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ABSTRACT

Abstract of thesis entitled

“Methods Development and Applications of Chemometrics Techniques in Chemical and

Biochemical Studies”™

submitted by LEUNG Kai-man, Alexander
for the degree of Doctor of Philosophy in Chemistry

at The Hong Kong Polytechnic University in August, 1998.

Owing to the rapid development of instrumentation in analytical chemistry, new
and efficient data analysis techniques are required for data interpretation. Chemometrics
is a new discipline in chemistry that applied mathematical, statistical and other logic-
based methods to analyze chemical data in particular in analytical chemistry. From
chemical literature, chemometrics techniques have been applied successfully in different
areas. The aim of this project is to apply chemometrics techniques such as wavelet

transform and factor analysis to analyze data from chemical and biochemical system.

Recently, wavelet transform (WT) was applied successfully in chemistry for data
compression and denoising. In this project, WT was employed to process and enhance

analytical data in two major areas, they were infrared (IR) spectroscopy and high



Abstract
performance liquid chromatography coupled with a diode array detector (HPLC-DAD).
WT was selected as a new compression method to reduce the size of a small IR spectral
library. The wavelet compressed library was employed for spectral library searching.
The performance of WT in data compression and library searching were compared with
fast Fourier transform. A data length of 27 with p being any integer is usually required
for wavelet computation. A new method called coefficient position retaining (CPR)

method was developed in this work to handle experimental data with a length not equal

to 2°.

Derivative spectroscopy is another signal processing technique that commonly
used in analytical chemistry for data analysis owing to its popularity on the apparent
higher resolution of the differential data when compared with the original data.
Derivative of an analytical signal is usually derived from numerical differentiation.
However, this method has a major drawback in increasing the noise level in computing
higher order derivatives. In order to solve this problem, WT was proposed as a new
method for approximate derivative calculation. Results indicated that the proposed

method is much better than the conventional numerical differentiation method.

The development of hyphenated instrument such as HPLC-DAD leads to the
development of new type chemometrics technique for data interpretation. Heuristic
evolving latent projections (HELP) algorithm is one of the most popular method for
analyzing data from HPLC-DAD. This method can extract most of useful information
from the raw experimental data. FWT was proposed as a pre-processing step of the

HELP algorithm. Both compression and denoising properties of FWT could enhance the

i



Abstract
HELP algorithm especially for HPLC-DAD data with low signal-to-noise ratio (SNR).
This new algorithm (FWT-HELP) was identified as a potential tool for analyzing
chemical constituents in traditional Chinese medicine (TCM). In terms of chemistry,
chemical constituents of Chinese herbs are a complex black system. There is no a priori
information concerning the chemical composition of the samples. Both FWT and HELP
algorithms have its own advantages which can simply and enhance the chemical
analysis of TCM. A traditional Chinese medicinal herb, Cordyceps sinensis
(X8 HE), was selected as an example to test the performance of the proposed

algorithm.
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1.1 Background

Chemometrics is a new discipline in chemistry that applied mathematical.
statistical and other logic-based methods to analyze chemical data in particular in
analytical chemistry (Massart, et. al., 1988) and has been developed more than 27 years
(Brown, 1995). The term chemometrics was coined by the Swedish physical organic
chemist, S. Wold, in 1971 (Brereton, 1990). It is mainly employed in the following
areas in chemical studies: (1) calibration, validation and significance of analytical
measurement; (2) optimization of chemical measurement and experimental procedures;
and (3) the extraction of maximum chemical information from analytical data (Haswell,
1992). One objective of chemometrics is to provide tools to assist in the conversion of
raw data into useful information (Meglen, 1988). The applications of chemometrics
have found considerable success in principal component and factor analysis,
experimental design and optimization, statistical evaluation, signal processing and data

analysis, and pattern recognition (Brereton, 1987).

Over the past decade, the capabilities of analytical instrumentation have increased
greatly (Haswell, 1992). Most modern chemical instruments in laboratories are now
attached to computers and robots. Many people want to employ simpler and cheaper
instrumentation in monitoring their chemical process in real time. Chemometrics
techniques can ensure that useful information can be extracted as completely as possible
from these simpler and less informative instruments. Besides, there is a great demand in
developing of advanced instruments to perform both qualitative and quantitative

analyses in analytical chemistry. With the introduction of hyphenated instruments such




Chapter 1

as high performance liquid chromatography coupled with diode array detector (HPLC-
DAD) and gas chromatography interfaced to Fourier transform infrared spectrometer
(GC-FTIR) or mass spectrometer (GC-MS), chemical analysis is changing from two-
dimensional to multi-dimensional analysis. The huge increase in the number of
chemical instruments drives the development of chemometrics (Brown, 1995).
Meanwhile, the rapid development of microcomputer systems facilitates the use of
chemometrics in chemistry because chemometrics require many mathematical and
matrix computations. Chemometrics can also convert the routine data analysis process

to an automatic one with the help of microcomputer.

The objective of this research work is to apply and modify selected chemometrics
techniques to analyze experimental data from chemical and biochemical systems with
modern analytical instruments. The research work focused on signal processing and
factor analysis of data from HPLC-DAD and infrared (IR) spectroscopy. A series of
programs were developed and coded in MATLAB® in this work for the required

computations.

MATLAB®, which stands for matrix laboratory, is a high-performance language
for technical computing (The MathWorks, Inc., 1996) and is widely used in
chemometrics computation for processing of analytical signals (Mitra and Bose, 1994).
It integrates computation, visualization and programming in an easy-to-use environment
(The MathWorks, Inc., 1996). In chemometrics, most calculations are carried out in
form of matrix. MATLAB® is a specialized language for matrix mathematics (Marcus,

1992) and is optimized in speed for modern microprocessor. Besides, MATLAB® is
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available for various types of computers such as the UNIX workstations that include
Sun, HP 9000, DEC Alpha, IBM RS/6000 and SGI, the IBM-PC with Microsoft
Windows 3.1, 95. NT and Linux as the operating system and the Macintosh. Self
developed MATLAB® programs can be run on different operating systems without any
modification. MATLAB® is also an ideal computer language for teaching and learning
chemometrics (O’Haver, 1989; Chau and Chung, 1995). It can save a lot of time to
develop custom programs when compared with using traditional computer languages
such as C and FORTRAN. MATLAB® can also interface to other windows based
programs via dynamic link libraries (DLLs) (Vankeerberghen et al.. 1996a,b) and
perform data exchange to and from the other programs via dynamic data exchange

(DDE) (de Cerqueira and Poppi, 1996).

As stated previously, this research work focused on the application of signal
processing techniques in analytical chemistry. Modern chemical instruments especially
the hyphenated instruments generated huge amount of data in each measurement. Data
compression techniques are required to reduce the data size for storage and further
analysis. Commonly used data compression techniques that apply to analytical
chemistry will be described in Chapter 2. This chapter will review the basic principle of
the compression techniques that includes binary encoding, factor analysis, Fourier

transform, spline and wavelet transform.

Recently, wavelet transform (WT), a new mathematical technique, is a very hot
tool adopted in various fields of science and engineering. It has been applied

successfully for signal processing in chemical studies since 1989. The number of
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publications related to the applications of WT to manipulate chemical data increased
rapidly in the last two years from one paper being published in 1989 to 18 papers in
1996 and 45 papers in 1997. In Chapter 3. applications of wavelet transform and its
derivative wavelet packet transform (WPT) in chemistry from January 1989 to August
1998 will be reviewed. It includes the WT applications in analytical chemistry, quantum

chemistry and chemical physics.

Wavelet transform is a new technique for data compression and denoising. The
fast wavelet transform (FWT) and its derivative wavelet packet transform (WPT) are
employed to compress IR spectrum for storage and spectral searching. In wavelet
computation, data length is confined to be a power of 2 (Daubechies, 1992). However,
chemical instruments cannot generate a data set exactly with a length of power of 2. As
a result, it introduces some problems in wavelet computation. A new method called

coefficient position retaining (CPR) method will be introduced in this work to handle

experimental data with length not equal to 2” with p being any integer. Details of this

work will be described in Chapter 4.

Derivative spectroscopy is another signal processing technique that commonly
utilized in analytical chemistry for data analysis owing to its popularity on the apparent
higher resolution of the differential data when compared with the original data (Adam,
1995). Although the technique is an useful tool for data analysis, it has a major
drawback in increasing the noise level in higher order derivative calculation (Brown,
1992). To perform higher order derivative calculation via numerical differentiation,

noise reduction is usually performed between data from each order of successive
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derivative calculation (Antonov and Stoyanov, 1996). A novel method based on wavelet
transform was proposed in this project for approximate derivative calculation. Details

will be presented in Chapter 5.

The second part of this research work is related to the application of factor
analysis techniques to analyzing data from hyphenated instrument. Commonly used
methods for such purpose include evolving factor analysis (EFA) (Maeder and Zilian,
1988; Keller and Massart, 1992a), alternating regression (AR) (Karjalainen, 1989;
Karjalainen and Karjalainen, 1996), target factor analysis (TFA) (Gemperline, 1984),
iterative target transformation factor analysis (ITTFA) (Vandeginste ef al.. 1985), target
transformation factor analysis (TTFA) (Hopke 1989), window factor analysis (WFA)
(Mailnowski, 1992), fixed size moving window evolving factor analysis (FSMW-EFA)
(Keller and Massart, 1991) and heuristic evolving latent projections (HELP) (Kvalheim
and Liang, 1992; Liang et al., 1992). In these methods, HELP predominates over the
others in the recent studies (Toft and Kvalheim. 1994; Grung and Kvalheim, 1995). In
this research work, we found that the HELP algorithm failed to analyze data from
HPLC-DAD with low signal-to-noise ratio (SNR). In order to cope with this problem, a
new method called fast wavelet transform heuristic evolving latent projections (FWT-
HELP) was developed in this investigation. It was found that the performance of the

HELP algorithm can be improved with FWT. Details will be discussed in Chapter 6.

On the next century, it is expected that there is a dramatic growth for traditional
Chinese medicine (TCM) and its associated products in the world (Wong, 1997).

According to a recent study by the Massachusetts Institute of Technology (MIT), Hong
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Kong has the potential to be developed into an international center of TCM (Wang et
al., 1997). Research works on TCM become an active research area in different
universities in Hong Kong. However, the effectiveness of TCM products depends
greatly on the quality of the natural materials used (Lee, 1997). Besides. safety on the
TCM products is another issue to be concerned by many international organizations
such as the Food and Drug Administration (FDA) in U.S. So, both qualitative and
quantitative analysis should be performed on raw materials and TCM products before
they are sold to the market. From the point of view of a chemist, chemical constituents
of Chinese herbs are a complex black system (Liang er al., 1993). There is no a priori
information concerning the chemical composition of the samples. We need to develop a
suitable method to analyze the major constituents. In Chapter 7, the performance of the
proposed FWT-HELP algorithm in the real situation was explored. A traditional
Chinese medicinal herb, Cordyceps sinensis, was chosen as an example in this work and

analyzed with HPLC-DAD.

In conclusion, wavelet transform is the framework of this research work and
thesis. Novel applications which were based on WT were studied and developed and

applied to analyze data from chemical and biochemical systems.
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2.1 Introduction

Nowadays, most of the chemical instruments are computerized due to rapid
development of modern microelectronics technology. A microcomputer is usually
connected to an instrument for control of devices, data acquisition, processing and
interpretation (Ratzlaff and Ratzlaff, 1992). Besides, there is a growing tendency to
combine different chemical devices together to form a hyphenated instrument. This
approach greatly enhances information acquisition and even allows experimental works
not possible to be achieved before. Hyphenated instruments such as high performance
liquid chromatography coupled with diode array detection system (HPLC-DAD) and
gas chromatography-mass spectrometry (GC-MS) are widely utilized in chemical
laboratories for qualitative and quantitative analyses (Karjalainen and Karjalainen,
1996). Other two-dimensional (2D) techniques include two-dimensional Fourier
transform infrared (2D FT-IR) spectrometry and nuclear magnetic resonance (2D FT-
NMR) spectrometry. In addition, application of three-dimensional techniques are
becoming routine in chemical studies and those of four-dimensional technique has been

proposed (Kuo et al., 1991).

The rapid development of multi-dimensional technique and chemical instruments
lead to some problems. One of them is that piles of experimental data are generated
from each run of measurement. For example, several Mega-bytes (MB) of data can be
produced from each run of a GC-MS or HPLC-DAD analysis. Such an enormous
amount of data requires a lot of archive space and much longer time for further

processing. Though mass storage systems such as CD-ROM (540 MB) and removable
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disk (from 100 MB to 4.7 Giga-bytes (GB)) are available in the market, a higher storage
density (number of spectra or signals per MB of storage space) would be preferred. One
possible way to solve this problem is through signal compression. In chemical analysis,
signal compression is very important especially in setting up digitized spectral library
(Warr, 1993a). It is because signal compression can diminish the size of the original
database and reduce the time for spectral searching. Besides, with the popularity of the
Internet, it provides a new way for the exchange of scientific information (Feny6 et al.,
1996). Signal compression techniques can save the bandwidth of the network and
improve the data transfer rate. In order to apply signal compression techniques in
chemistry, the following requirements have to be fulfilled (Alsberg ef al., 1994).
L. Itis possible to compress the signal using the chosen method.
2. The compression method is not be too computing intensive.
3. The discrepancy between the original data set and that reconstructed from the
compressed representation is acceptable.
4. The compressed representation itself should be operational which means that
common numerical methods can be applied to both the compressed and

original representations in the same manner.

In general, signal compression methods can be classified into two categories. The
first one is to lower the resolution of the original spectra by reducing the numbers of
data to be retained while the second one is to compress spectra through transformation
to other domains. A review on common compression methods for spectroscopic studies

in analytical chemistry will be presented in this chapter.

10
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2.2 Data Compression Methods in Analytical Chemistry

2.2.1 Binary Encoding

The most primitive and natural preprocessing of experimental spectral data for
qualitative identification is binary encoding (Scott, 1988). The binary encoding
method is based on division of the wavelength, time or mass range scale into a
number of intervals with equal spacing. The Wyandotte ASTM code or “0/1” code is
an example of the binary encoding (Heite et al., 1978). In this approach, if one or
more peaks are located in a certain interval having intensity greater than a preset
intensity threshold, for instance, 1% of the most intense peak within a spectrum, the
code “1” is assigned to this position. Otherwise, the code “0” is assigned. In this
encoding scheme, a peak position may be allocated incorrectly next to the true one.
To make sure the peak positions being coded correctly, windows with different
widths may be applied. The major drawback of this method is that no intensity
information is retained during the spectral compression process. This method is

mainly used in compressing spectra from mass spectrometry (MS).

Since the Wyandotte ASTM code cannot be used to record complex spectral
structure, Rann (Rann, 1972) proposed another scheme to compress infrared (IR)
spectrum. In this scheme, an IR spectrum is divided into ten sections with unequal
spacing. At the IR finger-print region (400 - 2500 cm™!), more sections are allocated
than others since it contains more useful information. Each section is further divided
into ten equal spacing subsections. A number 0 to 9 is assigned sequentially to these

subsections. Then, the maximum absorbance within each section is located and the

H
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code for its position is equal to the assigned number of the subsection where it
located. After the coding process, each IR spectrum is represented by a number with

10 digits that contains more information about the shape of the spectrum.

Both the Wyandotte ASTM and Rann’s methods have a major disadvantage of
losing large amount of information such as peak intensity in the compression
process. Adams and Black (Adams and Black, 1986) proposed an error-free data
compression scheme which is based on the Huffman shift method (Amsterdam,
1986) to code IR spectra. A data point is stored as a binary code word rather than a
digital value. Since the possible digital levels for a recorded spectrum do not occur
equally, a reduction in storage space can be achieved by assigning shorter binary
words to data that occurs more frequently. This approach can save up to 70% of
memory space with both peak position and intensity of each wavelength being

recorded.

Binary encoding is a simple process but not a good way to compress spectrum
because it only records the locations for the most significant peaks with no
information about the peak shape and intensity. This scheme is mainly used by the
electronic data sorting equipment in 1970s such as the punch card or paper tape
reader (Rann, 1972). In recent years, researchers tend to employ different advanced
mathematical techniques to compress spectra. Some of the important ones including
factor analysis and transformation techniques such as Fourier transform, spline and

wavelet transform.

12
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2.2.2 Factor Analysis

Factor analysis (FA) is a multivariate technique for reducing an original data
matrix to the one with the lowest dimensionality by using the orthogonal factor space
(Malinowski, 1991). Predictions and/or recognizable factors can be obtained from the
transformed data matrix. Principal component analysis (PCA) is a major technique
that widely adopted in FA (Aries ef al., 1991; Smith, 1991). Once PCA is applied,
the original data are projected into a much smaller space spanned by the first several
eigenvectors. The purpose of FA treatment is not only to reduce the dimensionality
of the original data but also to preserve the majority of the original information in a

much smaller new space (Wang and Isenhour, 1987).

The PCA process starts with a data matrix X with a dimension of r xc. to
represent a set of spectra where r denotes the number of observations adopted in FA
and ¢ the number of variables in every observation. X is then decomposed by a
mathematical process called singular value decomposition (SVD) into different
eigenvalues and eigenvectors (Malinowski, 1991; Lupu and Todor, 1995). The
magnitude of an eigenvalue indicates the relative importance of the corresponding
eigenvectors because not all eigenvectors are useful. Several criteria have been
proposed to determine the number of true factors in X. The most popular one is the
average eigenvalue criterion as proposed by Kaiser (Wang and Isenhour, 1987).
Those eigenvectors corresponding to eigenvalues having value smaller than an
average eigenvalue are assumed to contain more noise than the true information and,

hence, can be rejected. An empirical function called the factor indicator function

13
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(IND) (Eq. (2.1)) as proposed by Malinowski (Malinowski, 1991) can aiso be utilized

to determine the number of true factors.

2.1

In the above expression, n, l°1, r and c represent the number of factors, the

eigenvalues, the number of rows (or observations adopted in FA) and number of
columns (or variables in every observation) respectively. The IND function is
calculated repeatedly for different values of n. Then. the number of true factors is
equal to n which has a minimum IND value. After finding the number of true factors.
the principle components can be extracted from the eigenvectors. To compress a
spectral library, it can be accomplished by matrix multiplication of the library matrix
(dimension of  x n) by the principal components (dimension 7 x p, n> p) where ¢
and p denote the number of spectra in the library and the number of principal
components respectively. The much smaller spectral library (dimension ¢ x p) can

then be used for library search and other purposes.

Normally, FA is coupled with different transformation techniques to enhance
the spectral compression efficiency. Hangac et al. (Hangac er al., 1982) proposed a
compression method by applying FA to the experimental spectrum first and followed
by Karhunen-Loéve transform. In this way, a fivefold reduction in storage was
achieved. The aim of utilizing the Karhunen-Loéve transform is to reduce the

dimensionality of the original data matrix by eliminating redundant variables.

14
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2.2.3 Fourier Transform

Fourier transform (FT) is a mathematical technique that maps information from
one domain into another domain (Glasser. 1987a-c: Wang and Isenhour, 1987). It is
widely used in chemistry for signal smoothing and compression. Usually. FT
converts data from the time domain to frequency domain or vice versa. The
information containing in these two domains is essentially the same. However,
different properties in the two domains sometimes make the information easier to
handle in one domain than in the other (Wang and Isenhour, 1987). In order to
perform FT in the most economical manner, the fast Fourier transform (FFT) as
developed by Cooley and Tukey in 1965 (Zupan, 1989) is usually employed.
Suppose a spectrum with a data matrix X is measured by a chemical instrument at 2N
different wavelengths with N being a multiple of 2. After performing FFT on the
spectrum, the Fourier coefficients obtained are stored in the ¥ matrix. The elements

of X and Y are related to each other by (Oppenheim and Schafer, 1989)

2N~

Y(k)= D X(Wy 2.2)

n=0

with #,, =exp(-i(2n/2N)), i=-1,or

~
3

4

X()== 3 YR 23)

R
2r

~

where & and # are running indices from 0 to 2N-1. Owing to the symmetric properties
of ¥ (Oppenheim and Schafer, 1989), the real part (RE) are related to the imaginary

part (IM) of the elements of ¥ by

RE{¥(k')} = RE{Y(2N - k')} (2.4)
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and M{Y(k")} = -IM{Y(2N - k')} (2.5)
with £’= 1 to N-1. Therefore, only the first (NV+1) Fourier coefficients have to be
stored. The last (NV-1) coefficients can be derived from Egs. (2.4) and (2.5) in

spectrum reconstruction.

In some cases, further reduction on the number of Fourier coefficients for a
spectrum may not affect the quality of the original data after data reconstruction.
Owens and Isenhour (Owens and Isenhour, 1983) utilized FT with the clipping
(single bit quantization) technique to compress IR spectra in the time domain. Since
the IR absorbance equals to 0 at OHz, the values in the IR time domain oscillate
above and below 0. The clipping operation replaces a set of data points with the
corresponding set of bits. Data points with magnitudes greater than 0 are assigned to
have a bit value of 1, while the remaining points with a bit value of 0. A 16-fold
reduction in data storage was reported in this approach. The clipped FT procedure
can also be applied to compress mass spectra (Lam ef al., 1981) and NMR spectra
(Crawford and Larsen, 1977). Recently, Chau and Tam (Chau and Tam, [994)
proposed different methods to reduce the number of Fourier coefficients for
ultraviolet-visible spectra as recorded by a photodiode array detector. The simplest
way is to store the Fourier coefficients with values greater than 0.1% of the
maximum one. Another method involves the selection of a group of high frequency
components in the last 15/16 portion of the first half of the FT transform spectrum
and determines the number of Fourier coefficients to be retained based on some

criteria. They also proposed a new method by fitting the logarithms of the first-half
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elements of the power spectrum by a fourth-degree polynomial. A 90% reduction in

the file size for data storage was reported.
2.2.4 Spline

In many cases. a spectrum can be represented by a continuous function such as
sine waves, Gaussian peaks, Lorentzian peaks or spline (Alsberg, 1993). Spline is a
mathematical technique by dividing a curve into a set of segments or intervals
(Alsberg and Kvalheim, 1993). A polynomial up to a certain degree of k£ may be
defined within the limits of different intervals that are defined by a set of points
called knots. The polynomials between neighboring intervals are connected to form a
continuous function. Alsberg et al. (Alsberg, 1994) proposed to compress Fourier
transform infrared (FT-IR) spectra by using B-splines. B-splines or basis-splines
represent a curve as a linear combination of basis functions. Each basis function is

described by a vector of real numbers which determines its size and shape. This
vector h' is called the knot vector. The B-spline basis set ( B , (x), j e[l,...q -k - 1] R

where g denotes the number of elements in the knot vector and k the degree of the

spline) is completely described by the knot vector as

h" - {B,(x). 5, @) B, ()} (2.6)
A signal function f (the FT-IR spectrum) can thus be formulated as a linear

combination of the B-spline basis set B,(x):

f(x)= ic,- B;(x) 2.7)
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Therefore, the FT-IR spectrum is described by its knot vector h' and coefficient

vector ¢ only, resulting in data compression. A 99% compression in file size was

reported in their study.

2.2.5 Wavelet Transform

Wavelet transform (WT) is a new mathematical technique (Daubechies, 1992)
and has been applied widely in various field of science and engineering for data
compression and denoising (Daiguji et al., 1997; Hilton, 1997: Idris and
Panchanathan,1997; Provaznik and Kozumplik. 1997). Since 1989. WT was
introduced in chemistry as a tool for signal processing. More than 90 papers have
been published from January 1989 to August 1998. Applications can be found in the
areas of analytical chemistry, quantum chemistry, chemical physics and chemical
engineering. A detailed review on the application of WT in chemistry will be

presented on next chapter.

2.3 Conclusions

In this chapter, various spectral compression techniques that are commonly
applied in analytical chemistry are described. Spectral compression is a very important
technique in modem analytical chemistry owing to the rapid development in chemical
instrumentation. For the compression methods mentioned above, Fourier transform is

the most popular one because it is easy to implement. However, other new mathematical
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techniques such as wavelet transform are under development to give more efficient

compression procedures.
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An Introduction of Wavelet Transform
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3.1 Introduction

Wavelet transform (WT) becomes a popular topic in different field of science and
engineering for signal and image processing after the publication of an important paper
by . Daubechies (Daubechies, 1988) in 1988. This new mathematical technique has
been demonstrated to be fast in computation with localization and quick decay
properties in contrast to existing popular methods, especially, the fast Fourier transform
(FFT). Theory of WT was developed extensively in 1980’s (Daubechies, 1992). Several
excellent reference books on WT were published in 1992 and afterwards. Examples
include Ten Lectures on Wavelets (Daubechies. 1992) which is a comprehensive
account containing the lectures by the author at the NSF-CBMS wavelet conference
held at the University of Lowell in June 1990 (Kaiser, 1994). Chui also published a
series of reference books on WT (Chui, 1992a-b; Chui er al., 1994; Chui, 1997) which
provide general information in wavelet theory, algorithms and applications. A number
of MATLAB® based wavelet public domain softwares, which can be downloaded from
Internet, are available for non-commercial, research and educational users. That includes
WaveLab from Stanford University (Buckheit and Honoho, 1995) and the others (Misiti
et al., 1995). Commercial product includes the Wavelet Toolbox from The MathWorks,

Inc. (Misiti et al., 1996) and WavBox from Computational Toolsmiths (Taswell, 1995).

From 1989 onwards, WT has been applied for signal processing in chemical
studies owing to its efficiency, large number of basis functions available as compared
with Fourier transform (FT), and high speed in data treatment. One of the main feature

of WT is that it may decompose a signal directly according to the frequency and
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represent it in the frequency domain distribution state in the time domain. In the
transformation, both the time and frequency information of the signal are retained. In
chemical studies, the time domain can be replaced by the other domain such as
wavelength. With proper identification of the scales with frequency, higher frequency
signals can be separated from the lower one, in the sense that it has zoom-in and zoom-
out capability at any frequency. Since WT can focus on any small part of a signal, it can
be called a mathematical microscope (Daubechies, 1988). Another feature of WT is that
the development of signals in the frequency domain can be constituted with a flexible
choice of waveforms rather than with only trigonometric ones as a basis. For instance, in
FFT. only sine and cosine function can be chosen as the basis. In contrast, a lot of such
functions can be selected in WT. Therefore, WT is a more powerful method to depict

relationships among different variables.

Since 1989, more than 90 papers (Table 2.1) have been published by applying WT
in chemical study. Applications can be found in the area of analytical chemistry,
quantum chemistry and chemical physics. In analytical chemistry, WT was applied
successfully in the following areas that include flow injection analysis (FIA), high
performance liquid chromatography (HPLC), infrared (IR) spectrometry, mass
spectrometry (MS), nuclear magnetic resonance (NMR) spectrometry, ultra-violet
visible (UV-VIS) spectrometry and voltammetry. In this chapter, research works on the

application of WT in chemical studies as mentioned above are reviewed.
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Table 3.1 Number of published papers from January 1989 to August 1998 that are related

to application of wavelet transform in chemistry.

Year Number of published papers
1989 I
1990 0
1991 0
1992 2
1993 5
1994 5
1995 4
1996 19
1997 45
August 1998 10
Total 91
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3.2 Theory of Wavelet Transform

3.2.1 Wavelet Transform

Wavelet transform involves the decomposition of a signal function or vector
(e.g., a spectrum or an analytical signal) into simpler. fixed building blocks at
different scales and positions (Dai et al., 1994). Different algorithms were proposed
to achieve this purpose. In the mid-1970s, Coifman and his coworker developed the
automatic decomposition method which had a very strong influence on the
development of wavelet theory (Coifman and Wickerhauser, 1992). In 1984,
Grossman and Morlet (Grossman and Morlet, 1984) proposed the continuous WT
which allows the decomposition of a signal into contributions from both space and
scale domains based on the invariance under the affine group, namely, translation and
dilation. In 1989, Mallat (Mallat, 1989a) introduced the multi-resolution signal
decomposition (MRSD) algorithm. Daubechies adopted this approach to construct
families of compact supported wavelets and coupled it to quadrature mirror filtering.
This provides a general way for constructing orthogonal wavelet bases and leads to

the implementation of the fast wavelet transform (FWT) algorithm.

Like Fourier transform, WT operates on a signal f(A) and transforms it
linearly from its domain, for example, the wavelength for a UV-VIS spectrum, to a
different domain. In Fourier analysis, only sine and cosine functions which are
localized in frequency domain can be applied to a function. It has difficulty to
process a function having components that localized in the time domain (Cody,

1992). As a result, a small frequency change in FT produces changes everywhere in
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this domain. On the other hand, wavelet functions are localized both in frequency or
scale and in time via dilations and translations of the mother wavelet respectively.
This leads to compact representation of large classes of functions and operators in the
wavelet domain. Spectrum with sharp spikes, such as IR spectrum, may well be
approximated by substantially fewer wavelet basis functions as compared to the sine

and cosine functions adopted in Fourier analysis.

In WT treatment, all basis functions y,,(A) can be derived from a mother
wavelet ‘¥(1) through the following dilation and translation processes (Daubechies,
1992):

e ) a,beR and a#0 G.D

W”J, (k) = a-l/Z\P(

where a and b are, respectively, the scale (dilation) and position (translation)
parameters expressed in real number R. The basic idea of WT is to represent any
arbitrary function f(A) as a superposition of wavelets. The continuous wavelet

transform (CWT) of f(X) is given by

W, (a,6) = [ w,,(0)f (h)dh (3.2)
with @ >0 and b having arbitrary values. The inverse CWT can be obtained through

C I.’ S ? " ab -

where C, is a constant depending only on y. The dilation parameter a and the

translation parameter b in Eq. (3.1) vary continuously in the case of CWT, but are

restricted to a discrete lattice in the case of discrete wavelet transform (DWT)
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(Palavajjhala er al., 1994). In DWT, the wavelet function v, (L) can be expressed
as

v, (M) =2""¥(27r-k) (3.4)
with a=2/, b=2'k and j being the resolution level. In this expression, the
variables k and ; have value of 0,1, +2,... and represent, respectively, the extent
of the translation and dilation which describes the frequency of ,4 hear k (Chau et

al., 1996). For discrete data, k£ can be considered as the shift in the unit of the channel

number. Like FT, decomposition of f(1) with respect to the wavelet function series

{ (T (k)} is described by the following formula (Daubechies, 1992)

fA) =Y Yl (h). 3.5)

j=—o k=—x

Therefore, the signal is represented by a set of coefficients {c,‘j ’} in the wavelet

domain. The fast implementation method as developed by Mallat (Mallat and
Hwang, 1992) for the DWT has made the wavelet method as an effective tool for

processing chemical data.

Based on the recent works in WT (Vaidyanthan, 1993), DWT can be
considered as a filtering technique under the terminology of signal processing. A
wavelet basis is characterized by a particular set of numbers, called wavelet filter

coefficients. The DWT treatment is to perform two related convolutions on the signal

with a low-pass filter H (= {h,‘}) and a high-pass filter G(= {g,‘ }) Then, the signal

is converted into two bases with equal size, that is
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e = ‘[2-2 C'(.j-”h"-zk (3.6)

and d:j) = JZ‘Z cp(nl-l)gn—lk (3'7)

with n=-0to+ and k being a running index which has a variable length
depending on the type of wavelet filter and the data length used. The variables A,

and g, in these equations denote the coefficients of the low-pass and high-pass

filters, respectively, with the following properties (Mallat, 1989b)

g =(=0"h, (3.8)
where th =1 and ;gk =0. 3.9)
In the above formulae, the outputs of H and G are referred to, respectively, the
smoothed or scale coefficients (major information), C“’(: {c}‘”}), and the

differential or wavelet coefficients (detail information), D" ’(= {d,‘t’ ) }) . of the signal

data.

In practice, DWT is conducted in several steps via the multi-resolution signal
decomposition algorithm. A signal with a finite length N (= 2”) with p being any
positive integer are first collected as C'®. In order to use Egs. (3.6) and (3.7)
successfully, C*® is extended periodically at the two extremes. Then, the filters H

and G are applied to C** to generate the coefficient C*"” and D" at resolution level

1. Afterwards, calculations will be performed at resolution 2 by using the quantities

C'" from the previous resolution level to obtain C® and D®. The iterative process

will be continued until the desired resolution level J (5 log, p) is attained. Thus, the
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output comprises all wavelet coefficients {D” DY, D“’} from resolution

level 1 to J and the scale coefficients C"’ at the desired resolution level J (Figure
3.1). At each resolution level j, the signal is filtered and half of the samples are kept
which give a scale twice as coarse as the previous level. An example on the MRSD
calculation can be found in the paper by Chau et al. (Chau er al.. 1996). The inverse

wavelet transform as derived from Eq. (3.3) is defined as follows

Cl(tj—l) = ﬁ(chtj)hk-bn + Zdr(:”gk—ln) (3'10)

from resolution level J down to 0. Details of wavelet theory will not be presented in
this chapter and can be found in most of reference books (Chui, 1992a-b; Byrnes et
al., 1994; Chui er al., 1994; Wickerhauser, 1994a; Hernandez and Weiss, 1996;

Hubbard, 1996; Strang and Nguyen, 1996).

Many wavelet functions have been proposed by various workers. Different
bases face different tradeoffs on the signal such as how compactly these functions are
localized in space and how smooth they are. The most simple one, the Haar wavelet,
which is also the first member of the family of Daubechies wavelets (Daubechies,
1992), has been known for more than eighty years in various mathematical fields.

The Daubechies family of wavelets D

Im

with m being any positive integer from 1 to
10, includes members ranging from highly localized to highly smooth one and it is
the most popular one in WT applications. Daubechies’ wavelets are orthonormal,
compactly supported, having maximum number of vanishing moments for the
support and reasonably smooth (Palavajjhala et al., 1994). In addition, there are

many other wavelet families such as Meyer wavelet, Coiflet wavelet, spline wavelet,
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A schematic diagram for the fast wavelet transform computation. The slanting

line represents coefficients to be stored.
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orthogonal wavelet and local cosine basis and others (Chui, 1992a; Daubechies.
1992). Both Daubechies and spline wavelets are employed commonly in chemical

studies.

Spline wavelet is another type of wavelet function that was used in some
chemical studies (Lu and Mo, 1996; Zou and Mo. 1996, 1997a-c; Bao er al., 19972;
Fang and Chen, 1997). The mth order basis spline (B-spline) wavelet, VN, . is defined

as follows (Lu and Mo, 1996):
No(x) = Ny (e N, (xd = [V, (k- D) G.11)

with m>2. The * denotes the convolution operation between N, and N,. The

kth term of N, is given by

N,(x,)= Xk; Noi(x, )M, (x,..,) (3.12)

J=0
with j 20 (Hubbard, 1996). The result is equivalent to the sum of product between
coefficients in N, _, and N, in a shifted manner. The mother wavelet function P(1)

may be expressed as
1 Im--2

W) = o 21 N, (7 + V(20 - ) (3.13)

j=0

where N;»'(X) is the mth-order derivative of the function N (M)

2m

N = i(— IY(';') N,(x-j). (3.14)

J=0
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3.2.2 Wavelet Packet Transform

Coifman and Wickerhauser (Coifman and Wickerhauser, 1992) introduced the
concept of wavelet packet transform (WPT) for signal processing to generalize the
time-frequency analysis of WT (Cody, 1994). In DWT treatment, only outputs from
the low-pass filter H are processed by WT. However, in the WPT treatment. both
outputs from the low-pass filter H and high-pass filter G are manipulated by WT
(Strang and Nguyen, 1996) (Figure 3.2). Wavelet packet is a family of basis
functions which allow one to select different orthogonal bases for a given signal
vector with finite energies. The standard wavelet basis is an orthogonal basis among
the family and each basis is called a wavelet packet basis. Different effectiveness of
concentrating energy of a given signal may be attained with different distinct wavelet
packet bases chosen. Coifman and Wickerhauser proposed a selection scheme for the
best wavelet packet basis with certain selection criteria such as the Shannon-Weaver
entropy measure function (Coifman et al., 1994). The output from WPT treatment

comprises a suitable combination of wavelet packet bases. For example, in Figure
32, {CB, D, pto b3, P62 Pl can be chosen as one of the best basis.

The total data length of all coefficients is equal to that of the original data.

3.3 General Publications of Wavelet Transform in Chemistry

Two tutorial papers have been published in 1997. Walczak and Massart (Walczak

and Massart, 1997a) published a tutorial on the introduction of WPT for noise
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Figure 3.2 A schematic diagram for the wavelet packet transform computation. The slanting
line represents coefficients to be stored.
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suppression and signal compression. The basic principle of WPT calculation and best
basis selection was introduced in their paper. Alsberg e al. (Alsberg et al., 1997a)
presented another tutorial on the introduction of WT to chemometricians. The basic
principle and the properties of CWT, DWT and WPT were mentioned in their tutorial.
These workers pointed out five major applications of WT in chemistry including signal

denoising, baseline removal, zero crossing, signal compression and wavelet regression.

Three more papers have been published in 1997 to provide an introduction of WT
to chemists. Wang er al. (Wang et al., 1997a) published a paper on the introduction of
WT and its applications in chemistry in China. As compared with the work by Alsberg
et al. (Alsberg et al., 1997a), they pointed out another five major applications of WT in
chemistry that include spectral data compression, modification of the quality of
chemical signals (denoising), quantum chemistry calculation, chemical dynamic
analysis, and chemical fractals. Walczak and Massart (Walczak and Massart, 1997b)
also published another paper on the introduction of WT in analytical chemistry.
Fundamentals of wavelets and WT were presented in their paper. They pointed out a
new application of WT in chemistry for the modeling of multivariate data sets such as
calibration and classification of near-IR (NIR) data. An introduction of the mathematical
background of FWT on compact intervals was presented by Depcznski et al. (Depcznski
et al., 1997). They emphasized on the problem of periodization of a general signal that
leads to instabilities near the boundary of the interval. In their works, they suggested to
use the Sturm-Liouville wavelets, which related to expansions of signals in terms of the

eigenfunctions of Sturm-Liouville operators, to overcome this problem on the compact
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interval. Wavelets on this interval provide a stable algorithms for non-periodic arbitrary

signals calculation which is encountered in most of chemometrics studies.

In a recent paper by Walczak and Massart (Walczak and Massart, 1997c), they
developed a new method, which is based on the variance spectrum, for best basis
selection with WPT of a set of signals. These workers explained that the existing best
basis selection method such as the Shannon-Weaver entropy method are only good for
compression and denoising of individual signals but not for a set of signals. By adopting
their method, a single best-basis will be chosen for the whole set of data rather than

different best-base for an individual signal in a data set.

In chemical study, WT has been mainly utilized for signal smoothing, denoising
and compression. A brief introduction on WT denoising and compression will be

described in the following sub-sections.

3.3.1 Signal Smoothing and Denoising

One of the main goals in analytical chemistry is to extract useful information
from recorded data. However, the achievement of this goal is usually complicated by
the presence of noise. Nowadays, many chemical instruments are controlled by
computers. It becomes a common practice to reduce the noise by employing digital
processing methods such as filtering. In the past decades, a large number of filters
were developed in different fields of science and technology. In spite of the existence

of diverse filters, only a few, such as Savitzky-Golay, Fourier and Kalman filters
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(Brown et al., 1994, 1996), are extensively used by chemists. Nowadays, UV-VIS.
IR and NMR spectroscopies are widely used by chemists for sample identification
and characterization. In some cases, the true spectral data are masked with noise
especially in samples with low concentrations. The most common way of noise
suppression is by applying a suitable digital filter on the raw data. Noise is present in
spectral data in the form of high frequency signal and causes some kinds of
singularities in data treatment. The two most important properties of WT are that (1)
singularities of a signal f(X) can be detected by the WT maxima (Mallat and

Hwang, 1992) and (2) signal frequencies can be separated at different scales.

In mathematical study, the local singularity of a function is often measured by
the Lipschitz exponents (Mallat and Hwang, 1992). Mallat and Hwang established a
close relationship between WT and the Lipschitz exponents. In practice, since noise
creates singularities with negative Lipschitz regularity, the modulus maxima of noise
can be discriminated by looking at the evolution of their amplitudes along the scale
level direction. If the modulus maxima have an amplitude which decreases rapidly
with an increase in the scale level, this indicates that the corresponding singularities
have negative Lipschitz exponents. These maxima are considered to be contributed
by the noise and should be removed. Several methods have been proposed for
discarding negligible coefficients or noise in the wavelet domain. These include
absolute cutoff, relative energy, entropy criterion and decreasing rearrangements and
fixed percentages methods (Coifman et al., 1994). In the above methods. only
coefficients with values greater than a predefined threshold value are retained. A

tutorial on noise suppression with WPT was published by Walczak and Massart
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(Walczak and Massart, 1997a). They introduced the universal thresholding algorithm
as proposed by Donoho (Donoho, 1995) for coefficients selection. The universal

threshold 7, is defined as:
Ty =+2l0g, S 3.15)
where S=Nlog, N for WPT and S=N for DWT calculation. Hard and soft

thresholdings were also introduced in their work for selection coefficients. In the

former method, the absolute values of all transform coefficients are compared to

L., - If a coefficient has a value less than T, . it is replaced by zero:
0 ifje,l<T,,
ot = _ | ! ) (3.16)
a, 1f|a,l 2T,.

[n the above equation, the symbols o ; represents coefficients in the wavelet domain.

As for the soft thresholding method, coefficients are selected in the following way:

if lajl <T,.
sign(al Xlall— T"m) if lall 2T,. .

o = (3.17)

Mittermayr et al. (Mittermayr et al., 1996) performed a comparative study in
denoising the Gaussian peak with the use of wavelet, Fourier and Savitzky-Golay
filters. The Gaussian function was chosen in their work because it is commonly used
to represent peaks and bands in chromatographic and spectroscopic studies. The
simulated data consists of narrow Gaussian peaks with white noise and low signal-to-
noise ratio (SNR). Then, the so-called universal soft thresholding was applied to the
simulated data to give the estimated wavelet coefficients. Finally, the inverse WT

was employed to reconstruct the smoothed data. The proposed wavelet filters that
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include Harr, Daubechies, Symmlets and Coiflets can remove noises without
distorting the signal peaks. Their results show that under the chosen conditions, the
proposed wavelet method gave superior performance over the classical filter
techniques in most cases. They also found that the effectiveness of the optimal
denoising methods depends on the magnitudes of the noise level present and the
original signal of interest. Barclay et al. (Barclay et al., 1997) also performed a
similar comparative study in denoising and smoothing of Gaussian peak using
wavelet, Fourier and Savitzky-Golay filters. They classified signal denoising and
smoothing as two different processes. Smoothing removes high frequency
components of the transformed signal regardless of their amplitudes, whereas
denoising removes small amplitude components of the transformed signal regardless
of their frequencies. Their result indicated that DWT denoising gave better
performance than DWT smoothing. Besides, they found that DWT smoothing
treatment had a major drawback. Such drawback was apparent when the peak width

of the fine structure was in the order of the Nyquist frequency.

In another work by Mittermayr et al. (Mittermayr et al., 1997a), the ability of
DWT to detect and estimate heteroscedastic noise was performed. Noise can be
classified as heteroscedastic and homoscedastic noises. The amplitude of
heteroscedastic noise is proportional to the amplitude of the underlying signal while
that of homoscedastic noise do not have a direct relationship. They applied a simple
F-test to non-overlapping intervals of wavelet coefficients in the highest resolution

level and the differences in the variance was detected. Then, by fitting a smoothed
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version of the signal with inverse WT versus a smoothed estimated of the local

variance, the degree of heteroscedasticity in the signal can be estimated.

Jouan-Rimbaud et al. (Jouan-Rimbaud et al., 1997) proposed a new approach
which was called relevant component extraction for partial least squares to extract the
relevant component from spectral data. WT was adopted to remove noise and
irrelevant information from spectral data for multivariate calibration. After WT
treatment on the spectral data, coefficients in the wavelet domain were sorted in
decreasing order of their absolute values. Then, a smaller group of coefficients were
selected by utilizing the minimum description length equation and used for the partial

least squares calculation.

3.3.2 Signal Compression

Microcomputer systems are widely used nowadays to acquire and store digital
spectral data in chemical study. Computerized database and spectral library are
valuable in identification of sample spectra. In general, the more data is available in
a library, the better are the search results. However, as the size of a library increases,

more space and longer time are required to store the spectra and search the library.

The advancement in microelectronics has greatly enhanced mass storage
capacity and processing speed. Archive of information of full spectra rather than only
those of absorption peaks becomes more feasible. However, the demand of huge

storage capacity is still somewhat inhibited for high resolution spectra. Even if this
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problem can be resolved, the computer processing speed and the bandwidth of phone
line or network is still a limiting factor. For instance, in order to transfer a spectral
data set to a remote analytical site via phone line or Internet with low bandwidth.
data compression is necessary to shorten the transfer time and to reduce the
transferring cost. On the other hand, if a larger spectral library is used. the searching
process is very lengthy and becomes an impractical task. To speed up the process,
researchers may use several approaches. One of them is to reduce the resolution of
the spectra to be archived in the spectral domain. An one-fold decrease in the
resolution of a spectrum leads to only one-halves of the computational time and
space being needed. The second method to speed up data processing is to compress
the spectra to give smaller data set. The most commonly used compression technique
in chemical studies is Fourier transform or its variants. The advantages of FT are
frequency localization, orthogonality, and the availability of fast numerical
algorithms. This technique has been applied extensively in processing digital data.
Some workers (Binkley and Dessy, 1980; Bush, 1974) have pointed out that in
addition to noise removal, FT can also be used for data compression. For example,
Chau and Tam (Chau and Tam , 1994) applied fast FT (FFT) to minimize the storage
of UV-VIS absorption spectra that collected from a photodiode array

spectrophotometer.

In recent years, researchers proposed to make use of DWT or FWT and WPT
for data compression (Chau et al., 1996, 1997; Leung and Chau, 1997; Walczak and
Massart, 1997a). The mathematical treatment for data compression via WT is similar

to that for denoising. Data from chemical analysis are transformed to the wavelet
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domain by employing either FWT or WPT. Then, a thresholding method is employed
to select suitable coefficients in the wavelet domain for storage. By utilizing inverse
FWT or WPT treatment, the compressed coefficients can be converted back to its

original domain without significant information lost.

3.4 Applications of Wavelet Transform in Chemistry

3.4.1 Analytical Chemistry

3.4.1.1 Chromatography

Ten papers have been reported on adopting WT in chromatographic data
processing so far. Pan et al. (Pan et al., 1996) applied WT to correct baseline drift
in HPLC system for analysis of rare earth elements in China. Baseline drift is
always observed in the HPLC system with gradient elution and it affects the result
on quantitative analysis such as peak area calculation. Unlike noise which is a
high frequency signal, baseline drift is a low frequency signal. So, these workers
proposed to transform the raw HPLC data with a Daubechies wavelet function to

an optimum resolution level J. Then, zeros are assigned to the corresponding peak
position in C''. After the inverse WT treatment on the signal, the reconstructed

data at the Oth level, C*, is obtained which represents the baseline for that HPLC
study. Finally, a baseline free chromatogram can be obtained by subtracting the
baseline from the raw data. Their result indicated that baseline removal via WT
can improve the accuracy and reproducibility of the results in quantitative analysis

of HPLC.
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Shao et al. (Shao et al., 1997a-d; Shao and Cai, 1998), from the University
of Science and Technology in China, proposed to use WT in quantitative
determination of constituting components in overlapping chromatographic peaks.
For unresolved chromatograms, different factor analysis methods such as evolving
factor analysis (Maeder and Zuberbuehler, 1986: Maeder. 1987). fixed moving
windows evolving factor analysis (Schostack and Malinowski. 1993) and heuristic
evolving latent projections (Kvalheim and Liang, 1992; Liang and Kvalheim,
1993a) have been reported for resolving overlapping chromatographic peaks. WT
is proposed as a novel method to retrieve separate signals from overlapping
chromatographic peaks. In Shao’s study, Haar wavelet function was employed to
decompose the chromatographic data into localized contributions and to resolve
overlapping chromatographic peaks with two and three components respectively.
In 1997, the First International Conference on Chemometrics in China (Ist ICCO)
was held in China. Shao et al. (Shao et al.. 1997a) presented a paper in the
conference which was related to the application of WT in HPLC analysis. WT was
proposed for denoising and baseline correction, determination of number of
components, and resolving multi-component overlapping chromatogram.
Recently, Shao and Cai (Shao and Cai, 1998) proposed to employ WT as a
preprocessing step to resolve multicomponent chromatograms of rare earth
elements by windows factor analysis (WFA). Again, Harr wavelet function was
utilized to denoise the chormatograms with a high level of noise from an RP-
HPLC-lactic acid system (Kuroda, 1993). They concluded that the combination of
WT and WFA can separate the noise before WFA calculation and can achieve

satisfactory results.
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Mittermayr et al. (Mittermayr et al., 1997b) reported a work on choosing
WT as a tool to improve calibration and detection limit on data from gas
chromatography coupled with a microwave induced plasma detector system. The
Symmlet 8 wavelet function and universal soft thresholding were employed for
denoising. The results obtained were compared with the Fourier and Savitzky-
Golay filters. They concluded that special care should be taken for the choice of
the filter parameters especially when highly different peak widths are present. In

such a case, denoising with wavelet filter was better than the other two methods.

Shen et al. (1997a-b) developed a new method which was utilized WT to
remove the influence of complex backgrounds such as spectral background and
chromatographic drift in HPLC-DAD system. The existence of such complex
backgrounds would introduce extra factors in the factor analysis calculation as
proposed by Maeder and Zilan (Maeder and Zilan, 1988) and Gemperline
(Gemperline, 1986). In the first paper (Shen er al.. 1997a), a two-dimension
wavelet algorithm was adopted to compress, denocise and remove the
chromatographic drift in the HPLC-DAD data. The performance of the new
method were tested with the constrained background bilinearization method. In
the second paper (Shen et al., 1997b), these authors extracted the background
from the zero concentration region of the HPLC-DAD data with the help of WT.
Then, the background data was subtracted from the original data to generate a new
data set and the treated signal was used for the chemical rank analysis. The
authors found that the chemical rank can be estimated correctly in factor analysis

calculation.
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Application of WPT was also found in preprocessing of HPLC data.
Collantes et al. (Collantes et al., 1997) evaluated several computer-based
classifiers as potential tools for pharmaceutical fingerprinting which was based on
analysis of HPLC trace organic impurity patterns using WPT. Classifiers chosen
in their work included artificial neural network (ANN), K-nearest neighbors
(KNN) and soft independent modeling of class analogy (SIMCA). The HPLC data
for each L-tryptophan sample was preprocessed by the Haar wavelet function in
the WPT treatment. Then, the coefficients thus obtained in the wavelet domain
were sorted in descending order. A small portion of sorted coefficients were fed as
inputs into the ANN, KNN and SIMCA classifiers to match each sample with its
manufacturer. The results were compared with their previous study by using the
window preprocessor (Welsh et al., 1996). They concluded that WPT
preprocessing provides a fast and efficient way for encoding the chromatographic

data into a highly reduced set of numerical inputs for the classification models.

3.4.1.2 Flow Injection Analysis

Bos and Hoogendam (Bos and Hoogendam, 1992) proposed to use WT to
minimize the effect of noise and baseline drift in flow-injection analysis. Usually,
peak overlapping in FIA is not a problem because it can be easily avoided by
adjusting the sample rate. However, as the FIA system is operated near the
detection limits, it is difficulty to locate peaks and find the right baseline
correction method. It is because weak signals are embedded in the stochastic

noise, which is a general problem in FIA. In Bos and Hoogendam's study, the
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Morlet wavelet function was utilized to transform the FIA signal into a two-
dimensional time-frequency form with both time and frequency information of the
signal being retained. After WT treatment, the peak intensity was filtered from
noise optimally. The maximum peak position can be searched from the coefficient
in the wavelet domain of a well defined peak as obtained for a sample with a
relatively high concentration. The position of this maximum on the horizontal axis
of the transform conveys the positional information of the peak whereas its
position on the vertical axis gives the noise filtering characteristic that can be
obtained. Results of their work indicated that for a white noise and a favorable
peak shape, a SNR of 2 can be tolerated at the 5% error level. This means that a
significant reduction in the detection limit can be obtained in comparison with the

conventional signal processing methods.

3.4.1.3 Infrared Spectroscopy

Infrared spectroscopy has been found widespread use in identification and
characterization of chemicals. Application of WT in IR spectrometry was reported
in fourteen papers. The first one that employed WT in IR spectroscopy was
published by Stark et al. (Stark er al., 1993). With the aid of WT, they could
roughly separate the mineralogical information in the FT-IR absorbance spectrum
from noise and the other signals such as absorbance from adsorbed water and
organic components. These workers also developed an empirical affine minimax
estimators method to estimate the mass fraction of a given mineral in a mixture

using the wavelet coefficients.
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Bos and Vrielink (Bos and Vrielink, 1994) published the second paper
concerning about identification of mono- and di-substituted benzenes utilizing
WT in IR spectrometry. Among the many wavelet analyzing functions available,
the Daubechies series was chosen for their investigation because it offers different
degrees of compactness of support and regularity (Daubechies. 1992). After WT
treatment of the IR spectrum, the coefficients obtained were employed as inputs
for an identification process that is based on the linear and non-linear neural
network classifiers. The relevant information of an IR spectrum is contained in the
position and the shape of the absorption peaks. The aim of their work is to show
that whether the localization property of WT in both position and scale can be
used to extract this information in a concentrated form and to obtain the salient
features of an IR spectrum effectively. Using the concentrated information instead
of the full spectra, classification of compounds is greatly improved in speed with
which the classifiers can be derived. Moreover, it is expected that the quality of
the classifiers will improve if they are derived from smalier data sets that still
contain all the relevant information. From their study. Bos and Vrielink concluded
that WT coupled with Daubechies wavelet functions is a feature extracting method
that can successfully reduce IR spectral data by more than 20-fold with a

significant improvement in the classification process.

Recently, a2 new standardization method that based on transferring near-
infrared (NIR) spectra in the wavelet domain was proposed by Walczak er al.
(Walczak er al., 1997). They tried to relate the WT coefficients of the NIR spectra

that were obtained from two instruments utilizing an univariate linear model. The
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reason to perform standardization on two NIR spectrometers is due to variations
between instrumental responses of different spectrometers. The calibration model
developed on the first NIR (master) spectrometer may lead to erroneous
predictions if it is applied to NIR spectra collected on the second NIR (slave)
spectrometer. So, WT was applied on the NIR spectra obtained from both the
master and slave spectrometers. Then. an univariate linear model was set up to
determine the standardization parameters between the two sets of NIR spectra.
Once these parameters were found, NIR spectra in the wavelet domain can be
transferred between two different spectrometers for subsequent data analysis.
Alsberg er al. (Alsberg et al., 1998) proposed a wavelet regression model for
variables selection in IR spectrum. They applied various types of variable
selection methods to the IR spectrum in the wavelet domain. They found that
truncation of weight vectors in partial least squares regression was the most
effective method for selecting variables. Ehrentreich et al. (Ehrentreich et al.. 1998)

published a paper on the application of WT for peak recognition in IR spectroscopy.
They found that some of the wavelet bases lead to a very good compromise between
SNR enhancement and preservation of the real data structures. The wavelet method can

help chemist to find the local maxima of the curve corresponding to real data structures.

Different methods have been developed for reducing IR spectral data for
library search. These include the simplest approach by lowering the resolution in
the spectral domain (Wang and Isenhour, 1987), binary encoding (Heite et al.,
1978), factor analysis (Hangac et al., 1982), Fourier transform method (Owens
and Isenhour, 1983) and others. All these methods may be used to retain either

more spectral information resulting in increasing the library size or less
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information leading to poorer searching performance. Qian and Sun (Qian and
Sun, 1996) performed an experiment to compress IR spectra of twenty one typical
earth resource with WT. A compression ratio between 1:4 to 1:5 and 1:8 to 1:10
were achieved if the compression results were not coded and coded with Huffman
coding respectively. Wang et al. (Wang er al., 1996) carried out a similar study to
compress the IR spectrum of polyethylene film with the Haar wavelet function. A
compression ratio of 1:5 was reported. Our research group also published a paper
on compressing [R spectral data utilizing WT (Chau er al, 1997). The IR
spectrum was transformed into the wavelet domain by using the Daubechies
wavelet function. Then, the optimal bit allocation quantization and Huffman
coding techniques were applied to the wavelet coefTicients obtained to reduce the
storage space for each IR spectrum. It was found that a combination of an average
bit rate of 7 or 8 and the Daubechies D,, wavelet function is good and efficient in
compressing IR spectral data significantly with small errors. The results obtained
were also compared with those from the FFT and wavelet-based thresholding
schemes. It was found that the proposed method outperforms the latter two. Liu ef
al. (Liu et al., 1997a-b) applied wavelet neutral network to compress IR spectrum
of polystyrene film. Instead of employing the traditional Sigmoid function. the
Morlet wavelet function was employed in a single layer neutral network.
Wavenumber and transmittance of the IR spectrum were chosen as the inputs and
outputs of the network. A compression ratio of 1:40 was reported in their study.
For the same research group in China, Chen et al. (Chen er al., 1997) applied WT
to improve the peak shape of the characteristic absorption and the spectral

resolution in the IR spectra of poly(acrylamide-sodium acrylate)hydrogel
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copolymers. They found that WT can resolve the characteristic peaks in the
overlapping region and is useful to characterize the composition of copolymer

qualitatively and quantitatively.

Application of WPT in IR spectrometry could be found in the works by
Wickerhauser (Wickerhauser, 1994b), Walczak et al. (Walczak er al., 1996) and
Alsberg et al. (Alsberg et al., 1997b). Wickerhauser (1994b) published a paper to
describe an approximate principal component analysis (PCA) algorithm based on

wavelet packet transform. Such algorithm could lower the complexity for finding

the principal components or Karhunen-Loéve basis eigenvectors from O(d 3) to

o4 logd) with the use of Harr-Walsh wavelet packets. The author applied this
approximate PCA algorithm to invert a map that can produce the IR spectrum of
the atmosphere from the concentrations of absorbing gases. Walczak’s research
group chose WPT as a tool for improving pattern recognition based on NIR
spectra. Haar wavelet and Coifman’s best-basis algorithm (Coifman and
Wickerhauser, 1992) were used to construct the full WPT decomposition
framework for each NIR spectrum. The preprocessed NIR spectra with WPT
treatment could improve the linear discriminant analysis classification when
compared to those using either the standard normal variate method or no pre-
treatment at all. They also concluded that selecting features from a local
discriminant basis instead of those from a full decomposition did not improve the
performance of classification. Alsberg’s research group did a comparative study in
applying wavelet to denoise IR spectra. Six different methods including SURE,

VISU, HYBRID, MINMAX, MAD and WPT were applied to pure IR spectra with
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different levels of homo- and heteroscedastic noise added. The results from
wavelet denoising were compared with those from the standard Fourier and the
moving mean filtering methods. They discovered that at very low SNR. the
performance of the last two methods were comparable to that of the wavelet
methods. Yet, at higher SNR levels, the wavelet denoising methods were better,
especially, the HYBRID and VISU method. These authors also found that the
wavelet methods were better in restoring the visual quality of the denoised

infrared spectra.

3.4.1.4 Mass Spectrometry

In mass spectrometric studies, WT were mainly applied in two areas that
include instrumentation design and secondary ion mass spectrometry (SIMS) and
five publications have been found. A patent (U.S. Patent Number: 5,436,447) was
obtained by Shew (Shew, 1995) in United States. The author invented a new
procedure to determine the relative ion abundances in ion cyclotron resonance
mass spectrometry by utilizing WT to isolate the intensity of a particular ion
frequency as a function of position or time within the transient ion cyclotron
resonance signal. The WT intensity corresponding to the frequency of each ion
species as a function of time can be fitted by an exponential decay curve. When
extrapolating these curves back in time to the end of the excitation phase, accurate
values of the relative abundances of different ions within a sample can be
determined. An ion cyclotron resonance mass spectrometer with a Haar wavelet

analysis module was set up by Shew. The result of the work indicated that WT can
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provide high efficiency isolation of individual frequencies in the received signal

corresponding to individual species.

Four papers were published by a group of researchers in the Vienna
University of Technology for wavelet denoising of SIMS images. SIMS is a type
of surface technique for (1) trace analysis, (2) determination of elemental
composition, (3) the identity and concentrations of adsorbed species and (4)
elemental composition as a function of depth (Strobel and Heineman.1989). This
surface technique is capable of measuring the distribution of elements with a
lateral resolution of 0.1 um in the scanning mode. The two-dimensional element
distributions generated by scanning SIMS are characterized by Poisson statistics
with small integer values. Poor signal statistics is one of the major problems
encountered in SIMS measurement especially in trace analysis. As a result,
quantification and image processing method such as classification and edge
detection are difficult to apply. Nikolov et al. (Nikolov et al.. 1996) reported an
application of a wavelet shrinkage algorithm for denoising SIMS images
following the Poisson distribution. Two-dimensional pyramidal wavelet
decomposition was introduced in their study. Three different types of wavelet
functions including Haar, Daubechies and Coiflet wavelets were tested for
denoising SIMS images. The results were compared with those obtained from the
optimal mean-square-error Wiener filter. They concluded that wavelet gave
comparable mean-square-error to the Wiener filter by improved the SNR. Hutter
et al. (Hutter et al., 1996) published another paper on the application of wavelet

shrinkage algorithm for denoising of SIMS images. These authors found that the
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wavelet method could suppress the noise of the images without significant loss of
lateral resolution. They also applied neural network for classification of chemical
phases on the SIMS images in their work. Similar works were also performed by
Wolkenstein er al. (Wolkenstein er al., 1997a-b). In the first paper (Wolkenstein et
al., 1997a), the Haar, Daubechies and Coiflet wavelets coupled with universal
thresholding were applied to denoise the SIMS images of a nickel base soldering
alloy. The result was compared with the widely used Savitzky-Golay filter. They
found that the wavelet method can suppress noise significantly while sharp edges
and corners in the signal remain sharp after processing. In the second paper
(Wolkenstein er al., 1997b), Coiflet wavelet function with three vanishing
moments was chosen as a tool for SIMS image denoising and this approach was

found to improve the Kohonen neural network classification.

3.4.1.5 Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy is one of the most powerful
nondestructive techniques available today for probing structure of matter. Three
publications were related to the application of WT in NMR spectroscopy. In 1989,
Guillemain e al. (Guillemain et al., 1992) were the first research group to propose
an application of WT in NMR spectroscopy. In their work, they aimed at
investigating how an appropriate use of WT could lead to an excellent estimation
of the frequency of spectral lines in a signal and provided direct information on
time-domain features of these lines in NMR spectra. These authors reported seven

applications of WT in NMR spectroscopy that included estimation of frequency
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and amplitude modulation laws in both simple and general cases. spectral line
subtraction and re-synthesis, ridge extraction, sum of two sine waves and three

exponentially decreasing sine waves.

Recently, Neue (Neue, 1996) published another paper on an application of
WT in dynamic NMR spectroscopy which could simplify the analysis of free
induction decay (FID) signal. Dynamic NMR spectroscopy is a technique used to
measure rate parameters for a molecule (Kemp 1986). The measured resonance
frequencies represent the spatial coordinates of spins. Any motion such as bond
rotation and other molecular gymnastics may change these frequencies as a
function of time. The localization property of WT gives a better picture of the
nature of the underlying dynamical process in both the frequency and time
domains. The third-order Battle-Lemarié wavelets was employed for crystal
rotation and the first-order kinetics with NMR spectroscopy in their study. They
concluded that WT will become a routine method in NMR spectroscopy for data
analysis. Similar idea can also be found in a book by Hoch and Stern (Hoch and
Stern, 1996). They introduced WT as a new data processing technique for

smoothing NMR data.

3.4.1.6 Ultraviolet-Visible Spectroscopy

Ultraviolet-visible (UV-VIS) spectroscopy has been used extensively in
physical and biological sciences for characterization, identification and

quantification of substances (Perkampus, 1992). Five publications have been

52




Chapter 3

found in this area. Two papers were published by Chau and his coworkers on
compression and denoising UV-VIS spectra with WT. The first one (Chau er al.,
1996) was related to an application of the FWT procedure to compress UV-VIS
spectra. Different Daubechies wavelets, threshold values &£ and maximum
resolution levels J were utilized to study the performance of the proposed method.
Translation-rotation transformation (TRT) method was introduced in this study to
solve the side-lobe problem in spectrum reconstruction. The problem occurs when
there is a sudden data change in the spectrum during periodical extension of the
spectral data at both end on WT preprocessing. It was found that the combination
of £=0003. /=6 and the Daubechies D,, wavelet was good and efficient in
compressing UV-VIS spectra with significant reduction in storage space. A
compression rate over 96% was achieved. The second paper by Gao et al. (Gao er
al., 1996) was related to the application of FWT with the use of modulus maxima
for denoising UV-VIS spectra. The results obtained were compared with those of
the moving window averaging and FFT techniques. In general, the proposed WT

method performs better than latter two in spectral denoising.

Both Haar and Daubechies wavelet functions are widely adopted in
chemical studies for WT treatment. Since 1996, B-spline wavelet has been
proposed as a new function for WT calculation in analytical chemistry. Lu and Mo
(Lu and Mo, 1996) published a paper on an application of B-spline wavelet multi-
resolution analysis to denoise UV-VIS spectra of Gds’-Srl'-chloprophosphoanazo
[II complex. They studied the effects of the mth-order B-spline wavelets, the

cutoff frequency value / between the useful signal and noise as well as different
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SNR values. They found that the third-order B-spline wavelet function was the
most effective one for the purpose. Beside, significant differences were observed

for different B-spline wavelets.

Recently, a novel application of WT was developed by Liu et al. (Liu ef al..
1997¢) in China. A wavelet neural network was set up and applied to recognize
the UV-VIS spectra of tyrosine, 3,4-dihydroxyphenylalanine and trytophane. The
Morlet wavelet and line search conjugate gradient optimization method were used
in their neural network. The results indicated that the wavelet neural network had
a very good recognition power to differentiate minor differences between similar
UV-VIS spectra. They also published another paper on using the wavelet neural
network for simultaneous determination of molybdenum and tungsten (Liu et al.
1997d). The results were superior to those obtained by back propagation neural
network algorithm. Xie er al. (Xie e al., 1997) presented a paper on ICCC and
proposed to apply wavelet neural network for IR spectra compression, UV spectra

recognition and multi-component analysis.

3.4.1.7 Voltammetry

Wavelet transform has been applied successfully in voltammetric data
analysis since 1995 in China. Fourteen publications with the use of WT in
voltammetry have been found in China. Voltammetry is a popular technique in all
fields of chemistry used to study redox reaction. Yan and Mo (Yan and Mo, 1995)

were the first research group to introduce WT in processing signal from
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voltammetry. They developed a real time continuous wavelet filter for
voltammetric signal processing. This filter can improve the SNR of the raw signal
and reduce the standard derivation of the processing method. A spline function of
order 3 was chosen as an example of real time wavelet filter in their investigation.
They applied the new method successfully for real time signal denoising in the
study of staircase voltammetry in ZnS0,-K,80; and K;Fe(C,0,);-K,C,0,-
H,C,0, systems. The same research group also introduced spline wavelet in
processing voltammetric signal (Zou and Mo, 1996, 1997a). This time, they
compared the effect of the order of the spline wavelet function, cutoff frequency /,
SNR and the number of sampling points in denoising of voltammetric signal.
They found that the third-order spline wavelet function with / = 3 or 4 was the best
combination to denoise staircase voltammmetric signal for Mo(VI)-W(VI)-HAPP-
KClO, and Ti(IV)-HZCzo4 systems with the SNR down to 0.1. Lu and Mo (Lu
and Mo, 1997) also reported a similar work by adopting muiti-frequency channel
filtering technique employing spline wavelet for denoising voltammetric signal of
Cd(IT)-Suce-Ox complex system. In 1998, Lu er al. (Lu et al., 1998) published a
paper on applying spline wavelet to process data from deconvolution voltammetry
of LiClO,-CH;CN system. They found that WT can provide the opportunity to
optimise the deconvolution voltammetric signal for further convolution
calculation. Zou and Mo (Zou and Mo, 1997b-c) proposed another new method to
process staircase voltammetric signal with spline wavelet multiple filtering

technique. In order to extract more useful information from the signal, the wavelet

coefficients D' at each resolution level were also employed for further signal

filtering employing the spline wavelet function. The extracted information was
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utilized to compensate the scale coefficients C’ at each resolution level. They
found that this method could be applied successfully to a voltammetric signal with
a SNR of 0.1 with the parameters reported in their previous paper (Zou and Mo,
1996, 1997a). The relative errors of peak current and peak potential were less 3%

and 10% respectively.

Bao er al. (Bao et al., 1997a-b; 1998) also carried out a similar study in
voltammetry with WT. They performed a comparison between spline wavelet
smoothing and Fourier smoothing in processing differential pulse stripping
voltammetric (DPSV) signal of Pb2* ion in KCl solution. They concluded that WT
had certain advantages such as simple procedure, short operation time, little
memory required, high precision and good reproducibility in processing analytical
chemistry signals. In a recent paper. Bao er al. (Bao et al., 1998) discussed the
advantages and disadvantages of spline wavelet and Fourier transformation
methods in processing DPSV signal. They designed a combined algorithm of the
above methods to process DPSV signal with SNR value of 0.1. The combined
algorithm can minimize the shift of peak current position after processing with
spline wavelet. But, in a recent study by Bao and Mo (Bao and Mo, 1998), they
concluded that WT cannot be applied to process voltammetric signal with low

SNR because there is a shift of voltammetric peak after wavelet denoising.

Chen et al. (Chen er al., 1996) utilized the Gaussian difference wavelet
function for the treatment of differential pulse voltammetric (DPV) data of Cu?* in

Cu-KNO; system. The function is defined as:
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SARR A?
¥(r) = exp(— ?J —Eexp(— ?J . (3.18)

In DPV quantitative analysis, it is very difficult to measure the peak height in a
sample with low concentration. As a result, it affects the linear detection range of
the DPV system. So. these workers employed the Gaussian difference wavelet
function to transform the DPV signal obtained from a highly concentration Cu?*
ionic system and to determine the scale parameter a. Then, the DPV signals at
other concentrations were transformed with a predetermined scale parameter. A
new calibration curve was plotted by using the results obtained from with WT
treatment. They found that a new linear relationship could be obtained in this
approach, and hence, extended the detection range to sample with lower

concentration.

Application of WPT in voltammetry was found in a recent work by Fang
and Chen (Fang and Chen, 1997). They investigated the feature of WPT for white
noise which is caused by random and irregular process and developed an adaptive
wavelet filter for the selection of optimum critical level of related frequency band
automatically in voltammetric study. Their outcomes showed that the adaptive
wavelet filter could be applied to a system with interference originating from
existing power supply which is useful for the study of fast electron transfer

process.

Yuer al. (Yuet al., 1997) presented a paper on ICCC which was related to

chronopotentiometric stripping voltammetry with wavelet analysis. They authors
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reported that the sensitivity of their proposed method was four times higher than
that without wavelet analysis. Zheng and Mo (Zheng and Mo, 1997) presented a
paper with an application of B-spline wavelet and RLT filtration in staircase
voltammetry. The result indicated that B-spline wavelet method could filter the
random noise down to SNR of 0.8. In 1998, Zheng er al. (Zheng et al., 1998)
published another paper with an application of both spline wavelet and Riemann-
Liouville transform filtration method to filter random noise and capactive currents
from a faradaic signal. This method have been tested with voltammetric data of
Cd** in Cd-KNO; system. The authors found that voltammetic signal with SNR
of 0.8 can be filtered with the proposed method. Besides, the errors of the peak

current and peak potential were less than 5.0% and 1.0% respectively.

Zhong et al. (Zhong et al., 1998) applied both Harr and Daubechies D,
wavelet functions successfully to recover useful information from different kinds
of oscillographic chronopotentiometric signal. Oscillographic analysis is a new
type of electrochemical analysis method which is based on the observation of
signal change from a cathode ray oscilloscope. Effects of the transform frequency,
white noise and kinds of wavelet function and the oscillographic signal on the

transform results were discussed in their work.

3.4.1.8 Others

Wolkenstein et al. (1997c) published a paper on the application of WT on

denoising the images from electron probe micro analysis with an energy
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dispersive X-ray analyser. Various wavelet bases including Haar, Coiflet,
Symmlet and Daubechies were employed in their investigation. The results from
wavelet methods were comparable to the Gaussian weighted moving average
filter, Savitzky-Golay filter, Fourier filter and Wiener filter in most cases. Ratton
et al. (Ratton et al., 1997) performed a comparative study of signal processing
techniques on a sensor for simultaneous chemical detection. Four test gases of
methanol, ethanol, formaldehyde and acetone were examined in their studies. The
signal from a Pd-dosed SnO, film microsensor was analyzed with the Gram-
Schmidt approach, fast Fourier transform and Haar wavelet transform. They
aimed to compress and extract the useful information with these three methods.
Their result indicated that the highest overall performance was obtained with the
Haar wavelet transform. It also compressed information efficiently and removed
the noise and drift effects of the signal successfully in their studied range of the

sensor.

Suzuki et al. (Suzuki et al., 1996) published a paper on the application of
WT to process acoustic emission (AE) signals. They found that WT was useful in
the recognition of AE signal features through two-dimensional contour maps and
3-dimensional projections of wavelet coefficient. The Gabor wavelet was chosen
as the mother wavelet in their work and applied to analyze the AE signal for glass
fiber reinforced composites. Mao et al. (Mao et al., 1997) presented a paper on
ICCC which was related to the application of WT in photoacoustic (PA)
spectroscopy. PA spectroscopy is a newly developed analytical method for

characterization of spectrum of solid samples with high reflection and high
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diffusion. WT provides a convenient and objective way to decompose real PA
signal from noise and disturbance arising from baseline. On the same conference,
Bao et al. (Bao er al., 1997c) presented a paper with the use of spline wavelet and
Fourier transforms in analytical chemistry. The authors found that the combined
method is a powerful tool to process sudden- and gradual-change signal and signal

with SNR of 0.1.

A novel application of WT in potentiometric titration was developed by
Wang et al. (Wang et al., 1997b) in China. They made use of the edge detection
property of WT to determine the end-point in potentiometric titration. There are
two major methods for end-point determination in potentiometric titration. The
first one is achieved through the direct graphical interpretation of the titration
curve, such as Behrend’s method, Brétter’s method and Tubbs’ method (Ren and
Ren-Kurc, 1986). The second one is through mathematical interpretation of co-
ordinates of the recorded points such as Gran’s method (Gran, 1952; Chau 1990;
Chau er al., 1990) and derivative method (Strobel and Heineman. 1989). WT can
be regarded as a new mathematical interpretation method for end-point
determination. In Wang’s work, they proposed to use the maximum absolute value
of the first-order differential function to determine the end-point in potentiometric
titration. The wavelet function chosen is a continuously differential spline
function of order 2 which is a third-order spline function with unity integral value

of the first order differential function. After WT treatment on the titration curve,

the maximum absolute value among the wavelet coefficients D' represents the

end-point of that titration. For a polyprotic acid system, the local maximum
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absolute value represents the corresponding end-point during titration. They
concluded that the accuracy of their method can reach the experimental limit

automatically.

3.4.2 Quantum Chemistry and Chemical Physics

Fourteen papers have been published to report works on applying WT to
different quantum chemistry and chemical physics calculations. Two of them were
published by Permann and Hamilton (Permann and Hamilton, 1992, 1994). The first
one (Permann and Hamilton, 1992) was related to wavelet analysis of time series for
the Duffing oscillator. The Duffing oscillator was developed as a simple model to
account for the hardening spring effect in many mechanical systems. [t is one of the
most common examples of a nonlinear oscillator. These authors intended to show
that WT is a robust tool that could be utilized to obtain qualitative information for
highly non-stationary time series. It may be used to detect a small-amplitude
harmonic forcing term when the dynamics is chaotic. The second paper (Permann
and Hamilton, 1994) was related to wavelet analysis of the time series of the position
of a Morse oscillator which is weakly forced and weakly damped. The Morse
oscillator is commonly used for studying diatomic molecule. In their investigation,
they wanted to show that wavelet analysis can be applied to determine multiple
forcing frequencies quantitatively owing to localization property of the orthogonal

wavelet basis functions in both frequency and time domain.
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Fischer and Defranceschi (Fischer and Defranceschi, 1993) developed a new
method to visualize both the position and momentum characteristics of atomic
orbitals on the same drawing with the use of WT. They applied the proposed method
to hydrogen atom with Gaussian atomic orbitals in the position space. momentum
space and position-momentum space. In order to simplify the computation, wave
function in one-dimensional space was considered in their work. The first derivative
of the Gaussian function was chosen as the mother wavelet function. WT provides an
alternative way to view the atomic orbitals when compared with the Fourier
transform. The new method can provide more information on the analysis of the
oscillating character of the wave function. They also proposed to employ WT to
solve Hartree-Fock equations of hydrogen atom in a later study (Fischer and
Defranceschi, 1994a). Fischer and Defranceschi (Fischer and Defranceschi, 1994b)
published another paper to introduce WT as a new mathematical tool for quantum
chemistry. They concluded that WT can play a role of a magnifying glass to scan
wave functions at different scales over the whole position space. Besides, it can be
adapted to improve the Gaussian approximation. The authors (Fischer and
Defranceschi, 1994c) also published a paper that is concerned about representing the
atomic Hartree-Fock equations in a wavelet basis by means of the Beylkin, Coifman,
Rokhlin (BCR) algorithm. These workers tested the method using four wave
functions of the Slater type which comes from the exact solution of the Hartree-Fock
equation and three Gaussian approximations constructed with one (STO-1G), two
(STO-2G) and three (STO-3G) Gaussian functions. They found that the total energies
computed with these new algorithms were relatively close to the analytical values.

Recently, the authors (Fischer and Defranceschi, 1998) published another paper on
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decomposing the Schrddinger operator in a non-standard form with the BCR
algorithm. Their method has been used in an iterative method to solve the
corresponding eigenvalue problem for hydrogen-like atoms. Saji and Konno (Saji
and Konno, 1998) published a paper to discuss the usefulness of WT for avoiding
difficulties associated with the Wigner transform. They also demonstrated the
suitability of WT using the hyperbolic analyzing wavelet in analyzing the amplitude
modulation of the localized two-soliton solution and the localized three-soliton

solution for the nonlinear Schrédinger equation.

Cho et al. (Cho et al., 1993) developed a three-dimension wavelet analysis for
electronic structure calculations. The wavelet analysis provided a systematically
improvable and tractable description of electronic wave functions and overcame
limitations of conventional basis expansions. These authors demonstrated their new
method for ab initio electronic structure calculations by computing the 1s states for
all the naturally occurring nuclei from hydrogen to uranium on the periodic table and
the interaction energies of the hydrogen molecule ion. The Mexican-hat wavelet
function was employed in their study. In a later study, Wei and Chou (Wei and Chou,
1996) proposed to employ Daubechies wavelets in self-consistent electronic structure
calculations of hydrogen and oxygen molecules. They found that the number of basis
functions needed for the computation was much smaller than the conventional
method and efficient of computation was improved. Calais (Calais, 1996) proposed
two possible applications of wavelets in quantum chemistry. The author suggests to
employ wavelets as an instrument for simultaneous visualization of position and

momentum densities and as alternative basis functions in quantum computation.
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Brewster er al. (Brewster et al., 1997) proposed a one dimensional prototype which
was based on wavelet theories for electronic structure calculation. The results from
their work can lead to the development of multi-resolution algorithms for the actual

three dimensional problems of electronic structure calculations.

Li et al. (Li er al., 1993), von Kitzing and Schmitt (von Kitzing and Schmitt,
1995), Askar er al. (Askar et al., 1996) and Tymczak and Wang (Tymczak and
Wang, 1997) applied WT in molecular dynamics and molecular mechanics analysis.
Molecular dynamics simulation is an important theoretical in studying equilibrium
and non-equilibrium processes in condense matter systems. Li et al. (Li et al., 1993)
used WT to characterize data generated from condensed phase molecular dynamics
simulation. WT was performed on the particle velocities using a multi-resolution
decomposition procedure based on orthogonal wavelets of compact support. The
results from the wavelet treatment provided a detailed view of the time-dependent
energy transfer between different scales of motion. On another paper, von Kitzing
and Schmitt (von Kitzing and Schmitt, 1995) proposed to employ WT as a tool for
molecular mechanics calculations on biopolymers such as DNA or RNA molecules.
In such calculation, large amount of computer resources such as CPU time and
memory are required. For example, a calculation on a DNA molecule involves a
system with 1,000 to 100,000 atoms and requires a huge computer resources for the
energy minimization calculation. Wavelets were chosen as an approximation
function to reduce the computer resources during calculation via data compression.
Askar et al. (Askar et al., 1996) presented a paper on wavelet analysis of two time

series that generated by numerical integrations in molecular dynamics and suggested
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WT as a possible tool for constructing the solutions. This approach was applied to
the study of the deterministic dynamics of a three-dimension polymer model and the
stochastic dynamics of a one-dimension chain subjected to random forces within the
Langevin equation formalism. These workers found that the WT was a useful tool for
analyzing the numerical data representing the dynamics of chain molecules as well as
for reconstructing them systematically from a subset of data. Tymczak and Wang
(Tymczak and Wang, 1997) reported on the use of Daubechies wavelet bases in the
quantum dynamics (Car-Parrinello) algorithm. They found that WT can preserve the
advanced features of the Car-Parrinello method and the transform between the real

and wavelet spaces can be efficiently carried out using DWT.

Modisette et al. (Modisette er al., 1996) reported the use of Daubechies’
compact support wavelets in solving quantum mechanical eigenvalue problems.
Daubechies wavelet was chosen as general and flexible bases for the variational
solution of the time-dependent Schridinger equation. They identified three major
advantages in using WT in quantum chemistry calculation. F irstly, the simultaneous
localization of wavelets in both coordinates and momenta allows one to customize
the basis set to provide resolution locally. Secondly, the orthonormal wavelets can be
used to eliminate the need to solve a generalized eigenvalue problem. Thirdly, the
basis sets are easily extensible to multiple dimensions by taking the tensor products
of one-dimensional wavelets. These authors also suggested several applications of
WT in quantum chemistry such as density functional theory, large-amplitude
variational calculation of molecular vibrations, and the solution of time-dependent

quantum problems.
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3.4.3 Others

Permann and Teitelbaum (Permann and Teitelbaum, 1993) developed a wavelet
fast Fourier transform (WFFT) to denoise the millivolt signal for a transient
oscillating chemical reaction. They applied this technique to the kinetic study of a
common refrigerant CCL;F. The millivolt signal was collected by employing a
moderately fast data acquisition system with a sample rate of 40 million samples per
second. As a result, the output signal was very noisy. The Daubechies wavelet
function was applied to the signal and the noise components were resolved by FFT
on selected parts of the wavelet coefficient coupled with the threshold method. After

data processing, the signal was reconstructed to the original domain.

Wickerhauser (Wickerhauser, 1995) also published another paper about time
localization techniques with WT. The author examined two problems that related to
orthonormal compactly supported wavelet expansions: (1) Given a wavelet
coefficient with its nominal scale and position indices, find the precise location of the
transient signal feature which produced it; and (2) Given two collections of wavelet
coefficients, determine whether they arise from a periodic signal and its translate,
and, if so, find the translation which maps one into the other. The author proposed
two alternative algorithms to solve these problems which rely on the wavelet
coefficients themselves without performing inverse WT. The first problem was
solved by locating the center of energy of a wavelet while the second one by a fast

algorithm introduced by Beylkin (Beylkin, 1992).
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Mallet er al. (Mallet et al, 1996) reported their recent development in
discriminant analysis on high dimensional spectral data. DWT was classified as a
feature extraction technique in discriminant analysis. Feature extraction is a linear or
non-linear transformation by mapping a data set with high dimension data to that
with a lower dimension. The work from Bos and Vrielink (Bos and Vrielink, 1994) is
a good example to demonstrate the advantage in adopting WT for discriminant

analysis.

Dohan and Whitfield (Dohan and Whitfield, 1997; Whitfield and Dohan, 1997)
have applied WT to identify and characterize of transient water quality from two
streams near Vancouver, Canada. Transients are important indicators of immediate
impact and are a significant feature of some environmental problems (Whitfield and
Wade, 1992). They found that WT can help them to process the water quality data by
separating the periodic components from the transient components and separating the
seasonal components from the diurnal parts of the periodic components. Besides. the
properties of each transient, that is location, duration and magnitude, can be
identified from different resolution level. In their work, the orthogonal Daubechies

S8 wavelet function was employed.

3.5 Conclusions

Applications of wavelet transform and wavelet packet transform in various fields

of chemistry from January 1989 to August 1998 were reviewed. Major research works
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that related to the application of WT in China are also included in this chapter. WT is
mainly used in data compression and noise removal in chemical studies owing to its
efficiency, large number of basis functions available and high speed in data treatment.
In most cases, the performance of WT treatment is much better than the Fourier
transform. Up to now. one patent, two tutorial papers and more than 90 papers in
application of WT to chemistry were published. Signal processing of chemical data via
wavelet transform is still under development and the mathematical technique is

expected to be one of the most popular method on the future.
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4.1 Introduction

The development of information technology in chemistry is very important
because the type and volume of chemical data increases dramatically in recent years. In
modern laboratories, most chemical instruments are driven with a computer for control
of the device, data acquisition, signal processing, interpretation and reporting (Ratzlaff
and Ratzlaff, 1992). Recently, there is a growing trend in combining different chemical
devices together to give hyphenated instruments such as high performance liquid
chromatography coupled with diode array detection system (HPLC-DAD) and gas
chromatography-mass spectrometry (GC-MS) for multi-dimensional studies. This
approach greatly enhances information acquisition and even allows experimental work
not possible to be achieved before. However, the analytical chemists always face a
dilemma on the use of hyphenated instruments (Karjalainen and Karjalainen, 1996).
Hyphenated instruments can produce a huge amount of raw data that occupy a lot of
hard disk space in a very short time. But, such data cannot be removed from the hard
disk of the instrument until the required analysis is performed. In some cases, the
acquired data is needed to achieve for further usage. Processing time is another problem
that faced by analytical chemists. In order to extract the most useful information from
such huge amount of raw data, data preprocessing steps should be performed.
Nowadays, although the processing speed of computer is very fast, it is impossible to
process pile of data within a short time. One possible way to reduce the storage space
and processing time is through signal compression. In chemical analysis, signal

compression is very important especially in setting up digitized spectral library (Warr,
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1993a-b) to diminish the size of the original database and to reduce the time for spectral

searching.

Rapid development in computer technology leads to a lot of electronic spectral
libraries and database available in the market (Warr, 1991). Most of them cover
compounds fewer than 100,000 out of 10 million known chemical compounds in
different formats such as digitized IR, NMR and mass spectra. In order to identify the
spectrum of an unknown compound from a reference library, spectral library search
techniques are required. The output of a search usually comprises spectra that are most
similar to that of the compound under study, together with an indication of the degree of
similarity in each case (Warr, 1993a). So, a fast and highly accurate library search
algorithm is desirable. Common algorithms of this kind adopted in chemistry include
peak position searching method, direct matching method, spectral simulation method as
well as artificial intelligence and pattern recognition techniques such as neural network
(Klawun and Wilkins, 1995), fuzzy theory (Blaffert, 1984; Otto and Bandemer, 1986)

and expert system (Warr, 1993a; Zhu and Stillman, 1996).

To carry out any search, the spectral library must be constructed first from a set of
reference spectra and accompanied by additional information such as structure, name,
connection data, and molecular mass of individual compound (Hobert, 1995). In order
to reduce the storage space of spectral data, different compression techniques have been
developed. Data compression methods that are commonly used in chemistry include
binary encoding (Rann, 1972; Adam and Black, 1986; Scott, 1988), spline (Alsberg,
1993; Alsberg and Kvalheim, 1993; Alsberg et al., 1994), Fourier transform (Crawford
and Larsen, 1977; Lam et al., 1981; Owen and Isenhour, 1983; Chau and Tam, 1994)
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and factor analysis (Wang and Isenhour, 1987; Malinowski, 1991; Hangac er al., 1982).
Basic theory of the above mentioned methods can be found in Chapter 2. Currently,
Fourier transform (FT) and the inverse FT are the major tools adopted to process
experimental data in chemical studies. As mentioned in the previous chapter, wavelet
transform (WT) has been introduced in chemical studies for data compression and
denoising since 1989 and applied successfully in various fields of analytical chemistry,

quantum chemistry and chemical physics.

Different methods have been reported in the literature to facilitate searching of IR
spectral database. Some of them are based on peak width and intensity (Penski et al.,
1974; Rasmussen and Isenhour, 1979), principal component analysis (Wang and
Isenhour, 1987) and Fourier transform and interferogram (Small et al., 1979; de Haseth
and Azarraga, 1981; Azarraga er al., 1981). In this work, new data compression
procedures have been developed to manipulate infrared (IR) spectra by utilizing the fast
wavelet transform (FWT) and wavelet packet transform (WPT) techniques. In this
approach, an IR spectrum is converted into the wavelet domain through FWT and WPT
treatment. WT was chosen in this work because its performance dominates over FT in
many aspects. For example, more number of basis functions are available for WT
computation and it has higher efficiency and speed in data treatment when it is
compared with FT. In order to minimize the storage space of the spectrum, an absolute
cutoff method was utilized to select the coefficients to be archived. Besides, the
Shannon-Weaver entropy calculation was also employed to choose the best basis in
WPT computation. After data compress process, individual compressed IR spectra were

employed to set up a small scale spectral library for testing the efficiency of our

72



Chapter 4

approach in improving the spectral library search. The results thus obtained are

compared with those from the fast Fourier transform (FFT) treatment.

4.2 Method of Investigation

In this work, two WT techniques, namely FWT and WPT, were employed to
process a selected set of IR spectra. After the FWT or WPT treatment, the coefficients
obtained were compressed by using appropriate methods to reduce the storage size.
Selected coefficients were utilized to construct a wavelet compressed spectral library for
future use. The library consists of compressed IR data in the wavelet domain, compound
names of the compressed spectra, and selected parameters such as the types of wavelet
function used, the original data length and the assigned resolution level J for spectral
reconstruction. The scale coefficients of each compound obtained at resolution level J in
the spectral library were employed for the preliminary library search which was
performed by comparing the scale coefficients of the unknown spectrum with the
reference spectra at a particular resolution level via the direct matching method. A small
group of IR spectra were thus extracted from the library. Then, a detail searching was
performed by comparing the unknown spectrum and reference spectra at resolution level
0. This search may not be required for IR spectra with very different spectral structures.
However, compounds with similar molecular structures are not easy to distinguish using
the scale coefficients obtained at higher J levels. Therefore, a second search in the
original domain was also carried out based on spectral information obtained at

resolution level 0. In order to solve the side-lobe problem in data reconstruction, the
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translation-rotation transformation (TRT) method (Chau and Tam, 1994; Chau et al.,
1996) was also applied. Besides, the coefficient position retaining (CPR) method has
also been developed to handle spectrum with data length in odd number. Details of the

above mentioned methods will be discussed in the following sub-sections.

4.2.1 Fast Wavelet Transform

Wavelet transform is a tool that can be utilized to convert data, functions or
operators into different frequency components. Then each component is studied with
a resolution matched to its scale (Daubechies, 1992). There are different types of
wavelet functions available in the literature such as Haar wavelet, Meyer’s wavelet,
Mexican hat wavelet, spline wavelet, and Daubechies wavelets (Palavajjhala et al.,
1994). The later one is now the industry standard for signal compression especially in
chemical studies (Borde, 1995). The fast wavelet transform algorithm was developed
by Daubechies (Daubechies, 1988, 1990). She adopted the multi-resolution signal
decomposition (MRSD) algorithm, which was developed by Mallat (Mallat, 1989b
1992), to construct families of compact supported wavelets and coupled them to

quadrature mirror filtering (QMF).

In IR spectrometry, an IR spectrum is represented by a set of coefficients in

discrete interval and can be collected as €. In FWT, C'” can be expressed as a
linear combination of the data obtained at different resolution levels of the original

spectrum through the following formula (Daubechies, 1988; Mallat, 1989b)
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J
C =274, 0+ Y Y dV2 e, () “.1)
k 1=l k

with ¢ ,,(1) and ¥, , (L) representing the scaling and wavelet function respectively,
J the highest resolution level assigned in the WT calculation and k being a running
index which has a variable length depending on the type of wavelet filter and the data
length used. In the above expression, C" ’(= c,““) and D‘“(: dy’ ’) are the scale and

wavelet coefficients at the jth resolution level, respectively. A signal is usually

transformed by a low-pass filter H and a high-pass filter G and is represented,
respectively, by a series of scale C’ and wavelet D' coefficients at the jth
resolution level. The scale coefficients C*’ denote the approximation of the raw
signal C* with a resolution of one point per every 27 point of the original one. The

wavelet coefficients DY’ represent details of the original signal at different
resolution levels (Coifman er al., 1994). These quantities can be deduced through
Egs. (3.6) to (3.9). In this work, coefficients for filters H and G were derived from

the Daubechies wavelet, D.

2m >

with m being any positive integer from | to 10 and the
filter length is equal to 2m. Algorithm for computing individual coefficient of a
particular Daubechies wavelet filters can be found in any references (Daubechies,

1992; Palavajjhala ef al., 1994; Borde, 1995; Press et al., 1996) and not state in here.

In the general case, FWT is applied to a signal with a length of N (= 27 ) where
p equals to any positive integer (Mallat, 1989b). Suppose an IR spectrum is

expressed in the digital form as C'% ={c,‘°’,c§°’,...,cf3’} and a D, Daubechies

wavelet filter with H = {h,,hz,hz,h4} and G = {g,,gz,g3,g4} is employed in the
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FWT treatment. In the first step, C'® is first extended periodically on both sides as
the following manner

0) 0 (0) (0

0 _ © (0 (0
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eeesCysCy oGy
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Then, the scale and wavelet coefficients at the j =1 resolution level are determined

via Egs. (3.6) and (3.7) respectively as follow:
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For example, the first coefficient of the scale and wavelet coefficients at resolution

level 1 is expressed as:

" = +cPh, + VR + 0, (4.5)
and dlm = dl(O)gl + dz(O)gz + d§0)g3 + d-fmg-; . (4.6)

After FWT treatment, the numbers of elements of C® and D'V are the same and are
equal to N/2. Then, the same decomposition process as shown in Egs. (4.3) and (4.4)
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are applied to C'” again to obtain the required coefficients at the next resolution
level. The process is repeated until the desired Jth resolution level is reached. Finally,
the original spectrum is expressed as a collection of the scale and wavelet
coefficients in the form of {C‘”,D”’,D“"’,. ..,D" } . The total length or number of

coefficients must be equal to the length of the original spectrum. Figure 4.1 shows a

schematic diagram for the FWT treatment with data length equals to 1024 (= 2") .

The data reconstruction process is similar to Egs. (4.3) and (4.4) and is
performed via inverse FWT (IFWT). The scale coefficients at the (J-1)th resolution

level is rebuilt by the following equation:
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For example, the first coefficient of the scale coefficient at the (/-1)th resolution level
is equal to

9]

Ut =y +cy,

h+dg +d g, (4.8)

Eq. (4.7) is repeated until resolution level 0 is attained.
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Figure 4.1 A schematic diagram showing the operation of the FWT method with a data
length of N = 1024. The slanting line represents coefTicients to be stored.
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4.2.2 Wavelet Packet Transform

Wavelet packet transform is a derivative of WT that was developed by
Coifman and Wickerhauser (Coifman er al., 1994). The discrete WT is generalized in
the WPT treatment to provide a more flexible tool for data analysis (Cody, 1994).
Applications of WPT in chemical studies can be found in some literature, but this
method is less popular than FWT. Only 5 out of 91 papers have been reported with
the use of WPT in chemistry (Wickerhauser, 1994b; Walczak et al., 1996; Alsberg et
al., 1997; Collantes er al., 1997; Walczak and Massart, 1997). In FWT, a partial
multi-resolution analysis is performed. Only C’ is employed to deduce both scale
and wavelet coefficients at the next resolution level. However, WPT allows a full
multi-resolution analysis. D’ is also involved to produce its scale and wavelet
coefficients at the same time. As a result, a library of orthonormal bases is obtained.
Again, IR spectrum can be represented by a set of coefficients in discrete interval and
collected as C'®" . The first number 0 in the superscript indicates the resolution level
and second number 1 indicates the position of scale and wavelet coefficients at a
particular resolution level. In general, 2’~' scale and wavelet coefficients will be

obtained at resolution level J except the Oth resolution level. Figure 4.2 shows a
schematic diagram for the WPT operation with a data length of 2°. For instance,
scale coefficients C? and wavelet coefficients D®? can be derived from DU
with the following equations if a D, Daubechies wavelet filter is employed. D!

can be derived from C*" with Egs. 4.3 and 4.4.
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Figure 4.2 A schematic diagram showing the operation of the WPT method with a data
length of N = 1024.
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The first coefficient of the scale and wavelet coefficients, C** and D?? at

resolution level 2 can be expressed by Egs. (4.11) and (4.12) respectively
e =dMhy +d{ "k +dih +d( N, (4.11)

and d* =dMg +dMg, +dMg, +dlMg, . (4.12)

In Figure 4.2, the original IR spectrum can be expressed as a suitable
combination of bases to form a wavelet packet table. For examples, one possible

combination of the bases subset to represent the original spectrum is
{C"'”,D”'”,D”'”,C‘“’,C‘“’,D‘“’} . Another possible combination of the bases

subset is {C“'”,D""’,D‘z'”,C‘”’,D‘:’"’,D‘z'z’}. Again, the total number of all

these coefficients must be equal to that of the original spectrum. In order to choose
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the best basis subset that represents the original data in the most effective way from a
huge number of possible combinations of bases, the Shannon-Weaver entropy

method was employed in this work to search the best basis (Dai et al., 1994). The

Shannon-Weaver entropy of a sequence x = {x /} can be expressed as:

Hgy(x)=-) g, logq, (4.13)

l/lller and set glogg=0 if g =0. The symbols Ix]l and "xl"

where ¢, = |x ;
represent the absolute value and root-mean-square norm of x , respectively. Since

Eq. (4.13) does not obey the theorem of additive measure of information (Coifman et

al., 1994), Eq. (4.14) instead of Eq. (4.13) is utilized for entropy calculation.
Asw(x) ==X x| loglx,| . (4.14)
7

Once the wavelet packet table is set up, the entropy of each basis is determined by
Eq. (4.14). Then, a comparison of the entropy values between two adjacent levels is

performed in the following manner for the selection of the best basis. For example, in
Figure 4.2, if the total sum of entropy of A, (C®") and A, (D®") is less than
their parent A, (C"), then both C®" and D®" are chosen as part of the best
basis. On the other hand, if the total sum of entropy of A, (C®?) and A, (D®?)

is greater than their parent Ag, (D®"), then D" is selected as another part of the

best basis. This comparison process is repeated from resolution level (J-1) to 1. This
selection process is called the best basis method (Saito and Coifman, 1994). Data
reconstruction can be performed by inverse WPT (IWPT) with Eq. (4.7) from

resolution level J to 0.
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4.2.3 Translation-Rotation Transformation Method

In order to apply MRSD to FWT and WPT calculations, the spectral data

vector C@ (or C'*") needs to be extended periodically at the two extremes.

However, if ¢[” and c¢{ at the two extremes do not have the same value, a small

delay which is due to discontinuity of the spectral data at the boundary will be
observed at both ends of the reconstructed IR spectrum. Such phenomenon is known
as side-lobe problem and deteriorates the quality of the reconstructed data (Chau et
al., 1996). To solve such a problem, the translation-rotation transformation (TRT)

method was adopted (Hayes ef al., 1973). The TRT algorithm involves subtraction of
the data vector C'” by selected quantities B {= b, .b,,....b, } to give the rotated array
by

Comr =€5" = b, (4.15)

c® —c® Yk -1)
.th b - (0) ( N 1
w1 & N + N -1

(4.16)

where & is a running index from 1 to V. In the spectral reconstruction process, the

inverse TRT (ITRT) algoritm (Eq. (4.17)) is employed to generate C'"® in the
original domain.

' =cl . +b, 4.17)
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4.2.4 Coefficient Position Retaining Method

In WT treatment, the data length for a basis to be processed at resolution level
J must be an even number. If an odd number data set is encountered at a particular
resolution level, the WT calculation will be stopped automatically and cannot be
processed to the next higher resolution level. It is because the data length of the scale

and wavelet coefficients must be the same after WT treatment. Hence, in an ideal

case, the number of spectral data must equal to 27 where p equals to any positive

integer. In Figure 4.1, if the original spectral data length is equal to 1024(=2"), the
data length of all bases at each resolution level ; can be guaranteed to be an even
number. In practice, it is not easy for a chemical instrument to generate 2”7 data
exactly. To cope with this problem, a series of zeros is usually appended to one end
or both ends of the original data set in order to bring the total length to the next
power of 2. This method is called zero padding method and is widely used in fast
Fourier transform calculation (Verdun er al., 1988: Morrison, 1994). Besides,
truncation of data at the end or both ends of the original data to the previous power of

2 can also be adopted in some cases.

A new method, called Coefficient Position Retaining (CPR) method, was

developed in this work to process spectrum with odd number of data in the FWT and
WPT calculations. In this approach, if the data length N_, of a scale coefficient C*

is an even number, FWT is applied as usual by using Eqs. (4.3) and (4.4). The scale

and wavelet coefficients obtained at resolution level (7+1) will have the same number

of coefficients Nw.,,,(= N, /2) and Nl,.h,(= N, /2) respectively. On the other
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hand, if N_; is an odd number, FWT is adopted without using the last coefficient of

C" in the calculation. This coefficient is retained and transferred downward to the

same position at the next resolution level. Then, it becomes the last coefficient of

DY at the next resolution level. As a result, the scale and wavelet coefficients will
have N . (: (N,.c - l) /2) and N J,(: (( N, - 1) /2)+ 1) elements respectively.

Figures 4.3 and 4.4 show a schematic diagram for applying FWT to a data set with
1531 and 1023 data points, respectively, with the use of CPR algorithm. Figure 4.4
shows a special case that the total data length of both scale coefficients at all
resolution levels are odd number. CPR algorithm can process this data without any

problem.

In WPT calculation, the scale coefficient C*’ with odd number of data length

is handled in the same way as that for FWT as described above. However, for the
wavelet coefficient D', the treatment is slightly different. Again, the last coefficient

in DY is retained and transferred downward to all resolution levels that is below the

present one at the same position. All these coefficients selected are not involved in

FWT calculation. In WPT, the wavelet coefficient D"’ may consist more than one
coefficients rather than only one coefficient retained as in FWT treatment. Such
retained coefficients are derived from the (j-2)th or above resolution level. Figure 4.5
shows a schematic diagram for the WPT calculation on a spectrum with 1531 data
with CPR treatment. In the first cycle of WPT computation, the last coefficient in
C®" is transferred to position 1531 from levels 2 to 4. This coefficient is not

involved in the WPT computation for D' and D*? . In the second cycle, since the

data length of D" is an odd number, the last coefficient of D™ at position 1530 is

85



Chapter 4

Figure 4.3 A schematic diagram showing the operation of the FWT method with a data
length of N = 1531 coupled with CPR treatment. The slanting line represents
coefficients to be stored and the black region shows the position of the
coefficient(s) to be archived in using the CPR method.
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Figure 4.4 A schematic diagram showing the operation of the FWT method with a data
length of N = 1023 coupled with CPR treatment. The slanting line represents
coefficients to be stored and the black region shows the position of the
coeficient(s) to be archived in using the CPR method.

C(O) j =0
(1023)
Fll l Applymg CPR at
l position 1023
V //
co n
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I I ApplyinJ CPR at
i’ G position 511
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Figure 4.5 A schematic diagram showing the operation of the WPT method with a data
length of N = 1531 coupled with CPR treatment. The slanting line represents
coefficients to be stored and the black region indicates the position of the
coefficient(s) to be archived in using the CPR method.
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retained and transferred to position 1530 from levels 3 to 4. As a result, D*?

contains two retaining coefficients. Again, these coefficients are not involved in the

WPT calculation for D**?'. In general, the retaining coefficients are not considered

in WT calculation.

4.2.5 Criteria for Data Compression

After FWT or WPT processing, the total data length of all C and D coefficients
does not change. To reduce storage space, some of these coefficients must be
discarded. Several methods have been proposed to select which coefficients in an
optimal basis are negligible. They include the absolute cutoff, relative energy and
entropy criterion methods (Coifman ef al., 1994) and are described as follows. The
absolute cutoff method is the simplest one. A cutoff value £ with magnitude greater
than zero is assigned. Then, the absolute value of any coefficient ¢ or d with a value
less than £ is rejected. In the relative energy method, a cutoff value is defined in the
range 0 <e <1. Any coefficient in the absolute-square form (||’ or |d|’) that is less

than e|x|’ is discarded. In the entropy criterion method, an average energy of a
significant coefficient is defined as exp(- Ay (x)/ llxlll). Also, the cutoff value is
defined in the range of 0 < € < 1. Any coefficient in the absolute-square form that has
value less than that of sexp(— Agp(x)/ lellz) is neglected. In this work, the absolute
cutoff method is employed to select the required coefficients for storage. It is because

the cutoff value £ can be assigned very easily by visual inspection.
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In both FWT and WPT treatment, the transformed [R spectra are represented

by the scale coefficients C*? in FWT and C*" in WPT at the required resolution
level J. As usual, one cannot remove part of these coefficients for the compression
purpose because this will cause loss of useful information and will lead to serious
error during signal reconstruction. So no compression were performed on the scale
coefficients. As a result, the proposed compression method was only applied to the

wavelet coefficients.

4.2.6 Direct Matching Method for Library Search

Direct matching method is the simplest way for spectral library search. It
employs a point-by-point comparison calculation to match sequentially an unknown
spectrum against the reference spectra available in a library (Lowry et al., 1985).
Both the unknown and reference spectra are represented as points in a
multidimensional space in a fixed range of wavelength. The degree of similarity
between two spectra is measured by the sum of separations between data points. Six
different search routines have been proposed for the purpose. They include absolute

difference D, . absolute derivative D, ., square difference D,y » square
derivative D, , correlation coefficient D__ and Euclidean distance Dy, -

Mathematical expressions of these routines are given as follows (Rasmussen and
Isenhour, 1979; Lowry er al., 1985; Harrington and Isenhour, 1987: Hobert, 1995;

Penchev et al., 1996)
Av
Doy = lelx, -y (4.18)

90



Chapter 4

Diputer = le %)= (3, = v} (4.19)
Dsqnfiﬂ = A (x, A )2 (4.20)
=]
N-1 2
qunler = Z[(xi X ) -(yr — Vi )] (4-21)

il

s

g e v

N

and Do =+ 2.(x, -, . (4.23)

i=]

In these expressions, x; and y; denote, respectively, the data points in the reference
and unknown spectra in a particular domain. N represents the total number of data
points in the compressed or uncompressed spectrum. A perfect match of any two
spectra would give one by using correlation coefficient method (Eq. (4.22)) and a
zero value by using the other methods. A lower D__ value or a higher D value for
the other methods indicates higher dissimilarity between the spectra. Both the
absolute derivative and square derivative routines were applied when the base-line
offset was observed. These two routines can discriminate the correct spectrum from
the other spectra with similar D value in the library. However, if the unknown
spectrum is not available in the library, they may give poor match values for spectra

that have similar spectral features. In this study, D.,, D,u; and D, . were
employed in the spectral search. Both D,y and D, method will have similar
results from the D,,.,, and D, ., methods. So, such methods were not applied in

this work.
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Some workers did not carry out the direct matching method in the original
domain because it involves large number of calculation. They suggested to transform
the IR spectrum by Fourier transform before spectrum matching (Glasser, 1987). In
this investigation, both FWT and WPT were applied to treat IR spectra for setting up
a small scale spectral library. These two methods provide a way to minimize the
search ime for direct matching of spectra because it involves only minimal number
of coefficients represented in the wavelet domain instead of using the whole

spectrum.

4.3 Experimental

Twenty organic compounds in AR grade (see Tables 4.2 and 4.3) as utilized in
this work were obtained from Aldrich (Gillingham, U.K.) and were used without further
purification. Their IR spectra were recorded by using the Nicolet Magna-IR™ Model
750 Fourier transform infrared spectrometer (Nicolet Instrument Corporation,
Wisconsin, U.S.) in the range of 400 to 4000 cm™! in percentage of transmittance at 4
cm’! resolution with 16 times of scan and Happ-Genzel apodization. In this setting, each
IR spectrum contains 1868 data points. ASCII data in comma-separated value (CSV)
format were exported from the ONMIC Version 2.1 (Nicolet Instrument Corporation,
Wisconsin, U.S.) which was used to control the FT-IR spectrometer. Data in CSV
format were further converted with Microsoft® Excel for Windows™ 95 Version 7.0

(Microsoft Corporation, Washington, U.S.) to tab-delimited format.
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Solid samples were recorded by using KBr pellet method while liquid samples
were recorded by liquid film method using NaCl plates. The organic compounds were
chosen purposely with similar structures or isomers of one another and their IR spectra
are quite similar. The data set comprises the IR spectra of the mono-, di- and tri-
substituted benzene with Cl, Br, I, NO,, OH, CH, and CH,CI as substituents. All IR
spectra were background corrected and normalized to unit transmittance first (Eq.

(4.24)) before further treatment through the following formula:

F, = (4.24)

where F, and 4, are the fraction of total absorbance and the absorbance at wavelength

A, respectively, and 4, is the maximum absorbance in the spectrum.

All WT computations were carried out using the Spectral Library Compression
and Search (SLCS) Toolbox Version 1.0 as developed in this study. It was coded in
MATLAB® for Windows Version 4.2¢ (The MathWorks, Inc., 1992) under Microsoft®
Windows™ 95 environment on an AST® Advantage!® 818 PC (AST Research, Inc.,
California, U.S.) with a 133MHz Pentium® processor. The toolbox can be employed to
optimize the required parameters for FWT and WPT calculation as well as to perform
spectral library compression, construction and reconstruction, and spectral library
searching. Figure 4.6 shows a block diagram of the SLCS toolbox and Appendices 4.1
to 4.2 show a program description of individual program and screen capture from the
SLCS toolbox. Appendix 4.3 shows the file formats of spectral library that were
generated by FWT, WPT and FFT compression. Appendix 4.4 shows a list of file

extensions as generated from the SLCS toolbox.
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Figure 4.6 A block diagram of the Spectral Library Compression and Search (SLCS)
Toolbox Version 1.0.
Main program
(LIBINIT.M)
I
y
. Spectral library Spectral library Spectral library .
Spcctraltl_lll');ary optimization compression reconstruction Spect:’la:nl;:)i:ia;y
setup utifities utilities utilities utilities searc
y y
Spectral library By FWT-TRT With FWT
creation and (FWTCOMPM By TRT-FWT By IFWT-ITRT compressed
modification and (LIBFWTC.M) (LIBFWTR.M) library
(LIBSETUP.M. IFWTCOMP.M) (LIBSEFWT.M)
LIBSETAD.M
and
LIBSETCD.M)
By WPT-TRT With WPT
(WPDCOMP.M N By TRT-WPT By IWPT-ITRT compressed
and (LIBWPDC.M) (LIBWPDR.M) library
IWPDCOMP.M) {LIBSEWPT.M)
With FFT
N By TRT-FFT By IFFT-ITRT compressed
(LIBFFTC.M) (LIBFFTR.M) library
(LIBSEFFT.M)
y
Sorting search
result
(LIBSORT.M)
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4.4 Results and Discussion

4.4.1 Choice of Parameters for FWT and WPT Calculations

In both FWT and WPT calculations, the Daubechies wavelet function D

resolution level J, and cutoff value £have to be selected to give optimal performance.

I[n this work, the compression ratio R, (Eq. (4.25)) measures the compression

efficiency of the selected method while D

corr

(Eq. (4.22)) measures the similarity
between the original and reconstructed IR spectrum.

R - No. of bytes of the original data - No. of bytes of the compressed data

% (4.25
- No. of bytes of the original data x100% (4.25)

The best performance is considered when R..., and D_,_ have values close to 100%
and 1 respectively. In computing R,,,, for data obtained from WT and FT methods,
the file sizes of the compressed data were used. Each file consists both of intensity
and position information. In the compression process, a fixed cutoff value ¢ is
assigned. The absolute value of any coefficient ¢ or 4 with a value less than ¢ is
rejected. So, only the position and the intensity value of the retained coefficients in

the wavelet domain that obtained from the cutoff treatment are stored in the

compressed IR spectral file.

Table 4.1 shows the results of compressing the IR spectrum of benzoic acid
with different ¢ values and D,, functions at resolution levels of J = 3, 4 and § by

utilizing FWT. As the value of J increases, R, increases with a slight decrease in

D, ata fixed cutoff value. The same trend is observed when both J and D, are

2m

fixed with different cutoff values. At a fixed resolution level and cutoff value, a
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maximum values of R, and D_,_ have been found by employing the Daubechies

wavelet functions D,, and D,,. Table 4.2 shows the results of compressing IR
spectra of the twenty compounds under study with the proposed FWT and WPT
treatments with J = 4, £ = 0.20, and using the D,, and D,, functions. Based on the

results of error plots, values of R, and D, for 20 compounds, we recommend to

use the D), wavelet with £=0.20 and J = 4 to compress the IR spectrum in the range
of 400-4000 cm! for data storage by FWT and WPT. It is because the Daubechies
D,; wavelet function has slightly higher compression ratio. Figure 4.7 shows the
reconstructed IR spectra from the compressed data as obtained from both FWT and

WPT treatments on the IR spectrum of benzoic acid with D,;, £=0.20 and J=4.

4.4.2 Comparison of Performance of FWT and WPT with That of

Fast Fourier Transform

The performance of FWT and WPT in spectral compression were compared

with that by using FFT. R,

, and D were chosen as the key parameters for

comparison. As mentioned before, FFT and its inverse are the major techniques
adopted currently to compress spectral data in chemical studies. Three methods
namely the absolute cutoff (Binkley and Dessy, 1980), least-square fitting (Krauss et
al., 1994) and power spectrum (Kirmse and Westerberg, 1971) methods coupled with
FFT were employed for selecting Fourier coefficients. The chosen Fourier
coefficients represent the compressed form of the original spectral data. In the

absolute cutoff method, only those coefficients greater than a threshold value are
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The experimental IR spectrum (a) and reconstructed IR spectra of benzoic acid
with the use of compressed data as obtained from FWT (b) and WPT (d) by
utilizing the D¢ function, £= 0.20, and J = 4 with the corresponding error plot
from FWT (c) and WPT (e).
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stored. In the least-square fitting method, the first N/2 Fourier coefficients from the
power spectrum are extracted and the logarithms of these quantities are least-square
fitted with a fourth-degree polynomial to determine the number of Fourier
coefficients to be stored. In the power spectrum method, the number of coefficients
for storage is determined from the power spectrum with some criteria. Details of the
above three methods can be found in the work by Chau and Tam (Chau and Tam,

1994),

Table 4.3 shows the results of compression for IR spectra of the twenty
compounds as obtained by FFT coupled with the compression methods mentioned
above. Although the FFT treatment using the least-square-fitting and power spectrum

methods give very high D, values, the compression ratio R is very low.

comp
Spectral compression by FFT coupled with the absolute cutoff method (&= 0.10) can
attain the same average compression ratio as FWT and WPT (Table 4.2). But, the
compression ratios for individual spectra fluctuate in a wide range by using FFT in
the range of 85.87% (2,4-dichlorophenol) to 97.22% (l-bromobutane). In this
investigation, our aim is to set up a good spectral library for IR spectra. It is desirable
to have any method that can provide highly stable compression ratio and minimum
distortion in the reconstructed spectra. From the results of Tables 4.2 and 4.3, it is
clear that the performance of our proposed FWT and WPT methods in spectral

compression is better than that of FFT.

[n terms of computational time, the FWT calculation requires shorter time than

that of FFT. A FFT computation requires Nlog, N operations while a single cycle
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of FWT require only N operations for a data length of N (= 27 ) (Cody, 1992;
Daubechies, 1994). In FWT, it is expected that the computation time increases when
a higher J resolution level is required. Since FFT was specially designed for data
length equal to 2”, a slower algorithm is employed for FT calculation if the data
length is not equal to 2”. For a spectrum with data length equal to 27, FFT method
is faster than FWT method if similar compression ratio is attained. For example, in
compressing an IR spectrum with N = 1024 with similar compression ratio, FFT
method requires 10,240 multiplication operations while FWT method needs 30,720
(from Eq. (4.26)) multiplication operations (up to the 4th resolution level with the
Dy, function (L = 16)) with L being the length of the filters H and G. But, the
computational time would be close for the FFT and FWT methods if the data length
of a spectrum is not equal to 2”. To investigate the computational times for FWT
and WPT, the following algorithm is adopted. The total number of multiplication

operations after J iterations in FWT treatment given as follows (Chau et al., 1996)
LxN+LxN/2+. . +Lx N2! =2Lx N x(1-1/27). (4.26)
In WPT calculation, the total number of multiplication operations after J operations
is
LxN+2LxNf2+. . 42 Lx N[2’ =JLx N . 4.27)
For example, to compress an IR spectrum with N = 1868 up to J =4 using D,
function (L = 16), FWT and WPT require about 56,040 and 119,552 multiplication

operations respectively. Hence, the computational time needed for FWT is about

47% shorter than that for WPT calculation.
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4.4.3 Performance of the Coefficient Position Retaining Method

The data length of each IR spectrum recorded from our the FT-IR instrument is
1868 which is not equal to power of 2. The FWT calculation will stop at the 2nd
resolution level due to an odd number of data length being encountered. It is not

possible to discard some data points at either end or both ends of the original spectral

data to meet the 2 requirement. It is because a significant amount of useful
information will be lost from the IR spectrum in removing data. As shown in Eq. 4.2,
the IR spectrum is required to extended periodically on both sides before wavelet
computation. If the zero padding method is utilized to the extend data length to the
next power of 2, side-lobe problem will occur in the reconstructed spectrum. The
problem occurs when the periodic spectral signal has an abrupt level change within a
short interval at the point of zero padding (Morrison, 1994) (Figure 4.8a). Figure 4.8b
shows result of the reconstructed IR spectrum of benzoic acid with FWT coupled
with zero padding method. It is obvious that side lobes are produced at that position
in the reconstructed spectrum (Figure 4.8c-d). These lobes are also observed in the
reconstructed IR spectrum when the spectral signal is extended without TRT
treatment (Figure 4.9). As pointed out by Daubechies (Daubechies, 1994), there are
two things wrong with the use of zero padding method. Firstly, this method would
introduce a discontinuity at the point of extension which will be reflected by large
wavelet coefficients for fine scales near the two edges. Secondly, this approach uses
too many wavelets to represent the original signal. Hence, zero padding method is
not a good method to process spectral data via WT when the data length is not equal
to the power of 2. The zero padding method also has some effects on data processing

with FFT such as distortion of line sharp (Verdun et al., 1988).
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Periodical extension signal of the IR spectrum of benzoic acid as generated by

using the zero padding method (a) with the corresponding reconstructed

spectrum (b) and the magnified plots (c) and (d) of the reconstructed spectrum

that was produced from the compressed data utilizing Dy, €=020 and

Figure 4.8
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Chapter 4

Figure 4.9 Periodical extension signal of the IR spectrum of benzoic acid as generated by
using the CPR method without TRT treatment (a) with the corresponding
reconstructed spectrum (b) and the magnified plots (c) and (d) of the
reconstructed spectrum that was produced from the compressed data utilizing
Dy, €=020 and J=4.
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In order to achieve a WT calculation with higher J level, the CPR method was
proposed and developed in this study to solve the problem associated with the data
set with an odd data number in WT calculation. By comparing the CPR method with
the zero padding method, it has two major advantages. Firstly, the former one can
process spectral data with any data length. If the length is an odd number, WT
calculation can still be performed. The CPR treatment can guarantee that the total
data length is unchanged and will not affect the quality of the reconstructed
spectrum. It is because data points at the ends of an IR spectrum usually represent the
signal background and do not contain any importance information. Secondly, the
CPR method does not involve any modification in the original spectral data
compared with the zero padding method. Therefore, it can generate a smooth periodic
spectral signal for the WT-TRT treatment (Figure 4.10). Hence, the side-lobe

problem can be solved.

4.4.4 Setting up of A Small Size Spectral Library

After manipulating individual IR spectra through FWT and WPT, the
compressed data can be used to set up a spectral library for future searching. In this
work, a small scale spectral library was generated for testing the proposed algorithm.
The spectral library as generated by the SLCS software as developed in this work
consists of four major types of data. They include the intensity data of a spectrum

which is a combination of the suitable bases in the wavelet domain, the wavelength
data of each intensity data point, the required data ¢ and ¢! for ITRT calculation

and the compound name. If the spectral library is built up from WPT, extra space is
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Figure 4.10  Periodical extension signal of the IR spectrum of benzoic acid as generated by
using the CPR-TRT method (a) with the corresponding reconstructed spectrum
(b) and the magnified plots (c) and (d) of the reconstructed spectrum that was
produced from the compressed data utilizing D,,, € =020 and J =4.
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needed for storing the best basis information for individual IR spectrum. Table 4.4
list the compressed file sizes, compression ratios and the computational times for
setting up a spectral library containing IR spectra of the twenty selected compounds
being processed by FWT, WPT and FFT. The results indicates that both FWT and
WPT give higher compression ratios than that by FFT. The later method cannot
achieve higher compression ratio because coefficients as obtained in the Fourier
domain are complex numbers which require double amount of storage space. If a
spectrum can be reduced with a high compression ratio by FFT, most of the high
frequency signal will be removed and this will affect the quality of the reconstructed
spectrum. However, the computational times for both FWT and WPT (Table 4.4) are
longer than FFT because 4 and 15 WT iterations were required to process each IR
spectrum, respectively. Since only a single data treatment is required to establish a
spectral library, the longer computational time is not a big problem. Moreover, in
spectral library searching, coefficients represented in either Fourier or wavelet
domain can be employed for identification of an unknown spectrum. [n the wavelet
domain, the IR spectrum can be represented by a smaller number of coefficients
when compared to that in the Fourier domain owing to the higher compression ratios
using the proposed WT method. So, the searching time in the wavelet domain is
anticipated to be shorter. Therefore, spectral compression using FWT or WPT are a

good choice.

In compressing IR data, WPT performs better than FWT. In general, the [R
spectrum usually has a lot of peaks in the fingerprint region. After a single cycle of
WT calculation, a portion of the high frequency signals are preserved at the wavelet
coefficients together with the noise (Figure 4.11). In order to extract such high
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Plots of the wavenumber against the scale and wavelet coefficients in unit

transmittance as obtained from compressing the IR spectrum of benzoic acid at

different resolution levels using the D), function.
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Chapter 4

frequency signals, the noise present in D"’ must be removed. In WPT treatment,
WT calculation was performed on all bases so that the noise signal can be separated
from the required high frequency data. By employing the Shannon-Weaver entropy
calculation as mentioned previously, the best basis can be selected out to represent

the original signal. However, in FWT treatment, no further WT calculation can be

performed on D' (Figure 4.1) to extract the required signal. In such case, error
would be observed in the reconstructed IR spectrum if a very high cutoff value is

employed for noise removal and data compression treatment.

4.4.5 Spectral Library Searching

Spectral compression coupled with prefilter technique is the most common way
for searching a large spectral library. By using this technique, a small group of
spectra will be extracted from the library for further processing. For example, Lo and
Brown (Lo and Brown. 1991) proposed to compress a spectral library by FFT and
adopted principal component regression for prefiltering. In this work, the IR
spectrum was compressed by WT and represented by a smaller group of scale
coefficients C”’ at the assigned resolution level J. Coefficients of C*’ represent the
approximation of the original signal C® (or C**" in WPT) with a resolution of one
point per every 2’ point of the original one. So, most of the characteristic peaks in
the original IR spectrum can be retained in this approach. Figures 4.12a and 4.12b
depicts, respectively, the scale coefficients C*’ of the IR spectra of 4-nitrophenol
and cyclophentyl chloride at various resolution levels. C“’ was utilized as a

reference spectrum in the library searching process. In this investigation, each IR
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A diagram to show the scale coefficient C'’ of the IR spectrum of 4-

nitrophenol (a) and cyclophentyl chloride (b) as obtained from resolution levels

0 to 3 via FWT treatment using the D, function.
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spectrum in the library was represented by 166 coefficients with the inclusion of 116

coefficients from C'*) and 50 coefficients from D" to D' after data compression.
Up to 90% of the searching time can be saved for using the compressed spectra

compared with that for the uncompressed spectra in the direct matching method.

The IR spectrum of 4-nitrophenol was chosen as our unknown one to test the
performance of the proposed method for library search. Tables 4.5 and 4.6 show the
results of the preliminary and detail search. In the preliminary one, all reference
spectra in the library are involved in the direct matching process. After this step, hit
indices are generated in descending order to indicate the similarity between reference
spectra in the library and the unknown spectrum. Hit index 1 will be assigned to the

reference spectrum being found to have the highest D__ and the lowest D,y and

D jpser values from the direct matching calculations, and index 2 for the next highest
D, and lowest D, .. and D, values and so on. Thus, a lower hit index value

indicates higher similarity between the reference and the unknown spectra. The
number of selected IR spectra in the hit index can be adjusted according to the size of
the spectral library. In this work, only five hit indices of 1 to 5 of the corresponding
reference IR spectra are listed and used in the detail search. Table 4.5 shows the
search results of the unknown IR spectrum of 4-nitrophenol of the FWT and WPT
compressed libraries. All the three direct matching schemes could identify the
unknown spectrum correctly. In the detail search, the suspected reference spectra are
reconstructed from the compressed data up to level 0. At this level, the reconstructed
spectrum does not exactly represent the spectrum in its original form, but, a

smoothed version of the original spectrum. It is because part of the noise signal was
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removed in the WT compression process. The overall results for the preliminary and
detail search are slightly different. It is because the resolution of the reconstructed
spectra increases for lower resolution levels. Thus, more information is contained in
the reconstructed spectrum. Since it is very time consuming to carry out detail search
on a huge spectral library with spectra in their original form, the preliminary search
provides a fast way to find out a group of reference spectra with high similarity.
Then, the selected spectra are reconstructed via either inverse FWT or inverse WPT
depending on the compression method used for further confirmation. By adopting
this approach, an unknown IR spectrum can be identified within very short time

compared to the conventional methods such as full spectrum searching.

Library search by using FFT was also performed in this work for comparison.
Similar to that in WT treatment, the IR spectral library was first compressed by FFT
with the use of absolute cutoff, least-square fitting and power spectrum methods.
After FFT transform, the IR spectrum was converted to a frequency spectrum. Most
of the useful information is located at both ends of the frequency spectrum. By using
the above mentioned methods, some coefficients in the central part of the frequency
spectrum were replaced by 0. Due to the symmetric properties of Fourier transform
(Egs. 2.4 and 2.5), only the non-zero coefficients at the first half of the frequency
spectrum were stored in the iibrary. Then, the non-zero coefficients in the Fourier
domain were employed for library searching. In this study, the whole frequency
spectrum in the Fourier domain was involved for library search. Table 4.7 gives the
results of library search by using FFT. The results obtained indicates that coefficients
from FFT coupled with absolute cutoff method is not good for spectral searching.
Although the absolute cutoff method by discarding Fourier coefficients with values
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less that the cutoff value can compress a spectrum with very high compression ratio,
some features are removed in the process. Of course the bad performance may also
be due to the use of only the real part of the coefficients in the FFT domain for the
two library searches. As a result, the compressed reference spectra do not provide
enough information for identifying the unknown IR spectrum correctly. For the other
two FFT methods, the search results are quite similar to those from FWT and WPT.
But, spectral library treated with FWT and WPT is better than that by FFT especially
in visual comparison and memory storage. In some cases, the search routine cannot
identify the unknown spectrum correctly for compounds selected in our library.
Then, users need to compare the reference and unknown spectra by their own
experience. One of the advantages in using both FWT and WPT methods for
processing spectral library is that they can provide an easier way for visual
comparison. Users can just make use of the scale coefficients at a particular
resolution level to do so (e.g. Figures 4.13a and 4.13b) because most of the
characteristic peaks in the IR spectrum are still retained in the scale coefficients even
in higher resolution levels. In FFT, only the real part of the coefficients are utilized
for searching. Figure 4.13c shows the real part of the FFT coefficients of the IR
spectrum of 4-nitrophenol. These coefficients forms a frequency spectrum that
consists of a lot of peaks. It is not easy to identify different functional groups directly
by inspecting the frequency spectrum. Hence. the FFT coefficients are not suitable
for visual comparison. In order to perform visual comparison via FFT coefficients,
inverse FFT must be applied. With regard to our proposed methods, inverse FWT,
inverse WPT and inverse CPR are not necessary in the preliminary search process
while they are performed only in the detail search process. Besides, FFT calculation
requires extra amount of memory space for data storage because all the FFT

coefficients  are stored in the form of complex number
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Figure 4.13 (a) The IR spectrum of 4-nitrophenol, (b) plot of the scale coefficients as
obtained from a FWT treatment on the IR spectrum of 4-nitrophenol using Dy,
at J = 4 against the wavenumber, and (c) plot of the Fourier coefficients of the
IR spectrum of 4-nitrophenol as generated from FFT against frequency.
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while WT coefficients in form of real number. Therefore, spectral library search is
more efficient for a library that is set up by either FWT or WPT compression and is

better than that using FFT compression.

4.5 Conclusions

Fast wavelet transform and wavelet packet decomposition has been proposed in
this work for compressing IR spectra of twenty organic compounds with similar
structure that were compressed at the 4th resolution level with the use of the Daubechies
wavelet function Dy, and cutoff value & = 0.20 by using these WT methods. The results
indicate that compression by FWT and WPT can reduce the spectral library file size by
90% which is better than that by FFT. Besides, the coefficient position retaining method
was developed in this study to process spectral data with odd number data length, which

cannot be handled by conventional FWT and WPT methods.

After data compression, the coefficients obtained were selected and employed to
build a small scale spectral library for future searching. Spectral library searching of this
database was found to be better than that treated by FFT especially in the aspect of
visual comparison in some cases. The scale coefficients as obtained from FWT and
WPT can be used effectively for preliminary searching in a large spectral library. Our
proposed methods can minimize the search time in the search by using the direct
matching method. Since only a limited number of IR spectra were involved in the study,

we only point out the advantages of library search for IR spectral database that is treated
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by the proposed WT methods. Further experiments are required to determine the
optimal parameters for compression of spectra and the performance of library search
with WT in a large library system. The proposed method can be acted as a temperate for

building a larger wavelet based library system.

126




CHAPTERS

Wavelet Transform: A Novel Method
for Derivative Calculation

in Analytical Chemistry

127



Chapter 5

S.1 Introduction

Derivative calculation is a very powerful technique in analytical chemistry for
data analysis owing to its popularity on the apparent higher resolution of the differential
data when compared with the original data (Adam, 1995). It can be utilized for resolving
spectra, sharpening peaks, eliminating unwanted background interference and carrying
out quantitative analysis (Rojas et al., 1988; Taisky, 1994). In analytical studies,
applications of the derivative technique can be found in ultraviolet-visible (UV-VIS)
spectroscopy (Howell and Hargis, 1994; Talsky, 1994; Hargis et al, 1996),
chromatography (Strobel and Heineman, 1989) and potentiometric titration (Jeffery er
al., 1989). Although the technique is an useful tool for data analysis, it has a major
drawback in increasing the noise level in higher order derivative calculation (Brown,
1992). To perform higher order derivative calculation via numerical differentiation,
noise reduction is usually performed between data from each order of successive
derivative calculation (Antonov and Stoyanov, 1996). Commonly used methods of this
kind include sliding average, weighted average, smoothing by polynomial, and time
averaging method (Talsky, 1994). Some researchers also proposed their own algorithm
to solve this problem (Antonov and Stoyanov, 1993; Barak, 1995; Antonov and

Stoyanov, 1996)

Wavelet transform (WT) has attracted recent interest in applied mathematics for
signal and image processing (Wickerhauser, 1994). This new mathematical technique
has been demonstrated to be fast in computation with localization and quick decay

properties in contrast to some existing popular methods, especially, the fast Fourier
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transform (FFT). Since 1989, WT has been proposed for signal processing in chemical
studies owing to its efficiency, large number of basis functions available, and high speed
in data treatment. In this work, WT is introduced as a novel method for approximate
derivative calculation in processing analytical data. The major advantage of the
proposed method is that it can perform numerical differentiation and noise reduction in
the same calculation and can enhance the signal-to-noise ratio (SNR) for even higher-

order derivatives.

5.2 Method of Investigation

5.2.1 Derivative Method

In analytical chemistry, derivative method is mainly used for resolving
spectrum, locating peak maxima and minima in a spectrum and detecting inflection

points in the titration curve. Since it is very difficult to obtain a mathematical
expression or function to represent an analytical signal f(x), the simplest method to
perform derivative calculation on f(x) is by numerical differentiation (Hecht, 1990;
Meloun et al., 1994). The signal f(x) is usually divided equidistantly on the x-axis

and the first derivative of f(x), f"(x), is evaluated from the slope of two adjacent

points by Eq. 5.1:

5.1

ol ) Asa)-stc

2 xr*l —xi
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where i is a running index from 1 to N-1 and N is the data length of f(x) . In general,

the average of x,,, and x, is chosen as the new coordinate on the x-axis to minimize

the error of signal shifting. To obtain a higher order derivative f‘"(x). a step by step

numerical differentiation is adopted:

f(,,,((xm + X, )) < f("—”(xi*l)-f("—”(x’ ); n>1 (5.2)

2 X, —X

i+l i

where n represents the derivative order. Other methods found in chemical studies for
derivative computation include the use of Fourier transform (Horlick, 1972) and
polynomial filters (Barak, 1995) such as the Savitzky-Golay polynomial filter
(Savitzky and Golay, 1964; Steinier er al.. 1972: Madden, 1978: Gorry, 1990;
Rzhevskii and Mardilovich, 1994). The Savitzky-Golay polynomial filter is widely
used in analytical chemistry for numerical derivative computation due to its

simplicity in calculation.

A differentiated analytical signal has the following properties after the
derivative calculation (Talsky, 1994). (1) Peak maxima or minima give extrema in
even derivatives and zero crossing in odd derivatives. (2) Peak maxima produce a
positive extrema in the 4nth derivative and a negative extrema in the (4n-2)th
derivative (n =1, 2, 3 ...). (3) Inflection points give zero crossing in even derivatives
and extrema in odd derivatives. (4) As the derivative order increases, the number of
extrema exceeds that of the fundamental curve because each inflection gives an
additional extremum by differentiation. As a result, virtual extrema or satellites are
observed and they may superimpose extrema of neighbouring analytical peaks in

some cases. (5) As the derivative order increases, the full width at half maximum
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(FWHM) becomes smaller and the peak becomes sharper (Fell, 1980). (6) Finally,
the SNR depends on the width or the number of points in the FWHM of the peak
(O’Haver and Begley, 1981) with

SNR(n) ~ % (5.3)

where C(n) and n denote a constant and the derivative order respectively. In order to
improve the SNR for higher-order derivatives, digital signal smoothing is required to
perform between successive derivative order calculations. Commonly used methods
include running averaging (O’Haver, 1991), least-squares polynomial smoothing
(Willson and Edwards, 1976), spline (Losev, 1990) and Fourier transform (Lee and
Wade, 1994). In this work, wavelet transform (WT) is introduced as a new tool for

approximate derivative calculation.

5.2.2 Wavelet Transform

As mentioned in the previous chapters, wavelet transform is a very powerful
method to break down a signal into simpler, fixed building blocks at different scales
and positions (Dai et al., 1994). In WT, a signal f(x) is transformed linearly from
its original domain to wavelet domain. The process is similar to apply the signal with
Fourier transform (FT). However, in Fourier analysis, only sine and cosine functions
can be adopted which are localized in the frequency domain only. It has difficulty in
processing a function having components that localized in the time domain (Cody,
1992). As a result, a small frequency change in FT produces changes everywhere in

the time domain. Such difficulty can be overcome by wavelet functions, which are
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localized both in frequency or scale and in time via dilations and translations of the
mother wavelet respectively. This leads to a compact representation of a large classes

of functions and operators in the wavelet domain.

Different wavelet functions such as Daubechies wavelet. Meyer wavelet,
Coiflet wavelet, spline wavelet, orthogonal wavelet and local cosine basis and others
(Chui, 1992; Daubechies, 1992) were proposed by various workers. Different bases
face different tradeoffs such as how compactly these functions are localized in space
and how smooth they are. In chemical studies, both the Daubechies and spline
wavelet functions have been widely used for data compression and smoothing. Here,

the Daubechies family of wavelets D,, , with m being any positive integer from 1 to

2m >
10, were chosen for approximate derivative calculation. The approximate first

derivative of f(x) is assigned to be equal to the difference between two scale
coefficients at the first resolution level (Eq. (5.4)) as

@=cy) -c)) mzm (5.4)
where D,, and D,; represent any two Daubechies wavelet functions with m and 7
being any positive integer. Any higher order derivative computation can be achieved
by using the result obtained from the lower derivative calculation as an input for WT
calculation. Then Eq. (5.4) is applied again to determine the approximate derivative
at the next higher-order. To generalize the approximate derivative calculation, such

iteration process can be expressed as follow:

fPx)y=Cy) —-Cf) memandn>1 (5.5)
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with C}}) and C}) obtained from WT treatment of /*~"(x) at the first resolution

level with Daubechies wavelet functions D,, and D, .

5.3 Experimental

All data simulations and computations were carried out by using the wavelet
toolbox, WTDeriv as developed in this study. It was coded in MATLAB® for Windows
Version 5.1 (The MathWorks, Inc., 1996) under Microsoft® Windows™ 95 environment
on an AST® Advantage!® 818 PC (AST Research, Inc., California, U.S.) with a

133MHz Pentium® processor.

In order to test the performance of the proposed algorithm., it has been applied to
process a chromatogram for a real sample. The chromatogram were acquired on a HP
1050 HPLC-DAD system equipped with a 20 pL sample loop and a HP LiChrosomb
(200 x 4.6 mm i.d., 5um) C,; RP column (Hewlett-Packard, Germany). The mobile
phase was a mixture of methanol-water (30:70 v/v). The mobile phase was adjusted to
such ratio so that partial overlapping in the chromatograms were observed. The flow
rate was 0.5 mL/min. The spectra were collected in the wavelength range from 250 nm
to 600 nm with a spectral resolution of 2 nm. The obtained data sets were converted to
ASCII text files with a self developed macro program, 3DATA.MAC (Appendix 5.1),
under the HP ChemStation Revision A.03.01 environment (Hewlett-Packard, Germany).
The macro can extract a particular range of spectro-chromatogram for further data

analysis.

133



Chapter 5

All solvent were of HPLC grade quality (Lab-Scan, Ireland) and double de-
ionized water (Millipore-Waters, MA, USA) was used. Food dye samples of Red 2G
(A max= 332 nm) and Allura Red (A, = 502 nm) (Figure 5.1), which were provided by
the Hong Kong Government Laboratory, were used in this studies. A two-component
sample solution consisted of 20 ppm of Red 2G and 20 ppm of Allura Red was prepared
by dissolving directly in the mobile phase. 10 pL of sample solution was injected into

the HPLC-DAD system for analysis.

5.4. Results and Discussion

5.4.1 Optimum Daubechies Wavelet Functions Selection

In this work, the proposed method for derivative calculation was tested with
different simulated signals such as Gaussian function (Meyer, 1994), Lorentzian
function (Fell, 1980) and sigmoid function (Zupan and Gasteiger, 1993). In order to
apply fast wavelet transform (FWT) successfully on the analytical data f(x), they
needed to be extended periodically at the two extremes. However, in the real
situation, the start and end points of the signal do not have a common value. As a
result, side-lobe problem will be encountered and affect the signal reconstruction and
derivative calculation. To solve such a problem, the translation-rotation

transformation (TRT) method was adopted (Chau et al., 1996; Hayes et al., 1973).

The TRT algorithm involves subtraction of the data vector C ‘°’(= f (x)) , with data

length N, by selected quantities B {= b,,b,,....b, } to give the rotated array by
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Figure 5.1 Chemical structure of (a) Red 2G and (b) Allura Red.
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comr = ¢ —b, (5.6)

(& —c@ Nk -1)
1

- (5.7)

with b, =c” +
where £ is a running index from 1 to N. Besides, FWT was developed to process data
with a length of N equals to 2° with p being any positive integer. In practice, it is
not easy for a chemical instrument to generate 2” data exactly. To cope with this

problem, the coefficient position retaining (CPR) method as described in chapter 4

was employed in the wavelet calculations.

In order to apply Eq. (5.5) successfully for approximate derivative calculation,

we needed to choose two different Daubechies wavelet functions. It was found that if
we compare C f,',’_ and C (DIL , which were computed from two different Daubechies
wavelet functions D,, and D,, respectively, they had a similar shape and
magnitude in the y-axes and a very small spatial shift was observed in the x-axes.

These shifts of the two signals that followed by the subtraction process gives an

approximate first derivative of the original signal (Talsky, 1994). Figures 5.2b-5.2¢
shows the spatial shifts of the scale coefficients C,' which were obtained by
processing the Gaussian signal (Figure 5.2a) with D,,, m=12,...,10. The peak
center (P.), peak height (P,) and peak width (P,) have values of 50, 1, and 4

respectively. Daubechies wavelet functions with m greater than 11 is not accurate and
are not commonly used in signal processing. Table 5.1 shows the percentage shifts of
the peak maxima and their associated values in the y-axis as compared with the

original Gaussian function (Figure 5.2a). In most cases, the shifts were not greater
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Figure 5.2 (a) A simulated Gaussian signal with 1000 data points which was generated by
using the peak center (PC), peak height (P,,) and peak width (Pc) having
values of 50, 1 and 4 respectively for WT derivative calculation. (b) A spatial
delay plot which was obtained by applying the TRT method and the
Daubechies wavelet functions D,,, with m=12,...,10 to the Gaussian signal

as shown in (a). The lower part shows the magnified spatial delay plot (c) in the

positive slope region, (d) near the peak maxima, and (e) in the negative slope

region.
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Table 5.1 Percentage of the shift of the peak maximum of the Gaussian signal as
shown in Figure 5.1(b) with WT treatment when compared with the
Gaussian peak (Figure 5.1(a)). The x-axes were re-scaled to that of the

original signal for comparison.

Daubechies Position of Percentage of Maximum peak
wavelet function the peak the shift of the height
used maximum peak maximum
The original 50.0 1.0000

Gaussian peak
(Figure 5.1(a))

D, 50.0 0.0% 1.4138
D, 49.9 -0.2% 1.4140
D, 49.9 -0.2% 1.4141
D, 49.9 -0.2% 1.4142
D, 50.1 0.2% 1.4141
D, 50.1 0.2% 1.4139
D, 49.9 -0.2% 1.4143
D, 49.9 -0.2% 14141
D, 50.1 0.2% 1.4142
D,, 50.1 0.2% 1.4142
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than 0.2%. In Figures 5.2c and 5.2e, a special pattern of Daubechies wavelet
functions were observed in the regions with position and negative slopes. In the
positive slope region (Figure 5.2c), the D,, functions were arranged in a special
order with 2m = 8, 6. 16, 4,14, 2, 12, 10, 20 and 18 and in decreasing intensity at a
given value on the x-axis. The opposite trend was observed in the negative slope
region (Figure 5.2¢). Besides, the same pattern was also discerned in the position
slope regions when the Lorentzian and the sigmoid functions were used (Figure 5.3c
and 5.3f). To perform approximate derivative calculation, we need to choose D,,
and D,, from the upper and lower sections of Figure S.2c. For example, in the
positive slope region,

f@=cy -cy (5.8)
can be adopted to evaluate the first derivative of f(x). In Figures 5.2c. 5.3c and
5.3f, the optimal combination of the Daubechies wavelet functions for the derivative
calculation was found to be D, and D,, which give the largest difference or highest
values in the first derivative with higher SNR value. In this approach, Eq. (5.5) can

be rewritten as follow:

fPx)=Cy -Cy) andn>1 (5.9)

with C g’. and C {,‘I" being obtained from WT for f"(x) at the lower derivative.

5.4.2 Comparison with the Conventional Derivative Calculation

Traditionally, smoothing is required to perform between each order of

derivative calculation because unwanted noise is introduced into the derivative data.
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(a) A simulated Lorentzian function and (b) a simulated sigmoid function with
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Figure 5.3
1000 data points for WT derivative calculation. The spatial delay plots (b) and
(e) were obtained by applying the TRT method and the Daubechies wavelet
function D,, with m=12,...10 to the Lorentzian and sigmoid functions
respectively with the corresponding magnified spatial delay plots (c) and (f) at
the positive slope region of (b) and (e).
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It involves a convolution of the data series with a smoothing function which consists
of a set of weighting coefficients to control the increase of noise magnitude or SNR.
Various smoothing methods proposed differ only in the way how the coefficients are
calculated (Rojas et al., 1988). The Daubechies wavelet function is also a kind of
filter. As different values of m are chosen, different sets of weighting coefficients are
generated for data smoothing. There are two major advantages by employing WT for
approximate derivative calculation. Firstly, both derivative and smoothing
calculations can be performed in the same calculation. Secondly, SNR can be

improved in higher order derivative calculations as described below.

As stated before, the relative SNR of an unsmoothed derivative signal is
inversely proportional to the power n of the width or the number points in the
FWHM of the peak (Eq. 5.3). Table 5.2 shows typical values of the relative SNRs of
unsmoothed differentiated Gaussian and Lorentzian signals (O’Haver and Begley,
1981). If the width or the number of points in the FWHM of the peak can be reduced,
the SNR can be improved. Figures 5.4b-5.4f shows a comparison between the first
and second derivatives of a Gaussian signal (Figure 5.4a) with white noise (SNR =
500) from conventional derivative calculation without smoothing and WT treatment
with optimum D, and D, functions. From the results of conventional derivative
calculation, the SNR of the first derivative is about 4.9 (Figure 5.4b). However, if no
smoothing is performed on the first derivative data before the second derivative
calculation, the SNR of the second derivative is very low and the signal is masked
with the noise completely (Figure 5.4c). So, in the conventional derivative

calculation, the first derivative data must be denoised or smoothed with a suitable
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Table 5.2 A list of C(n) values for derivative orders from 0 to 8 as used for Eq.

(5.3) in SNR calculation of the unsmoothed derivative Gaussian and

Lorentzian signals.

Constant C(n)

Derivative Gaussian signal Lorentzian signal
order n
0 1 1
1 2.02 .84
2 3.26 4.1
3 8.1 16.6
4 17.7 64
5 52 390
6 141 2204
7 478 17065
8 1675 132275
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Figure 5.4 (a) A simulated Gaussian signal as shown in Figure 5.1(a) with white noise
having a value of 0.001 (SNR = 500) for WT derivative calculation. (b) and (c)
show the first and second derivatives plots respectively deduced from the
conventional method without smoothing. Plot (d) shows the result of the
second derivative derived from the traditional method with smoothing. Plots (e)
and (f) show the first and second derivatives obtained from the wavelet
transform treatment with the use of the D; and D), . functions.
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filter prior to the second derivative calculation. Savitzky-Golay polynomial filter and
Fourier transform are the denoising filters widely used in chemical studies. But, the
forrmer method requires to choose a proper polynomial while the later involves
complex number calculation. If the first derivative was smoothed with a Savitzky-
Golay 17 points filter, the SNR of the second derivative is about 2.4 (Figure 5.4d).
On the other hand, the SNR of the first and second derivatives from our WT
derivative calculation are about 11.4 and 3.5 respectively. The x-axes on the first and
second derivative plots of Figures 5.4e and 5.4f were re-scaled for visual comparison.
When compared with the conventional methods, no complex number was involved
and only simple matrix operations were required in our wavelet derivative

calculation.

Such an improvement on SNR using WT method over the conventional
methods as mentioned above can be explained in view of the number of data points
represented for the FWHM of the Gaussian peak adopted in this work (Figures 5.4a).
Figures 5.5b and 5.5¢ show, respectively, the number of points for FWHM at
resolution levels | and 2 which correspond to two separated WT calculations on the
original signal (Figure 5.4a). The FWHM values are reduced by 50% at each WT
treatment. Therefore, the SNR in the WT derivative calculation is enhanced. By
using WT, the data length of the first derivative is equal to 50% of the original data.

It is because the first derivative was derived from the difference of the scale
coefficients C}) and C} (Figure 5.5b). Their data lengths are equal to 50% of that
of the original data. In the second derivative calculation, the coefficients from the

first derivative are used as inputs for WT computation. As a result, a further 50% of
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Figure 5.5 (a) A simulated Gaussian signal in Figure 5.1(a) with white noise having a

w

value of 0.001 (SNR = 500) for WT derivative calculation. (b) The simulated

Gaussian signal which was processed with WT at resolution level 1 with the
Dy wavelet function. (c) The simulated Gaussian signal which was obtain with

WT at resolution level 2 with the D; wavelet function.
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data length is reduced and the data length of the second derivative is equal to 25% of

the original data.

Since the proposed WT method was used to perform an approximate derivative
calculation in this work, most of the properties in the conventional method are
retained. Figure 5.6 shows a comparison between the conventional and wavelet
methods for a signal with overlapped peaks. The first derivative obtained from the
traditional method was smoothed with the Savitzky-Golay 17 points filter for the
second derivative calculation (Figure 5.6¢c). In the first derivative plots (Figures 5.6b
and 5.6d), both methods give the same results on the position of peak maximum and
turning point. Moreover, in the second derivative plots (Figures 5.6¢ and 5.6e), both
give similar results on the peak center position. The major difference between the
two methods were the SNR on the first and second derivatives and the number of

coefficients of each derivative as can be seen from the plots.

Figure 5.7a shows the chromatogram of a mixture of Red 2G and Allura Red at
506.5nm. Figures 5.7b and 5.7c show the first and second derivative plots of the
chromatogram by using the proposed approximate WT derivative method. When the
results were compared with the Savitzky-Golay 17 points filter method (F igures 5.7f
and 5.7g), similar result can be obtained except the resolution of the first and second
derivative plots were reduced due to the compression of WT. Besides, the results
from the WT are much better than that from the conventional numerical derivative
method. As shown in Figures 5.7d and 5.7e, the SNR values of the first and second

derivative plots are increased and mask the signals.
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Figure 5.6

o
(3]

(a) A simulated signal with 1000 data points which were produced by
overlapping peak | with F. =50, P, =1 and P, =4 and peak 2 with
F- =60, P, =2 and P, =4 with white noise having value of 0.001 (SNR =
500 for peak 1 and SNR = 250 for peak 2 for WT derivative calculation. The

first derivative (b) and the second derivative (c) of the signal are obtained by

using the conventional method. The first derivative (d) and the second

derivative (e) of the signal as obtained by the proposed WT method using D

and D,,.
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(a) An experimental chromatogram of a mixture of Red 2G and Allura Red at

506.5nm. (b) and (c) show the first and second derivatives of the chromatogram

by the proposed WT method. (d) and (e) show the first and second derivatives

of the chromatogram by the numerical differentiation method. (f) and (g) show

the first and second derivative of the chromatogram by the Savitzky-Golay 17

Figure 5.7
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5.4.3 Limitations of the Proposed Method

Wavelet transform is a powerful method for approximate derivative calculation
as demonstrated in this work. However, the proposed method suffers with some
limitations. Firstly. the derivative order depends on the number of data points
available in the original signal. If the number of data points are too small. for
example 100 points, then only the first two derivatives can be obtained with
acceptable results and the higher derivative order calculations are impossible. It is
because the number of data point is reduced by 50% for each derivative order
computation (Figure 5.5). If the higher order derivative is conducted on this data set,
most of the important information will be removed during the computation. In order
to tackle this problem, data interpolation such as linear interpolation, polynomial
interpolation and spline interpolation methods could be employed to increase the
number of data points in each derivative calculation back to the original value
(Hecht, 1990; Adams, 1995). However, the interpolation method will inevitably
introduce certain amount of noise to the data. Secondly, if the SNR of a signal is very
low, the approximate derivative cannot be used with this method (Figure 5.8). In the
proposed method, we suggest to use the scale coefficients C at resolution level 1 for
derivative calculation. However, certain amount of noise are still retained in C at this
resolution level. We cannot obtain the first derivative successfully with the WT
method. An alternative approach should be utilized to compute the approximate first
derivative. For example, the scale coefficients C at higher resolution level can be
employed for the calculation. At the higher resolution level, most of noise signals

were isolated and transferred to the wavelet coefficients D.
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Figure 5.8 (a) A simulated Gaussian signal in Figure 5.1(a) with white noise having value

of 0.1 (SNR = 5) for WT derivative calculation. The first derivatives of the
Gaussian signal which were processed with D; and D, wavelet functions

with WT treatment at resolution levels of 1 (b), 2 (c) and 3 (d) with the number
of data points of the first derivatives being 500, 250 and 125 respectively.
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5.5 Conclusions

In this work, wavelet transform was proposed as a tool for approximate derivative
calculation. The difference between the scale coefficients as obtained from WT
treatment at resolution level 1 using the Daubechies wavelet functions D, and D,, was
equal to the approximate first derivative of a particular signal. The result indicated that
the new method could enhance the SNR even at higher derivative order calculation
without extra effort in data manipulation. Besides, both the derivative and smoothing
calculations could be combined in a single step. When compared with the conventional
derivative methods, most of the properties that found in these methods are retained in

the new method.
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Chapter 6

6.1 Introduction

Signal processing, one of the important areas in chemometrics, was discussed in
previous chapters. From this chapter onward. focus will be put on another area of
chemometrics, factor analysis (FA) or principle component analysis (PCA). Factor
analysis is a widespread chemometrics technique and has been developed more than 20
years (Brereton, 1995). It is a multivariate methods for reducing data matrices to their
lowest dimensionality by the use of the orthogonal factor space and for yielding
predictions and recognizable factors through transformations (Malinowski, 1991). Both
Auf der Heyde (Auf der Heyde, 1990) and Brereton (Brereton, 1995) have published a

tutorial paper on FA.

The rapid development of FA in chemical studies is due to the development of
hyphenated instrument in the past decade. There is a great demand in developing
advanced instruments to perform qualitative and quantitative analysis in analytical
chemistry. With the introduction of hyphenated instruments such as high performance
liquid chromatography coupled with diode array detector (HPLC-DAD) and gas
chromatography interfaced to Fourier transform infrared spectrometer (GC-FTIR) or
mass spectrometer (GC-MS), chemical analysis is changing from two-dimensional to
multi-dimensional analysis. The hyphenated techniques provide a suitable mean for
multi-component analysis and lead to the development of new methods for data
interpretation and evaluation (Toft, 1995). Commonly used methods for such a purpose
include evolving factor analysis (EFA) (Maeder and Zilian, 1988; Keller and Massart,

1992a), alternating regression (AR) (Karjalainen, 1989; Karjalainen and Karjalainen,
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1996), target factor analysis (TFA) (Gemperline, 1984), iterative target transformation
factor analysis (ITTFA) (Vandeginste ef al., 1985), target transformation factor analysis
(TTFA) (Hopke, 1989), window factor analysis (WFA) (Mailnowski, 1992), fixed size
moving window evolving factor analysis (FSMW-EFA) (Keller and Massart, 1991) and
heuristic evolving latent projections (HELP) (Kvalheim and Liang, 1992; Liang et al.,

1992).

Recently, a mathematical technique called wavelet transform (WT) has been
proposed for signal and image processing (Wickerhauser, 1994). One of the main
feature of WT is that it may decompose a signal directly according to the frequency and
represent it in the time domain. In the transformation, both the time and frequency
information of the signal are retained. Since 1989, WT has been applied for signal
processing in various fields of analytical chemistry and chemical physics owing to its
efficiency, more number of basis functions available, and high speed in data treatment
compared to Fourier transform computation. More than 90 papers were published within

the period from 1989 to August 1998 as mentioned in Chapter 3.

In this work, fast wavelet transform (FWT) was proposed as a pre-processing step
of the HELP algorithm. It was found that if a data set from HPLC-DAD with very low
signal-to-noise ratio (SNR), the HELP algorithm failed to determine the minimum
number of components and the selective regions for the individual components from the
chromatograms of the sample. With the use of FWT algorithm, the data set was
transformed with FWT at resolution level 1 on the chromatograms at each wavelength.

By using the denoised and compressed data set in the wavelet domain for HELP
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analysis, the sensitivity of the HELP algorithm can be improved. Furthermore, the
compressed data set can reduce the computational time of the HELP algorithm.
Simulated and experimental data were used to evaluate the performance of the proposed

method. Details of HELP and FWT aigorithms will be discussed in the coming sections.

6.2 Method of Investigation

6.2.1 Principle of Factor Analysis

In factor analysis, data matrices are assumed to be formed as a linear sum of
factors with each factor being weighted differently. For instance, experimental data
from HPLC-DAD system can be represented by a data matrix X (dimension i x k)
and it is considered as the linear sum of the products of the chromatogram C
(dimension i x j ) and spectrum § (dimension & x ;) of the individual component j
(Eq. (6.1)) with the noise E (dimension i x k ), where the index i denote the retention
time (row vector), k the wavelength (column vector), » the total number of

components present and t represents the transpose operation.

X, =).C,S, +E, (6.1)

J=l
The value of individual X, is the overall intensity at a particular retention time and
wavelength. In principle, FA can be employed to decompose the data matrix X into

two abstract matrices. They are called the scores matrix T (dimension i x j ) and the
loadings matrix P (dimension k x j) which are the row factors and column factors
respectively (Eq. (6.2)).
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Xik = IZi‘(uhunxl)Pk;.(ahurml) (6'2)

To convert the abstract matrices to information with physical meaning, a

transformation matrix R and its inverse R™' are utilized. If the transformed solution
can be shown to have physical significance such as chromatograms and spectra in

HPLC-DAD data, a real solution to the problem will be found (Eq. (6.3)).

Xy = (Zuwwpk)(R B k;iab-ww)) =T, trear P ey = € pure) Sty pure) (6.3)
After the above calculation, one can determine the number of components n as well
as their pure spectra and chromatograms. In the presence of noise, the number of
factors that can be deduced from FA is always greater than the true number of
constituting factors or components (Malinowski, 1991). It is because the noise E
contributes certain number of factors in the data matrix X in the calculation. So,

different methods such as EFA, FSMW-EFA and HELP have been proposed to

determine the true number of factors.

The basic principle of the EFA, FSMW-EFA and HELP methods is to follow
the change or evolution of the rank of the data matrix X as a function of the ordered
variable such as retention time (Maeder, 1987). The rank of X is equal to the number
of the true components in the sample. In HPLC-DAD, the appearance of each new
component at the detector will cause an increase in the rank by one or vice versa.
Rank is determined through singular value decomposition (SVD) (Maeder and Zilian,
1988; Lupu and Todor, 1995). SVD can decompose X into a product of three
matrices # (dimension i x n), s (dimension nx n) and v (dimension 7 x k) with the

following properties (Eq. (6.4)):
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Xy =u4,5,,Vu 6.4)

with w,a, =v,v, =1, (identity matrix). # and v are equal to, respectively. the
significant eigenvectors X; X, and X, X, . s is called the singular value and is a
diagonal matrix. The diagonal elements of s are the positive square roots of the
corresponding eigenvalues and are arranged in descending order. The magnitude of
an eigenvalue indicates the relative importance of that factor. A larger eigenvalue
implies that the factor is contributed from a sample component while a smaller one
from the noise. The product of « and s equals to the scores T while the transpose of

v equals to the loadings P.

6.2.2 Heuristic Evolving Latent Projections

Heuristic evolving latent projections algorithm was proposed by Kvalheim and
Liang in 1992 for analyzing data from liquid chromatography with diode array
detection (LC-DAD) (Kvalheim and Liang, 1992; Liang er al., 1992). It is classified
as a FA or PCA technique for multivariate data analysis. This algorithm is a
modification of FSMW-EFA method and was shown to be better than the
conventional methods such as EFA, ITTFA and AR (Toft and Kvalheim, 1994;
Grung and Kvalheim, 1995). Within the concept of HELP, it has been applied to
resolve system containing partial chromatographic selectivity (Grung and Kvalheim,
1995), hidden minor chromatographic peaks (Liang and Kvalheim, 1993b), and
baseline drift in the elution profiles (Liang et al., 1993b). HELP has been applied
successfully to an LC-UV study involving drug isomers (Liang et al., 1992) and

chlorophyll degradation experiments (Liang et al., 1993c), deconvolution of
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chromatographic peaks (Hamalainen et al., 1993), assessment of peak origin and
purity in one-dimensional chromatography (Liang er al, 1994) and HPLC-DAD
study of polycyclic aromatic hydrocarbons (PAHs) content in city air of Hong Kong

(Shenet al., 1997, 1998a-b) and others.

In order to apply the HELP algorithm successfully on data analysis of HPLC-
DAD, two simple assumptions are made. Firstly, the Beer law is observed with non-
zero chromatographic and spectral signal. Secondly, the rule first-in-first-out is
obeyed. That is the first substance present in the system will be the first to disappear,
the second substance will disappear next and so on (Keller and Massart, 1992a).

Suppose the HPLC-DAD system generates a data set X (Figure 6.1) with the rows

and columns corresponding to spectra (su) measured at different times and

chromatograms (cu) acquired at a different wavelength respectively:

N
X=Ycs +E=CS' +E. (6.5)
n=|

Here, N and E represents the total number of components and noise in the sample.
With the help of PCA treatment, X can be decomposed into a matrix of score T and a

matrix of loadings P as follows:

X=CS'+E=TP'+E. (6.6)

In the HELP treatment, the first step involves the construction of the
eigenvalues plot (Figure 6.2a) which is a plot of the logarithm of eigenvalues against
retention time. Such a plot is obtained by applying FSMW-EFA procedure to X with

a particular window size. The window size is defined as the number of rows of data

158



Chapter 6

Figure 6.1 Simulated chromatograms for a two-component system, A (——) and B (- - -),

with a peak resolution of 0.37 (a). 0.62 (b) and 0.88 (c) and the corresponding
simulated spectra (d).
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Figure 6.2 (a) Eigenvalue plot obtained from the data set B with a window size of 5. (b)
Latent projective graph obtained by plotting the first principle component
versus the second principle component of the data set B. (c) Eigenvalue plot
obtained from the data set B with evolving factor analysis treatment.
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from X for eigenvalues computation. FSMW-EFA is a modified method based on
Maeder's EFA algorithm (Keller and Massart, 1991). In EFA algorithm. an
expanding window is applied to generate the eigenvalue plot (Figure 6.2c). Firstly,
the first row of data from X is selected out to form a sub-matrix and the eigenvalues
(EV) are calculated with SVD method. Then. the first two rows of data are extracted
and the eigenvalues are obtained again. In this manner. eigenvalues are computed for
each addition row of data until the whole data matrix X is extracted. This approach is
called the forward evolving factor analysis (FEFA) and represents the left hand side
of the eigenvalue plot. The right hand side of the plot is obtained by the backward
evolving factor analysis (BEFA) which repeats the EFA calculation on X as
described previously but does it in the opposite direction. Instead of adopting an
increasing size window to calculate the eigenvalues, FSWM-EFA utilizes a fixed size
moving window. An odd number of rows of X, which is greater than 1, is selected
and their eigenvalues are computed. Then, the window is moved downward by one
row and the calculation is repeated until the last row of the matrix X is manipulated.
At the end of the computation, all the first eigenvalues as obtained from the above
calculations are connected with a line and the same approach is also applied to the

other eigenvalues.

In the second step of HELP analysis, the zero concentration, zero component
and selective regions of the corresponding components are determined from the
eigenvalues plot. The zero concentration region is defined as a chromatographic
region where nothing elutes from a particular component (Maeder, 1987 Kvalheim

and Liang, 1992). For example, in Figure 6.2a, regions from 2.5 to 3.2 minutes and
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from 1.3 to 2.0 minutes are the zero concentration regions for component A and B
respectively. On the other hand, the selective region is considered as the region with
only one chemical component eluted (Kvalheim and Liang, 1992). Regions from 1.3
to 2.0 minutes and from 2.5 to 3.2 minutes are the selective regions for component A
and B respectively (Figure 6.2a). The zero component region is defined as a region
with no chemical component involved and is usually contributed from noise of the
system. Regions from 0.0 to 1.3 minutes a.nd 3.2 to 3.5 minutes are the zero
component regions. In this stage, the latent projective graph (Figure 6.2b) can also
provide information on the selective region of individual components. Such regions
can be identified from the location of straight lines which pass through the origin in
the latent projective graph. For example, the straight line with positive slope
represents the selective region for component A while that with negative slope
represents the selective region for component B. In the third step, with the
information from the zero concentration. zero component and selective regions,
chromatograms and spectra of individual components can be resolved through simple
matrix computation. [n the simplest case such as a simple two components system, if
the chromatographic profiles of each components are known, the corresponding

spectral profiles can be determined by the following equation:

s'=(c'c)'c'x. 6.7)
Pure chromatogram of a particular component can be determined from the zero
concentration region of that component. It can be deduced from the first principle
component of a sub-matrix as obtained from the selective region. For example, pure
chromatogram of component A can be derived from the SVD on the sub-matrix

X520 With the subscript being the retention time range of the selective region.

162




Chapter 6

Similarly, the chromatographic profiles can be resolved if the spectral profiles are
known:
Cc=xs(s's)". (6.8)
For a more complicated system, the component stripping approach should be
used (Liang and Kvalheim, 1993c). Resolution can only be performed by using a
stepwise stripping procedure. From Eq. (6.6), we have
CS' =TP". (6.9)
Then, a rotation matrix R can be introduced into the above expression so that
CS'=TRR'P'. (6.10)
Eq. (6.10) implies that

C=1R. (6.11)

The nonorthogonal rotation matrix R and its inverse R~ transform the score
vector T from the principal component decomposition into concentration profiles of
the pure chemical species (Kvalheim and Liang, 1992). In order to determine r, for
the individual component i, both the zero concentration and selective regions are
incorporated into Eq. (6.12)

=T

sel+zero ': .

c (6.12)

sel+zero
The subscript sel + zero,j implies the use of the selective region in addition to the
zero concentration region for component i. By rearranging Eq. (6.12), r can be

expressed to

-1
= t t
L= (Tsel+:cm.i T, sel+zero i ) Twl+:¢m,: c:el+:em.a

(6.13)
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Cout.zem, €an be obtained as the score vector of the first principle component in the

selective region of component i. After determination of r, for a particular component,
its pure chromatogram can be deduced via Eq. (6.11). For a system with more than
two components, the component stripping approach is applied in this stage by
removing the contribution from resolved component in the following manner

X.. =X-CS'. (6.14)

The HELP analysis is again applied to X, until all components are resolved.

6.2.3 Fast Wavelet Transform

In this work, FWT is employed to compress individual chromatogram from
HPLC-DAD. Details of FWT computation can be found in the previous chapters and
will not be stated in here. The coefficients for filters H and G are derived from the
Daubechies wavelet, D,,, with m being any positive integer from 1 to 10
(Daubechies 1992). Besides, the translation-rotation transformation (TRT) (Hayes et
al., 1973; Chau & Tam, 1994) and the coefficient position retaining (CPR) methods,
as proposed in the pervious chapters, are also applied to solve the side-lobe and
number of data point problems. The former problem occurs when there is a sudden
data change in the spectrum during periodical extension of the spectral data at both

ends in FWT preprocessing. The later one occurs when the data length of the

spectrum is not equal to 27 with p for any positive integers.
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Chromatograms at each wavelength of the HPLC-DAD data are processed with

FWT. The scale coefficients C"’ at a particular resolution level j and wavelengths
are recombined together to form a new data set. Then, these data are analyzed with
the HELP algorithm to determine the minimum number of components present and

to resolve pure chromatograms and spectra of the individual components.

6.3 Experimental

All simulations and computations were carried out using the Fast Wavelet
Transform Heuristic Evolving Latent Projections (FWT-HELP) Toolbox Version 1.0 as
developed in this work. It was coded in MATLAB® for UNIX® Version 5.1 (The
MathWorks, Inc., 1996) under IRIX™ 6.2 environment on a SGI Indigo? Power Extreme
workstation (Silicon Graphics, Inc., CA, U.S.) with a 7SMHz MIPS R8000™ processor.
The toolbox can be employed for HELP computation with or without FWT treatment.
Figure 6.3 shows a block diagram of the FWT-HELP toolbox. Appendices 6.1 and 6.2
give program description and screen captures of the FWT-HELP toolbox. Synthetic data
of spectro-chromatograms were used to test the proposed algorithm and they were
produced by combinations of Gaussian peaks (Li, 1997; Phillips and White, 1997).

Homoscedastic noise with a variance of 0.002 to 0.1 were added to the data sets.

In order to test the performance of the proposed algorithm, real experiments were
also performed. The data were acquired on a HP 1050 HPLC-DAD system (Hewlett-
Packard, Germany) equipped with a 20 L. sample loop and a HP LiChrosomb (200 x

4.6 mm i.d., 5um) C,; RP column (Hewlett-Packard, Germany). The mobile phase was
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Projections (FWT-HELP) Toolbox Version 1.0.
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A block diagram of the Fast Wavelet Transform Heuristic Evolving Latent



(cont.
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a mixture of acetonitrile-tetrahydrofuran-water (10:35:55 v/v) and was adjusted to such
proposed ratio so that partial overlapping were observed in the chromatograms. The
flow rate was 0.5 mL/min. The spectra were collected in the wavelength range from 250
nm to 600 nm with a spectral resolution of 2 nm and these spectral data were converted
to ASCII text files with a self developed macro program, 3DATA.MAC (Appendix 5.1).

under the HP ChemStation Revision A.03.01 environment (Hewlett-Packard. Germany).

All solvent were of HPLC grade quality (Lab-Scan, Ireland) and double de-
ionized water (Millipore-Waters, MA, U.S.) was used. Food dye samples of Red 2G
(A max = 532 nm) and Amaranth (A, = 520 nm) (Figure 6.4), which were provided by
the Hong Kong Government Laboratory, were used in this study. A two-component
sample solution mixture was prepared by dissolving directly 1 ppm of Red 2G and 2
ppm of Amaranth in the mobile phase. 5 and 10 puL of sample solutions were injected

into the HPLC-DAD system for investigation.

6.4 Results and Discussion

6.4.1 Sensitivity of Heuristic Evolving Latent Projections

In order to investigate the effect of signal-to-noise ratio (SNR) on the
sensitivity of the HELP algorithm, simulated HPLC-DAD data sets were generated
for comparison. Data Set A, B and C simulates a two-component system with
different peak resolutions of 0.37, 0.62 and 0.88 respectively the chromatogram.
Both chromatogram and spectrum of individual components were obtained by
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Figure 6.4 Chemical structure of Red 2G (a) and Amaranth (b).
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overlapping a series of Gaussian functions (Figure 6.1). The data consists of 1,000
points on the retention time axis and 177 points on the wavelength axis. Various
levels of homoscedastic noise with a variance of 0.002 to 0.100 were added to the
data sets. Table 6.1 shows the results from the synthetic data sets. [n this table, SNR

values were measured from the maximum of the chromatographic peak with the
greatest absorbance on the wavelength axes while the relative log,, (eigenvalue) ratio

(RLER) were calculated by the following equation:

Maximum height of the second log,, (eigenvalue) line
Maximum height of the first log,,(eigenvalue) line

RLER = (6.15)

The mean value of the third log,, (eigenvalue) line which represents the noise level

of the system were chosen as the baseline for the above calculation. A higher RLER
value can facilitate the determination of the selective regions from the eigenvalues

plot. Eq. (6.15) is good for a two-component system only. For a case with more than
two components, the mean value of the log,o(eigenvalue) line at the noise level is
chosen as the baseline for the calculation. In our study, it was found that when the
value of RLER is less than 0.050 or SNR is less than around 20. the second
logm(eigenvalue) line becomes flatten and represents the background noise level

only (Figure 6.5) if a window size of 5 was adopted in the computation. As a result,
the required selective regions for the HELP analysis cannot be located directly from

the eigenvalue plot.

To tackle with this problem, two alternative methods were employed. The first
one is by increasing the window size in the FSMW-EFA computation. RLER can be

improved from 123% to 472% times and 604% to 1,175% when a window size of 11
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Figure 6.5 Eigenvalue plots of the simulated data set B with a noise level 0.100 by using
window sizes of 5 (a), 11 (b) and 21 (c). Eigenvalue plot (d) was obtained by
applying the Daubechies D,, wavelet function at the first resolution level on

the data set. A window size of 7 was used.
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and 21 were used compared with the result with a window size of 5 at a noise level
0.100 (Table 6.1). The general trend is that a larger window size is required for a data
set with lower SNR value. However, we should keep the window size as small as
possible. A larger window size would lead to distortion of the eigenvalue plot. It is
because the width of the selective region will be decreased if a larger window size is
used. The consequence of such distortion will lead to difficulty in determining the
selective regions and affecting the HELP analysis. The second method is by using the
latent projective graph. In this graph, the selective regions can be identified from the
straight line segment which passes through the origin after prolongation (Kvalheim
and Liang, 1992). As the value of SNR decreases, the noise level will be reflected
from the latent projective graph (Figure 6.6) and this affect the determination of the
selective regions of individual component. In the worst case, the straight line

segment will be masked completely with noise.

6.4.2 Improvement by Fast Wavelet Transform

In this study, fast wavelet transform was included as a new method to improve
the sensitivity of the HELP algorithm especially at low SNR value. It can also reduce
the computational time for the HELP analysis. In the proposed method, FWT was
applied to the chromatograms at each wavelength. Then, the scale coefficients at each
wavelength were recombined together to form a new data set for the HELP analysis.
As mentioned in the previous chapters, various types of wavelet functions are
available. We have chosen the most popular one in the chemical studies, the

Daubechies wavelet function, in this work. Table 6.2 shows the results of RLER by
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Latent projective plots of the simulated data with a peak resolution of 0.62 and

noise level of 0.002 (SNR = 525) (a), 0.010 (SNR = 106) (b), 0.050 (SNR = 22)

Figure 6.6
(c) and 0.200 (SNR = 7) (d).
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Table 6.2 Sensitivity of the HELP algorithm with different lengths of Daubechies wavelet
functions, D,, , at different peak resolutions. The noise level of the data sets is
equal to 0.050. FWT was performed to the first resolution level and a window
size of 5 was adopted for the HELP algorithm.

Peak D,, SNR in Percentage of
resolution chromatogram RLER change in
after FWT RLER ¢

0.37 (Set A) 2 43 0.101 573

4 43 0.103 587
6 43 0.099 560
8 43 0.094 527
10 43 0.105 600
12 43 0.099 560
14 44 0.093 520
16 43 0.093 520
18 43 0.104 593
20 43 0.098 533

0.62 (Set B) 2 31 0.097 87
4 31 0.094 81
6 31 0.104 100
8 31 0.105 102

10 31 0.093 79

12 31 0.098 88
14 31 0.105 102
16 31 0.105 102

18 31 0.096 8s

20 31 0.100 92

(cont.)
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(cont. Table 6.2)
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30
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0.074
0.075
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350
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369
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“ The quantities were obtained by comparing with the corresponding RLER values in Table 6.1.
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using different lengths of the Daubechies wavelet functions at the first resolution
level on the simulated data sets (Figure 6.5d). As mentioned in the previous section,
a proper eigenvalue plot can be obtained by using a window size of 13 or above if the
SNR of the data is very low. In general, a small window size is preferred because it
can minimize any derivation from the resolved chromatograms and spectra. Figure
6.5d shows the eigenvalue plot as obtained with wavelet treatment. A window size of
7 can recover the missing information from the eigenvalue plot. By comparing RLER
values, the Daubechies wavelet D, function is an optimal choice. Table 6.3 shows
the results from FWT-HELP analysis. The results indicated that RLER can be
improved from 84% to 400% if the same window size is used. Besides, similar
RLER can be attained by using a smaller window size. That means we can minimize

the error from the determination of the selective regions as mentioned above.

The data size of C" as deduced from FWT treatment is half than that of the
original data. It represents the original chromatograms at lower resolution and noise
level. One may suspect the performance of the calculation on the data set with lower
resolution. So, we have performed another computation on the same data set. The
resolution of chromatograms were lowered by selecting alternative data points to

form a new data set and then it was employed for the HELP analysis. Although this

method can generated a data set with similar resolution as C'", the results as given in
Table 6.4 indicate that the percentage change of RLER fluctuated from -15% to
263%. FWT is a linear operation and it can retain the most important information at
lower resolution or in the compressed form. This is the intrinsic property associated

with wavelet transform. In contrast, compression by another method cannot not retain
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Table 6.3 Sensitivity of the HELP algorithm at different peak resolutions with FWT
treatment. The noise level of the data sets is equal to 0.100. The FWT was
performed with the Daubechies wavelet D,, function at the first resolution
level.

Peak SNR in Windows size RLER Percentage of
resolution chromatogram used in FSMW- change in
after FWT EFA calculation RLER ¢
037 22 5 0.037 236
22 1 0.181 187
22 21 0.343 97
0.62 16 5 0.048 84
16 11 0.195 236
16 21 0.383 109
0.88 16 5 0.032 300
16 11 0.120 400
16 21 0.288 182

9 The quantities were obtained by comparing with the corresponding RLER values in Table 6.1.
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Table 6.4 Sensitivity of the HELP algorithm at different peak resolutions by using odd
number data points from the original chromatograms. The noise level of the
data sets is equal to 0.100.
Peak SNR in Windows size RLER Percentage of
resolution chromatogram used in FSMW- change in
EFA calculation RLER ¢
0.37 16 5 0.040 263
16 11 0.129 105
16 21 0.281 62
0.62 12 5 0.022 -15
12 1 0.151 160
12 21 0.328 79
0.88 Il 5 0.022 -8
11 11 0.080 233
1l 21 0.241 136

9 The quantities were obtained by comparing with the corresponding RLER values in Table 6.1.
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such important information. As a result, data set with FWT treatment has better

performance on the HELP analysis.

However, the data size reduction from FWT introduces another problem. In the
conventional HELP analysis, the resolved chromatograms and spectra should have
the same dimension of X. In this case, the resolved chromatograms and spectra
should have 1,000 and 177 data points respectively. With the use of FWT, the
resolved chromatograms consist 500 data points only. But, such reduction of data
points will not affect the result of the HELP analysis. In our calculation, j was
limited to the first resolution level. Higher resolution level can further improve the
sensitivity of the HELP analysis, but the data lenght in the retention time axes will
also be further reduced and affect the accuracy of the analysis especially for the
determination of selective regions from the eigenvalues plot. FWT has another role in
the enhancing the HELP analysis by reducing the computational time. In practice, the
data set from HPLC-DAD consist of around 1.000 to 1,500 data points in the
retention time axes and 100 to 200 data points in the wavelength axes. In the
computation, most of time is the spent on the calculating of eigenvalues with the

above data size (Walczak and Massart, 1997). In such cases, FWT can compress the

data set to a smaller size and speed up the eigenvalues calculation. If CV is
employed for the FSWM-EFA calculation, about 5% to 42% of time can be reduced
in the eigenvalues calculation step (Tables 6.5 and 6.6). On the other hand, if the
FWT-HELP analysis is performed on resolution level 2, about 3% to 63% of time

can be saved.
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Table 6.5 Computational time of eigenvalues computation and wavelet transform
computation at resolution levels | and 2 with different data size.
Average Computational Time 2/ sec.
Window Size Resolution Level j
Data Size 7 t 15 1 2
100 1.6469 2.6454 3.6459 1.4038 23744
200 3.3738 5.6597 8.3853 1.5418 2.6576
300 5.1407 8.6838 12.6286 1.7622 2.9532
400 6.8856 11.7190 17.1541 2.0221 3.2501
500 8.6534 14.7635 216152 2.3570 3.6476
600 10.3912 17.9036 26.1259 2.7548 3.9930
700 12.1858 20.7956 30.6631 3.4840 4.6972
800 13.9418 23.8597 35.1151 4.0710 5.8133
900 15.6348 26.8878 39.6362 4.8520 6.6395
1,000 17.4041 29.8757 44.1360 49191 6.5906
[.100 19.1465 32.9595 48.6824 5.8696 7.6055
1,200 20.9677 35.9725 53.1093 7.1782 7.9879
1,300 22.6900 38.9800 57.5784 7.1160 89411
1,400 24.7392 42.0418 62.1438 7.9819 9.8778
1,500 26.2108 45.1265 66.5980 9.4059 11.5509
1,600 27.9462 48.3097 77.1397 9.4841 11.6545
1,700 29.6705 51.0956 75.6608 10.3951 12.5377
1,800 31.458S 54.1023 80.1201 11.7067 14.0947
1,900 33.2373 57.1748 85.0874 12.2375 14.3215
2,000 35.1709 60.1927 89.1206 12.7057 15.1866

a

The computational time was measured by the built-in function in MATLAB®.

182



Chapter 6

Tabie 6.6 Comparison of computational time of eigenvalue calculation with FWT

treatment.

Percentage of Computational Time Saved

Eigenvalue Computation (FWT- Eigenvalue Computation (FWT-
HELP at resolution level 1) HELP at resolution level 2)
with Window Size with Window Size
Data 7 Il 15 7 i 1S
Size
200 5.49 26.02 38.13
400 21.64 3445 39.33 3.25 49.69 59.80
600 24.02 36.11 41.12
800 21.41 33.82 39.56 34.10 51.91 59.57
1,000 22.02 34.12 39.88
1,200 16.21 28.77 36.27 37.39 53.65 61.18
1.400 18.48 31.55 37.81
1,600 16.18 3098 42.18 33.66 51.62 62.65
1,800 13.09 28.66 35.92
2,000 14.39 29.26 36.22 32.22 50.24 58.71
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6.4.3 Analyzes of Real Experimental Data

Figure 6.7 shows the overall chromatograms of the food dye mixture solutions
that measured at 520 nm and 532 nm with different injection volumes as mentioned
previously. Such injection volumes can show the effect at different SNR values. The
SNR value is about 2 and 3 at both wavelengths for the injection volume of 5 and 10
uL respectively. Figure 6.8 shows the overall spectra of the food dye mixture that
measured at 2.4 and 2.5 minutes with different injection volumes. Without using
FWT treatment, the selective regions were identified when a window size of 13 and
19 was used for the injection volumes of 5 and 10 uL of the sample. Figure 6.9
shows the eigenvalue plots and the latent projective graphs of the sample with
different injection volume. On the other hand, when the data was preprocessed with
Daubechies wavelet D), function at the first resolution level, a similar result could be
attained with a window size of 5 or 7. Figure 6.10 shows the eigenvalue plots and the
latent projective graphs of the data with FWT treatment. As compared with Figure
6.11, the second eigenvalue line was observed again on the eigenvalue plots with
FWT treatment (Figure 6.10). Figure 6.12 shows the experimental chromatograms of
Amaranth and Red 2G measured at 520 nm and 532 nm respectively and their
corresponding spectra. Figures 6.13 and 6.14 give the resolved chromatograms and
spectra of the sample with and without FWT treatment at resolution level 1 for
different injection volumes. The results show that the resolved chromatograms and
spectra with FWT treatment are much better than that from the conventional HELP
analysis. Both chromatograms and spectra are less noisy than those without FWT

treatment. Such improvement can facilitate the quantitative analysis through the
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Figure 6.7 Chromatograms of the sample solution of Red 2G and Amaranth measured at

520 nm and 532 nm. (a) and (b) corresponds the chromatographic study with an

injection volume of 5 uL while (¢) and (d) with an injection volume of 10 pL..
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Figure 6.8 Spectra of the sample solution of Red 2G and Amaranth measured at 2.4 and

2.5 minutes with injection volume of 5 pL (a-b) and 10 L (c-d).

4 —
(a)
3 b
I
e ¥
\-,-\,J*f\_\‘ W\IJVJ
0 i
300 400 500 600
Wavelength (nm)
4
: ()
3 L
2 L
| MA
0 \“W‘ﬁﬂm‘v\ﬁ./‘\/ﬂl\ 1ol AM\“AMAIAM
300 400 500 600
Wavelength (nm)

186

4; A |
(b) |

3t ﬂlw
2t W <f
g | L
00 A | \4 }

‘,‘ ’f' ".: ]

LA "’V‘M"‘M Mﬂ i‘ !
N'\.""’W ’L\ﬂl

0] L ' A

300 400 500 600
Wavelength (nm)
45 —
J ‘ (d) !
3+ ‘ ;
i \ . !
> “i“w/v
;% 2; ll\. =‘V J i 7
S " V\ |
i \\ "‘l,\/\ﬂ "} ‘* i
1 Mo T 3
"r L’LM.;“\/V\F" Mﬂ / Ml\ j
| J
00— :
300 400 500 600

Wavelength (nm)



volume of 5 pL, (b) and (c) the corresponding latent projective graphs for the
wavelength range from 250 nm to 600 nm and from 250 nm to 400 nm
respectively. (d) The eigenvalue plot with window size of 19 for the sample
with an injection volume of 10 pL, (e) and (f) the corresponding latent

projective graphs for the wavelength range from 250 nm to 600 nm and from

Figure 6.9
250 nm to 400 nm respectively.
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(a) The eigenvalue plot with window size of 13 for the sample with an injection
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(a) The eigenvalue plot with window size of 5 for the sample with injection

volume of 5 pL, (b) and (c) the corresponding latent projective graphs for

wavelength range from 250 nm to 600 nm and from 250 nm to 400 nm

respectively. (d) The eigenvalue plot with window size of 7 for the sample with

an injection volume of 10 pL, (e) and (f) the corresponding latent projective

graphs for wavelength range from 250 nm to 600 nm and from 250 nm to 400

nm respectively. All plots were obtained by applying a Daubechies D,

wavelet function at the first resolution level on the data set.
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Figure 6.11 The eigenvalue plot with window size of (a) 5 for the sample with injection

volume of 5 pL and (b) 7 for the sample with an injection volume of 10 pL.
Such plots were generated without FWT treatment.
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(a) Chromatogram of Amaranth at 520 nm and (b) its corresponding spectrum.

(c) Chromatogram of Red 2G at 532 nm and (d) its corresponding spectrum.
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Figure 6.13 Resolved chromatograms and spectra for the sample solution of Red 2G and

Amaranth as obtained with an injection volume of 5 pL through HELP analysis
with window size 13 (a-b) and FWT-HELP analysis with window size 7 (¢-d)
respectively. The data set was processed with FWT treatment at resolution

level 1.
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Resolved chromatograms and spectra for the sample solution of Red 2G and

Amaranth as obtained with injection volume of 10 uL though HELP analysis
with window size 19 (a-b) and FWT-HELP analysis with window size 7 (c-d)

respectively. The data set was processed with FWT treatment at resolution

level 1.
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resolved chromatograms. Figure 6.15 give the resolved chromatograms and spectra
of the sample that processed with FWT-HELP analysis at resolution level 2. A

similar results as shown in Figures 6.13 and 6.14 were obtained.

Table 6.7 shows the results of peak center, peak height and peak area of the
chromatographic peaks of the food dye mixture by different methods that includes
HELP, FWT-HELP and direct estimation from Figure 6.7. Such parameters are
usually required for both qualitative and quantitative analyses. In Figure 6.7, the peak
area of individual peak was estimated by drawing a perpendicular line to bisect the
overlapped chromatographic peak. This conventional method causes underestimation
of the sample concentration. By utilizing the peak height or peak area from the
resolved chromatogram with HELP or FWT-HELP treatment, a more accurate result
can be obtained. In general speaking, the results from FWT-HELP treatment would

be better than that from HELP treatment due to the denoising property of FWT.

6.5 Conclusion

In conclusion, FWT has been found to improve the HELP analysis by using a
smaller of window size in the FSWM-EFA calculation for the HPLC-DAD data with
low SNR value. Besides, it can also reduce the computational time in HELP
computation by using the compressed data. HPLC-DAD study is a very complicated
system. Parameters such as the degree of peak overlapping and SNR will affect the

result from the HELP analysis. Yet, they vary with different experimental conditions.
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Figure 6.15 Resolved chromatograms and spectra for the sample solution of Red 2G and
Amaranth as obtained with injection volume of (a-b) 5 pL and (c-d) 10 pL
though FWT-HELP analysis with window size 7 respectively. The data set was
processed with FWT treatment at resolution level 2.
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So, it is not easy to generalize some conditions that the HELP algorithm might fail to
work. This new method can be adopted for chemical analysis of complicated multiple
component systems such as traditional Chinese medical herb using HPLC-DAD system.

More information is available on the next chapter.
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7.1 Introduction

According to a recent study by tl.1e Massachusetts Institute of Technology (MIT)
consultant group, Hong Kong is recommended to develop into an international
manufacturing center of traditional Chinese medicine (TCM) in the future (Wang et al.,
1997). TCM refers to health care alternative or supplement which is produced on
empirical experiences accumulated over a thousand years or more in China and other
Asian countries. It is expected that there is a dramatic growth for TCM and its
associated products in the world on the next century (Wong, 1997). However, the
effectiveness of TCM products depends greatly on the quality of the natural materials
used (Lee, 1997). Quality control of Chinese medicines has become a priority issue in
Hong Kong (But and Kwok, 1996). Besides, safety on the TCM products is another
issue to be concerned by many international organizations such as the Food and Drug
Administration (FDA) in the United States. In Hong Kong, the practice of TCM and the
related products are unregulated by the government. According to a recent report by The
Chinese University of Hong Kong (Wong et al., 1997), women, older residents,
unemployed workers, low skill laborers, current smokers and citizens who dissatisfied
with the quality of private sector clinics seek significantly to consult TCM practitioners
and use TCM products. So, quality assurance based on both qualitative and quantitative
analysis should be performed on raw materials and TCM products before they are sold

to the market.

In recent year, various spectroscopic and chromatographic approaches have been

used or are being explored to analyze TCM products (Che, 1997). These techniques
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include thin layer chromatography (TLC), gas chromatography (GC), high performance
liquid chromatography (HPLC), capillary electrophoresis (CE) and hyphenated
instruments such as gas or liquid chromatography coupled with mass spectrometry (GC-
MS or LC-MS). Several commonly used TCM products have been analyzed with the
above mentioned techniques by the Laboratory for the Chemical Quality Control of
Chinese Medicines and Health Foods in Hong Kong (But and Kwok, 1996; But er al..

1996; But et al., 1997).

In terms of analytical chemistry, chemical constituents of Chinese herbs are a
complex black system (Liang et al., 1993a). There is no a priori information concerning
the chemical composition of the samples. We need to develop a suitable method to
analyze the major constituents. The use of computer and appropriate chemometrics
techniques, such as fuzzy logic, factor analysis and image analysis is helpful in
identifying the major and minor constituents from data generated from various chemical
techniques (Xiong and Liu, 1998). In the previous chapter, the fast wavelet transform
heuristic evolving latent projections (FWT-HELP) was developed to analyze data from
high performance liquid chromatography coupled with a diode array detector (HPLC-
DAD). In this chapter, the performance of the proposed FWT-HELP algorithm in the
real situation was explored again. A traditional Chinese medicinal herb, Cordyceps
sinensis (F§358 &), was chosen as an example in this work and analyzed with HPLC-

DAD.

Cordyceps sinensis is an expensive, traditional and precious dried Chinese

medicinal herb belonging to the fungus category. The stroma are formed by Cordyceps
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sinensis (Berk.) Sacc. parasitized on the larva of Hepialus armoricanus Oberthru (Ou,
1995) (Figure 7.1). In traditional Chinese medicine, Cordyceps sinensis is relatively
nontoxic and has an antiasthmatic effect and is also an anticancer agent (Huang, 1993).
It can be used to regulate and ensure the normal functioning of various parts of the
body, strengthen the immune system and promotes overall vitality and longevity.
Usually, it is utilized as a nutritional additive to be cooked with meat. Some literature
reported that the fungus and larva part of the Cordyceps sinensis have different chemical
constituents (Xu et al, 1998). Such a difference may be originated from land of

production and climate.

In Cordyceps sinensis, several types of chemicals such as nucleotide, ergosterol,
mannite and amino acid (Xu et al., 1988) have been identified successfully with modern
analytical instruments. However, it is quite difficult to find out a simple method and an
optimal condition to analyze all components at the same time. It is because the
concentrations of the active ingredients in Chinese herbs are quite low. With the help of
hyphenated instruments and chemometrics techniques, simultaneously qualitative and
quantitative analysis of Chinese herbs becomes possible. In recent years, the
development of hyphenated instruments is very fast. Different types of analytical
devices can interface together to form a new type of instrument. High performance
liquid chromatography coupled with diode array detector (HPLC-DAD) and gas
chromatography interfaced to Fourier transform infrared spectrometer (GC-FTIR) or
mass spectrometer (GC-MS) are examples of this kind. The advancement in hyphenated
instruments leads to the development of new methods for data interpretation and

evaluation (Toft, 1995). Commonly used methods for such purpose include evolving
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Figure 7.1 Appearance of Cordyceps sinensis in (a) nature and (b) dried form.

-

(a)

(b)

Source:  Pharmacopoeia Commission of the Ministry of Public Health, P.R. China
“A Coloured Atlas of The Chinese Materia Medica Specified in Pharmacopoeia of
The People’s Republic of China”, 1995 Edition

Joint Publishing (H.K.) Co., Ltd. - Hong Kong, pp-127 (1996)
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factor analysis (EFA) (Maeder and Zilian, 1988; Keller and Massart, 1992a), fixed size
moving window evolving factor analysis (FSMW-EFA) (Keller and Massart, 1991) and
heuristic evolving latent projections (HELP) (Kvalheim and Liang, 1992; Liang et al.,

1992).

Qualitative and quantitative analysis with HPLC-DAD system is much better than
with conventional single-wavelength detector. The diode array detector (DAD) provides
a way for multiwavelength detection and performs peak purity assessment on
chromatographic peaks (Wickham, 1993). In practice, the capacity of DAD is not fully
exploited. Several problems are encountered with the use of DAD for chemical analysis.
For example, in many laboratories, DAD is only utilized as a single-wavelength
detector. Chromatogram from a single wavelength cannot represent all components in a
sample. Although some users try to monitor chromatogram with two or three
wavelengths, only limited amount of information can be extracted. This may lead to
wrong conclusion in the analysis. Wavelength selection is another problem to be found
in HPLC-DAD study. During the operation, the optimal wavelength which gives the
maximum absorbance for a particular component is usually selected for producing
chromatograms of the sample. As we know that different substances have different
responses on different wavelengths. Measurements from a few groups of wavelength
cannot provide enough data for qualitative and/or quantitative analysis. As a result,
concentration of a particular component in the sample will be either over-estimated or
under-estimated. The third problem is arisen from the peak purity assessment. This
function can be found in most of commercially available diode array software packages.

The manufacturers use their own algorithm such as comparison of normalized spectrum
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(Hewlett-Packard, 1994) to determine the purity of a particular chromatographic peak.
However, only a simple value is provided from the calculation and it does not tell us the
nature of the impurities in such peak. The last problem is the volume of experimental
data. A typical run of experiment with HPLC-DAD can generate several mega-byte of
data. We need an effective method to compress the data for storage or further

processing.

In this work, the fast wavelet transform heuristic evolving latent projection (FWT-
HELP) as described in the previous chapter was applied to analyze of water soluble
constituents, nucleosides, in Cordyceps sinensis with HPLC-DAD. A comparison of the
major chemical components in fungus and larva parts was performed. The results
derived from FWT-HELP algorithm for the samples were compared with standards and
further confirmed with GC-MS studies. It was found that our proposed method is a

powerful method for quantitative and qualitative analysis of Chinese herbs.

7.2 Method of Investigation

FWT-HELP algorithm is a combination of fast wavelet transform and heuristic
evolving latent projections. FWT is acting as a pre-processing step for the HELP
treatment which involves data compression and denosing on experimental data. HELP is
a type of factor analysis method that used widely in chemometrics. The method can be
employed to determine the minimum number of components from HPLC-DAD data and

to resolve chromatograms and spectra for individual components. With the help of
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FWT, sensitivity of the HELP algorithm is improved especially at low sample

concentration and low signal-to-noise ratio (SNR).

Heuristic evolving latent projections algorithm was first proposed by Kvalheim
and Liang in 1992 for analyzing data from liquid chromatography with diode array
detection (LC-DAD) (Kvalheim and Liang, 1992; Liang et al., 1992). It is classified as a
factor analysis or principal components analysis (PCA) techniques for multivariate data
analysis. This algorithm was demonstrated to be better than the conventional methods
such as EFA, ITTFA and AR (Toft and Kvalheim, 1994; Grung and Kvalheim, 1995).
HELP has been applied successfully in an LC-UV study involving drug isomers (Liang
et al., 1992) and chlorophyll degradation experiments (Liang et al., 1993b) and HPLC-
DAD study of polycyclic aromatic hydrocarbons (PAHs) content in city air of Hong

Kong (Shen er al., 1997; 1998a-b).

In this work, the Daubechies wavelet, D,, (Daubechies 1992) which was shown to
give optimal performance in Chapter 6 was selected in the wavelet computation.
Besides, the translation-rotation transformation (TRT) method (Hayes et al., 1973; Chau
and Tam, 1994) and the coefficient position retaining (CPR) method as developed in
Chapter 4 were also applied to solve the side-loop and number of data point problems.
The former problem occurs when there is a sudden data change in the data during
periodical extension at both end of the data. The later one originates when the length of
a data set is not equal to 2”7 with p for any positive integers. Chromatograms at each

wavelength of the HPLC-DAD data were processed with FWT. The scale coefficients

C" at resolution level 1 for each wavelength from the FWT treatment are recombined
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together to form a new data set. Then, such data were analyzed with the HELP
algorithm to determine the minimum number of components present and to resolve pure

chromatograms and spectra of the individual components.

7.3 Experimental Section

Experimental HPLC-DAD data of Cordyceps sinensis were provided by Prof. Y.
Z. Liang from the College of Chemistry and Chemical Engineering, Hunan University,
P. R. of China. Details of the sample preparation and experimental conditions are given

as follows.

7.3.1 Samples Preparation

Samples of Cordyceps sinensis from Tibet Autonomous Region of P. R. China
was brought from a Chinese herb store (Jiu Zhi Tang, Changsha, P. R. China). The
water soluble constituents, nucleosides, were extracted by the following method. 0.5
g of fungus part of Cordyceps sinensis was added to 20 mL of distillated water at
room temperature for the extraction of nucleosides. The sample-water mixture was
placed into an ultrasonic bath for 2 hours (Guo ef al., 1998). Then, the sample-water
mixture was filtered and the filtrate was vacuum-dried. Finally, the residue was
dissolved in 10 mL of methanol. Similar extraction procedures were also performed

on 0.5 g of the larva part.

206




Chapter 7

7.3.2 Apparatus and Chemicals

HPLC-DAD data were acquired from a Shimadzu LC-4A HPLC system
(Shimadzu Scientific Instruments Inc., MD, US) coupled with a Shimadzu SPD-
M6A photodiode array detector (Shimadzu Scientific Instruments Inc.. MD, US). All
separations were performed on a 250 x 4.6 mm i.d. Zorbax-ODS column (DuPont,
DE, US). GS-MS data were acquired on a Simadzu GC-17A GC system (Shimadzu
Scientific Instruments Inc., MD, US) coupled with a Shimadzu QP-5000 MS system
(Shimadzu Scientific Instruments Inc., MD, US). All separations were performed on
a 30 m x 0.25 mm i.d. HP-50+ (OV-17) column (Hewlett-Packard, Germany). The
sample-water mixture was extracted with an ultrasonic cleaner CQ250 (Ultrasonic

[nstruments Factory of Shenghai, P. R. China).

Standards of adenosine and uridine were acquired from Sigma (Sigma-Aldrich
Corporation, MO, US). All solvents for HPLC measurements are of HPLC grade

while the other solvents used in this work are of analytical grade.

7.3.3 Experimental Conditions

The mobile phase for HPLC measurement was a mixture of methanol-water
(15:85 v/v). The flow rate was 1.0 mL/min. The column temperature was maintained
at 25 °C. The spectra were collected in the wavelength range of 195 to 312 nm with a

spectral resolution of 1 nm. The scanning rate was set to be 0.32's. 5 puL of sample
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solution from fungus and larva parts were injected, respectively, into the HPLC-DAD

system.

In the GC-MS measurement, the carrier gas was high purity nitrogen gas. The
flow rate and pressure was maintained at 0.5 mL/min and 10~ mmHg respectively.
The column temperature programming was set from room temperature to 285 °C at
the rate 80 °C/min. 1 uL of sample solution from fungus and larva parts were

injected, respectively, into the GC-MS system.

7.3.4 Data Analysis

The data obtained for the fungus part consists of 118 chromatograms and 3,748
spectra. The data for larva part consists of 118 chromatograms and 3,610 spectra. The
HPLC-DAD data were first converted to the corresponding ASCII codes before
processing. All computations were carried out using the Fast Wavelet Transform
Heuristic Evolving Latent Projections (FWT-HELP) Toolbox Version 1.0 as
developed in this work. It was coded in MATLAB® for UNIX® Version 5.1 (The
MathWorks, Inc., 1996) under IRIX™ 6.2 environment on a SGI Indigo? Power
Extreme workstation (Silicon Graphics, Inc., CA, US) with a 75MHz MIPS R8000™
processor. Details of the FWT-HELP toolbox can be found in Appendices 6.1 and

6.2 and Figure 6.3.
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7.4 Results and Discussion

Figures 7.2 and 7.3 showed the chromatograms of the fungus and larva parts of
Cordyceps sinensis at selected wavelengths. As we pointed out in the previous section,
we cannot just use one wavelength for qualitative analysis. In Figures 7.2 and 7.3, one
can find that the chromatographic peaks of some components appears at a particular
range of wavelengths only. If a wrong wavelength is selected for qualitative analysis,
the number of components present in the sample will be underestimated. With the use of
our proposed FWT-HELP method, spectro-chromatographic data on a range of
wavelengths can be employed for analysis to improve the accuracy of analysis. For the
problem of peak purity, it can be solved by using both the eigenvalue plot and latent
projective graph. To illustrate how FWT-HELP works in the real case, an example

calculation on our sample will be shown on the next section.

7.4.1 Sample FWT-HELP Computation

Figures 7.4a and 7.4b show, respectively, the chromatograms from 11.0 to 14.0
minutes and the spectra from 195 to 312 nm of the fungus part of Cordyceps sinensis.
Let X, ;4o represents the HPLC-DAD data obtained in the above time interval. By
using the conventional data analyzing method, it is quite difficult to identify the
number of components from the chromatograms and spectra. With the use of the
peak purity function as provided by the instrument such as HP ChemStation
(Hewlett-Packard, Germany), it just gives an arbitrary number for the purity of a
chromatographic peak. Such number only provides very limited amount of
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Figure 7.2 Chromatograms of the fungus part of Cordyceps sinensis at wavelength (a) 234
nm, (b) 260 nm and (c) 294 nm.
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Figure 7.3 Chromatograms of the larva part of Cordyceps sinensis at wavelength (a) 234
nm, (b) 260 nm and (c) 294 nm.
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(a) The selective chromatograms of the fungus part from 11.0 to 14.0 minutes

with an interval of 5 nm. (b) The spectra of the fungus part in the range of 195

to 312 nm with an interval of 0.1 minute. (c) The corresponding eigenvalue plot

with a window size of 7 and (d) the latent project graph of X l",r_(r,-, s0 as well as

(e) the resolved chromatograms and (f) spectra for components f1 and f2 in the

fungus part which are obtained with FWT-HELP treatment.
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information on peak purity and requires experience of the investigator to estimate the

results.

In our proposed method, X, ,,, was transformed by the Daubechies D,

wavelet function at the first resolution level on the chromatographic axes. The scale
coefficients C}". with A being the measured wavelengths, were combined to form a
new data set X,|5_,,, for HELP analysis. Then, an eigenvalue plot (Figure 7.4c) was
obtained by performing the FSMW-EFA scheme on X7} ,,, with a windows size of
7. Two eigenvalue lines were found to be above the noise level. As a result, at least

two components fl and f2 could be identified from X'} . . This result can be
further confirmed by the latent projective graph (Figure 7.4d). Two straight line
segments which passed through the origin can be identified and these represents the
two selected regions of the required components. The selective regions for

components fl and f2 are located at 11.8 to 12.1 and 12.8 to 13.5 minutes and

WT selective

represent by X" and X[ g%ve™ respectively. From the results of both the

eigenvalue plot and the latent projective graph, the system under study is a typical
two- component case. The pure spectra of the corresponding components, SH™ and
S¢," (Figure 7.4f), can be obtained by performing a singular value decomposition
(SVD) on X[ and X 7™ and are represented by the first column of the
loading matrix P, ,,, and P ;. Afterward, the pure chromatograms of the

corresponding components, CH™ and CA™ (Figure 7.4e), are determined by the

following equations:
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cr = xs((s7) o) (7.1)

where €™~ =[C/™.C2™] and §7~ = [s5™.52"].

For a more complicated system, the component stripping approach should be
used (Liang and Kvalheim, 1993). Resolution can only be performed by using a
stepwise stripping procedure. To investigate the HELP analysis with more than two
components, HPLC-DAD data of the larva part of Cordyceps sinensis was used. Let
X151 represents the HPLC-DAD data of the larva part with the chromatograms
(Figure 7.5a) from 6.4 to 8.1 minutes and the spectra (Figure 7.5b) from 195 to 312
nm. Again, both the chromatograms and spectra cannot provide enough information

to determine the peak purity. The data was transformed with wavelet transform under
the same condition as that described previously and became X 1.0, - Figures 7.5c and

7.5d showed the eigenvalue plot and the latent projective graph of X!l s, . The
pattern of the latent projective graph especially the closed loop indicated that more
than two components are identified. The selective region for components 13 and I5
were located at 6.7 to 6.8 and 7.3 to 7.4 minutes and the zero concentration region for
components 13 and 15 were located at 7.3 to 8.0 and 6.6 to 6.8 minutes. With these

information, one can determined the required rotation vectors r; and r, from the

3

score matrix T} ¢5,550 and T;5 ;¢ - The first part of the subscript represents

the position of the selective region while the latter one represents the position of the

zero concentration region of the component. The pure chromatograms of the related
components, C3~ and Cj** (Figure 7.5e), can be calculated by the following

equations:
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(a) The selective chromatograms of the larva part from 6.4 to 8.1 minutes with

an interval of 5 nm. (b) The spectra of the larva part in the range of 195 to 312

nm with an interval of 0.1 minute. (c) The corresponding eigenvalue plot with a

window size of 7 and (d) the latent project graph of X ., as well as (e) the

resolved chromatograms and (f) spectra for components 13, 14 and 15 in the

larva part which are obtained with FWT-HELP treatment.
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C5™ =Ty 4,05 (7.2)
and Cs™ =T nifis (7.3)

where T, ., represents the score matrix of X, ; .Then, the pure spectra of the
corresponding components, S5 and §5** (Figure 7.5f), can be obtained from their
relevant selective regions. After determining the pure chromatograms and spectra for
components 13 and 15, the component stripping approach was applied on X,/ ,, to

remove the contribution from components I3 and 15 as follows:
Xé.'f.’s'_'." = XZZ—S.I "ClIs'm(Slgm t —Clls,m(stgm)'- (7.9)
Finally, the HELP algorithm was applied to X7 to resolve the pure

chromatogram and spectrum of component 14.

In the above two examples, we have shown the procedures for resolving the
pure chromatogram and spectrum for the individual components with FWT-HELP
algorithm. By adopting similar analysis method, one can resolve chromatograms and
spectra for the remaining peaks in the HPLC-DAD data of Cordyceps sinensis.
Figures 7.6 and 7.7 show the overall resolved chromatograms of both fungus and
larva parts of Cordyceps sinensis and Figures 7.8 and 7.9 give the spectra of the
corresponding components in the fungus and larva parts. Usually, the numbers of
chemical components are considered to be the same for the fungus and the larva part.
Yet, 17 components were resolved in the fungus part. On the other hand, 19
components were resolved from the data of the larva part. The results as shown in
Figures 7.6b and 7.7b are for reference only. The resolved chromatographic peaks for

the components 113 to 119 and fl1 to fl17 may not represent a true chemical
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Figure 7.6 (a) The overall resolved chromatograms of the fungus part with the FWT-
HELP algorithm and (b) a magnified plot of (a).
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Figure 7.7 (a) The overall resolved chromatogram of the larva part with the FWT-HELP
algorithm and (b) a magnified plot of (a).
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Resolved spectra of the 17 constituting components in the fungus part.

Figure 7.8
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Resolved spectra of the 19 constituting components in the larva part.
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components. It could be reflected by the noisy resolved spectra in both Figures 7.8
and 7.9. It was because the chromatographic peaks at such region were highly
overlapped. Another suitable mobile phase should be used to separate the
chromatographic peaks at that regions. So. such regions will be ignored in the

following discussion.

By observation, only 10 and 12 components could be identified roughly from
the chromatograms of the fungus (Figure 7.2) and larva (Figure 7.3) parts. Although
the results in Figures 7.6b and 7.7b are quite good, it only provide some information
on the purity of the chromatographic peaks at that region. In order to have a better
results, a suitable mobile phase should be adopted in another HPLC-DAD
experiments to separate component in such region. Since the concentrations of some
components such as {2, 12, 14 and 15 are very low. it is very difficult to identify them
directly from the original chromatograms. By comparing the resolved UV spectra of
all components in both fungus and larva parts, we found that there are some
differences in their chemical compositions. All components except fl in the fungus

part could be found in the larva part.

7.4.2 Peak Purity Assessment

In terms of peak purity assessment, our proposed method is much better than
that from some of the software of the HPLC-DAD instrument such as the HP
ChemStation (Hewlett-Packard, Germany). In these kinds of softwares, one usually

obtain an arbitrary number to represent the purity of a peak. A set point value should
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be assigned prior to the peak purity assessment. A false result on peak purity will be
provided for a bad value. Setting and suitable set point value also requires extensive
knowledge and experience and it varies for different cases. However, the FWT-HELP
method can provide an accurate peak purity test on the HPLC-DAD data and provide
more information such as the minimum number of impurities present and their

nature.

Several chemometrics techniques have been proposed to check the peak purity
in HPLC-DAD system (Seaton et al., 1986; Castledine et al., 1992; Keller and
Massart, 1992b; Gilliard and Ritter, 1997; Zissis et al., 1997). Most of these methods
are based on the change in the eigenvalue plot only. However, with the FWT-HELP
algorithm, both eigenvalue plot and latent projective graph are utilized. Peak purity is
mainly reflected from the pattern of the latent projective graph. If a peak consists
only one component and without any background, a straight line which passes
through the origin will be observed. For a peak consists with two components, two
separated straight lines pass through the origin and a loop will be observed (Figure
7.4d). The loop segment is due to the change of the overall UV spectrum of the
components under the chromatographic peak. For a peak consists of more than two
components, a more complicated latent projective graph will be observed (Figure
7.5d). With the help of the component stripping approach, a new latent projective
graph is obtained at each stage of computation so that one can resolve individual
components in a step-by-step manner. In some cases, attention has to be paid on
analyzing the latent projective graph. As stated in a previous study by Keller er al.

(Keller er al., 1992), the straight line for a component with low concentration is very
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short. We need to enlarge the area near to the origin to identify the correct selective
region of such component. Otherwise, wrong interpretation will result. Other artifacts
in the latent projective graph will also affect the peak purity assessment. More

information can be found in the work by Keller ez al. (Keller ef al.. 1992).

7.4.3 Roles of Fast Wavelet Transform in HELP Computation

Fast wavelet transform performs two major roles in the HELP computation. It
compresses the HPLC-DAD data to a lower resolution level and denoises at the same
time. FWT is a linear transformation (Daubechies, 1992) and it will cause only mild
information loss after data compression. The HELP computation prefers to be carried
out on a data set at a lower resolution or dimension because a lot of time is spent on
the eigenvalue computation (Walczak and Massart, 1997c). A smaller data set can
definitely reduce the computational time. As demonstrated in the previous section,
the data dimension for the fungus and larva parts are 3,748 x 118 and 3,600 x 118
respectively. A typical chromatographic peak has 200 to 500 data points. By
performing FWT on the data set at resolution level 1, the data size can be reduce by

50%. So, the computational time on eigenvalue calculation can be reduced by 50%.

It should be mentioned that over the denoising property associated with the
FWT treatment do improve the sensitivity of the HELP operation. It was found that
after denoising the data set with FWT, the eigenvalue plot can be obtained with a
smaller window size. Figures 7.10 and 7.11 show a comparison of the eigenvalue

plots and latent projective graphs of the data sets from the fungus and larva part. If
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Figure 7.10  The eigenvalue plots for the fungus part from 11.0 to 14.0 minutes with a

window size of (a) 7 and (b) 9 without FWT treatment. The eigenvalue plot (¢c)
for the same data set which is processed with FWT and with a window size of
7. (d) and (e) The corresponding latent projective graphs as obtained without
and with FWT treatment.
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The eigenvalue plots for the larva part from 11.0 to 14.0 minutes with a

window size of (a) 7 and (b) 17 without FWT treatment. The eigenvalue plot

(c) for the same data which is processed with FWT and with a window size of

7. (d) and (e) The corresponding latent projective graphs as obtained without

and with FWT treatment.
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the relative concentration between components is very low, such as component 11
and 12 in Figure 7.7, it is quite difficult to detect them using the conventional HELP
algorithm alone. Although a large window size can be employed to solve the
problem, as described in Chapter 6, this would affect the selection of the selective
region for a particular component and the quality of the resolved chromatograms and
spectra. By employing FWT treatment, the relative eigenvalue ratio between the two
eigenvalue lines can be improved. Such an improvement would benefit for the
components at low concentration or signal-to-noise ratio. Besides, the latent project

graph becomes less noisy to facilitate the determination of the selective regions.

7.4.4 Results from GC-MS Studies

In this work, GC-MS studies were also performed to confirm the major
components in both fungus and larva parts of Cordyceps sinensis which have
medicinal application. Table 7.1 shows the results from GC-MS studies. Six major
components namely adenosine, hypoxanthine, inosine, thymine, thymidine and
uridine were identified by the GC-MS method. In the previous section, we have
shown that the two components, f1 and 2, can be resolved from X,,,_,,, by the WT-
HELP algorithm. Similar results were also obtained from GC-MS study which
indicates that f1 is adenosine and f2 is hypoxanthine. In order to attain the same
result by using the conventional chromatographic methods, we need very long time
to find out a suitable experimental condition. In this example, we have demonstrated
that the FWT-HELP algorithm is a very powerful method on analyzing HPLC-DAD

data of complex real system.
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Table 7.1 Results of qualitative analysis of the fungus and larva parts of Cordyceps
sinensis from GC-MS studies.

Compound Name Peak number in Peak number in
fungus part larva part
Adenosine f1 Nil
Hypoxanthine f2 H
[nosine f4 I3
Thymine 5 17
Thymidine f6 18
Uridine 3 (10
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7.4.5 Results of Quantitative Analysis

Quantitative analysis for adenosine and uridine were also performed in this
studies. By employing the two-way experimental data from HPLC-DAD. one can
obtain a more accurate result in quantitative analysis because both the
chromatographic and spectral information is available to assist the investigation. In
the conventional method, a calibration curve is set up for quantitative analysis
(Snyder and Kirkland, 1979). It is usually a plot of peak height or peak area against
the concentration of sample injected. In general, the linear portion of the curve is
chosen for quantitative analysis of the unknown sample. However, if the resolution
between two chromatographic peaks is less than 1.5, it is quite difficult to determine
their peak areas correctly. Commonly used methods to determine the peak area in
such cases include drawing a perpendicular line or a tangent line to cut the peak
(Snyder and Kirkland, 1979). But, these methods will introduce errors in the analysis
and their performance depend on the relative concentration of components in the
peak (Liang et al., 1993c). In our work, peak volume of the resolved component
instead of peak height or peak area was chosen for quantitative analysis. The peak
volume is calculated by performing an integration of the chromatographic peak over

a selective range of wavelength .

The calibration curves of adenosine and uridine were obtained by injection of
various amount of standard adenosine and uridine into the HPLC-DAD instrument.
We have found that adenosine and uridine show a linear relationship in the

concentration range 7.425 to 297.0 ug/mL and 3.525 to 141.0 pg/mL respectively.
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Let V and A represents the peak volume and the concentration of the sample
respectively. The calibration curves of adenosine and uridine can be expressed as

follows:

Vaemosne = _4184A %= 13098 (y = 1.000) (7.5)

and Ve = _02698A "™ +2220 (y = 0.9998) (7.6)
where y represents the regression coefficient. According to the results of the
calibration curves, 0.15% of adenosine and 0.22% of uridine were found in the
fungus part and 0.14% of uridine was found in the larva part. From the results of
standard addition method, the recovery rate of adenosine and uridine in fungus part is

100.45% and 99.97% and that for uridine in larva part is 100.81%.

7.5 Conclusions

In conclusion, the FWT-HELP algorithm was applied successfully to analyze

nucleosides in fungus and larva parts of Cordyceps sinensis with HPLC-DAD. FWT can

be employed to compress and denoise the data set obtained from HPLC-DAD

measurement and act as a pre-processing step of the HELP treatment. 17 and 19

components were resolved from the HPLC-DAD data of fungus and larva parts

respectively with the FWT-HELP computation. 6 and 5 components were identified

quantitatively from the fungus and larva parts, respectively, with GC-MS technique.

Our study has demonstrated the advantages of the proposed method over the

conventional ones in quantitative analysis of complex real systems.
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Two classes of chemometrics techniques namely signal processing and factor
analysis were applied successfully on chemical and biochemical studies. Wavelet
transform (WT) which is a signal processing technique was employed in compression
and spectral library search of infrared (IR) spectra and approximate derivative
calculation of analytical signal. The heuristic evolving latent projections (HELP)
algorithm which is a factor analysis technique was coupled with fast wavelet transform
(FWT) to form a new chemometrics technique. This new technique was applied to
analyze a Chinese herb medicine, Cordyceps sinensis. A brief summary of the findings

in this work was given in the following paragraphs.

In Chapter 2, major signal techniques for spectral data compression in analytical
chemistry were introduced. Five methods that include binary encoding, factor analysis,
Fourier transform, spline and wavelet transform were discussed. Although Fourier
transform was employed as the major technique in chemical studies for signal

processing in the past, its status will be replaced by wavelet transform.

The development of WT in chemistry is less than 10 years. However, it has been
applied successfully in various fields of chemistry since 1989. A literature survey was
performed and 91 publications were found in the areas of analytical chemistry, quantum
chemistry and chemical physics from 1989 to August 1998. WT was employed mainly
for data compression and signal denoising of analytical signals. An introduction of
wavelet transform and wavelet packet transform (WPT) as well as their applications in

chemistry were descried in Chapter 3.
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Fast wavelet transform and wavelet packet transform were proposed to
compressed a small IR spectral library which consisted of twenty organic compounds.
As shown in Chapter 4, the spectral library size can reduce 90% by compressing
individual IR spectrum to the 4th resolution level with the use of the Daubechies
wavelet function D, and cutoff value £ = 0.20. A new algorithm called coefficient
position retaining (CPR) method was also developed in this work to process spectral
data with odd number data length, which cannot be handled by conventional FWT and
WPT methods. Results found that the FWT or WPT compressed spectral library can
minimize the search time by using the direct matching method. The overall performance
of FWT and WPT methods in compression and library searching were much better than
the fast Fourier transform method. A Spectral Library Compression and Search (SLCS)
Toolbox Version 1.0, which was coded in MATLAB®, was developed in this study for

the required computation.

A novel method as described in Chapter 5 was developed to perform approximate
derivative calculation by using FWT. It was found that the difference between the scale
coefficients as obtained from FWT treatment at resolution level 1 using the Daubechies
wavelet functions D; and D,; was equal to the approximate first derivative of a
particular signal. A higher order derivative could also be obtained by repeating the
proposed algorithm on the scale coefficients. As compared with the conventional
numerical derivative computation method, the FWT method has three major advantages.
Firstly, it could enhance the signal-to-noise ratio (SNR) even at higher derivative order
calculation without extra effort in data manipulation. Secondly, both the derivative and

smoothing calculations could be combined in a single step. Thirdly, most of the
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properties that found in conventional method were retained in the new method. The
proposed method was test with both synthetic data and experimental data with
satisfactory results. A MATLAB® program called WTDeriv was developed to perform

the approximate derivative calculation.

From Chapter 6 onwards, the research works focused on the application of factor
analysis together with FWT. A factor analysis called heuristic evolving latent
projections was chosen in this study. A new algorithm was developed by coupling FWT
to the HELP analysis for pre-processing of data from high performance liquid
chromatography coupled with diode array detector (HPLC-DAD). With the denoising
property of FWT, it could improve the HELP analysis by using a smaller of window
size in the FSWM-EFA calculation for the HPLC-DAD data with low SNR value. On
the other hand, the data compression property of FWT could reduce the computational
time in HELP analysis. Individual chromatogram at each wavelength was compressed

and denoised at the resolution level 1 with the Daubechies wavelet function Dy4. Scale

coefficients C(1) at each wavelength were recombined to form a new data set for
HELP analysis. The proposed method was tested with both synthetic data and
experimental data from food dye mixture with satisfactory results. FWT-HELP
computation was performed by the Fast Wavelet Transform Heuristic Evolving Latent

Projections (FWT-HELP) Toolbox Version 1.0.

Finally, in Chapter 7, the FWT-HELP algorithm was applied to analyze water
soluble constituents, nucleosides, in fungus and larva parts of Cordyceps sinensis which

is a traditional and precious dried Chinese medicinal herb with HPLC-DAD. 17 and 19
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components were resolved from the HPLC-DAD data of fungus and larva parts
respectively with the FWT-HELP computation. The results indicated that FWT can
enhance the HELP analysis especially for components with low concentration. With the
use of conventional HELP analysis, such low concentration components could not be

identified correctly.

In conclusion, wavelet transform was applied into different fields of analytical
chemistry for data compression, denoising and pre-processing. Novel methods were
developed to enhance the performance of the existing methods. Wavelet transform will

be adopted in the other fields of chemistry in the future.
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APPENDICES

Appendices

Appendix 4.1 Program description of the Spectral Library Compression and Search (SLCS)

Toolbox Version 1.0

Program Name

Functions

Main Program
LIBINIT.M

Spectral Library Set Up
LIBSETUP.M
LIBSETAD.M

LIBSETCD.M

FWT Computation
LIBFWTC.M

LIBFWTR.M

FWTCOMP.M

[FWTCOMP.M

WPT Computation
LIBWPDC.M

LIBWPDR.M

(cont.)

To initiate various program of the toolbox.

To set up a spectral library from individual spectrum data file.
To add new spectral data file into the spectral library.

To change data such as spectral data, compound name or delete
spectral data record from the spectral library.

To compress spectral library by TRT-FWT algorithm.

To regenerate spectral library by IFWT-ITRT algorithm.

To perform TRT-FWT computation on a spectrum to determine
the required parameters such as resolution level ./, Daubechies
coefficients and cutoff value.

To perform [FWT-IFWT computation on a WT processed

spectrum and compare the difference between regenerated and
original spectrum.

To compress spectral library by TRT-WPT algorithm.

To regenerate spectral library by IWPT-ITRT algorithm.
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(cont. Appendix 4.1)

WPDCOMP.M

IWPDCOMP.M

FFT Computation
LIBFFTC.M

LIBFFTRM

Spectral Library Search
LIBSEFFT.M

LIBSEFWTM

LIBSEWPD.M

LIBHITX.M

LIBSORTM

Wavelet Computation
ENTROPY.M

FWT.M

[FWT.M

WPD.M

(cont.)

Appendices

To perform TRT-WPT computation on a spectrum to determine
the required parameters such as resolution level, Daubechies
coefficients and cutoff value.

To perform IWPD-ITRT computation on a WPT processed

spectrum and compare the difference between regenerated and
original spectrum.

To compress spectral library by TRT-FFT algorithm.

To regenerate spectral library by IFFT-ITRT algorithm.

To perform spectral library search with FFT compressed
spectral library.

To perform spectral library search with FWT compressed
spectral library.

To perform spectral library search with WPT compressed
spectral library.

To display a hit index table for a particular library search result.
To sort the search results from various methods that include

correlation coefficient, absolute derivative, absolute difference,
square derivative and square difference.

To perform the Shannon-Weaver entropy calculation.

To perform FWT calculation at a particular resolution level J
and Daubechies wavelet filters. (Command version)

To perform IFWT calculation at a particular resolution level J
and Daubechies wavelet filters. (Command version)

To perform WPT calculation at a particular resolution level J
and Daubechies wavelet filters. (Command version)
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(cont. Appendix 4.1)

IWPD.M To perform IWPT calcuiation at a particular resolution level J
and Daubechies wavelet filters.

WAVECOEF.M To calculate the Daubechies's wavelet coefficients.
Supporting Files
FILE2VARM To assign data from a file to a particular variable name.
NAMECONV.M To generate different file extension for a particular file.
TRT.M To perform the TRT and ITRT computation on the spectral
data.
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Appendix 4.2 Screen capture from the Spectral Library Compression and Search (SLCS)

Toolbox Version 1.0

Screen 4.2.1  Main menu of the Spectral Library Compression and Search Toolbox

fie Edt Windows Help |

spectral Library Jomprescnon and S antt Toodbos BLam b

Spectral Library Setup Utilities

Spectral Library Optinization Utilities

Spectral Library Reconstruction Utilities
Spectral Library Search Utilities

Spectral Library Compression Utilities
Exit and Back to Matiab

Screen4.2.2  Menu for spectral library setup utilities.

Heip

speectrat Litrary setup Llohtes

Spectiai Library Creation and Modification

Nicolet FT-IR Spectrometes D ata Convester
Back to Main Menu

(cont.)
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(cont. Appendix 4.2)

Screen 4.2.3  Menu for spectral library optimization.

L] | P[] £ |
P, o E L

Ele Edt Windows Help

Soesctral Linrary Dot zation itho =

Optimization by Fast Wavelet Transform

Optimization by Wavelet Packet Transform

Back to Main Menu

Screen4.24  Menu for spectral library compression by using FFT, FWT and WPT.

Fle Edt Windows Help !

spectal Library D orapression Uulites

Compression by Fast Fourier Transform (FET)

Compression by Fast Wavelet Transform (FWT)
Compression by Wavelet Packet Transform (WPT)

Back to Main Menu

(cont.)
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(cont. Appendix 4.2)

Screen4.2.5  Menu for spectral library reconstruction by using IFFT, [IFWT and IWPT

2

Eile Edt Windows Help

Library Fecanstrucmon lites

g e

Reconshuebon b’ lnvm Fast Fourier Transform (IFFT)

Recomtmetion bylnveue Fast Wavelet Transform (IFWT)
Heconsuuehon by lnvm Wavelet Packet Transform (IWPT)

Screen4.2.6  Menu for spectral library search by using FFT, FWT or WPT compressed
library.

Elle Edt Windows Hep

Spectral Library Search i es

Sean:l:’ byrFasg— ?o?nief%ramfom Compressed Library

Search by Fast Wavelet Transform Compressed Library
Search by Wavelat Packet Transform Compressed Library
Back to Main Menu

(cont.)
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Appendix 4.3  File format of the individual IR spectrum data file and the spectral library that

generated from FWT, WPT and FFT compression.

A.4.3.1 Spectral Library Format for FWT Treatment

Row Column number Description
number 2
1 1 Total number of data points per spectrum (V)
2 Total number of spectra in the spectral library (M)
3 Resolution level (J)
4 Type of Daubechies wavelet filter D,, (m)
5 Cutoff value used in the compression process
6 Location of the position information for each spectrum
(WritePos)
7 Starting wavenumber or wavelength of the [R spectrum
8 Ending wavenumber or wavelength of the IR spectrum
9 Indication for the wunit of position information
(wavenumber = 0; wavelength = 1)
10 Location of the data for ITRT treatment
11 Location of the compound name
12-14 Spectral library file identification number
2to M 1 to WritePos Compressed IR spectral data
WritePos+1 to Corresponding position of the IR spectral data in the
2xWritePos wavelet domain
2xWritePost]l  Eit dara point ¢! in the original IR spectrum
2xWritePos+2

2xWritePos+3 to
End of column

Last data point cf,?) in the original IR spectrum

Compound name (Converted to ASCII code)

(cont.)
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(cont. Appendix 4.3)

A.4.3.2 Spectral Library Format for WPT Treatment

Row Column number Description
number 2
i I Total number of data points per spectrum (N)
2 Total number of spectra in the spectral library (M)
3 Resolution level (J)
4 Type of Daubechies wavelet filter D, (m)
Cutoff value used in the compression process
6 Location of the position information for each spectrum
(WritePos)
7 Starting wavenumber or wavelength of the IR spectrum
8 Ending wavenumber or wavelength of the IR spectrum
9 Indication for the unit of position information
(wavenumber = 0; wavelength = 1)
10 Location of the data for ITRT treatment
11 Location of the compound name
12-14 Spectral library file identification number
2to M I to WritePos Compressed IR spectral data

WritePos+1 to Corresponding position of the IR spectral data in the
2xWritePos wavelet domain

2xWritePos+1 to  Wavelet packet basis information
2xWritePos+2” -1

2xWritePos+2’  First data point ¢® in the original IR spectrum

2xWritePos+2”’ +1 Last data point cf\',’) in the original IR spectrum

2x WritePos+2” +2 Compound name (Converted to ASCII code)
to End of column

(cont.)
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Appendices

A.4.3.3 Spectral Library Format for FFT Treatment

Row Column number Description
number 2
I 1 Total number of data points per spectrum (V)
2 Total number of spectra in the spectral library (M)
3 Resolution level (J)
4 Type of Daubechies wavelet filter D, (m)
5 Cutoff value used in the compression process
6 Location of the position information for each spectrum
(WritePos)
7 Starting wavenumber or wavelength of the IR spectrum
8 Ending wavenumber or wavelength of the IR spectrum
9 Indication for the wunit of position information
(wavenumber = 0; wavelength = 1)
10 Location of the data for ITRT treatment
it Location of the compound name
12-14 Spectral library file identification number
2to M 1 to WritePos/2 Real part of the compress IR spectral data
WritePos/2+1 to  Imaginary part of the compress IR spectral data
Write Pos

WritePos+1 to
1.5<WritePos

1.5xWritePos+1
1.5xWritePos+2

1.5xWritePos+3 to
End of column

Corresponding position of the IR spectral data in the
wavelet domain

First data point c,(°) in the original IR spectrum

Last data point cf\?) in the original IR spectrum

Compound name (Converted to ASCII code)

(cont.)
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(cont. Appendix 4.3)

A.4.3.4 Spectral Library Format for data without Compression

Row Column number Description
number 2

| l Total number of data points per spectrum (N)
2 Total number of spectra in the spectral library (M)
3 Maximum length of the compound name (NameSize)
4 Starting wavenumber or wavelength of the IR spectrum
5 Ending wavenumber or wavelength of the IR spectrum

2to M [toN Raw IR spectral data
N+1 to End of Compound name (Converted to ASCII code)
column

(cont.)
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(cont. Appendix 4.3)

A.4.3.5 Raw IR Spectrum Data File 2

Column number Description
ltoN Raw IR spectral data
N+l Starting wavelength or wavelength of the IR spectrum
N+2 Ending wavelength or wavelength of the IR spectrum

@ Row I is used to store general information of the spectral library. Rows 2 to M are used to

store individual IR spectral data.
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Appendix 4.4 File extension of files in the Spectral Library Compression and Search (SLCS)

Toolbox Version 1.0

File extension  Description

Csv Raw spectrum data file from Nicolet FT-IR spectrometer in comma-
separated value format

DAT Spectrum data file in tab-delimited format

LIB Spectral library file without compression

FFT Spectral library file with FFT compression

WT Spectral library file with FWT compression

WP Spectral library file with WPT compression

LOF Log file of the spectral library with FFT compression

LOT Log file of the spectral library with FWT compression

LOP Log file of the spectral library with WPT compression

REF Report of spectral library with FFT compression

RET Report of spectral library with FWT compression

REP Report of spectral library with WPT compression

SHF Report on spectral library search with the use of FFT compressed library
SHP Report on spectral library search with the use of FWT compressed library
SHT Report on spectral library search with the use of WPT compressed library
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Appendix 6.1 Program description of the Fast Wavelet Transform Heuristic Evolving Latent

Projections (FWT-HELP) Toolbox Version 1.0

Program Name

Functions

Main Program
WTHELP.M

Supporting Program

BGREMOVE.M
CALEIGEN.M

ETAM
HELPANAI.M

HELPANA2.M

HELPANA3M

HELPANA4.M
LATPLOT.M
RANGECALM
ROTMATM
SCALEM

SELRANGE.M

SELWAVEM
WTANALM

(cont.)

To initiate various program of the toolbox.

To remove background in the data set.

To calculate the overall eigenvalues and determine the
minimium number of factors in the data.

To perform eigenstructure tracking analysis.

To analysis the number of components from the eigenvalue plot
by the user.

To determine the zero concentration and selective region from
the eigenvalue plot by the user.

To select suitable resolve chromatograms and spectra for data
subtraction in component stripping step.

To display and save overall result.

To plot the latent projective plot.

To calculate the actual time and wavelength range.
To calculate the rotational matrix » in HELP analysis.

To calculate the scaling factor for the resolved chromatogram
and spectrum.

To select time and wavelength ranges of data for HELP
analysis.

To select parameter for different wavelet functions.

To perform wavelet transform on HPLC-DAD data.
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(cont. Appendix 6.1)

HPLC-DAD Data
Simulation Program
DATASIM.M To simulate a HPLC-DAD data.
GENEMG.M To generate a data set by an exponentially modified gaussian
(EMG) function.
GENGAUS.M To generate a data set by a Gaussian function.
GENLOREN.M To generate a data set by a Lorentzian function.
Wavelet Transform Related
Program
DAUB.M To generate Daubechies wavelet filters.
WTI1D.M To perform fast wavelet transform calculation.
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Appendix 6.2 Screen captures of the of the Fast Wavelet Transform Heuristic Evolving

Latent Projections (FWT-HELP) Toolbox Version 1.0

Screen 6.2. 1 Welcome screen of the FWT-HELP Toolbox.

A X

Screen 6.2.2  Loading of HPLC-DAD data file.

Open HPLC-DAD Data File

=y Temp

Famro B Do R T

O AT R LR T S AR A ST A TN TR
e

(cont.)
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(cont. Appendix 6.2)

Screen 6.2.3  Input of actual retention time and wavelength of the HPLC-DAD data.

ElFWT HEI.P ‘U'et..lon 1.0 [F’ardmelel lnpul]

Screen 6.2.4  Selection of preprocessing method.

Ver sion 1 0 [Fael Wé;elel Tlanslmrn]

8 .
gaﬂ'\e dtrnensmn of the HF‘LC{)AD data is 384 [Tlme] " 1 77
[ Wavelength).

(cont.)
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(cont. Appendix 6.2)

Screen 6.2.8  Program for selection of window size for FSMWEFA calculation.

(cont.)
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Application of Chemometrics Techniques in Chemical and Biochemical Studies

K. M.Leungand F. T. Chau
Department of Applied Biology and Chemical Technology
The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Abstraet

Chemometrics is a special arca that makes use of statistical, msthematical and other logic-based
methods in the field of chemistry and in particular in analytical chemistry'. By applying chemometric
techniques, useful information can be extracted from simpler and less informative instruments as
completely as possible. Besides, it can be employed to avoid expensive, difficult and time consuming
analyses. In this work, different chemometrics techniques such a3 principal component analysis, signal
compression and multivariate calibration were utilized to process spectroscopic and chromatgraphic
data™ for qualitative and quantitative analyses of trace camponents in some chemical and biological

systems.
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COMPRESSION OF INFRARED SPECTRAL DATA USING
WAVELET TRANSFORM TECHNIQUES

Junbin Gao®, Foo-tim Chau®, Tsi-man Shih®, and Kai-man Leung®
*Department of Mathematics, Huazhong University of Science and Technology,
Wuhan 430072, China
*Department of Applied Biology and Chemical Technology,
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‘Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

With the rapid expansion of the chemical database, there is a great demand for
developing efficient spectral compression techniques. One method often emploved involves
encoding only peak locations into library data files. This approach allows efficient data
compression. Yet much of the spectral intensity information is removed. To incorporate this
kind of information while implementing data compression, it requires sophisticated
mathematical techniques. In one case, the factor analysis procedure was used to give a
significant reduction in infrared (IR) spectral library size [1]. In this way, a five-fold reduction
in the file size was achieved. Adams et al. (2] proposed an error-free data compression
scheme based on the Huffman shift to code IR spectra for the compression purpose with
saving storage up to 70% of the digital memory space. Also, FFT methods were utilized in
compressing IR spectra [3 — 5] with good compression ratios. In this work, we present [R
spectral compression algorithms utilizing the newly developed mathematical techniques.
Wavelet Transform (WT) and Wavelet Packet Transform (WPT) [6 — 8] which have been
shown to play an important role in signal processing. In our research, three different
compression procedures have been developed, i.e., the wavelet-based thresholding algorithm
{WT-Th), which has been demonstrated to be better for UV-VIS spectral compression [9].
wavelet-based optimal bit allocation with Huffman coder (WT-OBA-H) and wavelet-packet-
based optimal bit allocation algorithm (WPT-OBA). In order to compare the performance of
the proposed algorithms, we apply these algorithms including the FFT compression algorithm
to IR spectrum of Caffeine. The compression ratios obtained are, respectively, 20% for FFT.
38% for WT-Th. 85% for WT-OBA-H and 92% for WPT-OBA with Daubechies wavelet
function D, and resolution level J=6 in the wavelet case. In addition, the relationship between
the Daubechies wavelet series and the root-mean-square-errors (RMSE) or reduction rates as
deduced from algorithms on different IR spectra was detected, We prefer to use WPT-OBA
treatment by which a higher compression ratio with lower RMSE compared to the other
algorithms can be achieved. In this work, different Daubechies wavelets and the bit rate leveis
(corresponding to the expected compression ratio) were attempted to study the performance
of the WPT-OBA algorithm. [t was found that the combination of the bit rate level with a
value of 12 and the D, wavelet is good and efficient in compressing IR spectral data with
significant reduction in the storage space and diminishing RMSE’s.
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WAVELET APPLICATION IN SPECTRAL COMPRESSION AND LIBRARY SEARCH IN
ANALYTICAL CHEMISTRY Kai-man Leung . Department of Applied Biology & Chemical Technology.
The Hong Kong Polytechnic University., Hung Hom. Kowloon. Hong Kong.

Within the past several years, a new mathematical technique called wavelet transform (WT) has been
proposed for signal processing in chemical studies owing to its efficiency, availability of large numbers of
basis functions and speed in data treatment. In this work. two different types of wavelet transform were
spplied 10 compress a set of Fourier transform infrared (FT-IR) spectra. They are fast wavelet transform
(FWT) and its derivative wavelet packet decomposition (WPD). The average compression ratios obtained are
92.7% for FWT and 92.8% for WPD with Daubechies function and resolution level J=4. The wavelet
cocfficients were used 1o set up a FT-IR spectral library for spectral library search. By utilizing the wavejet
evefficients at the 4th resolution level for spectral library searching, the searching time could be increased up
to 30% when compared with the traditional method by using fast Fourier transform.
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APPLICATION OF IMAGE ANALYSIS AND CHEMOMETRICS TECHNIQUES TO CHEMICAL ANALYSIS OF GINSENG.
Benny Tsz-pun Chan8, Alexander Kai-man Leung?, Foo-tim Chau®, Willy Wing-lai Chan&, Jian-yong Wu?, Iris
Man-yan Kwokb and Paul Pui-hay Butb, 3Department of Applied Biology and Chemical Technology, The Hong
Kong Polvtechnic University. Hunghom. Kowioon, Hong Kong and "Department of Biology and Chinese
Medicinal Material Research Centre. The Chinese University of Hong Kong, Shatin, N.T.. Hong Kong.

Chinese medicines have sbout four thousand year of therapeutic history. Ginseng is one of the most valued herbs
m Chinese medicines and is widely used 21l over the world. Therefore, the quality control of ginseng is very
important. Nowadays, qualitative and quantitative analyses different types of ginseng are mainly carried out by
using thin laver chromatography (TLC) and high-performance liquid chromatography (HPLC). In this
investigation. 8 HPLC wmstrument coupled with a diode armay detector system (HPLC-DAD) and the TLC
scparstion technique were used for studying ginseng. Image analysis and chemometrics techniques were applied
to analyze data of ginseng as obtained from TLC and HPLC-DAD studies. Firstly, a cost effective image analysis
system and a software package TLCQA were implemented in this work foc studying TLC patterns. With the aids
of a flatbed scanner and an IBM PC compatible of image capture, a new quantitative method was proposed for
mmproving qualitative and semi-quantitative analyses of thin Iayer chromatograms of ginseng samples. Besides,
the heuristic evolving latent projections method (HELP) coupled with wavelet transform (WT) were aiso
developed to resolve overlapped chromatograms from HPLC-DAD investigation. The software package
WTHELP was coded for HELP and WT calculations. Results of investigations on Panux ginseng and P.
qunquelfolium by using the proposed methods were compared with those from conventional techniques.
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A Modified Chemometrics Method for Two-Way Data Analysis by Using
Fast Wavelet Transform
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Abstract

In recent year. the development of hyphenated instruments such as HPLC-DAD and
GC-MS has been very fast in analytical chemistry. With the use of chemometrics techniques
such as principle component analysis, more valusble information can be extracted from data
acquired from these instruments as completely as possible ™. In this work. the heunsuc
evolving atent projections (HELP) method ™ was chosen for analyzing experimental data
from HPLC-DAD. It was found that the HELP method failed to analysis samples with
strongly overlapped chromatographic peaks at low concentration level. Fast wavelet transform
(FWT) P has been proposed 10 solve this probiem by enhancing the sensitivity of the HELP
method. The HPLC-DAD data was pre-processed with FWT by using Daubechies wayelet
filter and then analyzed with the HELP method. The result indicated that the sensitvity of the
HELP method can be improved and the approach facilitated for the identification of the
sclective region in the data. This new chemometrics method can be adopted for chemical
analysis of complicated muitiple component system such as Chinese herb using HPLC-DAD
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Sensitivity Enbancement in Factor Analysis of Two-Way Hyphenated Data Using
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Fast wavelet transform (FWT) was propased as & preprocessing step of the heuristic evolving latent projections (HELP)
anmalysis. Data from spectro-chromatograms of & HPLC-DAD system were treated by FWT with the use of the Daubechies
wavelet Dy, function at resolution level | for cach wavelength. The scale coefficients at this resolution level and individual
nvehgthsmmbiwdtofmnlmdlﬂsﬁfotﬂ&?mlysh (t was found that the FWT method can reduce the
window size and enhance the sensitivity of the HELP analysis by means of signal denoising. Besides. the HPLC-DAD data in
the compressed form can also reduce the computational time of the HELP analysis. Both simulated and experimental HPLC-
DAD data were employed to test our proposed method.
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A ROUGHNESS PENALTY APPROACH AND ITS APPLICATION FOR
NOISY HYPHENATED CHROMATOGRAPHIC TWO-WAY DATA
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ABSTRACT

In order to improve signal detection and resolution of chemical components with very
low concentrations in the hyphenated chromatographic two-way data, the
effectiveness of measurement errors from the instruments on these two aspects is
first investigated in the present paper. A new smoothing technique called roughness
penalty approach is introduced to reduce the influence of the measurement efrors.
The resuits showed that the proposed method can enhance the detection ability
significantly. The resolved spectra after such a smooth treatment using the
roughness penalty approach can also be significantly improved. The performance of
the method are assessed by the analysis of real hyphenated two-way data as well
as simulated data.
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