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ABSTRACT 

The unique feature of the electricity power industry makes the power market more 

akin to an oligopoly. A great deal of work has been performed on analyzing power 

markets using the oligopoly models in the literatures. The Supply Function Equilibrium 

(SFE) and Cournot models have also been widely employed to model the electricity 

market. Many techniques, such as empirical analysis, agents-based simulation, iterative 

Nash Equilibrium (NE) search algorithms and complementarity program methods, have 

been utilized to determine the power market equilibrium. Despite of these previous 

efforts, no method is widely recognized as being an effective method for market 

equilibrium determination. Hence there is an urgent need to develop an effective and 

powerful approach for power market analysis and equilibrium determination.  

Co-evolutionary computation is developed from traditional Evolutionary Algorithms 

(EAs), which simulates the co-evolutionary mechanism in nature and adopts the notion 

of ecosystem. It is a new methodology used to simulate the bidding behavior of the 

market players and to determine market equilibrium. The thesis applies co-evolutionary 

computation algorithms (CCAs) to solve the power market equilibrium and to study 

several important issues in power market analysis.  

The first issue is that when transmission constraints are considered, the profit function 

of Generation Companies (GenCos) may be nonconcave and discontinuous with many 

local optima. Determination of market equilibrium becomes a more challenging task. A 

two-level evaluation process is developed in the thesis for the determination of the 

equilibrium. The Linear Supply Function Equilibrium (LSFE) and the Cournot market 
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models are employed and the market equilibrium is determined by CCA. The existence 

or non-existence of the NE due to the transmission and generation capacity constraints 

are illustrated using a 2-bus test system and the IEEE 30-bus system. The effects of 

different parameters settings of the LSFE model on the equilibria are also studied and 

compared with those found based on the Cournot model. 

The second issue examined is to determine the market equilibrium in a multiple 

pricing period. When compared to actual markets, earlier research works study only a 

single pricing period market. A multiple pricing period market with inter-temporal 

constraints should also be studied to make the simulation results comparable to actual 

market settings. The CCA method used to study single pricing period market is then 

extended to multiple pricing period market analysis. It is found that the market outcome 

of a GenCo using a constant supply function across multiple pricing period is contrasted 

with the case that GenCos using a specified supply function in each pricing period. It is 

important to observe outcomes of different markets in which obligations for consistent 

bidding are set up or not. 

Owing to the recent California electricity crisis, more and more researchers are 

convinced that forward market plays an important role for market power mitigated in 

electricity markets. In this thesis, the issue of whether rational GenCos would 

voluntarily enter forward markets or not is examined and the factors which could affect 

the bidding behavior are studied. The thesis formulates a two-settlement electricity 

market as a two-stage game. The LSFE model and Cournot model are used to model 

strategic bidding for the spot market, while the forward market is modeled by the 
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Cournot model. GenCos’ bidding behaviors are analyzed by CCA and two numerical 

examples are used to verify the theoretical analysis. 

From the works undertaken in this thesis, it is found that the CCA method is 

robust and flexible and has the potential to be used to solve the complicated equilibrium 

problems in real-world electricity markets. 
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CHAPTER 1 INTRODUCTION  

 

 

1.1 Electric Power Industry Deregulation 

Power industry deregulation has taken place in many countries in the past twenty 

years. The earliest deregulation took place in Chile in the late 1970s. Argentina 

improved the Chilean model by imposing strict limits on market concentration and by 

improving the structure of payments. Then, the World Bank was active in introducing 

electricity markets in other Latin American nations, including Peru, Brazil and 

Colombia, during the 1990s. A key event for electricity markets occurred in 1990 when 

UK privatized the UK electricity supply industry. The process was used as a model for 

the deregulation of several other commonwealth countries, notably Australia and New 

Zealand.  

In different deregulation processes, the institutions and market designs were often 

very different but underlying concepts were almost the same. These concepts are as 

follows: separate the contestable functions of generation and retail from the natural 

monopoly functions of transmission and distribution; establish a wholesale electricity 

market and a retail electricity market. The role of the wholesale market is to allow 

trading between generators, retailers and other financial intermediaries both for 

short-term delivery of electricity and for future delivery periods. A retail electricity 
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market exists when end-use customers can choose their supplier from competing 

electricity retailers.  

In fact, the wholesale and retail markets have been mixed (i.e. hybrid model) in many 

countries. Many regional markets have achieved some success and the ongoing trend 

continues to be towards deregulation and introduction of competition. However in 

2000/2001 major failures, such as the California electricity crisis and the Enron debacle, 

caused a slow down in the pace of change and in some regions an increase in market 

regulation and reduction in competition. However, this trend is widely regarded as a 

temporary one against the longer term one towards more open and competitive markets. 

1.2 Market Power  

In this new environment, electricity is traded the same way as other commodities. 

However, a perfectly competitive market does not exist in practice. Many issues can 

contribute to the market inefficiency, such as market design flaws, market power, and 

inherent engineering features of power system operations [1]. Some characteristics of 

electricity markets facilitate the exercise of market power. These characteristics include 

inelastic demand, limited transmission capacity, and the requirement that supply and 

demand must balance continuously. Therefore, market power analysis has received 

attention in both theory and practice [2, 3]. It is important for market designers to fix 

flaws in market structure and for GenCos to be able to evaluate their positions and 

conduct their business. 
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Market power is the ability of a market participant to influence market characteristics 

(e.g. prices, market share, etc.) to advance its profitability. When applied to a liberalized 

electricity market, market power would mean the ability of a power company to raise 

prices and profit above the competitive market price level. 

In the electricity supply business, market power normally exists to some extent 

irrespective of the market structure owing to the following reasons: 

1. Electricity is an essential commodity of which reliable supply is depended upon 

for everyday living and business operation. This makes the short-term demand for 

electricity quite inelastic in response to price changes. Suppliers holding sizable 

market share can take advantage of this inelasticity to vary prices, where not 

regulated, without suffering from reduced sales volume and revenue. 

2. In a competitive market where the price for electricity is largely determined by the 

supply/demand margin, suppliers having sizable market share can influence the 

short-term supply/demand margin to drive market price upward. 

3. The electricity supply business is very capital intensive. Potential new participants 

often find it very difficult to enter an established market. Even when new 

generators can be built to compete for supplying existing or new customers, it is 

often impractical and cost prohibitive to replicate the power grid to deliver 

electricity to the end users. Lack of access to the power grid virtually blocks any 

potential new participants from competing with the incumbent suppliers that also 

own the grid. 



 4  

Regulating market power and minimizing its abuse are therefore key considerations in 

ensuring proper market performance. Three types of market power are pertinent to the 

electricity market: the horizontal, vertical and locational market power.  

1.  Horizontal market power is exercised when an entity profitably drives up prices 

through its control of a single segment, such as electricity generation. An entity 

would possess horizontal market power when it owns a significant share of the 

total generating capacity available to the market. 

2. Vertical market power is exercised when an entity involved in two related 

segments, such as electricity generation and transmission, uses its dominance in 

one segment to raise prices and earn extra profits for the overall enterprise or to 

disadvantage other suppliers. 

3. Locational market power is the result of the existence of transmission constraint, 

which limits the ability for a region to access external supply sources. The local 

electricity suppliers may therefore charge the local customers a higher tariff 

without rivalry from external sources. 

1.3 Market Power Assessing and Market Modeling  

Market power is harmful to competition and it is necessary to identify the potential 

for its abuse, and such findings have important policy implications. In recent years, 

much research has been done on investigating the potential for market power abuse in 

electricity markets [4].  
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1.3.1 Market Power Assessing Index 

Several indexes have been used to assess market power recently. The most widely 

used index for structural assessments of a market, the Herfindahl–Hirschman Index 

(HHI), is computed by squaring each supplier’s market share, then adding the squared 

shares. Empirical research in electricity markets also sheds light on the level at which 

market concentration may have a significant adverse impact on the competitiveness. It 

is generally agreed that an electricity market composed of five equally sized GenCos 

would be workably competitive [5].  

The HHI method has the advantage of specificity but the drawback that it has no 

supporting theory. Many researchers such as [6] have pointed out that structural 

measures of market power, such as the HHI, have several shortcomings when applied to 

electricity markets; the most obvious is that the demand elasticity is not represented in 

the HHI formulation. Certainly, the market power of a supplier will change over time as 

demand conditions change. When the demand increases, the market power of the 

suppliers will increase. The HHI also fails to consider a supplier’s true competitive 

positions, since consideration of the relative costs of different generation resources or 

specific geographic factors is absent from the HHI [5].  

The Lerner Index (LI) and Price–Cost Margin Index (PCMI) are other two 

retrospective indicators of market power [7, 8]. The former is defined as LI = (p-MC)/p 

and the latter is defined as PCMI = (p-pc)/pc. Here, p, pc and MC represent actual market 

price, perfectly competitive price and Marginal Cost (MC) respectively. Since it is hard 
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to obtain MC information in a real market, these two indices do not have much practical 

value.  

In fact, the market power depends not just on market concentration, but also on how 

demand varies relative to the degree of excess capacity. So another index, a forecast 

load and total available supply ratio (demand–supply ratio), is proposed in [7], and the 

New England market data is used to demonstrate it. 

1.3.2 Analyzing Electricity Market by Economic Models 

The following methods have been developed for market power analysis [4]: analysis 

of market shares and market concentration; estimation of pricing behavior; modeling 

market by economic models.  

Most researchers focus on market power analysis by using economic models. 

Researchers have developed three directory branches for market modeling [9]: 

optimization models, equilibrium models and simulation models. Optimization models 

focus on the profit maximization problem for one of the GenCos competing in the 

market, while equilibrium models represent the overall market behavior taking into 

consideration competition among all participants. Equilibrium and simulation-based 

models represent market behavior considering competition among all participants. On 

the contrary, optimization models only represent one GenCo. Consequently, in the latter 

models, the market is synthesized in the representation of the price clearing process, 

which can be modeled as exogenous to the optimization program or as dependent of the 

quantity supplied by the GenCo of interest. The equilibrium models are more suitable to 

long-term planning and market power analysis since they consider all participants. 
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Simulation models are an alternative to equilibrium models when the problem under 

consideration is too complex to be addressed within a formal equilibrium framework. 

This thesis will focus on market analysis with equilibrium models. 

A Single-firm optimization models: 

The approaches based on the profit maximization problem of one firm (i.e. GenCo) 

are grouped together into the single-firm optimization category. These models take into 

account relevant operational constraints of the generation system owned by the firm of 

interest as well as the price clearing process. For example, the better computational 

tractability of optimization models enables them to deal with difficult and detailed 

problems, such as building daily bid curves in the short-term. For instance, Rajamaran 

et al. [10] describe and solve the self commitment problem of a generation firm in the 

presence of exogenous price uncertainty. A new framework to build bidding strategies 

for power suppliers in an electricity market is presented with imperfection of knowledge 

of rival suppliers in [11]. 

B Equilibrium models: 

The oligopoly market equilibrium analysis has been widely used in recent years. In 

economics, market equilibrium refers to a condition where a market price is established 

through competition such that the amount of goods or services sought by buyers is equal 

to the amount of goods or services produced by sellers. This price is often called the 

equilibrium price or market clearing price and will tend not to change unless demand or 

supply change. There are several oligopoly equilibrium models available, the most 

prominent being the Cournot model, Bertrand model, Stackelberg model, Supply 
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Function Equilibrium (SFE) model and conjecture variables model. These models 

explicitly model the strategic behavior of suppliers. In these models, suppliers decide 

their bidding strategies and believe that rivals will not alter their strategies, and price is 

then determined solely by the strategies of the suppliers and the demand curve.  

Approaches which explicitly consider market equilibria are grouped together into the 

equilibrium models category. Although these approaches differ in regard to the strategic 

variables, they are based on the concept of Nash Equilibrium (NE)—the market reaches 

equilibrium when each firm’s strategy is the best response to the strategies actually 

employed by its opponents.  

1. Betrand model 

The Betrand oligopoly model assumes that GenCos use the price as the strategy: each 

strategic GenCo decides its price to produce, while treating the output level of its 

competitors as a linear function of the price. The Bertrand model is used to predict the 

electricity prices in [12]. Bertrand model is based on the assumption that any GenCos 

can capture the entire market by pricing below other suppliers and supplying the entire 

demand. But generation capacity constraints and increasing marginal costs make this 

assumption invalid. 

2. Stackelberg model 

The Stackelberg model is a strategic game in economics in which the leader GenCo 

moves first and then the follower GenCos move sequentially. In game theory terms, the 

players of this game are leader(s) and follower(s). Stackelberg model for simulating 

deregulated electricity markets is introduced in [13] . The model is consisting of one or 
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a few large producers and a larger number of fringe producers. It is assumed that the 

large producer(s) would adopt oligopoly strategy using their market power while the 

small producers would use Betrand-like strategy. The electricity is formulated by a 

Stackelberg model and a noninterior point algorithm is used to solve this Stackelberg 

equilibrium [14]. Numerical examples illustrate that the leader participant can abuse 

market power and increase in the presence of tighter transmission capacity constraints. 

3. Cournot model 

The Cournot oligopoly model assumes that strategic GenCos employ quantity 

strategies: each strategic GenCo decides its quantity to produce, while treating the 

output level of its competitors as a constant. The Cournot game is used to model 

electricity market in [15, 16] and the market models developed exploits the standard 

approach to interpreting market equilibrium as defining the first order conditions for a 

related optimization problem. The California electricity market is simulated by a 

Cournot market model [2]. Simulation results show that there is high market price in 

high demand periods. Genetic Algorithm (GA) with a new mutation operator is 

presented and applied to determine the Cournot Game electricity market in [17]. The 

equilibrium solution is formulated as a single objective GA and accurate and reliable 

numerical solutions can be obtained. A new approach to find NE in electricity markets 

is presented in [18]. It is based on the Nikaido–Isoda function and a relaxation 

algorithm. The method can be seen either as centralized optimization or as distributed 

optimization, where the generating companies solve their own profit maximization 

subproblems. The Cournot equilibrium in a transmission-constrained network is 
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investigated in [19]. Simulation results show that pure strategy equilibrium can break 

down even when a transmission constraint exceeds the value of the unconstrained 

Cournot equilibrium line flow. The Cournot bidding electricity market with congestion 

management is modeled as a three level optimization problem in [20]. A statistical 

methodology is then proposed to solve this problem. A pay off matrix approach is 

proposed to solve the transmission constrained market equilibrium in [21, 22]. The 

proposed method obtains the mixed strategy NE that other iterated NE search method is 

difficult to obtain. The Cournot model can also be used to study the two-settlement 

electricity markets. Determination of the equilibrium in the markets is modeled as an 

Equilibrium Problem with Equilibrium Constraints (EPEC) by Cournot model, in which 

each GenCo solves a Mathematical Program with Equilibrium Constraints (MPEC) in 

[23]. Cournot model is well tractable and is widely used in market modeling. But it is 

difficult to handle a market with inelastic demand. However, the short-run demand 

elasticity in electricity markets is almost zero. As a result, price predictions from 

Cournot models depend on assumptions about a competitive fringe are not reliable.  

4. SFE model 

The general SFE model is introduced by Klemperer and Meyer [24]. The generators 

compete for the spot market by submitting their bids in the form of supply functions, 

which state the amount they would be willing to produce at any price. Several studies 

have used SFE models to consider the England and Wales market and other electricity 

markets. Green and Newbery [25] assume that each GenCo submits a smooth supply 

schedule, relating amount supplied to marginal price and look for the noncooperative 
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NE of the spot market, which implies a markup on marginal cost. Green [26] further 

models the effect of three policies that could increase the amount of competition in the 

electricity spot market in England and Wales. The linear supply function model with 

asymmetric GenCos is introduced in the analysis. He also analyzes the electricity 

contract market in England and Wales in [27]. He models competition in the spot 

market with supply functions and linear marginal costs. Rudkevich et al. [28] model a 

pool-based electricity market as a noncooperative game with a number of identical 

profit-maximizing GenCos. They use the analytical solution of SFE and relax the 

convexity and differentiability conditions to allow for the realistic step-wise supply 

curves to be studied. Rudkevich further presents a stylized model of the learning 

process through which GenCos can adjust their supply bidding strategies in order to 

achieve a rational profit-maximizing equilibrium behavior in the form of SFE [29]. 

Baldick and Hogan [30] consider a supply function model of an electricity market 

where strategic GenCos have capacity constraints. They show that if GenCos have 

heterogeneous cost functions and capacity constraints, then the differential equation 

approach to finding the equilibrium supply function may not be effective because it 

produces supply functions that fail to be nondecreasing. They analyze the 

nondecreasing constraints and characterize piece-wise continuously differentiable 

equilibrium. To find stable equilibria, they numerically solve for the equilibrium by 

iterating in the function space of allowable supply functions. Baldick et al. [31, 32] 

consider an SFE model of interaction in an electricity market, assuming a linear demand 

function and considering a competitive fringe and several strategic players with 
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capacity limits and affine marginal costs. They assume that bid rules allow affine or 

piecewise affine nondecreasing supply function by GenCos and extend the results of 

Green and Rudkevich concerning the linear SFE solution. The capacity constraints are 

introduced, and an ad hoc approach to constructing piece-wise affine supply curves is 

proposed. A new uniform framework of electricity market analysis based on 

co-evolutionary computation is developed for SFE oligopoly electricity markets in [33]. 

The piece-wise SFE with nonconvex cost function that are difficult to be handled by the 

analytical approaches are also investigated.  

Recently, some studies have been performed on determination of the SFE with 

transmission constraints. Baldick [34] investigates SFE in bid-based electricity markets 

with transmission constraints. He has demonstrated that the parameterization of the 

supply function model has a significant effect on the calculated results. The market 

equilibrium is modeled as a two-level optimization problem in which participants try to 

maximize their profit under the constraints, and their dispatch and price are determined 

by the Optimal Power Flow (OPF) in [35]. References [36, 37] formulate the problem 

of calculating SFE in the presence of transmission constraints as a MPEC.  

According to these reviews, the SFE, which is originally developed as a way of 

modeling how competitors could achieve profit maximizing equilibria in the 

marketplace under conditions of uncertain demand [24], appears to be a promising 

model of interaction in deregulated power markets. Until now, short-run electricity 

demand elasticity appears to have been very low, again making the SFE method more 

applicable to electricity market modeling. SFE has been chosen as the basis for many 
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power market models, at least for those markets where transmission network constraints 

could be ignored. SFE competes with the Cournot model as a practical tool for studying 

oligopoly in the electricity industry. SFE is attractive compared to Cournot because it 

offers a more realistic view of electricity markets, where bid rules may require suppliers 

to offer a price schedule that may apply throughout a day, rather than simply put forth a 

series of quantity bids over a day. 

5. Equilibrium model with conjecture variable 

The Conjectural Variation (CV) method can be used to simulate the strategic behavior 

of a game with imperfect information in actual electricity market. Another advantage 

of CV method is that it can easily model a market with different players: leaders, 

followers, or price takers. The approach of conjectural supply function is proposed by 

Garcia-Alcalde to simulate the Spain electricity market effectively in [38] and applied 

by Day and Hobbs in simulation of England and Wales market with linear Direct 

Current (DC) network [39]. Both papers [38, 39] only concentrate on the static 

equilibrium, but ignore the dynamic characteristics of CV, which is suitable to be 

applied in the learning process in the electricity market. A conjectural variation based 

learning method is proposed for GenCos to improve their strategic bidding 

performance in a spot electricity market taking account of the expected reaction of 

their rivals [40]. With the application of conjecture, each GenCo can make its optimal 

generation decision in the learning process according to available information 

published in the electricity market. Examples are used to illustrate that motivation is 

existed for each GenCo to start learning, and learning of all GenCos will decrease the 
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market clearing price of electricity and improve the total social welfare. Conjecture 

Variable based Bidding Strategy (CVBS) method is used by GenCos to improve their 

strategic bidding and maximize their profits in real electricity spot markets with 

imperfect information [41]. A GenCo using CVBS integrates its rivals into one 

fictitious competitor and estimate its generation and reaction to the GenCo’s change of 

output so that an optimal decision can be made accordingly. It is shown that classical 

Game Theoretic Bidding Strategies (GTBS) are special cases of CVBS families, and 

the system equilibrium reached via CVBS is NE. The analytic conclusions have been 

validated by computer simulations. 

C Simulation models: 

Simulation models are an alternative to equilibrium models when the problem under 

consideration is too complex to be addressed within a formal equilibrium framework. 

Simulation models typically represent each agent’s strategic decision dynamics by a set 

of sequential rules that can range from scheduling generation units to constructing offer 

curves that include a reaction to previous offers submitted by competitors. The great 

advantage of a simulation approach lies in the flexibility it provides to implement 

almost any kind of strategic behavior. However, this freedom also requires that the 

assumptions embedded in the simulation be theoretically justified. 

In many cases, simulation models are closely related to one of the families of 

equilibrium models. For example, when in a simulation model GenCos are assumed to 

take their decisions in the form of quantities, the authors will typically refer to the 

Cournot equilibrium model in order to support the adequacy of their approaches. 
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Otero-Novas et al. present a simulation model that considers the profit maximization 

objective of each GenCo while accounting for the technical constraints that affect 

thermal and hydro generating units [42]. Day and Bunn [43] propose a simulation 

model, which constructs optimal supply functions, to analyze the potential for market 

power in the England & Wales Pool. The modeling flexibility of simulation models 

allows for a wide range of purposes although there is still some controversy as to the 

appropriate uses of agent-based models. Bower and Bunn [44] present an agent-based 

simulation model in which GenCos are represented as autonomous adaptive agents that 

participate in a repetitive daily market and search for strategies that maximize their 

profit based on the results obtained in the previous session. The dynamics in 

two-settlement electricity markets is studied by an agent-based model in [45]. 

Numerical simulations imply that the access to the forward market leads to more 

competitive behaviors of the suppliers in the spot market, and thus to lower spot energy 

prices. 

This section presents a comprehensive review of market power related issues in 

emerging electricity markets, with special emphasis on methods about equilibrium 

model for analysis of market power. Among these models, the Cournot and SFE models 

are the most extensively used models for analyzing pool-based electricity markets. 

Fortunately, direct estimation of the Cournot and SFE equilibria appears to be more 

feasible for electricity markets than the case for other commodities. 
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1.4 Market Analysis with Co-evolutionary Computation 

Market equilibrium analysis is of fundamental importance because it provides the 

regulator with relevant information to identify and mitigate the exercise of market 

power [4]. It also provides GenCos with the appropriate information to maximize their 

respective profits, within the regulatory framework, by altering market clearing prices 

to their own respective benefits. 

There are many methods, such as empirical analysis [19, 46, 47], agent-based 

simulation [45, 48-51], iterative NE search algorithms [23, 29, 35, 36, 52] and 

complementarity program method [37, 53, 54], employed to investigate the market 

equilibrium. 

Although a lot of techniques have been employed to study the market equilibrium, no 

method has been extensively accepted, and the existing techniques need to be 

complementary each other. So an alternative tool should be developed to handle these 

problems. Recently, the application of co-evolutionary computation techniques to 

electricity market analysis has become a topical research area. Co-evolutionary 

computation approach has been successfully used to economical simulation and to 

determine the market equilibrium in complex games [33, 55, 56]. Reference [57] 

develops a co-evolutionary GA to model industrial organization games and has 

illustrated the potential of co-evolutionary computation in market simulation. 

Investigation on the dynamic behavior of market participants using a co-evolutionary 

approach has been performed in [58]. A hybrid co-evolutionary programming approach 

for NE search in games with local optima is proposed in [55] and the 
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transmission-constrained electricity market is also studied. A new uniform framework 

of electricity market analysis based on co-evolutionary computation is developed for 

analyzing both Cournot [56] and SFE [33] electricity markets. The market players’ 

repeated bidding behavior, nonlinear market models and piece-wise SFE with 

nonconvex cost function that are difficult to be handled by the analytical approaches are 

also investigated in [33, 56] by co-evolutionary computation approach. Simulation 

results have verified that the computation of co-evolutionary computation is highly 

efficient and is potentially practical. 

This thesis will focus on several important issues as follows:  

Firstly, when the transmission is considered, the profit function of market players 

may be nonconcave and discontinuous with many local optima. The conditions for the 

existence of the market equilibrium in a transmission-constrained power market are 

very complex. The thesis should reinvestigate the bidding behavior of market players in 

a constrained market with a powerful tool.  

Secondly, the LSFE models with single parameter are investigated in [35-37, 46, 59], 

but the LSFE with multiple parameters should also be studied. When the capacity 

constraints are considered in the market analysis, determination of market equilibrium 

becomes a more challenging task.  

Thirdly, when compared to actual markets, some of these works study single pricing 

period market equilibrium only and most of these works have not considered the 

inter-temporal constrains of the real market. It will be significative to model the effect 
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of the actual GenCos on market-clearing prices in multi-period market setting with 

consideration of inter-temporal constraints.  

Fourthly, due to the California electricity crisis, more and more researchers are 

convinced that forward market arrangement plays an important role as a means for 

market power mitigation in electricity markets [3]. Therefore, market equilibrium 

models are required to model the competition of generators in spot and contract markets. 

Then a new methodology need be developed to handle this challenging task.  

Finally, co-evolutionary computation is a fast developing research area of 

evolutionary computation. In particular, co-evolutionary computation is of special 

importance in both its empirical evidence in market simulation and its underlying 

theoretical foundations because the dynamic behaviour of co-evolutionary computation 

is still unclear and need be studied. 

 This thesis establishes the mathematical models to study the above issues for 

electricity markets and uses co-evolutionary computation and game theories to analyze 

the equilibrium of electricity markets. 

1.5 Thesis Layout 

The organization of the thesis is as follows: 

Chapter 1 presents the literature review on power market model and market power 

assessment and highlights the importance of the research in this thesis. 

Chapter 2 provides an introduction to evolutionary computation and co-evolutionary 

computation. The general market model and market equilibrium are also introduced. 
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Determination of market equilibrium with a co-evolutionary computation algorithm is 

then preliminarily presented. 

Chapter 3 further analyzes the performance of co-evolutionary computation in solving 

power market equilibrium problem with capacity constraints and transmission 

constraints. The effects of transmission and generation capacity constraints on the single 

pricing period NE in a day-ahead market is investigated. The LSFE and the Cournot 

market models are employed in the evaluation. The evaluation is based on a parallel 

Co-evolutionary Computation Algorithm (CCA). The existence or non-existence of the 

NE due to the above constraints are illustrated using a 2-bus test system and the IEEE 

30-bus system. The effects of the different parameters settings of the LSFE model on 

the equilibria are also studied and compared with those found based on the Cournot 

model. 

Chapter 4 is used to simulate the electricity market in a day-ahead pool-based market 

setting with co-evolutionary computation. It extends the co-evolutionary computation to 

analyze market power and bidding strategies in multi-period market with inter-temporal 

constraints. It reproduces actual market functioning to make the simulation results 

comparable to actual market settings. It is important to study the outcomes of markets in 

which the GenCos are compelled to bid consistent for multiple pricing period.  

Chapter 5 presents a two-stage game model to formulate the competition of GenCos 

in bid-based pool spot markets and forward contract markets, as well as the interaction 

between these two markets. The issue of whether rational GenCos would voluntarily 

enter contract markets is examined and the factors which could affect the contractual 
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behavior are studied. The effects of GenCos’ cost parameters and demand elasticity on 

the bidding behavior of GenCos are studied. Two numerical examples are used to verify 

the theoretical results.  

Chapter 6 summarizes the finding of the thesis and discusses some potential future 

works related to equilibrium analysis with the co-evolutionary computation. 
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CHAPTER 2 COEVOLUTIOANRY COMPUTATION  

 

 

2.1 Introduction 

Evolutionary Algorithms (EA) in the field of Evolutionary Computation (EC) have 

been widely applied in solving optimization problems, which are previously difficult or 

impossible to be solved. These algorithms include GA, Evolution Strategies (ES), 

Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) etc. Recently, 

in order to solve extremely challenging problems, EAs have been combined among 

themselves and with knowledge elements of the problems, as well as with traditional 

approaches. EAs may offer many advantages such as shorter time for program 

development, strong solution searching capability for nonlinear and discrete problems, 

and robust performance with relatively insensitive to noisy and/or missing data. 

This chapter will first provide an overview of EC and introduce the basic theory of 

EC and co-evolutionary computation; and then apply the co-evolutionary computation 

to determine the market equilibrium and analyze the power market. 
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2.2 Evolutionary Computation 

There are a number of different classes of algorithms that make up the field of EC. 

They are notated as GA, EP, ES and Genetic Programming (GP). Although these four 

classes of EAs are different, they are all based on the same fundamental principles of 

Darwinian evolution. Another kind of evolution computation algorithms is swarm 

intelligence, such as Ant Colony Optimization (ACO) and PSO. EAs can be loosely 

recognized by the following criteria: iterative progress, growth or development; 

population based; guided random search; parallel processing; often biologically inspired. 

Finally a general framework of EA is given in Figure 2.1. 

Procedure of EA 

   t = 0; 

   Initialize Pop(t); 

   Evaluate Pop(t); 

While (End condition is not satisfied) 

   { 

     Parents(t) = Select_Parents(Pop(t)); 

Offspring(t) = Procreate(Parents(t)); 

Evaluate(Offspring(t)); 

Pop(t+1)= Replace(Pop(t),Offspring(t)); 

t = t + 1;   

} 

 
Figure 2.1: Pseudo-code of EA 
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2.2.1 Genetic Algorithm 

GA was formally introduced in the 1970s by John Holland at University of Michigan 

[60]. A GA is a search technique used in computing to find true or approximate 

solutions to optimization and search problems. GAs are a particular class of EAs that 

use techniques inspired by evolutionary biology such as inheritance, mutation, selection, 

and crossover (also called recombination) [60]. 

GAs are implemented as a computer simulation in which a population of abstract 

representations (i.e. chromosomes or genotype or genome) of candidate solutions (i.e. 

individuals or phenotypes) to an optimization problem evolves toward better solutions. 

The evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the 

population is evaluated. Multiple individuals are stochastically selected from the current 

population (based on their fitness), and modified (recombined and possibly mutated) to 

form a new population. The new population is then used in the next iteration of the 

algorithm. 

The flowchart of the classic GA is showed in Figure 2.2 and its procedure is 

described as follows: 

1.  [Starting] Generate random population of chromosomes (suitable solutions for the 

problem)  

2.  [Fitness evaluation] Evaluate the fitness of each chromosome in the population  

3.  [Creating new population] Create a new population by repeating following steps 

until the new population is complete    
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  [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected)  

  [Crossover] With a crossover probability, cross over the parents to form new 

offspring (children). If no crossover is performed, the offspring is the exact copy 

of parents.  

  [Mutation] With a mutation probability, mutate new offspring at each locus 

(position in chromosome).  

  [Accepting] Place new offspring in the new population  

4.  [Replacing] Use new generated population for a further run of the algorithm  

5.  [Testing] If the termination condition is satisfied, stop, and return the best solution 

in the current population  

6.  [Looping] Go to step 2  
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End condition is 
satisfied

End

Start

Initial population

Evaluate fitness for 
each individual

Evaluate fitness for 
each individual

Selection

Crossover

Mutation

No

Yes

  

Figure 2.2: Flowchart of GA 

2.2.2 Evolutionary Strategies and Evolutionary Programming  

ES [61] employs real-coded variables and, in its original form, it relies on mutation as 

the search operator. It has evolved to share many features with GA. The major 

similarity between these two types of algorithms is that they both maintain populations 

of potential solutions and use a selection mechanism for choosing the best individuals 

from the population. The main differences are: GAs rely mainly on recombination to 
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explore the search space, while ES uses mutation as the dominant operator; and ES is an 

abstraction of evolution at individual behavior level, stressing the behavioral link 

between an individual and its offspring, while GAs maintain the genetic link. 

EP [62] is a stochastic optimization strategy similar to GA, which places emphasis on 

the behavioral linkage between parents and their offspring, rather than seeking to 

emulate specific genetic operators as observed in nature. EP is similar to ES, although 

the two approaches are developed independently. Like both ES and GAs, EP is a useful 

method of optimization when other techniques such as gradient descent or direct 

analytical discovery are not possible. Combinatorial and real-valued function 

optimization in which the optimization surface or fitness landscape is “rugged” are well 

suited for EP. 

2.2.3 Particle Swarm Optimization 

In 1995, Kennedy and Eberhart first introduced the PSO method, motivated by social 

behavior of organisms such as fish schooling and bird flocking [63]. PSO, as an 

optimization tool, provides a population-based search procedure in which individuals 

(i.e. particles) change their positions (i.e. states) with time. In a PSO system, particles 

fly around in a multidimensional search space. During flight, each particle adjusts its 

position according to its own experience, and the experience of neighboring particles, 

making use of the best position encountered by itself and its neighbors. The swarm 

direction of a particle is defined by the set of particles neighboring the particle and its 

history experience. PSO is an exciting new methodology in evolutionary computation. 

It is somewhat similar to a GA in that the system is initialized with a population of 
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random solutions. Unlike other algorithms, each potential solution (i.e. a particle) is also 

assigned a randomized velocity and then flown through the problem hyperspace. PSO 

has been found to be extremely effective in solving a wide range of engineering 

problems. It is very simple to implement (the algorithm comprises two lines of 

computer code) and solve problems very quickly [64]. 

PSO is described as follows: 
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2.3 Co-evolutionary Computation 

The simplest definition about a co-evolutionary algorithm is that “a co-evolutionary 

algorithm is an EA (or collection of EAs) in which the fitness of an individual depends 

on the relationship between that individual and other individuals” [65]. Such a 

definition immediately imbues these algorithms with a variety of views differing from 

those of standard EAs. For example, one might favor the view that individuals are not 

evaluated at all, but in fact their interactions are evaluated. Alternatively, one might 
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look at individual fitness evaluation from the perspective of a dynamic landscape, given 

that the result of the evaluation is contextually dependent on the state of other 

individuals. In either case it is clear that they differ in profound ways from the 

traditional EAs.  

2.3.1 Development of Co-evolutionary Computation 

In fact, most works in co-evolutionary algorithms are in the area of competitive 

coevolution in the early time. The most popular competitive coevolution has been 

applied to game playing strategies [66]. Competition has played a vital part in attempts 

to coevolve complex agent behaviors [67] so coevoluiontary algorithm has also been 

applied to a variety of machine learning problems. 

Potter and De Jong first propose cooperative evolutionary computation by developing 

a cooperative co-evolutionary algorithm for static function optimization through 

problem decomposition [68]. In this model, each population contains individuals 

representing a component of a larger solution. The populations evolve almost 

independently and interact only to obtain their fitness. Fitness of an individual 

representing a subcomponent is equal to the quality of the whole-problem solution 

obtained by assembling that individual with individuals representing the other 

subcomponents (for cooperative co-evolutionary computation, these individuals are 

usually called collaborators). Wiegand [69] attempts to make the algorithm more 

adaptively allocate resources by allowing migrations of individuals from one population 

to another. Since initial results of this method are promising, a framework for using 
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cooperative co-evolutionary computation algorithms is developed in [70] and further 

extended in [65].  

The main difference between cooperative and competitive co-evolutionary algorithms 

is the way that their individuals interact with each other. In the case of cooperative 

algorithms, individuals are rewarded when they work well with other individuals and 

punished when they perform poorly together. In the case of competitive algorithms, 

however, individuals are rewarded at the expense of those with which they interact. In 

this thesis, the Cooperative Co-evolutionary Algorithm (CCA) is employed. 

CCA has promising applications in power system optimization and power market 

simulation. The decomposition and coordination methods based on the CCA are used in 

unit commitment [71] and reactive power optimization [72]. Another recent 

fast-developing area is the application of CCA [73] in determining the game 

equilibrium or analyzing the oligopolistic market [33, 55, 56]. CCA is found to be an 

effective and powerful approach for oligopolistic market analysis. 

2.3.2 General Framework of Cooperative Co-evolutionary Computation 

The basic framework of CCA is described in this section. It simulates the 

co-evolutionary mechanism in nature and adopts the notion of ecosystem. Multiple 

species coevolve and interact with each other and result in the evolution of the 

ecosystem. Each species evolves a bundle of individuals through the repeated 

application of a conventional EA. The individuals in the species are genetically isolated. 

But one species can interact with the others within a shared domain model.  
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 Figure 2.3 shows the fitness evaluation phase of the EA from the perspective of 

species i. To evaluate an individual from species i, collaborators are formed with 

representatives from each of the other species. The domain model solves for the system 

variable. Then species i can use the system variable to evaluate the fitness of its 

individual. There are many possible methods for choosing representatives (i.e. 

collaborators). An obvious one is to simply let the current best individual from each 

species be the representative, and an alternative one is to randomly select an individual 

from each species to be the representative [65]. Here, the representative is the best 

individual in a species and is used as the collaborator.  

 

 

Figure 2.3: General framework of CCA  

Wigand points out the many parameters that need to be set in CCA [65], such as 

which method of EA is used in each population and how the populations interact. CCA 
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has a set of coevolution specific parameters whose values can greatly affect 

performance. It would be useful to have some knowledge of the effects of the 

reasonable values of parameters, in order to select a better one. In recent years, a lot of 

effort has been spent on generating such knowledge for CCA. Most studies [74-77]  

focus on collaboration schemes such as how many individuals should be used for 

evaluation, how these individuals should be selected, and how the outcomes of their 

interactions are aggregated. An initial study on the performance effects of population 

size and elitism is performed in [78] and then extended in [79]. But most of these 

studies [74-79] focus on using the decomposition technology to study a single objective 

optimization problem. The knowledge and methods of CCA parameters setting may not 

be suitable for the application of CCA in the game equilibrium determination. Indeed, 

this thesis has found that the CCA is observed to be more effective and efficient for 

market equilibrium determination when selection with elitism is used, the best 

individual is selected as representative, rather large mutation probability and population 

size are used. 

A parameter called update timing which controls whether the CCA runs its species 

sequentially or in parallel [65] is introduced in this section. The term “sequential” refers 

to processing each population in a sequential order and choosing representatives from 

the current state of the other populations. Since the populations can change during each 

round, the order of the population selected for processing will affect the results. An 

alternate approach is the parallel one in which the individual populations are processed 

in parallel and synchronized only at the end of each round. In this approach, 
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representatives are selected from the previous generation from each population. These 

two approaches are studied in [80] for pseudo-boolean functions and in [81] for 

functions defined on continuous real-number domains. Studies show the performance of 

the method is dependent on the problem property. 

The pseudo-code of a CCA with parallel framework is given in Figure 2.4. The 

evolution of each species (i.e. population) is handled by an EA. A species means a 

population of EA in this algorithm and the species coevolves in parallel. 

g = 0
for i=1:Num of Species 

initialize the species population g
iPop in Species i 

evaluate fitness of each individual in g
iPop  

choose a collaboration g
iCol  from g

iPop  
end 
while g<max generations  do 

for i=1: Num of Species 
begin 

reproduction from k
iPop  to get g

iParent  
from g

iParent  to get g
iOffspring (i.e. 1g

iPop ) 
evaluate fitness of each individual  in 1g

iPop  
end 
for i=1: Num of Species 

choose a collaboration 1g
iCol  from 1g

iPop  
end 

g = g + 1 
end 

 

Figure 2.4: Pseudo-code of parallel CCA 

In CCA, species can calculate their best strategy based on information about what 

other species have done in the last generation [79]. Individuals in the species with 

higher fitness are at a productive advantage compared to individuals with lower fitness; 

hence the latter decreases in frequency in the new population (natural selection). In this 

situation species are viewed as being coded with a strategy and selection pressure favors 

species that are fitter whose strategy yields a higher payoff against the population. 
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Species adopt actions that optimize their expected payoff given what they expect others 

to do.  

Since CCA explicitly models the reciprocity among the coevolving species, it 

embodies a dynamic process of strategy choice and interaction, which coincides with 

the framework of game theory. Recently, game theory, especially evolutionary game 

theory has begun to be used to analyze the dynamic behaviors of co-evolutionary 

approach [75]. Co-evolutionary computation is a new area in the research of 

evolutionary computation. Its theory and applications are still rapidly developing 

[79-83]. 

2.4 Determination of Power Market Equilibrium Using CCA 

In a non-cooperative game, each player optimizes its own profit given that all the 

strategies of other players are fixed. The game will reach the NE when no player can 

further improve its profit by changing its strategy unilaterally [84]. For an I-player game, 

each player has its strategy set iX  and its payoff function is ),...,,...,( 1 Iii xxx  where 

the strategy ii Xx   and Ii ,...,1 . Each player can only choose one strategy from its 

strategy set. If the strategy profile ),..,,...,( 1 Ii xxx   is the NE, it must satisfy the 

following equation: 

),..,,...,(),...,,...,( 1
*

1 NiiNii xxxxxx                    (2.2) 

where ii Xx * . 
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2.4.1 General Framework of Electricity Pool Market 

A general game equilibrium model of Bid-Based Pool (BBP) electricity market is 

introduced in this section. The market is modeled by a noncooperative game model, 

such as Cournot and LSFE models. It is assumed that I market players try to maximize 

their profit functions ),...,,( 21 Ii xxxf  where the decision variables ii Xx   in the 

market. iX  is the decision variable spaces (strategy set) of  Player i. Each player 

submits its optimal trading strategy to the Independent System Operator (ISO) or 

Market Operator (MO). The trading strategy is different for different market models. 

Here for the standard Cournot model with quantity decision participants, the trading 

strategy is the quantity to be generated. ISO then calculates the market price according 

to the demand characteristics and market rules. ISO uses the market players’ bidding 

strategies to determine the market signal (i.e. market price and players’ transactions). 

Each player can calculate its profit with the market price and its trading strategy.  
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Figure 2.5: Electricity market modeling by equilibrium model 
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2.4.2 Determination of Market Equilibrium Using CCA 

Many methods, such as empirical analysis [19, 46, 47], agent-based simulation [45, 

48-51], iterative NE search algorithms [23, 29, 35, 36, 52] and complementarity 

program method [37, 53, 54], have been employed to determine the market equilibrium. 

Besides, some heuristic methods , such as learning and coordination between different 

players [85, 86], have been used to study the economic game. 

Empirical analyses on market equilibrium are performed in [19, 46, 47]. The 

equilibrium is obtained by drawing the best response curves of the players, but this 

methodology is limited to small test systems. 

Iterative NE search algorithms that use repeated individual profit maximization are 

employed to determine the NE in [23, 29, 35, 36]. Rudkevich [29] presents a model of 

the learning process in which each GenCo starts from the perfectly competitive supply 

function and adjusts the slope of supply function through a stylized formula and using 

the market observed data. Rudkevich proves that GenCos can achieve an SFE through 

this learning process. Iterative NE search algorithms have been applied to more 

complex games in [35, 36]. Hobbs et al. formulate the maximization problem of 

individual profits for each GenCo in a transmission constrained electricity market as a 

MPEC [36], and apply a penalty interior point algorithm to solve the problem. Weber 

and Overbye formulate the problem to determine the market equilibrium in the power 

market as a two-level optimization problem [35]. A modified Newton step is merged 

into the algorithm to optimize the individual profit. The iterative NE search algorithms 

that use repeated individual profit maximization are hard to handle a complex market 
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because they often use local search methods [35, 36] with limited search step to solve 

the market players’ profit maximization problems. 

Another way to determine the market equilibrium is using the Linear Complementary 

Program(LCP) [53] or Nonlinear Complementary Program (NLP) [37]. Stoft applies 

LCP to a two-player game in an electricity market [53]. Although the algorithms have 

been well proven mathematically, they are limited to the bimatrix game. Wang et al 

determine the electricity market equilibrium with transmission constraints using the 

NLP method [37]. But the studies in [37] have not shown how to handle the situation 

when the market has no pure equilibrium or has an equilibrium continuum. In addition, 

the solution obtained by the NLP method may not be a pure NE when the optimization 

problem is not generalized convex nor are its constraints [87].  

It is difficult to determine the NE in a complex game; and even impossible if the 

payoff functions are non-differentiable functions. So the CCA has been recently used as 

an alternative tool to determine the NE in power market [33, 55, 56]. 

In the CCA, each player is represented by a species. Each player will optimize its own 

benefit function and determine the best solution of its decision variable using an EA by 

fixing the decision variable of other players. To evaluate individuals from one species, 

collaborators (i.e. the representatives of each species) from each of the other species are 

needed. The last generation best decision variable of each player for parallel CCA or 

current best decision variable of each player for sequential CCA will be selected as the 

representative and sent to another player for next generation. The process will stop 

when the maximum number of generation is reached. In a multiple players’ game, when 
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the CCA converges to a solution at generation k, each player will not change its best 

variable because it could not find a better solution without changing the decision 

variable of another player. This means the fitness of species i’s individual in generation 

)( kll   is no larger than the best fitness of species i in generation k. 

),...,,...,(),...,,...,( 11
k
Ibest

k
ibest

k
besti

k
Ibest

l
i

k
besti xxxfitnessxxxfitness            (2.3) 

where ),...,,...,( 1 Iii xxxfitness  is the fitness function for species i, i.e. its payoff 

function. By comparing (2.2) and (2.3), if species i uses the player i’s payoff function 

)(xi  as the fitness function, (2.3) is satisfying the definition of the NE.  

GA is found be more suitable for economic learning in [88]. It is shown that 

economic learning via GAs can be described as a specific form of an evolutionary game. 

The performances of different EAs, such as GA, EP and PSO, in simulating players’ 

behaviors are compared [89]. The authors have pointed out that EP and PSO can be 

more appropriate than GA if solution space is well defined and both of them can utilize 

the previous global information. On the other hand, if the solution space is highly 

skewed and tortuous, the previous global information may be wrong and mislead the 

searching procedure in PSO and EP. Thus, GA will outweigh EP and PS in the later 

case. In a market game, the relationship and interaction of the market players are very 

complex. The dynamic behavior of one player is affected by strategies of other market 

players. The fitness landscape of a player’s payoff function is usually unpredictable. 

Thus, GAs will be used to simulate bidding behaviors of GenCos in the CCA in this 

thesis. 
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CHAPTER 3 DETERMINATION AND ANALYSIS OF 

ELECTICITY MARKET EQUILIBIUM WITH 

TRANSIMISSION AND CAPACITY CONSTRAINTS  

 

3.1 Introduction 

Different equilibrium models have been used for the electricity market analysis 

including Cournot, Betrand, Stackelberg, SFE and Collusion models [4, 13, 90]. SFE 

and Cournot models are extensively used in market power analysis. There are many 

successful application cases to simulate the power market using the SFE models [25, 26, 

29, 30, 91] and Cournot models [56, 90]. However, most of these studies neglect the 

effect of the transmission constraints.  

Recently, some studies [19, 35-37, 46, 47, 53-55, 59, 87, 92-94] have been performed 

on determination of the market equilibrium with transmission constraints. A two-level 

optimization model is used in which participants try to maximize their profits under the 

transmission constraints, and their power dispatch and price are determined by the OPF. 

When the transmission is considered, the profit function of market players may be 

nonconvex and discontinuous with many local optima. The conditions for the existence 

of the market equilibrium are very complex. The following three possible situations 

exist: 

1. One pure NE exists when the transmission constraints are not so tight. 

2. No pure NE exists due to the transmission congestion [19, 46, 47].  
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3. A NE continuum in LSFE market models appears due to transmission congestion 

[35, 46, 47].  

The LSFE models with single supply function parameter are investigated in [35-37, 

46, 59], but the LSFE with multiple supply function parameters should also be studied. 

When the generation capacity constraints are considered in the market analysis, 

determination of market equilibrium becomes a more challenging task. A new global 

search method needs to be explored for market analysis and equilibrium determination 

in more realistic and complicated conditions. 

In this chapter, electricity markets with transmission and generation capacity 

constraints are studied. A parallel Co-evolutionary Genetic Algorithm (CGA) is applied 

to determine the market equilibrium with transmission and generation capacity 

constrains. The performance of the parallel CGA is tested and the effects of the 

transmission constraints and generation capacity constraints on the behavior of market 

players and on the existence of the NE are investigated. 

3.2  Model Formulation 

Suppose there are I generators, J demands and N buses in the power system. The I 

generators belong to F GenCos. Generator i belonging to GenCo f is represented by 

fSi . Each generator is assumed to have a strictly concave quadratic cost function: 

  IicPbPaPC inGiinGiiGini ,,1
2

1 2
                (3.1) 
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where GinP  is the quantity generated by Generator i at bus n; ii ba ,  and ic  are the 

coefficients of the Generator i’s cost function;  Gini PC is the cost of generator i . 

Therefore the marginal cost function is affine for each generator as follows:  

  IibPaP
dP

dC
iinGiinG

inG

i ,,1                    (3.2) 

Assume that each demand has an inverse linear demand function: 

JjePdPp jDjnjDjnn ,...,1)(                    (3.3) 

where np  and DjnP  are the price and the quantity of demand j at bus n respectively; 

jd  and je  are the coefficients of the demand function with 0,0  jj ed . Therefore 

the demand benefit function can be represented by: 

JjPePdPB DjnjDjnjDjnj ,...,1
2

1
)( 2               (3.4) 

where )( Djnj PB  is the cost of demand j. 

If the transmission loss is assumed to be negligible, the aggregate demand will be 

equal to the total output of all the generators in the market as shown below: 





J

J
Djn

I

i
inG PP

11

                              (3.5) 

3.2.1 Market Model 

LSFE model and the less competitive market model, Cournot model, are described in 

this section. 

1) LSFE Model 
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In the day-ahead power market, the generators are assumed to submit a bid to ISO, in 

the form of Linear Supply Function (LSF) in each pricing period (i.e. one hour). Each 

LSF includes an intercept and a slope as follows: 

  IiPPp iinGiinGn ,,1                       (3.6)  

where i  and i are the bidding strategies of the Generator i.  

Baldick summarizes the parametrization of supply function into four categories [34]. 

The notations are different from [34]. 

1. a-parametrization, where Generator i can choose i  in (3.6) arbitrarily but is 

required to specify a fixed and pre-chosen value of i  . In this chapter, i = ib is 

selected. 

2. b-parametrization, where Generator i can choose i  in (3.6) arbitrarily but is 

required to specify a fixed and pre-chosen value of  i . In this chapter, i = ia is 

selected. 

3. )( ba  -parametrization, where Generator i can choose i  and i  subject to 

the condition that i  and i  have a fixed linear relationship. The LSF 

described in (3.7) is studied in this chapter, where Gik  is the bidding variable:  

  IibPakPp iinGiGiinGn ,,1)(                       (3.7) 

4. ),( ba -parametrization, where Generator i can choose i  and i arbitrarily. 

Then each GenCo will maximize its own profit where the decision variables are i  

and i . The optimization problem can be formulated as: 

FfPCPp

Max

GiniGinn
Si

IIiif

f

,...,1))((

),,...,,,...,,( 11

 



                 (3.8) 
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where np , the nodal price at bus n, is determined by ISO. 

Once each generator given its bidding, the ISO needs to solve the DC OPF problem 

in (3.9) for determining the corresponding generating output of each generator ( inGP ), 

the load demand of each demand ( DjnP ) and the nodal price ( np ). The objective of this 

market clearing problem is to maximize a quasi-social welfare (defined by the benefit of 

demands minus the submitted costs of the generators), subject to power balance 

constraint, transmission constraints and generation capacity constraints. 

 

 
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where matrix T is the sensitivity of the branch flows to nodal net injections, i.e. shift 
factors; H is a properly dimensioned vector with all ones. 

The Lagrangian function for this ISO optimization problem is: 

 

)()()(

)())((

)()(max

DDDDGG

GGDG

DG

PPυPPυPPτ

PPτFPPTμ

PPH


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



             (3.10) 

where   is the Lagrangian multiplier of power balance constraint; μ , τ


, τ


,υ


,υ


are 

the corresponding Lagrangian multipliers vector associated with transmission 

constraints, generators’ upper and lower generation capacity limits as well as demands’ 

upper and lower demand capacity limits respectively. 
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The nodal price can be obtained as follows: 

NnTp mn

M

m
mn ,...,1

1

 


                    (3.11) 

where mnT  is the element (m, n) of matrix T ; and M is the number of transmission 

lines. 

2) Cournot Model 

In Cournot model, the generators are assumed to use their quantities as bidding 

variables. The optimization problem of GenCo f is described in (3.12) where the 

decision variables are GinP ( fSi ). 

  FfPCPp

PPPMax

GiniGinn
Si

GInGinnGf

f

,...,1)(

),...,,...,( 1

 



         (3.12)  

Since inGP  of generators are known, ISO can determine the corresponding DjnP   

and np  similar to the optimization problem in (3.10) of the LSFE model, but with the 

following equation:  
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             (3.13) 

3.2.2 Determination of Market Equilibrium Using CGA 

Equilibrium determination of an electricity market with F GenCos (market players) 

can be considered as a two-level optimization problem, in which the first level is the 

ISO’s market clearing optimization problem in (3.10) for LSFE model or (3.13) for 

Cournot model used to determine the market signal including np , GinP  and DjnP ; and the 

second level is the maximization of GenCos’ benefits in (3.8) for LSFE model  or 
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(3.12) for Cournot model used to optimize the corresponding bidding variables of each 

GenCo [35]. 

CCA is applied to solve this problem. Each GenCo is represented by a species, which 

coevolves using the standard GA operators including crossover and mutation [60].  

The procedures can be summarized as follows: 

Step 1: Set the basic parameters of CGA including maximum generation number, 

population size of each species, crossover rate and mutation rate. 

Step 2: The individual of each species, which includes the bidding variable of the 

GenCos, is initialized. All the initial representatives of each species are set randomly.   

Step 3: The standard GA is applied to solve the optimization problem of each 

GenCo in (3.8) or (3.12). For each individual in the species, the ISO market clearing 

problem in (3.7) is first solved by the quadratic programming technique to determine 

the corresponding np  and GinP  for the generator or DjnP  for the demand; and then 

this individual is assigned a fitness value according to the profit function in (3.8) or 

(3.12). The number of generation for the standard GA is set to be the number of 

decision variables in species i.  

Step 4: The best individual of each species (i.e. individual with the highest fitness 

value) is selected as the representative and sent to other GenCos. 

Step 5: Repeat Steps 3-4 using the updated collaborators and also keeping the best 

strategy of each GenCo in the population (i.e. elitism) until the maximum generation 

number is reached.  
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3.3 Case Studies 

In this section, the proposed method is applied to a 2-bus test system and the IEEE 

30-bus test system. Results for perfect competition are also presented in both examples 

for the purpose of comparison with the LSFE results. The CGA parameters are given in 

Table 3.1.  

Table 3.1: Parameters of CGA 

Parameters Description 

Variable code 20 bit binary code 

Initial population Randomly initialized population 

Population size 60 

Maximum generation 200 

Mutation Bit-flip mutation (mutation probability= 0.1) 

Crossover Two-point crossover (crossover probability= 0.9) 

Selection Roulette selection and 5% population is elitism 

 

3.3.1 2-Bus Test System 

The test system with two generators and one demand is shown in Figure 3.1. The 

coefficients of generator’s cost and demand functions are given in Table 3.2 [35]. The 

two generators belong to two GenCos respectively. 

G2
G1

1 2

D2

 

Figure 3.1: 2-bus test system 

The LSFE under )( ba  -parametrization is used to illustrate the convergence 

process of the proposed algorithm in the 2-bus electricity market with transmission 
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constraints and generation capacity constraints. The demand constraints is set as 

2DP =0MW and iiD deP 2 =375MW. The upper and lower limits of Gik are assumed 

to be 20 and 0 respectively. 

Table 3.2: Coefficients of demand function and generators’ cost function 

Bus number Coefficient 1 2 

jd ($/(MW)2h) 0 0.08 
Demand  function 

je  ($/MWh) 0 30 

ia ($/(MW)2h) 0.02 0.02 

ib ($/MWh) 10 10 Generators’ cost function 

ic  ($/h) 0 0 

A Effect of Transmission Constraints:    

When the transmission limit ( F ) is set to 180MW, which is a relatively large value, 

the best response curves are determined to identify whether there is a pure NE. For 

example, given a 1Gk  in each step, 2Gk  is varied within its decision range to find the 

corresponding value that gives the maximum profit of Generator 2. Repeating the above 

calculation step by step yields the best response curve of Generator 2. Similarly, the 

best response curve of Generator 1 can be obtained. The best response curves of both 

generators are shown in Figure 3.2. The intersection of the best response curves is the 

pure NE [84]. In this case, a unique NE is obtained and the proposed algorithm 

converges to the NE rapidly as shown in Figure 3.3. 

When the transmission line becomes tight and F  is reduced to 80MW, no pure NE 

exists because there is no intersection point of the best response curves as shown in 
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Figure 3.4. In Figure 3.5, it is also observed that the CGA will not converge to any 

solution.  
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Figure 3.2: Best response curves for F = 180MW 
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Figure 3.3: Evolution process of bidding variables for F  =180MW 
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Figure 3.4: Best response curves for F = 80MW 
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Figure 3.5: Evolution process of bidding variables for F =80MW. 
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In order to show the convergence process of CGA, the 2-bus test system is studied 

again by CGA with a large population size. All other CGA parameters in Table 3.1 are 

unchanged, except for the population size changed to 1000 which is a considerable large 

number. In each generation, each species will have a large probability to find its best 

response variable because the species population is very large. In Figures 3.6 and 3.7, 

the evolution direction of each species in each generation is to the generator’s best 

response variable curve in which the generator will have the maximum profit. For 

example, the best variable set of the generators is )1,1(),( 0
2

0
1

0  bestbest kkk  in 

generation 0. Generator 1 will be attracted to 1
1bestk  in order to get higher profit. At the 

same time, Generator 2 will be attracted to 1
2bestk . Then, after a generation the algorithm 

will evolve to ),( 1
2

1
1

1
bestbest kkk  . After several generations, the algorithm can converge to 

the pure NE, i.e. the intersection of the best response curves as shown in Figure 3.6. No 

generator can find a better variable to alternate the variable selected previously so the 

generators have no incentive to change their variables. 

When the transmission constraint is tighter, the limit cycle phenomenon presented by 

Weber [35] is observed in Figure 3.7.  For example, at generation 2, the best solution 

of CGA evolves to 2k and at generation 3, it is attracted to 3k  because Generator 2 

has the highest profit in 3k . It then evolves to 4k at generation 4 and 5k at generation 5.  

Finally, it evolves and returns to 2k  at generation 6.  

CGA is a global search algorithm and can avoid converging to a local optimal point 

as illustrated by the simulation results. 
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Figure 3.6: Convergence process for F =180MW 
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Figure 3.7: Convergence process for F =80MW   
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B Effect of Generation Capacity Constraints:  

When the generator hits its generation capacity constraints, it cannot use its bidding 

variable to change its output to get more profit. The bidding variables’ threshold can be 

determined by: 

NibPak iiLimGiLimGi ,,1)/(              (3.14)      

where LimGik  is equal to minGik or maxGik  when iLimGP is equal to iGP or iGP  

respectively. On the one hand, if the output of a generator reaches its lower capacity 

limit ( iGP ), the generator can select its bidding variable not less than the threshold 

( minGik ) when other generators do not change their strategies. On the other hand, if its 

output reaches the upper limit ( iGP ), it can select the bidding variable not larger than 

the threshold ( maxGik ) when other generators do not change their strategies. An 

equilibrium continuum may exist in such situation.  

Figure 3.8 shows there exists a NE continuum because the best response curve of 

Generator 1 has much intersection with response curve of Generator 2 when the market 

constraints are F =180 and 2GP  =50MW. Generator 2 hits its upper capacity 

constraint and can select the bidding variable arbitrarily and no larger than max2Gk =1.70 

(Point A in Figure 3.8) if Generator 1 does not change its strategy 1Gk =1.60. But if 

Generator 2 selects 2Gk between 1.56 and 1.70 as its bidding strategy, Generator 1 will 

not satisfy its benefit and changes its strategy. For example, if 2Gk =1.70, 1Gk will 

become 1.30 (Point B in Figure 3.8). The equilibrium continuum is 1Gk =1.60 and 

2Gk [0, 1.56] as shown in Figure 3.8. The NE continuum upper bound )(
max2

c
Gk  of 2Gk  

is smaller than maxGik . Figure 3.9 shows when F =180 and 2GP  =50MW, Generator 2 
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can select the bidding variable arbitrarily not larger than the )(
max2

c
Gk . However, the 

output of Generator 1 and Generator 2 are unchanged after 20 generations as shown in 

Figure 3.10. 

As shown in Figure 3.8, one pure NE (Point D) in the continuum is converged 

stochastically in the proposed algorithm in this case. The NE continuum also exists in 

LSFE under a-parametrization and b-parametrization with generation capacity 

constraint 2GP  =50MW.  
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Figure 3.8: Best response curves for F =180MW and 2GP =50MW. 
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Figure 3.9: Evolution process of bidding variables for F  =180MW and 2GP =50MW. 
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Figure 3.10: Evolution process of output for F  =180MW and 2GP =50MW. 
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C Simulation results:  

In this section, the impact of transmission and generation capacity constraints on the 

behavior of generators are also investigated. LSFE with different supply function 

parameters and Cournot model are tested. The upper and lower limits of bidding 

variable are assumed to be ai*20, bi*20, 20 and 0, 0, 0 in LSFE under a-parametrization, 

b-parametrization and )( ba   -parametrization respectively. The upper and lower 

limits of i  and i  are assumed to be ai*10^6 and - ai*10^6, bi*10^6 and -bi*10^6 in 

LSFE under ),( ba -parametrization test cases respectively. 

The following four cases are studied: 

Case A: F =180MW 

Case B: F =80MW 

Case C: F =180MW and 2GP =50MW 

Case D: F =80MW and 2GP =50MW  

The simulation results of different cases are shown in Table 3.3. It shows that the 

profits of the GenCos are more than the profits in the competitive case because each 

GenCo can exercise its market power through the strategic bidding to yield higher price 

and profit in Case A. The results of different LSFE types depend on the method of 

parametrization greatly. Different LSFE parametrization will result in different 

solutions. How to select the proper coefficients for the LSFE is very important in 

market analysis. 

The market may have no pure NE in LSFE under a-, b-, and )( ba  -parametrization 

if the transmission line is tight ( F =50MW) as shown in Case B. However, when the 
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generators also have tighter generation capacity constraints, the system can have a pure 

NE due to the change of power flow pattern as shown in Case D. 

Basing on the comparisons between Cases A and C, the market price increases due to 

the generation capacity constraints. For example, in Case C, if the power output of 

Generator 2 reaches its upper limit, Generator 1 can withhold some generating abilities 

to lead the shortage of power supply and lifts up the market price. The market has a NE 

continuum due to the capacity constraints. 

In the LSFE under ),( ba -parametrization simulation cases, i.e. Cases A, B, C and D, 

the slope and intercept of supply functions are not unique, but the market-clearing price 

and the generators’ outputs are unique and equal to the results of the Cournot model in 

Cases A, B, C and D respectively.  

In these cases, the slope of the supply function is a very large positive value and the 

intercept is a very large negative value when the capacity constraints are not hit. Since 

the slopes become large, the generators become less competitive and their bidding 

behaviors are similar to that of Cournot quantity decision makers. A focal equilibrium 

[95] is found under ),( ba -parametrization because it is mutually beneficial to all the 

strategic generators in Case A. The simulation results demonstrate that it can also 

converge to the focal equilibrium in tighter capacity and transmission constrained 

markets in Cases B, C and D.  

When Generator 2 hits its capacity constraint, its output cannot be changed. Its 

behavior is similar to that of a Cournot quantity decision price maker. As there are only 

two generators in the system, the residual demand is provided by the Generator 1 only. 
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The bidding behaviors of Generator 1 and the quantity decision market price maker are 

also alike. The outcomes of LSFE in Cases C and D are close to that of the Cournot 

model. Tight generation capacity constraint may make LSFE market equilibrium 

approach to Cournot market equilibrium.  

Table 3.3: Case study results of 2-bus test system 

Case A 

Results Perfect 

comp. 

LSFE 

under  

a -para. 

LSFE 

under  

b -para. 

LSFE  

under 

)( ba  -para. 

LSFE 

under  

),( ba -para 
Cour. 

1 or
1 or kG1 -- 0.0512 11.633 1.1502 -- -- 

2 or
2  or kG2 -- 0.0512 11.632 1.1502 -- -- 

PG11(MW) 111.11 94.68 102.02 101.08 76.92 76.92 

PG22 (MW) 111.11 94.68 102.07 101.08 76.92 76.92 

π1($/h) 123.46 369.63 270.64 284.71 532.54 532.54 

π2($/h) 123.46 369.63 270.72 284.71 532.54 532.54 

p1($/MWh) 12.22 14.85 13.67 13.83 17.69 17.69 

p2($/MWh) 12.22 14.85 13.67 13.83 17.69 17.69 

Case B 

Results Perfect 

comp. 

LSFE 

under 

 a -para. 

LSFE 

under  

b -para. 

LSFE  

under 

)( ba  -para.

LSFE  

under 

),( ba -para. 
Cour. 

1 or
1 or kG1 -- -- -- -- -- -- 

2 or
2  or kG2 -- -- -- -- -- -- 

PG11(MW) 80.00 -- -- -- 76.92 76.92 

PG22(MW) 136.00 -- -- -- 76.92 76.92 

π1($/h) 64.00 -- -- -- 532.54 532.54 

π2($/h) 184.96 -- -- -- 532.55 532.54 

p1($/MWh) 11.60 -- -- -- 17.69 17.69 

p2($/MWh) 12.72 -- -- -- 17.69 17.69 

Case C 

Results Perfect 

comp. 

LSFE 

under  

a -para. 

LSFE 

under  

b -para. 

LSFE  

under 

)( ba -para.

LSFE 

under 

),( ba -para 
Cour. 

1 or
1 or kG1 -- 0.1000 17.111 1.6038 -- -- 

2 or
2  or kG2 -- * * * -- -- 

PG11(MW) 160.00 88.89 88.89 88.89 88.89 88.89 

PG22 (MW) 50.00 50.00 50.00 50.00 50.00 50.00 

π1($/h) 256.00 711.11 711.11 711.11 711.11 711.11 
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π2($/h) 135.00 419.44 419.44 419.44 419.44 419.44 

p1($/MWh) 13.20 18.89 18.89 18.89 18.89 18.89 

p2($/MWh) 13.20 18.89 18.89 18.89 18.89 18.89 

Case D 

Results Perfect 

comp. 

LSFE 

under 

 a -para.

LSFE 

under  

b -para. 

LSFE  

under 

)( ba -para. 

LSFE  

under  

),( ba -para. 
Cour. 

1 or
1 or kG1 -- 0.120 18.000 1.6897 -- -- 

2 or
2  or kG2 -- * * * -- -- 

PG11(MW) 80.00 80.00 80.00 80.00 80.00 80.00 

PG22(MW) 50.00 50.00 50.00 50.00 50.00 50.00 

π1($/h) 64.00 704.00 704.00 704.00 704.01 704.00 

π2($/h) 455.00 455.00 455.00 455.00 455.00 455.00 

p1($/MWh) 11.60 19.60 19.60 19.60 19.60 19.60 

p2($/MWh) 19.60 19.60 19.60 19.60 19.60 19.60 

Notes: 

1. ‘*’ means that the bidding variable is not unique and there exist a continuum.  

2. The bold characters mean that the capacity constraint of the generator is hit. 

3.3.2  IEEE 30-Bus Test System 

 A modified IEEE-30 bus system from [96] is applied in this example.  The IEEE 

30-bus test system has 30 buses, 41 lines, 6 generators and 21 loads. The transmission 

data can be obtained in [96]. The 6 generators belong to two GenCos. Generators 1 , 2, 

3 on buses 1, 2 and 5 respectively belong to GenCo 1 and Generators 4, 5, 6 on buses 8, 

11 and 13 respectively belong to GenCo 2. Tight transfer limits are assumed in the 

transmission line between buses 1 and 3，2 and 4, 2 and 6, 5 and 7 (branch 2, 3, 6 and 8 

in [96] respectively). The upper and lower limits of all bidding variables are same as the 

cases in the 2-bus test system respectively. The coefficients of generators’ cost function 

are given in Table 3.4. The demand curve of each demand is Diii Pdp  45 where id is 
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chosen such that 35ip ($/MWh) for the assumed value of DiP  in [96]. The demand 

constraints are DiP =0MW and iDi dP 45 MW.  

Table 3.4: Coefficients of generators’ cost function 

Generator 

No. 

Bus 

No. ia ($/(MW)2h) ib ($/MWh) ic ($/h) GiP (MW) 
GiP (MW)

1 1 0.075 20 0 50 200 

2 2 0.35 17.5 0 20 80 

3 5 1.25 10 0 15 50 

4 8 0.1668 32.5 0 10 35 

5 11 0.5 30 0 10 30 

6 13 0.5 30 0 12 40 

The following three cases are studied:  

Case A: the transmission constraints of all branches are equal to the original data in 

[96] 

Case B: the transmission constraints of branches 2, 3, 6 and 8 are 50% of the original 

data 

Case C: the transmission constraints of branches 2, 3, 6 and 8 are 20% of the original 

data 

 The simulation results are shown in Table 3.5. The results of LSFE under 

)( ba  -parametrization are similar to that of a-parametrization and b-parametrization 

in Cases A and C. Besides, no pure NE is found in Case B due to transmission 

constraints. Therefore, these results are not shown. In Cases A and C, there may exist a 

NE continuum because generators hit their generation capacity constraints. The 

algorithm can converge to one pure NE stochastically.  

As shown in Table 3.5, the market price in LSFE competition is higher than that in 

perfect competition in Cases A and C respectively. In the LSFE under 
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),( ba -parametrization in Cases A and C, the slope and intercept of supply functions are 

not unique, but the market-clearing price and the generators’ outputs are unique and 

equal (except the minor difference) to the results of the Cournot model in Cases A and 

C respectively. It means that a focal equilibrium is converged. The minor numerical 

difference of solutions in Table 3.5 is mainly due to the limits of 10^6 order for the 

limits of supply function parameters  i  and i . The numerical difference will be 

reduced when larger limitation values of supply function parameters are used.  

The transmission constraint can make the difference of nodal price in Case C. 

Generators 4, 5 and 6 can generate more power so GenCo 2 gets more profit. The profit 

of GenCo 1 decreases because transmission constraints make its generators (Generators 

1, 2 and 3) impossible to generate more power. Due to different locations in the network, 

some generators can increase their outputs for getting higher profits due to the 

congestion; and the other generators may lose some market power and get lower profits. 

Therefore, it is clear that the generators may not increase their profits for the cases of 

congestion.  

Because transmission constraints and generation capacity constraints make generators 

become less competitive, the solutions of different parametrization LSFE are similar to 

Cournot model in Cases A and C. When the transmission constraints become tighter, 

the market power becomes more serious in Case C. It can be observed that the obtained 

results and phenomena of this test system are consistent with that of the 2-bus system. 
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Table 3.5: Case study results of IEEE 30-bus test system 

Case C 

Results 
Perfect comp.

LSFE under 

)( ba  -para. 
LSFE under 

),( ba -para. 
Cour. 

kG1 -- 1.1848 -- -- 

kG2 -- 1.1915 -- -- 

kG3 -- 1.2123 -- -- 

kG4 -- 1.0268 -- -- 

kG5 -- * -- -- 

kG6 -- * -- -- 

PG11(MW) 193.3829 144.7677 136.5854 136.3446 

PG22(MW) 48.7485 37.6687 36.2161 36.3362 

PG35(MW) 19.6448 16.1261 15.9037 16.1773 

PG48(MW) 12.2750 18.5977 17.8328 17.8193 

PG511(MW) 10.0000 10.0000 10.9451 10.8954 

PG613(MW) 12.0000 12.0000 12.0000 12.0000 

π1(10^3$/h) 2.0595 2.3469 2.3518 2.3523 

π2(10^3$/h) 0.0516 0.1299 0.1443 0.1441 

p1 ($/MWh) 34.5037 36.5601 36.9016 36.8984 

p2 ($/MWh) 34.562 36.5601 36.9016 36.8984 

p5($/MWh) 34.5560 36.5601 36.9016 36.8984 

p8 ($/MWh) 34.5499 36.5601 36.9016 36.8984 

p11($/MWh) 34.5493 36.5601 36.9016 36.8984 

p13($/MWh) 34.5477 36.5601 36.9016 36.8984 

Case C 

Results 
Perfect comp. 

LSFE under 

)( ba  -para. 

LSFE under 

),( ba -para. 
Cour. 

kG1 -- 1.6148 -- -- 

kG2 -- * -- -- 

kG3 -- 1.2482 -- -- 

kG4 -- 1.0922 -- -- 

kG5 -- 1.1027 -- -- 

kG6 -- * -- -- 

PG11(MW) 98.4109 58.1776 56.6242 57.0328 

PG22(MW) 24.8167 20.0000 20.0000 20.000 

PG35(MW) 22.0147 17.4258 17.6490 17.7344 

PG48(MW) 35.0000 25.4502 23.7169 23.7633 

PG511(MW) 19.4192 12.7261 13.4194 13.3774 

PG613(MW) 16.6885 12.0000 14.7066 14.5566 

π1(10^3$/h) 0.7739 1.6896 1.6586 1.6857 

π2(10^3$/h) 0.3326 0.3122 0.3120 0.3125 

p1 ($/MWh) 27.3808 39.3419 39.9931 39.4656 

p2 ($/MWh) 26.1858 39.2013 39.9729 39.3655 
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p5($/MWh) 37.5184 39.6706 39.9238 39.6996 

p8 ($/MWh) 40.2413 40.1386 39.9443 40.0328 

p11($/MWh) 39.7096 40.0976 39.9568 40.0036 

p13($/MWh) 38.3443 39.9923 39.9931 39.9287 

Notes: 

1. '*' means that the bidding variable is not unique and there may exist a continuum.  

2. The bold characters mean that the capacity constraint of the generator is hit. 

3.4 Conclusion 

This chapter has successfully applied CGA to determine the market equilibrium in 

electricity market with generation capacity and transmission constraints under the LSFE 

model and the Cournot model.  

The simulation results show that the LSFE under ),( ba -parametrization converges to a 

focal equilibrium that is equal to Cournot equilibrium under the capacity and transition 

transmission constraints in all cases. The simulation results have also shown that the 

system may not have a pure equilibrium due to the transmission congestion. But an 

equilibrium continuum may exist when the generation capacity of generators becomes 

tighter in LSFE under a-, b- and )( ba  -parametrization. The solutions of market power 

analysis are different and depending on the parameters selected in different types of 

LSFE. It is also demonstrated that when these constraints are hit, the market price will 

increase and the abuse of market power can become more serious. Tighter constraints 

lead the solution of LSFE under a-, b- and )( ba  -parametrization close to the 

solution of Cournot model.  
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The results also show that Cournot prices are possible outcomes in the markets where 

bids can be changed in one pricing period (i.e. an hour). These observations should be 

contrasted with the multiple pricing period models. The requirement to bid consistently 

across a time horizon may limit the exercise of market power in above multiple 

pricing-period models. It is important to study electricity market in multiple pricing 

period market.  
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CHAPTER 4 MULTI-PERIOD MARKET SIMULATION 

AND ANALYSIS 

 

 

4.1 Introduction 

In the study of Chapter 3, a supply function is specified for each hour-long pricing 

period. Recently, some studies have been performed on determination of the market 

equilibrium with LSFE in a single pricing period [34-36]. This assumption is reasonable 

in several BBP markets, such as England and Wales market after 2001 and California 

power market. However, this assumption is not a feature of all BBP markets. In several 

BBP markets, such as the England and Wales market until 2001 and PJM market (PJM 

interconnection is a regional transmission organization that coordinates the movement 

of wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, 

Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, 

Virginia, West Virginia and the District of Columbia), a single supply function is 

applied across multiple pricing period. Green and Newbery [25] model each player by 

specifying a single supply function bid that is applied to all pricing period over an 

extended length of time. This assumption will be investigated in this chapter. 

Baldick and Hogan show that SFE prices will be below Cournot prices if it is constant 

through a time horizon [91]. The market outcome of a supply function across all pricing 

period should be compared with that of the supply function in a single pricing period, 
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and whether it can give important information to market regulators and policy makers 

should be studied. It is also important to find a bidding rule for the regulator and 

whether it is useful to relieve the market power. 

Compared to actual markets, most of these studies have not considered the 

inter-temporal constraints of the real market. But the regulators and market participants 

need a new methodology to analyze market power and bidding strategies in multiple 

pricing period market. It is desirable for market simulation to reproduce as close as 

possible the actual market functioning to make the simulator results comparable to 

actual market settings. Many researches have also paid attention to bidding behavior of 

GenCos and Unit Commitment (UC) problem in a market environment [97]. 

Multi-period electricity auction market simulation method that explicitly takes into 

account transmission congestion as well as inter-temporal operating constraints such as 

start-up costs, ramp rates etc is presented in [98, 99].  

To determine the market equilibrium is generally modeled as an EPEC, such as 

transmission line constraints and capacity constraints, are considered. It will become 

more complex to model the effect of the actual GenCos on market-clearing prices in 

multi-period market setting considering the inter-temporal constraints. Co-evolutionary 

computation approach has successfully used to economical simulation [33, 55-58] and it 

will be employed as an alternative tool to simulate the complex electricity market game. 

The purpose of this chapter is to provide a co-evolutionary computation approach to 

simulate a day-ahead BBP electricity market in which GenCos are with capacity and 

inter-temporal constraints. The outcomes of a market in which GenCos use the supply 
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functions being constant or non-constant across multiple pricing period are studied and 

compared. 

4.2 Market Model Formulation 

Suppose there are I GenCos, each has a thermal unit (i.e. generator), in the test system. 

The GenCo is assumed to submit a bid for its unit to the ISO, in the form of LSF, 

including the intercept and slope of the LSF. Each unit is assumed to have a strictly 

concave quadratic cost function:  

  IictPbtPatPC iiGiGiiiGi ,,1)()(
2

1
)( 2

            (4.1) 

where I  is number of units; )(tPGi  is power generated by unit i at time t; ))(( tPC Gii  

is fuel cost of unit i for generating power at time t; iii cba and,  are unit i cost 

coefficients. 

The marginal cost function is affine for each unit as follows:  

  IibtPatP
dP

dC
iiGiiG

iG

i ,,1)()(                 (4.2) 

It is assumed that the system demand has an inverse linear demand function and the 

transmission loss is negligible. Then the system demand at pricing period t will be equal 

to the total output of all the units in the market as shown below: 

 



I

i
iGSS IitPtrptPtP

1

,...,1)()()(                   (4.3) 
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where )(tPS  is system demand at time t; r  and )(tPS  are coefficients of demand 

function at time t,  r is the slope of demand function and )(tPS is the forecasted 

demand at time t. 

If 0r , the system demand benefit function can be represented by: 

)()(
1

)(
2

1
))(( 2 tPtP

r
tP

r
tPB sSss                       (4.4) 

))(( tPB s is the benefit of system demand at t. 

The GenCos need to provide their bids to the power market with an inverse LSF form 

as follows.  

  IittPttp iiGi ,,1)()()(                      (4.5) 

where ii  and  are LSF coefficients. 

In a day-ahead power market, the GenCos submit the bidding sets to the ISO. The 

transactions are determined by the UC and Economic Dispatch (ED). The UC 

optimization problem can be formulated as the following mixed integer programming 

problem. The ISO optimization problem is formulated as to minimize total fuel cost (i.e. 

(4.6)) or to maximize the summation of social welfare (i.e. (4.7)) when the slope of the 

demand function is equal to zero or not respectively.  
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where T  is time horizon; )(txi  is state of unit i at time t , denoting number of hours 

that the unit has been on (positive) or off (negative); )(tUi  is decision variable of unit i 

at time t , 1 for up, 0 for down; ))(),1(( tUtxS iii   is start-up cost of unit i at time t; 

)(tR is system spinning reserve.  

The GenCos’ optimization problem can be formulated as (4.12) and the decision 

variable are )(ti  and )(ti . 
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       (4.12) 

So (4.6)-(4.12) formulate a two-level optimization problem. The first level 

optimization problem is UC and ED optimization problems determined by ISO; and the 

second level optimization problem is each market GenCo to maximize its profit. This 

equilibrium model can be categorized as an EPEC.  
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4.2.1 Single pricing period market model 

First the minimum up and down time constraints and start-up cost are not considered 

and all units must be turned on in each pricing period. The ISO optimization problem 

formulated in (4.7) can be reformed as (4.13) in each pricing period. 
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The optimization problem of the GenCo i in each pricing period t is formulated as: 
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Differentiating the profit with respect to price at time t yields: 
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Setting this derivative to zero produces: 
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 tPGi  will not be equal to zero in a single pricing period. If  tPGi  is equal to zero, 

GenCo i will not satisfy its profit and will change its strategy. Then other GenCos will 

also change their strategies. 
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4.2.2 Multiple pricing period market model 

The minimum up and down time constraints and start-up cost are not considered and 

all units must be turned on in each pricing period too. Assume the bid supply function 

must be consistent across all pricing period.  
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This assumption matches with several markets, such as England and Wales until 2001 

and markets in the Eastern United States such as PJM.  

 If  tPGi  is not equal to zero, (4.12) can be differentiated with respect to  tp .  
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Setting this derivative to zero, (4.16) is also obtained. Because the bid supply 

functions are consistent across all times, these equations must be satisfied at every 

realized value of price p. Therefore, (4.19) can be obtained under this assumption [30] . 




















iI

iji

i

ii

a
r

t

TtIibt

j
,1

1 )(

1
)(

,...,1,,,1)(





 

           (4.19) 

In a low demand period, if  tPGi  is equal to zero,  tp  is nonsensical to the profit 

of supplier i. Then profit function (4.12) cannot be differentiated with respect to  tp . 

It means (4.16) (i.e. equation (4) in [26]) may not exist and (4.19) may not be obtained. 
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It is difficult to analyze the condition for the existence of market equilibrium when 

capacity constraints are considered. In this chapter, a co-evolutionary computation 

approach is employed to find the NE under these situations. 

4.2.3 Market equilibrium with inter-temporal constraints 

When the inter-temporal constraints are considered in the market clearing model, the 

GenCos’ optimization problems defined in (4.12) are very complex. It is hard to acquire 

the NE by analytical methods, so the CGA is used as an alternative tool to market 

simulation. 

The UC optimization problem is solved by Dynamic Programming (DP) methods. DP 

is characterized by the forward and back path operations. Commitment of units 

progresses one hour at a time, and combinations of schedulable units are stored for each 

hour. Finally, the most economical schedule is obtained by backtracking from the 

combination with the least total cost at the final hour through the optimal path to the 

combination at the initial hour. Thus if there are I schedulable units in an hour, then 

there are 2I combinations to evaluate. Obviously, it is not practical to evaluate all of the 

combinations. 

The Dynamic Programming-Sequential Combination (DP-SC) method [100] 

generates a subset of the combinations by turning each unit on in priority list sequence. 

Thus if there are I schedulable units, only I+1 combinations will be evaluated. Proper 

ordering of the units in the priority list is expected to yield more economic schedules. 

Generators with lower hear rate will be at higher priority. If generators have the same 
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heat rate (same HRi value), the one with higher capacity ( GiP ) will be of higher priority.  

The calculation for HR is given:  

Ii
P
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Gii
i ,,1

)(
                        (4.20) 

Since many combinations are neglected, the optimal path may not be found. This 

technique seems to be well suited when the system load is changing rapidly. DP-SC 

method is presented in [100]. 

 

4.3 Co-evolutionary Approach to Analyzing Market Equilibrium 

The basic cooperative coevolution model is given in this Chapter 2. The 

co-evolutionary computation model can be regarded as a special form of the 

Agent-based Computational Economics (ACE) model [101]. ACE is a computational 

study of economies modeled as dynamic systems of interacting agents. The ability of 

ACE to capture the independent decision-making behavior and interactions of 

individual agents provides a very good platform for the modeling and simulation of 

electricity markets. Each GenCo in the market under investigation is represented by an 

agent in the model. 

The co-evolutionary algorithm comprises multiple species (i.e. agents). Each agent 

represents a GenCo in the market. The agents interact with one another within a shared 

domain model. The market clearing problem is modeled in the domain model.  
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In the algorithm, agents can calculate their best strategies based on information about 

what other agents have done in the last generation [79]. Individuals in the agents with 

higher fitness are at a productive advantage compared to individuals with low fitness, 

hence the latter decrease in frequency in the population over time. When there exists a 

pure NE, the algorithm can find it efficiently [33, 56]. Each species has no incentive to 

change it strategy to get a higher fitness when the algorithm gets to the pure NE. When 

there is no pure NE, the algorithm could not find a stable strategies set. It means the 

algorithm could not find a strategy set that all the players satisfy their profits. The 

algorithm can find a Pareto solution under this condition [73]. 

The proposed approach is implemented using a real-coded GA. A decision variable xi 

is represented by a real number within its lower limit Lb and its upper limit Ub, i.e. 

],[ UbLbxi  . The crossover and mutation operators are described as follows [102]: 

Crossover: 

A blend crossover operator has been employed in the study. This operator generates 

the offspring randomly from the interval  ,)(),( iiiiii xyyxyx   where xi and yi 

are the decision values of the parent solutions and xi < yi.  is a random number 

between 0 and 1. To ensure the balance between exploitation and exploration of the 

search space 5.0 is selected. 

Mutation: 

A dynamical non-uniform mutation operator to reduce the disadvantage of random 

mutation in the real-coded GA is used and defined as follows:  
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            (4.21) 

where xi and xi
’ are the selected and resultant values respectively for the mutation; t is 

generation number of CGA. The function ),( yt  returns a value in the range [0, y] 

such that ),( yt  approaches to zero as t increases. This property causes this operator 

to search the space uniformly in the initial stages (i.e. when t is small), and locally at 

later stages. This strategy increases the probability of generating a new number close to 

its successor than a random choice. The following function is used: 

)1(),( )1( 

 T
t

yyt                                (4.22) 

where   is a uniform random number from [0, 1], T is the maximal generation 

number, and   is a system parameter determining the degree of dependency on the 

iteration number. In order to prevent the algorithm from stalling or premature 

convergence, it needs to explore the search space when the generations become large. 

So  =1 is used to replace the generally used  =5.  

Fitness scaling technical is also employed to improve performance of the algorithm. 

Fitness scaling： 

At the start of GA runs, it is common to have a few individuals of extraordinary 

fitness, while the rest of the population has mediocre fitness. If left to normal selection, 

these few extraordinary strings will take over a significant proportion of the finite 

population. This usually leads to premature convergence. There is another problem that 

occurs quite late in the runs. The population average fitness may be close to the best 

fitness of population. And the survival of the fittest which is so important for 
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improvement across generations just becomes a random walk among the mediocre. In 

both cases, fitness scaling can be helpful. A fitness scaling technique based on 

simulated anneal technique is given: 

em

j
T

f

j ef '                                  (4.23a) 

)99.0( 10  t
emem TT                             (4.23b) 

where 0
emT is initial temperature; emT is the temperature; jf  is fitness of individual j ; 

'
jf is scaled fitness of individual j ; 

The flow chart of CGA is shown in Figure 4.1. 

 

Figure 4.1: Flow chart of the CGA 
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4.4 Case Study 

In this chapter, the proposed method is applied to revised IEEE 6 generators test 

system [103]. The 6 generators belong to 6 GenCos respectively. The CGA parameters 

are given in Table 4.1 and each generation contains 2 nested generations of evolution of 

each species. 

 

Table 4.1: CGA parameters 

Parameters Description 

Variable code type Real code 

Initial population Randomly initialized population 

Population size 40 

Max. generation 300 

Mutation Non-uniform mutation(mutation probability= 0.05,  =1) 

Crossover Blend crossover (crossover probability= 0.9) 

Selection 
Roulette selection with fitness scaling ( 0

emT =500) and 5% population 

are elitism 

Load demand data is shown in Table 4.2.  

Table 4.2: Load demands for 24 hours 

Hour )(tPs
(MW) Hour )(tPs

(MW) Hour )(tPs
(MW) 

1 166 9 192 17 246 

2 196 10 161 18 241 

3 229 11 147 19 236 

4 267 12 160 20 225 

5 283.4 13 170 21 204 

6 272 14 185 22 182 

7 246 15 208 23 161 

8 213 16 232 24 131 

The coefficient of 6 generators study cases are given in Table 4.3. 
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Table 4.3: Coefficients of GenCoS 

GenCos No. 1 2 3 4 5 6 

GiP (MW) 50 20 15 10 10 12 

GiP (MW) 200 80 50 35 30 40 

ai (10-2$/(WM)2h) 0.75 3.5 12.5 1.668 5.0 5.0 

bi($/(WM)h) 2 1.75 1 3.25 3 3 

ci($) 0 0 0 0 0 0 

Min up time(Hr) 1 2 1 1 2 1 

Min down time(Hr) 1 2 1 2 1 1 

Init unit status 1 3 2 3 2 2 

Start cost ($) 123.0 130.5 81.5 188.5 126.0 76.5 

The study cased and simulation results are showed in Tables 4.4 and 4.5.  

Case A1: single pricing period LSFE model  

Case B1: single pricing period Cournot model  

Case C1: single pricing period LSFE with capacity constraints. 

Case D1: single pricing period Cournot model with capacity constraints. 

Case E1: multi pricing period LSFE model 

Case F1: multi pricing period LSFE with true cost coefficient i and capacity 

constraints. 

Case G1: multi pricing period LSFE with true cost coefficient i and inter-temporal 

constraints. 

Cases A2, B2, C2, D2, E2, F2 and G2 using same data but the loads increase 80MW in 

each pricing period comparing to Cases A1, B1, C1, D1, E1, F1 and G1 respectively. 

The load elastic is r=5 MW/$ in all pricing period. The study cases with reserve 

requirement (Rs(t)=0.1Ps(t))are studied in Cases G1 and G2. 
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In the single period LSFE simulation cases, i.e. Cases A1, C1, A2 and C2, the slope and 

intercept of supply functions are not unique, but the market price and the GenCos’ 

outputs are unique and equal to the results of the Cournot model in Cases B1, D1, B2 and 

D2 respectively. The minor numerical difference of solutions in Table III is mainly due 

to the limits of 10^4 order for the limits of supply function parameters  i  and i . 

The numerical difference will be reduced when larger limitation values of supply 

function parameters are used. In these cases, the slope of the supply function is a very 

large positive value and the intercept is a very large negative value when the capacity 

constraints are not hit. The simulation results demonstrate that it can converge to the 

focal equilibrium which equal to Cournot NE [33, 34]. 

By comparing Case A1with C1, when there has upper capacity constraint, the market 

price is rising and GenCos can have more market power in the peak demand pricing 

period (i.e. hour 5). Because some GenCos hit the upper capacity constraints, it leads to 

high price as shown in Figure 4.2. Due to the same reason, the market price in the peak 

demand periods (i.e. hours 3-8 and 15-21) with capacity constraints is higher than that 

without capacity constraints by comparing Cases A2with C2 as shown in Figure 4.4. 

The market price is higher in the case that the GenCos without lower capacity 

constraints than that in the case with lower capacity constraints by comparing Cases A1 

and C1 in hours 1-4 and 6-24. In these hours, the system demand is low and output of 

some GenCos is also very low because they have no lower capacity constraints in Case 

A1. It means that the GenCos can withhold their output to uplift the market price, so the 

market price is higher in Case A1 than in Case C1 in these hours respectively. Due to the 



 82  

same reason, the market price will be higher in hours 1, 3-8 and 15-21 in Case A2 than 

that in Case C2. 

In Case G2, the bidding variable of i  is equal to ib .This result is equal to that the 

GenCos are assumed to bid i  honestly. The seemingly simple result is important 

since no other strategic hypothesis is imposed but the general genetic operators on the 

GenCos’ strategic learning, and only the multiple pricing period bidding requirement 

settles the supply functions down on a unique equilibrium. This is a key notion of SFE 

theories [30] .  

In another multiple period Case G1, the bidding variable of i  is not equal to ib  

because the output of some GenCos is equal to zero in several valley load periods, such 

as in hours 10-12 and 24. Although i  is not equal to ib  exactly, it is close to ib  as 

shown in Table 4.4.  

The NE existence and uniqueness condition is very hard to be obtained in a multiple 

pricing period market with capacity constraint. There may be multiple equilibriums. 

Simulation results show there exists multiple equilibriums. The algorithm can converge 

to one pure NE stochastically in each run.  

Some of these equilibriums are Pareto efficient [84]. In these equilibriums, the 

GenCos hold their output and lift the market prices which are close to the Cournot 

market prices emerging in a single pricing period market. While the others aren’t Pareto 

efficient, the outcome of the market is close to the outcome of the market in which the 

GenCos are assumed to bid i  honestly. Baldick and Hogan use the stability theory to 

analyze the multiple pricing period market and point out only the equilibria that are  
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Table 4.4: Simulation results of low demand cases 

Case A1 B1 C1 D1 E1 F1 G1

11 a  -- -- -- -- 1.9091 2.6209 -- 
22 a  -- -- -- -- 1.1252 1.2726 -- 
33 a  -   -- -- -- -- 1.0253 1.0658 -- 
44 a  -- -- -- -- 1.4171 1.4833 -- 
55 a  -- -- -- -- 1.1154 1.1463 -- 
66 a  -- -- -- -- 1.1131 1.1452 -- 

11 b  -- -- -- -- 1.0936 1.0000 -- 
22 b  -- -- -- -- 1.0515 1.0000 -- 
33 b  -- -- -- -- 1.0498 1.0000 -- 
44 b  -- -- -- -- 0.9999 1.0000 -- 
55 b  -- -- -- -- 1.0007 1.0000 -- 
66 b  -- -- -- -- 1.0010 1.0000 -- 

p(1)($/MWh) 7.5507 7.5571 6.6138 6.6277 3.3162 3.2813 -- 
p(2)($/MWh) 8.5367 8.5585 7.8163 7.8288 3.4773 3.5847 -- 
p(3)($/MWh) 9.6732 9.6875 9.1384 9.1542 3.6545 3.8006 -- 
P(4)($/MWh) 10.950 10.935 10.696 10.708 3.8585 4.0363 -- 
p(5)($/MWh) 11.531 11.580 11.670 11.674 3.9465 4.1466 -- 
P(6)($/MWh) 11.118 11.118 10.967 10.979 3.8853 4.0675 -- 
P(7)($/MWh) 10.244 10.139 9.7966 9.8330 3.7457 3.9061 -- 
p(8)($/MWh) 9.1357 9.1288 8.4992 8.5103 3.5685 3.7015 -- 
p(9)($/MWh) 8.4303 8.4201 7.6554 7.6687 3.4558 3.5550 -- 

p(10)($/MWh) 7.3889 7.3883 6.4199 6.4256 3.2893 3.2231 -- 
p(11)($/MWh) 6.9267 6.9207 5.6534 5.6554 3.2037 3.0593 -- 
p(12)($/MWh) 7.4007 7.4128 6.3774 6.3830 3.284 3.2115 -- 
P(13)($/MWh) 7.6913 7.6912 6.7751 6.7937 3.3377 3.3282 -- 
p(14)($/MWh) 8.1952 8.1395 7.3751 7.3883 3.4182 3.5001 -- 
P(15)($/MWh) 8.9677 8.9849 8.2987 8.3099 3.5417 3.6684 -- 
p(16)($/MWh) 9.7740 9.7291 9.2574 9.2792 3.6706 3.8193 -- 
p(17)($/MWh) 10.244 10.245 9.7950 9.8968 3.7457 3.9061 -- 
p(18)($/MWh) 10.076 10.076 9.6176 9.6327 3.7189 3.8752 -- 
P(19)($/MWh) 9.9084 9.9094 9.4018 9.4329 3.692 3.8441 -- 
p(20)($/MWh) 9.5389 9.5391 8.9782 8.9913 3.633 3.7758 -- 
P(21)($/MWh) 8.8334 8.8354 8.1154 8.1548 3.5202 3.6406 -- 
P(22)($/MWh) 8.0933 8.0946 7.254 7.2649 3.4021 3.4683 -- 
p(23)($/MWh) 7.5188 7.5292 6.4133 6.4245 3.2893 3.2231 -- 
p(24)($/MWh) 6.3808 6.3815 2.8000 2.8000 3.0925 2.6443 -- 
π1(10^3$) 5.6503 5.6657 7.1242 7.1658 2.7184 2.6428 -- 
π2(10^3$) 5.0735 5.0992 4.2858 4.3170 1.1394 1.2153 -- 
π3(10^3$) 3.8615 3.8725 3.2612 3.2863 0.6187 0.6556 -- 
π4(10^3$) 3.6122 3.6122 2.9203 2.9220 0.0842 0.1320 -- 
π5(10^3$) 3.1544 3.1564 2.5559 2.5659 0.0788 0.1008 -- 
π6(10^3$) 3.1632 3.1874 2.5918 2.6104 0.0789 0.0950 -- 
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close to competitive market equilibria are stable [91]. Then the supply functions with 

true coefficient i  are used in this chapter to study the multiple pricing period market. 

The price curve of the multiple periods market is smoother compared to the price 

curve of a single period market because each GenCo considers not only benefit of the 

high demand periods but also benefit of the low demand periods. It will causes price of 

the high demand periods to be low and price of the low demand periods to be high as 

shown in Figures 4.2 and 4.4. And the market price in multiple pricing period is also 

lower than the price of single pricing period market respectively. 

In Case G1, there may be no pure NE, the algorithm could not find a strategy set that 

it is satisfied by all GenCos. The algorithm can get a Pareto optimal solution in each run. 

20 Pareto solutions will be obtained by running the algorithm 20 times as shown in 

Figure 4.3. Although there is no pure NE in Case G1, the market price is fluctuating in a 

small range except pricing period 1. In Case G2, the system demand is very high and the 

algorithm can find a pure NE. The market price in Cases G1 and G2 are close to in Cases 

F1 and F2 and is lower that that in Cases D1 and D2 respectively because the GenCos are 

not dispatched if their bids are too high in Cases G1 and G2. Therefore, the market 

power abuse can be mitigated.  

It is found that the requirement of consistent biding across multiple pricing period can 

generate lower market price and alleviate the exercise of market power. Since some 

electricity markets have been set up with an obligation for consistent bids while others 

have not, it is important to confirm that the impacts of market rule specification on the 

outcomes.  
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Table 4.5: Simulation results of high demand cases 

Case A2 B2 C2 D2 E2 F2 G2

11 a  -- -- -- -- 2.1879 2.6998 2.8434
22 a  -- -- -- -- 1.1902 1.2499 1.2915
33 a  -- -- -- -- 1.0448 1.0657 1.0710
44 a  -- -- -- -- 1.4474 1.5085 1.4944
55 a  -- -- -- -- 1.1328 1.1809 1.1858
66 a  -- -- -- -- 1.1244 1.1861 1.2011

11 b  -- -- -- -- 0.9941 1.0000 1.0000
22 b  -- -- -- -- 0.9998 1.0000 1.0000
33 b  -- -- -- -- 1.0092 1.0000 1.0000
44 b  -- -- -- -- 1.0005 1.0000 1.0000
55 b  -- -- -- -- 0.9985 1.0000 1.0000
66 b  -- -- -- -- 1.0010 1.0000 1.0000

p(1) ($/MWh) 10.2107 10.2323 9.8062 9.8331 3.7639 3.9275 3.9699
p(2) ($/MWh) 11.3089 11.3206 11.2166 11.218 3.9358 4.1170 4.1787
p(3) ($/MWh) 12.3413 12.3537 13.0321 13.057 4.1250 4.3908 4.4650
P(4) ($/MWh) 13.4322 13.6383 15.2445 15.273 4.3428 4.7113 4.7992
p(5) ($/MWh) 14.1594 14.1887 16.1947 16.215 4.4368 4.8627 4.9657
P(6) ($/MWh) 13.8032 13.8141 15.5198 15.564 4.3714 4.7535 4.8494
P(7) ($/MWh) 12.7309 12.7619 14.0169 14.048 4.2224 4.5342 4.6128
p(8) ($/MWh) 11.8123 11.8236 12.2565 12.265 4.0333 4.2558 4.3260
p(9) ($/MWh) 11.1089 11.1136 10.9713 10.979 3.9129 4.0917 4.1436

p(10) ($/MWh) 10.0376 10.0762 9.6156 9.6326 3.7352 3.8959 3.9376
p(11) ($/MWh) 9.5567 9.6061 9.0539 9.0711 3.6550 3.8075 3.8473
p(12) ($/MWh) 10.0498 10.0472 9.3001 9.5926 3.7295 3.8896 3.9312
P(13) ($/MWh) 10.3470 10.379 9.7934 9.9934 3.7868 3.9528 3.9957
p(14) ($/MWh) 10.8476 10.8584 10.6004 10.613 3.8728 4.0475 4.0922
P(15) ($/MWh) 11.6503 11.6558 11.9501 11.959 4.0046 4.2137 4.2824
p(16) ($/MWh) 12.4309 12.4618 13.1966 13.232 4.1422 4.4161 4.4911
p(17) ($/MWh) 12.9109 12.9322 14.0213 14.048 4.2224 4.5342 4.6128
p(18) ($/MWh) 12.7244 12.7639 13.7166 13.756 4.1938 4.4920 4.5691
P(19) ($/MWh) 12.5634 12.5962 13.4402 13.465 4.1651 4.4499 4.5261
p(20) ($/MWh) 12.2308 12.227 12.9904 12.707 4.1020 4.3571 4.4301
P(21) ($/MWh) 11.5104 11.5278 11.7746 11.714 3.9817 4.1799 4.2475
P(22) ($/MWh) 10.7243 10.7448 10.4540 10.474 3.8556 4.0286 4.0730
p(23) ($/MWh) 10.1002 10.0711 9.3527 9.6581 3.7352 3.8959 3.9376
p(24) ($/MWh) 9.0768 9.0688 8.4142 8.4302 3.5633 3.7058 3.7442
π1(10^3$) 10.645 10.742 12.706 12.772 4.5812 4.8959 4.9103
π2(10^3$) 9.4082 9.427 10.347 10.397 1.7842 2.1386 2.1497
π3(10^3$) 6.7980 6.822 7.3950 7.427 0.8669 1.0069 1.0469
π4(10^3$) 7.5781 7.609 6.8590 6.800 0.3997 0.5677 0.6223
π5(10^3$) 6.5070 6.524 5.7240 5.762 0.2495 0.3769 0.3435
π6(10^3$) 6.5394 6.545 6.8300 6.854 0.2495 0.3769 0.4157
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Figure 4.2: Market price of lower demand cases 
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Figure 4.3: Market price of lower demand case with inter-temporal constraints 
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Figure 4.4: Market price of higher demand cases 

 

4.5 Conclusion 

A co-evolutionary computation approach has been applied to analyze market 

equilibrium in multiple pricing period electricity market in this chapter. The capacity 

constraints and inter-temporal constraints are considered in the market model. It is 

found that when ISO compels the GenCos with a supply function being constant across 

multiple pricing period, the market price will be lower than that of Cournot price 

emerging in a single pricing period market and the market power can also be alleviated. 

Besides, it is important to further study the outcomes of different markets in which the 
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GenCos are compelled to bid consistent or not for multiple pricing period. It is also 

important to observe outcomes and to set up an obligation for consistent bids or not. 
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CHAPTER 5 ANALYZING TWO-SETTLEMENT 

ELECTRICITY MARKET EQUILIBRIUM 

 

 

5.1 Introduction 

Due to California electricity crisis, more and more researchers are convinced that the 

forward contract plays an important role for market power mitigation [3] or risk 

management [104] in electricity markets. Generally, there are at least three main 

reasons for the GenCos to enter a forward market: 1) being compelled by regulators as 

part of a transitional vesting process, which is the situation in many countries, such as 

England and Wales, Australia and New Zealand; 2) recognizing the importance and 

necessity of risk management with contractual arrangements [104]; and 3) being 

encouraged economically [105, 106]. 

The electricity spot markets modeled by SFE and Cournot models have been 

extended to include contract markets in [23, 27, 45, 52, 107-109].  The English 

electricity market is modeled by SFE model with a contract market, and the entry 

condition of the contract market is discussed in [107]. Reference [27] has showed that 

competition in contract market could lead the generators to sell contracts and increase 

their outputs and also hedge the spot market price in England and Wales. Reference 

[108] proposes an asymmetric LSFE model to develop firms’ optimal bidding strategies 

given their forward contracts. Market power mitigation effects of forward contracts 
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have also been evaluated. Reference [109] examines the issue of whether generators 

would voluntarily enter contract markets through an economic incentive by a two-stage 

game model proposed in [105]. The contract market is modeled with the general 

conjectural variation method. The factors which could affect this strategic contracting 

behavior are investigated. The dynamics in two-settlement electricity markets are 

studied by an agent-based model. Numerical simulations illustrate that the access to the 

forward market leads to more competitive behaviors of the suppliers in the spot market, 

and thus lower spot energy prices [45]. References [23, 52], determination of the 

equilibrium in two-settlement electricity markets is formulated as an EPEC using 

Cournot model, in which each firm solves a MPEC. It is shown that spot market prices 

will decreases when the supplies enter forward contracts. 

The main objective of this chapter is to investigate the issue of whether generators 

would voluntarily enter the contract market solely through the economic incentive and 

to examine the factors that could affect the strategic contracting behavior. Therefore, 

market equilibrium models are required to simulate the competition of generators in 

spot and forward markets. However, determination of the market equilibrium will be 

difficult when the forward market and generation capacity constraints are considered. 

Co-evolutionary computation is successfully used to determine the equilibrium of 

noncooperative game and market simulation. It can handle the nonlinear market models 

that are difficult to be handled by conventional methods. Thus, this chapter will employ 

the co-evolutionary computation to study bidding behavior of the GenCos in a 

two-settlement market. The impact of forward contracts on market outcomes is then 
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analyzed. The entry condition of GenCos in forward markets and the factors which 

could affect the bidding behavior are also studied.  

5.2 Market Model Formulation 

The real electricity market is a multi-settlement market where forward transactions, 

day-ahead transactions, and real-time balancing transactions are settled sequentially at 

different prices. It can be simplified as a two-settlement market including a forward 

market and a spot market. This chapter uses the two-stage game model in [105] to 

formulate the two-settlement market consisting of a forward market and a spot market. 

In the first stage, GenCos enter the forward market, forming rational expectations 

regarding the forward contracts of their rivals and the spot equilibrium outcomes. In the 

second stage, the GenCos compete in the spot market taking into account all GenCos’ 

forward contracts. The Cournot or LSFE models are used to represent competitive 

bidding in the spot market, while the forward market is represented by the Cournot 

model.  

5.2.1 Market assumptions 

Suppose there are I GenCos (suppliers) in the electricity market. And these GenCos 

are risk neutral. Each GenCo has a generator and is characterized by the following 

quadratic cost function: 
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where GiP  is the quantity generated by Generator i; ia  and ib  are the coefficients 

of the Generator i’s cost function. The marginal cost function of Generator i is affine as 

follows:  

IibPa
dP

dC
MC iiGi

iG

i
i ,,1              (5.2) 

When there is negligible transmission loss, the aggregate demand SP , which is 

assumed to be an inverse linear demand function, will be equal to the total output of all 

GenCos as shown below: 
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where p  is the spot market price; r and SP are coefficients of the demand function. 

And r is the slope of the demand function. 

The GenCos compete with each other in the forward market by choosing the quantity 

of their contracts c
GiP  ( 0c

GiP ), which they are willing to sell at the forward market 

price c
ip . It is assumed that the forward contracts are observable for all the GenCos in 

spot market. Also the GenCos are assumed to use their bidding strategies, such as 

quantities of generator in Cournot model and coefficients of supply functions in LSFE 

model, to compete in the spot market.   

5.2.2 Equilibrium model for strategic bidding in the spot market 

The GenCos bid in the spot market by using the information observed in the forward 

market. LSFE model and the less competitive market model, Cournot model, are 

employed to model the spot market respectively in this section. 
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Given the decisions of GenCos in the forward market, the optimization problem faced 

by each GenCo is how to maximize its expected total profit ( Gi ), expressed below. 

i
c

Gi
c
i

c
GiGiGi CPpPPp  )(π                       (5.4) 

1) Cournot model:  

In Cournot model, each GenCo will maximize its own profit in (5.4) by changing its 

decision variable GiP . The derivative of GenCo i’s profit with respect to its decision 

variable can be written as: 
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                   (5.5) 

By setting the derivative of GenCo i’s profit in (5.5) as zero and eliminating p  

using (5.3), the optimal value of GiP  can be obtained by:  
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Then, by eliminating GiP  in (5.6) using (5.3), the spot market price can be 

determined by: 
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2) LSFE model: 

The GenCos are assumed to compete in the spot market by submitting their bids in 

the form of LSF. The supply function is a non-decreasing function of price and takes the 

form as follows: 

0

,...,1
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iGii IiPp
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

                    (5.8) 
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where i  and i  are the coefficients of LSF. 

LSFs with a-, b-, )( ba  - and ),( ba -parametrization introduced in chapter 3 are 

studied in this chapter. The equation (5.9) is used to study ),( ba -parametrization in this 

chapter. 

  IibPakPp iinGiGiinGn ,,1)(                       (5.9) 

In LSFE model, each GenCo will maximize its own profit expressed in (5.4) by 

changing its decision variables i , i  or Gik  according to its parametrization type. By 

differentiating (5.4) with respect to p and using (5.3) and (5.8), the derivative of 

GenCo i’s profit with respect to p  can be written as: 
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      (5.10) 

By setting the derivative of GenCo i’s profit in (5.10) as zero, the optimal value of 

GiP  can be obtained by:  
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                (5.11) 

5.2.3 Equilibrium model for strategic contracting in the forward market 

The equilibrium for the forward market can be determined by maximizing GenCos’ 

profits with nesting the equilibrium conditions from the spot market in the calculation. 

In the forward market, all GenCos are supposed to be able to offer forward contracts. It 

is also assumed that there are enough risk neutral arbitrageurs in the markets and they 

will eliminate any profitable arbitrage opportunity arising from the difference between 
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the forward prices and the expected spot prices. Then c
ip  is an unbiased estimator of p 

[105]. 

Each GenCo chooses its forward market output so as to maximize its profit, which 

can be formulated as follows: 

i
c

Gi
c
i

c
GiGiGi CPpPPpMax  )(π                 (5.12)  

s.t.  Iippc
i ,...,1     

Since the spot price p  is an implicit function of the forward market output c
GiP , the 

GenCo i’s marginal benefit for forward contract is equal to the derivative of its profit 

with respect to c
GiP  as follows: 
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            (5.13) 

A  Modeling spot market by Cournot model: 

Substituting (6) into (13) yields: 
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      (5.14) 

Then, setting the marginal benefit in (5.14) to zero and using (5.7), the GenCo i’s 

output in the spot market can be obtained as follows:  
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By eliminating p  in (5.15) using (5.6), the GenCo i’s output in forward market can 

be written as: 
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The fraction of power sold at the forward market in (5.16) and spot market in (5.15) 

for each GenCo can be determined by:  
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When r is increasing, the demand becomes more elastic. The GenCos will have less 

incentive to lift up the market price in spot market. They will bid aggressively (low 

price for large quantities) in spot market and have less incentive to enter forward market. 

Then the fraction in (5.17) will become smaller.  

It can also be observed that the fraction is affected by the slope of GenCos’ marginal 

cost functions. If ia is larger than 'i
a (for any Iiandi ,...,1'  ), 

 

I

ijj j ra,1 1

1
 is larger 

than 
 

I

ijj j ra',1 1

1
. According to (5.17), 

'
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P
 can be obtained. It means that a 

GenCo with a large slope of marginal cost function will have more incentive to enter 

the forward market. 

B  Modeling spot market by LSFE model:                        
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c
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 is obtained by substituting (5.8) into (5.11) and differentiating it with respect to 

GiP  as follows: 
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where 0)
1
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Substituting (5.3) and (5.8) into (5.11) and differentiating it with respect to p yields: 
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Substituting (5.18) and (5.19) into (5.13) produces: 
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By substituting (5.11) to (5.20), the marginal benefit for the forward contract can be 

obtained by  
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1) For a , b  or )( ba  -parametrization of LSF: 

By substituting (5.2) and (5.8) to (5.11), the generation output in spot market 

becomes: 

iiiGiiiii
c

GiGi AbPaAMCpPP )]()[()(          (5.22) 

(5.23a) and (5.23b) are obtained by using (5.11), (5.21) and (5.22) when c
GiP  is not 

equal to or equal to GiP  respectively.  
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I) For 0c
GiP : 

c
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= 0 can be obtained according to (5.21).  

II) For Gi
c

Gi PP 0 : 

Using (5.21) and LSFE parametrization condition yields: 
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 is less than zero according to (5.21), (5.23a) and (5.24). 

III) For Gi
c

Gi PP  : 
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 is less than zero according to (5.21) and (5.23b). 

IV) For c
GiGi PP  : 

Using (5.21) and LSFE parametrization condition yields: 
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 is less than zero according to (5.21), (5.23a) and (5.25). 
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Under all the above conditions, GenCos will get negative marginal profit when it sells 

the forward contract so they have no incentive to enter the forward market. 

2)  For ),( ba -parametrization of LSF: 

The GenCo may select a very large positive i  as the supply function coefficient. 

Then, ])(1[ iii Aa   is less than zero and 
c

Gi

Gi

P


 in (5.21) becomes larger than zero 

so GenCos have incentive to enter the forward market  

It is found that when GenCos decide their bidding variables using a , b and 

)( ba  -parametrization of LSF, the spot market is more competitive. GenCos bid 

aggressively in spot market and have no incentive to enter forward market because their 

marginal benefits for forward contracts in the forward market are not larger than zero. 

However, GenCos may have incentive to enter forward market if they decide their 

supply functions using ),( ba -parametrization of LSF. 

Determination of the market equilibrium in the two-stage game is a difficult task 

especially for the cases of the spot market under LSFE type competition or GenCos 

with tight capacity constraints. Therefore, a co-evolutionary computation approach is 

applied to solve this problem. 

5.3 Co-evolutionary Computation Approach to Analyzing Market Model  

In this chapter, CGA implemented using real-coded GAs is employed to determine 

the market equilibrium. The crossover and mutation operators of real-coded GA are 

described in Chapter 4. GenCos in the forward market and in spot market are 

represented by species in the outer loop and inner loop respectively in the CGA. So 
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totally 2*I species are needed. To determine the equilibrium of the two-stage game, the 

backward induction method [84] is merged into the CGA. It proceeds by considering 

the decisions might be made in spot market by GenCos by fixing forward contracts. 

Using the information obtained in spot market, GenCos can optimize their strategies in 

the forward market. Thus to solve the equilibrium of the forward market, the 

equilibrium of the spot market (i.e. subgame perfect equilibrium [84]) should be 

determined firstly.  

The procedures can be summarized as follows: 

Step 1: Set the basic parameters of CGA including crossover rate, mutation rate, 

maximum generation number and population size in the outer loop and inner loop 

respectively. 

Step 2: The individual of each species, which includes the bidding variable of the 

GenCo in outer and inner loops, is initialized. All the initial representatives of 

each species are set randomly. 

Step 3: The real-coded GA is applied to solve the optimization problem of each GenCo 

for the forward market in (5.12). For each individual of the species in the outer 

loop, a fitness value is assigned according to its profit in (5.12). To get the fitness 

value, the forward market price, which is equal to the spot market price, is 

needed so the equilibrium of spot market and the corresponding price are 

determined first.  

Step 3.1: The representatives in the outer loop (i.e. forward contracts of GenCos) 

are fixed and sent to the inner loop. 
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Step 3.2: The profit of each GenCo for the spot market in (5.4) is maximized by 

the real-coded GA with consideration of its generation capacity 

constraint and system energy balance in (5.3). The corresponding 

bidding strategy (i.e. the best individual) is then determined. In the 

optimization, each individual of a species in the inner loop (i.e. a strategy 

of a GenCo in spot market) is evaluated and assigned a fitness value 

according to the corresponding profit in (5.4). The market price and total 

output of the GenCo in (5.4) can be obtained by (5.3) for Cournot model 

or (5.3) and (5.8) for LSFE model based on representatives of other 

species in the inner loop (i.e. strategies of other GenCos in spot market). 

The best individual of each species is the one with the highest fitness 

value.  

Step 3.3: The best individual of each species is selected as the representative in 

the inner loop and sent to other GenCos. 

Step 3.4: Repeat Steps 3.2 and 3.3 using the updated representatives and 

keeping the best strategy of each GenCo in the population (i.e. elitism) 

until the maximum generation number in the inner loop is reached.   

Step 4: The best individual of each species is selected as the representative of the 

species in the outer loop and sent to other GenCos. 

Step 5: Repeat Steps 3 and 4 using the updated representatives and keeping the best 

strategy of each GenCo in the population (i.e. elitism) until the maximum 

generation number is reached in the outer loop. 
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5.4 Case Study 

In this section, a three GenCo test system in [109] and a five GenCo test system in 

[30] are used to validate the models and  theoretical analyses in Section 5.2 and the 

effectiveness of the CGA in determination of market equilibrium described in Section 

5.3. The CGA parameters are given in Table 5.1. 

Table 5.1: CGA parameters  

Parameters Description 

Variable code type Real code 

Initial population Randomly initialized population 

Population size of outer loop  40 

Max. generation of outer loop 200 

Population size of inner loop 40 

Max. Max. generation of inner loop  40 

Mutation 
Non-uniform mutation 

(mutation probability = 0.05,   = 1) 

Crossover 
Blend crossover 

(crossover probability = 0.9) 

Selection 
Tournament selection size is 2 and 5% population 

are elitism  

5.4.1 Three GenCos study case 

The cost parameters of three GenCos in [109] are listed in Table 5.2. The aggregate 

demand parameters in (5.3) are )(tPS =45GWh and r=0.5GWh/($/MWh). 

Table 5.2: Cost coefficients of the three GenCos 

GenCo No. 1 2 3 

Cost parameter ai $/(MWh.GWh) 1.0 1.5 2.0 

Cost parameter bi $/MWh 12.0 10.0 8.0 

The following simulation cases with and without forward contracts are carried out:  

Case A1: Perfect competition in the spot market without forward market arrangement.  
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Case A21: Cournot type competition in the spot market without forward market 

arrangement.  

Case A22: LSFE with a -parametrization type competition in the spot market without 

forward market arrangement. 

Case A23: LSFE with b -parametrization type competition in the spot market without 

forward market arrangement.  

Case A24: LSFE with )( ba  -parametrization type competition in the spot market 

without forward market arrangement.  

Case A25: LSFE with ),( ba -parametrization type competition in the spot market 

without forward market arrangement.  

Case A31: Cournot type competition in the spot market with forward market 

arrangement.  

Case A32: LSFE with a -parametrization type competition in the spot market with 

forward market arrangement. 

Case A33: LSFE with b -parametrization type competition in the spot market with 

forward market arrangement.  

Case A34: LSFE with )( ba  -parametrization type competition in the spot market 

with forward market arrangement.  

Case A35: LSFE with ),( ba -parametrization type competition in the spot market 

with forward market arrangement.  

Simulation results are shown in Table 5.3. In Case A31, the GenCos have the incentive 

to enter the forward market when the GenCos use the Cournot type competition in the 
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spot market. The solution of this simple case can be also obtained by solving (5.3), (5.7) 

and (5.15) using the symbolic tool in Matlab software [110].  

By comparing Case A31 with Case A21, it can be observed that GenCos prefer not to 

enter the forward market because they can get more profit without participating in the 

forward market. However, if one GenCo enters to the forward market, it could benefit 

from the forward market by producing more output. Other GenCos are prompted to 

enter the forward market by economic incentive. Finally, as shown in the market 

equilibrium of Case A31, all GenCos enter the forward market, but they get less profit 

compared with  the case of without participating in the forward market (i.e. Case A21). 

The prisoners’ dilemma-type outcome [105] appears in this situation. 

In Case A35, GenCos use LSFE with ),( ba -parametrization in the spot market, the 

slope and intercept of supply function of each GenCo are not unique, but the 

market-clearing price and the suppliers’ outputs are unique and equal to the results of 

the Cournot model in Case A31. In this situation, the slope of the supply function is a 

very large positive value and the intercept is a very large negative value. The GenCos 

become less competitive and behave like Cournot quantity decision-makers. The 

simulation result has demonstrated that a focal equilibrium [34] is converged.  

When comparing Cases A35 and A31 with Cases A25 and A21 respectively, it is clear 

that the market price is lower and generation output increases when GenCos enter the 

forward market. The market becomes more competitive, and the market power is 

mitigated. 
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Table 5.3: Simulation results for three GenCos example 

Case 
Gen 

No. 
Gi

i

i

i

i korbora
  

c
GiP  

(GWh) 

p  

($/MWh) 
GiP  

(GWh) 

Gi   

(10^3$) 

1 -- -- 13.38 89.45 

2 -- -- 10.25 78.80 A1 

3 -- -- 

25.38 

8.69 75.47 

1 -- -- 9.11 207.62 

2 -- -- 8.38 193.24 A21 

3 -- -- 

39.34 

7.83 184.15 

1 1.7501 -- 10.97 150.55  

2 1.4604 -- 9.68 135.00 A22 

3 1.3272 -- 

31.21 

8.74 126.44 

1 1.5596 -- 11.19 137.79  

2 1.4977 -- 9.95 123.85 A23 

3 1.5135 -- 

29.91 

8.90 115.77 

1 1.3286 -- 11.04 144.46  

2 1.2375 -- 9.82 130.05 A24 

3 1.1921 -- 

30.61 

8.84 121.68 

1 -- -- 9.11 207.62 

2 -- -- 8.38 193.24 A25 

3 -- -- 

39.34 

7.83 184.15 

1 -- 5.48    10.59  164.45  

2 -- 5.07 9.42 148.41 A31 

3 -- 4.75 

32.82 

8.58 139.33 

1 1.7501 0 10.97 150.55  

2 1.4604 0 9.68 135.00 A32 

3 1.3272 0 

31.21 

8.74 126.44 

1 1.5596 0 11.19 137.79  

2 1.4977 0 9.95 123.85 A33 

3 1.5135 0 

29.91 

8.90 115.77 

1 1.3286 0 11.04 144.46  

2 1.2375 0 9.82 130.05 A34 

3 1.1921 0 

30.61 

8.84 121.68 

1 -- 5.48    10.59  164.45  

2 -- 5.07 9.42 148.41 A35 

3 -- 4.75 

32.82 

8.58 139.33 

The simulation results in Cases A32, A33 and A34 are the same as that in Cases A22, 

A23 and A24 because the GenCos have no incentive to enter the forward market and no 

forward contract is arranged. It is consistent with the theoretical analysis in Section 5.2. 
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However, the spot market is still more competitive than that with forward contract 

arrangement in Cases A31 and A35. It can be illustrated that the type of competitions and 

the parametrizations of LSF affect the GenCos’ decisions and market equilibrium 

significantly.  

The effects of the slope of the demand function on the bidding behavior are also 

studied and the simulation results are shown in Table 5.4. Cases B1 and B2 are same as 

Case A31 except for r=0.25 and r=1 respectively. It can be observed in Table 5.4 that the 

fraction of power sold at the forward market of each GenCo becomes smaller when r 

increases. Since the system demand is more elastic, the market is more competitive and 

the spot price reduces. The GenCos prefer to pursuit more profit in the spot market and 

reduce their output at the forward market. Similar situation can be obtained for Case 

A35.  

Table 5.4: Simulation results for three GenCos example with different slopes of the 

demand function 

Case 
Gen. 

No. 

r  

GWh/ 

($/MWh) 

c
GiP  

(GWh) 

p  

($/MWh) 
GiP  

(GWh) 
Gi

c
Gi

P
P  Gi  

(10^3$) 

1 7.17  12.31 0.5825 329.03  

2 6.64 11.17 0.5944 296.11 B1  

3 

0.25 

6.22 

44.88 

10.29 0.6045 273.70 

1 5.48  10.59 0.5175 164.45  

2 5.07 9.42 0.5382 148.41 A31  

3 

0.50 

4.75 

32.82 

8.58 0.5536 139.33 

1 3.24  7.66 0.4230 63.24  

2 3.13 6.89  0.4543 61.42 B2 

3 

1.00 

3.02 

24.08 

6.37 0.4741 61.87 

To investigate the effects of cost parameters on the bidding behavior, the following 

two cases are performed: 
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Cases C1 and C2 are same as Case A31 except for a1 = 2 and b1=8 respectively. 

The simulation results are shown in Table 5.5. In Case C1, a1=a3, the fraction of 

GenCo 1 is the same as that of GenCo 3. And in Case C2, b1=b3<b2 and a1<a2<a3, the 

fraction of GenCo 1 is smaller than that of GenCo 2 which is smaller than that of 

GenCo 3. It is not affected by the intercept of GenCos’ marginal cost functions by 

comparing Case C2 and Case A31. It is observed that the fraction of power sold at the 

forward market is only affected by the slope of GenCos’ marginal cost functions from 

Case C1 and C2. 

Table 5.5: Simulation results for three GenCos example with different cost coefficients 

Case 
Gen. 

No. 

c
GiP   

(GWh) 

p  

($/MWh) 
GiP  

(GWh) 
Gi

c
Gi

P
P  Gi   

(10^3$) 

1 5.48 10.59  0.5174 164.45  

2 5.07 9.42 0.5385 148.41 A31 

3 4.75 

32.82 

8.58 0.5532 139.33 

1 4.08  7.89 0.5172 122.44  

2 5.08 10.16 0.5000 180.73 C1 

3 4.78 

35.41 

9.24 0.5172 167.87 

1 6.23 12.04  0.5174 212.53 

2 4.82 8.94 0.5385 133.81 C2  

3 4.53 

31.67 

8.18 0.5532 126.70 

The effects of capacity constraints on the bidding behavior are studied and the 

simulation results are shown in Table 5.6. Cases D1, D2, D3, D4 and D5 are same as 

Cases A31, A32, A33, A34 and A35 except for 1GP = 5GWh. It can be observed that the 

market price will become higher when the capacity constraint is hit by comparing the 

simulation results of Cases D1, D2, D3, D4 and D5 in Table 5.6 with that of Cases A31, 

A32, A33, A34 and A35 in Table 5.3 respectively. When GenCo 1 hits its capacity 

constraint, it could not increase its output to change the market price ( p ) and to pursuit 
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more profit. Then its expected profit in forward market defined in (5.12) 

(i.e. )( 111 GG PCPp  ) is not affected by its forward contract output. The total output of 

GenCo 1 is unique and same as its maximum output of generation, but its output in the 

forward market is not unique as shown in Cases D1, D2, D3, D4 and D5. 

Table 5.6: Simulation results for three GenCos example with capacity constraints 

Case 
Gen. 

No. 
Gi

i

i

i

i korbora
  

c
GiP  

(GWh) 

p  

($/MWh) 

GiP  

(GWh) 

Gi  

(10^3$) 

1 -- * 5.00 125.92 

2 -- 3.49 10.48 228.67 D1 

3 -- 3.52 

39.68 

9.68 213.01 

1 * * 5.00  122.59 

2 1.8159      0 10.65 224.03 D2 

3 1.5766 0 

39.02 

9.84 208.36 

1 * * 5.00   114.70 

2 2.0976 0 10.98 210.83 D3 

3 2.1040 0 

37.44 

10.30 197.18 

1 * * 5.00  120.13 

2 1.4762  0 10.73 219.75 D4 

3 1.3754 0 

38.52 

10.01 205.31 

1 -- * 5.00 125.92 

2 -- 3.49 10.48 228.67 D5  

3 -- 3.52 

39.68 

9.68 213.01 

‘*’ means the solution is not unique.  

5.4.2 Five GenCos study case 

A more realistic five GenCos test system in [30] is used to further validate the 

previous analysis. The test system is based on the cost data for the five strategic firms in 

England and Wales subsequent to the 1999 divestiture. The cost parameters of five 

GenCos are listed in Table 5.7. The aggregate demand parameters in (5.3) are 

)(tPS =35GWh and r=0.1GWh/(￡/MWh).  
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Table 5.7: Cost coefficients of the five GenCos 

GenCo No. 1 2 3 4 5 

Cost parameter ai ￡/(MWh.GWh) 2.687 4.615 1.789 1.930 4.615

Cost parameter bi ￡/MWh 12 12 8 8 12 

Table 5.8: Simulation results for five GenCos example 

Case 
Gen 

No. 
Gi

i

i

i

i korbora


c
GiP  

(GWh) 

p  

(￡/MWh) 
GiP  

(GWh) 

Gi   

(10^3￡) 

1 -- -- 5.54 41.17  

2 -- -- 3.22 23.97 

3 -- -- 10.55 99.57  

4 -- -- 9.78 92.30 

E1 

5 -- -- 

26.87 

3.22 23.97 

1 -- -- 5.39 329.66 

2 -- -- 4.68 269.57 

3 -- -- 6.14 410.86  

4 -- -- 6.07 403.80 

E 21 

5 -- -- 

80.40 

4.68 269.56 

1 1.3106 -- 5.92 76.32  

2 1.1672 -- 3.87 46.11  

3 1.5035 -- 9.24 153.18  

4 1.4597 -- 8.82 144.06  

E 22 

5 1.1671 -- 

32.85 

3.87 46.11 

1 1.3051 -- 5.90 68.27  

2 1.1776 -- 3.76 40.71  

3 1.8282 -- 9.43 142.09 

4 1.7677 -- 8.99 133.31  

E 23 

5 1.1776 -- 

31.50 

3.76 40.71 

1 1.1594 --  5.90  73.01 

2 1.0889 -- 3.83  43.89 

3 1.3090 -- 9.32  148.79 

4 1.2836 -- 8.89  139.78 

E 24 

5 1.0889 -- 

32.30 

3.83 43.89 

1 -- -- 5.39 329.68  

2 -- -- 4.68 269.54  

3 -- -- 6.14 410.85 

4 -- -- 6.07 403.79 

E 25 

5 -- -- 

80.40 

4.68 269.54 

1 -- 4.50 5.98 136.09 

2 -- 3.33 4.39 90.71 

E 31 

3 -- 6.08 

42.80 

8.11 223.34 
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4 -- 5.90 7.86 213.92 

5 -- 3.33 4.39 90.71 

1 1.3106 0 5.92  76.31   

2 1.1670 0 3.87 46.11 

3 1.5033 0 9.24 153.17 

4 1.4597 0 8.82 144.05 

E 32 

5 1.1672 0 

32.85 

3.87 46.10 

1 1.3050 0 5.90 68.27   

2 1.1776 0 3.76 40.71 

3 1.8282 0 9.43 142.09 

4 1.7677 0 8.99 133.31 

E 33 

5 1.1776 0 

31.50 

3.76 40.71 

1 1.1595 0 5.90  73.01  

2 1.0889 0 3.83  43.89  

3 1.3090 0 9.32  148.79  

4 1.2837 0 8.89  139.78 

E 34 

5 1.0890 0 

32.30 

3.83 43.89 

1 -- 4.50 5.98 136.09 

2 -- 3.33 4.39 90.71 

3 -- 6.08 8.11 223.34 

4 -- 5.90 7.86 213.92 

E 35 

5 -- 3.33 

42.80 

4.39 90.71 

Different simulation cases without and with forward contracts are carried out and the 

results are shown in Table 5.8. In this study, Cases E1, E2, E31, E32, E33, E34, E41, E42, E43, 

E44 and E5 are same as Cases A1, A2, A31, A32, A33, A34, A41, A42, A43, A44 and A5 in 

three GenCos example respectively.  

It can be observed that the simulation results of this five GenCos system are 

consistent with that of the three GenCos system.  The prisoners’ dilemma-type 

outcome appears in Case E31 and a focal equilibrium is converged in Case E35.  In 

Cases E32, E33 and E34, the GenCos have no incentive to enter the forward market. 

When comparing Case E35 and E31 with Case E25 and E21 respectively, it is also found 

that the forward market with Cournot type competition or LSFE type competition with 
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),( ba -parametrization can make the market more competitive and mitigate the market 

power.  

 

5.5 Conclusion 

A two-stage game model has been presented to model the two-settlement electricity 

market and to investigate whether a GenCo would enter forward market due to 

economic inspiration and which factors could affect their strategic behaviors. A 

co-evolutionary approach has been introduced and successfully employed to determine 

the market equilibrium of the two-stage game model in two numerical examples. 

Simulation results show that whether GenCos would enter the forward market depends 

significantly on what type of competitions in the spot market and whether generation 

capacity constraints are hit. When the forward market is under Cournot type 

competition or LSFE type competition with ),( ba -parametrization, GenCos may enter 

the forward market due to the economic incentive and also mitigate the market power. 

They may also enter forward market when their capacity constraints are hit. It is also 

found that their levels of participation in forward market depend significantly on the 

slope of the demand function and the slope of their marginal cost function. 
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CHAPTER 6 CONCUSION AND FUTURE WORK 

 

 

6.1 Conclusion 

Electricity restructuring has taken place in many countries to create competitive 

electricity markets. In these electricity markets, participants submit bids to a market 

pool that determines the market prices and transactions. This analysis of market 

equilibrium is of fundamental importance because it provides regulators with relevant 

information to identify and mitigate the exercise of market power. It also provides 

GenCos with the appropriate information to maximize their respective profits, within 

the regulatory framework, by altering market clearing prices to their own respective 

benefits.  

The co-evolutionary computation is developed and employed to analyze the market 

equilibrium. The thesis establishes the mathematical models for single pricing period 

market, multi pricing period market and two-settlement market; investigates the 

convergence process of co-evolutionary computation; and uses co-evolutionary 

computation and game theories to analyze the equilibrium of electricity markets. 

Firstly, the parallel CGA has been successfully applied to determine the market 

equilibrium in electricity market with generation capacity and transmission constraints 

under the LSFE model and the Cournot model. The simulation results show that the 

LSFE under ),( ba -parametrization converges to a focal equilibrium which is equal to 
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Cournot equilibrium under the capacity and transmission constraints in all cases. The 

simulation results have also shown that the system may not have a pure equilibrium due 

to the transmission congestion. But an equilibrium continuum may exist when the 

generation capacity of generators becomes tighter in LSFE under a-, b- 

and )( ba  -parametrization. The solutions of market power analysis are different and 

depending on the parameters selected in different types of LSFE. It is also demonstrated 

that when these constraints are hit, the market price will increase and the abuse of 

market power can become more serious. But tighter constraints lead the solution of 

LSFE under a-, b- and )( ba  -parametrization close to the solution of Cournot model. 

Secondly, the parallel CGA has been employed to study market equilibrium in 

multi-period electricity market. The capacity constraints and inter-temporal constraints 

are considered in the market model. Simulation shows when ISO compels the market 

GenCo uses a supply function be constant across multiple pricing period, the market 

will generate low price than the Cournot price that can emerge in a market where a 

supply function is specified for a single pricing period. It is important to observe 

outcomes of market rule to set up an obligation for consistent bids or not. 

Finally, a two stage game model is presented to investigate whether a rational GenCo 

would enter forward market or not only by economic incentive and what factors could 

affect this strategic behavior. A co-evolutionary approach is successfully employed to 

determine the market equilibrium in this two stage game model. Two numerical 

examples have been used to substantiate the theoretical analysis. Simulation results 

show that whether GenCos would enter the forward market relies heavily on what type 
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competition in the spot market. When the GenCos use Cournot type competition or 

LSFE type competition with ),( ba -parametrization, they will enter the forward market 

and mitigate the market power. They also enter forward market when the capacity is hit. 

Otherwise they would not enter the forward market. The degree to which a GenCo 

enters to the forward market is also affected by the slope of the demand function and the 

slope of its marginal cost function. 

6.2 Future Work 

An emerging issue in market power analysis and market design has been the 

interaction of pollutant emission permits markets and energy markets. One generator 

(i.e. thermal unit) only allows emitting a fixed amount of pollutant, and this permit of 

generator can be traded in secondary markets. To make sure that an affected facility’s 

emissions do not exceed the amount of its emission, the facility can reduce pollution 

through operational or equipment changes, or purchase permits from other companies 

who have excess permits. Excess permits can be sold, or banked for future use. If 

permits are in short supply and there is significant market concentration, it may be 

possible for large generators to exercise market power in both energy and permits 

markets. Profit-maximizing strategies might differ for such GenCos when both markets 

are considered. Then market simulation should also consider total regional or national 

emissions. 

In Chapter 5, a two-stage game model is presented to investigate two-settlement 

market. One limitation of the model is the assumption of risk neutrality on the GenCos. 
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Unfortunately, introducing risk aversion will make the objective functions of GenCos 

non-quadratic which significantly increases the computational complexity of the model. 

And future works are also needed to investigate the bidding behaviors of GenCos when 

the risk aversion GenCos exist or the price difference between spot and forward markets 

(i.e. not perfect arbitrage) are considered. These works are needed to make the 

simulation results close to real market outcome.  
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APPENDIX 

Appendix A: List of Abbreviation 

ACE             Agent-based Computation Economics 

ACO             Ant Colony Optimization 

BBP              Bid-Based Pool 

CCA              Cooperative Co-evolutionary Algorithm 

CGA              Co-evolutionary Genetic Algorithm  

CV               Conjectural Variation 

CVBS             Conjecture Variable Based Bidding Strategy 

DC              Direct Current 

DE              Differential Evolution 

DP               Dynamic Programming 

DP-SC            Dynamic Programming-Sequential Combination 

EA              Evolutionary Algorithm  

ED               Economic Dispatch 

EP               Evolutionary Programming 

EPEC             Equilibrium Problem with Equilibrium Constraints 

ES               Evolutionary Strategies 

GA               Genetic Algorithm 

GenCo            Generation Company 

GTBS            Game Theoretic Bidding Strategies  

HHI             Herfindahl–Hirschman Index  

ISO           Independent System Operator 

LCP           Linear Complementary Program 

LI                Lerner Index  

LSF             Linear Supply Function  

LSFE            Linear Supply Function Equilibrium 

MC              Marginal Cost  

MPEC            Mathematical Program with Equilibrium Constraints 



 118  

MO               Market Operator 

NE               Nash Equilibrium 

NLP              Nonlinear Complementary Program 

OPF             Optimal Power Flow 

PCMI           Price–Cost Margin Index  

PSO              Particle Swarm Optimization 

SFE            Supply Function Equilibrium 

UC             Unit Commitment 
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Appendix B: Data for IEEE 30-bus system 

 

Figure B.1: IEEE 30-bus test system 

Table B.1: Coefficients of generators’ cost function for IEEE 30-bus system 

Generator 

No. 

Bus 

No. ia ($/(MW)2h) ib ($/MWh) ic ($/h) GiP (MW) 
GiP (MW)

1 1 0.0075 2.0 0 50 200 

2 2 0.035 1.75 0 20 80 

3 5 0.125 1.0 0 15 50 

4 8 0.01668 3.25 0 10 35 

5 11 0.05 3.0 0 10 30 

6 13 0.05 3.0 0 12 40 
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Table B.2: Branch data for IEEE 30-bus system 

Branch No. Bus No.
Resistance

R(p.u.) 

Reactance

X(p.u.) 

Transmission 

 capacity 

1 1-2 0.0192 0.0575 130 
2 1-3 0.0452 0.1852 130 

3 2-4 0.0570 0.1737 65 

4 3-4 0.0132 0.0379 130 

5 2-5 0.0472 0.1938 130 

6 2-6 0.0581 0.1763 65 

7 4-6 0.0119 0.0414 90 

8 5-7 0.0460 0.116 70 

9 6-7 0.0267 0.082 130 

10 6-8 0.0120 0.042 32 

11 6-9 0.0000 0.208 65 

12 6-10 0.0000 0.556 32 

13 9-11 0.0000 0.208 65 

14 9-10 0.0000 0.11 65 

15 4-12 0.0000 0.256 65 

16 12-13 0.0000 0.14 65 

17 12-14 0.1231 0.2559 32 

18 12-15 0.0662 0.1304 32 

19 12-16 0.0945 0.1987 32 

20 14-15 0.2210 0.1997 16 

21 16-17 0.0824 0.1932 16 

22 15-18 0.1070 0.2185 16 

23 18-19 0.0639 0.1292 16 

24 19-20 0.0340 0.068 32 

25 10-20 0.0936 0.209 32 

26 10-17 0.0324 0.0845 32 

27 10-21 0.0348 0.0749 32 

28 10-22 0.0727 0.1499 32 

29 21-22 0.0116 0.0236 32 

30 15-23 0.1000 0.202 16 

31 22-24 0.1150 0.179 16 

32 23-24 0.1320 0.27 16 

33 24-25 0.1885 0.3292 16 

34 25-26 0.2544 0.38 16 

35 25-27 0.1093 0.2087 16 

36 27-28 0.0000 0.396 65 

37 27-29 0.2198 0.4153 16 

38 27-30 0.3202 0.6027 16 

39 29-30 0.2399 0.4533 16 

40 8-28 0.0636 0.2 32 

41 6-28 0.0169 0.0599 32 
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Table B.3: Load data for IEEE 30-bus system 

Bus No. Load(MW) Bus No. Load(MW) 

1 0 16 3.5 
2 21.7 17 9.0 
3 2.4 18 3.2 
4 7.6 19 9.5 
5 94.2 20 2.2 
6 0.0 21 17.5 
7 22.8 22 0.0 
8 30.0 23 3.2 
9 0.0 24 8.7 
10 5.8 25 0.0 
11 0.0 26 3.5 
12 11.2 27 0.0 
13 0.0 28 0.0 
14 6.2 29 2.4 
15 8.2 30 10.6 
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