the last frame-interval). Poisson noise was

added to the projection data (See Section 2.7).

Four methods for analysis were compared. The data acquired with full ring
geometry (Type A above) were reconstructed using FBP, and kinetic modeling
was performed on the reconstructed images using the modified RSS described in
Section 3.2 (Method 1). This method has fully recorded projection data for each
frame-interval. For the data acquired with a rotating detector (Type B above), the
data were reconstructed and analyzed without interpolation (Method 2). For this
Type B data set, curve integrals on projections were also determined using
nterpolation (linear versus overlapped parabolas), prior to FBP reconstruction
and modeling with the modified RSS approach (Methods 3 and 4). In the case of

overlapped parabolas, projection data were normalized to account for systematic
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errors in the interpolation. To determine the appropriate normalization factors,
true time-activity curves for a full ring detector system were simulated for the
range of expected model parameters (typical of grey to white matter). The
integrated counts for each frame-interval were compared to the integral estimated
from the projection-samples which would be obtained from a rotating detector.
The ratio of these integrals was used to normalize the projections. Figure 3-5
shows the normalization ratio calculated at different angles. The dashed line,
dotted line and the solid line represent ratios for grey matter, white matter and
the intermediate value respectively. The systematic error was found to be
reasonably independent of the underlying kinetic parameters and therefore
normalization was based on the values obtained using the intermediate set of

kinetic parameters (as per the third row of Table 3-1).

Plot of Normalisation Ratio
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Figure 3-5 The normalization ratio at different angles. The dashed line, dotted
line and the solid line are the ratio for grey matter, white matter and

an intermediate value.

K, which is proportional to the metabolic rate for glucose, was estimated for the
four different methods at different simulated count densities. For each count
density, the simulations were carried out for one hundred independent trials to
obtain average performances for each method. The percentage errors in K
compared to the true parameters and the coefficient of variation (CV) of the

estimated K’s were determined
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3.4 Simulation Results

Figure 3-6 illustrates the first reconstructed frame of the simulated dynamic
study for the four methods: (i) ring detectors, (ii) rotating detectors with no
interpolation, (iii) linear interpolation and (iv) interpolation using overlapped
parabolas. These images are noise-free to better illustrate the artifacts present
when activity changes rapidly. Both linear interpolation and interpolation based
on overlapped parabolas provide qualitatively improved reconstruction. The
curves in Figure 3-7 represent selected profiles through the same images as
illustrated. For the left column of Figure 3-7 the lower peak of the curves
represents the tracer activity in the left ellipse which has kinetic parameters
simulating brain white matter. For the right column of Figure 3-7 the highest
peak represents the tracer activity of the right ellipse which simulates brain grey
matter. For all six figures, the solid line represents data simulated for full ring
detectors. The dotted line represents the data using a rotating detector: (a) and (b)
with no interpolation, (c) and (d) using linear interpolation, and (e) and (f) using
overlapped parabolas for interpolation. As can be seen, the use of overlapped
parabolas for interpolation provides significant improvement compared to linear
interpolation, resulting in close agreement with the result obtained for a ring

detector system.

(1) (ii) (i) (iv)

Figure 3-6 Reconstructed images for the first frame-interval using the four

different methods: (1) ring detectors, (ii) rotating detectors without
interpolation, (11) rotating detectors with linear interpolation and (iv)
rotating detectors with interpolation using overlapped parabolas.
These images are noise free to better illustrate the artifacts present

when activity changes rapidly.
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Figure 3-7 Selected profiles through the images reconstructed using rotating
detectors with different interpolation methods. The solid lines in all
figures are from the data simulated for ring detectors. The dotted
lines represent the profiles through the image reconstructed using
rotating detectors with different methods: (a) and (b} without
interpolation, (¢) and (d) linear interpolation, and {e¢) and (f)
interpolation based on overlapped parabolas. The lower and higher
peaks of the curves on the left column simulate the tracer activity of
Region 1 and Region 3, respectively. The highest peak on the right
column simulates the tracer activity of the Region 2. These images

correspond to noise free data.
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Based on the dynamic images reconstructed using the four different methods, the
modified modeling technique was used for parameter estimation. The results for
estimation of metabolic rate of glucose (K) are illustrated in Figure 3-8a and 3-
8b where the percentage error and CV for K are displayed graphically. As
expected, the use of rotating detectors can introduce error to parameter estimates.
Although linear interpolation provides lower CV, there is significant percentage
error in the parameter estimates for all three regions in the phantom. The
proposed interpolation method based on overlapped parabolas provides similarly
low percentage error to the results obtained with a ring detector system although

the CV 1s higher than that obtained using linear interpolation.
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Figure 3-8a Percentage error of estimated K for the three regions.
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Figure 3-8b Coefficient of variation (CV) of estimated K for the three regions.
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3.5 Discussion

There is increasing interest in analysis of kinetic data since the range of
potentially useful tracers is expanding and suitable detection systems are
becoming more affordable. However the accurate estimation of tracer kinetic
parameters from low-cost tomographic systems, which typically do not have a
full ring of detectors, is not straight-forward. Several groups have suggested
approaches for determining Kkinetic parameters directly from projections to
overcome the problems associated with rapidly changing activity. These
approaches can provide unbiased parameter estimates for simple models but their
general applicability has yet to be demonstrated. The approach suggested here is
intrinsically simple, based mainly on the integrals of counts during the time
course of a tracer rather than the instantaneous values. This provides the basis for
the interpolation method for which the total counts in the frame-interval 1s
ciirectly estimated. It also gives rise to a modified parameter fitting algorithm and
a frame-sampling scheme which would appear to be favorable for the situation
where rotating detector systems are used. The proposed techniques are not
computation intensive compared with methods where modeling is performed
directly from projections. They therefore have appeal for gencral clinical
applications. Using the proposed method, artifact-free dynamic images, which
reflect the bio-distribution of radio-pharmaceuticals within the body, are
available. Detailed comparison of the proposed methods with alternative
techniques will be the subject of future investigation and has not been included

in this thesis.

The simulation results presented here are intended to be illustrative rather than
conclusive. FDG has been chosen, given the interest in its application on low
cost coincidence detection systems or rotating PET systems. The geometry of
detection simulated is intended to illustrate the worst-case situation rather than to
exactly simulate the detection geometry of a particular PET or SPECT system.
Indeed the detection geometry more closely resembles a rotating SPECT system,

for which the proposed methods have relevance. This chapter does not address
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other physical constraints on the accuracy of measurement such as attenuation,
scatter or, in the case of PET, random coincidences. Simplifications in the
overall simulation were considered necessary to isolate the influences which
were the primary concern in this study (i.e., possibility of tracer movement in a
single rotation). The input function can be accurately measured in patients based
on counting of arterial blood samples (although less invasive methods are
desirable). We did not examine the influence of input function shape on the
results of this study, however we do not anticipate that the input function would
be a dominant factor, as, in general, relatively small differences in input function

shape occur between individuals for a given tracer.

The method of interpolation used in the proposed approach has several appealingA
properties compared to some other mterpolation schemes. Firstly it provides a
valid integral rather than a simple point value. As has been stated above, this has
direct relevance to the proposed methods as it facilitates the use of optimized
frame-sampling to reduce the number of detector rotations. The technique does
not rely on having equally spaced frame-samples but is generally applicable for
any sampling scheme. This study does not address the question of how this
technique compares with other non-linear approaches to interpolation. It also
does not explore the limits of the technique's application. However it is well
demonstrated that, for the case of FDG, which is widely used in clinical practice,
the technique provides results which are similar to those obtained for a stationary

ring detector.

One problem with the interpolation method is the difficulty in handling points
near the start of the study. The reason for this is that two of the three points used
for fitting the parabola are very close together (the first point at time 0). As a
result the best-fit parabola can deviate significantly from the true curve. Qur
results {Figure 3-5) demonstrate that the problem is small except for a small
number of projections. There are alternative approaches to solve this problem
(e.g., constraint in the tuming value of the parabola could be applied). However

in the proposed approach we have chosen to adopt a normalization method
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which applies a correction based on the range of errors which could be
anticipated for the family of possible kinetic curves. This method provides a
practical solution with good results. Further work would be necessary to

compare alternative strategies.

The simulation uses a frame-sampling scheme which particularly favors
relatively low efficiency detection such as in SPECT. It has been demonstrated
that the choice of four frame-samples is sufficient for accurate determination of
the kinetic parameters for FDG. The use of four frame-samples has appeal since
this minimizes the data storage requirements as well as minimizing the time

required for reconstruction.

Parameter estimates for data acquired using a rotating detector were very close to
those obtained using a stationary ring detector. However the coefficient of
variation for parameter estimates was larger. It is clear that interpolation, based
on noisy projection-samples, introduces an uncertainty in the derived frame-
sample counts used to determine the parameter estimates. This results in an

increased CV, particularly in the case of low count density.

3.6 Summary

In this chapter, we proposed a novel approach for reconstruction of dynamic
images and determination of tracer kinetic parameters using data acquired from a
rotating detector system. The method involves the use of an interpolation methqd
which provides an immproved estimate of the total counts within each frame-
interval, together with application of an integral-based model-fitting algonthm.
The feliability of the proposed method has been tested by computer simulations
over a range of count densities. The results demonstrate that the proposed
approach provides artifact-free images and parameter estimates comparable to
those obtained with a nng detector system, as 1s typical of conventional PET.
The technique can potenﬁally be applied to data acquired using systems such as

single or multi-detector SPECT, coincidence detection or low-cost PET systems
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which involve detector rotation rather than a stationary ring of detectors. The

techniques therefore have widespread clinical appeal.



Chapter 4 Minimum Dynamic SPECT Image Acquisition Time Page 60
Required for T1-201 Tracer Kinetic Modeling '

Chapter 4 Minimum Dynamic SPECT Image
Acquisition Time required for TI-201

Tracer Kinetic Modeling

4.1 Introduction

Dynamic Single Photon Emisston Computed Tomography (SPECT) and recent
advances in attenuation and scatter correction have opened the possibility of
quantifying physiological parameters with SPECT and tracers with suitable
kinetics. Recently lida et al have shown that absolute regional cerebral blood
flow and volume of distribution can be calculated using dynamic lodine-123 (I-
123) SPECT and compartmental modeling [35,36]. Similarly, Onishi et al have
applied dynamic SPECT to estimate receptor binding [99]). Technetium-99m
(Tc-99m) teboroxime has been suggested for measuring myocardial blood flow.
Teboroxime exhibits fast kinetics, which makes it unsuitable for traditional static
SPECT imaging, but is well suited to estimating physiological parameters with
short, fast dynamic acquisitions [34,100]. Iida et al have demonstrated the-
feasibility of estimating myocardial blood flow with Thallium-201 (T1-201)
dynamic SPECT, which exhibits much slower kinetics, more in line with typical

SPECT tracers {30].

While dynamic SPECT studies have only recently gained increased attention,
dynarmic Positron Emission Tomography (PET) studies and compartmental
modeling are well established. Great attention has been paid to the design of PET
image frame sampling schedules to increase the quantitative accuracy. Hawkins
et al [43] employed a senies of sirnulatiéns to evaluate temporal sampling in
FDG kinetics studies, specially the effect of the length of the initial scans upon
estimated parameter values. Mazoyer et al [44] proposed a general method for
the evaluation of the precision of parameter estimates resulting from dynamic
emission tomography studies and applied it in an analysis of the influence of the

data acquisition protocol. Delforge et al {45] presented a general framework and



Chapter 4 Minimum Dynamic SPECT Image Acquisition Time Page 61
Required for T1-201 Tracer Kinetic Modeling |

various criteria to measure the ‘goodness’ of an experimental protocol, which
allows an optimization of the experimental design for any model. This
methodology is applied to the estimation of receptor-ligand reaction model
parameters with dynamic PET data. Jovkar et al [46] developed a procedure to
compare scan schedules for the accuracy of parameter estimation by evaluating
the variance-covariance matrix of the estimated parameters as an index of
parameter accuracy. All these studies found that there is a monotonic
improvement in the index of parameter accuracy with increasing sampling
frequency and concluded that a higher sampling frequency (more image

samples), particularly in the early stage, should be used.

However, it has been demonstrated [101] that the above conclusion was mainly
due to using a cost function based on the assumption that sample points represent
instantaneous activity concentration at the sample time, while in fact each
sample point represents the integral of the changing activity concentration over
the duration of the collection frame. The assumption of instantaneous sample
points introduces increasing errors with increasing frames times, which prevents
the reduction of the image frame numbers without adversely affecting accuracy.
Therefore, Li et al used a modified cost function based on integrated activity
concentration for PET modeling [47] and developed the optimum sampling
schedule (OSS) algorithm. The OSS algorithm can systematically and
automatically minimizes the image sampling number as well as achieving good
accuracy and precision in parameter estimation. It provides a formalized
methodology for determining the acquisition times of the minimum number of
frames required to describe the selected kinetic model. Based on this approach,
OSS for PET input function {73], PET output function [94], and whole-body

PET image acquisition [102] have recently been investigated.

Nevertheless, with the exception of Chatziioannou et al [103] who performed
some systematic analysis of total scan time as part of their data processing

schemes to reduce noise, little attention has been paid to systematically



Chapter 4 Minimum Dynamic SPECT Image Acquisition Time Page 62
Required for T1-201 Tracer Kinetic Modeling '

investigate the total scan duration. Instead total scan duration is usually decided

empirically based on the following factors:

(1) the physical and physiological half life of the radio-tracer;

(2) the existence of blood metabolites;

(3) model consideration (For example the C-11 acetate model is only validated
for the initial 15 - 20 minutes);

(4) the clinical consideration to keep the scan as short as possible for the
convenience of patients.

In addition, clinical practicality is a particularly important consideration for

dynamic SPECT sampling schedules. The slow kinetics of typical SPECT tracers

may require unrealistically long total acquisition times to obtain reliable

estimation of the slower rate constants. As shown by [ida et al, the number of

frames and the total time the patient is in the scanner can be reduced by

separating the study into two scanning sessions and assuming a single tissue

compartment model [35,36]. Alternatively, some of the rate constants or thetr

ratios can be set to fixed values to simplify the model and provide more reliable

parameter estimation with limited data {104]. However, these assumptions may

not be generally applicable to all SPECT tracers and a generally applicable

methodology for optimizing sampling within the constraints imposed by

dynamic SPECT would be of benefit.

The aims of this study were to:

(1) systematically investigate the reliability of parameter estimation as a
function of total acquisition time;

(2) determine the minimum required continuous dynamic SPECT acquisition
time for the relatively slow kinetics of T1-201;

(3) determine if there was a critical acquisition time length, beyond which
little improvement in reliability is achieved,

(4) investigate a clinically practical altermative to prolonged continuous
dynamic acquisitions;

(5) to determine if the reduced frames of OSS can provide similar accuracy as

full dynamic acquisition for dynamic SPECT studies.
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While this study concentrates on applying the methodology to T1-201 kinetics,
the methodology developed here should also be applicable to other dynamic
SPECT studies.

4.2 Theory for the Proposed Method

4.2.1 Optimum Sampling Schedule

The optimum sampling schedule (OSS) technique provides a mechanism to
maximize the information matrix, M, and, conversely, to minimize the
covariance matrix of the estimated parameters by rearranging the sample
intervals, based on the minimum number of required samples, and a given total
study duration and model [94,105,106]. According to the Cramer-Rao theorem,
the covariance matrix of an unbiased estimate, p, of the parameter vector, p, is
lower bounded by the inverse of M, i.e.
CV(p) =M1 4.1)

Since the determinant of C¥( p) is proportional to the volume of the parameter
confidence region [107], it provides a criterion for discriminating between
various experimental protocols. The sampling schedule is adjusted iteratively to
maximize the determinant of M (det(M)) as follows: Starting with the full
dynamic sampling schedule, at each iteration, each interval is adjusted in turn in
the direction which increases the det(M) of the parameter estimates for the
TTAC re-sampled with the adjusted interval. Adjusting interval i will also adjust
interval i+/ by the same amount but in the opposite direction to maintain the
same total collection time and avoid overlap. When the length of an interval falls
below a set value (10 sec in this study), it is merged with the next interval
provided that the merging increases the de#(M). The iterations are repeated until
det(M) converges to a specified tolerance. The OSS will depend on the exact
shape of the TTAC. As this is unknown prior to the measurement, OSS derived
for TTAC simulated from mean parameter set was used for all other parameter
scts to investigate the applicability of a single OSS scheme to a range of T1-201

kinetics.
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The optimum sampling schedule methodology was also employed to find
optimum sampling based on two sessions of scanning: A short (10-45 min)
multi-frame acquisition immediately post tracer injection and a delayed single
frame acquisition. The timing for the delayed frame is determined by adjusting
the mid-scan time of the minimum number of required frames with fixed
duration of 10 min within an overall time period of 240 min until again det(M) is

maximized. This results in 2 mid scan time of 173 min for the last time point. A

single 10 min frame is then fixed at 173 min and optimum sampling schedule

technique is then applied to determine the sampling requirements for the first
session. Sampling schedules are derived for total first session acquisition times
ranging from 10 min to 45 min. This scheme is similar to current clinical studies,

where an acquisition is performed soon after TI-201 injection, followed by a

redistribution study at around 3-4 hours. Thus the following optimum sampling

schedules were investigated:

(1) Continuous data collection over the whole study duration (i.e., single session
of scanning) ranging from 30-240 min, which is -the conventional OSS
approach.

(2) Initial data collection for a shorter period (10-45 min) accompanied by a

delayed study at 173 min (i.e., two sessions of scanning)

4.3 Simulation Method

4.3.1 Simulations of Tissue Time Activity Curves

Simulated tissue time activity curves (TTAC) were derived from rate constants
estimated from dynamic T1-201 SPECT studies in 16 dogs. The dog studies were
carried out as follows:
The dogs were anaesthetized and positioned on a dual head gamma
camera (Toshiba GCA7200). A transmission study was carried out using
a line source at the focus of a fan beam collimator. The dynamic SPECT

study was initiated at the start of a 3 min infusion of 110 MBq of TI-201.
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Frequent arterial blood samples were drawn throughout the dynamic
study. The detectors rotated continuously completing a 360° acquisition
every 15 sec. The 15 sec frames were added on-line to provide the
following 42 frame dynamic sequence for resting studies: 10 x 1 min, 6
X 2 min, 3 x 4 min, 5 x 5 min and 18 x 10 min for a total acquisition time
of 4 hours. Studies were also carried out in dogs with increased blood
flow achieved by constant infusion of adenosine and reduced blood flow
produced by beta-blockers. The total study duration for the adenosine
and beta-blocker studies was limited to 1 hr.

T1-201 data were corrected for scatter using transmission dependent
scatter correction {108-110] and reconstructed with the ordered subset
expectation maximization algorithm (OSEM) [61] using transmission
data based measured attenuation correction. Regions of interest (ROIs)
were drawn on a central slice through the myocardium for anterior,
lateral, apical, septal and inferior myocardial areas and TTACs were
generated. The TTACs were fitted with 1 and 2 tissue compartment

models using non-linear least square fitting (Figure 4-1).
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Figure 4-1 Measured tissue time activity curve from one of the dynamic SPECT
dog studies fitted with 1 and 2 tissue compartment models. The 2
tissue compartment model provides a visually better fit to the

measured TTAC than the 1 tissue compartment model.
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From the results of the compartmental fitting, the two tissue compartments
(extra-cellular and intra-cellular T1-201 compartments - Figure 4-2) model was
assumed for the simulations. This model is also in line with recent literature
reports [111]. K, is the influx constant and is proportional to blood flow for a
flow hmited tracer like T1-201. Other rate constants are as shown in Figure 4-2.
TTACs were generated for the five selected sets of rate constants (K -k,) given in
Table 4-1. Rate constant sets were selected to cover a range of flow conditions.
Set 1 represents mean rate constants from all 16 dogs, set 2 is from a dog with
resting flow, set 3 and 4 from dogs with reduced flow induced by constant beta
blocker infusion and flow for set 5 was increased by constant adenosine infusion

over the study duration.

Figure 4-2 Assumed compartmental model for TI-201 with two tissue

compartments: extra-cellular and intra-cellular compartment.

K, K, k, K, vd
Set1 |0.68080 | 0.90024 |0.14529 0.04136 34.1264
Set2 | 0.72961 0.03595 | 0.04151 0.01554 74.5205
Set3 |[0.18749 | 0.02068 | 0.06021 0.02004 36.3078
Set4 |025643 | 0.08405 |0.25912 0.00926 88.3939
Set5 |[1.51312 |0.19493 | 0.28104 0.06796 39.8610

Table 4-1 The four rate constants (K,-k,) and the volume of distnbution (Vd) for

the five selected parameter sets. Units for the rate constants are min™.
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The derived volume of distribution macro parameter (¥d) given by

K *(ks+k,
Vd =——~ (’f J (4.2)
key*keq

is also shown in Table 4-1. Of particular interest were the influx rate constant K,
which is related to blood flow (K, = flow * extraction fraction) and Vd, which is
related to the cells' ability to concentrate T!1-201, an important indicator for
viability. For each set of rate constants, time activity curves were generated by
convolving the compartmental model function with the plasma time activity

curve (PTAC) denived from the average of the 16 dogs (Figure 4-3).
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Figure 4-3 The average plasma time activity curve (PTAC) and the five noise

free tissue time activity curves for the five selected parameter sets.

To simulate the actual environment and also to investigate the robustness of the
proposed approach, adding measurement noise to the simulated data is
necessary. In this simulation, the measurement noise was added to the samples of
TTAC using the variance structure described in Equation 2.24. Five different
noise levels wefe investigated with ¢ =2, 10, 23, 41 and 65. A simulated TTAC
with ¢=65 is shown in Figure 4-4 together with the corresponding measured
TTAC curve from the dog ROI analysis. The estimated noise coefficient of
variation (CV) near the peak counts and for 1 min samples ranged from 1.8% to

9.2% for the simulations with ¢ = 2 to 65, respectively. Estimated noise CV for
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the measured TTAC was approximately 3-5%, corresponding approximately to a

noise constant between ¢ = 10 and ¢ = 23.
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Figure 4-4 A measured TTAC (solid line) and corresponding simulated TTAC

(crossed line) with noise constant C=65.

4.3.2. Evaluation of OSS

The coefficient of variation (CV) and error in estimating the parameters were
evaluated for both the continuous (OSS-1) and the two session (QSS-2) optimum
sampling schemes and compared to conventional full dynamic sampling (as
used in the onginal dog studies) for both the continuous (DynSS-1) and the two
session sampling schemes (DynSS-2) using Monte Carlo simulation technique as
follows:

1. For each selected para;meter set, noiseless TTACs were generated by
convolving the compartmental model function with the PTAC, according to
the different sampling schedules.

2. Noise was then added to the noiseless TTACs at the 5 noise ltavels according
to Equation 2.24. For each noise level, 100 curves were generated using
different noise seeds.

3. Rate constants were estimated with non-linear least square curve fitting from
the simulated data. The modified cost function [94], based on the integral
counts over the frame duration, was used for the fitting. The fitted rate

constants were constrained to be posttive,
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4. Coefficient of variations {CV) were determined for each parameter from the
100 curve fits. Error was calculated by comparing the mean fitted parameters

to the known parameter values used for generating the TTACs.

4.4 Simulation Results

4.4.1 Optimum Sampling Schedule

Table 4-2 shows the optimum sampling schedule QSS-1 as well as the full
dynamic sequence DynSS-1. It should be noted that for different study duration,
the number of samples for DynSS-1 ranged from 18 samples for 30 minutes to
42 samples for 4 hours. For OSS-1, there were only 4 samples, which is the
minimum number of samples required to estimate the four parameters (K,-k,)
used in the model [101]. Table 4-3 shows the sampling schedule for OSS-2 and
DynSS-2, using the same notation as Table 4-2. The schedules taken in different
sessions are separated by square brackets. The results of the optimized intervals
are shown in the right column of the table and the optimized mid-scan time for
the second session was 173 minutes post-injection. As indicated before, these
OSS were derived for TTAC simulated from mean parameter set (Set 1 in Table
4-1) and were used for all other parameter sets to investigate the applicability of

a single OSS scheme to a range of T1-201 kinetics

Total DynSS-1 0SS§-1

Length

30 min 10x1 min, 6x2 min, 2x4 min 1x3 min, 1%x7 min, 1x11 min,1x6 min

45 min 10x1 min, 6x2 min, 3x4 min, 2x5 min 1x5 min, 1x$ min, 1x18 min, 1x11 min
60 min 10x1 min, 6x2 min, 3x4 min, 5x5 min 1x5 min, 1x1¢ min, 1x25 min, 1x19 min
90 min 10x1 min, 6x2 min, 3x4 min, 5x5 min, 3x[0 min 1x5 min, 1x10¢ min, 1x38 min, 1x36 min
120 min 10x1 min, 6x2 min, Ixd min, 5x3 min, 6x10 min 1x6 min, 1x11 min, 1x48 min, 1x54 min
150 min 10x1 min, 6x2 min, 3x4 min, 5x5 min, 9x10 min 1x6 min, 1x11 min, 1x57 min, 1x75 min
180 min 10x1 min, 6x2 min, 3x4 min, 5x5 min, 12x10 min 1x6 min, 1x11 min, 1x63 min, 1x99 min
210 min 10x1 min, 6x2 min, 3x4 min, 5x5 min, 15x10 min 1x6 min, 1x12 min, 1x68 min, 1x124 min
240 min 10x1 min, 6x2 min, 3x4 min, 5x5 min, [8x10 min 1x6 min, 1x12 min, 1x71 nun, 1x151 min
Table 4-2 Sampling schedules for single session of scanning. The left, middle

and right columns show the total study duration, the sampling

schedules of the DynSS-1 and OSS-1, respectively. The first entry

“10x1min” in the middle column means that 10 samples, each 1

minute long, were taken.
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Protocol  !DynSS-2 ’ 0SS-2

(A)10 min + 10{[10x] min],[1x!0 min] [1x4 min, 1x4 min, 1x2 min],[1x10 min)
EHE;)HZO min + 10[[10x1 min, 5x2 min],[1x10 min} [1x5.5 min, 1x7.5 min,1x7 min},{1x1 Omin)
Eg)nm min + 10{[10x] min,6x2 min,2x4 min],[1x10 min] [1x5 min,1x 8 min, 1x17 min],{ {x10 min]
!(1]]3];145 min + 10][10x} min,6x2 min,3x4 min,2x5 min],[1x$0 min] [[1x5 min, 1x10 min, 1x30 min] {1x10 min]
min

Table 4-3 Sampling schedules for two sessions of scanning using the same
notation as in Table 4-2. The samples taken at different session are
separated by square brackets. The first session is taken immediately
after tracer injection and second session is taken at 173 minutes post

injection.

4.4.2 Percentage Errors and CV - Single Session Scanning

The percentage error for the fitted parameters was calculated by comparing them
to the known parameter values used for the simulation. CV was estimated from
the vanation of parameters over the 100 Monte Carlo simulation runs. The
percentage error and CV of estimated K, k,, k, and Vd for set 1 at the 5 noise
levels are plotted as a function of total study duration for DynSS-1 in Figure 4-5
and for OSS-1 in Figure 4-6. Curves for k, were very similar to those of k, and
are thus not shown. Little systematic change in either percentage error or CV of
K, is observed as the length of collection time increased from 30 minutes to 4
hours. As the length of collection time increas_;ed, both percentage error and CV
for k,, k;, k, and Vd tended to decrease to a plateau at 60 - 90 minutes for both
DynSS-1 and OSS-1. Before the plateau, the percentage error increased with the
noise level. Little effect of noise on percentage error was observed after the
plateau. In contrast, CV was influenced by noise level for all study duration. CV
for OSS-1 and DynSS-1 were very similar as were the percentage errors for
parameters K,, k, and Vd. However, percentage errors for k, and k, were more

than twice as large for OSS-1 than for DynSS-1.
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Figure 4-5 Percentage error (left set of graphs) and CV (right set of graphs) of,
from top to bottom, estimated K, k,, k, and Vd as a function of total
sampling time for full dynamic sampling schedule (DynSS-1). For
each parameter, percentage error and CV are plotted at each of the 5
noise levels. Results are for parameter set 1. The same y-axis scale
has been used for percentage error of all parameters and also for CV

to facilitate comparison.
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Figure 4-6 Percentage error (left set of graphs) and CV (right set of graphs) of,
from top to bottom, estimated K,, k,, k, and Vd as a function of total
sampling time for optimum sampling schedule (OSS-1). For each

parameter, percentage error and

CV are plotted at each of the 5 noise

levels. Results are for parameter set 1. The same y-axis scale has been
used for percentage error of all parameters and also for CV to

facilitate comparison.
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Figure 4-7 1s a comparison of the percentage error and CV of the estimated K, at

different total study duration, for different parameter sets using DynSS-1 or

OSS-1. These curves are the average of the results obtained at the different noise

levels. The figures show that the percentage error and CV are all below 4% and

11%, respectively. Both percentage error and CV do not decrease as the total

time length is increased, i.e. K, estimation is not improved by extending the

scanning time. Therefore, a 30 minute scanning session is sufficient if only the

blood flow indicator K, is of interest.
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Figure 4-7 Comparison of percentage error and CV for the estimated K, at

different total time lengths for full dynmamic sampling schedule

(graphs a and b} and optimum sampling schedule (graphs ¢ and d).

Set 1 to Set 5 represent the five selected parameter sets.
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Figure 4-8 shows the percentage error and CV of the estimated Vd at different
total time lengths of scanning, for different parameter sets and for both DynSS-1
and OSS-1. There is a marked improvement in both percentage error and CV as
the scanning time is increased from 30 minutes to 120 minutes. Thereafter, both
percentage error and CV decrease to a plateau. To obtain a less than 20% error
and CV for Vd, a minimum scanning time length of 120 minutes is required,
which may be reduced to 90 minutes if somewhat higher CV of <30% is

tolerated in low flow regions.
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Figure 4-8 Comparison of percentage error and CV of the estimated volume of
distribution (Vd) at different total time lengths for full dynamic
sampling schedule (graphs a and b) and optimum sampling schedule
(graphs c and d). Set 1 to Set 5 represent the five selected parameter

sets.
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4.4.3 Percentage Errors and CV - Separate scanning sessions

An overall summary of K, and Vd estimation as a function of sampling schedule
is shown in Figures 4-9 and 4-10. For K, estimation, an initial 10-20 minute
dynamic in combination with a delayed sample or a single 30 minute dynamic
are sufficient. With addition of the delayed scan at approximately 3 hours, the
initial dynamic can be reduced to 30 minutes and still achieve similar accuracy
and CV for Vd as a full 120 minute scan. However, the 30 minute dynamic plus
10 minute delayed sample is considerably more practical in a routine clinical

setting, being similar in acquisition times to current rest-redistribution protocols.
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Figure 4-9 Comparison of 2 session (DynSS-2) and 1 session (DynSS-1) full
dynamic sampling schedule. The values inside the brackets are the
length of the study duration. Average results of the 5 parameter sets

are shown.
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Figure 4-10 Comparison of 2 session (OSS-2) and 1 session (OSS-1) optimized
sampling schedule. The values inside the brackets are the length of
the study duration. Average results of the 5 parameter sets are

shown.

4.5 Discussion

In this study we systematically investigated the reliability of parameter
estimation as a function of acquisition time and applied the OSS technique to
determine optimized, practical sampling schedules for dynamic T1-201 SPECT.
We found that; 1) Optimum sampling schedule ﬁan provide reliably estimates of
both K, and Vd, comparable to that of full dynamic sampling which often
requires to record far more images. 2) K, can be estimated with a relatively short
study duration of 30 minutes, while estimation of Vd requires at least 90-120
minutes to achieve acceptable precision, highlighting the need for careful
selection of study duration to obtain reliable estimates of the parameters of
interest. 3) Dividing the scanning into early and delayed sessions allowed
accurate estimation of Vd, without requiring an unacceptably long collection

time.
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4.5.1 Comparison of DynSS and OSS

The optimum sampling scheme generally has a performance comparable to that
of full dynamic sampling scheme for estimating K, and Vd. Only at very high K,
(set 5) and low K, and high Vd (set 4) is there an appreciably increased CV of K|
for OSS-1 compared with DynSS-1 (Figure 4-7). Even in these cases, the
increase in CV is not excessive and is only in the order of 3-4%. Nevertheless,
OSS-1 cannot successfully separate k, and k, rate constants. The percentage
errors for these two rate constants using OSS-1 was more than double that of
DynSS-1 (Figures 4-5 and 4-6). Thus if accurate estimates of k, and k, are
required, DynSS-1 1s the preferred sampling method.

The optimum sampling schedule substantially reduces the number of required
SPECT acquisition frames to only 4, irrespective of total acquisition time,
compared with the 18-42 acquisition frames for the full dynamic study. As a
result, it can significantly reduce the amount of dynamic image data (and hence
the storage space) and speed up the data analysis process in daily clinical
applications. The shortest acquisition frame time for OSS is 5 minutes, compared
to 1 minute for the DynSS, which makes OSS dynamic SPECT readily

implementable on existing SPECT systems.

4.5.2 Minimum time for the measurement of K, and Vd

For both OSS-1 and DynSS-1, we found that a 30 minute scanning time length is
sufficient for an accurate estimation of K, alone (Figures 4-7 and 4-8).
Prolonging the scanning time beyond 30 minutes produces no appreciable gain
in accuracy or CV. For the 30 minute study duration, percentage errors and CV
for Vd are greater than 50% (Figures 4-9 and 4-10). To obtain an accurate
estimation for Vd, a 90-120 minute study duration is necessary. This finding is
not unexpected, as early uptake of T1-201 is predominantly related to flow, thus
the early dynamics are mostly determined by flow. However, the typically >30

ml/ml Vd of T1-201 results in slow redistribution, particularly in low flow areas.



Chapter 4 Minimum Dynamic SPECT Image Acquisition Time Page 78
Required for T1-201 Tracer Kinetic Modeling |

Thus, a relatively long study duration is required to obtain reliable estimates of

Vd.

For continuous data acquisition sampling schemes (OSS-1 and DynSS-1),
patients would be required to remain in the camera for 90-120 minutes to obtain
accurate estimates of Vd. This is clearly impractical for routine clinical studies.
We thus investigated an alternative sampling scheme, based on a short dynamic
at the start of the study and a short delayed scan. We again used the formalism of
OSS to find the optimum mid scan time at around 3 hr for the delayed scan and
the sampling schedule of the early, short dynamic. With an initial 30 minute
dynamic study, accuracy and precision were similar to a continuous collection
over 30-120 minutes for both K, and Vd (Figures 4-9 and 4-10). The time
requirements for the split session sampling scheme are similar to current T1-201
rest/redistribution studies, and are thus clinically practical. Further, estimation of
K, and Vd should eliminate the need for 24 hours images, which may in fact

reduce the total study time.

4.5.3 Effect of TTAC on OSS Accuracy

The optimum sampling schedule depends on the shape of the TTAC curve. Thus
OSS for T1-201 will vary depending on the exact shape of the TTAC for a
particular subject and region, which is not normally known a priori. In this study
we determined the OSS based only on TTAC for parameter set 1 and applied this
OSS to all the other parameter sets, which were specifically chosen to cover a
wide range of K, and Vd and hence a wide range of TTAC shapes (Figure 4-3).
The results shown m Figures 4-7 and 4-8 demonstrate the validity of using a
single OSS schedule for a wide range of TTACs. No systematic difference in
percentage error as a function of TTAC is seen between OSS and DynSS. Only
CV for K, is increased by approximately 3-4% for set 4 and set 5, which
represent the extreme deviation from the average TTAC (set 1) used to generate

the optimum sampling schedule (Figure 4-3).
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In this study we have concentrated on the sampling requirements for the
estimation of compartmental model rate constants. Nevertheless, for practically
applying the SPECT systems for dynamic studies, a further step is required to
accurately estimate the activity in the myocardium with a prerequisite of both
accurate attenuation and scatter correction as well as partial volume effects
correction. Fortunately, with the increased availability of transmission
measurements on particularly multi-detector SPECT systems and algorithms for
scatter correction [108-110], quantitative SPECT is becoming more feasible and
practical and has in fact been applied to the dog studies used as the basis of this
investigation. For compartmental modeling, the arterial plasma concentration of
the tracer 1s also required. Ideally, this is obtained by frequent arterial blood
sampling, which is, however, considered too invasive for routine clinical studies.
In Chapter 5, we will present a blind deconvolution approach to eliminate the
input function requirement for FDG studies and the technique should also be

applicable to T1-201 studies.

4.6 Summary

In this study, we have developed a methodology determining the total
acquisition time for optimizing sampling schedule used in dynamic SPECT
studies. When applied to dynamic SPECT T1-201 model, it was found that for
myocardial blood flow only, a 30 minute scanning duration fs sufﬁcientl. Vd
estimation requires an additional study at approximately 3 hours, which avoids
the need for prolonged continuous dynamic acquisition. Both K, and Vd can thus
be determined with a clinically practical sampling schedule. This study also
highlights that careful consideration needs to be given to total acquisition time to
obtain reliable estimates of all parameters of interest, particularly for typical
SPECT tracers with slow kinetic components. The method for determining
optimum sampling schedule and total acquisition time applied here to T1-201

should also be applicable to other SPECT tracers.
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Chapter 5 Non-Invasive Quantification of
Physiological Processes with
Dynamic  PET  using  Blind

Deconvolution

5.1 Introduction

As introduced in the previous chapters, a prelude requirement of tracer kinetic
modeling is the measurement of tracer concentration in blood plasma, i.e. plasma
time activity curve (PTAC), which acts as the input function to the tracer kinetic
model. PTAC is usually obtained by direct arterial blood sampling (See Section
2.6.1). This process is invasive, time-consuming and requires extra-staff. It also
exposes clinical personnel to the danger of radiation and fatal blood infection.
Therefore, alternative methods which enable quantification of physiological

processes with reduced number of blood samples would be beneficial.

Stefan et al proposed using a population-based input functions (IFs), that were
calibrated with two arterialized-venous (a-v) blood samples, in the measurement
of regional cerebral metabolic rate of glucose (rCMRGlﬁ) [48]. The population-
based IFs were derived from (1) the average of IF from 26 patients and (2) a
published model of fluoro-deoxy-2-glucose (FDQG) plasma concentration [72].
Their results show that the values for TCMRGlu calculated with different IFs
were highly correlated for both non-diabetic and diabetic patients. Although this
approach significantly simplifies the measurement of rCMRGIu and requires
only two a-v blood samples for calibration, the process of blood sampling,

however, cannot be completely eliminated.

Burger et al has examined the possibility of mathematical metabolite correction
[49]. The mathematical metabolite correction was implemented by first

approximating the input curve after its peak activity by a sum of three decaying
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exponentials. The amplitudes and characteristics half times of which were then
estimated together with the kinetic tissue parameters using a weighted least
squares curve fitting routine. Assessment of the method with simulated data
proved its theoretical feasibility. However, this method assumes that the input
curve until peak activity has been measured, i.e. we still need to take blood

samples at the beginning of dynamic study.

Recently, Carson et al [50] and Watabe et al [51] have proposed techniques that
completely eliminate the process of blood sampling. Both methods are
developed for estimating the regional cerebral blood flew (rCBF) using PET.
Carson et al developed a method to estimate the N flow values and the input
function, containing M sample points, simultaneously based on the NxM
measurements (M image frames and N pixels for each image frame) with
weighted least squares optimization. Watabe’s approach is based on the
simultaneous analysis of regions with different flows and the algebraic
elimination of the arterial input function terms. However, both methods are
developed for single compartment model and their extensions to more complex
models, e.g. FDG model, still need further investigation. In fact, the solutions are

likely to be computationally demanding.

In this chapter, we propose an approach to estimate the physiological parameters
for a pre-assumed tracer kinetic model when performing dynamic PET studies,
eliminating the requirement of measuring PTAC. The approach consists of two
major steps. First, the wavelet transform is used for the denoising of projection
data [112]. Second, an eigen-vector based multi-channel blind deconvolution
(113} algorithm is applied to estimate the physiological parameters using the
dynamic images reconstructed from the denoised projections. This technique is
applied to estimate the rCMRGIu based on the FDG model [64]. The
performance of the proposed approach is demonstrated using the Monte Carlo
simulation. The result illustrates that the proposed approach can provide a
comparable performance as that of invasive approach which requires the input

curve to be measured.
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5.2 Theory for the Proposed Method

The fundamental of the proposed approach is the use of a blind deconvolution
technique which is based on eigen-vector decomposition. Since the computation
of eigen-vector is sensitive to noise, we employed a denoising step before the
blind deconvolution. In this study, we use a wavelet denoising approach {112] to
filter the noise appeared in the projections. The denoised projections are then
reconstructed using filtered back-projection to give dynamic images. Based on
these dynamic images, tissue time activity curves (TTACs) are extracted from
regions of interest (ROIs). Finally, blind deconvolution is applied to estimate the
kinetic parameters. In the following sections, we will describe how the wavelet

denoising and blind deconvolution are applied to the problem.

5.2.1 Wavelet Denoising

Among the numerous denoising methodologies in the literature, linear low pass
filtering {114,115] is the most commonly used approach since it is easy to
implement with the standard convolution back-projection reconstruction method.
However, the linear low pass filtering approach unavoidably blurs the edges and
causes the loss of structural information of the original image. Another way of
denoising 1s to model the emission process as a random process and to use
reconstruction algorithms based on the statistical model. Shepp and Vardi [58]
proposed a Poisson process model for emission tomography which seems to be
an excellent model. Maximum likelihood (ML) [58] and maximum a posteriori
(MAP) {116] methods based on this model provide alternative solutions for
reconstruction from noisy sinogram data. The problem with the ML and MAP
techniques is that they are computational expensive. Therefore, in this study, we
choose to use a wavelet transform based denoising approach [112] applied to the
tomographic data that are contaminated with Poisson noises. Wavelet denoising
has the advantage of preserving the structural information of the image when

filtenng the noise. In addition, when comparing with other wavelet denoising
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approaches [117,118], the chosen approach also has the advantages of non-
iterative reconstruction and simple computation which make it favorable for
daily clinical usage. In the following sections, we will give a brief introduction

of the approach. For more details, we refer the reader to [112].

First, we define the two-dimensional discrete dyadic wavelet transform [117] of

the sinogram p to be {Szip:(le"p)lstJ7(W22jp)15js.f } where
S, p=p®8,(x,y), Wop(x,y)=p®g'y(x,y)

and  Wip(x,y)=p®9p*y(x,y) (5.1
and the wavelets are designed to be the partial derivatives of a smoothing
function along x-direction and y-direction, respectively. Denote also the

modulus, M, p(x,y), and phase, 4, p(x,y), of wavelet transform as

M, p(x,y)= \/|W Y p(x, )|+ p(x, )|

W'y p(x,
and  A,p(x,y)= arctan( » p(x %zsz(x’y)) (5.2)

M, p(x,y) and A,;p(x,y) indicate the magnitude and orientation of the

gradient vector of the wavelet coefficient at a particular point (x,3). The
orientation of the gradient vector of the wavelet coefficients will indicate the
direction of maximum local variation of a signal. The first step of the algorithm
is to compute the “directional sum” of the wavelet transform modulus, Ngp
[112], inside the so-called directional cone of influence, Dg, with the direction
indicated by A4, p(x,y). Ngp at scale s is defined as follow:
N,p(xe.y0)= | M, p(x,y)dxdy (5.3)
{x.»)eD,

The term directional cone of influence is referred to [112]. Based on the Ngp
calculated at different scale, we compute the inter-scale ratio defined as

inter-scale ratio = N ;. p(x4, o) N, p(x4, ¥,) (5.4)
It has been shown [117] that we can use the inter-scale ratio condition to
discriminate irregular parts of the signal. For wavelet coefficients arising from

noise component, the inter-scale ratio will be less than 2, while for those
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coefficients corresponding to edges or more regular parts, the inter-scale ratio
will be equal to or larger than 2. This provides a simple means for denoising.
However, 1t has also been shown in [112] that, small irregular signals may
falsely fulfill the above condition. Therefore, the inter-scale difference condition
is also introduced to reject small irregular signal,

N ,up(x,¥0) — N, p(x0,¥4)> 7 (5.5)
where ¥ i1s a threshold. Therefore, we select the wavelet coefficients if the
computed inter-scale ratio is equal to or larger than 2 and the inter-scale
difference above a certain threshold. Based on the selected wavelet coefficients,
we reconstruct the denoised projections using inverse wavelet transform. The
denoised projections will be used to reconstruct the dynamic images using the
filtered back-projection algorithm. From these images, TTACs from ROIs are
extracted and are fed to the blind deconvolution step for estimating the kinetic

parameters.

5.2.2 Blind Deconvolution

The study of blind deconvolution attracts much importance recently in the areas
of communication, signal processing, as well as geophysics. Its major objective
is to estimate the input or the system transfer function only from their
convolution output. This seemingly impossible problem has been shown to have
unique solution. The current blind deconvolution approaches can be divided into
two classes. The ones that rely on high order statistics [119] often require the
input function to fulfill a certain kind of statistical characteristics, e.g. identical
and independent distribution (i.i.d.), that may be difficult to achieve in some
applications. The ones that rely on second order statistics seem to have less
requirement on the input ﬂata and transfer function that allow them to be
applicable to more general problems [113]. In this study, a multi-channel blind

deconvolution technique in this class is adopted.

A block diagram for the problem of multi-channel blind deconvolution is shown

in Figure 5-1. It is assumed that the number of unknown channels is greater than
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one. For simplicity and illustration purpose, we consider the unknown channel

system consists of two channels, each of which is represented by an FDG model.

noise
FDG Model for the
. Grey Matter, é) TTAC forC (_Br?y Matter,
FDG (1) Y
PTAC
H] '
Cp(1) .
noise
DG Model for the % .
s White Matter. TTAC forél}lr(\tl)te Matter,
FDG (1) 2

Figure 5-1 Block diagram for the problem of muiti-channel blind deconvolution.

As applied to our problem, both unknown channels are fed by the same unknown
input function which is the PTAC, Cp(?). The output signals of the unknown
system are the TTACs, Ci;(z). These curves are the results of the convolution
integral of PTAC with the impulse response of the FDG models, FDG(t), given
as below:

Ci(t)= FDG,(1)®@Cp(r) i=12 (5.6)
Provided an appropriate sampling rate, the convolution integral as shown in {(5.6)
can be approximated by a discrete linear convolution. The advantages of using a
discrete linear convolution rather than a convolution integral are, first, we can
speed up the computation, and more importantly, we can apply various well-
established digital signal processing techniques to improve the .performance in
estimating the physiological parameters. Nevertheless, it is never possible to
attain such a sampling rate in real practice. For TTAC, usually only 22 samples
taken in an irregular time interval are obtained. Fortunately, due to the
smoothness of the input and output functions, the discrete linear convolution can
still be used by re-sampling the irregularly sampled data to the required sampling
rate using an interpolation. Figure 5-2 shows a typical PTAC generated using the
PTAC model described in Section 27.6.2. Figure 5-3 shows the FDG model

functions (given by Equation 5.7). The parameters for these model functions are
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given later in the simulation section. Figure 5-4 shows the TTACs obtained by
mathematically performing the convolution integral to the PTAC and the FDG
models. Figure 5-5 shows the TTACs by applying the discrete linear convolution
with the re-sampled PTAC and FDG models. The difference of them in average
is less than -54 dB. This result shows that we can safely approximate the

convolution integral in (5.6) by discrete linear convolution.

120 L T
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Figure 5-2 A typical PTAC. Figure 5-3 FDG model functions.
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Figure 5-4 TTAC obtained by mathematically performing the convolution
integral to the PTAC and the FDG models.
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Figure 5-5 TTAC by applying the discrete linear convolution with the re-
sampled PTAC and FDG models.
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The two unknown channels of the system are the FDG models with different
kinetics of, for example, brain grey matter (Region 1) and white matter (Region
2), respectively. The impulse response of the FDG model, FDG(t), is given by

the following equation (See Section 2.5.1):

FDG,(t)= B, + B e ;

12 (5.7)

where

Ly = (ki + iy +hy =k y + ko + K, ) =8k k ) 2

L:‘,Z = (ki,z + kr‘.S + kr',4 + '\/(ki,z + ki,3 + ki,4 )2 - 4ki,2kt',4 )/2

k.
Bi.l - = (ki,s + ki,4 _Li,l)
Q;, —a;,
k:',!
Bi,Z = (Li,z = k;,a - k:‘,4) (5.8)
a,—a;,

and k; j-k; 4 are the rate constants of the FDG model for grey matter (i=1) or
white matter (i=2). Equation 5.8 can be discretized and expressed in Z domain
using the following rational system transfer function,

Ni(z™")
Di(z™")

Fi(z')= i=12 (5.9)

where Ni(z-{ ) and Di(z-{) are polynomials in z' of order Ni and Di, respectively.
They are related to the L; 7, L; 2, B; 1 and B;  as follows:

Nz )=(A4, + 4,)+(4,e" + 4,7 )z (5.10)

Dz )=(-e™z " Yl-e Tz (5.11) -
The roots of Ni(z{) and Di(z-!) may be inside and/or outside the unit circle. It is
also assumed that the transfer functions of FDG models have no common poles

and zeros.

The re-sampled TTACs are sent to a two-channel adaptive system shown in
Figure 5-6. The channel transfer functions are finite order polynomials Wi(z-{)

with order Wi. That is, the adaptive channels are FIR, with

Wi(z™" ) =w,, +w, 2" 4wz i=12 (5.12)
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TTAC, ,
Ci () ' Wi(@)
Cost
Function S(VV)
TTAC, ,
ciy | WalZ)

Figure 5-6 Multi-channel adaptive system.

The polynomial coefficients w;x are assumed to be adaptable via some
algorithms. We can also express the polynomial coefficients in vector form as

follows:

4

Wilz™ ) =Wy Wysss Wy | and W =[w7, 1,7 ] (5.13)
Denotes Xi(1) as the re-sampled TTACs, such that,
Xi(t) =[x, (0,20, (¢ =D, (0 - Wi and X () = [ X7 (), X, 7)) (5.14)
We define the error signal, e(t), as:
e(t) =W X(t) (5.15)

and the mean-squared-error, & W), as

£(W) = Zle(z)F (5.16)

where 1 1s the length of time interval. Assuming that the observation signals are
noise free, there is a simple relationship between the roots of the unknown FDG
transfer functions and the root of the adaptive channels. Assuming that the
adaptive channel orders are chosen such that,

W,=N,+D,and W,=N, +D, (5.17)
then, the unique family of solutions for W (z-{) and W>(z-{) that minimize (W)
is given by

Wiz )=aNrz1)D (1) and Wz )= -aN(z1)D (= 1) (5.18)
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where & is an arbitrary constant. With the above family of solutions, we have
&W)=0. Or in other words, if some W can be found for which &%) = 0, then the
set of Ni(z{) and Di(z"!) will be the solutions and can be obtained by factoring
Wi (=1 } and W(z~!}. Finally, the rate constants, ki 1-ki 4, of the FDG model can
be obtained by equation (5.8), (5.10) and (5.11).

To calculate the family of Wi that satisfies &/#)=0, we make use of an eigen-
vector decomposition approach similar to that in [113]. More specifically, we
calculate Wy(z-/) and Wg(z“] ) as follows:

1. Based on the re-sampled TTACs, i.e. X{?), we produce a data matrix, 4y, as

follows:

A4, =[X"C), X" -1),.., x7 0] (5.19)

where I is the observation interval. Hence,
T 2 T 2
V)= 2le(t) =2 W x| = 4w (5.20)
1= =

2. Our objective is to determine W such that &) = 0. Or equivalently, we try
to solve W in the following homogeneous equation
AW=0 (5.21)
3. For noisy data, we are interested in the least square solution. That is, we
define the sample correlation matrix, Ry, as Ry = 4,74, and solve W in the
following equation:
Ry W=0 (5.22)
By performing eigen-vector decomposition to Ry, we obtain a set of eigen-
vectors and eigen-values. However, we know that
W=gq (5.23)
where g is the eigen-vector corresponding to the smallest cigen-values of Rx.
4. Partition ¢ into sub-vectors ¢q; and ¢ and obtain the channel transfer
function Q7 and Q7. The set of transfer function thus obtained by Q7 and (o)
provides a basis for the solutions for W} g1y and W, 2 blind-
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Lastly, we estimate the parameters by minimizing the following cost function

using nonlinear least square curve fitting:

2

(AN IW I | A R AN A, (5.24)

where ﬁ{ are the adaptive channels evaluated from the estimated parameters k; -
k.4 using (5.18) and Wj pjing are the adaptive channels evaluated from the

observable TTACs using blind deconvolution.

In summary, the proposed approach can be stated as follows: first, the wavelet
denoising is applied to filter the noise in the projections. The denoised
projections are then reconstructed using the filtered back projection algorithm.
From the reconstructed dynamic images, two TTACs are then extracted from
ROIs, e.g. one from the grey matter and the other from the white matter. The two
TTACs are then re-sampled to the required rate using interpolation. Based on
these two curves, the blind deconvolution technique is applied to estimate the

parameters of interest, &; j-k; 4.

5.3 Simulation Method

To validate the present method, we carried out 2 Monte Carlo simulation study.
In our simulation, we generated the PTAC numerically using the input function
model described in Section 2.6.2. We assume that the time delay of the input
function model is equal to zero. The mathematical expression of this simplified

input function model, Cmedel(t), is given as follows:
(At—4,— A)e™ + Ae™ + Ae™ t>7 -
C mode] 1) = 2 3 5.25
P™(1) { . <. (5.25)
where, as previously published {72]:
Ap=851.1,45=2188 43=2081 [uCi/mi]
Ap=-4.134, 13=-01191, 13=-0.0104  [1/min]
The transport rate constants, k,-k,, for the FDG models are obtained from [64]
and are listed in Table 5-1. The derived parameter, K, which is proportional to

the metabolic rate of glucose and is equal to k,*k,/(k,+k;,), is also shown in Table
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5-1. It is used as a reference for the comparison of the performance of different

methods.

K1 k2 k3 1<:4 K
Region1 | 0.1200 0.1070 0.0440 0.0059 0.0350
Region 2 | 0.0740 0.1030 0.0290 0.0038 0.0163

Table 5-1 The transport rate constants, k,-k,, for the FDG models. The derived
parameter, K, which equals to k,*k;/(k,tk,) and is proportional to the

metabolic rate for glucose, is also shown.

Based on the simulated PTAC and the FDG model, TTACs (6x0.167s, 4x0.5s,
1x2min, 11x5min) were generated by convolving the PTAC with the FDG
models. These curves are reformatted into dynamic images using the Hoffman
brain phantom. The phantom is partitioned into two regions corresponding to the
two different kinetics which are typical of brain white matter and grey matter,
respectively. Sinogram data are generated with 64 projections, each with 64 bins,
assuming 360° rotation. The simulation did not include attenuation, scatter or
distance dependent detector response. The projection data were scaled to count
densities which might be expected for dynamic PET imaging (with 2k counts/sec

in the last frame-interval). Poisson noise was added to the projection data.

Three methods for analysis were compared:

(1) The noisy projection data are reconstructed using filtered back projection
(FBP) algorithm. TTACs are extracted from the ROIls. kj-ky4 are then
estimated using non-linear least square, assuming that the PTAC are
measured. This simulation describes the traditional approach for dynamic
PET studies.

(2) The noisy projection data are reconstructed using FBP. TTACs are extracted
from the ROIs and are re-sampled using linear interpolation. The blind
deconvolution technique is then applied to estimate kj-k4.

(3) Wavelet denoising are applied to the noisy projection data, followed by the
FBP to reconstruct the dynamic images. TTACs are extracted from the ROIs
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and are re-sampled using linear interpolation. Finally, k;-ky are estimated
using the blind deconvolution technique, i.e. without PTAC.
For each method, k-k4 were estimated and the parameter, K, was evaluated. The
simulations were carried out for one hundred independent realizations to obtain
average performances for each method. The percentage errors compared to the
true parameters and the coefficient of variation (CV) of the estimated k;-k4 and

K’s were determined.

5.4 Simulation Results

Figure 5-7a and 5-7d show the original sinogram and the image reconstructed
from the projections using the filtered back projection algorithm. The sinogram
1s then contaminated with Poisson noise. Figure 5-7b and 5-7¢ show the noisy
sinogram and the reconstructed image. The noisy sinogram is then denoised
using the wavelet denoising approach. Figure 5-7c and 5-7f show the denoised
sinogram and the reconstructed image. They demonstrate that the reconstructed
image based on the denoised sinogram provides qualitatively improved

reconstruction.

(@ (e) ®

Figure 5-7 The simulated sinogram and reconstructed images. (a) and (d) show
the original sinogram and the image reconstructed from the
projections using the filtered back projection algorithm. (b) and (e)
show the noisy sinogram, contaminated with Poisson noise, and the
corresponding reconstructed image. (¢) and (f) show the denoised
sinogram, using wavelet denoising, and the corresponding
reconstructed image.
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Table 5-2 shows the percentage error and CV of the estimated k,-k, and K using
the three different methods described in the simulation section. The first column
indicates the three methods being compared. Method 1 (the Traditional Method)
is the approach which simulates the traditional way of performing dynamic PET
studies, i.e. using nonlinear least square to fit the TTACs to a pre-assumed
kinetic model, assuming that PTAC is measured. Method 2 (Blind deconvolution
without denoising) 1s the method that blind deconvolution is applied without
wavelet denoising. Method 3 (Blind deconvolution with denoising) is the method
that wavelet denoising is applied to filter the noise in projections. The denoised
projections are then reconstructed using the FBP and the blind deconvolution
algorithm is applied to estimate the parameters. The second to sixth columns are
the k,-k, and K for region 1 while the seventh to eleventh columns are the k,-k,
and K for region 2. As can be seen, when blind deconvolution is applied without
wavelet denoising, the percentage error of the result is significant (Method 2).
This is because the calculation of the eigen-vector is sensitive to noise, in
particular, the colored noise. When colored noise exists, the eigen-vector
calculated based on the sample correlation matrix will be biased. As a result, the
parameters estimated will deteriorate. However, when wavelet denoising is
applied to filter the noise in the projections, followed by the blind deconvolution,
the result is significantly improved (Method 3). It is interesting to note that the
percentage error of the estimated k, is lower than the other methods. This is
because of the fact that two regions are analyzed simultaneously in the proposed
blind deconvolution method. The percentage error of the estimated k,, k; and K
are comparable to that of invasive method (Method 1). Although the percentage
error of the estimated k, is still much larger because of its small value, its
existence does not very much contribute to the calculation of K. Hence the error
incurred is not significant to the final result as a whole. For the CV, the

proposed method is always lower than the other methods.
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Region 1 Region 2
Error (%) ki ko k3 kg K ki k2 k3 K
Traditional method 0.62 -1.26 341 12.33 2.78 ] 6.66 | 0.67 ] 10.06 12.57
Blind -0.03 | -43.77 | 48.57 ; 36198 | 9099 0.03 | 4591 | 73.67 | 562.01 | 12.23
Deconvalution
without denoising
Blind deconvolution | 0 00 -3.35 4.93 36741 602 0.00; 423 7.48 2.32
with denoising
CV (%) k1 k7 K3 kg K| ki ko k3 K
Traditional method 2.35 930 | 2347 8235 11.15| 4.35 | 11.00 | 27.74 | 102.65 | 13.87
Blind 0.02 | 62.69) 25.75 61.73 | 41.83| 0.02 | 2499 | 3342 7.34
Deconvolution
without denoising )
Blind deconvolution | - ( 00 4.43 4.63 26481 622| 0.00( 4.37 6.86 2.00

with denoising

Table 5-2 The Error (in percentage) and CV (in percentage) of the estimated k-
k, and K for the three different methods. The first column indicated
the three methods compared. The second to sixth columns are the k,-k,
and K for region 1. The seventh to eleventh columns are the k,-k, and

K for region 2.

5.5 Summary

In this chapter, we proposed a new approach for estimating physiological
parameters, based on the measurement obtained from dynamic PET studies. The
proposed approach obviates the requirement of blood sampling. It compl;ises two
major steps: wavelet transform is used to filter the noise in projections, and a
blind deconvolution algorithm which is based on eigen-vector decomposition is
used for parameter estimation. We have performed a Monte Carlo simulation to
investigate the performance of the proposed approach. The results demonstrate
that the approach can estimate the physiological parameters with an accuracy
comparable to that of invasive approach which requires the whole PTAC to be

measured. Since the proposed approach obviates the taking of blood samples, it
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is non-invasive, simple and it minimizes the possibilities of radiation exposure to
clinical personnel and the possibility of spread of infectious diseases.
Furthermore, although we applied the proposed technique specifically to the
tomographic studies based on FDG model, the proposed technique can also be
applied to other tracer kinetic model. Therefore, the proposed technique has

widespread clinical appeal.
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Chapter 6 Conclusion and Future Extension

6.1 Conclusion of present research

In this work, several areas of performing functional imaging with Positron
Emission Tomography (PET) or Single Photon Emission Computer Tomography
(SPECT) are mvestigated. They are : (i) reduction of capital cost associated with
PET studies; (i1) the sampling requirement of dynamic studies; and (iii)
quantification of physiological processes for dynamic studies obviating the blood

samphing procedure.

(1) Reduction of capital cost associated with PET studies

Functional imaging studies require reliable measurement of the time course of
tracer in tissue. This can be achieved using stationary detectors as in the ring
geometry most commonly available for PET and similarly designed SPECT
systems based on detector rings. These systems, however, are usually of very
high cost and make them not as popular as the other imaging modalities.
Therefore, performing functional system using rotating detectors system arose
much interests and its possibility has been demonstrated by a number of research
groups. However, the rotating detectors systems have the problem that only
partial projection data can be recorded at a time, resulting in an acquisition of
inconsistent set of projection for each image reconstruction. The corresponding
reconstructed images will suffer from artifacts and affect the accuracy of

subsequent parameter estimation.

Therefore, in Chapter 3, we have proposed a novel approach for reconstruction
of dynamic images and determination of tracer kinetic parameters using data
acquired from a rotating detector system. Fundamental to the approach is the use
of the integrated activity over each image acquisition interval, rather than normal
assumptions that measurements represent estimates of instantaneous mid-interval
values. Based on this premise, an interpolation method is applied to the

projection space to better approximate the total counts for each acquisition
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interval, closer to that would be obtained for a ring detector system. The
resultant interpolated projection are reconstructed into dynamic images and an
integral-based model-fitting algonthm is then applied to estimate the kinetic
parameters. The reliability of the proposed method has been tested by computer
simulations over a range of count densitiecs. The results demonstrate that the
proposed approach provides artifact-free images and parameter estimates
comparable to those obtained with a ring detector system, as is typical of
conventional PET. The technique can potentially be applied to data acquired
using systems such as single or multi-detector SPECT, coincidence detection or
low-cost PET systems which involve detector rotation rather than a stationary

ring of detectors. The techniques therefore have widespread clinical appeal.

(31) The sampling requirement of dynamic studies

Although there have been some research work on the design of PET image frame
sampling schedules to increase the quantitative accuracy, little attention has been
paid to systematically investigate the total acquisition duration. For dynamic
SPECT studies, the clinical practicality of the total acquisition duration is a
particularly important consideration. The slow kinetics of typical SPECT tracers
may require unrealistically long total acquisition times to obtain reliable

estimation of the slower rate constants.

Therefore, in Chapter 4, we systematically investigated the reliability of
parameter estimation as a function of acquisition time and applied the optimum
sampling schedule (OSS) technique to determine optimized, practical sampling
schedules for dynamic TI-201 SPECT. We found that 1) blood flow related
parameter, K, can be estimated with a relatively short study duration of 30
minutes, while estimation of volume of distribution (Vd) requires at least 90-120
minutes to achieve acceptable precision. 2) Dividing the scanning into early and
delayed sessions allows accurate estimation of Vd. It avoids the need for
prolonged continuous dynamic acquisition (>90 minutes). Both K, and Vd can
thus be determined with a clinically practical sampling schedule. 3) OSS can

provide rehiable estimates of both K, and Vd, comparable to that of full dynamic
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sampling which often requires to record far more images. This study also
highlights that careful consideration needs to be given to total acquisition time to
obtain reliable estimates of all parameters of interest, particularly for typical
SPECT tracers with slow kinetic components. The method for determining
optimum sampling schedule and total acquisition time applied here to T1-201

should also be applicable to other SPECT tracers.

(111} Quantification of physiological processes for dynamic studies without the
blood sampling procedure

One of the inherent components involved in functional studies is the
measurement of tracer concentration in blood plasma, i.e. plasma time activity
curve (PTAC). PTAC acts as the input function for the tracer kinetic model. The
measurement of PTAC are usually invasive, time consuming and tedious. The
measurement process also exposes the patient and clintcal personnel to the
danger of fatal blood infection. Therefore, it is desirable to have alternative
method for performing functional studies such that the blood sampling procedure

can be eliminated.

In that light, in Chapter 5, we proposed a new approach for estimating
physiological parameters from dynamic studies, obviating the requirement of
blood sampling. The proposed approach involves the use of wavelet transform to
filter the noise in projections, and an eigen-vector based blind deconvolution
procedure for parameter estimation. The proposed technique is evaluated using a
Monte Carlo simulation. The results demonstrate that the approach can estimate
the physiological parameters with an accuracy comparable to that of invasive
approach which requires the whole PTAC to be measured. The proposed
approach is simple and can be easily handled computationally. While in this
study, we applied the proposed technique specifically to the tomographic studies
based on FDG model, the technique is also applicable to other tracer kinetic

model.
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On the whole, we have developed, in this research work, different approaches to
minimize the inconvenience of performing functional imaging using emission
computed tomography. We hope our achievements can help the technique to be

more extensively used in both clinical and academic research environments.

6.2 Future Extension

There are several areas that further research work can be performed. First of all,
we believe that further investigation on the proposed approach for performing
functional studies using rotating detector systems would be promising. We have
carried out a simulation to investigate the performance of the proposed approach.
The simulated detection geometry closely resembles to a rotating SPECT
system. The applications of the proposed approach to other systems such as
coincidence detection system and low-cost PET system which involve detector.
rotation may require further work and simulations employing such detection

geometry may need to be performed as well.

Besides, we have shown in Chapter 3 that the error introduced in the
interpolation étep can be corrected by using a normalization method. Indeed,
there are alternative approaches to solve this problem. One possible solution is to
applied a constraint in the turmning value of the parabola so that the best-fit
parabola would not deviate significantly from the true curve. It will be fruitful to

investigate the alternative strategies.

Further research work on the methodology for optimizing the sampling schedule
used in dynamic SPECT studies may be required for practical applications. We
have demonstrated that accurate estimation of K, and Vd can be obtained by
employing a two-session scanning. The next step would be applying the
technique to clinical studies for further validation. One practical issue involved
in performing a dynamic study using the two-session scanning is the alignment
of the dynamic rmages obtained from these two sessions. The object movement
which could lead to errors in parameter estimates or artifacts in functional

images is another problem that will be encountered. A possible solution to these
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problems may be some on-line object movement correction. In addition, for
myocardial studies, the activity obtained from myocardial tissue is only an
approximation which represents the average activity among a region of pixels
because of the beating of heart. One possible solution for this problem is to

employ gated study. All these issues need to be further investigated.

One the other hand, the blind deconvolution technique developed in Chapter 5
can also be further improved. The eigen-vector based approach employed in the
proposed method is sensitive to noise, especially color noise. Indeed, there are
alternative strategies to perform blind deconvolution. One possible solution is
the subspace methods [120]. We believe that further investigation on this aspect

1§ promising.

Besides, in our simulations, we have only added simulated measurement noise
which is derived based on real clinical situation. Other physical constraints on
the accuracy of measurement such as attenuation, scatter or, in the case of PET,
random coincidences, are not included. Simplifications in the overall simulations
were considered necessary to isolate the influences under concerned. Hence, the
performance of the proposed algorithms when other constraints are included

needs further investigation.

Lastly, the validation of the proposed algorithms with real climical data is
promising. With clinical data, the actual applicability and performance of the

proposed approaches can be directly demonstrated.
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