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Abstract

Recognition of connected handwritten characters is a challenging task due mainly
to two problems: poor character segmentation and unreliable isolated character
recognition. Overlapping, touching, and ligatures between neighboring charac-
ters make character segmentation and then recognition very difficult. This thesis
presents our research results on connected handwritten character recognition us-
ing a segmentatlon—based approach. The three main problems that have t0 be
solved are the estimation of the number of character in a word, character seg-
mentation, and reliable isolated character recognition. We discuss in this thesis
a neural network based length estimation, a background-thinning—based segrnen-
tation algorithm, a new template representation and optimization technique for
building a template based classifier, and dynamic programming techniques used
in segmentation—based or segmentation-free approach for recognizing connected
characters. We used digit strings as examples to evaluate our new algorithms.
Length estimation is very helpful for the successful segmentation and recog-
nition of connected handwritten digits. The kernel of our algorithm is a neural
network estimator with a set of statistical and structural features as the input.
To extract features, several preprocessing steps including noise reduction, nor-
malization and skeletonization have to be carried out. The output of the neural
twork is a set of fuzzy membership grades reflecting the degrees of an input
digit string for having different number of digits. In experiments, we consider up
to 4-digit strings (very few 5-digit or longer strings in real applications). NIST

Special Database 3 was used for training and testing the neural network length
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estimator. The database includes 20,852 isolated digit samples, 4,555 connected
2-digit samples, 355 connected 3-digit samples and 48 connected 4-digit samples.
Because we do not have many 3-digit strings and 4-digit strings, we artificially
generate some by merging the existing samples of digits and digit stings. Exper-
imental results on NIST Special Database 3 and derived digit strings show that
only 55 (0.6%) out of 9910 digit strings are poorly estimated.

Correct segmentation is vital for character recognition using segmentation-
based approaches. In our approach, the segmentation is based on the analysis of
the background (the regions excluding the characters) skeleton of a digit string
image. In the exploration of connected digit samples, we found the shape of
the background regions is much simpler than the foreground. Making use of
the shape information of background can simplify the searching of the segmen-
tation paths and decrease the number of segmentation candidates accordingly.
In this algorithm, we extract segmentation paths by matching feature points on
background skeletons. Feature points include fork points, terminal points, and
curve poiﬁts. The definition of fork points and terminal points are same as the
length estimation algorithm. A curve point is a point on a segment where the
direction of the line changes sharply. A three-step-matching scheme is developed
to find the matched point pairs and a segmentation path is constructed by con-
necting these feature points with possible extension to the top and/or bottom of
the skeleton. We applied our segmentation algorithm to the connected 2-digits.
The membership degree to which a candidate is a good segmentation path is
determined by fuzzy decision rules with the nine properties associated with a
segmentation path. The separated digits are recognized by a nearest-neighbor
classifier. Tested on NIST Special Database 3, our background-thinning-based
approach for segmenting and recognizing handwritten digit strings show better
performance than some existing techniques. Moreover, our approach can deal
with both single- and multi-touching problems.

We present a multi-module classifier to recognize isolated digits. Among
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four modules, a template-based classifier based on the rational B-spline surface
representation of the Pixel-to-Boundary Distance Map (PBDM) is adopted to
improve the performance of the classifier, in particular, in rejecting non-digit
patterns. To extract optimized templates, we used a two-stage algorithm based
on a neural network and an evolutionary algorithm. The classifier can reliably
distinguish non-digit patterns from digits, which is a desirable feature for rec-
ognizing handwritten digit strings. The classifier can be applied together with
a segmentation-based recognition algorithm or a segmentation-free recognition
algorithm. Experimental results show that the designed multi-module classifier
compares favorably with other classification techniques tested.

In this thesis, we also discuss a segmentation-based and a segmentation-free
approaches for recognizing connect characters. Based on the designed multi-
module classifier and the background-thinning-based segmentation algorithm, a
segmentation-based recognition approach is presented. A dynamic programming
algorithm is applied in this approach. Experimental results show that our ap-
proach can achieve more favorable classification performance. To deal with some
hard-to-segment handwritten digit strings, a segmentation-free recognition ap-

proach with a dynamic programming algorithm is also discussed.

v



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Zheru Chi, for
his help in all aspects of conducting research, and to my co-supervisor Professor
Wan-Chi Siu for having created a very simulating and well-equipped lab environ-
ment in Department of Electronic and Information Engineering, the Hong Kong
Polytechnic University, through many years of dedicated efforts.

I am grateful to all the people who helped me one way or another during
those years in PolyU. Special thanks to Kong Jong, Li Xin, Wang Zhiyong for
~ their unselfish help, and to K. C. Chu for many fruitful discussions.

Special thanks to my breaks pals, J. J. Wang, Ai Wu, Li Wei, Ringo for
sharing such relaxing and fun moments. Thanks also to the other members
of Institute of Image Processing and Pattern Recognition at Shanghai Jiaotong
University and Department of Electronic and Information Engineering of the

Hong Kong Polytechnic University for their friendship and help.



Statement of Originality

The work described in this thesis was carried out at the Department of Electronic
and Information Engineering, the Hong Kong Polytechnic University, between
September 1996 and September 1998, under the supervision of Dr. Zheru Chi
and Professor Wan-Chi Siu.

The thesis consists of seven chapters. The work described in this thesis was
originated by the author except where a,cknowledged and referenced, or where the

results are widely known. The following is the statement of original contributions.

1. A combined morphology operations and fuzzy rules for pre-processing digit -

images was presented by the author. (Chapter 2, Section 2.1)

2. A neural network based technique to estimate the number of characters in a
digit string was proposed jointly with Dr. Zheru Chi. Experimental results
on NIST Special Database 3 and other derived digit strings show that 9855
(99.4%) of a total of 9,910 digit strings are well estimated. (Chapter 3)

3. A new digit template representation scheme, a neural network based tem-
plate extraction algorithm, and an evolutionary algorithm for optimizing

templates were presented by the author. (Chapter 4, Section 4.2)

4. A multi-module based classifier for recognizing isolated handwritten dig-
its was developed by the author. Experimental results on NIST Special
Database 3 show that the multi-module classifier can achieve a good recog-
nition performance with higher reliability in rejecting non-digit patterns

compared with other existing techniques. (Chapter 4)

V1



5. A character segmentation technique based on background skeleton analysis
was developed by the author. Experimental results show that the technique
can achieve more favorable classification performance than several existing

techniques. (Chapter 5, Sections 5.2, 5.3, 5.4)

6. A moving-window-based segmentation-free recognition algorithm was pre-

sented by the author. (Chapter 6)

vil



Publications

Book Chapter

1. Z. Lu, Z. Chi, W. C. Siu and P. Shi, “A New Template Representation
and Extraction Method for Handwritten Digit Recognition,” Advances in
Handwriting Recognition , S.-W. Lee .(Editor), World Scientific Publishing,
pp. 426-435, 1999.

International Journal Papers

1. Z. Chi, Z. Lu, W. C. Siu and P. Shi, “An Evolutionary Algorithm for
Optimizing Handwritten Numeral Templates Represented by Rational B-

Spline Surfaces,” Journal of Advanced Computational Intelligence (to be

published).

2. Z. Lu, Z. Chi, W. C. Siu and P. Shi, “A background-thinning-based ap-
proach for separating and recognizing connected handwritten digit strings,”

Pattern Recognition, Vol. 32, No. 6, pp. 921-933, June 1999.

3. Z. Lu, Z. Chi and W. C. Siu, “Length Estimation of Digit Strings Using
a Neural Network with Structure Based Features,” Journal of Electronic

Imaging, Vol. 7, No. 1, pp. 79-85, January, 1998.
International Conference Papers

1. Z. Lu, Z. Chi and P. Shi, “A background-thinning based approach for sepa-

rating and recognizing connected handwritten digit strings,” Proceedings of

viil



1998 International Conference on Acoustics, Speach and Signal Processing

(ICASSP’98), Vol. II, pp. 1065-1068, May 12 -15, 1998, Seattle, U.S.A.

2. Z. Chi, Z. Lu and F. H. Chan, “Multi-Channel Handwritten Digit Recog-
nition Using Neural Networks,” 1997 IEEE International Symposium on
Circuits and Systems, pp. 625-628, June 9-12, 1997, Hong Kong.

ix



Contents

Abstract ii
Acknowledgements v
Statement of Originality vi
Publications viil
List of Figures xiv
List of Tables xvii
1 Introduction 1
1.1 Reviewof Previous Work . . . . .. .. .. ... ... ....... 2
1.1.1 Isolated Digit/Character Recognition . . . . .. ... ... 2

1.1.2 Handwritten Digit String/Script Recognition . . . . . . . . 5

1.1.2.1 Segmentation-based Approaches. . . . . . .. .. 5]

1.1.2.2 Segmentation-free Approaches . . . . . .. .. .. 6

1.2 Psychology of Writing and Reading . . . . ... ... ... .... 7
1.3 The Database of Handwritten Characters Used in Our Experiments 9
1.4 Organization of This Thesis . . .. .. .. ... ... ....... 12

2 Pre-processing of Character Image 13
21 Noise Fittering . . . . ... .. .. . .. L 14
2.2 Normalization . . . . . ... ... ... 17



2.4 Concluding Remarks . . . . ... . ... .. .. ... .. ..... 19

3 Length Estimation of Connected Digit Strings 20
.3.1 Feature Extraction . . .. ... ... .. . ... ... ... ... 21
3.1.1 Horizontal Transitions . . ... .. ... .. ... ..... 22

3.1.2 FeaturePoints. . . . .. ... .. .. ....... . .... 22

3.2 Neural Network Based Length Estimation . ... ... .. .. .. 23
3.3 Post-processing . . .. ... . ... 24
3.4 Experimental Results and Discussion . . . ... ... ... . ... 25
3.5 Concluding Remarks . . ... ... .. ... ............. 26

4 Multi-Module Digit Classification 28
4.1 Neural Network-based Modules . . . ... ... . ......... 29
4.1.1 Feature Extraction . . ... ... ... ........... 30

4.1.1.1 Structural Features . . . . ... .......... 30

41.1.2 Directional Features . . . ... ... ... .. .. 33

41.1.3 Intensity-based Features . . . . . . ... ... .. 35

4.1.2 Training of Neural Networks . . . . . ... ... ... ... 35

4.2 Template-Based Classifier . . ... .. ... ... ......... 37
4.2.1 Representation of Templates . . . . ... ... ... .... 37

4.2.2 Template Extraction . . .. .. ... ... ..... ..., 40

4.2.3 Template Optimization Using Evolutionary Algorithms . . 44

4.23.1 Generation of Offsprings . . . . . ... ... ... 46
42.3.2 Selection Procedure . . ... ........... 48
4.3 Experimental Results and Discussion . . . . .. .. ... ... .. 51
44 Concluding Remarks . . . ... . ... ... ... . ........ 54

5 Segmentation-Based Recognition of Handwritten Digit Strings 55
5.1 Types of the Connections in Handwritten Digit Strings . . . . . . 56

xi



5.2 Feature Point Extraction . . . . .. .. ... . .. . . ... ... . 57
5.3 Construction of Segmentation Paths by Matching Feature Points . 60
5.3.1 Single-DirectionSearch . . . .. ... ... ... . . ... . 62
5.3.2 Search in Two Directions . . . . ... ... ......... 66
5.4 Segmentation and Recognition of 2-Digit Strings . . . . . ... .. 67
5.4.1 Ranking Segmentation Paths Using Fuzzified Decision Rules 68
9.4.1.1 Properties of a Segmentation Path . . .. ... . 68
9.4.1.2 Fuzzified Decision Rules . . . . .. .. ... ... 70
5.4.2 Defuzzification . ... ... .. . ... . . 72
9.4.3 Removing Redundant Segmentation Pati;é ......... 72
5.4.4 Experimental Results and Discussion . . .. ... .. ... 73
5.5 Segmentation and Recognition of Connected Digit Strings with
Unknown Length . .. . ... ... ... .. ... . ... . .... 77
5.5.1 Dynamic Programming . . . . . .. ... ... ....... 78
5.5.2 Experimental Results . . . . .. .. e 80
5.6 Concluding Remarks . . . . .. .. . ... ... . ... . L 86
Segmentation-Free Recognition of Digit Strings 87
6.1 MovingWindows . . . ... ... . ... .. ... ... ... ... 88
6.2 Modified Classifier . . ... ... ... .. . ... ... . .... 89
6.2.1 Changes in Classification Modules . . . . . . .. .. .. .. 89
6.2.2 Masking in the Features Spaces . . ... ... .. ... .. 90
6.2.3 Modified Template-Based Classifier . . ... ... ... .. 91
6.3 Dynamic Programming Algorithm for Segmentation-Free Approach 92
6.4 Experimental Results Using Segmentation-Free Algorithm .. .. 92
6.5 Concluding Remarks . . .. ... . .. .. ... ..... ..., 95
Conclusions 96
7.1 Summary of Contributions . . . . . . .. . ... .. .. ... ... 96
7.2

Future Work . . . . . . . . . 97



BIBLIOGRAPHY

xiii

99



List of Figures

11
1.2

2.1

2.2

23
24

3.1
3.2
3.3
3.4

4.1
4.2

Some isolated digit samples extracted from NIST Special Database 3 10
Some handwritten digit strings extracted from NIST Special
Database 3 (left: handwritten two-digit strings; center: handwrit-

ten three-digit strings; right: handwritten four-digit strings). . . . 11

Flowchart of the pre-processing steps for the length estimation of
connected digit strings. . . . . . .. .. ..., 14
Preprocessing of binary digit string images: (a) original binary
images; (b} the possible noise (dark regions) extracted from the
original binary images; (c) the normalized digit strings after re-
moving noise; (d) the skeleton images. . . ... .......... 16
Two types of membership functions . . . . .. ... .. .. .... 18
Artifacts generated during the Hilditch’s thinning processing: (a)

an artifact due to poor writing; (b) an artifact due to the hit-or-

miss transform. . . ... oL 19
Block diagram of the length estimation system. . ... ... ... 21
Horizontal transitions . . . . . . .. ... ... ... ........ 22
Feature points in a skeleton image. . . . ... ... ... ..... 23

An artificial 3-digit string from merging a 2-digit string and an

isolated digit. . . . . . ... 24
Block Diagram of the multi-module digit classification. . . . . . . 29
Twelve types of line segments. . . . . . . ... ... ... .. ... 30

Xiv



4.3
4.4
4.5
4.6
4.7
4.8
4.9
1 4.10
4.11

5.1
9.2

9.3
9.4

5.5
5.6

9.7

5.8

9.9

An example of thinning and segment representation. . . . . . . . . 33

Four directional Kirsch masks. . . . .. ... ... . ... ... . 34
Definition of eight neighbors A, (k =0,1,---,7) of pixel (,7). . . 34
Different types of features extracted. . . . . .. ... ... .. .. 36
Pixel-to-boundary distance. . . .. .. ... ... ... ... ... 38
Control points of a template. . . . ... ... ... . . ... .... 39
The template extraction neural network. . ... ....... ... 40
Examples of extracted templates in grey-scale. . . . .. ... ... 50
Examples of non-digit patterns. . . . ... ... . ... ... ... 53
Connection type 3: two strokes touch end toend. . .. .. .. .. 57

Examples of background skeletons with think lines indicating (a)
base segments; (b) branch segments; and (c) hole segments. . . . . 59
Examples of feature points on background skeletons. . .. .. .. 60
Flowchart of the comstruction of segmentation paths by a three-
step searching process. . . . . .. ... .. ... ... ... .... 61
Flowchart of the top-down searching of segmentation paths. .. . 63
Examples of segmentation paths (feature points marked by '@
are unmatched points): (a) segmentation paths found (dark lines)
by Step 1 (top-down searching); (b) segmentation paths found by
Step 2 (bottom-up searching); and (c) segmentation paths found
by Step 3 (searching from a hole segment). . . . .. ... ... .. 64

Flowchart for the searching beginning at a feature point on a hole

Flowchart of our background-thinning-based approach for seg-
menting connected handwritten 2-digit strings. . . . . . .. .. .. 67
Examples of connected handwritten digits with (a) all possible
segmentation paths; {b) segmentation paths after redundancy re-

moving, and (c) winning segmentation paths (dark lines). . . . . . 74

XV



5.10

5.11
9.12
5.13
5.14

6.1

6.2
6.3

6.4
6.5

6.6

Flowchart

of the dynamic programming algorithm for segmentation-based
handwritten digit recognition. . . . . ... ... .. ... ... . 81
Flowchart of the loop procedure shown in Fig. 5.5.1.. . . . . . .. 82
An example of 4-digit string with a pruned background skeleton. . 84
Winning recognition compositionset. . . .. ... ... ... ... 84

All the segmentation paths on a binary digit string image. . . .. 85

An example of 2-digit string that can not be separated by the
segmentation algorithm presented in Chapter 5. . . . ... .. . . 88
Moving windows applied to a 4-digit string. . . . ... .. .. .. | 89
The modified multi-module classiﬁér used in the segmentation-free
recognition approach. . . . ... ... L L, 90
The feature mask in grey scale. . . ... ... ... ........ 91

Examples of correctly recognized 4-digit strings, (a) original 4-

"digit strings; (b) separated digits. . . . ... ... ... ... ... 94

Examples of mis-recognized 4-digit strings. . . . . . ... ... .. 94

Xvi



List of Tables

3.1
3.2

4.1
4.2

5.1

5.2

5.3

5.4

9.9

5.6

6.1

The experimental results of the length estimation on the test set. 25

The analysis of the outputs with different X values. . . . . .. .. 26
Classification performance of using different techniques. . . . . . . 52
Experimental results on non-digit patterns with different classifiers. 53

A comparison of the correct path classification rates among fuzzi-
fied decision rules, straightforward decision trees (unpruned and
pruned) and multi-layer perceptron classifier. . . . . .. .. .. .. 75
Experimental results on 2-digit test strings with different recogni-
tion measure radius. . . ... ... ... L 76
A performance comparison of our approach with other digit sepa-
ration algorithms on 2-digit strings. . . . . ... ... ... . ... 77
Experimental results of the dynamic programming based segmen-
tation and recognition of handwritten digit strings with unknown
length (ANCS: Average Number of Composition Sets). . . .. . . 80
Error analysis of the dynamic programming based segmentation
and recognition of handwritten digit strings of unknown length. . 83
A comparison of different classifiers on the segmentation-based

recognition of handwritten digit strings. . . . . . .. .. ... ... 83

Experimental results of the segmentation-free recognition of hand-
written digit strings with unknown length (ANCS: Average Num-
ber of Compeosition Sets). . . . .. ... .. . ... ... .. ... 92



6.2 Error analysis of the segmentation-free recognition of handwritten
digit strings with unknown length. .. . ... .. .. .. . .. ..
6.3 A comparison of different classifiers on the segmentation-free

recognition of handwritten digit strings.. . . . . . ... ... . ..

xviii



Chapter 1

Introduction

Automatic character recognition, a very active research area, has found many
applications, such as form and cheque reading. Character recognition can either
be on-line or off-line. On-line recognition refers to those systems where the data
to be recognized is from a tablet digitizer that acquires the positions of the pen
tip as the user writes in real-time. In contrast, off-line system obtains the data
from a document through an acquisition device, such as a scanner or camera.
The off-line reading of characters by computer known as Optical Character
Recognition (OCR) is a topic that has been investigated for many years 1, 2].
Now both machine printed and isolated handwritten characters can be recognized
with good performance by machines. A variety of systems are now in commercial
use for processing printed materials, forms, etc. However the OCR techniques
have not yet been successfully applied to read cursive handwritings. The problem

remains extremely challenging due to:

1. There exist many different writing styles. Each person has his/her own
writing style that may change according to his/her physical and psycho-

logical conditions.

2. The perfect segmentation of connected characters into individual characters

is very difficult to achieve if not impossible.
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3. There exist ligatures that are formed at the end of strokes by dragging the
pen to the next stroke, which make the segmentation and then recognition

very challenging.

4. Poor writing and thinning/thresholding processing may cause broken,

touching and merged characters.

Furthermore, compared with on-line recognition, off-line recognition is much
more difficult because it has to be done without knowing pen movement. As a
result, the off-line recognition has attracted much more attention than the on-line

recognition (3, 4, 5].

1.1 Review of Previous Work

This section reviews some of the handwritten recognition algorithms that have
been detailed in the literature. Here only a brief review of these algorithms is
given. More detailed discussion are given in later chapters when particular issues

are addressed.

1.1.1 Isolated Digit/Character Recognition

Suen et al [1] provided a good review of handwriting recognition up to 1980,
concentrating on isolated character recognition, which had been a focus of re-
search until then. They discussed a variety of feature based approaches which
were categorized into global features (templates and transformations such as
Fourier, Walsh and Hadamard transforms); point distributions (zoning, mo-
ments, n-tuples, characteristic loci, crossings, and distances), and geometrical
or topological features. The third category were and have remained one of the
most interesting topics. The approach involves separate detectors for each of sev-
eral types of features such as loops, curves, straight lines, end points, angles and

intersections. Impedovo et ol [6] used cross-points, end-points and bend-points



Chapter 1. Introduction 3

as features, which are coded based on their locations in three horizontal and
three vertical zones within each character. The encoded characters are identified
using a decision-tree classifier. Chi et ol [7] also used features such as curves and
loops, with each of which is associated with a set of numerical quantities, such
as type, length, and mass center location, before being decoded in a fuzzy rule
classifier. This classifier is combined with Markov chain matching and a three-
layer perceptron with pixel intensities as the input to deliver final classification.
Senior et al {8, 9] proposed a morphological presentation of characters in which
the normalized character image is partitioned into frames and the features in a
frame (dots, junctions, end-points, turning points, line segments, and loops) are
given a number and the whole frame is assigned with a vector that can be sent
to a recurrent neural network for classification.

A host of other authors have tackled the problem of recognition isolated
digits or characters in the past few years. The algorithms differs in the types of
features used and classification methods employed. Two comprehensive reviews
were given by Govindan [10] and Impedovo [6]. Trier et al [11} also presented an
exhaustive survey of feature extraction methods for off-line recognition of isolated
digits/characters. Lee et al {12] proposed a classifier based on Radial Basis
Network and Spatio-Temporal Features. Lee et al[13] presented another classifier
based on Multilayer Cluster Neural Network and Wavelet features. Cheng- et
al [14] proposed to use a classifier based on morphological operations.

There are a number of studies reported in the literature that have applied
template-based techniques to isolated digit recognition. The Template match-
ing based technique, which is one of the earliest pattern recognition techniques
for digit recognition, has re-attracted much attention of many researchers in the
past few years with advanced computational algorithms such as artificial neural
networks and evolutionary algorithms. A number of studies have been reported
in the literature, which have applied template-based techniques to digit recogni-

tion. Yan proposed an Optimized Nearest-Neighbor Classifier (ONNC) for the
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recognition of handprint digits [15], the templates are represented by 8 x 8 gray-
scale images, re-scaled from the original 160 x 160 normalized binary images.
Wakahara used iterated Local Affine Transformation (LAT) operations to de-
form binary images to match templates [16]. The templates used are 32 x 32
binary images. Nishida presented a structure-based template matching algo-
rithm [17]. The templates are composite with straight lines, arcs and corners,
and the matching is based on the geometrical deformation of the templates. Che-
ung et al proposed a template representation based on splines [18]. They modeled
a digit images using a spline and assumed the spline parameters have multivari-
ate Gaussian distributions. Revow et al gave another digit recognition algorithm
based on spline templates [19]. The templates are elastic spline curves with ink-
generating Gaussian “beads” strung along their length. Jain et al presented a
deformable templates matching algorithm based on object contours {20, 21]. In
their approach, the recognition procedure is to minimize the objective function
by iteratively updating the transformation parameters to alter the shapes of the
templates so that the best match between the templates and unknown digits is
determined. Jain also proposed a review of applying deformable templates on
various matching problems [22].

Using a combination of multiple classifiers seems to be a more promising way
of reducing error rate than finding a better classifier. Some of discussions in this
topic can be found in [23, 24, 25, 26, 27, 28, 29]. The performance of recognition of
isolated digit/character is believed to be good enough for practical applications.
The classifier only fail to classify those digits that are entirely ambiguous and
even human beings could not confidently classify [30]. Because most of classifiers
for recognizing isolated characters are not knowledge driven, the classifiers are
usually much poorer in rejecting non-characters than human readers. More work

needs to be done in this direction,
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1.1.2 Handwritten Digit String/Script Recognition

The recognition of handwritten digit strings/scripts has received a lot of atten-
tions recently because it has many applications, such as mail sorting, automatic
form reading, etc. The recognition techniques developed can be categorized into
different classes by different criteria. By the objects to be recognized, they can
be divided into word recognition and handwritten digit string recognition; by the
techniques applied, they can be divided into segmentation-based recognition and
segmentation-free recognition.

Word recognition and handwritten digit string recognition adopted the simi-
lar procedure in earlier studies. (1) some technique is utilized to separate scripts
(handwritten digit strihg or word) into individual segments (31, 32, 33, 34, 35, 36);
(2) these segments are then sent to a classifier and a ranked list of possible
words or digit strings is generated based on the recognition results. Such a
technique is commonly referred to as segmentation-based recognition or analyt-
ical approach. With the adaptation of the hidden Markov model from speech
recognition to handwritten script recognition {37, 38, 39, 40, 4, 41, 42] and ap-
plying lexical information (contextual information) to word recognition [43, 44],
a variety of segmentation-free techniques have been developed for recognizing
handwritten words and digit strings. The recognition of connected digits mainly
use a segmentation-based approach, while the recognition of words mainly use
segmentation-free approaches because that there is little lexical information in
connected digits that can applied to improve the recognition accuracy as the

word recognition.

1.1.2.1 Segmentation-based Approaches

Two comprehensive overviews of the segmentation techniques for machine printed
characters and handwritten words can be found in {45, 46], respectively. Cheriet

et al presented a region-based background analysis algorithm to find a married
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pair of background vaileys in order to separate a handwritten digit string [47).
On the other hand, a context-directed hierarchical algorithm was proposed by
Shridhar and Badreldin to separate handwritten 2-digit strings [34]. In their ap-
proach, the segmentation was done based on the analysis of horizontal border-to-
background transitions. Yu and Yan have recently proposed a recognition-based
segmentation algorithm [48] in which a set of structure based models together
with several criteria were adopted to select the most promising one-touching
point or pair of two-touching points at which the string was separated. Another
contour analysis based algorithm was proposed by Strathy et al [49] in which con-
tour information was used to find pairs of cutting points. Nine credits on contour
features were then assigned to each pair of cutting points and the weighted sum
of nine credits was used to prioritize cut links with the weights trained using a
genetic algorithm. Gader et al [50] also proposed a contour information based
segmentation algorithm in which a distance transform is used to detect and split
the initially separated components that may contain more than one characters.
In another study, an integrated segmentation algorithm was proposed by Pervez
et al [51].

Two main concerns in the segmentation-based approaches are:

1. the segmentation algorithm must be able to identify all possible segmen-
tation paths. However, the number of the segmentation candidates to be

tested should be as small as possible for real-time processing;

2. Reliable classification of isolated character and rejection of non-characters

is a key factor for achieving a better system performance.

1.1.2.2 Segmentation-free Approaches

Since character segmentation algorithms are prune to error and designing a ro-
bust classifier is very difficult, many segmentation-free approaches for the recog-

mition of handwritten scripts have been proposed [37, 38, 52, 40, 41, 5, 4, 39, 42,
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53, 9]. Many of these techniques are based on Hidden Markov Models (HMMs)
that have been successfully applied to speech recognition. Some of these methods
also make use of lexical information to improve the recognition performance.
The statistical methods of hidden Markov modeling were initially introduced
and studied in the late 1960s. It can be briefly described as a stochastic process
generated by two interrelated mechanisms, an underlying Markov chain having a
finite number of states, and a set of random functions, one of which is associated
with each state. At discrete instant of time, the process is assumed to be in some
state and an observation is generated by the random function corresponding to
the current state. The underlying Markov chain then changes states according
to its probability matrix. The observer sees only the output of the random
functions associated with each state and cannot directly observe the states of
the underlying Markov chain, hence it is termed as hidden Markov model [41].
HMMs have been found extremely useful for a wide spectrum of applications.
This technique wés first applied to speech recognition problems. Since there are
many similarities betv;'een handwritten word recognition and speech recognition,
we have also seen many applications of HMMs in handwritten word recognition.
Another segmentation-free algorithm, a subgraph matching algorithm, was
presented by Rocha et al {54, 55, 56]. The algorithm extracts meaningful sub-
graphs (characters or digits) from the feature graph (word) by template matching.

1.2 Psychology of Writing and Reading

Before attempting the machine recognition of handwritings, it is worthwhile
considering the way that people read and write. Considering human reading
may lead to an better understanding of the transfer of information through the
medium of handwriting, so that it can be seen which processes play a useful
role, and which are merely epiphenomena. If it can be understood what informa-

tion people use to recognize handwritten digit strings, then a clue is found as to
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what features might be useful for a machine recognition system. Understanding
handwriting production may give insights as to which features of handwriting
are representations of the information and which are mere artifacts of generation
process.

A large body of psychological data has been gathered on the processes in-
volved in reading type, some of which is applicable to handwritten digit strings.
Most research so far has concentrated on reading individual letters or words out
of context. It could be argued that this gives little indication of the processes
occurring in normal reading where many words are visible and it is the text as
whole, not individual words, that is important. However, results are hard to
prove in such a natural environment with many variables, and it is only under
restricted experimental conditions that hypotheses can be rigorously tested.

Research into reading, as in much of psychology, relies heavily on observing
what errors are made under difficult conditions. One technique is the use of
tachistoscopes to flash a word in front of a subject for a very short time followed
by a patterned mask to inhibit iconic memory, which otherwise allows the subject
to preserve an image of the word mentally for an uncontrolled period of time.

As well be seen later, many approaches to handwriting recognition rely on
detecting features in the writing, such as the strokes which go to make up indi-
vidual letters. It is discovered that the complex cells code the presence of bars
and edges and provide a compact representation of lines which is particular ap-
propriate to the representation of writing and print. A number of authors have
sought to determine what higher-level representation might be used specifically
for letters. Senior [30] and Guillevic [57] gave us some overviews of the previous

researches and some conclusion can be concluded:

1. In conjunction with a lexicon of permitted words, a few simple features can

identify most words;
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2. the character recognition is carried out by finding word features that fill

roles in internal models of characters;

3. recognition of words as single entities and not as the conjunction of their

component characters is the same important in human recognition system.

The research results formed the foundation of the lexicon-driven and word-
driven recognition technique. However, these researches can not provide help
to the recognition of handwritten digit strings, because there is not any lexical
information in digit strings.

Many studies have also been made into the processes involved in writing, If
an accurate model of these processes can be found, then it could be used for
representation of handwriting in a compact form, and for recognition. Several
researches that can help to removal slant, slope and other variations have been
applied to on-line script where the pen trajectory is accurately known. The static
nature of off-line writing does not lend itself to these approaches. The reason is

that the extraction of pen-moving information is easy to be failure.

1.3 The Database of Handwritten Characters
Used in Our Experiments

We used NIST (National Institute of Standards and Technology) Special
Database 3 to evaluate the algorithms that we developed. The database con-
tains more than 800,000 images with hand-checked classification from 3600 writ-
ers. Figure 1.1 and figure 1.2 are some digit samples (isolated and connected
digits) from the database. We can see that they are different in size, slant degree
and writing style. The connection, overlap between neighboring digits, as well
as tailors and noise increase the difficulty of recognition.

In total, we extracted from the database 20,852 isolated digits, 4, 555 hand-

written two-digit strings, 355 handwritten three-digit strings and 48 handwritten
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Figure 1.1: Some isolated digit samples extracted from NIST Special Database

3
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Figure 1.2: Some handwritten digit strings extracted from NIST Special
Database 3 (left: handwritten two-digit strings; center: handwritten three-digit
strings; right: handwritten four-digit strings).



Chapter 1. Introduction 12

four-digit strings, and some artificially generated handwritten digit strings for

evaluating the algorithms that we developed.

1.4 Organization of This Thesis

This thesis is organized as follows. Following this “Introduction”, we describe
in Chapter 2 the pre-processing of digit string images including smoothing, nor-
malization, and length (the number of digits in a digit string) estimation. Chap-
ter 4 discuss our design of a multi-channel based digit classifier. A background-
thinning based segmentation and recognition algorithm is presented in Chapter 5.
In Chapter 6 a moving-window approach is proposed to recognize handwritten

digit strings without segmentation. Concluding remarks are drawn in Chapter 7.



Chapter 2

Pre-processing of Character

Image

Pre-processing is a crucial step for handwritten character recognition since it can
greatly affect the features to be extracted for the recognition [58]. There are two
main tasks in the pre-processing: smoothing and normalization.

Smoothing of an image consists of filling and thinning. Filling is a process
whereby gaps and breaks are eliminated, and thinning is to remove noise, bumps
and isolated bits. Heavy thinning is also referred to as skeletonization. Nor-
malization is another aspect of pre-processing process. Elements are normalized
include the character’s size, position and skew, as well as line widths.

Essentially, the pre-processing using various techniques including filling of
holes, skeletonization, centering, rotating, skewing, thickening, sheéring and size
normalization.

The pre-processing for the length estimation of connected digit strings include
three steps: noise filtering, size normalization, and skeletonization, as shown in
Fig. 2.1. "Two processed images are output from each input image, the normalized

noise-free image and the skeleton image, for later processing.

13
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Original Image Skeleton
Image
—_ ] o Tl Size L.
Noise Filtering = . > Skeletonization [——
Normalization
-
Normalized

Noise-free Image

Figure 2.1: Flowchart of the pre-processing steps for the length estimation of
connected digit strings.

2.1 Noise Filtering

Mathematical morphology, which can be used to handle geometrical features in
an image, has been studied for about three decades. Using a prior geometrical
information, the features in an image can be extracted, suppressed, or preserved
by applying morphological operators [59, 60]. Mathematical morphology consists
of set transformations that transform one set into another set. '{[‘hese transfor-
matlons are carried out via the use of a structure element which contains the
desired geometrical structure. Various interactions of the original set with the
structuring element form the basis of all morphological operations [61].

There are four basic morphological operators: erosion, dilation, opening and
closing. In our study, the opening and closing operations are used to extract
noise from an original image.

Let I be an original image and B is a structural element. The noise N can
be defined as

N=I-(IoB)eB (2.1)

where ‘o’ denotes the opening operation, and ‘e’ denotes the closing operation.
‘The choosing of the structure element B is the most difficult problem in
mathematical morphology analysis. The reason is that there exist a huge offering

of potential structure elements for the vastness of the universe of all possible
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object shapes, and experience shows that it is impossible to handle a structure
element very well in the processing. The choosing is very much depend on what
we want to get from the object and the property of the original data. In this
algorithm, a 3 x 3 lattice was chosen as B considering the size and shape of the
noise in the original image.

Figure 2.2(a) shows a few examples of digit string images. Possible noise
(dark regions) extracted by morphological operations are shown in Fig. 2.2(b).

The possible noise regions include:

e burrs on the border of foreground due to image scanning and binarization,

small holes from the morphological operations,

large artifacts from writing boxes, and

narrow strokes due to poor writing, such as the narrow part at the top of

‘2’ in the forth digit string in Fig. 2.2(b).

Burrs and large artifacts should be erased, small holes should be ignored, and
narrow strokes should be kept to avoid broken strokes. Production rules are used
to distinguish a noise region from other foreground regions according to its size,
shape, and the number of éonnected foreground regions.

The size of a potential noise region, f,, is given by its total pixel number. The
shape of the region, f;, is defined as the ratio of the number of boundary pixels
to the number of inner pixels. Let the number of connected foreground regions
be denoted by f,. A potential noise region with f, < 5 is removed immediately
without any further processing. However, three rules are used to distinguish
larger noise regions from the other foreground ones. Assume that T}, and T, are

thresholds. The three rules are:

e Rule 1: If f, < T,, then it is a noise region;

e Rule 2: If f; > T5, then it is a noise region;
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Figure 2.2: Preprocessing of binary digit string images: (a) original binary im-

ages; (b) the possible noise (dark regions)
images; (c) the normalized digit strings aft
images.

extracted from the original binary
er removing noise; (d) the skeleton
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* Rule 3: If f, <1, it is a noise region; otherwise, it is a foreground region.

We associate a fuzzy membership function with each of the first two rules,
For Rule 1, we adopt a membership function as shown in Fig. 2.1(a) where T}, is

set to 10.

1.0 @ fo<Th—an/2

m(fa) = 0.0 ¢ fo>Th+an/2 (2.2)
LtenlDofe o T - 0,/2 < fr < T+ /2

where o, is an extension factor. For Rule 2, we use a membership function as

shown in Fig. 2.1(b) where T, is set to 1.3.

L0« fo2>2To+ /2
m(fs) = 00 : f<T, —a/2 (2.3)
Lo/l . T _a,/2< f, < T, + )2

Again, o is an extension factor. For Rule 3, m( fz) =11if f, < 1; otherwise

m(fp) = 0.

Let P, represent the degree that a region belongs to noise. P, is given by:

Frn = am{fa) + Bm(fs) + ym(f,) (2.4)

where weights o = § = 0.1 and y = 0.8. If P, > 0.5, the region is assigned as

noise and can be removed.

2.2 Normalization

The second step of the preprocessing is size normalization that is very neces-
sary because the original characters are usually in different sizes, as shown in
Fig. 2.2(a). Generally, there are two size normalization schemes. One is to scale
a foreground image to touch all four sides of the pre-defined box. The other

scheme is to touch the top-bottom sides or the left-right sides only. The first
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m(f,)
1.0

fn

T, Th+a,/2

Ts - as/2 z‘-ls fs
(b)

Figure 2.3: Two types of membership functions

normalization scheme is rarely used because it may produce deformation. In our
study, the length of a digit string is unknown, so the second normalization scheme
with a pre-defined height will do a better job. Fig. 2.2(c) shows the normalized

noise-free images where all the foreground images are scaled to the same height.

2.3 Skeletonization

The last part in the preprocessing is skeletonization. The task here is to find a
thinned representation of a foreground image. The skeleton image together with
the normalized noise-free image is used to extract features for estimating the
length of a digit string. The skeletonization algorithm is adapted from Hilditch’s
thinning algorithm [{62], which depends on the “hit-or-miss” transform (62, 63].
The shortcoming of this algorithm is that it produces artifacts (buds} or extra
branches during the processing. The extra branches are usually short in com-
parison with the other strokes. There are two kinds of artifacts, one from the

poor writing in the form of a short line as shown in Fig. 2.4(a) and the other



Chapter 2. Pre-processing of Character Image 19

i

(a) (b)

Figure 2.4: Artifacts generated during the Hilditch’s thinning processing: (a) an
artifact due to poor writing; (b) an artifact due to the hit-or-miss transform.

generated by the “hit-or-miss” transform in the form of a straight line with a
small circle at the end and acute angles to the neighboring strokes as shown in
Fig. 2.4(b).

Figure 2.2(d) shows the final skeleton images. We can see that not all artifacts
should be removed. Some long artifacts are kept because they may indicate the
_sharp corner points of the strokes, which is useful for the later processing. The
decision of removing an artifact or not is made to be based on its length and

shape, and its angles with the neighboring branches.

2.4 Concluding Remarks

In this chapter, a three-step pre-processing scheme is presented for smoothing,
normalizing and skeletonizing binary images of connected digit strings, which is
required for later processing including length estimation and character segmenta-
tion. Mathematical morphology operations combined with fuzzy rules are used
for removing noise. The noise-free image is then normalized to a pre-defined
height with no change in the aspect ratio and skeletonized by é thinning algo-

rithm.



Chapter 3

Length Estimation of Connected

Digit Strings

Accurate length estimation is very helpful for the successful segmentation and
recognition of connected digit strings, in particular, for an off-line recognition
system. However, little work has been done in this area due to the difficulties
involved. Only one paper proposed by Fenrich [64] give a length estimation
method. It is an iterative segmentation-based algorithm to recognize strings
of different length [64]. In this algorithm, vertical projection, upper and lower
contours are used to find splitting positions. In each iteration, a high confidence
character is recognized and removed from the image, till no characters are left.
Note that there is a length estimation method mentioned in this algorithm, which
is different from the problem we will tackle. The length estimation method, which
is based on Constrained Linear Regression {(CLR), use the image density as an
independent variable and the number of characters recognized as a dependent
variable. Sin‘ce characters are removed as they are recognized, their effective
contribution to the image density can be recorded. Recorded values are used to
establish a least square linear model, which can be used to estimate the number

of characters left in the image.

20
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Skeleton: Image Fuzzy

L——> description

Feature extraction |- Neural network Postprocessing  —>s

’9 based estimator

Normalized
Noise-free Image

Figure 3.1: Block diagram of the length estimation system.

Obviously, the segmentation of character strings of unknown length intro-
duced in section 1.1 can be improved significantly if the number of the characters
can be estimated beforehand. |

In this thesis, a new length estimation approach is presented. The kernel of
our approach is a neural network estimator with a set of structure based features
as the inputs. The ocutputs of the algorithm are a set of fuzzy membership grades
reflecting the degrees of an input digit string for having different lengths.

As shown in Fig 3.1, our length estimation approach mainly includes four
steps, preprocessing, feature extraction, neural network estimation, and post-
processing. A set of structure based features from the normalized noise-free
image and its skeleton image are extracted in the step of feature extraction,
which will be discussed in section 3.1. A multi-layer feedforward neural net-
work is then trained to perform the length estimation based on the extracted
features. Section 3.2 discusses data collection and the training of the neural
network estimator. In Section 3.3, we explain how to derive fuzzy membership
grades from the outputs of the neural network. Experimental resuits on NIST
Special Database 3 and other artificially generated digit strings about this length

estimation algorithm are reported in Section 3.4.

3.1 Feature Extraction

Feature extraction is an important step in achieving good performance of any
pattern recognition system. The extracted features must be invariant to the pos-

sible distortions and variances of digit strings. Moreover, with a limited training
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Figure 3.2: Horizontal transitions

set, the number of features must be kept reasonably small if the statistical clas-
sifier is to be used [11].

In this algorithm, seventeen structure-based features were extracted for train-
ing a multi-layer feedforward neural network to perform the length estimation.
Among them, ten features are horizontal transitions extracted from the normal-
ized noise-free image, six features come from feature points extracted from the

skeleton image, and the aspect ratio of the image.

3.1.1 Horizontal Transitions

Horizontal transitions have been used for the segmentation of connected digit
strings [34]. As shown in Fig. 3.2, the approach is to scan the image horizontally
and to count the number of foreground-background and background-foreground
transitions. The whole image can be divided into ten bands from the top to
bottom, and the average number of horizontal transitions in each band is used

as a feature (10 features in total).

3.1.2 Feature Points

Fork points and end points in the skeleton image are important feature points.
As shown in Fig. 3.3, a fork point is a skeleton point that has more than two
connected branches, and an end point is the skeleton point which has only one

connected branch, that is, at the end of a stroke, We can see that some artifacts
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Figure 3.3: Feature points in a skeleton image.

are deliberately kept to indicate sharp turning corners. The whole image is
partitioned into three bands as the top, center, and bottom ones. Two features,
the number of the fork points and the number of end points, are extracted from

each band. Therefore, in total six features are obtained.

3.2 Neural Network Based Length Estimation

As mentioned in section 1.3, we have 4,555 connected 2-digit strings, 355 con-
nected 3-digit strings, 48 connected 4-digit strings, and 20,852 isolated digits.
Obviously, the numbers of the connected 3-digit and 4-digit strings are too small
as compared with those of the other two types. To solve the problem, we have
generated some 3-digit and 4-digit strings by merging the existing samples to-
gether, as shown in Fig. 3.4 where a 2-digit string ‘53’ is merged with an isolated
digit ‘3’ to make a connected 3-digit string ‘533’. The degree of overlapping is
randomly set within a pre-defined range.

In our experiments, we chose 2,000 samples of isolated digits, 1,200 connected
2-digit strings, 1,200 connected 3-digit strings, and 1,200 connected 4-digit strings
as the training set. For the testing, we have an independent set of 2,000 isolated
digits, 3,335 connected 2-digit strings, 3,355 connected 3-digit strings, and 1,200
connected 4-digit strings. The strings of five or more connected digits is rare in

real-world applications so they are not included in our research.
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Figure 3.4: An artificial 3-digit string from merging a 2-digit string and an
isolated digit.

An 18-60-4 three-layer feedforward neural network was trained to estimate
the string length based on 17 features discussed in the previous— section. Note
that an extra input node with a fixed activity is used to produce bias terms to the
hidden nodes through the corresponding weight connections. Each of the four
outputs of the neural network is assigned to each of four classes, isolated digit,
2-digit string, 3-digit string, and 4-digit string. The neural network was trained
using the back-propagation algorithm with the conjugate-gradient optimization

technique.

3.3 Post-processing

The outputs of the neural network are a set of continuous values in [0,1]. It
will be more helpful for the later segmentation and recognition if the system
can also indicate the confidence level at which the string belongs to each of four
categories. Assume that the output vector of the neural network for the sth input
digit string is 0;. We compute the center of the output vectors of the digit strings

that belong to the same class, that is,

Ny

2. 0
c; ==L i=1,2,..,L (3.1)
’ N 2y .

where L is the number of classes (four in our application) and N; is the total
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Table 3.1: The experimental results of the length estimation on the test set.

I | isolated [ 2-digit | 3-digit | 4-digit [ total |

isolated 1973 27 0 0 2000
2-digit 19 3268 68 0 3355
3-digit 0 39 3085 215 | 3355
4-digit 0 0 70 1130 | 1200

number of digit strings belonging to class j. A set of fuzzy membership grades
is derived for each digit string according to its distances to the class centers.

Euclidean distance is applied here:

dji = y/(0s — ¢5)T x (0; — ¢5) (3.2)
where dj; is the distance from output vector o; to center ¢;. Finally, the

membership grade of digit string i belonging to class j, my;, is given by:

mji = dJ‘ s (3-3)

3.4 Experimental Results and Discussion

Table 3.1 lists the classification results of the neural network on the test set.
The overall correct classification rate is 95.3%. We can see from the table that
the misclassification occurs among the neighboring classes only, for example, a
connected 3-digit string might be misclassified into the 2-digit or 4-digit category.

Based on fuzzy membership grades, we introduce a parameter, A, which is

defined as the difference between the two maximum grades, that is,

Ai = max(mg;, My, ma;, ™) — second max(my;, my;, ma;, m3i) (3.4)

Table 3.2 summaries the classification of digit strings in terms of different A

values. Among the 9,456 correctly classified digit strings, 70% of them were well
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classified (A > 0.5). As to the 454 misclassified digit strings, about 88% of them
were not totally misclassified, that is, the values of A were smaller than 0.5 which
means that an alternative choice may also be favorable. The length estimation
is a part of our automatic digit recognition system and the results from this
estimation only serves as a guideline for the later processing. If the value of X is
not large enough, say smaller than 0.5, both of the two highest outputs should
be considered. As a'result, among all these 9,910 testing samples, 6,838 (69%)
samples were correctly classified with a high confidence level (one output with
A > 0.5), 3,017 (30.4%) digit strings had the correct estimation if the two best
estimations were considered, and only 55 (0.6%) samples were poorly classified.
The experimental results suggests that our approach of length estimation of digit

strings is reliable and it will be very helpful for the recognition at the later stage.

Table 3.2: The analysis of the cutputs with different A values

correct WIong all
A number [ % |[number| % [number] %
0~0.1 234 2.47 167 36.8 401 4.05

0.1~0.2 352 3.72 100 22.0 452 4.56
0.2~0.3 411 4.35 70 15.4 481 4.85
0.3~ 04 648 6.80 37 8.15 685 6.91
0.4~0.5 973 10.3 25 9.51 998 10.1
0.5~06) 1837 19.4. 17 3.74 1854 18.7
06~07| 1828 19.3 20 4.41 1848 18.6
0.7~ 08| 2048 21.7 10 2.20 2058 20.8
0.8~ 0.9 862 9.12 5 1.10 867 8.75
0.9~ 1.0 263 2.78 3 0.66 266 2.68
total 9456 | 100.0 454 100.0 | 9910 ; 100.0

3.5 Concluding Remarks

In this chapter, the length estimation of connected digit strings using a three-
layer (one hidden) feedforward neural network with structure based features is

presented. The approach consists of four steps, preprocessing, feature extraction,
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neural network estimation, and post-processing. In the preprocessing, morpho-
logical operations are firstly applied to remove noise and artifacts in a digit string
image, which is followed by the normalization and skeletonization. Two images,
the normalized noise-free image and the skeleton image, are produced from the
preprocessing. In feature extraction, seventeen structure based features are ob-
tained from pre-processed images. A three-layer feedforward neural network is
then trained to map the features to the target lengths of digit strings. In post-
processing, the training results from the neural network are used to compute the
centers of classes that are used to determine the fuzzy membership grades of a
digit string having different numbers of digits. Experimental results on NIST
Special Database 3 and other derived digit strings show that 9855 (99.4%) of a
total of 9,910 digit strings are well estimated. |



Chapter 4

Multi-Module Digit

Classification

As mentioned in Chapter 1, the performance of the isolated character classifier
is a key factor to decide the performance of the whole recognition system. In
this chapter, we present a multi-module (MC) approach for handwritten digit
recognition based on the human recognition experience in a hope of achieving
human-like performance.

The structure of the classifier is shown in Fig. 4.1. The outputs of the clas-
sifier are 10 digit classes. The classifier has four modules: three neural network
classifier with different sets of features and a template-based classifier. The out-
puts from the four modules are combined by a combinator, which is also a neural
network. At the learning stage, each module is trained indiviually using its own
feature set. At the recognition stage, all trained classifier work together.

Compared with a single large and complex classifier, the advantages of this

multi-module structure are:

e Training is less complex because each module is designed to handle a spe-

cific sub-problem;

28
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Figure 4.1: Block Diagram of the multi-module digit classification.

¢ it is expected that each module can tackle the specific problem more effi-

ciently and accurately;

e because each module is trained independently, it is easy to add and delete

modules, and only the new module(s) should be trained and the combinator

retrained, which will save the cost in the training;

e this multi-module structure also makes the hardware implementation eas-

ier.

4.1 Neural Network-based Modules

As we can see from figure 4.1, we make use of three classifiers that use structural

features, intensity features, and directional features as inputs, respectively. Each

neural network classifier, which is individually trained by using its own training

set, will mainly tackle one type of variation in handwritten digit patterns.
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/N <

H line V line P line N line C curve D curve
A curve Vecurve . S curve Z curve curve circle

Figure 4.2: Twelve types of line segments.

4.1.1 Feature Extraction
4.1.1.1 Structural Features

Structural features are extracted from skeleton image of a binary image. In a
skeleton image, a set of fork points (with more than two neighbors) and end
points (with only one neighbor) are located, and segments between these points
are traced. A set of symbolic, discrete-value, and continuous-valued features of
segments are extracted to perform the classification.

A branch is a segment connecting a pair of adjacent nodes. A circle is a
special branch connecting to a single node. We categorized each segments as one
of 12 types shown in Fig. 4.2, H line, V line, P line, N line, C curve, D curve,
A curve, V curve, § curve, Z curve, curve, circle. Type curve is reserved for a
curve segment that cannot be fitted to any of the six curve types.

The measure of the straightness of a branch is determined by fitting a straight
line using the least square error method. The straightness of a non-circular

branch is defined as:

1-8/Sr « if §<8§
fsr,={ /5 booser (4.1)

0 : if §>5¢
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where S is the fitting error and Sr is a threshold. A branch is classified as a
curve, if 0 < fsz, < 0.5, or a straight line, if 0.5 < fg7, < 1.

According to its angle with the horizontal direction, a straight line is classified
into H line, V line, P line, and N line. A curve segment is categorized into one
.of six curve types based on its shape information. If a curve segment can not be
assigned to any of these types, it is considered to be type curve.

Preliminary examination on the NIST Special Database 3 [65] showed that
less than 0.5% of digit characters have more than six segments, so no more than
six segments (in the order of decreasing lengths) are considered for each skeleton

digit image. Four features were used to describe a segment [66]. They are:

1. The type of a segment.

2. The normalized length of a segment, [?. Suppose that the width and height
of the image (in pixels) are w and h, respectively, the number of segments
is Ny (could be greater than six), and the number of pixels in the i-th

segment is Np,;. We have:

NP"—I

li= ) step(p,p+1) (4.2)

p=1

where step(p, q) is defined as:

step(p,q)-——{ b faei) (4.3)
VI if g€ Ne(p) A(g € Na(o)

where p is a character pixel on the skeleton, and Ny(p) and Ng(p) are the
4-neighbors and 8-neighbors of p, respectively. The normalized I; denoted

‘by I}, is defined as:
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3. z7; and y7;, the normalized horizontal and vertical coordinated of the rela-
tive center of the i-th segment to the center of the skeleton image, (z,,y,)-

First, the center of the i-th segment, (z4, yu), is calculated by:

Ny —1
Y step(p,p + 1) Ztzest
Ty = 2= (4.5)
l;
Npi—1
3 step(p,p+ 1)tz
=1
Yoi = — T (4.6)
Second, the center of the skeleton image, (z,, y,), is given by:
Ny
;1 Lize
x!} = :ﬁN‘ (4'7)
PINS
i=1
Ny
;1 bilYei
yg = ]_Nz (48)
> L
i=1
Finally, «7; and 37 are defined as

Besides the four features for each of six segments, which make 24 features, the
number of segments that a digit has (set the maximum value to six) is used as a
teature because some digits tend to have more segments than other. As a resul,
there are totally 25 structural features extracted for the module. Figure 4.1.1.1

shows an example of the segments of a skeleton image.
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Figure 4.3: An example of thinning and segment representation.

In experiments, the input binary image are first size-normalized to 160 x 160
for feature extraction. The segments shorter than 10 pixels are ignored although

they may be useful in the classification to a certain degree.

4.1.1.2 Directional Features

Kirsch masks, as shown in Fig. 4.4, have been adopted for extracting directional

features. Kirsch defined a nonlinear edge enhancement algorithm as follow [63):

G(3,7) = max {1, Tégcnssk — 3Tk} (4.11)

where -
St = Ar + Ape1 + Agro (4.12)
Tp = Agis+ Appg + Apgs + Apys + Apyr (4.13)

G/(1, 7) is the gradient of pixel (4, j), the subscripts of A are evaluated modulo
8, and A, (k'=0,1, --,7) are neighbors of pixel (4, ), as shown in Fig. 4.1.1.2.
In this module, an input pattern is size-normalized by 160 x 160 and the
directional feature vectors for horizontal (H), vertical (V), right-diagonal (R),

and left-diagonal (L) directions are computed as fellows:
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Figure 4.4: Four directional Kirsch masks.
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Figure 4.5: Definition of eight neighbors A, (k =0,1,---,7) of pixel {3, j).



Chapter 4. Multi-Module Digit Classification 35

G(Z,j)H = max(|580 - 3T0l, I5S4 — 3T4|
G(’i,j)v = max(|55'g — 3T2|, |5Ss — 3T6|

)
)
G(,5)r = max(|55, — 371,555 — 3Tx|)
)

(
G(’i,j)L = max(|55’3 - 3T3|, ‘55'7 - 3T7| (4.14)

Each 160 x 160 directional feature vectors is compressed into 4 x 4 feature
vector. A fixed normalization factor of (1/200) is used to normalize all the
features to be within a suitable range for a neural network. As a result, 64

directional features are extracted.

4.1.1.3 Intensity-based Features

The intensity-based feature extraction is to partition a digit image into 8 x 8
regions from 160 x 160 normalized imagé. The numbers of digit pixels in each
region is counted and used as a feature. A total of 64 intensity-based features are
extracted. There are 20 x 20 pixels in each region so the range of feature values
is within [0, 400]. A fixed normalization factor of (1/200) is used to normalize all
the features to be within [0, 2].

Figure 4.6 illustrates different types of features extracted.

4.1.2 Training of Neural Networks

Three neural network classifiers and the combinator are Vtrained using the
back-propagation algorithm with the conjugate-gradient optimization technique.
10,426 isolated digits from NIST Special Database 3 are used as the training set,
and another independent 10,426 isolated digits are used as test set. The struc-
tural feature based module uses a 25-36-10 Multi-Layer Perceptron (MLP} and
25 structural features as inputs. Note that a bias input is used for each neural

network. Directional feature based module and intensity feature based module



Chapter 4. Multi-Module Digit Classification 36

Original Digit

—
(-
-
Normalized Image >
Directional
Features
»
Intensity
Features
—» LIl foeeee]]
Structrual
Features

Figure 4.6: Different types of features extracted.
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use 64-45-10 and 64-36-10 MLPs, respectively. The 30 outputs from three mod-
ules and the 10 outputs from the template-matching based classifier are used as
the inputs of the combinator. The combinator, a 40-31-10 MLP, was trained
independently using the same training set. If new modules are added, only the

added modules need to be trained and the combinator needs to be re-trained.

4.2 Template-Based Classifier

In this section, we present a new template presentation scheme, a neural network
approach for extracting templates, and an evolutionary algorithm for optimiz-
ing templates. Each template presented by a Pixel-to-Boundary Distance Map
(PBDM) is approximated by a rational B-spline surface with a set of control
knots. In template extraction, a cost function of the amplitude and gradient
of the PBDM is minimized by using a neural network. The templates are then
optimized by an evolutionary algorithm. While in the matching step, a similar-
ity measure that takes into account of both the amplitude and gradient of the

PBDM is adopted to match an input pattern to templates.

4.2.1 Representation of Templates

In our approach, the templates are represented by a rational B-spline surface with
a set of control knots. Curve and surface representation and manipulation using
the B-spline form (non-rational or rational) are commonly used in geometric
design. In 1975, Versprille proposed a rational B-splines for geometric design of
curves and surfaces [66]. The work outlined the important properties of rational
B-splines, such as continuity, local control. property, etc. Recently, B-spline curve
(snake) have been used in the description of objects [67, 68], as well as digit
images [18, 19]. With the B-spline estimation, information concerning the shape
of desired objects can be incorporated into the control parameters of the curve

or surface based templates.
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Figure 4.7: Pixel-to-boundary distance.

However, the estimation of B-spline curve involves a lot of uncertainties and
is prune to failure because the corresponding parameters of templates and the
input data should reflect the information in the same aspect of the image. In
our approach, we use B-spline surface to approximate the PBDM of the digit
image. The number of the control points of surface and the locations of them
are prescribed, so for each control point, the control area is certain. Therefore,
the problem can be avoided.

A binary digit image can be converted to a Pixel-Boundary Distance Map
(PBDM). The distance of pixel (z,y) (we here use (z,7) instead of normally
discrete (3, 7) for its consistency with the definition of the rational B-splice sur-
face) to the nearest foreground/background boundary is measured, as shown in
Figure 4.2.1. For a foreground pixel, we have d(z,y) > 0. But for a background
pixel, we assume it has a negative value, that is d(z,vy) < 0.

Let g(x,y) denote the value of pixel (z,) in the PBDM. It is defined as

e _l@(zy)-dmaz))?
gla.y)=ge  Gne (4.15)
where dinaz 18 the maximum distance and (e/2) is a constant to make a point on
the boundary, Oy, have g(zg,,yo,) = 0.5.
Assume the rational B-spline surfaces for the templates are {S(F;),0<5 <

N}, where N, is the number of templates and F; is a matrix of the control
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Figure 4.8: Control points of a template.
points of template j, as shown in Figure 4.2.1,
!N_
p By A
1,0 1,1 LN ~1
p_? .’ p-l
p=|" Fi 7 (4.16)
N-10 _N-11 N-1,N-1
\ p.'n' p.? 7 ) NxN
A rational B-spline surface can be defined as
§(z,y) = By, () P; Br,(y) (4.17)

where ry and r, are the orders of the B-spline bases. B,(z) is a base function

vector and Bf(z) is its transpose. Normally, we have ry = r, = r. B.(z) is a

vector of base functions given by

BO,r (5[3)
B2,r (fL‘)

BN_l’r(:E) Nx1

(4.18)
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Figure 4.9: The template extraction neural network.

where B;1(u) is given by

1 U S u < Ui
B;i(u) = (4.19)
0 otherwise
and
U — Uigr — U
Bi r = 2, BI r— ‘2
() o —-u,-B’ 1(u) + Trr — i L 1(u) (4.20)

where U = {u;}0 < ¢ < N,} is a knot vector of length N,,. It is assumed that
0/0 = 0. The value of %; determines the locations of control knots and should
be pre- deﬁned To simplify to the B spline surface, we define a knot vector as

{0 0, =gy L (st),---,’-,--f:-l\}, so N, = N+ 2 x (r —2). In most
applications, the number of input pattern V; is much greater than the number

of control points in a templates, N x N.

4.2.2 Template Extraction

Similar to an approach for optimizing digit prototypes proposed by Yan [15],
initial templates are extracted using a multi-layer neural network as shown in
Figure 4.9. The input to the neural network is a PBDM (. The hidden layer
contains the templates to be extracted. Each hidden node corresponds to a

template. Z = [z, 21, - -, 2n,] is the output of the network, corresponding to IV,
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output classes. The output of the hidden node is given by

¢; = f(G, P} = nd1; + 7202, (4.21)

where 71 + 2 = 1 and ¢; is a function that measure the similarity between the
input PBDM G and template P;, considering not only the magnitude of but also

the gradient at a point. ¢ ; is defined as ¢, ; = 1—;;%,—,;, where C, is a smoothing

factor and

o = o holSi(z.y) — 9(z,y)? dzdy
’ I3 I3 (=, ) de dy
_ Jo [ 1Bi(2)P;B:(y) — g(z,y)]’ dz dy (4.22)
fol fol ¢*(z,y) dr dy .

We defined ¢, ; as
T cos? dzx d 4.23
¢2’J'-—‘/c.' /0 cos” (B;(z,y)) dz dy (4.23)

where 8;(z,y) is the angle between the gradient of template S%(z,y) at (z,y)
and the gradient of the input PBDM & at the same point. It is easy to verify
that 0 < ¢1; < 1and 0 < ¢o; < 1. If ¢y; = 1, then S*(z,y) = g(z,y).

The connection weight from hidden node j to output node m is denoted w;m-

The output of the mth output node is given by
Ny
Zm = 3 Wim®; (4.24)
=1

where NV is the number of templates. Weights {w;m} must be pre-defined.
Assume that the desired and actual activities of the output node m are 2%,
and z2, respectively for input G. For each j, we need to find p}' so that the

following energy function is minimized:
1 & 2
E= E Z lzm.l) - zm] (425)
m==1
The generalized delta rule is adopted to train the feedforward neural network for
extracting a set of templates. According to the generalized delta rule, p;:k can be

learned by successively applying an increment given by
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_ o O 97 09;
a31'11 a¢] 3pkl
0d;
= o Zm m)Wim 4.26
Z 0= J apk[ ( )
where o is a learning factor.
When an input image is given, its PNDM G can be obtained, so are gﬁ, gﬁ
and g2, = [y [y ¢°(z,y) dz dy, therefore we have
v= o [ [ (B@PB) - glev)P dsdy (4.27)
9S; 1 4 854 1)
/ f (529, + 59t) dz dy (4.28)
@l 2 i\ 2 12 12
( a:,- +( y))(g-"" +gy)
Considering the differentiation property of the B-spline [70],
0S;(z,y) 0B (z)
= 2= pp,
0z or 7 )
= TB:—l(I)-P;:Br(y)
= 'rSf(T lr}(x,y) (4.29)
similarly,
8S;(z,y) 9B, (y)
T Il BUHAP
ay r(x) J ay
= rB{(2)P!B.a(v)
= rSJy(T’r_l)(a:,y) (4.30)
where
[ Bora(a) )
By, i (z
By(z)=| " (@) (4.31)
BN,r—-I(-T)

(N+1)x1
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(4.32)

(4.33)

The gradients of templates are also rational B-spline surfaces. Therefore, we

have

O¢; 0¢; 0¢;

= =y =+ 7y :
opl,  opl ' opl

3} 2Cw;(v; — 1)

3]9}7;[ g.?um
$ (Si(z9)~g@y))
(Bir () By (v)) da dy

A . .

ap],’d Lo 9’;2 + g;‘z

H(z,y)

)2 + (Sg(r,r—l))z]

where ey, is the effective control region of py; and

[(SI 5 dz dy

J(r--1,7)

Hiz,y) = 2{[(6)" = (60T orrySt iy + 993 [(SY o) —

Bk,r—l(I)
(ur+k - uk)
By 1(y)
(Ur+z -~ uy)

Bk+1,r—1($) ] _
(trerer — Uk 1)
Biyrr-1(y) )

(Urgip1 — u1+1)

{S.?(r,r—l)Bl’T (y) [

S o1mBrr(2)]

I (r—1,r)

(4.34)

(4.35)

(4.36)

1) 1}

(4.37)
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In order to simplify the extraction algorithm, the clustering algorithm is
utilized. At iteration ¢ of the templates extraction procedure, as to an input
PBDM, instead of calculate all templates, only the templates with maximum @;

are updated. So, w;, can be defined as:

1 : j=argmax(¢;) 1€ S
Wim = " (4.38)
0 : otherwise
where S, is the set in which each index corresponds to a hidden node that
represents a prototype that belongs to the class represented by output node m,

and m is the class that the input PBDM belongs to. So, Apl, can be given by

. -
Apl, = a(z.mo*zm)%
ki
oS! 562
- a(zmg—zm)(%$+%%) (4.39)
ki

4.2.3 Template Optimization Using Evolutionary Algo-

rithms

Evolutionary algorithms for optimization have been studied for more than three
decades since Fogel et al published the first work on evolutionary simulation.
Many years of research .and application have demonstrated that evolutionary al-
gorithms, which emulate the search process of natural evolution, are powerful for
the global optimization. Current Evolutionary Algorithms (EAs} include Evo-
lutionary Programming (GP), Evolutionary Strategies (ES), Genetic Algorithm
(GA) and Genetic Programming (GP) [71]. Bick et al has done a comparative
study of the first three approaches [72]. An good introduction of evolutionary
techniques on optimization is given by Fogel [73].

Several applications of evolutionary template optimization have been reported
in {74, 75, 76, 77]. However,' in these algorithms, only one best template is

extracted from one set of training samples. Obviously, for most object recognition
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problems, a single template for a class of object is not enough for a reliable
recognition system. More templates have to be extracted to achieve a better
performance. Sarkar [78] presented a fitness based clustering algorithm, which
can be utilized for template optimization. In the algorithm, one opponent (parent
or offsprings) contains variable number of clustering centers. In its selection
procedure, the fitness values of parents and offsprings are compared and a number
of opponents are selected arbitrarily as the reference opponents. The opponent
with better performance to each reference opponent can receive a win. Based
on the wins, some opponents are selected as the parents of next generation.
The shortcoming of the algorithm is that the computation requirement is in
an exponential relationship with the cluster number. If the number of cluster
number is very large, the algorithm ceases to be feasible.

Unlike Sarkar [78] approach of using a set of cluster centers as a component
in evolution and selecting only one set as the winner, we use templates as the
components directly and the selected survivors are a group of templates. The
evolutionary processing is to emulate the evolution of a nature social system,
such as ants, bees and human society.

The study of social system, as a part of sociobiology, began in the middle
of 19th century, after Charles Darwin published his most famous book, On the
Origin of Species by Means of Natural Selection in 1859. Sociobiology seeks to
extend the concept of natural selection to social systems and social behavior of
animals, including humans.

In our algorithm, we define a small, simple and homogeneous social system.
Each template is just like an individual in it, and the society can only accommo-
date a limited number of individuals, but the individuals can generate a larger
number of offsprings in each generation. Therefore, only the offsprings of bet-
ter ability will be kept and the others must be discarded, that is,“survival of the
fittest”. Moreover, the relationship between individuals can be not only competi-

tive (only winners can survive) but also cooperative (the properties of individuals
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are reflected by their performance collectively). After a number of generations of
evolution, a group of templates are selected and they as the whole can achieve a
good recognition performance. The algorithm can be divided into the following

steps:

1. A population of Np templates (called parents) is initially generated. We
use the templates extracted by the multi-layer neural network presented in

Section 4.2.2.

2. Np offsprings are generated from the parents by evolutionary operations

(discussed in Section 4.2.3.1).

3. A subset of Np offsprings are selected as the parents of the next generation

based on a fitness measure (discussed in Section 4.2.3.2).

4. If the number of generations is less than the pre-set number or the perfor-

mance of the selected templates is not satisfactory, go to Step 2.

In our algorithm, the templates in each numeral class are optimized inde-
pendently. The parallel processing nature of our proposed method allows a fast

processing on parallel computers or multiple computers.

4.2.3.1 Generation of Offsprings

For better explanation of the offspring generation and selection procedure, we

define:
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Sty the training set;
* the sth training sample;

P the parent set;

P%  the kth component in set P;

O  the offsprings set;

OF  the kth component in set O;

P'  the selected subset of O as the parent set for the next generation;
T,y

og” the control parameter at location (z,%) of O;

pe”  the control parameter at location (z,y) of P*. .
Three ways to generate offsprings are replication, mutation and recombina-

tion. Replication is simply a copy operation; O* = P*, where O* and P* are an
offspring and a parent template respectively. The number of replicated offsprings
is N = Np, where Np is the number of parents.

Mutation is an operation by which perturbations are added to the parents.
In our algorithm, the perturbation @ is Gaussian noise, that is, O = P/ + Q.
The number of mutated offsprings is N3' = nNp, where n is a positive integer.

The recombination mechanism used in evolutionary algorithms is either in
their usual form, producing a new individual from two randomly selected par-
ents, or in their global form, allowing of taking components for a new individual
from potentially all individuals available in the parent population [72]. In our
algorithm, the components of recombined offsprings are selected randomly from
the two randomly selected parents, Gaussian noise is added as perturbations.
Note that whether adding perturbation or not is controlled by a random binary

variable. The recombination is given by

1

ofY =7 x ¥+ (1=7) x ¥ + 1 X ¢ (4.40)

where 0¥ is the element of o; at (z,y), p;” the element of P; at (z,y), and ¢**
the noise level at (z,y). Random variable r takes a random value within [0, 1]

and 7, 1s randomly set to 1 or 0 to control whether perturbation is added or
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not. Assume the number of recombined templates is N§. The total number of

offsprings from three evolutionary operations is No = N} + NG + N§.

4.2.3.2 Selection Procedure

The task of the selection procedure is to select a subset of Np templates P’ from
Np offsprings generated. Based on the similarity function q&f defined in Eq. 4.21,

we define the fitness of P’ as

Ny

N k
fitness(P') = 2 r,}'éa}s:;:(gbj) (4.41)

where N; is the number of training samples. The fitness(P’) of the selected subset
should be greater than the fitness of any other subset of Np templates from the
offspring set O. The number of possible subsets of Np templates from O is Cﬁg ,
which is an extremely large number if we set Np = 100 and Np = 1000. In order
to make this algorithm practical, a fast selection procedure based directly on
the function q&j- is adopted. The computing time of our fast selection procedure
is proportional to the number of templates, which is an improvement compared
with the Sarkar’s approach {78] in which the computational requirement is in an
exponential relationship with the cluster number.

The fast selection procedure can be divided into following steps:

1. For each training sample S?

i, a number of NV, templates with top func-

tion ¢ outputs are recorded and sorted in the decreasing order. The oth-
ers are discarded. We let {T%7, i =1,2,--- | N,, j =1,2,---, Nip} be

the set of the recorded output values and {Ti’j 1=12,--- N, =

index

1,2, -, Nigp} be the index from T%7 to the templates, so the relation be-

tween them can be presented as:

Ti’j : ij
Tindaz

= f(S:r?OJ) (4'42)
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and for training sample S},

TR > T > oo 5 TWir=2 5 Tilep=l 5, g (4.43)

forvVie Oandli¢ {TH }

Moreover, a flag is also set to each training sample: T} -1

{ag =

2. For each template O, add the values of remaining outputs together:

Sump= Y T (4.44)
Tii::’;!en:=k
3. Find the highest Sum,; and move the témplate OF = arg (max(Sumy)) to
k
the parent set P’ for next generation: P <= P + {O¥}, O « O — {O¥}.

The training samples, which index satisfy ¢ = a;g(Ti'j = k'), are given a

indez
flag with:
fag = I
= arg(Tl, = k). (4.45)
i
4. If there still exist some flags of training samples that T}E!ag = —1, for each

template OF left in set O, get the new value of Sum, with:

Sume = S T (4.46)
TH, =k

indez ™

where,

T o i T, = —1

T =§ 79 T Ti. >0 and j < Thia (4.47)

0 ¢ Thyy 20 and j>Th,,
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Figure 4.10: Examples of extracted templates in grey-scale.

if the flags of all training samples satisfy T},ag > 0, replace Equation 4.46
with Equation 4.44.

5. Similar to Step 3, find the template O* with highest Sumy in O and move
it to P’, re-set the flag of training samples which ¢ = aljg(il}i,;’;lem = k'), if
1

T}'mg 2 0, replace it with T};ag = min(T}',ag, ), ji = aig(il",‘n’fiem = k')
6. Repeat step 4, 5 till the number of templates in set P’ reach Np.

Figure 4.10 shows some selected examples of the optimized templates, which

are presented in grey-scale images.
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4.3 Experimental Results and Discussion

In total, 10,426 digit samples from NIST Special Database 3 were extracted
as the training set. Each digit image was binarized and scaled into a 64 x 64
binary image with 8-pixel-wide background borders. 1,000 templates were first
extracted from the training set by the neural network approach discussed in
Section 4.2.2. There are 100 templates for each digit. These 1, 000 templates were
then optimized by the evolutionary algorithm discussed in Section 4.2.3. Each
template contains 11 x 11 control points. Because each digit has 100 templates,
in each optimization computation, Np = 100 and Nj = 100. We set N =
2Np =200, N§ = 700, and therefore Np = 1000.

Independent 10,426 digit samples were extracted from the same database as
the test set. For a comparison, we have also applied other existing algorithms to
recognize the same digit samples, including decision trees and rules, fuzzified de-
cision rules, three-layer MLP {Multi-Layer Perceptron) classifier, and the ONNC
(Optimized Nearest-Neighbor Classifier) proposed by Yan {15]. We have also
evaluated the classification performance using the initial templates extracted by
training a feedforward neural network. Sixty-four intensities of the 8 x 8 image
were used as the inputs of the MLP classifier and the ONNC.

Table 4.1 lists correct classification rates obtained by our classification ap-
proaches and some other classification techniques. A classifier using an decision
tree of size 2163 rules achieves 98.8% correct classification on the training set and
91.4% on the test set. Using 828 pruned rules, the classifier has a slightly higher
rate on the test set (91.9%) with a cost of training accuracy (down from 98.8%
to 97.1%). Using the 151 simplified decision rules, we achieve 94.6% and 90.7%
correct classification rates on the training set and the test set, respectively. As
can be expected, performance degrades due to the simplification in converting
the decision tree to the corresponding decision rules. However, after membership

function were introduced into rules and optimized defuzzification applied [79], the
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Table 4.1: Classification performance of using different techniques.

Performance (%)
Techniques On training set | On test set
Decision tree (before pruning,
size of the tree: 2163) 98.8 91.4
Decision tree (after pruning,
size of the tree: 828) 97.1 91.9
Simplified decision rules
(151 rules) 94.6 90.7
Fuzzified decision rules
(151 rules) 97.7 95.0
Multi-Layer Perceptron (MLP)
(64-100-10) 99.6 96.7
Yan’s optimized prototypes
(1,000 prototypes) 98.4 97.8
Chi’s combined classifier 98.8 98.6
1,000 optimized templates
from our approach 96.4
Our combined classifier 98.6 97.0

classifier using fuzzified decision rules achieves 97.7% and 95.0% correct classifi-
cation on the training set and the test set, respectively. Another classifier based
on 64-100-10 Multiple Layer Perceptron (MLP) achieves a 99.6% and 96.7% clas-
sification rate. Yan’s optimized prototypes achieves a better performance with
98.4% and 97.8%. Chi’s combined classifier, which combining fuzzified decision
rules, Markov chain matching, and Yan’s optimized prototypes (7], achieved the
best classification rates among these classifiers with 98.8% and 98.6% on the
training set and test set, respectively. As shown in table 4.1, the optimized tem-
plates extracted using our approach achieves 96.4% correct classification rate on
the test set and our combined classifier achieves 97.0% classification rate which
is at high end of recognition performance. However, the testing on true classes
only are not sufficient to compare the performance of these classifiers for con-

nected digit string classification where the ability of a classifier to reject non-digit
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LM 5

Figure 4.11: Examples of non-digit patterns.

Table 4.2: Experimental results on non-digit patterns with different classifiers.

Techniques Rejection rate on | Rejection rate on | Recognition rate
illegible objects (%) | training set (%) | on training set (%)

Our combined

classifier 90.7 22.32 99.80
Yan’s optimized

prototypes 69.3 23.23 99.90
MLP (64-100-10) 44.5 . 254 99.90

patterns is very important. We have also conducted an experiment on non-digit
patterns, like those shown in Fig. 4.11.

We extracted 10,426 non-digit patterns by merging two parts of isolated dig-
its, the left part of the right digit and the right part of the left digit. The choosing
of two digits, the width and relative position of each parts, and the overlap de-
gree are set randomly. Table 4.2 shows our combined classifier can achieve the
best performance on rejecting unsure patterns.

Further comparisons of these classifiers will be presented in chapter 5
and chapter 6 when the classifiers are applied to the segmentation-based and
segmentation-free recognition of connected digit strings.

The main limitation of this multi-module classifier is its high computational
cost in both storage space and computing time. Most of the time is spent in
the template based classifier module. With 1,000 femplates for the templates-
based classifier, our experiments carried out on a 333 MHz Pentium II computer
(64 MB RAM) with Linux operating system show that it takes tens of hours
for the multi-module classifier to recognize all the 10,426 digits. Note that the

time speni includes the overhead of reading the templates from the hard disk for
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each test pattern since the internal memory i§ not large enough to store all the

templates.

4.4 Concluding Remarks

A multi-module classifier is presented in this chapter to recognize iso-
lated /separated handwritten digits and reject non-digit patterns. There are four
recognition modules in this classifier: three neural network-based modules and
a template-based module. Each of the three neural network-based module is
specifically designed to deal with a type of digit image features, namely, one
module for handling structural features, one for handling directional features,
and another for taking care of intensity features. For the template-based mod-
ule, each template presented by a Pixel-to-Boundary Distance Map (PBDM) is
approximated by a rational B-spline surface with a set of control knots. Each
module is trained independently. Neural network-based modules are trained by
back-propagation algorithm with the conjugate-gradient optimization technique.
In the template-based module, a cost function of the magnitude and gradient
of PBDM is used for extracting initial templates and an evolutionary algorithm
is used for optimizing the templates. The outputs from all of the four modules
are then combined by a trained neural network module. Experimental results
on NIST Special Database 3 show that the multi-module classifier can achieve a
good recognition performance, in particular, more reliable in rejecting non-digit
patterns compared with other existing techniques. Reliability in rejecting non-
digit patterns is a very desirable feature for connected digit string recognition.
The main limitation of this multi-module classifier is its high computational cost

in both storage space and computing time.



Chapter 5

Segmentation-Based Recognition

of Handwritten Digit Strings

The segmentation and recognition of connected characters is a key problem in
the development of Optical Character Recognition (OCR) systems. Many algo-
rithms have been proposed in the recent years. Lu given an overview on various
techniques for the segmentation of machine printed characters in 1995 [45], while
he and Shridhar have also written lately on various approaches for segmenting
handwritten characters [46].

Cheriet et al proposed a region-based method by which a pair of background
regions are identified by independent top-down and bottom-up matching and a
segmentation path is constructed by connecting the matched regions [47). If no
pair of matched regions are found, a vertical segmentation path is constructed
either upward from a lower region orl downward from an upper region. Strathy et
al introduced a segmentation algorithm based on contour structure features [49].
In their algorithm, the contour chains of a binary digit image are analyzed and
high curvature points are identified. A segmentation path is assumed to pass a
pair of high curvature points. Nine features are computed for each segmentation
path and used to sort all the possible paths. Chi et ol developed a contour cur-

vature based algorithm for separating single- and double-touching handwritten

55
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digit strings [81]. In their algorithm, all segmentation path candidates are sorted
by a set of features with corresponding weight functions, and tested by a nearest
neighbor classifier. Yu and Yan developed a morphological technique to analyze
touching digit strings based on the distribution of a set of topological feature
points on the contour of a digit image [48]. Westall and Narasimha presented
a vertex directed segmentation algorithm [82]. The algorithm first identifies
the vertices that are formed by converging vertically oriented edges of adjacent
strokes. A segmentation path is formed by connecting the selected vertices with
extension to the top and bottom of the image. The geometric features of the
left and right parts of the image are used to validate the segmentation path.
Although many approaches have been proposed for segmenting and recognizing
connected handwritten characters, much improvement is still required in order
to build a system of practical uses. In particular, further enhancement is much
demand in reducing the number of candidate paths to be tested and achieving a
smaller rejection rate while maintaining a reasonable high recognition rate.

In this chapter, a new segmentation and recognition approach based on the
background (regions excluding the characters) skeleton of a digit string image is

presented.

5.1 Types of the Connections in Handwritten
Digit Strings

Normally, the connections of adjacent handwritten digits can be categorized into

the following three types [82]:

o Overlapping of two vertically oriented strokes from two adjacent digits;

¢ the end of a stroke of the left/right digit touching the side of a stroke of
the right/left digit; and
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Figure 5.1: Connection type 3: two strokes touch end to end.

e two strokes from two adjacent digits touching end to end as shown in

Fig. 5.1.

Among three types of connections, the digit strings of type 3 connection is
the most difficult to handle when only the image contours are used, especially
when two strokes have a nearly constant width as shown in Fig. 5.1. It is almost
impossible to extract high curvature points or vertices in such a case. However,
a segmentation path can be formed based on the background skeleton for the
digit strings as shown in Fig. 5.1. The dotted line in each case represents a good
segmentation path that extends a high curvature point or a fork point (to be
defined in the next section) on the background skeleton to the top (could be the
bottom) of the image. Another advantage of using the background skeleton is
that after matched feature points are identified, a complete segmentation path
can be constructed by extending the partial path to the top and/or bottom of

an image by tracing the background skeleton.

5.2 Feature Point Extraction

In order to get a complete background skeleton, each digit image is placed in a
rectangle block with a small space to each of the four frames. The background
regions of a digit string image is thinned by using a skeletonization algorithm
adapted from Hilditch’s thinning algorithm [62]. For explaining our algorithm
better, the definitions of different types of segments and feature points on the

background skeleton are given first in the following:
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* Base segment: a segment generated between the foreground and the top
or bottom frame of the image, such as the thick lines shown in Fig. 5.2(a).
The upper one is named as the upper-base segment and the lower one as

the lower-base segment.

» Side segment: a segment generated between the foreground and the left
or right image frame. Side segments are not considered in the subsequent

processing.

e Branch segment: a segment connected to a base segment (excluding side
segments), such as the thick lines shown in Fig. 5.2(b). Similar to a base
segment, a branch segment connected to the upper-base segment is named
as the upper-branch segment and a branch segment connected to the lower-

base segment as the lower-branch segment.

o fole segment: a segment generated from a hole region of the background,

such as the thick lines shown in Fig. 5.2(c).
o Upper segment: a upper-base segment or a upper-branch segment.
e Lower segment. a lower-base segment or a lower-branch segment.

 Side point: the end point on a base segment after removing a side segment,

such as the points marked by ¢ shown in Fig. 5.3.

e Fork point: a point on a segment which has more than two connected

branches, such as the points marked by e shown in Fig. 5.3.

¢ End point: a point on a segment which has only one neighbor (excluding the
side points), such as the points marked by O shown in Fig. 5.3. An angle
1s assigned to each end point to indicate the orientation of the segment at

the point.

e [Isolated point: a single point generated inside a circular hole.
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Figure 5.2: Examples of background skeletons with think lines indicating (a)
base segments; (b) branch segments; and (c) hole segments.

e Corner point: a point on a segment where the direction of the line changes

sharply, such as the points marked by o shown in Fig. 5.3.

o Feature point: a fork point, an end point, or a corner point.

The extraction of feature points includes two steps. The first step is to find
all fork points and end points on the background skeleton. The second step is to
search for all corner points. To find corner points, we first estimate the direction
of a segment at each point. Let the line directions at the points before and after

point [ be ayprey and cupyg i, which should be between —# and +7. We define
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— 1
WA= e

Figure 5.3: Examples of feature points on background skeletons.

Oprey = direction{p;_n,pr_y-1,- - yDi—1. D1} (5.1)

Otpostt = direction{py, prs1,- "+, Pran—1, Pp+ v } (5.2)

where N is the number of points used in the estimation. The LSEA (Least
Square Error Approximating) method is used to estimate the line direction at a

point. The curvature at point {, oy, can then be obtained by:

D . if D<nx .
Qp = (53)
2n—-D . if D>nx
where D = |opost; — Otprey|. The curvature value o is confined to the range of 0
to +m. Whether a point { is a corner point or not is dependent on its curvature
value ay. If o is a local maximum among neighboring points and it is larger than
a threshold, then, point { is labeled as a corner point. Our method is immune

to small noise and can also locate a corner point on a smooth curve, such as the

corner point in the segment between ‘9’ and ‘5’ as shown in Fig. 5.3.

5.3 Construction of Segmentation Paths by‘
Matching Feature Points

A segmentation path is constructed by connecting several feature points on the

background skeleton with possible extension to the top and/or bottom of an
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Search starts from a feature point on an upper
segment, downward till the path touches a lower
segment (a feature point or not).

Step2

Any unmatched feature points
on a lower segment?

Search starts from one of these points, upward till the
path touches an upper segment (a feature point or not).

Step3

Any unmatched feature
points on hole segments?

Search segmentation paths based on the
feature points on hole segments.

Figure 5.4: Flowchart of the construction of segmentation paths by a three-step
searching process.
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image. A three-step searching scheme shown in Fig. 5.4 is adopted to search
the feature points on upper segments, lower segments and hole segments and to
construct segmentation paths. The first step is to search the feature points from
the top to bottom (top-down searching). If there exists unmatched feature points
on lower segments, a bottom-up searching from these points is performed in the
second step. If there exist unmatched feature points on hole segments, another
search is conducted in the third step in which searching is first done upward
and downward separately and the two traced segments are then integrated into
a single segmentation path. As a result, all possible segmentation paths can be

identified by this searching scheme.

5.3.1 Single-Direction Search

Figure 5.5 shows the flowchart of the top-down search in the first step. It starts
from a feature point on an upper segment and end at a point (a feature point
or not) on a lower segment. The important part of the searching is to find the
matched feature points on hole segments and lower segments. In the top-down

searching, the feature points to be matched must satisfy the following constraints:

¢ The coordinates of a feature point to be matched, (z, ), must satisfy Zoyrr—
Trone < T < Teurr + Toone A0 ¥ 2 Yourr + Yzone, Where Toyp, and yey,, are
the coordinates of the current feature point, and Z,.. and 4,0 are the
parameters specifying the searching scope, as the dotted lines shown in

Example 1 of Fig. 5.6(a).
e The two points are not connected through the background skeleton.

e The two points have to be face to face, that is, if the orientation of the
segment at the current point is within (0, 7), the matching point should be

within (~m,0), and vice versa.

e There is no background segment in a parallelogram region between two
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Locating the starting point (a
feature point on an upper segment).

Found? No

Yes

Set the point as the current point
and find the corresponding feature
points on hole segments.

Find the corresponding feature
points on a lower segment.

Isolated point?

Ne

@ Yes

No

Set a vertcal search downward «ll
it touches a background segment.

Trace the hole segment downward
to find other feature points.

No

Hole segment?

Complete the
path searching

segmentation
{with outputs).

Complete the se;

gmentation path

searching (without any output).

Figure 5.5: Flowchart of the top-down searching of segmentation paths.
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—
iRl

Figure 5.6: Examples of segmentation paths (feature points marked by '0’ are
unmatched points): (a) segmentation paths found (dark lines) by Step 1 (top-
down searching); (b) segmentation paths found by Step 2 (bottom-up searching);
and (c) segmentation paths found by Step 3 (searching from a hole segment)
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points. The four vertices of the parallelogram are: (e, — Bt g, —
Dhicight), (Teurr + B4 Yoy ~ Dheight)s (Tcorresp — P4 yoorresn + Dheight)s
(Tcorresp + Buddih 4y v resp + Dheight)y WHere Teorresp N Yoorresp is the coordi-
nates of the matching point, pyias is the width of the parallelogram and
Pheight 15 the vertical distance from the upper side and the lower side of the
parallelogram to the two points, as the dotted line shown in Example 2 of

Fig. 5.6(a).

e There exists only one background-foreground transition in the straight line

connecting the current point to the matched point.

(Quite often, more than one feature points match the current feature point,
such as Example 1 shown in Fig. 5.6(a). All the possible segmentation paths
should be recorded for further processing. On the contrary, sometimes no fea-
ture point would match the current feature point, such as Example 2 shown in
Fig. 5.6(a). In this case, a default vertical searching path is constructed down-
ward till it touches a background segment (either a hole segment or a lower
segment). Similar to matching feature point, several restrictions are posed for

validating a touching point:

e There exists no connection between the current feature point and the

touched point.

o No background segment is found in a rectangle region between the two
points, The four corner points are: (Teurr — B8 o — Dreight)s (Teurr +
Eméd'm: Yeurr — pheight); (xreach.ed - Mgim: yreached): (Treached + Emzdm, yreached)a
where Zieached 30d Yreached are the coordinates of the touching point, and

Teurr = Treached, 88 the dotted line shown in Example 2 of Fig. 5.6(a).

» There exists one background-foreground transition in the straight line con-

necting the two points.
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{ Starn )

Start from an unmatched fea

ture point on a hole segment,

Yes
Isolated point?

No

Check all branches connected to the point
(one branch for an end poeint,
two branches for an corner point,
three or more branches for a fork point).

from the fe.

Search upward and downward separately

ature point.

Upward

QOrientation of the

branch?

Trace the branch downward from the point

to search ail the feature points on the branch.

Downward

Trace the branch vpward from the point
to search all the feature points on the branch.

Search upward from the unmatched feature
point and search downward from the traced
fearture point on the hole segment.

——

Search downward from the unmatched feature
point and search upward from the traced
fearture point on the hole segment.

l

!

Combine the two search results ard the partial
path between the two points into a segmentation path.

Figure 5.7: Flowchart for the searching beginning at a feature point on a hole

segment.

The bottom-up searching in the second step is similar to the top-down search-

ing in the first step. The difference is that the former is searching upward and

the latter is searching downward, so the searching scope should be changed to:

Tourr — Lzone < T X Tourr + Tzone and Y < Yourr — Yzone-

5.3.2 Search in Two Directions

Figure 5.7 is the flowchart for Step 3 of our searching scheme. The searching

process begins from an unmatched feature point on a hole segment and search

in two directions. The searching process is similar to those in the first two steps.
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Normalized
Noise-free [mage Finding the feature Finding segmentation . . Acceptance
E—— peints on the & paths by matching > Rnnhkmg_seg:mnmuo“
background skeleton feature points paths using fuzzy rules

Rejection

Figure 5.8 Flowchart of our background-thinning-based approach for segmenting
connected handwritten 2-digit strings.

The key problem here is to determine the search direction upward or downward,
for each feature point on a hole segment. In our approach, the orientation of
the branch connected to the feature point is used to determine the search di-
rection. After the searching, two searched segments and the segment between
the unmatched feature points are integrated into a single segmentation path. As
Example 2 shown in Fig. 5.6(c), there are two unmatched points on the hole seg-
ment after Steps 1 and 2, the searching starts from the two points, one upward
and one downward, the two traced segments and the segment between the two

points represents a possible segmentation path.

9.4 Segmentation and Recognition of 2-Digit
Strings

To compare our approach with other segmentation techniques, we first apply our
segmentation algorithm to handwritten 2-digit strings.

Figure 5.8 shows the flowchart of our background-thinning based digit seg-
mentation approach of handwritten handwritten 2-digits. Among the four steps,
the first two steps have been introduced in Sections 5.2 and 3.3, respectively. We

will present the remaining two steps in the next two sections.
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0.4.1 Ranking Segmentation Paths Using Fuzzified Deci-

sion Rules

Since Zadeh introduced the fuzzy set theory in 1965 [83], the fuzzy logic approach
has been an increasing interest of many scientists and engineers for opening up a
new area of research and problem solving. In the recent years, we have seen the
booming of applications of fuzzy algorithms in pattern recognition. Increased
popularity of fuzzy algorithms because (1) fuzzy rules are found to be naturally
effective for any human-like cognition systems such as image understanding and
pattern recognition and (2) fuzzy sets provides a good platform for dealing with
noisy, and imprecise information which is ofte_an encountered in our daily life [84].

In separating and recognizing connected handwritten character recognition,
a human being performs far better than a machine. We believe that human
beings can perform better partially because they have sufficient knowledge about
the problem and they adopt a very robust recognition scheme, in particular,
in dealing with noisy and fuzzy patterns. As a fuzzy logic approach is a way
to achieve this robustness, we apply fuzzified decision rules to prioritize the
segmentation paths obtained using the method discussed in Section 5.3. In our
approach, the membership grade to which a candidate is a good segmentation
path is determined by fuzzified decision rules with the nine properties associated
with a segmentation path and the separated parts segmented by the path, which
will be discussed next. Ranking of the segmentation paths can decrease the

computational complexity and improve the recognition accuracy.

5.4.1.1 Properties of a Segmentation Path

A digit string is split into the left and right parts by a segmentation path. Some

parameters associated with this segmentation are given in the following:

e L = length of a segmentation path in the number of pixels;
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¢ L; = number of pixels on a segmentation path which are in the foreground

of the image;
e N} = number of pixels in the left part;

¢ N; = number of pixels in the right part;

. :r:g),xf) = horizontal coordinates of the leftmost pixel of each part;

. x%),xg) = horizontal coordinates of the rightmost pixel of each part;

. yg), yg) = vertical coordinates of the highest pixel of each part; and

. yg), yf) = vertical coordinates of the lowest pixel of each part.

Segmentation paths are ranked based on the nine properties associated each
path and the separated parts by the path. The nine properties are adapted
from [81], which were successfully used to rank segmenting paths for recognizing

handwritten single- and double-touching digit strings.

e Iy = ratio between the sizes of left and right parts:

lVl/l'Vg o if N < N2,

0= (5.4)
Ny /Ny : otherwise.
Values of Fy are in the range of [0.0, 1.0].
e F) = ratio between the value of L; and the height of the image:
Ly
Fi= W @ (5-5)

max(y;,’, yr ') — rnin(yg),yg))

F1 is set to 1.0 when its value is greater than 1.0.

e [, = ratio between the horizontal length of any overlap of the two parts,

and the smaller of the widths of the two parts:

(1) _ (1)
Py = TR "L (5.6)

min | (g}’ — 2P, (=), 21?)

Fy is set to 1.0 when its value is greater than 1.0.
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e I3 = ratio between the heights of the two parts:

. 1 2
P Wy — v/ -7y it @ -y < P - @)
3 ——
~y

(y?) _ yg)) /(yg) SJ ) . otherwise.

Values of Fj are in the range of [0.0,1.0].

e Iy = ratio between the widths of the two parts:

@ — o)/ — o) ¢ i @R o) < @ -2

Fy=
@@ = 2N/ — 2)  otherwise.

Values of F are in the range of [0.0,1.0].

® Fy = average angle, with the horizontal axis, of the segments of a path

which are in the foreground of an image. Values of Fy are in the range of

[-n/2,7/2].

¢ F5 = normalized distance of the center of segmentation path (z;,.) to the

center of the image on the horizontal axis (z¢):

. 2[1‘[3 — :Ecl

F = 5.9
6 E(Rg) _ Ig) ( )
where z;. is obtained by
L
PIEH
B = =5 (5.10)

where z (i = 0,1,...,L) are the horizontal coordinates of pixels on the

segmentation path.
® F7, Fy = ratios of the width to the height of the left part and right part,
respectively.
5.4.1.2 Fuzzified Decision Rules

Interactive dichotomizing decision trees and rules were first proposed by Quin-

lan [85]. A rule extracted from a Quinlan’s decision tree has the following form:
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Fi(fij) A Fa(fo) A o Fulfag) = C(Ly) (5.11)

Fi(fiz) is true when feature F; takes a value in the region f;;. For a discrete
feature, f;; is a single value. C{L;) denotes the class label associated with leaf
L;.

Decision rules work well when input data is noise-free. However, its perfor-
mance degrades quite a bit when input data is uncertain or noisy. Chi et al
proposed to use fuzzified decision rules to deal with the uncertain problems in
handwritten digit recognition {7].

There are two definitions of value regions used for a feature (F}) with contin-

uous values in Quinlan’s decision rules. They are F; > f;; and F; < f;;.

For F; > f;;, we define a membership function as

1.0 : if Fi>f,'j

m(F;) = 0.0 : if F<(l-a)fy (5.12)
% cif (A-o)fy<FE<fy

where « is an extension factor to reflect the fuzziness of the data.

For F; < f;, we define a membership function as

m(F;) = 00 : if F>(1+0a)fy (5.13)
Gralfizh . f fy < B < (1+a)fy

Using the membership grades instead of binary values 0 and 1 for the degree
to which a rule is triggered, the decision rules becomes a set of fuzzy rules.

Nine features, Fp, Fi,- -, Fg, discussed in Section 5.4.1.1 are used for ranking
segmentation paths. A rule outputs one of two classes: a good segmentation
path and a bad segmentation path. An example of a rule we used for classifying
a segmentation path is given below:

IF Fy < 0.70 AND F} > 0.10 AND F5 > —0.73 AND F5 < (.84 AND F3 > (.89,

THEN the path is a bad segmentation path.
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5.4.2 Defuzzification

The centroid defuzzification technique is utilized to defuzzify the classifier output:

N . i
0. = ZizL w,,DpO
= TN

N oD (5.14)
where N is the number of fuzzy rules and w; weighs the confidence of rule i,
that is, the degree that an input pattern fits rule 7, and O, represents the output
of pattern p. In this application, we have two classes, good and bad segmen-
tation paths. The value of O' is assigned as 1 if the output of rule i is class
‘good segmentation’, otherwise it is assigned to —1. If the output O, is larger
than 0, the segmentation path is regarded as a ‘good segmentation’, otherwise a
‘bad segmentation’. Df, measures how the pth pattern matches the antecedent

conditions (IF-part) of the #th rule. D;', is given by the product of the matching

degrees of the pattern in the fuzzy subsets which the ith rule holds, that is,

M;
D;, = H Mg (515)

k=1
where M; is the number of features used in that rule (called the size of a rule)
and my; is the membership grade of the k-th feature in the fuzzy subset that the

ith rule holds. We use O,, which reflects the degree to which a candidate is a

good segmentation path, to rank all possible segmentation paths.

5.4.3 Removing Redundant Segmentation Paths

Because all possible segmentation paths are extracted, some paths may be similar
to others. Two criteria are used to remove the redundant segmentation paths.

Firstly, we define:

¢ N;; = number of foreground pixels enclosed by the ith and the jth segmen-

tation paths.
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e Cy = ratio between N;; and (L% + Lf}), where L is the Ly (see Sec-
tion 5.4.1.1) of the ith path and L} is the Ly of the jth path.

N;;

Ci‘ = 'T"'"— (516)
Ly + L}

Two thresholds, Ty, and T¢;; are set to determine whether a pair of segmen-
tation paths are similar. If either Vj; or C;; is smaller than a pre-set threshold,
we consider that two segmentation paths are similar and the one with smaller

O, will be removed.

5.4.4 Experimental Results and Discussion

All the parameters used in the construction of segmentation paths must be set
according to the size of an image. In our experiments, the height of the normal-
ized image is 160 pixels and we set T,one = 60, Yoone = 10, Pwian = 9, Dheight = 9,
Tn; =50, and T, = 3.5.

Decision rules were generated and tested using 6,697 manually classified seg-
mentation paths, which were extracted from 823 2-digit strings from NIST Spe-
cial Database 3. With 4,000 as training samples, 28 decision rules were generated.
Among them, 17 rules were fuzzified and the others were discarded because they
have little impact on training samples. Experimental results show that the cor-
rect path classification rate is 81.1% on the 4,000 training paths and 79.9% on
the remaining 2,697 test paths. Figure 5.9 shows some examples of segmentation
paths and winning paths.

A comparison of the correct path classification rates among the fuzzified deci-
sion rules, straightforward decision trees {(unpruned and pruned) [85}, and multi-
layer perceptron (MLP) classifier is shown in Table 5.1. The inputs of these
classifiers are the nine properties of a path given in Section 5.4.1.1 and the out-
puts are two classes, good segmentation path and bad segmentation path. The

size of the MLP classifier is 9-46-2. Evaluated on the test set, the correct path
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Figure 5.9: Examples of connected handwritten digits with (a) all possible seg-

mentation paths; (b} segmentation paths after redundancy removing, and (c)
winning segmentation paths (dark lines).



Chapter 5. Segmentation-Based Recognition of Handwritten Digit Strings 75

Table 5.1: A comparison of the correct path classification rates among fuzzified
decision rules, straightforward decision trees (unpruned and pruned) and multi-
layer perceptron classifier.

|| Techniques | Training set (%) | testing set (%)
Fuzzified decision rules 81.1 79.9
Decision tree (unpruned) 98.1 73.9
Decision tree (pruned) 93.5 76.2
MLP 85.0 81.6

classification rate of fuzzified decision rules is better than those of the straight-
forward decision trees (unpruned or pruned), but slightly lower than that of the
MLP. However, our approach of path ranking based on the fuzzified decision

rules has the following advantages:

1. The output of fuzzified decision rules is a membership degree to which
a candidate is a good segmentation path, which is more suitable for the

ranking problem.
2. Using only 17 rules is computationally efficient.

3. Rules extracted from human recognition experience can be easily incorpo-

rated into our system.

Since the path classification rate is not high enough, we tested a few top-
ranked paths of a string based on the digit recognition results in order to deter-
mine a good enough segmentation path. The separated parts were recognized
using an optimized nearest-neighbor classifier proposed by Yan [69]. Sixty-four
intensities on the 8 x 8 image, rescaled from an original 160 x 160 normalized
binary image, are used as features. The classifier returns both the assigned class
and the Buclidean distance of the image from the closest class prototype. The
distance is termed as the ‘recognition measure’ and used as an estimation of the

reliability of a classification {81].
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Table 5.2: Experimental results on 2-digit test strings with different recognition
measure radius.

| Recognition measure radius (a) || Rejected [  Correct | Wrong ||
12 958 (28.6%) | 2324 (97.0%) | 73 (3.0%)
1.6 353 (10.5%) | 2825 (94.1%) | 177 (5.9%)
1.8 216 (6.4%) | 2920 (93.0%) | 219 (7.0%)
2.0 157 (4.7%) | 2958 (92.5%) | 240 (7.5%)
5.2 127 (3.8%) | 2954 (91.5%) | 274 (8.5%)

The classifier was trained using isolated digits extracted from NIST special
database 3. In total, 53,449 isolated digits were extracted and classified for train-
ing the classifier, and other 53,185 samples for testing. The correct rate is 98.9%
for training samples and 97.8% for test samples, without rejection. The mean
values M; (i = 0,1,...,9) of the recognition xﬁeasures for the correctly classi-
fied digits in the training samples were obtained and used to decide whether
a classification was accepted or not. On the other hand, 3,355 2-digit strings,
which were also extracted from NIST special databas:e 3, weré used as the test
data for the whole system. Note that the digits from these 4,178 2-digit strings,
3,355 for testing the whole system and the 823 for generating and testing fuzzy
decision rules) were not included in training the optimized nearest-neighbor clas-
sifier. For the 3,355 2-digit strings, average 8.1 and 7.4 segmentation paths were
constructed from each digit string before and after removing redundancy.

Suppose that a tolerant radius is a. If the recognition measure is smaller than
aM;, then the classification is accepted. Table 5.2 shows the experimental results
with different recognition measure factors. The greater the rejection measure
factor, the lower both the rejection rate and correct classification. Figure 5.9
shows some digit strings with possible and winning segmentation paths.

For a comparison, we also applied a few other algorithms to separate the
same 2-digit strings used in our experiments. These algorithms include the MCM

(Modified Curvature Method) of Chi et al [81], and those of Fenrich [64], Fujisawa



Chapter 5. Segmentation-Based Recognition of Handwritten Digit Strings 77

Table 5.3: A performance comparison of our approach with other digit separation
algorithms on 2-digit strings.

Techniques High rejection rate (%) | Low rejection rate (%)
Rejection |  Wrong Rejection | Wrong
Our algorithm 28.6 3.0 4.7 7.5
MCM of Chi [31] 32.7 49 37 10.8
Fenrich algorithm [64] 53.3 5.8 5.3 27.1
Fujisawa algorithm [86] 33.5 7.7 0.7 21.9
Zhao et al algorithm [87] 38.3 4.4 3.4 13.3

et al [86] and Zhao et al [87]. Table 2 summarizes the experimental results of
these algorithms together with ours. .

We can see from Table 5.3 that our background-thinning based approach for
segmenting and recognizing connected 2-digit strings can produces results that
compare favorably with those from the other techniques tested. Moreover, our
approach can deal with both single- and multi-touching problems in digit string
segmentation and achieve a correct rate of 92.5% with only 4.7% of digit strings

rejected.

3.5 Segmentation and Recognition of Con-
nected Digit Strings with Unknown Length

The main difference between the segmentation methods for recognizing connected
2-digits and connected digit strings with unknown length is that we do not have
enough information to prioritize segmentation paths in the latter case. All the
segmentation paths in a digit string with unknown length can only sorted by
their = coordinates of the mass center ,,,.;. To achieve the best recognition
performance, we adopt a dynamic programming technique that also makes use

of the length estimation.



Chapter 5. Segmentation-Based Recognition of Handwritten Digit Strings 78

5.5.1 Dynamic Programming

A dynamic programming based approach is used to merge and split the segments
from the segmentation step discussed in Section 5.3. Dynamic programming is
the earliest technique applied in sequential pattern recognition, such as speech
recognition. Fu ef al gave a very useful and throughout description of dynamic
programming solutions to pattern recognition [88]. Fu’s paper postulates that
in a decision problem such as pattern recognition, the optimal structure for the
statistical recognition system is characterized by a classifier that computes the
probability of feature measurements discussion patterns, and assigns the element
to a pattern in which the-joint probability is a maximum. The observation of
measurements is sequential, and after each Iﬁeasurement the classifier must de-
cide whether to stop and classify or seek new features. This linear structure is
said to be non-optimal. The authors instead presented an optimal classification
scheme based on a recursive optimization method that could find the truly op-
timal stopping rules in a number of sequential recognition problems. That is, if
an approach is pursuing an optimal set of decisions that include both the choice
of stopping or continuing the observation of feature measurements, then as each
stage of observation the remaining decisions must themselves form an optimal
sequence from that stage reached to the terminal stage of the process. In all,
every choice made must always be the best one.

For a better explanation of the dynamic programming, some definitions will
be given first in the following:

Le; {Q :q0,q1," -, qn,+1} be a set of observation sequence. In the character
segmentation problem, ¢; is the sth segmentation path extracted. N, is the
total number of the segmentation paths. All the segmentation paths are sorted
by their z coordinates of the mass center Tmgss(g:). Let {[z;(a),vi(a)],7 =

0,1,---, L{g;)} are the coordinates of all the pixels on the segmentation path g;.
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We have
L{g:)
%, (e

¥
Tmaess\Gi) = —57v— 5.17
(@) (o) (5.17)
Among ¢;,¢ = 0,1, .-, N, +1, g is the left edge of the image and g, the right
edge of the image. Dis(g;,¢;) is a function to measure the distance between the

segmentation paths ¢; and g;, which is defined as

Dis(Qi: Qj) = Ixmass((k) - mmass(q;i)l (518)

{Qj : g} is a set of segmentation paths on the right side of segmentation
path g;, that is, for Vs [z,(q;), ys(g;)] and Vt [ze(qr), ve(@)], if ys(g;) = y.(qr), then

zs(q5) < ze(@).

Let CY denote the segments between segmentation paths ¢,, and g¢,,.

Ty,mn3

We define a composition set {C : c!,c?,---,cE°}, where L¢ is the number of

the segments. Obviously, C is what we want to identify. However, there
might be more than one output for the algorithm. Therefore we define a set,
{Cm,m=1,2,---, M}, as the outputs of the algorithm, where M is the number
of composition sets. Let ¢, denote the ith segment in the mth composition set
and Lg, the number of segments in the mth composition set. The confidence of

composition set Cr,, feons(Cm), can be determined by

fent(Cm) = "HO(ch) x O(c2) - Ok x m, (5.19)

where O(c}n) is the classifier output of segment ¢},. mp is the output of the
length estimation algorithm discussed in Chapter 3, which represents the grade
of the digit string having length L¢ .

Figures 5.5.1 and 5.5.1 show the procedure of using a dynamic programming
technique adapted from Fu’s theory of dynamic programming [88] to segment a

digit string of unknown length. A brief discussion is given as follows.

e Ty in Fig. 5.5.1 is a threshold to control the search depth. In experiments,

we set Ty = Ny, where (N — h) is the height of the normalized image.
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Table 5.4: Experimental results of the dynamic programming based segmenta-
tion and recognition of handwritten digit strings with unknown length (ANCS:
Average Number of Composition Sets).

Data set || total | ANCS | rejected | correct | recognition rate (%)
5-digit strings || 4555 | 2.6 13 | 4186 91.9
3-digit strings || 355 8.5 3 299 84.2
4-digit strings | 48 27.6 0 36 75.0
all 4958 3.3 16 4521 91.2

e Ty in Fig. 5.5.1 is another threshold that is used to control the search
depth. We set, ng = 2Nh

e T4 in Fig. 5.5.1 is a threshold used to check whether the searching can be
terminated. We set Ty = N, /6.

e In Fig.5.5.1, The ‘result is acceptable?’ test is to determine whether the
output of the classifier is acceptable. The ‘satisfactory digit found?’ test
in Fig. 5.5.1 is to check whether the loop procedure shown in Fig. 5.5.1 has

found any acceptable digits.

5.5.2 Experimental Results

As introduced in Section 1.3, we have 4,555 connected 2-digit strings, 355 con-
nected 3-digit strings and 48 connected 4-digit strings. We used the multi-module
classifier discussed in Chapter 4.

Table 5.4 shows the experimental results of the dynamic programming based
segmentation and recognition of connected digits with unknown length. In the
ta,blé, ANCS stands for the Average Number of Composition Sets. We can
see from the table that with an increased string length, the ANCS increases
dramatically and the recognition rate decreases quite a bit. Although the number

of 3-digit and 4-digit strings is much smaller than that of 2-digit strings, the
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Set current composition set m =1,

set composition set number M = 1,
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Figure 5.10: Flowchart of the dynamic programming algorithm for segmentation-
based handwritten digit recognition.
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Figure 5.11: Flowchart of the loop procedure shown in Fig. 5.5.1.
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Table 5.5: Error analysis of the dynamic programming based segmentation and
recognition of handwritten digit strings of unknown length.

Data set total | correct length incorrect length
number | rate (%) | number | rate (%)

2-digit strings | 369 232 62.87 137 37.13
3-digit strings || 56 35 62.50 21 37.50
4-digit strings || 12 6 50.0 6 50.0
all 437 273 62.47 164 37.53

Table 5.6: A comparison of different classifiers on the segmentation-based recog-
nition of handwritten digit strings.

| Classifier rejection rate (%) | recognition rate (%)
Multi-Module classifier 0.32 91.2
Yan’s optimized prototypes 1.36 84.3
MLP (64-100-10) 5.32 68.4

sample distribution does reflect possibilities of digit strings of different lengths in
real world applications. The overall recognition rate of 91.2% is a fair indication
of the system recognition performance. We also notice that a few samples were
rejected because the algorithm could not recognize these digit strings with a high
confidence level.

Table 5.5 shows the error analysis of our segmentation and recognition algo-
rithm. All the mis-recognized samples are categorized into two sets: the samples
with correct length estimation and the samples with incorrect length estimation.
We notice that the former has more patterns misclassified (account for 62.47%).
Including some misclassification on the latter set, most of the errors (> 62.47%)
are caused by poor classification. Another interesting finding is that with the in-
creased length from two digits to four digits, the error rate in the set of incorrect
length estimation increases from 37.13% to 50.0%. That suggests that the effect
of length mis-estimation increases more than that of classifier misclassification

as digit strings become longer.
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Figure 5.12: An example of 4-digit string with a pruned background skeleton. -

Cos=4 C;5=4 Cg.14=0 Cr421=9

Figure 5.13: Winning recognition composition set.

A comparison of using different classifiers on the segmentation and recognition
performance is presented in Table 5.6, which is an extension to the work discussed
in Chapter 4. We have applied three classifiers, our multi-module classifier,
Yan’s optimized nearest neighbor classifier, and a 64-100-10 MLP. Experimental
results show that our classifier can achieve the best performance on recognition of
connected digit strings. We can also notice that the differences of the performance
between these techniques are greater than those for isolated digit recognition
reported in Section 4.3, which suggests that the differences of performance have
been amplified. In other words, a small improvement on recognition of isolated
digits may greatly improve the recognition performance of digit strings.

Figure 5.12 shows an example of 4-digit string with a pruned back-

ground skeletons. Figure 5.13 shows the winning composition set {Cy
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Figure 5.14: All the segmentation paths on a binary digit string image.
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C0,3,€3,8, C8,14, C14,21 }, & correct segmentation. Figure 5.14 depicts all the segmen-
tation paths {qi,¢s,- -, ¢20} that identified by using the feature point matching
procedure discussed in Section 5.3.

As mentioned in Chapter 4.3, the computational cost of the multi-module
classifier is very high. In our experiments, recognizing a 4-digit string takes

about half of an hour.

5.6 Concluding Remarks

A segmentation-based recognition approach based on the background (regions
excluding the characters) skeleton of a digit string image is presented in this
chapter. In the segmentation, a set of feature points on the background skeleton
of a digit string image are used to trace all possible segmentation paths based on
a three-step searching process. To compare our approach with other segmenta-
tion algorithms, we applied our segmentation algorithm to handwritten two-digit
strings with fuzzified decision rules and Yan's optimized nearest neighbor classi-
fier. Experimental results on NIST Special Database 3 show that our technique |
can successfully separate a large proportion of connected handwritten two-digit
strings of single- or double-touching with a performance that is compared fa-
vorably with those of other techniques tested. We also tested our segmentation
algorithm on digit strings of unknown length with a dynamic programming tech-
nique. Experimental resuits show that our approach can achieve a recognition
rate of 91.2%. However, the computational cost is a main obstacle for applying

our approach to real-world applications.



Chapter 6

Segmentation-Free Recognition

of Digit Strings

Experimental results show that the segmentation algorithm presented in Chap-
ter 5 cannot find all the possible segmentation paths. Some true segmentation
paths mi‘ght not be identified. Figure 6.1 is an example of 2-digit string that
can not be correctly separated. We can see that the digit string are two 0Os
connected by a ligature at top of them. There should be two correct segmenta-
tion paths. However, our segmentation algorithm can only identify one of them,
so the digit string is rejected by the segmentation-based recognition algorithm.
Such a problem cannot be totally avoided in a segmentation-based recognition
technique.

To overcome this shortcoming, we have developed a segmentation-free algo-
rithm. A combination of a segmentation-based algorithm and a segmentation-free
algorithm is expected to achieve a better recognition performance.

The segmentation-free recognition approach we present here is similar to the
segfnentation—based recognition algorithm introduced in Chapter 5. The main
difference is that we do not apply a segmentation technique in this segmentation-
free approach. The main idea of the algorithm is to apply a classifier on a

rectangle window (variable widths) moving through a digit string image. Same
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Unfounded segmentation Winning segmentation
pathe path

Founded segmentation
pathes

Figure 6.1: An example of 2-digit string that can not be separated by the seg-
mentation algorithm presented in Chapter 5.

as the segmentation-based approach discussed in Chapter 5, we apply a dynamic-

programming technique to find the best recognition path.

6.1 Moving Windows

As introduced in Chapter 2, input digit strings are first normalized. Let the
height and width of the normalized images be N, and N, respectively. We
choose the width and height of window W,, and W), based on N, and a moving
step denoted by W,. We set

Wy = Ny (6.1)

The widths of nine windows {W¢ i=0,1,-.-,8} are given by
W = (2 + )W, i=0,1,---,8 (6.2)
with

=W

W,
8

Figure 6.2 shows moving windows applied to a 4-digit string.
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i

W,

Figure 6.2: Moving windows applied to a 4-digit string.
6.2 Modified Classifier

As shown in Fig. 6.2, it is unavoidable that the parts of neighboring digits are
included in the windows, the classifier introduced in Chapter 4, which is pri-
marily designed for isolated digit classification, cannot be applied to this moving
window approach without some necessary changes. The changes in the number
of modules, feature extraction, and template matching procedure, are discussed

in the following sections.

6.2.1 Changes in Classification Modules

Figure 6.3 shows the modified multi-module classifier used in the segmentation-
free approach. Compared with Fig. 4.1, we notice that the structure-feature
based classifier is removed. The reason is that the connecting structures of neigh-
boring digits degrades the performance of the structure feature based classifier

significantly.
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Figure 6.3: The modified multi-module classifier used in the segmentation-free
recognition approach.

6.2.2 Masking in the Features Spaces

One changes in feature extraction is that we apply a mask to the original 160x 160
feature spaces of the intensity feature based classifier and the directional feature
based classifier. Let f(z,y) (1.0 €z < 1.0 and —1.0 < y < 1.0) be the original
feature domain, and m(z,y) be a mask, the masked feature space f(z,y) is given
by

flz,v) = flz,9) x m(z,7) (6.4)

where mask m(z,y) must meet the following constraint:

[cos(a)z + sin(cr)y]2 [—sinf{a)z + cos(e)y]  mi(z,y)
V2 N vz H:

=10 (6.5)

As shown in Equation 6.5, mask m(z,y) is an ellipsoid with x-radius 7, y-
radius -, and x-radius -y,. Considering the slant of handwritten digit, there is
a rotation angle of & to z axis applied. In our experiments, we set v, = 1.0,
Yy = 2.0, v. = /3.0, and @ = 7/4. Figure 6.4 shows the mask in gray scale
image. We can see that the center part of the feature space is enhanced and the

influence from neighboring digits is weakened.
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Figure 6.4: The feature mask in grey scale.

6.2.3 Modified Template-Based Classifier

To reduce the influence from the neighboring digits, instead of directly using
Equation 4.21 for matching, some processing is performed. A normalization
method is first applied. The maximal and minimal y values of the foreground,
3™ and ™", is found in the region ﬂgﬂ <zr< %& In the mean time, y;*** and
y}"”;“ is found in the region of template j that has S;(z,y) > 0.5. The window
is then scaled and translated so that y™** = y7*** and Y™ = yj’-'“'”. A change is
also made to Equation 4.21. Instead of the whole image, the matching is only
performed in the region 2 = {S;(z,y} > 0}, where 8 is a threshold within {0, 1].

Therefore Equations 4.23 and 4.22 are replace by

§cos* [6(z,3) dady
§ dzdy
Y

$aj =

and
g[Sj(m, y) — 9(z,y)]* dz dy

s;32992(5?, y) dz dy

v =

In experiments, we set & = 0.25.
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Table 6.1: Experimental results of the segmentation-free recognition of handwrit-
ten digit strings with unknown length (ANCS: Average Number of Composition
Sets).

[ Data set | Total | ANCS | Rejected | Correct | Recognition rate (%)
5-digit strings || 4555 | 4.8 34 3783 83.1
3-digit strings || 355 19.3 7 274 77.2
4-digit strings 48 47.2 1 30 62.5
all 4958 6.3 42 4087 82.4

6.3 Dynamic Programming Algorithm for
Segmentation-Free Approach

The dynamic programming algorithm used in this segmentation-free approach is
very similar to that in the segmentation-based approach discussed in Chapter 5.
The only difference is the segmentation paths {@ : go,q1, -+, qn,+1} are replace
by a set of steps {W : wo, w1, -, WN,p+1}, Where Nyep = Ny /N,. Same as Q,

wp and wy,,,,+1 are the left and right edges of the image, respectively.

6.4 Experimental Results Using Segmentation-

Free Algorithm

The experimental results of the segmentation-free recognition of handwrit-
ten digit strings with unknown length are shown in Table 6.1. Compared
with Table 5.4 for the segmentation-based recognition, the performance of the
segmentation-free recognition is much lower. However, the computational re-
quirement for the segmentation-based approach is much higher.

An error analysis of the segmentation-free recognition on connected digit
strings with unknown length are shown in Table 6.2. Compared with Table 5.5

for the segmentation-based approach, the ratio of the number of wrong classified
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Table 6.2: Error analysis of the segmentation-free recognition of handwritten
digit strings with unknown length.

Data set total correct length incorrect length
number | rate (%) | number | rate (%)

2-digit strings || 738 | 539 73.04 199 26.96
3-digit strings | 74 45 60.51 29 39.19
4-digit strings || 17 10 58.82 7 4118
all 820 | 594 71.65 235 78.35

Table 6.3: A comparison of different classifiers on the segmentation-free recogni-
tion of handwritten digit strings.

| Classifier || rejection rate (%) | recognition rate (%)
Multi-Module classifier 0.85 82.4
Yan’s optimized prototypes 3.03 76.5
MLP (64-100-10) 9.19 59.5

the samples with correct length estimation to that with incorrect length estima-
tion are higher, which suggests that the performance of classifier play a more
important role on the segmentation-free approach.

Same as in Chapter 5, a further comparison of the performance of different
classifiers for the segmentation-free approach is given in Table 6.3. We can see
that the performance of Yan’s optimized prototypes and the 64-100-10 MLP
classifier degrades more seriously than that of our multi-module classifier (refer
to Table 5.6). This has again demonstrated that our multi-module classifier,
which is discussed in Chapter 5, is more reliable.

Some correctly recognized and mis-recognized (rejected or un-recognized) 4-
digit strings are shown in Figs. 6.5 and 6.6, respectively. In Fig. 6.6, the sample
on the left is not correctly recognized because the writing style of the sample
is not included in the training set. ‘The sample on the right is due to serious

degradation of the image.
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Figure 6.5: Examples of correctly recognized 4-digit strings, (a) original 4-digit
strings; (b) separated digits.

I FBID

Figure 6.6: Examples of mis-recognized 4-digit strings.
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6.5 Concluding Remarks

A segmentation-free recognition approach is presented in this chapter in order to
deal with some hard-to-segment connected digit strings. The main idea of the
algorithm is to apply a classifier on a rectangle window (variable widths) of a
digit string image with the window slided along the string. With the modified
multi-module classifier and a dynamic programming technique, the approach can
achieve a recognition rate of 82.4% on handwritten digit strings with unknown

length.



Chapter 7

Conclusions

This thesis presents our research on segmentation and recognition of handwritten
digit strings, which is of many potential applications but a very challenging

problem.

7.1 Summary of Contributions

Our contributions can be summarized as follows:

1. A neural network based approach for effective length (the number of digits
in a string) estimation of handwritten digit strings was developed. Experi-
mental results show that our approach can achieve reliable estimation and
provide very useful information for the successive processing including digit

segmentation and recognition.

2. We developed a multi-module classifier to recognize isolated digits. Among
four modules, a template-based classifier based on the rational B-spline
surface representation of the Pixel-to-Boundary Distance Map (PBDM)
was developed to improve the performance of the classifier, in particular,
in rejecting non-digit patterns. To extract optimized templates, we used a
two-stage algorithm based on a neural network and an evolutionary algo-

rithm. The classifier can reliably distinguish non-digit patterns from digits,
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which is a desirable feature for recognizing handwritten digit strings. The
classifier has been applied together with a segmentation-based recognition
algorithm or a segmentation-free recognition algorithm. Experimental re-
sults show that the designed multi-module classifier compares favorably
with other classification techniques tested, including an optimized nearest
neighbor classifier and a multi-layer perceptron classifier. However, the
main limitation of this multi-module classifier is its high computational

cost in both storage space and computing time.

3. A new segmentation algorithm based on background-thinning analysis was

developed to separate a handwritten digit string into separated digits.

4, Based on the designed multi-module classifier and the background-
thinning-based segmentation algorithm, a segmentation-based recognition
approach was developed. A dynamic programming algorithm was applied
in this approach. Experimental results show that our approach can achieve

more favorable classification performance.

5. A segmentation-free recognition approach with a dynamic programming
algorithm was also developed for dealing with hard-to-segment handwritten
digit strings.

7.2 Future Work

The work discussed in this thesis has set up a solid foundation for a more thorough
investigation into the still sparsely studied recognition of connected handwritten

characters. Future work will concentrated on some of the following aspects:

e More research should be carried out on fast realization of our algorithms

so that they can be applied to real-world problems.
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» As presented in this thesis, the performance of the classifier is the key
factor to determine the performance of the whole recognition system. More
investigations on feature extraction and classifier structure are required for

designing a more reliable classifier.

* Develop a system for segmentation and recognition of connected handwrit-
ten Chinese characters. Recognition of Chinese characters is very different
from the recognition of Latin based characters. New approach may be re-
quired to deal with specific problems in recognizing connected handwritten

Chinese characters.
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