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Abstract 

 

Single angle members have a broad range of applications. Very often angle 

members are connected eccentrically. As a result, not only is an angle member 

subject to axial force, but it is also subject to a pair of end moments. In addition, 

the connection at each end provides some fixity so neither pinned nor the fixed end 

represents the reality. Many national design codes allow for the effects due to load 

eccentricity and end restraint by modifying the slenderness ratio and reducing the 

compressive strength of the member. The concept behind this method is 

inconsistent with strength design of members of other cross-sectional types such as 

I or box sections of which the buckling strength is controlled by the Perry constant 

or the initial imperfection parameters. Moreover, in practice, it is difficult to 

determine accurately the effective length. Sometimes, it is assumed the two ends of 

the member are immovable. The thesis proposes a few methods for design of angle 

frames and trusses by the second-order analysis. Laboratory tests of angles as web 

members of a truss were carried out. The test results are compared with the 

proposed theoretical and code design loads. In the computational method proposed 

in this thesis, there is no need to consider any effective length because the second-

order Δ−P  and δ−P  effects are considered automatically by geometry update. 

The proposed method is readily applicable to design of practical steel trusses made 

of angle sections and demonstrated by a few worked examples. It is further 

expected the developed design method will improve the safety and economy of 

structures made of angle sections while he concept can be extended to second-order 
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analysis and design of structures made of other asymmetric sections like channels 

and T-sections commonly connected eccentrically. 
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Chapter 1 Introduction 

 

1.1 Background 

Single angle members have a broad range of applications, such as web members of 

trusses, members of latticed towers and bracing members. Figure 1.1 shows a 

picture of a lattice tower for cable cars. Typical equal and unequal angle sections 

are shown in Figure1.2. Angle sections are relatively weak in resisting compression 

compared with other steel sections but are widely used because of its light weight 

and the L-shaped section making the angles very suitable for light gauge 

construction for the ease of storage, transportation and fabrication. Angles are poor 

in compression because of its complicated structural behaviour for the following 

reasons. Firstly, it is not uncommon to bolt or weld an angle member to another 

member directly or to a gusset plate at its end through their leg. Therefore, the load 

is usually transmitted through one leg. Since the centroid of an angle section is not 

located on the leg, in most of the practical loading conditions, the angle is subject 

to axial force as well as a pair of end moments due to the load eccentricity. 

Twisting due to lateral load may also appear simultaneously as the shear centre is 

located at the point of intersection of the two legs which is away from the centroid. 

Secondly, the connection at each end provides a restraining effect which is 

beneficial to the compression capacity of the angle members. Finally, since angles 

are not doubly-symmetric, their principal axes are always inclined to the horizontal 

and vertical axes. Therefore, it is necessary to transform the rectangular axes to the 

principal axes for calculation and thus further complicates the analysis of angle 

members. The above-mentioned features are almost unique to angle sections 
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making the design of single angle members controversial for some time. In a 

rational design procedure, the adverse effect of the end eccentricity and the 

beneficial effect due to the end restraint on the compression capacity should be 

considered.  

 

Conventionally, when designing steel structures, engineers usually adopted linear 

analysis to determine the internal forces and moments of all members under 

external loads. After that, the resistance of each individual member is determined 

according to the design rules given in the codes. A sufficiently safe structure is 

having its resistance larger than the factored forces and moments. However, in 

most of the conventional design methods widely used today, the design procedure 

for structures using angle sections appears to be overly simplified. Many 

assumptions, which are not very accurate, are made so as to simplify the analysis 

procedure. For example, the load eccentricity and the end restraint are neglected 

during the analysis. This can be explained that rational computer analyses 

modelling the realistic behaviour of steel angle structures considering the existence 

of initial curvature, residual stresses, end restraints and material nonlinearity were 

time consuming, expensive and thus inappropriate for routine design in the past 

days when computer was a luxury item. Today, in the era of widespread use of 

personal computers, it is a good opportunity to develop a more rational design 

method for angle structures and acquire better understanding of the true behaviour 

of angle structures.  
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In the past decade, advanced analysis has been widely developed to achieve a more 

accurate and efficient analysis method. Advanced analysis combines the second-

order effects of geometrical change and material yielding with sufficient accuracy 

for practical purposes so that isolated member capacity checks can be avoided.   

The effect of initial imperfections, residual stress etc. are taken into account in the 

analysis and a practical design can be carried out directly on the basis of the section 

capacity computed by this type of rigorous analysis. In other words, the overall 

member buckling resistance check is not required to carry out individually. This 

type of design method is of growing importance for structures with doubly-

symmetric sections. However, this method may not be suitable of structures with 

angle sections due to their complicated structural behaviour under compression.  

 

In this chapter, as an introductory part, the fundamental structural behaviour of 

axially loaded angle members is delivered; the δ−P  and Δ−P effects and the 

well-known term “effective length” of compression members are explained in 

details and some currently used analysis methods will be briefly described.  

 

 

1.2 Structural behaviour of angles as axially loaded members   

As compression members are usually far more critical than tension members, the 

section will mainly focus on the structural behaviour of angles in compression. The 

information below can be found in many standard reference books [1,2]. 
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1.2.1 Tension members 

A member subject to longitudinal tensile load is usually called a tie. Single angle 

used as a web member or a bracing member can be a tie. When a tension force is 

applied on the axis of centre of gravity of the section, the tensile stress is assumed 

to be uniform over the cross-section. Assuming there is no loss of area of the 

member at the connections, the member will start yielding at: 

gyt ApP =                                            (1.1) 

where tP  is the tensile strength of the member 

 yp  is the yield stress of the material 

 gA  is the gross area of the section 

 

After undergoing the large strains that occur during yielding, the member begins to 

strain harden. During strain hardening, the material undergoes changes in its 

crystalline structure, resulting in an increase of resistance of the material to further 

deformation. 

 

1.2.2 Euler’s theory of compression members 

A member subject to longitudinal compressive load is usually called a strut. A 

formula for the strength of a pin-ended strut was derived with mathematical 

considerations. The formula was derived based on the following assumptions: 

 

• The struts are perfectly straight and homogeneous. 

• The compressive loads are perfectly axially applied. 
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• The struts are uniform throughout and the limit of proportionality of the material 

is not exceeded. 

 

The strut will buckle when the applied load reaches the Euler buckling load, EP , is 

reached which is given by: 

2

2

L
EIPE

π
=                                                                                             (1.2) 

where I  is the second moment of inertia of the section 

L  is the member length 

 

We can also find the corresponding Euler stress, which is the average compressive 

stress on the cross section at the moment the load reaches Euler buckling load, 

from Equation (1.2): 

2

2

AL
EI

A
Pp E

E
π

==                                                           (1.3) 

where  Ep  is the Euler stress 

 

Equation (1.3) can be written in a more comprehensive form by notating: 

A
Ir =                (1.4) 

in which r  is the radius of gyration of the cross section in the plane of bending. 

Although r  does not have an actual physical meaning, it can be considered as the 

distance at which the entire area could be concentrated and have the same moment 

of inertia as the original area. 



 6

Then Equation (1.3) becomes: 

  
( )2

2

rL
EpE

π
=                 (1.5) 

rL  is termed as slenderness ratio which becomes an important parameter that 

affects highly the Euler load of buckling of the member. It is interesting to note that 

from a mathematical analysis, for a given cross-sectional area, an angle section is 

relatively weak in resisting Euler buckling. The Euler load is inversely 

proportionally to the square of the slenderness ratio. Theoretically, however, 

members with slenderness less than ypE2π  are insensitive to Euler buckling 

and is likely to fail at squash load cP  which is given by: 

ApP yc =                 (1.6) 

 

In this case, the failure mode will be similar to that of a tension member except the 

direction of the stress. 

 

1.2.3 Bending of members with load eccentricity 

Angles are seldom loaded concentrically. Angles provide a fast track of fabrication 

and erection by making connections through one leg only to one another, or to a 

gusset, or to a tee through the flange. These eccentric connections introduce 

bending moments at each end thus bending stresses in the member which further 

reduce the compression capacity of a member. If the member is treated as an ideal 

pin-ended column, the maximum compressive stress maxp  of the member can be 

calculated by the secant formula: 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⋅
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EA
P

r
L

r
ye

A
Pp

2
sec1 2max             (1.7) 

in which e  is the load eccentricity, y is the distance from the centroidal axis to the 

extreme point on the cave side of the column and 2rye ⋅ can be termed as the 

eccentricity ratio. 

 

The secant formula can be used in a reverse manner, i.e. if yp  is put into maxp , the 

corresponding first yield failure load can be calculated. However, numerical 

method must be adopted to solve the formula. Figure 1.3 shows the curves of the 

secant formula with various values of eccentricity ratios. This formula is seldom 

used in practical designs only gives a general idea of the behaviour of a pinned end 

strut under eccentric load and seldom used in practical design. This formula can 

also be used for a strut that is fixed at one end and free at the other end if the length 

L  in the formula is replaced by L2 . However, for the other end conditions, this 

formula is not valid. 

 

1.2.4 Bending of members with initial curvature 

In fact, practical members are hardly constructed perfectly and may possess some 

imperfections such as material imperfection due to residual stress and geometrical 

initial curvature which cause members bending at the beginning when the load is 

applied instead of buckling when the buckling load is reached. Considering a 

hypothetic member with initial curvature of  

 
L
xy πδ sin00 =                (1.8) 
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in which 0y  is the initial curvature at distance x  and 0δ  is the initial curvature at 

mid-span. 

 

If a compressive load is applied axially at the ends of a member, it will bend 

instantly. In addition to the axial stress caused by the compressive load, the 

deflection induces a bending stress and the member is failed when the combined 

axial and bending stresses reaches the yield stress of the material.  The theoretical 

critical compressive stress can be calculated by the Perry-Robertson formula as: 

01 2
02 =+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

++− EyEycc ppp
r

y
ppp

δ
                      (1.9) 

where cp  is the critical stress 

y  is the distance from the extreme fibre in compression to the neutral axis 

of the cross section 

 

Equation (1.9) can be rewritten as: 

 ( )[ ] ( )[ ] EyEyEyc ppppppp 41
2
11

2
1 2 −++−++= ηη                   (1.10) 

where λ
δδ

η 0
0

2
0 a

r
L

r
y

Lr
y

=⋅⋅=
⋅

=  

in which 
r
y

L
a ⋅= 0

0
δ

 

 

Similar to Euler buckling, the failure load of this hypothetic strut largely depends 

on the length of it. Figure 1.4 shows the curves of Perry-Robertson formula with 
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various value of 0a . However, this formula is still questionable when the 

slenderness ratio of a member is low because practical stocky members are 

insensitive to initial imperfections and more likely fail at squash load.  

 

1.2.5 Real compression members 

Real members not only possess initial crookedness, they also have residual stresses, 

load eccentricity and material nonlinearity which affect the ultimate compressive 

strength of the members. The collective effect due to these imperfections is 

qualitatively similar to the effect due to initial curvature alone and thus can be 

simulated by an equivalent value of initial curvature making use of the Perry-

Robertson formula. The structural behaviour of practical struts of different 

slenderness ratios can be illustrated by the compressive strength curve from BS 

5950 [3] in Figure 1.5. As can be seen from the graph, basically these curves can be 

divided into three slenderness ratio ranges as follows: 

• Stocky range ( 20≤λ ) 

• Intermediate range ( 10020 ≤< λ ) 

• Slender range ( 100>λ ) 

 

In stocky range ( 20≤λ ), the failure is mainly caused by squashing of the material 

and therefore the failure load does not depend on the slenderness ratio or the young 

modulus of the material. However, in intermediate range ( 10020 ≤< λ ), the failure 

load is far less than the Euler buckling load and the buckling is considered inelastic. 

It is found that the Euler formula agrees well with the actual failure load of slender 
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struts ( 100>λ ). We can conclude that the aforementioned initial imperfections 

have the most significant effects on members with intermediate slenderness.  

 

1.2.6 Flexural-torsional buckling 

Apart from flexural buckling or bending, stocky single angle struts in concentric 

compression load may also fail in a flexural-torsional buckling mode which is 

commonly ignored in routine design. Considering a perfect strut in concentric load, 

the critical load 
cr

P  is the lowest root of the following equation. 

( ) ( )( )( )( ) ( ) ( ) 02
0

22
0

22
0

2
0

2 =−−−−++−−−= PPzPPPyPzyrPPPPPPPf yzpzyx  

     (1.11) 

in which yP  and zP  are the Euler flexural buckling loads of the strut about 

the −y and −z axes, xP  is the torsional buckling load about the shear centre axis, 

0y  and 0z  are the coordinates of the centroid about the axes parallel to the 

principal axes and passing through the shear centre and pr  is the polar radius of 

gyration.  

 

As the shear centre is at the intersection point of the two angle legs, there is 

virtually no warping rigidity and the warping constant can be assumed zero, the 

torsional buckling load xP  will be given by: 

2
0r

GJPx =              (1.12) 

in which 2
0

2
0

22
0 zyrr p ++=  
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For equal angles, since they are monosymmetric sections, by putting 00 =y , 

Equation (1.11) can be simplified and rearranged to: 

( ) ( ) ( )[ ]
( )[ ]2

00

2
00

2

12

14

rz

rzPPPPPP
P yxyxyx

−

−−+−+
=                               (1.13) 

 

The buckling load will be the lower of yP  and P . If yP  is lower than P , flexural 

buckling will occur; if P  is lower than yP , flexural torsional buckling will occur. 

For unequal angles, as they are asymmetric, Equation (1.11) cannot be simplified; 

so the critical load must be obtained numerically. Trahair [2] suggested that the 

equation can be solved approximately by interpolating linearly using the values of 

( )0f  and for the lowest value 1P  of xP , yP  and zP  as: 

( )
( ) ( )1

1

0
0

Pff
fPP

−
⋅

≈             (1.14) 

 

This P  is always less than 1P  corresponding to a flexural-torsional buckling mode. 

Therefore, flexural-torsional buckling should be taken into account in the design of 

angle structures especially for unequal angles as it is possibly the critical failure 

mode and may reduce compression resistance of the member unless sufficient 

bracing is provided to prevent the member from flexural-torsional buckling. 

 

1.2.7 Local buckling 

Angle sections are classified as thin-walled open sections. In the conventional 

theory of thin-walled beams, the cross section is assumed to remain undeformed 
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even when loaded to its ultimate strength. This assumption is true for most of the 

hot-rolled steel sections. However, for a relatively thin-walled cross section, the 

thin plate of the cross section may deform and exhibit local buckling before the 

member yields or buckles in any other modes mentioned previously.  

 

 

1.3 The δ−P  and Δ−P  effects 

1.3.1 The δ−P  effect  

The δ−P  effect is referred to as the second-order effect due to the deflection 

along a member and the axial force applied to it. The inclusion of the δ−P  effect 

in the formulation of the member stiffness is important for a second-order analysis. 

For a beam-column element, the bending coefficients vary under high tensile and 

compressive axial force. It can be imagined that a member under tension is always 

stiffer than under compression. For an element of only compression, its strength 

decreases as its lateral deflection increases and the lateral deflection depends on the 

length of the member, the initial curvature and the load applied. Without the 

presence of initial curvature, the element does not bend and the actual stress the 

section is taking cannot be calculated. Therefore, the consideration of initial 

curvature is important for a compression element 

 

1.3.2 The Δ−P  effect 

The Δ−P  effect is referred to as the second-order effect due to the change in 

geometry which leads to the invalidity of the global stiffness matrix soon after the 

application of load. Considering a simply supported beam subject to a point load 
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acting on its mid-span, the beam will deflect in both vertical and horizontal 

directions. The horizontal displacement is relatively small compared with the 

vertical displacement and is usually ignored in analysis. It is sufficiently safe to 

ignore the horizontal displacement in a structural design if the horizontal 

displacement is small. However, it will be dangerous to exclude this effect to large 

deflection structures. From a global point of view, the local deflection and the 

global displacements in fact mutually affect each other and the structural response 

of the other members as well. The Δ−P  effect can be included in an analysis by 

simply geometry update. The δ−P  effect can also be transformed to the Δ−P  

effect by using several elements per member. 

 

 

1.4 The effective length of compression members 

The structural behaviour mentioned under Section 1.2 are based on pin-ended 

condition which hardly exists in reality. In fact, the formulas can be used to deal 

with struts with other end conditions. This can be achieved by replacing the 

member length by the equivalent length, or the effective length, which is equal to 

the distance between the two points of inflexion of its deflected shape. The 

physical meaning of an effective length is that the equivalent length of the member 

with pin-ended condition will give the same failure load. For example, in Euler’s 

theory, a member of length L  with fixed-end condition should have an effective 

length of 0.5 L . The use of the effective length is not restricted to Euler formula. In 

a typical linear analysis, normally a longer effective length is used to compensate 

the negligence of the δ−P  and Δ−P  effects unless the structure is sufficiently 
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braced. Empirically, the effective length of the member can also be used to account 

for the disregard of flexural-torsional buckling in design. However, sometimes the 

effective length is only a rough estimation which may cause underestimate or 

overestimate the actual failure mode. 

 

 

1.5 Types of analysis 

There are different levels of analysis with various degrees of refinement which can 

be used for structural design including linear analysis, elastic bifurcation analysis, 

second-order elastic analysis, second-order inelastic analysis and advanced analysis. 

This section focuses on linear analysis, bifurcation analysis, second-order elastic 

analysis and advanced analysis.  

 

1.5.1 Linear analysis 

The linear theory, which assumes the deformations of a structure is proportional to 

the magnitude of the loads applied to it as shown in Figure 1.6, is widely used is in 

structural analysis today. For the assumption to be valid, the material must have a 

linear relationship between stress and strain while the structure must have a linear 

relationship between load and deformation. However, practically no structure 

behaves linearly. The theory is only approximately true provided that the 

deformations are small. The merits of using this type of analysis are its simplicity 

and the validity of the principle of superposition of different load cases. However, 

the linear function of the load-deflection relationship does not allow the failure 

load of the structure to be assessed. To check the safety of the structure, the internal 
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load of the structure must be checked against the resistance of the structure of 

which the resistance is reduced to account for the δ−P  and the Δ−P  effects.  

 

1.5.2 Bifurcation analysis 

The buckling load factor, crλ , which causes the structural system to buckle 

elastically with the structural geometry assumed remaining unchanged until 

buckling occurs, is known as the elastic buckling factor. In the bifurcation type of 

analysis, an eigenvalue problem is formuated by a standard procedure as 

 0=+ GcrL KK λ                                                                                        (1.15) 

in which LK  and GK  are the linear and the geometric stiffness matrices 

respectively. 

 

For a general stiffness matrix of a structural system with n  degrees of freedom, 

there exists n  roots for the bifurcation analysis which represent n  possible 

buckling modes and usually only the lowest root is of practical interest. It should be 

noted that the method can only provide an upper bound solution to the stability of a 

frame. Alternatively, this can be used to determine the exact effective length factor 

K  for a member in a structural system for design based on linear analysis. 

 

1.5.3 Second-order elastic analysis and advanced analysis 

Unlike bifurcation analysis, second-order elastic analysis involves tracing the 

equilibrium or the load-deflection path as shown in Figure 1.6. As its name implies, 

the second-order effects such as the initial curvature of the members, the δ−P  and 
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Δ−P  effects are all included in the second-order analysis.  However, material 

yielding is not considered in the elastic analysis. Therefore, the load-deflection path 

is untrue after the material is yielded. Therefore, the checking against resistance is 

necessary. But, there is no need to reduce the resistance of the member as the 

δ−P  and Δ−P  effects are already included in the analysis.  

 

Advanced analysis combines the effects of material yielding and geometrical 

change with sufficient accuracy for practical purposes so that isolated member 

capacity checks can be avoided. The advantage of using advanced analysis over 

linear analysis and second-order analysis is that the design is completed readily 

with analysis. 

 

 

1.6 Objectives 

The objectives of the research project undertaken in this thesis are as follows. 

• To develop code-free design methods for steel trusses and frames using single-

angle with the aid of a second-order analysis and design programme so that the 

discrepancy between the analysis and design in the currently used method can be 

eliminated.  

 

• To illustrate the structural response of angle members in practical truss and 

frame systems through a non-linear numerical approach. A number of practical 

examples will be carried out the study the structural behaviour of angle trusses 

and frames. 
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• To examine the compressive strength of angle members through laboratory tests. 

Four single angle struts were tested as web members of a two-dimensional truss 

to study the behaviour of single angle compression members in practical 

conditions. 

 

• To assess the accuracy of the proposed design method and the design rules given 

in BS 5950 [3] for steel trusses and frames with single angles. The test results 

will be compared with the numerical results and the design values calculated 

according to the design code. 

 

 

1.7 Outline of the thesis 

Chapter 2 delivers the literature review which involves the classical investigation 

of angle compression members, the development of second-order analysis and the 

current structural analysis of steel frames structures. Chapter 3 presents a review of 

various national design codes regarding angle compression members and describes 

the procedure of conventional design using linear analysis. Chapter 4 explains the 

numerical procedure of second-order analysis using the Newton-Raphson 

incremental-iterative scheme and also other incremental-iterative numerical 

methods. Chapter 5 proposes two second-order elastic analysis and design methods 

for single-angle sections via the use of equivalent initial member imperfection. 

Chapter 6 proposed the second-order plastic analysis and design method for single-

angle sections using the “plastic-element”. Chapter 7 presents the experimental 
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investigation of angle compression members tested as part of a two-dimensional 

truss. Finally, Chapter 8 is the conclusions and recommendations.   
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Figure 1.1 Latticed tower structure (Ocean Park, Hong Kong) 
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Figure 1.2 Typical equal and unequal angle sections 
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Figure 1.6 General analysis types for steel framed structures 
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Chapter 2 Literature Review 

 

2.1 Introduction 

This chapter presents a literature review of mainly three research areas, which 

involves the classical investigation of structural behaviour of angle compression 

members from theoretical, analytical and experimental approaches, the 

development of nonlinear analysis of steel structures, and the analyses of steel 

latticed structures. 

 

 

2.2 Classical investigation of angle compression members 

The structural behaviour of angle compression members introduced in Chapter 1 

demonstrates that the strength of an angle strut does not only depend on the yield 

stress of the steel, but also its stability. An angle member rarely fails at squash load 

but may fail by a flexural buckling or a flexural-torsional buckling mode.  

Kitipornchai [4] carried out a parametric study against flexural buckling and 

flexural-torsional buckling of single angle compression members with the elastic 

buckling loads calculated and expressed in terms of dimensionless parameters such 

as ratio of the two leg lengths (i.e. the leg length ratio) and leg length to thickness 

ratio of standard rolled angle section range. It was shown that the flexural-torsional 

buckling mode was most significant for stocky columns especially for unequal 

angles while slender columns were susceptible to flexural buckling. Since most of 

the design rules are derived based on flexural buckling with the flexural-torsional 

buckling usually ignored, Kitipornchai [4] introduced an equivalent slenderness 
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ratio. This ratio is defined as the slenderness ratio of a member having the same 

cross section as the actual member, which when buckling in a pure flexural mode 

about the principal minor axis, has the same buckling load as the actual member 

buckling in a flexural-torsional mode. The equivalent slenderness ratio ( )eqrL  can 

be expressed in terms of the actual slenderness ratio ( )yrL  and the ratio of the 

elastic buckling load yc PP . 
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where  cP  is the flexural-torsional buckling load 

 yP  is the flexural buckling load about weak axis 

 

From the parametric solutions, the equivalent slenderness ratio can be obtained as  
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in which α  is the leg length ratio and β  is the leg length to thickness ratio. The 

proposed expressions for equivalent slenderness ratio were easy to understand and 

simple to use. With this slight modification on slenderness ratio, the existing design 

rules can still be employed.  

 

The modification is based on a concentrically loaded pin-ended compression 

member in perfect conditions including the material which was linearly elastic. As 

the material is in fact not linearly elastic and the presence of residual compression 

stresses cause premature yielding especially for intermediate length compression 
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members, Kitipornchai and Lee [5] expanded the research to inelastic analysis of 

single angles as well as other sections by the finite element method using the 

tangent modulus concept with the Young’s modulus of the material assumed to be 

zero in the yield region. As the torsional rigidity GJ was tested to be not much 

affected by tension or compression yielding, the shear modulus of elasticity 

remained unchanged. In addition, idealized residual stress distribution was assumed 

in the analysis.  The distribution of elastic and yielded regions across the section 

was determined from the idealized elastic-plastic stress-strain curve. Results 

revealed that for equal angles (L102×102×6.5) the elastic flexural buckling curve 

was lower than the elastic flexural-torsional buckling curve with slenderness ratio 

not less than 80 for which the inelastic flexural buckling curve was always lower 

than the inelastic flexural-torsional curve. On the other hand, for unequal angles 

(L76×51×5) both the elastic and inelastic flexural-torsional buckling curves were 

always lower than the respective flexural buckling curve. This demonstrated that 

the predominant failure modes for equal angles and unequal angles are flexural 

buckling and flexural-torsional buckling respectively in the inelastic range 

regardless of the slenderness ratio. Results also revealed that angles were 

susceptible to local buckling which further reduces the compressive strength. 

Theoretical treatment of the inelastic interaction between local and global buckling 

is complicated. Empirically, local buckling of a slender compression member is 

accounted for by using the reduced effective area effA  instead of gross area A  and 

by reducing the slenderness ratio to  

A
A

r
L eff=λ                (2.3) 
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However, most practical angle sections used today are compact, making the local 

buckling less important.  

 

In reality, concentrically loaded simply supported angle columns rarely exist; the 

end restraints and the load eccentricity usually co-exist since the angles are usually 

connected to a gusset plate through one leg. The thickness of the gusset plate not 

only contributes to the load eccentricity, but, it also provides some degree of end 

fixity. These imperfections are normally ignored in routine design for simplicity. 

Such approximations do not provide an accurate description of the real structure 

behaviour of angle struts. In fact, typical angle columns are subject to axial forces, 

a pair of eccentric end moments and sometimes torques introduced by the 

connections. As angle members normally have lower flexural rigidity and torsional 

rigidity, they may react drastically by deflecting laterally and twisting. It is 

important to note that the problem is no longer a bifurcation problem because 

deformation will occur with any axial load. Therefore, it becomes necessary to 

determine the resultant stress instead of the buckling stress. Early treatments of the 

elastic behaviour of an isolated beam-column were developed by Goodier [6,7], 

Vlasov [8] and Timoshenko [9].  Goodier [6,7] derived the following set of 

differential equilibrium equations.  

( ) ( ) 0"" 00 =−++− φxePPvvvEI xx             (2.4) 

( ) ( ) 0"" 00 =−++− φyePPuvuEI yy                                                      (2.5) 

( ) ( ) ( )[ ] 0''''' 002 =−−−++⋅−− yevxePPvrPGJEI yxw φφ          (2.6) 
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The closed form solutions for biaxially loaded columns with equal end 

eccentricities were obtained by Culver [10]. If such columns are pin-ended, a 

simpler solution can be obtained by assuming the deflected shape to be a half sine 

wave [11]. Trahair [12] carried out a theoretical investigation on elastic biaxial 

bending and torsion of beam-columns with symmetrical end loading and restraints. 

The end restraining moments were considered by relating the end restraining 

moments XM  and YM  to their corresponding end rotation Xθ  and Yθ  as: 
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The restraint coefficients 1R  and 2R  were defined as the ratios of the actual end 

restraining moments to those required to develop full end fixity i.e. 0 for no 

restraint and 1 for full restraint. Finite integral method was employed to solve the 

differential equations. The structural behaviour of eccentrically loaded end 

restrained single angle struts was studied and compared with experimental data 

reported by Foehl [13]. It was shown that the first yield loads were quite close to 

the failure load and may be used as conservative estimates of the ultimate strengths 

of the single angle struts.  
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In order to further study the structural behaviour of eccentrically loaded single 

angle struts, Trahair et al. [14] carried out a series of tests of eccentrically loaded 

single angle struts. The tested sections included L51×51×6 equal angle and 

L76×51×6 unequal angle. The slenderness ratio ranged from 60 to 200 which 

covered the range encountered in practice.  At each end, one leg was welded to the 

web of a structure tee. This simulated the chord of a truss. Load was applied 

through the centre of the web of the structural tee which contributed to the load 

eccentricity through the connection. The load was applied to the structural tee in 

three ways: 

(a) Both ends are fixed in both directions. However, the flexibility of the Tee stem 

allows out-of-plane rotation so it behaves as if partially restrained in the out-

of-plane direction. 

(b) The strut ends in the direction of the outstanding leg of the angle can rotate 

freely, but the strut ends can not rotate in the plane of the Tee stem. 

(c) Opposite to End Condition (b), the strut ends can not rotate in the direction of 

the outstand leg of the angle, but the strut ends can rotate in the plane of the 

Tee stem. Similar to condition (a), the flexibility of the Tee stem allows out-of-

plane rotation. 

 

These three end conditions symbolized the extreme cases of the real situation. The 

value of the restraint coefficient R  in Eqns. (2.9) and (2.10) for the partially 

restrained conditions can be calculated from the sectional and material properties of 

the Tee stem and the struts. Results showed that End Condition (b) gave the lowest 

failure loads corresponding to the situation when the chord buckles by twist-
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buckling and consequently cannot restrain the single angle strut from deforming 

out of the plane of the truss. Although it unlikely occurs, this end condition 

represents the most severe case. 

 

Adluri and Madugula [15] compared results of experimental data on eccentrically 

loaded single angle members free to rotate in any directions at the ends in the 

available literature with AISC LRFD [16] and AISC ASD [17] specifications 

which were based on axial force-moment interaction of doubly symmetric cross 

section. The experimental investigations, which covered a wide spectrum of single 

angle struts, were carried out by Wakabayashi and Nonaka [18], Mueller and 

Erzurumlu [19], and Ishida [20]. Adluri and Madugula [15] summarized these 

results and concluded that the interaction formulas given in AISC LRFD [16] and 

AISC ASD [17] are highly conservative when applied to eccentrically loaded 

single angle members. It is because these interaction formulas were derived 

primarily for doubly symmetric sections and the moment ratios in these formulas 

are evaluated for the case of maximum stresses about each principal axis. This 

practice does not pose a problem on doubly symmetric sections such as I sections 

because the four corners are critical for moments about both principal axes 

simultaneously. However, for angle sections, as they are monosymmetric or 

asymmetric, the points having maximum bending stress about both principal axes 

usually do not coincide. As a consequence, the loading capacities of the sections 

calculated from these interaction equations are underestimated.  
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Adluri and Madugula [21] carried out a theoretical study on the compressive 

strength of steel angles failing by failure modes other than flexural buckling. The 

study was based on non-linear analysis based on non-linear analysis with the 

residual stresses, elastic-perfectly plastic material behaviour and the initial 

geometric imperfection taken into account. Nine different column buckling curves 

were generated. Laboratory tests were also carried out and reported in a companion 

paper [22] to prove those curves are on the safe side. Bathon et al. [23] carried out 

75 full-scale tests which cover a slenderness ratio ranging from 60 to 210. The test 

specimens were unrestrained against rotation and twisting at the end supports. It is 

possibly for the reason that the ASCE Manual 52 [24], which is based on these 

results, also under-predicted the capacities of single angle struts.  

 

The aforementioned research focused on isolated members and appears to ignore 

the effect due to end connection details, which may also affect the compressive 

resistances of the angle struts. Elgaaly et al. [25] conducted an experimental 

program to investigate the structural behaviour of non-slender single angle struts as 

part of three-dimensional trusses attempting to model the actual end conditions as 

closely as possible. Fifty single angle specimens cover a range of slenderness ratio 

from 60 to 120 which may be regards as of intermediate lengths. The truss was 

designed so that the target failure member would fail first without introducing 

significant deformations in the remainder of the truss. After each test, only the 

failed member was replaced allowing multiple tests to be conducted under the same 

setting. The failure modes of the specimens involved flexural buckling about the 

principal minor axis, flexural buckling about the geometric axis, local buckling of 
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the connected leg coupled by flexural buckling about either the geometric or the 

principal minor axis, and flexural-torsional buckling. With the failure loads, the 

design rules given by the ASCE Manual 52 for the Design of Steel Transmission 

Tower [24] and AISC LRFD Specification for Structural Steel Buildings were 

evaluated [16]. In ASCE Manual 52 [24], the angles are always considered to be an 

axially load member; the end restraint effect and the load eccentricity are accounted 

for by the use of an effective slenderness ratio rKL . AISC LRFD specification [16] 

considers the effect of biaxial bending induced by the load eccentricity by using 

appropriate interaction equation. Results showed that the nominal loads calculated 

from Manual 52 [24] were very close to or exceed the actual failure loads. A 

similar conclusion for the AISC LRFD [16] specification was drawn when the 

angles were considered as concentrically loaded. When the load eccentricity was 

taken into consideration, the AISC LRFD [16] specification nominal loads were 

unnecessarily conservative. The test results indicated that both design methods 

were inadequate for non-slender single angle members. The authors made a few 

suggestions to resolve the over-design in the AISC specifications. One possible 

way is to consider the end restraining effect by using an effective length factor less 

than one. Another possible way is not to add the worst case bending stresses due to 

load eccentricities that actually do not occur at the same point of the angle cross 

section. It is more precise to calculate the resultant stress at each extreme point to 

find out the most critical point. 

 

In roof trusses, the single angle web members are often connected by one leg on 

one side of the chords and sometimes alternately on opposite side of the chords. 
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Theoretically, single angle struts whose web members are connected alternately on 

opposite sides should have less compression capacity than the same struts 

connected on the same side. However, most of the design codes seem to ignore this 

circumstance. Woolcock and Kitipornchai [26] proposed a design method based on 

experimental observation [14]. In the proposed method, not only is the effect of 

load eccentricity taken into account, but cases where web members are all on one 

side or on opposite side are also considered. This method was considered simpler 

and less conservative than the conventional axial force-biaxial bending interaction 

approach. The current Australian standard AS 4100-1998 [27] also follows this 

approach.  

 

From the available literature, it can be seen that in most of the cases, the 

experimental results on eccentrically loaded steel single-angle struts can disagree to 

a great extent from the compressive resistances calculated using existing 

conventional design method. In view of this, Sakla [28] delivered an innovative 

approach to predict the load-carrying capacity of pin-ended single-angle struts 

using artificial neural networks (ANNs). The proposed ANN model was trained 

and validated by the reported experimental results [18-20,22]. It was shown that the 

model predicted better than the current AISC specifications. The model also 

offered an efficient alternative in predicting the load-carrying capacity of 

eccentrically loaded single-angle struts. The advantage of using neural network 

modeling is that the model can always be fine-tuned to obtain better results by 

inputting new training patterns as long as new data are available. However, the 

proposed ANN model so far is only limited to single angle struts with pin-ended.  
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2.3 Development of second-order analysis of steel framed structures 

2.3.1 General 

Finite element methods for steel framed structures allowing for second-order and 

nonlinear effect has been studied extensively over the past few decades. Basically, 

there are two main approaches in element formulations. The first approach involves 

solving the differential equilibrium equation for the relationship between the force, 

the moments and the rotations [29,30] while the second approach is to assume a 

cubic displacement function and apply the principle of minimum potential energy 

[31,32]. Oran [29,30] presented a tangent stiffness matrix for the geometrically 

nonlinear analysis of elastic space frames using the stability function concept. In 

the formulation, the rotations and translational displacements of the joints were 

considered to be arbitrarily large. The basic member force-deformation 

relationships were derived from the conventional beam-column theory, which 

assumes that the relative deformations of the members are small, so that the 

coupling between the axial force and the moment was accurately included in the 

matrix formulation. Meek and Tan [32] derived the element stiffness matrix by 

assuming a cubic deflection curve and applying the minimum potential energy 

principle. The stiffness matrix can be solved by the Newton-Raphson method 

which is a linearized incremental-iterative procedure. During the incremental-

iterative process, the change in geometry and the change in bending stiffness 

coefficients are considered so that the second-order Δ−P  and δ−P  effects are 

included in the analysis. However, Meek and Tan [32] pointed out the linearized 

incremental iterative techniques appeared to be insufficient to study pre- and post 

buckling behaviour because of the divergence problem after the limit point and 
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thus introduced a modified arc-length method. The solution method facilitated the 

studies of snap-through buckling of thin shell structures. The results agreed well 

with the previously published analytical solutions. Chan and Chui [33] also 

suggested a number of nonlinear solution techniques, which will be discussed in 

details in Chapter 4, to relieve the difficulties associated with tracing the 

equilibrium path beyond the limit point. 

 

2.3.2 Second-order analysis of angle struts 

Hu et al. [34] and Lu et al. [35] developed a finite element method for stability 

analysis using the total energy approach with the effect of initial curvature, initial 

twist and residual stresses included in the formulation. The equilibrium path was 

traced using the Newton-Raphson method. The method was applied to determine 

the theoretical load-deformation relationships of some test struts reported in the 

literature. Very close agreement between the theoretical and the experimental 

results was achieved. The method was employed to study the ultimate strength of 

single-angle struts loaded concentrically and eccentrically through gusset plates. 

The initial curvature was imposed in the direction so that the situation is most 

severe. The effect of residual stresses was also taken into account in the 

calculations. For concentrically loaded struts, the results showed that the initial 

curvature posed a significant influence on the ultimate strength of the angle struts 

of stocky and intermediate slenderness range. For single-angle struts loaded 

through gusset plates, it was generally believed that the member has a higher 

resistance if the connection was made through the short leg (i.e. long leg 

outstanding) as this will provide more lateral stiffness to the truss. However, 
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having long legs connected to gussets is easier for connection. Interestingly, the 

numerical results showed that angles with short leg outstanding were more 

favourable for stocky members. The results also indicated that end restraint can 

significantly increase the strength of an eccentrically loaded single-angle strut.  

 

Kitipornchai and Chan [36] employed a similar approach to solve the problem of 

elastic behaviour of restrained beam-columns. However, the element geometric 

stiffness matrix was derived with the effect of the shear centre not coincident with 

the centroid taken into account. To cope with this effect, a transformation matrix is 

required to relate the member forces and displacement to those at the node. 

Mathematically, this matrix transforms vector in a coordinate system to another 

parallel system with a different position of origin as shown in Figure 2.1. The 

equilibrium paths were then determined from the incremental and the total-force-

deformation equilibrium equations using the arc-length method. The results were 

compared with those reported by Trahair [12]. It was shown that when the 

geometry was not updated, the results agreed well with the finite integral solutions. 

However, when the geometry was updated, the influence of the pre-buckling 

deformations was apparent. In other words, the conventional numerical procedure 

can grossly overestimate the actual member load-carrying capacity.   

 

Sun and Butterworth [37] developed a nonlinear finite element model applicable to 

steel single angle compression members loaded eccentrically through one leg using 

an existing finite element package. Realistic initial geometric imperfections similar 

to a multi-wave local buckling mode were incorporated into the model, which 
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allows large inelastic deformations and predicts local and overall buckling 

behaviour. Although a relatively coarse mesh was used, the results showed that the 

model was able to predict behaviour up to ultimate load. However, the post-

buckling behaviour was much more difficult to predict. Laboratory tests were also 

conducted for the purpose of calibrating the model. A parameter study was carried 

out to determine the ultimate axial load capacity of 121 equal angle struts and 88 

unequal angle struts covering slenderness ratios from 30 to 300. Comparison of the 

results with nominal axial strength prescribed by the design rules given in the New 

Zealand Steel Structures Design Standard, NZS 3404 [38], revealed significant 

conservatism.  

 

The aforementioned research work on second-order analysis were solved by 

numerical solution techniques. A closed-formed solution of the lateral deflection of 

an eccentrically loaded planar beam-column was developed by Kalaga and Adluri 

[39] using a potential energy approach based on the nonlinear Green strain tensor. 

The initial curvature of the beam-column was considered and a sine curve 

displacement function was assumed. By applying the formulation to a steel beam-

column with a slenderness ratio of 200, it was shown that it was possible to 

develop reasonably accurate closed-form solutions for nonlinear beam-column for 

large-deflection. However, the method so far is only suitable of analysis of single 

member bending about one axis. The authors suggested the concept can be 

extended to biaxial bending and inelastic behaviour. 
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2.3.3 Second-order analysis for design purpose 

The advantage of the second-order analysis over the traditional linear analysis is 

that the former is capable of accurately predicting the structural response of a steel 

structure under loading, thus enabling the engineers to design more economically 

and safely. However, the second-order analysis methods mentioned above were 

mostly used for research purpose, for example, to study the structural behaviour of 

an isolated loaded member, and rarely used in routine design in the past decades 

because of the enormous amount of computer time and effort required for the 

analysis. Although satisfactorily accurate results can be obtained by using more 

elements per member, it will not only cause inconvenience, but also require heavy 

computational time especially when a large structure under many load cases is 

analysed. To date, the widespread use of personal computer not only facilitates 

researchers to carry out studies on second-order and advanced analysis, but also 

provides an excellent opportunity for engineers to design structure by the second-

order analysis. In order to popularize the use of advanced design method among 

engineers, the method must be user-friendly with only a few elements per member 

required to achieve satisfactory accuracy. However, in the presence of axial force, 

the bending stiffness coefficients are no longer constant but dependent on the 

magnitude and sign of the axial force, which is a function of displacements and 

rotations of the element, making using a single element using a cubic deflection 

curve not possible.  

 

Al-Bermani and Kitipornchai [40] proposed an approach allowing the use of least 

elements in a nonlinear analysis accounting for both the geometric and material 
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nonlinearity, based on an updated Lagrangian formulation. The procedure is 

suitable for analyzing large-scaled space frames since the structures may be 

modelled using only a few elements per member. It is achieved by incorporating a 

displacement stiffness matrix which provides the necessary coupling between the 

axial, flexural and torsional deformations. However, this element does not allow 

for member initial imperfection, which is mandatory in some national design codes 

such as Eurocode 3 [41]. For simulation of member initial imperfection, two or 

more elements per member will be required. 

 

Chan and Zhou [42] and Zhou and Chan [43] developed a self equilibrium 

pointwise equilibrating polynomial (PEP) element for slender frames. Their 

element, derived from a fifth-order displacement function, is capable of dealing 

with second-order analysis using a single element for each member. The reliability 

and accuracy of the PEP element can be checked by predicting the elastic buckling 

load of a strut using a single element strut. Interestingly, their PEP element gives a 

negligible error while the cubic element considerably overestimates the buckling 

load.  However, this PEP element is still inappropriate for practical design purpose, 

because the mandatory requirement for member imperfection in various design 

codes cannot be incorporated into the analysis which can only be achievable when 

using more than one element per member.  After all, the negligence of member 

initial imperfection is dangerous in actual design. Chan and Zhou [44,45] improved 

the PEP element so that the member initial imperfection is included. The 

distributed member load can also be allowed for. It was illustrated with some 

worked examples that the member initial imperfection undoubtedly had an adverse 
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effect over the behaviour of a structure. Although it was shown that the initial 

imperfection is less important when the stability of a structure is controlled by the 

global Δ−P  effect and more significant when the local δ−P  effect dominates the 

structural behaviour, it is recommended to include member imperfection in a 

general second-order analysis because it may not be obvious to judge the 

importance of the Δ−P  and the δ−P  effects. 

 

Chan and Gu [46] proposed another exact element derived from the differential 

equilibrium equation, which requires a slightly more complicated expression for 

the tangent stiffness matrix than the PEP element by Chan and Zhou [44]. The 

difference between these two approaches lies in their completely different 

formulations. For the PEP element, a fifth order displacement function is assumed 

that adopts the energy principle and follows a standard finite element procedure to 

derive the element stiffness matrix. For the present curved stability function 

approach, the equilibrium equation is used to formulate the element, and no 

previous assumption of displacement function is required. In addition to structural 

instability, material yielding of structural members is also a major factor 

controlling the ultimate load of a structure. In the inelastic range, material yielding 

limits the moment capacity of a cross-section. The cross-section cannot further 

resist any moment when the section capacity is reached. For framed structures, 

plastic analysis can be broadly classified into two main types, namely the plastic 

zone method and the plastic hinge method. In the plastic zone approach,  all the 

beam and column members of a structure are discretized into a number of elements 

and each cross-section is also further divided into a number of small fibers with the 
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fundamental stress-strain relationship is explicitly and directly used for moments 

and forces computation. In contrast, in the plastic hinge approach material yielding 

is accounted for by zero-length plastic hinges at the end(s) of each element. 

Plasticity is assumed to be lumped only at the two ends of an element, while the 

portion within the element is assumed to remain elastic throughout the analysis. 

The plastic zone method is more accurate than the plastic hinge method. However, 

owing to the huge amount of calculation work required, the plastic zone approach 

is more suitable for simple structures. The plastic hinge method is considered more 

efficient and thus preferred in practical engineering design. 

 

In order to incorporate inelastic design into second-order analysis, Chen and Chan 

[47] derived an element allowing for the formulation of plastic hinges at the mid-

span and two ends. The transfer of fix-ended moments from the member loads is 

allowed for in the analysis by inserting spring elements at the mid-span and two 

ends. This transferred moment will not be constant but dependent on the spring 

stiffness for modelling plastic hinges which will be automatically computed in the 

analysis. The process of gradual formation of a plastic hinge can be simulated by 

reducing gradually the connection stiffness. At the extreme cases of fully plastic 

and perfectly elastic section, the tangential connection stiffness is respectively 

equal to zero and infinity, which in actual computer implementation is taken as 0 

and 109 of the element stiffness. The use of the present element will reduce not only 

the computer time, but also the data manipulation effort for a second-order plastic-

hinge analysis.  
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Zhou and Chan [48] and Chan and Zhou [49] modified the PEP element to plastic 

point-wise equilibrium polynomial (PPEP) element by adopting a simple concept 

of superimposition of triangular deflected shapes due to the formation of plastic 

hinge to the fifth order deflection shape for elastic deflection to yield the final 

deflection of the element. The plastic hinge due to the combined effects of the 

moments and the axial force is located and the effect of plastic hinge in the stability 

is incorporated into the second-order analysis. The investigation began with one 

plastic hinge along member and was widened to three hinges along member; two at 

the two ends and one at the location of maximum combined stress due to axial 

force and moment. The proposed method takes advantage of residual strength after 

the first yield of first plastic hinge occurs and thus leads to a more economical 

design. 

 

2.3.4 Flexural-torsional buckling analysis 

Most framed structures are three-dimensional in terms of geometry, loading and 

structural behaviour. To simplify the analysis, usually a three-dimensional framed 

structure is considered as a number of two-dimensional frames. However, such 

simplification may not provide an adequate description of the actual behaviour of 

the structure. For example, a short angle strut may fail in a flexural-torsional 

buckling mode which is usually ignored in a two-dimensional analysis. In spite of 

the actual behaviour is three-dimensional, it is sensible to say that flexural-torsional 

buckling may not be critical in practical structures provided that sufficient lateral 

restraints are provided. However, in order to accomplish the complete  buckling 

check by advanced analysis allowing for second-order effects due to axial force  
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and moment coupled with displacement and twist in a moderately large rotation 

range, Gu and Chan [50] formulated the tangent stiffness matrix for geometrically 

nonlinear analysis allowing for Euler, lateral and torsional buckling. In the 

proposed formulation, three deformation matrices due to axial force and moments, 

which represent the higher order-effects due to axial force and moments in the 

element, are derived. These matrices are then used together with linear and 

geometric stiffness for beam elements to analyze the structural behaviour of space 

frames which comprise members with negligible warping effects. Numerical 

examples demonstrate that the proposed element is accurate and efficient in 

predicting the higher-order behaviour. 

 

 

2.4 Analyses of steel framed structures 

White and Hajjar [51] studied two stability design approaches that are alternatives 

to the traditional buckling-solution based procedure, which uses the effective 

length factor to take into account differing end restraints in columns. The first 

approach is an elastic design approach based on the modification of the first-plastic 

hinge concept, which uses the actual column length in conjunction with notional 

lateral loads acting at each storey level. This procedure is also termed as the 

notional load approach and is permitted in various national codes such as, 

Australian Standard AS 4100 [27], Eurocode 3 [41], AISC LRFD [52] and the 

British Standard BS 5950: Part 1 [3]. The notional lateral load acting on each 

storey is to take into account the storey out-of-plumbness imperfection under 

gravity loads. An overview of the approach is given in Ref. [53]. The second 
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approach is based on rigorous advanced analysis, which is described previously in 

Section 2.3. The approach is capable of capturing member three-dimensional 

inelastic stability behaviour accurately. Although the former approach can give 

reasonable estimates of buckling loads about strong axis and weak axis, it tends to 

be conservative for lateral-torsional beam-column failure. On the other hand, the 

latter approach captures the interaction between framing members due to 

progressive inelastic redistribution of stiffness and strength. In addition, advanced 

analysis provides an efficient and flexible analysis and design method by 

eliminating the need to check the section capacity factor of members separately, 

and in the meantime providing significantly more information about the idealized 

structural response. 

 

The second-order analysis and design method is widely used in designing large 

latticed structures, such as transmission towers, which are widely regarded as one 

of the most difficult forms of lattice structure to analyze. One of the reasons is it is 

difficult to estimate the correct wind speed. Another reason is it is difficult to 

assume a correct effective length. Traditionally, full-scale testing of towers has 

formed an integral part of the tower design. Stress calculations in the tower are 

normally obtained from a linear elastic analysis in which the bracing members are 

assumed to have pinned connection. However, such conditions rarely exist; results 

from full-scale tests often show that bending stresses in members could be as high 

as axial stress [54]. Therefore, the present technique of designing tower may not be 

adequate under complex loading conditions. Albermani and Kitipornchai [55] 

proposed a nonlinear analytical technique; the tower is modelled as an assembly of 
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beam-column elements. Linear, geometric and deformation stiffness matrices are 

used to describe the behaviour of a general thin-walled beam-column element in an 

updated Lagrangian framework. The method was employed to predict failure loads 

and failure modes of a number of tested towers. The results are in good agreement 

with those obtained from tests. Kitipornchai et al. [56] developed a model to assess 

the effect of bolt slippage on the structural behaviour of lattice structures. Due to 

insufficient reliable experimental data, the model cannot be used for practical 

purposes. Ungkurapinan et al. [57] studied the behaviour of joint slip in steel 

electric transmission towers. 36 joint tests were carried out and mathematical 

expressions to describe slip and load-deformation behaviour were developed. 

Values calculated from the expressions can be used in Kitipornchai et al.’s models 

[56] and the joint deformation should be incorporated in a second-order analysis. 

Shakourzdeh et al. [58] derived a numerical method to take into consideration the 

deformation of the joint connections in linear, nonlinear and stability of three-

dimensional thin-walled space frames. The authors demonstrated the importance of 

connection behaviour for determining the overall stability and ultimate strength of 

framed structures through numerical examples.  

 

Kang et al. [59] proposed a finite element model (FEM) in which member 

continuity, the asymmetrical sectional properties of members, the eccentricity of 

connections, and geometrical and material nonlinearities are considered. The 

proposed FEM is verified using experimental results. Kang et al. [59] pointed out 

that the pin-ended assumptions and the negligence of secondary bracing may be too 

conservative for a tower design. In fact, the connection rigidity of the bracing 
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members significantly affects the ultimate load capacity. Rigid connection 

increases the buckling capacity. However, it may not be realistic or involves a large 

amount of construction cost. In summary, in design a lattice tower, the assumption 

of connection rigidity should be realistic; otherwise, the buckling capacity of it will 

be either overestimated or underestimated, which would be consequently either 

uneconomical or dangerous. 

 

Teh et al. [60] demonstrated the global buckling behaviour of high-rise steel 

storage rack frames is hardly revealed by commonly used two-dimensional (2D) 

buckling analyses as three-dimensional (3D) interaction modes are involved and 

not captured. It is shown that the monosymmetric upright columns of a high-rise 

rack frame fail in a flexural-torsional mode due to the shear-centre eccentricity of 

the sections, and that the 3D buckling analysis is more reliable in determining the 

critical member of a rack frame. However, in routine design, 2D analyses in the 

down aisle and in the cross-aisle directions are performed independently. Current 

steel storage rack design standards such as AS 4084 [61] combine independent 2D 

flexural buckling analyses and simplified flexural-torsional buckling analysis of 

individual columns to account for 3D behaviour. However, the use of the 2D 

design procedure based on the simple effective length factor of 1.0 for a braced 

frames results in overestimation for the elastic flexural-torsional buckling strength 

of the upright columns; while the effective length factor assumption of 1.7 for an 

unbraced frame results in underestimation of the strength of the frame, which are 

not consistent with 3D buckling analysis. 
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It can be seen from the literature review that second-order analysis of frames does 

not cover angle sections which are characterised by asymmetric cross section and 

eccentric connections. This thesis is devoted to fill this gap and to make the design 

method a valuable tool for analysis of this type of steel frames. As can be seen in 

the following chapters, the technique is calibrated against code recommendations 

and used for design of a practical angle trusses which are further compared against 

the hand calculation. 

 

 

2.5 Concluding Remarks 

The literature review consists of three parts. The first part focuses on the classical 

analysis of angle compression members which enables us to understand the 

structural behaviour of angle members loaded either concentrically or eccentrically. 

The second part focuses on the development of nonlinear analysis of steel 

structures of both symmetrical and asymmetrical sections. The second-order 

analysis gives us a better understanding on the structural behaviour of angle 

compression members in a more complex configuration and the structural response 

of steel framed systems. However, a great deal of time and money involved in 

computer analysis in the old days prohibited the widespread use of second-order 

analysis in routine design. In recent years, as computer technology advances, 

personal computers become popular and indispensable in our daily life. This 

provides a golden opportunity to adopt second-order analysis in routine design. The 

last part is a literature review of analyses of steel frames. There are a number of 

alternative approaches to assess the load carrying capacity of a steel framed system 
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on top of the traditional effective length factor method including the notional load 

method and the second-order analysis. Many researchers and engineers consider 

the second-order analysis is capable of capturing the true equilibrium path of the 

structure and produces a more rational design of steel structures. 
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Fig. 2.1 A general angle element 
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Chapter 3 Review of Current Design Methods  

 

3.1 Introduction 

A review of literature shows that, depending on cross-sectional configurations, 

eccentricities and effective lengths, single-angle struts usually fail by the following 

modes:  

• flexural buckling about the principal minor axis 

• flexural buckling about the geometrical axes 

• flexural-torsional buckling 

• interaction between local and global buckling and  

• local plate buckling 

 

The design rules regarding flexural buckling were already well developed in many 

national codes. The effort required to solve for the cubic equation prohibits the 

consideration of flexural-torsional buckling mode in routine design, in addition to 

its assumption of elastic material behaviour. For stocky struts, flexural-torsional 

buckling may be more critical. So, the current design rules may be inadequate. This 

chapter gives a review of current design practice for eccentrically loaded angle 

struts. The national design codes being reviewed include the British Standard, 

Hong Kong Code, European Standard, American Standard and Australian Standard. 

In addition, the conventional design process will also be explained in details. 
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3.2 Current design methods for angle struts 

3.2.1 British Standard 

BS 5950 Part 1:2000 [3] states that for single-angle struts connected to a gusset 

plate or directly to another member at each end or by an equivalent welded 

connection may be treated as axially loaded with reduced compressive strength, 

ignoring the eccentricity due to the end connections and modifying the effective 

slenderness ratio. When, at end connections, two or more bolts are used in standard 

clearance holes in line along the angle, or by an equivalent welded connection, the 

slenderness λ should be taken as the greatest of: 

vλ85.0  but 157.0 +≥ vλ  

aλ0.1   but 307.0 +≥ aλ  

bλ85.0   but 307.0 +≥ bλ  

where vλ , aλ  and bλ  are the slenderness ratios about minor v-v axis, the a-a axis 

parallel to the attached leg and the b-b axis parallel to the outstanding leg as shown 

in Figure 3.1. 

 

If a single bolt connection is used at each end, the compression resistance should be 

taken as 80% of the compression resistance of an axially loaded member and the 

slenderness λ should be taken as the greatest of: 

vλ0.1   but 157.0 +≥ vλ   

aλ0.1    but 307.0 +≥ aλ  

bλ0.1   but 307.0 +≥ bλ  
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3.2.2 European Standard 

Eurocode 3 [41] allows the direct use eccentricities and end fixities in the design of 

angles as web members in compression provided that the chords provide 

appropriate and adequate end restraint to web members made of angles and the end 

connections of such web members supply appropriate fixity (at least two bolts if 

bolted). The slenderness ratio should be taken as the greatest of: 

  vλε 7.033 +     

  Yλε 7.047 +     

  Zλε 7.047 +   

where 
yp

235
=ε  

  

vλ , Yλ  and Zλ are respectively the effective slenderness ratios about minor v-v axis 

and the Y-Y and Z-Z axes which are parallel to the two legs as shown in Figure 3.2. 

However, when only one bolt is used for end connections of angle web members, 

the eccentricities should be taken into account considering the interaction of 

bending and axial force. 

 

3.2.3 Hong Kong Standard 

In Hong Kong Steel Code [62], for web members, buckling about principal axes 

and axes parallel to the legs should be considered. For angle sections connected by 

two or more bolts, the slenderness ratio should be calculated from the larger of the 

actual member length and the following: 
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  ( )ελ 9.937.035.0 v+    

  ( )ελ 9.937.05.0 x+    

  ( )ελ 9.937.05.0 y+    

where 
yp

275
=ε  and λ  is the effective slenderness ratio.  

 

vλ , xλ  and yλ are respectively the slenderness ratios about minor v-v axis and the 

x-x and y-y axes parallel to the two legs. For a single bolt connection, 80% of the 

axial force compression resistance of the double bolt connection should be used. 

The code states that for short members, the effect of load eccentricity should be 

considered analytically. As an alternative, the buckling strength can be designed 

using the combined axial force and moment equation, or by a second-order analysis 

allowing for eccentric connections and member imperfections such as using an 

equivalent member imperfection giving the same compressive strength.  

 

3.2.4 American Standard 

In the AISC LRFD Specification for Single-Angle Members [63], the design 

strength of compression angle members shall be taken as ccPφ  

where  =cφ resistance factor for compression 90.0=  

  cgc pAP =                                                                                                    (3.1) 

a. For 5.1≤Qcλ  

 ( ) y
Q

c pQp c
2

658.0 λ=               (3.2) 
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b. For 5.1>Qcλ  

y
c

c pp ⎥
⎦

⎤
⎢
⎣

⎡
= 2

877.0
λ

              (3.3) 

where 
E
p

r
KL y

c π
λ =  

 =Q reduction factor for local buckling 

 

K  is the effective length factor to accommodate the various end conditions. 

According to the Commentary on Section E2, Equations (3.2) and (3.3) are based 

on a reasonable conversion of research data into design equations. For members 

whose design is based on compressive force, the largest effective slenderness ratio 

preferably should not exceed 200. AISC LRFD [63] does not provide a simplified 

approach in designing eccentrically loaded angles, which should be designed as 

members in combined flexure and axial forces. 

 

The interaction of flexure and axial compression applicable to specific locations on 

the cross section shall be limited by the following equations: 

For 2.0≥
cc

c

P
F

φ
  

0.1
9
8

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

czb

z

cyb

y

cc

c

M
M

M
M

P
F

φφφ
            (3.4) 
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For 2.0≤
cc

c

P
F

φ
 

0.1
2

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

czb

z

cyb

y

cc

c

M
M

M
M

P
F

φφφ
             (3.5) 

where =cF axial compression 

=zy MM , maximum moment about y-y and z-z axes 

=czcy MM , compression capacity about y-y and z-z axes  

=bφ resistance factor for flexure 90.0=  

 

The interaction equations shall be evaluated for the principal bending axes either 

by considering the sense of the associated flexural stresses at the critical points of 

the cross section, the flexural terms are either added to or subtracted from the axial 

load term. 

 

3.2.5 Australian Standard 

In AS 4100 [27], single angle web compression members in trusses which are 

connected with at least by two bolts or by welding at their ends and loaded through 

one leg shall be designed to satisfy the following: 

1
cos

≤+
αφφ cz

a

c

c

M
M

P
F               (3.6) 

where =aM  the design end moment about a-a axis parallel to the attached leg 

 =φ the capacity factor 

 =α the angle between z-z and a-a axis  



 55

The design end moment aM  shall be taken as not less than eFc ⋅ , resulting from the 

out-of-plane load eccentricity e , 

where 
2
tce a −=  for angles on the same side of the truss chord, or 

 tc eee +=  for angles on opposite sides of the truss chord 

 (see Figure 3.3) 

 

3.2.6 Summary 

As a concluding remark, BS 5950 [3], Eurocode 3 [41] and Hong Kong Steel Code 

[62] provide a faster design approach for eccentrically load single angle 

compression members but seem to be overly simplified as the effects due to end 

restraints and load eccentricity are ignored. AISC LRFD [63] and AS 4100 [27] are 

more rational to consider the load eccentricity in design explicitly. However, the 

method of determining the effective length is still controversial for some time. The 

first three design codes assume that the two ends of the members are immovable. In 

the last two design codes the value of the member effective length factor are 

determined on the basis of the rotational and the translational restraints at the ends 

of the member. In addition, since many of the design rules in codes are developed 

based on minor axis flexural buckling, they may not be adequate especially for 

stocky members which are susceptible to flexural-torsional buckling.  
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3.3 Conventional design method  

3.3.1 Design Procedure 

The previously mentioned design codes, which are widely used today, were 

developed based on nonlinear analysis of simple idealized individual members. 

However, the conventional design procedure of structural steelwork is based on 

linear analysis with the nonlinear effects ignored which means an element of the 

structure is having a constant stiffness independent of the deformations and 

magnitude of member forces. Mathematically, this condition can be presented as: 

uKF ⋅=                (3.7) 

in which K  is the element stiffness matrix, u  is the displacement vector and F  is 

the force vector of a structural system. 

 

When designing a steel structure, first of all, a linear analysis is carried out to 

determine the internal forces and moments of all members under external loads. 

After that, the resistance of each individual member is determined according to the 

design rules given in the codes to account for the nonlinear effects. A sufficiently 

safe structure is having its resistance larger than the factored forces and moments 

according to this method. The relationship can be written as: 

FR λφ ≥               (3.8) 

in which φ  is the material factor, R  is the resistance of the structure, λ  is the load 

factor. 

 

 

 



 57

The process of the conventional design is summarized schematically in Figure 3.4. 

A typical buckling resistance check equation is shown as follows: 

1≤++
yz

z

yy

y

cg pS
M

pS
M

pA
P              (3.9) 

in which cp  is the design compressive strength, yp  is the design yield strength, P  

is the external force applied to the section, gA  is the gross cross-sectional area, yM  

and zM  are the external moments about the y and z axes respectively and yS  and 

zS  are the section modulus about y and z axes respectively.  

 

3.3.2 Advantages and disadvantages of linear analysis 

A special feature of linear analysis is the validity of the principle of superposition 

of different load cases because of the assumption of constant element stiffness. 

Therefore, the force diagram of ultimate load of the structure can be simply 

obtained by summing individual force diagrams of various load cases. However, 

the linear theory is only applicable for structures with small displacements and a 

less severe degree of nonlinearity.   In fact, the realistic structural behaviour is 

nonlinear. The nonlinear behaviour can be demonstrated by compressing a column 

of intermediate slenderness range. Because of the presence of initial geometric 

imperfection, bending occurs immediately when the load is applied instead of 

buckling at the elastic buckling load as shown in Figure 3.5. This type of 

nonlinearity can be regarded as the δ−P  effect. In a linear analysis, the column is 

assumed to be perfect and will only shorten with the axial load applied and the 

calculated compressive stress is distributed evenly over the cross section; while, in 
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actual fact, the true compressive stress is distributed linearly over the cross section 

in the elastic range because of the bending action. In the design stage, in order to 

compensate compressive stress due to flexure, the compressive strength of the 

column is reduced from yp  to cp according to the Perry-Robertson formula with 

the assumed effective length of the column. The effective length factor is largely 

dependent on the end conditions of the member. Therefore, the checking of the 

buckling resistance is carried out as an independent stage instead of an integrated 

part of design. Another nonlinear effect can be demonstrated by applying a point 

load at the mid-span of a beam as shown in Figure 3.6. Under the point load, the 

beam will deflect vertically and horizontally. However, the horizontal displacement 

is relatively small compared with the vertical displacement and is usually ignored 

in analysis. Although, it is sufficiently safe to ignore the horizontal displacement in 

a structural design if the horizontal displacement is small, it will be dangerous to 

exclude this effect for slender steel structures with large deflections. These types of 

simple elements rarely exist in real structure; in fact, the joints which an element is 

connected to may move and affect the compression capacity and the accuracy of 

the compressive strength estimated by the design codes is highly dependent on the 

assumptions of the effective length. If the assumed effective length is longer than 

the actual effective length, the design may be too conservative. Likewise, if the 

assumed effective length is shorter than the actual effective length, the design may 

be insufficiently safe.  Consequently, any incorrect assumptions of effective length 

may lead to an uneconomical design or an unsafe design. This design procedure 

shows an inconsistency between analysis and design. The collective effect of the 

Δ−P  and δ−P  is best illustrated by a two-storey frame subject to two vertical 
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point loads at the top as shown in Figure 3.7. Globally, the local deflection and the 

global displacements in fact mutually affect each other and the structural response 

of the other members as well and should not be ignored in analysis. In a linear 

analysis, the interactions with buckling, connection behaviour and other second-

order effects are always ignored. Therefore, this type of analysis is incorrect in 

calculating forces and moments. The best way to eliminate the inconsistency 

between analysis and design is to carry out a second-order analysis which is going 

to be described in details in Chapter 4. 
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Figure 3.1 Axes of an angle section compliant with BS 5950 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Axes of an angle section compliant with Eurocode 3 
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(a) Angles on same side 

 

 

 

 

 

 

 

 

 

 

 

(b) Angles on opposite sides 

Figure 3.3 Single angles loaded through one leg 
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Figure 3.4 Conventional design procedure 

 

 
 

Figure 3.5 Bending of column due to presence of initial imperfection  
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Figure 3.6 Shortening of beam due to lateral load  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.7 Change of structural geometry of a steel frame 
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Chapter 4 Second-order Analysis and Design using Incremental-

iterative Numerical Methods 

 

4.1 Introduction 

The conventional design procedure has been widely used because during the pre-

computer age when the computer time was expensive, linear analysis seemed to be 

the best choice of analysis as it requires the least amount of computer time and 

effort. Today, the prevalence of low-cost personal computers and the growing 

importance of environmental and economical concerns provide a golden 

opportunity to develop a second-order analysis method. In this method, which has 

been well-researched by Chen and Chan [47], Chan and Zhou [44], Chan and Chui 

[33], Chan [64], both the first-order and second-order effects are included during 

the analysis. In other words, the member deflection (δ ), together with the global 

displacment ( Δ ), is taken into account so that section capacity check is adequate 

for strength design as follows: 

( ) ( )
1≤=

Δ++
+

Δ++
+ φ

δδ

yz

yyz

yy

zzy

yg pZ
PM

pZ
PM

pA
P           (4.1) 

in which yp  is the design strength, P  is the external force applied to the 

section, gA  is the cross-sectional area, yM  and zM  are the external moments about 

the y and z axes respectively and yZ  and zZ  are the section modulus about y and z 

axes respectively. 
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( )zzP Δ+δ  and ( )yyP Δ+δ  are the moments due to the change of member 

stiffness under load and large deflection effects of which the consideration, 

incorporating the initial imperfections, allows for the effect of “effective length” 

automatically. In addition, the characteristics of realistic structure (e.g. initial 

imperfection and residual stresses) are also considered in the analysis so the design 

is completed readily with the analysis. The process of a non-linear analysis design 

is summarized in Figure 4.1. Equation (4.1) captures the essence of second-order 

analysis that a simple section capacity check equation with the δ−P  and Δ−P  

moments considered is already enough for stability check. As such, it is 

unnecessary to use the reduced compressive strength, cp  to calculate the axial 

strength in the proposed second-order design method. In a theoretical term, the 

reduction of buckling strength for a more slender structure can hardly be 

understood in a simple engineering term unless we explain the phenomenon as an 

increase in δ−P and Δ−P  effects. The effective length concept can hardly be 

established here since the relationship between the buckling resistance of a 

complex but slender structure and the effective length cannot be established 

numerically. 

 

 

4.2 The tangent stiffness matrix 

The element stiffness matrix allowing for the presence of axial force can be derived 

from the differential equilibrium equation directly using the stability function 

method. Alternatively, the element stiffness matrix can be derived from an assumed 
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displacement function using the total potential energy method. By the principle of 

stationary potential energy, the linear and geometric stiffness matrices can be 

derived by substituting the displacement function into the energy function and 

differentiating twice the energy function with respect to the degrees of freedom as 

[ ]GL
ji

kk
xx

+=
∂∂
Π∂ 2

               (4.2) 

in which Π  is the energy function,  Lk  is the linear stiffness matrix, Gk  is the 

geometric stiffness matrix, and ix , jx  are the nodal degrees of freedom.  

The energy functional of a general beam-column element as shown in Figure 4.2 

corresponding to the action of an axial force can be expressed as: 
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A standard procedure of deriving an element stiffness matrix from an assumed 

cubic displacement function is shown as follows. 

 

We should firstly establish a polynomial for the deflection of the element. If we 

have 4 degrees of freedom, namely the two displacement and the two rotational 

degrees of freedom, we use cubic polynomial as displacement function which has 

also 4 coefficients so that the coefficients can be solved. Thus,  

3
3

2
210 xaxaxaav +++=               (4.4) 
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The displacement function can then be solved with appropriate boundary condition. 

For demonstration purpose, the following simple boundary conditions of a simply 

supported column are used: 

0=x ;  0=v ; 1θ=
∂
∂
x
v             (4.5a) 

Lx = ;  0=v ; 2θ=
∂
∂
x
v            (4.5b) 

 

Thus,  

[ ]212
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2

322 θθ⎥
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+−+−=

L
x

L
x

L
x

L
xxv             (4.6) 

 

The linear and geometric stiffness matrices can be derived by substituting Equation 

(4.6) into Equation (4.2) and differentiating twice the energy function with respect 

to the degree of freedom as 
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LL

LL

P
L
EIkk GL            (4.7) 

 

Element stiffness matrices can also be derived with other assumed displacement 

functions in a similar fashion. The matrix in Equation (4.7) can also be used for 

bifurcation analysis. Mathematically, as described in Chapter 1, the structural 

system will buckle when the determinant of the matrix vanishes, i.e. 
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0=+ GL kk λ                (4.8) 

in which | | represents the determinant of the bracketed matrix. 

 

Therefore, if only one single cubic polynomial is considered as a displacement 

function, the buckling load of a simply supported column can be found from 

manipulating Equation (4.7) as, 

2

12
L
EIP =                                                                                                   (4.9) 

 

The percentage of difference between the buckling load in Equation (4.9) and the 

analytical Euler load is 21.6%. This illustrated that one element per member is not 

sufficient for second-order analysis using element derived from cubic displacement 

function. A higher accuracy can be achieved by using more elements per member. 

However, this bifurcation analysis is only based on a mathematical idealization that 

the structure deforms only in the loaded directions until the bifurcation load is 

reach which is not suitable for all kinds of structures. To predict more accurately 

the response of a structure under load, load-deflection analysis is needed which 

traced the true equilibrium path for the structure and the stresses and deflections are 

continuously updated. 

 

 

4.3 The secant stiffness matrix 

To illustrate load-deflection analysis, it is also necessary to derive the secant 

stiffness matrix. The secant stiffness relations between the moments and rotations 
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can be obtained by the first variation of the total potential energy given in Equation 

(4.3) as: 

211 30
2
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24 θθ Δ⎟
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⎜
⎝
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EIM          (4.10) 
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L
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in which  Δ  represents the incremental form of the quantities, L  is the deformed 

length. 

 

The axial force can be obtained directly from the change in element length as 

 bax uuu +=              (4.12) 

in which xu , au  and bu  are the total, the axial and the bowing shortenings 

respectively.  au  can be obtained directly by subtracting the deformed length by the 

initial length of the element calculated from the coordinates of the element nodes 

while bu  is given by: 

 bu dx
x
vL 2

02
1

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  

  
( )

30
22 2

221
2

1 θθθθ +−
=

L            (4.13) 

 

The incremental form of Equation (4.13) can be obtained by taking a variation on 

the equations as: 

 [ ]221221111 44
30 yyyyyyyyiix
LLLu θθθθθθθθ ⋅Δ+⋅−⋅Δ−⋅Δ+−=Δ +  (4.14) 
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With the secant stiffness relationships, the resistance of the element can be 

evaluated in an incremental manner. 

 

 

4.4 The transformation matrices 

Before carrying a second-order analysis, the element stiffness matrix [ ]GL kk +  

must be transformed from the local system to the global system. If an element has 6 

degrees of freedom, namely [ ]2211 zyxzyx θθθθθδ , these 6 independent 

forces and moments are required to be expressed in terms of 12 degrees of freedom 

as: 

[ ] [ ][ ]PTF =              (4.14) 

 

in which 

[ ]F  is the 12 × 1 local element force vector [ 1xF  1yF  1zF  1xM  1yM  1zM  2xF  2yF  

2zF  2xM  2yM  ]T
zM 2  

[ ]P  is the 6 × 1 elemental force vector [ ]Tzyxzyx MMMMMF 2211  
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[ ]T  is the transformation matrix as 
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With the transformation matrix in Equation (4.15), the element stiffness matrix [ ]ek  

in the local coordinate system having the dimension of 12 × 12 can be obtained as: 

[ ] [ ][ ][ ]T
GLe TkkTk +=                        (4.16) 

 

The transformation matrices relating the element to the global coordinate axes can 

be evaluated as follows: 

 

4.4.1 Rotational Transformation Matrix for principal axes 

For asymmetric members such as angles, the principle axes are not parallel to the 

global axes as shown in Figure 4.3. In order to relate the sectional properties of the 

member in the principal axes to those parallel to the global axes, a rotational 

transformation matrix is required as shown as follows: 
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4.4.2 Translational transformation matrix 

For eccentrically connected members, a translational transformation matrix is 

necessary to relate the member forces and displacements to those at the node. 

Figure 4.3 shows the correlation between the load axes and the local axes. The 

origin can be set to the point at which the load applies so that the moments due to 

eccentricity of the axial load can be considered automatically. By the rigid body 

kinematics, the translational transformation matrix can be written as: 
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and   
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4.4.3 Local to global transformation matrix 

In other to transform the stiffness matrix for the elements from the local coordinate 

system to the global coordinate system, the following transformation matrix is 

required: 
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where xl , yl  and zl  are the direction cosines of x, y and z axes  

 22
zx llQ +=                (4.23) 

When 1=yl , the following matrix for [ ]'1L  should be used. 
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The global tangent stiffness matrix is given by: 

[ ] [ ] [ ][ ]LkLK Te
T

T =             (4.25) 
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The transformation matrix [ ]L  can be considered as the product of the rotational, 

the translational and the local to global transformation matrices. That is, 

[ ] [ ][ ][ ]321 LLLL =              (4.26) 

 

 

4.5 Nonlinear analysis using the Newton-Raphson method 

The Newton-Raphson method is the combination of the direct iterative method and 

the pure incremental method. In the direct iterative method, the displacements are 

computed with the tangent stiffness, which are then used to calculate the resistance 

with the second stiffness. The stiffness and thus the new displacements are 

recalculated. This process is continued until convergence is achieved. In the pure 

incremental method, the secant stiffness is not required and the incremental 

displacements are calculated with incremental applied force. However, this method 

will produce numerical drift-off error. The direct iterative method is more accurate 

since it satisfies the equilibrium conditions while the pure incremental method 

progresses along the load-deflection curve. Therefore, the Newton-Raphson 

method combines the goodness of the two methods. Figure 4.4 presents the flow 

chart for second-order analysis using the Newton-Raphson procedure and Figures 

4.5(a) and 4.5(b) show the iterative schemes for the conventional and modified 

Newton-Raphson methods respectively. This is an incremental load method with an 

equilibrium check in every cycle. The numerical procedure iterates at a constant 

load level. In the conventional Newton-Raphson method the tangent stiffness 

matrix is continuously updated within one load cycle while in the modified one, the 
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tangent stiffness matrix is kept constant within a load cycle. The drawback of this 

method is there may exist divergence problem. The key steps of the Newton-

Raphson procedure of the present analysis are as follows: 

 

1. Apply incremental force vector [ ]FΔ  

2. Calculate the incremental global displacements [ ]uΔ  for the structure  

[ ] [ ] [ ]FKu T Δ=Δ −1                                                                               (4.27) 

    where [ ]TK  is the global stiffness matrix 

3. Update geometry [ ] 1+ix  and accumulate displacements [ ] 1+iu  

 [ ] [ ] [ ]uxx ii Δ+=+1             (4.28)

 [ ] [ ] [ ]uuu ii Δ+=+1             (4.29) 

4. Extract element displacement vector [ ]eu  from global displacement vector and 

transform to local displacement vector [ ]lu  

 [ ] [ ][ ]el uLu  =              (4.30) 

where [ ]L  is the transformation matrix       

5. Calculate the element resistance force vector [ ]lF  and transform to global axes 

[ ]eF   

[ ] [ ][ ]ll ukF =              (4.31) 

[ ] [ ] [ ]l
T

e FLF =              (4.32) 

where ][k  is the element stiffness matrix 
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6. Add up all element resistance force vectors to global resistance force vector [ ]R  

 [ ] [ ]∑= eFR              (4.33) 

7. Compute the unbalanced forces [ ]RΔ  

 [ ] [ ] [ ]RFR −=Δ             (4.34) 

   where [ ]F  is the external force vector 

 

This process is repeated until the unbalanced forces are eliminated to a sufficiently 

small error. To achieve this, it is necessary to revise the displacements and re-check 

the equilibrium condition. The convergence check is carried out using the 

following conditions: 

[ ] [ ] [ ] [ ]uuuu TT ⋅<ΔΔ %1.0       (4.35)  

[ ] [ ] [ ] [ ]FFFF TT ⋅<ΔΔ %1.0           (4.36)   

 

After the convergence requirements are satisfied, a new load cycle begins with an 

updated tangent stiffness matrix and the whole previous process repeats. The whole 

incremental-iterative process is presented graphically in Figures 4.5(a) and 4.5(b). 

In the conventional Newton-Raphson method, the tangent stiffness is updated every 

iteration which makes the procedure take fewer iterations to achieve convergence; 

in the modified Newton-Raphson method, the tangent stiffness is kept constant 

within each load cycle which makes the computer time shorter as it is time-

consuming to form and solve for the tangent stiffness matrix. A compromise of 

both methods may achieve the most optimal number of iterations. However, both 

methods may encounter divergence problem which is referred to as when the 
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applied incremental load approaches the limit point, the equilibrium errors in 

Equations (4.35) and (4.36) increases with the number of iterations until over-flow 

as shown in Figures 4.5(a) and 4.5(b).  

 

 

4.6 Other numerical solution techniques 

To improve this defect of divergence, the Newton-Raphson method is revised to be 

subjected to an additional constraint such as the arc-length distance or the 

minimum residual displacement norm. Further details can be found in Chan and 

Chui [33]. The basic formulations of the other solution techniques are shown as 

follows: 

 

The incremental equilibrim equation can be written as: 

[ ] [ ][ ]uKF T Δ=Δ                         (4.37) 

 

The constraint equation with force vector parallel to the applied load vector can be 

written as: 

[ ] [ ][ ]uKF T ΔΔ=ΔΔ λλ             (4.38) 

in which λΔ  is a load corrector factor for imposition of the constraint condition, 

[ ]FΔ  is the force vector parallel to the applied load vector and of arbitrary length 

and [ ]uΔ  is the conjugated displacement vector of  [ ]FΔ . 
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Superimposing Equations (4.37) and (4.38), the resulting incremental equilibrium 

equation becomes: 

[ ] [ ] [ ] [ ] [ ]( )uuKFF T ΔΔ+Δ=ΔΔ+Δ λλ           (4.39) 

 

Therefore, in each iteration, the load and displacement can be updated as: 

[ ] [ ] [ ]FFF iii ΔΔ+= ++ 11 λ             (4.40)

 [ ] [ ] [ ] [ ]uuuu iiii ΔΔ+Δ+= +++ 111 λ            (4.41) 

in which  the subscript i  refers to the i -th iteration number within a load cycle. 

 

4.6.1 The arc-length method 

In this method, the arc distance is kept constant in a particular load cycle. Figure 

4.6 shows the graphical scheme for the method of controlling the arc-distance of 

displacements. The arc distance is taken as the dot product of the displacement 

vectors. Denoting the arc-distance as S , the constraint equation of a load cycle 

from Equation (4.41) can be obtained as: 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) 2
11 Suuuuuu iii

T
iii =ΔΔ+Δ+ΔΔ+Δ+ −− λλ                    (4.42) 

 

4.6.2 The minimum residual displacement method 

Chan [64] proposed a simple technique to search for a direction leading to the 

minimum value for the displacement error expressed as [ ] [ ]uu ii ΔΔ+Δ ++ 11 λ . This can 

be done by differentiating the residual displacement with respect to the parameter 

iλΔ  as follows: 
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[ ] [ ]( ) [ ] [ ]( ){ }
0=

Δ∂
ΔΔ+ΔΔΔ+Δ∂

i

ii
T

ii uuuu
λ

λλ
          (4.43) 

 

Simplifying and rearranging, we have 

[ ] [ ]
[ ] [ ]uu

uu
T

i
T

i
ΔΔ

ΔΔ
−=Δλ             (4.44) 

 

The graphical scheme is shown in Figure 4.7. 

 

Other methods have been proposed to vary the value of to a certain constraint but it 

has been reported by Clark and Hancock [65] that the arc-length and the minimum 

residual displacement methods are the best among these varied versions of 

nonlinear numerical methods and other similar methods will not be elaborated 

further here. 

 

 

4.7 Second-order analysis with NIDA 

NIDA (Nonlinear Integrated Design and Analysis) [66] was coded with an aim for 

second-order nonlinear analysis and design meeting the code requirement for 

strength and stability design. The program follows the concept associated with the 

ultimate limit state design code with the “first-plastic-hinge” limit load criterion 

used in AS 4100 [27] and BS 5950 [3]. The element stiffness matrix allowing for 

initial imperfection derived by Chan and Zhou [44] and Chan and Gu [46] are used. 
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The program provides a variety of choices of nonlinear solution techniques 

including those introduced previously.  

 

In this thesis, software NIDA [66] is extended to include angle members for 

second-order elastic and plastic analysis and design of structures made of angles, 

like the transmission line towers and the light-gauge trusses. The modifications 

involve inclusion of an asymmetric element and development of yield surface of 

angle sections. The developed numerical tool is valuable in analyzing structures 

made of angle members without the need of assessing the effective length 

EL which carries great uncertainty in towers, trusses and frames. 

 

 

4.8 Concluding remarks 

This chapter introduces the physical concept of second-order analysis. To trace the 

load-deflection path, or the equilibrium path, of a structure, the stiffness matrix for 

an element is derived and then transformed and assembled to form the global 

stiffness matrix for the complete structure for the finite element analysis. To solve 

the displacements of the nodes, a non-linear solution technique is required. The 

Newton-Raphson method is probably the most common technique used today. The 

essence of this method is its incremental-iterative scheme with efficiency and 

accuracy. It performs iterations until an equilibrium point is reached in each 

incremental load cycle. However, the Newton-Raphson method may cause 

divergence problem after the limit point. Therefore, other nonlinear solution 
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techniques such as the arc-length method and the minimum residual displacement 

method are introduced.  
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Figure 4.1 Non-linear analysis design procedure 

 

 

 
Figure 4.2 A two-dimensional beam-column element 
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Figure 4.3 Local coordinate axes in element cross section 
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Initiation

Input incremental load, boundary 
conditions, connectivity, structural 
geometry and material properties 

Formation of the element tangent 
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[ ] [ ] [ ][ ]LkLK Te

T
T =  
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[ ] [ ]∑=
N

TT kK  

Solving for displacement increment
[ ] [ ] [ ]FKu T Δ=Δ −1  
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Figure 4.4 Flow chart for second-order analysis using the Newton-Raphson 
procedure 

 
 

Calculate the element resistance force vector [ ]lF  
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[ ] [ ][ ]ll ukF =  
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(a) Conventional Newton-Raphson method 

 

 

 

 

 

 

 

 

 

 

(a) Modified Newton-Raphson method 

 

Figure 4.5 The Newton-Raphson method 
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Figure 4.6 The arc-length method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 The minimum residual displacement method 
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Chapter 5 Second-order Elastic Analysis and Design of Angle 

Frames and Trusses  
 

5.1 Introduction 

As mentioned previously in Chapter 1, real members are far from ideally perfect 

owing to the presence of initial curvature, load eccentricity, residual stresses and 

the realistic stress-strain behaviour of the material. Rational analysis incorporating 

all these imperfections can be carried out by computer modelling. However, it is a 

time consuming process and rarely used in routine design. Instead, some national 

codes [3,41,62] may allow a simplified design approach which was developed from 

the results of computer modelling and correlations with experimental data available 

in the literature. In this chapter, a computer modelling of a single angle strut will be 

carried out. Based on the results, two design approaches dealing with single-angle 

using second-order elastic analysis are proposed. The first proposed method is 

based on the simplified approach given in BS 5950 [3] with the effects due to load 

eccentricity and end restraint ignored i.e. the equivalent imperfection approach. 

The second proposed method is modified from the equivalent imperfection 

approach with the exact end moments and joint stiffness considered during the 

analysis i.e. the exact end moment approach. Both methods take the first yield load 

or the load causing the member to fail in the first-plastic-hinge design as the 

ultimate failure load.  
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5.2 Computer modelling of a single angle strut 

5.2.1 Description of model 

The model used in the investigation is a simple initially curved column under 

compressive load as shown in Figure 5.1 as a replacement for a real member. Using 

the PEP element [44], one element per member is sufficient to produce satisfactory 

accuracy. The initial curvature is amplified so as to model the collective effect of 

all the aforementioned imperfections. The lower end is a pin support and the upper 

end is a roller support so that the buckling length, or the effective length, is simply 

equal to the member length. The compressive force acts at the centroid of the 

section. The imposition of initial curvature is important for the analysis as it 

triggers bending at the connection when an axial force is applied and the column 

will fail before the Euler buckling load is reached. If the initial curvature is absent, 

only axial shortening will occur under compression which is unable to tell the 

actual compressive stress the column is taking. In design codes, the values of 

imperfection-to-length ratio ( L0δ ) vary from section to section and to be 

determined for both equal and unequal angles so that the same compressive 

strength given in BS 5950 [3] and Eurocode 3 [41] can be obtained. The 

compressive strength curves of these sections of slenderness ratios ranging from 10 

to 350 are generated using NIDA [65]. Comparisons are made between these 

curves and those given in BS 5950 [3] and Eurocode 3 [41] to ensure they are 

consistently close but conservative to the code requirements in order that the result 

can be safely used in practical design. 
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5.2.2 Model assumptions 

There are a few assumptions for the model used in the analysis. First, the element is 

prismatic and homogeneous. Second, the compressive load is applied precisely at 

the centroid of the section. Third, the material is perfectly elastic. Fourth, the initial 

curvature of the element forms a perfect half sine curve though it was found that 

the actual initial shape has little effect on the end result. Fifth, the assumed failure 

mode is bending about the principal minor axis. Therefore, the initial imperfection 

is imposed along the plane of the principal major axis so that bending about the 

principal minor axis is initiated. This assumption is valid for slender members. For 

stockier members, other failure modes may occur, such as bending about geometric 

axis and flexural-torsional buckling which are not directly considered in the 

investigation but they may be considered implicitly in the analysis by using the 

proposed equivalent imperfection. In addition, compression members containing 

thin-plate elements such as angles are vulnerable to local buckling of the cross-

section which reduces the buckling strengths of the members. The effect of local 

buckling is ignored here. In other words, only Class 3 semi-compact sections in 

which as defined by BS 5950 [3] only the extreme fibre in compression can be 

loaded to the design strength angle sections are considered in this paper. However, 

if slender sections are used, the effective cross-sectional area and the effective 

section modulus can be used to determine the effective cross sectional geometrical 

parameters and the proposed method here can be applied. As an alternative, 

reduced design strength may be used.  
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5.2.3 Equivalent initial curvature 

An equivalent initial curvature is the value of the amplified initial curvature which, 

when used in a second-order analysis, can reproduce the buckling strength of the 

member the same as the buckling  strength given in BS 5950 [3] and Eurocode 3 

[41]. For a hypothetic initially curved element, the initial curvature relates to the 

compressive strength cp in the form the Perry-Robertson formula given by: 

( ) ( )
yE

EyEy
c pp

pppp
p −⎟⎟

⎠

⎞
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⎝
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=

2

2
1

2
1 ηη

                   (5.1)   

 

The Perry factor η  is given by: 

 2
0

r
y⋅

=
δη              (5.2) 

where y  is the distance from the extreme fibre in compression to the centroidal 

axis of the cross section 

 

Equation (5.2) can be re-written as: 

 λδδη ⋅⋅=⋅⋅=
r
y

Lr
L

r
y

L
00            (5.3) 

 

As can be seen from Equation (5.2) the Perry factor depends on the initial 

curvature-to-length ratio, the slenderness ratio and the dimensionless term ry  

from the cross-sectional properties. ry  may not have any physical meaning 

except it is a ratio between geometrical properties across a section; however, for 
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each section type the values of ry  are roughly constant and therefore each 

sectional type can be assigned a typical value of y/r. 

 

5.2.3.1 Initial curvature to BS 5950 

The Perry factor η  in BS 5950 [3] is modified based on computer modelling and 

experimental results and is given by: 

( )0001.0 λλη −= a             (5.4) 

where a  is the Robertson constant 

 0λ  is the limiting slenderness ratio 
yp

E22.0 π=  

 

a  is equal to 5.5 for both equal and unequal angle sections. 0λ  is a limiting 

slenderness to account for the stocky column effect which is insensitive to initial 

imperfections. To determine the equivalent value of initial imperfection fulfilling 

BS 5950 [3], we have,  
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The equivalent L0δ can be calculated by Eqn. (5.6) with known slenderness ratio 

and the dimensionless term ry . Alternatively, a conservative design value for the 

equivalent L0δ can be used by omitting the limiting slenderness ratio. For most 

practical purposes, angles of intermediate and slender range are commonly used 

and the design of stockier angle columns is unaffected by buckling and therefore 

the ignorance of 0λ  is unimportant again. The effect of ignoring the limiting 

slenderness ratio 0λ  is insignificant for comparatively slender columns. Therefore, 

the expression of L0δ  can be simplified to: 

r
y

a
L

001.00 =
δ

              (5.7) 

 

5.2.3.2 Initial curvature to Eurocode 3 

In Eurocode 3 [41], the modified Perry factor is given by: 

 ( )02 λλ
π

αη −=
E

py              (5.8) 

where =α  imperfection factor 34.0=  for angle sections 

 

The equivalent initial curvature to Eurocode 3 [41] can be worked out by a similar 

approach using Equations (5.3) and (5.8) as, 

( )

λ

λλ
π

αδ

⋅

−
=

r
y
E

p

L

y
02

0            (5.9) 

 



 94

Neglecting the limiting slenderness term, Equation (5.9) can be simplified as, 

 
E

p

r
yL

y
2

0

π
αδ

=             (5.10) 

 

When calculating the compressive strength of an eccentrically loaded member, 

NIDA [65] takes the eccentricities, residual stresses and initial imperfections into 

account simply by means of this equivalent initial curvature. Therefore, these 

effects are controlled by the value of L0δ  which is derived as follows. 

 

5.2.4 Compressive strength curves to BS 5950 and Eurocode 3  

The compressive strength of an angle strut to BS5950 [3] and Eurocode 3 [41] can 

be traced via the imposition of the equivalent initial imperfection using the 

Newton-Raphson procedure as described in Chapter 4. The value of L0δ  can be 

calculated precisely using Equations (5.6) and (5.9) or conservatively using 

Equations (5.7) and (5.10). For similar geometrical cross-sections, the values of 

ry  are roughly constant; so are the values of L0δ . Therefore, the values of L0δ  

for all angle sections will only slightly vary. Having mentioned that the effect due 

to local buckling will not be accounted for directly in the analysis, sections having 

the leg length-to-thickness ratios larger than the limiting value for Class 3 semi-

compact sections will not be considered in the investigation. Since Eurocode 3 [41] 

has a more stringent requirement on the limiting value than the BS 5950 [3], we 

will adopt the Eurocode 3 requirement. The angle sections for investigation are 

covered in BS EN 10056 [67] with steel grade S275 and young modulus 205 
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kN/mm2. Careful consideration must be taken to identify which extreme point of 

the section in compression is critical i.e. having the least value of section modulus. 

For equal angles, it is found that the critical situation happens when the angle heel 

is in compression and their corresponding ry  values range from 2.031 to 2.241. 

For unequal angles, the critical situation happens when the toe at the shorter leg in 

compression and their corresponding ry  values range from 2.281 to 2.854. As the 

value of L0δ  is inversely proportional to the value of ry , the most conservative 

value of L0δ  can be obtained when the smallest of these ry  values is 

substituted into Equation (5.7) for BS 5950 [3] and Equation (5.10) for Eurocode 3 

[41]. The sections having the smallest values of ry  for equal and unequal angle 

sections and their calculated L0δ  values are summarized in Table 5.1.  

 

The next step is to generate the design curves using NIDA [66] by inputting these 

values of L0δ  for the worst cases. Figures 5.2 and 5.3 show the buckling curves of 

equal and unequal angles of steel grade S275 derived from the basis of the 

equivalent initial imperfections in Table 5.1. Generally, the results generated by the 

proposed method agree well with the design code BS 5950 [3] and Eurocode [41]. 

The discrepancies between the present curves and the design code curves will be 

less than 9% for the BS 5950 [3] and the Eurocode 3 [41], the curves tend to 

converge to the same value when the slenderness ratio is high. It is because when 

the member is slender, the effect of neglecting the limiting slenderness is relatively 

insignificant. 
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5.3 The equivalent initial curvature approach  

When designing trusses of various serial sizes of angles to BS 5950 [3] or Hong 

Kong Steel Code [62] by the proposed second-order analysis method, it is 

suggested the initial imperfection per member length tabulated in Table 5.1 should 

be imposed to compensate for the effect due to load eccentricity and other 

imperfections such as initial curvature, residual stresses and material non-linearity. 

This proposed method is modified from the conventional simplified methods which 

are normally employed with the assumptions that the loads are applied to the 

trusses at the joints and transferred to the members concentrically and all 

connections are pinned and can freely rotate so no moments are created. In fact, 

these assumptions are hardly true because the joints are almost always bolted or 

welded away from the centroid. However, in general, the error due to these 

assumptions will not cause the structure to have a lower than expected safety 

margin. In the conventional method, the second-order effects are considered only in 

the design stage as an independent step after the analysis; while in the second order 

analysis, the second-order effects are included during the analysis as an integral 

part with design. For truss members with single-bolted connections, the failure load 

of the truss calculated should be reduced to 80% as required by BS5950 [3] and 

Hong Kong Steel Code [62]. However, such simplified approach is not allowed in 

Eurocode 3 [41] as when only one single bolt is used, the end moments induced by 

the load eccentricities should be considered by an axial force-moment interaction 

equation. For double-bolted connection, in many design codes normally the 

effective length of the member is reduced to account for the restraining effect due 

to the connection. For example, an effective length factor of 0.85 is used in BS 
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5950 [3]. In the proposed method, this effective length assumption is omitted 

because this assumption is based on immovable end nodes of the members which 

are non-existent in  practical scenario. Since the effect of local plate buckling is 

neglected in the investigation, this method can be used for Class 4 slender sections 

in which plate elements under compression not meeting the limits for class 3 semi-

compact sections defined in BS 5950 [3] should have an appropriate reduction in 

section properties or design strength to design codes by the effective width or the 

effective stress method. However, this modified method is still inadequate to 

consider the directions of the end moments. These end moments may be adverse or 

beneficial to the overall structure and the equivalent initial curvature approach 

cannot truly reflect the end condition that a practical angle is subject to. 

 

 

5.4 The exact end moment approach 

The exact end moment approach was further modified from the equivalent initial 

curvature approach by Chan and Cho [68]; the end moments and the rotational 

stiffness due to the end conditions are considered during analysis. The end 

moments due to load eccentricity are considered by connecting the angle web 

members at each end to the chord members by rigid arms. The rigid arm will be the 

element joining the centroid and the point of load application so that the magnitude 

and the direction of the end moments due to load eccentricity can be taken into 

account immediately during the analysis. For single-bolted connection, the 

connection joints are allowed to rotate freely. For double-bolted connection, 

rotational springs are inserted to the joints connecting rigid arm elements to the 
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angle web member element in the in-plane direction so that the couples due to the 

double-bolted connection can be considered. The end condition is symbolized by 

rotational spring elements inserted at the ends of the member.  Therefore, the 

rotational stiffness due to the double-bolted connection can be considered at an 

early stage of the analysis rather than at the design stage as in the linear analysis 

and effective length design method. The value of the rotation spring stiffness 

depends on the arrangement of the bolt group and its material properties. Only the 

rotational deformation of the connection spring element is considered for design 

because the effects of the axial and shear forces in the connection deformations are 

small when compared with that of bending moments. The merit of this approach 

over the purely equivalent imperfection approach is that it considers the direction 

of the end moments so that the aforementioned effect can be reflected during 

analysis. The spring stiffness of a rotational spring can be calculated in the 

following steps. 

 

As shown in Figure 5.4, the couple, RM , formed by the pair of bolts is given by: 

θRRR SdFM =⋅=              (5.11) 

 

The shear stress, τ , across the cross-section, SA , of the bolt is: 

S

R

A
F

=τ            (5.12) 

in which SA  is the shear area and can be taken as 0.9 of the cross sectional area 

recommended in most design codes like the Hong Kong Steel Code [62]. 
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The shear strain,γ , of the bolt shank is: 

Gl
d

l
τθδγ =

⋅
==

2           (5.13) 

 

Rearranging terms, the rotational stiffness, RS , due to the double-bolted connection 

will be given by: 

l
dGAS S

R

2

=            (5.14) 

where RF  is the shear force exerted on the bolt; d  is the distance between the 

centroids of the two bolts; θ  is the rotation of the bolt group; δ  is the 

displacement of the bolt; l  is the length of the bolt shank; G  is the shear modulus 

of elasticity. From the above equation, it can be seen that the spring stiffness RS  is 

directly proportional to the shear area of the bolt shank and the square of the bolt 

spacing and inversely proportional to the shank length of bolts.  

 

To account for the rotation stiffness of the spring element in the analysis, the 

following incremental tangent stiffness matrix is superimposed to the element 

stiffness matrix. 
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in which eM  and iM  are the incremental external and internal moments at two 

ends of a connection. The external node refers to the one connected to the global 

node and the internal node is joined to the angle element. The stiffness of the 
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connection, cS , can be related to relative rotations at the two ends of the 

connection spring as: 
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=          (5.16) 

in which eθ  and iθ  are the conjugate rotations for the moments eM  and iM . 

 

The incremental force is assumed in the software and the incremental displacement 

is solved. The basic element stiffness is modified by addition of the tangent 

stiffness of the connection spring modeled as a dimensionless spring element in a 

computer analysis as: 
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              (5.17) 

in which 1S  and 2S  are the spring stiffness for simulation of semi-rigid 

connections at ends; ijk  is the stiffness coefficients of the element; e1θ , i1θ , e2θ  and 

i2θ  are respectively the rotations at two sides for the two ends of an element shown 

in Figure 5.5. 

 

 

5.5 Worked examples 

5.5.1 Example 1 – Design of an angle roof truss 

A roof truss is normally sloped to drain rainwater away. The vertical height of 

trusses varies usually from one fifth to one quarter of the span length, giving a 
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slope varying between 21.5° and 26.5°. A typical roof truss is shown in Figure 5.6. 

From economical point of view, the spacing of roof trusses normally ranges from 4 

m to 7.5 m depending on the span length of the roof truss. In this example, the error 

due to joint assumptions is illustrated. Design of the roof truss with both single-

bolted and double-bolted conditions are carried out using the conventional 

approach, the equivalent initial curvature approach and the exact end moment 

approach. In the conventional method, a linear analysis is carried out to determine 

the internal forces of the truss. The buckling resistance of individual members is 

then determined using formulae given in BS 5950 [3]. 

 

Particulars of the design scheme: 

• Span length of trusses: 18 m 

• Height of trusses: 3.6 m 

• Spacing of trusses: 4 m 

• Material used: Grade S275 steel with Young’s modulus of 205kN/mm2 

• Assume that purlins are at node points of the trusses and the weight of the 

sheeting and purlins is 0.25 kN/m2 

• Assume a self-weight for the truss of 0.1 kN/m2 on slope 

• Assume the live load is 0.50 kN/m2 on slope 

 

The forces in roof truss members are worked out as follows: 

Total dead load ( ) 2/49.01.025.04.1 mkN=+×=  

Total live load 2/80.05.06.1 mkN=×=  
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Total load on a rafter ( ) mkN /16.5480.049.0 =×+=  

Load per node kN7.1623.356.5 =×=  

Note that the load at the end point is half of that on the intermediate points.  

 

Table 5.2 shows the forces in the roof truss members. Due to symmetry, only half 

of the floor truss is considered. Assume that the rafters will be 80×60×6 double 

angles ( 40.49 cmI x = , 40.234 cmI y = and 208.16 cmA = ) with the long legs 

attached to the gusset plates. BS 5950 [3] Clause 4.7.10.3 requires the following 

check: 

For x-x axis, 

x

x
x r

L
85.0=λ  but not less than 307.0 +

x

x

r
L

 

In this case 10951.232385.0 =×=xλ 1203051.23237.0 =+×<  

Therefore, the critical slenderness ratio is 120 

 

For y-y axis 
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where cλ  is the slenderness of the single component about its weakest axis, i.e. 

vvc rL=λ  
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If there are 6 interconnections between two angles forming the strut, then: 
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Therefore, the critical axis in this case is x-x where the slenderness ratio is 131. 

From Table 24(c) of BS 5950 [3], 285 mmNpc = , the axial load capacity cP  is 

given by: 

kNPc 7.1361008.1685 =×=  

 

Assuming the internal bracing members will be 75×50×8 angle ( 41.60 cmIu = , 

49.10 cmIv =  and 244.9 cmA = ) with the long leg attached to the gusset plates, 

according to Clause 4.7.10.2 of BS 5950 [3], the critical slenderness ratio of the 

single angle struts for single-bolted connection and double-bolted connection are 

224 and 191 respectively and their corresponding axial load capacities are kN2.25  

and kN5.42 . Assume the lower chord members will be L75×50×8 angle 

( 41.60 cmIu = , 49.10 cmIv =  and 244.9 cmA = ). The slenderness ratio is 238 and 

the axial load capacity is 28.7kN. Results show that for single bolted connection, 

the internal web member CI will yield first and the load factor, which is the ratio of 

failure load to design load, will be 1.01 and for double bolted connection, the rafter 

BC will fail first and the load factor will be 1.22. When using the equivalent initial 

curvature approach, the internal web members are assumed to be pin-jointed and 
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the other components are assumed to be continuous, the initial imperfection-to-

length ratio is amplified to 1/414 for all unequal angles. The internal member CI 

yield first for both single and double-bolted connection and the load factors are 

1.00 and 1.24 respectively. When using the exact end moment approach, on top of 

the imposition of the initial imperfection, the internal members of the truss are 

offset and the joint stiffness is imposed in each end node so that the load 

eccentricities and the rotational restraints due to connection are considered in the 

analysis. It can be observed that both single and double-bolted connection, the 

internal member BC will fail first and the load factor will be 1.67 and 1.76 

respectively. 

 

The results are summarized in Table 5.3. It can be seen that for different 

connection assumptions yielding of material will start at different members which 

may affect the overall loading capacity of the structure. The equivalent initial 

imperfection method can achieve a more rigorous design than the BS 5950 [3]. 

This is expected since the members are assumed pinned and the imperfections are 

equivalent to the values in BS 5950 [3]. However, the method has an distinctive 

advantage on the efficiency of completing a design with an analysis. The exact end 

moment method provides a more rational alternative which carefully consider the 

load eccentricities and rotational restraints of web members. Since the Δ−P  and 

the δ−P  effects due to the change of structural geometry and the deflection along 

a member respectively after loads are already included during the analysis via 

geometry update and the use of initial imperfection, the section capacity is 

adequate for strength design which can be completed at the same time when the 
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analysis is completed. Obviously, the present method is much more efficient since 

separated member check is not needed. A conventional analysis and design 

assumes all connections are pinned which is in contrast with the actual scenario. 

 

5.5.2 Example 2 – Design of a tower truss 

This example illustrates the error due to effective length assumptions. The planar 

1.0m×3.0m tower truss as part of a braced web portal frame is subject to two 

vertical forces shown in Figure 5.7. The internal segment is designed based on an 

assumed effective length. According to BS 5950 [3], in order to allow for the 

effects due to lack of verticality, a notional horizontal force of 0.5% of the vertical 

load is applied at the same level. The design load, F, of the truss is determined in 

this example. The material design strength is 275N/mm2 and Young’s modulus is 

205kN/mm2, and the angle is of size L40×40×4 ( 489.1 cmIv =  and 209.3 cmA = ). 

When designing according to BS 5950 [3], different engineers may make varied 

assumptions of effective length and discrepant results will be obtained. As 

summarized in Table 5.4, if LLE 0.1= , where L  is the distance between bracings, 

the failure load will be 52.8kN; if LLE 85.0= , the failure load will be 67.2kN; and 

if LLE 7.0= , the failure design load will be 85.2kN . When using the second-order 

analysis, the initial imperfection-to-length ratio is amplified to 310781.2 −×  for 

equal angles and the failure load is 83.4kN. Without assuming any effective length, 

the failure load can be computed as the Δ−P  effect is automatically considered by 

geometry update and the δ−P  effect by member bowing.  
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Comparing the BS 5950 [3] design method and the proposed method, if the 

effective length is taken as L0.1 , the failure load calculated according to BS 5950 

[3] is about one-third lower than that calculated by the proposed method; if the 

effective length is taken as L85.0 , the failure load calculated by the BS 5950 

approach is still about 20% lower than that calculated by the proposed method. But, 

when the effective length is taken as L7.0 , the BS 5950 method and the proposed 

method will give almost the same result. In this example, it is shown that the 

conventional design method appears to be unreliable for the reason that a small 

difference in effective length can lead to a sizeable difference in design load. 

Unfortunately the assessment of effective length is sometimes uneasy and 

unreliable, leading to over-design of some members and occasional under-design of 

others. However, the second-order analysis avoids the error associated with the 

assumption of effective length. 

 

5.5.3 Example 3 – Design of a large transmission tower 

This example demonstrates the practical application of second-order analysis of a 

moderately large structure made of angle sections via the use of equivalent initial 

curvature. A transmission tower with a height of 45m and a base of 10m × 10m is 

to be built on the top of Cloudy Hill in Hong Kong in order to cater the launch of a 

digital terrestrial television (DTTV) service in Hong Kong in 2007.  

 

5.5.3.1 Project requirements 

The transmission tower is located at 444m above sea level. The overall height is 

45m. The foundation of the tower is a concrete footing. The wind speed 
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requirement is 90 m/s which is much higher than the minimum required wind speed 

of 59.5 m/s for normal structures in Hong Kong. 

 

5.5.3.2 Load path 

The wind load acting on the individual members, antenna dishes and panels and the 

self weight of the transmission tower are transferred to the concrete footings. The 

bracings are added to restrain the main members from buckling. 

 

5.5.3.3 Design codes used 

Hong Kong Steel Code [62], Hong Kong Wind Code [69] and the PNAP 45 [70] 

are used. PNAP means Practice Note for Authorised Persons in full and this is a set 

of statutory notes published by the Buildings Department of the Hong Kong 

Special Administrative Zone Government requesting the project engineers, 

architects or surveyors to follow as a minimum building standard in Hong Kong.  

These documents can be downloaded from the following website: 

http://www.bd.gov.hk/english/documents/index_crlist.html  

 

Interestingly, some of these like the PNAP 106 for curtain wall testing are 

referenced and used in China which admires the building safety standard in Hong 

Kong. PNAP 45 [70] is used to check against dynamic effects. The non-linear 

second-order analysis method is allowed in Chapter 6 of the Code of Practice for 

Structural Uses of Steel in Hong Kong 2005. Therefore, this example on a real 

structure is designed to the code requirement and finally approved for actual 

http://www.bd.gov.hk/english/documents/index_crlist.html
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construction which appears to be the first in the world of second-order analysis for 

an angle tower without any assumption of effective length. 

 

5.5.3.4 Design assumptions 

1. The bracing members are assumed to be pin-jointed. 

2. At each support, the displacements of the three directions are restrained while the 

rotations about the three directions are free. 

3. The assumed dead load of platform is 0.75kPa. 

4. The assumed live load on platform is 2.0kPa according to the Hong Kong 

Building Ordinance [71]. 

5. Steel grade S355 is used for all steel angle members. For steel thickness greater 

than 16mm, the design strength should be reduced accordingly to Code of 

Practice for Structural Uses of Steel Hong Kong 2005. For slender sections, 

design strength should be reduced to account for local buckling. Steel grade 

Q345 is used for all steel hollow members. The material properties are shown in 

Table 5.5. 

6. Both ultimate limit state and serviceability limit state are considered. 

7. All connections unless otherwise stated are bolted connections with bolts of M-

24 ISO grade 10.9. 

 

5.5.3.5 Member sizes 

The overall view of the transmission tower consisting of various sizes of members 

is shown in Figure 5.8. A total tonnage of 42.9 of steel has been used. 
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5.5.3.6 Individual load cases 

There are 4 major groups of individual load cases. 

1. Wind load acting to members 

Wind speed of 90 m/s is used and it gives the basic wind pressure pw as, 

4.86kPa4860Pa0.6v
2
ρvp 2

2

w ====       

in which ρ is the air density equal to 1.2 kg/m3 and v is the wind speed in m/s.  

 

As the design wind pressure is 4.86 kPa which is greater than the required basic 

wind pressure in HK Wind Code 2004, it satisfies the BD’s requirement. 

According to the Hong Kong Wind Code Appendix E2, the total pressure 

coefficient Cp for individual members of an open framework building shall be taken 

as 2.0. Therefore the total wind pressure shall be determined by the following 

equation: 

pp = Cp pw  = 2 × 4.86 = 9.72kPa 

 

2. Wind load acting on antennae 

The dish antennas will contribute wind point loads to the tower. The antennas are 

tilted to an angle and their corresponding axial forces and shears are calculated by a 

programme, ANTWIND, which are available at www.andrew.com. On the other 

hand, the antenna panels will contribute uniformly distributed load the tower. 

Assuming a width of 30 cm, each column of antenna panels will contribute wind 

load of  

4.86 × 0.3 = 1.46 kN/m  

http://www.andrew.com/
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For antenna panels hanging from 469m to 489m, assuming that there are 

effectively two columns of panels subject to wind load, and the distributed wind 

load should be 

 1.46 × 2 = 2.92 kN/m 

 

The wind load acting on the antenna dishes and panels are shown schematically in 

Figure 5.9. 

 

3. Live Load 

Live load is distributed uniformly on platforms which is 2.0 kPa as assumed. 

 

4. Dead load 

Dead load includes the self weight of the steel, which is 0.75 kPa as assumed, and 

the self weights of the antennas provided by the supplier. 

 

5.5.3.6 Combined load cases 

There are 7 combined load cases which have been considered: 

1. 1.4 WL + 1.0 DL in X direction  

2. 1.4 WL + 1.0 DL in Y direction  

3. 1.4 WL + 1.0 DL in diagonal direction 

4. 1.2 WL + 1.2 LL + 1.2 DL in X direction  

5. 1.2 WL + 1.2 LL + 1.2 DL in Y direction 

6. 1.2 WL + 1.2 LL + 1.2 DL in diagonal direction 

7. 1.6 LL + 1.4 DL 
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Note: WL = wind load 

DL = dead load 

LL = live load 

 

5.5.3.7 Resonant dynamic response 

PNAP 45 [69] is used to check against dynamic effects. The calculation is shown 

as follows: 

The natural frequency of the antenna is calculated as follows: 
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∴severe oscillation is unlikely. 

 

5.5.3.8 Analysis results 

In the analysis by NIDA which is the only software accepted by the Buildings 

Department in Hong Kong for second-order analysis, second-order iterative 
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analysis and design is carried out for each load case individually. In all the analysis, 

an elastic buckling (Eigen-buckling) analysis is first carried out to identify the 

buckling mode and global frame imperfection of one-500th of tower height is then 

inserted before the design loads are applied to the structure for analysis and design. 

The required time for the seven load cases using a personal computer of 1.6 MHz is 

70 seconds which is likely to be less than 1% required design time by hand method. 

Even when using the computer-assisted method speeding up the manual design 

time, one cannot be sure of the effective length factor of various members since the 

sway effect can hardly be identified. 

 

The output by NIDA is printed on a spreadsheet for easy checking. The maximum 

section capacity factor φ in Equation 4.1 is tabulated in Table 5.6 indicating no 

member fails under all assumed load cases. From the analysis, the most critical 

combined load case, as expected, will be:  

1.4 WL +1.0 DL in diagonal direction or 450 to the X- or Y-axis. 

 

A simple comparison with the linear analysis and design shows that the 

discrepancy is moderate and the present method consumes about 20% less steel. 

 

 

5.6 Concluding remarks 

This chapter proposed two methods for designing angle trusses, namely the 

equivalent initial curvature approach and the exact end moment approach. The 

advantage of the first approach is its simplicity but it may underestimate the failure 
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load of the structure especially for the double-bolted single angles. The advantage 

of the second approach is its rational consideration of the effects due to load 

eccentricities and end restraints which may produce a less conservative design. 

However, it requires more effort to consider the magnitudes of the load 

eccentricities and the stiffness of the rotational spring. The axial stress at every 

extreme point must be checked as the maximum bending stress about each axis is 

not necessarily coincides. The first approach is currently used in designing the 

digital terrestrial television transmission tower in Hong Kong. It does not require 

assumption on effective length, which is determined separately in each combined 

load case, so that the error due to gross estimation of effective length can be 

eliminated with safety improved and design made more efficient. 
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Figure 5.1 Element model used in the analysis
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Figure 5.2 Compressive strength curves to BS5950 Curve c 

 
 

 
Figure 5.3 Compressive strength curves to Eurocode 3 Curve b 
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Figure 5.4 Couple formed by shear forces of two bolts 

                                                           

 

                                                                                 

1e
2i

2e

θ

x

y

Node 1
Node 2

1i

θ
θ

θ
spring element
for semi-rigid connection

rigid arm element
for eccentric connection

 

Figure 5.5 The external and internal rotations 
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Figure 5.6 A typical roof truss 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 A tower truss 

 

1m

1m

0.5F 0.5F 

1m

1m

0.5%F



 118

 
Fig. 5.8 Overall view of the tower 
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Fig. 5.9 Wind load acting on antennas (X Direction) 

 
 



 120

Table 5.1 Summary of design values of L0δ   

 Section ry  
L0δ  

to BS 5950 

L0δ  

to Eurocode 3

Equal angle L30×30×3 2.031 1/369 1/512 

Unequal angle L80×60×7 2.281 1/414 1/575 

 
 
 
Table 5.2 Internal member forces of the roof truss 

Member Force (kN) Member Force (kN) 

AB -112.0 CI -25.0 

BC -112.0 DI +32.5 

CD -89.7 AH +20.7 

BH -16.7 HI 0 

CH +26.5 IJ -20.8 
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Table 5.3 Results of various analysis types 

Single Bolt Double Bolt 
 

Load Factor Failure 
Member Load Factor Failure 

Member 
BS 5950 1.01 Web 1.22 Rafter 

Second-order 1 1.00 Web 1.24 Web 

Second-order 2 1.67 Web 1.76 Web 

Note: Second-order 1 means equivalent initial curvature method 

 Second-order 2 means exact end moment method 

 
 
Table 5.4 Comparison between BS5950 and the proposed method 

Effective Length BS5950 Load (kN) 
*P

P  (1) 

1.0L 52.8  0.633 

0.85L 67.2 0.806 

0.7L 85.2 1.022 

 

(1)  
*P

P
 refers to the ratio of the BS5950 load to the load calculated by the proposed 

method. 
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Table 5.5 Material properties 

Steel Grade 
Young modulus 

(kN/m2) 

Yield stress 

(kN/m2) 

United weight 

(kN/m3) 

S355 2.05×108 3.55×105 76 

Q345 2.05×108 3.15×105 76 

 

 

Table 5.6 Section capacity factors 
 

Section Section capacity factors 

L200x200x18 (Bracing) 0.836 

L150x150x12 (Bracing) 0.761 

L250x250x28 1.000 

O457.0x12.5 -0.795 

D400x200x12.5 0.709 

L200x200x24 -0.658 
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Chapter 6 Advanced Plastic Analysis and Design of Angle Frames 

and Trusses  
 

6.1 Introduction 

In Chapter 5, the second-order elastic design and analysis of single angle members 

is developed and employed to design a practical tower. However, the design 

equations of these two design methods are developed based on the first yield of the 

material. It is obvious that complete failure or collapse of a structure is unlike when 

only the yield stress is reached at the outermost fibre as some portion of the 

material remains elastic and is able to sustain more loads. In fact, the section before 

loaded may have already yielded by residual stress due to welding that this elastic 

design is not rational. In general, the overall loading resistance of a structure is 

normally greater than the elastic design load resistance based on the first yield. For 

studies of progressive collapse and true ultimate load analysis, the elastic analysis 

may be not adequate. A frame can allow constituting members to have sections 

sustaining a load beyond its full plasticity in the process of carrying loads. In this 

case, the failure is irreversible. In this chapter, the proposed design method is 

extended to a second-order plastic design method. The reduced full plastic moment 

capacities of angle sections under axial force and biaxial bending are developed 

with interactive moment-axial force equations formulated. Using the set of 

interactive equations, more general software for second-order plastic or advanced 

analysis of typical frames made of members with symmetrical cross sections is 

modified and extended to the advanced analysis of angle trusses and frames. 

Research on the advanced analysis for this type of structures appears to be 
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unavailable in literature and the proposed method is believed to be among the 

original contribution on the important topic of advanced analysis of frames 

composed of asymmetrical cross sections like angles.  

 

 

6.2 Assumptions 

The proposed design method is based upon a number of basic assumptions about 

the material behaviour. Normally, steel exhibits upper and lower yield points and 

strain-hardening characteristics. In our proposed plastic design method, similar to 

other currently used design methods, the assumed material has the following 

behaviour: 

1. Lower yield is assumed for the yield stress of material. 

2. The yield stress in tension and compression are assumed equal 

3. Strain-hardening is ignored; thus once the material has yielded, the stress is 

assumed to remain constant throughout any further deformation. 

 

 

6.3 Full plastic moment capacities  

With the above assumptions, it is now possible to determine the plastic bending 

moment capacity of an angle section at a fully plastic stage. Considering an angle 

section with unequal legs tb ×  and tb ×β , to simplify calculations, the section is 

idealized by assuming the material is concentrated at the centerline of the section 

and the actual round corners are replaced by sharp corners as shown in Figure 6.1. 

For the fully plastic section, different from the elastic neutral axis, the plastic 
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neutral axis must be the area bisector of the cross section so that the force 

equilibrium condition is satisfied. According to Trahair [72], if the points of 

intersections of the plastic neutral axis with the legs are defined by b1γ  and b2γ  as 

shown in Figure 6.2, then: 

12 2
1 γβγ −

+
=             (6.1) 

 

Theoretically,  

10 1 ≤≤ γ              (6.2) 

2
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2
1

2
βγβ +

≤≤
−             (6.3) 

 

The full plastic moment YpM  about the geometric Y-axis can be calculated by 

taking moments of the fully plastic stress distribution about the axis through the 

horizontal leg of the angle section and is given by: 
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Similarly, the full plastic moment pZM  about the Z-axis is given by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−⋅=⎟

⎠
⎞

⎜
⎝
⎛ −⋅=

2

1
22

2
2

2
1

2
1

2
1 γβγ tbptbpM yypZ        (6.5) 

 

To transform the moments about the rectangular axes to the moments about the 

principal axes, the following transformations are used. 
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θθ sincos pZpYpy MMM +=                      (6.6) 

θθ cossin pZpYpz MMM +−=                                                       (6.7) 

in which θ  is the principle angle.   

 

 

6.4 The effect of axial load on moment capacities 

To simplify calculations, angles with equal legs are considered, i.e. 0=β . With 

the presence of axial force, the full plastic moment is reduced. An angle section 

with arbitrary stress distribution with compressive stress at the heel and tensile 

stress at the toes is shown in Figure 6.3 b1γ  and b2γ  are the location where the 

plastic neutral axis intersects the angle legs but not an area bisector. Let n  be the 

axial force ratio which is the ratio of axial load to its squash load. The section must 

be in force equilibrium. In other words, n  can be worked out as: 

( )211 γγ +−=n             (6.8) 

 

The centroid of an equal angle is approximately located at (0.25, -0.25) from the 

intersection of the two legs. The reduced moment capacities about the Y- and Z- 

axes are given by: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
×−+⎟

⎠
⎞

⎜
⎝
⎛ −⋅−⎟

⎠
⎞

⎜
⎝
⎛ −

+
⋅−⋅= 25.01225.0

2
25.0

2
11 2

1
1

1
1

2 γ
γ

γ
γ

γtbpM yY   

⎟
⎠
⎞

⎜
⎝
⎛ −

+
⋅= 2

1
212

2
γ

γγtbpy           (6.9) 

 



 127

Similarly, 

⎟
⎠
⎞

⎜
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212
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γγtbpM yZ                                          (6.10) 

 

Applying rotational transformation matrix with °= 45θ , the reduced moment 

capacities about the principal axes are given by: 

( ) ( )[ ]2
2

2
121

2

2
2 γγγγ +−+⋅= tbpM yy                                         (6.11) 

( ) ( )[ ]2121
2

2
2 γγγγ −⋅+⋅= tbpM yz                                         (6.12) 

 

Using Equations (6.4) to (6.7), the full plastic moment capacities of an equal angle 

with the absence of axial force about the principal y- and z-axes can be calculated 

as follows: 

tbpM ycy
2

4
2
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2

2
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Therefore, Equations (6.13) and (6.14) can be rewritten and rearranged as:  
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From Equations (6.8) and (6.16), 

( ) 12 1 γγ −−= n        (6.17) 
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Eliminating 1γ  and 2γ  in Equation (6.15) will result in an interaction equation of 

axial force and biaxial moments: 
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Geometrically, both 1γ  and 2γ  are limited from 0 to 1, Equation (6.19) is valid 

provided that: 
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For the section with tensile stress at the heel and compressive stress at the toes, a 

similar interaction equation can be worked out: 
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Provided that 

( )21 n
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z −≤  for 0<n          (6.23) 
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z −≤  for 0>n          (6.24) 

 

 

6.5 Applications with second-order analysis 

Equations (6.19) and (6.22) are modified and incorporated in a second-order 

analysis and design program NIDA [66]. 
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Equations (6.21) and (6.22) are the yield functions of the section. At every load 

cycle, the section capacity of each member is checked. If yM  is positive, which 

means the heel is in compression, Equation (6.21) is adopted; if yM  is negative, 

which means the heel is in tension, Equation (6.22) is adopted. The analysis differs 

from the previously proposed elastic method in Chapter 5 is that if ϕ  in Equation 

(6.21) or (6.22) reaches 1.0, the section achieves full plasticity; the young modulus 

of the material of the member is reduced to 0.1% of its elastic value and the 

internal member forces are replaced by those from the last load cycle. Therefore, 

no additional incremental forces and moments can be resisted by the member and 
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further moments are redistributed to the other members so that the load-

deformation behaviour of the overall structure is still valid though one or more of 

its members yield. 

 

The numerical method for second-order plastic analysis method is similar to the its 

elastic counterpart, except that the member resistance written in terms of the 

internal resistance vector with six components as [ 1yMF  

] T
221  zyxz MMMM , in which the alphabets represent respectively the axial 

force, bending moment about minor and major axes at two ends and the torsional 

moment, remain unchanged once the force and moment in the member reach the 

failure surface.  The collapse load is then defined as the maximum load that the 

structure can withstand after which the load deflection curve declines and reaches 

the post-buckling stage.  

 

To prevent the failure surface being violated, a small load step is applied and if the 

material factor ϕ  defined in Equations (6.25) and (6.26) is greater than 1.0, the 

resistance vector is kept constant with the resistance normalized to 1.0 by dividing 

these 6 component force and moment by the material factor which is slightly 

greater than one if the load step is sufficiently small. Normally the recommended 

load step is 0.5% of the ultimate design load or the expected failure load for the 

angle truss. Numerical convergence through the use of minimum residual 

displacement iterative method [64] can normally be achieved when the load step is 

not too large and the structure does not form a mechanism. The approach has been 
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found to be an effective and reliable means of locating the ultimate load resistance 

of a steel structure or an angle truss. 

 

 

6.6 Worked examples  

Three examples are selected to verify the theory and the computational procedure. 

The first example is to compare the results against the code under various boundary 

conditions and the second example is to evaluate the theory against single member 

test for angles. The last example is to re-check the present theory against the tested 

result reported in the thesis of an undergraduate student.. 

 

6.6.1 Example 1 – comparisons with past experimental results 

Experimental results from past research [14] are compared with theoretical results 

which are generated using NIDA. Each test specimen of size 2×2×1/4 in. 

( 29375.0 inA = , 45518.0 inIu = , 41434.0 inI v = ) was welded to a standard 

structural Tee of 8 in. long and 0.42 in. of stem thickness as shown in Figure 6.4. 

The young modulus and the yield stress of the material are 2.94×103 ksi and 50.9 

ksi respectively. The test specimens are categorized into three groups according to 

their end conditions: 

 

(a) Both ends are fixed in both directions as shown in Figure 6.5(a). However, the 

flexibility of the Tee stem allows out-of-plane rotation so it behaves as if 

elastically restrained in the out-of-plane direction.  
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(b) The strut ends in the direction of the outstanding leg of the angle can rotate 

freely, but the strut ends can not rotate in the plane of the Tee stem as shown in 

Figure 6.5(b). 

(c) Opposite to end condition (b), the strut ends can not rotate in the direction of 

the outstand leg of the angle, but the strut ends can rotate in the plane of the 

Tee stem as shown in Figure 6.5(c). Similar to condition (a), the flexibility of 

the Tee stem allows out-of-plane rotation. 

 

When using NIDA, the end eccentricities are considered by adding end moments at 

the end nodes and for end conditions (a) and (c) the flexibility of the Tee stem is 

modelled by two rotational springs added to the two end nodes. The stiffness of the 

rotational spring is given by: 

BA

BA

kk
kkk

+
=                                                                                            (6.27) 

 

Ak and Bk  are the rotation stiffness of the Tee stem alone and the Tee stem with the 

angle respectively as shown in Figure 6.6. The test results and the theoretical 

results with both elastic and plastic analyses are compared by plotting the failure 

load–slenderness relationship in Figures 6.7(a), (b) and (c) corresponding to three 

different end conditions. The predicted loads by NIDA using elastic analysis are 

always conservative to the test failure loads. The imposition of initial curvature 

magnifies the δ−P  effect which allows the effects of residual stresses, other 

failure modes such as geometric axis flexural buckling and flexural-torsional 

buckling considered implicitly and gives design which fulfils the BS 5950 [3] 
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requirements. Comparatively, the predicted failure loads by NIDA using plastic 

analysis are closer to the experimental failure loads but not necessarily lower. This 

can be due to the experimental factors like quality of specimens, load application 

details and restraint etc. This shows that NIDA can give reliable result when 

dealing with biaxial bending, twisting and end restraint problems with the elastic 

solution ready for use for conventional design and the advanced analysis solution 

for collapse analysis in which not the design load, but the collapse load is of more 

interest. 

 

6.6.2 Example 2 – Design of a floor truss 

Figure 6.8 shows a four-bay indeterminate floor truss using 80×80×8 angles 

( 22.12 cmA = , 4115cmIu = , and 49.29 cmIv = ) as chord members and 50×50×5 

angles ( 28.4 cmA = , 44.17 cmIu = , and 455.4 cmIv = ) as web members. The 

material used is grade S275 steel with Young’s modulus of 205kN/mm2. An 

external force of 10 kN is added on each node on the upper chord. The floor truss is 

studied by three approaches, namely the traditional code method, the second-order 

elastic analysis method and the second-order plastic analysis method. Table 6.1 

shows the internal forces in the floor truss members if all joints are assumed to be 

pinned. Due to symmetry, only half of the floor truss is considered. The critical 

failure member would be the compression diagonal web member in the first bay. 

According to the BS 5950 [3], the compression resistance of the member is 46.1kN 

and the design load factor is 3.15 which means when the load is increased by this 

factor of 3.15, the structure reaches its capacity limit. Using the proposed elastic 
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analysis method, the load factor is 4.72, 50% higher than that of the conventional 

method. When advanced plastic analysis is adopted, with the resistance vector 

remains unchanged once the force and moment in the member reach the failure 

surface, the load factor will be 5.69, which shows a further increase of 20%. 

 

6.6.3 Example 3 – Design of a simple portal frame 

The advanced plastic analysis method can be used alternatively without Equation 

(6.25) and (6.26). The accuracy of the proposed approach using imperfect element 

has been demonstrated and the advantage of the present method over the 

conventional effective length method is illustrated in the example here. As a 

demonstration, a very simple portal braced by a pair of angle members is studied 

by the two approaches, the code method based on a linear analysis and the second-

order plastic analysis. As shown in Figure 6.9, the portal is 2m high by 3m wide 

with beams and columns of the same section of 305x305x240 UC 

( ,1005.3 23 cmA ×=  441042.6 cmI z ×= and 4410031.2 cmI y ×= ) of S275 steel 

grade. The bracing angles are taken as sections 120x120x10 angles ( ,2.23 2cmA =  

4497cmIu = and 4129cmIv = ) grade S275 steel of slenderness ratio around 150 

with both ends pin-connected to the columns by a single bolt. For simplicity, the 

gusset plate is assumed thin with negligible flexural stiffness so that rotational 

spring at connection is ignored. The portal is pinned to ground and the beam is 

pinned to column, which represents the simplest case of simple construction with 

beams simply supported on columns and lateral force resisted by a bracing system. 
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In conventional linear analysis, the compressive angle member may be ignored in 

actual practice because of its high slenderness. Thus, two linear analyses were 

carried out with and without considering the presence of compression member for 

comparison. For second-order analysis, imperfection of L/360 is used in the 

analysis. Equation (6.25) and (6.26) are not applied. Instead, a linear interaction 

equation is adopted. In all design, the design load is assumed when the first 

member fails except in an elastic-plastic analysis where analysis is continued until 

the load cannot further be increased with increment of displacement. The failure 

loads calculated from various analysis methods are summarized in Table 6.2. From 

the results, the following observations have been made.  

 

1. The conventional approach ignoring bracing members in compression yields a 

much higher loading capacity than considering bracing members in 

compression 

 

2. However, second-order elastic analysis with allowance for their strength and 

stiffness reductions due to high slenderness and imperfections showed that this 

may be incorrect to ignore the compression bracing member as most 

compressive members are able to take consideration loads. The conventional 

approach ignoring compression bracing members may result in considerable 

over-designing. 

 

3. If second-order plastic analysis is used, the loading capacity of the portal frame 

can be further increased considerably by 64% 
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The superiority of the present method over the conventional linear analysis is 

obvious in this example. The contribution of the compression member can be 

considered when using the second-order analysis and the actual failure mode in the 

structure can be manifested, both of the considerations are not possible to consider 

in a linear analysis with the effective length method.  

 

 

6.7 Concluding remarks 

It has been well known that failure of a member may not necessarily lead to the 

collapse of the complete structure and the reserve in strength after first member 

buckling can only be exploited when a second-order plastic analysis is carried out. 

Sequel to Chapter 5, this Chapter reports the method for advanced or second-order 

plastic analysis and design of angle trusses. A useful yield surface for angle section 

is proposed for incorporation into second-order analysis software such that the 

design of angle trusses and frames can be carried out efficiently, accurately and 

directly without empirical assumption of an effective length. The concept 

underlying the proposed theory can be extended to other sections like channels and 

unequal angles. The proposed work is aimed for putting second-order elastic and 

plastic analysis to practical design of structures composed of angle sections. So far, 

this proposed advanced plastic design method has not been used nor recommended 

for practical structures. However, it can be treated as the last resort to the sudden 

increase of ultimate load. 
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Figure 6.1 Midline idealization of an angle section 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 A fully plastic angle section without axial force 
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Figure 6.3 A fully plastic equal angle section with axial force 
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Figure 6.4 Front and side view of test specimen 
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End condition (a) 

 

 

 

End condtion (b) 
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End condition (c) 

Figure 6.5 Front and side view of end conditions 

 

 

 

 

 

 

 

 

Figure 6.6 Idealization of rotation spring 
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Figure 6.7 Failure load vs Slenderness Ratio 

 

 

Figure 6.8 A typical floor truss 
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Figure 6.9 Load deflection curve of Node H in Example 2 
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Figure 6.10 A simple portal 
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Figure 6.11 Load deflection curve at the point of load application in Example 3 
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Table 6.1 Internal member forces of floor truss in Example 2 

Member Force (kN) Member Force (kN) 

AB -8.3 CH -3.8 

BC -22.5 AG +10.4 

FG +11.7 BF -14.6 

GH +24.2 BH +3.1 

AF -11.2 CG -5.2 

BG -3.1   

Note: + means tension 
 - means compression 
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Table 6.2 Design load of various types of analysis  

Analysis Type 
Design Load at 

First Yield 1(kN) 

Corresponding 

Force at 

Compression 

Brace 2 (kN) 

Corresponding 

Force at Tension  

Brace 2 (kN) 

 

Linear analysis with 

design load assumed 

at failure of 

compression brace 

205.0 123.0 123.0 

Linear analysis 

ignoring  the 

presence of 

compression brace 

534.0 - 640.8 

Second-order elastic 

analysis 
282.4 118.4 221.6 

Second-order plastic 

analysis 
464.0 116.8 441.6 

 

Note: 

1. Design load, which is taken as the lateral load causing the bracing member 

to yield. 

2. The compression or tension force at the design load 

3. The design load calculated from the recommended imperfection in this 

paper. 

4.  Elastic-plastic buckling load obtained by simple maintenance of the 

maximum resistance of the compressive brace with the external load 

continues to increase until a mechanism is reached.  
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Chapter 7 Experimental Investigation 

 

7.1 Introduction 

In order to verify the models used in Chapters 5 and 6 and study the structural 

behaviour of a slender angle web member of a truss under predominately axial 

force, laboratory tests of angle trusses were carried out. Four single angle struts 

with slenderness ratio about 150 were tested as web members of a two-dimensional 

truss, which involves single-bolted and double-bolted connection and web 

members connected on one side or on alternative both sides. Although the truss is 

two dimensional, the failure modes of all test specimen were out-of-plane buckling. 

The ratios of failure load to squash load ranged from 0.219 to 0.303. The results 

will be compared with the theoretical and the design values in the followings. 

 

 

7.2 Test Programme 

Two series of tests involving four single angle struts as web members of a two-

dimensional truss were carried out. The truss shown in Figure 7.1 is simply 

supported at its two ends with one end pinned and one end roller. The dimensions 

of the truss are carefully measured through its centre line. In the first series, the 

web members of the truss are connected to the chord members on the same side. 

Figure 7.2 shows the connection details of the specimen with webs connected on 

the same side with double-bolted connection.  In the second series, the tests are 

repeated with the web members connected to the chord members on alternative 

sides. The specimens are of Grade S275 and two metres in length, making the 
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slenderness ratio ( rL ) around 150. The leg length-to-thickness ratio meets the BS 

5950 [3] requirements so that local buckling can be ignored. Each end of the 

member is connected to a gusset plate. The test included single and double bolted 

connections. Other details of the specimens are listed in Table 7.1.  

 

7.2.1 Experimental set-up and instrumentation 

The trusses were loaded in pair and sufficient lateral restraints were provided to 

ensure out-of-plane buckling at connecting nodes between chords and webs is fully 

avoided. Load was applied at the upper joint of the target failure member through a 

hydraulic jack. As shown in Figures 7.3 and 7.4, twelve strain gauges were 

mounted evenly at the mid-length of the targeted member and the tested truss was 

so designed that the targeted member fails first so that all measuring devices like 

displacement transducers and strain gauges can be mounted on the member which 

first fails. At the targeted member, two displacement transducers were positioned in 

the in-plane and out-of-plane directions and transducers were also used to monitor 

the movements of the top and the bottom joints of the targeted member so that the 

movement of the target member relative to the truss can be measured. The test was 

performed in a load-control manner. At the beginning of the test, the readings were 

recorded at an interval of 3kN. When the applied load was close to the estimated 

failure load, the interval was reduced to 1kN. At the load where the targeted 

member buckled or failed, the deformations of the remaining parts of the truss were 

small and reversible. Thus, after each test, the failed member was replaced by a 

new specimen so that the next test could be conducted under almost identical 

condition.  



 151

 

7.2.2 Testing procedure 

1. The truss was fabricated. 

2. Strain gauges were mounted on the mid-span of the test specimens as shown in 

Figure 7.3. 

3. The test specimen was fixed on the truss. 

4. The transducers were installed as shown in Figure 7.4. 

5. The transducers were connected to the data logger and checked if they were 

properly connected.  

6. The specimen was pre-loaded to 5 % of the estimated failure load through a 

manual hydraulic jack.  

7. Load was applied on the specimen through a manual hydraulic jack and the 

load cell and transducer readings were recorded through the data logger at 

specified intervals. 

8. Any observations, including the failure modes, during the test were recorded. 

9. The test was stopped gradually after failure was observed. 

10. The truss was unloaded gradually. 

 

 

 

7.3 Test Results 

7.3.1 Failure modes 

The major failure modes are flexural buckling about the principal minor axis as 

shown in the photos (Figures 7.5 and 7.7).  Figure 7.5 shows the buckled shape of 
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Specimen 1a, of which each end is connected to the gusset plate with single bolt, 

making it behave more like pin-ended in the in-plane direction as shown in Figure 

7.6. In the meantime, the gusset plate provides some flexibility in the out-of-plane 

direction. Figure 7.7 shows the buckled shape of Specimen 1b, of which each end 

is connected to the gusset plate by two bolts. The double bolt connection at each 

end provides some flexibility making it behave as if partially restrained in the in-

plane and out-of-plane directions as shown in Figure 7.8.  

 

7.3.2 Load-deflection curves 

The global displacements of the truss were measured by the transducers placed at 

the in-plane and out-of-plane directions at the mid-span and also at the upper and 

the lower joints of the targeted member. The relative movement to the truss can 

thus be calculated by these readings. Figures 7.9 and 7.10 respectively show the in-

plane and out-of-plane deflections of the four specimens. The slope of each curve 

indicated the stiffness of the specimen. A steeper slope implies a stiffer structure. 

As can be seen from the curves, generally, their response patterns are similar with 

the out-of-plane deflections always more severe than the in-plane deflections and 

the double-bolted specimen having stiffer slopes than the single-bolted counterparts. 

 

7.3.3 Failure loads 

Table 7.2 listed the member failure loads and the corresponding failure load of the 

truss (taken as 50% of the total applied load) which are calculated using numerical 

integration of the stress over the cross-sectional area. The ratios of failure load to 
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squash load ranged from 0.219 to 0.303. It can be seen that the load capacities of 

the specimens with double bolt end connections are 9% to 15% higher than the 

counterparts with single bolt end connections. For the same end conditions, 

specimens with alternate side web arrangement will have the load capacities 15% 

to 20% lower that those with same side web arrangement. The alternately opposite 

side arrangement of the web members will make the end moments due to eccentric 

connections more severe.  

 

 

7.4 Coupon Tests 

In order to validate comparisons among loading tests carried out on different 

specimens, theoretical loads calculated by BS 5950 [3] and NIDA [66], the 

properties of the steel used in the test specimens should be established by means of 

coupon tests. Four coupons were therefore cut from flat, unyielded areas of the test 

specimens after completion of the load testing. The dimensions of the coupons 

were measured accurately using a Vernier caliper. The yield strength and the 

Young modulus of the steel were determined by tensile testing following the 

procedure given in BS EN 10002-1 [73]. Figure 7.11 shows the tensile test machine. 

The averaged results of the coupon tests are summarized in Table 7.3. Coupons 1a, 

1b, 2a and 2b were cut from Specimens 1a, 1b, 2a and 2b respectively. All 

measured yield stresses exceeded the nominal yield strength (275N/mm2) while all 

of the Young’s moduli were in line with the nominal value (205kN/mm2). Figure 

7.12 shows the stress-strain curve of Coupon 1a.   
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7.5 Comparisons 

7.5.1 Comparisons with BS 5950 

BS 5950 [3] provides a simplified method for designing struts composed of single 

angles as mentioned previously in Chapter 3. They may be treated as axially loaded 

members with reduced compressive strength with ignoring the eccentricities at end 

connections. Using the measured material properties, the results calculated from 

the simplified method are summarized in Table 7.4. Although this method is easy 

and simple to use, it is not able to show the difference between the same side 

arrangement and alternately opposite side arrangement of web members. In other 

words, provided that the materials are identical in two sets of tests, the predicted 

failure load using this method would be also the same. As can be seen from the 

results, this method provides overly conservative (45.9 to 61.8%) estimates for 

angle struts with single-bolted connection, especially with webs connected on the 

same side, implying that taking 80% of the compressive resistance is too 

conservative in this case. On the other hands, it provides less conservative (10.4 to 

14.5%) estimates for the double-bolted counterparts meaning the assumption of 

effective length factor of 0.85 is reasonable in this case. 

 

7.5.2 Comparisons with NIDA 

The failure loads are predicted by NIDA with the end moments and end rotational 

restraints taken into account during the analysis. This can be done by adding rigid 

arms to the element to simulate the eccentricity and adding rotational spring 

elements at the element joints to simulate the end restraints. The length or the rigid 

arm is taken as, which is equal to the distance between the centroid of the angle 
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strut and the node. The value of the rotational stiffness k  is calculated from the 

flexural stiffness of the gusset plate and approximated as 1000 kNm/radian. This 

value is close to the rigidly fixed condition achievable for use with preloaded bolts. 

In the present case of using non-preloaded bolts, the value of k  is taken as 10% of 

the calculated value. It should be noted that the currently using section capacity 

check equation in NIDA is not suitable for angle sections because the equation was 

derived primarily for doubly symmetric sections of which maximum bending 

stresses about each principal axis occurs at the four corners simultaneously. 

However, for angle sections, as they are mono-symmetrical or asymmetric, the 

points of maximum bending stress about both principal axes do not necessarily 

coincide. As a consequence, the loading capacities of the sections calculated are 

usually underestimated. In the present studies, the axial stress is checked against 

every extreme point of the section.  

 

The computed results using second-order elastic analysis are summarized in Table 

7.5. Compared with the conventional design method using BS 5950 [3], the 

nonlinear analysis and design method provides more economical or less 

conservative estimates for the single-bolted specimens (14.1 to 20.9%) and 

narrowly more conservative estimates for the double-bolted specimens (16.1 to 

17.2%) for double-bolted specimens. The computed results using second-order 

plastic analysis are summarized in Table 7.6. It can be seen that the theoretical 

failure loads calculated by the advanced plastic analysis method are barely 

conservative with discrepancy from 1.0% to 11.8% of the experimental failure 

loads, which means that the member is likely to fail in a plastic mode. 
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7.6 Discussion 

Comparing the laboratory test results with the traditional BS 5950 design method 

and the proposed NIDA design method, the following conclusions can be made. 

First, while the BS 5950 method cannot take the web arrangement (same side or 

alternate sides) into consideration. The design method provides conservative 

predictions of the failure loads of the truss. Second, for compression members with 

single-bolted end condition, NIDA provided more rational predictions as it allows 

for end restraint stiffness. Third, for compression members with double-bolted end 

condition, BS5950 provided less conservative predictions. It is seen that the factor 

of 0.8 used in calculating the compression resistance of a single-bolted 

compression member is too conservative for some range of slenderness ratio. 

Although the BS 5950 method was noted to have a more accurate prediction for the 

failure loads of the double-bolted compression members using an effective length 

factor of 0.85, the joint and web arrangement details cannot be incorporated 

directly into the effective length method such what the present second-order 

analysis approach does. It is suggested that the discrepancy between the test results 

and the NIDA [66] results can be further minimized by considering the rotational 

stiffness due to the presence of the gusset plates and accurate calculation of the 

rotational stiffness of the joints at the two ends of the member.  

 

 

7.7 Concluding remarks 

This chapter reports the experimental investigation of single angle webs in 

compression in a form of two-dimensional truss. The experimental results are 
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compared with the failure loads calculated by the BS 5950 [3] and NIDA [66] by 

applying both second-order elastic and second-order plastic analysis with the load 

eccentricities and the end restraints considered. It is found that the laboratory test 

results agree well with the theoretical results with accuracy acceptable for design 

purpose. 
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Figure 7.1 Truss before test (webs on alternate sides) 
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Figure 7.2 Connection details (web on same side, double-bolted) 

 

 

 

 

 

 

 

 

 

 

 



 160

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Locations of strain gauges 

 

 

      

 

 

 

 

 

Figure 7.4 Locations of transducers 
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Figure 7.5 Weak-axis buckling mode (webs on same side, single-bolted) 
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Figure 7.6 Rotation of the specimen at the connection 

(webs on  same side, single-bolted) 
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Figure 7.7 Weak-axis buckling (webs on same side, double-bolted) 
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Figure 7.8 Rotation of the specimen at the connection 

(webs on  same side, double-bolted) 
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Figure 7.9 Experimental in-plane deflections of the specimens 
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Figure 7.10 Experimental out-of-plane deflections of the specimens 
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Figure 7.11 Tensile test machine 
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Figure 7.12 Stress-strain curve of coupon test (Coupon 1a) 
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Table 7.1 Details of test specimens 

Specimen Size Web Arrangement End conditions Gusset 

Dimensions 

1a L65×65×6 Same Side Single Bolt 240×180×8 

1b L65×65×6 Same Side Double Bolt 240×180×8 

2a L66×66×6 Alternate Sides Single Bolt 240×180×10

2b L66×66×6 Alternate Sides Double Bolt 240×180×10

 

 

Table 7.2 Experimental failure loads 

Set Specimen 
Failure Load 

(kN) 

Failure Load/ 

Squash Load 

Failure Load 

of the Truss 

1 1a 67.2 0.260 91.2 

 1b 78.4 0.303 98.4 

2 2a 57.5 0.219 68.4 

 2b 72.1 0.275 78.9 
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Table 7.3 Coupon test results 

Set Coupon 
Young’s modulus, E

(kN/mm2) 

Yield stress, σy 

(Ν/mm2) 

1 1a 216.9 347.0 

 1b 211.8 347.6 

 Average 214.4 347.3 

2 2a 194.5 348.6 

 2b 185.6 344.9 

 Average 190.0 346.7 

 

 

Table 7.4 BS5950 failure loads 

Set Specimen BS5950 Load (kN)
Test Load/ 

BS5950 Load 

1 1a 41.5 1.618 

 1b 68.5 1.145 

2 2a 39.4 1.459 

 2b 65.3 1.104 

 

 

 

 

Table 7.5 NIDA failure loads – Second-order elastic analysis 
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Set Specimen NIDA Load (kN)
Test Load/ 

NIDA Load 

1 1a 55.6 1.209 

 1b 66.9 1.172 

2 2a 50.4 1.141 

 2b 62.1 1.161 

 

 

Table 7.6 NIDA failure loads – Second-order plastic analysis 

Specimen Theoretical 

Failure Load (kN)

Experimental 

Failure Load (kN) 

Experimental Load / 

Theoretical Load 

1a 60.1 67.2 1.118 

1b 77.4 78.4 1.013 

2a 54.3 57.5 1.059 

2b 71.4 72.1 1.010 
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Chapter 8 Conclusions and Recommendations 

 

8.1 Conclusions 

The design of structures consisting angle sections have been controversial for some 

time because of the complexity arisen from the asymmetry of the section. Different 

national codes give considerably varied recommendations on the computation of 

design load resistance of angle struts. In spite of the lack of consistent design of 

this sectional type, it is practically very convenient to fabricate an angle structure 

by attaching one angle to another or through a gusset plate by connection through 

one leg. As a consequence, the load applied to the section is commonly eccentric 

and results in a pair of end moments. In the meantime, the connection may provide 

some degree of end fixity. Structural engineers may design this type of structures 

with the end moments and the end restraints considered in the analysis. However, 

to facilitate design process, some national codes such as BS 5950 [3], Eurocode 3 

[42] and Hong Kong Steel Code [62] provide a simplified method which ignores 

the effects due to load eccentricities and the connections. In the simplified method, 

the compression resistance of an angle member is simply controlled by the 

“effective length” of the member. To adopt this method, a linear analysis method is 

carried out first to calculate the internal forces of the structure. In the analysis, all 

loads are assumed to be applied at the centroid of the sections and all connections 

are assumed to be pinned. In the second stage, the compression resistances of the 

members are calculated according to their slenderness ratios and their connection 

details. Although the design procedure is sped up by these simplified assumptions, 

the first-order linear analysis and design method appears to be too conservative in 
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cases where the nodes do not displace and may be dangerous when the ends of an 

angle strut moves considerably. Not only the load eccentricities and end restraints 

are ignored in the linear analysis used with the design code, but also the 

arrangement of the web members on one or alternate sides of a truss is overlooked.  

 

In other national codes such as AISC LRFD [52,63], although the end moments are 

considered in the interaction equations, the end restraints are considered in terms of 

“K-factors”, the failure loads are always underestimated because the interaction 

equation is basically derived for a symmetrical section of which the four corners 

are critical for moments about both principal axes simultaneously. However, for 

angle sections, as they are monosymmetric for equal-leg angle or asymmetric for 

unequal-leg angle, the points having maximum bending stress about both principal 

axes usually do not coincide. As a consequence, the loading capacities of the 

sections calculated from these interaction equations are underestimated. It is 

suggested that the axial stress is checked against every corner point of the section.  

 

In the last decades, methods of second-order analysis and advanced analysis have 

been extensively and actively researched for doubly symmetrical sections. 

However, second-order analysis for unsymmetrical sections is still unsophisticated. 

For examples, those factors that have been mentioned in the first paragraph 

affecting the compression resistances of the angles are not included in the analysis. 

To widen the application of second-order analysis for practical steel design, this 

thesis is aimed to propose and to develop a second-order analysis design method 

for angle frames and trusses which allows the design to be completed within a short 
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time and the effect of buckling is considered automatically and relatively more 

rigorously than the current effective length method. In Chapter 5, two second-order 

elastic design methods have been proposed, namely the equivalent initial curvature 

approach and the exact end moment approach. In the first approach, the effects due 

to load eccentricities and end restraints are considered in the form of equivalent 

initial curvature. The second approach considers the end moments and the 

rotational stiffness of the connection explicitly by rigid arm and end spring in the 

analysis. The advantage of the first approach is on its simplicity but it may 

underestimate the failure load of the structure. The advantage of the second 

approach is its consideration of the effects due to load eccentricities and end 

restraints which may produce a more economical design. However, it requires more 

effort to consider the magnitudes of the load eccentricities and the stiffness of the 

rotational spring. In Chapter 6, a second-order plastic design method is introduced. 

It is obvious that failure of a member may not necessarily lead to the collapse of 

the complete structure. The proposed second-order plastic design method can 

exploit the reserve in strength after first member buckling. A useful yield surface 

for an equal angle section is proposed for incorporation into second-order analysis 

software such that the design of angle trusses and frames can be carried out 

efficiently and accurately with the load eccentricities and end restraints considered 

directly.  

 

Chapter 7 reported the experimental investigation of single angle webs in 

compression in a form of two-dimensional truss. The experimental results are 

compared with the failure loads calculated by the BS 5950 [3] and NIDA [66] by 
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applying both second-order elastic and second-order plastic analysis with load 

eccentricities and end restraints considered. The results show that the failure loads 

calculated by the BS 5950 [3] were too conservative, especially for webs with 

single-bolted end condition and connecting on the same side. The second-order 

elastic analysis is able to give reasonable estimates of the actual failure load for 

both single-bolted and double-bolted end conditions and webs connected on one 

side and both sides. The second-order plastic analysis is capable of predicting the 

failure loads more accurately and rationally allowing for stress and force re-

distribution after the yielding of first member. 

 

 

8.2 Recommendations for future work 

Undoubtedly, design of angle structures and towers is complex and quite many 

tower made of angle members fail when wind is close to the design wind speed. 

Every year hundreds of angle structures like transmission line towers are 

constructed in different parts of the world and the wind speed is ever increasing in 

the world, possibly due to the effect of global warming resulting in more latent 

energy from sea. The design of this dangerous types of structures requires a careful 

re-visit and the research on this topic appears to have been over-looked by many 

researchers who focus more on symmetrical sections like circular, square, I and H 

steel sections, possible because of the complexity. 

 

The design methods suggested in Chapter 5 including the equivalent initial 

curvature method and the exact end moment method are ready for immediate use 
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for design of practical steel structures with angle sections. However, the research 

on the advanced plastic analysis method proposed in Chapter 6 is still ongoing and 

requires a great deal of experimental data to support its reliability since the 

computed result can be occasionally greater than the tested failure load for a single 

angle strut. The concept underlying the proposed theory can also be extended to 

other sections like channels and unequal angles. At present, the proposed method 

can be adopted conservatively with a linear interaction equation. The reserve in 

strength can be treated as the last resort due to the sudden increase in ultimate load 

or damage of a member for study of collapse load of the angle structures. 

 

Finally, although not of a concern for most angle structures, angle members may 

fail by torsional mode and the design of short angle needs to consider this mode 

together with larger end moments due to eccentric connections. The design should 

include this consideration when it is widely used in industry to prevent failure of 

stocky angle struts. 
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