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Abstract

Resolving ambiguities has been a central problem in natural language processing. Most

disambiguation tasks to date have focused on relatively low level processing such as

morphological, lexical, and syntactic analysis. Their considerable success has stimu-

lated research in higher level, but harder, disambiguation tasks.

This thesis addresses two disambiguation tasks, one is at semantic level and the

other is at pragmatic level. The tasks are referred to as, respectively, semantic role la-

beling and dialogue act recognition. We address both tasks using a probabilistic frame-

work, which is in the form of conditional distribution p(ambiguity|expression, context).

We estimate the distribution by conditional Maximum Entropy, which allows hetero-

geneous sources of information to be integrated in a unified model for disambiguation.

Based on the principle of Maximum Entropy, the selected distribution is of the highest

entropy, where no unjustified assumption is made on the training data while keeping

easy for feature modeling. Maximum Entropy has been empirically proved useful in

various applications, with moderately effective training time.

In the semantic role labeling task, we propose a three-phase labeling approach to the

problem. The approach combines advantages from previously proposed methods, while

addressing their weaknesses. The approach decomposes the problem of recognizing a

complex structure into several local decisions, each recognizing a single piece of the

structure. The decisions are determined by supervised learning techniques, by training

algorithms from data for prediction. Evaluations on public benchmarks show that our

recognition performance is competitive with the current best individual system.

In the dialogue act recognition task, we target at non-task oriented recognition. We

study various types of features, including lexical, syntactic, and discourse, to evaluate

the recognition performance. A feature selection method is used for systematically

optimizing the feature set. Experimental results show that our system outperforms all
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the other approaches that use the same public data set.

Despite the high micro-average performance achieved in both tasks, the macro-

average performance is unsatisfactory. This is due to the class-imbalance problem in

the data sets, where the distribution of examples among the classes is highly skewed.

We employ two methods to address this problem in each task. One is over-sampling

and the other is error-based learning. Experimental results showed that both methods

are effective in improving the macro-average performance in most cases.
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Chapter 1

Introduction

1.1 Motivation and Challenge

Natural language (human language) is the most expressive way for information access.

As opposed to artificial language (e.g., mathematical notations) being specialized for

certain purposes, natural language is most widely used for communication. Moreover,

as human, without unnecessary effort, we can speak or write as freely as we can, using

ordinary and unconstrained natural language. However, systems seldom fully take

advantage of natural language to improve their applicability. Most system interfaces

usually only allow users to employ keyword-based query or complicated command for

retrieving the desired information. Often, the retrieved information is too general,

which requires further manual processing to find the specific answer. A compromise is to

limit the usage of language, by providing users with pre-defined templates or linguistic

rules, to fill in their information need. This might solve the under-specification problem

to some extent, but the interface is still rigid, hardly providing enough flexibility to

users. The ideal interface is to understand what the user speaks, and satisfy the

information need directly. Such interface is the most straightforward way that provides

the highest degree of interaction with users, and adapts to ever-changing situations.

A long-standing goal in the field of natural language processing (NLP) is to enable

computer understanding of natural language. Much progress has been made in achiev-

ing this goal. However, even much remains to be explored, particularly in semantic

and pragmatic level. In 1950, Alan Turing proposed the Turing test (Turing, 1950) for
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testing the capability of a computer to perform human-like conversation. He believed

that by the year 2000, computers would be able to pass the test. It has already been

50 years since Turing’s proposal, but no computer has passed the test. Some sim-

ple chatbots such as ELIZA (Weizenbaum, 1966) or ALICE 1 did demonstrate some

human-conversational behavior, but they were still far from reaching the ultimate goal

of understanding natural language.

One main barrier is that natural language, either written or spoken, is inherently

ambiguous. Ambiguities appear at all levels of language processing. They can be lexical,

where words can be understood in more than one way. They can also be structural,

where words can be grouped differently. Furthermore, ambiguities can be referential,

where an expression is being referred by more than one entity. Even worse, they can

be related to usage, where the use of an expression is different from its literal meaning.

Consider, for example, the very simple sentence I saw her fish. Without contextual

information, there could be at least three possible meanings:

1a. I perceived some female’s animal.

1b. I perceived some female who was fishing.

1c. I cut some female’s animal.

In meaning 1a, the sentence is syntactically grouped as (S (NP I ) (VP saw (NP her

fish))), where S is a clause, NP is a noun phrase, and VP is a verb phrase. Equivalently,

the syntactic grouping can be represented by a tree structure, as depicted in Figure 1.1a.

However, within the context-free grammar, the same sentence can also be grouped as (S

(NP I ) (VP saw (S (NP her) (VP fish)))), or hierarchically represented in Figure 1.1b.

This syntactic ambiguity thus results in meaning 1b. Besides, lexical ambiguity can

also affect the sentence interpretation, as shown in meaning 1c. Here, the word sense of

saw is interpreted as cut rather than perceived, although it has the same tree structure

as that in meaning 1a (see Figure 1.1c).

Disambiguation is the process of resolving ambiguities. Since ambiguity is a central

problem in NLP, the ability to disambiguate becomes the core requirement in reaching

the goal of understanding natural language. Previously, various levels of disambigua-

tion tasks were defined, forming their own research sub-community, to help in reaching

the goal in a finer-scale. For a very long time, most of the studies were dominated by
1http://www.alicebot.org/
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(a) (b) (c)

Figure 1.1: Alternative parse trees of the sentence I saw her fish

parsing, a disambiguation task at syntactic level. Various well-defined models for pars-

ing have been proposed, and have achieved considerable success. In contrast, relatively

few research work has been conducted on semantic and pragmatic levels, which are

usually regarded as the indistinct area in NLP. However, they are far more important

in achieving computer to understand natural language. One major reason for their

under-studies is that there is less agreement on how to represent language at these two

levels (Manning, 2004).

This thesis addresses two disambiguation tasks, one is for semantic role and one is

for dialogue act. They are respectively at the semantic and pragmatic level. Recently,

there is growing consensus that semantic role and dialogue act are the useful conceptual

representations in supporting the deeper NLP analysis. Working with appropriate

representation will be significant in advancing the progress for NLP. Although the

taxonomies for semantic role and dialogue act are coarse-grained, their disambiguation

tasks are very challenging.

Our first task is to resolve ambiguities in semantic roles, with respect to a target

verb. Consider the following sentences:

2a. Peter opened the door with a key.

2b. The key opened the door.

2c. The door opened.

All the three sentences describe the same event, which is governed by the verb opened.

Grammatically, although the three subjects (being underlined) are placed in the same
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syntactic position, they play different roles, semantically. In sentence 2a, the subject

Peter is the person who opened the door, playing the semantic role Agent. In sen-

tence 2b, the subject The key is the thing used to open the door, playing the semantic

role Instrument. In sentence 2c, the subject The door is the thing being opened,

playing the semantic role Patient. In general, each verb in a sentence has more than

one semantic role. Each role can be placed in any position in the sentence. Moreover,

each role can consist of more than one word. Thus, there exists another ambiguity

problem, which requires to resolve the boundary ambiguities of semantic roles. The

collective task, resolving boundary ambiguities and semantic role ambiguities, is called

semantic role labeling.

Our second task addressed in this thesis is to resolve pragmatic ambiguities in

dialogue acts. Consider the utterance Can you pass me the salt? There are two

possible interpretations:

3a. Asking whether the hearer have the ability to pass the salt.

3b. Requesting the hearer to pass the salt.

In interpretation 3a, the attention is restricted to what the words mean, whereas inter-

pretation 3b is concerned with what the speaker means. This ambiguity on how to use

the utterance results in two meanings. Assuming that the action behind the speaker

is the intent for a request. Its concise abstraction can be represented by a dialogue

act. In this case, the dialogue act of this utterance should be recognized as Request

rather than Yes-No Question. The task to resolve dialogue act ambiguities is called

dialogue act recognition.

1.2 Disambiguation as Statistical Classification

Many types of ambiguities are finite and definable, and thus can be tackled via classi-

fication. This makes it tractable for computer to perform disambiguation by treating

it as a classification problem. In general, a classification problem is where one tries to

assign instances to one of the predefined categories (also called classes). It is a generic

type of problem in pattern recognition, and mainly addressed by the machine learning

community. Here, a class being classified is referred to a possible ambiguity in a confu-

sion set. The task is then to decide which of the candidates is more likely in the given

context.
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Classification is usually achieved by inductive learning techniques, which generalize

previous observations from examples. Here, an example is referred to a paired set, con-

taining an instance and its class. The type of learning is supervised because instances

are all manually labeled with their classes. This serves like a teacher directing the

learning process, where the correct answers are provided. To facilitate the induction

during the learning, instances are usually represented by features. Features are the

attribute-value pairs used to characterize instances. The value type of a feature can be

nominal, ordinal or numerical. Due to its variability, features are often shared by all

instances. The aim of learning is thus to find out the associative relation of each fea-

ture for each individual class. The learned model, called classifier, can then classify an

unseen instance, based on how strong the input features are associated among classes.

The class with the highest associative strength will be the outcome.

Formally, a classification problem is a mathematical-function approximation: Given

a set of examples {(x1, y1), (x2, y2), . . . (xn, yn)}, known as training set, the aim is to

approximate a function (classifier) h : X → Y which maps an instance x ∈ X to its

class label y ∈ Y2. Here, X is the input domain of instances and Y is the finite set of

class labels. After the approximation, the classifier can be used. The performance can

be measured by evaluating the classifier on another set of examples. This is known as

test set. Unlike the training set, the test set is separated into a set of answer labels

{y′
1, y

′
2, . . . , y

′
n} and a set of instances {x′

1, x
′
2, . . . , x

′
n}. Only the set of instances is

provided to the classifier for prediction. The predicted results are then matched with

the set of answer labels for evaluating the classification accuracy.

1.3 Thesis Scope, Initiative, and Methodology

This thesis takes a probabilistic classification approach to address two natural language

disambiguations tasks. The ability of disambiguation is given by a probability distri-

bution, which is in the form of p(ambiguity|expression, context). It is a mapping from

expression to ambiguity conditioned by context. The context is a part of text or expres-

sion that surrounds the given expression. Under this formulation, various contextual

information is integrated, serving as the primary knowledge for disambiguation. The

decision in disambiguation process is designed as: among the plausible ambiguities that
2Precisely, x should be the feature encoding of an instance.
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belong to an expression, select the most probable one, based on the given information.

Specifically, we employ conditional Maximum Entropy (ME) (Jaynes, 1957) to model

the desired distribution. The involved classifiers are trained in a supervised learning

way. Inside, a set of training examples is used for induction. Each example contains one

of finite classes, each representing a possible ambiguity. The examples also contain the

surrounding contexts about the class, which are represented in features. The examples

are then supplied to the classifier, aiming at generalizing them and collecting the sta-

tistical relations between features and classes. Under the ME algorithmic supervision,

the statistics are iteratively adjusted to derive the posterior knowledge for classifica-

tion. The posterior knowledge is in the form of conditional probability distribution of

classes, given that contextual features are extracted from ambiguities. The classifier is

defined by estimating the probability distribution that is consistent with the observed

distribution from the training data. In general, more than one distribution may be

found. The principle of Maximum Entropy (Jaynes, 1957) helps in choosing the most

appropriate distribution, without making any unnecessary assumptions on the training

data. Moreover, under convex duality (Berger et al., 1996), the distribution model-

ing is equivalent to finding the Maximum Likelihood for exponential distributions (See

Chapter 3), which eases the learning process by common statistical estimators. After

training, the classifier can assign ambiguous instances to their most probable classes,

based on the modeled distribution.

The two disambiguation tasks addressed in this thesis are context-dependent. They

are at the semantic and pragmatic levels, respectively referred to semantic role labeling

and dialogue act recognition. Both disambiguation tasks can potentially offer essen-

tial improvements to our previous prototype-system called FNDS, which stands for

Financial News Dialogue System (Lan et al., 2003, 2005). The core of the system

is the combination of two natural language applications: information extraction and

question-answering. The two applications are pipelined, in which the output from in-

formation extraction is the input to question-answering. In the information-extraction

module, the system automatically extracts important information from electronic fi-

nancial news using predefined patterns. In the question-answering module, the system

provides users with a dialogue-based interface to access the extracted entities by posing

questions written in natural language. Both applications can be facilitated by semantic

role labeling (Lan et al., 2004) and dialogue act recognition. On the one hand, semantic
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role labeling can enable a pattern-free approach for information extraction by providing

verb-argument structures for extracting the desired entities (see Chapter 4). On the

other hand, dialogue act recognition can provide question-answering with a coherent

dialogue flow by interpreting the intention of user utterances (see Chapter 5).

In the semantic role labeling task, we propose a three-phase labeling approach to the

problem. Evaluations on public benchmarks showed that our recognition performance

with this approach is comparable with the current best individual system. In the

dialogue act recognition task, we target at non-task oriented recognition. We employ

various types of features, ranging from lexical, to syntactic, to discourse. A feature

selection method is used for systematically optimizing the feature set. Experimental

results showed that our system outperformed others using the same data set.

1.4 Problem Encountered in Classification: Class Im-

balance

Like other classification tasks, semantic role labeling and dialogue act recognition suffer

the class imbalance problem, which hinders the classifier’s performance in terms of

individual-class classification accuracy. This problem occurs when a data set is largely

dominated by some usual classes with a significantly small percentage of unusual classes.

In the other words, the distribution of examples among the classes is highly skewed.

A classifier, trained with the skewed class distribution, often achieves high predictive

performance over the usual classes but very poor predictions over the unusual classes.

This will be problematic in practice because the unusual classes are often of greater

value in the application. For example, in coreference resolution (Ng and Cardie, 2002),

there are two kinds of relations (classes) between noun phrases: equivalent or non-

equivalent. However, the equivalent relation between noun phrases is generally rare in

real text. Failing to recognize the equivalent relation will affect the comprehension.

Class imbalance problem frequently occurs in binary-class classification problems.

By convention, the class having more examples is called majority class, and the one

having fewer examples is called minority class. Note that in the data mining literature,

the majority class often refers to the negative class whereas the minority class refers

to the positive class. Since our work is a multi-class classification problem, there is no

clear distinction between majority classes and minority classes.
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This thesis employs two methods to tackle the class-imbalance problem encoun-

tered in both semantic role labeling and dialogue act recognition. The first method

is to re-sample the training data by replicating the examples of minority classes. The

proportion of replications is heuristically computed. This makes the training data

more balanced for training. Another method is to modify the learning mechanism of

Maximum Entropy (ME) by weighting more the minority classes. More specifically,

parameters are added to the updating rule of GIS algorithm. The parameters are

determined according to the accuracy of each class , which are generated in each iter-

ation of training. Both methods are shown effective in classifying minority class in the

experiments conducted on publicly available data sets.

1.5 Contributions

• We address two challenging disambiguation tasks on natural language, using sta-

tistical classification techniques.

• We implement an advanced and robust classifier based on Maximum Entropy for

disambiguations.

• We propose two methods at data and algorithmic level to tackle the class-imbalance

problems encountered in the disambiguation tasks.

• We define an evaluation metric, in terms of the overall predictive rates among

classes and their individuals, to measure the classifier performance.

• We perform extensive experiments on large data sets to verify the effectiveness

of the proposed methods.

1.6 Thesis Outline

Chapter 2 reviews the literature relevant to our work. The advantages and disadvan-

tage of previous approaches are discussed. We also compare them with our work.

Chapter 3 gives background materials on Maximum Entropy. It sketches the theo-

retical foundation to implementation details, with the inclusion of relevant derivations.

The advantages and disadvantages of Maximum Entropy are also discussed.
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Chapter 4 describes the first attempt at building a classification system to semantic

role labeling using the word-by-word approach. The fairly satisfactory results lead us to

the proposed three-phase labeling approach. Experimental setup, along with the data

sets, classifiers, and evaluation metrics are discussed. Results on both performance of

micro-averaging and macro-averaging are presented.

Chapter 5 describes the use of various features to improve the performance of

dialogue act recognition. A feature selection method is presented. Beside the optimized

results, micro-averaging and macro-averaging results are also presented.

Chapter 6 gives a conclusion to this thesis. Possible directions for future work are

also outlined.
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Chapter 2

Related Work

This thesis applies machine learning techniques to natural language disambiguations.

Both areas have much to offer each other. On the one hand, machine learning can

provide natural language with various powerful tools and algorithms to model human

disambiguation. Among them, statistical classification (see Section 2.1) can offer a

principled solution to computational disambiguation. On the other hand, natural lan-

guage can provide machine learning with a range of challenging problems in morphol-

ogy, syntax, semantics (see Section 2.2), and pragmatics (see Section 2.3). Moreover,

these problems commonly share another set of problems such as class imbalance (see

Section 2.4) and sparse feature space, that have to be resolved simultaneously.

2.1 Statistical Classification

2.1.1 Three Schools of Thought

Classification problem has a long tradition in pattern recognition, and has been well

studied since 1960s (Duda et al., 2001). Over years, the study has been dominated by

statistical approach, which has been further categorized into three main paradigms:

generative, conditional, and discriminative (Rubinstein and Hastie, 1997; Johnson,

2001; Jebara, 2001, 2004). Generative approach estimates a joint probability distri-

bution over all the variables (instances and classes) in question. As the name implies,

the estimated distribution can “generate” examples of any variable combinations in

probability. Inferential classification can then be performed by conditioning the joint
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distribution over the input variables. However, it is roundabout and sub-optimal to

obtain a conditional distribution from a joint distribution, for a single classification

task. Thus, conditional approach is advocated. It directly computes the conditional

distribution instead of modeling all the variables as a whole. This makes the task more

efficient and more effective in general. Compared with conditional approach, discrimi-

native approach is even more minimalist. It focuses on a discriminant function between

two classes, rather than their conditional distributions. The function is directly opti-

mized, mapping from the input instances to the output classes. The optimized function

then becomes the decision boundary for discriminative classification (e.g., either 0 or

1). Note that in some literature (Ng and Jordan, 2001; Ulusoy and Bishop, 2005), con-

ditional learning is also regarded as discriminative approach. Here, we separate them,

following the formalism in Jebara (2001, 2004)

Generative approach and discriminative approach are the two extremes. Generative

approach allows a flexible learning by incorporating knowledge about the problem at

hand. The knowledge includes Markov assumptions, prior distributions, latent vari-

ables and structural information (Box and Tiao, 1992; Jebara, 2004). These are all

absent in discriminative approach. Moreover, generative approach is more robust to

extend for multi-class problems, whereas discriminative approach requires extra work

like using error-correcting codes (Dietterich and Bakiri, 1995) for multi-class exten-

sion. Another advantage over discriminative approach is that generative approach

generally requires less time for training classifier. However, regarding to classification

performance, discriminative approach has often outperformed generative approach in

many areas. For example, Support Vector Machine (Vapnik, 1995), a discriminative

classifier, achieved superior performance in face detection (Osuna et al., 1997), text

categorization (Joachims, 1998), and speech recognition (Ganapathiraju and Picone,

2000).

2.1.2 Maximum Entropy: Generative and Conditional

This thesis employs Maximum Entropy (Jaynes, 1957) to model our classifier. Max-

imum Entropy (ME) is inherently generative (see Section 3.4), but can also be con-

ditional (see Section 3.5). Both types of ME has been successfully applied in many

useful tasks, particularly in natural language domain. Examples of generative ME in-

clude word-morphology discovery (Pietra et al., 1997), sentence modeling (Rosenfeld
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et al., 2001), and geographic-species modeling (Phillips et al., 2006). Meanwhile, ex-

amples of conditional ME include part-of-speech tagging (Ratnaparkhi, 1996), machine

translation (Berger et al., 1996), and syntactic parsing (Ratnaparkhi, 1999).

Generative ME differs from bayesian generative classifier in estimating the joint

distribution, and in handling the dependence of features. For examples, in typical

Naive Bayes classifier (Mitchell, 1997), the joint distribution p(x, y) is estimated by

the product of the prior distribution p(y) and the class-conditional distribution p(x|y).

Here, y is a class label, and x is an input instance which is usually represented by a

feature vector. In practice, the computation for p(x|y) is generally hard because there

are numerous number of dependence between classes and features. For tractable com-

putation, features in Naive Bayes are thus assumed conditionally independent of each

other. It is achieved by using the chain rule to decompose p(x|y) into a product of

class-conditional probabilities (Mitchell, 1997). In resolving problems of highly struc-

tured natural language, these independent assumptions are clearly unjustified. On the

other hand, generative ME expresses the joint distribution in an exponential parametric

form rather than a product of distributions. Inside the exponential form, each feature

is uniquely associated with its parameter. Thus, overlapping features can be combined

without independent assumptions, at the expense of the numerical estimation of pa-

rameters (Ratnaparkhi, 1998). Furthermore, the “elasticity” of exponential form can

resist to the introduction of irrelevant features by assigning marginal weight to them

(Jin et al., 2003).

Conditional ME is closely connected to logistic regression, a common technique in

statistics (Hosmer and Lemeshow, 1989). Logistic regression is designed to estimate a

conditional distribution for binary-valued classes. In some literature, it is referred to

as a generalized linear model (McCullagh and Nelder, 1989). Previously, Ratnaparkhi

(1998) showed that logistic regression was a special case of conditional ME. Both are

expressed in exponential form, but conditional ME is capable for multi-class problems.

In this thesis, we use conditional ME for our disambiguation tasks. Conditional

ME share many of the properties as generative ME. For example, both ME can be

parameterized in an exponential form (Jaynes, 1957), and can be trained with generic

statistical estimator like maximum (conditional) likelihood (Chen and Rosenfeld, 2000).

However, they differ in computing their normalization factors in the exponential form.

In generative ME, the factor involves all the possibilities of variables. Its computation is
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thus more harder during training (Miller and Yan, 2000), and often requires simulation

techniques such as the Monte Carlo method used in Pietra et al. (1997) and Metropolis

Hastings used in Abney (1997). However, the factor computation in conditional ME is

more expensive at run-time (Schofield, 2004). This is because the factor is dependent

on the input context rather than being a global constant in generative ME.

2.1.3 From Individual Classification to Interdependent Classi-

fications

Seldom disambiguation tasks involve a single classification outcome. Instead, they

often require a sequence of classifications, whose outcomes are interdependent on each

other. A typical example for modeling sequential data is part-of-speech tagging. In

more complicated cases, disambiguation tasks require embedded classifications in a

graphical structure, such as syntactic parsing. This section mainly reviews on the

approaches for sequential data.

Hidden Markov Model (HMM) is one classical generative approach for directed

sequential data, and has been applied in various disambiguation tasks such as part-

of-speech tagging (Kupiec, 1992) and named entity recognition (Bikel and Weischedel,

1999). Suppose that a sequence of instances 〈x1, x2, . . . , xn〉, denoted as x1,n, and a

sequence of their classes 〈y1, y2, . . . , yn〉, denoted as y1,n, are given. HMM can esti-

mate a joint distribution p(y1,n, x1,n) by decomposing it into a likelihood distribution

p(x1,n|y1,n) and a prior distribution p(y1,n) (Rabiner, 1989). For trackable inference,

three assumptions are made. Firstly, instances are independent of each other, resulting

in p(x1,n|y1,n) =
n∏

i=1

p(xi|yi,n). Secondly, each instance is only dependent on its class,

resulting in p(xi|y1,n) = p(xi|yi). Thirdly, each class in the sequence is only depen-

dent on its previous k class, resulting in p(y1,n) =
n∏

i=1

p(yi|yi−1, . . . , yi−k). Thus, the

final estimation for k = 2 (a.k.a. second order Markov chain or trigram model) can

be represented as p(y1,n, x1,n) =
n∏

i=1

p(xi|yi)p(yi|yi−1, yi−2). However, HMM hardly

benefits from a rich representation of instances (McCallum et al., 2000), such as long-

range dependency of features (Lafferty et al., 2001). It is mainly due to the first and

second assumptions that are strictly made in HMM. For disambiguation tasks being

context-dependent, these assumptions hardly allow surrounding contextual-features to

be encoded into the model.

Several other frameworks for modeling sequential data have been introduced to al-
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leviate HMM restrictions. For example, Ratnaparkhi (1996) proposed a sequential tag-

ging method, based on a sole conditional ME classifier. During training, each instance

in the sequence was encoded with the previous two classes and features of previous two

and next two instances, based on a sliding window. At run-time, the best sequence

is produced by beam search. It starts at the leftmost instance, producing the most-

probable K classes, transiting to a next instance, producing another most-probable K

classes, and until the rightmost instance is reached. Each production of K classes pro-

duces K×K sequence candidates. But only the top K candidates are used as features

for the next class production. Formally, the sequence can be determined by the first

order Markov chain, denoted as p(y1,n|x1,n) = argmax
y1,n

n∏
i=1

p(yi|xi).

Maximum Entropy Markov Model (MEMM) (McCallum et al., 2000) is one condi-

tional approach for modeling sequential data, and is almost similar to the sequential

tagging method used in Ratnaparkhi (1996). MEMM builds a separate conditional ME

classifier for each class, whereas sequential tagging method builds a single classifier for

all the classes. However, both methods are susceptible to the label bias problem (Laf-

ferty et al., 2001) in which decisions are biased to classes with few possible next classes.

Conditional Random Field (CRF) (Lafferty et al., 2001) is one conditional approach

that solves the label bias problem, and have achieved improvements in information

extraction (Lafferty et al., 2001) and shallow parsing (Sha and Pereira, 2003). CRF

can be viewed as an undirected graphical model for sequential data (Wallach, 2004). It

retains all the advantages of MEMM (Lafferty et al., 2001), and benefits from global

maximum likelihood (Zelenko et al., 2003). However, its parameter estimation is sig-

nificantly slower than MEMM, at the same setting using iterative method (Lafferty

et al., 2001).

Trading off performance and speed, we use sequential tagging method (Ratnaparkhi,

1996) in one experiment to address semantic role labeling. Details and research work

on semantic role labeling can be found in Section 2.2, and our evaluation result can be

found in Chapter 4.

2.2 Previous Work on Semantic Role Labeling

The goal of semantic role labeling is as follows: given a sentence, for each target

verb, the system has to recognize the arguments governed by the verb, and label them
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with semantic roles. Recently, the task has gained much attention from the machine

learning community, and has become a well-defined task with a collection of work.

For example, there have been two years of CoNLL conference, holding shared task

(Carreras and Màrquez, 2004, 2005) for semantic role labeling. Their general goal was

to come forward with learning strategies to address the task in a principled way.

Over years, there have been three general approaches to the task: constituent-by-

constituent, word-by-word, and chunk-by-chunk. Each of them has its own advantages

and disadvantages. In general terms, the constituent-by-constituent approach is more

accurate, but suffers of the alignment problem with arguments. In contrast, the word-

by-word approach ensures that every word align with arguments, but is less accurate.

The chunk-by-chunk approach is the compromise between them: it is moderately ac-

curate and has only mild alignment problem.

We have built two systems based on different approaches. The first system is a

preliminary work, which uses the word-by-word approach. In the second system, we

collected the advantages from the three approaches mentioned above, and propose a

three-phase labeling method.

2.2.1 Proposition, Predicate, Argument and Semantic Role

In linguistics, a sentence can be expressed as a proposition by characterized by a pred-

icate. A proposition is a truth-conditional meaning. Thus, the same proposition can

be expressed by sentences with different grammatical structures. For example, John

shoots Bobby and Bobby is shot by John are propositionally the same. Predicates are

usually presented as verbs. In the above example, shoots and shot are the predicates.

In the succeeding sections, we will restrict our discussion on predicate as verb only.

The participants involved in a proposition are called arguments. They are syntactic

phrases, or more generally a sequence of words. The role that an argument plays is

called its semantic role. Examples of semantic roles include Agent, Patient and

Recipient. In the above example, John is an Agent, whether it occupies the subject

or the object position. The concept of semantic roles has a long history in linguistics,

and its similar notion includes case roles and thematic roles (Saeed, 1997).

The task of semantic role labeling is a propositional analysis. Specifically, given a

verb in a sentence, the task recognizes the arguments that are set in relation to the

verbs, and labels them with the appropriate semantic roles. A similar task to semantic
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role labeling is function tagging (Blaheta and Charniak, 2000), where functional tags

are assigned to phrases. The assignment, however, is based on neighboring words

rather than a target verb. Functional tags are thus defined wider. They may include

grammatical functions, syntactic functions, and semantic functions.

2.2.2 Data Sets Commonly Used

Currently, two English corpora are commonly used to train systems for semantic role

labeling: FrameNet (Baker et al., 1998) and PropBank (Kingsbury and Palmer, 2002).

Comparisons between the two corpora can be found in (Gildea and Palmer, 2002). The

strength of FrameNet is that target words are annotated with word senses. Moreover,

besides verbs, adjectives and nominal phrases are annotated as predicates. However,

the sentences in PropBank are longer and more complex. They are thus more suitable

for real-world applications. Since PropBank is created from Penn TreeBank (Marcus

et al., 1993), it contains richer syntactic information than FrameNet. Moreover, the

sentences have a more even coverage of the verbs. So the data is less sparse, which

helps classification performance.

2.2.3 Constituent-by-Constituent Approach

Automatic semantic role labeling was first empirically studied by (Gildea and Jurafsky,

2000, 2002) using FrameNet as the corpus (Baker et al., 1998). The work divided the

task into two sub-problems: argument recognition and semantic role assignment. Both

sub-problems are inherently classification problems: argument recognition is a binary-

class problem whereas semantic role assignment is a multi-class problem. Two separate

classifiers were built on likelihood probabilities of features, and maximized by linear

interpolation. Most features were syntactic derived by full parsing1. The feature set

included: (1) the phrase type expressing the semantic role, (2) the grammatical subject

or object of the phrase, (3) the voice of the verb, (4) the head word of the phrase, (5)

the phrase position before or after the verb, and (6) the traversed path from the phrase

to the verb.

In the stage of argument recognition, all the constituents (i.e., words under parse

1The grammar formalism was in traditional phrase-structure grammer. Other formalisms were

also tried, e.g, combinatory categorial grammar (Gildea and Hockenmaier, 2003) and tree adjoining

grammar (Chen and Rambow, 2003).
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tree nodes) generated by full parsing were considered as argument candidates. A

binary-class classifier was then used to classify each argument candidate into recog-

nizables or non-recognizables. In the stage of semantic role assignment, the recognized

arguments were labeled with their semantic roles, using a multi-class classifier. The

experiments in (Gildea and Jurafsky, 2002) found that the path and head features were

most useful for the semantic role labeling task. The path feature was also useful in

argument recognition.

Later, Gildea and Palmer (2002) tackled the task using PropBank (Kingsbury and

Palmer, 2002) as the corpus. The same set of features were employed, but they were

generated by shallow parsing (a.k.a. chunking (Abney, 1991)), which divided a sentence

into non-recursive segments of words (i.e. chunks), rather than phrase-structured trees

as in full parsing. In (Gildea and Palmer, 2002), the authors tested the hypothesis that

the flattened representation of features could also do well in semantic role labeling.

Their experimental settings were similar to (Gildea and Jurafsky, 2002), but differed

in how argument candidates were chosen. More specifically, single chunks were chosen

as argument candidates. However, a few arguments could actually correspond to single

chunks. The performance was thus affected. This was revealed by the experimental

results. They found that the shallow-parsing system was significantly worse than the

full-parsing system, although it was computationally cheaper. Similar results were later

confirmed by Punyakanok et al. (2005b).

However, the disadvantage of (Gildea and Jurafsky, 2002; Gildea and Palmer, 2002)

is the unmatching problem of arguments. In (Gildea and Jurafsky, 2000), around

13% of arguments were unable to find the matching constituents while in (Gildea

and Palmer, 2002), over 60% of arguments were unable to find the matching chunks.

This was explained by two reasons (Surdeanu and Turmo, 2005): (a) the constituents

were incorrectly generated by full parsing, and (b) the underlying representations of

syntax and semantics were different. Since the performance of argument recognition

was capped, so was the performance of role assignment.

2.2.4 Word-by-Word Approach

In view of the above-mentioned limitation, researchers (e.g., Hacioglu and Ward (2003))

attempted to recognize arguments word-by-word, rather than matching a complete

syntactic constituent/chunk. This can ensure every word has a chance for matching.
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This method was similar to that used by Ramshaw and Marcus (1995), who proposed

chunking (Abney, 1991) as a tagging task. Semantic role labeling was formulated as

a word-level classification, recognizing arguments and assigning roles simultaneously.

It was achieved by defining positional tags over the original role labels. For example,

they defined B-X tag for the first word in a role label of type X, I-X tag for the non-

initial word(s) in a X role label, and O type for the word outside any role label. This

BIO scheme was firstly proposed by Ramshaw and Marcus (1995) and its variants

were extensively evaluated by Tjong Kim Sang and Veenstra (1999). Here, a single

classifier was employed with input features of words, part-of-speech tags, and chunks.

Each individual word was separately classified into one of the tags. A coherent role

label could be re-combined by finding a consecutive tag with correct positional order.

However, this approach has two drawbacks. Firstly, the number of role classes increases.

It generally requires 2×N + 1 classes, where N is the original number of classes. This

makes classification harder. Secondly, since semantic roles generally involve more than

one word, the number of classification steps per semantic role increases. Long-ranged

semantic roles are thus difficult to recover. Therefore, this word-level approach was

generally worse than the constituent approach (Punyakanok et al., 2005b), although it

guaranteed that every word has a chance to match.

In this thesis, we address semantic role labeling in two different approaches. One

of them is based on word-level classification, which has previously been presented in

(Lan et al., 2004). The closest system to ours was the “Chunker-II” in Pradhan et al.

(2003), who employed word-level classification inside the system. Both their work and

ours conducted experiments on the PropBank corpus (Kingsbury and Palmer, 2002),

with the same set of features. But we used the preliminary release of PropBank, where

the number of role classes was much larger than theirs. Moreover, our classification

task was performed by a conditional ME classifier whereas in (Pradhan et al., 2003),

a SVM classifier was used, which was more accurate in general. Experimental results

showed that their system performed slightly better than our system.

2.2.5 CoNLL-2004: Chunk-by-Chunk Approach

A better approach than word-level classification is to classify semantic roles at chunk-

level. This approach has been used in CoNLL-2004 shared task (Carreras and Màrquez,

2004), which was a competition for semantic role labeling, strictly based on shallow
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parse information. In CoNLL-2004, participants were provided with data sets to build

their learning systems. The feature set included words, part-of-speech tags, chunks,

clauses, and named entities. Benchmark was also given for system evaluation. Most

of the participants employed chunk-level classification to address the problem. The

approach is basically the same as word-level classification, but it differs in the granu-

larity at which the sentence elements are classified (Carreras and Màrquez, 2004). For

example, in the work of Hacioglu et al. (2004), words were collapsed into chunks with

the head words retained as lexical information. This collapsed representation has two

advantages over the original one used in word-level classification. Firstly, chunks can

span a larger segment of semantic roles. The number of classification steps are thus

smaller. Secondly, lexical information is now replaced by head words rather than all

the words in the chunk. It is thus less sparse for classification. In the CoNLL-2004

shared task, a SVM classifier has achieved the best performance (Hacioglu et al., 2004).

In the shared task, two participants (Baldewein et al., 2004; Lim et al., 2004)

also used conditional ME to build their classifiers. But there were some underlying

differences between their works and ours. Firstly, they employed chunk-level classifica-

tion instead of word-level classification. This made classification more robust and less

sparse. Secondly, their systems included a different feature set, which included clauses

and named entities. These features were absent from our data set. Thirdly, the num-

ber of role classes in their data set was much smaller than ours. Their experimental

results were thus hardly comparable to ours, although their systems achieved better

performance.

A related approach to chunk-level classification is the filtering approach (Pun-

yakanok et al., 2004; Carreras et al., 2004). The approach trains two classifiers, one

to recognize the argument-start and the other to recognize the argument-end. A set

of argument candidates can be constructed by combing each predicted-start with each

predicted-end. Previously, a similar approach has been employed in chunking (Pun-

yakanok and Roth, 2000). But this construction method would result in many possible

candidates. They filtered out the unlikely candidates by a scoring function with dy-

namic programming (Punyakanok et al., 2004; Carreras et al., 2004). The remaining

arguments were then labeled by a multi-class classifier. In the CoNLL-2004 shared

task, systems with this approach achieved the second best performance (Punyakanok

et al., 2004) and the third best performance (Carreras et al., 2004) respectively.
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To further enhance performance, some participants in CoNLL-2004 employed global-

optimization methods or post-processing steps for their systems. For example, beam

search was employed by Baldewein et al. (2004) and Lim et al. (2004) to maximize

the probability of the output sequence. Some work also defined global constraint func-

tions with integer linear programming to ensure output coherence (Punyakanok et al.,

2004). On the other hand, simple heuristic rules were used to post-process the output

by correcting trivial errors (e.g., van den Bosch et al. (2004); Higgins (2004)). A more

detailed comparison between approaches in CoNLL-2004 can be found in (Carreras and

Màrquez, 2004).

2.2.6 CoNLL-2005: System Combination

Following the same initiative as CoNLL-2004, the CoNLL-2005 shared task (Carreras

and Màrquez, 2005) was held again which was competition for semantic role labeling.

A main difference between CoNLL-2004 and CoNLL-2005 was that in CoNLL-2005

two syntactic parse trees were given as additional input information for each sentence.

The trees were generated by two parsers: one was from Charniak (2000) and the other

was from Collins (1999). Most participants collected argument candidates, following

the approach similar to that in (Gildea and Jurafsky, 2000). Constituents in the parse

tree were considered as argument candidates. Many participants chose the Charniak’s

one because it generated fewer unmatching constituents (Liu et al., 2005). To reduce

the number of negative examples (of argument candidates), most participants employed

pruning (Xue and Palmer, 2004) to filter out the unlikely candidates. With this method,

around 60% of argument candidates could be eliminated (Tsai et al., 2005). In general,

systems usually performed role assignment after argument recognition. However, some

systems (e.g Tsai et al. (2005)) did integrate two sub-problems into one single multi-

class classification problem by adding a “null” category for unrecognized arguments.

Since constituent nodes in a tree are embedded, arguments generated from these nodes

are highly embedded too. Several heuristics were proposed to resolve the problem, by

selecting a subset of the embedding arguments. For example, Liu et al. (2005) selected

the argument with the largest probability score, whereas Ponzetto and Strube (2005)

selected the argument with the largest span.

Remarkably, many participants used a combined system in CoNLL-2005, particu-

larly in the best four systems (Punyakanok et al., 2005a; Haghighi et al., 2005; Màrquez
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et al., 2005; Pradhan et al., 2005). The aim was to increase syntactic coverage and

robustness of the final system. The outputs to combine were obtained from differ-

ent syntactic parses (full parses and shallow parse), n-best full parse candidates, or

different learning algorithms. The combination methods included integer linear pro-

gramming (e.g., Punyakanok et al. (2005a)), re-ranking (e.g. Haghighi et al. (2005)),

greedy merging (e.g., Màrquez et al. (2005)), and stacking (Pradhan et al., 2005). A

more detailed comparison between the approaches in CoNLL-2005 can be found in

(Carreras and Màrquez, 2005).

2.2.7 Our Approach: Three-Phase Labeling

Our approach involves three phases. It includes the advantages from classifications at

word, chunk, and constituent level. The classifiers involved are all trained with con-

ditional ME. We performed the evaluation with the provided benchmark of CoNLL-

2005. Thus, fair comparisons could be made. We followed the approach of Gildea and

Jurafsky (2000) to divide the problem into two sub-problems: argument recognition

and semantic role assignment. We also follow Punyakanok et al. (2004) to divide argu-

ment recognition into two sub-problems: argument-start recognition and argument-end

recognition. Each problem is separately addressed in an individual phase. The outputs

are pipelined, with the output of one phase used as the input of the next phase.

A pre-processing step is done on the original data set to collapse tokens into chunks.

In case a chunk can not be aligned with an argument, the chunk is split back into

separate tokens. Thus the new representation is mixed with chunks and tokens.

In the first phase, we use a classifier to recognize the argument-start at the chunk/token

level. Here, we gain two advantages by this mixed representation. Firstly, the use of

chunks can reduce the number of classification steps, unlike the word-by-word approach

requires every step for each individual word. Secondly, the use of tokens can ensure

no argument-start is unmatched, unlike the constituent-by-constituent approach aligns

with arguments.

In the second phase, we recognize the argument-end by traversing the parse tree.

The traverse starts at an argument-start, climbing bottom-up to find the lowest ances-

tor whose subtree can cover a complete syntactic constituent. The rightmost boundary

of that constituent then becomes the argument-end. Here, we also gain an advantage

by this indirect way of obtaining constituents. On the one hand, the use of these con-
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stituents can avoid the “brittleness” problem suffered by both word-level classification

and chunk-level classification. On the other hand, the length of these constituents can

be as long as those produced by the purist constituent approach. Thus, even long-

ranged arguments can be recognized. This two-phase argument recognition approach

is similar to that in (Punyakanok et al., 2004), who train two separate classifiers to

recognize argument-start and argument-end respectively, and construct many possible

argument candidates by combing each predicted-start with each predicted-end. Here,

the problem of exponential grow of candidates suffered by Punyakanok et al. (2004) is

avoided. We do not need a scoring function to filter out the unlikely candidates. Thus,

our approach is computationally cheaper.

In the third phase, we use a classifier to label the recognized arguments with se-

mantic roles. Our system with this three-phase labeling approach would rank the 9th

of 20 systems in CoNLL-2005. Note that the first four and the 7th system were those

combining individual systems, which were definitely better than the our single system.

In CoNLL-2005, the best single system (Surdeanu and Turmo, 2005) ranked the 5th.

Their system performed marginally better than our system. Their key advantage over

ours was its complete analysis on constituent-argument mappings. They defined the

mappings into three categories: (a) correct one-to-one mapping, (b) correct one-to-

many mapping, and (c) one-to-many mapping due to incorrect syntax. They focused

on modeling the first mapping with a AdaBoost classifier (Freund and Schapire, 1997),

while resolving the second mapping by an argument expansion heuristic, namely, for

arguments that mapped to more than one constituent, their boundaries were extended

to the right, to include all other unlabeled constituents. Generally, AdaBoost is an

ensemble method of combining weak classifiers using weighted voting. Thus, strictly

speaking, their work is also a combined system rather than a single system.

2.2.8 Classification Approaches for Semantic Role Labeling

Over years, various learning algorithms were applied for building classifiers for semantic

role labeling. They included rule-based learning (Higgins, 2004), decision-tree learning

(Surdeanu et al., 2003), memory-based learning (van den Bosch et al., 2004), generative

learning (Thompson et al., 2003), conditional exponential learning (Lim et al., 2004;

Lan et al., 2004), and discriminative learning (Pradhan et al., 2004). Recently, some

novel classification approaches have also been applied, e.g, relevant vector machine
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(RVM) (Johansson and Nugues, 2005) and tree conditional random fields (T-CRF)

(Cohn and Blunsom, 2005).

2.3 Previous Work on Dialogue Act Recognition

The goal of dialogue act recognition is to assign a dialogue act to a given utterance.

Dialogue act, in general, is a concise abstraction of an utterance’s intention. For

example, the dialogue acts Greeting and Opinion should be assigned to the utterance

Good morning and I think it’s great, respectively.

Generally there are two approaches to dialogue act recognition (Jurafsky, 2004):

plan-based approach and cue-based approach. While both approaches require infer-

ence processes, they differ in the way of inferencing. The plan-based approach, also

known as BDI model (belief, desire, and intention), was proposed by Allen (1995).

The approach makes use of logical inference, which employs techniques from classical

artificial intelligence. The approach basically operates on predicate calculus for rep-

resenting utterances. For example, S believes a proposition P is denoted as belief(S,

P). The approach defines action schema for each dialogue act. Each schema contains

three sets of parameters: (1) the conditions required to perform an action, (2) the

states achieved by performing the action, and (3) the effects performed by the action.

All of them are defined using predicate calculus. During recognition, logical inference

is performed by pre-defined rules, moving from one state to another, until it meets

an action’s effect (dialogue act). The advantage of this approach is that it is easily

understandable to human, and thus manageable for amendment. The disadvantage is

its enormous effort in encoding the necessary knowledge for logical inference, resulted

in relatively small-scaled uses. The system will also become very brittle if the domain

is changed.

In contrast, the cue-based approach makes use of statistical inference, which employs

techniques from machine learning community. In the approach, the recognition process

is cast as a classification task, with cues as the input. In general, a cue is a surface

feature that is usually associated with some dialogue act. Common cues include lexical

feature, syntactic feature, and prosodic feature. The approach learns from a set of

labeled examples by describing statistical relations of dialogue acts. The learned system

then relies on the statistics to compute the most probable class of a dialogue act for a
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given untterance. The advantage of this approach is that it requires little expertise for

handcrafting the knowledge, and it is thus more scalable to large systems.

We employ conditional ME to model a classifier for this task, and explore various

types of features as input. We investigate the use of heterogeneous features to predict

dialogue acts. A feature selection method is also employed to optimize the feature set.

2.3.1 The Origin of Dialogue Act

There is not much agreement with linguists on the definition of dialogue act. But

it is uncontroversial that the main inspiration for dialogue act is from speech act. A

comprehensive survey on the development from speech act to dialogue act can be found

in Traum (1999).

The work on speech act was originated in the field of language philosophy. Its theory

was developed from a need to give account for the pragmatic meaning for utterances,

as opposed to the conditional-truth meaning for propositions. Austin (1962) explained

that utterance was not simply the matter of either truth or false. It should be viewed

as a kind of action. He distinguished the concept of speech act into three aspects:

locutionary act, illocutionary act, and perlocutionary act. Searle (1969) extended

Austin’s work, focusing on the study on illocutionary acts.

Later, Cohen and Perrault (1979) introduced a plan-based theory of speech acts.

They viewed speech acts are plan operators which affect the intention and belief of

speakers. Litman and Allen (1990) tried to organize a dialogue in a hierarchical struc-

ture based on the sub-plans. This gave account not only for the functional meaning

of utterances, but also for the structural dependencies between different plans and

sub-plans in a dialogue.

However, traditional speech acts are still insufficient to explain the interactivity

of human dialogues. Therefore, discourse management theories such as turn-taking,

repair, reference, and attention are added into speech acts. Gradually, more new

functions for speech acts were introduced. Therefore, new taxonomies for speech acts,

namely dialogue acts, were formulated. Bunt (1994) emphasized that dialogue acts

serve as a function that updates the dialogue context.

Note that the concept of speech acts had also been generalized to cover conversation

and communication, resulting in conversational act (Traum and Allen, 1992) and com-

municative acts (Allwood, 2000) respectively. However, these kinds of acts are already
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out of our scope, and we do not discuss here.

2.3.2 The Cue-based Approach to DA Recognition

Most of the previous works on dialogue act recognition focused on task-oriented dia-

logues. For example, Wright (1998) used the Maptask corpus (Anderson et al., 1991)

in which the dialogues were about a person giving instructions to guide another person

through a route on a map. The appropriate sequence of dialogue acts (called move

types in Anderson et al. (1991)) for labeling an utterance sequence U was determined

by M∗ = argmax
M

p(M |I) = argmax
M

p(I|M)p(M), where I represented the sequence of

suprasegmental features (i.e., intonational) observed in U . Here, p(M) was estimated

using 4-gram whereas three methods were used to calculate p(I|M) separately: hid-

den markov models (HMMs), classification trees, and neural networks. The same task

was also studied by Taylor et al. (1998), in which the appropriate move type sequence

was determined by combining three probabilities: p(M), p(F |M), and p(C|M), where

p(F |M) and p(C|M) were likelihood probabilities of intonational and cepstral (i.e.,

speech) features respectively. Similar to the approach of Wright (1998), these proba-

bilities were estimated based on HMMs and 4-gram. These two work mainly differ from

ours in the form of input. They determined dialogue acts from speech input, whereas

our work was based on hand-transcribed textual input.

Researchers (e.g., Reithinger et al. (1996); Samuel et al. (1998)) have also worked on

the VERBMOBIL corpus, which contained dialogues related to appointment schedul-

ing. For example, Reithinger et al. (1996) purely modeled the dialogue act sequence

by n-gram approach. The most probable upcoming dialogue act d∗ was modeled

by conditioning its proceeding sequence, denoted as d∗ = argmax
d

(d|d1, d2, . . . , di−1).

They shortened the sequence history as trigrams, which were smoothed by interpola-

tion method. Samuel et al. (1998) applied transformation-based learning (Brill, 1995)

whereby rules were learned to label utterances with dialogue acts. The features used

were cue phrases appearing in the utterance, known as dialogue act cues, which were

selected by mutual information. A drawback of the approach is that the decision rules

may require lookahead information of the next utterance, which in practice is not avail-

able. It is thus not applicable for online dialogue act recognition.

Dialogues in other domains have been studied as well. For example, Kita et al.

(1996) worked on the ATR Conference corpus that contained conversations between
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a secretary and a questioner at international conferences. Dialogue act recognition

was achieved by modeling the proper dialogue act sequences, called illocutionary force

types (Austin, 1962), using HMMs. Clark and Popescu-Belis (2004) also applied a

conditional ME classifier to the ICSI MR corpus (Janin et al., 2003), which contained

conversations recorded in meetings.

Compared with task-oriented dialogues, dialogue act recognition for non-task ori-

ented dialogues is inherently more difficult since it involves more dialogue act types

(to cater for the requirements of different tasks) and there is also a greater variance of

style in the utterances. Besides, the corpus usually has a larger coverage in terms of

the vocabulary’s size. A representative work on non-task oriented dialogue act recog-

nition was reported by Stolcke et al. (2000), where the Switchboard corpus (Godfrey

et al., 1992) was employed, which contained dialogues spanning 70 topics. Global opti-

mization was performed to find the dialogue act sequence D for labeling an utterance

sequence U . This was achieved by maximizing the posterior probability p(D|E), by ap-

plying the Viterbi search (Viterbi, 1967), where E denoted the evidence (i.e., features)

observed in U . Various types of evidence were studied, including lexical, acoustic, and

prosodic features. A model based on likelihood probabilities, similar to the one pro-

posed by Taylor et al. (1998), was also applied to integrate different types of evidence

for dialogue act recognition.

Our conditional ME method offers two advantages over other approaches. First, it

allows heterogeneous features to be flexibly integrated in one classifier. This leads to a

simpler design and it is also easier to assess the impact on performance of each type of

features, facilitating feature selection. In other approaches, one often needs to assume

that the heterogeneous features are independent, so that their likelihood probabilities

can be modeled separately and then be combined for dialogue act recognition. Such

assumption, however, is in many cases unwarranted. In our work, we study a wide

range of features, ranging from lexical to syntactic to surface discourse features, and

evaluate them empirically to select features that can lead to good recognition rate.

Another advantage is that the classification features are defined over the current

and previous utterances only. This is in contrast to other approaches where either

lookahead information of the next utterance is needed (Samuel et al., 1998) or the

complete dialogue is required for global optimization to find the whole dialogue act

sequence (Kita et al., 1996; Taylor et al., 1998; Wright, 1998; Stolcke et al., 2000). Our
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approach is thus more suitable for online dialogue act recognition.

Our work is different from that reported by Clark and Popescu-Belis (2004), who

also applied conditional ME to dialogue act recognition. In their work, the features

used were mainly words (selected based on occurrence frequency), and the limited

contextual features adopted were also lexical in nature. Besides, they used a smaller

tag set called MALTUS that consisted of 11 dialogue acts only, and a smaller data

set that was task-oriented. We evaluate the approach with a large data set based on

Switchboard (Godfrey et al., 1992) with a tag set of 44 dialogue acts. Our classification

task was thus harder. Yet, we achieve better recognition result.

2.4 Previous Work on Class Imbalance Problem

A class-imbalance problem refers to a data set, where the distribution of examples

among classes in the data set are highly skewed. This poses challenge to classifiers be-

cause they are typically designed for balanced data sets. The class-imbalance problem

is encountered by many real-world applications. Previously, there have been meth-

ods to deal with imbalanced data sets in various domains, including oil-spill detec-

tion (Kubat and Matwin, 1997), credit-card fraud detection (Chan and Stolfo, 1998),

premature-birth prediction (Grzymala-Busse et al., 2000), and text disambiguation

such as coreference resolution (Ng and Cardie, 2002) and complement-adjunct distinc-

tion (Kermanidis et al., 2004).

There are two common approaches to the class-imbalance problem. One approach

is at data level. The aim is to re-sample the original data to a more balanced distri-

bution. The sampled data set is then provided to classifier for training. Methods of

this approach mainly include under-sampling, over-sampling, and their variants and

combinations. Another approach for this problem is at algorithmic level. It focuses on

modifying the learning mechanism of classifiers. The aim is to reduce the statistical bias

toward to the majority class. Methods of this approach mainly include cost-sensitive

learning and ensemble learning.

We employ two methods to address the class-imbalance problem. They are at the

data and algorithmic level respectively. Our first method is to employ over-sampling.

But it differs from the prevalent approaches used previously. Traditional sampling

techniques, either over-sampling or under-sampling, are mainly designed for binary-
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class problems. When these techniques deal with multi-class problems, some classes

have to be collapsed or ignored (Provost et al., 1998; Chawla et al., 2002). This probably

destroys the nature of the original problems. In contrast, our method can cope with

problems with more than two classes. The amount of re-sampling is all determined by

a sole heuristic function.

Our second method is quite similar to cost-sensitive learning. The aim is to inten-

sively learn the minority class through some weighting scheme. However, our learning

method focuses on minimizing misclassification error, whereas cost-sensitive learning

targets at reducing misclassification cost.

In Section 5.1, we review both techniques on under-sampling and over-sampling,

and present a comparison with our sampling method. In Section 5.1, we briefly survey

a number of learning techniques currently used for the class-imbalance problem. Their

differences with our learning method are also discussed.

2.4.1 Approach at Data Level

One method for balancing the class distribution is under-sampling. Its aim is to re-

move some examples from the majority classes while keeping the minority classes un-

changed. Examples of this sampling research include (Kubat and Matwin, 1997; Jap-

kowicz and Stepehn, 2002; Drummond and Holte, 2003). The known disadvantage

of under-sampling is the removal of potentially useful information. This can be ad-

dressed by selectively removing the unnecessary majority-class examples through some

heuristics. Two previous work in this direction are discussed.

Kubat and Matwin (1997) divided majority-class examples into four categories:

noisy, borderline, redundant and safe. They selectively removed the noisy and bor-

derline examples using the Tomek link technique (Tomek, 1976). They found that

removing borderline examples could gain significant improvement.

Japkowicz and Stepehn (2002) evaluated the class-imbalanced problem on artificial

data. The training sets were generated based on an one-dimensional input, with various

combinations of class complexity (how classes are subdivided into clusters), size of

training set, and level of imbalance. In one experiment, two under-sampling techniques

were considered. One technique is random under-sampling. Inside, majority-class

examples were randomly removed until their numbers matched the minority class.

The other technique is focused under-sampling, which only removed the majority-class
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examples lying far away from the decision boundary. In another experiment, two

over-sampling techniques were used with similar settings. Their work found that both

under-sampling techniques were less effective than the over-sampling techniques.

On the other hand, over-sampling is another common method that can equalize the

class distribution. Its aim is generally to replicate the examples for the minority classes

while keeping unchanged for majority classes. Examples of this sampling research

include (Ling and Li, 1998; Chawla et al., 2002; Batista et al., 2004). A disadvantage

of over-sampling is that it increases the time to build the classifier because of the

replicated examples.

The work by Ling and Li (1998) is most similar to our sampling method. In one

of their experiments, they over-sampled the minority class with random replacement.

The amount is arbitrarily set to 1 time, 2 times, 5 times, 10 times, and 20 times of the

original size. The majority-class examples were respectively sampled to match with the

number for each group. Here, our method differs from theirs by keeping all the majority-

class examples unchanged, without reducing its number though sampling. Another

difference from their method is the way in determining the amount of replacement.

Ours is determined by a function instead of setting it arbitrarily. The function aims to

re-scale the class distribution by flattening its shape proportionally. We also note that

our method is capable for multi-class problems, unlike the traditional methods which

often are limited to binary-class problem.

An inherent issue of over-sampling is that no new information is introduced to the

system (Ling and Li, 1998). Technically, over-sampling hardly yields a clear decision-

boundary by the replicated features. It just makes the original feature-region more

crowded than before. Recently, a generation technique called SMOTE was proposed to

counter this issue (Chawla et al., 2002). SMOTE operated in feature space to generate

synthetic examples. Inside, each minority-class example is represented by a real-valued

feature vector. SMOTE takes the difference between each vector and one of its nearest

neighbor. The difference is multiplied by a random number between 0 to 1. A new

feature vector (i.e. new example) is thus created by adding the difference to the original

vector. However, when examples involve binary-valued features (e.g., a word whether

exists or not exists), the difference between vectors is no longer a simple mathematical

substraction. It often requires a more sophisticated metric to account for the difference

(Cost and Salzberg, 1993). In this thesis, both disambiguation tasks involve binary-
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valued features. For simplicity, our over-sampling technique thus omits the synthesis

process like the one used in SMOTE.

Regarding to the performance, previous work have not reached any conclusive re-

sults about whether under-sampling or over-sampling is better. Often, reported results

were conflicted between literatures. Some claimed that under-sampling was better

(Domingos, 1999; Drummond and Holte, 2003), but some suggested over-sampling

should be preferred (Japkowicz and Stepehn, 2002; Batista et al., 2004). Nevertheless,

research work combining both sampling methods have been made. For example, Sol-

berg and Solberg (1996) over-sampled the minority class up to a number of examples,

and under-sampled the majority class down to the same number, to generate an equal

class distribution.

2.4.2 Approach at Algorithmic Level

One method to the class-imbalance problem is to apply cost-sensitive learning (Pazzani

et al., 1994; Domingos, 1999; Elkan, 2001) to classifier. Cost here means some prior

weighting that measures how serious is the consequence if an example is misclassified.

A wider definition of cost, and its various types were introduced in Turney (2000). For

computation purpose, cost is quantified in numerical value. Higher values are usually

assigned to the cases that minority-class examples are misclassified. It is because,

for example, misclassifying an ill patient (minority class) as a healthy one (majority

class) is rarely tolerable. Conversely, it is relatively acceptable if a health patient is

misclassified to be ill for a just further checking. By convention, the value in each

possible case is stored in a matrix, whose rows and columns respectively represent the

predicted and correct classes. The diagonal cells in the matrix are all set to zero because

they refer to correct classifications. During training, the objective is to minimize the

overall misclassification cost instead of the total number of errors. One disadvantage

of this approach is that the information about the cost is hardly available in practice.

Approximation (Sahami et al., 1998) or smoothing (Zadrozny and Elkan, 2001) is thus

required, but probably unreliable. Despite its drawback, cost-sensitive learning was

often reported as a better choice than simple sampling methods (Domingos, 1999;

Japkowicz and Stepehn, 2002).

Compared with cost-sensitive learning, our learning method is inherently error-

based. We aim to reduce the number of errors, instead of minimizing the misclassifica-
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tion cost. We modify the learning mechanism of Maximum Entropy by adding weighted

parameters to the updating rule of GIS algorithm. In each iteration of the learning

method, each training example is predicted by the ME classifier. The predicted label

and the correct label form a pair. The occurrence frequency of each pair is recorded

in a matrix, whose rows and columns respectively represent the predicted and correct

classes. By taking the diagonal values, we can obtain the accuracy distribution among

classes. To predict better in next iteration, more weight is assigned to the features

whose class (probably minority class) is predicted poorly. Conversely, less weight is as-

signed to the features whose class (probably majority class) is predicted correctly. The

amount of weight is determined by a inverse function about accuracy. Here, whenever a

new iteration begins, the matrix value changes. The weight assignment is re-computed

too. This differs from the fixed value pre-defined in cost-sensitive learning. Moreover,

we use the matrix to store the information predicted by the classifier rather than the

misclassification cost.

Another algorithmic method that addresses the class-imbalance problem is ensemble

learning. Its aim is to use a collection of classifiers to reduce the prediction variance.

This can minimize the bias toward the majority class. While cost-sensitive learning

modifies the internal mechanism of a classifier, ensemble learning modifies the external

mechanism by classifier combination.

MetaCost (Domingos, 1999) uses a variant of bagging (Breiman, 1996) as the en-

semble method. MetaCost is a wrapper technique for making classifier cost-sensitive.

In MetaCost, multiple replicates of training set are created by taking samples from the

original training set with replacement. Each replicate is used to train an individual

classifier. The original training set is then relabeled by the averaged prediction from

all classifiers. A final classifier is formed by training on the relabeled training set.

Chan and Stolfo (1998) used stacking (Wolpert, 1992) to train multiple classifiers.

They divided the training data into several subsets for each classifier. The prediction

of each classifier was concatenated with the original training set. A meta-classifier was

then formed by training on the concatenated set.

Boosting (Freund and Schapire, 1997) is an another ensemble-learning technique.

It combines the outputs of many weak classifiers to produce a strong committee using

weighted voting. Its various enhancements for resolving class-imbalance problem have

been proposed, such as AdaCost (Fan et al., 1999) and RareBoost (Joshi et al., 2001).
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Some work also combined boosting with sampling methods, such as SMOTEBoost

(Chawla et al., 2003) and DataBoost (Guo and Viktor, 2004).
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Chapter 3

Classification by Maximum

Entropy

3.1 Introduction

Maximum Entropy (ME) offers a statistically appealing way to approximate an un-

known probability distribution, with a few assumptions made on sample data. It orig-

inated from statistical mechanics (Jaynes, 1957) and has been widely used in various

applications (Pietra et al., 1997; Ratnaparkhi, 1999; Phillips et al., 2006). In a machine

learning perspective, ME can be viewed as Maximum Likelihood (ML) training for ex-

ponential distributions. This chapter, based on this perspective, gives an introduction

to ME, with focus on modeling a classifier whose decision boundary is computed by

probability distribution. Some relevant ME derivations and computation issues are

also included.

ME offers more advantages than disadvantages. Firstly, ME can be modeled for

various uses, such as density estimation via unconditional distribution (see Section 3.4),

and classification via conditional distribution (see Section 3.5). Secondly, it makes few

unjustified assumptions on training data to model the target distribution (see Sec-

tion 3.6). Thirdly, it can combine heterogeneous features for decision making, while

keeping easy for feature encoding (see Section 3.7). Fourthly, the parameter estimation

in ME can be computed by iterative methods such as GIS algorithm (see Section 3.8)

or gradient methods. Lastly, bayesian regularization can be employed, in case of over-
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fitting to training data (see Section 3.10).

Some drawbacks are noted. ME training is generally a time-consuming process,

especially when there are a lot of features (see Section 3.9). On the other hand, it is

expressed as an exponential form, which is inherently unbounded above. Parameter

value might thus be incredibly large, resulted in inaccurate prediction.

3.2 Notation

• X : the input space

• Y: the finite set of class labels

• x: an instance over the input space X

• y: a class label in the finite set Y

• ξ = X × Y: the joint event space

• S ∈ ξ : the training sample data (a subset of the event space)

• (x, y): a possible event over ξ

• (xi, yi): an i-th event over S for i = 1, 2, . . . , n

• p̂: the true underlying probability distribution over X × Y

• p: the model probability distribution that we want to estimate

• p̃: the observed probability distribution over S

• H : the entropy function of a probability distribution

• fj : X × Y → R: a j-th binary-valued function (also known as feature function)

that returns either 0 or 1 to indicate whether a feature of x co-occurs with y

• Ep[fj ]: the model expectation of a j-th function with respect to p

• Ep̃[fj ]: the observed expectation of a j-th function with respect to p̃

• wj : a j-th Lagrange multiplier (variously known as model parameter or weight)

• γ: a Lagrange multiplier
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• f(x, y) ∈ R
m: the m-dimensional sparse vector that stores the value of each j-th

function for j = 1, 2, . . . , m

• w ∈ R
m: the m-dimensional real-valued vector that stores the value of each j-th

multiplier

• c ∈ R
m: the m-dimensional real-valued vector that stores the model counts of

each j-th function

• c̃ ∈ R
m: the m-dimensional real-valued vector that stores the observed counts of

each j-th function

• ||w||1: l1-norm, the sum of magnitudes of each elements in w, defined as
m∑

i=1

|wi|

• ||w||2: l2-norm, the Euclidean length of w, defined as

√
m∑

i=1

w2
i

• L: the log-likelihood function of S with respect to w

• L′: the log-posterior function of S with respect to w

3.3 Preliminaries

Consider a supervised classification problem. We are given a set S = {(xi, yi)}ni=1 of

n training examples which are drawn independently from some distribution p̂. Here,

xi is the input and yi is the class label. For each xi, a set of feature functions fj ’s are

defined for classification.

Given these ingredients, a classifier of assigning x to y can be implemented with

a conditional probability distribution p(y|x) by choosing the class y with the highest

probability. By definition, p(y|x) can be computed by the ratio of the joint probability

distribution p(x, y) and the marginal probability distribution p(x). Here, p(x, y) is such

a target distribution that can be approximated with Maximum Entropy (see Section

3.4). On the other hand, p(y|x) can also be computed directly based on a conditional

version of ME (see Section 3.5).
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3.4 Exponential Parametric Form

The probability distribution modeled by Maximum Entropy belongs to the family of

exponential distributions, which is parameterized in an exponential form. This sec-

tion shows how the parametric form is formulated from the theoretical foundation of

Maximum Entropy.

The principle of Maximum Entropy (Jaynes (1957); Ratnaparkhi (1998)) states that

among the probability distributions that satisfy our partial known information about

the data, the best distribution to choose is the one that maximizes the entropy (i.e.

closest to uniform distribution with the least bias) while remaining consistent with the

available information.

For a classification problem modeled with this principle, the aim is to look for a

probability distribution p(x, y) by (1) maximizing the entropy H for each i-th event

(xi, yi) in the sample data S, and (2) satisfying the equality constraints which are

encoded with feature functions fj’s, and an axiom of the probability theory:

maximize
p

H(p) = −
∑
x,y

p(x, y)logp(x, y) (3.1)

subject to Ep[fj ]− Ep̃[fj ] = 0 ∀j (3.2)∑
x,y

p(x, y)− 1 = 0 (3.3)

Here, Ep[fj] is the expectation of a j-th feature function with respect to the model

distribution p being estimated, and Ep̃[fj ] is the expectation of a j-th feature function

with respect to the training data. The notation for a feature function fj is in short of

fj(x, y). Both expectations are respectively defined as:

Ep[fj ] =
∑
x,y

p(x, y)fj(x, y) (3.4)

Ep̃[fj ] =
n∑
i

p̃(xi, yi)fj(xi, yi) (3.5)

Equivalently, this formulation becomes a constrained optimization problem: find the

extrema of an objective function which is subject to a set of constraints. Here, the

objective function is Equation 3.1, the constraints are the ones in Equation 3.2 and in

Equation 3.3 respectively, and the extrema we want to find is the maximized entropy

of the joint probability distribution p(x, y). To reduce the constrained problem to
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an unconstrained problem, Lagrangian method (see, for example, Arfken (1985) for a

review) is employed. Inside, a scalar variable for each constraint, namely Lagrange

multiplier, is introduced so that a Lagrangian function F can be defined:

F (p,w, γ) = H(p)−
m∑
j

wj

(
Ep[fj ]− Ep̃[fj ]

)
− γ

(∑
x,y

p(x, y)− 1
)

(3.6)

Here, finding the maxima of H is equivalent to finding the maxima of F . Since F is

converse, its maximum value can be found by setting its gradient equal to 0. By taking

the partial derivative of F with respect to p(x, y), Equation 3.6 becomes:

∂F

∂p(x, y)
= −(1 + logp(x, y))−

m∑
j

wjfj(x, y)− γ (3.7)

Setting the derivative equal to 0 and solving p(x, y), we have:

logp(x, y) = −1−
m∑
j

wjfj(x, y)− γ (3.8)

= −1−w · f(x, y) − γ (3.9)

Returning to the base-10 logarithm of p(x, y), it becomes:

p(x, y) = eγ−1ew·f(x,y) (3.10)

Summing all over the event space, we get:

∑
x,y

p(x, y) = eγ−1
∑
x,y

ew·f(x,y) (3.11)

Because
∑
x,y

p(x, y) in Equation 3.3 equal to 1, eγ−1 in Equation 3.11 thus equals to:

eγ−1 =
1∑

x,y
ew·f(x,y)

(3.12)

Finally, substituting Equation 3.12 into 3.10, we get the parametric form of ME in

terms of parameter w for the joint probability distribution p(x, y):

p(x, y) =
ew·f(x,y)∑

x,y
ew·f(x,y)

(3.13)

3.5 Conditional Maximum Entropy

For the classification problem with large instance space, the conditional probability

distribution p(y|x) is preferable to be directly computed. This is because evaluating
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the denominator in Equation 3.13 requires summing all over possible combinations of

both classes and input, which is often infeasible in practice. Unless a good and fast

approximation (Schofield, 2004) can be made, one may neglect to model the input x,

but focus on determining which class y fits x best. This gives us the parametric form

for the conditional Maximum Entropy (e.g., Berger et al. (1996)), defined as:

p(y|x) =
ew·f(x,y)∑

y
ew·f(x,y)

(3.14)

This parametric form differs from the original form mainly in the denominator, which

is technically called partition function in the literature of statistical mechanics. The

modification on the denominator not only reduces the unnecessary burden imposed to

the model, but also makes the computation tractable for tremendous sample data.

3.6 As a Special Case of Minimum Relative Entropy

Maximum Entropy (ME) is a special case of Minimum Relative Entropy (MRE), as-

suming that the target distribution is uniform. Suppose that some sample data is

given, and its true underlying distribution p̂(x, y) is also known. The aim is to look

for a distribution p(x, y), approximated to p̂(x, y), subject to a set of constraints. The

MRE principle (Kullback, 1959; Shore and Johnson, 1980) states that among the prob-

ability distributions that satisfy the constraints, the best distribution to choose is the

one with the minimum entropy relative to p̂(x, y). Here, the relative entropy between

p̂(x, y) and p(x, y) is known as Kullback-Leilber (KL) divergence, defined as:

KL(p||p̂) =
∑
x,y

p(x, y)log
p(x, y)
p̂(x, y)

(3.15)

=
∑
x,y

p(x, y)logp(x, y)−
∑
x,y

p(x, y)logp̂(x, y) (3.16)

ME is a special case of MRE when assuming p̂(x, y) to be a uniform distribution u,

defined as:

u(x, y) =
1

|X × Y| (3.17)
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Now, the KL divergence becomes:

KL(p||p̂) =
∑
x,y

p(x, y)logp(x, y)−
∑
x,y

p(x, y)log
1

|X × Y| (3.18)

= −H(p)−
∑
x,y

p(x, y)log
1

|X × Y| (3.19)

= −H(p) + log|X × Y|
∑
x,y

p(x, y) (3.20)

= −H(p) + log|X × Y| ≥ 0 (3.21)

As depicted, the entropy H(p) is bounded by the logarithm of the cardinality |X ×Y|:

H(p) ≤ log|X × Y| (3.22)

The equality only holds when p(x, y) ≈ p̂(x, y) = u(x, y). Thus, maximizing entropy is

equivalent to minimizing relative entropy at the assumption that the target distribution

is uniform.

3.7 Feature Encoding

Features in Maximum Entropy are encoded as binary functions to indicate their ex-

istence. Given a feature set {v1, v2, . . . , vi, . . . , vn}, their values are generated by a

function Gen(x, vi), where x is an input instance. Assuming the value of a class label

y is Label, a feature function fj(x, y) can be encoded as:

fj(x, y) =

⎧⎨
⎩ 1 if y=Label and vi= Gen(x, i)

0 otherwise
(3.23)

Suppose that the feature set generates m possible feature functions. Each function

output (either 0 or 1) is used to indicate if a feature vi with a particular value co-exists

with a class label. All the binary outputs are then gathered to form a m-dimensional

feature vector f(x, y) for classifier input.

3.8 Parameter Estimation

3.8.1 Maximum Likelihood

Parameter estimation is a classic problem in statistics, and can be approached in sev-

eral ways. Maximum likelihood (ML) (see, for example, Bickel and Doksum (1977)
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for a review) is one statistical method that estimates the parameters w for a (joint)

probability distribution. Given a training data S = {(x1, y1), (x2, y2), . . . (xn, yn)}, the

data likelihood function DL is defined as:

DL(w) = p(S|w) (3.24)

=
n∏

i=1

p(yi, xi|w) (3.25)

The best estimate for the parameters wML is defined to be the one that maximizes the

likelihood from observed data, denoted as:

wML = argmax
w∈R

n∏
i=1

p(yi, xi|w) (3.26)

The ML method can be used for estimating parameters for generative Maximum En-

tropy.

3.8.2 Maximum Conditional Likelihood

Similarly, maximum conditional likelihood (MCL) is another statistical estimator con-

sistently designed for conditional distribution. The data conditional likelihood function

DCL is defined as:

DCL(w) = p(S|w) (3.27)

=
n∏

i=1

p(yi|xi,w) (3.28)

The best estimate for the parameters wMCL is defined to be the one that maximizes

the conditional likelihood from observed data, denoted as:

wMCL = argmax
w∈R

n∏
i=1

p(yi|xi,w) (3.29)

Given the parametric form of conditional maximum entropy, the parameters w can

be estimated by MCL method. The conditional likelihood function L for conditional

maximum entropy is defined as:

L(w) =
n∏

i=1

ew·f(xi,yi)∑
y′∈Y

ew·f(xi,y′)
(3.30)

Because of the monotonicity of the logarithm, the value of L is symmetrically the same

as the one after taking logarithm, denoted as:

L(w) =
n∑

i=1

w · f(xi, yi)−
n∑

i=1

log
∑
y′∈Y

ew·f(xi,y
′) (3.31)
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By taking the partial derivative of L with respect to w, it becomes:

∂L

∂w
=

n∑
i=1

f(xi, yi)−
n∑

i=1

∑
y′∈Y

f(xi, y
′)ew·f(xi,y

′)

∑
z′∈Y

ew·f(xi,z′) (3.32)

=
n∑

i=1

f(xi, yi)−
n∑

i=1

∑
y′∈Y

f(xi, y
′)

ew·f(xi,y
′)∑

z′∈Y
ew·f(xi,z′) (3.33)

=
n∑

i=1

f(xi, yi)−
n∑

i=1

∑
y′∈Y

f(xi, y
′)p(y′|xi) (3.34)

or, in short:

∂L

∂w
= c̃− c (3.35)

Once setting the derivative equal to 0, the parameters w are the optimal ones (or value

maximized) for which c and c̃ are equal:

c̃ = c (3.36)

where c̃ is the observed counts of every j-th feature function with respect to S, and

c is the model counts of every j-th feature function with respect to p. As depicted

in Equation 3.33, calculating c requires the involvement of w again. There is thus

no closed-form solution for Equation 3.35. Alternatively, this can be solved with a

numeric root-finding algorithm, such as Generalized Iterative Scaling (GIS) (Darroch

and Ratcliff, 1972; Ratnaparkhi, 1998). Figure 3.1 shows the main GIS algorithm,

with two procedures shown in Figure 3.2 and 3.3 respectively. At each iteration t, as

depicted in Figure 3.1, the parameters w are successively adjusted, based on divergence

between c̃ and c. The algorithm will converge to wMCL after a number of t iterations.

Generally, using 100 iterations is good enough in this thesis, because the change in

log-likelihood L is almost negligible.

3.9 Complexity for Generalized Iterative Scaling

The Generalized Iterative Scaling (GIS) algorithm for estimating parameters is gener-

ally slow. The algorithm involves a main loop, performing successive iterations (see

Figure 3.1). At each iteration, it involves another loop over all the examples in the

training data, which is the most time-consuming part in the algorithm (see Figure 3.2).

42



GIS(S, τ, η)

1. w ← 0, c← 0, T ← 0;

2. C ← max
i
|xi|

3. for each i ∈ n

4. c̃← c̃ + f(xi, yi);

5. repeat

6. (L(t), c) = COUNTS(S,w);

7. w ← w + 1
C

log c̃
c
;

8. t← t + 1;

9. until (|L(t) − L(t−1)| ≤ τ ) or (t < η), where τ and η are thresholds

Figure 3.1: GIS algorithm

COUNTS(S,w)

1. L← 0, c← 0;

2. for each i ∈ n

3. p← PROBABILITY(xi,w)

4. L← L + logp[yi];

5. for each y ∈ Y
6. c← c + p[y]× f(xi, yi);

7. return (L, c);

Figure 3.2: COUNTS procedure

PROBABILITY(xi,w)

1. Z ← 0, s← 0, p← 0;

2. for each y ∈ Y
3. s[y] = ew·f(xi,y);

4. Z ← Z + s[y];

5. for each y ∈ Y;

6. p[y]← sy/Z;

7. return p;

Figure 3.3: PROBABILITY procedure
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Here, line 3 involves another inner loop to compute the normalized probability distri-

bution among the classes (see Figure 3.3). Most importantly, line 5 and 6 involves the

computation for all the modeled counts of feature functions, and each feature func-

tion is bounded by its type of implementation. This computation thus dominates the

running time of each iteration. The complexity of each iteration is O(|N ||Y|A), where

|N | is the number of training examples, |Y| is the set of classes, and A is the average

number of feature functions for an example.

3.10 Regularized Estimation: Maximum A Posteri-

ori

Regularization generally prevents overfitting to the training data by penalizing the

fitted parameters by a certain quantity, which is controlled by a hyperparameter α and

a function R(w). For the regularization for Maximum Entropy training, maximum a

posteriori (MAP) can be used. MAP is a statistical method for parameter estimation.

The best estimate is defined to maximize the posterior probability from observed data.

By Bayes’ theorem, the posterior distribution p(w|S) can be computed by combining

the likelihood distribution p(S|w) with a prior distribution p(w). The choice for the

prior distribution p(w) depends on the problem domain. Gaussian prior (Berger and

Miller, 1998; Chen and Rosenfeld, 2000) and Laplace prior (Goodman, 2004) have

respectively been used for natural language classification problems. In case of Gaussian

distribution, the MAP method estimates w by taking the maximum value of p(w|S):

wMAP = argmax
w∈R

p(w|S) (3.37)

= argmax
w∈R

p(S|w)p(w) (3.38)

= argmax
w∈R

n∏
i=1

ew·f(xi,yi)∑
y′∈Y

ew·f(xi,y′)

m∏
j=1

1√
2πσ2

exp
(
− w2

j

2σ2

)
(3.39)

where σ2 is the variance of parameters.

To ease the numerical calculations, the estimation criterion for Equation 3.39 is
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now given by a logarithmic function L′:

L′(w) =
n∑

i=1

log
ew·f(xi,yi)∑

y′∈Y
ew·f(xi,y′)

+
m∑

j=1

log
1√

2πσ2
exp

(
− w2

j

2σ2

)
(3.40)

= L(w)−
m∑

j=1

w2
i

2σ2
− log

√
2πσ2 (3.41)

= L(w)− 1
2σ2
||w||22 − const. (3.42)

= L(w)− αR(w) − const. (3.43)

As depicted, the new function L′(w) is equal to the log-likelihood function L(w) with

a penalty term, which is the product of a hyperparameter 1
2σ2 and a function R(w) =

||w||22. In the context of machine learning, this is equivalent to l22-norm regularization.

There have also been some work using Laplace prior (Goodman, 2004) for l1-norm

regularization, formulating R(w) as ||w||1.
For computation, integrating Gaussian prior into the GIS algorithm requires sub-

tracting an extra term from the derivative in Equation 3.35:

∂L

∂w
= c̃− c− w

σ2
(3.44)

or equivalently denoted as:

c̃ = c +
w
σ2

(3.45)
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Chapter 4

Semantic Role Labeling

4.1 Introduction

1 Semantic role labeling is a simplified task for deep semantic analysis. Its aim is to

label sequences of words of a sentence with their semantic roles with respect to a verb

in the sentence. Examples of semantic roles include Agent, Patient, Temporal,

Locative, etc. Recently, semantic role labeling research has been facilitated by the

release of semantically annotated corpora, which allow researchers to apply corpus-

based learning techniques to estimate probability distribution of semantic roles. The

corpus statistics obtained may then be used to assign semantic roles to unseen text.

Automatic semantic role labeling provides benefits to many natural language appli-

cations such as information extraction, summarization, question answering, etc. Among

these applications, the advantage to Information Extraction (IE) is described. Tradi-

tional approaches to information extraction systems are heavily dependent on hand-

crafted verb-based patterns where the slots are used to fill in extracted entities. How-

ever, encoding such patterns into systems is often tedious, and it requires the expertise

of linguists familiar with the underlying domain. In contrast, verb-argument structure

generated by semantic role labeling enables a pattern-free approach to IE systems,

which is more flexible and portable.

This chapter presents machine learning techniques on semantic role labeling. Two
1The preliminary version of the first part of this chapter has been published in (Lan et al., 2004).

In the second part of this chapter, we propose a new labeling approach to the same task, at the lesson

learnt from the previous work.
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classifier systems are implemented, both based on the conditional maximum entropy

approach (Ratnaparkhi, 1998). Each system employs a different approach. In the

first system, the task is formulated as a sequential tagging problem (Ramshaw and

Marcus, 1995) and experiments are conducted on the preliminary release of PropBank

(Kingsbury and Palmer, 2002). In the second system, we propose a new approach,

where the task is decomposed into a number of decision sub-problems. Experiments

are conducted on the benchmark data set provided by the CoNLL-2005 shared task

(Carreras and Màrquez, 2005). Moreover, we also employ two methods to address the

class-imbalance problem encountered in the semantic role labeling task. Evaluation

reveals that the methods are effective in improving the macro-average performance.

4.2 Task Description

4.2.1 Problem Definition

The goal of semantic role labeling is to group sequences of words of a sentence together

into arguments and label them with their semantic roles, based on a particular verb in

the sentence. A verb and its set of arguments form a proposition specifying a truth-

conditional meaning of the sentence. In general, a sentence may contain a number of

propositions. For example, there are two verbs in the following sentence, each governing

a proposition, as shown in 1a and 1b, respectively (in each case, the verb concerned is

italicized):

1a. The state gave CenTrust 30 days to sell the Rubens.

1b. The state gave CenTrust 30 days to sell the Rubens.

By grouping the words sequentially, non-embedded and non-overlapping arguments

are formed, as shown in 2a and 2b below (arguments are bracketed):

2a. (The state) gave (CenTrust) (30 days to sell the Rubens).

2b. (The state) gave CenTrust (30 days) to sell (the Rubens).

Upon successful labeling, semantic roles are assigned to arguments, as shown in 3a

and 3b (semantic roles are small-capitalized):
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3a. (Agent The state) gave (Recipient CenTrust) (Theme 30 days to sell the

Rubens).

3b. (Agent The state) gave CenTrust (Temporal 30 days) to sell (Theme the

Rubens).

As illustrated, the task can generally be viewed as the following two sub-problems.

• Argument recognition - For each targeted verb, find all the argument candidates

by locating their boundaries without embedding and overlapping.

• Semantic role assignment - For each identified argument, label it by a semantic

role with respect to the verb.

Various approaches for addressing these problems have been reviewed in Section 2.2.

4.2.2 Evaluation Metrics

The evaluation is performed on unseen sentences. For each sentence, the verb is first

given. The system then recognizes arguments and semantic roles with respect to the

verb. An argument is said to be correctly recognized if both the words spanning the

argument and its semantic role are correctly predicted.

The performance is measured in terms of precision, recall and F1 measure. Precision

(p) is the percentage of predicted recognitions that are correct. Recall (r) is the percent-

age of target recognitions that are correctly predicted by the system. F1 measure (F1)

is the weighted harmonic mean of precision and recall, defined as F1 = 2pr/(p + r).

All these three measures can be calculated by two different averaging methods:

micro-averaging and macro-averaging. In micro-averaging, the average value is calcu-

lated over all recognitions. We use the official script provided by the CoNLL-2004 and

CoNLL-2005 conference to obtain the micro-average result. The three micro-average

formulae for precision, recall, and F1 measure are shown as follows:

micro-precion =
total number of correctly recognized arguments

total number of recognized arguments
(4.1)

micro-recall =
total number of correctly recognized arguments

total number of target arguments
(4.2)

micro-F1 =
2×micro-precion×micro-recall

micro-prec. + micro-recall
(4.3)
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In macro-averaging, the average value is calculated for each category and then averaged

by the number of classes N . The three macro-average formulae for precision, recall,

and F1 measure are shown as follows:

macro-prec. =
1
N

N∑
i=1

number of correctly recognized arguments in class i

number of recognized arguments in i
(4.4)

macro-recall =
1
N

N∑
i=1

number of correctly recognized arguments in class i

number of target arguments in i
(4.5)

macro-F1 =
2×macro-prec.×macro-recall

macro-prec. + macro-recall
(4.6)

The two averaging methods bias the results differently. Micro-averaging tends to em-

phasize the performances on the largest classes, while macro-averaging emphasizes the

performances on the smallest ones. Unless specified, precision, recall and F1 measure

refer to micro-precision, micro-recall and micro-F1 measure, respectively.

4.3 System I

System I was originally designed to complement our prototype system, called FNDS

(Financial News Dialogue System) (Lan et al., 2003), with semantic role labeling, to

improve its performance in information extraction. It uses the word-by-word approach

for the labeling task2.

4.3.1 Data Set

We use the preliminary release of PropBank as our data set3. Inside, some of the

sentences of the Penn TreeBank (Marcus et al., 1993) are labeled with verb-argument

structures as propositions. We apply a procedure on the propositions to check for con-

sistency and duplication. Totally, 53,022 propositions are compliant with our checking,

with each proposition consist of about 27 tokens (words and punctation marks).

This preliminary release contains 220 semantic roles4, with 190 of them for core

arguments, 29 of them for adjunct arguments and the remaining 1 for annotation

errors. They occupy 74.6%, 25.4%, 0.02% of the data respectively.
2This work was our earlier effort which has been presented in Lan et al. (2004)
3http://www.cs.rochester.edu/∼ gildea/PropBank/
4Every semantic role can be extended by a prepositional tag, resulting in this large number of

classes.

49



token POS chunk rolesset

Consumer NN
NP A0

stocks NNS

once RB
ADVP AM-TMP

again RB

set VBD VP rel

the DT
NP A1

pace NN

for IN PP

AM-PRPblue-chip JJ
NP

issues NNS

. . O O

token POS chunk rolesset

Consumer NN B-NP B-A0

stocks NNS I-NP I-A0

once RB B-ADVP B-AM-TMP

again RB I-ADVP I-AM-TMP

set VBD B-VP rel

the DT B-NP B-A1

pace NN I-NP I-A1

for IN B-PP B-AM-PRP

blue-chip JJ B-NP I-AM-PRP

issues NNS I-NP I-AM-PRP

. . O O

(a) Before BIO format (b) After BIO format

Figure 4.1: Illustration of an annotated proposition. Annotations are presented in

columns, where the BIO format is applied on both labels of chunks and semantic roles.

Appendix A shows the description of tags for POS and chunk. Appendix B shows the

description of tags for semantic role.

To support the labeling task, two linguistic annotations are included in the data

set. One annotation is part-of-speech (POS) tags, which are directly extracted from the

Penn TreeBank. The other annotation is bare-phrase chunks, which are computed by a

perl script contributed by Tjong Kim Sang and Buchholz (2000). To reduce the search

space mapping from tokens to chunks/arguments, the BIO format (Ramshaw and Mar-

cus, 1995) is applied to both annotations, where B (Begin) tag denotes the first token

in a chunk/an argument, I (Inside) tag denotes the non-initial tokens in a chunk/an

argument, and O (Outside) tag denotes the tokens outside any chunks/arguments. As

such, every semantic role label is then categorized into a finer positional group (i.e., B,

I, O). This thus increases the total number of classes. Totally, there are 438 role labels

after employing the BIO format5. Figure 4.1 shows an annotated example.
5Theoretically, the total number of roles should be 2×220+1=441. However, there are some se-

mantic roles, say NEG, occupying one word only. Thus, only B tag is needed but not I tag.
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Feature Description Type

Token Current token nominal

Part-of-speech Part-of-speech of the current token nominal

Bare-phrase chunk Syntactic category of token nominal

Path Chain of syntactic categories from the current token to verb ordinal

Verb Lemmatized verb nominal

Voice Active or passive voice of the verb nominal

Position Whether the current token is before or after the verb nominal

Previous role Last two semantic role predictions from classifier nominal

Table 4.1: Features used in tagging for semantic role labeling.

4.3.2 Semantic Role Labeling as Sequential Token Classifica-

tion

As discussed in Section 4.2.1, semantic role labeling involves two-sub problems: argu-

ment recognition and semantic role assignment. Here, we address them in a unified way,

formulating the labeling task as a sequential tagging problem (Ramshaw and Marcus,

1995).

Argument recognition is equivalent to the typical segmentation problem, which

requires finding the boundaries of arguments. By using positional tags to denote the

boundaries, the segmentation problem can be resolved by token-level classification.

On the other hand, semantic role assignment is also a multi-class classification of role

labels. By concatenating the positional tag with the role label, both problems can

simultaneously be resolved by a multi-class classifier at the token level.

For classification purpose, each outcome (i.e., positional tag and role label) is char-

acterized by linguistic features from a fixed size of context. This is achieved by using a

5-token sliding window (Pradhan et al., 2003), scanning through the entire proposition.

Each sliding collects various features, based on the feature set shown in Table 4.1. The

sliding notion is illustrated in Figure 4.2. Excluding feature duplications of verb and

voice, each sliding can have 29 features for characterizing an outcome.

A self-implemented classifier based on conditional Maximum Entropy (ME) (Rat-

naparkhi, 1998) is used throughout the labeling process. The conditional exponential

form of ME for the decision class y given an input instance x (i.e., a vector containing

the 29 features) is:

p(y|x) =
ew·f(x,y)∑

y
ew·f(x,y)

(4.7)
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token POS chunk path verb voice position roleset

Consumer NN B-NP NN→NP→NP→ADVP→ADVP→VP→VBD set active before B-A0

stocks NNS I-NP NNS→NP→ADVP→ADVP→VP→VBD set active before I-A0

once RB B-ADVP RB→ADVP→ADVP→VP→VBD set active before B-AM-TMP

again RB I-ADVP RB→ADVP→VP→VBD set active before I-AM-TMP

set VBD B-VP - set active - rel

the DT B-NP DT→NP→VP→VBD set active after B-A1

pace NN I-NP NN→NP→ NP→VP→VBD set active after I-A1

for IN B-PP IN→PP→ NP→NP→VP→ VBD set active after B-AM-PRP

blue-chip JJ B-NP JJ→NP→ PP→NP→NP→ VP→ VBD set active after I-AM-PRP

issues NNS I-NP NNS→NP→NP→PP→NP→NP→VP→VBD set active after I-AM-PRP

. . O .→O→NP→NP→PP→NP→NP→VP→VBD set active after O

Figure 4.2: Illustration of the contextual features captured by a 5-token sliding window,

where its center is now placed at the word the. Appendix A shows the description of

tags for POS and chunk. Appendix B shows the description of tags for semantic role.

Here, f is a m-dimensional sparse vector for storing the values of the feature functions

fj(x, y)’s, and w is another m-dimensional real-valued vector for storing the values

of the parameters. Thus, w · f is an inner product. Every feature function fj(x, y) is

binary-valued, returning either 0 or 1, to indicate whether a feature of x co-occurs with

y. For example, with reference to Figure 4.2, with the current class label being B-A1,

a feature function for the POS tag at previous two position can be encoded as:

fj(x, y) =

⎧⎨
⎩ 1 if y=B-A1 and POSi−2=RB

0 otherwise
(4.8)

If the feature exists, its corresponding parameter will contribute weight to the probabil-

ity p(y|x). The parameters w can be found by an iterative algorithm called Generalized

Iterative Scaling (GIS) (Ratnaparkhi, 1998; Darroch and Ratcliff, 1972).

The outcome prediction is determined by the trained ME classifier. During predic-

tion, the tokens in a sentence are tagged one by one in a left-to-right manner. Given a

token t, an input instance xt is generated. The outcome yt can be found:

yt = argmax
y∈Y

p(y|xt) (4.9)

Here, out of 438 outcomes, only one is locally assigned to each token. It is thus difficult

to form a coherent solution from the individual outcomes. Trading off speed and search

space, we formulate the coherent solution by finding the outcome sequence with the

local maxima of probability. Given a proposition t1,t2,...,tn, a sequence candidate
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Precision Recall F1

1 65.42% 50.54% 57.03%

2 49.74% 64.80% 56.28%

3 64.78% 50.05% 56.47%

4 64.90% 50.00% 56.48%

5 64.75% 49.80% 56.30%

6 64.50% 49.67% 56.12%

7 64.86% 49.84% 56.37%

8 64.61% 49.73% 56.20%

9 64.38% 49.68% 56.08%

10 64.78% 49.91% 56.38%

average 63.27% 51.40% 56.37%

Table 4.2: Results of 10 folds and its average

yi,y2,...,yn has the conditional probability:

p(y1, y2, ..., yn|t1, t2, ..., tn) =
n∏

i=1

p(yi|xi) (4.10)

where xi is the input instance containing two previous predictions. Following Ratna-

parkhi (1998), we employ beam search for searching the desired sequence. By parame-

terizing the beam size M , the complexity can be reduced from O(N |Y |) to O(MN |Y |),
where N is the length of a proposition, and Y is the set of all possible outcome.

4.3.3 Experimental Evaluation

Out of 53,022 propositions, 50,000 propositions were randomly selected. They were

shuffled and divided into two sets equally: 25,000 propositions for training and 25,000

propositions for testing. The training set was first used for estimating the probability

distribution p, using the GIS algorithm. The number of iterations was set to 100.

The beam size was set to 3. The resulting classifier was then evaluated, by measuring

its performance in assigning semantic roles to unseen sentences in the test set. With

10-fold cross validation, our system achieved 63.3% precision, 51.4% recall and 56.37%

F1, as shown in Table 4.2. The classification performance for different semantic roles

varied.

The effect of the beam size has been studied. A set of 10,000 propositions were

randomly selected for training the classifier. Another set of 10,000 propositions were

selected from the remaining 40,000 propositions for testing. Classification performance
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Figure 4.3: Effect of the beam size on the performance of the semantic role classifier.

was evaluated using both training and testing set. The results in Figure 4.3 indicate

that the beam size has no significant impact on performance.

To further evaluate our system, we compare its performance with other approaches.

The results are shown in Table 4.3. Compared with the two concurrent work in

(Baldewein et al., 2004; Lim et al., 2004) reported in the CoNLL-2004 shared task

that also used the maximum entropy approach, our result is slightly worse than theirs.

We argue that it is mainly due to the larger number of classes involved. In our work,

there are totally 438 classes, in contrast with 75 classes in their work. Hence, our classi-

fication task is inherently more difficult. Moreover, they employed additional features,

such as clauses and named entities, which were absent from our data set. This defi-

nitely reduces our classification performance. Also, they adopted the chunk-by-chunk

approach, whereby bare-phrase chunks instead of words were labeled. In our approach,

each word is separately labeled and a chunk is correctly labeled only if all its words

are correctly assigned to semantic role classes. Definitely, this makes our task more

difficult.

We are also interested in studying the training time of the ME classifier for our

experiments. For using 10,000 propositions, our system required about 39 hours in

training6. The training time increased to around 109 hours as the number of proposi-

tions is increased from 10,000 to 25,000.
6We ran the experiments on 4 × 900Mhz UltraSPARC processors. We used a Java implementation.
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System Data set Method Granularity Precision / Recall

Our Replicated Maximum word-by-word 63.3% /

system PropBank Entropy 51.4%

Gildea and Palmer (2002) PropBank Linear constituent-by- 49.5% /

System II (Dec. 2001) Interpolation constituent 35.5%

Pradhan et al. (2003) PropBank Support Vector word-by-word 66.2% /

W-by-W Chunker-II (Jul. 2002) Machine 54.9%

Baldewein et al. (2004) CoNLL-2004 PropBank Maximum chunk-by- 65.7% /

system (Feb. 2004) Entropy chunk 42.6%

Lim et al. (2004) CoNLL-2004 PropBank Maximum chunk-by- 68.4% /

system (Feb. 2004) Entropy chunk 61.5%

Table 4.3: Performance comparison with other approaches

4.3.4 Lessons Learned

We have formulated semantic role labeling as a sequential tagging problem, and resolved

it by the word-by-word approach using a ME classifier. The features of the classifier

are collected by a 5-token sliding window. Its disadvantage is its reliance on a small

fixed context, resulting in its inability to resolve long-range tagging dependence and

ambiguities. Moreover, the use of positional tags increases the number of classes of

the ME classifier. This makes the classification task inherently harder. Therefore,

evaluation reveals that it has only satisfactory performance on the preliminary release

of PropBank.

4.4 System II

There are four motivations for this work. Firstly, a new labeling approach is designed,

targeting at improving the labeling performance by addressing the weaknesses of the

first system. Secondly, a cleaner and larger PropBank is formally released, allowing

us to evaluate its scalability on our ME classifier. Thirdly, full syntactic information

is employed, enriching the original feature sets. Finally, a sampling technique and a

learning mechanism is proposed, trying to resolve the class-imbalance issue.

4.4.1 Data Set

The CoNLL-2005 shared task freely provided the data set to the public. We use it for

training and testing our classifier, although we did not actually participate in the shared

task. The data set consists of several sections from the Wall Street Journal (WSJ)
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Data sections #sents. #tokens #props. #unique verbs #args.

WSJ Train 02-21 39,832 950,028 90,750 3,101 239,858

WSJ Devel. 24 1,346 32,853 3,248 860 8,346

WSJ Test 23 2,416 56,684 5,267 982 14,077

Table 4.4: Counts on CoNLL data set

part of the Penn TreeBank (Marcus et al., 1993), together with their verb-argument

structures from the released PropBank (Kingsbury and Palmer, 2002). Sections 2

through 21 are used as the training set, section 24 is used as the development set, and

section 23 is used as the test set.

Table 4.4 summarizes the number of sentences, tokens (words and punctation

marks), propositions, unique verbs and arguments in the data set. With respect to

the WSJ training set, each sentence consists of about 23 tokens and 2 propositions.

Each proposition contains about 2 arguments.

In the data set, there are totally 35 semantic roles, including 7 roles for core ar-

guments, 14 roles for adjunct arguments and 14 roles for referential arguments (see

Appendix A for definition). They occupy 71.7%, 25.0% and 3.3% of data, respectively.

The data set contains a number of linguistic annotations to support the labeling

task. These annotations include part-of-speech (POS) tags, base-phrase chunks, em-

bedding clauses, two full syntactic trees (Collins, 1999; Charniak, 2000), and named

entities (NE). In our experiments, we choose Charniak’s as our main syntactic infor-

mation. Figure 4.4 shows an example of a sentence annotated with the START-END

format, which was previously defined in the CoNLL-2001 shared task (Tjong Kim Sang

and Déjean, 2001).

4.4.2 Three-Phase Labeling Approach

A three-phase approach is proposed to address the labeling task in which two problems

are involved: argument recognition and semantic role assignment. Argument recogni-

tion is further decomposed into two sub-problems, namely, argument-start recognition

and argument-end recognition. Thus, there are totally three problems and each of them

is addressed in a separate phase. The classifiers involved in the first and third phase

are built by the Maximum Entropy (ME) approach (Ratnaparkhi, 1998).

A pre-processing phase is first done on the original data set to collapse tokens into
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token POS chunk clause full parseCharniak NE verb rolegive rolesell

The DT (NP* (S* (S1(S(NP* * - (A0* (A0*

state NN *) * *) * - *) *)

gave VBD (VP*) * (VP* * give (V*) *

CenTrust NNP * * (NP*) (ORG*) - (A2*) *

30 CD (NP* * (NP(NP* * - (A1* (AM-TMP*

days NNS *) * *) * - * *)

to TO (VP* (S* (SBAR(S(VP* * - * *

sell VB *) * (VP* * sell * (V*)

the DT (NP* * (NP* * - * (A1*

Rubens NNP *) *) *))))))) (PER*) - *) *)

. . * *) *)) * - * *

Figure 4.4: Example of annotated sentence in CoNLL-2005 shared task. The sentence

contains two verbs: give and sell. Each line corresponds to a token of the sentence and

its associated annotations. Six columns of linguistic elements (part-of-speech (POS),

chunk, clause, full parse (by Charniak’s parser (Charniak, 2000)), NE, rolegive and

rolesell) are annotated with the START-END format. The tag (X*, *), and * denote

that a token starts, ends, and neither starts nor ends at an linguistic element of type

X, respectively. The first two tags can be used in combination with each other. For

example, the tag (S1(S(NP* indicates a token which starts a noun phrase and two

clauses; the tag (A2*) marks a token where an A2 argument starts and ends, forming

a complete argument. Appendix A shows the description of tags for POS, chunk, and

clause. Appendix B shows the description of argument tag.

token POS chunk clause full parseCharniak NE verb rolegive rolesell

The state DT NN (NP**) (S** (S1(S(NP**) * * - (A0**) (A0**)

gave VBD (VP* ) (VP* * give (V* ) *

CenTrust NNP * * (NP* ) (ORG*) - (A2* ) *

30 days CD NNS (NP**) ** (NP(NP** * * - (A1** (AM-TMP**)

to TO (VP* (S* (SBAR(S(VP* * - * *

sell VB * ) * (VP* * sell * (V* )

the Rubens DT NNP (NP**) **) (NP**))))))) * (PER*) - **) (A1**)

. . * *) *)) * - * *

Figure 4.5: Chunked data format. Tokens are collapsed into base-phrase chunks.
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bare-phrase chunks, to be used as the input of the first phase. Figure 4.5 shows the

new representation. In case a chunk cannot be aligned with an argument, the chunk is

split back into separate tokens. For example, a phrasal-verb chunk is split into a verb

and its particle.

In the first phase, argument-start recognition is formulated as a binary classifica-

tion, in which each chunk/token in a proposition is classified into either the start of an

argument or not a start of any argument, i.e., a non-start. This binary decision is deter-

mined by a trained ME classifier. The features used in this phase are outlined in Table

4.5. The features are divided into four groups, in which three of them, abbreviated as

G, P and X respectively, were defined in (Gildea and Jurafsky, 2000; Pradhan et al.,

2004; Xue and Palmer, 2004). These features have been proved useful to improving

the classification performance. An additional group of features, abbreviated as A, are

also proposed and shown at the bottom of the table.

In the second phase, the end of an argument is identified by traversing the parse

tree beginning at the argument start where its terminal node in parse tree is climbed,

to the lowest ancestor whose subtree covers a complete syntactic constituent. The

traversal is subject to two constraints:

1. One cannot proceed beyond the start of the next argument.

2. One cannot proceed beyond the target verb.

Otherwise, the traversal backtracks to the original node. The word corresponding to

that node is then the argument end. A complete argument can be formed by combining

a start and its corresponding end. Figure 4.6 illustrates the traversal method and the

formation of arguments.

In the third phase, semantic role assignment is formulated as a multi-class classifi-

cation, in which each argument is assigned a semantic role. A multi-class ME classifier

is employed. The features used are the same as those in the first phase, but they

are now applied to arguments instead of chunks. Four extra features introduced by

(Gildea and Jurafsky, 2000; Pradhan et al., 2004; Xue and Palmer, 2004) are also used

in this phase. They are bolded in Table 4.6. Also, another group of additional fea-

tures, similarly abbreviated as A, are proposed, and they are shown at the bottom of

the table.
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Feature Description Type

(G1) Verb Lemmatized verb nominal

(G2) Phrase type Syntactic category of chunk nominal

(G3) Path Path from chunk to verb ordinal

(G4) Head Head word of chunk nominal

(G5) Voice Active or passive voice of verb nominal

(G6) Subcategorization Parse tree nodes immediately expanded from verb nominal

(P1) Head POS Part-of-speech of chunk’s head nominal

(P2) PP head/POS If chunk’s parent is a Prepositional Phrase, return its head word

and part-of-speech of that head word

nominal

(P3) First word/POS First word of chunk and its part-of-speech nominal

(P4) Last word/POS Last word of chunk and its part-of-speech nominal

(P5) Parent type/head/POS Syntactic category, head word and part-of-speech of chunk’s

parent

nominal

(P6) Left-sibling type/head/POS Syntactic category, head word and part-of-speech of chunk’s left

sibling

nominal

(P7) Right-sibling type/head/POS Syntactic category, head word and part-of-speech of chunk’s

right sibling

nominal

(P8) Horizontal distance Horizontal position of chunk from verb numerical

(P9) Vertical distance Vertical position of chunk from verb in parse tree numerical

(P10) Partial path Path from chunk to lowest common ancestor of position from

verb

ordinal

(X1) Verb& Phrase type Conjunction of two features nominal

(X2) Verb & Path Conjunction of two features nominal

(X3) Verb & Head Conjunction of two features nominal

(X4) Verb & PP head Conjunction of two features nominal

(A1) Verb POS Part-of-speech of verb nominal

(A2) Verb phrase type Syntactic category of verb nominal

(A3) Partial path variant Add syntactic nodes in partial path with their depths relative

to verb

ordinal

(A4) Path variant I A chain of clause nodes with their depths relative to verb, con-

catenated with the depth, the horizontal position and the clause

level of the chunk

ordinal

(A5) Path variant II A chain of clause nodes with their depths relative to verb, con-

catenated with the depth and the horizontal position of the

chunk

ordinal

(A6) Path variant III A chain of clause nodes with their depths relative to verb, con-

catenated with a chain of chunk types

ordinal

(A7) Path variant IV A chain of commas and coordinating conjunctions ordinal

(A8) Path variant V Path concatenated with head word suffixes of length 2, 3 and 4 ordinal

(A9) Previous chunk Whether previous chunk is the beginning of sentence, the verb,

the coordinating conjunction, the comma or the parenthesis

nominal

(A10) Next chunk Whether next chunk is the beginning of sentence, the verb, the

coordinating conjunction, the comma or the parenthesis

nominal

(A11) NEG Active if chunk is n’t or not nominal

(A12) MOD Active if chunk is a model verb nominal

(A13) Path context Path of chunk within a within a window size of -2/+2

Table 4.5: Features used in argument-start identification
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Figure 4.6: Illustration of finding the argument ends by traversing the parse tree.

The traversal for the argument start The state cannot proceed beyond the verb gave

due to the first constraint. Hence, it backtracks to the original node. Similarly, the

proceeding of the argument start CenTrust is restricted by the next start at 30 days

due to the second constraint. Thus, it returns to the original node. On the other

hand, the traversal for the argument start 30 days succeeds to reach the chunk the

Rubens, finding the argument end heuristically, through the path NP↑NP1↓S↓VP↓VP↓NP.
Note that NP1 is such the lowest ancestor which can constitute a correct argument.

Appendix A shows the description of phrase tags.
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Feature Description Type

(G1) Verb Lemmatized verb nominal

(G2) Phrase type Syntactic category of argument nominal

(G3) Path Path from argument to verb ordinal

(G4) Head Head word of argument nominal

(G5) Voice Active or passive voice of verb nominal

(G6) Subcategorization Parse tree nodes immediately expanded from verb nominal

(G7) Position Whether argument is before or after verb ordinal

(P1) Head POS Part-of-speech of argument’s head nominal

(P2) PP head/POS If argument’s parent is a Prepositional Phrase, return its head

word and part-of-speech of that head word

nominal

(P3) First word/POS First word of argument and its part-of-speech nominal

(P4) Last word/POS Last word of argument and its part-of-speech nominal

(P5) Parent type/head/POS Syntactic category, head word and part-of-speech of argument’s

parent

nominal

(P6) Left-sibling type/head/POS Syntactic category, head word and part-of-speech of argument’s

left sibling

nominal

(P7) Right-sibling type/head/POS Syntactic category, head word and part-of-speech of argument’s

right sibling

nominal

(P8) Horizontal distance Horizontal position of argument from verb numerical

(P9) Vertical distance Vertical position of argument from verb in parse tree numerical

(P10) Partial path Path from argument to lowest common ancestor of position

from verb

ordinal

(P11) Named entities Whether argument contains named entities nominal

(P22) Temporal cue words Whether argument contains temporal words that are defined in

a lexicon

nominal

(X1) Verb & Phrase type Conjunction of two features nominal

(X2) Verb & Path Conjunction of two features nominal

(X3) Verb & Head Conjunction of two features nominal

(X4) Verb & PP head Conjunction of two features nominal

(X5) Verb & Position Conjunction of two features ordinal

(A1) Verb POS Part-of-speech of verb nominal

(A2) Verb phrase type Syntactic category of verb nominal

(A3) Syntactic pattern Chunk nodes within the argument chained with their depth ordinal

(A4) Head suffixes Argument head suffixes of length 2, 3 and 4 nominal

(A5) Head & Position Conjunction of two features ordinal

(A6) Head & Voice Conjunction of two features nominal

(A7) Head POS & Position Conjunction of two features ordinal

(A8) Head POS & Voice Conjunction of two features nominal

(A9) Phrase type & Position Conjunction of two features ordinal

(A10) Phrase type & Voice Conjunction of two features nominal

(A11) PP head & Position Conjunction of two features ordinal

(A12) PP head & Voice Conjunction of two features nominal

(A14) Word next to argument Whether word next to argument is the beginning of sentence,

the verb, n’t, not or model verb

nominal

(A15) Word previous to argument Whether word previous to argument is the beginning of sen-

tence, the verb, n’t, not or model verb

nominal

Table 4.6: Features used in semantic role assignment. Bolded features are only used

here instead of argument-start identification.
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The three-phase labeling approach with the new representation has gained advan-

tages from the word-by-word approach, chunk-by-chunk approach, and constituent-by-

constituent approach:

• Token is used to avoid the alignment problem suffered by the constituent-by-

constituent approach.

• Chunks are being classified instead of tokens in most of the time. The number

of classifications can be reduced since chunks generally span a larger segment of

a sentence.

• Constituent can be generated by traversal heuristic. Long-ranged argument can

also be recovered.

4.4.3 Experimental Evaluation

We did not participate the CoNLL2005 shared task, but we use the their date set for

evaluation. Following the same settings of the shared task, sections 2 through 21 were

used for training, section 24 for development and section 23 for testing. The number

of iterations for GIS algorithm was set to 100. A simple feature-selection technique

was used, in which a feature that occurred less than 5 times was discarded (as a rule-

of-thumb in this experiment). The evaluations were performed using the perl script

officially provided by the CoNLL-2005 shared task.

In our experiment, each phase was individually evaluated, and its output was piped

into the next phase as input. Table 4.7 shows the individual result for each phase.

After processing three phases, our system achieved 73.50 F1 on the development set

and 75.43 F1 on the test set.

To study the upper bound performance of the labeling task, we evaluated its clas-

sification accuracy on semantic role assignment. Accuracy is defined as the percentage

of total recognitions that are correct. During evaluation, the correct argument bound-

aries were given, without employing the predications from the first two phases. The

accuracy was 88.32% on the development set and 89.27% on the test set. The results

revealed that incorrect argument identifications were the key bottleneck of the labeling

performance.

Experiments have also been performed to evaluate the impact of our proposed

features on performance, which are described in Section 4.4.2. As shown in Table 4.8,
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development set precision recall F1

argument-start identification 91.52 87.54 89.49

argument-end identification 83.46 79.68 81.52

semantic role assignment 75.12 71.95 73.50

test set precision recall F1

argument-start identification 92.62 88.72 90.63

argument-end identification 84.47 80.79 82.59

semantic role assignment 76.93 73.99 75.43

Table 4.7: The result for each phase on the development and test set.

F1 was consistently improved by using the proposed features, yielding 1.49 and 1.37

points of improvements on the development set and test set, respectively.

Our system was also compared with those systems participated in the CoNLL-2005

shared task (Carreras and Màrquez, 2005). Based on the F1 measure on the WSJ

test set, our system ranked the 9th of 20 systems, with the best system obtaining

79.44 F1 and the worst one obtaining 66.73 F1. Note that the first four (Punyakanok

et al., 2005a; Haghighi et al., 2005; Màrquez et al., 2005; Pradhan et al., 2005) and

the 7th system (Tsai et al. (2005)) are those combining individual systems, which

are definitely better than the those using a single system. It is because combining

systems reduces the variance of classifiers. The best single system approach, ranked

the 5th (Surdeanu and Turmo, 2005), achieved 76.46 F1, which was only around 1

points higher than ours. Their key advantage over ours is its enhanced constituent-

by-constituent approach, where a post-processing step is designed for resolving the

one-to-many mapping problem of arguments to syntactic constituents. Similarly, the

6th system (Liu et al., 2005) also pro-processed its results, but focused on the arguments

which had no matching constituents. Both issues, however, are not addressed in our

system. On the other hand, the 8th system (Moschitti et al., 2005) employed a SVM

classifier with a tree kernel for structural feature processing, which is certainly better

than our linear feature representation method.

4.4.4 Time Complexity Evaluation

We attempt to compare our training time with other CoNLL-2005 systems. Since the

shared task focused on evaluating the recognition performance, most participants did
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development set precision recall F1

G + P + X + A 75.12 71.95 73.50

G + P + X 73.67 70.42 72.01

difference +1.45 +1.53 +1.49

test set precision recall F1

G + P + X + A 76.93 73.99 75.43

G + P + X 75.45 72.71 74.06

difference +1.48 +1.28 +1.37

Table 4.8: Improvements of using our proposed features on the development and test

set.

not publish their training time results. As a general rule, we can compare the time

complexity instead. Since SVM classifiers were widely used among the top performance

systems, it is used as a reference here. In general, SVM training involves quadratic

programming to solve its constrained optimization problem. Thus, it requires O(N3)

time complexity, where N is the size of the training set. However, the GIS algorithm

employed in ME training only requires O(|N ||Y|A) time complexity, where |N | is the

number of training examples, |Y| is the set of classes, and A is the average number of

feature functions for an example (see Section 3.9 for details). Clearly, the complexity of

the GIS algorithm is much lower than that of SVM. Thus, we believe that our system

can be trained faster than SVM.

Moreover, many participants use the combined system approach where multiple

labelings are generated using different learning models and/or alternative parses of the

sentence, which are then combined (e.g., by means voting) to give the final prediction

(Carreras and Màrquez, 2005). To further improve performance, various global opti-

mization and post-processing techniques are often applied as well. Such approaches/techniques

can lead to higher recognition rate, but it is achieved at the expense of longer training

time and/or labeling time. In contrast, our three-phase approach adopts the single sys-

tem approach without involving any post-processing steps, so it can be trained more

efficiently than other systems. Yet, it outperforms a lot of other approaches that apply

more complicated techniques.
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Figure 4.7: Distribution of examples among the semantic roles in the data set used in

one training run. The semantic role labels are ranked according to their frequencies of

occurrence.

4.4.5 Improving Macro-average Performance

So far, all performance measures were calculated by micro-average methods. Gen-

erally, micro-average measures give equal weight to each individual test case. Thus,

they are usually dominated by the most frequent classes. In contrast, macro-average

measures assign equal weight to each class. Thus, they are better indicators to show

the classification performance across all classes. For a more comprehensive evalua-

tion, performance here is additionally evaluated by macro-average methods. Thus,

there are totally six measures, which include micro-precision, micro-recall, micro-F1,

macro-precision, macro-recall, and macro-F1.

As shown in Figure 4.7, the distribution of examples among the semantic roles in the

data set is heavily skewed (in the figure, the higher the rank of a semantic role, the lower

its frequency of occurrence in the data set). We addressed this class-imbalance problem

by two methods, one is over-sampling and the other is error-based learning. During

evaluation, the first two phases of our proposed approach remained the same. We only

applied these two methods on the third phase, which is a multi-class classification.

In the over-sampling method, we replicate examples by randomly selecting a number

of examples from each semantic role type. For a semantic role type s (where s is from 1

to |S|, |S| being the number of semantic role types), the number of examples replicated,
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test set micro-prec. micro-recall micro-F1 macro-prec. macro-recall macro-F1

sampling 76.93 73.93 75.40 54.51 48.83 51.15

original 76.93 73.99 75.43 58.52 48.67 52.48

difference 0.00 -0.06 -0.03 -4.01 +0.16 -1.33

Table 4.9: Results using our sampling technique (ρ=10,000) on the test set.

ns, is defined as:

ns =
(Ns −N|S|)
(N1 −N|S|)

× (N1 − ρ) + ρ−Ns (4.11)

Here, Ns is the number of examples of the semantic role type s in the original training

set. The degree of balance is controlled by the parameter ρ > 0. In general, the larger

the value of ρ, the more balanced distribution. In our experiment, the parameter

ρ was set to 10,000. Table 4.9 shows the results. As depicted, only macro-recall

was insignificantly improved. Others were worsened. In general, example replication

can increase macro-average measure. However, meanwhile, it decreases micro-average

measure as well. In our case, the lack of improvement for macro-average measure

was probably due to two reasons: (a) the replication was still not enough or (b) the

learning algorithm overfitted with the replicated data, particularly the rare features

whose occurrences in the data set were due to replication. A simple verification for the

first reason is to graph the number of example replications as a function of performance

measures. As shown in Figure 4.8 (in the figure, the larger the ρ value, the more

the replications), nearly all the measures were consistently decreased for all ρ values

from 5,000 to 20,000. The results implied that the replication number insignificantly

affect our over-sampling method. Thus, the first proposed reason was untenable. On

the other hand, the second reason was verified by graphing the number of feature

cutoffs as a function of performance measures. The smaller the value of cutoffs, the

larger the number of rare features. As shown in Figure 4.9, for almost all of the

measures, the over-sampling method hardly yield improvements at any cutoff values

from 1 to 10. The results implied that the second reason was also untenable, that the

number of rare features is an uncritical control factor to our over-sampling method.

Further exploratory study is required to find out the reason why our over-sampling was

ineffective in improving the macro-average performance in this task.

In the error-based learning method, we aim to reduce the number of errors intro-

duced by the minority class. We modify the GIS algorithm by adding a parameter ry
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Figure 4.8: Effect of the number of replications on the micro-average and macro-average

performance
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test set micro-prec. micro-recall micro-F1 macro-prec. macro-recall macro-F1

m.s. learning 76.95 74.00 75.44 60.57 50.39 54.31

original 76.93 73.99 75.43 58.52 48.67 52.48

difference +0.02 +0.01 +0.01 +2.05 +1.72 +1.83

Table 4.10: Results using our error-based learning method on the test set.

to the original updating rule. In an iteration t, the modified updating rule for each

feature estimates its associated weight w as follows:

wt ← wt−1 + ry · 1
C

log
c̃

c
(4.12)

Here, w is estimated by the divergence between the observed feature count c̃ and the

modeled feature count c, with C being a constant. In each iteration, each training

example is predicted by the classifier. The number of correct predictions for each

class y is recorded, for generating the accuracy distribution among classes. To achieve

better prediction in next iteration, larger ry is assigned to the features whose class y

(probably minority class) is predicted poorly. Conversely, smaller ry is assigned to the

features whose class y (probably majority classes) is predicted correctly. The value

of ry is determined by an inverse function about the accuracy of a class y. Here,

whenever a new iteration begins, each value of ry is re-computed too. We used the

macro-averaging performance by our proposed mistake-sensitive mechanism. Table 4.10

shows six results, using the new updating rule. All macro-averaging performance were

improved, particularly yielding a significant improvement of 1.83 points in macro-F1.

To take into account of both micro-F1 (Fmic) and macro-F1 (Fmac), we propose a

new measure, namely FF1, defined as FF1 = 2FmicFmac/(Fmic + Fmac). The notion

of our formula is similar to original F1 measure. It takes the harmonic mean between

micro-average performance and macro-average performance. We calculated macro-F1

and FF1 for the CoNLL-2005 systems. All the systems were then re-ranked, based on

FF1. As shown in Table 4.11, our system ranks the 4th, achieving 63.16 FF1. Note

that under this new ranking, the 1st and the 3rd system (Haghighi et al., 2005; Tjong

Kim Sang et al., 2005) were again the combined systems. On the other hand, the 2nd

system (Moschitti et al., 2005) was the one ranked the 8th before, which employed a

SVM classifier to the task.
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rank micro-F1 macro-F1 FF1

1 Haghighi et al. (2005) 78.45 56.15 65.45

2 Moschitti et al. (2005) 75.89 56.79 64.96

3 Tjong Kim Sang et al. (2005) 75.37 55.51 63.93

4 Our system 75.44 54.31 63.16

5 Liu et al. (2005) 76.44 52.41 62.18

6 Ozgencil and McCracken (2005) 74.44 52.66 61.68

7 Tsai et al. (2005) 76.38 51.69 61.66

8 Pradhan et al. (2005) 77.37 50.91 61.41

9 Yi and Palmer (2005) 75.17 51.21 60.90

10 Punyakanok et al. (2005a) 79.44 48.63 60.33

11 Johansson and Nugues (2005) 74.30 50.20 59.92

12 Surdeanu and Turmo (2005) 76.46 48.39 59.27

13 Park and Rim (2005) 72.68 49.53 58.91

14 Màrquez et al. (2005) 77.97 45.90 57.78

15 Mitsumori et al. (2005) 71.08 45.32 55.35

16 Bharati et al. (2005) 69.40 44.65 54.34

17 Cohn and Blunsom (2005) 73.10 41.93 53.29

18 Ponzetto and Strube (2005) 69.56 33.13 44.88

19 Lin and Smith (2005) 67.91 33.05 44.46

20 Sutton and McCallum (2005) 66.73 35.19 46.08

Table 4.11: 20 system performance are sorted by FF1 on the WSJ test

set. The micro-F1 performance is taken from the result of CoNLL-2005 shared

task (Carreras and Màrquez, 2005), whereas the macro-F1 is calculated by

ourselves, based on the output files provided by the CoNLL-2005 homepage

(http://www.lsi.upc.es/∼srlconll/st05/st05.html).
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4.5 Summary

In view of lesson learnt from our previous work using the word-by-word approach, we

proposed the three-phase labeling approach to the semantic role labeling task. Our ap-

proach gains advantages from previous approaches while addressing their weaknesses.

Our results were comparable with the current state-of-art individual system, as based

on large PropBank data set. We also applied two different methods to this task to eval-

uate the performance in terms of macro-averaging. Evaluations with our over-sampling

method showed that only macro-recall was improved, but to an insignificant extent.

Investigations discovered that the lack of improvement was not related to the number

of replications nor the number of cutoffs. Experiments were also conducted using our

error-based learning method. Results showed that all macro-averaging performance

were significantly improved. In terms of our proposed FF1 measure, our system ranked

4th, when compared with 19 other systems, which is even better than some approaches

that employ combined systems.
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Chapter 5

Dialogue Act Recognition

5.1 Introduction

Dialogue Act (DA) is the concise abstraction of an utterance’s intention, which serves

a similar function as illocutionary force (Austin, 1962) and speech act (Searle, 1969).

Examples of DAs include Greeting, Suggestion, Appreciation, Acknowledg-

ment, etc. Recognizing DA is useful in many applications. For example, it helps

dialogue systems in generating appropriate response to users (Allen et al., 1996; Rei-

thinger et al., 1996) and helps speech recognizer in resolving speech ambiguities (Stolcke

et al., 2000).

DA recognition is challenging. Often, DA cannot be directly inferred from the

literal context. Consider the utterance My soup is cold. Literally, it looks like a simple

statement of fact. However, its underlying DA should be recognized as Indirect

Request for a replacement when situational context is also considered. Definitely,

accurate recognition requires comprehensive and in-depth analysis in linguistics, where

diverse pieces of evidence have to be considered carefully.

Maximum Entropy (ME) (Jaynes, 1957) is such a statistical approach, allowing

heterogeneous evidence to be integrated into a probability model of decisions. The

ME approach has previously been applied to various natural language processing and

information retrieval problems such as part-of-speech tagging (Ratnaparkhi, 1998) and

text classification (Kazama and Tsujii, 2005).

This chapter presents a maximum entropy approach to train a classifier for non-
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task oriented DA recognition. The classifier is defined by estimating the probability

distribution p(d|h). Its aim is to assign an utterance u to a dialogue act d, based on

the “history” h (or context) of the utterance u. The probability distribution found

can then be used for labeling unseen utterances. Given a history h′ of an utterance

u′, p(d|h′) is estimated for each d ∈ D (D being the set of all possible d’s), and u′ is

assigned to d′ = argmax
d∈D

p(d|h′).

We use the Switchboard corpus to evaluate the performance. Despite the high

overall recognition rate achieved, the individual recognition rates of some DAs are un-

satisfactory. This is caused by the heavily skewed distribution of examples among the

DAs in the data set, that some DAs have extremely low occurrence frequencies. Due

to the lack of examples in the training set, the ME classifier is weak in recognizing

some of these DAs. Previously, various approaches have been put forth to tackle this

data sparseness problem (Chen and Rosenfeld, 2000; Kazama and Tsujii, 2005). These

approaches were mostly model-oriented, as they involved modification of the ME for-

mulation to reduce the bias of the model toward the observed data. In this chapter, we

apply the error-based learning method, as discussed in Section , to tackle the problem.

Besides, a data-oriented method (see Section ) is applied to replicate examples for the

DAs. A DA with lower occurrence frequency will have more examples replicated for it.

The distribution of examples among the DAs thus becomes more balanced. Preliminary

experiments reveal that both methods are effective in improving the recognition per-

formances of those DA types that have very low occurrence frequencies in the original

data set.

5.2 Data Set

Our data set is based on Switchboard (Godfrey et al., 1992), which is a collection of

spontaneous telephone conversations. The collection contains 2,438 dialogues spanning

70 different topics, which are fully transcribed with annotations of speaker turns, dis-

fluencies, filled pauses, and discourse markers. The whole transcription contains about

3 million words, hand-segmented into utterances. Each dialogue is participated by two

speakers, who take turns to speak. In each turn, one or more utterances are produced,

each containing one or more words. A total of 1,155 dialogues have been annotated

using the DAMSL tag set (Dialogue Act Markup in Several Layers) (Core and Allen,
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1997), where each utterance is categorized into one of 220 DAs. The annotated corpus

is called SWBD. DAMSL has later been collapsed into SWBD-DAMSL, which contains

only 42 DAs (Jurafsky et al., 1997; Stolcke et al., 2000). We collapse the tag set in the

same way done by Stolcke et al. (2000). Our resulting tag set contains 44 tags 1, which

has 2 more tags than that in Stolcke et al. (2000). One of them is the Segment DA

of DAMSL, which has a high occurrence frequency in SWBD (≈8%) but was ignored

in the experiments by Stolcke et al. (2000). Also, we distinguish between Abandoned

and Uninterpretable, which were combined into one DA by Stolcke et al. (2000).

We enrich SWBD with part-of-speech (POS) tags, by combining SWBD with the

tagged Switchboard which is a part of Phase III of the Penn Treebank corpus (Marcus

et al., 1993). Figure 5.2 shows an example. The segmentation of utterances in SWBD

differs from the one in TreeBank. There are 1,706 differences between them. We follow

the segmentation of TreeBank. The resulting data set contains 1,125 dialogues, which

involve 112,881 turns and 216,292 utterances. A dialogue has 16 to 379 turns, with the

average number of turns per dialogue being equal to 109.2. The length of a turn varies

from 1 to 30 utterances. On average, however, each turn contains 1.8 utterances only,

so most of the turns are short. An utterance consists of 1 to 102 words. The average

number of words per utterance is 9.7. In general, the shorter the utterance, the larger

the number of possible DAs. Intuitively, short utterances are more ambiguous as they

contain only a few words, thus providing limited clues for the classifier to determine

its DA.

5.3 Features for Dialogue Act Recognition

Various pieces of information can be useful to DA recognition. Here, we study and

evaluate seven types of features, as summarized in Table 5.1.

5.3.1 Lexical Features

A lexical feature, also known as dialogue act cue (Samuel et al., 1998), is a sequence of

words that frequently appears in certain DA(s), such as how about and thank you. For

example, an utterance containing how about is likely a Backchannel Question. In
1We used the same data set as in Stolcke et al. (2000), who reported 42 tags in their journal.

However, after pre-processing, we found 44 tags in the data set.
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DA Speaker Turn Utt. No. Utterance

h A 117 utt1: I/PRP do/VBP n’t/RB know/VB ./. E S

bh A 117 utt2: What/WP can/MD we/PRP do/VB about/IN it/PRP ?/. E S

ba B 118 utt1: [ Goo-/JJ ,/, + good/JJ ] question/NN <laughter> ./. E S

x A 119 utt1: <Laughter> ./.

% B 120 utt1: Probably/RB ,/, E S

sv A 121 utt1: [ Money/NN ,/, +

% B 122 utt1: Taking/VBG ,/, E S

+ A 123 utt1: Money/NN ] is/VBZ not/RB the/DT answer/NN ./. E S

Figure 5.1: Example of annotated dialogue in SWBD. The fragment consists of 7 turns,

numbering from 117 to 123, switching between speaker A and speaker B. In turn 117,

there are two utterances, namely utt1 and utt2. The first column is the dialogue act

(see Appendix C). Each token in the utterance is annotated with a part-of-speech tag

(see Appendix A). Some dialogue phenomenon are annotated with special mark-ups.

For example, non-utterance event such as laughter is angle-bracketed. Restarts with

substitution such as saying Goo followed by good is bracketed with the symbol ”+”.

Detailed description on these special mark-ups can be found in (Taylor, 1995).
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our work, two methods are used for selecting lexical features: mutual information and

n-grams.

Mutual Information

A word sequence s is a lexical feature if its mutual information with a dialogue act d

is sufficiently large and s occurs frequently enough in the data set. The set of lexical

features is defined as: C = {s ∈ S | ∃ d s.t. I(s, d) > θ1 ∧#(s) > θ2}, where S is the set

of all possible word sequences and #(s) is the number of occurrences of s in the data

set (θ1 and θ2 being thresholds). To minimize the size of S, only sequences containing

three or fewer words are considered. Here, I(s, d) = log p(s,d)
p(s)p(d) represents the mutual

information between s and d. Due to data sparseness, some DAs are not covered at

all by the lexical features in C. Hence, another set of lexical features C′ = {s ∈
S | I(s; D) > θ1 ∧#(s) > θ2} is constructed, where I(s; D) =

∑
d∈D

p(d, s) log p(s,d)
p(s)p(d) is

the mutual information of s with the set D of DAs that co-occur with s in the data

set.

Bigram and Trigram

The bigram and trigram language models have previously been applied in DA recogni-

tion (Reithinger and Klesen, 1997; Stolcke et al., 2000). Using the interpolation method

for smoothing (Jelinek and Mercer, 1980), they can be defined as in (5.1) and (5.2)

respectively (where wi, wi−1, and wi−2 denote words and N is the total number of

words in the data set):

p(wi|wi−1) = λ1
#(wi)

N
+ λ2

#(wi−1, wi)
#(wi−1)

(5.1)

p(wi|wi−2, wi−1) = λ1
#(wi)

N
+ λ2

#(wi−1, wi)
#(wi−1)

+ λ3
#(wi−2, wi−1, wi)

#(wi−2, wi−1)
(5.2)

To train the two language models, the data set is randomly divided into three parts:

80% for training, 10% for testing, and the remaining 10% for estimating the weight

parameters λi’s using Expectation Maximization (in each case,
∑
i

λi = 1). The per-

plexity measure P = 2
− 1

N

N∑
i=1

log p(wi)
is used to evaluate the language models. For

bigram, λ1 = 0.29 and λ2 = 0.71; for trigram, λ1 = 0.27, λ2 = 0.38, and λ3 = 0.35.

The perplexities are equal to 90.50 and 77.96 respectively, so it is sufficiently informa-

tive to use the two language models as features for DA recognition.
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5.3.2 POS Features

POS features can be defined in a way similar to lexical features, by selecting POS se-

quences that have strong association with certain DA(s), based on mutual information

or bigram/trigram. We refer to them as POS cues and POS bigrams/trigrams respec-

tively. For example, Yes No Question utterances often start with the POS sequence

〈VBP PRP〉 (i.e. subject auxiliary inversion), as in Do/VBP you/PRP know/VB Peter/NNP

?/.”.

5.3.3 Disfluency Features

In the data set, there are a lot of word fragments, filled pauses, repetitions, and self-

repairs. These types of incoherent phenomena, known as disfluencies (Shriberg (1996)),

are annotated with special mark-ups in the corpus. Hence, six features are designed to

detect their existence in the utterance.

5.3.4 Grammatical Features

These features identify some special grammatical structures that are frequently used

to convey certain DAs. For example, a Yes Answer or No Answer often does not

contain a verb.

5.3.5 Punctuation Features

The use of certain punctuation marks provides hints for determining the DA. For

example, an utterance with a question mark is likely (though not always) a question.

5.3.6 Historical Features

Historical features encode the relationship between the current utterance and the pre-

vious utterances by the same speaker and by the other speaker, which may reveal

information useful to the interpretation of the current utterance. For example, if the

current utterance repeats a large part of the previous utterance by the other speaker,

it is probably a Repeat Phrase.
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5.3.7 Surface Discourse Features

As mentioned in Section 5.2, the average utterance length for each DA type varies.

Hence, the utterance’s length may help the classifier to filter out some irrelevant DA

types. Similarly, the utterance’s position may also be useful. For example, if an

utterance is at the beginning of a dialogue, it is likely a greeting message (which is a

Conventional opening).

Feature Meaning of the feature Domain

Lexical (L1) C Word sequences s selected based on I(s, d) String

(L2) C′ Word sequences s selected based on I(s; D) String

(L3) Bigram Word sequences selected based on bigram String

(L4) Trigram Word sequences selected based on trigram String

POS (POS1) POS cues T POS sequences t selected based on I(t, d) String

(POS2) POS cues T ′ POS sequences t selected based on I(t; D) String

(POS3) POS bigram POS sequences selected based on bigram String

(POS4) POS trigram POS sequences selected based on trigram String

Disfluency (D1) Non-linguistic element Whether the utterance is a non-linguistic element Boolean

(D2) Last token Last token of the utterance String

(D3) First token First token of the utterance String

(D4) Bracket completion Whether there are an odd number of brackets Boolean

(D5) Close bracket Whether the first bracket is a close bracket Boolean

(D6) Restarts frequency Number of restarts the utterance contains Integer

Grammatical (G1) Verb Whether a verb exists in the utterance Boolean

(G2) Starts with verb Whether the utterance starts with a verb Boolean

(G3) Polarity Whether the utterance’s condition is positive or Boolean

negative

Punctuation (P1) Question mark Whether the utterance ends with a question mark Boolean

(P2) Period Whether the utterance ends with a period Boolean

(P3) Number of commas Number of commas the utterance contains Integer

Historical (H1) Last token of previous Last token of the previous utterance by the same String

utterance speaker

(H2) Last token of counterpart Last token of the previous utterance by the other String

utterance speaker

(H3) Repetition count Number of tokens of the counterpart utterance Integer

repeated in the current utterance

(H4) Turn size Number of turns in the counterpart utterance Integer

Surface (SD1) Length Length of the utterance Integer

Discourse (SD2) Position Position of the utterance in the dialogue Integer

Table 5.1: Features used for dialogue act recognition
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DA Speaker Turn Utt. No. Utterance

h A 117 utt1: I/PRP do/VBP n’t/RB know/VB ./. E S

bh A 117 utt2: What/WP can/MD we/PRP do/VB about/IN it/PRP ?/. E S

ba B 118 utt1: [ Goo-/JJ ,/, + good/JJ ] question/NN <laughter> ./. E S

x A 119 utt1: <Laughter> ./.

% B 120 utt1: Probably/RB ,/, E S

sv A 121 utt1: [ Money/NN ,/, +

% B 122 utt1: Taking/VBG ,/, E S

+ A 123 utt1: Money/NN ] is/VBZ not/RB the/DT answer/NN ./. E S

Figure 5.2: Illustration of the contextual features captured by a history of tuple

〈A 121, A 122, A 123〉, where A 123 is the current utterance.

5.4 Modeling Dialogue Act Recognition using ME

5.4.1 Notations

A subset of dialogues are randomly selected from the data set. This set, called the

training set, is for modeling the ME classifier. We define some notations for the training

set. Each speaker turn tj in a dialogue consists of one or more utterances. Each

utterance ui in tj has its dialogue act di. A “history” hi of tuple 〈tj−2, tj−1, ui〉,
together with the dialogue act di, serves a training pair for i = 1, 2, . . . , n. Here,

ti−2 is the previous turn for the same speaker, and ti−1 is the previous turn for the

counterpart. We use H to denote the set of all possible histories, and D to denote the

set of dialogue acts.

5.4.2 Encoding Feature Vector

In ME modeling, each feature is represented using an feature function, denoted as

f : H × D → R. Specifically, its output is either 0 or 1 to indicate the existence of a

feature in an utterance. For example, with reference to Figure 5.2, in turn A 123, the

dialogue act label d is + (i.e. Segment). Suppose that the value of a feature bigram

in the utterance is the answer. A feature function fj can then be encoded as:

fj(d, h) =

⎧⎨
⎩ 1 if d=+ and bigram= How old

0 otherwise
(5.3)
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Feature name Feature value(s) Feature function value

L1 is not 1

L2 NULL 0

L3 Money is; is not; not the; the answer 1

L4 Money is not; is not the; not the answer 1

POS1 VBZ RB; DT NN 1

POS2 NULL 0

POS3 NN VBZ; VBZ RB; RB DT; DT NN 1

POS4 NN VBZ RB; VBZ RB DT; RB DT NN 1

D1 yes 1

D2 E S 1

D3 Money 1

D4 Yes 1

D5 No 1

D6 0 1

G1 Yes 1

G2 No 1

G3 Yes 1

P1 No 1

P2 No 1

P3 0 1

H1 + 1

H2 E S 1

H3 0 1

H4 1 1

SD1 6 1

SD2 123 1

Figure 5.3: Encoding result of turn A 123

Figure 5.3 shows the encoding result of turn A 123, using the 22 feature sets in

Table 5.1. By enumerating all training examples, m possible feature functions can be

formed. A m-dimensional feature vector, denoted as f(h, d) ∈ R
m, can be sparsely

formed, in terms of 1 and 0, by the output value of each feature function. Let each

component in the vector be fk(h, d) for k = 1, 2, . . . , m. By enumerating all training

pairs of size n, the empirical count of the k-th feature is equal to:

#(fk) =
n∑

i=1

fk(hi, di) (5.4)

where #(fk) refers to the number of occurrences of the k-th feature in the training set.
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5.4.3 Training the Classifier

Given a set of history-act pairs, the aim of training is to find a weight vector w for the

parametric form of ME (Jaynes, 1957):

p(d|h) =
ew·f(h,d)∑

d∈D
ew·f(h,d)

(5.5)

which is subject to the equality constraint :

#(fk) = #̃(fk) for k = 1, 2, . . . , m (5.6)

Here, #̃(fk) is the expected count of the k-th feature, which can be estimated by the

probability distribution p(d|h):

#̃(fk) =
n∑

i=1

∑
d′∈D

fk(hi, d
′)p(d′|hi) (5.7)

However, simply substituting Equation 5.5 into Equation 5.7 does not yield a closed

form solution for solving the weight vector w. Alternatively, it must be proceeded

analytically by using either iterative methods or gradient methods. In our experi-

ments, we solved it by an iterative algorithm called Generalized Iterative Scaling (GIS)

(Ratnaparkhi, 1998; Darroch and Ratcliff, 1972).

5.4.4 Dialogue Act Recognition

After solving the weight vector w, the classifier can be used to classify unseen utterances

into DA types. Given a history h of an utterance u, the most appropriate DA of u is:

du = argmax
d∈D

p(d|h) (5.8)

5.5 Experimental Evaluation

Experiments were performed to find a good combination of features for the ME clas-

sifier. In each run of the experiments, 1,000 dialogues were randomly picked up from

the data set for training the classifier. Out of the remaining 125 dialogues, 100 dia-

logues were randomly selected as the testing set. The number of iterations of the GIS

algorithm was set to 100. After training, the classifier was evaluated by measuring

its performance in processing the testing set. The micro-average recognition rate was
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Mutual Features set Average no. of Average no. Average no. Mean

information (L1-θ1 /L2-θ1) θ1 lexical features no. of events feature functions recognition rate

I(s, d) L1-0 0 37,067 103,583 7,043 64.87%

L1-0.5 0.5 29,433 103,883 7,045 64.87%

L1-1 1 20,025 101,113 6,245 64.33%

L1-1.5 1.5 14,088 89,322 5,113 60.88%

L1-2 2 10,466 67,114 4,223 42.96%

L1-2.5 2.5 7,595 44,413 3,305 30.17%

I(s; D) L2-0 0 10,573 103,583 7,044 64.87%

L2-0.00005 0.00005 5,760 101,817 4,921 65.20%

L2-0.0001 0.0001 4,160 100,685 3,881 65.21%

L2-0.0002 0.0002 3,094 99,132 2,979 65.16%

L2-0.0003 0.0003 2,630 98,242 2,588 65.14%

L2-0.0005 0.0005 2,139 97,224 2,123 64.96%

Table 5.2: Recognition result using lexical features selected by mutual information

used as the metric, which is defined as the mean recognition rate of all testing cases,

independent of the DA type each case belongs to.

5.5.1 Lexical Features

The two sets of lexical features L1 and L2 were generated using the two mutual infor-

mation measures respectively. For each set, 6 subsets of experiments were performed,

each using a different value of θ1 with the value of θ2 fixed at 5. In each subset, 3

runs were performed, each using a different training set and test set, randomly drawn

from the date set. The mean recognition rate for each subset was then computed. As

depicted in Table 5.2, the results obtained with I(s; D) are consistently better than

those obtained with I(s, d).

On the other hand, lexical features may also be selected using bigram/trigram to

select lexical features. Another 3 runs of experiments were performed in each case

with the mean recognition rate being computed. As shown in Table 5.3, using bi-

gram/trigram to select lexical features achieves higher recognition rate than that ob-

tained with mutual information. However, it requires more events and feature func-

tions. The training time is thus longer. As shown, the result obtained by using both

bigram and trigram (i.e., L3+ L4) is only marginally better than that achieved with

bigram alone (i.e., L3), but it requires more than twice the number of feature functions

generated with bigram.
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Average no. of Average no. Average no. of Mean

Feature set unique bi-/tri-grams of events feature functions recognition rate

Bigram (L3) 196,859 123,131 14,100 68.24%

Trigram (L4) 547,839 106,825 14,413 66.30%

Bigram +Trigram (L3+L4) 744,698 123,163 28,513 68.50%

Table 5.3: Recognition result using lexical features selected by bigram and trigram

Average no. of Average no. Average no. Average no. of Mean

Feature set θ1 lexical features of POS cues of events feature functions recognition rate

L1-0.5 0.5 29,433 - 103,883 7,045 64.87%

L1-0.5 + POS1 0.5 29,433 9,501 107,827 9,246 66.40%

L2-0.0001 0.0001 4,160 - 100,685 3,881 65.21%

L2-0.0001 + POS2 0.0001 4,160 1,525 106,783 5,241 66.50%

Table 5.4: Recognition result using lexical features and POS cues selected by mutual

information

5.5.2 POS Features

POS1 and POS2 were then constructed. For POS1, θ1 = 0.5 while for POS2, θ1 =

0.0001, which were the values that led to the best results for L1 and L2 respectively

(L1-0.5 was chosen instead of L1-0 because it generated fewer lexical features). Two

feature sets were formed, namely, POS1 ∪ L1 and POS2 ∪ L2, to train and evaluate

the classifier separately. For each set, 3 runs of experiments were performed. As shown

in Table 5.4, adding POS cues improves the performance for both L1 and L2.

On the other hand, performance is always improved by using both lexical and POS

bigrams/trigrams as features than using lexical bigrams/trigrams alone (see Table 5.5).

One can see that the recognition rate achieved with L3 is only marginally lower than the

best-case result, but it requires the fewest feature functions and the shortest training

time. To strike a balance between performance and efficiency, L3 was selected as the

baseline feature. We then selected features from the remaining feature types to be used

with L3.

5.5.3 Combining Features

To select a good combination of features, a greedy approach was used (see Figure 5.4).

In each step, a separate feature set was formed using the baseline feature set “Baseline”

and one of the features in the set “Features”, which was used to train and evaluate a

classifier. We run the evaluation 10 times, each using a different training set and
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Avg. no. of unique Avg. no. of unique Avg. no. Avg. no. of Mean

Feature set bi-/tri-grams POS bi-/tri-grams of events feature functions recog. rate

L3 196,859 - 123,131 14,100 68.24%

L3 + POS3 196,680 2,337 125,669 15,183 69.23%

L4 547,839 - 106,825 14,413 66.30%

L4 + POS4 546,976 20,026 124,155 21,039 68.96%

L3 + L4 744,698 - 123,163 28,513 68.50%

L3+L4+POS3+POS4 743,656 22,363 125,671 36,211 69.82%

Table 5.5: Recognition result using both lexical and POS bigrams/trigrams as features

1. Baseline← {L3 };
2. Train and evaluate an ME classifier C[0] for 10 runs using Baseline as feature set;

Calculate µ[0] and σ[0], mean and variance of recognition rate of C[0];
3. Features ← {POS, D, G, P, H, SD };
4. repeat

5. i← 1;

6. for each f ∈ Features do

7. F [i]← Baseline ∪ {f};
8. Train and evaluate an ME classifier C[i] for 10 runs using F [i] as feature set;

Calculate µ[i] and σ[i], mean and variance of recognition rate of C[i];
9. i← i + 1;

10. m← argmax
k

µ[k], where 1 ≤ k < i;

11. if (µ[m] > µ[0]) then

12. Calculate t: t-value with respect to the recognition rate achieved with Baseline;

13. if (t > tβ) then

14. Baseline ← F [m]; µ[0]← µ[m]; σ[0]← σ[m]; Features ← Features \ F [m];

15. until ((Features = ∅) or (µ[0] > µ[m]) or (tβ ≤ t));

Figure 5.4: Algorithm for feature selection
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testing set, randomly drawn from the data set. The feature in “Features” that led

to the greatest improvement in recognition rate was identified. If the improvement

was significant with respect to the recognition rate achieved with the baseline feature

set, the feature would be added to “Baseline” (and removed from “Features”).2 The

process was repeated until there was no further significant improvement in recognition

rate (see Table 5.6). The combined feature set consists of L3, H, D, SD, and P. The

mean recognition rate is 74.07%, with the best-case performance being equal to 75.03%.

The result is better than that achieved by Stolcke et al. (2000), who used the same

data set as ours and achieved a recognition rate of 71.0% only.3 Moreover, as shown in

Table 5.7, our performance is comparable to that achieved by the other task-oriented

approaches, despite the fact that they use far smaller data sets and testing sets, and

they involve significantly smaller number of DAs.

5.6 Improving Macro-average Recognition Rate

Despite the high micro-average recognition rate achieved, the individual recognition

rates of some DA types are low. Some DAs even have zero recognition rate. This

might be problematic when encountered in real-world applications. For example, the

dialogue act Maybe/Accept Part (e.g., Something like that) is one of dialogue acts

having zero recognition rate. However, it is crucially important when dealing with

some uncertain situations. Failing to recognize such a dialogue act will definitely affect

the interaction with the user, leading to an incoherent dialogue flow.

Currently, the macro-average recognition rate, defined as the average of the recogni-

tion rates of individual DA types, is unsatisfactory. For example, using the feature set

{L3, H, D, SD, P}, the ME classifier achieves a mean macro-average recognition rate

of 32.35% only. The cause of the problem is that the distribution of examples among

the DAs in the data set is heavily skewed, as depicted in Figure 5.5 (in the figure, the

higher the rank of a DA, the lower its frequency of occurrence in the original data set).

Out of the 44 DAs, only 11 of them appear in more than 1% of the utterances in the

2The t-value was calculated for this purpose: t =
µ[m]−µ[0]√

σ[m]2+σ[0]2
2 ·

√
2
N

, where N = 10. If the

confidence level corresponding to the t-value exceeded 50% (i.e. t > tβ = 0.6885), the improvement in

recognition rate was considered to be significant.
3As claimed by Clark and Popescu-Belis (2004), human accuracy for the DA recognition task is

estimated to be 84%, based on the inter labeler agreement rate in labeling Switchboard.
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Step Feature set Mean Variance Best-case t-value Confidence

1 Baseline: L3 68.48% 0.4576 69.42% - -

L3+POS 69.23% 0.3568 70.10% 1.74 ≈ 90%

L3+D 69.82% 0.3572 70.84% 3.13 > 95%

L3+G 68.18% 0.4446 69.16% -0.67 ≈ 49%

L3+P 68.30% 0.3639 69.08% -0.43 ≈ 33%

L + H 71.34% 0.4519 72.15% 6.34 > 95%

L3+SD 68.75% 0.4516 69.63% 0.59 ≈ 44%

2 Baseline: L+H 71.34% 0.4519 72.15% - -

L3+H+POS 71.86% 0.4346 72.87% 1.17 ≈ 74%

L + H+ D 73.30% 0.4381 74.44% 4.40 > 95%

L3+H+G 71.95% 0.5090 72.87% 1.30 ≈ 79%

L3+H+P 72.13% 0.3930 72.88% 1.82 ≈ 91%

L3+H+SD 72.20% 0.5625 73.10% 1.80 ≈ 91%

3 Baseline: L+H+D 73.30% 0.4381 74.44% - -

L3+H+D+POS 72.95% 0.4460 73.94% -0.80 ≈ 57%

L3+H+D+G 73.44% 0.4105 74.50% 0.30 ≈ 23%

L3+H+D+P 73.40% 0.5182 74.48% 0.21 ≈ 16%

L + H+ D + SD 73.70% 0.4444 74.84% 0.91 ≈ 63%

4 Baseline: L+H+D+SD 73.70% 0.4444 74.84% - -

L3+H+D+SD+POS 73.22% 0.4418 74.16% -1.10 ≈ 70%

L3+H+D+SD+G 73.80% 0.4353 74.97% 0.20 ≈ 16%

L + H+ D + SD+ P 74.07% 0.3960 75.03% 0.83 ≈ 59%

5 Baseline: L+H+D+SD+P 74.07% 0.3960 75.03% - -

L3+H+D+SD+P +POS 73.56% 0.3808 74.38% -1.22 ≈ 76%

L+H+D+SD+P +G 74.15% 0.4073 75.18% 0.18 ≈ 14%

Table 5.6: Experimental results for selection features

No. of No. of dialogues No. of utterances Recognition

Task Tag set DAs Training Testing Training Testing rate

Our approach Switchboard (70 topics) SWBD-DAMSL 44 1,000 100 192,365 18,962 74.07%

Stolcke et al. (2000) Switchboard (70 topics) SWBD-DAMSL 42 1,115 19 198,000 4,000 71.00%

Samuel et al. (1998) Appointment scheduling VERBMOBIL 18 143 20 2,701 328 75.12%

Reithinger and Klesen (1997) Appointment scheduling VERBMOBIL 18 143 20 2,701 328 74.70%

Wright (1998) Map routing Maptask 12 20 5 3,726 1,061 64.00%

Clark and Popescu-Belis (2004) Meeting recording MALTUS 11 40 5 ? 6,771 73.20%

Table 5.7: Performance comparison with previous works on DA recognition
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Figure 5.5: Distribution of exmples among the DAs in the original data set. The DA

tags are ranked according to their frequencies of occurrence.

data set. Yet, nearly 34% of the utterances in the data set are Statement. Due to

the lack of examples in the training set, the classifier is relatively weak in recognizing

some DAs.

In practice, it is very difficult to find a data set that has an even distribution of

examples among the DAs, since some DAs are rarely used in conversation that it is hard

to increase their numbers drastically. Hence, we address this class-imbalance problem

by two methods: over-sampling method and error-based learning method.

5.6.1 Over-sampling Method

In the over-sampling method, we create training examples via replication. Figure 5.6

shows an example. The distribution of examples in the original training set (the one

labeled as “no replication”) is modified to give the new distribution (the one labeled

as “with replication”), by randomly selecting a certain number of examples from each

DA type and replicating them. For a DA type d (where d is from 1 to |D|, |D| being

the number of DA types), the number of examples replicated, nd, is defined as:

nd =
(Nd −N|D|)
(N1 −N|D|)

× (N1 − ρ) + ρ−Nd (5.9)

Here, Nd is the number of example of the DA type d in the original training set. As

depicted, more examples are replicated for DAs with higher ranks, i.e. those occur less

frequently in the original training set. In fact, the extra examples replicated for the
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Figure 5.6: Determining the number of examples to replicate for a DA type d (where d is

from 1 to |D|, |D| being the number of DA types). Here, x = N1−N|D|, w = Nd−N|D|,

y = N1− ρ, and z = w
x · y. The number of examples replicated is nd = z+ ρ−Nd. Note

that the ranks of the DA tags are the same as in Figure 5.5.
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Figure 5.7: Experimental results of example replication. The feature set used is {L3,

H, D, SD, P, G}. Note that ρ = N|D| corresponds to the case where the original data

set is used (i.e. no replication).
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DAs with the lowest ranks are almost negligible. The new distribution of examples

among the DAs is thus more balanced than the original one. The degree of balance is

controlled by the parameter ρ > 0. In general, for a larger ρ, the distribution will be

more balanced.

Preliminary experiments have been performed to assess the approach for different

values of ρ, using the features L3, H, D, SD, P, and G. For each value of ρ, 3 runs have

been performed, using different training and testing sets, and the mean recognition

rates are reported. As depicted in Figure 5.7, with ρ = 1, 000, the macro-average

recognition rate is boosted from 32.83% to 40.36%, at the expense of only a slight

decrease of the micro-average recognition rate from 74.15% to 73.87%. The macro-

average recognition rate further improves to 50.90% as ρ is being increased from 1,000

to 15,000. The micro-average recognition rate has decreased to 70.48% at the same

time. Yet, the extent is moderate as compared with the gain in the macro-average

recognition rate, and it is still maintained at a relatively high level.

By using replication of examples, improvement in recognition rate is observed in

many of the DAs with higher ranks, which used to have very low frequencies of oc-

currence in the original data set. Particularly, the number of DA types with zero

recognition rate is greatly reduced. A higher macro-average recognition rate can thus

be achieved. For example, in the experiment set that generates the best recognition rate

of 75.18% using the original data set (see Table 5.6), a total of 10 DA types have zero

recognition rate, and the macro-average recognition rate achieved is only 32.40% (see

Figure 5.8, the dotted line). Whereas by using example replication with ρ = 10, 000

(see Figure 5.8, the solid line), there are no DA types with zero recognition rate, and

the macro-average recognition rate achieved is 51.78%. As depicted in Figure 5.9, using

replication with ρ = 1, 000, the average number of DA types with zero recognition rate

drops from 9.3 to 4, which is further reduced to about 1.33 as ρ is being increased from

1,000 to 15,000.

5.6.2 Error-Based Learning Method

In the error-based learning method, we target at reducing the number of errors intro-

duced by the minority class. We achieve this by modifying the learning mechanism of

Maximum Entropy. Inside, we add a parameter ry to the original updating rule in the

GIS algorithm. In an iteration t, the modified updating rule for each feature estimates
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Figure 5.8: Recognition rates of individual DAs before replication (dotted line) and

after replication (solid line, ρ = 10, 000). The ranks of the DA tags are the same as in

Figure 5.5.
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its weight w as follows:

wt ← wt−1 + ry · 1
C

log
c̃

c
(5.10)

Here, w is estimated by the divergence between the observed feature count c̃ and the

modeled feature count c, with C being a constant. In each iteration, the number of

correct predictions for each class ry is recorded, estimating the accuracy distribution

among classes. The value of r is determined by an inverse function about the accuracy

of a class y.

Preliminary experiments have been performed to evaluate this method, using the

features L3, H, D, SD, P, and G. We performed the experiments 3 times, using different

training and testing sets, and the mean recognition rates are reported. The macro-

average recognition rate is boosted from 32.83% to 35.60%, with a slight decrease of

the micro-average recognition rate from 74.15% to 74.04%. Moreover, the average

number of DA types with zero recognition rate drops from 9.3 to 7.

5.7 Summary

We have built a maximum entropy classifier for DA recognition. The approach allows

heterogeneous sources of features to be integrated in one classifier flexibly, without

assuming that they are independent. Compared with other approaches, our classifier

is more suitable for online DA recognition, since the classification features are defined

over the current utterance and its previous context only, and it does not require the

whole dialogue to be available in order to label the utterances. Evaluation using a

non-task oriented data set reveals that our approach achieves a best-case recognition

rate of over 75%, outperforming other approaches that employ the same data set. The

result is also comparable to other works on task-oriented DA recognition. To improve

the recognition performance of those DAs with very low frequencies of occurrence in the

data set, two methods have been applied to address the problem. One is over-sampling

method and one is error-based learning method. Preliminary evaluation reveals that

both methods are effective in boosting the macro-average recognition rate.
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Chapter 6

Conclusion

To conclude the thesis, we summarize the findings and results of this work, and we

discuss some possible directions in which this work might benefit from future investi-

gation.

6.1 Summary and Results

This thesis has studied how to model natural language disambiguation by proven clas-

sification techniques. The classifiers were built using Maximum Entropy, which allows

combination of features from heterogeneous sources, and is highly resistant to irrel-

evant features. This capability of feature integration is robust to various levels of

disambiguation in natural language, which require extensive contextual information in

general.

We have empirically evaluated this capability by conducting experiments on two

challenging tasks. They are semantic role labeling and dialogue act recognition, re-

spectively, at the semantic and pragmatic level. Both tasks are useful in improving our

prototype dialogue-system (Lan et al., 2003, 2005), which contains two parts. One is to

extract information by filling slots in pre-defined patterns, and the other is to provide

user with extracted information through a dialogue interface. Semantic role labeling

can benefit the extraction part by providing arguments to the slots, while dialogue act

recognition can help the interface part to be more robust for interacting with users.

In the semantic role labeling task, we have proposed a three-phase labeling ap-

proach to the problem. The first two phases are used for recognizing arguments, that
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provides candidates to the last phase for semantic role assignment. The success in

recognizing arguments, as shown in previous literatures, was often the key in achiev-

ing high system performance. We have found that previous approaches in recognizing

arguments have their unique advantages, together with their own weaknesses. In view

of this, our approach combines their advantages, while addressing their weaknesses by

their complementary supports. Firstly, our approach takes advantage from word-level

classification, to guarantee no argument-alignment problem, which is frequently en-

countered in constituent-level classification. Secondly, our approach benefits by chunk-

level classification in reducing the numerous classification steps, which are involved in

word-level classification. Thirdly, our approach gains advantage from constituent-level

classification, to ensure recognizing long-ranged arguments, which is hardly achieved

in word-level and chunk-level classification. Experimental results show that the perfor-

mance of our system is comparable with the current best single system using the same

data set, despite the fact that they employ weighted ensemble classifiers.

In the dialogue act recognition task, we have studied various types of features to

evaluate system performance. Our feature set is only defined over the current utterance

and its pervious context, so our system can readily be applied to online dialogue act

recognition. Experiments were conducted using a large public data set, which is non-

task oriented. Experimental results show that our system outperforms others that

used the same data set. Moreover, our result is comparable to that performed on task-

oriented data set, despite the fact that their training size and number of dialogue acts

are both smaller than ours.

We have also addressed the class-imbalance problem encountered in both disam-

biguation tasks. We have employed two methods for each task. One is over-sampling

and the other is error-based learning. For over-sampling, unlike traditional approaches

that more usually being restricted to binary-class problems, our sampling method is

fully applicable to multi-class problems. On the other hand, for the error-based learn-

ing, our method can also be regarded as a wrapper technique, which can be portable

to other scoring-based classifiers. Experimental results show that both methods are

effective in improving the macro-average performance.

In summary, this research has demonstrated the feasibility to model automatic

disambiguation, with two substantial tasks that are significant for dialogue systems.

This research holds promise for constructing natural language interfaces to information
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systems, making the wealth amount of information easily accessible by users.

6.2 Directions for Future Work

We introduce three possible directions for future work, and we believe that they might

enhance the current system.

6.2.1 From Local to Global Inference

In the three-phase labeling approach for semantic role labeling, we employ the “divide-

and-conquer” strategy to decompose the task into several sub-problems. In every phase,

local decisions are directly assigned, without considering other possible assignments

that can be recognized later. This pipelined architecture is thus very greedy, probably

leading to sub-optimal results. To address the issue, we can maintain all plausible

decisions in each phase, and consider the competing candidates to achieve the final

decisions. To achieve this, we require an extra phase for global inference. Inside, an

objective scoring function is to be designed. The aim is then to maximize the scores

among the competing solutions.

6.2.2 Cached Learning for Maximum Entropy

The main objective of Maximum Entropy learning is to equalize the observed feature

counts and the modeled feature counts. In each iteration, the algorithm visits each

example, updating the modeled counts, estimating the parameters by the divergence

between the observed and the modeled counts, and visiting again the example at next

iteration, until the divergence is minimized. This procedure is clearly inefficient. In

general, some of modeled counts, after a number of iterations, will become stable. We

can thus skip the computation for these counts. Alternatively, we can improve it by

incorporating a cache. We can store the indexes for the counts whose divergences are

far from their expected counts. We can then focus on learning those cached counts

instead of all the counts.

6.2.3 Synthesis of Examples at Feature Level

In our over-sampling method, minority-class examples are replicated rather than syn-

thesized. In the literature, Chawla et al. (2002) proposed SMOTE to synthesize ex-
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amples at feature space. In their method, a new example is synthesized by taking the

difference between the feature vector at hand and its nearest neighbor, multiplying the

difference by a random number, and adding the difference to the original vector for

creating a new vector. Their feature vectors are real-valued ones. However, most of

our features are nominal-valued, in which we face difficulties to perform feature vector

substraction. To counter this issue, we can use WordNet (Fellbaum, 1998) to perform

feature substitution instead of feature substraction. For example, for word-string fea-

ture car, we can find its hypernym vehicle as substitute. However, this method is only

applicable to lexical word, but not other complex nominal features, such as syntactic

path. A more robust method is to use voting method (Chawla et al., 2003). Inside,

majority vote is taken between the feature vector and its k nearest neighbors. The

voted feature-vector thus becomes the new example.
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Appendix A

Penn TreeBank Tag Set

Clause tag Description

S simple declarative clause
SBAR clause introduced by a subordinating conjunction
SBARQ direct question introduced by wh-word or a wh-phrase
SINV inverted declarative sentence
SQ inverted yes/no question

Phrase tag Description

ADJP adjective phrase
ADVP adverb phrase
CONJP conjunction phrase
FRAG fragment
INTJ interjection
LST list marker
NAC not a constituent
NP noun phrase
NX complex noun phrase
PP prepositional phrase
PRN parenthetical
PRT particle
QP quantifier phrase
RRC reduced relative clause
UCP unlike coordinated phrase
VP vereb phrase
WHADJP wh-adjective phrase
WHAVP wh-adverb phrase
WHNP wh-noun Phrase
WHPP wh-prepositional phrase
X unknown, uncertain, or unbracketable
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Part-of-speech tag Description

CC coordinating conjunction
CD cardinal number
DT determiner
EX existential there
FW foreign word
IN preposition or subordinating conjunction
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
LS list item marker
MD modal
NN noun, singular or mass
NNS noun, plural
NNP proper noun, singular
NNPS proper noun, plural
PDT predeterminer
POS possessive ending
PRP personal pronoun
PRP$ possessive pronoun
RB adverb
RBR adverb, comparative
RBS adverb, superlative
RP particle
SYM symbol
TO infinitive to
UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd person singular present
WDT wh-determiner
WP wh-pronoun
WP$ possessive wh-pronoun
WRB wh-adverb
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Appendix B

PropBank Tag Set

Argument tag Description

A0, A1, A2, A3, A4, A5, AA each role definition depends on the verb sense
from VerbNet (Kipper et al. (2000))

AM bare adjunct argument
AM-ADV general purpose argument
AM-CAU cause argument
AM-DIR direction argument
AM-DIR discourse marker argument
AM-EXT extent argument
AM-LOC location argument
AM-MNR manner argument
AM-MOD model verb argument
AM-NEG negation marker argument
AM-PNC purpose argument
AM-PRD predication argument
AM-REC reciprocal argument
AM-TMP temporal argument
R-A0, R-A1, R-A2, R-A3, R-A4, R-AA each definition is the same as its referenced argument
R-AM-ADV general purpose reference argument
R-AM-CAU cause reference argument
R-AM-DIR direction reference argument
R-AM-EXT extent reference argument
R-AM-LOC location reference argument
R-AM-MNR manner reference argument
R-AM-PNC purpose reference argument
R-AM-TMP temporal reference argument
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Appendix C

SWBD-DAMSL Tag Set

Dialogue act tag Description

% uninterpretable
%- abandoned/turn taking
ˆ2 collaborative completion
ˆg tag question
ˆh reject
ˆq quotation
+ segment
aa agreement/accept
aap, am self talk
ad action directive
ar negative non no answers
arp, nd dispreferred answers
b backchannel/acnowledge
bˆm repeat phrase open question
ba appreciation
bd downplayer
bf summarize/refumulate
bh backchannel question
bk response acknowledgment
br other answers
fa apology
fc conventional closing
fpno conventional opening
ft thanking
h hedge
na, nyˆe affimative non yes answers
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Dialogue act tag Description

ng, nnˆe signal non understanding
nn no answers
ny yes answers
o, fo, bc, by, fw other
oo, cc, co offers, options or, commits
qh hold before answer/agreement
qo rhetorical questions
qrr or clause
qw wh-question
qwˆd declarative wh question
qy yes-no question
qyˆd declarative yes-no question
sd statement
sv opinion
t1 maybe/accept part
t3 3rd party talk
x non verbal
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