

 ii

Acknowledgements
I would like to acknowledge the partial support of the ICRG grant A-PF83 and

Teaching Company Scheme between Hong Kong Polytechnic University and

Ai-Times Company Ltd.

Special thanks to my supervisor, Dr. James N.K LIU, for his invaluable guidance,

helpful advice and constructive criticisms. Without his insight, enthusiasm,

encouragement and inspiration, I would not have the courage and determination to

complete this work.

Above all, I thank to my dear parents for their sacrificial love and endless support.

 iii

Publications arising from the thesis
(1) James N.K. Liu, Weidong Luo and Edmond Chan (2007), Design and

Implementation of A High Performance Distributed News Retrieval System,

accepted by International Journal of Knowledge-based and Intelligent Engineering

Systems.

(2) Manchung Chan, Weidong Luo and James N.K. Liu (2007) Design and

Implementation of a High Performance Distributed News Retrieval System, in

Proceedings of ICITM2007, January 3-5, 2007, Hong Kong, pp.26-33

(3) James Liu, Bo Feng, Meng Wang and Weidong Luo (2006) Tropical cyclone

forecast using angle features and time warping, in Proceedings of IJCNN 06, the

World Congress on Computational Intelligence (WCCI 06), July 16-21, 2006,

Vancouver, BC, Canada.

(4) James N.K. Liu, Weidong Luo, Edmond M.C. Chan (2005) Design and

Implement a Web News Retrieval System, Lecture Notes in Computer Science 3683,

Springer pp. 149-156 (in Proceedings of Ninth International Conference on

Knowledge-Based Intelligent Information & Engineering Systems (KES2005),

September 14-16, 2005, Melbourne, Australia).

http://dx.doi.org/10.1007/11553939_22

 iv

Abstract
The explosion in the availability of online information easily accessible through the

Internet is a reality. As the available information increases, the inability to process,

assimilate and use such large amount of information becomes more and more

apparent. Online news information suffers from these problems.

Currently available web news retrieval systems face a number of problems in that

web-based news retrieval requires the ability to quickly and accurately process and

update very large amounts of data that is constantly being updated.

In this thesis, we present the design and implementation of Ai-Times, a parallel

web news retrieval system the goal of which is to accurately retrieve and organize

the web news information. This version of Ai-Times introduces the following novel

algorithms: A novel optimized crawler algorithm whose fetching-speed is 6 times

faster than that of the traditional crawler; A keen tag based extraction algorithm

which can extract the data rich content with minimal manual effort and which also

allows data to be classified as important or not important so that the crawler can

revisit and update important data; A modified vector space model improved using

query expansion and term reweighting and the most valuable contribution, an

modified MapReduce improved by estimating the execution time of each subtask,

which is proven to be able to reduce the number of the unusual tasks and shorten the

whole job execution time.

 v

Table of contents
Certificate of Originality i

Acknowledgements ii

Publications iii

Abstract iv

List of Figures viii

List of Tables x

Chapter 1. Introduction 1

 1.1 Problems and Objective 2

 1.2 Background and Literature Review 3

 1.2.1 News Information Retrieval 3

 1.2.2 Data-rich Part Extraction Algorithm 4

 1.2.3 Web Crawler 4

 1.2.4 Parallel Crawler 5

 1.2.5 MapReduce 5

Chapter 2. Preliminaries 7

 2.1 Inverted Indexing 7

2.2 MapReduce 8

 2.2.1 A Simple Example 9

 2.2.2 A Typical Example in WNRS: Indexing 10

 2.3 Vector Space Model 11

Chapter 3. Architecture and Algorithm of Ai-Times 14

3.1 Optimized Crawler Algorithm 15

3.2 Keen-Tag based News Extraction Algorithm 17

 vi

3.3 Automatic Summarization Algorithm 20

 3.3.1 Characteristic words generation 20

 3.3.2 Sentence Weighting 21

 3.3.3 Summary generation 22

3.4 Experiments 23

 3.4.1 Performance of Optimized Crawler 23

3.4.2 News Extraction Algorithm 24

 3.5 Conclusion 29

Chapter 4. Indexing and Retrieval Strategy 30

 4.1 Inverted Indexing Strategy 31

4.2 Improve VSM using Query Expansion and Term Reweighting 33

 4.2.1 Query Expansion 36

 4.2.2 Term Reweighting 38

4.3 Experiments 39

4.3.1 Overview 39

4.3.2 Evaluation Measure 39

4.3.3 Results 40

 4.4 Conclusion 43

Chapter 5. Parallel Strategy 45

5.1 Traditional Parallel Strategy 45

 5.2 Using MapReduce in Ai-Times 47

 5.2.1 Global File System 48

 5.2.2 MapReduce Architecture Design 50

 5.2.3 Fault Tolerance 52

 5.2.4 Using MapReduce in Parallel Crawler 54

 vii

 5.2.5 Using MapReduce in Distributed Parsing and Extraction 55

 5.2.6 Using MapReduce in Distributed Updating Web Db 56

 5.2.7 Using MapReduce in Distributed Indexing 57

 5.3 Task Executing Time Estimation Algorithm 58

5.4 Experiments 63

 5.4.1 Environment 63

 5.4.2 Fault Tolerance Ability 63

 5.4.3 Ai-Times Parallel Crawler Based on MapReduce vs. Other Parallel

Crawler 64

 5.4.4 Use the task executing time estimation algorithm 65

5.5 Conclusion 67

Chapter 6. Conclusion and Future Work 68

 6.1 Conclusion 68

 6.2 Future Research 69

References 71

Appendix A: Experiment Result of Retrieval Model 75

Appendix B: User Interface of Ai-Times 87

 viii

List of Figures
Figure1: The architecture of the Ai-Times news retrieval system 14

Figure2: A source example of the news content web document 18

Figure 3: Compare the optimized crawler with the traditional crawler 24

Figure 4: User interface of Ai-times 26

Figure 5: The web news document sample 27

Figure 6: The html source code of the news 27

Figure 7: Separated by type2 tag 28

Figure 8: Select the data rich part 29

Figure 9: Index and retrieval architecture 30

Figure 10: Inverted index in Ai-Times 31

Figure 11: Indexing Flow in Ai-Times 33

Figure 12: Query operation flow in Ai-Times 36

Figure 13: Interpolated Recall - Precision Averages chart of VSM 41

Figure 14: Interpolated Recall - Precision Averages chart of VSM+Query

Expansion 41

Figure 15: Interpolated Recall - Precision Averages chart of VSM+Term

Reweighting 42

Figure 16: VSM+Query Expansion+Term Reweighting 43

Figure 17: Architecture of Ai-times parallel crawler 46

Figure 18: The GFS architecture 49

Figure 19: Execution flow of MapReduce 51

Figure 20: Architecture of MapReduce 52

Figure 21: The Execution flow of crawler using MapReduce 54

 ix

Figure 22: The Execution flow of parsing and extraction module 55

Figure 23: The Execution flow of Update module using MapReduce 56

Figure 24: The Execution flow of Indexing module using MapReduce 57

Figure 25: Scenario of Backup Task Will Help 59

Figure 26: Scenario of Backup Task Fails 60

Figure 27: User Interface of Ai-Times: Retrieval Result 87

Figure 28: User Interface of Ai-Times: News Content 87

Figure 29: User Interface of Ai-Times: News Summary 88

 x

List of Tables
Table 1: Modified MapReduce Using TETEA in crawler module 65

Table 2: Modified MapReduce Using TETEA in indexing module 66

 1

Chapter 1

Introduction
The explosion in the availability of online information easily accessible through the

Internet is a reality. As the available information increases, the inability to process,

assimilate and use such large amounts of information becomes more and more

apparent. Online news information suffers from these problems.

Web-based information retrieval (IR) systems fetch, extract, and index data from

the web for end users. Such systems traditionally contain four modules: a crawler

module, a data extraction module, an inverted index engine, and a retrieval module

which are respectively responsible for fetching, extracting, indexing, and returning

data for users. Current web-based news retrieval systems operate in this way but face

a number of problems in that web-based news retrieval requires the ability to quickly

and accurately process and update a very large amount of data that is constantly

being updated.

First, web-based news is a very large and increasingly growing domain, making it

very difficult to effectively crawl all of the many millions of news web pages now

available to us. The modules especially the crawler module in a traditional IR system

is not able to finish processing millions of web documents within a reasonable

amount of time.

Second, news sites update their contents frequently so any effective web news IR

system must also be able to update frequently, yet this is impossible given that

current approaches revisit all of the web documents without distinction during the

update interval.

 2

Third, most web documents are semi-structured; that is, they do not all use a

standard format or hierarchy that clearly signals the data-rich parts of the document -

the valuable content most users are interested in. Consequently, current data rich part

extraction algorithms cannot automatically distinguish between valuable and

non-valuable data. This means that current IR systems must inefficiently refresh and

return a large amount of data that is either not of interest to users or that is not

frequently updated, such as advertisements. As result returns a large amount of

irrelevant data, this is slow and unsatisfactory for user.

1.1 Objective

In order to accurately retrieve and organize the web news information better, we

have designed and implemented Ai-Times- a web-based news retrieval system the

goal of which is to accurately retrieve and organize the web news information.

Compared with traditional news retrieval systems, given same resources and time,

Ai-Times can fetch and process more news documents with less manual effort. At

the first stage, we have designed and implemented a basic web-based news retrieval

system with an optimized crawler algorithm [20]. The Ai-Times system contains

some typical web based information retrieval system modules: an optimized crawler,

a news extraction module using novel keen tag extraction algorithm, an inverted

index engine, a retrieval module and an automatic summarization module. With

these modules, Ai-Times can:

 Fetch the web pages from user-defined websites with a higher update

frequency

 Extract the valuable content with less manual involvement than other systems

 Index and summarize the extracted news, and provide a friendly user

interface for user to retrieve the news.

 3

As the size of the web grows, it is difficult for a single node to finish downloading,

extracting and indexing pages in a reasonable amount of time. In order to address

this problem, we apply an improved MapReduce algorithm in Ai-Times to make

Ai-Times a parallel system with following characteristics:

 The system can process millions of web news per day.

 The system is running on a number of machines and is scalable enough so that we

can easily add or remove machines.

 The system has good fault tolerant ability. Failure of a running machine or an active

hard disk should not cause the whole system fail or any data lost.

1.2 Background and Literature Review

In this section, firstly we review the previous work of the architecture of news

information system, which will help us of the design of whole system. Then we

survey the related work of data rich part extraction algorithm and crawler module.

Finally we review the literatures of MapReduce based on which we propose the

improved MapReduce.

1.2.1 News information retrieval
News information retrieval has been well studied [1, 2, 17, 22, 23, 24, 28]. Many

studies have been done on the architecture of news information retrieval. For

example, Ariki and Sugiyama [2] present a system that automatically classifies TV

news articles using keywords; Renals et al. [24] describe the THISL news retrieval

system maintaining an archive of BBC radio and televisions news records; Aggarwal

and Hung [1] introduce the WIRE-a WWW-based information retrieval and

extraction system; Sanderson and van Rijsbergen [28] present the design of a news

retrieval toolsbased on an existing database of some newspapers such as Times.

 4

Morrison and Jose [22] developed VideoSqueak, which records continuous news

broadcasts and facilitates online querying and retrieval of the video archive created.

Lim and Ng [19] developed DatAQs which analyzes, identifies, and categorizes

languages used in HTML documents and extracts information from HTML

documents of interest written in different languages.

The above literatures contribute much to the general architecture of news

information retrieval. However, none of them describes the core modules such as the

crawler module, the news extraction module and the automatically summarization

module in detail.

1.2.2 Data-rich part extraction
In one typical approach that address the inability of current algorithms for extracting

the data rich part of web content, Mukherjee et al. [23] proposed an algorithm to

partition the html document into tree-like semantic structures. This approach,

however, does not process all types of web pages well. In an earlier approach [4], the

authors presented a novel keen tag based extraction algorithm. The keen tag based

extraction algorithm proved to be effective on most html pages yet required some

training.

1.2.3 Web Crawler
Boldi et al. [7] and Shkapenyuk and Suel [29] introduce some means of how to

implement a web crawler. Many studies have been done on implementing a

domain-specific crawler. Hu and Wong [16] presented a simple probabilistic model

for intelligent Web crawlers. Bergholz and Childlovskii [5] developed a crawler

starting from the PIW (Publicly Indexable Web) to find entry points into the hidden

 5

Web. We presented an optimized web crawler [20] which is applicable to be used in

news information retrieval system. Details are given in Chapter 3.

1.2.4 Parallel crawler
Many researches [7, 10, 11, 12, 29] have been done on improving the speed of

crawler modules have adopted parallel approaches – both architectures and

algorithms in parallel crawlers. A parallel crawler is a crawler whose fetching tasks

are executed in parallel and therefore more efficiently on different machines. Buzzi

[10] proposed a scheme to permit a parallel crawler to acquire information about the

global state of a Website before the crawling process takes place. However, this

scheme requires Web server cooperation in order to collect and publish information

content which is needed for enabling a crawler to tune its visit strategy. The parallel

crawler’s performance is relatively poor when it is directly applied to a news

retrieval system. A more general drawback of parallel approaches for news retrieval

however is that they still require that the crawler revisits all of the documents rather

than just those documents which are of interest to users or which are most likely to

have been updated since the last visit. We presented an optimized parallel crawler

[21], which is proved to have better performance than traditional parallel crawler.

1.2.5 MapReduce

In an approach which goes beyond paralleling just crawlers, Google is using the

MapReduce [13] library to line up all modules in parallel in their system,

partitioning tasks into many different subtasks. MapReduce is a programming model

and an associated implementation for processing and generating large data sets.

Many studies [6, 18] have been done on parallelizing the computation by using some

sort of programming model. People are interested in MapReduce since it has been

 6

successfully used in Google. Some examples [32, 33, 34, 35, 36] of MapReduce are

available on web. MapReduce has been highly effective; however, traditinoal

MapReduce still suffers from the drawback that it is not able to estimate execution

times for individual subtasks, so the shortest waiting time for the completion of any

task could be the longest time of any sub-tasks. This makes the MapReduce fail in

some special scenarios.

 7

Chapter 2

Preliminaries
In this chapter we describe the fundamental theories and algorithms which will be

used in Ai-Times.

2.1 Inverted Indexing

An inverted index is an index structure storing a mapping from words to their

locations in a document or a set of documents, allowing full text search. It is the

most popular data structure used in document retrieval systems. Given the texts T0 =

"it is what it is", T1 = "what is it" and T2 = "it is a banana", we have the following

inverted file index:

"a": {(2, 2)}

"banana": {(2, 3)}

"is": {(0, 1), (0, 4), (1, 1), (2, 1)}

"it": {(0, 0), (0, 3), (1, 2), (2, 0)}

"what": {(0, 2), (1, 0)}

where the pairs are document numbers and local word numbers. Like the

document numbers, local word numbers also begin with zero. So, "banana": {(2, 3)}

means the word "banana" is in the third document (T2), and it is the fourth word in

that document (position 3).

If we run a phrase search for "what is it" we get hits for all the three words in both

documents 0 and 1. But the words occur only consecutively in document 1.

 8

With the inverted index created, the query can now be resolved by jumping to the

word id (via random access) in the inverted index. Random access is generally

regarded as being faster than sequential access.

In Ai-Times, we build 3 inverted indexes to accelerate the random access with

huge data.

2.2 MapReduce

Over the past few years, Google has published details of their infrastructure.

Developers within Google are able to easily write algorithms that efficiently and

reliably process many terabytes of data. To do this, they leverage two technologies:

the Google File System (GFS), which implements reliable distributed storage; and

MapReduce, a method of processing large data sets. Dean and Ghemawat [13] have

written a paper to introduce MapReduce.

MapReduce is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that

processes a key/value pair to generate a set of intermediate key/value pairs, and a

reduce function that merges all intermediate values associated with the same

intermediate key.

Programs written in this functional style are automatically executed in parallel on

a large cluster of commodity machines. One can efficiently "grep" weeks of logs

from a high-volume site, constructing concise summaries. One can build efficiently

searchable indexes of huge datasets. Such tasks are easily implemented with little

coding effort. Scalability and reliability are handled by the system.

In MapReduce, the computation takes a set of input key/value pairs, and produces

a set of output key/value pairs. A whole round computation consists of two functions:

Map and Reduce.

 9

Map applies a function against each element of a list to get a transformed version

of the list which consists of a set of intermediate key/value pairs. The intermediate

key/value pairs will then be passed on to the Reduce. The Map function can be

described as the following formula:

Map (k, v) -> <k’, v’>.

where:

<k, v> is the input pairs which we called it “raw data”.

<k’, v’> is the intermediate pairs generated by Map function.

Reduce merges all intermediate values associated with the same intermediate key.

It takes a function and runs it against items in the intermediate list, resulting in a

single value for each invocation. The Reduce function can be described as following

formula:

Reduce (k’, v’) -> <k’, v’’>.

where:

<k’, v’> is the intermediate pairs generated by Map which is the input data to

Reduce.

<k’, v’’> is the result pairs generated by Reduce. Reduce merges all intermediated

values associated with the same intermediate key and obtains the derived value v’’

associated with key k’.

2.2.1 A Simple Example

Here is a typical example in information retrieval system. Consider the problem of

counting document frequency of each word in a large collection of documents. The

problem can be interpreted by following Map and Reduce functions.

Map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

 10

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Given the texts T0 = "it is what it is", T1 = "what is it" and T2 = "it is a banana",

the Map function gets the following intermediate pairs:

<it, 1>, <is, 1>, <what, 1>, <it, 1>, <is, 1>

<what, 1>, <is, 1>, <it, 1>

<it, 1>, <is, 1>, <a, 1>, < banana, 1>

Map function returns each word with associated occurrences (say 1 here). The

intermediate pairs are then passed on to the Reduce function. The result of the

Reduce function is:

<it, 4>, <is, 4>, <what, 2>, <a, 1>, < banana, 1>

The Reduce function sums up all the occurrences for each particular word and
returns the result.

2.2.2 A Typical Example in WNRS: Indexing
Indexing is an important module in an information retrieval system. Indexing

module takes the extracted content as inputted data, segments the content individual

words and then returns the <word, position_info1; position_info2...position_infok>

list, and then write the result to the index.

The Map and Reduce functions are as follows:

Map(String url, String pure_content):
 // url: the url of the web page.
 // pure_content: The content after parsing and extraction.

 for(each word v in pure_content)

EmitIntermediate(v, position_info);

 //position_info: The position information related to the word v.

Reduce(String word, Iterator position_infos):
 // word: a word
 // position_infos: a list of position_info

 11

 for each v in position_infos:
 position_info_list= position_info_list+”;”+ v

 Emit(position_info_list);

The Map function segments the pure_content into word by word then returns the

<word, position_info> pairs as intermediate result. The Reduce function merges the

intermediate pairs and generates the <word, position_info1;

position_info2...position_infok> as the output result. Using the same example as

2.2.1, the Map function gets the following intermediate pairs:

<it, (1,1)>, <is, (1,2)>, <what, (1,3)>, <it, (1,4)>, <is, (1,5)>

<what, (2,1)>, <is, (2,2)>, <it, (2,3)>

<it, (3,1)>, <is, (3,2)>, <a, (3,3)>, < banana, (3,4)>

The Reduce function merges the intermediate pairs and generates the following

result:

<it, (1,1); (1,4); (2,3); (3,1); >.

<is, (1,2); (1,5); (2,2); (3,2>.

<what, (1,3); (2,1)>.

<a, (3,3)>.

< banana, (3,4)>

The intermediate pairs having same key value are merged into one pair by Reduce

function, for example, <what, (1,3)> and <what, (2,1)> have the same key value

“what”, as a result these two intermediate pairs are merged into <what, (1,3); (2,1)>.

2.3 Vector Space Model

The vector space model [15, 27] has been widely used in the traditional IR field.

Most search engines also use similarity measures based on this model to rank Web

documents. The model creates a space in which both documents and queries are

 12

represented by vectors. For a fixed collection of documents, an m-dimensional

vector is generated for each document and each query forms sets of terms with

associated weights, where m is the number of unique terms in the document

collection. Then, a vector similarity function, such as the inner product, can be used

to compute the similarity between a document and a query.

The classic vector space model as proposed by Salton et al. [27] had both local

and global parameters incorporated in the term weight (w(ij)) equation [27] (known

as the tf-idf [15]):

w(ij) = f(ij) x Log (D / d(j))

where:

w(ij) is the term weight for keyword term j in document i.

f(ij) is the frequency in which the term j occurred in the document i.

d(j) is the number of documents containing the term j, and,

D is the total number of documents.

Note that the quotient, d(ij)/D, is essentially the probability of finding the

document containing the term n, in the document set being used and represents the

global parameter.

The Vector Space Model has the following limitations:

 Long documents are considered poor representatives of the Vector Space Model

because they had poor similarity values (a small scalar product and a large

dimensionality).

 Documents with similar context but different term vocabulary ("False negative

match", error of rejecting the documents which are actually relevant to the

query).

 13

 The search keywords were being typed during the search in an inappropriate

manner giving poorer results e.g. key + ing, para + meter ("False positive

match", error of not rejecting the documents which are not relevant to the

query).

We implemented an improved VSM (vector space model) with query expansion

in Ai-Times.

 14

Chapter 3

Architecture and Algorithm of Ai-Times
Figure 1 illustrates the architecture of Ai-Times, which is made up of some typical

web based IR system modules: a web crawler, an extraction module, an index engine,

and a search module etc... In the following we describe our modifications, the

proposed optimized web crawler module, the news extraction module, the

summarization module and their algorithms.

Fig. 1. The architecture of Ai-Times

 15

3.1 Optimized Crawler Algorithm

One of the fundamental and important components of news information retrieval

system is the Web Crawler that can collect the web document automatically. Much

research has been done in this area, for instance, the Cobweb [30], is a typical Web

Crawler. The classic crawler algorithm has been discussed in literature [11, 37].

These approaches [11, 30, 37], however, need to revisit all the web documents to

update the news. To shorten the crawler’s refresh time, the Ai-Times web crawler

module is optimized for collecting news from predefined news web sites. The

crawler automatically categorizes documents at these sites as being of three types:

valueless web documents, news content web documents, or index/list web

documents.

The definitions of valueless web document, news content web document, index/

list web document are given below:

Valueless web document
Valueless web documents are web documents that contribute nothing to the news

retrieval, for example, an advertisement page, are not the object of news retrieval.

News content web document
News content web documents are web news documents that mainly contain the

news text content or the news images or other multimedia sources.

Index/list web document
Index/list web documents are web documents that mainly contain hyperlinks

linking to news content web documents with a relevant caption, which is often the

news headline. This is the most frequently updated of these three types of web news

document.

 16

More than 90% of web documents of a news web site are news content web

documents and they are seldom or never modified or updated. Typically, a crawler

determines whether it is necessary to refresh a downloaded web document by

sending a request to the web server and analyzing the return http header from the

web server to get the last time the web document was modified. This not only wastes

time and system resources, many http servers do not provide this information in the

http header. One common refresh policy in this case is to revisit all web documents

to find the update information. This is very time-consuming. An alternative refresh

policy is to select and revisit important pages, but this method often leads to

information loss [22].

The proposed modified web crawler can avoid refreshing irrelevant documents

because its definition of the three types of web documents allows the web crawler to

update only index/list web documents, thereby shortening the refresh interval.

The optimized crawler algorithm is as follows :

Algorithm I: Optimized Crawler Algorithm:
Begin

Let I be a list of initial URLs of the news website;

Let F be a queue;

 For each URL i in I

 Enqueue(i,F);

 End

 While F is not empty

 u=Dequeue(F);

 if u has not been processed

 Get (u);

 Case u’s type:

 Valueless web document:

 Skip u.

 News content web document:

 Store u;

 Index or list page:

 Extract the hyperlinks and relevant caption;

 Let U be the set of hyperlinks extracted;

 17

 For each hyperlink u in U

 Enqueue(u,F);

 End

 Else—u has already been processed

 Case u’s type

 Valueless web document:

 Skip u;

 News content web document:

 Skip u;

 Index or list web document:

 Update checking

 End

 End

End

It is often a time-consuming job to check whether a web document has been

modified or updated. In general, the crawler should often rescan all the websites and

all web documents for update checking.

By categorize the web documents into 3 types, the Ai-Times web crawler needs

not request all web documents during the update interval. As we can see from the

Algorithm I, the optimized crawler will ignore the valueless web documents and

news content web documents and only revisit the index/list web documents for

update checking. This saves much time and makes the refresh interval shorter.

3.2 Keen-Tag based News Extraction Algorithm

To deal with the problem of extracting desired data from semi-structured documents,

the Ai-Times news extraction module makes use of a keen tag extraction algorithm.

Keen tags are defined as those tags that are most typically found in a webpage inside

or around the news text content. These tags are used to help the news extraction

module identify data rich parts of a web news document. Our research has shown

that in most news web documents, the news text content string tokens always

spatially cluster together in the html source code. The tags “<p>”,” </p>”,”
”,”

 18

”,” <img..>” will always be keen tags but other tags which are highly likely to

signal data rich content are <font*>, , , <a href*>, , <img*>, </br>,

, , <div>, </div>, <center>, </center>.

Figure 2 shows an example of “keen tags” from a document at

http://www.cnn.com.

 Fig. 2. A source example of the news content web document.

It can be seen that the news content strings clustered in the html source are

accompanied with the tag “<p>” and “</p>”. Defining keen tags allows us to divide

the html source code of the web document – which consists of html tags and string

tokens - into three categories:

1. html tags that are keen tags.

2. html tags that are not keen tags, such as <!==* and <form>.

3. string tokens that are not html tags.

 19

Algorithm II: News extraction algorithm
This algorithm first determines whether a document is a news content document and

then extracts the data rich part from this document.

1. Separate the html source code into many parts by the type 2 tags;
therefore, each part contains the type1 and type3 strings. After that,
the html source of the news document would look like this:

tag1-tag1-tag3-tag3-tag3-tag1 tag2 tag3-tag3-tag1 tag2 tag3-tag1

 part1 part2 part3

2. Score each part, the scoring formulation is:

Score (i)=∑
=

ni

k
klen

1
)(----1

where:

i: the sequence of the part. For i=1,2,…n (n is the total number of
the part).

ni: the total number of type3 tags in the current part.

k: the sequence of the type3 tags in the current part. For k=1,2,…ni.

len(k)—the length of the kth type3 tag in the current part.

3. Select the score winner part as the data-rich part.

4. Evaluate the selected part to see if it is a news content web
document. The equation is as below:

 evaluate()=fin(score)* tin(hrenum) ----2

where:

score: the score obtained from equation 1.

hrefnum: the total number of hyperlink html tags(html tag like<a href…>)
in that part.

 fin(k)=1 while k>N

 fin(k)=0 while k≤ N
where:

N: the predefined low range of the news content’s length. Any news
document whose content length is shorter than N will not be considered
to be a useful news web document.

 tin(k)=1 while k<T

 tin(k)=0 while k≥ T
where

T: the predefined up range of the total number of the link tags in a
news content. Any news document that contains more than T link tags
within the news content will not be considered as a useful news web
document.

5. If the evaluate() = 1, this web document can be regarded as a news
content web document, and then the selected data rich part will be
extracted as the news text content.

We define a list containing universal keen tags as below:

 20

The list: <p>, </p>, <font*>, , , <a href*>, , <img*>,
,

, , </div>, <div>, <center>, </center>.

Besides the universal keen tags we have defined before, there are still some

website-related keen tags that we can derive from the training phrase. At the training

phrase, the well-defined web news document will be inputted and the system will

analyze these web news documents based on some pre-defined rules, then output the

website-relevant keen tags.

3.3 Automatic Summarization Algorithm

The amount of news information available electronically has grown dramatically.

There is an increasing demand for domain-independent summarization method.

Ai-Times can generate the news summary automatically. In this section we describe

the automatic summarization module of Ai-Times. The process of Ai-Times

automatic summarization consists of the following three steps: characteristic words

generation, sentence weighting and summary generation. In section 3.4.1 we

describe the characteristic words generation. In section 3.4.2 we describe the

sentence weighting and in section 3.4.3 we describe the summary generation.

3.3.1 Characteristic Words Generation
Characteristic words are generated by word segmentation algorithm and

characteristic word weighting equation based on Statistical and Probabilistic

Approach [4]. Words in web news document are assigned to different weighting

based on their importance and frequency in document. Words with highest weighting

are extracted as characteristic words. The occurrence frequency of a word in a

document and the number of documents containing it are important factors to

calculating the characteristic weight.

 21

The summarization algorithm scans a web news document and finds out proper

words in the web news document based on the word occurrence frequency and word

length, then, uses the following equation:

where:

w is the Chinese word extracted from a sentence in the web news document

P(w) is the weight of w

Ft(w) is the frequency of w

L(w) is the length of w

numdoc is the number of documents which contains w

totalnumdoc is the total number of documents

D is the minimum length of w

c is the influence of the length of the sequence of Chinese characters

Characteristic words can only be treated as keywords for retrieving the relevant

web news documents. These words carry no semantic meaning.

3.3.2 Sentence Weighting

So far, we have described how to generate characteristic words. Note that the second

step of our summarization algorithm is sentence weighting. In this step sentences are

assigned weights, which indicate their importance in a web news document. The

higher the weight, the greater the importance. The highest weight is assigned to the

sentence that presents the most important concept of the web news document.

Important sentences must have the features of more characteristic words in the

sentence; of higher characteristic weight of characteristic words in the sentence; of

shorter length of sentences; of having less sub-sentences for an important sentence;

()ct DwL
umdoctota

numdocwFwP −•⎟
⎠
⎞

⎜
⎝
⎛ −•=)(

ln
1)()(

 22

and of less numeral words in the sentence. The following equation computes the

sentence’s importance weight.

msss

L
sL

N

i
i

•••
=

∑
=

210

1)(

where:

N is the number of Characteristic words in the sentence.

iL , i=1 to N, is characteristic weight of the ith characteristic word in the sentence.

0s is the total number of words in the sentence.

1s is the number of sub-sentences in the sentence.

2s is the number of numeral words in the sentence.

m is an integer variable. Normally, it is set to 1.

The sentence containing more characteristic words will be assigned a higher

weight. The sentence containing more number of sub-sentences, words and numeral

will be assigned a smaller weight. The title and sub-title of the document and the

main sentence in the paragraph would be assigned a higher sentence weight

dynamically. Important sentences can then be extracted from a document.

3.3.3 Summary Generation

The third step of Ai-Times summarization algorithm is summary generation. In this

step, the sentences with the highest sentence weight are extracted to generate a

summary in a particular ratio required by the user according to the following

equation. The created summary is the compressed version of the original document.

Different summary ratios can create different quality of the summary.

RLsAbstract
x

i
i •== ∑

=1
||

 23

where:

L is the length of the web news document.

R is the abstract ratio.

is is the sentence with ith highest sentence weight.

is is the length of is .

3.4 Experiments

In this chapter we describe experiments and results on the comparison of the update

speed of the Ai-Times single optimized crawler with the single traditional crawler;

we evaluate the news extraction module. In each case Ai-times is run on several PC

servers with the following configuration: CPU: p4 2.4 GHz; RAM: 512 MB;

Bandwidth: 1MB.

3.4.1 Performance of Optimized Crawler
In this experiment we compare and test the speed with which the optimized crawler

updates downloaded documents, the update interval. Though it is difficult for us to

obtain the exact consumed time of the update interval of the crawler, we measured

the update interval as follows. We can compare our optimized crawler algorithm with

traditional crawler algorithm in the following way:

In the experiment, our crawler has processed 3.53 million web documents in

roughly 6 days. Assume that the traditional crawler has also processed the same

number of web documents in a certain days; we then start a new round of web

crawling. As stated earlier, our optimized crawler should only revisit the index/list

web documents (in our experiment the number of the index /list web documents is

 24

0.37 million) while the traditional crawler should revisit all web documents (in our

experiment the number of all web documents is 3.53 millions). The consumed time

is linear to the number of the web documents the crawler visits.

Figure 3 shows the improvement in terms of the performance of our optimized

crawler algorithm compared to the traditional algorithms. The traditional crawlers

revisited 3.53 millions and 2.47 millions web documents respectively, while our

proposed optimized crawler only revisited 0.37 millions web documents. The update

interval of the optimized crawler is substantially 85% shorter than the traditional

crawlers.

Crawler Performance

0

0.5

1

1.5

2

2.5

3

3.5

4

traditional

crawler(revisit

error documents)

traditional

crawler(exclude

error documents)

Ai-Times

optimized

crawler

N
um

be
r
of

 d
oc

um
en

ts
 t
o

be
 r
ev

is
it
ed

 n
ex

t

ro
un

d
(m

il
li
on

)

Crawler
Performance

Fig. 3. Compare the optimized crawler with the traditional crawler.

3.4.2 News Extraction
In previous experiment, we defined a keen tag list for global use:

<p *>, </p>, , , , <a *>, , , <br *>,</br>,

, , </div>, <div *>, <center>, </center>. By using this keen tag list,

our system has downloaded totally 1.46 million news documents.

To measure the effectiveness of the news extraction module, two ratios are used:

precision and recall. Precision is the ratio of the number of correctly fetched web

 25

news documents to the total number of fetched web news documents that may

contain some rubbish. Recall is the ratio of number of correctly fetched web news

documents to the total number of web news documents in all predefined news

websites. Because it is difficult for us to obtain the total number of web news

documents or to verify each fetched web document to see whether it is correct or

wrong, we approximate the recall and precision in the following way:

 pre=num(r1)/num(N1) (1)

where:

pre is the precision.

N1 is a set of documents randomly selected from fetched web news documents.

r1 is the correctly fetched web news documents in N1.

num(S) is the function to obtain the number of the units in collection S.

 rec=num(r2)/num(N2) (2)

where:

rec is the recall.

N2 is a set of documents randomly selected from total web news documents.

r2 is the web news documents in N2 fetched by our system.

num(S) is also the function to obtain the number of the units in collection S.

We then select 1,000 web news documents from fetched web news documents

and the number of correctly fetched documents in them is 915. We also select 1,000

web news documents from total web news documents and the number of fetched

web news documents is 876. Therefore, we can obtain the approximation as

following:

 pre=915/1000=0.915

 rec=876/1000=0.876

 26

Note that we use the “keen tag” analyzing method to extract the news content so

we need not implement different wrappers for different news websites; the

effectiveness of our system is relatively acceptable.

Our system also provides a friendly UI for the user to access the news archive. It

can be shown as below:

 Fig. 4. User interface of Ai-times

Below is an example of extracting process:

News
category

Retrievaled news list

News Content of
Selected news

News source

Downloaded time

 27

Fig. 5. The web news document

Fig. 6. The html source code of the news

Separated the html source code into many parts. The result can be shown as figure

7.

 28

From Figure 8 we can see that system has scored each part and selected the part

having the highest score as the data rich part.

Evaluated the selected data rich part, N was defined to be 100 and T was defined

to be 5, thus the evaluate function is as below:

111(0)tin (2159)fin evaluate =•=•=

As the length of the extracted data rich part is longer than the previously defined

value 100 and the number of the hyperlinks is not more than 5. Thus the selected part

was extracted to be the news content and the web document was classified as a news

content web document.

Fig. 7. Separated by type2 tag

 29

 Fig. 8. Select the data rich part

3.5 Conclusion

In this chapter we presented our modifications, the proposed optimized web crawler

module, the news extraction module and the summarization module and their

algorithms. By distinguishing the web document as important and unimportant, the

optimized crawler can fetch the web news nearly 6 times faster than the traditional

crawler during the update interval. Using the keen tag based extraction algorithm, the

news extraction module can extract the news content from the web news document

with nearly zero manual effort.

In next chapter, we will discuss another two important modules in Ai-Times:

Indexing module and Retrieval module.

The scoring winner part

 30

Chapter 4

Indexing and Retrieval Strategy
The headache of building an effective search engine is that most of the data, typically

documents in words, are not structured in a common interface. Although it is impossible to

get exact relevant information for each user because the final judgment depends on

individual user, it is achievable to get fairly appropriate information which met the user’s

need. There exist numerous algorithms [15] for information retrieval. In Ai-Times, we try

to grant the maximum relevance information by applying the concept of Vector Space Model,

Term Reweighting, Query Expansion as well as Inverted Indexing structures. Figure 9

shows the index and retrieval architecture:

Text
Data

Inverted Index
(4 sub-indexes)

Searching

Query Operation

Ranking

Ranked
Docs

Retrieved
Docs

Query

 Indexing
Data
Access

 User Interface
 or Other Input

Stemming, Stop word
removing etc.

Result

Query Expansion

\
Fig. 9. Index and retrieval architecture

 31

4.1 Inverted Indexing Strategy

In order to speed up the search, we build an inverted index over the data. Our

inverted index’s structure can be shown in Figure 10:

 Fig. 10. Inverted index in Ai-Times

Inverted index in Ai-Times contains 3 sub-indexes; each sub-index is an inverted

index format. The definition of the 3 sub-indexes is given as below:

Basic Index: the inverted index contains the [term-doc] information. The basic

index allows us to retrieve the documents containing a specified term quickly.

Idf Index: the inverted index contains the [term-termidf] information. The idf

index allows us to retrieve the idf value of a specified term quickly. The idf (inverse

document frequency) is a measure of the general importance of the term:

)/(jj dDLogIdf =

where:

jIdf is the inverse document frequency of the term j.

D is the number of the total documents.

jd is the number of documents containing the term j.

Docw Index is the inverted index contains the [doc-docweight] information. The

docw index allows us to retrieve the docw value of a specified document quickly.

Basic
Index

Docw
Index

 Inverted Index

Idf
Index

 32

∑
=

=
jn

k
j kjdocw w

1

2)(

where:

jdocw is the document weight of the document j;

kjw
 is the idf value of the kth term in document j;

jn
 is the number of the terms in document j;

Figure 11 shows the indexing execution flow:

 33

Fig. 11. Indexing Flow in Ai-Times

Fig. 11. Indexing Execution Flow of Ai-Times

4.2 Improve VSM using Query Expansion and Term Reweighting

Ai-Times’s retrieval model is based on VSM, for all fetched web documents,

an m-dimensional vector is generated for each web document from sets of terms with

 Create the Docw Index

Calculate the <doc docw> for all
terms in basic index . Add these
information to Docw Index.

 Create the Idf Index

Calculate the <term idf> for all
terms in basic index . Add these
information to Idf Index.

While (having docs to be
indexed)

Lowercase, Stemming,
removing the stop words

Add the doc to the Basic Index

 Create The Basic Index

 34

associated weights, where m is the number of unique terms in the document

collection. A cosine similarity measure is used to compute the similarity between a

document jdoc and a query q.

||
)doc(q, Similarity

1

2

1
j

)(

)(

Qkj

kkj
m

k

m

k

w

vw

•

=

∑

∑ •

=

=

)/(jkjkj dDLogfw •=

)/(jkk dDLogfv •=

where:

kjw is the term weight for keyword term k in document j.

kjf
 is the frequency in which the term j occurred in the document j.

jd
 is the number of documents containing the term k, and,

D is the total number of documents in the set.

kv is the term weight for keyword term k in the query.

kf is the frequency in which the term j occurred in the query.

Q is the query weight.

However, the problem of mismatch is becoming more and more common. People

often use different words to describe their concepts. A novel solution to this problem

is query expansion [4, 26]. Using query expansion, an initial search is made by the

system with a user-provided query and the user then indicates which of the returned

documents are relevant and which are irrelevant. The system then expands the initial

query using words with similar meaning to those in the query. The expanded query

often returns improved result though need additional user adjustment [26].

 35

Instead of the user manually adjustment, an alternative approach is to expand the

query by automatically analyzing the initially returned result. This approach, which

is called pseudo-relevance feedback, probably consisting of automatically query

expansion, term reweighting or both of them, has been proved to be useful and

efficient [3, 31].

In Ai-Times, we use pseudo-relevance feedback to improve the initial query

formulation by applying both query expansion and term reweighting. We expand the

query firstly and then reweight the terms in the expanded query. Either the query

expansion or the term reweighting has been proved to be efficient [3, 31]. Ai-Times

uses both of them and the performance is relatively better than either single one. We

will show the comparison result in Section 4.3.

When user submits an initial query to Ai-Times, system retrieves the top 10

documents with highest relevance measuring score and the top 10 documents with

lowest relevance measuring score based on simple vector space model cosine

similarity measure. The top 10 documents with highest relevance measuring score

are assumed to be relevant and the top 10 documents with lowest relevance

measuring score are assumed to be irrelevant. After the initial retrieval, system

automatically analyzes the returned documents and then applies query expansion and

term reweighting on the original query.

Figure 12 shows the query operation flow in Ai-Times. System firstly process the

query on stemming and removing stop words, then retrieve the top N documents

with highest similarity score , apply query operation and then do the retrieving again.

 36

Fig. 12. Query operation flow in Ai-Times

4.2.1 Query Expansion
Under the bag of words model, if a relevant document does not contain the terms that

are in the query, then that document will not be retrieved. The aim of query

expansion is to reduce this query/document mismatch by expanding the query using

words or phrases with a similar meaning or some other statistical relation to the set

of relevant documents.

As previously stated, Ai-Times retrieves the top 10 documents with highest

relevance measuring score based on simple vector space model cosine similarity

Process the query: lowercase,
stemming, removing stop words

Retrieve the docs containing at least
on terms of the query

Calculate the score for all retrieved
docs and rank the docs by score

Return the TOPN result

Operate the query: expand
the query using some term
selecting method; reweigh
the query terms etc.

Query Expansion or
Term reweigh?

Retrieving finish. Return the
result

yes
no

 37

measure. The top 10 documents with highest relevance measuring score are assumed

to be relevant. Then we select the terms that are most relevant to the query and add

these terms to expand the initial query.

We rank all the terms in retrieved documents using following formula:

 ∑∑
==

−=
ik n

i
ij

n

k
kjj wwtw

11

where:

jtw is the weight we used to rank the terms

kn is the number of the relevant documents containing term j.

in is the number of the irrelevant documents containing term j.

kjw is term weight of term j in kth relevant document

ijw is term weight of term j in ith irrelevant document.

After the query expansion, the initial query >…< N1 .termterm is expanded

to the expanded query >……< +KNN1 .term.termterm . Here is a simple example

of the query expansion:

The initial query: Reporting on possibility of and search for extra-terrestrial

life/intelligence?

The expanded query: extraterrestrials, planetary society, universe, civilization,

planet, radio signal, seti, sagan, search, earth, extraterrestrial intelligence, alien,

astronomer, star, radio receiver, nasa, earthlings, galaxy, life, intelligence, meta

receiver, radio search, discovery, northern hemisphere, national aeronautics, jet

propulsion laboratory, soup, space, radio frequency, radio wave, klein, receiver,

comet, steven spielberg, telescope, scientist, signal, mars, moises bermudez, extra

terrestrial, harvard university, water hole, space administration, message, creature,

 38

astronomer carl sagan, intelligent life, meta ii, radioastronomy, meta project, cosmos,

argentina, trillions, raul colomb, ufos, meta, evidence, ames research center,

california institute, history, hydrogen atom, columbus discovery, hypothesis, third

kind, institute, mop, chance, film, signs.

4.2.2 Term Reweighting
The advantages of the traditional query expansion are simplicity and good results.

However, due to the simplicity, the term occurrence pattern is not considered

explicitly. To supplement the query expansion techniques, we apply classic

reweighting formula Rocchio [25] to modify the term weight of the expanded query.

Same as the query expansion, we reweight the terms by automatically analyzing

the returned result. We submit the expanded query to the system and get the top 10

documents with highest relevance measuring score and the top 10 documents with

lowest relevance measuring score. As stated before, the top 10 documents with

highest relevance measuring score are assumed to be relevant and the top 10

documents with lowest relevance measuring score are assumed to be irrelevant.

After the second round automatically retrieval, based on the returned documents, we

increase weights of terms from relevant documents and decrease weight of terms

from irrelevant documents. The query is reweighed using classic Rocchio [25]

algorithm:

 ∑∑
==

−+=
ik n

i
ij

n

k
kjjj wwowtw

11

where:

jtw is new weight of the term in the query

kn is the number of the relevant documents containing term j.

 39

in is the number of the irrelevant documents containing term j.

kjw is the term weight of term j in kth relevant document

ijw is the term weight of term j in ith irrelevant document.

jow is the initial weight of the term in the query.

After term reweighting, the expanded query >…< N1 .termterm ‘s weight

vector >…< N1 .owow will be reweighed to weight vector >…< N1 .twtw .

4.3 Experiments and results

4.3.1 Overview
In the experiment, we indexed 64814 documents; the data size is around 419 Mb.

After indexing, the size of 3 sub-indexes is:

Basic Index: 177 MB

Idf Index: 7.77 MB

Docw Index: 2.74 MB

Ai-Times retrieves the top 10 documents with highest relevance measuring score

and the top 10 documents with lowest relevance measuring score based on simple

vector space model cosine similarity measure. The top 10 documents with highest

relevance measuring score are assumed to be relevant and the top 10 documents with

lowest relevance measuring score are assumed to be irrelevant.

4.3.2 Evaluation Measures
Recall and precision are used to evaluate the performance of the retrieval model.

I. Recall

A measure of the ability of a system to present all relevant items.

recall =number of relevant items retrieved/number of relevant items in collection

II. Precision.

 40

A measure of the ability of a system to present only relevant items.

precision =number of relevant items retrieved/total number of items retrieved.

Precision and recall are set-based measures. That is, they evaluate the quality of

an unordered set of retrieved documents. To evaluate ranked lists, precision can be

plotted against recall after each retrieved document as shown in the example below.

To facilitate computing average performance over a set of topics, each with a

different number of relevant documents, individual topic precision values are

interpolated to a set of standard recall levels (0 to 1 in increments of .1).

The particular rule used to interpolate precision at standard recall level I is to use

the maximum precision obtained for the topic for any actual recall level greater than

or equal to i. Note that while precision is not defined at a recall of 0.0, this

interpolation rule does define an interpolated value for recall level 0.0. In the

example, the actual precision values are plotted with circles (and connected by a

solid line) and the interpolated precision is shown with the dashed line.

4.3.3 Results
The interpolated recall-precision chart shows the improvement of query operation.

Figure 13 shows the Interpolated Recall - Precision Averages information of the

traditional VSM:

 41

VSM

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

VSM

Fig. 13. Interpolated Recall - Precision Averages chart of VSM

Figure 14 shows the Interpolated Recall - Precision Averages information of the

VSM+Query Expansion model:

VSM+Query Expansion

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

VSM+Query Expansion

Fig. 14. Interpolated Recall - Precision Averages chart of VSM+Query Expansion

 42

Figure 15 shows the Interpolated Recall - Precision Averages information of

VSM+Term Reweighting model:

VSM+Term Reweighing

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

VSM+Term Reweighing

Fig. 15. Interpolated Recall - Precision Averages chart of VSM+Term Reweighting

Figure 16 shows that the performance of VSM+Query Expansion+Term

Reweighting is the best in the total 4 models.

 43

Comparision of 4 Models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n
VSM

VSM+Query

Expansion

VSM+Term

Reweighing

VSM+Query
Expansion+Term

Reweighing

Fig. 16. VSM+Query Expansion+Term Reweighting

From these figures we can see that both VSM+Query Expansion and VSM+ Term

Reweighting models have better performance than the pure VSM model. However,

when compared with the VSM+Query Expansion+Term Reweighting model, for any

given the Recall value, the VSM+Query Expansion+Term Reweighting always has

better Precision. Therefore, it is obvious that the VSM+Query Expansion+Term

Reweighting model has the best performance in all 4 models.

4.4 Conclusion

In this chapter we presented the indexing and retrieval model of Ai-Times. The

Ai-Times index contains 3 sub-indexes basic index, idf index and docw index. The

Ai-Times index allows us to quickly retrieve the news for users. We use query

 44

expansion and term reweighting to improve the traditional VSM model. Section 4.3

shows that the modified VSM model has best performance in total 4 models.

In next chapter we will discuss how MapReduce is used in Ai-Times to parallel all

the modules and how we modify the traditional MapReduce to get better

performance.

 45

Chapter 5

Parallel Strategy

5.1 Traditional Parallel Strategy

As the size of the web grows; it is difficult for a single crawler node to finish

downloading pages in a reasonable amount of time. In order to address this problem,

we extended the crawler to parallel architecture [21] in stage 2 and providing details

below.

Parallel crawler has been well studied [7, 12, 29]. A parallel crawler has many

advantages compared to a single node crawler [12]. Junghoo Cho [12] compared

multiple architecture of parallel crawlers and clarified the relative metric of each

architecture. However, the general-purpose parallel crawler’s architecture is not

applicable to news retrieval problem. A more general drawback of parallel

approaches for news retrieval however is that they still require that the crawler

revisit all of the documents rather than just those documents which are of interest to

users or which are most likely to have been updated since the last visit. We present

our parallel crawler’s architecture and then discuss its characteristics.

Figure 17 illustrates the architecture of Ai-Times parallel crawler. Ai-Times

parallel crawler consists of several crawler nodes which can cooperate well in

fetching the web documents. Ai-Times parallel is using static task assignment

scheme [12] to assign tasks and using batch url exchanging scheme to reduce

communication overhead.

 46

Fig. 17. Architecture of Ai-Times parallel crawler

Task assignment
When multiple crawler nodes download web pages in parallel, they need to

coordinate with each other to avoid overlap downloading. In order to minimize the

communication overhead, the static assignment scheme [12] is used in our parallel

crawler.

In this scheme, urls in the queues are partitioned by their hash value. Each crawler

node knows which url should be processed by which crawler node. When a crawler

node gets a url which should be processed by other crawler node, it will put the url

into a temp queue and then transfer the url to corresponding crawler node through

batch url exchanging.

Url hash function
A url hash function is used to compute a web page’s hash value. Based on the hash

value, the web page is assigned to relative crawler node. We compute the hash value

based on the site name of the web page. In this case, web pages from a same site will

be allocated to a same crawler node.

Assigned news sources url queues web db

Crawler
Node

Crawler
Node

Crawler
Node

Crawler
Node Analyzer

and other
modules

 47

Batch url exchanging scheme
When a crawler node discovers a link that points to a web page which should be

processed by other crawler nodes, it will put this link into a temp url queue for a

while and then transfer to relative crawler node when the number of the links in the

temp queue has reached a predefined threshold. On the other hand, a crawler node is

always ready to accept the request from other crawler nodes which is ready to send

urls to it.

The batch url exchanging scheme reduces communication overhead and

guarantees the coverage of the crawler as a whole.

5.2 Using MapReduce in Ai-Times

During the development of the traditional parallel strategy of Ai-Times, we found

that the input data of many modules such as the Parsing and Extraction module,

Indexing module were usually huge, thus the computation effort is better shared by

multiple machines. We should extend most modules to parallel architecture.

However, the coding effort, scalability and fault tolerant ability of traditional parallel

algorithm are becoming bottlenecks. We should continue to improve the parallel

strategy of Ai-Times.

The existing news information retrieval systems [10, 12, 29] have already

discussed how to use appropriate techniques to decentralize the computation in a

news retrieval system. However, little study has been done on using MapReduce in a

web information retrieval system. In particular, we believe the following issues make

the study of using MapReduce in Ai-Times interesting and challenging:

 48

Scalability
The input data is usually large in an information retrieval system and the

computation effort should be shared by multiple machines. With the explosion of the

online web pages, the system should be easy to be extended by adding some

machines into the system. This requires the system to be much scalable. At this point,

a news retrieval system can benefit much from MapReduce.

Minimize coding effort
Note that the information retrieval system is usually a large-scale system. It consists

of many modules such as crawler, indexing, parsing and extraction etc… In order to

parallelize these tasks, distribute the fetched data and handle the failure of machines,

we often implement large code which is quite complex to manage. By using

MapReduce, we can hide the distribution and fault tolerance within the MapReduce

library and provide an abstract interface to the programmer. Thus the code is often

simpler and smaller.

Fault Tolerance
Note that failure of the machines or the hard disks is very common in an information

retrieval system. Failure of a running machine or an active hard disk should not

cause the whole system fail or any data lost. MapReduce is resilient to large-scale

machine failures. MapReduce is based on a global file system [14], thus we can

quickly recover the data when a disk fails.

5.2.1 Global File System

Note that in an information retrieval system, files are usually very huge by traditional

standards. In Ai-Times [20], it is very common that a file grows to multi-GB size.

The file may contain the downloaded web page objects or indexing objects.

 49

Failure of the hard disks is very common. Once the hard disks fails, all the data

stored on that component should be considered lost though we may be able to fix the

failed hard disks later.

Most files are mutated by appending new data. Random recording data is

prohibited.

In order to design a file system that meets Google’s need, Google designs and

implements a file system named Google File System [14].

Figure 18 describes the GFS architecture:

Fig. 18. GFS architecture

Global file system is a pre-condition of using MapReduce in a search engine.

Therefore, Ai-Times has a very simple implementation of global file system based on

which we can implement MapReduce. Ai-Times’ global file system is a simple

implementation of google file system and does not have the garbage collection and

diagnostic tools which are all contained in google file system. It just basically

satisfies our requirement to implement a MapReduce based news retrieval system.

Ai-Times’ global file system consists of a single master node (also named as Fs

node) which is responsible for managing the files name space which basically

Client Fs node

Data node Data node Data node

 50

contains a table describing which file consists of which set of chunks. The data

structure in the Fs node is simple:

filename_1 --> chunkID_11, chunkID _12, ... chunkID _1X1.

..

filename_k --> chunkID_k1, chunkID _k2, ... chunkID _kXk.

where:

finename_k is a string identifying the kth file’s name. The file contains Xk chunks

which are identified by chunkID_k0, chunkID _k1, ... chunkID _kXk. As the file

grows, the number of the chunks associated with the file increases.

Data nodes are responsible for storing data:

chunkID_ij --> [array of bytes]

As stated above, files in Ai-Times’ global file system are divided into fixed-size

chunks. Each chunk is identified by a unique global id.

A given chunk should have at least 2 copies stored on multiple data nodes in case

the failure of any data node. A given Data node has at most one copy of a given

chunk, and will often have no copies.

5.2.2 MapReduce Architecture Design
The input data of the Map function will be partitioned into M splits associated with

the number of the available nodes. These spits can be processed in parallel on

distributed Map task nodes.

The size of each split can be determined by the requirement and related

implementation. In Google, the size is between 16MB-64MB [14].

Reduce tasks are also distributed by partitioning the intermediate key space into a number

of pieces. At the end of the computation, all the reduce results will be collected as whole

output.

 51

The Execution flow is straightforward shown in Figure 19：

 Fig. 19. Execution flow of MapReduce

Figure 19 shows the execution flow of a whole computation round. Input data is

partitioned into M pieces and is then passed to M Map nodes. Each Map node

processes the input pairs, generates the intermediate pairs which are partitioned into

R pieces according to some hash function on the intermediate key. Both the Map

node and the Reduce node are task execution node. However, in order to make the

system have the knowledge about splitting the input data, assigning the tasks and

managing the node state, we should have a node which is responsible for the tasks

stated above. Google call this kind of nodes “Master”.

There are three types of nodes in the MapReduce system now. The map node and

the reduce node are responsible for processing map task and reduce task respectively.

The master node stores all map and reduce nodes’ state and the idle nodes’ state.

Note that the MapReduce programming is based on GFS [14]. As stated in

chapter 5.2.1, there are other two types of nodes: FS node and data node. Therefore,

the architecture of MapReduce can be shown in Figure 20:

Split 1

Split 2

Split 4

Split M

Split 3

Map()

Map()

Map()

Map()

Map()

Reduce()

Reduce()

Reduce()

Output1

Output2

OutputR

 52

Fig. 20. Architecture of MapReduce

5.2.3 Fault Tolerance
As stated before, there are totally 5 types of nodes in the MapReduce system: Master

node, Map node, Reduce node, Fs node and data node. Also we have some idle

nodes which are just waiting for scheduling from the Master node and doing nothing

else. If an idle node is scheduled by the Master node, it becomes some type of node

stated above.

The Master node stores all map and reduce nodes’ state and the idle nodes’ state.

Master knows how to partition the input pairs and the intermediate pairs, assigns

Map and Reduce tasks to related idle nodes, and keeps all tasks’ state. It asks another

idle node to re-execute a task once that task execution fails.

Map node and Reduce node execute Map and Reduce tasks respectively. They

communicate with the Master node periodically to let Master know their up-to-date

state. They also send heart beat message to master every five seconds (The interval is

configurable). If the Master has not received the heart beat message from a task node

for more than 60 seconds, Master marks the task executing on that node as failed and

asks another idle node to re-execute the failed task.

Global data nodes Local hard disk

Map()
Node

Reduce
Node

Map()
Node

Reduce
Node Master

node

Fs node

 53

Data node failure
It should be clear that the system is mostly available and reliable when chunks are

available on many different Data nodes. A Data node failure does not mean the data will

disappear. Once a data node fails, the FS node simply passes the client’s requests to other

nodes containing the backup chunks and replicates the failed chunks on other data node.

FS node failure
The FS node is a critical failure node. If the FS node fails, the whole system is

unavailable. However, the FS node needs to do little actual work so that the load on it is not

high. In order to handle the FS node failure scenario, the system should backup FS node’s

data periodically.

Map node or Reduce node failure
It is common in a MapReduce system that a task node fails its task. The task node

uploads to the Master node its task’s state periodically. It also sends periodic heart beat

message to Master node. Once the Master does not receive the heart beat message from a

task node, Master marks the task as failed and put the task in the task list for rescheduling.

Master node failure
Similar with the FS node, the Master is also a critical failure node. In Google’s

implementation, MapReduce system will abort the computation once the master node fails.

However, this is not a good idea when the MapReduce system is going to derive some

important data. One solution is to build a backup master node whose data and state is

synchronized with the Master node. Any insert, update, or delete operation on the master

node’s state tree will trig a same operation on the backup master node.

Using a backup master node loses some efficiency of the whole system because of

the synchronization. However, consider the fault tolerance ability; it is worth adding

a backup master node when the MapReduce system is used for some critical jobs.

 54

5.2.4 Using MapReduce in Parallel Crawler
We present an optimized distributed crawler [21] in stage 2 of Ai-Times. The static

assignment scheme [12] is used in task assignment. The batch url exchanging is used

to reduce communication overhead and guarantee the coverage of the crawler as a

whole. However, when used in more than 10 servers, the program begins very

complex to manage. To fetch more than 500 millions pages is impossible.

Using MapReduce in crawler module makes the program more simple and

scalable and makes the task to fetch more than 1000 millions possible. Figure 21

shows the Execution flow of crawler using MapReduce.

 Fig. 21. The Execution flow of crawler using MapReduce

The Map and Reduce functions of crawler module:

Map (String url, String url_info):

// url: the url of the web page to be fetched.

// url_info: related knowledge of the url.

if the web page is fetched successfully:

EmitIntermediate(url, content);

Reduce is identity

Reduce is identity means that the Reduce function will not do any operation on

the intermediate pairs and just return the intermediate pairs as the final result. In this

<url,url_info
>

Map(url,
url_info)

Map(url,
url_info)

Map(url,
url_info)

Reduce()

Reduce()

Reduce()

Output1

Output2

OutputR

<url,url_info
>

<url,url_info
>

 55

case, Reduce in the Crawler module just outputs the intermediate pairs (url, content)

as final result.

5.2.5 Using MapReduce in Distributed Parsing and Extraction
Content parsing and extraction is a time consuming task because the input data is

usually very huge. In stage 2, Ai-Times never distributes this kind of tasks so the

parsing and extraction is usually a bottleneck of distributable processing.

Using MapReduce to distribute the parsing and extraction will by no means

eliminate this bottleneck. Figure 22 shows the Execution flow of parsing and

extraction module using MapReduce:

Fig. 22. The Execution flow of parsing and extraction module

The Map and Reduce functions of parsing and extraction module:

Map (String url, String content):
 // url: the url of the fetched web page.

// content: the html content of the fetched web page.

 If the web page is parsed correctly:

 EmitIntermediate (url, pure_content);

EmitIntermediate (url, outlinks);

 // pure_content: The content of the web page after parsing and
extraction.

 // outlinks: The list of the out links originated from the web page.

Reduce is identity

<url,content> Map(url,
content)

Map(url,
content)

Map(url,
content)

Reduce()

Reduce()

Reduce()

Output1

Output2

OutputR

<url,content>

<url,content>

 56

Same as the crawler module, Reduce in the Parsing and Extraction module is

identity, just outputs the intermediate pairs (url, pure_content) and (url, outlinks) as

final result.

5.2.6 Using MapReduce in Distributed Updating Web Db

After crawling, parsing and extraction, we should update the old web db using the

output data derived from previous two steps for example, the outlinks data. Similarly,

the input data of the update operation is huge so MapReduce is also quite useful here.

Figure 23 shows the Execution flow of Update module using MapReduce:

Fig. 23. the Execution flow of Update module using MapReduce

The Map and Reduce functions of update module:

Map (String url, List outlinks):

// url: the url of the web page.

// outlinks: The list of the out links originated from the web page.

if the web page is parsed correctly:

EmitIntermediate (url, url_info);

 // url_info: related knowledge of the url.

Reduce (String url, Iterator url_infos):

// url: a url

// url_infos: a list of url_info

Url_Info url_info= null;

<url,outlink> Map(url,
outlink)

Map(url,
outlink)

Map(url,
outlink)

Reduce()

Reduce()

Reduce()

Output1

Output2

OutputR

<url, outlink
>

<url, outlink
>

 57

for each v in url_infos:

url_info.update(v);//update the url_info

Emit(url_info);

5.2.7 Using MapReduce in Distributed Indexing

The most significant use of MapReduce in Google has been a complete rewrite of the

indexing system [13]. However, Google Inc. never describes much implementation

or algorithm details of Google distributed indexing module. In Ai-Times, the

Execution flow of the distributed indexing module using MapReduce can be shown

as below:

Fig. 24. the Execution flow of Indexing module using MapReduce

The Map and Reduce functions of indexing module:

Map(String url, String pure_content):

// url: the url of the web page.

// pure_content: The content of the web page after parsing and
extraction.

for(each word v in pure_content)

 EmitIntermediate(v, position_info);

 //position_info: The position information related to the word v.

Reduce(String word, Iterator position_infos):

// word: a word.

// position_infos: a list of position_info.

for each v in position_infos:

<url,
pure_content
>

Map(),
indexing

Map(),
indexing

Map()
indexing

Reduce()
Merge

Reduce()
Merge

Reduce()
Merge

Output1

Output2

OutputR

<url,
pure_content
>

<url,
pure_content
>

 58

 position_info_list= position_info_list+”;”+ v.

 Emit(position_info_list);

As stated above, the Map function accepts the <url, pure_content> pairs as input

data. Map function segments the pure_content by individual word and then output

the <word, position_info> pairs as intermediate result. The Reduce function merges

the intermediate pairs and generates the <word, position_info1;

position_info2..position_infok> as the final result.

5.3 Task Executing Time Estimation Algorithm

In a MapReduce system, when a job is partitioned into multiple tasks and the tasks

are executed in parallel, the completion time of the job is determined by the last

finished task. In a distributed indexing module using MapReduce, it is common that

one of the map task nodes takes unusually longer time to finish its task. The whole

system is waiting that node’s result for Reduce use. A clever mechanism is to start a

backup execution of the remaining tasks in-progress when the job is close to

completion. The task will be marked as finished when the primary task or backup

task finish. This will help in most scenarios. Figure 25 shows how backup tasks

work.

 59

Fig. 25. Scenario of Backup Task Will Help

However, in our experiences of using MapReduce, the backup task mechanism

doesn’t always work. Sometimes the task completion time is completely determined

by the input data. Starting backup tasks of this kind of tasks won’t shorten the

completion time at all. A recent problem we experienced is the parallel crawler using

MapReduce, the input data is partitioned by the hash value of the url’s hostname.

Thus, a task node is responsible for fetching web pages from a set of websites

(Assume 1 website here for simplicity). If a website is hard to connect due to the

bandwidth or server problems, the task node which is responsible for fetching the

pages of that website (page is assigned to task nodes based on its host hash value, so

pages from the same website will be assigned to the same task node) will take long

time to complete the task and starting backup tasks doesn’t make much sense, which

can be shown in Figure 26:

Task

 Executing Time

Backup Task

Unusual Task

Normal Task

 60

Fig. 26. Scenario of Backup Task Fails

The modified MapReduce architecture deals with the problem of excessive task

time consumption by taking into account the task completion time when partitioning

the input data. To estimate the task completion time, we used an algorithm based on

historical data which we call the Task Estimation algorithm.

The modified algorithm is as follows:

Algorithm III: Task Estimation Algorithm
Assume we have N1 data records to be partitioned. Each record has T attributes:

attribute1….attributeT. From the past MapReduce processing, we get N2 data

records’ processed time.

The data structure of the record looks like this:

Record{

attribute1

attribute2

……

attributeT

processedtime //null if the record has not been processed

estimatedtime

}

Task

Executing Time

Backup Task

Unusual Task

Normal Task

 61

Records can be partitioned into tC categories according to the
tht attribute’s

value. In the same category, the
tht attribute’s values of the records are same or

similar. In Ai-Times, the String attribute or the discrete attributes are partitioned by

their hash value; the continuous attributes are partitioned by their range; tC is

configurable.

We calculate the average executing time of the records in each category:

tj

n

i

n

ij

imeprocessedtirecord∑
== 1

).(
(tj) eAverageTim (1)

where:

AverageTime (tj): average processedtime of the records which belongs to the

thj categories according to the
tht attribute.

tjn : total number of the records belonging to the
thj categories according to the

tht attribute.

t

C

j

C

t

tjeAverageTim∑
== 1

)(
(t) eAverageTim (2)

where:

tC : the number of the categories according to the
tht attribute.

 Then we calculate the variable Determine of each attribute using following

formula.

t

C

j

C

t

teAverageTimtjeAverageTim∑ −
== 1

2

))()((
(t) Determine (3)

The attribute having the larger Determine value is considered to goven the task

executing time more directly. Among the T attributes, we selected the top K

 62

attributes which are considered to eventually determine the task executing time. In

Ai-Times, we make the k to be 1.

Then we update the records’ estimatedtime using the top K arrtibutes’ average

time value, which we get from formula (1)

K

K

i
ijeAverageTim∑

== 1
)(

imatedtimerecord.est (4)

where:

K is the number of the top attributes we selected.

AverageTime(ij) is the average processedtime obtained from formula (1). The

record belongs to
thj category according to the

thi attribute.

After selecting the most important K attributes. We can then partition the data

records to be processed using following 3 formulas:

Compute the record’s hash value to partition the data records into K splits.

Hash (record[i]) mod K (5)

where:

record [i]: the ith record to be processed.

K: the number of the data splits we want to partition the data into.

Sum up all the records’ estimated processing time in the same split to get the

split’s estimated executing time.

 ∑
=

=
kn

i
imeestimatedtlrecord

1
).((k) TotalTime (6)

where:

TotalTime (k): the estimated executing time of the
thk data split.

 63

l: the sequence of the record in the
thk data split.

 kn : the total number of the records in the
thk data split.

estimatedtime: the estimated processing time of the
thl record.

The deviation between any two splits’ estimated executing time should be less

than a predefined threshold.

|TotalTime (i)-TotalTime (j)| < CONSTANTTIME (7)

where:

TotalTime (i), TotalTime (j): the estimated executing time of the ith and jth data

split respectively.

CONSTANTTIME: the predefined deviation threshold of the estimated time

between any two data splits.

5.4 Experiments

5.4.1 Environment

Ai-Times is running on several PC servers. The system set up is as following:

1. Each server is configured with P4 2.4 GHz CPU and 512 MB RAM

2. The servers are connected with each other through 100 MB intranet cable.

3. Each server is connected to the internet with 1 MB independent bandwidth.

5.4.2 Fault Tolerance Ability
As stated before, there are totally 5 types of nodes in the MapReduce system: Master

node, Map node, Reduce node. The Master node stores all map and reduce nodes’

state and the idle nodes’ state. Master knows how to partition the input pairs and the

intermediate pairs, assigns Map and Reduce tasks to related idle nodes, and keeps all

 64

tasks’ state. It asks another idle node to re-execute a task once that task execution

fails.

Map node and Reduce node execute Map and Reduce tasks respectively. They

communicate with the Master node periodically to let Master know their up-to-date

state. They also send heart beat message to master every five seconds (The interval is

configurable). If the Master has not received the heart beat message from a task node

for more than 60 seconds, Master marks the task executing on that node as failed and

asks another idle node to re-execute the failed task

The Master node is a critical failure node. Once the Master node fails, the whole

system fails. We have a backup master node whose data and state are synchronized

with the Master node. Any add, update, or delete operation on the master node’s state

tree will trigger the same operation on the backup master node. Once the Master

node fails, we will use the backup master node as the main Master node.

5.4.3 Ai-Times Parallel Crawler Based on MapReduce vs. Other Parallel
Crawler

As mentioned previously, many researches have been done on the parallel crawler. In

particular, we mainly consider the most important properties addressed by [12].

Coverage
Coverage=c/n, where n is the number of the web pages the crawler need to visit,

and c the number of the web pages actually visited. If no faults occur, Ai-Times

parallel optimized crawler can achieve Coverage 100%.

Overlap

When multiple crawler nodes download web pages at the same time, it is possible

that different crawler nodes download the same web page multiple times. By

 65

applying url hash function based on url’s site name, It is obviously that the Ai-Times

parallel optimized crawler can achieve Overlap 0.

Quality
Quality indicates a crawler’s ability to download the “important” web pages. In a

news retrieval system, a “news content document” or “index or list web document”

is more important than a “valueless web document”. We evaluate Ai-Times parallel

optimized crawler’s quality by approximating the recall and precision which we will

discuss in the following section.

5.4.4 Use the task executing time estimation algorithm
In the scenario where the backup task algorithm does not even help, we use the task

executing time estimation algorithm to estimate the task executing time, thus we can

partition the input records more reasonably.

Table 1 shows the performance comparing result of traditional MapReduce vs

Using Task Executing Time Estimation Algorithm MapReduce in crawler module:

 Traditional
MapReduce

Modified
MapReduce

Attributes selected
as the Determine

attribute

 Hostname

Number of Input
records

2.1 millions 2.1 millions

Size of the input
records

3.38 GB 3.38 GB

Number of the
tasks

250 250

Number of
unusual tasks

21 3

Total completion
time

12hrs 10mins 8hrs 01mins

Table 1: Traditional MapReduce vs MapReduce Using TETEA in crawler module.

In traditional MapReduce system’s crawler module, we partition the pages based

on their host value for task nodes to fetch. Thus the pages from the same website will

be assigned to the same task node. Each node will be assigned same amount of pages.

 66

If a website is hard to connect due to the bandwidth or web server problems, the task

node which is responsible for fetching the web pages of that website will take long

time to complete the task. Actually the bandwidth or web server problems are very

common, therefore the unusual tasks in traditional system are much more than the

system applied task executing time estimation algorithm.

Table 1 shows that the number of unusual tasks in traditional MapReduce is 21,

but the number of the unusual tasks in our modified MapReduce is only 3. As a

result, the total completion time of the modified MapReduce is reduced from 12

hours 10 minutes to 8 hours 1 minute. It is obvious that the modified MapReduce

improve the performance.

 Traditional
MapReduce

Modified
MapReduce

Attributes selected
as the Determine

attribute

 Size of the
page/document to be

indexed
Number of Input

records
1.5 millions 1.5 millions

Size of the input
records

41 GB 41 GB

Number of the
tasks

200 200

Number of
unusual tasks

6 1

Total completion
time

3hrs 3mins 2 hrs 45mins

Table 2: Traditional MapReduce vs MapReduce Using TETEA in indexing

module.

In traditional MapReduce indexing module, we assign the pages/documents for

task nodes to index based on their host hash value which is the same as crawler

module. From the experiment we observed that the unusual tasks happened when a

particular website has much more big files in PDF/DOC/PPT formats which are hard

to parsing and indexing than other websites. The task nodes which are responsible

for indexing this website then took unusual long time to complete. By using task

 67

executing time estimation algorithm, we reduced the number of unusual tasks nearly

to zero.

Table 2 shows that the number of unusual tasks in traditional MapReduce is 6, but

the number of the unusual tasks in our modified MapReduce is only 1. As a result,

the total completion time of the modified MapReduce is reduced from 3 hours 3

minutes to 2 hours 45 minutes. It is obvious that the modified MapReduce is able to

reduce the number of unusual tasks and shorten the job’s total completion time.

5.5 Conclusion

In this chapter, we presented how MapReduce is used in Ai-Times and the details of

using MapReduce. Also we presented how MapReduce is improved by estimating

the sub-tasks’ execution time.

Experiments data show that by using MapReduce Ai-Times has good fault

tolerant ability, which is important to build a robust news retrieval system. When

compared with traditional parallel crawler, Ai-Times’ parallel crawler can achieve

coverage 100%, overlap 0% and has relatively acceptable quality. The most

significant improvement is the modified MapReduce. By using TETEA, the

modified MapReduce can partition the input data more reasonably and shorten the

job’s execution time by 33% in crawler module and 10% in index module

respectively. However, there are still some unusual tasks in modified MapReduce

system, though the number of unusual tasks is less than the traditional MapReduce.

We will discuss the further research in Section 6.2.

 68

Chapter 6

Conclusion and Future Research

6.1 Conclusion

In this thesis I have presented the research study of last 24 months. I proposed the

design and the algorithms of basic modules in Ai-Times. In particular, I presented an

optimized crawler algorithm, which is proven to have better performance than

traditional crawler. I also provided a “Keen tag” based news extraction algorithm for

extracting the news content from the news web document with nearly zero manual

effort.

I have presented an improved VSM model, which is improved by query

expansion and term reweighting. By using query expansion and term reweighting,

Ai-Times can get better retrieval accuracy.

The most valuable contribution is that I introduced how MapReduce is used in

Ai-Times to improve the scalability and fault tolerant ability and how we improve

the MapReduce to get better performance. The experiments show that the improved

MapReduce can help us build a scalable, efficient, and fault-tolerant distributed news

retrieval system. In particular, by using TETEA, the modified MapReduce can

reduce the number of the unusual tasks, which can shorten the job’s completion time

obviously.

In summary, I believe that this thesis offers some useful guideline for the

designers of news information retrieval system, helping them for example, design

and implement a parallel online news retrieval system, optimize their crawler to be

faster, implement a more flexible news content extractor which can work with less

 69

manual effort, improve the retrieval model to achieve better retrieval accuracy and

improve the traditional MapReduce model to reduce the number of unusual tasks in a

parallel web news retrieval system.

6.2 Future research

We believe many improvements can be done on the retrieval model or the distributed

architecture of Ai-Times, for example:

Improve the retrieval model: there are some potential that we can improve the

retrieval model in Ai-Times, ie, take the location in original html source into

consideration when weighting the terms.

Improvement of global file system
Currently the global file system of Ai-Times is quite a simple implementation. We

believe many techniques can be considered to improve the performance of the global

file system, such as the garbage collection and data compression.

Locality
Higher data transfer rate is one of the disadvantages of using MapReduce. In order to

conserve the network bandwidth, we can make a map task node to be a data node.

Thus we can take the location of the input files into account in the Map partition

stage. We can schedule a task to a task node having the task’s input data on it. This

can cool down the high network traffic rate.

Backup Tasks

When a job is partitioned into multiple tasks and the tasks are executed in parallel,

the completion time of the job is determined by the last finished task. In a distributed

indexing module using MapReduce, it is common that one of the map task nodes

takes unusually longer time to finish its task. The whole system is waiting that

node’s result for Reduce use. A clever mechanism used in Google is to start a backup

 70

execution of the remaining in-progress tasks when the job is closed to completion.

The task will be marked as finished when the primary task or backup task finish. We

believe this mechanism will make sense in our system.

 71

References
[1] S. Aggarwal and F. Hung: WIRE - A WWW-based Information Retrieval and

Extraction System. Proceedings of the 9th International Workshop on Database

and Expert Systems Applications, (1998), 887-892.

[2] Y. Ariki and Y. Sugiyama: A TV News Retrieval System with Interactive Query

Function. Proceedings of the 2nd International Conference on Cooperative

Information Systems (IFCIS), (1997), 184-192.

[3] R. Attar and A. S. Fraenkel: Local Feedback in Full-Text Retrieval Systems,

Journal of the ACM, 24(3), (1977), 397 - 417.

[4] R. Baeza-Yates and B. Ribeiro-Neto: Modern Information Retrieval, Addison

Wesley Longman, (1999).

[5] A. Bergholz and B. Childlovskii: Crawling for domain-specific hidden Web

resources. Proceedings of the 4th International Conference on Web Information

Systems Engineering, (2003), 125–133.

[6] G. E. Blelloch: Scans as primitive parallel operations. IEEE Transactions on

Computers, IEEE Computer Society Press, 38(11), (1989), 1526-1538.

[7] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully

distributed web crawler. Proceedings of The 8th Australian World Wide Web

Conference (AusWeb02), (2002), 711-726.

[8] C. Buckley: trec_eval IR evaluation package. Available from

ftp://ftp.cs.cornell.edu/pub/smart.

[9] C. Buckley and Ellen M. Voorhees: Retrieval evaluation with incomplete

information. Proceedings of 27th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, (2004), 25-32.

 72

[10] M. Buzzi: Cooperative crawling. Proceedings of the 1st Latin American Web

Congress. (2003), 209-211.

[11] J. Cho and H. Garcia-Molina: Effective Page Refresh Policies for Web Crawlers,

ACM Transactions on Database System, 28(4), (2003), 390-426.

[12] J. Cho and H. Garcia-Molina: Parallel crawler. Proceedings of the 11th

International World--Wide Web Conference, (2002), 1-13.

[13] J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large

Clusters. Proceedings of the 6th Symposium on Operating System Design and

Implementation, (2004), 137-150.

[14] S. Ghemawat, H. Gobioff and S. T. Leung: The Google File System.

Proceedings of the 9th ACM symposium on Operating systems principles, (2003),

29-43.

[15] D. A. Grossman and F. Ophir: Information Retrieval: Algorithms and Heuristics;

The International Series in Engineering and Computer Science, 461.

[16] K. Hu and W. S. Wong: A probabilistic model for intelligent Web crawlers.

Proceedings of the 27th Annual International Conference on Computer Software

and Applications, (2003), 278-282.

[17] A. J. Kurtz and J. Mostafa: Topic detection and interest tracking in a dynamic

online news source. Proceedings of the 3rd ACM/IEEE–CS Joint Conference on

Digital Libraries, (2003), 122-124.

[18] R. E. Ladner and M.J. Fischer: Parallel Prefix computation. Journal of ACM,

27(4), (1980), 831-838.

[19] S. J. Lim and Y. K. Ng: Categorizing and Extracting Information from

Multilingual HTML Documents Database Engineering and Application

 73

Symposium. Proceedings of the 9th International Database Engineering &

Application Symposium, (2005), 415-422.

[20] N. K. Liu, W. D. Luo and M. C. Chan: Design and Implement a Web News

Retrieval System. Proceedings of the 9th International Conference on

Knowledge-Based & Intelligent Information & Engineering Systems (KES), (3),

(2005), 149-156.

[21] N. K. Liu, W. D. Luo and M. C. Chan: A Distributed Web News Retrieval

System. To appear.

[22] S. Morrison and J. A. Jose: Comparative study of online news retrieval and

presentation strategies. Proceedings of IEEE 6th International Symposium,

(2004), 403-409.

[23] S. Mukherjee, G. Z. Yang, W. F. Tan and I. V. Ramakrishnan: Automatic

Discovery of Semantic Structures in HTML Documents. Proceedings of the 7th

International Conference on Document Analysis and Recognition, (2003),

245-249.

[24] S. Renals, D. Abberley, D. Kirby and T. Robinson: The THISL system for

indexing and retrieval of broadcast news. Proceedings of IEEE Signal Processing

Society 1999 Workshop on Multimedia Signal Processing, (1999), 77-82.

[25] J. J. Rocchio: Relevance Feedback in information Retrieval G.11,Ed. SMART

Retrieval System, Prentice Hall, (1971), 313-323.

[26] G. Salton and C. Buckley: Improving retrieval performance by relevance

feedback. Journal of the American Society for Information Science, 41(4), (1990),

288-297.

[27] G. Salton, A. Wong and C. S. Yang: A Vector Space Model for Automatic

Indexing, Communications of the ACM, 18(11), (1975), 613–620.

 74

[28] M. Sanderson & C. J. van Rijsbergen: NRT - News Retrieval Tool. Electronic

Publishing, EP-odd 4, (1991), 205-217.

[29] V. Shkapenyuk and T. Suel: Design and implementation of a

high-performance distributed Web crawler. Proceedings of the 18th International

Conference on Data Engineering, (2002), 357-368.

[30] A. Silva and E. Veloso: CoBWeb – A Crawler for the Brazilian Web,

Proceedings of the String Processing and Information Retrieval Symposium &

International Workshop on Groupware table of contents (SPIRE'99), (1999),

184-191.

[31] J. X. Xu and W. B. Croft: Query Expansion Using Local and Global Document

Analysis, Proceedings of the 19th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, (1996), 4-11.

[32] http://outgoing.typepad.com/outgoing2005/04/mapreduce.html

[33] http://www.commerce.net/wiki/MapReduce_for_Decentralized_Computation

[34] http://www.nutch.org

[35] http://www.caerwyn.com/ipn/2005/07/lab-37-geryons-mapreduce.html

[36] http://blog.commerce.net/archives/2004/11/mapreduce_for_d_1.html

[37] Search engine watch. http://www.searchenginewatch.com.

 75

Appendix A: Experiment Result of Retrieval Model
Our retrieval model is evaluated with the trec_eval program [8, 9], below are the

standard result generated by trec_eval.

VSM

Queryid (Num): 99

Total number of documents over all queries

 Retrieved: 99000

 Relevant: 3720

 Rel_ret: 3088

Interpolated Recall - Precision Averages:

 at 0.00 0.5269

 at 0.10 0.3676

 at 0.20 0.2814

 at 0.30 0.2289

 at 0.40 0.1818

 at 0.50 0.1558

 at 0.60 0.1269

 at 0.70 0.0928

 at 0.80 0.0654

 at 0.90 0.0416

 at 1.00 0.0222

Average precision (non-interpolated) over all relevant docs

 0.1828

Precision:

 76

 At 5 docs: 0.3436

 At 10 docs: 0.2861

 At 15 docs: 0.2453

 At 20 docs: 0.2244

 At 30 docs: 0.2020

 At 100 docs: 0.1095

 At 200 docs: 0.0756

 At 500 docs: 0.0419

 At 1000 docs: 0.0306

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.2125

Recall:

 Exact: 0.8148

 at 5 docs: 0.0871

 at 10 docs: 0.1341

 at 15 docs: 0.1643

 at 20 docs: 0.1964

 at 30 docs: 0.2283

 at 100 docs: 0.3915

 at 200 docs: 0.5252

 at 500 docs: 0.7338

 at 1000 docs: 0.8148

Average interpolated precision for all 11 recall points

 11-pt Avg: 0.1901

 77

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80)

 3-pt Avg: 0.1675

Fallout - Recall Averages (recall after X non-relevant docs retrieved):

 At 0 docs: 0.0608

 At 14 docs: 0.2057

 At 28 docs: 0.2363

 At 42 docs: 0.2782

 At 56 docs: 0.3144

 At 71 docs: 0.3482

 At 85 docs: 0.3736

 At 99 docs: 0.3971

 At 113 docs: 0.4186

 At 127 docs: 0.4394

 At 142 docs: 0.4596

Average recall for first 142 non-relevant docs retrieved:

 0.3159

 78

VSM+Query Expansion

Queryid (Num): 99

Total number of documents over all queries

 Retrieved: 99000

 Relevant: 3720

 Rel_ret: 3152

Interpolated Recall - Precision Averages:

 at 0.00 0.5340

 at 0.10 0.3722

 at 0.20 0.2726

 at 0.30 0.2256

 at 0.40 0.1948

 at 0.50 0.1737

 at 0.60 0.1499

 at 0.70 0.1154

 at 0.80 0.0808

 at 0.90 0.0443

 at 1.00 0.0221

Average precision (non-interpolated) over all relevant docs

 0.1901

Precision:

 At 5 docs: 0.3475

 At 10 docs: 0.3212

 At 15 docs: 0.2862

 At 20 docs: 0.2545

 79

 At 30 docs: 0.2253

 At 100 docs: 0.1300

 At 200 docs: 0.0893

 At 500 docs: 0.0518

 At 1000 docs: 0.0312

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.2167

Recall:

 Exact: 0.8482

 at 5 docs: 0.0730

 at 10 docs: 0.1291

 at 15 docs: 0.1667

 at 20 docs: 0.1893

 at 30 docs: 0.2409

 at 100 docs: 0.4139

 at 200 docs: 0.5476

 at 500 docs: 0.7398

 at 1000 docs: 0.8482

Average interpolated precision for all 11 recall points

 11-pt Avg: 0.1986

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80)

 3-pt Avg: 0.1757

 80

Fallout - Recall Averages (recall after X non-relevant docs retrieved):

 At 0 docs: 0.0509

 At 14 docs: 0.2006

 At 28 docs: 0.2613

 At 42 docs: 0.3068

 At 56 docs: 0.3452

 At 71 docs: 0.3710

 At 85 docs: 0.3961

 At 99 docs: 0.4207

 At 113 docs: 0.4484

 At 127 docs: 0.4666

 At 142 docs: 0.4809

Average recall for first 142 non- relevant docs retrieved:

 0.3440

 81

VSM+Term Reweighting

Queryid (Num): 99

Total number of documents over all queries

 Retrieved: 99000

 Relevant: 3720

 Rel_ret: 3178

Interpolated Recall - Precision Averages:

 at 0.00 0.5605

 at 0.10 0.3732

 at 0.20 0.2771

 at 0.30 0.2241

 at 0.40 0.1900

 at 0.50 0.1770

 at 0.60 0.1279

 at 0.70 0.0937

 at 0.80 0.0803

 at 0.90 0.0479

 at 1.00 0.0259

Average precision (non-interpolated) over all relevant docs

 0.1921

Precision:

 At 5 docs: 0.3064

 At 10 docs: 0.2853

 At 15 docs: 0.2620

 At 20 docs: 0.2279

 82

 At 30 docs: 0.2070

 At 100 docs: 0.1464

 At 200 docs: 0.0995

 At 500 docs: 0.0619

 At 1000 docs: 0.0321

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.2025

Recall:

 Exact: 0.8549

 at 5 docs: 0.0529

 at 10 docs: 0.0931

 at 15 docs: 0.1173

 at 20 docs: 0.1415

 at 30 docs: 0.1799

 at 100 docs: 0.3377

 at 200 docs: 0.4902

 at 500 docs: 0.7314

 at 1000 docs: 0.8549

Average interpolated precision for all 11 recall points

 11-pt Avg: 0.1979

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80

 3-pt Avg: 0.1781

Fallout - Recall Averages (recall after X non- relevant docs retrieved):

 83

 At 0 docs: 0.0549

 At 14 docs: 0.1816

 At 28 docs: 0.2234

 At 42 docs: 0.2725

 At 56 docs: 0.2975

 At 71 docs: 0.3364

 At 85 docs: 0.3583

 At 99 docs: 0.3942

 At 113 docs: 0.4533

 At 127 docs: 0.4777

 At 142 docs: 0.4865

Average recall for first 142 non-relevant docs retrieved:

 0.3214

 84

VSM+Query Expansion+Term Reweighting

Queryid (Num): 99

Total number of documents over all queries

 Retrieved: 99000

 Relevant: 3720

 Rel_ret: 3263

Interpolated Recall - Precision Averages:

 at 0.00 0.6027

 at 0.10 0.3995

 at 0.20 0.2947

 at 0.30 0.2366

 at 0.40 0.2029

 at 0.50 0.1798

 at 0.60 0.1537

 at 0.70 0.1153

 at 0.80 0.0816

 at 0.90 0.0569

 at 1.00 0.0272

Average precision (non-interpolated) over all rel docs

 0.2084

Precision:

 At 5 docs: 0.3168

 At 10 docs: 0.2805

 At 15 docs: 0.2623

 At 20 docs: 0.2387

 85

 At 30 docs: 0.1982

 At 100 docs: 0.1556

 At 200 docs: 0.0851

 At 500 docs: 0.0721

 At 1000 docs: 0.0519

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.2091

Recall:

 Exact: 0.8697

 at 5 docs: 0.0535

 at 10 docs: 0.0947

 at 15 docs: 0.1294

 at 20 docs: 0.1601

 at 30 docs: 0.2000

 at 100 docs: 0.3598

 at 200 docs: 0.5100

 at 500 docs: 0.7234

 at 1000 docs: 0.8697

Average interpolated precision for all 11 recall points

 11-pt Avg: 0.2137

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80)

 3-pt Avg: 0.1853

 86

Fallout - Recall Averages (recall after X non-relevant docs retrieved):

 At 0 docs: 0.0578

 At 14 docs: 0.1821

 At 28 docs: 0.2415

 At 42 docs: 0.2806

 At 56 docs: 0.3257

 At 71 docs: 0.3635

 At 85 docs: 0.3759

 At 99 docs: 0.3910

 At 113 docs: 0.4337

 At 127 docs: 0.4531

 At 142 docs: 0.4615

Average recall for first 142 non-relevant docs retrieved:

 0.3268

 87

Appendix B: User Interface of Ai-Times

Fig. 27. User Interface of Ai-Times: Retrieval Result

Fig. 28. User Interface of Ai-Times: News Content

 88

Fig. 29. User Interface of Ai-Times: News Summary

	theses_copyright_undertaking
	b21459344

