Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

A Personal Profiling Approach for
Caching and Prefetching

in Distributed Virtual Environment

Jimmy H.P. Chim

Master of Philosophy
The Hong Kong Polytechnic University
Hong Kong

2001

/N, Pao Yue-Kong Library
qb/ PolyU + Hong Kong

Abstract

Over the last decade, continuous evolution on both Internet and multimedia tech-
nology has turned the aspiration to Distributed Virtual Environment (DVE) across
the Internet into a reality. A virtual environment usually contains a huge number of
virtual objects represented by object models which are stored in a database server.
When a user navigates through the virtual environment, the required data is transmit-
ted from the server to the client machine for display through the underlying network.
In this thesis, we aim at improving the performance of a DVE system across the Inter-
net, both in terms of responsiveness and visual quality, under the existing constraint

of relatively low bandwidth of the Internet.

We propose the multi-resolution caching mechanism for effective manipulation
of client-side caching. Our proposed multi-resolution caching mechanism exploits
the progressive characteristics of the recently proposed multi-resolution modeling to
improve caching performance. The caching mechanism is further complemented by
a user-profiling based prefeiching mechanism to predict objects that will be accessed
in the future. To quantify the performance of the proposed mechanisms, we perform
a number of simulated experiments. The simulation results show that our proposed
caching mechanism out-performs the traditional one and the prefetching mechanism
is useful in reducing the response time of the system. To validate the simulation
study, we implement a prototype. We conduct a series of experiments based on the
prototype, along with appropriate quantitative analysis. From the results, we identify
scenarios where our approach is beneficial, resulting in shorter response time, better
cache hit ratio and reduced latency. These results demonstrate the effectiveness of

our proposed mechanisms for use in DVE.

Acknowledgement

Thanks GOD for giving the wisdom and health to me so that I can accomplish
this thesis.

I would like to express my sincere thanks to my supervisor, Dr. Hong-Va Leong
and co-supervisors, Dr. Rynson Lau, and Dr. Antonio Si. Without their enlighten-
ment, help, and encouragement, this research project would have not been completed.
Also, I would like to thank our research group members, Mr. Boris Chan, Mr. Ken
Lee, and Mr. Stanley Yau for their invaluable suggestions. They have spent much
time brainstorming and sharing experiences and knowledge with me. I would like to
thank Mr. Danny To for sharing with me his multi-resolution modeling programming
library.

Last but not the least, I have to thank my family for their endless supports and

forever loves. This thesis is dedicated to all of them.

The research life is an endless journey. The end of one stage is the

beginning of another

Contents

1 Introduction 1
1.1 Distributed Virtual Environment L. 1
1.2 Motivation L .o e e e e 2
1.3 Problem Statemento 4
1.4 BasicApproach 5
1.5 OQutlineof the Thesis 7

2 Background 8
21 Origmof DVE. oo 8

211 SIMNET 8
21.2 DIS e e e 9
2.1.3 NPSNET 10
214 DIVE e 10
215 BrickNet L 11
2.1.6 MR Toolkit Peers Package 11
217 MASSIVE 11

ii

CONTENTS iii

2.2 Communication Model, 12
2.21 Broadcast e 12
2.22 Multicast 13
223 Unicast . . . - . i e e 14
224 Client-Server e 15

2.3 Real-time Graphics Rendering 15
2.3.1 Geometry-based Rendering 16
2.3.2 Image-based Rendering 17

2.4 Visibility Processing o oo 18

2.5 Multi-resolution modelingo oo 19
251 Level-Of-Details 20

2.6 Caching Mechanism o000 22

2.7 Prefetching Mechanism 24

3 Multi-Resolution Modeling 26

3.1 Introduction 26

3.2 Related Work 27
3.2.1 Simplificationo o 27
3.2.2 Model Representation 32

3.3 Overview of Qur Method 36

3.4 Viewer Scope and Object Scope 40

3.5 Optimal Resolution oL 41

CONTENTS iv

4 Caching and Prefetching Mechanism 49
4.1 Imtroduction L e 49
4.2 Related Work 50

421 Replacement POlCY . « « « o o o v oo 51
4.2.2 Caching Granularity 52
4.3 The Cache Model, 53
431 The Push-based Cache Model 54
4.3.2 The Pull-based Cache Model 55
44 Transmission Ordero o7
4.5 Multi-Resolution Caching Mechanism 58
451 Replacement Policy 58
4.5.2 Caching Granularity 59
4.6 Prefetching Mechanism L 60

5 Simulation Study 64
51 Introductiono 64
5.2 Simulation Model oo 65
5.3 Experimental Environment 66
5.4 Performance Evaluation e 70
5.5 Experiments on Caching Mechanism 71

5.5.1 Experiment #1 72
5.5.2 Experiment #2 0. 74

5.5.3 Experiment #3 L 76

CONTENTS v

554 Experiment #4 oo 78
555 Experiment #5 80
5.5.6 Experiment #6 oo 81

5.6 Experiments on Prefetching Scheme 83
56.1 Experiment #7 oL 84
5.6.2 Experiment #8 86
5.6.3 Experiment #9 L L 0oL 88
5.6.4 Experiment #10 89
5.6.5 Experiment #11 0000 91

57 Conclusion L e 93
6 System Prototype 94
6.1 Introduction 94
6.2 System Architecture Lo g5
6.3 System Design. 97
6.3.1 Client System B 97
6.3.2 Server System 101

6.4 Implementation Details 102
6.4.1 Multi-resolution Modeling 102
6.4.2 Graphics Libraryo 105

6.5 Experiments for Simulation Validation 106
6.5.1 Experiment #A L L o oo 167

6.5.2 Experiment #B 0oL 109

CONTENTS vi

6.6 Prototype Demonstration 110
7 Conclusion 116
7.1 Contribution of this Thesis 116

7.2 Future Work e e e 118

Chapter 1

Introduction

1.1 Distributed Virtual Environment

Over the last decade, the continuous evolution of both Internet and computing tech-
nologies has turned Distributed Virtual Environment (DVE) across the Internet into
a reality. Formally, a Virtual Environment (VE) is defined as an interactive three-
dimensional (3D) computer-synthesized environment containing a significant number
of interesting objects. Participants or users of the VE are able to perform naviga-
tion, exploration, manipulation and interaction with virtual objects in the VE as if
they were in the real world [27]. Typically, each user accesses his/her own computer
workstation or console as a user interface to the content of the VE by controlling a
hypothetical virtual viewer located within the VE. These environments aim to provide
users with a sense of realism by providing realistic 3D graphics to create an immer-
sive experience. If images are rendered smoothly and rapidly enough, the illusion of

real-time exploration of a virtual world can be achieved.

A DVE system is different from a traditional VE system in the way that users

are not limited to accessing locally available VE only. By contrast, users are able

CHAPTER 1. INTRODUCTION 2

to explore various remote virtual environments which may be located geographically
apart via the underlying network. A DVE systern also allows different users to share
and interact within a common VE. Each VE contains a huge number of geometric
models which will be stored and maintained by a database server. In a typical DVE
session, data describing the environment is transmitted from remote database servers
to the user’s local machine. The data will then be stored, processed and rendered

into images for display. Users should not be noticeable of whether he/she is accessing
a VE or a DVE.

The use of DVE can shorten the distance between geographically boundaries. By
using DVE, numerous kinds of application can be realized. Virtual museums and
virtual art galleries, for example, visitors can examine different valuable collections
of artworks, sculptures and antiques by using his/her computer without the need of
traveling thousand-miles apart. Virtual libraries enable searching of information in
a user friendly manner. Through virtual shopping malls, users are able to virtually
touch the goods before purchasing them. Virtual prototyping can be developed using
DVE. It can reduce the need for costly and timely physical mock-ups. In addition,
DVE is beneficial to the development of scientific visualization for scientists at dif-
ferent locations by enabling them to enter into the world of data. to perform visual
simulations and experiments, and to circumvent the time consuming model building
task. The applications of DVE are not limited to the above mentioned examples.
Other applications, such as tele-operations, tele-robotics, multi-user games and vir-

tual training, can also be constructed using DVE.

1.2 Motivation

DVE systems, such as BrickNet {76], DIVE [7], MASSIVE (29], NPSNET [21] and
SIMNET [5], focus on supporting large number of users sharing the VE. The content of

CHAPTER 1. INTRODUCTION 3

the VE is usually replicated or pre-distributed at the client machine prior to the start
of the application. These systems do not consider time-critical distribution of the VE
across the network. The scalability and complexity of the VE are usually restrictive as
the geometric primitives used are simple and limited in number. For example, several
boxes are used to represent a human. This could prevent excessive transmission
time across the network (as shown in Figure 1.1). More complex systems are only
affordable by universities, large military or industrial institutions which are equipped

with high-speed local area networks and powerful high-end graphics workstations.

Figure 1.1: DVE example from DIVE.

In order to increase the realism of a DVE system, it is necessary to use a large
number of geometric objects with good details. However, this will make the VE too
large to be transmitted across the network. One associated problem is that the content
of the VE may exceed the capacity of the computer’s local storage. The problem is
even worse when the network connections are notoriously slow, e.g., the Internet, and
long transmission delay means that the systems are unsuitable for interactive use.
Given today’s personal computer systems with high-speed CPUs, fast system buses

and slow Internet connections, it is very reasonable to assume that the network is the

CHAPTER 1. INTRODUCTION 4

most constrained resource of the system.

To support DVE across the Internet, it is desirable to devise a solution for efficient
distribution of geometric objects with minimal network bandwidth consumption and
avoid the complete replication of a VE at each client machine. It is also indispensable
to provide interactive frame rate and with good image quality, so that users can easily
be immersed into the virtual world. The ultimate goal is to allow multiple users to

share a common VE across the Internet.

1.3 Problem Statement

Large, detailed VEs are far too complex to be transmitted across the Internet. This
makes provision of realistic images at interactive frame rates on currently available
personal computer systems with Internet connections infeasible. A VE usually con-
tains a tremendous amount of geometric virtual objects. The size of a VE database
may contain gigabytes of data and thus it may take an extremely long period of time
in transmitting the whole VE across the Internet. Such a large VE is inherently not

favorable for transmission across the Internet.

In order to support interactive exploration and navigation of such a large VE
across the Internet, a system must be able to request, store and render only a small
portion of the VE at runtime. As a hypothetical viewer controlled by a user moves
through the VE, the relative positions and orientations of objects may change with
respect to the viewer. Some objects within the VE become visible while others are

not; some appear larger and some smaller, etc. Such changes should be reflected into

rendered images in a timely fashion.

To support interactive real-time rendering of a VE, most existing systems use

multiple geometric description, called Level-of-Details (LOD), for representing virtual

CHAPTER 1. INTRODUCTION 5

objects. This can reduce the rendering time required for distant virtual objects [7. 21,
24, 66]. However, this method greatly increases the network bandwidth consumption
because extra amount of data is used to represent a single object. The amount
of storage required to maintain these virtual objects however also increases. Thus,
it is essential to employ another modeling method, if any, with minimal network

bandwidth consumption for DVE systems across the Internet.

The challenge is to reduce the network bandwidth consumption and cache storage
requirement while maximizing the frame rate and image quality for DVE systems

across the Internet.

1.4 Basic Approach

To overcome the problem of large network bandwidth requirement of a DVE system,
we propose a multi-resolution caching mechanism and a user-profiling based prefetch-
ing mechanism to effectively cache and prefetch virtual objects at the client machine.
Other techniques employed include Multi-resolution modeling and Object Scope and

Viewer Scope.

The choice of a modeling method for virtual objects is very important for prevent-
ing the use of redundant information in representing a single virtual object. Virtual
objects must be modeled in good details, but in a compact form so as to reduce the
amount of storage required and the amount of time required for transmitting them
across the network. A compact modeling form of an virtual object also has the benefit
of fast retrieval from secondary storage, both at the server and the client sides. More-
over, this can reduce the rendering time and increase the frame rate which can then
increase the realism of a DVE system. However, overly compact virtual objects could
increase the overhead in compression and decompression. The recently developed

multi-resolution modeling [33, 42] technique, which facilitates progressive transmis-

CHAPTER 1. INTRODUCTION 6

sion of objects with only minimal overhead and network bandwidth consumption,
could be employed here.

As a VE often consists of a huge number of object models, the size of the object
database is generally very large, e.g. several gigabytes of data is not uncommon.
The amount of data to be processed by the client machine may be far beyond its
capability. As a result, extra time and processing are required for data manipulation
and image rendering. The response time would then be increased. In order to reduce
it, we must identify a small portion of the VE to be viewed by the client. One popular
solution to this problem is based on area of interest (AOI) of viewers [21, 52, 66).
AOI defines how far a viewer can see. We adopt and further enhance this method by
considering also sizes of virtual objects. We refer to the original method as Viewer

Scope and the enhancement as Object Scope.

To reduce the amount of data being requested and transmitted across the Internet,
caching of suitable objects with high affinity is commonly done. As the cache storage
is usually limited in size, a replacement policy is used to discard objects from the
cache when the storage is exhausted. Although caching is commonly used in many
networked applications, a general conclusion on the performance of different replace-
ment policies cannot be made. Rather, the semantics of data access is more important
in defining the replacement policy [72]. We propose the use of multi-resolution caching
mechanism in this environment. Caching is commonly complemented with prefetch-
ing to improve caching performance [8]. For this purpose, We propose a user-profiling
based prefetching mechanism. In short, a separate personal profile capturing the char-
acteristics of individual user’s walk pattern is maintained at the client machine. This

profile will then be used for predicting the future movements of the user. In this way,

the data can be downloaded in advance.

To evaluate the proposed mechanisms for use in a DVE across the Internet, a series

of simulated experiments has been performed. The results show that our proposed

CHAPTER 1. INTRODUCTION 7

mechanisms out-perform traditional mechanisms. A system prototype has also been

developed to further verify the proposed mechanisms under a physical environment.

1.5 OQOutline of the Thesis

In this chapter, we have briefly looked at Distributed Virtual Environment and the
major problems associated with DVE across the Internet. We have also discussed the
motivation, the problem statement and the basic approach of this dissertation. The

rest of the thesis is organized as follows:

o Chapter 2 presents a review of related works including the origin of DVE, Net-
work Design, Real-time Rendering, Visibility Processing, Modeling Methodol-

ogy, Caching Mechanism and Préfetching Mechanism.

o Chapter 3 gives a brief description of the multi-resolution modeling. The idea

of Viewer Scope and Object Scope will also be presented in this chapter.

e Chapter 4 presents our proposed multi-resolution caching mechanism for main-
taining objecis for possible future use in local storage. A user profiling based
prefetching mechanism, which is complementary to the caching mechanism are

also presented for further improvement.

e Chapter 5 gives a description of the simulation model and results for evaluating

the proposed caching and prefetching mechanisms.

e Chapter 6 describes the system prototype design and implementation, as well

as evaluation experiments and results.

e Chapter 7 concludes the thesis and outlines a summary of future work.

Chapter 2

Background

2.1 Origin of DVE

A distributed virtual environment (DVE]) is a real-time simulation of a real or imag-
inary world where users navigate and interact with one another within it [30]. The
construction of DVE has long been a challenge across several research disciplines.
The ultimate goal is to create an immersive VE enabling multiple users, which may
be separated across geographical boundaries, to participate, meet and interact with
one another within the virtual environment. Remarkable DVE systems developed by
Military Institution include SIMNET and DIS and academic DVE systems include
NPSNET, DIVE, BrickNet, MR Toolkit Peers Package, and MASSIVE.

2.1.1 SIMNET

The Simulator Network (SIMNET) [5, 55] was one of the first DVE system developed
by the Department of Defense (DoD) of the US Government. The project began in
1983 and was delivered to the US Army at 1990. The objective of the SIMNET project

CHAPTER 2. BACKGROUND

was to develop a relatively low-cost DVE fof battlefield simulation and training. In
SIMNET, the VE is modeledr as a collection of objects interacting with each other
via different events. Object representing either a vehicle or a weapon system can
interact across the network and each is usually managed by a single machine. Object
sends information about étate changes, such as position and orientation, and. the dead
reckoning algorithm is used to extrapolate the states of different objects. SIMNET
relies on a high bandwidth and low latency network infrastructure and generates
images using special purpose Delta Graphics image generator hardware. The image
generator uses the pre-distributed local copy of the terrain database and small number

of runtime-distributed dynamic objects for rendering.

2.1.2 DIS

The Distributed Interactive Simulation (DIS) is derived from SIMNET and has been
adopted as the IEEE 1278 standard at 1993 [36]. The DIS standard defines 27 dif-
ferent Protocol Data Units (PDU) for information exchange among different entities
of the network. Examples of the PDU include, the Entity State PDU for position,
orientation and velocity changes, the Fire PDU for firing of a weapon and the Colli-
sion PDU indicating that a vehicle has a collision with something. By using DIS, any
computer capable of reading and writing DIS PDUs can fully participate in a DIS
environment. The objective of DIS is to define an infrastructure for linking simula-
tions of various types at multiple locations to create realistic, complex, virtual worlds

for the simulation of highly interactive activities. This allows different systems and

platforms to interoperate.

CHAPTER 2. BACKGROUND 10

2.1.3 NPSNET

The NPSNET (21, 51] is developed by the Graphics and Video Laboratory of the
Department of Computer Science at the Naval Postgraduate School. The first ver-
ston, NPSNET-I, was debuted at 1990 for reading and rendering of SIMNET terrain
database. NPSNET-II and III were utilized to explore better and faster rendering
methods, as well as to extend the size of the terrain databases possible. The project
NPSNET-1IV started at 1993. It incorporates the DIS protocol, IP Multicast using
dedicated Multicast Backbone (MBONE) and heterogeneous parallelism to develop

large-scale VE. It can be configured by the user as a simulator for an air, ground,

nautical, or virtual vehicle or human.

2.1.4 DIVE

The Distributed Interactive Virtual Environment (DIVE) [7, 30] by the Swedish In-
stitute of Computer Science (SICS) is one of the earliest academic DVEs developed.
DIVE uses different process groups to simulate a large shared memory over a local
or wide-area network. It uses a distributed, fully replicated database which is similar
to SIMNET and DIS-compliant systems. Each participant possesses a copy of the
distributed database and propagates changes to other participants with reliable mul-
ticast protocols. One of the major contributions of DIVE is that its entire database is
dynamic and it allows adding new objects and modifying existing database in a reli-
able and consistent fashion. DIVE uses reliable multicast protocols and concurrency

control via a distributed locking mechanism to accomplish database updates which

increases the cost for communications.

CHAPTER 2. BACKGROUND 11

2.1.5 BrickNet

BrickNet {76] was initiated in early-1991 at the Institute of Systems Science of the
National University of Singapore. BrickNet does not have a replicated database model
as SIMNET, DIS and DIVE. Instead, it partitions the virtual environment among
various VE clients. Requests for objects are mediated by servers and interactions on
distant objects are accomplished by an object-request broker on a server. BrickNet
is aimed at collaborative design environments in which a complete design task is
distributed among multiple client workstations. The primary contribution of BrickNet

is that it exploits the client/server architecture and each client does not require to

hold a complete copy of the VE database.

2.1.6 MR Toolkit Peers Package

The MR toolkit Peer Package (MRTPP} [70] is an extension of the Minimal Toolkit
(MR) Toolkit [71] developed at the Department of Computer Science of the University
of Alberta. MRTPP allows multiple independent MR applications to communicate
application dependent data or device data across the Internet. In MRTPP, local
copies of shared data are maintained in a distributed fashion. Since it maintains a
complete graph connection topology, each MR process must open a connection when

communicating with other processes. MR Toolkit only supports simple geometric

objects.

2.1.7 MASSIVE

MASSIVE [29] stands for “Model, Architecture and System for Spatial Interaction
In Virtual Environments” and is developed at the Department of Computer Science

of the University of Nottingham. It is designed for virtual collaboration of multiple

CHAPTER 2. BACKGROUND 12

users within a shared VE. To reduce the overhead for object interactions, MASSIVE
introduced the concept of aura and nimbus. An aura of an object defines the extent
to which interaction with other objects is possible and it is expressed as a function of
position and other object attributes. Interaétions are only enabled when aura collision
between two objects occurs. When two objects collide, the objects themselves are
responsible for controlling these interactions. Nimbus is defined as a sub-space in the

VE, in which an object makes itself available to others.

2.2 Communication Model

Network is one of the major components of a DVE system. The communication
model being employed strongly affects the performance and the scalability of a DVE
system. In order to render the VE which is visible from the user’s hypothetical
viewpoint, data representing the VE should be available locally at the client machine

before rendering. Four major communication models are commonly used, which are

Broadcast, Multicast, Unicast and Client-Server.

2.2.1 Broadcast

Most of the early DVE systems, such as SIMNET [5, 55] and VERN [3], are based on
broadcasting (as shown in Figure 2.1). In this topology, a single source of transmission
can reach all the hosts in the network and it has the advantage of easy implementa-
tion. However, broadcasting has a major disadvantage of inefficient use of network
resources. This topology is only suitable for local network or subnetwork. Too much
network traffic would be generated if it is used for inter-network communication. In
addition, all hosts in the network are required to examine every packet even if the

information is not intended for them. Great performance penalty would be incurred

CHAPTER 2. BACKGROUND 13

for the host because it must be interrupted for examining broadcasting packets. The

network can easily be overloaded. Broadcasting is unsuitable for use in the Internet

environment.

Figure 2.1: Broadcast communication model.

2.2.2 Multicast

Multicasting is used by NPSNET (21, 51] and DIVE (7, 30]. As shown in Figure 2.2,
data is sent from one host to many different hosts, but not to everyone. The data
only goes to clients that have expressed an interest in the data by joining a particular
multicast group. Multicasting is better than broadcasting because not all hosts in the
network would be interrupted during transmission and less network traffic would be
generated. However, different users of a DVE would navigate through the VE under
its own distinct path. Thus, data that is required by one user may not be needed by

another. It is unnecessary to distribute data using multicasting under this context.

CHAPTER 2. BACKGROUND 14

Figure 2.2: Multicast communication model.

2.2.3 Unicast

VEOS [4] and MR Toolkit [71] use unicast peer-to-peer design (as shown in Fig-
ure 2.3). For a large VE with good details, it is not feasible for each user to maintain
a complete copy or replica of the whole VE. The whole VE may be too large for each
client machine to maintain and the VE may exceed the storage capacity of a client

machine. Thus, unicasting may not be suitable for a large VE.

r——1 =
Noda D

Figure 2.3: Unicast communication model.

CHAPTER 2. BACKGROUND 15

2.2.4 Client-Server

BrickNet [76], DOOVie {2], RING (24] and WAVES [39] employ client-server archi-
tecture. A central server is used to maintain the content of a VE for client access.
Comimunications between different clients can also be mediated by the server which
can reduce the network load. While consistency can be made easier through a central
server, the server will easily become a bottleneck. This can be solved by using hybrid
system design like the one proposed by Funkhouser [25] which utilizes multiple servers
and each server is responsible for a region of the VE (as shown in Figure 2.4). To
further maximize the throughput, load balancing algorithm could be used to even out

the workload of individual server [75).

N
ode B Servar B é ;I
N ® — N N |

E: Server C

===l
Node D

Figure 2.4: Client-server communication model.

2.3 Real-time Graphics Rendering

The cornerstone of an immersive VE system is the visual component of the system.

Ideally, we would like to be able to generate images representing the VE that always

CHAPTER 2. BACKGROUND 16

match or exceed the limitations of human visual system. A sufficiently high frame rate
is essential for producing a smooth and continuous motion within the VE. However,
the ever-increasing demand of better image quality is usually bounded by the limited
performance of image generators available. Thus, we have to trade off between the
irage quality and frame réte of the application by reducing graphical complexity. The

two basic approaches include Geometry-based Rendering and Image-based Rendering.

2.3.1 Geometry-based Rendering

Geometry-based rendering is optimized and implemented in most graphics accelera-

tion hardware. The rendering pipeline can be divided into several stages as follows:

o Database Traversal is typically performed on the CPU in which the geometric

description of the scene is sent to the graphics pipeline (as shown in Figure 2.5).

e Polygon Transformation includes vertex transformations, lighting calculations

and polygon shading.

e Pizel Processing involves operations such as depth buffer testing, anti-aliasing,

texture-mapping and alpha blending.

<
=,
Geometry «?
Database
SR R

Polygon
Transformation

ke # ik
Database Pixel ' Display
Traversal - o Processing |}
: 2 - 7 ~ =

RN ORI B AR 4 T T T — T

Figure 2.5: The Rendering pipeline.

The scene complexity is directly proportional to the number of geometric prim-

itives involved. As the performance of an image generator is usually bounded by a

CHAPTER 2. BACKGROUND 17

fixed hard limit, it is desirable to reduce the scene complexity for geometry-based ren-
dering. Two commonly used methods for achieving this goal are Vistbility Processing

(Section 2.4) and Multi- Resolution Modeling (Section 2.5).

2.3.2 Image-based Rendering

The relatively new approach of image-based rendering (IBR) exploits the advantage
of finite image complexity as compared with the potentially unbounded geometric
complexity of a scene. The display algorithms typically require least computational

costs. The sources of images can be photographs as well as geometric models.

The concept of imposter is introduced by Maciel and Shirley [53]. In this method,
a geometric object is preprocessed and rendered into a set of images based on various
potential viewpoints of a user. The images are then texture-mapped onto different
polygons. Schaufler improves this method by generating imposters dynamically dur-
ing runtime [64]. In this method, the imposter is generated by rendering the object
using the graphics hardware at runtime and then texture mapped onto a rectangular
box replacing the original object. Schaufler [65] and Shade [69] extend the method
using hierarchical image cache for accelerated walkthrough of very large polygonal

scenes. These methods spatially partition the scene into different cells using a BSP

tree or octree tree.

Talisman [77] is the first proposed hardware support for image-based rendering.
The architecture employs several small image layers instead of the commonly used
frame buffer. During rendering, these image layers are transformed and composed to
simulate 3D motion. The rendering performance is improved by re-using the image
layers. In Quicktime VR, [9], an image is mapped cylindrically or spherically in real-
time in order to simulate camera panning and zooming. This method works very

efficiently for low-end platform.

CHAPTER 2. BACKGROUND 18

To support IBR for DVE systems, two different approaches can be used, namely,
server-side IBR and client-side IBR. In server-side IBR, the server machine trans-
forms and renders the VE into a set of images either at the preprocessing stage or
dynamically during runtime. Clients navigating the VE request images instead of
geometric objects from the server for display. However, preprocessing of the VE at
the server side prohibits dynamic objects within the VE and runtime generation of
images will seriously increase the workload of the server, so that the real-time re-
quirement of a DVE system cannot be fulfilled. By contrast, client-side IBE is more
suitable for use in DVE. In this approach, the client still needs to request geometric

objects from the server. The client machine can then render the VE using the IBR

methods stated above.

2.4 Visibility Processing

A VE often consists of a large number of object models. The amount of data to be
processed by the client machine may be far beyond its capability, i.e., the data cannot
be fit into the memory and/or local storage of the client. As a result, the response
time would then be much increased. In order to reduce the response time, we must

limit the amount of data to be processed by the client for the application.

An approach based on the area of interest (AOI) of the viewer [21, 52, 66] is
commonly used to limit the amount of data to be processed by the client. In this
approach, if an object falls inside the AOI of the viewer, the object is considered
visible to the viewer. The set of visible objects can easily be determined using this
method. This method can also control the amount of data to be processed by a
client during run-time. Since the AQI defines how far a viewer can see, the size of
the AOI also determines the amount of data to be processed. If the amount of data

to be processed is beyond the capability of the client, we can reduce the size of the

CHAPTER 2. BACKGROUND 19

AOI such that the amount of data is within the capability of the client. Although
these methods can quickly eliminate invisible objects, they do not consider the sizes
of the objects. Hence, a large mountain located just outside the AOI of the viewer
is considered invisible, while a tiny mosquito located just inside the AOI is unlikely
to be visible to the viewer, but is considered for visibility. The former situation may
result in sudden appearance of a large object, and the latter situation may result in
a waste of processing time. Thus, it is necessary to consider the size of objects in

this approach. This leads us into the definition of Object Scope and Viewer Scope
(Section 3.4).

2.5 Multi-resolution modeling

The response time of a DVE system can be reduced by shortening the rendering time
required for each object model. Multi-resolution modeling is commonly used and it is
based on the fact that for two objects with the same dimensions, the distant object
appears smaller than the nearby object after projection from the perspective of a
viewer within the VE. Thus, most of the details of the distant object may not be
perceived by the user. Hence, it is not necessary to represent the distant object at its
full resolution. Instead, a simplified object at a resolution that is just high enough for
the given viewing distance and/or viewing direction from the viewer can be used for
rendering (Figure 2.6). Figure 2.7 and Figure 2.8 show the geometric complexity of
the objects at different resolution. This would reduce the rendering time required to
display the object model. Since a required model is used instead of the original model,
it takes less time to transmit the simplified model across the network. There are many
methods developed for generating multi-resolution models {17, 34, 67, 78] and can be

classified into two main types, which are level-of-details (LOD) and progressive mesh

(PM).

CHAPTER 2. BACKGROUND 20)

Figure 2.6: Multi-resolution modeling.

2.5.1 Level-Of-Details

Almost all existing distributed virtual reality applications (7, 21, 24, 66] use the
method of level-of-details (LOD) for modeling. This method is also known as discrete
multi-resolution method, in which a set of simplified key-models is pre-generated based
on the original object model. Each key-model (also know as a LOD) is at a distinct
resolution level which is lower than the original model. During the execution of
the application, a particular key-model is chosen for each object in the scene based

on the distance from the viewer to be used for rendering [14]. This would reduce

CHAPTER 2. BACKGROUND 21

Figure 2.8: Multi-resolution modeling in wireframe rendering.

the rendering time required for the application. Although this method is fast and
simple to implement, it has two major limitations. First, there is a sudden change
in model resolution when the distance between the object and the viewer exceeds a
pre-defined threshold value. A noticeable visual discontinuity would be observed by
the viewer which would destroy the immersiveness of the application. Second, since
each key-model of an object is independent of each other, the overall amount of data
for representing the virtual world is increased. In a distributed environment, this
will further increase the network bandwidth requirement and the average network
transmission latency for the application because more data needs to be transmitted

across the network.

CHAPTER 2. BACKGROUND 22

Progressive Mesh

The method of level-of-details may be good for distributed virtual reality applications
across é fast network. However, for DVE systems across the Internet, we need to
use a method which should further reduce the transmission latency. Another multi-
resolution modeling method called progressive mesh was recently proposed [33, 35].
This method allows progressive transmission of multi-resolution object model across
the network and is fast for rendering. In this method, each object is modeled as a
base mesh and a sequential list of progressive records. The resolution of an object

model in the form of progressive mesh can be adjusted dynamically during runtime.

The method of progressive mesh is very suitable for use in DVE system across
the Internet. Since this method is fast for rendering, there is no extra overhead in
decompressing the object model as in the method of geometric compression. Besides,
the network bandwidth requirement is kept minimal because no redundant informa-
tion is used to model the virtual objects within the virtual world as in the method
of level-of-details. Moreover, this method allows progressive transmission across the
network, so that the user can still view the virtual world while the object models are
being transmitted. This would provide the application with fast response time. Our
proposed multi-resolution caching mechanism exploits the progressive characteristics

of this method to improve caching performance.

2.6 Caching Mechanism

Caching has widely been used in various types of distributed systems, such as World-
Wide Web [47, 61], client/server database systems [6, 16, 23|, distributed file sys-
tems [28, 40, 45], distributed shared memory {46, 58] and mobile environment [8, 72,

74]. A similar scenario for applying caching is in the management of large graphical

CHAPTER 2. BACKGROUND 23

database that cannot be fit into the memory and have to be paged in from disk, e.g.,
NPSNET [21], and the work by Funkhouser et al. [26]. In order to achieve high per-
formance in a distributed system, a multi-level caching mechanism could be employed
by caching data in a client’s local memory and/or local storage for possible future use.
The establishment of client-side caching can reduce the network transmission latency
incurred when transmitting large amount of data across the network. This would
also reduce the cost of communication and the amount of network traffic generated.
Moreover, a storage cache has a benefit of persistence and improved data availability
at the client. This allows disconnected operations on the data that is cached in the

client’s local storage.

A caching mechanism is characterized by the caching granularity and the replace-
ment policy used. There are different types of caching granularity classification.
In [16], the caching granularity of Page-based, Semantic-based and Tuple-based are
proposed for use in relational DBMS, while in (8], the granularity of Object-based,
Attribute-based and Hybrid-based are proposed for use in object-oriented DBMS. Most.
of the traditional distributed systems are page-based [6, 22]. This is mainly because
the server’s storage is also page-based. The overhead for transmitting one item or a
page is similar across a local area network. In general, a page-based mechanism re-
quires a high degree of locality among the items within each page to be effective [18].
However, in a VE, virtual objects are represented using object models and are usually
very complex and large in size, occupying possibly multiple data pages. The overhead
required to transfer an object model (or simply object) in its entirety via the Inter-
net with narrow bandwidth is very high. Furthermore, we might not always need to
render an object at its full resolution (see Section 3.5). In addition, different viewers
may have different moving paths in the VE. A physical organization that favors the
locality exhibited by one viewer may result in poor locality for another. It is therefore

inappropriate to transfer object models at the page level in this environment. Rather,

CHAPTER 2. BACKGROUND 24

it is necessary to consider caching at other granularity.

If a client can provide unlimited disk storage for caching, all objects within the
virtual world can be cached in its local storage once they are received from the server.
However, a more realistic situation is that the available storage for caching and the
available pre-loading time are limited [56]. In order to retain objects for possible future
use, a cache replacement policy must be employed. In [20], various cache replacement
policies have been proposed and their suitabilities in a conventional database sys-
tem have been examined, including optimal, WORST, Least Recently Used (LRU),
CLOCK, and Least Reference Density (LRD). A general conclusion on the perfor-
mance of the replacement policies cannot be made. In practice, the replacement
policy is often approximated by the LRU policy in conventional caching [6, 22, 73].
In [8], it was shown that LRU policy is not appropriate in a context when the objects
accessed by a client might change over time. Rather, the semantics of data access is
more important in defining the replacement policy [8]. We, therefore, need to develop

a more suitable replacement policy based on the semantics of accesses in a VE.

The use of caching mechanism can reduce the response time and the network
bandwidth requirement for a distributed system. As the bandwidth of local storage
is much higher than that of the Internet, it takes less time to transmit data from the

local storage to the main memory if the data is cached.

2.7 Prefetching Mechanism

Although the use of caching mechanism retains some of the needed objects at the
client, a portion of the required objects might still be needed from the database
server. The transmission of data across the network would introduce some delay and
increase the response time of the application. In order to further reduce the latency

introduced, the technique of prefetching can be used. Whenever a client requests data

CHAPTER 2. BACKGROUND 25

from the database server, the database .server should reply with the requested set of
objects, as well as the set that should be visible to the viewer in the near future. By
shipping the predicted set of objects together with the requested seﬁ, the response time
could be minimized. Some examples for applying prefetching mechanisms include file
systems [41, 63], distributed database applications (8, 15], broadcast disk [1] and
distributed virtual reality applications [26, 66).

Prefetching data before they are needed could reduce latency introduced by the
network communication, but prefetching of useless data would introduce additional
delay and consume network bandwidth. Thus, a good prefetching mechanism should
be used. The technique for prefetching depends on the type of application used and
are based on some prediction algorithms. In [1], a prefetching mechanism based on
a Simple Prefetching Heuristic is proposed, while in [60], a prefetching mechanism
based on a pattern matching approach is proposed. In [15], a prefetching mechanism
which is based on a data compression technique is proposed. In a distributed virtual
reality application, a prefetching mechanism that is able to predict the next position
of a viewer should be used. In {26], the prefetching technique is based on a visibility
analysis that determines which cells should be visible to the viewer in the future,

while in [66], a linear movement of the user is assumed.

In a DVE system, different users will exhibit different navigation paths. Due
to the diverse nature of users’ walk pattern, a prefetching mechanism that assumes
a linear movement of users is not good enough. Instead, we propose the use of a
user-profile based prefetching mechanism in which the history of individual user’s
movement would be stored as different user-profiles for prefetching. The user-profiles

could then be used to predict the next location of the user more accurately.

Chapter 3

Multi-Resolution Modeling

3.1 Introduction

In a realistic virtual environment (VE), it is common to have an enormous amount of
geometric objects contained within the environment. The computational and render-
ing costs needed for such a highly complex environment is considerable. Even with
the use of powerful graphics workstations, a vast amount of delay can be introduced
into the system. As a result, the VE may not be able to display at the interactive
frame rate. The delay can detrimentally affect the user and destroy the immersive-
ness of the virtual experience. The solution to this problem is not likely to come from
hardware development alone. Algorithmic solutions must also be employed in order

to reduce the delay introduced by the rendering process.

To reduce the rendering overhead for a highly complex VE, the technique of multi-
resolution modeling is attracting a lot of attention. This technique is based on the
fact that distant objects occupy smaller screen areas after perspective projection
than adjacent objects. Most of the geometric features of distant objects will not be

perceived by the user. It would be a waste of computing power and graphics hardware

26

CHAPTER 3. MULTI-RESOLUTION MODELING 27

in rendering distant objects in full details. Using simpler representation for distant
objects can improve graphics performance without significant loss of visual fidelity,
and thus enables real-time manipulation and navigation of a highly complex VE. Such
reduction of geometric complexity using less number of vertices and polygons not only
decreases the geometry processing at rendering, but also shortens the retrieval time

from secondary storage, both at the server and the client.

3.2 Related Work

A multi-resolution model is a model which captures a wide range of levels of details
of an object and can be used to reconstruct any one of those levels on demand.
Simplification algorithms are employed to reduce the geometric complexity of a model
automatically. In Section 3.2.1, we will first introduce different existing simplification
algorithms for constructing multi-resolution model. Then, we will further discuss the
two main types of multi-resolution modeling, which are level-of-details and progressive

mesh, in Section 3.2.2.

3.2.1 Simplification

Simplification is the process of generating a simplified model with reduced geometric
complexity from an original detailed model automatically. The ultimate goal is to
reduce the number of polygons used to represent a model while preserving the features
and appearance of the original model as much as possible. In order to support real-
time rendering of models in a highly complex VE, it is necessary to employ a fast
simplification algorithm. Simplification algorithms can be classified into Clustering,

Refinerment, Decimation and Multi-resolution Analysis.

CHAPTER 3. MULTI-RESOLUTION MODELING 28

Clustering

Vertex clustering is a simple method in which the vertices of the original model are
grouped into clusters by coordinate quantization (round-off) {62] (Figure 3.1). This
method ignores the topology of both the input and output models and can achieve
arbitrary high compression ratio for any kind of geometry. To generate the vertex
clusters, the bounding box of the input model is uniformly subdivided into different
3D cells. All vertices falling within a single cell are merged to form a new single rep-
resentative vertex. A simplified model is then constructed from these representative
vertices according to the original topology. This method can be regarded as a signal
processing algorithm, in which the vertices are filtered, resampled and reconstructed.
This method can greatly simplify the simplification process and is simple and efficient
for implementation. However, the major weakness of this method is that it suffers
from severe loss of detail and is unable to preserve important features due to the
removal of high frequency details. This method can easily be generalized by using

adaptive grid structure [49, 50].

Vertex
Clustering

>

Figure 3.1: Simplification by Vertex Clustering.

Polygon clustering algorithms group nearby polygons and regenerate them into a

simplified representation (Figure 3.2). Hinker et al. [32] proposed a single pass geomet-

CHAPTER 3. MULTI-RESOLUTION MODELING 29

ric optimization algorithm which identifies patches with nearly co-planar polygons.
After the removal of interior vertices within these patches, the patches are retriangu-
lated to remove the holes being generated. This algorithm is ineffective for surfaces
with high curvature. Kalvin et al. [38] developed another algorithm that clustered
polygons into superfa.ces' for simplification within a given error tolerance. The algo-
rithm segments the original model into different patches by selecting a polygon at
random and combining neighboring polygons until the polygons can no longer be fit
into a plane. The patches are then simplified by the Douglas-Peucker algorithm and

the resulting patches are retriangulated into polygons.

Polygon
Clustering

Figure 3.2: Simplification by Polygon Clustering.

Refinement

Refinement algorithms improve the accuracy and quality of an initially built minimal
approximation of the original model by iteratively inserting vertices into the initial
approximation. The refinement process is repeated until the error is smaller than a
desired value or until it reaches a desired vertex count. DeHaemer et al. [17] uses an
adaptive subdivision method to recursively subdivide each quadrilateral polygon into

four while keeping the error within a given tolerance. The subdivision is performed

CHAPTER 3. MULTI-RESOLUTION MODELING 30

such that the resulting error after the subdivision is minimum. Turk [78] proposes
a method to optimize a model by distributing a number of vertices over the surface
of the original model according to its curvature. The newly introduced vertices are
retriangulated to generate the resulting model with the specified number of vertices.
Although the method performs well for curved surfaces, it is slow and may fail to

preserve the geometry of model with high curvatire.

Hoppe et al. {34] optimizes a model based on the definition of an energy function
that balances the conflicting goals of mesh simplification and error minimization. The
energy function is used for minimizing the distance between the new approximating
model and the origin;ﬂ model. This method allows better preservation of geometry,
but is extremely time consuming. He et al. [31] proposes a signal processing method
for eliminating high frequency details. In this method, a three-dimensional voxel grid
is placed over the input model and a low pass filter is then applied to the sampling
grids. The Marching Cubes algorithm [48] is then applied to reconstruct a polygonal
model from the volumetric representation. Although the method is very robust, the
resulting model is still over-triangulated as a result of the marching algorithm and is

unsuitable for models with sharp discontinuities.

Decimation

In contrast to the refinement algorithms, decimation algorithms employ a top-down
approach to simplify a model. Starting from the entire original model, these algo-
rithms iteratively delete vertices, edges, polygons or other geometric features from
the model to form a simpler representation until the desired level of approximation
1s achieved. Vertez clustering and polygon clustering algorithms can be considered as
restricted forms of decimation algorithms. Schroeder et al. [67] proposes a multiple-
pass vertex decimation algorithm for simplification. In this method, all vertices that

are not on a boundary or crease and have error below the threshold are deleted, and

CHAPTER 3. MULTI-RESOLUTION MODELING 31

the neighboring polygons are retriangulated. This method is relatively faster, but is

memory intensive and does not preserve geometric features well.

Hoppe et al. [33] proposed an idea called progressive mesh, which can be considered
as anedge decimation algorithm. In this method, a sequence of edge collapse opera-
tions is selected (Figure 3.3). The vertices between the selected edges are iteratively
merged into the same location. Typically, two triangular faces are removed for each
edge collapse operation. This method allows fast rendering and rapid modification of
resolution, which is extremely suitable for real-time graphics applications. In addi-
tion, this method allows progressive transmission across the network and generates a
lossless, continuous-resolution representation of the original model. The topology of
the original model can be preserved using this method. A similar algorithm based on
stmplification list has been developed independently and concurrently [35]. Our pro-
posed multi-resolution caching mechanism is based on this method. We will further

discuss these methods in Section 3.2.2.

Edge
Collapse

Figure 3.3: Simplification by Edge Collapse.

Multi-resolution Analysis

Multi-resolution analysis is a relatively new class of multi-resolution modeling. It
involves structured mathematical decomposition of functions into multiple levels of

representation [19]. Through the use of wavelet transforms, a hierarchical represen-

CHAPTER 3. MULTI-RESOLUTION MODELING 32

tation of functions can be obtained by iteratively decomposing the function into a
coarser representation and a corresponding set of wavelet coefficients. The set of
wavelet coefficients allows recovery of the original representation from the coarse rep-
resentation. During reconstruction from the wavelet representation, sufficiently small
wavelet coefficients can be discarded, resulting in a coarser approximation to the
original data.

Although this method allows high compression ratio and progressive transmission
of the original model, it suffers from some serious drawbacks. Before the wavelet
representation can be built, the surface must be renieshed so that it has subdivision
connectivity. This process alone introduces error into the approximation and is com-
putational expensive. In addition, the topology of the model must remain fixed at
all levels of representation. The wavelet representation is also unable to adequately

preserve sharp corners and other discontinuities on the surface.

3.2.2 Model Representation

The representation of multi-resolution modeling can be classified into two main cate-

gories, which are level-of-details (LOD) and progressive mesh {PM).

Level-Of-Details

Level-of-details (LOD) was first introduced by Clark in 1976 {13] (Figure 3.4 and
Figure 3.5). In this method, a set of distinct and independent LOD with reduced
geometric complexity is generated for an object model at the preprocessing stage.
Each LOD with reduced number of polygons closely resembles the original model.
By using lower LOD for rendering distant objects, the rendering performance can be

improved. Almost all existing distributed virtual reality applications [7, 21, 24, 66]

CHAPTER 3. MULTI-RESOLUTION MODELING 33

use the method of level-of-details (LOD) for modeling. This method is also known as

discrete multi-resolution modeling.

Figure 3.4: Level-of-detail in shaded rendering at increasing resolution.

(a) (b) (c) (d)

Figure 3.5: Level-of-detail in wireframe rendering at increasing resolution.

The selection of LOD is commonly based on the distance between the object
and the viewer. This means that a higher LOD is used when the object is close to
the viewer; conversely, it is substituted by a lower LOD as the object moves away.
However, a noticeable flicker is commonly incurred when performing hard switching
between two successive LODs. This is also known as the popping effect which may de-
stroy the immersiveness of the application. To reduce the visual discontinuity during
switching, one solution is to have a transition period during which a smooth interpo-

lation between two successive LODs is performed to generate models of intermediate

CHAPTER 3. MULTI-RESOLUTION MODELING 34

resolution [78]. However, this method further increases the cost of computation dur-
ing the transition period because two models have to be processed at the same time.

This method only works for LOD with well-defined geometric correspondence.

Although the use of LOD can reduce the rendering overhead of distant objects,
this method has a great impact on network bandwidth consumption for DVE sys-
tems. The transmission time required for individual LOD across the network can be
shortened when compared with the original model, but the overall network bandwidth
requirement is increased. This method also has the disadvantage of extended storage
consumption as each LOD has to be stored. Thus, this method is unsuitable for use

in the Internet environment.

Progressive Mesh

The technique of progressive mesh (PM), which is also known as continuous multi-
resolution modeling, is recently proposed [33]. In this method, each object is modeled
as a base mesh and a sequential list of refinement records. The resolution of an
object model can be modified at runtime by applying the operation of edge split
or edge collapse to the object model using the list of refinement records as shown
in Figure 3.7. The base mesh represents the original object model which is in its
minimal resolution. If the list of progressive records is applied to the base mesh in
order, the resolution of the base mesh is increased until the object model restores
back to the original resolution. Conversely, if the list of refinement records is applied

to the original model in reverse order, the resolution of the original model is reduced
until it becomes the base mesh.
Progressive mesh has several advantages for use in DVE systems across the Internet

when compared with LOD. First, no redundant information is transmitted across the

network and the list of progressive records can be reused. The network bandwidth

CHAPTER 3. MULTI-RESOLUTION MODELING 35

Reduce Resolution

Increase Resolution

Triangle Model Rec, | Rec, s Rec,, | Rec,
A VAN J
N AV
Base Mesh Progressive Records

Figure 3.6: The structure of a progressive mesh.

Va3
Edge Split
Edge Collapse
V2

Figure 3.7: The operations of edge split and edge collapse.

consumption is kept minimal in this method. Second, this method allows progressive
transmission across the network. The compact base mesh is transmitted first and
followed by a stream of progressive records. Upon receiving these progressive records,
the model can be reconstructed incrementally. The response time is then reduced
significantly. Third, there is a smooth transition for increasing or decreasing resolution
of an object model without any additional cost. As the object model is progressively
refined or simplified, the changes are animated gradually. There is no noticeable

visual discontinuity or popping effect to the user.

CHAPTER 3. MULTI-RESOLUTION MODELING 36

(a) (b) (c) (d) (e)
Figure 3.8: A progressive mesh in shaded rendering: (a) Base Mesh, (b) 25%, (c)

50%, (d) 75%, and () 100%.

o 4

(a) (b) (c) (d) (e)

Figure 3.9: A progressive mesh in wireframe rendering: (a) Base Mesh, (b) 25%, (c¢)

50%, (d) 75%, and (e) 100%.

3.3 Overview of Our Method

In our DVE system for the Internet environment, each virtual object, o, is stored
in the database server at its maximum resolution, 'R(,. in the form of a progressive
mesh. Since the multi-resolution method we use here is based on edge collapse, the
maximum resolution 'R‘, of o reflects the total number of edges that can be collapsed
from its maximum resolution. Each object has a base mesh at its minimum resolution,

R,. We say that the base mesh R, of o represents o at resolution level 0, denoted as

L,, which has a value of (). Each progressive record increases the resolution level by

CHAPTER 3. MULTI-RESOLUTION MODELING 37

one. Therefore, the maximum resolution Ro represents o at the highest resolution,

denoted as L£,, when all progressive records are applied.

The user of the system controls a hypothetical virtual viewer within the VE. Each
object and viewer in the VE is defined with a scope. Intuitively, the object scope of an
object defines the area within which the object is visible. It is roughly proportional
to its size. The viewer scope defines the depth of sight of the viewer. A viewer can see
an object only when the viewer scope intersects with the object scope. The goal is to
eliminate the effect of sudden appearance of large objects and to reduce unnecessary

overhead from transmitting and rendering small objects.

We denote the viewer scope for viewer, V', by Oy and the object scope for object,
0, by (. If the two scopes overlap, we need to determine the optimal resolution of the
object for rendering. We denote the optimal resolution of an object, o, by R, and its
resolution level by £,. This optimal resolution of an object is determined according to
the object’s distance from the viewer, and its angular distance from the viewer’s line of
sight. If the object is rendered at a resolution higher than this optimal resolution, the
additional details may not easily be noticeable to the viewer. By contrast, if the object
is rendered at a resolution lower than this optimal resolution, the image quality of
the rendered object as perceived by the viewer drops rapidly. Such a perceived image
quality is called the wvisual perception. The relationship between visual perception

and the resolution of an object is shown in Figure 3.10.

The interaction between a viewer and the VE is iilustrated in Figure 3.11. In
addition to the viewer scope, each viewer, V, has a viewing direction, ¥y, and a
location, locy. The viewing direction defines the line of sight of the viewer. Given
the location of a viewer, all virtual objects whose object scopes intersect with the
viewer scope are rendered at their optimal resolutions. We refer to these objects as
renderable objects. The wiewing region defines the viewing angle of the viewer and is

a sub-space of the viewer scope. All renderable objects within the viewing region are

CHAPTER 3. MULTI-RESOLUTION MODELING 38

Visual
Perception
& i : Modal
Zero Minimal Optimat Maximum Resolution
Resolution Resolution Resoplution Resolution

Figure 3.10: The effect of model resolution on the viewer’s visual perception of an

cbject.

visible to the viewer if they are not obscured by another object. We refer to these

objects as visible objects.

Object Scope

Viewing Region Object Scope

Viewer Scope

Figure 3.11: Interaction between a viewer and the surrounding objects.

During navigation within the VE, we continuously determine those objects in the
VE whose scopes overlap with the viewer scope, i.e., the renderable objects. For each
of those objects, the object model at its optimal resolution will be transmitted to

the client, if it is not already cached in the local storage. The received models will

CHAPTER 3. MULTI-RESOLUTION MODELING 39

be cached in the client’s local storage. If there is not enough cache storage, we will
throw away some progressive records of object models that are not likely accessed in
the near future in order to accommodate the incoming models; i.e., we try to decrease

the resolution of some existing cached objects.

We also attempt to further improve the performance of the DVE system by
prefetching objects from the database server in advance. By predicting the next
location and viewing direction of the viewer based on historical movements of the
viewer, models of objects whose scopes overlap with the viewer scope with the viewer
scope at the predicted location will be transmitted at their optimal resolutions to the

client as well.

The advantages of our method can be summarized as follows:

o In [66], a discrete multi-resolution method is used for model transmission. Re-
dundant information is sent through the network, when multiple models of the
same object at different resolutions need to be transmitted. Our method ap-
plies the progressive mesh technique for model transmission. No redundant

information needs to be sent across the network.

e The importance of an object is calculated based not only on the distance of the

object from the viewer, but also on the size of the object concerned and the

angular distance from the viewer.

o Qur caching mechanism differs from conventional caching mechanisms [6, 22, 73]
in that objects can be cached at multiple levels of granularity. Replacement is

also based on object access patterns rather than conventional LRU scheme.

e We further improve the performance of the DVE system by predicting the future

movement of the viewer and prefetch objects in advance.

CHAPTER 3. MULTI-RESOLUTION MODELING 40

3.4 Viewer Scope and Object Scope

To minimize the amount of data handled, most existing methods consider only the
area of interest (AOI) of the viewer [21, 52, 66]. If an object falls inside the AOI of
the viewer, the object is considered visible to the viewer. Otherwise, the object is
considered too far away to be visible. Although these methods can quickly eliminate
invisible objects, they do not consider the sizes of the objects. Hence, a large object
located just outside the AOI of the viewer may still be visible to the viewer, but is
considered as invisible, while a tiny object located just inside the AQOI of the viewer is
unlikely to be visible to the viewer, but is considered as visible. The former situation
may result in a sudden appearance of a large object, and the latter situation may

result in a waste of processing time.

To overcome this limitation, we generalize the AOI concept to both viewers and
objects. We call them the viewer scope and the object scope [10]. The definition of
the viewer scope is similar to the definition of the AQI. A viewer scope indicates the
depth of sight of the viewer, i.e., how far the viewer can see. A viewer with good
eye-sight or equipped with a special device may be able to see objects that are further
away, and therefore may be assigned with a larger scope. A short-sighted viewer may
only be able to see nearby objects, and therefore may be assigned with a smaller
scope. The definition of object scope is different. An object scope indicates how far
an object can be seen. A large object has a large scope, while a small object has
a small scope. An object may be visible to a particular viewer only when its scope
overlaps with the viewer scope. When the two scopes overlap, the distance between
the object and the viewer, and the angle between the object and the viewer's line
of sight can be used to determine the optimal resolution of the object. In general, a
viewer may also be considered as an object and assigned an object scope in addition

to the viewer scope. This chject scope of the viewer will define how far the viewer

CHAPTER 3. MULTI-RESOLUTION MODELING 41

can be seen by another viewer within the same virtual environment. This approach

is somewhat similar to the one proposed by [29].

In our implementation, we define a scope as a circular region. Therefore, each
scope (object or viewer) is characterized by a radius. We denote the radius of the

object scope for object o, i.e., (,, as rp, while the radius of the viewer scope for

viewer V', i.e., Ov, as 7o, -

3.5 Optimal Resolution

There is no unique way to characterize the best resolution level for a group of ob-
jects contained within a VE, since it is hard to quantify human vision using a single
mathematical equation. Heuristics based on distance, size, line of sight, velocity
or combination of them are commonly used to determine the resolution for objects

within the VE with respect to the viewer.

In our method, the optimal resolution of an object model is determined according
to the wvisual importance of the object to the viewer. In [43], different factors that
may affect the visual importance of an object have been identified. Here, we only
consider two of those factors, which are relevant to the current context. The first one
is the distance factor. If an object is far away from the viewer, the object may be
considered as visually less important. The second factor is the line of sight. Studies
have shown that when an object is located outside the line of sight, the viewer is
unable to perceive much detail from the object [59, 79). Degradation of peripheral
visual detail can improve rendering performance and reduce perceptual impact. There
are many eye tracking systems available for detecting line of sight [37]. Since most of
these systems are still too expensive for the general public, some applications simply

assume that the viewer’s line of sight is always at the center of the screen.

CHAPTER 3. MULTI-RESOLUTION MODELING 42

Object Scope

Viewer Scope, Object scope

just overlaps
with Viewer

Scope

Object O

Object Scope

Figure 3.12: Visual importance of an object with respect to a viewer.

Figure 3.12 depicts the visual importance of an object, o, to a viewer, V. In the
figure, D, indicates the current distance of the object from the viewer, while I}, mar
is the distance between the object and the viewer when their scopes just overlap.
Since a scope is defined as a circular region, D, ., is equal to the sum of the radii
of the viewer scope and the object scope. The angular distance of the object from
the viewer's line of sight, i.e., its viewing direction, ¥y, is denoted as 8,y or simply
0, (-7 < 8, < 7). The visual importance of o to a viewer can be defined with the

following equation:

2
Ia _ (DOBM: - Do) e—KalgaJ (0 < Do < Do,?na:r.) (31)

The first term models the relationship between the distance of the object from
the viewer and the visual importance of the object. The higher the value of D, is,
the lower the value of I, will be. The second term models the relationship between
the viewer's line of sight and the visual importance of the object. We employ an
exponential relationship between them which is similar to the method proposed by

Ohshima et al. [59] in modeling the decline in visual acuity with the line of sight. The

CHAPTER 3. MULTI-RESOLUTION MODELING 43

higher the value of 8, is, the lower the value of /, will be. Because this relationship
is not a linear one, a constant K, is introduced for adjusting the decremental rate
of the model resolution due to the increase in f,. In our implementation, we do not
want the line of sight factor to dominate the distance factor. Hence, we use a small
value of K,. Note that we may include more terms in this equation to model other
factors that affect the visual importance of the object such as the moving speed of
the object. For the sake of clarity, we only consider the line of sight and distance
factors here.

To incorporate this idea into the progressive multi-resolution method described
in {33], the visual importance, I,, is used to determine the optimal resolution of the
object model. We use a linear mapping to define the optimal resolution, R,, of an
object, o, as the product of its maximum resolution, R,, and the visual importance,
I,, with respect to the viewer, i.e. R, = R, = I,. When the object scope just touches
the perimeter of the viewer scope, the object is considered renderable to the viewer,
and the base mesh of the object is used for rendering. This base mesh will provide
the minimal resolution of the object. As the object moves closer to the viewer or to

the viewer’s line of sight, the resolution level of the object increases.

Determination of K,

We would like to associate the viewing angle, Gy, of the viewer in determining the
value of K,. Since K, adjusts the decremental rate of model resolution due to the
increase in 6, and objects falling beyond 6, will not be visible to the viewer, it is then

possible to determine the constant K, according to é,,.

CHAPTER 3. MULTI-RESOLUTION MODELING 44

Recall the visual importance equation (3.1):

2
I = (Da,maz—Do) e Kolbal

Do,ma:z:
2
= (1 — D&_) E_Ka|aa|
= (1 —r)2eKeitel (where r = D,) (3.2)

D 0,Mmax

Let ®, be the volume of I, within 5,, and ®, be the volume of I, beyond 8,

Find K, such that the &, is maximum

ﬂ;{? (ff‘budz - ffq)odx) (33)

/fcbv dz = fol /Oéu(l — r)2eKelbol (1) dr df

1 9y
Y —Kolfol
fo[r(l r)]dr-/o e df

1 1
= _ 9p2 3 Iy €117y
/0(7‘ 2r +T)d7’0[Koe]0

P2 9r3 A 1 Par
I it N R ST N
[2 3 +4L'[r,]

(3o Fa e

_ 1 [__}_(1_; (E_mw _ 1)] (3.4)

B

//(I)o de = /01 /;T(I — r)2e=Kelol () dr dff

| LR
= — olfl g
12—[9,,‘[3 d

_ %2 [_KL (E—Kaw _ eKoléul)] (3.5)

CHAPTER 3. MULTI-RESOLUTION MODELING 45

Substitute Equation (3.4) and (3.5) into (3.3):

fK,) = ";;”’ ([[ouz-[] @,,d:c)

= n},;w (_121([(e7"eloel — 1) — (e7F" - E_KOWUl)D
o o

2e~Hobv — 1 — g=Kom
- [12K,] (3.6)
) K 1 r (2 e_Kpéﬂ —_ 1 — E—Ko‘ﬁ) — Ka (_2 éﬂe'—Ko‘” + T e—Ko'ﬂ')
f (0) - _1_2 K02
_ 1 [2(e R + Kof,) — eXom(1+ K,m) — 1 (3.7)
12 K,? '

Solve f'(K,) =0:

2 (7R (1 + Kob,) — o (1 + Kom) =1 =0 (3:8)

By solving f/(K,) = 0 using numerical analysis, the results of K, against 6, can
be obtained (Table 3.1). Human vision is limited to have a maximum viewing angle
of 180° and 120° for stereo vision. In order to maximize the visual importance for
objects within the stereo vision, we use 120° for viewing angle and 1.5317 for K, in

our multi-resolution modeling method.

g, | 20° 40° 60° 80° 100°
K, || 9.6162 | 4.8080 | 3.2040 | 2.3935 | 1.8900

120° 140° 160° 180° 360°
1.6317 | 1.2508 | 1.0134 | 0.7999 0.0

c?b)

=

Table 3.1: Results of K, against 0,.

CHAPTER 3. MULTI-RESOLUTION MODELING 16

Visual Importance Distribution

Figure 3.13 shows the top view of the visual importance distribution within a viewer
scope with K, equal to 0.0 and 1.5317 respectively. In both figures, the viewer located
at the center of the viewer scope. With K, equal to 0.0, the visual importance
value is the highest at the center of the viewer scope and the value decreases as
the distance from center increases (Figure 3.13(a)). With K, equal to 1.5317, the
visual importance value is not only affected by the distance, but also by the viewing

direction of the viewer.

Figure 3.14, 3.15 and 3.16 show the front, side and perspective view of the visual
importance distribution respectively. With K, equal to 0.0, the visual importance
distribution is symmetric and is independent of the viewing direction (Figure 3.14(a),
3.15(a) and 3.16(a)). By contrast, with K, equal to 1.5317, the visual importance

distribution becomes view-dependent (Figure 3.14(b), 3.15(b) and 3.16(h)).

Viewing Viewing _
direction direction Visual
Importance
B 1.0

(a) (b)

Figure 3.13: Top view of Visual importance distribution: (a) K, = 0.0 and (b) K, =

1.5317.

CHAPTER 3. MULTI-RESOLUTION MODELING 47

Visual Visual
Importance Impartance
Fs r s

10 1.0

0.0 0.0 |

Center of viewer scope Center of viewer scope

(a) (b)

Figure 3.14: Front view of Visual importance distribution: (a) K, = 0.0 and (b) K,

= 1.5317.

Visual Visual
Impartance Importance
rFy F'S
10 10
00 00
Center of viewer scope Viewing Center of viewer scope Viewing
Direction Direction

(a) (b)

Figure 3.15: Side view of Visual importance distribution: (a) K, = 0.0 and (b)) K, =

1.5317:

CHAPTER 3.

MULTI-RESOLUTION MODELING

00~

Visual
Importance
Fy

~ 10
\
A
OGN
I 'f::’:"::“‘:“ﬁ“‘i
AR
—~ 00
- Viewing
Direction
(a)
Visual
Importance
'S
=10
=~ 00

Viewing
Direction

(b)

Figure 3.16: Perspective view of Visual importance distribution: (a) K, = 0.0 and

(b) K, = 1.5317.

Chapter 4

Multi-Resolution Caching and

Prefetching Mechanism

4.1 Introduction

In order to achieve a high throughput and scalability in client-server systems, it is
essential to effectively utilize the computational and storage resources of the client
machines. The architecture for this kind of client-server systems is known as data-
shipping [16]. In a data-shipping architecture, data processing is mainly performed at
the clients and the data residing at the server is replicated on demand at the clients.
To reduce the overhead for data transmission across the network and the need for
future interactions with the server, it is a common practice to cache the received data

at the client’s local memory and/or disk for possible future reuse.

When caching is incorporated into a data-shipping architecture, servers are mainly
used to service cache misses and this kind of client-server interaction is typically
known as fault-driven [16]. Clients request specific data items from the server when

they cannot be located in the local caches. If the clients can provide unbounded

49

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 50

storage for caching, all data received from the server can be cached. However, with
the constraint of limited storage for caching, it is necessary to effectively manage the

cache storage and a suitable caching mechanism is indispensable.

In the context of DVE across the Internet, the data-shipping architecture can be
en_lployed. Since each VE usually contains a huge number of geometric objects with
fine details, powerful servers ought to be used to store and maintain the VE database
for clients access. Clients should request data from the remote database server on
demand via the underlying network infrastructure. Upon receiving the requested

data, the clients can then process and render the data into images for display.

Multi-resolution modeling allows the remote database server to transmit an object
model at its optimal resolution for rendering at the client machine when the viewer
Is navigating through a virtual environment. This could save the scarce Internet
bandwidth from transmitting details of an object, which would unlikely be visible to
the user. To further reduce the dependency on the Internet and the transmission delay,
a caching and prefetching mechanism is needed to retain objects of high affinity and
predict those that will most likely be accessed in the near future. In addition, caching
at secondary storage has a benefit of persistence and improved data availability at
the client. This allows certain degree of disconnected operation on the data that has

already been cached in the client’s local storage.

4.2 Related Work

A caching mechanism is characterized by the replacement policy and the caching
granularity being used. The replacement policy and the caching granularity impact
the performance of caching mechanism employed. The ultimate goal is to utilize the
limited cache storage for maximizing the performance of the system while minimizing

the overhead for data transmission across the network.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 51

4.2.1 Replacement Policy

If a client can provide unbounded storage for caching, it will be possible to cache all
incoming objects received from the remote server. However, a more realistic situation
is that the available storage for caching is often limited [56]. Thus, a replacement
policy must be employed to retain objects for possible future reuse. It dictates how
victims are selected when the cache storage is exhausted, and is necessary for re-
claiming storage space that is required for incoming objects. A replacement policy
will usually associate an access score to each of the.cached items and choose victims
with the lowest values for replacement. The value function is typically based on tem-
poral locality and is based on the assumption that items that have been referenced

recently are likely to be referenced in the near future.

In [20], various cache replacement policies have been proposed and their suitability
to a conventional database system have been examined, including optimal, WORST,
Least Recently Used (LRU), CLOCK and Least Reference Density (LRD). A general
conclusion on the performance of replacement policies cannot be recommended. In
practice, the replacement policy is often approximated by the LRU in conventional
caching [6, 22, 73]. LRU can further be generalized into LRU-£ which identifies the
replacement victim according to the time of k** previous access of a page and LRU
is, thus, equivalent to LRU-1. As described in [8], LRU is inappropriate in a context
when client’s access may change over time. Rather, the semantics of data access is

more important in defining the replacement policy.

In the context of DVE, the access patterns exhibited by different users do change
over time. Therefore, we have to investigate the suitability of conventional cache
replacement policies in this changing access pattern and to develop a more suitable
replacement policy for better performance. As compared to the temnporal locality

being assumed in LRU, spatial locality would be more appropriate for defining the

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 52

replacement policy here.

4.2.2 Caching Granularity

In any system that is based on the data-shipping architecture, caching granular-
ity is the minimum unit for cache management and is a key performance concern.
Page-based caching granularity is employed by almost all conventional distributed

relational DBMS; while object-based granularity is another commonly used caching

granularity [8].

Page-based Granularity

In a page-based architecture, the unit of transfer between servers and clients is a data
page. When a data item is needed at a client, a request will be processed locally
down to the level of individual page. If the required page is not present in the local
cache, a request of the missing page will be sent to the server. In servicing such a
request, the server obtains the requested page from disk when necessary and sends
the page back to the client. Upon receiving the result from the server, the requested
page is stored in local cache, and an existing page in the cache is replaced if the cache

storage is exhausted.

Using page-based granularity, the spatial locality among different items within a
page is exploited and a high degree of locality is required among them to be effec-
tive [18]. However, in a DVE, different users navigate through the VE with distinct
access patterns. Clustering of objects according to the spatial locality exhibited by
one user may result in poor locality for another. It is almost impossible to exploit
spatial locality among different items and thus, page-based granularity is ineffective
in this context. It is therefore inappropriate to transfer objects at the page level in

this environment. Rather, it is necessary to consider caching at other granularity.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 53

Object-based Granularity

Object-based, also known as tuple-based, caching granularity is in many ways analo-
gous to page-based granularity. The main difference is that the client cache is main-
tained in terms of individual objects rather than pages. Caching granularity at this
level allows fine tuning of cache contents based on the\ access locality properties of
applications [18]. However, numerous requests of individual object can lead to perfor-
mance degradation due to the communication overhead in sending large numbers of
small messages. Thus, an object-based caching system must be able to group different
client requests into a single message and server results into blocks in order to solve

this problem.

Most of the existing DVE systems use the method of level-of-details (LOD) for
representing virtual objects in order to reduce the rendering overhead for distant
objects. However, this method has serious drawbacks on caching performance because
extra among of data is used to represent a single object. Objects represented by LOD
are usually very large in size and occupy multiple data pages. As a result, the page-

based granularity is ineffective in cache management using LOD.

4.3 The Cache Model

A cache model indicates how data are acquired at the clients from the remote server.
With the establishment of client-side caching, only objects that cannot be located
at the local cache have to be requested and transmitted from the server via the net-
work. A cache model that can minimize both the communication and computational
costs is necessary. It is possible to have two alternative cache models for use in this

environment, the Push-based and the Pull-based cache model.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM
4.3.1 The Push-based Cache Model

The Push-based cache model is illustrated in Figure 4.1. When a viewer, V, moves
within the virtual environment, the client machine, C, transmits the current viewing
direction, ¥y, and the current location, locy, of V to the server, S. This is a query to

the database server for all visible objects. S then evaluates the query and stores the

resuits temporarily. Concurrently, C identifies the visible objects among the cached
objects stored in its local storage cache.

Evaluate :
Prefeich Lisr :
TR TR
Evaluate | Updaie i Updare
Result List : Result List i Preferch List
RS EA T T S AT MY T I
Server [] A == ¥ SRNRERRRENR >
J 4 + ! '
/ \
[Sou——— . ; \ \
I I L] 1
i ! \ v
] 1]] 1
1 13 \‘ |‘
Current location) . !
S ! Existent | \ Resulr \ Prefetch
and viewing f . \ i \ R
. . ! List ! List List
direction t J [1
[[\ v
' ' \ i
' / i \
1 | \ 3
f / 1 \
' ' i \
' ' v \
’ ' \ \
1 13 L] L]
f ' \ \
; i \ \
/ ' ¥ !
Client .;— < - " " F P P
—_— ! Maove Identify
carhable
vhjects

Receive and rache
incoming objects

Figure 4.1: The Push-based Cache Model.

Each cached object, o, is associated with a resolution, R}, indicating the current
highest possible resolution level of the model availabie for rendering. This resolution
level depends on the number of progressive records, £}, cached in C and is less than
or equal to the maximum number of the progressive records, L,, for the object, i.e.,
L < L£,. C then submits an ezistent list to S, i.e. a list of {0, £2) pairs about those

visible objects cached in C’s local storage. Visible objects with £} > £, do not need

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 55

to be transmitted as C' can render them at the optimal resolution, R,, from locally
cached data.

Upon receiving the existent list from C, S updates the result list by subtracting
the existent list from it. It is because only those visible objects not being cached
in C or those not at the required optimal resolution, R,, have to be transmitted to
C. The result list is in the form of {0, progressive mesh}) pair for transmission. Such
a progressive mesh only contains enough progressive records to define the optimal
resolution of the object. When prefetching is enabled, S updates the personal pro-
file of V and predicts the next viewing direction, ¥y, and location, locy,, of V.
Subsequently, S concurrently evaluates a prefetch list based on the prediction while
updating the result list. The prefetch list is then updated by subtracting the existent
list and the result list and transmitted to C. Both the result list and prefetch list are

sorted such that all the base meshes are transmitted prior to the progressive records.

When C' receives the result list and the prefetch list from S, C may cache the
objects in its local storage. If the storage is exhausted, a replacement policy identifies
the victim objects to be discarded. For each object, o, an access score indicating the
prediction of its future access probability is determined. The higher the access score
is, the higher is the probability that o will be accessed again soon. If an incoming
object has a score higher than that of some currently cached objects, the storage

space of some cached objects is reclaimed and allocated to the new object.

4.3.2 The Pull-based Cache Model

In order to reduce the workload of the server and increase the scalability of the
system, we adopt the pull-based cache model. In this model, most of the processing
is performed at the client machine and the server is mainly used for servicing cache

misses. Thus, the server is effectively stateless and is more appropriate for supporting

CHAPTER 4. CACHING AND PREFETCHING MECHANISM

larger number of clients. The pull-based cache model is illustrated in Figure 4.2.

Service request Service request

. I
rver = —
Sever T 1 | P '
[: I 1 | / /) '
! 1 7 f £a \
| ' | / ! [\
' i / [[\
1 i | / / oo \
i 1 s i JERY \
t 1 | 'r ‘r t 1 \
i t v
! |‘ | Terminate |) Request ! \
Request 1 Y VE tnd I . ! Reguest | List] ‘Resull \Prefeich
VE Index | ! ndex previous st ! h Vi i
t Vg List for List v List
List ! v Lt | request) ! ! ' !
15 ! 1 | J] Preferchifig Y 1
h H ! ! i v Y
' t ‘ ‘ ' \
] ! / 1 / \ '
! t i] ' \
h ' ' f i 1 "
| ! / / \
" ' / ' ' ¥ i
k '] ! ! ' \ \
] 1
! |
C lient =) e T A 500N
— ‘ Connect Receive and | Move guild Build Receive and cache
cache VE | Request Requess incoming objects
Index List | List Lisi for
Prefetching

|
Figure 4.2: The Pull-based Cache Model.

When a viewer, V/, connects to the server, S, the client machine, C, sends a request
to S for the VE index list. The VE index list contains the ID, position, object scope
and color material for each of the objects within the VE, such that C' can request

missing objects from S. C caches the VE index list upon receiving it from the server.

When V' moves, C sends a message to S indicating the termination of the previous
request. This can prevent the transmission of outdated data from § and can save
network bandwidth. C then evaluates a list of visible objects, o, within the viewer
scope and determines the optimal resolution level, £,, for each of the visible objects
based on the VE index list. Subsequently, (' identifies the maximum resolution level,
L;, of the cached objects. All the visible objects not cached in C or those not at the
required £, are requested from S. A request list in the form of (o, L], L£,) is then

sent to 5. After sending the request list, C' prefetches objects from S if prefetching

56

CHAPTER 4. CACHING AND PREFETCHING MECHANISM a7

is enabled. C first updates the local personal profile of V and predicts the next
viewing direction and location of V. A list of objects for prefetching is then identified

according to the prediction and a request is sent to S.

4.4 Transmission Order

To retrieve virtual objects for rendering, there can be several ways of arranging the
objects for transmission from the database server to the client. We consider two pos-

sibilities for transmission order, which are circular transmission and view-dependent

circular transmission.

Circular Transmission

Circular transmission allows objects to be transmitted based on the distance between
the object and the viewer. Thus, objects that are closer to the viewer are transmitted
first, followed by the distant objects. This ordering is more suitable for a viewer who
explores objects around him/her frequently. However, this may increase the response

time of the system as the visible objects are multiplexed with the invisible objects

during transinission.

View-dependent Circular Transmission

Under the view-dependent circular transmission, objects that are within the viewing
region of the viewer are identified and transmitted prior to the invisible objects.
The visual importance described in Section 3.5 is a natural criteria for the actual
transmission ordering. Thus, objects that are closer to the viewer and along the

viewing direction are transmitted first. This can reduce the response time of the

system.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM o8

4.5 Multi-Resolution Caching Mechanism

4.5.1 Replacement Policy

The most straightforward approach is to adopt an existing cache replacement policy
for storage caching. The most popular cache replacement policy is LRU, as an ap-
proximation to the optimal replacement policy [20]: the least recently accessed entries
are replaced. LRU is usually implemented within an operating system and is usually
page-based, due to the logical mapping between physical and logical storage. When
implementing LRU in our context, it is more reasonable to implement the caching
mechanism at the granularity of an object. In LRU, the access score of a cached ob-
ject is estimated by its last access time. An object, which has not been accessed for a
long period of time, has a lower access score, and therefore has a higher probability of
being replaced. It has been illustrated that LRU is inappropriate in a context where
the objects accessed by a client might change over time [8]. We therefore expect the
performance of the LRU-based caching mechanism to be not very promising in this

context of DVE across the Internet.

In the context of a virtual environment, we can adopt the semantics of a navi-
gational path which relates the location of o, loc,, the location of V, locy, and the
viewing direction of U, ¥y. The farther is an object from the viewer, the lower the
resolution it should be at and the longer it takes for the viewer to move to view the
object in greater detail. Consequently, its probability of being rendered at a higher
resolution and hence its value of being cached in the storage are lower. Similarly, the
larger is the angle of an object from the viewing direction, the lower the resolution it
needs to be rendered and the longer it takes for a client to rotate to view the object
directly in front. Consequently, its probability of being rendered at a higher resolu-

tion and its value of being cached in the storage are also lower. The access score of

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 59

an object could, therefore, be based on this kind of semantics. We call this the Most

Required Movemnent (MRM):

SD,V:w(l— D)+(1—w)(1—@) S (0<w<)

Do,ma.'x: T

where D, is the distance between object o and viewer V while 4, is the angle between
object o and the current viewing direction of viewer V, 7y, expressed in terms of
radians (—7 < 8 < 7). D, 14z is defined as the sum of the radii of the viewer scope
and the object scope. The divisions by D, ma, and 7 in the formula normalize the
contributions by the distance component and the angle component respectively, so
that the quantities can be added in a weighted formula. The first term indicates the
distance component while the second term indicates the angular component. 'The
weighting factor, w, adjusts the ratio between the two components in determining the
access score, S, v, and it generalizes the formula to S = a(...) +(...). We use a single
weighting factor for simple and fast computation. Notice that the resolution detail of
an object is inherently captured by the distance and the angle between the object’s
location and the viewer’s location. The optimal value of the weighting factor, w, is

determined through the simulation study in Chapter 5.

4.5.2 Caching Granularity

As described in Section 3.3, the use of multi-resolution medeling allows objects to be
represented in different resolution progressively. Thus, it is possible to have a finer
caching granularity other than page-based or object-based. We proposed a multiple-
level caching granularity for cache management in our multi-resolution caching mech-
anism.

When the cache storage is exhausted, it is necessary to reclaim storage space that

is needed for the incoming objects. Instead of simply removing individual cached

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 60

object, the replacement process is performed in multiple levels. The first level is to
reduce the resolutions of cached objects to their optimal resolutions according to their
access scores. The object with the lowest access score is selected first for replacement.
If there is still not enough space to accommodate the incoming objects, the object

with the next lowest access score is then selected for replacement and this process
will be iterated.

When there is still not enough room to accommodate the new objects even after
all cached objects have been reduced to their optimal resolutions, the next level of
replacement is performed. The object with the lowest access score is selected again
and all its progressive records are removed, leaving only its base mesh. Again, this
process will be repeated for other objects. Finally, the base mesh of the object with
the lowest access score is removed if there is still not enough space. This process will

be iterated again until enough room is allocated for all the incoming objects.

Our multi-resolution caching mechanism tries to retain at least the base meshes
of the cached objects in the client’s cache storage for possible future reuse. This
provides the viewer with a much better visual perception since all or most of the
visible objects could be seen instantaneously, even though they may only be visible

at a coarse resolution.

4.6 Prefetching Mechanism

We proposed a user-profile based prefetching mechanism in which the movement his-
tory of individual viewer would be stored in a separate profile for prefetching. As the
viewer moves, the moving pattern of the viewer would be captured in his/her user-
profile. This would increase the accuracy of the prefetching mechanism and reduce

the additional cost of transmitting useless data.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 61

For each viewer, V, the server maintains a separate profile, containing the set of
historical locations of V, Py = {loey, loca, . . ., loc,_1}. When a viewer moves to a new
location, loc,, and requests the server for renderable objects, the n+1% location and
viewing direction of the viewer will be deduced. Based on the deduction, renderable
objects at both the current location, loc,, and the predicted location, loc,y,, are
transmitted. This would save future requests to the server if the prefetched objects
are indeed required by the client. Precisely, we would like to predict the next location
locp of the viewer from its previous locations in the form of a movement vector.
Each movement vector indicates a previous moving step of the viewer, containing a

moving direction and a moving distance.

When a viewer navigates through a virtual environment, he/she commonly has a
specific place of interest and navigates towards that location. However, the viewer
may explore neighboring locations before reaching the target location. This results
in a moving pattern, which shows a trend with some deviations. To predict the
next location loc, . of the viewer more accurately, we can employ some smoothing
techniques which are commonly used in forecasting. There are two main types of
forecasting methods [54], which are Averaging Methods and Ezponential Smoothing
Methods. Averaging Methods use equal weightings in previous observations to predict
the next outcome while Ezponential Smoothing Methods use unequal weightings which
are decayed exponentially from the most recent observation to the most distant one.
Mean and Single Moving Averaging (also known as Window) are examples of Avernging
Methods, while Single Erponential Smoothing (also known as Exponential Weighted
Moving Average, EWMA) is an example of Ezponential Smoothing Methods. Based on
the consideration of computational costs, three schemes {(Mean, Window, and EWMA)
are selected to study the applicability of these schemes in predicting the next location

of the viewer in this context. The semantics of these three schemes are depicted in

Figure 4.3.

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 62

previous movement

vectors —__ _ » M, ol Mn
— Mp4 —_ ——.—-'_n%"
\ Mg M-t n+1
- _.". . -
Mne [-~ estimated - My
- movement vector n-2
(a) (b) (c)

Figure 4.3: Predicting next moving direction: {a) Mean, (b) Window, and {¢) EWMA.

In the Mean scheme, the next movement vector, 7,11, is predicted as the aver-
age of all the previous n movement vectors, as depicted in Figure 4.3a with three
movement vectors. In the Window scheme, each viewer is associated with a window
of size W, holding the previous W movement vectors. The next movement vector
is predicted as the average of the W most recent vectors. This is indicated in Fig-
ure 4.3(b), showing a window of size W = 2. The Window scheme has a problem of

equal weightings of all movement vectors within the window on the prediction.

To better approximate the real-world movement, and to adapt quickly to changes
in the viewer’s moving pattern, we employ the EWMA scheme to predict the next
location of the viewer. It assigns a weight to each of the previous movement vectors
so that recent vectors have higher weights and the weights tail off as the vectors
become aged. A parameter is the exponentially decreasing weight, a. The most
recent vector will receive a weight of 1; the previous vector will receive a weight of ¢;
the next previous one will receive a weight of @, and so on. This idea is depicted in
Figure 4.3(c), indicating the predicted moving direction. The new predicted vector
can be computed as follows:

1 n :
Mpy1 = o (Z a"_‘ﬁ'ai) (0<a<l)
n \i=l

where S, = Y7 o™t = 11“_";. Asn = oo, S, — i; therefore, ., can be

CHAPTER 4. CACHING AND PREFETCHING MECHANISM 63

approximated by (1 —a) ¥ | a"~'m;. The new n + 1** movement vector is estimated
as: Myt = @ity + (1 — a)7itn.

EWMA has been shown to be quite effective in predicting access probabilities of
data items in database applications by adapting rather quickly to changes of access
patterns [72]. However, it might not perform as satisfactory in this new context of
predicting the next viewer location. This is because the access probability to a data
item is bounded between 0 and 1. EWMA is trying to incorporate the effect of the
change into the new estimate and the estimation error would normally not diverge.
In this new context here, we are using EWMA to predict a vector, whose direction
is an angle with an unbounded scope, i.e., the angle can increase indefinitely, for
example, through continuous rotation in a circle. Thus, EWMA may not be able to
cope with the “non-stationary” changes. We need to explicitly correct the prediction

with adjustment from residuals or error predictions.

Let us denote the n'* movement vector be 77, and the predicted n+1** movement
vector be . The residual in each prediction is &, = m, — m,. We consider the
angle between 17, and 7, denoted as ¢, = arg{th,.) — arg(ri,}, where arg(m) is
the argument of the vector 77t in a complex plane. 7, can be predicted by rotating
7y through an angle of —¢,, i.e., a multiplication by ¢™**~. Since we do not really
know ¢, when we predict r, ., we must try to predict ¢, as well. There can be
different ways of predicting ¢,,+, from the previous values of ¢;, namely, Mean, Window
and EWMA. Again, we propose to use EWMA to compute the prediction of ¢; at each
step as we compute é;. Thus, dny) = ad, + (1 — a)@n, and 77,y = Thn+lc“‘£’"+‘. We
call this the EWMA-R (EWMA with residual adjustment) scheme, since it involves

the adjustment to the direction of each movement.

In order to determine the optimal value of the exponentially decreasing weight,
e, in both EWMA and EWMA-R schemes, a set of simulated experiments has been

conducted. The details of the simulated experiments are shown in Chapter 5.

Chapter 5

Simulation Study

5.1 Introduction

We have developed a simulation model and have conducted some extensive simu-
lated experiments to quantify and evaluate the performance of our proposed rmulti-
resolution caching mechanism with MRM replacement policy and user-profiling based
prefetching mechanism. We have chosen the representative experiments to be pre-
sented here. We have already conducted some preliminary simulated experiments
to study the impact of caching granularity on the performance of caching mech-
anism. We have compared our proposed multi-resolution caching granularity with
LOD, which is commonly used in most existing DVE systems. We have already
concluded that our proposed multi-resolution caching granularity out-performs LOD

under most cases [11].

The simulation study is conducted around three main objectives. First, we would
like to compare our MEM replacement policy with conventional LRU replacement
policy. Second, we would like to examine the effectiveness of various prefetching

schemes. Third, we would like to determine the optimal value of the weighting factor,

64

CHAPTER 5. SIMULATION STUDY 65

w, in the MRM replacement policy and the exponéntially decreasing weight, « in the

EWMA and EWMA-R prefetching schemes.

5.2 Simulation Model

We have developed a simulation model which allows us to experiment the behavior
of our proposed caching and prefetching mechanisms under diverse situations easily.
The simulation model is implemented using CSIM [68] and STL [57]. The architecture

of the simulation model is depicted in Figure 5.1.

Downlink Channel
Client

=5

..DDD

RRAR...

Uplink Channel

Movement Generator MG Movement M
Request Processor RP Request R
Queue Cj Data D

Figure 5.1: Simulation model.

In our simulation model, the client module contains a Movemnent Generator, MG,
which continuously generates different movements, M, simulating user inputs. The
movements are then queued and passed to the Request Processor, RP. For each move-
ment, RP looks up the client’s cache storage and formulates a request, R for all missing
data at the viewer’s current location. Subsequently, the request is sent to the server
through the Uplink Channel. Upon receiving requests from the client, the server re-

trieves data from its local storage and sends the requested data, D, back to the client

CHAPTER 5. SIMULATION STUDY 66

through the Downlink Channel When the client receives data from the server, the

data is cached and replacement is performed when the cache storage is exhausted.

5.3 Experimental Environment

” Notation Description ”
N Number of virtual objects
n Size of storage cache {percentage of database)
Raisk Replacement Policy for storage cache
w Adjustment parameter for MRM
Fiisk Prefetching scheme for storage cache
w Window size in prediction
o Exponentially decreasing weight
P Moving patterns of the viewer
T Transmission pattern of renderable objects

Table 5.1: Parameters listing for simulated experiments.

The experimental setting of the simulation model is outlined in Table 5.1. In the
experiments presented below, we focus on an environment with one database server
and a single client. In our experiments, the client and the database server communi-
cate via a network with a bandwidth of 1Mbps, modeling the Internet environment.
The virtual world is constrained in a dimension of 10000x 10000 units. In our model,
there are N virtual objects stored at the database server. The N virtual objects are
uniformly distributed over the entire virtual world. Each square unit of the virtual
world, therefore, contains an average of {3z objects. The viewer is assumed to be
located at the center of the viewer scope that is modeled as a circle. The viewing
angle, that determines the viewing region of the viewer scope, is set to 120 degrees,
le., QT” radians. The radius of the viewer scope is fixed at 500 units. The radius of
the object scope for each object ranges uniformly from 75 units to 125 uniis with a

CHAPTER 5. SIMULATION STUDY 67

mean of 100 units.

The virtual objects in the database server are represented by multi-resolution
model. Each object contains a base mesh and a list of progressive records. The base
mesh has a size of 31KB. It contains 695 vertices and 1684 triangles. There are to-
tally 6944 progressive records associated with each object. Meanwhile, the size of the
progressive records is 329KB and the size of individual progressive record is approx-
imately 49 bytes. The size of an entire object is, therefore, 360KB. The resolution
required for each virtual object is based on the optimal resolution as described in

Section 3.5 and K, used in defining the optimal resolution is 1.5317.

In our study, only storage cache at the client is modeled. The bandwidth of disk
is set to 40Mbps modeling a fast SCSI disk. The size of the client cache is equal to
n% of that of the database. We experiment two replacement policies, Ry, LRU and
MRM. We denote the MRM replacement policy with adjustment parameter, w, of 0.1,
0.5 and 0.9 as MRM-0.1, MRM-0.5 and MRM-0.9 respectively. We also experiment
three different prefetching schemes, Fy;;, namely EWMA, Mean and Window. For the
EWMA scheme, we experiment both with and without residual adjustment enabled.
For notational convenience, we refer to the EWMA scheme with residual adjustment
enabled as EWMA-R, and the one with residual adjustment disabled as EWMA-NR.
The exponentially decreasing weight for determining access score in EWMA is denoted
as a. We further denote a window scheme with window size, W, as Win-WW. For
instance, a window scheme with W=1 will be denoted as Win-1. In addition, we model
two transmission patterns, T, in transmitting the requested objects to the client. The
two transmission patterns are circular transmission (Cx) and view-dependent circular

transmission (Vx} as described in Section 4.4.

CHAPTER 5. SIMULATION STUDY 68

Moving Pattern

We study four moving patterns, P, experienced by the viewer. The moving patterns
are depicted in Figure 5.2. Each pattern is composed of a sequence of movement
steps. Each movement step changes the location of the viewer, that is a translational
movement, and/or the viewing direction of the viewer, that is a rotational movement.

Every step in a translational movement makes a net progress of 10% of the radius of

the viewer scope, 1.e., 50 units.

Figure 5.2: Moving patterns: (a) CP, (6) CT, (c} CR, and (d) RW.

The first moving pattern models a constant circular translation pattern (CP), as
depicted in Figure 5.2(a). The viewer moves along a circular path with a diameter of
8000 units. The start and the end location are the same. Each movement step includes
a translation of 50 units along the viewing direction and a rotation of 0.716 degrees,
i.e., 0.012 radians. The total number of movement steps is 503 in one complete
movement. The second pattern (Figure 5.2(b}) models the same pattern as the circular
pattern except that after each movement step is made, the viewer rotates from 60
degrees (5 radians) to -60 degrees (—7% radians). We call this circular turn pattern
(CT). This models a situation in which the viewer explores nearby objects for every
movement step. The third pattern (Figure 5.2(c)) models a similar pattern as the

circular pattern except that after each movement step is made, the viewer performs

six rotations, each of 60 degrees (Z radians) Thus, after the rotations are complete,
g 3 I

CHAPTER 5. SIMULATION STUDY 69

the viewer turns back to the original direction, that means, it rotates in 360 degrees
(27 radians). The viewer then moves along the viewing direction. This models a
situation in which the viewer examines all virtual objects around him/her for every

movement step. We call this the circular rotation pattern (CR).

Normal Distribution

Figure 5.3: Normal distribution with & 0.25, 0.5, and 1.0.

Other than those circular moving patterns, we study the random moving pattern
(random walk or RW) as depicted in Figure 5.2(d). The viewer, starting at the center
of the virtual environment, i.e., (5000, 5000), moves with a translation of 50 units
along the viewing direction. After each translational movement, the viewer rotates
randomly with a minimum angle of -180 degrees (—7 radians) to a maximum angle
of 180 degrees (7 radians). We model three random moving patterns with different
probability distribution functions of rotational angle (5.3). It is a normal distribution
function with o equal to 0.25. 0.5 and 1.0 respectively. The smaller the o value, the
smaller the probability viewer rotates. In our study of random moving patterns, the

total number of movement steps is 1000. The simulated random patterns are shown

CHAPTER 5. SIMULATION STUDY 70

in Figure 5.4. For notational convenience, we refer to the random patterns with o

equals to 0.25, 0.5 and 1.0 as RW1, RW2 and RW3 respectively.

(a) (b)
10000 10000
8000 8000
" P
8000 kI A \ 5000 A
e ‘
/
/
4000 g 4000
- —
f | L‘ / |8 L_
- s o5, e (==X
2000 S o i‘l) 2000 8 L,'-—___'
b i==sp \f xS & D
A = o Bl
e L8 — S
0 T, 4> Sepr—ie 4% g — —
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
(c)
10000
BDOO
6000
=
P 4 ;‘Lr—- v
AL
4000 >
2000
a
0 2000 4000 5000 8000 10000

Figure 5.4: Random walk patterns: (a) RW1 (o = 0.25), (2) RW2 (¢ = 0.5), and (¢)
RW3 (o = 1.0).

5.4 Performance Evaluation

We characterize the performance of the caching and replacement schemes with two
sets of performance metrics. The first set quantifies the absolute performance by the

cache hit ratio and the response time. Cache hit ratio measures the portion of the

CHAPTER 5. SIMULATION STUDY 71

visible objects, i.e., those within the viewing region, that could be retrieved from
the local cache of the client. Response time measures the average time (in seconds)
required to retrieve all progressive records from the server for representing the visible

objects in their optimal resolution.

The second set of metrics is concerned with the image quality perceived by a
viewer, which is quantified by the visual perception and the latency. Visual perception
measures how good the image quality experienced by the viewer. For each visible
object, o, cached in the local storage, its visual perception is modeled as a cubic
function: 1-(8"—;3‘1)3, where B, is the expected size of object o at its optimal resolution
and B; is the size of the object currently cached. A visual perception of 100% is
assumed when the the cached model could provide the optimal resolution while a
visual perception of 0% is assumed when the model cannot be located in the cache.
We use a logarithmic-like function to model visual perception because when a viewer
makes a move in the virtual world, he/she would experience a high visual perception
if all visible objects could be seen instantaneously, even at a coarse resolution. By
contrast, the viewer would experience a low perception if he/she needs to wait for a
long time before all visible objects could be observed. Latency measures the average
time (in seconds) required to retrieve the base meshes of all visible objects, i.e., from
the moment the viewer makes a move, to the moment when there is a coarse image

of all visible objects. For each experiment conducted, the average of each metric is

determined from all movement steps.

5.5 Experiments on Caching Mechanism

In this section, we are going to discuss the performance of the proposed caching
mechanism as compared to conventional ones. Here, we select representative sets of

experiment to illustrate the performance of our proposed caching mechanism. The

CHAPTER 5. SIMULATION STUDY

parameter setting of the experiments presented is summarized in Table 5.2.

Values for each experiment

Parameter
Experiment #1 #2 #3 #5 #6
N 5000 2500, 5000, 5000
10000, 20000,
n 0%, 0.014%, 0.028%, 0.057% 0%, 0.014%, 0.028%,
0.043%, 0.057%, 0.071%, 0.043%, 0.057%, 0.071%,
0.085%, 0.114%, 0.142% 0.085%, 0.114%, 0.142%
0.170%, 0.227%, 0.284%, 0.170%, 0.227%, 0.284%,
Raisk LRU, MEM MRM
w 0.1 0.1,0.5, 0.9 0.1
Fyink No Prefetch
w
o
P CpP RW3 CP, CT, CR, CcP CP, CT. CR,
RWI1, RW2, RW3 RW1, RW2, RW3
T Cx, Vx Vx

Table 5.2: Parameter values for simulation experiments #1 to #6.

5.5.1 Experiment #1

In the first experiment, we would like to study the effect of two transmission patterns

on caching mechanism. In this experiment, there are 5000 objects in the database,

i.e., the database is approximately 1.72GB. The size of the storage cache varies from 0

to 5MB, i.e, 0.0% to 0.284% of N. The moving pattern is CP. We experiment LRU and

MRM replacement policies, each is evaluated based on two transmission patterns (Cx

and Vx). The adjustment parameter, w, of MRM is fixed at 0.1. The measurements of

the four metrics which are organized as an array of graphs are depicted in Figure 5.5.

The top row (Figures 5.5(a} and 5.5(b)) depicts the hit ratio and response time while

the bottom row (Figures 5.5(c) and 5.5(d)) depicts the visual perception and latency

measiirements.

CHAPTER 5. SIMULATION STUDY 73

(a) Hit Ratio (b) Response Time
00% 200
B0% Y T n $ 150 \1% :
4 3 [%
%aox e E 120 N
13 = =
T .] 3
0% « Vx-MRM R~ @
o ™
Vx - LRU] B
= > @ 4 -
% e Cx - MRM & %0 =P \:\ a5
o~ ~ = -0 _— 2a]
0% & - o e B SRR) Cx-LRU i LT o .
0.00% 0.05% 0.10% 0.15% 020% 0.25% 0.30% 0.00% 0.05% 0.10% 0.15% 020% 025% 0.30%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
00% ——" n n 140
. A
» 120~
5 80% — e e da e T £
= S 00 %
a H %,
g 80% £ o=t
o . > 3
a [&8
E 40% - - 5 0 \
= \
n B 40 = \
S 20% HA— — 3 "
/) 2.0 o T PINGE BN
0% & - 1 oo " . s I o —n — o
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30%

Cache Size (%) Cache Size (%)

Figure 5.5: Performance measurements of Experiment #1.

From Figure 5.5(a), we observe that when the cache size is small (below 0.085%),
LRU results in a smaller hit ratio under Vx than the Cx counterpart. When the
cache size is too small (below 0.028%), LRU cannot hold all the visible objects and it
results in a hit ratio of almost 0%. Under Vx, objects within the viewing region are
transmitted to the client earlier than those beyond the viewing region. LRU would
pick up those objects within the viewing region as replacement victims, yielding a
seemingly anomalous result. These objects, however, are likely to be accessed in the
near future as the viewer moves along the viewing direction. This results in a lower
hit ratio. This also explains why LRU results in a lower visual perception under Vx
than those under Cx when the cache size is small, as depicted in Figure 5.5(¢). When
the cache size enlarges. more space is available to retain all objects within the viewing

region and thus, the hit ratio increases.

We also notice that MRM results in a similar hit ratio and visual perception

CHAPTER 5. SIMULATION STUDY 74

regardless of the transmission patterns. This is because the replacement victims
selected by MRM are most likely beyond the viewing region, and thus not affecting
the hit ratio nor the visual perception. Furthermore, when the cache size diminishes,
MRM results in a higher hit ratio and visual perception than LRU. This is due to the
same reason that LRU tends to replace objects within the viewing region, but MRM

would avoid their replacement.

From Figure 5.5(b), we observe that replacement policies under Vx result in lower
response time than those under Cx. This is primarily because under Vx, objects
within the viewing region are transmitted prior to those beyond the viewing region.
However, under Cx, objects within and beyond the viewing region are multiplexed
during transmission, resulting in a higher response time. This also explains why the
latency under Vx is much lower than that under Cx, as depicted in Figure 5.5(d).
We also observe that MRM results in lower response than that of LRU under the two
transmission patterns, especially when the cache size is small. This is due to the

higher hit ratio from MRM.

From this experiment, we can conclude that the Vx transmission pattern is very

effective in reducing the response time and latency of the DVE system.

5.5.2 Experiment #2

In the second experiment, we would like to further study the effect of the two trans-
mission patterns on the performance of the caching mechanism. In this experiment,
the moving pattern is fixed at RW3 and all the other parameters are the same as

those in Experiment #1. The results are depicted in Figure 5.6.

From Figure 5.6(a) and Figure 5.6(c), we observe that when the cache size is small
{below 0.085%), LRU results in a smaller hit ratio and visual perception under Vx than

the Cx counterpart. When the cache size is too small (below 0.028%), LRU cannot

CHAPTER 5. SIMULATION STUDY i

Ut

(a) Hit Ratio (b) Response Time
100% 200
—) o .“
80% e H b
iy 3 ™A
e \
oL 2 = .
2 60% o~ E 120 ‘
& = &
= T ¥ ? = :
T 40% e Vx - MRM 3 8.0 W T
. o a
: Vx - LRU .
20% P it 3 8 40 - -——\‘»
* Cx-MRM o W =
£ Cx-LRU T .
0% o s A=t gt o
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% = ey 14.0
N P =
’F/ 120 —%
§ 80% -7 = %
3 v/ §100 IR
§ 60% /' — o = B 8.0+ ;
3 >
o o
< 0% — 4 — = e g 6.0
I/ 3 o B
| > 20% ——— — ¥ 28
/ 20 ——— A -
= -
0% i 3 £ = 00 : P r—
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% ‘ 0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30%
Cache Size (%) Cache Size (%)

Figure 5.6: Performance measurements of Experiment #2.

hold all the visible objects and it results in a hit ratio of almost 0%. As described in
Experiment #1, LRU tends to replace objects within the viewing region prior than
those beyond the viewing region due to the transmission order in Vx. This results
in a lower hit ratio and visual perception under Vx than those under Cx. We also
notice that MRM results in a similar hit ratio and visual perception regardless of the
transmission patterns. It results in a higher hit ratio and visual perception than LRU
because MRM is capable of retaining objects within the viewing region regardless of

the transmission patterns.

From Figure 5.6(b) and Figure 5.6(d), we observe that replacement policies under
Vx result in lower response time and latency than those under Cx. This is because
under Cx, objects within and beyond the viewing region are multiplexed during trans-
mission. In addition, we observe that the results in this experiment exhibit identical

trends as the previous one. This can show that performance of MRM and LRU under

CHAPTER 5. SIMULATION STUDY 76

the two transmission order is relatively independent of the moving patterns.

From this experiment, we can conclude that the Vx transmission pattern is more
effective than Cx in reducing the response time and latency of the DVE system. We

therefore focus on Vx in the following experiments.

5.5.3 Experiment #3

In the third experiment, we would like to study the effect of different moving patterns
on the performance of the caching mechanism. With n being fixed at 5000 objects
(1.72GB) and the cache size fixed at 1IMB, i.e. 0.057%, we experiment different moving
patterns and the two replacement policies, LRU and MRM. The setting of adjustment
parameter, w, for MRM includes 0.1, 0.5 and 0.9. We only present the metrics for
different policies under the Vx transmission pattern that is shown to perform hetter

in the previous experiments. The results are depicted in Figure 5.7.

We observe from Figure 5.7(a) that LRU results in a smaller hit ratio under all
moving patterns than MRM. When the cache size is small (1MB), the cache cannot
hold all the visible objects and thus, replacement is needed to reclaim storage space
for incoming objects. As described in Experiment #1 and #2 , LRU would discard
objects within the viewing region due to the access order under Vx. These objects may
in fact have a high probability of being accessed soon as the viewer is moving towards
the viewing direction. By contrast, MRM always picks up those objects beyond the
viewing region for replacement. As aresult, LRU results in a lower hit ratio and visual
perception than MRM. It, therefore, causes an increase in both the response time and
latency.

We also observe that MRM results in a higher hit ratio with a smaller adjustment
parameter, w. With w equal to 0.5 and 0.1, the hit ratio can be improved up to 72.7%

and 97.6% respectively. Actually, the adjustment parameter, w, controls the weighting

CHAPTER 5. SIMULATION STUDY T

(a) Hit Ratio (b) Response Time
80% AMRMD 75
55% BMRM-0.5 58
IMRM-0.9 a —
50% n |
5 BLRU ® 95
= 45% & [
-4 = 45
= 40% —~ = -
$ 40% £ 35 |
35% ! — | | &
] s
30% 1 2 25
| U
25% 1= :I 1.5
cP RW3 RwW2 RW3
Move Panern Move Pattern
(c) Visual Perception (d) Latency
95% 32
0% e ————
& 2.7
2 85% —_ I |
o 822 +
@ 80% i ‘
& 75% E! 7+ {
T 70% LR
5 65% =
60% 2
55% = 02
cP oT CR RW1 cpP CcT CR RW1 RW2 RW3
Move Pattern Move Pattern

Figure 5.7: Performance measurements of Experiment #3.

between the distance component and the angular component in determination of
access score in MRM. The higher the w value, the more weighting of the distance
component and the less weighting of the angular component. Thus, objects that are
closer to the viewer will mostly be kept. By contrast, the lower the w value, the more
weighting of the angular component and the less weighting of the distance component.
Thus, objects that are closer to the viewing direction of the viewer will mostly be
kept. As these objects will have a higher probability to be accessed in the future, a

lower w value results in a higher hit ratio.

We further notice that the hit ratio for the moving pattern CP is higher than that
for CT and CR under MRM-0.1 and MRM-0.5. It is because under CP, the viewer
only moves along the viewing direction. Thus, objects along the viewing direction
that are being kept under MRM-0.1 and MRM-0.5 will most likely be accessed again.

However, under the moving patterns of CT and CR, the viewer explores nearby objects

CHAPTER 5. SIMULATION STUDY 78

by rotating around before making the next movement and thus, objects being kept
under MRM with a low w may not be accessed in the future under these two moving
patterns. This results in a better performance for MRM-0.1 and MRM-0.5 under
CP than those under CT and CR. Similarly, under the moving patterns of RW, the
probability of changing the viewing direction is increased with the o in defining the
moving pattern. The probability of turning is increased from RW1, RW2, to RW3.
This accounts for the reduction of cache hit ratio and visual perception from RW1 to
RW3.

From this experiment, we can conclude that MRM is more effective than LRU when
the cache size is small. MRM results in a higher cache hit ratio and visual perception
and in turns, reduces the response time and latency of the DVE system. In addition,

MRM with a smaller weighting factor, w, performs better.

5.5.4 Experiment #4

In this experiment, we would like to study the effect of cache size on the performance
of various replacement policies. With N being fixed at 5000 objects and moving pat-
tern being fixed at CP, we experiment the cache size ranging from OMB to 5MB, i.e.
0.0% to 0.284%. The replacement policies are LRU and MRM and the adjustment
parameter, w, for MRM is fixed at 0.1, 0.5 and 0.9. Similar to the previous experi-

ments, we only show the metrics for different policies under Vx. The results of this

experiment are depicted in Figure 5.8.

From Figure 5.8(a), we observe that the cache hit ratio for all four replacement
policies increases from 0% up to 83.4% as the cache size increases. Thus, the response
time and latency reduces. The cache hit ratio achieves a maximum value when the
cache becomes saturated. Further cache enlargement does not help improving the

performance. It is because when the cache is large enough to hold all objects within

4 pa—— 5 g # . & b # &
CHAPTER 5. SIMULATION STUDY 79
(a) Hit Ratio (b) Response Time
100% 100
s Ae—tr—n
80% i £ 2 80 —m = A AR N . i LS
2 \
- - El . -
-.—: 60% i A E 6.0 —— & - -
x g o N
© /" a »
I 40% - e = MRM-0.1 § 40 = S =
- =
5 x MRM-0.5 = e
0% EEEEe e * MRM-09 x 20 e
0% e LR 0.0 S T
0000% 0050% 0100% 0.150% 0.200% 0250% 0300% 0000% 0050% 0100% 0.150% 0200% 0250% 0.300%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% y " 5.0
E o
c - % _'//:3"," e ’fx
2 80% - e — — 40 3
a 4 = T\\
H L s L] -
§ 60% bt — o 2 30 —
3 8/ 3 S
1l f c o=
3 4% S H 2.0 —n N\
- co / - i . B TS,
% ——F ; . TN
/“/ - - =
0% SEREE e 3 = 0.0 . -
0.000% 0050% 0100% 0150% 0200% 0250% 0.300% 0000% 0050% 0.100% 0.150% 0.200% 0250% 0.300%

Cache Size (%) Cache Size (%)

Figure 5.8: Performance measurements of Experiment #4.

the viewing region, no replacement of these objects is required.

We also observe that the cache hit ratio of LRU remains 0% for cache size from 0
to 0.5MB (0.028%) and the hit ratio increases from 0% to 83.4% for cache size from
0.5MB (0.028%) to 3MB (0.170%). It shows that LRU is ineffective when the cache
size is small. It is because LRU would discard objects within the viewing region due
to the access order. In case a very small cache is used, LRU replaces almost all visible
objects and the cache becomes useless. This accounts for the 0% of hit ratio and

visual perception.

We notice that MRM-0.1 and MRM-0.5 achieve a higher hit ratio than LRU for
all cache sizes. When cache size is set to 0.75MB (0.043%), the hit ratio of MRM-0.1
and MRM-0.5 can be improved by 44.7% and 31.6% respectively. It is interesting
that MRM-0.9 achieves a higher hit ratio than LRU for a cache size of up to 1.5MB

(0.085%), but it achieves a lower hit ratio for cache size from 1.5MB up to 4MB

CHAPTER 5. SIMULATION STUDY 80

(0.227%). As mentioned before, the lower the w value, the more weighting of the
angular component and the less weighting of the distance component. Thus, objects
that are closer to the viewing direction of the viewer are mostly kept and this results

in a better performance.

This experiment, further shows that LRU is not as effective as MRM in this context
and MRM with a small w value performs the best. From the results in Experiment
#3 and #4, we can conclude that 0.1 is the optimal value of the weighting factor, w,

in determination of the access score in MRM. Therefore, we will fix ommega as 0.1 in

the following experiments.

5.5.5 Experiment #5

In the fifth experiment, we would like to examine the effect of database size on the
performance of caching mechanism. In this experiment, N ranges from 2500 objects,
5000 objects, 10000 objects, to 20000 objects, leading to a database size of 0.68GB,
1.72GB, 3.44GB and 6.88GB respectively. In addition, the moving pattern, P, is
CP and the transmission pattern is Vx. The replacement policy is MRM-0.1 and the
cache size ranges from 0% to 0.284%. The results of this experiment are depicted in
Figure 5.9.

From both Figure 5.9(a) and Figure 5.9(c), we observe that the hit ratio and
visual perception are almost invariant when accessing database with different sizes.
Among various database sizes, the hit ratio increases from 0% to a maximum of 83%

and the visual perception increases from 0% to 99% when the cache size increases.

We notice from Figure 5.9{c) and Figure 5.9(d) that the response time and latency
increase as the database size increases. When the cache size is large enough, the
caching mechanism can successfully reduce the response time to one fifth and reduce

the latency to one sixth, as compared to the base case of no caching. We found that

CHAPTER 5. SIMULATION STUDY 81

(a) Hit Ratio (b) Response Time
100% 400
80% i, _— 320 N M i
2 r‘:‘f” o
% g
2 0% = 2 snp i —
L} L& 2 \
x Py E =
= g : Wt e - L Vi e — - N
T 40% = . 1000 Y 16.0 Lfﬂ\rk B ——
; 000 g = e
20% & 5 B - e
/ * 10,000 o e e — =ry
T = —y -—
o% e - 20000 | © o e e 2
0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% T < o 200
-
s G/E e 16.0 —_—
2 / P %
3 120 —% = :
3 &
= s E 8.0 —
2 3
> TR e 4.0 - —-
I R ey 5
- —_ i P D= e e e]
0.000% 0.050% 0.100% 0.150% 0200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0200% 0250% 0.300%
Cache Size (%) Cache Size (%)

Figure 5.9: Performance measurements of Experiment #5.

the response time and latency are directly proportional to the database size. As the
database size increases, the density of objects contained in each unit of the database
also increases. Thus, more objects have to be transmitted to the client, resulting in

an increase in both the response time and latency.

This experiment shows that MRM, like other caching mechanisms [44], is relatively
invariant to the database size and it is effective in reducing the response time and

latency of the DVE system.

5.5.6 Experiment #6

[n this experiment, we would like to study the effect of cache size on the performance
of caching mechanism under different moving patterns. With N being fixed at 5000

objects, we experiment cache size ranging from 0 to 5MB, i.e. 0.0% to 0.284%. The

CHAPTER 5. SIMULATION STUDY 82

replacement policy is MRM-0.1 and the transmission pattern is Vx. The results of

this experiment are depicted in Figure 5.10.

(a) Hit Ratio (b) Response Time

g
g
3
o

BO% i el S 80 \\ ar
= @
- N
° ®]
£ 60% T 3 g 60
: =a oo | ||
e - r | o e~
T 40% —— - - - - . CT 2 40 T g
/(/(+ CR 2 TSN
4 @ —
20% coadesar VDR R I 2= 0 RW1 |- 8 20 e -
-4 e T o —— .]
Z-{‘ > RW2 H R
0% & i} i | RW3 - 0.0] £
0.000% 0.050% 0.100% 0.150% 0200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% i e e 50
A=
80% = %
. - e ey ~40 7Yy
/ g \B
@
60% ; S e L30 +—7
>

Visual Perceptlion

)
£
£20 : : = e
i | REa W
- 3 00 —m—0 — ——— = - . — = *
0.050% 0.100% 0.150% 0.200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300%
Cache Size (%) Cache Size (%)

Figure 5.10: Performance measurements of Experiment #6.

As shown in Figure 5.10, we observe that all the four metrics exhibit a similar
trend as the cache size increases and they are almost invariant to the different moving
patterns. As the cache size increases, more objects are kept in the local storage, thus
resulting in a rise in cache hit ratio and visual perception, as well as a drop in response

time and latency.

From Figure 5.10(a) and Figure 5.10(¢), we observe that the moving pattern RW3
achieves the lowest hit ratio and visual perception. It is because under RW3, a viewer
has a high probability of changing its viewing direction. Since MRM retains objects
within the viewing region, it is not very effective in improving the performance under
this moving pattern. This also accounts for the highest response time (as shown in

Figure 5.10(b)) of RW3 among the six moving patterns. As shown in Figure 5.10(d),

CHAPTER 5. SIMULATION STUDY 83

we notice that the moving patterns CT and CR achieve the lowest latency of 0.127
second and 0.091 second respectively when the cache size is greater than 2.5MB
(0.142%). Under these two moving patterns, the viewer will turn around to explore
objects around before making the next translational movement. When the cache size
is large enough, the base mesh of objects within the viewer scope can be retained and

thus, no re-transmission of the base mesh is needed.

This experiment shows that MRM is relatively invariant to different moving pat-

terns and is eflective in reducing the response time and latency of the DVE system.

5.6 Experiments on Prefetching Scheme

Parameter Values for each experiment
Experiment #T #8 #9 #10 #11
N 5000 2500, 5000,
10000, 20000
n 0.284% 0.114%, 0.142%, 0.170%, 0.284%

0.199%, 0.227%, 0.255%,
0.284%, 0.312%, 0.341%
0.397%, 0.454%, 0.568%

Raise MRM
w 0.1
Faisk EWMA-NR, EWMA-R No Prefetch, Mean, Window, EWMA-NR, EWMA-R
w N/A 1,357
o 0.1, 0.5, 0.9 0.5
P CP, CT, CR, CcP RW3 CcP
RW1, RW2, RwW3
T Vx

Table 5.3: Parameter values for simulation experiments #7 to #11.

After studying the performance of the proposed multi-resolution caching mech-

anistn, we would like to examine performance of the various prefetching scheme as

CHAPTER 5. SIMULATION STUDY 84

described in Section 4.6. We have selected a representative set of experiments and
presented in the following subsections. The parameter setting of the following four

experiments is summarized in Table 5.3.

5.6.1 Experiment #7

In the first experiment on prefetching, we would like to determine the optimal value
of the exponentially decreasing weight, , for use in the EWMA prefetching schemes.
In this experiment, N is fixed at 5000 object, resulting in a database size of approx-
imately 1.72GB. The exponentially decreasing weight, «, includes 0.1, 0.5, and 0.9.
The cache size is fixed at 5MB (0.284%). We experiment all the six moving patterns:
CP, CT, CR, RW1, RW2 and RW3. The measurements of the four metrics are depicted
in Figure 5.11. |

From Figure 5.11{a) and Figure 5.11{c), we observe that EWMA-R results in
slightly higher hit ratio and visual perception than EWMA-NR with the same ex-
ponentially decreasing weight, c, under most of the moving patterns. Also, EWMA
schemes with & 0.1 and 0.5 produces similar cache hit ratio and visual perception
which are generally higher than than those with a 0.9. With a higher alpha value,
there is a higher weighting of the aged moving vectors in predicting the next moving
vector and this introduces more noise‘in the prediction. The performance is thus
not as good as those with a smaller & under most moving patterns. However, we
notice that EWMA-R schemes with o 0.1 and 0.9 result in a lower hit ratio and visual
perception than that with & 0.5 under RW3. It is because the viewer has a very high
degree of randomness in changing his/her viewing direction under RW3. Too little or
too much weighting of the aged movement vectors is not effective in predicting the

error introduced by the non-stationary changes in viewing direction.

From this experiment, we can conclude that the optimal value of the exponen-

CHAPTER 5.

- = o o
o N & o

Response Time (sec.)
e o o
b o @

(=T =]
o N

100.0%

99.5%

Visual Perception

98.5%

98 0%

05
05
04
04
03
03
02
02
01
01
0.0

Latency (sec.)

99.0% |

SIMULATION STUDY

(a) Hit Ratio

cP CT CR
Move Pattern

]
I l
RW1

(b) Response Time

cP CT CR
Move Pattern

RW1

(c) Visual Perception

CT
Move Pattern

(d) Latency

e nml wrmn |

Move Pattern

RW1

RW1

BEWMA-NR (0.1)
OEWMA-NR (0 5)
OEWMA-NR (09)
BEWMA-R (0 1)
OEWMA-R (0.5)
@EWMA-R (0 9)

I! I

RW3

ST Sk im

RW3

RW3

Figure 5.11: Performance of Experiment #7.

CHAPTER 5. SIMULATION STUDY 86

tially decreasing weight, «, for achieving the best performance of the caching and
prefetching mechanisms under EWMA schemes is 0.5. Thus, we will fix the value of

a as 0.5 in the following experiments.

5.6.2 Experiment #8

In this experiment, we would like to study the performance of our proposed caching
mechanism, with or without prefetching, on various moving patterns. In this ex-
periment, N is fixed at 5000 object, resulting in a database size of approximately
1.72GB. The cache size is fixed at 5MB (0.284%). We experiment all the six moving
patterns: CP, CT, CR, RW1, RW2 and RW3. We repeat the experiments with various
prefetching schemes: Mean, Window, EWMA-NR and EWMA-R, to be compared with
the base case in which no prefetching is used, i.e. No Prefetch. The measurements of

the four metrics are depicted in Figure 5.12.

From Figure 5.12, we observe that even without prefetching, the caching mech-
anism performs very well. It achieves a hit ratio ranging from 81% to 94% (Fig-
ure 5.12(a)) among the various moving patterns. With prefetching, the hit ratio
could be improved by up to 16%. This results in a decrease in response time (Fig-

ure 5.12(b)). We observe that Mean is not effective in future movement prediction.

Both Window and EWMA perform equally well.

Under the moving patterns of CT and CR, caching without prefetching can achieve
a relatively high hit ratio of 96% and 94% respectively, and prefetching can only
achieve an improvement of 2%. All the prefetching schemes perform equally well
under these two moving patterns. For the other moving patterns, a window-based
prefetching scheme with a smaller window size, W, results in a better performance
than that with a larger window size. This is mainly because under these moving

patterns, the moving direction is always changing. With a large window size, aged

CHAPTER 5. SIMULATION STUDY 87

(a) Hit Ratio

o = @ None @Mean
G n - Win-1 aWin-3
96% i F BWin-5 B Win-7
4% OEWMA-NR BEWMA-R

8 92% |

= i ;

o 90% ‘ i i

e

T 88%

86%
84% ;
82%
B0%] 1 -
cP CT CR RW1
Move Pattern
(b) Response Time
18
== 1B
%

Response Tim
o
o

(= -
N L

o 14
]
& 124
1047
08
CP CcT

(c) Visual Perception

RW1 RW2 RW3
Move Pattern

100.0%

o
o
o
&

Visual Perception
w [}
@ o
14 o
® #

-

98.0% + . — e J
cp cT CR RW1 RW2 RW3
Move Pattern

(d) Latency

Latency (sec.)
o O & o g o
N w - w (-] -~

, e DT Rwrws TIU
CP T R RW1 RW2 RW3

C
Move Pattern

Figure 5.12: Performance of Experiment #8.

CHAPTER 5. SIMULATION STUDY 88

moving vectors contribute to the prediction of the next moving vector and this in-
troduces noise in the prediction. The performance is thus not as good as that with
a small window size. EWMA exhibits a similar behavior as window-based scheme.
EWMA-R performs better than EWMA-NR because EWMA-R can successfully pre-

dict and correct the errors incurred due to the "non-stationary” changes of viewing
direction.

From this experiment, we can conclude that prefetching is very useful in improving
the performance of the caching mechanism. A window-based prefetching scheme with

a small W and EWMA-R performs better than the other prefetching schemes.

5.6.3 Experiment #9

In this experiment, we would like to examine the effect of various prefetching schemes
at different cache sizes. Again, N is fixed at 5000 objects and the cache size ranges
from 2MB to 10MB (0.114% to 0.568%). The moving pattern is fixed at CP and
transmission pattern is Vx. We repeat our experiments with various prefetching
schemes and the base case of no prefetching. The results of the experiment are

depicted in Figure 5.13.

From Figure 5.13(a), we observe that without prefetching, the hit ratio results
in a maximum value of 83.5% when the cache size is greater than 3MB (0.17%) and
further increase in cache size does not improve the caching performance. When the
cache size increases, both the objects within the viewing region and the prefetched
objects can be retained in the cache and no replacement is carried out. Thus, the
cache must be large enough in order to make the prefetching mechanism effective.
We also notice that Mean can achieve a maximum hit ratio of 88.0% and all the other
prefetching schemes can achieve a maximwn hit ratio of 99.0% when the cache size

is greater than 5MB (0.284%). This shows that all the prefetching schemes, except

1 =% 5 N T 2 <
CHAPTER 5. SIMULATION STUDY 89
(a) Hit Ratio (b} Response Time

30
P e T e ——
—~ 25 \—-— R —— =
b3
. s :
e [Ny i 2 8
;5 »—a a8 -8 88— 88— —a E s g B et o s
© e .. e-a e - - -
- - - S o
x c \ (o N
- Noow Mean 210 A —Draneee el —=
. Wmn1 Wi = y
. Wins Win-7 ® o5 T —=
EWMA NR EWMA.R ““"—F‘- st
65% = = E 00 = = D e o 8
0.114% 0214% 0.314% D414% 0514% D614% 0 114% 0214% 0314% 0414% 0514% 0.614%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% s e, ey e & % & 070
0a% (AN e] 060 J-';:‘t“-..”_— == - —
\ o
g . - 050 ——e—=up
2 9% - o \ SISVl seEy T N LT
g 2 o0 —— _
g g7 >
& g o3 \'\ — -
s L 2
2" 3 o020 5 Soh i
>
95% e | 0.10 ‘\15\
34% - i St BT —— 0.00 —— e e
0 114% 0214% 0 314% 0414% 0514% 0.614% 0.114% 0.214% 0314% 0.414% 0514% 0614%
Cache Size (%) Cache Size (%)

Figure 5.13: Performance of Experiment #9.

Mean, are capable of predicting the next movement vector of the viewer accurately.
This accounts for the significant reduction in response time and latency as depicted

in Figure 5.13(b) and Figure 5.13(d).

From this experiment, we can conclude that the cache must be large enough in

order to make the prefetching mechanism more effective.

5.6.4 Experiment #10

In this experiment, we would like to further examine the effect of the various prefetch-
ing schemes at different cache sizes. The moving pattern is fixed at RW3 and all the
other parameters are the same as those in Experiment #10. The results of this

experiment are depicted in Figure 5.14

We observe from Figure 5.14(a) that the cache hit ratio increases as the cache size

CHAPTER 5. SIMULATION STUDY 90

(a) Hit Ratio (b) Response Time

Hit Ratio

+-- Mean

-m— None

« Win-1 Win-3
/« * Win-5 Win-7
% EWMA-NR EWMAR oo
0.114% 0.214% 0.314% 0.414% 0514% 0.614% 0.114% 0214% 0.314% 0414% 0514% 0614%
Cache Size (%) Cache Size (%)
{c) Visual Perception (d) Latency
100%
s e e ———— o.ro
I i it ik
9% - —————m —— VT e ‘J\h\a:hg-—
B gguy | E A L2 PRt i %.b&"ﬁ-
2 H R
g 2 p4o e
5 9% — E e T~
% s 0.30 ST S e
= 95’“'4; =ty ST (AR | 3020 et ——
> { T ~—4
95% 0.10 oS, T
f T
94% —+ - 000 ————————— -
0 114% 0.214% 0.314% 0.414% 0.514% 0.614% 0.114% 0.214% 0314% 0.414% 0514% 0614%
Cache Size (%) Cache Size (%)

Figure 5.14: Performance of Experiment #10.

increases. Even without prefetching, the caching mechanism can achieve a relatively
high hit ratio of 89.8% when the cache size is 10MB (0.568%). When prefetching
is enabled, the caching mechanism can achieve an improvement of up to 5%. This
accounts for the reduction of response time and latency when the cache size increases.
Under the moving pattern of RW3, a viewer has a high probability of turning around
and objects being accessed in the past have a high probability of being accessed in
the future. Thus, when the cache is large enough, those objects having been accessed
in the previous movement steps are retained longer. This results in an increase in the
hit ratio and visual perception.

Since the viewer turns around frequently, Mean is unable to cope with the changing
moving pattern and can only have a small improvement on the caching mechanism
as compared with the base case of no prefetching. Among the other prefetching

schemes, Win-1 achieves the best performance because with a small window size,

CHAPTER 5. SIMULATION STUDY 91

aged moving vectors do not contribute to and thus affect the prediction. EWMA
exhibits a similar behavior as the Window schemes. Also, EWMA-R performs slightly
better than EWMA-NR.

From this experiment, we can also conclude that the cache size must be large
enough in order to make the prefetching mechanism effective. Win-1 and EWMA-R

result in a better performance than the other prefetching schemes under the moving

pattern of RW3.

5.6.5 Experiment #11

In this experiment, we would like to study the effect of database size on the perfor-
mance of caching and prefetching mechanisms. In this experiment, N ranges from
2500 objects, 5000 objects, 10000 objects, to 20000 objects, leading to a database size
of 0.68GB, 1.72GB, 3.44GB and 6.88GB respectively. The cache size is 0.284%. The
moving pattern is CP and the replacement policy is MRM-0.1. The experiments are
repeated with different prefetching schemes. The result of the experiment is depicted

in Figure 5.15.

From Figure 5.15(a) and Figure 5.15{c), we observe that the hit ratio and vi-
sual perception for various prefetching schemes are almost invariant to the different
database sizes because the cache size is defined as a percentage of the database size.
The increase in database size also increases the actual storage for caching. We also
observe that except Mean, all the other prefetching schemes can achieve an improve-
ment of approximately 15% in hit ratio as compared to the base case of no prefetch-
ing. There is a slight increase in visual perception as the database size increases. It
is because the increase in database size results in an increase in the object density.
Therefore, at any location, the likelthood that the viewer scope overlaps with the

object scope becomes higher. This increases the chance of hitting an object in the

CHAPTER 5.

SIMULATION STUDY

(a) Hit Ratio
100%
96%
% 92%
-4
E 88% e - seeman - -
B84% . - a
FALR i e e g J k|
2,500 5,000 7.500 10,000 12500 15000 17,500 20.000
Database Size
(c) Visual Perception
100% 2o o -—g— ——)
LoremrmmesDosesesesnmane e G- =g
5 9%e—
=
g 98%
£
- 97%
C]
=
w
S %%
95% ——— - — - -
2,500 5,000 7.500 10.000 12500 15000 17500 20,000

Database Size

Response Time (sec.)

Latency (sec.)

Figure 5.15: Performance

local cache as the viewer moves.

(b) Response Time

00 = —
2,500 5000 7500 10,000 12500 15000 17,500 20,000
Database Size
(d) Latency
30 ——————
#— None a--Mean
25 || —=— Win-1 Win-3 -
Win-5 ~— Win-7 /
20 EWMA-NR EWMA-R e Al
2,500 5,000 7.500 10,000 12.500 15.000 17.500 20,000

Database Size

of Experiment #11.

We notice from Figure 5.15(h) and Figure 5.15(d) that the response time and

latency is directly proportional to the database size. As the database size increases,

more objects are visible to the viewer and thus more objects will be transmitted across

the network. It is promising that except the Mean scheme, all the other prefetching

schemes can achieve a significant improvement on reducing the response time and

latency by up to 12 and 42 times respectively as compared to the base case.

From this experiment, we can conclude that all the prefetching schemes, except

the Mean scheme, are very effective in reducing the response time and latency of the

systemnl.

CHAPTER 5. SIMULATION STUDY 93

5.7 Conclusion

In this chapter, we have studied and evaluated the performance of our proposed multi-
resolution caching mechanism and user-profiling based prefetching mechanism through
a set of simulated experirﬁents. We have shown that the conventional LRU replace-
ment policy is ineffective in the context of DVE across the Internet. By contrast, our
proposed MRM replacement policy can significantly reduce both the response time
and latency of the DVE system by improving the hit ratio. We also found that the
Vx transmission pattern results in a lower response time than the Cx counterpart.
In addition, MRM with a smaller adjustment parameter, w, performs better than
that with a larger one and the optimal value of w is 0.1. MRM, like other caching

mechanisms, is relatively invariant to the database size being accessed.

We have shown that the various prefetching schemes as described in Section 4.6
are complemented with the caching mechanism and are useful in further reducing the
response time and latency of the DVE system. Even without prefetching, the caching
mechanism alone can achieve a relatively high hit ratio and prefetching can further
improve the performance. We also found that the cache size must be large enough in
order to make prefetching effective. Among the various prefetching schemes, Win-1
and EWMA-NR perform the best in general. The Mean scheme performs the worst as
compared to other schemes and is unable to reduce the response time of the system
by much. In addition, we have determined that the optimal value of the exponentially

decreasing weight, o, in the EWMA prefetching schemes is 0.5.

Chapter 6

System Prototype

6.1 Introduction

A system prototype has been implemented for evaluating the performance of our
proposed Multi-resolution Caching Mechanism [12]. The prototype is implemented
using Java, due to its platform independence nature. We aim at developing a DVE
systemn for commonly available personal computer systems, without special graphics
accelerators or extremely fast CPUs as found in high-end graphics workstations. The
system should allow users to navigate through different VE maintained by various

remote servers via the Internet.

There are several challenges that have to be tackled in order to make the prototype
workable. A desirable DVE system should provide users with smooth and real-time
rendering of the VE. The system should be responsive such that the images must
be updated within a short period of time upon receiving input from the user. The
system should also connect to remote server, send request to it and receive data from

1t with minimal overhead.

94

CHAPTER 6. SYSTEM PROTOTYPE 95

6.2 System Architecture

The DVE system is based on a client-sever model. The architecture is therefore
divided into two main parts, the Client Systemn and the Server System. The Client
Systern and the Server System consist of 4 and 5 main subsystems respectively as

shown in Figure 6.1. The major functions of the subsystems are as follows:

e T e - 4 Disk
' Geometry R § K 7
' | Database | et el Senrgof Cache

Database 3
Agent

1,

Client i 4 Graphics

Server
Manager pE—— Engine

Manager

Handler |1 R < ﬁ‘_} Prefatch
S " ' i Agent

Client Systern

- by L

Figure 6.1: Architecture of the prototype.

Client System

o Client Manager: It serves as the coordinator of all other subsystems at the
Client System. All inputs from the user, such as translation or rotation, are

directed to and handled by the Client Manager. It also maintains the VE index

CHAPTER 6. SYSTEM PROTOTYPE 96

received from the server.

o Cuache Agent: It controls all the local caches, including the memory and/or the
storage cache at the Client System. Whenever the client receives data from the
server, the data would be cached via the Cache Agent. The agent performs
cache cleanup at the underlying cache(s) when necessary. Each object in the
local cache is associated with an access score, dictating the replacement order.

The process is implemented as a separate thread for cache management.

o Network Agent: It handles all the communications between the client and the
server, and maintains the connection between the client and the server once a
connection has been established between them. It also handles all the object
requests. The process is implemented as a separate thread under the Client

Manager in order to reduce the response time.

e Prefetch Agent: It maintains some historical movement vectors of each viewer in
the form of user profiles. It then predicts the next position of the viewer based
on the profiles and the Client System prefetches data according the predicted
position. A number of prefetching schemes are implemented, including Mean,

Window, and EWMA,

e Graphics Fngine: It renders the VE into images for display and also accepts

input from the user. The rendered images are be updated in a timely fashion.

Server System
e Server Manager: It serves as the coordinator of all other subsystems at the
server side.

e Dutabase Agent: Tt maintains the database of the virtual environment. Each

virtual object in the database is in the form of progressive mesh containing a

CHAPTER 6. SYSTEM PROTOTYPE g7

base mesh and a list of progressive records. The database agent allows fast

retrieval of data from secondary storage.

o Client Handler: It receives requests from each client, processes the requests and
sends the requested data back to the client. It is implemented as a separate

thread for each connected client in order to reduce the response time.

o Network Agent: It handles all the communications between clients and the server
and maintains the connection between each client and the server once a connec-
tion has been established between them. When a client requests connection, it

creates a separate Client Handler process to service client requests.

6.3 System Design

6.3.1 Client System

The class diagram of the Client System is shown in Figure 6.2. The Client System
is divided into 5 subsystems, which includes Client Manager, Cache Agent, Network

Agent, Prefetch Agent and Graphics Engine (see Figure 6.1).

Client Manager

o (lientManager is the main coordinator of the Client System and is responsible

for controlling all the other subsystems of the client system. It handles inputs

from the user.

e VEIndex contains the received VE index from the server and is responsible for

determining the set of objects within the viewer scope.

CHAPTER 6. SYSTEM PROTOTYPE

98

Graphics Engine | .

P ’ - T
GLResAdjuster

A

V‘.J- . ~ ‘-.‘1;. .
_ GLProgMesh §-~
n
. T
GLWalkViewer 31
Client Manager I PR o
.‘ 7 N ’ 1-.
1 1 ClientManager

ProgMesh

s T 1 :
. CacheAgent

MemoryCache

1

Prefetch Agent l '

) Network Agent
PrefetchAgent 7

Figure 6.2: Class diagram of the Client System.

Cache Agent

e CacheAgent is a thread for processing data received from the server. It contains

a shared buffer which is implemented as a synchronized FIFO queue. It retrieves

data from the buffer and put the data into the memory and/or disk cache. It is

also responsible for building the request list and prefetch list when requesting

and prefetching data from the server.

o MetricsCache is responsible for calculating the hit ratio and visual perception

whenever a request is generated.

CHAPTER 6. SYSTEM PROTOTYPE 99

e DiskCache is the disk cache for maintaining the received data in the secondary
storage. It contains the CacheQueue for writing data to the secondary storage.
When data is put into the disk cache, it checks whether the data should be
cached or not. If the data is allowed to be cached, it puts the data into the
CacheQueue.

o CacheQueue is a thread for writing data to the secondary storage. It prevents

the prototype from being blocked by the time-consuming I/O processing.

e MemoryCache is the memory cache for controlling the content of GLScene for
rendering. When a new ProgMesh is introduced, it creates an instance of GL-
ProgMesh and adds it to the GLScene. When the cache storage space is ex-
hausted, it selects a replacement victim using our proposed MRM replacement

policy. The victim is then removed from the cache and rendering scene.

o ProgMesh represents a virtual object in the form of progressive mesh. It contains

a base mesh and a list of progressive records.

Network Agent

o NwClient is responsible for establishing connection between the clients and
servers and maintaining the connections between them once established. [t

is also responsible for sending requests to server for missing data.

e PrminStream s a thread for reading data from the server. It checks the incoming
data stream regularly. When data is available, it reads the data and converts
the incoming binary data stream into various data types according to the re-
ceived header. The data is then transferred to the CacheAgent. The thread

is suspended for a period of time whenever no data is available from the data

stream.

CHAPTER 6. SYSTEM PROTOTYPE 100

e MetricsTimer is responsible for measuring the latency and response time of the

system.

Prefetch Agent

‘o PrefetchAgent predicts the next position of the viewer based on the historical
movement vectors. The predicted position is then used to prefetch data from
the server utilizing the otherwise idle network. A number of prefetching schemes

are implemented including Mean, Window, and EWMA.

Graphics Engine

o GLWalkViewer is responstble for generating the images of the virtual environ-
ment for display. It sends all the visible objects to the graphics hardware for
rendering. It also accepts input from the user, which may either be mouse

events or keyboard events, and processes the events accordingly.

o (GLScene maintains the content of the virtual environment for rendering. During

rendering, the content is traversed and the set of visible objects is determined

through bounding-box test.

o GLResAdjuster is a thread for adjusting the resolution of each of the objects
in the G'LScene with respect to the position and orientation of the viewer. A
priority queue is implemented for resolution adjustment. This can improve the
response time of the system by updating the resclution of visible objects in front

of the viewer prior to the invisible objects.

e (GLProgMesh represents the polygon model of each virtual object for rendering.
It contains a vertex array and a polygon array and is capable of adjusting the

resoltution of the model using the progressive record list.

CHAPTER 6. SYSTEM PROTOTYPE

6.3.2 Server System

The class diagram of the Server System is shown in

is divided into 4 main subsystems, which includes Server Manager, Database Agent,

Client Handler and Network Agent (see Figure 6.1).

Figure 6.3. The Server System

Network Agent I

Database Agent | 2 T

ServerManager

X e o : " i“'.f-. . - : “_-:

1) PmOutStream . -

. e :-' - 1 . ,.' i » ‘ln--".‘-, o o -_l." 1 ,..‘-u. *” ‘1 :
Client Handler I - R a5 [
N n ; . v ',.-, ‘ \..‘ . ‘. n :l Lo i= e .1 ;'.'- Y

LR R T T ClientMandler g

Server Managerl o N i —

el o 1

Figure 6.3: Class diagram of the Server System.

Server Manager

o ServerManageris the central coordinator of all subsystems at the Server Systermn.

Database Agent

e DatabaseAgent maintains the database of the virtual environment and retrieves

the requested data from the secondary storage.

R
Q&é PolyU

[+]

Hong

Pao Yue-Kong Library
Kong

CHAPTER 6. SYSTEM PROTOTYPE 102

Network Agent

e NuwServeris a thread which listens to a well-known port and accepts connection
requests from different clients. Once the connection is established, it creates a

new instance of ClientHandler to serve future requests of the client.

o PmOQutStream sends the requested data back to the client and is implemented

as a separate thread in order to reduce the response time of the system.

Client Handler

e (lientHandleris also a thread which accepts requests from its connected clients,
processes the requests and requests data from DatabaseAgent. The results are

passed to the PmOutStream.

6.4 Implementation Details

6.4.1 Multi-resolution Modeling

Model Generation

The generation of multi-resolution modeling is divided into 2 pre-processing stages,
Generation of simplification list and Generation of progressive mesh, as shown in
Figure 6.4.

In [43], several visual importance factors are identified. For simplicity, we only
employ static visual importance factors for constructing a simplification list of the
original input model. The simplification list stores the sequence of edge collapse
operations according to the static visual importance of each vertex of the original

input model.

CHAPTER 6. SYSTEM PROTOTYPE

103

' 3l
Generation @
Generation of
of Base Mesh
Simplification |§ |_ and
List Progressive
Record List g Base Mesh
—————— et J e — e
fRec, [Ree, | ... |Rec, [Rec,|

Original Model

Progressive Record List

Figure 6.4: Generation of a multi-resolution model.

After generating the simplification list, we construct a base mesh and a list of
progressive records from the simplification list. Since we try to preserve the feature
edges of the original model when generating the simplification list, the edge collapse
sequerice in the simplification list is different from the vertex sequence of the original
model. As a result, we rearrange the simplification list such that the newly introduced
vertex and polygons for each refinement are always the last elements of the arrays.

This can prevent insertion of vertices and polygon indices in the middie of the arrays

for efficient memory utilization.

Model Transmission

To transmit a multi-resolution model to the client, the base mesh is transmitted first
as a single unit. The client reconstructs the minimal resolution model of the object as
it receives the base mesh. Each subsequent progressive record is transmitted in order.
Each record stores information for splitting an edge of the object model, thereby

increasing the resolution of the object model by one level. As an edge is inserted or

CHAPTER 6. SYSTEM PROTOTYPE 104

split in a local mesh, a vertex needs to be divided as well. This idea is illustrated in
Figure 6.5. In Figure 6.5, as an edge identified by two vertices, Vparent and Vepia, is

inserted into a local mesh. Some neighboring triangles also need to be divided.

Figure 6.5: A progressive record stores information for an edge split.

The progressive record for the edge split operation shown in Figure 6.5 contains
the (z, v, z) position of V4, i.e. the vertex to be inserted, and the ID of the parent
vertex, i.e. Viarent- Vparent then joins with Vipug to form the inserted edge. We
also need to transmit the IDs of two vertices,Vi.y, and Vi . They help to identify
the locations where the two new triangles are to be inserted. The two triangles are
defined as Tiepr = (Viparents Vonitds Viesr) and Trigne = (Venitd: Viarent, Vrigny)- In order to
reduce the time for retriangulating the original model after the edge split, we also
neced to transmit the [Ds of neighboring triangles, i.e. Toeighpour,, for all triangles
which are connected t0 Vigrene. By modifying Vigren t0 Vonug in these triangles, the
resolution modification is completed. The data structure for our implementation of

the multi-resolution modeling is shown in Figure 6.6.

CHAPTER 6. SYSTEM PROTOTYPE 105

Order of transmission _

I Base Mesh I Rec, I Rec, i .] Rec, , Rec,
o hh“""-«--_
> "/// \\\Mﬁ"‘“‘——
o - H‘_h‘-“\‘"“"-—-..__
[IDo1 V| x | ¥ | 2 [iDof vpm, 10 0f Vigy | 1D 0F Vg 1D 08 T o110 08 Tocnmons 110 0F Toipnens o

Figure 6.6: The data structure of a multi-resolution model for transmission.

6.4.2 Graphics Library

A graphics library is needed for rendering and visualizing the virtual environment.
Open Inventor for Java is used for rendering in the first implementation of the pro-
totype. However, we found that the library has some problems and is unsuitable for
use in our prototype system. We then chose GL4{Java in our second implementation

of the prototype system. The details of the two libraries will be discussed as follows.

Open Inventor for Java

Open Inventor for Java is developed by TGS as a set of wrapper classes for the
graphics library Open Inventor for C++ [80]. It provides a Java interface to all the
classes of Open Inventor and allows fast rendering by utilizing local graphics hardware
at the client machine. In order to render the content of the virtual environment, it
is necessary to construct a three dimensional scene using the graphics library. The

library provides a component for displaying the content and allows users to navigate
through the VE.
The first implementation of the prototype used Open Inventor for Java as the

graphics library for rendering. After the implementation, the prototype crashed in-

termittently. Concurrent data accesses of the graphics library caused memory access

CHAPTER 6. SYSTEM PROTOTYPE 106

violation. As data was constantly received from the server, the scene of the virtual en-
vironment was constantly updated. As there was no synchronization primitive being
implemented in the library and the library was protected, it was impossible to im-

plement custom synchronization primitives using this library. This made the library

unsuitable for developing DVE system.

GL4Java

GL{Java is a relatively new and non-commercial graphics library developed by Jau-
soft. It is a set of wrapper classes for the graphics library OpenGL. Similar to Open
Inventor for Java, it provides a Java interface to all the methods of OpenGL and

allows fast rendering by utilizing graphics hardware at the client machine.

The second implementation of the prototype system used G'L{Java as the graph-
ics library. The performance of GL{Java was better than Open Inventor for Java.
In addition, GL{Java permits custom synchronization primitive to be implemented.

However, programming is at a lower level.

6.5 Experiments for Simulation Validation

We have developed a prototype system using Java for evaluating the proposed caching
mechanism. In order to validate the prototype system against the simulation model
as described in Chapter 5, we have conducted some experiments and compared the
prototype results against the simulated experimental results. In the prototype ex-
periments, the server runs on an UltraSparc 5 station with 512MB RAM. The client
runs on a 450MHz Pentium II PC with 256 MB RAM. The parameter settings of the
prototype experiments are the same as the simulated experiments as described in

Chapter 5. The parameter settings of the two prototype experiments are summarized

CHAPTER 6. SYSTEM PROTOTYPE

in Table 6.1.
Parameter Values for each experiment
Experiment H#HA #B
N 5000
n 0.057% 0%, 0.014%, 0.028%, 0.043%
0.057%, 0.071%, 0.085%, 0.114%
0.142%, 0.170%, 0.227%, 0.284%,
Raisk MRM
[A) 0.1
Fisk No Prefetch
w N/A
a N/A
P CP, CT, CR, RWL, RW2, RW3 | cp
T Vx
Table 6.1: Parameter values for the prototype experiments.

6.5.1 Experiment #A

107

In the first experiment, we would like to study the effect of different moving patterns

on the performance of caching mechanism. This experiment is aimed at validating

Experiment #3 in Chapter 5. With NV being fixed at 5000 objects (1.72GB) and n

fixed at IMB, i.e., 0.057% of N, we experiment with the six moving patterns. The

replacement policy is MRM with adjustment parameter, w, 0.1. We only present

the metrics for different policies under the Vx transmission pattern that is shown to

perform better in the previous experiment. The results are depicted in Figure 6.7.

We observe from Figure 6.7(a) and Figure 6.7(c) that the prototype system and the

simulated expertment result in the same hit ratio and visual perception. The caching

mechanism in both the prototype system and the simulation model can achieve the

same caching performance under various moving patterns.

CHAPTER 6. SYSTEM PROTOTYPE 108

(a) Hit Ratio (b) Response Time

& Simulabon
60% 55
i O Prototype
55% - - t— - — 1
o |
| @ = = } l P ey
50% | 2 J |
2
o
= 5% | B e | E | =
L] | am Foas ! g = L | |
-4 | | 2 i [
= 40% - - | = |
x | | 5 | |
35% | 2 f—- g ot il O == j=
] @ | |
0% ¢ |— ! | (3
25% . l ! ' :) ") ;
cP CR CT RW1 RW2 RW3 CcT RW RW2 RW3
Move Pattern Move Pattern
(c) Visual Perception (d) Latency
95% 18
90% +— fi
e
S85% e — e = TR B el T
Eau%] | : 3 2 ‘
£75% = g o = == f
® 70% s
3 a
5 65% — -3 0 —
60%
55% +—
Ccp CR cT RW1 RW2 RW3 cr RW1

Move Pattern Move Pattern

Figure 6.7: Performance measurements of Experiment #A.

We also observe from Figure 6.7(b) and Figure 6.7(d) that except CR, the prototype
system results in a slightly higher response time and latency under the other moving
patterns as compared to the simulation model. This is because the network traffic
is relatively unpredictable and the network bandwidth available for the prototype
experiments may vary under different conditions. In addition, the increase in both
the response time and latency is due to the processing overhead in the prototype

system, which is not modeled in the simulation.

We can conclude that the simulation model can correctly measure the performance
of the caching mechanism in terms of cache hit ratio and visual perception. This can
be validated through the experiments on the prototype system. The response time
and latency from the prototype system is slightly higher than that of the simulation

model due to the processing overhead.

CHAPTER 6. SYSTEM PROTOTYPE 109

6.5.2 Experiment #B

In the second experiment, we would like to examine the effect of cache size on the
performance of caching mechanism. This experiment is aimed at validating the Ex-
periment #4 in Chapter 5. In this experiment, we would like to study the effect of
cache size on the performance of various replacement policies. With N being fixed
at 5000 objects and moving pattern being fixed at CP, we experiment with the cache
size ranging from OMB to 5MB, i.e., 0.0% to 0.284%. The replacement policy is
MRM-0.1. We only show the metrics for different policies under Vx. The results of

this experiment are depicted in Figure 6.8.

(a) Hit Ratio (b) Response Time

]
&
a
(=]

80% r _ 80 id
o g "
2 60% n--" —— B LR re Bt e Sl ST e)
Il o L]
. 4 E
& n = n
T 40% o 40 ———a
F]
H G
20% +— ’ - i -
Praototype 2— 2.0 5 =
Simulation = ” "
0% ¢ o . - . . 00 =
0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300%
Cache Size (%) Cache Size (%)
(c) Visual Perception (d) Latency
100% r r 50
c BO% - 10 - - — e
S 5 s
2 ®
2 60% +—F = M0 tesreay - e,
° >
a o
5 0% ——— e 20
2 =
- - -
> 20% - — - - — 10 — —
0% 0.0
0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300% 0.000% 0.050% 0.100% 0.150% 0.200% 0.250% 0.300%
Cache Size (%) Cache Size (%)

Figure 6.8: Performance measurements of Experiment #B.

From both Figure 6.8(a) and Figure 6.8(¢), we observe that the prototype sys-
temn and the simulated experiment produce the same hit ratio and visual perception
again. This shows that the caching mechanism in both the prototype system and

the simulation model can achieve the same caching performance with different cache

CHAPTER 6. SYSTEM PROTOTYPE 110

size. The -hit ratio increases from 0 to a maximum of 83% and the visual perception
increases from 0% to 99% when the cache size increases.

We notice from Figure 6.8(c) and Figure 6.8(d) that the response time and latency
decrease as the cache size increases. Both the prototype system and the simulation
model show a similar trend. It is interesting that the response time and latency of the
prototype system slightly deviates from those of the simulation model. It is because
the network bandwidth availability for prototype experiments changed over time and
could not be kept in a constant value.

We can conclude that the simulation maodel can correctly measure the hit ratio and
visual perception. The response time and latency of the prototype system are slightly

deviated from the simulation model because the network bandwidth availability may

change over time.

6.6 Prototype Demonstration

We would like to demonstrate the implemented prototype system by showing different

screen shots during execution. We will show both of the implementations using Open

Inventor for Java and GL{Java.

Implementation using Open Inventor for Java

Figure 6.9 shows the execution of the prototype system in wireframe rendering and
Figure 6.10 shows the execution in shaded rendering. In this implementation, the

user interface is based on the AWT.

CHAPTER 6. SYSTEM PROTOTYPE 111

Implementation using GL4Java

Figure 6.11 shows the execution of the prototype system in wireframe rendering and

Figure 6.12 shows the execution in shaded rendering. The user interface in this

implementation is based on Swing.

CHAPTER

6. SYSTEM PROTOTYPE 112

T | |

o
Tmit Rotate ==

]

[o

! |

Tt Hotate W

I)ollyl it Rotate I m Dolty

Figure 6.9:

dering.

Demonstration

of the first prototype implementation in wireframe ren-

CHAPTER 6. SYSTEM PROTOTYPE 113

[p8lsgl - 3l

Bllo|~ v

Tl

3

ebslalol- S igl

[mssmenann [[esanansnae |
e |opalalol=3irll

it Rotate W) | ﬁl Rotate I | Dally

=]
-
<

Figure 6.10: Demonstration of the first prototype implementation in shaded render-

ing.

CHAPTER 6. SYSTEM PROTOTYPE 114

I5CVR Pronype B[] | =
ey oty

Figure 6.11: Demonstration of the second prototype implementation in wireframe
o »

rendering.

CHAPTER 6. SYSTEM PROTOTYPE 115

Figure 6.12: Demonstration of the second prototype implementation in shaded ren-
g)

dering.

Chapter 7 |

Conclusion

7.1 Contribution of this Thesis

In this thesis, we aim at developing a DVE system across the Internet. To overcome
the problem of large network bandwidth requirement of the system, we have proposed
the use of a multi-resolution caching mechanism and a user-profiling based prefetching
mechanism to effectively cache and prefetch virtual objects of a VE at client machines.
We have employed multi-resolution modeling for progressive transmission of virtual
objects across the network and have defined the optimal resolution for rendering
individual objects within a VE with respect to the viewer. We have proposed object
scope and wiewer scope for reducing the amount of data to be processed by client
machines.

A realistic VE often cousists of a large number of detailed geometric objects and
results in a tremendous VE database containing gigabytes of data. As the Internet
is notorious for limited bandwidth and instability, it takes an extremely long period
of time for transmitting the content of a VE across the Internet. Caching data

at the local storage of a client machine is commonly used to reduce the overhead

116

CHAPTER 7. CONCLUSION 117

in transmitting data across the network. With the constraint of limited storage
space for caching, a replacement policy is needed for retaining valuable objects for
possible future use. We have proposed the MRM replacement policy which exploits
spatial locality among the cached items for effective cache management. We have
demonstrated that MRM out-performs the conventional LRU replacement policy in

the context of DVE across the Internet.

Caching is commonly complemented with prefetching for improving the perfor-
mance of a caching mechanism if the prefetching is performed intelligently. We
have proposed the use of a user-profiling based prefetching mechanism for improved
prefetching accuracy and for better caching performance. A separate profile captur-
ing the characteristics of individual viewer’s walk pattern is maintained at the client
machine. By predicting the future movement of the viewer hased on the profile, it is

possible to download data in advance and fully utilize the otherwise idle network.

In order to minimize the network bandwidth consumption, we have employed the
multi-resolulion modeling which allows progressive transmission of objects across the
network. We have defined the optimal resolution as the best resolution for rendering
individual objects within the VE. It is defined as a function of the size, distance and
angle of an object with respect to a viewer. We have also proposed the concept of
object scope and viewer scope for identifying a portion of the VE to be viewed by the
user. This can significantly eliminate a large portion of the VE and prevent too much

data from being transmitted across the network.

We have evaluated and quantified the performance of our proposed caching and
prefetching mechanisms through a detailed simulation study. We have conducted
numerous experiments and presented the results of a representative set of simulated
experiments. We found that our proposed mechanisms do improve the system hy

significantly reducing the response time and latency, thus demonstrating that the

mechanisms are effective.

CHAPTER 7. CONCLUSION 118

We have implemented a system prototype using Java for demonstrating the feasi-
bility of our proposed mechanisms. The prototype system is fast and responsive. It
is capable of navigating a remote VE and download the visible virtual objects from
the database server on demand. We have conducted a set of prototype experiments
and the experimental results show the suitability of the proposed mechanisms in sup-
porting a DVE system across the Internet. Furthermore, the prototype experimental

results can validate the simulation results.

7.2 Future Work

Several important issues related to supporting a DVE system across the Internet
remain unexplored in the thesis. To complete this thesis, we will discuss a few such

issues and outline suggestions for future research directions.

Dynamic environment: In this thesis, we focus on static environments in which
the virtual objects will not move within the VE. A more realistic and interesting
environment should contain dynamic objects as well. A dynamic object will change
its position and/or orientation which may either be controlled by a human user or
by a computer algorithm autonomously. It is obvious that the number of dynamic
objects will be relatively small because many virtual objects, such as mountains and
buildings are static. An extension of our caching and prefetching mechanisms is still

necessary in order to support a VE with dynamic objects. This will make our work

more sound and complete.

Texturing: By mapping texture images onto virtual objects, the geometric com-
plexity of a VE can be reduced. Texturing, in addition, can make a VE more realistic

and believable. Wauvelet texturing function is the most appropriate method for use

CHAPTER 7. CONCLUSION 119

with multi-resolution modeling due to its progressive nature. Qur caching mechanism

can easily be adapted to support texturing.

View-dependent Refinement and Transmission: For simplicity, the multi-
resolution modeling technique in our method only allows view-independent refine-
ment and transmission of geometric objects. View-dependent refinement permits
resolution modification of a portion of the object selectively based on the view point
of the viewer. By transmitting and refining only the portion of objects which are

visible to the user, the network bandwidth consumption can further be reduced.

Geometry Compression: Compression techniques, using delta encoding or quan-
tization, are useful in reducing the network bandwidth consumption. Although this
method will increase the workload at both the server and the client, it is still beneficial

because the processing power of computers is increasing rapidly.

Multiple servers: Currently, there is only one server maintaining the VE database
and servicing requests from clients. In order to support a larger VE and more clients,
it is possible to employ multiple servers maintaining the VE. A load-balancing algo-
rithm is needed to even out the workload of individual servers. It is also necessary to

handle the data consistency issue in updating the replicated data.

Bibliography

[1]

[2]

(3]

(6]

[7]

S. Acharya, M. Franklin, and S. Zdonik. Prefetching from a broadcast disk. In Proc.
of the Int’t Conf. on Data Engineering, pages 276-285, 1996.

J. Ahn, M. Lee, and H. Lee. Doovie: An architecture for networked virtual environment

systems. In Proceedings of Computer Graphics International, pages 113-119, 1997.

B. Blau, C.E. Hughes, J.M. Moshell, and C. Lisle. Networked virtual environments.
In Proceedings of SIGGRAPH Symposium on Interactive 3D Graphics, pages 157-160,
1992.

W. Bricken and G. CoCo. The veos project. Presence: Teleoperators and Virtual
Enuvironments, 3(2):111-129, 1994

J. Calvin, A. Dicken, B. Gaines, P. Metzger, D. Miller, and D. Owen. The SIMNET
Virtual World Architecture. In Proceedings of the IEEFE Virtual Reality Annual Inter-
national Symposium, pages 450455, 1993.

M. Carey, M. Franklin, M. Livny, and E. Shekita. Data Caching Tradeoffs in Client-
Server DBMS Architectures. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 357-366, 1991.

C. Carlsson and Q. Hagsand. DIVE - a Multi-User Virtual Reality System. In Pro-
ceedings of the IEEE Virtual Reality Annual International Symposium, pages 394-400,
1993.

B. Y. L. Chan, H. V. Leong, A. Si, and K. F. Wong. MODEC: a multi-granularity
mobile object-oriented database caching mechanism, prototype and performance. In
Journal of Distributed and Parallel Database, 7(3):343-372, July 1995.

120

BIBLIOGRAPHY 121

(9]

(10]

[11]

[12]

[13]

[14]

(15]

[16]

(17)

i

[19]

[20]

S. Chen. Quick time vr - an image-based approach to virtual environment navigation.
In Proceedings of ACM Computer Graphics (SIGGRAPH), pages 29-38, 1995.

J. Chim, M. Green, R. Lau, H.V. Leong, and A. Si. On Caching and Prefetching of Vir-
tual Objects in Distributed Virtual Environments. In Proceedings of ACM Multimedia,

September 1998.

J. Chim, R. Lau, H.V. Leong, and A. Si. Multi-resolution Cache Management in Digital
Virtual Library. In Proceedings of the IEEE Advances in Digital Libraries Conference,

pages 66-75, April 1998,

J. Chim, R. Lau, A. 8i, H.V. Leong, D. To, M. Green, and M.L. Lam. Multi-resolution
model transmission in distributed virtual environments. In Proceedings of the ACM
Symposium on Virtual Reality Softwere and Technology, pages 25-34, November 1998.

J. Clark. Hierarchical geometric models for visible surface algorithms. Communications

of ACM, 19(10):547-554, 1976.

F. Crow. A More Flexible Image Generation Environment. In Proceedings of ACM
Computer Graphics (SIGGRAPH), pages 9-18, July 1982.

K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical prefetching via data compres-
sion. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 257-266, 1993.

S. Dar, M.J. Franklin, B.T. Jonsson, D. Srivastava, and M. Tan. Semantic data caching
and replacement. In Proc. of the 22nd VLDE Conf., pages 330-341, 1996.

M. DeHaemer and M. Zyda. Simplification of Objects Rendered by Polygonal Approx-
imations. Computers & Graphics, 15(2):175-184, 1991.

D. DeWitt and D. Maier. A Study of Three Alternative Workstation-Server Architec-
tures for Object-Oriented Database Systems. In Proceedings of International Confer-

ence on Very Large Databases, pages 107-121, 1990.

M. Eck, T. DeRose, T. Dunchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Mul-

tiresolution analysis of arbitrary meshes. In Proceedings of ACM Computer Graphics

(SIGGRAPH), pages 173-182, 1995.

W. Effelsberg and T. Haerder. Principles of Database Buffer Management. ACM Trans-
actions on Database Systems, pages 560-595, December 1984.

BIBLIOGRAPHY 122

(21]

[22]

[23]

[24]

[25]

[26]

[27)

(28]

29]

[30]

(31]

32

J. Falby, M. Zyda, D. Pratt, and R. Mackey. NPSNET: Hierarchical Data Structures for
Real-Time Three-Dimensional Visual Simulation. Computers & Graphics, 17(1):65-69,

1993.

M. Franklin, M. Carey, and M. Livny. Global Memory Management in Client-
Server DBMS Architectures. In Proceedings of International Conference on Very Large
Databases, pages 536-609, 1992

M.J. Franklin. Client Data Caching. Kluwer Academic Publishers, 1996.

T.A. Funkhouser. Ring: A client-server system for multi-user virtual environments. In

1895 SIGGRAPH Symposium on Interactive 3D Graphics, pages 85-92, 1995.

T.A. Funkhouser. Network toplogies for scalable multi-user virtual environments. In
Proceedings of the IEEE Virtual Reality Annual International Symposium, pages 222—
229, 1999.

T.A. Funkhouser, C.H. Sequin, and S.J. Teller. Management of large amounts of data
in interactive building walkthoughs. In Proceedings of SIGGRAPH Symposium on
Interactive 3D Graphics, pages 11-20, 1992.

T.A. Furness and W Barfield. Introduction to Virtual Environments and Advanced
Interface Design, chapter 1. Oxford University Press Inc, 1995.

C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed
file cache consistency. In Proc. Int’l Symp. Operating System Principles, pages 202-210,
1989.

C. Greenhalgh and S. Benford. Massive: a distributed virtual reality system incor-
porating spatial trading. In [5th Int'l Conference on Distributed Computing System,
pages 27-34, 1995.

O. Hagsand. Interactive multiuser ves in the dive system. IEEE Multimedia, 3{1):30-
39, 19496,

T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel based object simplifi-
cation. In Proceedings of IEEE Visualization, pages 296-303, 1995.

P. Hinker and C. Hansen. Geometric optimization. In Proceedings of IEEE Visualiza-

tion, pages 189-195, October 1993.

BIBLIOGRAPHY 123

[33]

[34)

[35]

[36]

(37]

[38]

[39]

[40]
[41]

[42)

[43)

[44]

H. Hoppe. Progressive Meshes. In Proceedings of ACM Computer Graphics (SIG-
GRAPH), pages 99-108, August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh Optimiza-
tion. In Proceedings of ACM Computer Graphics (SIGGRAPH), volume 27, pages

19-26, August 1993.

V. Isler, R.W.H. Lau, and M. Green. Real-Time Multi-Resolution Modeling for Com-
plex Virtual Environments. In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, pages 11-20, July 1996.

IEEE1278, Mar. 1993.

R. Jacob. Chapter 7: Eye tracking in advanced interface design. In Virtual Envi-
ronments and Advanced Interface Design, W. Barfield and T. Furness (Eds.), pages
258-288. Oxford University Press, 1995.

A.D. Kalvin and R.H. Taylor. Superfaces: Polygonal mesh simplification with bounded
errors. IEEE Computer Graphics and Applications, 16(3):64-77, 1996.

R. Kazman. Making waves: On the design architectures for low-end distributed vir-

tual environments. In Proceedings of the IEEE Virtual Reality Annual International

Symposium, pages 443-449, 1993.

J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system. In

Proc. Int’l Symp. Operating System Principles, pages 213-225, 1991.

D.F. Kotz and C.S. Ellis. Practical prefetching techniques for parallel file systems. In
Proc. of First Parallel and Distributed Information Systems, pages 182-189, 1991

R.W.H. Lau, M. Green, D. To, and J. Wong. Real-Time Continuous Multi-Resolution
Method for Models of Arbitrary Topology. Presence: Teleoperators and Virtual Envi-
ronments, pages 22-35, February 1998.

R.W.H. Lau, D. To, and M. Green. An Adaptive Multi-Resolution Modeling Technique
Based on Viewing and Animation Parameters. In Proceedings of the IEEE Virtual
Reality Annual International Symposium, pages 20-27, 1997.

H.V. Leong and A. Si. A database caching over the air-storage. The Computer Journal,
40(7):401-415, 1997,

BIBLIOGRAPHY 124

[45]

[46]

[47)

(48]

[49)

/50)

[51]

[52]

E. Levy and A. Silbershatz. Distributed file systems: Concepts and examples. ACM
Computing Surveys, 22(4):321-374, Dec. 1990.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems, 7(4):321-359, Nov. 1989.

C. Liu and P. Cao. Maintaining strong cache consistency in the World-Wide Web. In
Proc. Int'l Conf. Distributed Computing Systems, pages 12-21, 1997.

W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. In Proceedings of ACM Computer Graphics (SIGGRAPH), pages

163-169, 1987.

K. Low and T Tan. Model simplication using vertex-clustering. In Proceedings of

SIGGRAPH Symposium on Interactive 8D Graphics, pages 75-82, April 1997.

D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygon envi-
ronments. In Proceedings of ACM Computer Graphics (SIGGRAPH), pages 199-208,

August 1997,

M. Macedonia, M. Zyda, D. Pratt, P. Barham, and 5. Zeswitz. NPSNET: A Network
Software Architecture for Large-Scale Virtnal Environments. Presence: Telesperators

and Virtual Environments, 3{4):265-287, 1994.

M. Macedonia, M. Zyda, D. Pratt, P. Brutzman, and P. Barham. Exploiting Reality
with Multicast Groups: A Network Architecture for Large-scale Virtual Environments.

In Proceedings of the IEEE Virtual Reality Annual International Symposium, pages 2-
10, March 1995.

P. Maciel and P. Shirley. Visual navigation of large environments using textured clus-
ters. In Proceedings of SIGGRAPH Symposium on Interactive 3D Graphics, pages

95-102, 1995.

S. Makridakis, S.C. Wheelwright, and V.E. McGee. Forecasting Methods and Applica-
tions. John Wiley & Sons, 1983.

D.C. Miller and J.A. Thorpe. Simnet: the advent of simulator networking. Proceedings

of the IEEE, 83(8):1114-1123, 1995,

BIBLIOGRAPHY 125

(56]

(57]

(58]

[59]

(60]

[61]

[62]

[63]

(64]

[66)

[67)

C. Min, M. Chen, and N. Roussopoulos. The Implementation and Performance Evalua-
tion of the ADMS Query Optimizer: Integrating Query Result Caching and Matching.
In Proceedings of International Conference on Extending Database Technology, pages

323-336, 1994,

D. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996.

B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms.
IEEE Computer, 24(8):52-60, Aug. 1991.

T. Ohshima, H. Yamamoto, and H. Tamura. Gaze-Directed Adaptive Rendering for
Interacting with Virtual Space. In Proceedings of the IEEE Virtual Reality Annual

International Symposium, pages 103-110, July 1996.

M. Palmer and S. Zdonik. Fido: A cache that learns to fetch. In Proc. of Intll Conf.
on Very Large Database, pages 255-264, 1990.

M. Reddy and G.P. Fletcher. An adaptive mechanism for web browser cache manage-
ment. IEEE Internet Computing, 2{1):78-81, 1998.

J. Rossignac and J. Borrel. Multi-resolution 3d approximations for rendering complex
scenes. In Modeling in Computer Graphics: Methods and Applications, pages 455-465,
June 1993.

K. Salem. Adaptive prefetching for disk buffers. Technical Report TR-91-46, The

Center of Excellence in Space Data and Information Sciences, 1990.

G. Schaufler. Exploiting frame to frame coherence in a virtual reality system. In Pro-

ceedings of the IEEE Virtual Reality Annual International Symposium, pages 95-102,
1996.

G. Schaufler and W. Sturzlinger. A three-dimensional image cache for virtual reality.
In Proceedings of EUROGRAPHICS, pages 227-236, 1996.

D. Schmalstieg and M. Gervautz. Demand-Driven Geometry Transmission for Dis-
tributed Virtual Environments. In Proceedings of Eurographics 96, pages 421-432,
1996.

W. Schroeder, J. Zarge, and W. Lorensen. Decimation of Triangle Meshes. In Pro-
ceedings of ACM Computer Graphics (SIGGRAPH), volume 26, pages 65-70, July
1992.

BIBLIOGRAPHY 126

[68)

(69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

79

H. Schwetman. CSIM Reference Manual (Revision 15). Microelectronics and Computer

Technology Corportaion, 1991.

J. Shade, D. Lischiski, D. Salesin, T. Derose, and J. Snyder. Hierarchical image caching
for accelerated walkthroughs of complex environments. In Proceedings of ACM Com-
puter Graphics (SIGGRAPH), pages 75-82, 96.

C. Shaw and M. Green. The mr toolkit peers package and experiment. In Proceedings

of the IEEE Virtual Reality Annual International Symposium, pages 463-469, 1993.

C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in virtual reality with
the mr toolkit. ACM Transactions on Information systems, 11(3):287-317, July 1993.

A. Siand H. V. Leong. Adaptive Caching and Refreshing in Mobile Databases. Personal
Technologies, 1(3):156-170, September 1997.

A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw-
Hill, 1996.

A.P. Sistla, O. Wolfson, and Y. Huang. Miniziation of communication cost through
caching in mobile environments. [EEE Trens. on Parallel and Distributed Systems,

0(4):378-390, Apr. 1998.

D. Snowdon and A. West. Aviary: Design issues for future larg-scale virtual envi-

ronemnts. Presence: Teleoperators and Virtual Environments, 3(4):288-308, 1994.

G. Sungh, L. Serra, W. Png, and H. Ng. BrickNet: A Software Toolkit for Network-
Based Virtual Worlds. Presence: Teleoperators and Virtual Environments, 3(1):19-34,
1994.

J. Torborg and J. Kajiya. Talisman: Commondity realtime 3d graphics for the pc”. In
Proceedings of ACM Computer Graphics (SIGGRAPH), pages 3563364, 1996.

G. Turk. Re-tiling Polygonal Surfaces. In Proceedings of ACM Computer Graphics
(SIGGRAPH), volume 26, pages 55-64, July 1992.

B. Watson, N. Walker, and L. Hodges. Effectiveness of Spatial Level of Detail Degra-
dation in the Periphery of Head-Mounted Displays. ITn ACM CHI’96, pages 227-228,
April 1996.

BIBLIOGRAPHY 127

[80] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor. Addision-Wesley, 1994.

