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Abstract

It is well known that the optimal control of a stochastic system represents a general

problem which can be found in many areas such as inventory control, financial engineer-

ing, and lately federal (national) reserve management, and so on. If the underlying system

involves with some fixed transaction costs the problem will turn out to be known as an im-

pulse control problem. The framework of solving this type of problem is initially developed

by Bensoussan [10] and Aubin [5]. They proved that the optimal solution to an impulse

control problem can be sufficiently characterized by Quasi-Variational Inequality (QVI).

With these profound findings and fundamental developments in impulse control theory, a

mathematically rigid HJB-QVI system (deterministic), which is formulated in the form of

a functional boundary-value problem of non-linear Hamilton-Jacob-Bellman (HJB) equa-

tions, has been established as a general methodology for solving impulse control problems

(stochastic). In theory, optimal solution to a stochastic impulse control problem can be

determined by solving a corresponding deterministic HJB-QVI system. However, in real-

ity, HJB-QVI system of a practical impulse control problem is often too complicated to

have an analytical solution in closed forms. As far as we can ascertain from the literature,

apart from very few extremely simplified problems [34, 11, 28], closed-form analytical

solution to an HJB-QVI system is seldom attainable. In this study, we obtain compu-

tational properties of the aforementioned QVI systems associated with impulse control
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problems, and provide computational methods for solving the QVI systems, which we cat-

egorize into two major classes: 1) QVI systems with analytically solvable HJB equations;

2) QVI systems with analytically unsolvable HJB equations. We begin with the study

on the class-1 QVI systems. Although general solutions to underlying HJB equation of a

class-1 QVI systems are obtainable, the associated QVI system may still need to be solved

in non-closed forms. We present the solution for two class-1 type QVI systems in Chapter

2 and Chapter 3. For class-2 QVI systems, to obtain numerical solutions a computational

optimization algorithm presented in Chapter 4. In the last chapter we again consider a

class-1 QVI system. It has a non-symmetric cost structure, which has particular appli-

cation in mutual insurance reserve control problem. A novel computation algorithm is

developed to determine numerically an optimal (a,A;B, b) policy.
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CHAPTER 1

Introduction
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1.1. Impulse Control and Quasi-Variational Inequality

The theory of impulse control is founded upon the well-established theory of stochastic

control which is concerned with seeking optimal classical controls (as opposed to impulse

controls) for a general class of stochastic diffusion systems. In concrete terms, a classical

control variable is of the nature of speed and rate (e.g. speed of a rocket and rate of lending

interest); while an impulse control variable is of the nature of location and position (e.g.

initial inventory positioning and rescue injection to central reserve.)

Classical Stochastic Control. Consider a stochastic diffusion system with the fol-

lowing dynamics:

dx = µ(x, u)dt+ σ(x, u)dw

where x ∈ Rn is the state, u ∈ Rm is classical control, and dw is an n-dimension Brownian

motion. The diffusion system contains a drift term µ(x, u) and a disturbance term σ(x, u).

A classic stochastic control system is presented in a standard form as following:

V = inf
u

T̂

0

L(x, u)dt+ ψ(xT )

s.t.

dx = µ(x, u)dt+ σ(x, u)dwt, given x0

It is well established through dynamic programming that an optimal solution of a stochas-

tic control problem can be characterized by a deterministic second-order partial differential

equation (PDE), termed Hamilton-Jacob-Bellman equation. Without loss of generality,

the study herein is confined to the 1-dimension diffusion systems, i.e. the state variable x

is of one dimension. It shall be noted that the control u can still be multi-dimensional.
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Impulse Control. Imposed upon an aforementioned diffusion system, an impulse

control ξk can be exerted at a discrete point in time tk (k = 1, 2, · · · ) to shift the position

of system state x, incurring an impulse control cost K(ξk). Under impulse control, the

state of diffusion system at time t, x(t), is now expressed as:

x(t) = x0 +
∑
k=1

ξk +
tˆ

0

µ(x, u)dτ +
tˆ

0

σ(x, u)dwτ

The value function of an impulse control problem can be then be constructed as follows:

V (x) = inf
x(·),u(·)

 ∞∑
k=1

e−rtkK(ξk) +
∞̂

0

e−rτL(x(τ), u(τ))dτ


Due to Bensoussan and Lions (1984)[10], the value function under impulse control can be

characterized as a solution to QVI (quasi-variational inequalities):

(V −M∗ V )(L(V )− f(x)) = 0

V <M∗ V

L(V ) < f(x)

where L is a second order linear differential operator andM∗ represents an inf-convolution

on V . Condition V <M∗ V always takes effect on the intervention region of V and the

criteriaM∗V is not a fix one as well, which is not the case for an ordinary VI ( variational

inequality) problem.

1.2. Literature Review

There are a substantial volume of literature on deterministic and stochastic formula-

tions of inventory problem [8, 9]. Bensoussan [10] first established the bridge between
3



value functions and quasi-variational inequalities. This gave a theoretical foundation for

subsequent researches in a deterministic framework allowed for both ordinary and impulse

control. The main goal was to characterize a unique continuous, uniformly bounded vis-

cosity solutions of Bensoussan – Lions type QVI. Bensoussan and Menaldi [12] provided a

general framework for studying hybrid control systems. However, in many cases the opti-

mal value functions are not necessarily smooth (e.g. non twice differentiable). An obvious

example can be found in Berovic [13]. It is shown in Frankowska [26], viability theory can

be used to link value functions and generalized lower semi-continuous solutions to QVIs.

General analytical tools for dealing with this class of problems have been developed by

Aubin [7]. The implications of viability theory regarding properties of hybrid systems are

shown in Aubin, Lygeros et al. [6], with specific characterization of lower semi-continuous

value functions for impulse control problem in infinite horizon.

Most inventory system actions, such as order goods with ordering cost, have discrete

impulse characteristics. There is a large volume of literature on applying QVIs and via-

bility theory to analyze inventory system. For example, Sulem [34] studied an inventory

control problem under uncontrolled diffusion (demand) over an infinite horizon. In this

model, the change of inventory level is classified into two types: one is driven by an un-

controllable Ito process of customers’ demand, comprising of a deterministic drift term

(i.e, the mean demand), as well as a stochastic disturbance term (i.e. the variability of

the demand). Another type of change in inventory level is discrete type, that is, at some

discrete points in time inventory orders are made which create jumps in the system states

(e.g. inventory levels.) Associated with the two types of state transitions (namely contin-

uous and discrete), there are two types of associated cost in the objective function as well.

Under a differentiable Lagrange cost as objective function, the problem is treated as an
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impulse control under uncontrollable diffusion, and is solvable in principle via the associ-

ated QVI’s of Bensoussan – Lions type. Our study will be helpful for the proposed study

of a more general model with hybrid control. Moreover, two extensions are reported in two

other papers: one to a two-dimension case by Sulem [34], and the other to deteriorating

goods by Lakdere, Amin et al. [32].

A recent result was obtained by Berovic [14] and the model discussed in his paper is

mostly related to our work. He also discussed a hybrid control of an inventory system

(it was called “generalized inventory” ) in his model. A comparison between differential

inclusion version QVIs and Bensoussan – Lion type QVI was shown in this paper. Char-

acteristics of value function are reviewed. An algorithm to compute the optimal control

of a hybrid system with the data of value function was proposed. Finally, an example of

a simplified model is discussed. It is claimed that it was the first time an example was

shown with specific inventory system for the using of analytic machinery, which has been

thoroughly discussed in previous literature. However, we still find there are several limita-

tions in this paper which left enhancement space for us to study. Though this theoretical

study of the “generalized inventory” system is elaborated, the example he showed is too

simple to characterize the system. The continuous control part of the hybrid concept was

not considered in this model. This reduces the “generalized inventory” system (supposed

to a hybrid system) to an ordinary impulse control system of Bensoussan [10]. Another

limitation of the paper by Berovic and Vinter is that the algorithm used to calculate the

trajectory requires a known “terminal” value of the value function at each impulse instant.

However, the terminal values at impulse instants are unknown before the value function is

solved from the corresponding HJB-QVI’s, which alone is known to be more complicated

than finding the optimal trajectory.
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The mathematical framework to the impulse control problems in the study is from

Bensoussan and Lions [10]. Since impulse control characterizes a class of optimal control

problem, it have wide use in many area. Impulse control has been studied in inventory

control [27], exchange rate problem [22], dividend policy for insurance [20], and portfolio

optimization with transaction costs [29]. In many economic and financial applications

where the controlled process is described as an Itō diffusion, the cost structure involves a

setup cost, so the solution to the problem is always related to Hamilton-Jacobi-Bellman

equation and quasi-variational inequalities.

Upon the property of quasi-variational inequalities conditions the state space can be

split into intervention and continuous (no intervention) regions. We can characterize the

dynamic behavior for each region and give conditions for the relation between then. Base

on these observations, the common analytical way to solve the QVI follows these steps:

First, by analyzing the characteristics of the QVI, conjecture the continuous region and

intervention region. Then find the associated policy. Find the value function for the

policy and prove the optimality of the value function. After this procedure we come to

the conclusion that the impulse control associated with the QVI is an optimal control.

These steps are often very difficult in real application and the success mainly depends on

the form of the controlled process, reward and cost functions. But for some classes of

problems it is still possible to solve them by using analytical method. Examples in the

chapter 2 and chapter 3 will apply this method to investigate several problems originate

from mutual insurance control problem.

For impulse control problem, besides the variable cost, we usually consider a positive

set up cost associated with the impulse control, so the optimal strategy is always is to

apply the control on a discrete way. The control is directly applied to the state of the
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system. Besides impulse control, there is another type of control known as singular control,

which also gives a possibility of direct control on the system’s state. Since the control cost

in the case of singular control does not include set up cost, the optimal control could

appear continuous in time. The behavior a singular control looks different from that of

impulse control, but mathematically singular control is a special case of general impulse

control problem with zero setup cost. Motivated by this, we extend the work in Kummar

and Muthuraman [30], in which an algorithm is given to solve a singular control problem.

Inspired by the fact that singular control and impulse control have an internal relation,

we developed an algorithm to solve a class of impulse control problems. In Chapter 4 we

provide this result together with numerical examples. Those examples is thought to be

difficult or impossible to be solved before.

Another possible way to solve impulse control problem is to decompose the original

problem into sequential optimal stopping time sub-problems. Impulse control problem

usually involves solving a stochastic differential equations with an in-explicit boundary

condition, which usual expressed as a convolution on the solution itself. For optimal

stopping time problem, there is also a stochastic differential equations to be solved, but

with an explicit boundary, which is always specified beforehand. However the boundary

condition for the optimal stopping problem usually is a fixed boundary, which means

we know exactly where the boundary condition is applied on. So we can see there is a

natural connection between the optimal impulse control problem and optimal stopping

time problem. For a general optimal stopping problem, finite element method can be

developed to solve it numerically. In Chapter 5, we clarify this relation and show the

uniqueness and existence of the solution under this approach. Numerical example will

also be given to demonstration the effectiveness of this method.
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Another thing need to be pointed out here is that Costa and Davis [25] take the value

improvement approach while the others take the quasi-variational inequality approach.

This study is mainly based on the latter approach.
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CHAPTER 2

Contingent Impulse Control
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2.1. Introduction

A mutual insurance organization, compared to a normal commercial insurance firm,

adopts a none principal-agent type of risk-pooling mechanism comprising two contingent

options (impulse control), namely, contingent calls and refunds. We develop a band-

type contingent options (BTCO) model for mutual insurance, and derive QVI (quasi-

variational inequality) characteristics for the optimality of a BTCO policy which was

introduced for cash management by Constantinides and Richard [24]. Based on the QVI-

characteristics system, we show that an optimal BTCO policy can be determined by

solving a boundary-value problem that is constructed with the QVI-characteristics. Fi-

nally, the QVI-characteristics based solution method is tested with numerical examples

of mutual insurance management. With these findings, we argue that contingent options

constitute an alternative incentive scheme that preserves the revelation principle under a

non-principal-agent setting.

2.2. Two-way Contingent Control with One End Set to Zero

Mutual insurance organization (such as a marine mutual insurance club) as compared

to a commercial insurance firm that is founded upon an asymmetric information struc-

ture of principal-agent type [31], differs fundamentally in a none principal-agent type of

risk-pooling mechanism. Unlike commercial insurance which requires non-linear premium

pricing (e.g., basic premium, plus claims-dependent deductible price breaks, etc.), mutual

insurance adopts a linear premium pricing scheme. For example of marine insurance, the

premium for a vessel is determined by a fixed rate proportional to the tonnage of the

vessel, that is, the regular premium charge of a vessel is calculated by multiplying the ton-

nage of the vessel with a vessel-independent premium rate. This can be further evidenced
10



from the unique pricing scheme of mutual reserve options: A linear claims-independent

premium is charged at a predetermined rate p (i.e., dollars per unit time) so as to build

up a mutual reserve; while contingent options of a “call” (an impulse control to increase

the reserve) or a “refund” (an impulse control to reduce the reserve) can be exercised

with certain costs (fixed costs plus variable costs), when the reserve runs “low” or “high,”

respectively. In general, a real option that is defined over an interval domain is termed

a band type of option. For the case of mutual insurance, the contingent option is lim-

ited within a “band” defined by bounds, namely, a call-threshold (lower bound) and a

refund-bound (upper bound). As a special case of the two-boundary band type of con-

tingent options, inventory ordering policies (e.g., (s, S) ordering) only consist of a single

lower-bound threshold (i.e., re-order point s), prohibiting any returned inventory. That is,

inventory ordering is typically of a single-boundary band type, with an unbounded upper

bound (i.e., refund-bound.)

We study in this chapter optimal contingent option policies for reserve management

in mutual insurance under a continuous-time reserve diffusion process. We shall note

that the result of the study is applicable to a range of mutual risk problems, including

cash reserve, dividend, and inventory management, as the ones studied by Constantinides

and Richard [24], Cadenillas, Choulli, Taksar, and Zhang [20], and Bensoussan, Liu, and

Sethi [11]. The study of contingent options in mutual insurance is motivated by the

ongoing search for the secret of why the P&I Club - a marine mutual insurance - has

been predominating in the marine insurance market for over 150 years. Based on the

findings in this study, we argue it is the unique contingent options that have secured the

success of a P&I Club without subscribing to the typical non-linear pricing scheme under

a principal-agent setting.
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Assuming an exogenous diffusion claim process, we formulate the above mutual in-

surance problem as a band-type contingent option (BTCO) model which seeks cost-

minimizing contingent option policies under a linear reserve holding cost structure and

a fixed regular premium rate. We show that an optimal contingent option policy exists in

the form of a stationary band-type policy as obtained for cash management by Constan-

tinides and Richard [24]. Without using QVI characteristics, Constantinides and Richard

proved the existence of optimal band-type policies in the form of two (s, S) policies con-

structed at the two boundaries, that is, the system state is regulated within an interval

[a, b] by applying an (a, A) policy at the lower boundary a ∈ (−∞,∞), and a (B, b)

policy at the upper boundary b, with a ≤ A ≤ B < b. In general, a closed-form analytical

solution for the optimal options as characterized by the four boundary parameters is still

unobtainable. Only for a special case with a = 0 (i.e., requiring non-negative reserve),

Harrison, Sellke and Taylor [27] obtained a closed-form solution to the associated HJB

equation, and then developed an iterative method to computationally calculate the optimal

BTCO parameters, 0 = a ≤ A ≤ B < b. We note that the model developed in this study

is of a stationary band with a = 0. Also, we note that most impulse control models for

cash and inventory management are focused on single-boundary band option, for example,

either with a single lower-bound option for contingent calls (as in an inventory system),

or a single upper-bound option for contingent refunds (as in dividend management). Re-

cent research on single-boundary band-type option models can be found in Bensoussan,

Liu, and Sethi [11] who proved optimality of (s, S) policy in an inventory system facing

compound Poisson and diffusion demands, and in Cadenillas, Choulli, Taksar, and Zhang

[20] who studied dividend policies in a general insurance firm.
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Differing from the non-QVI approaches as typically taken in cash and inventory re-

search, we start with deriving QVI (quasi-variational inequalities) characteristics of BTCO

model, consisting of HJB optimality conditions for the continuation region and inf-convolution

constraints on the boundaries. Based on the QVI characteristics, we then construct a

boundary-value problem of the corresponding HJB equation, termed a QVI-characteristics

system, for the solution of an optimal BTCO policy. An optimal BTCO policy for re-

serve management in mutual insurance can be determined and computed, by solving the

boundary-value problem embedded in the QVI-characteristics system. So far in QVI

research literature, closed-form analytical solutions, either for HJB equations or for inf-

convolution constraints, are unattainable, except for the case of a = 0 as studied by

Harrison, Sellke and Taylor [27], where HJB equation can be solved in closed-form but

inf-convolution conditions remain unsolvable analytically. In sum, the QVI-characteristics

system developed in this study gives a unified solution method for solving contingent-

option problems in mutual insurance, as well as for solving cash and inventory management

problems.

2.3. A band-type contingent option Model

First, we define the insurance claim process in a probability space (Ω,F ,P). The

cumulative insurance claim d(t) over the interval [0, t] is a stochastic diffusion process

(2.3.1) d(t) = ηt+ σw(t),

where η is a constant drift, σ is a non-negative constant disturbance term, and w(t) denotes

a Wiener process with w(0) = 0. Let y(t) be the insurance reserve at time t ≥ 0 with
13



y(0) = y, and p ∈ (0,∞) be a constant premium rate. Without contingent options, the

cumulative reserve y(t) over the interval [0, t] follows a diffusion process:

(2.3.2) y(t) = y + pt− d(t) = y + µt− σw(t)

where µ = p − η. Next, we construct a stationary band-type contingent option (BTCO)

policy, denoted as Θ {(a,A); (B, b)}, that is associated with the reserve diffusion process

(2.3.2), including a contingent call option and a contingent refund option. Similar to

Constantinides and Richard [24], the stationary BTCO policy, Θ {(a,A); (B, b)}, is defined

as:

Definition 1. (BTCO Policy Parameters) For two pairs of parameters (a,A) and

(b, B) such that a ≤ A ≤ B < b with a = 0 and A, b and B all controllable, we define:

• Contingent calls {(τai , ξai ) : i = 1, 2, · · · }: Given a call-threshold a = 0, τai =

inf
{
t > τai−1 : y(t) = a

}
(with τa0 = 0) is defined as the ith call time (Markov),

and ξai = A − a is the amount (controllable) of the ith contingent call so as to

increase the reserve up to the level of A = a+ ξai . It shall be noted that the call

option defined herein is stationary, i.e., ξai = ξa = A− a for all i = 1, 2, · · · .

• Contingent refunds
{

(τ bj , ξbj) : j = 1, 2, · · ·
}
: Given a refund-threshold b > a (con-

trollable), τ bj = inf
{
t > τ bj−1 : y(t) = b

}
(with τ b0 = 0) is defined as the jth refund

time (Markov), and ξbj = b−B is the amount (controllable) of the jth contingent

refund so as to decrease the reserve down to the level of B = b− ξBj ). It shall be
14



noted that the refund option defined herein is stationary, i.e., ξbj = ξb = b−B for

all j = 1, 2, · · · .

Definition 2. (BTCO Policy) Let x(t) denote the cumulative reserve at time t.

A stationary band-type contingent option (BTCO) policy, denoted asΘ {(a,A); (b, B)}(or

simply Θ(a;B)), regulates a reserve diffusion process according to the following rules:

(2.3.3) x(t+) =


x(t) + (A− x(t)) if x(t) ≤ a

x(t) if a < x(t) < b

x(t)− (x(t)− b) if b ≤ x(t)

Now, we can write the cumulative reserve under a BTCO policy, denoted by xΘ(a,b)(t) with

a given initial state x = x(0), as following:

(2.3.4) xΘ(a,b)(t) = x+ µt− σw(t) +Q(t)−R(t),

where Q(t) =
∑
{i:τai <t}

ξai represents cumulative amount of calls over interval [0, t), and

R(t) =
∑
{j:τbj<t}

ξbj represents cumulative amount of refunds over [0, t). The cost associated

with holding reserve at time t is given as ρx(t) with ρ ≥ 0. The costs of the i-th contingent

call and j-th contingent refund, denoted respectively as g+(ξ) and g−(ξ), are given as:

(2.3.5) g+(ξ) =


K+ + c+ξ ξ > 0

0, ξ = 0
, and g−(ξ) =


K− + c−ξ ξ > 0

0, ξ = 0
,

where K+, K−, c+, and c− are all non-negative. c− here represent the difference of oppor-

tunity cost and the unit dividend benefits. This representation is suggest by Harrison [27].
15



Here we consider the case that opportunity cost is larger than the dividend benefits and

it is positive. The cost objective function, C(y,Θ), given initial reserve y = y(0) under

BTCO policy Θ(a; b), can be written as:

(2.3.6) C(x,Θ) = E


∞̂

0

ρxΘ(t)e−rtdt+G+ (Θ) +G− (Θ)


It includes both holding cost which is continuously charged in time and the costs incurred

by the contingent options. The total costs of contingent options are given by

(2.3.7) G+ (Θ) =
∞∑
i=1

g+(ξa)e−rτai ; and G− (Θ) =
∞∑
j=1

g−(ξB)e−rτb

Let X denote the set of all admissible option policies, and XΘ denote the subset of X

containing all Θ(a, b) policies. Then, the associated value function can be defined from

(2.3.6) as:

(2.3.8) V (x) = inf
Θ∈XΘ

C(x; Θ)

To this end, a band-type contingent options (BTCO) model can be formulated as:

(2.3.9)



V (x) = inf
Θ∈XΘ

C(x; Θ) = inf
Θ∈χΘ

E
{´∞

0 ρxΘ(t)e−rtdt+G+ (Θ) +G− (Θ)
}

s.t.

xΘ(a,b)(t) = x+ µt− σw(t) +Q(t)−R(t)

G+ (Θ) , G− (Θ) : as given in (2.3.7)
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The optimality of a band-type impulse control policy for cash and inventory management

has been obtained by Constantinides and Richard [24]. Now, we show the optimality of

BTCO policy for mutual insurance. To this end, we obtain the following:

Theorem 3. For BTCO Model (3.3.5), there exists an optimal band-type contingent

policy, ψ? = {Θ? {(a?, A?); (b?, B?)}}, with 0 = a ≤ A? ≤ B? < b?, under which there

exists a twice-differentiable π(x) such that the following equality is satisfied for almost

everywhere (a.e.) in x ∈ (a, b):

π(x)=a.e.V (x) = C (x, ψ∗)

Proof. By virtual of Theorem 1 together with Corollary 1 and 2 of Constantinides

and Richard [24], there exists a band-type contingent policy Θ(p) = {(a, A); (b, B)|p}

with a ≤ A ≤ B < b for a ∈ (−∞,∞), under which there exists a twice-differentiable

function π(x; Θ) such that the following partial differential equation is satisfied over the

interval x ∈ (a, b):

(2.3.10) − σ2

2
∂2π(x; Θ)

∂x2 − µ∂π(x; Θ)
∂x

+ rπ(x; Θ)− ρx = 0

Letting ψ∗ = {Θ∗}with a = 0, we then obtain π(x) = C (x, ψ∗), a.e. for x ∈ (0, b), with

which we conclude the proof.

�
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2.4. Characteristics of Optimal BTCO Policy

In this section, we characterize the optimal band-type contingent option (BTCO) policy

using quasi-variational inequalities (QVI). First, we obtain a QVI-characteristics system

associated with BTCO model (3.3.5):

Proposition 4. Let π(x) =a.e. inf
Θ∈XΘ

C(x,Θ), almost everywhere (a.e.) in x ∈ (0, b),

be a twice-differentiable function as defined in Theorem 3, where C(x,Θ) is as given in

(2.3.6) for every x ≥ 0. Then, π(x) satisfies the following QVI characteristics system of

BTCO model for every x ≥ 0:

(2.4.1)



Lpπ(x) ≤ ρx,

π(x) ≤ (g− ⊗ π) (x),

{π(x)− (g− ⊗ π) (x)} {Lpπ(x)− ρx} = 0

π(0) = (g+ ⊗ π) (0) ,

where the differential operator Lpπ(x), and inf-convolutions (g+ ⊗ π) (x) and (g− ⊗ π) (x)

are defined as following:

Lpπ(x) = −σ
2

2
d2π(x)
dx2 − µdπ(x)

dx
+ rπ(x)

(g− ⊗ π) (x) = inf0<ξ<x (g−(ξ) + π(x− ξ))

= inf0<ξ<x (K− + c−ξ + π(x− ξ))

(g+ ⊗ π) (x) = infξ>0 (g+(ξ) + π(x+ ξ))

= infξ>0 (K+ + c+ξ + π(x+ ξ))

18



Proof. Letting Lpπ(y) = −σ2

2
d2π(y)
dy2 − µdπ(y)

dy
+ rπ(y), we can write the HJB equation

for the BTCO model as following,

Lpπ(y)− ρy = 0

The rest of the Proof is a standard application of impulse control and QVI analysis, as

rigorously presented in Bensoussan and Lions [10].

�

We shall note that the HJB equation for the continuous region, i.e., Lpπ(x)− ρx = 0,

can be solved analytically by the general solution has a complex form and not easy to

be analyzed when considering with the free boundary constrains. Next, we show that

an analytical solution for the HJB equation can be obtained via transformation of value

function. Letting π(x) = w(x) + ρx

r
+ µρ

r2 and denoting π′(x) = dπ(x)
dx

, we can write:

π′(x) = w′(x) + ρ

r
, and π′′(x) = w′′

Then, we can write the HJB equation Lpπ(x)− ρx = 0 in terms of w(x) as following:

(2.4.2) − σ2

2 w
′′(x)− µ

(
w′(x) + ρ

r

)
+ r

(
w(x) + ρx

r
+ µρ

r2

)
− ρx = 0

The above equation (2.4.2) can be easily reduced to the following:

(2.4.3) − σ2

2 w
′′(x)− µw′(x) + rw(x) = 0

The transformed HJB equation (2.4.3) is a homogeneous ODE, which can be solved in

the closed form as

w(x) = C1e
λ1x + C2e

λ2x
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where λ1, λ2 are the roots of the corresponding characteristic equation, and C1, C2are

coefficients of specific solution determined from terminal conditions. This development is

significant to the tractability of a BTCO problem. In particular, it is straight forward to

show the transferability of solutions to ODE (2.4.3), that is, for any constant c, if w(x)

solves ODE (2.4.3), then so does w(x + c). This transferability ensures some simplified

analytical results of the inf-convolution. To see this, we write the inf-convolutions of QVI

system (2.4.1) in terms of w(x) using π(x) = w(x) + ρx

r
+ µρ

r2 . With the inf-convolution

operators as defined in QVI characteristics system (2.4.1), we can write:

(g+ ⊗ π) (x) = g+(x) + π(0)

= K+ + c+x+ w(0) + µρ

r2

(g− ⊗ π) (x) = infξ>0 (g−(ξ) + π(x− ξ))

= infξ>0

(
K− + c−ξ + w(x− ξ) + ρ(x− ξ)

r
+ µρ

r2

)
Using impulse costs given in (2.3.5), it is immediate to derive:

(g+ ⊗ π) (x) = K+ + c+(x)− ρ

r
x+ µρ

r2 + w(0)

= (g+ ⊗ w) (x)− ρ

r
x+ µρ

r2

(g− ⊗ π) (x) = infξ>0

(
K− + µρ

r2 + c−(ξ) + w(x− ξ)
)

= (g− ⊗ w) (x) + ρ

r
x+ µρ

r2

where c+ = c+ + ρ

r
, c− = c− − ρ

r
, and

(2.4.4) g+(ξ) = K+ + c+ξ, and g− = K− + c−ξ.
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With the equalities (2.4.4) above, we obtain the following equivalences of inf-convolution

conditions:

(2.4.5)


π(y)− (g+ ⊗ π) (x) = 0 ⇐⇒ w(y)− (g+ ⊗ w) (x) = 0

π(y)− (g− ⊗ π) (x) = 0 ⇐⇒ w(y)− (g− ⊗ w) (x) = 0

Then the QVI characteristics system can be expressed in terms of w(x) under the trans-

formation w(x) = π(x)−
(
ρx

r
+ µρ

r2

)
, via the following theorem:

Theorem 5. Let π(x) ∈ C1(R+) be a solution of QVI characteristics system (2.4.1),

and let w(x) = π(x)−
(
ρx

r
+ µρ

r2

)
. Then, there exists an optimal stationary (time invari-

ant) policy ψ = {Θ {(0, A); (b, B)}}, such that the QVI characteristics system of BTCO

can be equivalently expressed in terms of w(x) as follows:

(2.4.6)



−1
2σ

2w′′ − µw′ + rw = 0 for 0 ≤ x ≤ b

w (0) = w (A) +K+ + c+A

w (b) = w (B) +K− + c−(b−B)

w′ (A) = −c̄+

w′ (B) = c̄−

w′ (b) = c̄−

where c+and c− are as defined via equalities in (2.4.4).

Proof. Applying inf-convolutions in (2.4.5) for x = 0 and x = b, we obtain

w (0) = w (A) +K+ + c+A, and w (b) = w (B) +K− + c− (B − b)
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respectively. The differentiability of π(x) ensures the first-order condition of the inf-

convolutions, that is,

∂
(
K+ + µρ

r2 + c+(A) + w(x+ A)
)

∂A
= 0, and

∂
(
K− + µρ

r2 + c−(ξb) + w(x− ξb)
)

∂ξb
= 0

Immediately, we have w′(A) = −c+and w′(b) = c−. Denoting w′(x) = dw(x)
dx

∂w(x+ ξ)
∂ξ

= dw(x+ ξ)
dx

· dξ
dξ

= w′(x+ ξ) = w′(x),

we obtain for the first-order inf-convolution condition the following:

w′(A) = −c+, and w′(b) = w′(B) = c−

Together with the transformed HJB characteristic equation (2.4.3), the proof of Theorem

is completed.

�

We can conclude from Theorem 5 that the optimal BTCO policy Θ {(a, A); (b, B)}

is of a coupled (s, S) policy, specifically a policy of combining an (a, A) and (b, B)

policy, where A = a + ξa and B = b − ξB. Also, it can be verified that the QVI-

characteristics system of BTCO (2.4.6) poses as a two-point boundary value problem of

ODE −1
2σ

2w′′ − µw′ + rw = 0, that is, the solution of BTCO model comprises a value

function w which solves ODE −1
2σ

2w′′ − µw′ + rw = 0 and the boundary parameters

0 = a ≤ A ≤ B < b which satisfy the inf-convolution conditions, all as specified in the
22



BTCO QVI-characteristics system (2.4.6). Then, the solution function π(x)to the original

BTCO model can be immediately obtained as π(x) = w(x) + ρx

r
+ µρ

r2 .

2.5. Numerical Experiments on BTCO Model with a = 0

In this section, we conduct numerical experiments by using the QVI-characteristics sys-

tem (2.4.6) to solve the BTCO problem for a mutual insurance club. In this computational

experiment, we test how the change of system parameters, such as drift µ, disturbance σ,

and option costs, will affect the optimal BTCO policies in terms of the policy parameters

such as A, B, and b. The tests results are presented in a series of figures and plots, with

A shown in “black” dotted line, B in “blue” dotted line, and b in “red” dotted line. With

a = 0, we shall note that each call amount is calculated as ξa = A − a = A, and each

refund amount is calculated as ξb = b−B.

First, we obtain sample values of the objective cost function V (x) of BTCO model, as

illustrated in Figure 2.5.1, using the following set of basic parameters:

µ = 0.01; r := 0.08;σ = 0.3; ρ = 0.1;K+ = 0.5;K− = 0.7; c+ = 0.1; c− = 0.1

As we can see from Figure 2.5.1, there is an optimal reserve level x' 0.760 with

µ = 0.01, at which the minimized objective cost of BTCO model attains a single minimum

of V (0.760) ' 1.615. The optimal policy is Θ {(0, 0.682); (0.853, 1.903)} (i.e., A = 0.682,

B = 0.853, and b = 1.903; ξb = b − B = 1.05). We then increase µ by ten times,

from 0.01 to 0.1, and computed another trajectory of objective value function for the

system, see Figure 2.5.2. In this case the optimal policy is Θ {(0, 0.492); (0.594, 2.013)}

(i.e., A = 0.682, B = 0.594, and b = 2.013; ξb = 1.509), and the optimal reserve level
23



Figure 2.5.1. Optimal Cost Function V (x) with µ = 0.01)
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reduced slightly to x ' 0.539, with minimum of the optimal objective value function

attained at V (0.539) ' 1.790.

Figure 2.5.2. Optimal Cost Function V (x) with µ = 0.1
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Next, we test on the impact of regular reserve build-up rate µ = p− η, where p is the

regular premium charge and η is average amount of claims. For a fixed η, drift µ represents

the regular premium charge, with µ < 0 representing the case where regular premium rate

is less than that of claims. Changing the value of µ over the interval [−0.1, 0.1] with all
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the rest parameters fixed, we computed the corresponding BTCO policy parameters A, B,

and b, as illustrated in Figure 2.5.3. We can see from Figure 2.5.3 that an increased regular

premium rate µ will result in a decreased A (i.e., the amount of each contingent call), as

shown in black dotted line in Figure 2.5.3. This finding is consistent with the intuition

that higher premium contribution on a regular basis from individual members will reduce

the needs to call for contingent supplemental contributions from all the members in case

of insufficient reserves. As to refund upper-boundary b shown in red dotted line in Figure

2.5.3, the mutual insurance club tends to reduce the frequency of refunds (by increasing

refund threshold b), while at the same time the club will increase the amount of refund

ξb = b − B, noting that the refund lower-boundary B is decreasing along with µ. It is

interesting to note that the refund ξb = b − B is a non-linear and increasing function

of premium price represented by µ. It can be summarized from Figure 2.5.3 that even

under a linear regular pricing policy, the revelation of asymmetric information can be still

achieved by allowing claim-independent contingent options, especially with a non-linear

refund scheme.

Figure 2.5.3. Optimal Policies when µ = −0.1 ∼ 0.1
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Next, fixing other parameters while only letting the discount rate r to vary between

r = 0.08 ∼ 0.18, we test the impact of exogenous finance market condition on the refund

parameter b, as illustrated in Figure 2.5.4. The mutual insurance club would adjust the

refunding threshold to a higher level when the interest rate r becomes higher, indicating

an increased value of future cash flow and therefore an increased magnitude of risk in the

future. In other word, the Club should keep more reserve so as to prepare for the increased

risk in the future. Compared to the refund threshold, the other policy variables A and B

are almost insensitive to the change in interest rate r.

Figure 2.5.4. Optimal Policies when r = 0.08 ∼ 0.18
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As σ is defined as the volatility of the claim process, so it directly reflects the intrinsic

demand risk of insurance market. From Figure 2.5.5, it shows that all three decision

variable, A, B, and b will increase noticeably along with σ. The mutual insurance Club

will become more conservative, by increasing all the thresholds for both contingent calls

(A) and contingent refunds (B and b).

A higher value in ρ gives a higher time-continuous cost of holding reserve, which will

encourage lower thresholds for both call and refund options, as shown in Figure 2.5.6. It
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Figure 2.5.5. Optimal Policies when σ = 0.2 ∼ 0.4
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is interesting to note that if the holding cost becomes negligible (ρ → 0), an unlimited

reserve can be afforded by raising the refund level b (in red) to infinity.

Figure 2.5.6. Optimal Policies when ρ = 0.01 ∼ 0.2
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Figure 2.5.7 and 2.5.8 display the relationship between impulse control setup costs and

the three parameters of a BTCO policy. In figure 2.5.7, we can see that all three policy

parameters, A,B, and b, are increasing along with the setup cost of a contingent call

(K+). With an increasing A and fixed a = 0 the amount of call ξa = A−a will increase as
27



K+ increases, which results in a decreased frequency of contingent calls for a higher setup

cost of each call. Also, we can see from Figure 2.5.7 that both B and b are increasing

along with K+, but the amount of refund ξb = b − B largely remains unchanged as K+

increases. On the other hand, the situation seems different when the cost of refund K−

is changed (see figure 2.5.8). In this case, the call-amount A is insensitive to the change

in refund setup cost K−, but refund parameters B and b are going opposite ways. The

refund lower-bound B is decreasing with K−, and the refund upper-bound b increases in

an accelerated manner along with K−, which resulted in accelerated increase in the refund

amount b−B. In sum, the optimal refund policy seems to be more sensitive to the setup

costs than the optimal call option does.

Figure 2.5.7. Optimal Policies when K+ = 0.5 ∼ 2.5
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In a similar manner, the variable costs c+and c−of contingent calls and refunds are

related to the BTCO policy parameters, as shown in Figure 2.5.9 and 2.5.10.
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Figure 2.5.8. Optimal Policies when K− = 0.5 ∼ 2.5
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Figure 2.5.9. Optimal Policies when c+ = 0.01 ∼ 0.2
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2.6. Conclusion

In this study, we obtained QVI characteristics of optimal band-type contingent potions

(BTCO) in mutual insurance, and developed an explicit solution method for the BTCO

model, by solving a two-point boundary problem of HJB equation subject to a set of inf-

convolution boundary conditions. This solution method is tested with numerical sensitivity

analysis of BTCO parameters pertinent to mutual insurance. We argue that contingent
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Figure 2.5.10. Optimal Policies when c− = 0.01 ∼ 0.2
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options form an alternative incentive scheme that preserves the revelation principle under

a non-principal-agent setting.
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CHAPTER 3

Hybrid Control
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3.1. Introduction

We study a stochastic control problem with both classical and impulse control. The

model is inspired from the operation of mutual insurance firms. The mutual insurance

firm are allowed to adjust the reinsurance rate in the continuous time horizon. The firm

can also execute both refund option and recall option which will increase and decrease the

reserve position instantaneously.

We fund a band type policy together with a bang-bang control policy is the optimal

policy for the firm to achieve a lowest maintenance cost. Constantinides[24] has studied

this problem for the Cash Management Problem, with linear holding and penalty holding

cost. The control can be applied in both ways of upward and downward. He proved that

there exists one and only one two bands type optimal control policy for this system. But

he did not provide an explicit way to find this solutions.

Many relevant studies are focused on finding the solution to a specific set of differential

equations which satisfies the underlie QVI condition naturally. This strategy can be seen

in literature [11, 19, 22, 23, 28, 1, 15, 16].

To solve the optimal impulse control problem, Costa and Davis [25] take the value

improvement approach while the others take the quasi-variational inequality approach.

The study in this chapter is based on the latter approach.

3.2. Feasible Control(Model)

we define the insurance claim process on a probability space (Ω,F ,P). The cumulative

insurance claim D(t) over the interval [0, t] is a stochastic diffusion process.

(3.2.1) D(t) = ηt+ σw(t),
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where η is a positive constant number which represent the drift part the diffusion process, σ

is a non-negative constant disturbance term which represent the magnitude of the random

noise. Wt denotes a Wiener process with W0 = 0. We denote the premium rate collecting

continuously by the mutual firm by p. We assume p > η . If without any control the total

reserve process is still a diffusion process. We use µ to denote the drift: p− η.

Admissible hybrid control:

U =
{
u (t) ,

(
ξ+

1 , ξ
+
2 ...

)
,
(
τ−1 , ξ

−
1 , τ

−
2 , ξ

−
2 ...

)}

This notation means the mutual insurance firm can choose the reinsurance factor u (t) ∈

[0, 1] at time t continuously. When the reserve reaches zero at time τ+
i , the firm should

make a call from its shareholders. ξ+
i denotes the amount of the call. The firm can

also make a decision on the time τ−j and amount of dividend ξ−j , it will refund to its

shareholders. Please note that τ−j is a decision variable, whereas τ+
i is not. We denote by

U the set of all admissible controls.

The cumulative amount of calls over interval [0, t), and the cumulative amount of

refunds over [0, t) then can be denoted as:

Q (t) =
∑
{i:τ+

i <t}
ξ+
i

R (t) =
∑

{j:τ−j <t}
ξ−j

The dynamics of the state process X under an admissible control is given by:

(3.2.2) X (t) = x+
ˆ t

0
µu (s) ds+

ˆ t

0
σu (s) dWt +Q (t)−R (t) ,
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Since the firm can take a call option, it will never confront the situation of bankruptcy,

which a normal insurance company will meet in general.

3.3. Cost Structure and Value Function

The costs of the i-th contingent call and j-th contingent refund, denoted respectively

as g+(ξai ) and g−(ξBj ), are given as:

(3.3.1) g+
(
ξ+
i

)
=


K+ + c+ξ+

i ξ+
i > 0

0, ξ−i = 0

(3.3.2) g−
(
ξ−j
)

=


K− − c−ξ−j ξ−j > 0

0, ξBj = 0

whereK+, K−, c+, and c− are all non-negative. c− here represents the unit benefits caused

by the dividend from the mutual insurance firm, which will reduce the total costs in the

object function. ξ−j is the dividend paid back to the shareholders, so it should be introduced

as a reducing factor to the cost functions. Let r be a given discount rate. We define the

discounted cost function for any admissible control U ∈ U with initial state x ∈ [0,∞):

(3.3.3) C (x;U) = Ex


∞∑
i=1

g+
(
ξ+
i

)
e−rτ

+
i +

∞∑
j=1

g−
(
ξ−j
)
e−rτ

−
j


The objective control is to find the control policy to minimize the associated cost

function. We define the value function according to the cost function (3.3.3) as:
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(3.3.4) V (x) = inf
U∈U

C (x;U)

To this end, our model can be summarized as:

(3.3.5)



V (x) = inf
U∈U

C(x;U) = inf
U∈U

Ex
{∑∞

i=1 g
+
(
ξ+
i

)
e−rτ

+
i +∑∞

j=1 g
−
(
ξ−j
)
e−rτ

−
j

}
s.t.

X (t) = x+
´ t

0 µu (s) ds+
´ t

0 σu (s) dWt +Q (t)−R (t) ,

g+, g− : as given in (3.3.1) and (3.3.2)

3.4. Optimal Control and Characteristic of the Value Function

We define the infinitesimal generator L for function φ : [0,∞) 7→ R

(Luφ) (x) = −1
2u

2σ2d
2φ (x)
dx2 − uµdφ

(x)
dx

(Mφ) (x) = inf
0<ξ<x

(g− (ξ) + φ (x− ξ))

= inf
0<ξ<x

(K− − c−ξ + φ (y − ξ))

The value function should satisfy following inequalities with an implicit boundary

condition:

(3.4.1) LuV + rV ≤ 0

(3.4.2) V ≤MV
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(3.4.3) (V −MV )
(

min
u∈[0,1]

LuV + rV

)
= 0

(3.4.4) V (0) = inf
ξ>0

(
g+ (ξ) + V (ξ)

)

These set of equations can be proved as the sufficient condition for the value function.

Theorem 6. If there is a function v ∈ C1on [0,∞), satisfy condition (3.4.1),(3.4.2),(3.4.3)

and (3.4.4), then for every x ∈ [0,∞), we have:

v (x) ≤ V (x)

Next, we will get the optimal policy associated with the QVI conditions.

3.5. Hybrid Control and its Optimality

From 4.1.7 we have:

(3.5.1) minLuV + rV = 0

differentiate LuV with respect to u, we have the first order condition:

(3.5.2) u = − µV ′1
σ2V ′′1

Substitute (3.5.2) to (2.4.2) and suppose V ′′ 6= 0 on the continuous control area
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(3.5.3) 2rσ2V1V
′′

1 + µ2 (V ′1)2 = 0

For x0 < x < A, u (x) = max [0, 1] = 1, then the HJB becomes:

(3.5.4) 1
2σ

2V ′′2 + µV ′2 − rV2 = 0

All we need to do next is to solve following set of equations,

(3.5.5)



2rσ2V (x)V ′′ (x) + µ2 (V ′ (x))2 = 0 , for 0 < x < x0

1
2σ

2V ′′ (x) + µV ′ (x)− rV (x) = 0 , for x0 < x < b

V (0) = V (A) +K+ + c+A

V (b) = V (B) +K− − c− (B − b)

V ′ (A) = −c+

V ′ (b) = −c−

V ′ (B) = −c−

Vx→x−0
(x) = Vx+

0←x
(x)

V ′
x→x−0

(x) = V ′
x+

0←x
(x)

V ′′
x→x−0

(x) = V ′′
x+

0←x
(x)

Next, we will give the explicit expression for A,b,B, x0and the value function V (x).
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Figure 3.5.1. Optimal Policy Parameters

K−

K+

A b Bx0

V2 (x) = C3e
αx + C4e

−βx

b

V1 (x) = −C1 (x + C2)
γ

−c−

−c+

V (x0) = −C1

(
σ2(1−γ)

µ

)γ

The general solution of (3.5.3) is:

(3.5.6) V1 (x) = −C1 (x+ C2)γ

Where

γ = 1
1 + µ2

2rσ2

Notice that

0 < γ < 1

From (3.5.2), we get the expression for u(x) in term of C2.
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(3.5.7) u (x) = µ (x+ C2)
σ2 (1− γ)

Solve for x0 by u(x0) = 1:

(3.5.8) x0 = σ2 (1− γ)
µ

− C2

Due to the facts that u(x) ∈ (0, 1) and u(x) is an increasing function, when x > x0

u(x) = 1. When 0 < x < x0, the equation (3.5.7) is satisfied.

Substitute (3.5.8) into (3.5.6), we get

(3.5.9) V (x0) = V1 (x0) = −C1

(
σ2 (1− γ)

µ

)γ

The general solution for 3.5.4 is:

(3.5.10) V2 (x) = C3e
αx + C4e

−βx

where,

α =
√
µ2 + 2rσ2 − µ

σ2

β =
√
µ2 + 2rσ2 + µ

σ2

with 0 < α < β. Based on the ODE and boundary conditions given above, we can

analyze the properties of the solution.

V ′1 (x) = −γC1 (x+ C2)γ−1
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−1 < γ − 1 < 0

V ′1 (0) = −γC1C
γ−1
2

3.5.1. Case 1: A < x0 < B. This case is shown in figure 3.5.1. Suppose that V is

twice continuous differentiable on x0, V ′1 (x0) = V ′2 (x0),V ′′1 (x0) = V ′′2 (x0) . from (3.5.2),

we get:

(3.5.11) V ′′2 (x0) = µ

σ2V
′

2 (x0) ,

Substitute above equation into the second equation of (3.5.5), we also get equation:

V ′2 (x0) = 2r
3µV2 (x0). Let W (x) be the solution for the following ODE with boundary

condition:



1
2σ

2W ′′ + µW ′ − rW = 0

W ′ (0) = −k−

W ′
(
ξb
)

= −k−

W (0)−W
(
ξb
)

= k−ξb −K−

It can be easily verified that the general solution for W (x) is same as (3.5.10), and

there exists one and only one ξb satisfy above equations. And we denote the corresponding

solution as:

W b (x) = Cb
1e
αx + Cb

2e
−βx
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From figure (3.5.1), we see that V2 (x) = W b (x−B). Now we can express V2 (x) in

term of B.

V2 (x) = Cb
1e
α(x−B) + Cb

2e
−β(x−B)

From (3.5.11) we get:

αCb
1e
α(x0−B) − βCb

2e
−β(x0−B) = 2r

3µ
(
Cb

1e
α(x0−B) + Cb

2e
−β(x0−B)

)

From this equation we can solve for δ := x0 − B, then we can express x0 by B:

x0 = B + δ. Therefore,

(3.5.12) V1(x0) = V2(x0) = Cb
1e
αδ + Cb

2e
−βδ

together with (3.5.9), we now can solve C1 explicitly as follow:

(3.5.13) C1 = −
(
Cb

1e
αδ + CB

2 e
−βδ

)(σ2 (1− γ)
µ

)−γ

use condition given by (3.5.5) and (3.5.6)
−C1γ (A+ C2)γ−1 = −c+

−C1C
γ
2 + C1 (A+ C2)γ = K+ + c+A

The argument A can be reduced from above equations, and we get the equation :

−C1C
γ
2 + C1

(
c+

C1γ

)γ−γ2

= K+ + c+

( c+

C1γ

)1−γ

− C2


The only unknown in above is C2, which can be easily solved by Newton method.
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Figure 3.5.2. Optimal Policy Parameters in the Case 2

K−

K+

A b Bx0

V2 (x) = C3e
αx + C4e

−βx

b

V1 (x) = −C1 (x + C2)
γ

−c−

−c+

V (x0) = −C1

(
σ2(1−γ)

µ

)γ

3.5.2. Case 2: 0 < x0 < A. The solution for C1 is the same as case 1, and from

(3.5.13) we have

V (0) = V1 (0) = −C1C
γ
2

By using the same trick in case 1, we can express V2 (x) as:

V2 (x) = Cb
1e
α(x−B) + Cb

2e
−β(x−B)

Since V ′2 (A) = −c+, we get following equation

αCb
1e
α(A−B) − βCb

2e
−β(A−B) = −c+
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The quantity of A−B can be solved, then we can calculate the value for V (A):

V (A) = V2 (A)

= Cb
1e
α(A−B) + Cb

2e
−β(A−B)

and from (3.5.12)

V2 (x0) = Cb
1e
αδ + Cb

2e
−βδ

= −C1

(
σ2 (1− γ)

µ

)γ

Form (3.5.5), we know that V (0)− V (A) = c+ (A− x0) + c+ (x0 − 0) +K+ , together

with (3.5.8):

−C1C
γ
2 − Cb

1e
α(A−B) + Cb

2e
−β(A−B) = c+ ((A−B)− (x0 −B)) + c+x0 +K+

−C1C
γ
2 = c+ ((A−B)− (x0 −B)) + c+

(
σ2 (1− γ)

µ
− C2

)
+K+

where A − B and x0 − B is already known. To this end, the only unknown in above

equation is C2

3.5.3. Case 3: B < x0 < b. We shift the value function V (x) to the left by amount

of x0, and denote the new function with x′0 = 0 as W (x) = V (x + x0). Correspondingly,

W1 (x) = V1 (x+ x0), and W2 (x) = V2 (x+ x0). From (3.5.6) and (3.5.10) we get the

general function for W1 (x) and W2 (x):

(3.5.14)


W1 (x) = −C1 (x+ C ′2)γ

W2 (x) = C ′3e
αx + C ′4e

−βx
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Figure 3.5.3. Optimal Policy Parameters in the Case 3

K−

V2 (x) = C3e
αx + C4e

−βx

b

−c−

V1 (x) = −C1 (x + C2)
γ

b′ B′x′0

, where C ′2 = C2 + x0. From (3.5.8), we get C ′2

C ′2 = σ2 (1− γ)
µ

Since W (x) is continuously differentiable at x′0,

W2 (0) = W1 (0) = −C ′γ2 C1

W ′
2 (0) = W ′

1 (0) = −γC ′γ−1
2 C1

from (3.5.14), 
C ′3 + C ′4 = −C ′γ2 C1

αC ′3 − βC ′4 = −γC ′γ−1
2 C1

To this end, we can get the expression for C ′3and C ′4 with only one unknown argument

C1 in it:
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(3.5.15)


C ′3 = −

γ

C′2
+β

α+β C
′γ
2 C1

C ′4 =
γ

C′2
−α

α+β C
′γ
2 C1

Let λ1 = −
γ

C′2
+β

α+β C
′γ
2 , λ2 =

γ

C′2
−α

α+β C
′γ
2

λ1 + λ2 = −C ′γ2

By imply the seventh condition in (3.5.5), we know that W ′
2 (b′) = −c−. Equivalently,

αλ1C1e
αb′ − βλ2C1e

−βb′ = −c−

we now can solve for C1, with the only unknown argument b′ in the expression:

(3.5.16) C1 = c−

βλ2e−βb
′ − αλ1eαb

′

We also know that W2 (b′) = λ1C1e
αb′ + λ2C1e

−βb′ =
c−
(
λ1eαb

′+λ2e−βb
′
)

βλ2e−βb
′−αλ1eαb

′

From the sixth condition in (3.5.5), we know that W ′
1 (B′) = −c−. By also using the

first equation in (3.5.14), we get

B′ + C ′2 =
(
c−

γC1

) 1
γ−1

so

W1 (B′) = −C1 (B′ + C ′2)γ = −C1

(
c−

γC1

) γ
γ−1
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by using the forth condition in (3.5.5), we get W1 (b′)−W2 (B′) = K− − c− (b′ −B′)

−
(
c−

γC1

) γ
γ−1

− λ1e
αb′ − λ2e

−βb′ = K− − c− (b′ −B′)
C1

−
(
βλ2e

−βb′ − αλ1e
αb′

γ

) γ
γ−1

− λ1e
αb′ − λ2e

−βb′ =
(
K−

c−
− b′ +B′

)(
βλ2e

−βb′ − αλ1e
αb′
)

the only unknown in above equation is b′, which can be easily solved numerically. We

can now solve for C1 in (3.5.16). Since we’ve got C1 , C ′2 The C ′3 and C ′4 are also clear

to us by using (3.5.15). Therefore the expressions for both W1 (x) and W2 (x)(3.5.14) are

known to us. To this end, we solve the last case explicitly.
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CHAPTER 4

Algorithms for Solving Impulse Control Problem
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4.1. The Model

We define the process on a probability space (Ω,F ,P) with right continuous filtration

Ft.Let Wt denotes a Wiener process with respect to this filtration and W0 = 0. We

consider control process that are defined by {(τ1, ξ1) , (τ2, ξ2) ...}, where ξi 6= 0 denotes

the amount of ith impulse control at time τi > 0. We denote the cumulative amount of

impulse over interval [0, t), as:Q (t) =
∑
{i:τi<t}

ξi. Given the control process and the initial

state x. The state process X is expressed as:

(4.1.1) X (t) = x+
ˆ t

0
µ (X (s)) ds+

ˆ t

0
σ (X (s)) dWs +Q (t) ,

The state process is governed by the impulse control and a Brownian motion with drift µ

and σ. The control process {(τ1, ξ1) , (τ2, ξ2) ...} are to be thought of pushing X in positive

or negative direction at Markov stopping time τi.

Given a initial state x and a fixed discount factor r > 0 a control process U =

{(τ1, ξ1) , (τ2, ξ2) ...} is said to be admissible if

∀T ∈ [0,∞) : P
{

lim
n→∞

τn 6 T
}

lim
T→∞

E
[
e−rTX (T+)

]
= 0

Above condition is necessary for the total cost of impulse control to be finite. We use

U denotes the set that contains all admissible controls.

Since the firm can take a call option, it will never confront bankruptcy, which is a

situation a normal insurance company will always meet in general.
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The contingent options will incur a setup cost together with a variable cost proportional

to the amount of control. Let g+be the cost for making a call option and let g− be the cost

for make a refund option. Suppose ξ+
i > 0is the amount of money that the firm makes in

the ith call, and ξ−j > 0 is the amount of dividend that the firm makes in the jth refund

option. Then we have:

g (ξ) =


K+ + c+ξ+

i
if ξ > 0

K− − c−ξ−j if ξ < 0

where K+, K−, c+, and c− are non-negative constant, K+and K− denote the set up cost

for the two-way impulse control. c+ denote the proportional cost associate with the impulse

control that shift the state positively. Respectively, c− denote the proportional cost that

associate the negative impulse control. Let r be a given discount factor. We now can

define the discounted cost function for any admissible control U ∈ U with the initial state

x ∈ [0,∞):

(4.1.2) C (x;U) = Ex


∞∑
i=1

g (ξi) e−rτi +
∞̂

0

e−rsρX (s) ds


The objective is to find a control to minimize the cost that is associated with. We

define the value function according to the cost function (4.1.2) as:

(4.1.3) V (x) = inf
U∈U

C (x;U)

the corresponding control U∗ is the optimal control.

For any twice differentiable function φ (x), we define the infinitesimal generator L:
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(4.1.4) (Lφ) (x) = min
u∈[0,1]

(
lim
t→0

Ex [φ (Xt)]− φ (x)
t

)
= min

u∈[0,1]

(
uµ
dφ (x)
dx

+ 1
2u

2σ2d
2φ (x)
dx2

)

Then we define the QVI formulation similar to preceding sections:

(4.1.5) LV + rV ≤ 0

(4.1.6) V ≤MV

(4.1.7) (V −MV ) (LV + rV ) = 0

These conditions will serve as sufficient condition for the optimal value function.

4.2. The Iterative Method

Because of the complexity of the differential equation with free boundary condition’s,

there is few stochastic control problems can be solved analytically [4]. Kumar [30] provide

a numerical method to solve singular control problem. The basic idea behind this method

is to solve sequential fixed boundary differential equations to approach the original problem

of solving differential equations with free boundary condition. Inspired by this method,

we provide a method in this section such that if we choose a boundary with a range

wide enough (actually the position is also need to be considered, which is a limitation

that Kumar’s method also has, but he did not point it out in the paper), then we solve

sequential differential equations with fixed boundary, then we will always get a convergence
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Figure 4.2.1. A Particular First Order Derivative of the Value Function

solution to the optimal solution of the original problem with free boundary condition. It

will be showed by examples. And This method can also be implemented to Geometric

Brownian Motion, which is the basic model for many financial engineering problem.

Our object is to solve the following algebraic equation.

(4.2.1)



−1
2σ

2V ′′ − µV ′ + rV = f

V (a) = V (A) +K+ + c+(A− a)

V (b) = V (B) +K− + c− (b−B)

V ′ (a) = V ′ (A) = −c+

V ′ (b) = V ′ (B) = c−

which means we need to find a solution, whose first derivative function appears as

following graph:
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In other words, we need to find a boundary (a, b), and solve an ordinary differential

equation (ODE) in this band. Also a set of conditions needs to be satisfied. The condition

says that the value of the first derivative at a and b must equal to −c+ and c− respectively.

And the area above the line y = c− should equal to K−; the area bellow the line y = −c+

must equal to K+. Note that if the boundary value is given, and consider the conditions

on the boundary, this problem is a typical problem of solving ordinary differential equation

with Neumann boundary condition. We have efficient way to solve this type of problem

either analytically or numerically.

The algorithm is as following. Start with a0,b0:

(1) For given boundaries ak bk solve the ODE with the boundary condition ak = −c+

bk = c−

(2) For upper boundary bk check if the area above the line y = c− is bigger than

K− (impulse cost), if not go to step 5 (also applied to the boundary ak). Set

bk := bk+1

(3) For upper boundary bk, set the new upper boundary to the point bk+1.(see the

following picture for more details )(also applied to the lower boundary ak)

(4) If convergence condition is note satisfied, go to step 1. Otherwise, stop the pro-

gram, show the result.

(5) Set the new boundary bk as bk+bk−1
2 (backward motion) (also applied to the bound-

ary ak)

(6) go to step 1

Following process is picked from the round 12 of the example showed in the last part of this

mail. It looks different from the last version, as the graph is displayed in fixed coordinate.
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Table 1. The First Derivative of the Value Function Before and After the
Transformation

before the transformation after the transformation

As mentioned above, in each iterative procedure, we solve an ODE with Neumann

boundary condition. This result is corresponding to another impulse control problem with

different boundary conditions. We call this problem as intermediate problem, which is

similar to the original one. The only difference between these problems is on the conditions

related with the setup costs. So the basic idea of the algorithm is to reduce this difference

by changing the boundary. The next step is to determine where to set the new boundary.

Looking at the value function displayed in the left figure of Table 1, we tell see that

the only conditions on which the v′ violates is the constrains containing integrals, which

represents the amount of areas above y = −c+ and bellow y = c−.

Here is an experiment for the problem with the same parameters as those in Kummar

[30]. The difference is that we have setup costs K+and K−in addition. If one sets K+ = 0

and K− = 0, the problem is exactly the same as Kumar’s. And my algorithm will also
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behave the same as Kumar’s. So his case is a special case of ours in this sense. The

parameters of the system in this test are as follows:

µ = 1;σ =
√

2; r = 0.01; f = (x− 0.6)2;K+ = 0.15;K− = 0.1; c+ = 0.02; c− = 0.01

We used Maple to do this experiment, since this ODE is quite simple and can be solved

symbolically. If this method is proved to be able to work in a general situation, we can

use Matlab instead, which provides more powerful finite element method package to solve

ODEs with fixed boundary condition [2, 3, 17, 18].

We started with initial lower boundary -15,upper boundary 15. The graphs bellow

show the results of the first 9 iterations. We display the experiment results in following

table. To make it easy to do comparison between each round of iterations. V ′s are plotted

by using both same coordinate units and adapted coordinate units.
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Table 2: Illustration for the Searching Process

Round Same coordinate units Adapted coordinate units

1

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150

x
K15 K10 K5 0 5 10 15

50

100

150

2

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K12 K10 K8 K6 K4 K2 0 2

K120

K100

K80

K60

K40

K20

3

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K10 K8 K6 K4 K2 0 2

K100

K80

K60

K40

K20

4

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K8 K6 K4 K2 0 2

K70

K60

K50

K40

K30

K20

K10
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5

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K8 K6 K4 K2 0 2

K40

K30

K20

K10

6

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K20 K15 K10 K5 0

K400

K300

K200

K100

7

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K6 K5 K4 K3 K2 K1 0 1 2

K30

K20

K10

8

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K5 K4 K3 K2 K1 0 1 2

K18

K16

K14

K12

K10

K8

K6

K4

K2
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Figure 4.2.2. First Derivative of Optimal Value Function (round 38)

9

x
K15 K10 K5 0 5 10 15

K150

K100

K50

50

100

150
x

K4 K3 K2 K1 0 1

K10

K8

K6

K4

K2

The table bellow shows parameters in each round iteration. The upper boundary a,

the lower boundary b. The size of area bellow y = −c+ denoted by K+, respectively the

size of the area above y = c− is denoted by K−. Note that the object value of K+is 0.15,

and the object value of K−is 0.1. Bold font means the backward motion will happen in

the next round.

We apply this method to problem studied in [21], where the dynamic part is driven by

geometric Brownian motion. The ODE is more complicated. The author get the solution

by a Newton method, which mainly depends on a good guess of the optimal solution. If

we started with a rather wide coupled boundaries, then the method can still converge to
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Table 3. Evolution of the Key Parameters in the Iterations

round a b K+ K−

1 -15.00000000 15.00000000 127.8006811 2809.222413
2 -13.79006963 2.833602333 916.3861385 2.503136830
3 -11.80542829 2.019206247 596.9333575 .1033454120
4 -9.952180513 2.011191078 365.5977234 .1006641309
5 -8.245445357 2.009137254 213.0740609 0.9881751749e-1
6 -8.245445357 2.010164166 213.0660675 .1008244991
7 -6.697500009 2.009756361 117.2683297 .1004972753
8 -5.317689805 2.005149880 60.35214109 .1097531784
9 -4.120416978 1.995252967 28.82829437 .1215396882
10 -3.116853829 1.967232622 12.76872536 .1367392000
11 -2.314152770 1.922359409 5.316041410 .1509999270
12 -1.710982106 1.859186936 2.188781759 .1551931728
13 -1.288341844 1.789800887 .959290824 .146252981
14 -1.016215904 1.729258873 .490343968 .137847891
15 -.8530880828 1.684170384 .305080196 .121753584
16 -.7590157520 1.654706038 .223421743 .113720866
17 -.7084508295 1.633742211 .187590327 .106120824
18 -.6792108264 1.624636765 .168458110 .103163311
19 -.6629750727 1.619788346 .162116156 .100008726
20 -.6567113469 1.616346790 .160000270 .101758375
21 -.6519996112 1.615211451 .154340860 .100256005
22 -.6480652449 1.610853010 .153129500 0.99288121e-1
23 -.6480652449 1.613032230 .152762136 0.99950337e-1
24 -.6480652449 1.614121840 .150580289 .101782534
25 -.6471350521 1.611600857 .150819407 0.99821809e-1
26 -.6471350521 1.612861348 .151919588 0.98938880e-1
27 -.6471350521 1.613491594 .150971471 .103998873
28 -.6469536576 1.609611163 .151777255 0.95719986e-1
29 -.6469536576 1.611551378 .150009370 0.97979208e-1
30 -.6469536576 1.612521486 .152625446 0.98608344e-1
31 -.6469536576 1.613006540 .149440186 0.99429022e-1
32 -.6470443548 1.613249067 .151703376 0.99711676e-1
33 -.6470443548 1.613370330 .150906114 .100915941
34 -.6468584565 1.612230890 .151288507 .100250484
35 -.6462966202 1.611551921 .149021874 0.98874363e-1
36 -.6465775383 1.611891406 .149156200 .100063384
37 -.6467179974 1.611891406 .149943409 0.98875446e-1
38 -.6467882269 1.611891406 .150832090 0.98776894e-158



Figure 4.2.3. Optimal Value Function (round 38):

x
K0.5 0.0 0.5 1.0 1.5

42.42

42.44

42.46

42.48

42.50

42.52

42.54

42.56

the solution he got in about thirty rounds. And the method could also be extended to

solve system with two controllable state variables.

This method has more advantage in the performance on the convergence and the speed

speed aspects. It has a more complex behavior than the one in Kumar’s case, since the

backward motion may happen. However, the backward motion has potential to speed up

the convergence of the process.

4.3. Limitation and Improvement

Our method is an extension of Kumar’s method. If we set the setup costs equal zero,

then the problem will degenerate to the problem of a singular control which is studied in

Kumar’s paper. The corresponding algorithm introduced in this study will perform exactly

the same way as Kumar’s algorithm. By doing the experiments we found a limitation which

is faced by both of the methods. In some situation, the peak point in the first derivative

function is very close to the boundary point. The new boundary points are then very likely

to the close to the old ones. As a result, the range of the inactive area shrinks very slow.
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In this situation we propose a greedy search strategy. For the right hand side of V ′ (x),

we choose a vertical line x = bk+1 such that the area within V ′ (x), x = bk+1, and y = c−

equals K−. A similar method can be applied to get ak+1. By using this search strategy,

we can avoid the situation described above. In some cases this search strategy has better

performance, but more back motions are involved. We postpone the convergence analysis

of this search method to future study.
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CHAPTER 5

The Impulse Control Model for Mutual Insurance Optimization
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Abstract. Motivated by our ongoing study of marine mutual insurance, we develop in

this paper a two-band impulse control model for optimal regulation of mutual reserve,

which has profound implications to a wide range of applications such as optimal regulation

of reserves of central banks. The Dynamic Programming characteristics of this two-band

impulse control leads to a Quasi-Variational Inequality (QVI) with two sides, one at a

lower boundary a and the other at an upper boundary b. It is analogous to the QVI of

inventory control, except that the (s, S) solution is replaced by a couple of (s, S), which

we call an (a,A,B, b) two-band policy with a < A ≤ B < b. After the proof of existence

of an optimal two-band policy by Constantinides and Richard [24] (1978), there has

been little advancement in either solution method or application of a two-band control

problem, except for two simplified problems: one of an inventory problem with a = 0

(i.e., no shortage allowable) by Harrison, Selke and Taylor [27] (1983); and the other of

exchange rate control in central banks with quadratic cost objective (i.e., symmetrical

holding and shortage costs) by Cadenillas [21] (1999). Under a general inventory cost

structure in a real-world mutual insurance setting, we obtain in this paper new findings

in analytical characteristics of an optimal (a,A;B, b) two-band policy, including: 1) Some

useful analytical properties of an optimal two-band policy are obtained, based on which an

optimal solution for mutual insurance is found to contain a combination of both cash and

credit reserves (i.e., a < 0 and b > 0.) 2) A novel computational optimization algorithm is

then developed to solve general non-symmetric reserve regulation problems, which enable

us to conduct, for the first time, comprehensive numerical sensitivity analysis on two-band

problems.

5.1. Introduction

This article is motivated by our ongoing study of marine mutual insurance which op-

erates on a two-way contingent option scheme, specifically a contingent refund option to

reduce the mutual reserve and a contingent call option to increase the reserve. Although
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this problem formulation with two-way contingent options had been considered in cash

management, see Constantinides-Richard [24] (1978) and in intervention of central bank

in exchange rate control, see Cadenillas-Zapatero [21] (1999), practical adoption of a two-

way option has not been identified, until a recent study of marine mutual insurance as

reported in Liu and Yuan [33] (2006). The aforementioned previous studies follow the

general methodology of Impulse Control introduced in the context of Inventory Control,

see Bensoussan-Lions [10] (1984), where only one-way option is found practically nec-

essary and the well known (s, S) policy (referred in this study as a single-band policy)

is justified completely by Impulse Control theory and Q.V.I. methodology. In the case

of cash management, two-way options (i.e., contingent call and refund) are theoretically

adoptable although not practically tractable, and the optimal policy can potentially take

the form of an (a,A;B, b) two-band policy with a < A ≤ B < b, where the system state is

regulated within an interval [a, b] with a < b by applying an (a,A) single-band policy at

the lower boundary a with A as order-up-to level, and applying a (B, b) policy at the up-

per boundary b with B as refund-down-to level. It is obviously more complex to solve for

an optimal (a,A;B, b) two-band policy than a single-band one, and as well as to develop

solution methods for a two-band impulse control problem. As a result, determination of

optimal parameters a,A,B and b is difficult and remains as a challenging research area.

This level of sophistication, plus the lack of practical interests found in real-world appli-

cations, are believed to be the main reasons why the two-band impulse control problem

has generated little research interest after the initial works mentioned above.

It is until Liu and Yuan [33] (2006) that the two-band impulse control is found to

have long been adopted in marine mutual insurance which boasts a sustaining success for

over 150 years. Under an asymmetric cost structure with both holding and shortage costs,
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a mutual insurance adopts two-way contingent options, namely, options of contingent

call and contingent refund, which are generally unenviable in a non-mutual insurance.

In mutual insurance practice, a contingent call collects cash contribution from mutual

members, on a contingent basis, to raise the mutual reserve when the reserve runs low;

while a contingent refund is devised to distribute excessive funds back to mutual members

when mutual reserve runs high. In other words, contingent options adopted in mutual

insurance are of a two-band impulse control. Based on our field study of P&I clubs,

which constitute the key form of marine mutual insurance around the world, the two-way

contingent options are so far implemented on an intuitive basis without a rigid theoretical

and computational framework, and so are the implementation of two-band policies, lacking

of a systematic and effective method of optimal solutions for them. On the other hand,

the two-band control is further found to entail profound implications to a wide range

of applications such as regulation of reserves of central banks, which further intensified

the need for development of attainable solution methods for optimal two-band control.

Motivated as such, this study is devoted to novel and effective solution methods of two-

band impulse control problems.

The key contribution of this study relates to obtaining much simplified QVI charac-

teristics of a two-band policy, which then enable us to develop effective computational

QVI solution algorithms for mutual insurance optimization in a real-world setting. The

reason why our approach developed in this study is so much simplified that can effectively

solve realistic problems lies in the fact that we decompose the problem and deal only with

one threshold problem at a time, whereas the initial approach has to consider the system

globally. Our method enables derivation of many interesting properties, which simplify

considerably the analytical as well as the numerical treatment. For example, our solution
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method for an optimal two-band policy needs to solve at most a system of 3 nonlinear

equations, 50% reduced from a system of 6 nonlinear equations as required in the work

of Cadenillas-Zapatero [21] (1999), of which a general solution remains intractable, either

analytically or computationally. The QVI characteristics and properties obtained in this

study lead to some major developments in optimization of mutual insurance. Under a

general inventory cost structure in a real-world mutual insurance setting, we obtain in

this study new findings in analytical characteristics of an optimal (a,A;B, b) two-band

policy, including: 1) An optimal policy solution for mutual insurance is found to contain

a combination of both cash and credit reserves (i.e., a < 0 and b > 0.) This finding can

be witnessed in the national stimulus measure by US Federal Reserve in facing the global

financial crisis of 2008, namely, a combination of cash injection of amount of b > 0 and

issuance of government bonds (a < 0). 2) A novel computational optimization algorithm

is then developed to solve general non-symmetric reserve regulation problems which are

unattainable in the previous studies. The techniques presented in this study are efficient

and practical, so as to provide solutions to real-world problems of mutual insurance and

reserve regulation as well.

We propose as future work to extend the methodology to approach more realistic

situations, such as under a multi-dimension diffusion state and treatment of jumps in

claims.

5.2. Impulse Control Model of Mutual Insurance Optimization

5.2.1. Formulation of the problem. Stemmed from mutual insurance, a mutual we

are considering here is generally referred to as a mutual fund reserve x(t) against collective

claims of a Wiener disturbance w(t). Consider a probability space (Ω, a,P) on which a
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standard Wiener process w (t) is defined. When there is no control we consider the reserve

process with a net premium rate µ as its drift:

(5.2.1) x (t) = x+ µt+ σw (t)

We define F t to be the filtration generated by w (t). An impulse control in terms of

two-way contingent option is an increasing sequence of F t-adapted stopping times τi and

contingent-option variables ξi 6= 0. We modify the trajectory of reserve (5.2.1) to get an

option-regulated reserve process by setting

x (τi) = x (τi − 0) + ξi

(5.2.2) x (t) = x (τi) + µ (t− τi) + σ (w (t)− w (τi))

for τi ≤ t < τi+1

x (0) = x

If we define

(5.2.3) ν (t) =
∑
i

ξi · 1Iτi≤t

than we can write for t ≥ 0

(5.2.4) x (t) = x+ µt+ σw (t) + ν (t)
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We next define a cost function to be optimized. We set

(5.2.5) f (x) = hx+ + px−

(5.2.6) g (ξ) = K+1Iξ>0 +K−1Iξ<0 + c+ξ+ + c−ξ−

where K+, K− > 0; ξ+ = ξ · 1Iξ>0 denotes a contingent call, and ξ− = ξ · 1Iξ<0 denotes a

contingent refund.

We next set

(5.2.7) Jx (ν) = E

[ˆ ∞
0

f (x (t)) e−rtdt+
∑
i

g (ξi) e−rτi
]

and we consider the value function

(5.2.8) V (x) = inf
ν
Jx (ν)

This is the formulation of two-band impulse control problem.

5.2.2. Dynamic programming under Impulse Control. If the value function

V (x) is C1 then the classical optimality principle approach leads to the following analogue

of Bellman equation

(5.2.9)

ΓV (x) ≤ f (x) = hx+ + px− ∀x

V (x) ≤MV (x)

(ΓV (x)− f (x)) (V (x)−MV (x)) = 0

where

(5.2.10) ΓV (x) = −1
2σ

2V ′′ (x)− µV ′ (x) + rV (x)
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MV (x) = inf
ξ 6=0

[g (ξ) + V (x+ ξ)]

This problem is called a Q.V.I. ( Quasi Variational Inequality ). We solve (5.2.9) and find

that it has a two band solution. Namely there exists a < 0, b > 0, such that

(5.2.11)

ΓV (x) = hx+ + px− a < x < b

V (x) = −c+x+K+ + inf
a≤y≤b

(c+y + V (y)) x ≤ a

V (x) = c−x+K− + inf
a≤y≤b

(−c−y + V (y)) x ≥ b

V (x) ∈ C1 (R)

Moreover, there exist two numbers A, B with

(5.2.12)
c+A+ V (A) = inf

a≤y≤b
(c+y + V (y))

−c−B + V (B) = inf
a≤y≤b

(−c−y + V (y))

We have a < A < B < b, but A can be positive or negative, as well as B.

We derive from these numbers a feedback ξ̂ (x) such that

(5.2.13) ξ̂ (x) =

∣∣∣∣∣∣∣∣∣∣∣
A− x if x ≤ a

0 if a ≤ x ≤ b

B − x if x ≥ b
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and from this feedback we attain an impulse control called two-band impulse control.

Namely

(5.2.14)

τ̂1 = inf
t≥0
{x (t) |x (t) < a or x (t) > b}

x (τ̂1) = x (τ̂1 − 0) + ξ̂ (x (τ̂1 − 0))

τ̂2 = inf
t≥τ̂1
{x (t) |x (t) < a or x (t) > b}

x (τ̂2) = x (τ̂2 − 0) + ξ̂ (x (τ̂2 − 0))

· · ·

Let ν̂x be this impulse control ( depends on the initial condition x ). We note that

x (τ̂i) = A or B, ∀i. A standard argument ( verification argument ) shows that

Jx (ν̂x) = V (x)

and then ν̂x is an optimal impulse control.

5.2.3. QVI Characteristics of Mutual Insurance Optimization. Recall that

the functions f(x) and g (x) are given respectively as,

(5.2.15) f(x) = hx+ + px−

(5.2.16) g (ξ) = K+1Iξ>0 +K−1Iξ<0 + c+ξ+ + c−ξ−

and that the M operator is defined as

(5.2.17) MV (x) = inf
ξ 6=0

[g (ξ) + V (x+ ξ)]
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Under a two-band impulse control (5.2.14), for a ≤ 0 and b ≥ 0 we set

(5.2.18) P (a, b)ϕ = inf
a≤x≤b

(
c+x+ ϕ (x)

)

(5.2.19) Q (a, b)ϕ = inf
a≤x≤b

(
−c−x+ ϕ (x)

)

Then, the mutual insurance problem becomes to find V (x) ∈ C1 such that

(5.2.20)

ΓV (x) = hx+ + px−, a.e. , a < x < b

V (x) = −c+x+K+ + P (a, b)V, x ≤ a

V (x) = c−x+K− +Q(a, b)V, x ≥ b

together with the continuity condition

(5.2.21)

V (a) = −c+a+K+ + P (a, b)V

V (b) = c−b+K− +Q(a, b)V

V ′(a) = −c+

V ′(b) = c−

The equalities in (5.2.20) and (5.2.21) are referred to as QVI characteristics associated

with two-band impulse control problem, including mutual insurance optimization and

general reserve regulation.

5.2.4. Solution of the QVI. We now give the conditions under which a solution of

the two band control problem solves the Q.V.I. We state
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Proposition 7. If V (x) ∈ C1 is a solution of (5.2.20) and (5.2.21), such that

(5.2.22) V ′′ (a+ 0) ≤ 0 , V ′′ (b− 0) ≤ 0

(5.2.23) V (x) ≤ −c+x+K+ + inf
x<y<b

(
V (y) + c+y

)
∀x ∈ [a, b]

(5.2.24) V (x) ≤ c−x+K− + inf
a<y<x

(
V (y)− c−y

)
∀x ∈ [a, b]

then it is a solution of Q.V.I. (5.2.9).

Proof. We prove that

(5.2.25) V (x) = MV (x) ∀x ≤ a

(5.2.26) V (x) = MV (x) ∀x ≥ b

Let us prove the first relation. Take x ≤ a then we first have

inf
y≥x

(c+y + V (y)) = P (a, b)V

Indeed we notice that

inf
y≥x

(c+y + V (y)) = inf
x≤y≤b

(c+y + V (y))

since for y > b, V (y) + c+y is affine increasing. Next for x ≤ y ≤ a, one has

c+y + V (y) = K+ + P (a, b)V > P (a, b)V
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Therefore

inf
x≤y≤b

(c+y + V (y)) = inf
a≤y≤b

(c+y + V (y)) = P (a, b)V

Hence from (5.2.23) for x ≤ a we have

(5.2.27) V (x) = −c+x+K+ + inf
y≥x

(c+y + V (y))

But +3pt

MV (x) = min
[
K+ + inf

y>x
(c+y + V (y))− c+x,K− + inf

y<x
(−c−y + V (y)) + c−x

]

= min
[
K+ + inf

y≥x
(c+y + V (y))− c+x,K− + inf

y<x
(−c−y + V (y)) + c−x

]

and from (5.2.27)

MV (x) = min
[
V (x) , K− + inf

y<x
(−c−y + V (y)) + c−x

]

But

K− + inf
y<x

(−c−y + V (y)) + c−x = K− + inf
y<x

(
−c−y − c+y +K+ + P (a, b)V

)
+ c−x

= K− +K+ − c+x+ P (a, b)V

= K− + V (x) > V (x)

and the first relation (5.2.25) is proved.

A similar proof is done for the second relation (5.2.26). Therefore the product condition

in (5.2.9) is satisfied.

We next have to prove

ΓV (x) ≤ f (x) ∀x ≤ a or x ≥ b
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Consider x ≤ a, we have to prove

µc+ + r
(
−c+x+K+ + P (a, b)V

)
≤ −px

or

µc+ + pa+ rV (a) ≤ −
(
p− rc+

)
(x− a)

Now

−1
2σ

2V ′′ (a)− µc+ + rV (a) + pa = 0

and by notice of the of the first condition (5.2.22)

µc+ + rV (a) + pa = 1
2σ

2V ′′ (a) ≤ 0 ≤ −
(
p− rc+

)
(x− a)

For x ≥ b, we have to prove

−µc− + r
(
−c−x+K− +Q (a, b)V

)
≤ hx

or

−µc− + r
(
V (b) + c−x− c−b

)
≤ hx

or

−µc− + rV (b)− hb ≤
(
h− rc−

)
(x− b)

or
1
2σ

2V ′′ (b) ≤
(
h− rc−

)
(x− b)

which is satisfied thanks to the second condition (5.2.22).

We finally have to check that

V (x) ≤MV (x) ∀x ∈ (a, b)
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which is equivalent to check

V (x) ≤ −c+x+K+ + inf
x<y<b

(
V (y) + c+y

)

V (x) ≤ c−x+K− + inf
a<y<x

(
V (y)− c−y

)
which follows directly from the assumption (5.2.23), (5.2.24).

The proof has been completed �

5.2.5. Functions v, v+, v−. Consider v (x) = V ′ (x). We derive from (5.2.20),

(5.2.21) the problem for v, namely

(5.2.28)

Γv (x) = f ′ (x) a < x < b

v (x) = −c+x ≤ a

v (x) = c−x ≥ b

and the continuity condition

(5.2.29) 0 = K+ + inf
a≤x≤b

ˆ x

a

(
v (ξ) + c+

)
dξ

(5.2.30) 0 = −K− + sup
a≤x≤b

ˆ b

x

(
v (ξ)− c−

)
dξ

We next define
v+ (x) = v (x) + c+

v− (x) = v (x)− c−
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Then we derive the problem for v+, v−

(5.2.31)
Γv+ (x) = f ′ (x) + rc+

v+ (a) = 0 v+ (b) = c+ + c−

(5.2.32)
Γv− (x) = f ′ (x)− rc−

v− (a) = −
(
c+ + c−

)
v− (b) = 0

and (5.2.29), (5.2.30) become

(5.2.33) 0 = K+ + inf
a≤x≤b

ˆ x

a

v+ (ξ) dξ

(5.2.34) 0 = −K− + sup
a≤x≤b

ˆ b

x

v− (ξ) dξ

The method is to solve (5.2.31), (5.2.32) for any fixed values of a, b and look for a, b

solutions of the algebraic equations

(5.2.35) F (a, b) = 0

(5.2.36) G (a, b) = 0

with

(5.2.37) F (a, b) = K+ + inf
a≤x≤b

ˆ x

a

v+ (ξ; a, b) dξ

76



(5.2.38) G (a, b)−K− + sup
a≤x≤b

ˆ b

x

v− (ξ; a, b) dξ

We shall make the assumptions

(5.2.39) p− rc+ > 0 h− rc− > 0

Note that in order to obtain a solution of the Q.V.I. ((5.2.9)), we need to check that the

condition of Proposition 7 are satisfied, namely

(5.2.40)
(
v+
)′

(a; a, b) ≤ 0
(
v−
)′

(b; a, b) ≤ 0

(5.2.41) 0 ≤ K+ + inf
x<y<b

ˆ y

x

v+ (ξ; a, b) dξ, ∀x ∈ [a, b]

(5.2.42) 0 ≥ K− + sup
a<y<x

ˆ x

y

v− (ξ; a, b) dξ, ∀x ∈ [a, b]

5.2.6. The Functions v+(x; a, b). Let ρ1, ρ2 be the roots of the second order equation

−1
2σ

2ρ2 − µρ+ r = 0

namely

ρ1 = −µ+
√
µ2 + 2rσ2

σ2

ρ2 = −µ−
√
µ2 + 2rσ2

σ2

We note that

ρ1 < 0, ρ2 > 0
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and

ρ1 + ρ2 = −2µ
σ2

ρ1ρ2 = −2r
σ2

We have an analytic formula for the function v+ (x; a, b), namely+3pt

(5.2.43)
v+(x; a, b) = Γ+(a, b)(exp ρ1(x− a)− exp ρ2(x− a))

− 2
σ2(ρ1 − ρ2)

ˆ x

a

(f ′ + rc+)(ξ)(exp ρ1(x− ξ)− exp ρ2(x− ξ))dξ

with

(5.2.44) Γ+(a, b) = Z(a, b)
exp ρ1(b− a)− exp ρ2(b− a)

(5.2.45) Z(a, b) = c+ + c−+ 2
σ2(ρ1 − ρ2)

ˆ b

a

(f ′+ rc+)(ξ)(exp ρ1(b− ξ)− exp ρ2(b− ξ))dξ

Lemma 8. Under the first assumption (5.2.39), the function Z (a, b)is increasing in a.

Moreover Z (0, b) > 0, Z (−∞, b) = −∞.

Proof. Note that

∂Z

∂a
= 2
σ2(ρ1 − ρ2)(p− rc+)(exp ρ1(b− a)− exp ρ2(b− a)) > 0

Clearly Z (0, b) > 0 and for x < 0

(f ′ + rc+)(x)exp ρ1(b− x)− exp ρ2(b− x)
ρ1 − ρ2

= −
(
p− rc+

) exp ρ1(b− x)− exp ρ2(b− x)
ρ1 − ρ2

→ −∞ as x→ −∞

hence Z (−∞, b) = −∞ �
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It follows that Z(a, b) ( and thus Γ+(a, b) ) vanish at a unique point a0 (b) < 0, ∀b.

We have Γ+(a, b) < 0 for a > a0 (b), Γ+(a, b) > 0 for a < a0 (b) ( Γ+(a, b) and Z(a, b) have

opposite signs ).

Note that

(5.2.46)

(
v+
)′

(a; a, b) = Γ+(a, b)(ρ1 − ρ2) ≤ 0 if a ≤ a0 (b)

and > 0 if a > a0 (b)

Therefore the first condition (5.2.40) is satisfied if a ≤ a0 (b), and not satisfied otherwise.

This is a first restriction on the choice of the pair a, b.

We next state the following essential result:

Proposition 9. Under the first assumption (5.2.39), we have

a ≥ a0 (b)⇒ v+ (x; a, b) > 0 ∀ x ∈ (a, b]

If a ≤ a0 (b), there exists a unique A (a, b) such that v+ (x; a, b) < 0 ∀ x ∈ (a,A) and

v+ (x; a, b) > 0 ∀ x ∈ (A, b], with v+ (A; a, b) = 0.

Proof. Suppose first a ≥ a0 (b), then (v+)′ (a; a, b) ≥ 0. Then

−1
2σ

2
(
v+
)′′

(a; a, b) = µ
(
v+
)′

(a; a, b)−
(
p− rc+

)

hence (v+)′′ (a; a, b) > 0, Therefore there exists a small interval a, a + ε, on which

(v+)′ (x; a, b) > 0. We claim there can not be a value x̄ ∈ (a, b) such that v+ (x; a, b) = 0.

If such points exist, consider the smallest one called x̄. Then v+ (x; a, b) > 0 for x ∈ (a, x̄).

Necessarily x̄ > 0, otherwise there will be a local positive maximum in (a, x̄) hence in

(a, 0). This is impossible by maximum principle considerations. Indeed, for such a point
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x∗ we shall have Γv+(x∗; a, b) > 0 which contradicts Γv+(x∗; a, b) = −p+ rc− < 0. There-

fore x̄ > 0. Moreover (v+)′(x̄; a, b) < 0. Since v+(b; a, b) > 0 the function v+(x; a, b) admits

a negative minimum in (0, b) which is impossible by maximum principle considerations.

Indeed, in such a point, called also x∗ to save notation, we have Γv+(x∗; a, b) < 0 which is

a contradiction with Γv+(x∗; a, b) = h+ rc+ > 0.

We have then proved that v+ (x; a, b) > 0 ∀ x ∈ (a, b]. Hence the first part of the

proposition has been proved. Suppose now that a < a0 (b). Then (v+)′(a; a, b) < 0.

It follows that at least on a small interval (a, a + ε), v+(x; a, b) < 0, ∀x ∈ (a, a + ε).

Since v+(b; a, b) > 0 the function must vanish in (a, b). Let us call A(a, b) the first value

in (a, b) for which v+(b; a, b) > 0. In fact, we are going to show that A is unique and

that v+(x; a, b) > 0,∀x ∈ (A, b]. The fact that v+(x; a, b) ≤ 0,∀x ∈ (a,A) follows from

the definition of A. Suppose that the statement is not true, then there will be points

x ∈ (A, b) for which v+(x; a, b) < 0. There cannot be a situation where v+(x; a, b) = 0

while the function does not become strictly negative. This is because the derivative is

continuous. Therefore the function must have a strictly negative minimum, denoted by x̂

in the interval (A, b). This minimum cannot lie on (0, b). This would contradict again the

maximum principle. Indeed Γv+(x̂; a, b) < 0 and thus cannot be equal to h + rc+. This

situation implies that Amust be strictly negative. In addition, note that (v+)′(A; a, b) > 0.

Therefore, there must be also a positive maximum on (A, 0). This is impossible, by the

same reasoning done at the beginning of the proof. �

Proposition 9 implies that the first condition (5.2.40) is satisfied whenever a ≥ a0 (b)

and not satisfied otherwise. In view of (5.2.46), it follows that having simultaneously the
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first condition (5.2.40) and (5.2.41) on v+(x; a, b) to be satisfied impose the unique choice

(5.2.47) a = a0 (b)

We proceed by stating properties of the curve a0 (b). We first perform a complete calcu-

lation of Z (a, b) defined by (5.2.45). We have first+3pt

(5.2.48)
Z(a, b) = −h− rc

−

r
+ 1
r(ρ2 − ρ1) {(p+ h) (ρ2 exp ρ1b− ρ1 exp ρ2b)

−
(
p− rc+

)
(ρ2 exp ρ1(b− a)− ρ1 exp ρ2(b− a))

}
and thus a0 (b) is the unique solution of

(5.2.49)

ρ2 exp ρ1(b−a0 (b))−ρ1 exp ρ2(b−a0 (b)) = −(h− rc−) (ρ2 − ρ1)
p− rc+ + p+ h

p− rc+ (ρ2 exp ρ1b− ρ1 exp ρ2b)

This equation defies uniquely a0 (b) < 0 ∀b ∈ [0,∞) . We have in particular for b = 0

(5.2.50) ρ2 exp−ρ1a0 (0)− ρ1 exp−ρ2a0 (0) = p+ rc−

p− rc+ (ρ2 − ρ1)

To get the value a0 (∞)we perform a limit argument. We can write from (5.2.60) +3pt

ρ2 exp ((ρ1 − ρ2) b− ρ1a0 (b))− ρ1 exp−ρ2a0 (b) = −h− rc
−

p− rc+ (ρ2 − ρ1) exp−ρ1b

+ p+ h

p− rc−
(ρ2 exp (ρ1 − ρ2) b− ρ1)

and letting b→∞ we obtain

(5.2.51) exp−ρ2a0 (∞) = p+ h

p− rc+
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The function a0 (b) is not monotone. Using (5.2.60) we can compute

(5.2.52) 1− a′0 (b) = p+ h

p− rc+
exp ρ1b− exp ρ2b

exp ρ1 (b− a0 (b))− exp ρ2 (b− a0 (b))

The right hand side is positive, so we have

(5.2.53) a′0 (b) ≤ 1, a′0 (0) = 1, a′0 (∞) = 0

We are going to check the following property

Proposition 10. Under the first assumption (5.2.39) the function a0 (b) is uniquely

defined on [0,∞) by equation (5.2.49). We have a0 (b) < 0 ∀b ∈ [0,∞). The values and

a0 (0) and a0 (∞) are given by (5.2.50), (5.2.51). We also have (5.2.53). There exists a

unique value b∗ such that a′0 (b∗) = 0 a′0 (b) > 0 0 ≤ b < b∗ and a′0 (b) < 0 for b > b∗. The

function a0 (b) increases on (0, b∗) from a0 (0) to a0 (b∗) then decreases for b > b∗ from

a0 (b∗) to a0 (∞).

Proof. From formula (5.2.52) the points where a′0 (b) = 0 must satisfy

(5.2.54) 1 = p+ h

p− rc+
exp ρ1b− exp ρ2b

exp ρ1 (b− a0 (b))− exp ρ2 (b− a0 (b))

So we get, combining (5.2.54) and (5.2.60)

exp−ρ2a0 (b) = p+ h− (h− rc−) exp−ρ2b

p− rc+

exp−ρ1a0 (b) = p+ h− (h− rc−) exp−ρ1b

p− rc+
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Eliminating a0 (b), we obtain the equation for b, namely

(5.2.55)(
p+ h−

(
h− rc−

)
exp−ρ2b

)− ρ1
ρ2
(
p+ h−

(
h− rc−

)
exp−ρ1b

)
=
(
p− rc+

)1− ρ1
ρ2

Let ψ (b) be the function to the left hand side of (5.2.55). We have

ψ′ (b) = ρ1
(
h− rc−

)
(p+ h)

(
p+ h−

(
h− rc−

)
exp−ρ2b

)− ρ1
ρ2
−1

(exp−ρ1b− exp−ρ2b) < 0

hence ψ (b) decreases from (p+ rc−)1− ρ1
ρ2 to −∞. So there exists a unique value b∗ > 0

such that (5.2.55) holds. This is the unique point with finite value such that a′0 (b) = 0.

Since a′0 (0) = 1, it follows that a′0 (b) > 0 for b ∈ [0, b∗). It is negative for b ∈ (b∗,∞).

Indeed we can compute the derivative a′′0 (b∗). We have +3pt

− a′′0 (b) = p+ h

p− rc+ {(ρ1 exp ρ1b− ρ2 exp ρ2b) (exp ρ1 (b− a0 (b))− exp ρ2 (b− a0 (b)))

− (exp ρ1b− exp ρ2b) (ρ1 exp ρ1 (b− a0 (b))− ρ2 exp ρ2 (b− a0 (b))) (1− a′0 (b))}

· 1
(exp ρ1 (b− a0 (b))− exp ρ2 (b− a0 (b)))2

For b = b∗, we have, since a′0 (b∗) = 0

(5.2.56)

− a′′0 (b∗) = p+ h

p− rc+ (ρ1 − ρ2) exp (ρ1 + ρ2) b∗ exp−ρ1a0 (b∗)− exp−ρ2a0 (b∗)
(exp ρ1 (b∗ − a0 (b∗))− exp ρ2 (b∗ − a0 (b∗)))2

hence a′′0 (b∗) < 0. Therefore for b ∈ (b∗ + ε) we have a′0 (b) < 0. But it cannot have a 0

on (b∗,∞). So a′0 (b) remain negative on (b∗,∞). This completes the proof. �
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5.2.7. The function v− (x; a, b). Although v− (x; a, b) = v+ (x; a, b)− (c+ + c−), it is

preferable to use (5.2.31). We get in this way the formulas

(5.2.57)
v−(x; a, b) =Γ−(a, b)(exp ρ1(x− b)− exp ρ2(x− b))

+ 2
σ2(ρ1 − ρ2)

ˆ b

x

(f ′ − rc−)(ξ)(exp ρ1(x− ξ)− exp ρ2(x− ξ))dξ

with

Γ−(a, b) = Z̃(a, b)
exp ρ1(a− b)− exp ρ2(a− b)

(5.2.58) Z̃(a, b) = −(c++c−)+ 2
σ2(ρ1 − ρ2)

ˆ b

a

(f ′−rc−)(ξ)(exp ρ1(a−ξ)−exp ρ2(a−ξ))dξ

We have the equivalent of Lemma 8

Lemma 11. Under the second assumption (5.2.39), the function Z̃(a, b) is increasing

in b. Moreover Z̃(a,+∞) = +∞ and Z̃(a, 0) < 0.

Proof. We compute

∂Z̃

∂b
(a, b) = − 2

σ2(ρ1 − ρ2)(h− rc−)(exp ρ1(a− b)− exp ρ2(a− b)) > 0

�

It follows that Γ−(a, b) vanishes in a unique point b0 (a) > 0 ∀a. We have Γ−(a, b) < 0

for b < b0 (a) and Γ−(a, b) > 0 for b > b0 (a) ( Γ−(a, b) and Z̃(a, b) have the same sign ).

We then note that

(5.2.59)

(
v−
)′

(b; a, b) = (ρ1 − ρ2)Γ−(a, b) ≤ 0 if b ≥ b0 (a)

and > 0 if b < b0 (a)
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Therefore the second condition 5.2.40 is satisfied if b ≥ b0 (a), and not satisfied otherwise.

We proceed with the equivalent of Proposition 9, stated without proof

Proposition 12. Under the second assumption (5.2.39), we have

b ≤ b0 (a)⇒ v− (x; a, b) < 0 ∀ x ∈ [a, b)

If b > b0 (a), there exists a unique B (a, b) such that v− (x; a, b) > 0 ∀ x ∈ (B, b) and

v− (x; a, b) < 0 ∀ x ∈ [a,B), with v− (B; a, b) = 0.

We now study the properties of the curve b = b0 (a) as we did for the curve a = a0 (b).

We compute completely Z̃(a, b). We get from (5.2.58)

Z̃(a, b) = p− rc+

r
+ 1
r(ρ1 − ρ2) {(p+ h) (ρ2 exp ρ1a− ρ1 exp ρ2a)

−
(
h− rc−

)
(ρ2 exp ρ1(a− b)− ρ1 exp ρ2(a− b))

}
and thus b0 (a) is the unique solution of

(5.2.60)

ρ2 exp ρ1(a−b0 (a))−ρ1 exp ρ2(a−b0 (a)) = −(p− rc+) (ρ2 − ρ1)
h− rc−

+ p+ h

h− rc−
(ρ2 exp ρ1a− ρ1 exp ρ2a)

This equation defines uniquely b0 (a) > 0 ∀a ∈ (∞, 0] . In particular for a = 0, we get

(5.2.61) ρ2 exp−ρ1b0 (0)− ρ1 exp−ρ2b0 (0) = (ρ2 − ρ1) h+ rc+

h− rc−

The value b0 (−∞) is obtained from+3pt

ρ2 exp−ρ1b0 (a)− ρ1 exp ((ρ2 − ρ1) a− ρ2b0 (a)) = −p− rc
+

h− rc−
(ρ2 − ρ1) exp−ρ1a

+ p+ h

h− rc−
(ρ2 − ρ1 exp (ρ2 − ρ1) a)
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and letting a tend to −∞ which yields

(5.2.62) exp−ρ1b0 (−∞) = p+ h

h− rc−

The derivative b′0 (a) is given by

(5.2.63) 1− b′0 (a) = p+ h

h− rc−
exp ρ1a− exp ρ2a

exp ρ1 (a− b0 (a))− exp ρ2 (a− b0 (a))

We have

(5.2.64) b′0 (a) ≤ 1, b′0 (0) = 1, b′0 (−∞) = 0

We next state the analogue of Proposition 10

Proposition 13. Under the second assumption (5.2.39) the function b0 (a) is uniquely

defined on (−∞, 0] by equation (5.2.60). We have b0 (a) > 0 ∀a ∈ (−∞, 0]. The values

b0 (0) and b0 (−∞)are given by (5.2.61), (5.2.62). We have also (5.2.64). There exists a

unique a∗ such that b′0 (a∗) = 0 b′0 (a) > 0 for a∗ < a ≤ 0. and b′0 (a) < 0 for a < a∗.

The function b0 (a) decreases on (−∞, a∗) from b0 (−∞) to b0 (b∗) then increases on (a∗, 0)

from b0 (b∗) to b0 (0) .

Proof. Similar to that of Proposition 10, we only give the relation defining a∗. The

points such that b′0 (a) = 0 satisfy ( from (5.2.63) )

(5.2.65) 1 = p+ h

h− rc−
exp ρ1a− exp ρ2a

exp ρ1 (a− b0 (a))− exp ρ2 (a− b0 (a))

We combine (5.2.65) and (5.2.60) which yields to

(
h− rc−

)1− ρ1
ρ2 =

(
p+ h−

(
p− rc+

)
exp−ρ1a

)− ρ1
ρ2
(
p+ h−

(
p− rc+

)
exp−ρ2a

)
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which is the analogue of (5.2.55). This equation has a unique solution a∗. We can also

compute

(5.2.66)

−b′′0 (a∗) = p+ h

h− rc−
(ρ1 − ρ2) exp (ρ1 + ρ2) a∗ exp−ρ1b0 (a∗)− exp−ρ2b0 (a∗)

(exp ρ1 (a∗ − b0 (a∗))− exp ρ2 (a∗ − b0 (a∗)))2 < 0

hence b′′0 (a∗) > 0. Therefore on (a∗ − ε, a∗) we have b′0 (a) < 0 if ε is sufficiently small.

Since b′0 (a) cannot vanish on (−∞, a∗), then it remains negative, and the proof has been

completed. �

5.3. Choice of a, b

5.3.1. Functions A (a, b), B (a, b). The functions v+ (x; a, b), v− (x; a, b) are as those

defined previously in sections 5.2.6 and 5.2.7. Using Proposition 9, we have defined, when

a < a0 (b), a unique A (a, b) such that

(5.3.1) v+ (A; a, b) = 0 if a < a0 (b)

Since v+ (x; a, b) > 0 for a < x ≤ b, in case a ≥ a0 (b) and v+ (a; a, b) = 0, it is convenient

to set

(5.3.2) A (a, b) = a for a ≥ a0(b)

Therefore A (a, b) is uniquely defined by formulas (5.3.1), (5.3.2), ∀a, b. Similarly, using

Proposition (12), we define a unique B (a, b) by formulas

(5.3.3) v− (B; a, b) = 0 if b > b0 (a)
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and

(5.3.4) B (a, b) = b for b ≤ b0(a)

5.3.2. Verification of Conditions. We know from (5.2.46) and (5.2.59) that we

must have

(5.3.5) a ≤ a0 (b) b ≥ b0(a)

in order to verify (5.2.40). Next we note that

(5.3.6) F (a, b) = K+ +
ˆ A(a,b)

a

v+ (ξ; a, b) dξ

(5.3.7) G (a, b) = −K− +
ˆ b

B(a,b)
v− (ξ; a, b) dξ

Next for x ∈ [a,A]

K+ + inf
x<y<b

ˆ y

x

v+ (ξ; a, b) dξ =
ˆ A

x

v+ (ξ; a, b) dξ +K+

≥
ˆ b

a

v+ (ξ; a, b) dξ +K+ = 0

and for x ∈ [A, b],

K+ + inf
x<y<b

ˆ y

x

v+ (ξ; a, b) dξ = K+ > 0

Therefore (5.2.41) is satisfied. Similarly for x ∈ [B, b]

−K− + sup
a<y<x

ˆ x

y

v− (ξ; a, b) dξ = −K− +
ˆ x

B

v− (ξ; a, b) dξ

≤ −K− +
ˆ b

B

v− (ξ; a, b) dξ = 0
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and for x ∈ [a,B]

−K− + sup
a<y<x

ˆ x

y

v− (ξ; a, b) dξ = −K− < 0

Therefore conditions (5.2.41), (5.2.42) are satisfied.

So if we find a, b verifying (5.3.5) and (5.2.35), (5.2.36) and consider v+ (x; a, b),

v− (x; a, b) and

v (x; a, b) = v+ (x; a, b)− c+

= v− (x; a, b) + c−

then the function V (x) defined by +3pt

V (x) = f (x) + µv (x) + 1
2σ

2v′ (x) x ∈ (a, b)

V (a) = f (a)− µc+ + 1
2σ

2v′ (a)

V (b) = f (b) + µc− + 1
2σ

2v′ (b)

V (x) = −c+x+ V (a) + c+a x ≤ a

V (x) = c− + V (b)− c−b x ≥ b

is the solution of the QVI ((5.2.9)).

5.3.3. Functions a (b) and b (a). We first need to study how the function v (x; a, b)

behaves in a, b, for x fixed ( so for a in (−∞, x) and b in (∞, x) when x is fixed).

We have+3pt
∂v

∂a
(x; a, b) = ∂v+

∂a
(x; a, b) = ∂v−

∂a
(x; a, b)

∂v

∂b
(x; a, b) = ∂v+

∂b
(x; a, b) = ∂v−

∂b
(x; a, b)
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Using (5.2.57) we have

∂v+

∂a
(x; a, b) = ∂Γ−

∂a
(a, b)(exp ρ1(x− b)− exp ρ2(x− b))

and
∂v+

∂a
(a; a, b) = ∂Γ−

∂a
(a, b)(exp ρ1(a− b)− exp ρ2(a− b))

On the other hand since v+ (a; a, b) = 0, we have also

∂v+

∂x
(a; a, b) + ∂v+

∂a
(a; a, b) = 0

From (5.2.46) we have
∂v+

∂x
(a; a, b) = Γ+ (a, b) (ρ1 − ρ2)

Therefore
∂v+

∂a
(a; a, b) = Γ+ (a, b) (ρ2 − ρ1)

hence
∂Γ−
∂a

(a, b) = Γ+ (a, b) (ρ2 − ρ1)
exp ρ1(a− b)− exp ρ2(a− b)

and thus we have attained

∂v+

∂a
(x; a, b) = Γ+ (a, b) (ρ2 − ρ1) (exp ρ1(x− b)− exp ρ2(x− b))

exp ρ1(a− b)− exp ρ2(a− b)

So we can state that+3pt

(5.3.8)

∂v+

∂a
(x; a, b) > 0 if a < a0 (b)

∂v+

∂a
(x; a, b) < 0 if a > a0 (b)
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We can obtain a simpler formula for ∂v−

∂b
(x; a, b)

∂v−

∂b
(x; a, b) = ∂v+

∂b
(x; a, b)

= ∂Γ+

∂b
(a, b)(exp ρ1(x− a)− exp ρ2(x− a))

Using

v− (b; a, b) = 0

We can write
∂v−

∂x
(b; a, b) + ∂v−

∂b
(b; a, b) = 0

hence
∂v−

∂b
(b; a, b) = Γ− (a, b) (ρ2 − ρ1)

and
∂Γ+

∂b
(a, b) = Γ− (a, b) (ρ2 − ρ1)

exp ρ1(b− a)− exp ρ2(b− a)

Finally
∂v−

∂b
(x; a, b) = Γ− (a, b) (ρ2 − ρ1) (exp ρ1(x− a)− exp ρ2(x− a))

exp ρ1(b− a)− exp ρ2(b− a)

So we can state that+3pt

(5.3.9)

∂v−

∂b
(x; a, b) > 0 for b > b0 (a)

∂v−

∂b
(x; a, b) < 0 for b < b0 (a)

We can now state
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Proposition 14. The function F (a, b), G (a, b)defined by (5.2.37), (5.2.38) satisfy+3pt

(5.3.10)

∂F

∂a
(a, b) = 0 if 0 ≥ a ≥ a0 (b)

∂F

∂a
(a, b) > 0 if 0 ≤ a < a0 (b)

(5.3.11)

∂G

∂b
(a, b) = 0 if b ≤ b0 (a)

∂G

∂b
(a, b) > 0 if b > b0 (a)

Proof. We first note that F (a, b) = K+ if a ≥ a0 (b) and G (a, b) = −K− if b ≤ b0 (a)

Moreover from formulas (5.3.6), (5.3.7) we have for a < a0 (b) and b > b0 (a)

∂F

∂a
(a, b) =

ˆ A(a,b)

a

∂v+

∂a
(ξ; a, b)dξ > 0

from (5.3.8). Similarly for b > b0 (a)

∂G

∂b
(a, b) =

ˆ b

B(a,b)

∂v−

∂b
(ξ; a, b)dξ > 0

from (5.3.9). �

Proposition 15. There exists a unique a (b) < a0 (b) such that

(5.3.12) F (a (b) , b) = 0

and a unique b (a) > b0 (a) such that

(5.3.13) G (a, b (a)) = 0
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Proof. We have F (a0 (b) , b) = K+. We shall check that F (−∞, b) = −∞. Since

F (a, b) is monotone increasing in a for fixed b then the point a (b) is uniquely defined.

Similarly G (a, b0 (a)) = −K−. We shall check that G (a,+∞) = +∞. Since G (a, b) is

monotone increasing in b for fixed a the point b (a) is uniquely defined.

we now prove that

(5.3.14) F (−∞, b) = −∞

the proof of G (a,+∞) = +∞ is similar. We can compute explicitly v+ (x;−∞, b) and

obtain+3pt

v+ (x;−∞, b) = −p− rc
+

r
+
(
c+ + c−

)
exp ρ2 (x− b)− p− rc+

r (ρ2 − ρ1) exp ρ2 (x− b) (ρ1 exp ρ2b− ρ2 exp ρ1b)

+ h+ rc+

r (ρ2 − ρ1) exp ρ2 (x− b) (ρ1 (1− exp ρ2b)− ρ2 (1− exp ρ1b))

for x ≤ 0

v+ (x;−∞, b) =
(
c+ + c−

)
exp ρ2 (x− b)− p− rc+

r (ρ2 − ρ1) [exp ρ2 (x− b) (ρ1 exp ρ2b− ρ2 exp ρ1b)

+ρ2 exp ρ1x− ρ1 exp ρ2x] + h+ rc+

r (ρ2 − ρ1) [exp ρ2 (x− b) (ρ1 (1− exp ρ2b)− ρ2 (1− exp ρ1b))

+ (ρ2 (1− exp ρ1x)− ρ1 (1− exp ρ2x))]

Therefore v+ (x;−∞, b) → −p−rc+
r

as x → −∞ and v+ (b;−∞, b) = c+ + c−. Therefore

the point A (−∞, b) is well defined ( as we know ) and finite. It follows that
ˆ A(−∞,b)

−∞
v+(ξ;−∞, b)dξ = −∞

and thus (5.3.14) holds. �
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5.3.4. Finding a, b. As we have seen in section 5.3.2, the choice of a, b boils down to

solving (5.2.35) and (5.2.36) with a ≤ a0 (b) and b ≥ b0 (a). This is equivalent to finding

a crossing point of the curves a (b) and b (a).

So we must find â, b̂ such that

(5.3.15) â = a
(
b̂
)

; b̂ = b (â)

The existence of such a pair is a consequence of the property

(5.3.16) b (−∞) > 0 finite

Indeed if (5.3.16) is true the function

u (a) = a (b (a))− a

is +∞ for a = −∞ and u (0) = a (b (0)) < 0. Since it is a continuous function of a it

crosses the axis u (a) = 0.

Let us check (5.3.16). Assume that b (−∞) = +∞, then we must have G (−∞,+∞) =

0.

We are going to prove that

(5.3.17) G (−∞,+∞) = +∞

and thus we obtain a contradiction.
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To prove (5.3.17) we first note that+3pt

v− (x;−∞,+∞) = h− rc−

r
−

(p+ h) ρ2

r (ρ2 − ρ1) exp ρ1x x > 0

v− (x;−∞,+∞) = −p+ rc−

r
−

(p+ h) ρ1

r (ρ2 − ρ1) exp ρ2x x < 0

This function if monotone increasing from −p+rc−
r

to h−rc−
r

, so the value B (−∞,+∞) is

finite. It follows that

G (−∞,+∞) = −K− +
ˆ +∞

B(−∞,+∞)
v−(ξ;−∞,+∞)dξ = +∞

hence (5.3.17) is verified.

�

The pair â, b̂ solution of (5.3.15) and the corresponding function V
(
x; â, b̂

)
constitute

the solution referred to in Theorem.

5.4. Properties of a (b) and b (a)

5.4.1. Monotonicity properties. The curves a (b) and b (a) are not monotone, but

we can derive some properties. From (5.3.12) we can obtain

∂F

∂a
(a(b), b)a′(b) + ∂F

∂b
(a(b), b) = 0

Since a (b) < a0 (b), we have from (5.3.10)

∂F

∂a
(a(b), b) > 0
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Next
∂F

∂b
(a, b) =

ˆ A(a,b)

a

∂v+

∂b
(ξ; a, b)dξ

=
ˆ A(a,b)

a

∂v−

∂b
(ξ; a, b)dξ

From (5.3.9) it follows that

∂F

∂b
(a, b) > 0 for b > b0 (a) and a < a0 (b)

∂F

∂b
(a, b) < 0 for b < b0 (a) and a < a0 (b)

Therefore we can state

(5.4.1)
If b > b0 (a (b)) then a′ (b) < 0

If b < b0 (a (b)) then a′ (b) > 0

+3ptA similar analysis holds for b (a).

We have
∂G

∂a
(a, b (a)) + ∂G

∂b
(a, b (a))b′(a) = 0

Since b (a) > b0 (a), we have from (5.3.11)

∂G

∂b
(a, b (a)) > 0

Next
∂G

∂a
(a, b) =

ˆ b

B(a,b)

∂v−

∂a
(ξ; a, b)dξ

=
ˆ b

B(a,b)

∂v+

∂a
(ξ; a, b)dξ
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and from (5.3.8) it follows that

∂G

∂a
(a, b) > 0 if a < a0 (b) and b > b0 (a)

∂G

∂a
(a, b) < 0 if a > a0 (b) and b > b0 (a)

Therefore we can assert

(5.4.2)
If a < a0 (b (a)) then b′ (a) < 0

If a > a0 (b (a)) then b′ (a) > 0

It follows in particular from (5.4.1) and (5.4.2) that

b′ (0) > 0, a′ (0) > 0

We will show later on that these values equal 1.

5.4.2. Expressions for F (a, b) and G (a, b). We can compute F (a, b) and G (a, b)

by formula (5.3.10), (5.3.11) in terms of a, b, A and a, b, B respectively. One of the

difficulties is that A and B can be positive or negative Note that

A (a, b) < B (a, b)

This is clear if A (a, b) = a or B (a, b) = b. Otherwise we have

v+ (A; a, b) = 0 , v+ (B; a, b) = c+ + c−

Since v+ (x; a, b) < 0 for x ∈ (a,A), necessarily B > A. We begin by giving the expressions

of v+ (x; a, b) and v− (x; a, b)
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We have

for x > 0

v+ (x; a, b) =
(
c+ + c−

) exp ρ1 (x− a)− exp ρ2 (x− a)
exp ρ1 (b− a)− exp ρ2 (b− a)

− h+ rc+

r

(exp ρ1 (x− a)− exp ρ2 (x− a)− exp ρ1 (b− a) + exp ρ2 (b− a))
exp ρ1 (b− a)− exp ρ2 (b− a)

+ (p+ h) (exp (ρ2x+ ρ1b)− exp (ρ1x+ ρ2b)) (ρ1 exp−ρ1a− ρ2 exp−ρ2a)
r (ρ2 − ρ1) (exp ρ1 (b− a)− exp ρ2 (b− a))

+ p− rc+

r

exp− (ρ1 + ρ2) a (exp (ρ2x+ ρ1b)− exp (ρ1x+ ρ2b))
exp ρ1 (b− a)− exp ρ2 (b− a)

(5.4.3)

for x < 0

v+ (x; a, b) = exp ρ1 (x− a)− exp ρ2 (x− a)
exp ρ1 (b− a)− exp ρ2 (b− a)

[
−h− rc

−

r

+ (p+ h)
r (ρ2 − ρ1) (ρ2 exp ρ1b− ρ1 exp ρ2b)

]

− p− rc+

r (exp ρ1 (b− a)− exp ρ2 (b− a)) [exp ρ2 (b− a) (exp ρ1 (x− a)− 1)

− exp ρ1 (b− a) (exp ρ2 (x− a)− 1)]

To compute F (a, b) for a < a0 (b), we note that from the differential equation (5.2.31) we

have

−σ
2

2

((
v+
)′

(A)−
(
v+
)′

(a)
)

+ r

ˆ A(a,b)

a

v+ (ξ; a, b) dξ =
ˆ A(a,b)

a

(
f ′ (ξ) + rc+

)
dξ
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Recalling that ρ1ρ2 = − 2r
σ2 , we get

ˆ A(a,b)

a

v+ (ξ; a, b) = − 1
ρ1ρ2

((
v+
)′

(A)−
(
v+
)′

(a)
)

+ 1
r

ˆ A(a,b)

a

(
f ′ (ξ) + rc+

)
dξ

Now from (5.2.43)
(
v+
)′

(x; a, b) = Γ+ (a, b) (ρ1 exp ρ1 (x− a)− ρ2 exp ρ2 (x− a))

− 2
σ2(ρ1 − ρ2)

ˆ x

a

(f ′ + rc+)(ξ)(ρ1 exp ρ1(x− ξ)− ρ2 exp ρ2(x− ξ))dξ

hence(
v+
)′

(A; a, b)−
(
v+
)′

(a; a, b) = Γ+ (a, b) (ρ1 (exp ρ1 (A− a)− 1)− ρ2 (exp ρ2 (A− a)− 1))

− 2
σ2(ρ1 − ρ2)

ˆ A

a

(f ′ + rc+)(ξ)(ρ1 exp ρ1(A− ξ)− ρ2 exp ρ2(A− ξ))dξ

But since v+ (A; a, b = 0)we can write

Γ+ (a, b) = 2
σ2(ρ1 − ρ2)

´ A
a

(f ′ + rc+)(ξ)(exp ρ1(A− ξ)− exp ρ2(A− ξ))dξ
exp ρ1(A− a)− exp ρ2(A− a)

Collecting results we can assert that

F (a, b) = K+ + 1
r

ˆ A

a

(
f ′ + rc+

)
(ξ) dξ

− 1
r

ˆ A

a

(
f ′ + rc+

)
(ξ) exp ρ2 (A− ξ) (exp ρ1 (A− a)− 1)− exp ρ1 (A− ξ) (exp ρ2 (A− a)− 1)

exp ρ1(A− a)− exp ρ2(A− a) dξ
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and we obtain the formula

(5.4.4)
F (a, b) = K+ + 1

r

[
−
(
p− rc+

)
(A− a) + (h+ p)A+

]

+ 1
r

p− rc+

ρ1ρ2
(ρ1 − ρ2) (exp ρ1 (A− a)− 1) (exp ρ2 (A− a)− 1)

exp ρ1 (A− a)− exp ρ2 (A− a)

+ 1
r

p+ h

ρ1ρ2

[ρ1 (exp ρ1 (A− a)− 1) (1− exp ρ2A
+)− ρ2 (exp ρ2 (A− a)− 1) (1− exp ρ1A

+)]
exp ρ1(A− a)− exp ρ2(A− a)

Let us give equivalent formulas for v− (x; a, b) and G (a, b). We have

(5.4.5)
for x > 0

v− (x; a, b) = exp ρ1 (x− b)− exp ρ2 (x− b)
exp ρ1 (a− b)− exp ρ2 (a− b)

{
p− rc+

r
+ (p+ h)
r (ρ2 − ρ1) (ρ1 exp ρ2a− ρ2 exp ρ1a)

+h− rc
−

r

exp ρ2 (a− b) (exp ρ1 (x− b)− 1)− exp ρ1 (a− b) (exp ρ2 (x− b)− 1)
exp ρ1 (a− b)− exp ρ2 (a− b)

}

for x < 0

v− (x; a, b) = −
(
c+ + c−

) exp ρ1 (x− b)− exp ρ2 (x− b)
exp ρ1 (a− b)− exp ρ2 (a− b)

+ (h− rc−) exp− (ρ1 + ρ2) b
r (exp ρ1 (a− b)− exp ρ2 (a− b)) (exp (ρ1x+ ρ2a)− exp (ρ2x+ ρ1a))

+ (p+ h) (exp (ρ1x+ ρ2a)− exp (ρ2x+ ρ1a)) (ρ2 exp−ρ2b− ρ1 exp−ρ1b)
r (ρ1 − ρ2) (exp ρ1 (a− b)− exp ρ2 (a− b))

+ p+ rc−

r

(exp ρ1 (x− b)− exp ρ2 (x− b)− exp ρ1 (a− b) + exp ρ2 (a− b))
exp ρ1 (a− b)− exp ρ2 (a− b)
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and then

(5.4.6)
G (a, b) = −K− + 1

r

[(
h− rc−

)
(b−B)− (h+ p)B−

]

+ p+ h

ρ1ρ2

[ρ1 (exp ρ1 (B − b)− 1) (1− exp−ρ2B
−)− ρ2 (exp ρ2 (B − b)− 1) (1− exp−ρ1B

−)]
exp ρ1(B − b)− exp ρ2(B − b)

+ (ρ1 − ρ2)
ρ1ρ2

(
h− rc−

) (exp ρ1 (B − b)− 1) (exp ρ2 (B − b)− 1)
exp ρ1 (B − b)− exp ρ2 (B − b)

5.4.3. How to compute a (b) and b (a). a (b) is the solution of F (a (b) , b) = 0.

However looking at (5.4.4) the expression depends on A. So in fact we define a (b) and

A (a (b) , b) jointly by solving the system

(5.4.7) F (a, b) = 0 v+ (A; a, b) = 0

with unknowns a, A and b fixed. In solving (5.4.7) in a, A for b fixed, the value of A might

be positive or negative.

If A < 0, then from (5.4.4) we get

(5.4.8)
K+ − p− rc+

r
(A− a)

+ 1
r

p− rc+

ρ1ρ2
(ρ1 − ρ2) (exp ρ1 (A− a)− 1) (exp ρ2 (A− a)− 1)

exp ρ1 (A− a)− exp ρ2 (A− a) = 0

and from (5.4.3) we have also

(5.4.9)
−
(
h− rc−

)
+ (p+ h) ρ2 exp ρ1b− ρ1 exp ρ2

ρ2 − ρ1
=

(
p− rc+

) (exp ρ2 (b− a) (exp ρ1 (A− a)− 1)− exp ρ1 (b− a) (exp ρ2 (A− a)− 1))
exp ρ1 (A− a)− exp ρ2 (A− a)
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The system (5.4.8), (5.4.9) can be solved sequentially. Indeed (5.4.8) defines A − a, and

(5.4.9) defines a A− a.

If we consider the function

(5.4.10) Z (x) = −x+ ρ1 − ρ2

ρ1ρ2

(exp ρ1x− 1) (exp ρ2x− 1)
exp ρ1x− exp ρ2x

then (5.4.8) is equivalent to

(5.4.11) Z(A− a) = −K+r

p− rc+

The function Z (x) decreases for x > 0. Indeed

Z ′ (x) = −1 + ρ1 − ρ2

ρ1ρ2

ρ2 exp ρ2x (exp ρ1x− 1)2 − ρ1 exp ρ1x (exp ρ2x− 1)2

(exp ρ1x− exp ρ2x)2

= [ρ2 (exp ρ1x− 1)− ρ1 (exp ρ2x− 1)] [ρ1 exp ρ1x (exp ρ2x− 1)− ρ2 exp ρ2x (exp ρ1x− 1)]
ρ1ρ2 (exp ρ1x− exp ρ2x)2

We have

ρ1 exp ρ1x (exp ρ2x− 1)− ρ2 exp ρ2x (exp ρ1x− 1) > 0 for x > 0

ρ2 (exp ρ1x− 1)− ρ1 (exp ρ2x− 1) > 0

hence Z ′ (x) ≤ 0.

Moreover Z (0) = 0, and Z (+∞) = −∞. Hence there exists a unique α > 0 such that

Z(α) = −K+r

p− rc+

From (5.4.11) we can deduce that

A (a (b) , b)− a (b) = α if A (a (b) , b) ≤ 0
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Going back to (5.4.9) we deduce also

(5.4.12)
−

(h− rc−) (ρ2 − ρ1)
p− rc+ + (p+ h)

p− rc+ (ρ2 exp ρ1b− ρ1 exp ρ2b) =

(ρ2 − ρ1) [exp ρ2 (b− a (b)) (exp ρ1α− 1)− exp ρ1 (b− a (b)) (exp ρ2α− 1)]
exp ρ1α− exp ρ2α

which is thus an equation for a (b). Introduce

ϕ (α) = ρ2 (exp ρ1α− 1)− ρ1 (exp ρ2α− 1)
exp ρ2α− exp ρ1α

then

ϕ (α) + ρ1 = (ρ2 − ρ1) (exp ρ1α− 1)
exp ρ2α− exp ρ1α

ϕ (α) + ρ2 = (ρ2 − ρ1) (exp ρ1α− 1)
exp ρ2α− exp ρ1α

hence (5.4.12) becomes

−
(h− rc−) (ρ2 − ρ1)

p− rc+ + p+ h

p− rc+ (ρ2 exp ρ1b− ρ1 exp ρ2b) =

(ϕ (α) + ρ2) exp ρ1 (b− a (b))− (ϕ (α) + ρ1) exp ρ2 (b− a (b))

also

(5.4.13)

r (ρ2 − ρ1) (c+ + c−) + (p+ h) (ρ2 (exp ρ1b− 1)− ρ1 (exp ρ2b− 1))
p− rc+

= (ϕ (α) + ρ2) (exp ρ1 (b− a (b))− 1)− (ϕ (α) + ρ1) (exp ρ2 (b− a (b))− 1)

Let us define

Lα (a, b) = (ϕ (α) + ρ2) (exp ρ1 (b− a)− 1)− (ϕ (α) + ρ1) (exp ρ2 (b− a)− 1)
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then

∂Lα
∂a

(a, b) = −ρ1 (ϕ (α) + ρ2) exp ρ1 (b− a) + ρ2 (ϕ (α) + ρ1) exp ρ2 (b− a)

∂2Lα
∂a2 (a, b) = ρ2

1 (ϕ (α) + ρ2) exp ρ1 (b− a)− ρ2
2 (ϕ (α) + ρ1) exp ρ2 (b− a)

> 0 since ϕ (α) + ρ1 < 0

The value
∂Lα
∂a

(−∞, b) = −∞ Lα (−∞, b) = +∞

∂Lα
∂a

(0, b) = ρ2 (ϕ (α) + ρ1) exp ρ2b− ρ1 (ϕ (α) + ρ2) exp ρ1b

Lα (0, b) = (ϕ (α) + ρ2) (exp ρ1b− 1)− (ϕ (α) + ρ1) (exp ρ2b− 1)

The value ∂Lα
∂a

(0, b) decreases in b from (ρ2 − ρ1)ϕ (α) > 0 to −∞. So we define uniquely

b̄ with
∂Lα
∂a

(
0, b̄

)
= 0

and
∂Lα
∂a

(0, b) < 0 if b > b̄

∂Lα
∂a

(0, b) > 0 if b < b̄

Therefore if b > b̄, ∂Lα
∂a

(a, b) < 0 and if b < b̄, ∂Lα
∂a

(a, b) < 0 if a < ā (b) and ∂Lα
∂a

(a, b) > 0

if a > ā (b).
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However the value on the left hand side of (5.4.13) is larger than Lα (0, b), as easily

seen. Therefore the solution of

r (ρ2 − ρ1) (c+ + c−) + (p+ h) (ρ2 (exp ρ1b− 1)− ρ1 (exp ρ2b− 1))
p− rc+ = Lα (a, b)

exists and is uniquely defined. We denote the solution by aα (b). This notation is coherent

with the fact that whenever α = 0, we get indeed a0 (b) defined in section 5.2.6 ( v+ = 0

).

Recalling the values of Z (a, b) and Γ+ (a, b), see (5.2.48) and (5.2.44) we can check

easily that (5.4.13) is equivalent to

Γ+ (a, b) = p− rc+

r (ρ2 − ρ1)ϕ (α)

and ϕ (α) > 0, since α > 0. It follows that

Z (aα, b) < 0

which implies since Z (aα, b) and Z (a, b) is increasing in a, that

aα (b) < a0 (b)

We can thus assert that

(5.4.14) if aα (b) + α < 0 then a (b) = aα (b)

since in that case aα (b), A (aα (b) , b) = aα (b) + α is a solution of (5.4.7).
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The value aα (∞) is defined by

exp ρ2aα (∞) = p− rc+

h+ p

(
1 + ϕ (α)

ρ1

)

Similarly, we can consider b (a) and claim

G (a, b) = 0 v− (B; a, b) = 0

with unknowns b and B when a is fixed.

The case B > 0 leads to similar simplification as for A < 0. We have from (5.4.6) and

(5.4.5),

0 = −K−+1
r

(
h− rc−

)
(b−B)+(ρ1 − ρ2)

ρ1ρ2

(
h− rc−

) (exp ρ1 (B − b)− 1) (exp ρ2 (B − b)− 1)
exp ρ1 (B − b)− exp ρ2 (B − b)

which leads to b−B = β with β > 0 solution of

Z (β) = −K−r
h− rc−

From (5.4.5) we get a relation similar to (5.4.13)

(5.4.15)

r (ρ2 − ρ1) (c+ + c−) + (p+ h) (ρ2 (exp ρ1a− 1)− ρ1 (exp ρ2a− 1))
h− rc−

= (ϕ (−β) + ρ2) (exp ρ1 (a− b (a))− 1)− (ϕ (−β) + ρ1) (exp ρ2 (a− b (a))− 1)

and ϕ (−β) + ρ2 > 0.

We can show that (5.4.15) defines a unique bβ (a), with

bβ (a) > b0 (a)
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We have the analogue of (5.4.14), namely

(5.4.16) if bβ (a)− β > 0 then b (a) = bβ (a)

and B (a, b (a)) = bβ (a)− β

Whenever (5.4.14) or (5.4.16) are not satisfied, then the pair a, A or b, B have to be

obtained simultaneously by solving a system

(5.4.17)
0 = K+ + 1

r

[
−
(
p− rc+

)
(A− a) + (h+ p)A

]

+ 1
r

(p− rc+)
ρ1ρ2

(ρ1 − ρ2) (exp ρ1 (A− a)− 1) (exp ρ2 (A− a)− 1)
exp ρ1 (A− a)− exp ρ2 (A− a)

+ 1
r

(p+ h)
ρ1ρ2

[ρ1 (exp ρ1 (A− a)− 1) (1− exp ρ2A)− ρ2 (exp ρ2 (A− a)− 1) (1− exp ρ1A)]
exp ρ1 (A− a)− exp ρ2 (A− a)

(5.4.18)

0 =
(
c+ + c−

)
(exp ρ1 (A− a)− exp ρ2 (A− a))

− h+ rc+

r
(exp ρ1 (A− a)− exp ρ2 (A− a)− exp ρ1 (b− a) + exp ρ2 (b− a))

+ (p+ h)
r (ρ2 − ρ1) (exp (ρ2A+ ρ1b)− exp (ρ1A+ ρ2b)) (ρ1 exp−ρ1a− ρ2 exp−ρ2a)

+ p− rc+

r
exp− (ρ1 + ρ2) a (exp (ρ2A+ ρ1b)− exp (ρ1A+ ρ2b))

In (5.4.17), (5.4.18) b is fixed and we obtain a (b) and A (a (b) , b).
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Similarly for b, B when a is given

(5.4.19)
0 = −K− + 1

r

[(
h− rc−

)
b+

(
p+ rc−

)
B
]

+ 1
r

(p+ h)
ρ1ρ2

[ρ1 (exp ρ1 (B − b)− 1) (1− exp ρ2B)− ρ2 (exp ρ2 (B − b)− 1) (1− exp ρ1B)]
exp ρ1 (B − b)− exp ρ2 (B − b)

+ (ρ1 − ρ2) (h− rc−) (exp ρ1 (B − b)− 1) (exp ρ2 (B − b)− 1)
ρ1ρ2 (exp ρ1 (B − b)− exp ρ2 (B − b))

(5.4.20)

0 = −
(
c+ + c−

)
(exp ρ1 (B − b)− exp ρ2 (B − b))

+ h− rc−

r
exp− (ρ1 + ρ2) b (exp (ρ1B + ρ2a)− exp (ρ2B + ρ1a))

+ p+ h

r (ρ1 − ρ2) (exp (ρ1B + ρ2a)− exp (ρ2B + ρ1a)) (ρ2 exp−ρ2b− ρ1 exp−ρ1a)

+ p+ rc−

r
(exp ρ1 (B − b)− exp ρ2 (B − b)− exp ρ1 (a− b) + exp ρ2 (a− b))

In (5.4.19), (5.4.20) a is given and we obtain b (a)and B (a, b (a)).

5.4.4. Properties of aα (b) and bβ (a). From (5.4.13) we can obtain a′α (b)

(5.4.21)
p+ h

p− rc+ρ1ρ2 (exp ρ1b− exp ρ2b) =

(
1− a′α (b)

)
[(ϕ (α) + ρ2) ρ1 exp ρ1 (b− aα (b))− (ϕ (α) + ρ1) ρ2 exp ρ2 (b− aα (b))]

From the preceding section
∂Lα
∂a

(aα (b) , b) < 0

hence

(ϕ (α) + ρ2) ρ1 exp ρ1 (b− aα (b))− (ϕ (α) + ρ1) ρ2 exp ρ2 (b− aα (b)) > 0
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and therefore

(5.4.22)
a
′

α (b) = (ρ2 − ρ1) {exp ρ1b [(p+ h) ρ2 − (ρ2 + ϕ (α)) (p− rc+) exp−ρ1aα (b)]
(p− rc+) [(ϕ (α) + ρ2) ρ1 exp ρ1 (b− aα (b))

−ρ2 (h− rc−)}
− (ϕ (α) + ρ1) ρ2 exp ρ2 (b− aα (b))]

From (5.4.21) and (5.4.22) we see that

a
′

α (0) = 1 ; a′α (b) < 0 for b sufficient large

Let us look at the points b such that a′α (b) = 0 . From (5.4.15) and (5.4.13) we deduce

as for (5.4.10), (5.4.11) the relations

(5.4.23) exp−ρ2aα (b) = ρ1

ρ1 + ϕ (α)
p+ h− (h− rc−) exp−ρ2b

p− rc+

(5.4.24) exp−ρ1aα (b) = ρ2

ρ2 + ϕ (α)
p+ h− (h− rc−) exp−ρ1b

p− rc+

We can eliminate aα (b) and get the relation for b, we obtain the equation

(5.4.25)

(
p+ h−

(
h− rc−

)
exp−ρ1b

) (
p+ h−

(
h− rc−

)
exp−ρ2b

)− ρ1
ρ2

=
(
p− rc+

)1− ρ1
ρ2
ρ2 + ϕ (α)

ρ2

(
ρ1 + ϕ (α)

ρ1

)− ρ1
ρ2

If we consider the function
(
1 + x

ρ2

) (
1 + x

ρ1

)− ρ1
ρ2 for 0 < x < −ρ1, then it is decreasing

and equal to 1 for x > 0, therefore

ρ2 + ϕ (α)
ρ2

(
ρ1 + ϕ (α)

ρ1

)− ρ1
ρ2
< 1
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We know that the left hand side decreases on [0,∞) from (p+ rc−)1− ρ1
ρ2 to −∞. Since

(
p+ rc−

)1− ρ1
ρ2 >

(
p− rc+

)1− ρ1
ρ2
ρ2 + ϕ (α)

ρ2

(
ρ1 + ϕ (α)

ρ1

)− ρ1
ρ2

We obtain that (5.4.25) has a unique solution b∗α. Again if α = 0, we recover b∗ defined in

Proposition 10. We can compute a′′α (b∗α) in a way similar to a′′0 (b∗) ( see (5.2.66) ), namely

(5.4.26)

− a′′α (b∗α) = p+ h

p− rc+ exp (ρ1 + ρ2) b∗α (ρ1 − ρ2)

·

[
ϕ(α)+ρ2

ρ2
exp−ρ1aα (b∗α)− ϕ(α)+ρ1

ρ1
exp−ρ2aα (b∗α)

]
[
ϕ(α)+ρ2

ρ2
exp ρ1 (b∗α − aα (b∗α))− ϕ(α)+ρ1

ρ1
exp ρ2 (b∗α − aα (b∗α))

]
Although we cannot immediately give the sign of the bracket in the numerator, as we

did in the case of a0 (b), we can still claim that a′′α (b∗α) < 0.

Indeed we know that a′0 (0) = 1. Since b∗α is the only point, it means that a′α (b) > 0 ∀

b < b∗α. Therefore necessarily a′′α (b∗α) ≤ 0. The case a′′α (b∗α) = 0 would imply from formula

(5.4.26)
ϕ (α) + ρ2

ρ2
exp−ρ1aα (b∗α) = ϕ (α) + ρ1

ρ1
exp−ρ2aα (b∗α)

and from (5.4.23), (5.4.24) it will follow that

exp−ρ2b
∗
α = exp−ρ1b

∗
α

which is impossible since b∗α > 0. We can then state the analogue of Proposition (10) and

Proposition (13)

Proposition 16. Under the assumption (5.2.39), the functions aα (b) and bβ (a) are

uniquely defined by (5.4.13) and (5.4.15) respectively on (−∞, 0) and (0,∞).
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We have a′α (0) = b′β (0) = 1. There exist unique points b∗α > 0 and a∗β < 0 such that

a′α (b∗α) = 0 , b′β
(
a∗β
)

= 0

The function aα (b) increases on (0, b∗α), then decreases on (b∗α,∞). The function bβ (a)

decreases on
(
−∞, a∗β

)
, then increases on

(
a∗β, 0

)
.

The properties of aα (b) and bβ (a) lead to important consequences for a (b) and b (a).

Using (5.4.14) and (5.4.16) we can state the

Theorem 17. Continue (5.4.16). We have

(5.4.27) if aα (b∗α) + α < 0 then a (b) = aα (b)

(5.4.28) if bβ
(
a∗β
)
− β > 0 then b (a) = bβ (a)

Proof. We have

aα (0) + α < 0 , bβ (0)− β > 0

Suppose (5.4.27) is not satisfied, then if aα (+∞) + α < 0, there exist two values b1
α,

b2
α with b1

α < b∗α < b2
α solutions of

aα (b) + α = 0

and

a (b) = aα (b) for b < b1
α and b > b2

α

If aα (∞) + α ≥ 0, then b2
α = +∞.
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Similarly, suppose (5.4.28) is not satisfied, then if bβ (−∞) − β > 0, then there exist

two values a1
β, a2

β with a1
β < a∗β < a2

β solutions of

bβ (a)− β = 0

and

b (a) = bβ (a) for a > a2
β and a < a1

β

If bβ (−∞)− β ≤ 0, then a1
β = −∞. �

5.4.5. More properties and search procedure. The only cases when a (b) 6= aα (b)

or b (a) 6= bβ (a) is when one of the two conditions (5.4.27) and (5.4.28) is not satisfied,

and

if (5.4.27) is not satisfied, b1
α < b < b2

α

if (5.4.28) is not satisfied, a1
β < a < a2

β

If we consider a point of intersection â, b̂ and if Â = A
(
â, b̂

)
, B̂ = B

(
â, b̂

)
, then we may

have Â < 0 and B̂ > 0, in which case

Â = â+ α , B̂ = b̂− β

In such a case
â = a

(
b̂
)

= aα
(
b̂
)

b̂ = b (â) = bβ (â)

and then â, b̂ is also a crossing point of the curves aα (b) and bβ (a).

If Â > 0 then B̂ > 0 so we have

B̂ = b̂− β , b (â) = bβ (â)
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Moreover â = a
(
b̂
)
6= aα

(
b̂
)
, hence we must have aα (b∗α) + α > 0 and the interval b1

α, b2
α

is defined ( possibly b2
α = +∞ ). Necessarily

b1
α < b̂ < b2

α

Since also b̂ = b (â) = bβ (â), either bβ
(
a∗β
)
− β > 0, or if bβ

(
a∗β
)
− β < 0, the interval a1

β,

a2
β is well defined (possibly a1

β = −∞ ) and

â > a2
β or â < a1

β

The second possibility disappears if a1
β + α < 0 ( in particular if a1

β = −∞).

Similarly if B̂ < 0 then Â < 0 so we have

Â = â+ α , a
(
b̂
)

= aβ
(
b̂
)

Moreover b̂ = b (â) 6= bβ (â), hence we must have bβ
(
a∗β
)
− β < 0 and the interval a1

β, a2
β

is well defined ( possibly a1
β = −∞ ). Necessarily

a1
β < â < a2

β

Since â = a
(
b̂
)

= aβ
(
b̂
)
, then either aα (b∗α) +α < 0, or if aα (b∗α) +α > 0, then the values

b1
α, b2

α are well defined (possibly b2
α = +∞ ) and

b̂ < b1
α or b̂ > b2

α

The second possibility disappears when b2
α > β ( in particular when b2

α = +∞).

From this discussion we can define the following search procedure for the pair â, b̂. We

consider the curves aα (b) and bβ (a).
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(1) aα (b∗α) + α < 0, bβ
(
a∗β
)
− β > 0 then â, b̂ is a crossing point of aα (b), bβ (a)

(2) Suppose

aα (b∗α) + α > 0 or bβ
(
a∗β
)
− β < 0

then consider the crossing points of aα (b), bβ (a). If there exists a crossing point

â, b̂ such that â+ α < 0, b̂− β > 0 then this crossing point is a solution.

(3) Suppose

aα (b∗α) + α > 0 or bβ
(
a∗β
)
− β < 0

and the crossing points of aα (b) and bβ (a) do not satisfy the conditions of step

2. We consider alternative situations

. aα (b∗α) + α > 0, bβ
(
a∗β
)
− β > 0

then b (a) = bβ (a).

The interval b1
α, b2

α is well defined ( b2
α = +∞ if aα (∞) + α ≥ 0 ). We look for

a triple â, b̂, Â such that â < 0, Â > 0, b1
α < b̂ < b2

α, solution of a system of 3

nonlinear equations, namely (5.4.17), (5.4.18) and

(5.4.29)

r (ρ2 − ρ1) (c+ + c−) + (p+ h) (ρ2 (exp ρ1a− 1)− ρ1 (exp ρ2a− 1))
h− rc−

=

(ϕ (−β) + ρ2) (exp ρ1 (a− b)− 1)− (ϕ (−β) + ρ1) (exp ρ2 (a− b)− 1)

Necessarily there exists a solution of this system of equations satisfying the con-

straints, and B̂ = b̂− β.

. aα (b∗α) + α < 0, bβ
(
a∗β
)
− β < 0

then a (b) = aα (b).

The interval
(
a1
β, a

2
β

)
, is well defined ( a1

β = −∞ if bβ (−∞) − β ≤ 0 ). We look

for a triple â, b̂, B̂ such that a1
β < â < a2

β, B̂ < 0, b̂ > 0, solution of a system of 3
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nonlinear equations, namely (5.4.19), (5.4.20) and

(5.4.30)

r (ρ2 − ρ1) (c+ + c−) + (p+ h) (ρ2 (exp ρ1b− 1)− ρ1 (exp ρ2b− 1))
p− rc+ =

(ϕ (α) + ρ2) (exp ρ1 (b− a)− 1)− (ϕ (α) + ρ1) (exp ρ2 (b− a)− 1)

Necessarily there exists a solution of this system of equations satisfying the con-

straints, and Â = â+ α.

(4) Suppose

aα (b∗α) + α > 0 and bβ
(
a∗β
)
− β < 0

The intervals b1
α, b2

α and a1
β, a2

β are well defined ( b2
α = +∞ if aα (∞) + α ≥ 0;

a1
β = −∞ if bβ (−∞) − β ≤ 0 ). The solution â, b̂ belongs to one of two cases:

Either B̂ = b̂− β and â, b̂, Â are solutions of (5.4.17), (5.4.18), (5.4.29) with the

constraints

a2
β < â < 0 or â < a1

β and Â > 0 b1
α < b̂ < b2

α

The possibility â < a1
β disappears when a1

β + α < 0. Or Â = â + α and â, b̂, B̂

are solutions of (5.4.19), (5.4.20), (5.4.30) with the constraints

0 < b̂ < b1
α or b̂ > b2

α and B̂ < 0 a1
β < â < a2

β

The above search procedure defines a crossing point â, b̂ of the two curves a (b) and b (a).

The solution is easily found if step 1 and 2 apply. In step 3 and 4 a system of 3

nonlinear algebraic equations has to be solved, with a minor limitation on the range of

the solution, which the search.
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5.5. Application to Mutual Insurance Optimization

Now we consider application of impulse control to mutual insurance optimization, in

the context of real-world marine mutual insurance that we have been conducting field study

on. Comparing to general (i.e., non-mutual) insurance, a mutual insurance differs in its

unique two-way contingent options, namely, contingent calls ν+ (t) (i.e., contingent fund

injection to mutual reserve x(t)), and contingent refunds ν− (t) (i.e., contingent reduction

from mutual reserve). A contingent option incurs a non-zero fixed cost (i.e., K+ > 0 and

K− > 0). Using the same notation as above, a mutual insurance optimization can be

defined as follows: 
V (x) = inf

ν
Jx (ν)

x (t) = x+ µt+ σw (t) + ν+ (t)− ν− (t)

where Jx(ν) is as defined in (5.2.7), ν (t) = ν+ (t)− ν− (t) is the two-way impulse control,

and

ν+ (t) =
∑
i

ξi · 1Iξi>01Iτi<t

ν− (t) = −
∑
i

ξi · 1Iξi<01Iτi<t

5.5.1. Numerical Test and Validation. With the numerical methods developed in

the preceding section, we are able to conduct for the first time sensitivity analysis of an

optimal two-band policy of real-world mutual insurance systems. The system parameters

used in this experiment are representative of typical field data of P&I Clubs that we

studied, and the basic set of data are selected as follows:

σ = 0.3, µ = 0, r = 0.06, p = 0.15, h = 0.1, c+ = 0.2, c− = 0.2, K+ = 0.5, K− = 0.5
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Using the numerical methods we developed in this study, we can compute the optimal

two-band policy for the above basic case as (a,A,B, b) = (−1.359984695,−0.016258323, 0.248488952, 1.850891187),

and also the corresponding optimal V ′(x) function, as shown in Figure 5.5.1. For the

purpose of validation and verification of properties we obtained in Section 4, we then

computed for the above basic case the curves of aα (b) and bβ (a), as shown in figure 5.5.2,

from which we can verify that the curves satisfy all the properties we derive in preceding

sections. Specifically, the crossing point is
(
â, b̂

)
with â < −α and b̂ > β.

Figure 5.5.1. The solutionV ′ (x) for the basic case

x
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B                             b
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Figure 5.5.2. The crossing of aα (b) and bβ (a) gives the solution

K2.5 K2.0 K1.5 K1.0 K0.5 0

1

2

3

4
aa b

bb a

b

Ka

For the sensitivity analysis on the system parameters, we first tested on the effect on

optimal two-band policy under different values of drift µ. The numerical test results on

the sensitivity of µ are summarized in Table 1.

Table 1. Sensitivity of Two-Band Policy with Respect to Drift µ

µ -0.2 -0.1 0 0.1 0.2
b 3.467747478 2.563076507 1.850891187 1.585328554 1.658267126
B 1.569309222 0.875087411 0.248488952 -.1240502468 -.3892841203
A 0.7142289391 0.3748215795 -0.016258323 -.465740742 -.958488203
a -1.178876904 -1.158125725 -1.359984695 -1.864303490 -2.500777449

b−B 1.898438 1.687989 1.602402 1.709379 2.047551
A− a 1.893106 1.532947 1.343726 1.398563 1.542289
b− a 4.646624 3.721202 3.210876 3.449632 4.159045
| b
a
| 2.941569 2.213125 1.360965 0.850360 0.663101

| b
b−a | 0.746294 0.688776 0.576444 0.459565 0.398713
| a
b−a | 0.253706 0.311224 0.423556 0.540435 0.601287
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The band width (b − a ) gives an optimal amount of total insurance reserve, which

shall be maintained at minimum so long as to adequately cover the claims. From the

Table 1 above, it is observed that the optimal total reserve b− a reaches its minimum as

drift µ approaches to zero. We notice that in the context of mutual insurance the drift

µ represents the net income of reserve, i.e., premium minus claim. It suggests that an

optimal premium policy is to set the premium rate equal to the average rate of claims.

We then test on sensitivity with respect to volatility factor (i.e., disturbance coefficient)

σ, and obtained the results of sensitivity as summarized in Table 2 below:

Table 2. Sensitivity of Two-Band Policy with Respect to Volatility σ
σ 0.1 0.2 0.3 0.4 0.5
b 0.9502412424 1.429492145 1.850891187 2.239340879 2.605747546
B 0.0873056200 0.167030191 0.248488952 0.332075199 0.417647959
A 0.01201089395 0.001819393475 -0.016258323 -0.039649499 -0.066947517
a -.6897591884 -1.047628992 -1.359984695 -1.646711267 -1.916331439

b−B 0.862936 1.262462 1.602402 1.907266 2.188100
A− a 0.701770 1.049448 1.343726 1.607062 1.849384
b− a 1.640000 2.477121 3.210876 3.886052 4.522079
| b
a
| 1.377642 1.364502 1.360965 1.359887 1.359758

| b
b−a | 0.579415 0.577078 0.576444 0.576251 0.576228
| a
b−a | 0.420585 0.422922 0.423556 0.423749 0.423772

The numerical tests on the volatility factor σ conform to the intuition that the band

width is increasing along with the volatility. That is, higher amount of total reserve is

needed to face a more volatile insurance market. Using the concept of safety stock, the

finding above conforms to the inventory theory that with the same average demand, higher

volatility requires a higher level of safety stock in order to attain the same service level.

To illustrate the impact of σ on optimal two-band policy, we compared the two curves of

V ′(x) respectively for σ = 0.1 (as blue curve) and σ = 0.5 (as red curve), as shown in
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Figure 5.5.3, and the corresponding two curves of value (cost) function V (x), as shown

in Figure 5.5.4. As we can see from Figure 5.5.3 that larger value of σ = 0.5 (i.e., red

curves) results in larger total reserve b− a, and from Figure 5.5.4 that a larger σ requires

a higher optimal cost function V (x) which reaches its overall minimum at x = µ = 0.

We shall note that these numerical curves and results are now obtainable, only due to the

properties obtained and then the numerical methods developed in this study, which have

not been obtainable previously.

Figure 5.5.3. The solution V ′ (x) for the case with σ = 0.1,σ = 0.5

x
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Figure 5.5.4. The solution V (x) for the case with σ = 0.1,σ = 0.5
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Numerical test result on holding cost h, and shortage penalty p are summarized, re-

spectively, in Table 3 and Table 4 below.

Table 3. Sensitivity of Two-Band Policy with Respect to Holding Cost h
h 0.06 0.08 0.1 0.12 0.14
b 2.564163050 2.126935831 1.850891187 1.656443694 1.510105743
B 0.499453109 0.346914176 0.248488952 0.178973428 0.127008746
A 0.1033574044 0.03288433214 -0.016258323 -0.056178329 -0.090311753
a -1.253941193 -1.312411254 -1.359984695 -1.399904701 -1.434038125

b−B 2.064710 1.780022 1.602402 1.477470 1.383097
A− a 1.357299 1.345296 1.343726 1.343726 1.343726
b− a 3.818104 3.439347 3.210876 3.056348 2.944144
| b
a
| 2.044883 1.620632 1.360965 1.183255 1.053044

| b
b−a | 0.671580 0.618413 0.576444 0.541968 0.512918
| a
b−a | 0.328420 0.381587 0.423556 0.458032 0.487082
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Table 4. Sensitivity of Two-Band Policy with Respect to Shortage Penalty p
p 0.11 0.13 0.15 0.17 0.19
b 1.771779794 1.814628628 1.850891187 1.882117240 1.909382930
B 0.169377559 0.212226393 0.248488952 0.279715005 0.306980695
A -.110508333 -0.056613961 -0.016258323 0.01537187478 0.04263756519
a -1.645629420 -1.483918570 -1.359984695 -1.261309449 -1.180438785

b−B 1.602402 1.602402 1.602402 1.602402 1.602402
A− a 1.535121 1.427305 1.343726 1.276681 1.223076
b− a 3.417409 3.298547 3.210876 3.143427 3.089822
| b
a
| 1.076658 1.222863 1.360965 1.492193 1.617520

| b
b−a | 0.518457 0.550130 0.576444 0.598747 0.617959
| a
b−a | 0.481543 0.449870 0.423556 0.401253 0.382041

It is interesting to note from the numerical test results as presented in Table 3 and

4 that the total reserve b − a decreases as either holding cost h increases or shortage

penalty p increases; while an increase in holding cost h tends to decrease cash reserve b

as compared to credit reserve |a| (i.e., a decreased ratio | b
a
|), and an increase in shortage

penalty p tends to decrease credit reserve |a| (i.e., an increased ratio | b
a
|).

The test results on the costs related to impulse control, i.e., setup costs K+and K−,

and proportional costs c+and c−, are presented in Table 5 and Table 6, respectively.
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Table 5. Sensitivity of Two-Band Policy with Respect to Setup Costs
K+and K−

K+ = 0.5 K+ = 0.7
K− = 0.5 K− = 0.7 K− = 0.5 K− = 0.7

b 1.850891187 2.062172917 1.878632487 2.089339796
B 0.248488952 0.222786324 0.276230252 0.249953203
A -0.016258323 -0.028899432 0.01188712155 -0.0005024186647
a -1.359984695 -1.372625804 -1.519911452 -1.532094123

b−B 1.602402 1.839387 1.602402 1.839387
A− a 1.343726 1.343726 1.531799 1.531592
b− a 3.210876 3.434799 3.398544 3.621434
| b
a
| 1.360965 1.502356 1.236014 1.363715

| b
b−a | 0.576444 0.600377 0.552776 0.576937
| a
b−a | 0.423556 0.399623 0.447224 0.423063

Table 6. Sensitivity of Two-Band Policy with Respect to Proportional
Costs c+and c−

c+ = 0.2 c+ = 0.4
c− = 0.2 c− = 0.4 c− = 0.2 c− = 0.4

b 1.850891187 2.067982222 1.890232222 2.106006479
B 0.248488952 0.367620930 0.287829987 0.405645187
A -0.016258323 -0.037292575 -0.089842149 -.109820302
a -1.359984695 -1.381018947 -1.481362467 -1.501340620

b−B 1.602402 1.700361 1.602402 1.700361
A− a 1.343726 1.343726 1.391520 1.391520
b− a 3.210876 3.449001 3.371595 3.607347
| b
a
| 1.360965 1.497432 1.276009 1.402751

| b
b−a | 0.576444 0.599589 0.560634 0.583810
| a
b−a | 0.423556 0.400411 0.439366 0.416190
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CHAPTER 6

Conclusion and Future Work

The impulse models developed in this study are either a pure impulse control system

or a hybrid system (i.e. with a mix of impulse and continuous controls), and are associated

with an HJB-QVI system. The value function of the these models is the solution to the

associated HJB-QVIs with free boundary conditions, from which optimal controls in both

continuous and impulse type, as well as optimal order release policy, can be determined.

For mutual insurance control problems, Band-Type Contingent Option (BTCO) type pol-

icy is proved to be optimal policy, and we introduce efficient numerical algorithm to get

the optimal solution. The efficiency is evidenced by experiment examples.

The results obtained in this study are applicable to a wide range of applications, in-

cluding production inventory systems and cash reserve management. The key contribution

of this study relates to derivation of much simplified QVI characteristics and development

of computational QVI solution algorithms for mutual insurance optimization. The QVI

characteristics and properties obtained in this study lead to some major developments in

optimization of mutual insurance, such as: 1) an optimal insurance reserve policy consists

of maintaining a combination of both cash reserve of amount b > 0 and credit reserve of

amount a < 0 (e.g. reinsurance and credit loans). This finding can be lively witnessed

in the national stimulus measure by US Federal Reserve, namely, a combination of cash

injection and issuance of government bonds. 2) A novel computation algorithm is then de-

veloped to determine numerically an optimal (a,A;B, b) policy, which is much simplified
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and effective for solving general reserve regulation problems under non-symmetric cost

structure. The techniques presented in this study are particularly adequate to provide

solutions to the problems of mutual insurance and general reserves regulation.

We propose in future work to extend the methodology to deal with more general

situations, such as a system with a multi-dimension controllable diffusion state. Moreover,

we would also investigate situations when there are exogenous impacts on the system.

These applications will provide us more accurate formulation of the real world events and

control systems. They are more complicated than those we have investigated in this study

from mathematical aspect of view, however, we believe that the treatments introduced in

this study would also be applicable to those applications.
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