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Abstract 
The explosion in the availability of online information easily accessible through the 

Internet is a reality. As the available information increases, the inability to process, 

assimilate and use such large amount of information becomes more and more 

apparent. Online news information suffers from these problems.  

Currently available web news retrieval systems face a number of problems in that 

web-based news retrieval requires the ability to quickly and accurately process and 

update very large amounts of data that is constantly being updated. 

In this thesis, we present the design and implementation of Ai-Times, a parallel 

web news retrieval system the goal of which is to accurately retrieve and organize 

the web news information. This version of Ai-Times introduces the following novel 

algorithms: A novel optimized crawler algorithm whose fetching-speed is 6 times 

faster than that of the traditional crawler; A keen tag based extraction algorithm 

which can extract the data rich content with minimal manual effort and which also 

allows data to be classified as important or not important so that the crawler can 

revisit and update important data; A modified vector space model improved using 

query expansion and term reweighting and the most valuable contribution, an 

modified MapReduce improved by estimating the execution time of each subtask, 

which is proven to be able to reduce the number of the unusual tasks and shorten the 

whole job execution time. 
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Chapter 1  

Introduction 
The explosion in the availability of online information easily accessible through the 

Internet is a reality. As the available information increases, the inability to process, 

assimilate and use such large amounts of information becomes more and more 

apparent. Online news information suffers from these problems.  

Web-based information retrieval (IR) systems fetch, extract, and index data from 

the web for end users. Such systems traditionally contain four modules: a crawler 

module, a data extraction module, an inverted index engine, and a retrieval module 

which are respectively responsible for fetching, extracting, indexing, and returning 

data for users. Current web-based news retrieval systems operate in this way but face 

a number of problems in that web-based news retrieval requires the ability to quickly 

and accurately process and update a very large amount of data that is constantly 

being updated.  

First, web-based news is a very large and increasingly growing domain, making it 

very difficult to effectively crawl all of the many millions of news web pages now 

available to us. The modules especially the crawler module in a traditional IR system 

is not able to finish processing millions of web documents within a reasonable 

amount of time. 

Second, news sites update their contents frequently so any effective web news IR 

system must also be able to update frequently, yet this is impossible given that 

current approaches revisit all of the web documents without distinction during the 

update interval. 
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Third, most web documents are semi-structured; that is, they do not all use a 

standard format or hierarchy that clearly signals the data-rich parts of the document - 

the valuable content most users are interested in. Consequently, current data rich part 

extraction algorithms cannot automatically distinguish between valuable and 

non-valuable data. This means that current IR systems must inefficiently refresh and 

return a large amount of data that is either not of interest to users or that is not 

frequently updated, such as advertisements. As result returns a large amount of 

irrelevant data, this is slow and unsatisfactory for user. 

1.1 Objective 

In order to accurately retrieve and organize the web news information better, we 

have designed and implemented Ai-Times- a web-based news retrieval system the 

goal of which is to accurately retrieve and organize the web news information. 

Compared with traditional news retrieval systems, given same resources and time, 

Ai-Times can fetch and process more news documents with less manual effort. At 

the first stage, we have designed and implemented a basic web-based news retrieval 

system with an optimized crawler algorithm [20]. The Ai-Times system contains 

some typical web based information retrieval system modules: an optimized crawler, 

a news extraction module using novel keen tag extraction algorithm, an inverted 

index engine, a retrieval module and an automatic summarization module. With 

these modules, Ai-Times can: 

 Fetch the web pages from user-defined websites with a higher update 

frequency 

 Extract the valuable content with less manual involvement than other systems 

 Index and summarize the extracted news, and provide a friendly user 

interface for user to retrieve the news. 
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As the size of the web grows, it is difficult for a single node to finish downloading, 

extracting and indexing pages in a reasonable amount of time. In order to address 

this problem, we apply an improved MapReduce algorithm in Ai-Times to make 

Ai-Times a parallel system with following characteristics:  

 The system can process millions of web news per day. 

 The system is running on a number of machines and is scalable enough so that we 

can easily add or remove machines. 

 The system has good fault tolerant ability. Failure of a running machine or an active 

hard disk should not cause the whole system fail or any data lost. 

 

1.2 Background and Literature Review 

In this section, firstly we review the previous work of the architecture of news 

information system, which will help us of the design of whole system. Then we 

survey the related work of data rich part extraction algorithm and crawler module. 

Finally we review the literatures of MapReduce based on which we propose the 

improved MapReduce. 

1.2.1 News information retrieval 
News information retrieval has been well studied [1, 2, 17, 22, 23, 24, 28]. Many 

studies have been done on the architecture of news information retrieval. For 

example, Ariki and Sugiyama [2] present a system that automatically classifies TV 

news articles using keywords; Renals et al. [24] describe the THISL news retrieval 

system maintaining an archive of BBC radio and televisions news records; Aggarwal 

and Hung [1] introduce the WIRE-a WWW-based information retrieval and 

extraction system; Sanderson and van Rijsbergen [28] present the design of a news 

retrieval toolsbased on an existing database of some newspapers such as Times. 
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Morrison and Jose [22] developed VideoSqueak, which records continuous news 

broadcasts and facilitates online querying and retrieval of the video archive created. 

Lim and Ng [19] developed DatAQs which analyzes, identifies, and categorizes 

languages used in HTML documents and extracts information from HTML 

documents of interest written in different languages. 

The above literatures contribute much to the general architecture of news 

information retrieval. However, none of them describes the core modules such as the 

crawler module, the news extraction module and the automatically summarization 

module in detail. 

 

1.2.2 Data-rich part extraction 
In one typical approach that address the inability of current algorithms for extracting 

the data rich part of web content, Mukherjee et al. [23] proposed an algorithm to 

partition the html document into tree-like semantic structures. This approach, 

however, does not process all types of web pages well. In an earlier approach [4], the 

authors presented a novel keen tag based extraction algorithm. The keen tag based 

extraction algorithm proved to be effective on most html pages yet required some 

training. 

 

1.2.3 Web Crawler 
Boldi et al. [7] and Shkapenyuk and Suel [29] introduce some means of how to 

implement a web crawler. Many studies have been done on implementing a 

domain-specific crawler. Hu and Wong [16] presented a simple probabilistic model 

for intelligent Web crawlers. Bergholz and Childlovskii [5] developed a crawler 

starting from the PIW (Publicly Indexable Web) to find entry points into the hidden 
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Web. We presented an optimized web crawler [20] which is applicable to be used in 

news information retrieval system. Details are given in Chapter 3. 

1.2.4 Parallel crawler 
Many researches [7, 10, 11, 12, 29] have been done on improving the speed of 

crawler modules have adopted parallel approaches – both architectures and 

algorithms in parallel crawlers. A parallel crawler is a crawler whose fetching tasks 

are executed in parallel and therefore more efficiently on different machines. Buzzi 

[10] proposed a scheme to permit a parallel crawler to acquire information about the 

global state of a Website before the crawling process takes place. However, this 

scheme requires Web server cooperation in order to collect and publish information 

content which is needed for enabling a crawler to tune its visit strategy. The parallel 

crawler’s performance is relatively poor when it is directly applied to a news 

retrieval system. A more general drawback of parallel approaches for news retrieval 

however is that they still require that the crawler revisits all of the documents rather 

than just those documents which are of interest to users or which are most likely to 

have been updated since the last visit. We presented an optimized parallel crawler 

[21], which is proved to have better performance than traditional parallel crawler. 

 

1.2.5 MapReduce 

In an approach which goes beyond paralleling just crawlers, Google is using the 

MapReduce [13] library to line up all modules in parallel in their system, 

partitioning tasks into many different subtasks. MapReduce is a programming model 

and an associated implementation for processing and generating large data sets. 

Many studies [6, 18] have been done on parallelizing the computation by using some 

sort of programming model. People are interested in MapReduce since it has been 



 6

successfully used in Google. Some examples [32, 33, 34, 35, 36] of MapReduce are 

available on web. MapReduce has been highly effective; however, traditinoal 

MapReduce still suffers from the drawback that it is not able to estimate execution 

times for individual subtasks, so the shortest waiting time for the completion of any 

task could be the longest time of any sub-tasks. This makes the MapReduce fail in 

some special scenarios. 
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Chapter 2  

Preliminaries 
In this chapter we describe the fundamental theories and algorithms which will be 

used in Ai-Times.  

2.1 Inverted Indexing 

An inverted index is an index structure storing a mapping from words to their 

locations in a document or a set of documents, allowing full text search. It is the 

most popular data structure used in document retrieval systems. Given the texts T0 = 

"it is what it is", T1 = "what is it" and T2 = "it is a banana", we have the following 

inverted file index: 

"a":      {(2, 2)} 

"banana": {(2, 3)} 

"is":     {(0, 1), (0, 4), (1, 1), (2, 1)} 

"it":     {(0, 0), (0, 3), (1, 2), (2, 0)}  

"what":   {(0, 2), (1, 0)} 

where the pairs are document numbers and local word numbers. Like the 

document numbers, local word numbers also begin with zero. So, "banana": {(2, 3)} 

means the word "banana" is in the third document (T2), and it is the fourth word in 

that document (position 3). 

If we run a phrase search for "what is it" we get hits for all the three words in both 

documents 0 and 1. But the words occur only consecutively in document 1. 
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With the inverted index created, the query can now be resolved by jumping to the 

word id (via random access) in the inverted index. Random access is generally 

regarded as being faster than sequential access. 

In Ai-Times, we build 3 inverted indexes to accelerate the random access with 

huge data. 

2.2 MapReduce 

Over the past few years, Google has published details of their infrastructure. 

Developers within Google are able to easily write algorithms that efficiently and 

reliably process many terabytes of data. To do this, they leverage two technologies: 

the Google File System (GFS), which implements reliable distributed storage; and 

MapReduce, a method of processing large data sets. Dean and Ghemawat [13] have 

written a paper to introduce MapReduce. 

MapReduce is a programming model and an associated implementation for 

processing and generating large data sets. Users specify a map function that 

processes a key/value pair to generate a set of intermediate key/value pairs, and a 

reduce function that merges all intermediate values associated with the same 

intermediate key. 

Programs written in this functional style are automatically executed in parallel on 

a large cluster of commodity machines. One can efficiently "grep" weeks of logs 

from a high-volume site, constructing concise summaries. One can build efficiently 

searchable indexes of huge datasets. Such tasks are easily implemented with little 

coding effort. Scalability and reliability are handled by the system. 

In MapReduce, the computation takes a set of input key/value pairs, and produces 

a set of output key/value pairs. A whole round computation consists of two functions: 

Map and Reduce. 
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Map applies a function against each element of a list to get a transformed version 

of the list which consists of a set of intermediate key/value pairs. The intermediate 

key/value pairs will then be passed on to the Reduce. The Map function can be 

described as the following formula: 

Map (k, v) -> <k’, v’>. 

where: 

<k, v> is the input pairs which we called it “raw data”.  

<k’, v’> is the intermediate pairs generated by Map function. 

Reduce merges all intermediate values associated with the same intermediate key. 

It takes a function and runs it against items in the intermediate list, resulting in a 

single value for each invocation. The Reduce function can be described as following 

formula: 

Reduce (k’, v’) -> <k’, v’’>. 

where:  

<k’, v’> is the intermediate pairs generated by Map which is the input data to 

Reduce.  

<k’, v’’> is the result pairs generated by Reduce. Reduce merges all intermediated 

values associated with the same intermediate key and obtains the derived value v’’ 

associated with key k’. 

2.2.1 A Simple Example 

Here is a typical example in information retrieval system. Consider the problem of 

counting document frequency of each word in a large collection of documents. The 

problem can be interpreted by following Map and Reduce functions.     

Map(String key, String value): 
    // key: document name 
    // value: document contents 
    for each word w in value: 
        EmitIntermediate(w, "1"); 
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reduce(String key, Iterator values): 
    // key: a word 
    // values: a list of counts 
    int result = 0; 
        for each v in values: 
            result += ParseInt(v); 
        Emit(AsString(result)); 

Given the texts T0 = "it is what it is", T1 = "what is it" and T2 = "it is a banana", 

the Map function gets the following intermediate pairs: 

<it, 1>, <is, 1>, <what, 1>, <it, 1>, <is, 1> 

<what, 1>, <is, 1>, <it, 1> 

<it, 1>, <is, 1>, <a, 1>, < banana, 1> 

Map function returns each word with associated occurrences (say 1 here). The 

intermediate pairs are then passed on to the Reduce function. The result of the 

Reduce function is: 

<it, 4>, <is, 4>, <what, 2>, <a, 1>, < banana, 1> 

The Reduce function sums up all the occurrences for each particular word and 
returns the result. 

 

2.2.2 A Typical Example in WNRS: Indexing 
Indexing is an important module in an information retrieval system. Indexing 

module takes the extracted content as inputted data, segments the content individual 

words and then returns the <word, position_info1; position_info2...position_infok> 

list, and then write the result to the index. 

The Map and Reduce functions are as follows:     

Map(String url, String pure_content): 
    // url: the url of the web page. 
    // pure_content: The content after parsing and extraction. 

   for(each word v in pure_content) 

EmitIntermediate(v, position_info);    

    //position_info: The position information related to the word v. 

    

Reduce(String word, Iterator position_infos): 
    // word: a word 
    // position_infos: a list of position_info    
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    for each v in position_infos: 
        position_info_list= position_info_list+”;”+ v 

    Emit(position_info_list); 

 

The Map function segments the pure_content into word by word then returns the 

<word, position_info> pairs as intermediate result. The Reduce function merges the 

intermediate pairs and generates the <word, position_info1; 

position_info2...position_infok> as the output result. Using the same example as 

2.2.1, the Map function gets the following intermediate pairs: 

<it, (1,1)>, <is, (1,2)>, <what, (1,3)>, <it, (1,4)>, <is, (1,5)> 

<what, (2,1)>, <is, (2,2)>, <it, (2,3)> 

<it, (3,1)>, <is, (3,2)>, <a, (3,3)>, < banana, (3,4)> 

The Reduce function merges the intermediate pairs and generates the following 

result: 

<it, (1,1); (1,4); (2,3); (3,1); >. 

<is, (1,2); (1,5); (2,2); (3,2>. 

<what, (1,3); (2,1)>. 

<a, (3,3)>. 

< banana, (3,4)> 

The intermediate pairs having same key value are merged into one pair by Reduce 

function, for example, <what, (1,3)> and <what, (2,1)> have the same key value 

“what”, as a result these two intermediate pairs are merged into <what, (1,3); (2,1)>.  

2.3 Vector Space Model 

The vector space model [15, 27] has been widely used in the traditional IR field. 

Most search engines also use similarity measures based on this model to rank Web 

documents. The model creates a space in which both documents and queries are 



 12

represented by vectors. For a fixed collection of documents, an m-dimensional 

vector is generated for each document and each query forms sets of terms with 

associated weights, where m is the number of unique terms in the document 

collection. Then, a vector similarity function, such as the inner product, can be used 

to compute the similarity between a document and a query. 

The classic vector space model as proposed by Salton et al. [27] had both local 

and global parameters incorporated in the term weight (w(ij)) equation [27] (known 

as the tf-idf [15]): 

w(ij) = f(ij) x Log (D / d(j)) 

where: 

w(ij) is the term weight for keyword term j in document i. 

f(ij) is the frequency in which the term j occurred in the document i. 

d(j) is the number of documents containing the term j, and, 

D is the total number of documents. 

Note that the quotient, d(ij)/D, is essentially the probability of finding the 

document containing the term n, in the document set being used and represents the 

global parameter. 

The Vector Space Model has the following limitations: 

 Long documents are considered poor representatives of the Vector Space Model 

because they had poor similarity values (a small scalar product and a large 

dimensionality). 

 Documents with similar context but different term vocabulary ("False negative 

match", error of rejecting the documents which are actually relevant to the 

query). 
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 The search keywords were being typed during the search in an inappropriate 

manner giving poorer results e.g. key + ing, para + meter ("False positive 

match", error of not rejecting the documents which are not relevant to the 

query). 

We implemented an improved VSM (vector space model) with query expansion 

in Ai-Times. 
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Chapter 3  

Architecture and Algorithm of Ai-Times 
Figure 1 illustrates the architecture of Ai-Times, which is made up of some typical 

web based IR system modules: a web crawler, an extraction module, an index engine, 

and a search module etc... In the following we describe our modifications, the 

proposed optimized web crawler module, the news extraction module, the 

summarization module and their algorithms.  

 
Fig. 1. The architecture of Ai-Times 
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3.1 Optimized Crawler Algorithm 

One of the fundamental and important components of news information retrieval 

system is the Web Crawler that can collect the web document automatically. Much 

research has been done in this area, for instance, the Cobweb [30], is a typical Web 

Crawler. The classic crawler algorithm has been discussed in literature [11, 37]. 

These approaches [11, 30, 37], however, need to revisit all the web documents to 

update the news. To shorten the crawler’s refresh time, the Ai-Times web crawler 

module is optimized for collecting news from predefined news web sites. The 

crawler automatically categorizes documents at these sites as being of three types: 

valueless web documents, news content web documents, or index/list web 

documents. 

The definitions of valueless web document, news content web document, index/ 

list web document are given below: 

Valueless web document 
Valueless web documents are web documents that contribute nothing to the news 

retrieval, for example, an advertisement page, are not the object of news retrieval. 

News content web document 
News content web documents are web news documents that mainly contain the 

news text content or the news images or other multimedia sources. 

Index/list web document 
Index/list web documents are web documents that mainly contain hyperlinks      

linking to news content web documents with a relevant caption, which is often the 

news headline. This is the most frequently updated of these three types of web news 

document. 
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More than 90% of web documents of a news web site are news content web 

documents and they are seldom or never modified or updated. Typically, a crawler 

determines whether it is necessary to refresh a downloaded web document by 

sending a request to the web server and analyzing the return http header from the 

web server to get the last time the web document was modified. This not only wastes 

time and system resources, many http servers do not provide this information in the 

http header. One common refresh policy in this case is to revisit all web documents 

to find the update information. This is very time-consuming. An alternative refresh 

policy is to select and revisit important pages, but this method often leads to 

information loss [22].  

The proposed modified web crawler can avoid refreshing irrelevant documents 

because its definition of the three types of web documents allows the web crawler to 

update only index/list web documents, thereby shortening the refresh interval. 

The optimized crawler algorithm is as follows : 

Algorithm I: Optimized Crawler Algorithm: 
Begin 

Let I be a list of initial URLs of the news website; 

Let F be a queue; 

   For each URL i in I 

      Enqueue(i,F); 

   End 

   While F is not empty 

      u=Dequeue(F); 

      if u has not been processed 

         Get (u); 

         Case u’s type: 

         Valueless web document: 

            Skip u. 

         News content web document: 

            Store u; 

         Index or list page:  

            Extract the hyperlinks and relevant caption; 

            Let U be the set of hyperlinks extracted; 
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            For each hyperlink u in U 

               Enqueue(u,F); 

            End 

        Else—u has already been processed 

           Case u’s type 

              Valueless web document: 

                 Skip u; 

              News content web document: 

                 Skip u; 

              Index or list web document:  

                 Update checking 

        End 

        End 

End 

                  
It is often a time-consuming job to check whether a web document has been 

modified or updated. In general, the crawler should often rescan all the websites and 

all web documents for update checking.  

By categorize the web documents into 3 types, the Ai-Times web crawler needs 

not request all web documents during the update interval. As we can see from the 

Algorithm I, the optimized crawler will ignore the valueless web documents and 

news content web documents and only revisit the index/list web documents for 

update checking. This saves much time and makes the refresh interval shorter. 

3.2 Keen-Tag based News Extraction Algorithm 

To deal with the problem of extracting desired data from semi-structured documents, 

the Ai-Times news extraction module makes use of a keen tag extraction algorithm. 

Keen tags are defined as those tags that are most typically found in a webpage inside 

or around the news text content. These tags are used to help the news extraction 

module identify data rich parts of a web news document. Our research has shown 

that in most news web documents, the news text content string tokens always 

spatially cluster together in the html source code. The tags “<p>”,” </p>”,” <br>”,” 
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<font>”,” <img..>” will always be keen tags but other tags which are highly likely to 

signal data rich content are <font*>, </font>, <b>, <a href*>, </a>, <img*>, </br>, 

<strong>, </strong>, <div>, </div>, <center>, </center>.  

Figure 2 shows an example of “keen tags” from a document at 

http://www.cnn.com. 

 
 

            Fig. 2. A source example of the news content web document.     
 

It can be seen that the news content strings clustered in the html source are 

accompanied with the tag “<p>” and “</p>”. Defining keen tags allows us to divide 

the html source code of the web document – which consists of html tags and string 

tokens - into three categories: 

1. html tags that are keen tags. 

2. html tags that are not keen tags, such as <!==* and <form>. 

3. string tokens that are not html tags. 
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Algorithm II: News extraction algorithm 
This algorithm first determines whether a document is a news content document and 

then extracts the data rich part from this document. 

1.  Separate the html source code into many parts by the type 2 tags; 
therefore, each part contains the type1 and type3 strings. After that, 
the html source of the news document would look like this: 

tag1-tag1-tag3-tag3-tag3-tag1  tag2 tag3-tag3-tag1  tag2 tag3-tag1 
   
              part1                            part2                part3 

2.  Score each part, the scoring formulation is: 

Score (i)=∑
=

ni

k
klen

1
)(                               ----1 

where: 

i: the sequence of the part. For i=1,2,…n (n is the total number of 
the part).  

ni: the total number of type3 tags in the current part. 

k: the sequence of the type3 tags in the current part. For k=1,2,…ni. 

len(k)—the length of the kth type3 tag in the current part.   

3.   Select the score winner part as the data-rich part. 

4.   Evaluate the selected part to see if it is a news content web 
document. The equation is as below: 

            evaluate()=fin(score)* tin(hrenum)                ----2 

where: 

score: the score obtained from equation 1.  

hrefnum: the total number of hyperlink html tags(html tag like<a href…>) 
in that part. 

                   fin(k)=1 while k>N    

                   fin(k)=0 while k≤ N   
where: 

N: the predefined low range of the news content’s length. Any news 
document whose content length is shorter than N will not be considered 
to be a useful news web document. 

                   tin(k)=1 while k<T    

                   tin(k)=0 while k≥ T    
where 

T: the predefined up range of the total number of the link tags in a 
news content. Any news document that contains more than T link tags 
within the news content will not be considered as a useful news web 
document. 

5. If the evaluate() = 1, this web document can be regarded as a news 
content web document, and then the selected data rich part will be 
extracted as the news text content. 

 
We define a list containing universal keen tags as below: 
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The list: <p>, </p>, <font*>, </font>, <b>, <a href*>, </a>, <img*>, <br>, 

<strong>, </strong>, </div>, <div>, <center>, </center>.   

Besides the universal keen tags we have defined before, there are still some 

website-related keen tags that we can derive from the training phrase. At the training 

phrase, the well-defined web news document will be inputted and the system will 

analyze these web news documents based on some pre-defined rules, then output the 

website-relevant keen tags. 

 

3.3 Automatic Summarization Algorithm 

The amount of news information available electronically has grown dramatically. 

There is an increasing demand for domain-independent summarization method. 

Ai-Times can generate the news summary automatically. In this section we describe 

the automatic summarization module of Ai-Times. The process of Ai-Times 

automatic summarization consists of the following three steps: characteristic words 

generation, sentence weighting and summary generation. In section 3.4.1 we 

describe the characteristic words generation. In section 3.4.2 we describe the 

sentence weighting and in section 3.4.3 we describe the summary generation. 

3.3.1 Characteristic Words Generation 
Characteristic words are generated by word segmentation algorithm and 

characteristic word weighting equation based on Statistical and Probabilistic 

Approach [4].  Words in web news document are assigned to different weighting 

based on their importance and frequency in document. Words with highest weighting 

are extracted as characteristic words. The occurrence frequency of a word in a 

document and the number of documents containing it are important factors to 

calculating the characteristic weight. 
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The summarization algorithm scans a web news document and finds out proper 

words in the web news document based on the word occurrence frequency and word 

length, then, uses the following equation: 

 

where: 

w is the Chinese word extracted from a sentence in the web news document 

P(w) is the weight of w 

Ft(w) is the frequency of w 

L(w) is the length of w 

numdoc is the number of documents which contains w 

totalnumdoc is the total number of documents 

D is the minimum length of w 

c is the influence of the length of the sequence of Chinese characters 

Characteristic words can only be treated as keywords for retrieving the relevant 

web news documents. These words carry no semantic meaning. 

3.3.2 Sentence Weighting 

So far, we have described how to generate characteristic words. Note that the second 

step of our summarization algorithm is sentence weighting. In this step sentences are 

assigned weights, which indicate their importance in a web news document. The 

higher the weight, the greater the importance. The highest weight is assigned to the 

sentence that presents the most important concept of the web news document. 

Important sentences must have the features of more characteristic words in the 

sentence; of higher characteristic weight of characteristic words in the sentence; of 

shorter length of sentences; of having less sub-sentences for an important sentence; 

( )ct DwL
umdoctota

numdocwFwP −•⎟
⎠
⎞

⎜
⎝
⎛ −•= )(
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and of less numeral words in the sentence. The following equation computes the 

sentence’s importance weight. 

msss

L
sL

N

i
i

•••
=

∑
=

210

1)(  

where: 

N is the number of Characteristic words in the sentence. 

iL , i=1 to N, is characteristic weight of the ith characteristic word in the sentence. 

0s  is the total number of words in the sentence. 

1s  is the number of sub-sentences in the sentence. 

2s  is the number of numeral words in the sentence. 

m is an integer variable. Normally, it is set to 1. 

The sentence containing more characteristic words will be assigned a higher 

weight. The sentence containing more number of sub-sentences, words and numeral 

will be assigned a smaller weight.  The title and sub-title of the document and the 

main sentence in the paragraph would be assigned a higher sentence weight 

dynamically. Important sentences can then be extracted from a document.  

3.3.3 Summary Generation 

The third step of Ai-Times summarization algorithm is summary generation. In this 

step, the sentences with the highest sentence weight are extracted to generate a 

summary in a particular ratio required by the user according to the following 

equation.  The created summary is the compressed version of the original document.  

Different summary ratios can create different quality of the summary.  

RLsAbstract
x

i
i •== ∑

=1
||  
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where: 

L is the length of the web news document. 

R is the abstract ratio. 

is  is the sentence with ith highest sentence weight. 

is  is the length of is . 

 

3.4 Experiments 

In this chapter we describe experiments and results on the comparison of the update 

speed of the Ai-Times single optimized crawler with the single traditional crawler; 

we evaluate the news extraction module. In each case Ai-times is run on several PC 

servers with the following configuration: CPU: p4 2.4 GHz; RAM: 512 MB; 

Bandwidth: 1MB. 

 

3.4.1 Performance of Optimized Crawler 
In this experiment we compare and test the speed with which the optimized crawler 

updates downloaded documents, the update interval. Though it is difficult for us to 

obtain the exact consumed time of the update interval of the crawler, we measured 

the update interval as follows. We can compare our optimized crawler algorithm with 

traditional crawler algorithm in the following way: 

In the experiment, our crawler has processed 3.53 million web documents in 

roughly 6 days. Assume that the traditional crawler has also processed the same 

number of web documents in a certain days; we then start a new round of web 

crawling. As stated earlier, our optimized crawler should only revisit the index/list 

web documents (in our experiment the number of the index /list web documents is 



 24

0.37 million) while the traditional crawler should revisit all web documents (in our 

experiment the number of all web documents is 3.53 millions). The consumed time 

is linear to the number of the web documents the crawler visits. 

Figure 3 shows the improvement in terms of the performance of our optimized 

crawler algorithm compared to the traditional algorithms. The traditional crawlers 

revisited 3.53 millions and 2.47 millions web documents respectively, while our 

proposed optimized crawler only revisited 0.37 millions web documents. The update 

interval of the optimized crawler is substantially 85% shorter than the traditional 

crawlers. 
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Fig. 3. Compare the optimized crawler with the traditional crawler. 

 
 

3.4.2 News Extraction 
In previous experiment, we defined a keen tag list for global use: 

<p *>, </p>, <font *>, </font>, <b>, <a *>, </a>, <img *>, <br *>,</br>, 

<strong>, </strong>, </div>, <div *>, <center>, </center>. By using this keen tag list, 

our system has downloaded totally 1.46 million news documents.  

To measure the effectiveness of the news extraction module, two ratios are used: 

precision and recall. Precision is the ratio of the number of correctly fetched web 
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news documents to the total number of fetched web news documents that may 

contain some rubbish. Recall is the ratio of number of correctly fetched web news 

documents to the total number of web news documents in all predefined news 

websites. Because it is difficult for us to obtain the total number of web news 

documents or to verify each fetched web document to see whether it is correct or 

wrong, we approximate the recall and precision in the following way: 

                   pre=num(r1)/num(N1)                          (1) 

where:  

pre is the precision.  

N1 is a set of documents randomly selected from fetched web news documents.  

r1 is the correctly fetched web news documents in N1. 

num(S) is the function to obtain the number of the units in collection S. 

                   rec=num(r2)/num(N2)                          (2) 

where:  

rec is the recall.  

N2 is a set of documents randomly selected from total web news documents.  

r2 is the web news documents in N2 fetched by our system.  

num(S) is also the function to obtain the number of the units in collection S. 

We then select 1,000 web news documents from fetched web news documents 

and the number of correctly fetched documents in them is 915. We also select 1,000 

web news documents from total web news documents and the number of fetched 

web news documents is 876. Therefore, we can obtain the approximation as 

following: 

      pre=915/1000=0.915 

      rec=876/1000=0.876 
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Note that we use the “keen tag” analyzing method to extract the news content so 

we need not implement different wrappers for different news websites; the 

effectiveness of our system is relatively acceptable. 

Our system also provides a friendly UI for the user to access the news archive. It 

can be shown as below: 

 
 

 
 
 
 

     
 

  Fig. 4. User interface of Ai-times 
 

Below is an example of extracting process: 

News 
category 

Retrievaled news list 

News Content of 
Selected news 

News source 

Downloaded time 
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Fig. 5. The web news document 
 
 

 
  

Fig. 6. The html source code of the news  
 

Separated the html source code into many parts. The result can be shown as figure 

7. 
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From Figure 8 we can see that system has scored each part and selected the part 

having the highest score as the data rich part.  

Evaluated the selected data rich part, N was defined to be 100 and T was defined 

to be 5, thus the evaluate function is as below: 

111(0)tin (2159)fin  evaluate =•=•=   

As the length of the extracted data rich part is longer than the previously defined 

value 100 and the number of the hyperlinks is not more than 5. Thus the selected part 

was extracted to be the news content and the web document was classified as a news 

content web document. 

 

Fig. 7. Separated by type2 tag 
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    Fig. 8. Select the data rich part           
 
 
 
 

3.5 Conclusion 

In this chapter we presented our modifications, the proposed optimized web crawler 

module, the news extraction module and the summarization module and their 

algorithms. By distinguishing the web document as important and unimportant, the 

optimized crawler can fetch the web news nearly 6 times faster than the traditional 

crawler during the update interval. Using the keen tag based extraction algorithm, the 

news extraction module can extract the news content from the web news document 

with nearly zero manual effort. 

In next chapter, we will discuss another two important modules in Ai-Times: 

Indexing module and Retrieval module.

The scoring winner part 
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Chapter 4  

Indexing and Retrieval Strategy 
The headache of building an effective search engine is that most of the data, typically 

documents in words, are not structured in a common interface. Although it is impossible to 

get exact relevant information for each user because the final judgment depends on 

individual user, it is achievable to get fairly appropriate information which met the user’s 

need. There exist numerous algorithms [15] for information retrieval.  In Ai-Times, we try 

to grant the maximum relevance information by applying the concept of Vector Space Model, 

Term Reweighting, Query Expansion as well as Inverted Indexing structures.  Figure 9 

shows the index and retrieval architecture: 

Text
Data

Inverted Index
(4 sub-indexes)

Searching

Query Operation

Ranking

Ranked
Docs

Retrieved
Docs

Query

   Indexing
Data
Access

     User Interface
    or Other Input

Stemming, Stop word
removing etc.

Result

Query Expansion

\ 
Fig. 9. Index and retrieval architecture 
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4.1 Inverted Indexing Strategy 

In order to speed up the search, we build an inverted index over the data. Our 

inverted index’s structure can be shown in Figure 10: 

 
 
 
 
 
 
 
 
 
 
 
 
              
                      Fig. 10. Inverted index in Ai-Times 
 

Inverted index in Ai-Times contains 3 sub-indexes; each sub-index is an inverted 

index format. The definition of the 3 sub-indexes is given as below: 

Basic Index: the inverted index contains the [term-doc] information. The basic 

index allows us to retrieve the documents containing a specified term quickly. 

Idf Index: the inverted index contains the [term-termidf] information. The idf 

index allows us to retrieve the idf value of a specified term quickly. The idf (inverse 

document frequency) is a measure of the general importance of the term: 

)/( jj dDLogIdf =  

where: 

jIdf  is the inverse document frequency of the term j. 

D is the number of the total documents. 

jd  is the number of documents containing the term j. 

Docw Index is the inverted index contains the [doc-docweight] information. The 

docw index allows us to retrieve the docw value of a specified document quickly.  

Basic 
Index 

Docw 
Index 

     Inverted Index 

Idf 
Index 
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∑
=

=
jn

k
j kjdocw w

1

2)(  

where: 

jdocw  is the document weight of the document j; 

kjw
 is the idf value of the kth term in document j; 

jn
 is the number of the terms in document j; 

Figure 11 shows the indexing execution flow: 
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Fig. 11. Indexing Flow in Ai-Times 
 
 
 

Fig. 11. Indexing Execution Flow of Ai-Times 
 

4.2 Improve VSM using Query Expansion and Term Reweighting 

Ai-Times’s retrieval model is based on VSM, for all fetched web documents, 

an m-dimensional vector is generated for each web document from sets of terms with 

          Create the Docw Index 

Calculate the <doc docw> for all 
terms in basic index . Add these 
information to Docw Index. 

           Create the Idf Index 

Calculate the <term idf> for all 
terms in basic index . Add these 
information to Idf Index. 

While (having docs to be 
indexed) 

Lowercase, Stemming, 
removing the stop words 

Add the doc to the Basic Index 

          Create The Basic Index 
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associated weights, where m is the number of unique terms in the document 

collection. A cosine similarity measure is used to compute the similarity between a 

document jdoc  and a query q. 

||
)doc(q, Similarity

1

2

1
j

)(

)(

Qkj

kkj
m

k

m

k

w

vw

•

=

∑
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=

=  

)/( jkjkj dDLogfw •=  

)/( jkk dDLogfv •=  

where: 

kjw  is the term weight for keyword term k in document j. 

kjf
 is the frequency in which the term j occurred in the document j.  

jd
 is the number of documents containing the term k, and,  

D is the total number of documents in the set.  

kv  is the term weight for keyword term k in the query. 

kf  is the frequency in which the term j occurred in the query. 

Q is the query weight. 

However, the problem of mismatch is becoming more and more common. People 

often use different words to describe their concepts. A novel solution to this problem 

is query expansion [4, 26]. Using query expansion, an initial search is made by the 

system with a user-provided query and the user then indicates which of the returned 

documents are relevant and which are irrelevant. The system then expands the initial 

query using words with similar meaning to those in the query. The expanded query 

often returns improved result though need additional user adjustment [26].  
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Instead of the user manually adjustment, an alternative approach is to expand the 

query by automatically analyzing the initially returned result. This approach, which 

is called pseudo-relevance feedback, probably consisting of automatically query 

expansion, term reweighting or both of them, has been proved to be useful and 

efficient [3, 31].  

In Ai-Times, we use pseudo-relevance feedback to improve the initial query 

formulation by applying both query expansion and term reweighting. We expand the 

query firstly and then reweight the terms in the expanded query. Either the query 

expansion or the term reweighting has been proved to be efficient [3, 31]. Ai-Times 

uses both of them and the performance is relatively better than either single one. We 

will show the comparison result in Section 4.3. 

When user submits an initial query to Ai-Times, system retrieves the top 10 

documents with highest relevance measuring score and the top 10 documents with 

lowest relevance measuring score based on simple vector space model cosine 

similarity measure. The top 10 documents with highest relevance measuring score 

are assumed to be relevant and the top 10 documents with lowest relevance 

measuring score are assumed to be irrelevant. After the initial retrieval, system 

automatically analyzes the returned documents and then applies query expansion and 

term reweighting on the original query. 

Figure 12 shows the query operation flow in Ai-Times. System firstly process the 

query on stemming and removing stop words, then retrieve the top N documents 

with highest similarity score , apply query operation and then do the retrieving again. 
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Fig. 12. Query operation flow in Ai-Times 
 

4.2.1 Query Expansion 
Under the bag of words model, if a relevant document does not contain the terms that 

are in the query, then that document will not be retrieved. The aim of query 

expansion is to reduce this query/document mismatch by expanding the query using 

words or phrases with a similar meaning or some other statistical relation to the set 

of relevant documents.  

As previously stated, Ai-Times retrieves the top 10 documents with highest 

relevance measuring score based on simple vector space model cosine similarity 

Process the query: lowercase, 
stemming, removing stop words 

Retrieve the docs containing at least 
on terms of the query 

Calculate the score for all retrieved 
docs and rank the docs by score  

Return the TOPN result 

Operate the query: expand 
the query using some term 
selecting method; reweigh 
the query terms etc. 

Query Expansion or 
Term reweigh? 

Retrieving finish. Return the 
result 

yes 
no
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measure. The top 10 documents with highest relevance measuring score are assumed 

to be relevant. Then we select the terms that are most relevant to the query and add 

these terms to expand the initial query.  

We rank all the terms in retrieved documents using following formula: 

                     ∑∑
==

−=
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k
kjj wwtw

11
                                

where: 

jtw  is the weight we used to rank the terms 

kn  is the number of the relevant documents containing term j. 

in  is the number of the irrelevant documents containing term j. 

kjw  is term weight of term j in kth relevant document 

ijw  is term weight of term j in ith irrelevant document. 

After the query expansion, the initial query >…< N1 .termterm  is expanded 

to the expanded query >……< +KNN1 .term.termterm . Here is a simple example 

of the query expansion: 

The initial query: Reporting on possibility of and search for extra-terrestrial 

life/intelligence? 

The expanded query: extraterrestrials, planetary society, universe, civilization, 

planet, radio signal, seti, sagan, search, earth, extraterrestrial intelligence, alien, 

astronomer, star, radio receiver, nasa, earthlings, galaxy, life, intelligence, meta 

receiver, radio search, discovery, northern hemisphere, national aeronautics, jet 

propulsion laboratory, soup, space, radio frequency, radio wave, klein, receiver, 

comet, steven spielberg, telescope, scientist, signal, mars, moises bermudez, extra 

terrestrial, harvard university, water hole, space administration, message, creature, 
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astronomer carl sagan, intelligent life, meta ii, radioastronomy, meta project, cosmos, 

argentina, trillions, raul colomb, ufos, meta, evidence, ames research center, 

california institute, history, hydrogen atom, columbus discovery, hypothesis, third 

kind, institute, mop, chance, film, signs. 

 

4.2.2 Term Reweighting 
The advantages of the traditional query expansion are simplicity and good results. 

However, due to the simplicity, the term occurrence pattern is not considered 

explicitly. To supplement the query expansion techniques, we apply classic 

reweighting formula Rocchio [25] to modify the term weight of the expanded query.  

Same as the query expansion, we reweight the terms by automatically analyzing 

the returned result. We submit the expanded query to the system and get the top 10 

documents with highest relevance measuring score and the top 10 documents with 

lowest relevance measuring score. As stated before, the top 10 documents with 

highest relevance measuring score are assumed to be relevant and the top 10 

documents with lowest relevance measuring score are assumed to be irrelevant.  

After the second round automatically retrieval, based on the returned documents, we 

increase weights of terms from relevant documents and decrease weight of terms 

from irrelevant documents. The query is reweighed using classic Rocchio [25] 

algorithm: 

         ∑∑
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where: 

jtw  is new weight of the term in the query 

kn  is the number of the relevant documents containing term j. 
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in  is the number of the irrelevant documents containing term j. 

kjw  is the term weight of term j in kth relevant document 

ijw  is the term weight of term j in ith irrelevant document. 

jow  is the initial weight of the term in the query. 

After term reweighting, the expanded query >…< N1 .termterm ‘s weight 

vector >…< N1 .owow  will be reweighed to weight vector >…< N1 .twtw .  

4.3 Experiments and results 

4.3.1 Overview 
In the experiment, we indexed 64814 documents; the data size is around 419 Mb. 

After indexing, the size of 3 sub-indexes is: 

Basic Index: 177 MB 

Idf Index: 7.77 MB 

Docw Index: 2.74 MB 

Ai-Times retrieves the top 10 documents with highest relevance measuring score 

and the top 10 documents with lowest relevance measuring score based on simple 

vector space model cosine similarity measure. The top 10 documents with highest 

relevance measuring score are assumed to be relevant and the top 10 documents with 

lowest relevance measuring score are assumed to be irrelevant. 

4.3.2 Evaluation Measures 
Recall and precision are used to evaluate the performance of the retrieval model. 

I. Recall 

A measure of the ability of a system to present all relevant items. 

recall =number of relevant items retrieved/number of relevant items in collection 

II. Precision. 
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A measure of the ability of a system to present only relevant items. 

precision =number of relevant items retrieved/total number of items retrieved. 

Precision and recall are set-based measures. That is, they evaluate the quality of 

an unordered set of retrieved documents. To evaluate ranked lists, precision can be 

plotted against recall after each retrieved document as shown in the example below. 

To facilitate computing average performance over a set of topics, each with a 

different number of relevant documents, individual topic precision values are 

interpolated to a set of standard recall levels (0 to 1 in increments of .1). 

The particular rule used to interpolate precision at standard recall level I is to use 

the maximum precision obtained for the topic for any actual recall level greater than 

or equal to i. Note that while precision is not defined at a recall of 0.0, this 

interpolation rule does define an interpolated value for recall level 0.0. In the 

example, the actual precision values are plotted with circles (and connected by a 

solid line) and the interpolated precision is shown with the dashed line. 

4.3.3 Results 
The interpolated recall-precision chart shows the improvement of query operation. 

Figure 13 shows the Interpolated Recall - Precision Averages information of the 

traditional VSM: 
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Fig. 13. Interpolated Recall - Precision Averages chart of VSM 
 

Figure 14 shows the Interpolated Recall - Precision Averages information of the 

VSM+Query Expansion model: 
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Fig. 14. Interpolated Recall - Precision Averages chart of VSM+Query Expansion 
 



 42

Figure 15 shows the Interpolated Recall - Precision Averages information of 

VSM+Term Reweighting model: 
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Fig. 15. Interpolated Recall - Precision Averages chart of VSM+Term Reweighting 
 

Figure 16 shows that the performance of VSM+Query Expansion+Term 

Reweighting is the best in the total 4 models. 
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Comparision of 4 Models
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Fig. 16. VSM+Query Expansion+Term Reweighting 
 

 

From these figures we can see that both VSM+Query Expansion and VSM+ Term 

Reweighting models have better performance than the pure VSM model. However, 

when compared with the VSM+Query Expansion+Term Reweighting model, for any 

given the Recall value, the VSM+Query Expansion+Term Reweighting always has 

better Precision. Therefore, it is obvious that the VSM+Query Expansion+Term 

Reweighting model has the best performance in all 4 models. 

 

4.4 Conclusion 

In this chapter we presented the indexing and retrieval model of Ai-Times. The 

Ai-Times index contains 3 sub-indexes basic index, idf index and docw index. The 

Ai-Times index allows us to quickly retrieve the news for users. We use query 
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expansion and term reweighting to improve the traditional VSM model. Section 4.3 

shows that the modified VSM model has best performance in total 4 models.  

In next chapter we will discuss how MapReduce is used in Ai-Times to parallel all 

the modules and how we modify the traditional MapReduce to get better 

performance. 
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Chapter 5  

Parallel Strategy  

5.1 Traditional Parallel Strategy 

As the size of the web grows; it is difficult for a single crawler node to finish 

downloading pages in a reasonable amount of time. In order to address this problem, 

we extended the crawler to parallel architecture [21] in stage 2 and providing details 

below. 

Parallel crawler has been well studied [7, 12, 29]. A parallel crawler has many 

advantages compared to a single node crawler [12]. Junghoo Cho [12] compared 

multiple architecture of parallel crawlers and clarified the relative metric of each 

architecture. However, the general-purpose parallel crawler’s architecture is not 

applicable to news retrieval problem. A more general drawback of parallel 

approaches for news retrieval however is that they still require that the crawler 

revisit all of the documents rather than just those documents which are of interest to 

users or which are most likely to have been updated since the last visit. We present 

our parallel crawler’s architecture and then discuss its characteristics. 

Figure 17 illustrates the architecture of Ai-Times parallel crawler. Ai-Times 

parallel crawler consists of several crawler nodes which can cooperate well in 

fetching the web documents. Ai-Times parallel is using static task assignment 

scheme [12] to assign tasks and using batch url exchanging scheme to reduce 

communication overhead. 
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Fig. 17. Architecture of Ai-Times parallel crawler 
 

Task assignment 
When multiple crawler nodes download web pages in parallel, they need to 

coordinate with each other to avoid overlap downloading. In order to minimize the 

communication overhead, the static assignment scheme [12] is used in our parallel 

crawler. 

In this scheme, urls in the queues are partitioned by their hash value. Each crawler 

node knows which url should be processed by which crawler node. When a crawler 

node gets a url which should be processed by other crawler node, it will put the url 

into a temp queue and then transfer the url to corresponding crawler node through 

batch url exchanging.   

Url hash function 
A url hash function is used to compute a web page’s hash value. Based on the hash 

value, the web page is assigned to relative crawler node. We compute the hash value 

based on the site name of the web page. In this case, web pages from a same site will 

be allocated to a same crawler node. 
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Batch url exchanging scheme 
When a crawler node discovers a link that points to a web page which should be 

processed by other crawler nodes, it will put this link into a temp url queue for a 

while and then transfer to relative crawler node when the number of the links in the 

temp queue has reached a predefined threshold. On the other hand, a crawler node is 

always ready to accept the request from other crawler nodes which is ready to send 

urls to it.  

The batch url exchanging scheme reduces communication overhead and 

guarantees the coverage of the crawler as a whole.  

 

5.2 Using MapReduce in Ai-Times 

During the development of the traditional parallel strategy of Ai-Times, we found 

that the input data of many modules such as the Parsing and Extraction module, 

Indexing module were usually huge, thus the computation effort is better shared by 

multiple machines. We should extend most modules to parallel architecture. 

However, the coding effort, scalability and fault tolerant ability of traditional parallel 

algorithm are becoming bottlenecks. We should continue to improve the parallel 

strategy of Ai-Times. 

The existing news information retrieval systems [10, 12, 29] have already 

discussed how to use appropriate techniques to decentralize the computation in a 

news retrieval system. However, little study has been done on using MapReduce in a 

web information retrieval system. In particular, we believe the following issues make 

the study of using MapReduce in Ai-Times interesting and challenging:   
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Scalability 
The input data is usually large in an information retrieval system and the 

computation effort should be shared by multiple machines. With the explosion of the 

online web pages, the system should be easy to be extended by adding some 

machines into the system. This requires the system to be much scalable. At this point, 

a news retrieval system can benefit much from MapReduce. 

Minimize coding effort 
Note that the information retrieval system is usually a large-scale system. It consists 

of many modules such as crawler, indexing, parsing and extraction etc… In order to 

parallelize these tasks, distribute the fetched data and handle the failure of machines, 

we often implement large code which is quite complex to manage. By using 

MapReduce, we can hide the distribution and fault tolerance within the MapReduce 

library and provide an abstract interface to the programmer. Thus the code is often 

simpler and smaller. 

Fault Tolerance 
Note that failure of the machines or the hard disks is very common in an information 

retrieval system. Failure of a running machine or an active hard disk should not 

cause the whole system fail or any data lost. MapReduce is resilient to large-scale 

machine failures. MapReduce is based on a global file system [14], thus we can 

quickly recover the data when a disk fails. 

 

5.2.1 Global File System 

Note that in an information retrieval system, files are usually very huge by traditional 

standards. In Ai-Times [20], it is very common that a file grows to multi-GB size. 

The file may contain the downloaded web page objects or indexing objects. 
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Failure of the hard disks is very common. Once the hard disks fails, all the data 

stored on that component should be considered lost though we may be able to fix the 

failed hard disks later. 

Most files are mutated by appending new data. Random recording data is 

prohibited. 

In order to design a file system that meets Google’s need, Google designs and 

implements a file system named Google File System [14].  

Figure 18 describes the GFS architecture: 

 

 
Fig. 18. GFS architecture 

                  
Global file system is a pre-condition of using MapReduce in a search engine. 

Therefore, Ai-Times has a very simple implementation of global file system based on 

which we can implement MapReduce. Ai-Times’ global file system is a simple 

implementation of google file system and does not have the garbage collection and 

diagnostic tools which are all contained in google file system. It just basically 

satisfies our requirement to implement a MapReduce based news retrieval system. 

Ai-Times’ global file system consists of a single master node (also named as Fs 

node) which is responsible for managing the files name space which basically 

Client Fs node 

Data node Data node Data node 



 50

contains a table describing which file consists of which set of chunks. The data 

structure in the Fs node is simple: 

filename_1 --> chunkID_11, chunkID _12, ... chunkID _1X1. 

.. 

filename_k --> chunkID_k1, chunkID _k2, ... chunkID _kXk. 

where: 

finename_k is a string identifying the kth file’s name. The file contains Xk chunks 

which are identified by chunkID_k0, chunkID _k1, ... chunkID _kXk. As the file 

grows, the number of the chunks associated with the file increases.  

Data nodes are responsible for storing data: 

chunkID_ij --> [array of bytes] 

As stated above, files in Ai-Times’ global file system are divided into fixed-size 

chunks. Each chunk is identified by a unique global id.  

A given chunk should have at least 2 copies stored on multiple data nodes in case 

the failure of any data node. A given Data node has at most one copy of a given 

chunk, and will often have no copies. 

 

5.2.2 MapReduce Architecture Design 
The input data of the Map function will be partitioned into M splits associated with 

the number of the available nodes. These spits can be processed in parallel on 

distributed Map task nodes. 

The size of each split can be determined by the requirement and related 

implementation. In Google, the size is between 16MB-64MB [14]. 

Reduce tasks are also distributed by partitioning the intermediate key space into a number 

of pieces. At the end of the computation, all the reduce results will be collected as whole 

output. 
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The Execution flow is straightforward shown in Figure 19： 

 

 
             Fig. 19. Execution flow of MapReduce  
 

Figure 19 shows the execution flow of a whole computation round. Input data is 

partitioned into M pieces and is then passed to M Map nodes. Each Map node 

processes the input pairs, generates the intermediate pairs which are partitioned into 

R pieces according to some hash function on the intermediate key. Both the Map 

node and the Reduce node are task execution node. However, in order to make the 

system have the knowledge about splitting the input data, assigning the tasks and 

managing the node state, we should have a node which is responsible for the tasks 

stated above.  Google call this kind of nodes “Master”. 

There are three types of nodes in the MapReduce system now. The map node and 

the reduce node are responsible for processing map task and reduce task respectively. 

The master node stores all map and reduce nodes’ state and the idle nodes’ state.  

Note that the MapReduce programming is based on GFS [14]. As stated in 

chapter 5.2.1, there are other two types of nodes: FS node and data node. Therefore, 

the architecture of MapReduce can be shown in Figure 20: 
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Fig. 20. Architecture of MapReduce 
 

5.2.3 Fault Tolerance 
As stated before, there are totally 5 types of nodes in the MapReduce system: Master 

node, Map node, Reduce node, Fs node and data node. Also we have some idle 

nodes which are just waiting for scheduling from the Master node and doing nothing 

else. If an idle node is scheduled by the Master node, it becomes some type of node 

stated above. 

The Master node stores all map and reduce nodes’ state and the idle nodes’ state. 

Master knows how to partition the input pairs and the intermediate pairs, assigns 

Map and Reduce tasks to related idle nodes, and keeps all tasks’ state. It asks another 

idle node to re-execute a task once that task execution fails. 

Map node and Reduce node execute Map and Reduce tasks respectively. They 

communicate with the Master node periodically to let Master know their up-to-date 

state. They also send heart beat message to master every five seconds (The interval is 

configurable). If the Master has not received the heart beat message from a task node 

for more than 60 seconds, Master marks the task executing on that node as failed and 

asks another idle node to re-execute the failed task. 
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Data node failure 
It should be clear that the system is mostly available and reliable when chunks are 

available on many different Data nodes. A Data node failure does not mean the data will 

disappear. Once a data node fails, the FS node simply passes the client’s requests to other 

nodes containing the backup chunks and replicates the failed chunks on other data node.  

FS node failure 
The FS node is a critical failure node. If the FS node fails, the whole system is 

unavailable. However, the FS node needs to do little actual work so that the load on it is not 

high. In order to handle the FS node failure scenario, the system should backup FS node’s 

data periodically. 

Map node or Reduce node failure 
It is common in a MapReduce system that a task node fails its task. The task node 

uploads to the Master node its task’s state periodically. It also sends periodic heart beat 

message to Master node. Once the Master does not receive the heart beat message from a 

task node, Master marks the task as failed and put the task in the task list for rescheduling. 

Master node failure 
Similar with the FS node, the Master is also a critical failure node. In Google’s 

implementation, MapReduce system will abort the computation once the master node fails. 

However, this is not a good idea when the MapReduce system is going to derive some 

important data. One solution is to build a backup master node whose data and state is 

synchronized with the Master node. Any insert, update, or delete operation on the master 

node’s state tree will trig a same operation on the backup master node. 

Using a backup master node loses some efficiency of the whole system because of 

the synchronization. However, consider the fault tolerance ability; it is worth adding 

a backup master node when the MapReduce system is used for some critical jobs. 
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5.2.4 Using MapReduce in Parallel Crawler 
We present an optimized distributed crawler [21] in stage 2 of Ai-Times. The static 

assignment scheme [12] is used in task assignment. The batch url exchanging is used 

to reduce communication overhead and guarantee the coverage of the crawler as a 

whole. However, when used in more than 10 servers, the program begins very 

complex to manage. To fetch more than 500 millions pages is impossible. 

Using MapReduce in crawler module makes the program more simple and 

scalable and makes the task to fetch more than 1000 millions possible. Figure 21 

shows the Execution flow of crawler using MapReduce. 

 

 
 

       Fig. 21. The Execution flow of crawler using MapReduce 
 

The Map and Reduce functions of crawler module:     

Map (String url, String url_info): 

// url: the url of the web page to be fetched. 

// url_info: related knowledge of the url. 

if the web page is fetched successfully: 

EmitIntermediate(url, content); 

Reduce is identity 

Reduce is identity means that the Reduce function will not do any operation on 

the intermediate pairs and just return the intermediate pairs as the final result. In this 
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case, Reduce in the Crawler module just outputs the intermediate pairs (url, content) 

as final result. 

5.2.5 Using MapReduce in Distributed Parsing and Extraction 
Content parsing and extraction is a time consuming task because the input data is 

usually very huge. In stage 2, Ai-Times never distributes this kind of tasks so the 

parsing and extraction is usually a bottleneck of distributable processing. 

Using MapReduce to distribute the parsing and extraction will by no means 

eliminate this bottleneck. Figure 22 shows the Execution flow of parsing and 

extraction module using MapReduce: 

 

 
 

Fig. 22. The Execution flow of parsing and extraction module        
 
The Map and Reduce functions of parsing and extraction module:     

Map (String url, String content): 
    // url: the url of the fetched web page. 

// content: the html content of the fetched web page. 

    If the web page is parsed correctly: 

      EmitIntermediate (url, pure_content); 

EmitIntermediate (url, outlinks); 

    // pure_content: The content of the web page after parsing and 
extraction. 

    // outlinks: The list of the out links originated from the web page. 
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Same as the crawler module, Reduce in the Parsing and Extraction module is 

identity, just outputs the intermediate pairs (url, pure_content) and (url, outlinks) as 

final result. 

 
5.2.6 Using MapReduce in Distributed Updating Web Db 

After crawling, parsing and extraction, we should update the old web db using the 

output data derived from previous two steps for example, the outlinks data. Similarly, 

the input data of the update operation is huge so MapReduce is also quite useful here. 

Figure 23 shows the Execution flow of Update module using MapReduce: 

 

 
 

Fig. 23. the Execution flow of Update module using MapReduce 
 
The Map and Reduce functions of update module:     

Map (String url, List outlinks): 

// url: the url of the web page. 

// outlinks: The list of the out links originated from the web page. 

if the web page is parsed correctly: 

EmitIntermediate (url, url_info); 

     // url_info: related knowledge of the url. 

    

Reduce (String url, Iterator url_infos): 

// url: a url 

// url_infos: a list of url_info 

Url_Info url_info= null; 

<url,outlink> Map(url, 
outlink) 

Map(url, 
outlink) 

Map(url, 
outlink) 

Reduce() 

Reduce() 

Reduce() 

Output1 

Output2 

OutputR 

<url, outlink 
> 

<url, outlink 
> 



 57

for each v in url_infos: 

url_info.update(v);//update the url_info 

Emit(url_info); 

 
5.2.7 Using MapReduce in Distributed Indexing 

The most significant use of MapReduce in Google has been a complete rewrite of the 

indexing system [13]. However, Google Inc. never describes much implementation 

or algorithm details of Google distributed indexing module. In Ai-Times, the 

Execution flow of the distributed indexing module using MapReduce can be shown 

as below: 

 
 

Fig. 24. the Execution flow of Indexing module using MapReduce 
 
The Map and Reduce functions of indexing module:     

Map(String url, String pure_content): 

// url: the url of the web page. 

// pure_content: The content of the web page after parsing and 
extraction. 

for(each word v in pure_content) 

         EmitIntermediate(v, position_info);    

     //position_info: The position information related to the word v. 

    

Reduce(String word, Iterator position_infos): 

// word: a word. 

// position_infos: a list of position_info. 

for each v in position_infos: 
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        position_info_list= position_info_list+”;”+ v. 

    Emit(position_info_list); 

 

As stated above, the Map function accepts the <url, pure_content> pairs as input 

data. Map function segments the pure_content by individual word and then output 

the <word, position_info> pairs as intermediate result. The Reduce function merges 

the intermediate pairs and generates the <word, position_info1; 

position_info2..position_infok> as the final result. 

 

5.3 Task Executing Time Estimation Algorithm 

In a MapReduce system, when a job is partitioned into multiple tasks and the tasks 

are executed in parallel, the completion time of the job is determined by the last 

finished task. In a distributed indexing module using MapReduce, it is common that 

one of the map task nodes takes unusually longer time to finish its task. The whole 

system is waiting that node’s result for Reduce use. A clever mechanism is to start a 

backup execution of the remaining tasks in-progress when the job is close to 

completion. The task will be marked as finished when the primary task or backup 

task finish. This will help in most scenarios. Figure 25 shows how backup tasks 

work. 
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Fig. 25. Scenario of Backup Task Will Help 
 

However, in our experiences of using MapReduce, the backup task mechanism 

doesn’t always work. Sometimes the task completion time is completely determined 

by the input data. Starting backup tasks of this kind of tasks won’t shorten the 

completion time at all. A recent problem we experienced is the parallel crawler using 

MapReduce, the input data is partitioned by the hash value of the url’s hostname. 

Thus, a task node is responsible for fetching web pages from a set of websites 

(Assume 1 website here for simplicity). If a website is hard to connect due to the 

bandwidth or server problems, the task node which is responsible for fetching the 

pages of that website (page is assigned to task nodes based on its host hash value, so 

pages from the same website will be assigned to the same task node) will take long 

time to complete the task and starting backup tasks doesn’t make much sense, which 

can be shown in Figure 26: 
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Fig. 26. Scenario of Backup Task Fails  
 

The modified MapReduce architecture deals with the problem of excessive task 

time consumption by taking into account the task completion time when partitioning 

the input data. To estimate the task completion time, we used an algorithm based on 

historical data which we call the Task Estimation algorithm.  

The modified algorithm is as follows: 

Algorithm III: Task Estimation Algorithm 
Assume we have N1 data records to be partitioned. Each record has T attributes: 

attribute1….attributeT. From the past MapReduce processing, we get N2 data 

records’ processed time.  

The data structure of the record looks like this: 

Record{ 

attribute1 

attribute2 

…… 

attributeT 

processedtime //null if the record has not been processed 

estimatedtime  

} 
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Records can be partitioned into tC  categories according to the 
tht  attribute’s 

value. In the same category, the 
tht attribute’s values of the records are same or 

similar. In Ai-Times, the String attribute or the discrete attributes are partitioned by 

their hash value; the continuous attributes are partitioned by their range; tC  is 

configurable. 

We calculate the average executing time of the records in each category: 
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where: 

AverageTime (tj): average processedtime of the records which belongs to the 

thj categories according to the 
tht  attribute. 

tjn : total number of the records belonging to the 
thj  categories according to the 

tht  attribute. 
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where: 

tC : the number of the categories according to the  
tht  attribute. 

  Then we calculate the variable Determine of each attribute using following 

formula.  
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The attribute having the larger Determine value is considered to goven the task 

executing time more directly. Among the T attributes, we selected the top K 
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attributes which are considered to eventually determine the task executing time. In 

Ai-Times, we make the k to be 1. 

Then we update the records’ estimatedtime using the top K arrtibutes’ average 

time value, which we get from formula (1) 

K

K

i
ijeAverageTim∑

== 1
)(

imatedtimerecord.est                       (4) 

where:  

K is the number of the top attributes we selected. 

AverageTime(ij) is the average processedtime obtained from formula (1). The 

record belongs to 
thj  category according to the 

thi attribute. 

After selecting the most important K attributes. We can then partition the data 

records to be processed using following 3 formulas: 

Compute the record’s hash value to partition the data records into K splits. 

Hash (record[i]) mod K                                           (5) 

where: 

record [i]: the ith record to be processed. 

K: the number of the data splits we want to partition the data into. 

 

Sum up all the records’ estimated processing time in the same split to get the 

split’s estimated executing time. 

     ∑
=

=
kn

i
imeestimatedtlrecord

1
).((k) TotalTime                     (6) 

where: 

TotalTime (k): the estimated executing time of the 
thk data split. 
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l: the sequence of the record in the 
thk data split. 

  kn : the total number of the records in the 
thk data split. 

estimatedtime: the estimated processing time of the 
thl record.  

      

The deviation between any two splits’ estimated executing time should be less 

than a predefined threshold. 

|TotalTime (i)-TotalTime (j)| < CONSTANTTIME                  (7) 

where: 

TotalTime (i), TotalTime (j): the estimated executing time of the ith and jth data 

split respectively.  

CONSTANTTIME: the predefined deviation threshold of the estimated time 

between any two data splits. 

 

5.4 Experiments 

5.4.1 Environment 

Ai-Times is running on several PC servers. The system set up is as following: 

1. Each server is configured with P4 2.4 GHz CPU and 512 MB RAM 

2. The servers are connected with each other through 100 MB intranet cable. 

3. Each server is connected to the internet with 1 MB independent bandwidth. 

 

5.4.2 Fault Tolerance Ability  
As stated before, there are totally 5 types of nodes in the MapReduce system: Master 

node, Map node, Reduce node. The Master node stores all map and reduce nodes’ 

state and the idle nodes’ state. Master knows how to partition the input pairs and the 

intermediate pairs, assigns Map and Reduce tasks to related idle nodes, and keeps all 
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tasks’ state. It asks another idle node to re-execute a task once that task execution 

fails. 

Map node and Reduce node execute Map and Reduce tasks respectively. They 

communicate with the Master node periodically to let Master know their up-to-date 

state. They also send heart beat message to master every five seconds (The interval is 

configurable). If the Master has not received the heart beat message from a task node 

for more than 60 seconds, Master marks the task executing on that node as failed and 

asks another idle node to re-execute the failed task 

The Master node is a critical failure node. Once the Master node fails, the whole 

system fails. We have a backup master node whose data and state are synchronized 

with the Master node. Any add, update, or delete operation on the master node’s state 

tree will trigger the same operation on the backup master node. Once the Master 

node fails, we will use the backup master node as the main Master node. 

 

5.4.3 Ai-Times Parallel Crawler Based on MapReduce vs. Other Parallel 
Crawler 

As mentioned previously, many researches have been done on the parallel crawler. In 

particular, we mainly consider the most important properties addressed by [12]. 

Coverage 
Coverage=c/n, where n is the number of the web pages the crawler need to visit, 

and c the number of the web pages actually visited. If no faults occur, Ai-Times 

parallel optimized crawler can achieve Coverage 100%. 

Overlap 

When multiple crawler nodes download web pages at the same time, it is possible 

that different crawler nodes download the same web page multiple times. By 
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applying url hash function based on url’s site name, It is obviously that the Ai-Times 

parallel optimized crawler can achieve Overlap 0. 

Quality 
Quality indicates a crawler’s ability to download the “important” web pages. In a 

news retrieval system, a “news content document” or “index or list web document” 

is more important than a “valueless web document”. We evaluate Ai-Times parallel 

optimized crawler’s quality by approximating the recall and precision which we will 

discuss in the following section. 

5.4.4 Use the task executing time estimation algorithm 
In the scenario where the backup task algorithm does not even help, we use the task 

executing time estimation algorithm to estimate the task executing time, thus we can 

partition the input records more reasonably. 

Table 1 shows the performance comparing result of traditional MapReduce vs 

Using Task Executing Time Estimation Algorithm MapReduce in crawler module: 

 Traditional 
MapReduce  

Modified 
MapReduce 

Attributes selected 
as the Determine 

attribute 

 Hostname 

Number of Input 
records  

2.1 millions 2.1 millions 

Size of the input 
records 

3.38 GB 3.38 GB 

Number of the 
tasks 

250 250 

Number of 
unusual tasks 

21 3 

Total completion 
time 

12hrs 10mins 8hrs 01mins 

Table 1: Traditional MapReduce vs MapReduce Using TETEA in crawler module. 

In traditional MapReduce system’s crawler module, we partition the pages based 

on their host value for task nodes to fetch. Thus the pages from the same website will 

be assigned to the same task node. Each node will be assigned same amount of pages. 
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If a website is hard to connect due to the bandwidth or web server problems, the task 

node which is responsible for fetching the web pages of that website will take long 

time to complete the task. Actually the bandwidth or web server problems are very 

common, therefore the unusual tasks in traditional system are much more than the 

system applied task executing time estimation algorithm. 

Table 1 shows that the number of unusual tasks in traditional MapReduce is 21, 

but the number of the unusual tasks in our modified MapReduce is only 3. As a 

result, the total completion time of the modified MapReduce is reduced from 12 

hours 10 minutes to 8 hours 1 minute. It is obvious that the modified MapReduce 

improve the performance. 

 Traditional 
MapReduce  

Modified 
MapReduce 

Attributes selected 
as the Determine 

attribute 

 Size of the 
page/document to be 

indexed 
Number of Input 

records  
1.5 millions 1.5 millions 

Size of the input 
records 

41 GB 41 GB 

Number of the 
tasks 

200 200 

Number of 
unusual tasks 

6 1 

Total completion 
time 

3hrs 3mins 2 hrs 45mins 

Table 2: Traditional MapReduce vs MapReduce Using TETEA in indexing 

module. 

In traditional MapReduce indexing module, we assign the pages/documents for 

task nodes to index based on their host hash value which is the same as crawler 

module. From the experiment we observed that the unusual tasks happened when a 

particular website has much more big files in PDF/DOC/PPT formats which are hard 

to parsing and indexing than other websites. The task nodes which are responsible 

for indexing this website then took unusual long time to complete. By using task 
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executing time estimation algorithm, we reduced the number of unusual tasks nearly 

to zero. 

Table 2 shows that the number of unusual tasks in traditional MapReduce is 6, but 

the number of the unusual tasks in our modified MapReduce is only 1. As a result, 

the total completion time of the modified MapReduce is reduced from 3 hours 3 

minutes to 2 hours 45 minutes. It is obvious that the modified MapReduce is able to 

reduce the number of unusual tasks and shorten the job’s total completion time. 

 

5.5 Conclusion 

In this chapter, we presented how MapReduce is used in Ai-Times and the details of 

using MapReduce. Also we presented how MapReduce is improved by estimating 

the sub-tasks’ execution time.  

Experiments data show that by using MapReduce Ai-Times has good fault 

tolerant ability, which is important to build a robust news retrieval system. When 

compared with traditional parallel crawler, Ai-Times’ parallel crawler can achieve 

coverage 100%, overlap 0% and has relatively acceptable quality. The most 

significant improvement is the modified MapReduce. By using TETEA, the 

modified MapReduce can partition the input data more reasonably and shorten the 

job’s execution time by 33% in crawler module and 10% in index module 

respectively. However, there are still some unusual tasks in modified MapReduce 

system, though the number of unusual tasks is less than the traditional MapReduce. 

We will discuss the further research in Section 6.2.
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Chapter 6 

Conclusion and Future Research 

6.1 Conclusion 

In this thesis I have presented the research study of last 24 months. I proposed the 

design and the algorithms of basic modules in Ai-Times. In particular, I presented an 

optimized crawler algorithm, which is proven to have better performance than 

traditional crawler. I also provided a “Keen tag” based news extraction algorithm for 

extracting the news content from the news web document with nearly zero manual 

effort. 

I have presented an improved VSM model, which is improved by query 

expansion and term reweighting. By using query expansion and term reweighting, 

Ai-Times can get better retrieval accuracy. 

The most valuable contribution is that I introduced how MapReduce is used in 

Ai-Times to improve the scalability and fault tolerant ability and how we improve 

the MapReduce to get better performance. The experiments show that the improved 

MapReduce can help us build a scalable, efficient, and fault-tolerant distributed news 

retrieval system. In particular, by using TETEA, the modified MapReduce can 

reduce the number of the unusual tasks, which can shorten the job’s completion time 

obviously. 

In summary, I believe that this thesis offers some useful guideline for the 

designers of news information retrieval system, helping them for example, design 

and implement a parallel online news retrieval system, optimize their crawler to be 

faster, implement a more flexible news content extractor which can work with less 
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manual effort, improve the retrieval model to achieve better retrieval accuracy and 

improve the traditional MapReduce model to reduce the number of unusual tasks in a 

parallel web news retrieval system. 

6.2 Future research 

We believe many improvements can be done on the retrieval model or the distributed 

architecture of Ai-Times, for example: 

Improve the retrieval model: there are some potential that we can improve the 

retrieval model in Ai-Times, ie, take the location in original html source into 

consideration when weighting the terms.  

Improvement of global file system 
Currently the global file system of Ai-Times is quite a simple implementation. We 

believe many techniques can be considered to improve the performance of the global 

file system, such as the garbage collection and data compression. 

Locality 
Higher data transfer rate is one of the disadvantages of using MapReduce. In order to 

conserve the network bandwidth, we can make a map task node to be a data node. 

Thus we can take the location of the input files into account in the Map partition 

stage. We can schedule a task to a task node having the task’s input data on it. This 

can cool down the high network traffic rate. 

Backup Tasks 

When a job is partitioned into multiple tasks and the tasks are executed in parallel, 

the completion time of the job is determined by the last finished task. In a distributed 

indexing module using MapReduce, it is common that one of the map task nodes 

takes unusually longer time to finish its task. The whole system is waiting that 

node’s result for Reduce use. A clever mechanism used in Google is to start a backup 
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execution of the remaining in-progress tasks when the job is closed to completion. 

The task will be marked as finished when the primary task or backup task finish. We 

believe this mechanism will make sense in our system. 
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Appendix A: Experiment Result of Retrieval Model 
Our retrieval model is evaluated with the trec_eval program [8, 9], below are the 

standard result generated by trec_eval. 

VSM 

Queryid (Num):    99 

Total number of documents over all queries 

    Retrieved:     99000 

    Relevant:      3720 

    Rel_ret:       3088 

Interpolated Recall - Precision Averages: 

    at 0.00       0.5269 

    at 0.10       0.3676 

    at 0.20       0.2814 

    at 0.30       0.2289 

    at 0.40       0.1818 

    at 0.50       0.1558 

    at 0.60       0.1269 

    at 0.70       0.0928 

    at 0.80       0.0654 

    at 0.90       0.0416 

    at 1.00       0.0222 

Average precision (non-interpolated) over all relevant docs 

                  0.1828 

 

Precision: 
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  At    5 docs:   0.3436 

  At   10 docs:   0.2861 

  At   15 docs:   0.2453 

  At   20 docs:   0.2244 

  At   30 docs:   0.2020 

  At  100 docs:   0.1095 

  At  200 docs:   0.0756 

  At  500 docs:   0.0419 

  At 1000 docs:   0.0306 

R-Precision (precision after R (= num_rel for a query) docs retrieved): 

    Exact:        0.2125 

 

Recall: 

   Exact:        0.8148 

   at   5 docs:   0.0871 

   at  10 docs:   0.1341 

   at  15 docs:   0.1643 

   at  20 docs:   0.1964 

   at  30 docs:   0.2283 

   at 100 docs:   0.3915 

   at 200 docs:   0.5252 

   at 500 docs:   0.7338 

   at 1000 docs:  0.8148 

Average interpolated precision for all 11 recall points 

   11-pt Avg:     0.1901 
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Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80) 

    3-pt Avg:     0.1675 

 

Fallout - Recall Averages (recall after X non-relevant docs retrieved): 

    At   0 docs:   0.0608 

    At  14 docs:   0.2057 

    At  28 docs:   0.2363 

    At  42 docs:   0.2782 

    At  56 docs:   0.3144 

    At  71 docs:   0.3482 

    At  85 docs:   0.3736 

    At  99 docs:   0.3971 

    At 113 docs:   0.4186 

    At 127 docs:   0.4394 

    At 142 docs:   0.4596 

Average recall for first 142 non-relevant docs retrieved: 

                   0.3159 
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VSM+Query Expansion 

Queryid (Num):       99 

Total number of documents over all queries 

    Retrieved:    99000 

    Relevant:      3720 

    Rel_ret:       3152 

Interpolated Recall - Precision Averages: 

    at 0.00       0.5340 

    at 0.10       0.3722 

    at 0.20       0.2726 

    at 0.30       0.2256 

    at 0.40       0.1948 

    at 0.50       0.1737 

    at 0.60       0.1499 

    at 0.70       0.1154 

    at 0.80       0.0808 

    at 0.90       0.0443 

    at 1.00       0.0221 

Average precision (non-interpolated) over all relevant docs 

                  0.1901 

Precision: 

  At    5 docs:   0.3475 

  At   10 docs:   0.3212 

  At   15 docs:   0.2862 

  At   20 docs:   0.2545 



 79

  At   30 docs:   0.2253 

  At  100 docs:   0.1300 

  At  200 docs:   0.0893 

  At  500 docs:   0.0518 

  At 1000 docs:   0.0312 

R-Precision (precision after R (= num_rel for a query) docs retrieved): 

    Exact:        0.2167 

 

Recall: 

   Exact:        0.8482 

   at   5 docs:   0.0730 

   at  10 docs:   0.1291 

   at  15 docs:   0.1667 

   at  20 docs:   0.1893 

   at  30 docs:   0.2409 

   at 100 docs:   0.4139 

   at 200 docs:   0.5476 

   at 500 docs:   0.7398 

   at 1000 docs:   0.8482 

Average interpolated precision for all 11 recall points 

   11-pt Avg:     0.1986 

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80) 

    3-pt Avg:     0.1757 
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Fallout - Recall Averages (recall after X non-relevant docs retrieved): 

    At   0 docs:   0.0509 

    At  14 docs:   0.2006 

    At  28 docs:   0.2613 

    At  42 docs:   0.3068 

    At  56 docs:   0.3452 

    At  71 docs:   0.3710 

    At  85 docs:   0.3961 

    At  99 docs:   0.4207 

    At 113 docs:   0.4484 

    At 127 docs:   0.4666 

    At 142 docs:   0.4809 

Average recall for first 142 non- relevant docs retrieved: 

                   0.3440 
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VSM+Term Reweighting 

Queryid (Num):       99 

Total number of documents over all queries 

    Retrieved:    99000 

    Relevant:      3720 

    Rel_ret:       3178 

Interpolated Recall - Precision Averages: 

    at 0.00       0.5605 

    at 0.10       0.3732 

    at 0.20       0.2771 

    at 0.30       0.2241 

    at 0.40       0.1900 

    at 0.50       0.1770 

    at 0.60       0.1279 

    at 0.70       0.0937 

    at 0.80       0.0803 

    at 0.90       0.0479 

    at 1.00       0.0259 

Average precision (non-interpolated) over all relevant docs 

                  0.1921 

Precision: 

  At    5 docs:   0.3064 

  At   10 docs:   0.2853 

  At   15 docs:   0.2620 

  At   20 docs:   0.2279 



 82

  At   30 docs:   0.2070 

  At  100 docs:   0.1464 

  At  200 docs:   0.0995 

  At  500 docs:   0.0619 

  At 1000 docs:   0.0321 

R-Precision (precision after R (= num_rel for a query) docs retrieved): 

    Exact:        0.2025 

 

Recall: 

   Exact:         0.8549 

   at   5 docs:   0.0529 

   at  10 docs:   0.0931 

   at  15 docs:   0.1173 

   at  20 docs:   0.1415 

   at  30 docs:   0.1799 

   at 100 docs:   0.3377 

   at 200 docs:   0.4902 

   at 500 docs:   0.7314 

   at 1000 docs:   0.8549 

Average interpolated precision for all 11 recall points 

   11-pt Avg:     0.1979 

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80 

    3-pt Avg:     0.1781 

 

Fallout - Recall Averages (recall after X non- relevant docs retrieved): 
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    At   0 docs:   0.0549 

    At  14 docs:   0.1816 

    At  28 docs:   0.2234 

    At  42 docs:   0.2725 

    At  56 docs:   0.2975 

    At  71 docs:   0.3364 

    At  85 docs:   0.3583 

    At  99 docs:   0.3942 

    At 113 docs:   0.4533 

    At 127 docs:   0.4777 

    At 142 docs:   0.4865 

Average recall for first 142 non-relevant docs retrieved: 

                   0.3214 
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VSM+Query Expansion+Term Reweighting 

Queryid (Num):       99 

Total number of documents over all queries 

    Retrieved:    99000 

    Relevant:      3720 

    Rel_ret:       3263 

Interpolated Recall - Precision Averages: 

    at 0.00       0.6027 

    at 0.10       0.3995 

    at 0.20       0.2947 

    at 0.30       0.2366 

    at 0.40       0.2029 

    at 0.50       0.1798 

    at 0.60       0.1537 

    at 0.70       0.1153 

    at 0.80       0.0816 

    at 0.90       0.0569 

    at 1.00       0.0272 

Average precision (non-interpolated) over all rel docs 

                  0.2084 

Precision: 

  At    5 docs:   0.3168 

  At   10 docs:   0.2805 

  At   15 docs:   0.2623 

  At   20 docs:   0.2387 
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  At   30 docs:   0.1982 

  At  100 docs:   0.1556 

  At  200 docs:   0.0851 

  At  500 docs:   0.0721 

  At 1000 docs:   0.0519 

R-Precision (precision after R (= num_rel for a query) docs retrieved): 

    Exact:        0.2091 

 

Recall: 

   Exact:         0.8697 

   at   5 docs:   0.0535 

   at  10 docs:   0.0947 

   at  15 docs:   0.1294 

   at  20 docs:   0.1601 

   at  30 docs:   0.2000 

   at 100 docs:   0.3598 

   at 200 docs:   0.5100 

   at 500 docs:   0.7234 

   at 1000 docs:   0.8697 

Average interpolated precision for all 11 recall points 

   11-pt Avg:     0.2137 

Average interpolated precision for 3 intermediate points (0.20, 0.50, 0.80) 

    3-pt Avg:     0.1853 
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Fallout - Recall Averages (recall after X non-relevant docs retrieved): 

    At   0 docs:   0.0578 

    At  14 docs:   0.1821 

    At  28 docs:   0.2415 

    At  42 docs:   0.2806 

    At  56 docs:   0.3257 

    At  71 docs:   0.3635 

    At  85 docs:   0.3759 

    At  99 docs:   0.3910 

    At 113 docs:   0.4337 

    At 127 docs:   0.4531 

    At 142 docs:   0.4615 

Average recall for first 142 non-relevant docs retrieved: 

                   0.3268 
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Appendix B: User Interface of Ai-Times 

 

Fig. 27. User Interface of Ai-Times: Retrieval Result 
 

 

Fig. 28. User Interface of Ai-Times: News Content 
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Fig. 29. User Interface of Ai-Times: News Summary 
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