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Abstract of Thesis 

 

Using statistical test in engineering is becoming common in these few years. In this 

thesis, several statistical techniques are investigated to solve acoustical engineering 

problems. A stochastic volatility model incorporated the exponential power 

distributions and Student – t distributions are adopted in this thesis to analyze 

exponentially decay pulses in the presence of background noises of various 

magnitudes.  It is found that the present stochastic volatility model can retrieve the 

instant of the pulse initiation and the decay constant within engineering tolerance even 

when the noise is slightly stronger that the pulse amplitude. The results suggest that 

both these distributions can give accurate recovery of the instants when the abrupt 

changes take place if the background noise level is lower than that of the changes by 

3dB. They also indicate that the exponential-power distribution is more useful when 

the signal-to-noise ratio falls below 0dB. The results are compared with those 

obtained by the conventional short-time Fourier transform and its performance is 

considerably better than that of the latter when the frequency of the decay pulse 

fluctuates. 

To recover the initialization of an exponentially growing wave embedded inside 

a stationary background noise is very important especially in building services 

engineering where the early detection of very small alien signal is crucial to the 

smooth operation of machines. A parameter derived from two statistical tests, namely 

the Jarque-Bera and the D’Agostino’s tests, which are used for checking data 

normality, is introduced.  It is found that the newly derived parameter is very 

sensitive to the change incurred by the wave to the background noise statistics and is 

very helpful in locating the instant of the wave initialization even when the 
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signal-to-noise ratio drops to -30dB.  The corresponding accuracy of the recovery 

can be as low as 3 time steps.  A simple numerical function together with the Fourier 

Transform analysis in the detection of very weak sinusoidal signals embedded in a 

non-stationary random broadband background noise is proposed in the present study. 

Its performance is studied through the use of two numerical examples.  It is found 

that the present method enables good recovery of the sinusoidal signals and the 

instants of their initiations even when the signal-to-noise ratio is down to -17dB. 
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Chapter 1 

Introduction 
 
 

1.1 Motivation and Different Algorithms of Signal Detection 

Since most of these signals are not stationary, short-time Fourier transform 

(STFT) [1] and the wavelet transforms (WT) [2] have been proposed and tested in the 

past few decades. These signals can be found in many branches of sciences, 

economics, finances and engineering. Typical examples in economics include the 

modeling of exchange rates, return data or interest rate, while the typical examples in 

engineering include the vibration of a diesel engine crank-shaft and the turbulent 

pressure fluctuations within an air jet.  During the last decade, time-frequency 

analysis are commonly used in the field of time series analysis and condition 

monitoring in different aspects.  Many algorithms for its implementation and the 

applications have also been developed.  The early application of signal detection in 

engineering problems begins with the work of Forrester [3] who applied the 

Wigner-Ville Distribution (WVD) to average vibration signals, and showed that 

different faults can be detected in the WVD plot.  Few years later, McFadden and 

Wang [4] applied the normal WVD and the weighted version of the WVD to detect 

early abnormal structures in signals. Staszewski and Tomlinson [5] applied the 
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wavelet transformation (WT) and neural networks for classification of different 

conditions with abnormal behaviors, such as sudden jumps in the signal data.  

Yesilyurt [6] applied wavelet analysis and the instantaneous power spectrum (IPS) 

and showed that the progression of a signal could be found from the contour plots.  

Although the IPS can recover the relatively stronger frequency components from the 

vibration signals, it gives rise to significant error when confronting higher frequency 

components.  About the detection procedure using time-frequency method, it is 

usually based on visual observation of the time-frequency contour plots.  The 

progression of a abnormal structure in a signal can be monitored by observing 

changes in the features of the distribution in the contour plots.  Different problems 

may require the use of different time-frequency techniques. For the reverberation time 

measurement in a noisy environment, the maximum length sequence [7] gives 

satisfactory results provided that the signal is not too weak when compared to the 

noise.  At high S/N, both the STFT and the WT perform well in the measurement of 

the decay constant [8].   

On the other hand, wavelet transforms have attracted extensive interest, 

especially in applications to time series data. However, like IPS, it is found that it can 

only recover the relatively stronger frequency components from the vibration signals, 

and gives rise to significant error when confronting higher frequency components.  
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For more details, please see Wong, Ip and Li [9].  The latter try to apply the wavelet 

to detect the jumps in heteroscedastic autogressive models. 

 

1.2 Review of some Statistical Methods used in Signal 

Detection 

In modern spectral analysis, autoregressive (AR) modeling method is proven 

appropriate for the estimation of power spectra with sharp peaks. The spectrum of 

signal vibration may be precisely classified using this method. Since the early 1980’s, 

various model-based approaches have been introduced to machine condition 

monitoring, mainly for the diagnosis of malfunctions in manufacturing and processing 

equipment. A number of parametric methods are available for modeling systems. 

These include autoregressive (AR) modeling, autoregressive moving average (ARMA) 

modeling, and stochastic volatility modeling. We will discuss the AR and ARMA 

modeling here and the latter will be discussed in subsequent chapters. 

 

1.2.1 AR Model 

AR is developed as a result of the demand for high-resolution spectral estimation. 

It is a parametric modeling method with a rational transfer function. The AR model is 

appropriate for representing spectra with sharp peaks, which is the case for time series 
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signals or engineering signals, and is particularly useful for modeling sinusoidal data. 

For M real sinusoids, a 2M order model has been shown suitable.  

 A deterministic random process is one that is perfectly predictable based on the 

infinite past. This means that a time series x[n] can be expressed by an infinite linear 

combination of all its preceding points, i.e. 

∑
∞

=

−⋅−=
1

][][][
k

knxkanx           (1.1) 

The time series may be approximated using its finite (p) preceding values. This model 

is expressed by a linear regression on itself plus an error term, 

][][][][
1

neknxkanx
k

+−⋅−= ∑
∞

=

,         (1.2) 

where p is the model order, a[k] are termed the autoregressive coefficients and e[n] is 

a Gaussian white noise series with zero mean and variance . If we consider 

Equation [1.2] as a linear system where e[n] is the input and x[n] the output, the 

transfer function of the system, H(z), will be rational, that is 

2σ

∑
=

−⋅+
= p

k

kzka
zH

1

][1

1)( ,           (1.3) 

where z is the forward shift operator. This is called an AR or an all-pole model of 

order p and usually denoted as an AR(p) model. The power spectral density (PSD) of 

the time series x[n] in Equation [1.2] is 

2

2

)(
)(

fA
fP σ

= ,            (1.4) 
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where 2)( fA  represents the PSD of the AR coefficients, a[n], n=1,2,…, p. Since the 

estimation of AR parameters only involves linear Equations, there is a 

well-established method in estimating the AR coefficients, called the 

Levinson-Durbin recursion.  

 

1.2.2 ARMA Model 

As we have remarked, dependence is very common in time series observations. 

To model this time series dependence, we start with univariate ARMA models. To 

motivate the model, there are basically two lines of thinking. First, for a series , we 

can model dependence of the level of its current observation on the level of its lagged 

observations. For example, if we observe a high signal realization in this quarter, we 

would expect that the signal in the next few quarters are good as well. This way of 

thinking can be represented by an AR model. The AR(1) (autoregressive of order one) 

can be written as: 

tx

ttt xx εφ += −1 ,             (1.5) 

where , and WN denotes White Noise. ),0(~ 2σε WNt

Similarly, AR(p) (autoregressive of order p) can be written as: 

tptpttt xxxx εφφφ ++++= −−− L2211         (1.6) 

In the second way of thinking, we can model that the observations of a random 
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variable at time t are not only affected by the shock at time t, but also the shocks that 

have taken place before time t. For example, if we observe a negative shock to the 

economy, say, a catastrophic earthquake, then we would expect that this negative 

effect affects the economy not only for the time it takes place, but also for the near 

future. This kind of thinking can be represented by an Moving Average (MA) model. 

The MA(1) (moving average of order one) and MA(q) (moving average of order q) 

can be written as 

1−+= tttx θεε              (1.7) 

and 

qtqtttx −− +++= εθεθε L11 ,          (1.8) 

respectively. 

If we combine these two models, we get a general ARMA(p, q) model, 

qtqttptpttt xxxx −−−−− +++++++= εθεθεφφφ LL 112211     (1.9) 

The ARMA model provides one of the basic tools in time series modeling. In the next 

few sections, we will discuss how to draw inferences using a univariate ARMA 

model. 

 

1.3 Review of Monte Carlo Methods 

In this sector, we review the Monte Carlo methods, including the basic theories 

of Markov Chain Monte Carlo and different sampling procedures, like 
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Metropolis-Hastings algorithm and Gibbs sampler.  

Markov chain Monte Carlo (MCMC) methodology provides enormous scope for 

realistic statistical modeling.  MCMC is essentially Monte Carlo numerical 

integration using Markov chains.  With the Bayesian approach, it is common to 

integrate the posterior distribution over undesired model parameters, to make 

inference about other desired model parameters or to make predictions, given the data. 

Often, it is also necessary to evaluate expectations, a process which also require 

integration.  As most realistic data models lead to multivariate and highly non-linear 

posterior distributions that are not analytically workable, numerical methods are 

attractive alternatives. Markov Chain Monte Carlo integration draws samples from the 

required distribution by running a cleverly constructed Markov chain, and then forms 

sample averages to approximate expectations. 

Another strategy to obtain the samples is to observe the states of a Markov chain 

whose limiting distributions is our distribution )(xπ  of interest.  Each state of the 

chain represents a bin of the histogram.  These algorithms have nice properties, such 

as guaranteed convergence and insensitivity to the initial values, which, in some 

circumstances, might outweigh the computational burden, and can be significant in 

some cases. 
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1.3.1 Background on Markov chains 

A Markov chain is a stochastic process described in terms of states. Denoting the 

set of possible state values that the process  can take by ix { },,,, 10 qSSSA L=  then 

the Markov chain is said to be in state k when ki Sx = . 

For a first-order Markov process, the probability of the next state , given all 

previous value of the process, depends only on the present state, i.e., 

1+ix

],|(],,,|[ 1101 iiii xAxPxxxAxP ∈=∈ ++ L        (1.10) 

where  denotes a conditional probability. Suppose the one-step transition 

probability from another state is  i.e. 

]|[ ⋅⋅P

],[ 1| +ijk xP

].|[][ 11| jikiijk SxSxPxP === ++          (1.11) 

Assuming that the transition probabilities are stationary over time, it is possible to 

represent the complete set of these probabilities by a transition matrix as follows 

⎥
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⎢
⎢
⎢
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⎡

=

qqqq

q

q

PPP

PPP
PPP

T

|2|1|

|22|21|2

|12|11|1

L

M

L

L

          (1.12) 

such that we can write a general expression for the probability of  being in state 

 from state  after n iterations as follows 

ix

kS jS

].|[]|[][)(
, jni

n
jnikii

n
jk SxPTSxSxPxP −− ====       (1.13) 

If the kernel satisfies certain conditions, the Markov chain will converge toward a 

limiting distribution π , which is independent of the initial state , as follows 0nx
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][lim][lim
0

0
n

nn

nin
xPTxP −

∞→∞→
==π           (1.14) 

However, how long it takes the chain to reach the equilibrium state depends on a 

number of factors and, in particular, the number of states that must be discarded at the 

initial stage, a transient period known as the “burn-in” of a Markov chain. Thus, if the 

limiting distribution π  of a Markov chain is the posterior distribution of interest, the 

stages of the chain become the samples from the distribution. 

 

1.3.2 Properties of Markov chains 

Although not all Markov chains have a limiting distribution, many algorithms 

exist to set up Markov chains that will converge to the desired density function.  For 

these algorithms to perform as intended, some criteria related to invariance, 

reversibility, irreductibility, aperiodicity, and recurrence must be satisfied:  

- Invariance – The invariance property means that all states in a Markov chain 

have reached limiting distribution and are distributed according to the 

distribution of the resulting chain of the Markov chain. 

- Reversibility – The reversibility means that the probability of a transition of a 

Markov chain from one state to another is equal to the probability of a 

transition in the reverse direction. Reversibility is a sufficient condition for the 

states of the chain to be in their limiting distributions. 
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- Irreducibility – The irreducibility condition means that from all starting points 

the Markov chain can reach any non-empty set with positive probability, in 

some finite number of iterations. 

- Aperiodicity – The aperiodicity means that a Markov chain has kernels that do 

not induce a periodic behaviour in the states. 

- Recurrence – The recurrence means that from all starting points all states can 

be reached infinitely often. 

All MCMC algorithms have been designed to satisfy these constraints.  Next we will 

present two of them: the Metropolis-Hasting (M-H) algorithm and the Gibbs sampler. 

 

1.3.3 Metropolis- Hastings Algorithm 

The Metropolis-Hasting (M-H) algorithm [10] is a very flexible method to 

provide a random sequence of a sample from a given density.  Suppose a candidate 

function  sampled from )(⋅q )(⋅s .  This candidate function is chosen to be easy to 

sample from.  One major advantage of this algorithm is that the knowledge of the 

normalizing constant of the posterior distribution is not required.  The posterior 

distribution is only present in ratios, where this unknown normalizing constant will 

cancel out, assuming that it remains constant. 

 Assuming that the chain is in state x, we can obtain candidate  for the next 

state by sampling , which in the general case is conditional on x. This candidate 

*x

)(⋅q
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will be accepted with probability α  defined as 

{ },1),,(min),( ** xxrxx =α           (1.15) 

with the acceptance ratio r is defined as 

)|()(
)|()(),( *

**
*

xxqxs
xxqxsxxr =           (1.16] 

If the candidate is accepted, the chain takes the new state ; otherwise the chain 

remains at the current state x. 

*x

In order to get a well-mixed chain, the candidate function )(⋅q  should allow the 

chain to explore the entire probability space, but with substantial probability of being 

accepted.  To satisfy the irreductibility and the aperiodicity properties, the M-H 

algorithm required that be continuous and strictly positive on the support of)(⋅q )(⋅s . 

It can be shown that the acceptance probability defined in Equation (1.15) and 

Equation (1.16) guarantees the reversibility requirements. 

 

1.3.4 Gibbs Sampler 

Being a special case of the M-H algorithm, the Gibbs sampler allows one to 

break down the problem of drawing samples from a multivariate density into one of 

drawing successive samples from densities of smaller dimensionality. 

 Given a random vector x of length K, the Gibbs sampler samples each parameter, 

one at that time, according to the full conditional distributions when all the other 

parameters are fixed.  Let  ),|( kk xxq − Kk ,,1L=  denote the full conditional 
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density of the k th component of the vector x, where 

).,,,,,,|()|( 1121 Kkkikk xxxxxxqxxq LL +−− =  

Instead of sampling from a complex K dimensional distribution, the problem is 

reduced to sampling K times from one dimensional conditional distribution.  As soon 

as a variate is drawn, it is inserted into the full conditional probability density function, 

and it remains there until the next iteration.  For this algorithm to be a viable option, 

all the full conditional posterior distributions must be available in their analytical 

form. 

 The rate of convergence of the Gibbs sampler is governed by the posterior 

correlations between the different parameters and the dimensionality of the parameter 

space.  One way to improve the rate of convergence is to jointly sample highly 

correlated variables by creating partitions.  Also, it might be beneficial to randomly 

vary the order of the components. 

Suppose kθθ ,,1 L  are (not necessarily univariate) components of θ . Given a 

realization at stage t, y is the signal data, the Gibbs sampler 

proceeds by successively making random drawings : 

),,,( )()(
1

)( t
k

tt θθθ L=

 

)1(
1

+tθ  from  ),,,,,|( )()(
3

)(
21 yp t

k
tt θθθθ L
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3

)1(
12 yp t

k
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1
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2
)1(

1 yp t
k

tt
k

+
−

++ θθθθ L

thus completing a move from state  to state . )(tθ )1( +tθ

 

1.3.5 Metropolis – Hastings One-at-a-time Algorithm 

In the case where x is of high dimension, it becomes very difficult to select a 

good candidate function that would lead to a reasonable acceptance rate and allow the 

chain to mix.  To address this problem, the Metropolis-Hasting one-at-the-time 

algorithm [11] in a similar fashion to the Gibbs sampler samples each component (or 

partition), conditionally on the other components, using a set of candidate functions.  

Obviously, this algorithm includes the Gibbs sampler as a special case for which the 

candidate functions are the full conditional distributions and the candidates are always 

accepted. 

 In the M-H one-at-the-time algorithm, only one element  for  

at a time will be sampled from 

*
kx Kk ,,2,1 L=

)(⋅q , and this candidate vector , defined as *x

  ,],,,,,,[ 1
*

11
* T

Kkkk xxxxxx LL +−=

will be accepted as the next state with a probability as in Equation [1.14]. 
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1.4 Structure of Thesis 

In this thesis, I will adopt some Markov chain Monte Carlo methods, especially 

the Gibbs sampler and Metropolis-Hastings algorithm to perform random variates 

simulations from conditional distributions throughout Chapter 2 to 4. Besides, a class 

of more advanced parametric models, namely the stochastic volatility models (SV), 

which have been widely used in modeling time series volatilities, are expected to be 

useful in the modeling of the pulse signal with a sharp pulse followed by a decay 

embedded in a random noise.  The properties of these models and their formulation 

in the present study will be discussed in the Chapter 2.  Recently, these models have 

been used together with efficient Bayesian computational technique in analyzing time 

series in economic studies. However, they are rarely applied, at least to the knowledge 

of the author, to deal with engineering problems. In this chapter, the performance of a 

specific SV model on retrieving the properties of exponentially decaying pulses in the 

presence of random noise will be presented. It is showed that the results provide 

useful information for the future enhancement of signal detection and machine 

diagnosis. 

In Chapter 3, the performance of the SV model developed in Chapter 2 

incorporating the Student-t distribution in analyzing decaying pulses is investigated.  

The results supplement those discussed in Chapter 2. The Student-t distribution is a 
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conventional distribution and has been used in the detection of outlying observations 

in a time series. It can be expressed in a two-stage scale mixture representation and 

can in principle be an alternative to the Exponential Power distribution.   

In Chapter 4, the effectiveness of statistical distributions in modeling pulses and 

jumps in the presence of background noises of various magnitudes is investigated.  

Special attentions are paid on locating the initiation of an exponentially decaying 

harmonic pulse and the jump.  Two heavy-tailed distributions, namely, the 

Exponential-Power distribution (EP) and the Student-t distribution are adopted in the 

present study.  The effects of various parameters of these distributions on the 

performance of modeling signals are investigated. 

 When there is a sudden change to a normally running system, a jump or an 

abrupt change to the signals from the system will result.  Successful and early 

detection of such changes is very important as some changes can be detrimental to the 

system. Sensitivities of the tests in manifesting statistical changes are important issues 

in Chapter 5, especially for the process of machine condition monitoring. Two 

statistical tests will be introduced.  Their performance in locating the instant of 

change under different signal-to-noise ratios will be investigated.  

Though much has been proposed in Chapter 2 to Chapter 5 for improving signal 

detection and analysis, it failed to give satisfactory results when the signal-to-noise 

 15



ratio (S/N) goes down to -17, which is the case in the early development of a fault in 

the building services equipment. The focus of Chapter 6 is on enhancing the detection 

of weak signals embedded in a stronger non-stationary signal / noise.  A better 

retrieval of the weak signal after the time-frequency procedure is further proposed. 

Finally, a conclusion is given in Chapter 7. 
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Chapter 2 

On Analysis of Exponentially Decaying Pulse Signals 

using Stochastic Volatility Model using Exponential 

Power Distribution 

 

2.1 Introduction 

 A sharp pulse followed by a decay embedded in a random noise, provided that its 

magnitude is not too weak when compared to that of the noise, will create a relatively 

higher volatility in the signal fluctuations at the instant the pulse is introduced.  A 

more advanced parametric model, namely the stochastic volatility models (SV) [12], 

which have been widely used in modeling time series volatilities, are expected to be 

useful in the modeling of the abovementioned pulse signal.  The properties of these 

models and their formulation in the present study will be discussed in the next section.  

In this chapter, the performance of a specific SV model on retrieving the properties of 

exponentially decaying pulses in the presence of random noises will be presented.  It 

is hoped that the results will provide useful information for the future enhancement of 

signal detection and machine diagnosis. 

 

 

 17



2.2 Stochastic Volatility Model 

 The SV model formulates the volatility by a numerical process which allows the 

latter to vary stochastically [12,13].  It involves the use of a statistical distribution so 

chosen to fit the time series / signal to be analyzed.  Both the Gaussian distribution 

and the Student-t distribution have been employed in determining outlying 

observations in financial time series [14,15].  Recently, Choy and his co-workers 

have investigated the properties of the SV model which incorporates the exponential 

power distributions (EP) [14,15,16].  In their studies, the EP distribution is expressed 

as a scale mixture representation, which can highly reduce the computational time in 

the numerical simulation study.  Also, the mixing parameters in the representation 

can be used to identify the extreme data very accurately.  Therefore, the EP 

distributions are adopted in the present study.   

Theoretically, stochastic volatility (SV) models are an alternative version of the 

autoregressive conditional heteroscedasticity (ARCH) models, which are commonly 

used to model asset returns. The conditional variance of the ARCH models is assumed 

to be a function of the previous observations and past variances, since in real 

situations, the variance of the asset returns varies over time. Instead, the conditional 

variance is modeled with a stochastic process in the SV models and hence the 

estimation procedure of the SV models is noticeably harder than the ARCH family of 
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models. Recently, a number of literatures attempt to produce efficient estimation of 

the SV models.  

Let  be our signals of interest at time tr .,,2,1,0 nt L=  The mean adjusted  at 

time t is defined as 
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where tε  and tη  are independent standard Gaussian processes. Hence, β  is a 

constant factor that represents the model instantaneous volatility which is usually set 

to unity in many literatures. σ  is the variance of the log-volatility and φ is the 

persistence of the volatility which takes a value within the interval (-1,1) to satisfy the 

stationarity condition. 

 This SV model can be easily implemented using either likelihood or Bayesian 

approaches. However, in many situations, normality assumption for the distribution of 

signals may be inappropriate. Many statisticians and engineers may use heavy-tailed 

distributions such as the Student-t and symmetric stable distributions for modeling 

signals. However, this extension increases the computational effort substantially. By 

representing the Student-t distribution as a scale mixtures of normals, the use of 
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mixture densities can speed up the computational effort of Bayesian methods. 

 

2.2.1. Exponential Power Distributions  

The exponential power family of distributions provides both heavier- and/or 

lighter- tailed distributions than the normal Gaussian one.  Let {y} be the data set, θ  

its mean, σ its scale parameter and ]2,0(∈β  the kurtosis parameter that controls 

the thickness of the tails, the density function of the EP distribution EP(y,θ,σ,β) is 

given by [17]   

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−

+
= +

β

β σ
θ

σβ
βσθ

2

)21( 2
1exp

)21Γ(2
1),,|EP( yy ,    (2.1) 

where Γ is the gamma function.  The corresponding mean and variance are equal to 

θ and )2Γ()23Γ(2 2 ββσβ  respectively.  The EP distribution has been studied 

thoroughly by a number of researchers for statistical modeling and Bayesian 

robustness (for instance, Choy and Chan [15] and Choy and Walker [18]).   Choy 

and Smith [16] adopted the normal scale mixtures property of the EP density for 

Bayesian inference using Markov chain Monte Carlo methods with .21 ≤< β   

Recently, Walker and Gutierrez-Pena [19] discovered the following uniform scale 

mixtures representation for the EP density: 

∫
∞

++−=
0

5.05.0 )5.0,5.01|(),|(),,|EP( duuGuuyUy βσθσθβσθ ββ ,  (2.2) 

where  is the uniform density function defined on the interval  and ),|( bayU ),( ba
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),|( dcyG  is the gamma density function with mean c/d.  This representation is 

valid for the entire range of β and also allows re-writing the EP distribution into the 

following hierarchical form 

),(~| 5.05.0 ββ σθσθ uuUuy +−  and )5.0,5.01(~ β+Gu ,    (2.3) 

where u is referred to as the mixing parameter of the uniform scale mixtures 

representation.  It should be noted that the normal and the Laplace distributions are 

special cases of the EP family with β = 1 and 2 respectively. 

 

2.2.2. Bayesian EP SV Model 

In this chapter, the family of EP distributions is considered as a generalization 

of the normal family to model the signal data. This family provides both leptokurtic 

and platykurtic shapes of distributions which the normal, Student-t and stable families 

cannot offer.  From a practical point of view, the EP distribution is believed to be 

appropriate to model certain types of data and it is worthwhile to develop efficient 

methods for statistical analysis.  A Gibbs sampling approach using the uniform scale 

mixtures is discussed in Section 2.3 of Chapter 2. 

The usual choice of the normal distribution for the white noise tε  of the SV 

model is replaced by the EP distribution with known kurtosis parameter β : 

),,0EP(~| 5.0 βth
tt ehy ,           (2.4) 

 21



where t is the index and t = 1,2,…,n.  h is the log-volatility.  Equation (2.4) can be 

re-written into the following hierarchical form : 

),(~,| 5.05.05.05.0 ββ
t

h
t

h
ttt ueueUuhy tt− at )5.0,5.01(~ β+Gut ,    (2.5) 

where u is the mixing parameter of the SV model.  Normality assumption is still 

valid for the conditional and marginal distributions of h in the present study : 

),(~,,| 2
1

2
1 σφσφ −− ttt hNhh  and ))1(,0(~,| 222 φσσφ −Nht ,   (2.6) 

where N(0,α) is the normal distribution with mean 0 and standard deviation α, and φ 

the persistence parameter.  The above SV model with EP white noise and normal 

log-volatility is referred as the EP-N SV model.  In order to complete a full Bayesian 

framework for the SV model, the followings are assigned priors to other model 

parameters : 

),(~2
σσσ baGinv  and ),(2~1 φφφ baBe+ ,       (2.7) 

where  is the beta distribution with mean a/(a + b), G),( baBe inv the inverse gamma 

distribution, and aσ, bσ , aφ and  are pre-specified constants.  The prior 

distribution for 

φb

φ  is a shifted beta distribution with density 

 , 11 )1()1()( −− −+∝ φφ φφφ bap 1<φ .   (2.8) 
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2.3 Gibbs Sampler for EP-N SV Models 

The simulation-based Gibbs sampling approach [20] is one of the standard 

methods for carrying out statistical analysis of complicated Bayesian models.  The 

Gibbs sampler allows us to study posterior characteristics via a sequence of iteratively 

simulated values drawn from a system of full conditional distributions. The efficiency 

of the Gibbs sampler can be substantially increased if the required samples are drawn 

from distributions of some standard forms.  Gibbs sampling has also been used in 

underwater acoustic application [21]. 

The joint distribution of yv ),,,( 21 nyyy L= , h
v

),,,,( 21 nhhh L=  

uv ),,,( 21 nuuu L= , φ  and  is given by 2σ

∏
=

−=
n

t
ttttt ppuphhphpuhypuhyp

1

22
1

2
1

2 )()()(),,|(),|(),|(),,,,( σφσφσφσφ vvvv  (2.9) 

Then, the Gibbs sampling scheme performs successive random variate generation 

from the following conditional distributions.  The duration of the Gibbs sampler 

computation varies from a few minutes to about 25 minutes on a Pentium V personal 

computer, depending on the kurtosis parameter of the EP distribution.  The number 

of iterations adopted is 12000 with the first 2000 iterations as the burn-in period.  In 

the foregoing discussions, ),,,,( ,111 nttt hhhhh LL
v

+−− =  and 

).,,,,( 1,11 nttt uuuuu LL
v

+−− =  
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2.3.1 Full Conditional Densities of h  

Full conditional density of h is given by 

),,,|(),,,|(),|(),,,,|( 2
11

2
1

2 σφσφσφ ++−− ∝ ttttttttttt uhhpuhhpuhypuhyhp vvv . (2.10) 

One can then show that these full conditional distributions are truncated normal of the 

form 
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subject to .  I have adopted an algorithm for generating 

random variates from the truncated normal distribution. 

ttt uyh lnlnln 22 βα −−>

 

2.3.2 Full Conditional Densities of u and σ2 

By representing the EP density into a uniform scale mixtures form, one can 

show that the full conditional distribution of the mixing parameter u is a truncated 

exponential distribution of the form 

,,,| tt uhyu −
vvv ueu 5.02 5.0)5.0Exp(~, −=σφ ,       (2.12) 

subject to the condition 

tht
t e

y
u −> 2

2

α
β .                                                          (2.13) 

Inversion method can be used to sample random variate from the truncated 

exponential distribution. For , the use of conjugate prior lead to an inverse gamma 2σ
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full conditional distribution and  can then be directly sampled from 2σ

        ( )⎟
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2.3.3 Full Conditional Densities of φ 

The full conditional density of φ is given by 

∏
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It can easily be verified that ∏ = −
n

t tt hhp
2

2
1 ),,|( σφ  is proportional to a normal 

density of φ with mean φμ  and variance  where 2
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One can express the full conditional density by a product of a truncated normal and a 

shifted beta density functions : 
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for 1<φ .  Sampling random variates from this full conditional density can be done 

easily by using the Metropolis-Hastings method.  
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2.4 Numerical Examples 

 An exponentially decaying harmonic wave is chosen for the illustrations.  This 

kind of signal can be regarded as the simplest (but important) signal in acoustics and 

vibration studies.  The noise signals n(τ), where τ denotes measurement time, used in 

the foregoing illustrations are white noises with zero mean values and are Gaussian 

distributed fluctuations.  The combined signal y(τ) is 

)()()( τττ nsy += ,            (2.18) 

where s(τ) contains the pulses.  The S/N in dB is defined as 

( )
maxmax10log10S/N ns= .          (2.19) 

Suppose the pulse is initiated at τ = τo and let η be the decay constant, the signal y(τ) 

is 

      , (2.20) )()())(2cos()( )( τττττπτ ττη nHfey oo
o +−−= −−

where H denotes the Heavside step function and f the frequency of the harmonic wave.  

The present investigation focuses on the determination of the instant of the pulse 

initiation and the decay constant η.  The S/N ranges from +∞ to -10dB.  Without 

loss of generality, η is fixed at 2 and f is normally set at 50Hz, but is allowed to have a 

narrow ±10% time fluctuation in some cases discussed later.  τo = 1s throughout the 

present investigation.  Figures 2.1(a) and 2.1(b) illustrate the hypothetical signals 

with S/N = 3dB with constant f (≡50Hz) and time varying f (= 50Hz + 10% time 
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fluctuation) respectively.  One can notice that the signal with fluctuating f does not 

show a clearly exponential decay feature [Figure 2.1(b)]. 

 The parameter β in the SV model determines the shapes of the EP distributions 

and thus has significant impact on the modeling of the decaying signal by the SV 

model.  The EP distributions at various β are given in Figure 2.2.  A large β gives 

rise to a thick tail of the distribution and is in general not good for detecting changes 

as a thick tail distribution tends to down-weight the extreme values and thus affect the 

detection of pulses in the presence of a random noise. 

 Two parameters are important in the SV model.  They are the mixing parameter 

u and the log-volatility h.  The former illustrates fluctuation and thus should be able 

to suggest the instants of rapid changes in a signal.  The latter should follow the 

shapes of the decaying pulses.  In the analysis of a decaying pulse, these two 

parameters should not be considered in isolation. 

 

2.4.1 Constant f 

 Figure 2.3 shows the time variations of u at different β for S/N = 10dB.  The 

signal is considerably stronger than the background noise in this case.  One can 

notice a prominent sharp peak within a continuous background spikes in each case 

illustrated.  This peak appears around the instant of the pulse initiation.  In fact, the 
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magnitudes of the background spikes before the peak, which are due to the 

background Gaussian noise, relative to that of the sharp peak increase with increasing 

β.  It is found from a closer look at the data at around τ = 1s that the magnitudes of 

the spikes continue to decrease when τ increases towards 1s as shown Figure 2.3(a) 

with S/N = 10dB and  β = 0.25.  A clear reversal is observed at τ equals 1s.  

Similar phenomenon is also observed at other values of β investigated in the present 

study under this signal-to-noise ratio. 

 The time variations of the log-volatility h for S/N = 10dB with various β are 

presented in Figure 2.4  The patterns of the h variations in general follow a linear 

decay but the increase in β appears to have smoothen the pulse identity.  The linear 

decay also becomes less obvious as β increases.  Therefore, only results at β = 0.1 

will be presented in the foregoing discussions. 

 A decrease in the S/N results in a rocky decay of h and the exponential decay 

becomes not really traceable at S/N = -7dB though a decaying pulse is still suggested 

by the time variation of h [Figure 2.5].  However, a clear reversal in u at τ ~ 1s 

remains prominent even up to a S/N of 0dB and some indications of an abrupt signal 

jump are still observable at S/N = -7dB [Figure 2.6].  One should note that the 

instant of the peak u does not necessarily collapse with that of the pulse initiation.  

The focus should be on the instant of the reversal.  It should also be noted that the 
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magnitude of the u peak does not carry much meaning in engineering applications.  

Table 2.1 summarizes the instant of the u reversal under different S/Ns with β = 0.1.  

Though one can anticipate ambiguity in determining the instant of this major u 

reversal at strong background noise magnitude and thus the error in locating the 

instant of the pulse initiation, the prominent sharp rise of u, such as that observed in 

Figure 2.6(c), indicates together with the variation of h that some important changes 

are embedded in a random signal.  This shows the versatility of the present SV 

model in detecting changes. 

 Apart from detecting the instant of the pulse initiation, the determination of the 

decay constant is also an important task in the signal analysis [8].   The method 

shown in the Appendix 2.1 is adopted to minimize the effects of the background noise 

in the process.   

The average h for the background noise can be obtained using 800 data points 

starting from τ = 0s.  Data points close to the major u reversal should be avoided.  

The decay constant η estimated under different S/Ns are shown in Table 2.1.  ηs 

from the SV model are obtained using the 1000 data points after the major u reversal 

and the correlation coefficients R2 of the regression are in general greater than 0.9 for 

S/N ≥ -3dB.  The corresponding values obtained from the WT using the fourth 

derivative of the Morlet-Grossmann wavelet [22] (with a scale from 1 to 32) and the 
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STFT (with a frequency resolution of 3.9Hz and 60% data overlapping) are also 

presented in Table 2.1 for the sake of comparison.  Allowing for error in the 

estimation of the slopes of the decay curves, the two sets of results are comparable.  

However, the WT and the STFT are not able to provide the time resolution one can 

obtain from the present SV model unless the frequency resolution is lowered to 40Hz 

and the S/N is high.  Thus, the WT and the STFT are less suitable for the 

determination of τo. 

 

2.4.2 Time Varying f 

 The introduction of a ±10% Gaussian fluctuation in f does not affect much the 

pattern of the time varying mixing parameter u.  The fluctuation in f does increase 

the log-volatility h when the background noise is strong relative to the signal as 

shown in Figure 2.5.  The τo and η determined from the present SV model with EP 

distribution having β = 0.1 are tabulated in Table 2.2.  The randomness in f does not 

produces observable deterioration of the SV model performance, except that the error 

in locating τo becomes slightly higher than that in the constant f case when S/N drops 

below 0dB. 

 The randomness in f, however, results in a broadband time-frequency distribution 

as computed by the STFT [Figure 2.7].  In order to cover the range of the frequency 
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fluctuation, the frequency resolution here is taken to be 15.6Hz.  Sixty percent data 

overlapping is again adopted in the STFT and the time resolution is 0.024s.  One can 

notice from Table 2.2 that the WT and the STFT do not provide reliable estimation of 

η.  The ambiguity of τo determination is high when S/N is less than 3dB.  Though η 

is estimated to be 1.74 and 1.85 by the WT and STFT respectively at S/N = 3dB, the 

actual decay curve is problematic as shown in Figure 2.8 (all corrected for 

background noise).  The linear decay is not so reflected by the STFT and the WT, 

while that obtained from the present SV model is still acceptable.   

 

2.5 Conclusion 

 A stochastic volatility model incorporated the exponential power distribution is 

used in the present study to capture the initiation and decay of exponentially decaying 

signals in the presence of random background noises.  Its performance is compared 

with that of the short-time Fourier analysis. 

 When the pulse is a decaying harmonic wave of constant frequency, the accuracy 

of decay constant estimation using the present stochastic volatility model is very good 

when the signal-to-noise ratio is not less than 3dB.  Such accuracy deteriorates as the 

signal-to-noise ratio decreases, but it is still comparable to that of the 

short-time-Fourier transform.  The present model is able to detect the instant of the 
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pulse initiation even up to a signal-to-noise ratio of -7dB within engineering tolerance.  

The short-time Fourier transform does not provide a comparable time resolution for 

such detection unless the frequency resolution is scarified and the signal-to-noise ratio 

is high. 

 The introduction of a time varying frequency (±10%) does not produce 

significant effect to the performance of the stochastic volatility model, though it rises 

up the volatility when the background noise is relatively strong, making the detection 

of pulse difficult once the signal-to-noise ratio drops below 0dB.  However, the 

performance of the short-time Fourier transform is substantially worsened even in the 

absence of the background noise. 

 In order to check for the various samplers performed, I have checked for the 

Ergodic averages of the samplers and the autocorrelation function as the prior study. 

Although the results are not shown here, I notice that there has no convergence 

problem and the autocorrelation functions dies out relatively slow and I therefore 

believe that the selected values from the Markov chain are quite independent. 
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Appendix 2.1 

 In this chapter, a hypothetical signal y made up of an exponential decaying signal 

d initiated at τ = τo (> 0) and a continuous white noise (normally distributed) n is 

considered.  The SV model suggests 

ttHndy ε2/1=+= ,              (A2.1) 

where εt is a time fluctuating white noise and Ht the volatility.  Suppose one can find 

 (no noise) and , one then has the following approximate 

relationship.  

ttdHd ε2/1
,= ttnHn ε2/1

,=

2/1
,

2/1
,

2/1
tntdt HHH += .             (A2.2) 

Let ,  and tt Hh log= tdtd Hh ,, log= tntn Hh ,, log= , one can then find  

( )22
,

,log2 tnt hh
td eeh −= .             (A2.3) 

At τ > τo and excluding the sinusoidal time fluctuation, one obtains )(~ oAed ττα −−  

and ατατ −eAeH o
td ~21
,  so that , and  )log(22log ,,

oAeHh tdtd
ατατ +−==

( )22 ,log)log( tnto hh eeAe −=−ατατ .          (A2.4) 

Since n is normally distributed and thus can be treated as tε  multiplied by a constant, 

it is straight-forward to conclude that 

NS~)NS( 2, ×⇒= AeAn tnh
tε .           (A2.5) 

One can normalize y by A such that A = 1 in the above derivation.  hn,t can be 

obtained from the data at τ < τo.  Usually, an average from less than 400 points is 

 33



good enough to get a reliable estimate of hn,t when S/N ≥ 0. 
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Table 2.1   Estimated τo and η (constant f) 

 
 SV Model STFT Wavelet 

S/N (dB) τo (s) η (s-1) η (s-1) η (s-1) 
+∞ 1.000 2.00 2.00 2.00 
10 1.000 2.05 2.05 2.06 
3 1.000 2.16 1.81 1.78 
0 1.001 2.42 1.58 1.51 
-3 1.002 2.36 1.30 1.23 
-7 1.022 -- -- -- 

 
 

Table 2.2   Estimated τo and η (fluctuating f) 
 

 SV Model STFT Wavelet 
S/N (dB) τo (s) η (s-1) to (s) η (s-1) to (s) η (s-1) 

+∞ 1.000 2.00 0.96 2.53 0.95 2.58 
10 1.000 2.04 0.96 2.83 0.93 2.91 
3 1.000 2.30 -- 1.85 -- 1.74 
0 1.010 2.48 -- 1.10 -- 1.04 
-3 1.001 2.37 -- -- -- -- 
-7 -- -- -- -- -- -- 
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Figure 2.1 Examples of exponentially decaying signals with S/N = 10dB. 

(a) Constant f; (b) time varying f.  
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Figure 2.2 Effects of β on the shape of an EP distribution. 

  ⎯⎯⎯ : β = 0.1; ⎯  ⎯  ⎯ : β = 0.25; ⎯ ⋅ ⎯ : β = 0.5; − − − − : β = 1; 

⎯ ⋅ ⋅ ⎯ : β = 1.5; ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ : β = 2. 
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Figure 2.3 Effects of β on the time variation of the mixing parameter u. 

  (a) β = 0.25;  (b) β = 0.75; (c) β = 1.5; (d) β = 2.0. 

  S/N = 10dB. 
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Figure 2.4 Effects of β on the time variation of the log-volatility h. 

  ⎯⎯⎯ : β = 0.25; − − − − : β = 0.75; ⎯ ⋅ ⎯ : β = 1.5; ⎯ ⋅ ⋅ ⎯ : β = 2.0. 

   S/N = 10dB. 
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Figure 2.5 Time variations of h at increased noise magnitude with β = 0.1. 

  (a) S/N = +∞dB; (b) S/N = 3dB; (c) S/N = -7dB. 

  ⎯⎯⎯ : Constant f; ⎯  ⎯ : time varying f. 
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Figure 2.6 Time variations of u at increased noise magnitude with β = 0.1 

(a) S/N = 3dB; (b) S/N = 0dB; (c) S/N = -7dB. 
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Figure 2.7 Time-frequency plot of an exponential decaying signal with time 

varying f. S/N = 10dB, frequency resolution : 15.6Hz. 
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Figure 2.8 Decay curves with time varying f at S/N = 3dB. 

  ⎯⎯⎯ : Log-volatility h (β = 0.1) ⎯ ⋅ ⋅ ⎯ : regression line for h; 

⎯ ⎯  : log(Spectral Density); ⎯ ⋅ ⎯ : regression line for 

log(Spectral Density); 
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Chapter 3  

On Analysis of Exponentially Decaying Pulse Signals 

using Stochastic Volatility Model using Student-t 

Distribution 

 

3.1 Introduction 

Results in Chapter 2 show that the stochastic volatility (SV) model incorporating 

the exponential power distribution (EP) is able to retrieve the instant of the pulse 

initiation and the decay constant within engineering tolerance even when the 

background noise magnitude is comparable to that of the pulse.  Its performance is 

better than that of the conventional short-time Fourier transform when there is a small 

fluctuation in the frequency of the decaying pulse.  

The Student-t distribution is a conventional distribution form and has been used 

in the detection of outlying observations in a time series [23].  It can be expressed in 

a two-stage scale mixtures representation and can in principle be an alternative to the 

EP distribution.  In this chapter, the performance of the SV model incorporating the 

Student-t distribution in analyzing decaying pulses is investigated.   
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3.2 TWO-STAGE SCALE MIXTURES  

REPRESENTATION 

A standard random variable X having the normal scale mixtures representation can be 

expressed in the form of λ×= ZX  where Z is the standard normal random variate 

and λ  is a positive random variate known as the mixing variable having a 

probability density function g, which can be either continuous or discrete. 

Let θ  and σ  be the location and scale parameters of the scale mixtures of the 

normal random variable X respectively.  The probability density function of X takes 

the mixture form : 

λλλσθ dgxNxf )(),|()( 2∫ +ℜ
= ,         (3.1) 

where denotes the normal density defined on .  In the Bayesian 

framework, the mixture density in Equation (1) can be expressed into a two-stage 

hierarchy of the form 

)|( ⋅⋅N ),0( ∞=ℜ+

)(~),,(~,,| 22 λλλσθλσθ gNX     .        (3.2) 

The Student-t distribution with a degree of freedom α corresponds to an inverse 

gamma mixing distribution : 

)5.0,5.0()(~ ααλλ invGg = ,          (3.3) 

where Ginv(a,b) is the inverse gamma distribution with density (a > 0 and b > 0) : 

)()( )1(/ aebg aba Γ= +−− λλ λ .           (3.4) 
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To facilitate an efficient computation for the SV models, use is made of the class of 

scale mixtures of uniform representation for the normal density.  Since X is a normal 

random variable with mean θ  and variance , its density function can be 

rewritten into 

2σ

∫
∞

⎟
⎠
⎞

⎜
⎝
⎛ −= 2 )5.0,5.1|(

2
1),|( 2

σ
θ

σ
σθ x duuG

u
xN ,       (3.5) 

where  is the gamma density function with parameter a and b.  The 

Student-t distribution with a degree of freedom α can be expressed into the following 

hierarchy 

),|( bauG

),,(~,,,| 2 uuUuX λσθλσθλσθ +− )5.0,5.0(~ ααλ invG and 

            (3.6) ),5.0,5.1(~ Gu

where U(a, b) is a uniform distribution defined on the interval (a, b). 

 

3.3 Bayesian Student-t SV Model and Gibbs Sampling 

 
 Let tH and  be the volatilities and log-volatilities respectively.  In the SV 

model, the signal data, y

th

t (where nt ,,2,1 L= ), is defined as 

 ttt Hy εβ=  and 
⎪⎩

⎪
⎨
⎧

>+
=−=

− 1
11/

1

2
1

th
th

tt
t

σηφ
φση ,      (3.7) 

where { }tε  and { }tη  are independent standard Gaussian processes. β  is a 

constant representing the model instantaneous volatility, σ  the variance of the 

log-volatilities and )1,1(−∈φ  the persistence of the volatility. 
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 In this chapter, the signal data set is modeled by a Student-t distribution while 

the log-volatility is assumed to follow a normal distribution : 

                (3.8) ),0(~| 2
ttt Hthy βα

and    ,  (3.9) )(~,,| 2
,1

2
1 σφσφ −− ttt hNhh

while the marginal distribution is ))1(,0(~,| 222 φσσφ −Nht . 

To complete the Bayesian framework, the shifted beta and inverse gamma 

distributions are assigned to be the independent priors for φ and σ2 respectively : 

1),(2~ −φφφ baBe  and .       (3.10) ),(~2
σσσ baGinv

The SV model can then be rewritten hierarchically as 

  and  ),(~,,| 2/12/12/12/12/12/1
tttttttttt uHuHUuhy λβλβλ − ),(~,,| 2

1
2

1 σφσφ −− ttt hNhh 

  (3.11) 

with    ).,(~,1),(2~),5.0,5.1(~),5.0,5.0(~ 2
σσαφ σφααλ baGbaBeGuG invtinvt    −

It is implemented using the Gibbs sampling approach with the variables ),,..,( 1 nyyy =
r  

),,..,( 1 nhhh =
r

),,..,( 1 nλλλ =
r

 

),,..,( 1 nuuu =
r ),,..,,,..,( 111 nttt hhhhh +−− =

r
),..,,,..,( 111 nttt λλλλλ +−− =

r
 and 

),..,,,..,( 111 nttt uuuuu +−− =
r .   With arbitrarily chosen starting values for 

2,,, σλ    uh rrr
andφ , the Gibbs sampler iteratively sample random variates from a system 

of full conditional distributions and the resulting simulations are used to mimic a 

random sample from the targeted joint posterior distribution. In the present study, β is 

fixed at unity. 

Now the system of full conditionals is given below: 
 
1. Full conditional distribution for ntht ,,1, L=  
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3.4 Numerical Examples 

 The artificial signals in Section 2.4 of chapter 2 are adopted again in this chapter.  

They consist of an exponentially decaying harmonic wave, s, and Gaussian white 

noises, υ, of various levels :   

 ,      (3.12) )()())(2cos()( )( τυττττπτ ττη +−−= −−
oo Hfey o

where H denotes the Heavside step function, f the frequency of the wave, η the decay 

constant, τo the instant of pulse initiation and τ the time in second.  The 

signal-to-noise ratio S/N in dB is defined as  

 ( )
maxmax10log10S/N υs= .          (3.13) 

Without loss of generality, η is fixed at 2 and f is normally set at 50Hz in this chapter. 

The parameter α in the SV model determines the shapes of the Student-t distributions 

and thus has significant impact on the modeling of the decaying signal by the SV 

model.  A small α gives rise to a thick tail distribution and is in general not good for 

detecting changes as a thick tail distribution tends to down-weigh extreme values, 

affecting adversely the detection of pulses in the presence of noises.  However, since 

the shape of the Student-t distribution does not vary much for α > 30 and the 

computation with large α is in general impractical as it is very demanding on 

computing resources, the largest α included in the present investigation is 30.  The 

incorporation of the Student-t distribution into the SV model gives rise to two mixing 
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parameters, namely u and λ, and a log-volatility h as shown in the previous section.  

The two mixing parameters illustrate fluctuation while the latter follows the envelope 

of the signal magnitude. 

Figure 3.1 illustrates the time variations of u, λ and h for S/N = 10dB and α = 30.  

One can observe that the variation patterns of u and λ are opposite.  The initiation of 

the pulse results in a prominent upward and downward spike in u and λ respectively.  

The present u is basically the same as those obtained using the EP distribution with a 

kurtosis of 0.75 in Chapter 2 (Figure 2.3).  The variation pattern of h is also very 

close to that shown in Chapter 2 (Figure 2.4).  Further increasing α may result in a 

slightly better performance, but the very computer resources demanding calculation 

makes it impractical in reality. 

The performance of the SV model deteriorates when the background noise level 

increases.  For S/N = -3dB with α = 30, both u and λ are unable to indicate without 

ambiguity the instant of the pulse initiation [Figures 3.2(a) and 3.2(b)].  The 

log-volatility h does not even suggest the presence of a decaying pulse [Figure 3.2(c)].  

However, the pulse initiation and its eventual decay are still observable with the EP 

distribution at this signal-to-noise ratio level as shown in Chapter 2 (Figures 2.3 and 

2.4) 

Table 3.1 summarizes the performance of the present SV model and has it 
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compared with that of the previous study in Chapter 2.  One can find that the use of 

the EP distribution in the SV model results in a better analysis when the S/N drops 

below 3dB.  The slightly worse performance of the Student-t distribution overall is 

probably due to the relatively longer tail of the Student-t distribution compared to 

those of the EP family even when the degree of freedom is large. 

 

3.5 Conclusions 

A stochastic volatility model which incorporates the Student-t distribution is used in 

the present study to retrieve the instant of initiation and the decay constant of an 

exponentially decaying signal in the presence of random background noises.  It is 

found that the performance of the Student-t distribution is comparable to that of the 

EP distribution for a signal-to-noise ratio higher than or equal to 3dB.  It deteriorates 

quickly when this ratio falls below 0dB. 
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Table 3.1   Estimated τo and η.* 
 

S/N (dB) τo (s) η (s-1) 
+∞ 1.000 (1.000) 1.95 (2.00) 
10 1.000 (1.000) 2.30 (2.05) 
3 1.000 (1.000) 2.20 (2.16) 
0 1.010 (1.001) 2.60 (2.42) 
-3 1.022 (1.002)  ---  (2.36) 

   *Numbers in parenthesis are those obtained with the EP distribution.3 
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Figure 3.1 Time variations of the mixing parameters for S/N = 10dB and α = 30. 

(a) u; (b) λ; (c) h. 
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Figure 3.2 Time variations of the mixing parameters for S/N = -3dB and α = 30. 

(a) u; (b) λ; (c) h. 
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Chapter 4  

A Statistical Model for Jumps and Decaying Pulses in 

the Presence of Background Noise 
 

4.1 Introduction 

In this chapter, the effectiveness of statistical distributions in modeling pulses 

and jumps in the presence of background noises of various magnitudes are 

investigated.  Special attentions are paid on locating the instant of initiation of an 

exponentially decaying harmonic pulse and the jump.  Two heavy-tailed 

distributions, namely, the Exponential-Power distribution (EP) and the Student-t 

distribution are adopted in this chapter.  The effects of various parameters of these 

distributions on the signal modeling performance are investigated.  

 

4.2 Gibbs Sampling for The Models 

The aim of the this chapter is to determine the instant of pulse initiation in the 

presence of background noise and also to demonstrate how our model can be used to 

determine the width of a rectangular waveform.   

In the following, we assume  to be the non-stationary signal and we shall 

try to model the signal by the heavy-tailed distributions, namely Exponential-power 

distribution, Student-t distribution and Normal distribution.  The proposed model 

ix
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and the corresponding posterior conditional distributions are shown as follows.  

Throughout this chapter, “rest” represents all parameters but excluding the parameters 

of interest.  and  are hyper-parameters of inverse-gamma distribution and are 

pre-specified.  

1a 1b

 

4.2.1 Student-t Distribution  

When the signal is assumed to be of the Student-t distribution with a degree of 

freedom α, the mean and variance are of the Normal and Inverse Gamma distributions 

respectively. The mixing parameter λ  is of the Gamma distribution.  The joint 

distribution of the parameter ),,,( 2 λτμ
rrx  is ),,,( 2 λτμ

rrxP  
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respectively. 

                (4.4) 

 

4.2.2 EP Distribution 

When the signal is of the EP distribution, the mean is calculated from an 

indicator function and the variance is of truncated inverse gamma distribution.  The 

mixing parameter is of truncated exponential distribution.  Throughout the rest of the 
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chapter, the indicator function means that the parameters are only valid or defined in 

the corresponding region in the bracket valid only.  Denoting 

)2()23( ββ ΓΓ=oc . 

The joint distribution of the parameters ),,,( 2 λτμ
rrx  in this case is ),,,( 2 λτμ
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The corresponding posterior conditional distributions of μ ,  and 2τ iλ  are, 
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Again, α  is the degree of freedom in the Student-t distribution.  The prior 

distribution of μ  is assumed to be non-informative, in Bayesian context, implying 

that we have no past information or experience of this parameter.  The priors for  

and  are assumed to be the inverse gamma distribution, while the former is the 

variance of the normal distribution and the latter is the variance of the inverse gamma 

distribution. 

2σ

2τ

Since all the conditional distributions are of standard forms, it is easy to 

perform random generation from truncated normal, truncated gamma and truncated 

exponential distribution. The simulation algorithms of the first two are suggested in 

Robert [24].  In our setting, we assume flat prior and  to be the prior 

distributions of 

),( 11 baGinv

μ  and  respectively, while  and  are both set to 0.01 in 

order to achieve non-informative prior for .  The Gibbs sampler method will be 

adopted while a single chain of 12000 iterations is run.  The first 2000 iterations are 

taken as a burn-in period and a random sample is picked every 10 iterations. 

2τ 1a 1b

2τ
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4.3 Illustrative Examples and Discussions 

4.3.1 Exponentially Decaying Harmonic Pulses 

The exponentially decaying harmonic wave described in Section 2.4 of 

Chapter 2. Figure 4.1 gives an example of such decaying pulse with S/N = 3dB.  The 

time resolution is 0.001s. Figure 4.2 illustrates the time variations of the mixing 

parameter λ at different kurtosis parameter β for S/N = 10dB.  The EP distributions 

are adopted.  A sharp rise in λ at the instant of the pulse initiation to is observed for 

all the β adopted, but the decay tail is shorter and the λ peak is higher at smaller β.  

One should note that a shorter decay tail is beneficial to the modeling of more 

complicated signals, such as the repeated echoes in building acoustics [25].  

Therefore, one can expect a better modeling when β is reduced.  In the foregoing 

discussions on the performance of the EP distribution, β is set at 0.25. 

 The time variations of λ at different degree of freedom α of the Student-t 

distribution for S/N = 10dB are shown in Figure 4.3.  A sharp and abrupt drop of λ 

can be observed at t ~ to for all α.  However, the magnitude of the drop decreases 

while the decay tail is shortened as α increases.  The former is expected to lower the 

performance of the distribution on resolving the pulse initiation when the background 

noise becomes stronger.  The drawback of the decay tail has been discussed in the 

last paragraph.  It is also found that the magnitudes of the initial noises in λ (at t < to) 
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are larger at smaller α.   It is not certain on how the variation of α is affecting the 

modeling in the presence of stronger background noises.  It should be noted that the 

shape of the Student-t distribution becomes close to that of the Normal distribution 

when α > 30.  One can then assume that the performance of the Student-t 

distribution for very large α will resemble that for α = 100 (Figure 4.3c). 

 The increase in the background noise magnitude does not deteriorate the 

performance of the EP distribution in locating to as far as S/N ≥ 0dB (Figure 4.4).  

The corresponding data for S/N = 10dB has been given in Figure 4.2a.  It should be 

reminded that highest λ spike needs not to be at to.  Ambiguity is observed when S/N 

exceeds 0dB as shown in Figure 4.4d, where the maximum error is around 24 time 

steps.  The corresponding results obtained using the Student-t distribution are 

provided in Figure 4.5.  It can be observed that a relatively stronger downward spike 

occurs at the instant to for S/N ≥ 0dB as in the case of the EP distribution.  However, 

these spikes are much less prominent than those in the previous EP cases and their 

strengths relative to the noises decrease more quickly as S/N decreases.  The 

situation becomes worse when S/N exceeds 0dB.  One can notice from Figure 4.5d 

that the spike due to the pulse initiation is completely drowned by the noises for S/N 

= -3dB.  The result shown in Figure 4.4d suggests that the EP distribution is a better 

choice for the modeling in the presence of a relatively stronger background noise. 
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 It can be concluded from Figures 4.4 and 4.5 that though both the EP and 

Student-t distributions can retrieve the instant of the pulse initiation accurately when 

the S/N is greater than or equal to 0dB, the EP distribution performs better in the 

presence of background noises, especially when the background noise is stronger than 

the pulse.  The Student-t distribution produces a relatively longer decay tail, which is 

an undesirable feature in signal modeling. 

 

4.3.2 Rectangular Waveforms and Jumps 

 The second signal to be discussed in this chapter is the rectangular waveform.  

It basically contains two jumps and takes the form : 

[ )()()()( es ttHttHAtnty ]−−−+= ,        (4.8) 

where ts and te are the instants of initiation and termination respectively.  The width 

of the waveform, w, is therefore equal to te – ts.  A and ts are fixed at 3 and 1s 

respectively in the foregoing discussions.  Figure 4.6 illustrates the waveform with 

S/N = 6dB and w = 0.4s.  Unless otherwise stated, w is fixed at 0.4s in the foregoing 

discussions. 

 Some examples of the time variations of λ obtained using the EP distribution at 

various β for S/N = 6dB are shown in Figure 4.7.  The two critical instants ts and te 

should correspond to those at which an abrupt rise and fall of λ are observed 
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respectively.  One can notice that better modeling can be achieved at larger β.  This 

phenomenon is opposite to that found for the decaying pulses.  When the Student-t 

distribution is used, it seems that a smaller α will produce better modeling effects.  

The corresponding results are given in Figure 4.8.  However, similar to the cases for 

the decaying pulses, the magnitudes of the λ spikes due to the background noises 

become larger as α decreases.  The presence of stronger background noises may thus 

deteriorate the recovery of the two time scales at small degree of freedom.  

 It is expected that the decrease in the S/N results in less satisfactory recovery of 

ts and te.  Figure 4.9 illustrates the time variations of λ at various S/N obtained using 

the EP distribution with β = 2.  The ambiguity in locating the jumps introduces error 

in the estimating the width of the waveform w.  Table 4.1 summarizes the estimated 

ts, te and w at various S/N studied.  The performance of the EP distribution is very 

good as far as the S/N remains higher than or equal to 3dB.  The absolute 

discrepancy does not depend on w. 

 The performance of the Student-t distribution is more complicated as it depends 

not only on the S/N, but also on the degree of freedom α.  Some examples of the 

corresponding time variations of λ for various S/N with α = 1 and 100 are given in 

Figures 4.10 and 4.11 respectively.  For α = 1, the values of λ at 1.0 < t < 1.4 is 

already close to those resulted from the background noise when S/N = 0dB (Figure 
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4.10c), making the estimation of ts amd te un-reliable.  However, the corresponding λ 

jumps obtained with α = 100 can still be distinctly observed (Figure 4.11c).  The 

Student-t distribution fails to indicate signal jumps for S/N = -6dB as shown in 

Figures 4.10d and 11d.  Table 4.2 illustrates its performance at α = 1, 30 and 100.  

The accuracy of the recovery of the two critical times is satisfactory for S/N > 0dB.  

The Student-t distribution gives very bad recovery when S/N is further decreased, 

while the EP distribution with β = 2 can still indicate λ jumps near to the instants ts 

and te, though the errors are considerable. 

 Results in Tables 4.1 and 4.2 also suggest that both the EP and Student-t 

distributions are able to retrieve the location of a unit pulse when the S/N is not less 

than 3dB.  A unit pulse is a fundamental signal form in studies of acoustics and 

electronics which has a width of one time step [26]. 

 

4.4 Conclusions 

 The modeling of jumps and exponentially time decaying pulses in the presence 

of background noises of various magnitudes is investigated in the present study by 

using statistical distributions.  The focus is on the recovery of the instants when the 

jumps and pulses are created.  The exponential-power and Student-t distributions, 

which are two heavily-tailed distributions, are chosen for the investigation.  The 
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uniform scale mixture representations of these distributions are derived.  The Gibbs 

sampling technique is adopted in this chapter. 

 It is found that both the exponential-power and the Student-t distributions can 

recover the instant of the jumps and the initiation of the decaying pulses very well 

when the signal-to-noise ratio is higher than 3dB.  For the decaying pulses, one 

requires a small β for the exponential-power distribution or a large degree of freedom 

for the Student-t distribution in order to achieve good recovery performance.  The 

opposite is observed when the jumps in the rectangular waveforms are concerned. 

 The performance of both distributions deteriorates when the signal-to-noise ratio 

falls below 0dB.  For this range of signal-to-noise ratio, a larger degree of freedom 

of the Student-t distribution tends to give better results, but this distribution type fails 

to indicate the initiation of the pulses and the location of jumps in the rectangular 

waveform for S/N < 0dB and -6dB respectively.  The present results indicate that the 

exponential-power distribution appears to be a more robust distribution for the present 

purposes. 
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S/N (dB) ts (s) te (s) W (s) 

+∞ 1.000 1.400 0.400
+10 1.000 1.400 0.400
+6 1.000 1.400 0.400
+3 1.000 1.400 0.400
0 1.004 1.400 0.396
-3 1.007 1.392 0.385
-6 1.012 1.377 0.365

 
Table 4.1.  Estimation of ts and te for the rectangular waveform using the EP 

distributions (β = 2) 
 
 
 
 
 

α = 1 α = 30 α = 100 S/N (dB) 
ts (s) te (s) w (s) ts (s) te (s) w (s) ts (s) te (s) w (s) 

+∞ 1.000 1.400 0.400 1.000 1.400 0.400 1.000 1.400 0.400 
+10 1.000 1.400 0.400 1.000 1.400 0.400 1.000 1.400 0.400 
+6 1.000 1.400 0.400 1.000 1.400 0.400 1.000 1.400 0.400 
+3 1.000 1.400 0.400 1.000 1.400 0.400 1.000 1.400 0.400 
0 1.004 1.400 0.396 1.004 1.400 0.396 1.004 1.400 0.396 
-3 - - - 1.010 1.392 0.382 1.012 1.392 0.380 
-6 - - - - - - - - - 

 
Table 4.2.  Estimation of ts and te for the rectangular waveform using the Student-t 

distributions 

 66



 
 

 

Figure 4.1 Decaying harmonic pulse in the presence of a background noise of S/N 

= 3dB. 
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Figure 4.2 Time variations of λ for decaying pulse obtained using the EP 

distributions. (a) β = 0.25; (b) β = 0.75; (c) β = 2. 

  S/N = 10dB. 
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Figure 4.3 Time variations of λ for decaying pulse obtained using the Student-t 

distributions. (a) α = 1; (b) α = 15; (c) α = 100. S/N = 10dB. 
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Figure 4.4 Effects of S/N on the time variations of λ for decaying pulse obtained 

using the EP distribution with β = 0.25. 

(a) S/N = +∞dB; (b) S/N = 3dB; (c) S/N = 0dB; (d) S/N = -3dB.  
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Figure 4.5 Effects of S/N on the time variations of λ for decaying pulse obtained 

using the Student-t distribution with α = 100. 

(a) S/N = +∞dB; (b) S/N = 3dB; (c) S/N = 0dB; (d) S/N = -3dB.  
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Figure 4.6 A rectangular waveform of width 0.4s with a background noise of S/N 

= 6dB. 
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Figure 4.7 Time variations of λ for rectangular waveform obtained using the EP 

distributions. (a) β = 0.25; (b) β = 1; (c) β = 2. S/N = 6dB. 
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Figure 4.8 Time variations of λ for rectangular waveform obtained using the 

Student-t distributions. (a) α = 1; (b) α = 10; (c) α = 100. S/N = 6dB. 
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Figure 4.9 Effects of S/N on the time variations of λ for rectangular waveform 

obtained using the EP distribution with β = 2.S/N = 10dB; (b) S/N = 

3dB; (c) S/N = 0dB; (d) S/N = -6dB.  
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Figure 4.10 Effects of S/N on the time variations of λ for rectangular waveform 

obtained using the Student-t distribution with α = 1. 

(a) S/N = 10dB; (b) S/N = 3dB; (c) S/N = 0dB; (d) S/N = -6dB.  
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Figure 4.11 Effects of S/N on the time variations of λ for rectangular waveform 

obtained using the Student-t distribution with α = 100. 

(a) S/N = 10dB; (b) S/N = 3dB; (c) S/N = 0dB; (d) S/N = -6dB.  
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Chapter 5  

On Weak Unsteady Signal Detection using Statistical 

Tests 

 

5.1 Introduction 

 When there is a sudden change to a normally running system, a jump or an 

abrupt change to the signals from the system will be resulted.  Successful and early 

detection of such changes is very important as some changes can be detrimental to the 

system.  It is particularly true in building services engineering when some parts of a 

piece of building services equipment start to go wrong but the initial fault signals can 

be very weak compared to other signals within the same equipment [27].  The fault 

then grows in size (magnitude) and finally causes damage to or even destruction of 

the equipment.   

It is believed that the statistical structure of a signal will change when an 

additional signal is introduced into it.  Therefore, it is expected that statistical tests 

will be very useful in detecting these changes.  Sensitivities of the tests in 

manifesting statistical changes are also an important issue, especially for the process 

of machine condition monitoring.  In this chapter, two statistical tests developed by 

Jarque and Bera [28] and D’Agostino [29] will be adopted.  Their performance in 

locating the instant of change under different signal-to-noise ratios will be 

investigated.  The background noise is assumed to be stationary.  This is basically 

acceptable at least in building services engineering where the various parts of services 

equipment are operated in pre-determined cycles and thus the background signals 
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usually have regular time patterns. 

 

5.2 The Statistical Tests and Indicators 

A statistical analysis of the problem of detecting the presence of unknown weak 

signals in noisy observations is adopted.  The approach is based on Jarque-Bera Test 

(JB) and D’Agostino’s Test (D).  The JB test is proposed by Jarque and Bera [28].  

It is based on the difference between the skewness and kurtosis of the data set and 

those of the assumed normal distribution.  The D test is developed by D’Agostino 

[29] and has been used for testing normality.  

 

5.2.1. Jarque-Bera test (JB) 

In statistics, the JB test is a goodness-of-fit measure of departure from normality, 

based on the sample kurtosis and skewness of the data set and those of the assumed 

normal distribution [28,30].  The JB test evaluates the hypothesis that the data set 

has a normal distribution with unspecified mean and variance, against the alternative 

that the data set does not have a normal distribution.  The test is based on the sample 

skewness and kurtosis of the data.  For a true normal distribution, the sample 

skewness should be near to 0 and the sample kurtosis should be around 3.  The JB 

test determines whether the sample skewness and kurtosis are unusually different than 

their expected values, as measured by a chi-square statistic. 

The test for normality works well in the general case.  The test is based, first, on 

independent random variables and, second, on the residuals in the classical linear 

regression.  The power of the JB test is good for distributions with short tails, 

especially if the shape is bi-modal. 

The test is well known to have very good power properties in the testing for 
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normality.  It is clearly easy to compute and is commonly used in the regression 

context in econometrics.  One limitation of the test is that it is designed only for 

testing normality, while the empirical likelihood ratio test can be applied to test for 

any types of underlying distribution with some appropriate modification to the 

moment equations.  The JB test statistic is 
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5.2.2 D’Agostino’s (D) Test  

The D test of normality is based on the ratio of Gini's mean difference to the 

sample standard deviation [29].  Although the test is known to be inconsistent for 

some skew alternatives, a systematic study has yet to be made for normal mixtures.  

The test for skewness is good at detecting non-normality caused by asymmetry.  The 

test is a powerful test for normality.  It is not as powerful for detecting skewness. 

Suppose  is the data set.  are the ordered 

observations, where 
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sufficiently large sample size n, 
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where Γ is the Gamma function.  The asymptotic standard deviation of the D test 

statistics is : 

nDasd 02998598.0)( ≈ .           (5.4) 

The standardized D test statistics, D*, is  
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= .             (5.5) 

Under the null hypothesis, D* is asymptotically distributed as N(0,1).  If the sample 

is drawn from a distribution other than normal, E(D*) tends to differ from zero.  If 

the underlying distribution has greater than normal kurtosis, then E(D*) < 0.  If it has 

less than normal kurtosis, then E(D*) > 0.  

D test is a test of normality based on order statistics from sample data.  It is a 

modification of the Shapiro-Wilk test [30], and it is readily calculated without the 

coefficients of the order statistics.  It is based on the ratio of a linear unbiased 

estimator of the standard deviation (using order statistics) to the usual mean square 

estimator.  The test was originally proposed for moderate sample sizes and can detect 

departures from normality both for skewness and kurtosis. 

The Shapiro-Wilk test and the D test are goodness-of-fit statistical tests 

recommended for testing if the underlying probability density function for a data set 

has a normal (or lognormal) distribution.  The test is a goodness-of-fit test that can 

be used for data sets larger than 50, which is the upper limit for the Shapiro-Wilk test.  

The D test can be used with data sets numbering between 50 and 1000 samples [31].  
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It should also be noted that the power of the empirical likelihood ratio test studied by 

Dong and Giles [32] is even lower than that of the D test for small sample sizes. 

 

5.3 Numerical Examples and Discussions 

 The performance of the two statistical test indicators (JB and D*) on detecting 

weak signal is illustrated through using a data set consists of an abruptly generated 

exponentially growing sinusoidal wave and a stationary background noise.  The 

signal series {y} takes the form : 

is
ii

si iieiiAHy s θϕωγ +−−= − ))(cos()( )(  for i = 1 to n,      (5.6) 

where is is the location index of wave initiation, H the unit step function, γ the growth 

rate of the wave and ω the angular speed of the wave.  {ϕ} is a stationary noise with 

magnitude bounded between ±1 and θ is a number which determines the strength of 

this noise.  Without lost of generality, A, γ, is and ω are fixed at 0.01, 0.002, 1001 

and 0.1π respectively. 

Each stationary noise {ϕ} used in the present study is created by repeating one 

set of random data generated by MATLAB and 0=iϕ .  The signal-to-noise ratio 

S/N is defined as 10log10(A/θ) and the unit is dB.  This signal type {y} is of special 

implication to the engineering field, especially in the situation when a fault is being 

developed inside a building services system [26].  The early detection of such 

change is very important for machine condition monitoring [27].  The focus here is 

to determine the instant is at which the wave, which will jeopardize system operation 

when it grows to some magnitude level, is created.  The effects of S/N on the signal 

detection will be discussed. 

Figure 5.1 shows {y} with θ = 0.5, giving a S/N of −17dB.  The background 
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random noise is created by repeating 20 random data generated by MATLAB.  One 

can observe that the signal is very weak when compared to the noise even up to a time 

step of 2000.  The conventional test of variance in engineering is obviously not 

capable of detecting the initiation of the growing wavy signal, but can only indicate 

such change when the wave has grown to a magnitude comparable to that of the 

stationary noise. 

The growing wave results in a sudden change in the D* at the instant i = is at θ = 

0.02 (S/N = −3dB) with n = 20 as shown in Figure 5.2.  This is the instant when the 

moving time frame starts to include the wave.  The initial value of the D* depends 

on the stationary data and thus can vary substantially.  However, the abrupt sharp 

change in D* remains very clear.  The effect of θ on the recovery of is is illustrated 

in Figure 5.3.  The corresponding data for θ = 0.02 can be found in Figure 5.2.  

Though the relative magnitude of the D* change is reduced as θ increases in general, 

it is still observable up to θ = 0.5.  It is observed that D* approaches 0.05 when the 

exponentially growing signal dominates the data set {y}.  One can observe the 

instant is more easily when the rate of change of D* is adopted as the indicator as 

shown in Figure 5.4.  The change is clearly recovered even at θ = 0.5 (Figure 5.4b).  

Perhaps it is not very surprising that a change in D* can be found, but the D test 

appears to be very sensitive to the introduction of an alien signal as the error in is 

recovery is negligible even at a S/N of −17dB if one uses the instant of the first 

change in D* as the indicator.  The corresponding error is about 3 time steps (15% of 

n) if one chooses the maximum local absolute rate of change of D* for the purpose.  

A jump of the rate of change of D* can also be observed at θ = 10 (S/N = −30dB) as 

shown in Figure 5.4c, but the corresponding jump cannot be clearly seen in the D* 

time variation.  The corresponding error in the is recovery is less than 13 time step 
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(~65% of n).  However, these errors depends on the background noise and will be 

discussed further later. 

One can observe that the JB test produces similar results, but the JB jump is 

distinctively observable here for θ = 0.5 as shown in Figure 5.5a.  It is noted that JB 

approaches 1.88 when the wave dominates the data set {y}.  The corresponding rate 

of change of JB is illustrated in Figure 5.5b.   

It is found that both JB and D* provide an accurate location of the wave 

initialization if one adopts the first abrupt change of their rates of change from zero as 

the indicator.  This phenomenon is independent of the stationary noise used.  

However, the stationary background noise will play a role in the recovery process if 

one chooses to use the maximum local rate of change to confirm the existence of the 

additional wavy signal together with the first abrupt change.  To study this effect, 10 

different sets of stationary noises are used and the average results with simple 

statistics are tabulated in Table 5.1.  The average errors and their standard deviations 

are rounded up to the nearest integers (time steps).  The numbers in parenthesis are 

the results obtained by using the first large change of the rate of change of JB or D* 

after their first abrupt change from zero.  It is observed that the maximum rate of 

change of the two statistical parameters is not a good indicator of is.  The latter, that 

is the large change in the rate of change of D* or JB, appears to be a better choice.  

Also, the results become steady when the S/N drops below −20dB.  Since the errors 

are not normally distributed, the corresponding skewness and kurtosis are presented 

so as to indicate the error distributions. 

One can observe from Table 5.1 that on average JB performs better that D* if 

one adopts the abovementioned large change of the rate of change of JB and D* as the 

wave initiation indicator, especially when θ increases beyond 0.5 (S/N < −17dB).  
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The more positive skewness also suggests that the mode of the error distribution is 

smaller than the mean error.  The larger kurtosis indicates that the error values are 

more concentrated around the mode. 

Results in Table 5.1 show that the recovery of is using JB and D* depends on the 

background noises, even when the noises are of the same strengths.  In order to 

minimize the background noise effect, a new parameter CT is proposed : 

oo JB
JB

D
DCT −=

*
* ,             (5.7) 

where the suffix o denotes the quantity before the introduction of the wave (that is, for 

i < is).  One can find in Table 5.1 that CT gives a more stable and a slightly better 

prediction of is than JB on average. 

Figures 5.6a to 5.6c show the variations of the rate of change of CT, D* and JB 

in the presence of the same background noise with θ = 10 respectively.  The 

ordinates are normalized by the corresponding maximum magnitude of the rate of 

change for 900 < i < 1100.  In this example, D* is doing better than JB and it is 

found that the rate of change CT follows that of D* very closely.  Another example 

for θ = 10 is illustrated in Figure 5.7.  This time JB gives better recovery of is, while 

D* results in ambiguous information around i ~ is.  First large change of the rate of 

change of CT (that is, the second time derivative of CT) appears to take place closer to 

is than that predicted by D*, though time variation of the rate of change of CT still 

follows roughly that of D*.  It appears that CT has inherited the advantages of both 

JB and D* and thus its better performance on average. 
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5.4 Conclusion 

 Two statistical tests, namely the Jarque-Bera test and D’Agostino test, which 

have been adopted in the past for checking data normality, are used for recovering the 

instant of introduction of an exponentially growing sinusoidal wave in the presence of 

a stationary background noise in this chapter.  This type of unsteady signal is of 

prime importance in engineering.  The effects of the signal-to-noise ratio on the 

recovery are also examined.  A moving time frame of constant width is adopted in 

the calculation of the time variations of the statistical test parameters. 

 It is found that there is a jump when the calculation starts to include the wave.  

However, the magnitude of the jump depends on the background noise.  The second 

time derivative of the statistical test parameter is found to be a more appropriate 

choice for the recovery of the wave initialization instant.  Though it may not be very 

surprising that there is a change in the statistical parameter when an alien signal is 

introduced to the ordinary noise, it is the sensitivity of the change that is impressive.  

The Jarque-Bera test parameter gives better prediction.  The error in the recovery is 

3 time steps on average even at a signal-to-noise ratio of −30dB.   

A new parameter derived from the parameters from the two tests is introduced.  

This parameter appears to have inherited the advantages of the two abovementioned 

statistical test parameters.  The corresponding average errors are slightly smaller 

than those from the Jarque-Bera test parameter.  However, the errors from the newly 

proposed parameter show insignificant dependence on the background noise. 
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Figure 5.1 Data set {y} with θ = 0.5. 
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Figure 5.2 Examples of D* variations for θ = 0.02. 
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Figure 5.3 Effects of background stationary noise magnitude on D* variations. 

(a) θ = 0.05; (b) θ = 0.1; (c) θ = 0.25; (d) θ = 0.5. 
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Figure 5.4 Rate of change of D*. 

(a) θ = 0.1; (b) θ = 0.5; (c) θ = 10. 
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Figure 5.5 Performance of JB test. 

 (a) JB variation; (b) variation of the rate of change of JB. 

 θ = 0.5. 
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Figure 5.6 Example of the time variation of the rate of change of indicator around is 

where D* gives better performance than JB. 

 (a) CT; (b) D*; (c) JB. θ = 10. 
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Figure 5.7 Example of the time variation of the rate of change of indicator around is 

where JB gives better performance than D*. 

 (a) CT; (b) D*; (c) JB. 

 θ = 10. 
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Error in isθ S/N 
(dB) 

Statistical 
Parameter D* JB CT 

Mean 2 (1) 2 (2) 1 (2) 
S.D. 3 (1) 3 (1) 2 (1) 

s 2.9 (0.7) 1.6 (0.9) 2.7 (0.2) 0.01 0 

k 8.6 (-1.0) 1.2 (-0.5) 7.9 (-0.7) 
Mean 8 (4) 8 (3) 9 (3) 
S.D. 6 (3) 6 (2) 6 (2) 

s 0.1 (1.0) 0.6 (1.3) -0.2 (1.7) 0.02 −3 

k -0.3 (-0.3) 0.6 (1.2) 0.7 (3.4) 
Mean 11 (4) 8 (3) 12 (2) 
S.D. 7 (3) 6 (2) 7 (1) 

s -0.4 (0.4) 0.6 (1.4) -0.8 (0.2) 0.05 −7 

k -1.0 (-2.1) 0.8 (3.0) -0.7 (-0.7) 
Mean 6 (4) 7 (4) 5 (3) 
S.D. 6 (3) 6 (3) 5 (2) 

s 0.7 (0.5) 0.7 (1.3) -0.8 (0.2) 0.10 −10 

k -0.3 (0.2) 0.3 (0.9) -2.2 (0.8) 
Mean 4 (5) 7 (3) 5 (3) 
S.D. 7 (4) 6 (3) 7 (2) 

s 1.5 (0.3) 0.9 (1.5) 1.1 (0.8) 0.25 −14 

k 1.4 (-1.8) 0.2 (0.9) 0.1 (-0.1) 
Mean 6 (5) 9 (3) 6 (3) 
S.D. 6 (4) 6 (3) 7 (2) 

s 0.8 (0.2) 0.2 (1.5) 0.6 (1.2) 0.50 −17 

k -0.3 (-2.0) -0.6 (0.9) -0.8 (0.3) 
Mean 7 (5) 9 (3) 8 (2) 
S.D. 6 (4) 6 (2) 7 (2) 

s 0.5 (0.5) 0.2 (2.6) 0.4 (1.5) 1.00 −20 

k -0.3 (-2.0) -0.6 (7.5) -1.2 (1.9) 
Mean 9 (5) 9 (3) 7 (2) 
S.D. 5 (4) 6 (2) 6 (2) 

s -0.2 (0.5) 0.2 (2.5) 0.4 (1.5) 2.00 −23 

k -2.0 (-0.3) -0.6 (6.9) -0.5 (1.9) 
Mean 9 (5) 9 (3) 7 (2) 
S.D. 5 (4) 6 (2) 6 (2) 

s -0.1 (0.1) 0.2 (2.5) 0.4 (1.9) 10.0 −30 

k 1.2 (-2.3) -0.6 (6.9) -0.4 (3.8) 
†CT = D*/Do – JB/JBo, s : skewness, k : kurtosis 

Table 5.1  Error of is recovery† 
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Chapter 6  

Detecting Weak Sinusoidal Signals Embedded in a 

Non-stationary Random Broadband Noise  

 

6.1 Introduction 

 The focus of this chapter is on enhancing the detection of weak signals 

embedded in a stronger non-stationary signal / noise.  A numerical treatment for a 

signal made up of the weak sinusoidal signal and the non-stationary noise, which can 

facilitate a better retrieval of the weak signal after the time-frequency procedure, is 

proposed.  Its performance is examined through two illustrative examples. 

 

6.2 Theoretical Considerations 

 The target of the present study is to establish a method to detect effectively a 

sinusoidal signal under a poor S/N ratio.  This section describes the development of 

the method.  The spectral technique will be used, but it is believed that the method 

also works for wavelet transforms.  In the following analysis, all parameters are 

non-dimensional.  Also, Ω denotes random noise with vanishing mean and 

magnitude bounded between ±1 in the following discussions.  These signals are 

generated using the software MATLAB. 
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6.2.1. Power Spectral Density of a Square Pulse Train 

 An infinite square pulse train is perhaps the most fundamental signal in building 

services engineering other than the sinusoidal wave.  It is given by the expression 
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where U is the unit step function, and A and Δ are real constants which fix the 

magnitude and duration of each pulse in x(t) respectively.  The period is 2to.  Figure 

6.1 illustrates an example of the train with A = 1, to = 10 and Δ = 6.  The power 

spectral density of x, P(x,ω), is [33], 
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where 1−=j  and ω the angular frequency.  Suppose n pulses exist within the 

period T, then one can approximate that for very large T and n, T ~ nto and  
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If the amplitude of each pulse in the train is not constant, but is uniformly distributed 

between 0 to A, the average amplitude will be A/2 and P will be reduced by 4 times.  

It can therefore be concluded that the detection of a sinusoidal wave in the presence of 

a random background noise will be enhanced if a numerical procedure that can 

transform the wave into a pulse-like train of the appropriate width can be found as the 

spectral contents of the random frequency components will be attenuated more 

quickly than that of the sinusoidal wave after the transformation.  However, this may 
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not be true if the effective Δ is too small after the transformation. 

 

6.2.2. The Proposed Transformation Function and Its Properties 

 A function which is simple enough for quick numerical application is required.  

In order to transform the sinusoidal wave into a pulse-like train, the crests and troughs 

of the wave must be preserved while the regions of large gradient must be 

down-weighted to small values.  The function must also be an odd function.  The 

following function 

)1(2)( 2)12( βα xxxw += + ,           (6.5) 

where α and β are non-zero integers appear to fit the present purpose.  Subsequent 

transformations are hereinafter denoted by 

, , and so on.  Figure 6.2 illustrates the 

w

)()1( xww = ))(()2( xwww = )))((()3( xwwww =

(1) of the cosine wave )02.0cos()( ttx π=  for various α with β = 1.  One can notice 

that the effective Δ is reduced after repeated transformation, but the increase in the Δ 

reduction is much less pronounced for large α.  Increasing β at a fixed α tends to 

flatten slightly the crests and troughs of the transformed wave.  This is in fact true 

for other combinations of for α and β.  Repeated transformation using the same 

combination of α and β results in more rapid reduction of the pulse width than that 

produced by increasing α. It should be noted that for sinusoidal wave of amplitude 

less than unity, each transformation will also result in a reduction of the pulse 

amplitude. 

Figure 6.3 shows the associated power spectral densities of the transformed 

cosine wave )02.0cos(5.0)( ttx π=  for α = β = 1.  It is noted that harmonics appear 

after the transformation of the cosine wave.  The first three transformation using w 
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results in faster attenuation of the average spectral energy levels of the random noise 

0.5Ω compared to the peak spectral energy of the cosine wave as shown in Figure 6.4, 

which is expected from the deduction discussed in the previous section.  Since the 

width of the pulse is reduced after each transformation, repeated transformation will 

eventually smooth out the spectral signatures of all discrete frequency components as 

suggested by Equation (6.4).  This leads to the higher spectral attenuation of 

)02.0cos(5.0)( ttx π= after the fourth transformation.  Similar phenomenon is 

expected to happen for the wave with amplitude after the fifth or the sixth 

transformation.  One can also observe that the first two transformations tend to 

attenuate more the spectral power density of the random noise for smaller magnitude 

signals.  Since the ratio of the spectral power density is around 4000 for the 

un-transformed case, it can be concluded that the detection of the sinusoidal wave 

may still be possible if its amplitude is ~2% of that of the random noise without any 

transformation, but the isolation of its spectral peak will be extremely difficult 

because of the very spurious spectral peaks resulted from the random noise. 

Figures 6.5a and 6.5b illustrates the w(4)s of the wave )02.0cos(5.0)( ttx π=  and 

0.5Ω respectively.  The very periodical structure of the transformed cosine wave 

compared to that of the transformed random noise should enable a better detection of 

the wave in the presence of the random noise using the spectral method, even though 

the attenuation of the random noise is less serious compared to that of the cosine wave 

after this fourth transformation.  This will be discussed further in the next section. 

 

6.3. Illustrative Examples and Discussions 

 In this section, the effectiveness of the function w in resolving weak signals 

embedded inside a broadband random noise is illustrated.  Two signals will be 
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examined.  The first one is a weak but steady sinusoidal signal and the other one is 

an abruptly generated sinusoidal signal that grows exponentially with time. 

 

6.3.1. Weak Steady Sinusoidal Signal  

 The signal in this section consists of a weak sinusoidal signal embedded inside a 

random background noise and it takes the form of 

x(t) = 0.5Ω + Asin(0.02πt).              (6.6) 

The signal-to-noise ratio S/N is defined as 10log10(2A).  Figure 6.6 shows the effects 

of repeated transformations (Equation 5) on x(t) for α = β = 1 and A = 0.025 (S/N ~ 

−13dB).  The spectral power density calculations were done using MATLAB with 

data segment length of 8192 and 0% overlapping.  Figures 6.7 and 6.8 illustrate the 

corresponding spectral power spectra for A = 0.015 (S/N ~ −15dB) and 0.007 (S/N ~ 

−19dB) respectively.   

For A = 0.025, the spectral peak of the sinusoidal wave can be observed even 

without the transformation, but it is surrounded by the spurious spectral peaks from 

the noise.  It is consistent with the observations made in Section 6.2.  Subsequent 

transformations make this peak more distinctive from the background (Figure 6.6) 

until w(5).  With a weaker sinusoidal wave of A = 0.015, the spectral peak due to this 

wave can be recovered distinctively after w(2) as shown in Figure 6.7.  The 

performance starts to go worse after the fifth transformation.  For A = 0.007, the 

spectral peak of the wave can only be recovered satisfactorily after w(4), but again the 

resolution of this spectral peak becomes poor after w(5).   

 

6.3.2. Abruptly Generated Signal that Grows Exponentially with Time 

 The signal in this section consists of Ω and an exponentially growing sinusoidal 
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wave initiated at time ti: 

))(cos())(exp()()( iii ttttttAHBtx −−−+Ω= ωγ ,      (6.7) 

where γ denotes the growth rate of the sinusoidal wave.  Without lost of generality, ti, 

γ, A and ω are fixed at 1000, 0.002, 0.01 and 0.1π respectively.  The signal-to-noise 

ratio here is defined as 10log10(A/B), which denotes the initial strength of the growing 

signal relative to the background noise.  It is shown in the last section that the 

proposed transformation can enhance the recovery of a steady and continuous 

sinusoidal wave in the presence of a background noise down to a S/N of −19dB.  In 

this section, the main focus is on the recovery of ti – the instant of wave initiation.  

The two transformation parameters α and β are fixed at unity. 

 The moving time frame approach is adopted.  The number of data in the time 

frame is denoted by n.  The calculation is commenced by going through the 

transformations as in the last section using the first n data of x(t).  The time frame is 

then advanced by one time step and the calculations are repeated.  Since the 

performance of the transformations depends on the magnitude of the data series, 

which can vary widely in practice, the data in the each time frame are normalized by 

the data range (the difference between the maximum and minimum values).  The 

mean value of the data in each time frame is kept to be zero.  The number of data put 

into the Fourier transform calculation is again n, giving a frequency resolution of 1/n. 

 Figure 6.9 is an example of x(t) with B = 0.5 such that the S/N = −17dB.  Only 

random background noise exists for t < 0.  One can observe that the sinusoidal wave 

cannot be seen even at t = 2000 under this S/N.  Figure 6.10 illustrates the variation 

of the maximum spectral power density upon repeated transformations of the signal 

with B = 0.01 for n = 200.  Since it is actually unable to know in advance the 

frequency of the sinusoidal growing signal in reality as far as machine monitoring 
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process is concern, only maximum spectral power density Pmax is considered in Figure 

6.10 and in similar figures presented afterward.  The frequency of the sinusoidal 

wave can be easily found out once it is detected.  Certainly, one can anticipate that 

the maximum power density is equal to that of the growing sinusoidal wave after two 

transformations.  One can notice from Figure 6.10 that the spectral power densities 

of the signals are the smallest near to the instant of the wave initiation.  For n = 200 

at this S/N of 0dB, the minimum Pmax appears at t ~ 1010 after w(3) and a sharp drop 

in Pmax precedes this instant.  The largest time gradient of the maximum power 

density, tP ∂∂ max , appears at t = 1001 (Figure 6.11) which is very close to ti.   

Figure 6.12 illustrates the effects of S/N on the recovery of ti using the parameter 

( ) twPxP ∂∂ ),(),( )3(
maxmax ωω .  One can observe that a sharp rise in the parameter 

followed by closely packed spurious peaks of significant magnitudes can be found at t 

~ ti.  The recovery of ti is still satisfactory for a S/N of −17dB, although the 

associated error goes up to ~180 time steps.  However, the sinusoidal wave is still 

not visually distinguishable from x(t) at t = 300 (Figure 6.9).  This parameter also 

works as good as tP ∂∂ max  for the S/N = 0dB case.  Figure 6.12 also indicates that 

the error of ti recovery ranges from 0 to a maximum of 230 for a S/N above −17dB, 

but there appears no relationship between the S/N and the magnitude of the recovery 

error. 

 The number of data included in the moving average spectral calculation has 

crucial impacts on the recovery of ti.  It is expected that the increase in n will smooth 

out spectral irregularities especially within the random background noise and will 

increase the frequency resolution of the spectral calculation.  It is found that a larger 

n also allows the use of more repeated transformations.  The parameter 

 101



( ) twPxP ∂∂ ),(),( )5(
maxmax ωω  is adopted in Figure 6.13, where the associated S/N 

equals −17dB.  One can observe from Figure 6.13a that the associated error in the 

recovery is negligible for n = 4000, though there is a small spike at t ~ 550 due to the 

random background noise.  The recovery is unambiguous when n is increased to 

8000 (Figure 6.13b). 

 

6.4. Conclusion 

 A novel but simple method for the detection of weak signals embedded in a 

non-stationary strong broadband background noise is derived in this chapter.  A 

function, which tends to transform sinusoidal wave into a regular pulse train, is 

proposed to be use together with the Fourier transformation.  Its performance is 

illustrated using two artificial numerical examples.  The first one is a very weak but 

steady sinusoidal signal, while the other an exponentially growing sinusoidal wave 

generated abruptly within the background noise.  For the latter, the recovery of the 

instant of wave initiation is the focus.  The performance of repeated transformations 

on the signals is also investigated. 

 For the steady sinusoidal wave, the proposed transformation function enables its 

unambiguous detection even when the signal-to-noise ratio drops to −19dB after the 

fourth transformation.  Further transformation is found to make thing worse and is 

not recommended.  The recovery of the instant of the exponentially growing wave 

initiation is also enhanced after the application of the transformation function.  The 

associated error is found to be within 300 time steps even for an initial signal-to-noise 

ratio of −17dB when 200 data are used in the spectral calculation.  The recovery of 

the instant of the wave initiation is improved remarkably by increasing the number of 
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data involved in the calculation.  The recovery error becomes negligible when more 

than 4000 data are used to produce the moving spectral averages. 
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Figure 6.1 Example of a square pulse train and the nomenclatures. 

   Δ = 6, A = 1, to = 10. 
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Figure 6.2  Examples of transformed cosine waves with β = 1.  

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ : Original wave cos(0.02πt); ⎯⎯⎯ : α = 1; ⎯ ⋅ ⎯ : α = 2; 

⎯ ⎯ : α = 3; ⎯ ⋅ ⋅ ⎯ : α = 4. 
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Figure 6.3 Spectral power densities of transformed cosine wave x(t) = 

0.5cos(0.001πt);  

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ : x; ⎯⎯⎯ : w(1); ⎯ ⋅ ⎯ : w(2); ⎯  ⎯ : w(3); ⎯ ⋅ ⋅ ⎯ : w(4). 

   α = β = 1. 
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Figure 6.4 Spectral power density attenuations due to repeated 

transformations. 

    : cos(0.02πt) and Ω;  : 0.5cos(0.02πt) and 0.5Ω. 
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Figure 6.5 Time variations of w(4) for α = β = 1. 

(a) 0.5cos(0.02πt); (b) 0.5Ω. 
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Figure 6.6 Effects of repeated transformations on spectral peak recovery in the 

presence of a background noise Ω for A = 0.025 (S/N = −13dB) and α 

= β = 1. 

 (a) x; (b) w(1); (c) w(2); (d) w(3); (e) w(4); (f) w(5); (g) w(6). 
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Figure 6.7  Effects of repeated transformations on spectral peak recovery in 

the presence of a background noise Ω for  A = 0.015 (S/N = −15dB) 

and α = β = 1. 

 (a) x; (b) w(1); (c) w(2); (d) w(3); (e) w(4); (f) w(5); (g) w(6). 
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Figure 6.8  Effects of repeated transformations on spectral peak recovery in 

the presence of a background noise Ω for  A = 0.007 (S/N = −19dB) 

and α = β = 1. 

 (a) x; (b) w(1); (c) w(2); (d) w(3); (e) w(4); (f) w(5); (g) w(6). 
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Figure 6.9 An example of exponentially growing signal embedded in a 

background noise. 

   B = 0.5 (S/N = −17dB). 
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Figure 6.10  Time variation of the maximum spectral power density for 

transformed signals with exponentially growing components. 

⎯⎯⎯ : x; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ : w(1); ⎯  ⎯ : w(2); ⎯ ⋅ ⎯ : w(3); ⎯ ⋅ ⋅ ⎯ : w(4). 

  α = β = 1, n = 200. 
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Figure 6.11 Time variation of the time gradient of the maximum spectral power 

density for transformed signals with exponentially growing 

components. (a) x; (b) w(2); (c) w(3); (d) w(5). α = β = 1, n = 200. 
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Figure 6.12 Time variation of ( ) twPxP ∂∂ ),(),( )3(
maxmax ωω . 

 (a) S/N = − 7dB; (b) S/N = −10dB; (c) S/N = −14dB; (d) S/N = −17dB. 

  α = β = 1, n = 200. 
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Figure 6.13 Effect of n on the recovery of ti using ( ) twPxP ∂∂ ),(),( )5(
maxmax ωω . 

 (a) n = 4000; (b) n = 8000. 

  α = β = 1, S/N = −17dB. 
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Chapter 7  

Conclusions and Recommendations for Future Work 

 

7.1 Conclusions 

In this thesis, statistical methods have been derived to solve engineering 

problems related to machine condition monitoring and room acoustics. In particular, 

statistical functions and numerical functions are used to model the instant of the pulse 

initiation, detect very weak sinusoidal signals embedded in a non-stationary random 

broadband background noise and recover the decay constants of exponentially 

decaying pulses in the presence of strong background noises. 

 In Chapter 2, the use of stochastic volatility model incorporated with the 

exponential power distribution to capture the initiation and decay of exponentially 

decaying signals in the presence of random background noises has been proposed. 

The exponential power distribution is an alternative choice to the normal distribution 

as the tail of the exponential power distribution can be adjusted to both heavier and 

lighter than that of the normal distribution. Although the accuracy deteriorates as the 

signal-to-noise ratio decreases, the performance of the present volatility model is 

clearly better than that of the conventional short time Fourier transform even up to a 

signal-to-noise ratio of -7dB.  Also, it is found that the introduction of a 10% of ±
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time fluctuation in the signal frequency does not affect much the pattern of the time 

varying mixing parameter. The fluctuation in signal frequency does increase the log 

volatility when the background noise is strong relative to the signal.  The detection 

of pulse will then become difficult when the signal-to-noise ratio drops below to 0dB. 

In Chapter 3, the use of a heavy tail distribution has been demonstrated for the 

purpose mentioned in Chapter 2. The Student – t distribution is expressed into two 

stage scale mixture distributions so as to reduce the computational time. The 

performance is comparable to the exponential power distribution. The performance of 

the mixing parameter u in Student-t is basically the same as those obtained using EP 

distribution with a kurtosis of 0.75 in Chapter 2. The results of log-volatility h are also 

very close to that for the EP distribution. 

In Chapter 4, a statistical modeling technique using full Bayesian approach is 

proposed for use in the detection of jumps and decaying pulses in the presence of 

background noises.  Two heavily tailed distributions, namely, the exponential-power 

and the Student-t distributions, are adopted for the purpose.  Results suggest that 

both of these distributions can give accurate recovery of the instants when the abrupt 

changes take place if the background noise level is lower than that of the changes by 

3dB.  They also indicate that the exponential-power distribution is more useful when 

the signal-to-noise ratio falls below 0dB. 
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 In Chapter 5, two statistical tests, namely the Jarque-Bera test and D’Agostino 

tests, are adopted to recover the instant of initialization of an exponentially growing 

sinusoidal wave. It is found that the Jarque-Bera test gave better prediction than the 

D’Agostino test. A new parameter is derived from the two tests. This new parameter 

appears to have inherited the advantages of the two abovementioned statistical tests. It 

is also found that the errors from these parameters show insignificant dependence on 

the background noises.  

 In Chapter 6, a novel numerical method for the detection of weak signals 

embedded in a non-stationary strong broadband background noise has been derived 

and its capacity in detecting weak signals demonstrated.   A function which tends to 

transform a sinusoidal wave into a regular pulse train is proposed to be used together 

with Fourier Transform in this new method.  It is found that the present derived 

method can detect the presence of a sinusoidal signal even when the signal-to-noise 

ratio drops to around -19dB.  It can also recover the instant of wave initiation with 

smaller amount of data under strong background noise situation.  

 

7.2 Recommendations for Future Work 

The analysis of exponentially decaying pulse signals and weak unsteady 

signals using statistical approach is focused in the present study. There are three areas 
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which can be dealt with in the future. 

 

7.2.1 Analysis of Exponentially Decaying Pulse Signals using Stochastic Volatility 

Model using Generalized-t Distribution on Multiple Jump Signals 

In Chapter 2 and Chapter 3, the stochastic volatility model incorporating the 

exponential power distribution and Student-t distribution are shown to be able to 

retrieve the instant of the pulse initiation and the decay constant within engineering 

tolerance in the presence of background noises of an artificial signal. The recovery of 

the instants when the multiple jumps and pulses are created can be an extension of the 

present work.  The introduction of generalized-t (GT) distribution is proposed to 

replace the abovementioned two distributions. The GT is proposed by McDonald and 

Newey [34] in regression analysis and is studied by Arslan and Genç [35] for robust 

estimation of location and scale parameters. Other than the location μ  and scale σ , 

the GT density is governed by two shape parameters, ( > 0) and  ( > 0) and is 

given by  
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where  is the EP density function as in (7.1). Denoting ( ⋅⋅⋅ ,,|uEP )
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GG is the generalized gamma distribution [35].  
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The performance of a SV model when incorporating the GT distribution on 

retrieving the properties of the multiple exponentially decaying pulses in the presence 

of random noises is expected to provide a significance result.  It is hoped that the 

results will also provide useful information for the future enhancement of signal 

detection and machine diagnosis. 

 

 

7.2.2 Experimentally Validations 

In this thesis, statistical approach has been applied on the analysis of 

exponentially decaying pulse signals and weak unsteady signals. Numerical pure tone 

data are used. It will be worthwhile to consider the application of the present proposed 

statistical models to real data which are broadband in nature. Source of decaying pulse 

can be a room sound decay which can be obtained from reverberation time 

measurements, while background noise of various magnitudes can be adopted by 

loudspeakers.  

 

7.2.3 Modeling Signal by Asymmetric Distribution 

If a signal exhibits certain degrees of skewness, the use of the asymmetric 

distributions may be more effective than the symmetric distributions for modeling the 

signal. From statistical point of view, the asymmetric scale mixture distributions are 
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still unavailable.  There is a possibility to develop a class of heavy-tailed asymmetric 

distributions via scale mixtures from the existing symmetric scale mixture 

distributions, and to develop efficient simulation algorithms for Bayesian computation. 

This may be achieved by adding an auxiliary variable to the location of the existing 

scale mixture distributions in order to get the desired asymmetry. At the same time, 

the heaviness of the tail (either the left tail or the right tail) can be preserved. 
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