






Abstract

Although financial transactions via automatic teller machines (ATMs) have become

commonplace, the security of these transactions remains a concern. In particular,

the verification approach used by today’s ATMs can be easily compromised because

ATM cards and passwords can be lost or stolen. To overcome this limitation, a new

verification approach known as biometrics has emerged. Rather than using passwords

as the means of verification, biometric systems verify the identity of a person based

on his or her physiological and behavioral characteristics.

Numerous studies have shown that biometric systems can achieve high perfor-

mance under controlled conditions. However, the performance of these systems can

be severely degraded under real-world environments. For example, background noise

and channel distortion in speech-based systems and variation in illumination intensity

and lighting directions in face-based systems are known to be the major causes of per-

formance degradation. To enhance the robustness of biometric systems, multimodal

biometrics have been introduced. Multimodal techniques improve the robustness of

biometric systems by using more than one biometric traits at the same time. Com-

bining the information from different traits, however, is an important issue. This

thesis proposes a multiple-source multiple-sample fusion algorithm to address this

issue. The algorithm performs fusion at two levels: intramodal and intermodal.

In intramodal fusion, the scores of multiple samples (e.g., utterances and video

shots) obtained from the same modality are linearly combined, where the fusion

weights are made dependent on the score distribution of the independent samples

and the prior knowledge about the score statistics. More specifically, enrollment data

are used to compute the mean scores of clients and impostors, which are considered to

be the prior scores. During verification, the differences between the individual scores



and the prior scores are used to compute the fusion weights. Because the fusion

weights depend on verification data, the position of scores in the score sequences is

detrimental to the final fused scores. To enhance the discrimination between client and

impostor scores, this thesis proposes sorting the score sequences before fusion takes

placed. Because verification performance depends on the prior scores, a technique

that adapts the prior scores during verification is also developed.

In intermodal fusion, the means of intramodal fused scores obtained from different

modalities are fused by either linear weighted sums or support vector machines. The

final fused score is then used for decision making.

The intramodal multisample fusion was evaluated on the HTIMIT corpus and the

2001 NIST speaker recognition evaluation set, and the two-level fusion approach was

evaluated on the XM2VTSDB audio-visual corpus. It was found that intramodal

multisample fusion achieves a significant reduction in equal error rate as compared

to a conventional approach in which equal weights are assigned to all scores. Further

improvement can be obtained by either sorting the score sequences or adapting the

prior scores. It was also found that multisample fusion can be readily combined with

support vector machines for audio-visual biometric authentication. Results show that

combining the audio and visual information can reduce error rates by as much as 71%.
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STATEMENT OF ORIGINALITY

The major contributions of this dissertation are summarised below.

• This dissertation proposes a data-dependent decision fusion algorithm in which

fusion weights for individual scores are based on the score distribution of the

utterances and on the prior score statistics determined from enrollment data.

• This dissertation proposes sorting the score sequences and adapting prior scores

for further improvement. Experimental results show that the data-dependent

decision fusion outperforms equal-weight fusion.

• This dissertation proposes integrating data-dependent decision fusion with blind

feature-based transformation for channel robust speaker verification. Results

show that the proposed transformation approach achieves significant improve-

ment in both equal error rate and minimum detection cost.

• This dissertation proposes a two-level fusion approach for audio and visual

biometric authentication. In intramdol fusion, the data-dependent fusion is

used to combine the scores from the same modality. In intermodal fusion,

either linear weighted sums or support vector machines are used to combine the

means of intramodal fused scores obtained from different modalities.
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Glossary of Symbols

wi Fusion weight for the i-th modality
si Score obtained from the i-th modality
K Number of modalities
p(xt|Λωi) Likelihood function for model ωi

Θm|i The parameters of the m-th mixture component
M The total number of mixture components
p(xt|ωi, Θm|i) Probability density function of the m-th component
P (Θm|i|ωi) The prior probability (also called mixture coefficients) of the m-th mixture component
N (µm|i, Σm|i) A Gaussian distribution with mean µm|i and covariance matrix Σm|i
πi The prior probability of occurrence of the i-th mixture component
s(X; Λ) The normalized score given a sequence of vectors X
yt The distorted vector at frame t
x̂t A transformed vector at frame t
s
(k)
t A pattern-based score for modality k at time t

α
(k)
t A fusion weight for score s

(k)
t

µ̃c The mean score of a client speaker
µ̃b The mean score of background speakers
µ̃p Prior score
σ̃2

p Prior variance
Yν A sequence of transformed vectors
s̃ Utterance-based background speakers’ score
Ωs Pseudo-imposters’ scores model
ζ The normalized likelihood that the claimant is an impostor
s̃k Utterance-based verification score from utterance k

µ̂
(k)
p The adapted prior score of utterance k

s̄(m) The mean score of modality m
ŝ(m) The mean fused score of modality m using data-dependent fusion
s
(m)
norm The zero-normalized score of modality m

β The combination weight of audio score
αj Lagrange multipliers in support vector machines
Ω A set containing the indexes to the support vectors
K(x,xj) A kernel function of support vector machines
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Glossary of Abbreviations

ATM Automatic teller machine
AV Audio-visual
PCA Principle component analysis
LDA Linear discriminant analysis
SNR Signal to noise ratio
GMMs Gaussian mixture models
LPCCs LP-derived cepstral coefficients
MFCCs Mel-frequency cepstral coefficients
EM Expectation-maximization (EM)
MAP Maximum a posteriori
CMS Cepstral mean subtraction
BSFT Blind Stochastic Feature Transformation
FR False rejection
FA False acceptance
FRR False rejection rate
FAR False acceptance rate
HTER Half total error rate
EER Equal error rate
ROC Receiver operating characteristic
DET Decision error tradeoff
EW Equal-weight
DF Data-dependent fusion
DCF Decision cost function
PS Prior score
Z-norm Zero normalization
SVM Support vector machine
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Chapter 1

Introduction

In this chapter, a brief overview of biometrics is presented. Then, common fusion

strategies are introduced. Finally, the objectives of this research are stated.

1.1 An Overview of Biometrics

Person verification systems for financial transactions and access controls are common-

place in today’s information societies. Most of these systems compare the personal

identity numbers (PINs) or passwords entered by their users against the ones stored

in a central database for user authentication. This authentication method, however,

may introduce inconvenience to users. For example, users of automatic teller ma-

chines (ATMs) need to carry an ATMs card and remember a password to access their

bank accounts. Even if the users can remember the passwords, this kind of system

is not capable of verifying whether the password is entered by a registered user or

an impostor. If an impostor possesses an ATM card together with its associated

password, the system will accept him or her. On the other hand, if a registered user

forgets the password, he or she will not be able to access the system.

To cope with the above problem, biometric verification has emerged. Biometric

1



CHAPTER 1. INTRODUCTION 2

authentication systems measure the physiological and/or behavioral characteristics of

a person, such as speech, face image, fingerprints, iris, etc., as a means of verifying

the person’s identity. Although this kind of system may have a small chance of

accepting an impostor or rejecting a registered user, they can greatly reduce the risk

of forgery, because biometric systems identify a user according to his or her biometric

characteristics, instead of what he or she knows (e.g., a code) or possesses (e.g., a

card).

The choice of biometric traits for verification is very important. There are two

requirements that a biometric trait should fulfill. First, the biometric trait should

be distinguishable, which means that the trait should have a large variation among

users. Second, the trait should lead to user friendly systems. In particular, the sensors

that capture the biometric trait should not annoy users. Therefore, it is better to

capture the trait in an unconstrained and contactless manner. Speech and face are

two biometric traits that fulfill these two requirements.

The advantage of using speech-based verification is that speech is commonly

available in communication systems, e.g., mobile phone [1]. Speech-based systems

can be divided into two categories: text-dependent [2] and text-independent [3]. In

text-dependent systems, claimants should utter a sentence specified by the systems.

Therefore, text-dependent systems allow interactive authentication. On the contrary,

claimants can speak whatever they like in text-independent systems. This kind of ver-

ification system is more appropriate for forensic and surveillance applications where

predefined keywords are not available. The major problem in speech-based authen-

tication is that the performance can be severely degraded by the mismatch between

the training and verification conditions. The mismatch can be caused by channel

distortion, transducer mismatches, and background noise.

Besides speech, faces are another biometric trait that has been widely used for

verification. Face verification is user friendly in that the claimants only need to
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look at a camera for a few seconds. However, similar to speech-based verification,

environmental conditions are critical; for example, change in illumination directions

can severely affect the recognition performance [4].

To cope with the limitations of individual biometrics, researchers have proposed

using multiple biometric traits concurrently for verification. Such systems are com-

monly known as multimodal verification systems [5]. By using multiple biometric

traits, systems become more robust to intruder attack. For example, it will be more

difficult for an impostor to impersonate another person using both audio and visual

information simultaneously. Therefore, audio-visual (AV) biometrics has attracted a

great deal of attention in recent years. However, multiple biometrics should be used

with caution because catastrophic fusion may occur if the biometrics are not com-

bined properly. Catastrophic fusion occurs when the performance of an ensemble of

combined classifiers is worse than any of the individual classifiers.

1.2 An Overview of Sensor Fusion

Sensor fusion is a technique developed for optimal information processing through

combination of information produced by several sources [6, 7]. The human brain is a

good example to illustrate the fusion concept; it receives five different signals (sight,

hearing, taste, smell, and touch) from five different sensors (eyes, ears, tongue, nose,

and skin). Typically, the human brain fuses signals from different sensors to make

optimal decisions. The human brain also fuses signals at different levels for different

purposes. For example, humans recognize objects by both seeing and touching the

objects; humans also communicate by watching the talker’s face and listening to his

or her voice at the same time. All of these phenomena suggest that the human brain

is a flexible and complicated fusion system.

Research in sensor fusion can be traced back to early 1980s [8, 9]. Sensor fusion can
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be applied in many ways, such as detection of the presence of an object, recognition

of an object, tracking of an object, and so on. This thesis focuses on sensor fusion

for verification purpose.

Information can be fused at two different levels: feature-level and decision-level.

Decision-level fusion can be further divided into abstract fusion and score fusion.

1.2.1 Feature-Level Fusion

In feature-level fusion, data from different modalities are combined at the feature

level before being presented to a pattern classifier [10]. One possible approach is to

concatenate the feature vectors derived from different modalities [10], as illustrated in

Figure 1.1. Alternatively, features vectors derived from the same modality but using

different feature extraction methods can be concatenated [11]. The dimensionality of

the concatenated vectors, however, is sometimes too large for a reliable estimation

of classifier’s parameters, a problem known as the curse of dimensionality. Although

dimensionality reduction techniques such as PCA or LDA can help alleviate the prob-

lem [10, 12], these techniques rely on the condition that data from each class contain

a single cluster only. Classification performance could be degraded when the data

from individual classes contain multiple clusters.

Systems based on feature-level fusion are not very flexible because the system

needs to be retrained whenever a new sensor is added. It is also important to syn-

chronize different source of information in feature-level fusion, which may introduce

implementation difficulty in AV biometric systems.

1.2.2 Decision-Level Fusion

Unlike feature fusion, decision fusion attempts to combine the decisions made by

multiple modality-dependent classifiers (see Figure 1.2). This fusion approach solves
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Figure 1.1: Architecture of feature-level fusion. Features are concatenated before
fusion takes place.

the curse of dimensionality problem by training the modality-dependent classifiers

separately. Combining the outputs of the classifiers, however, is an important is-

sue. The classifiers can be identical but using different features (e.g., fingerprint and

speech data) as input [13, 14]. Alternatively, different classifiers can work on the same

features and their decisions are combined [15]. Also, there are systems that use the

combination of these two types.

There are two types of decision fusions: abstract fusion and score fusion. In the

former, the binary decisions made by individual classifiers are combined (see Figure

1.2(a)), whereas in the latter the scores (confidence) of the classifiers are combined

(see Figure 1.2(b)).

In abstract fusion, the binary decisions can be combined by majority voting or

using AND and OR operators. In majority voting [16–18], the final decision is based

on the number of votes made by the individual classifiers. However, this voting

method may have difficulty in making a decision when there are an even number of

sensors and the decisions made by half of the classifiers do not agree with the other

half.

Varshney [19] proposed to use logical AND and OR operators for fusion. In the

AND fusion, the final decision is the logical AND of the classifiers’ output. This type

of fusion is very strict and therefore is suitable only for systems that require low false
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Figure 1.2: Architecture of decision-level fusion. (a) Abstract fusion in which the
Yes/No decisions made by the classifiers and decision units are combined. (b) Score
fusion in which final decisions are based on the fused scores.

acceptance. However, it has difficulty when the the decisions made by different sensors

are not consistent, which is a serious problem in multiclass applications. Unlike the

AND fusion, the final decision in the OR fusion is the logical OR of the classifiers’

output. This type of fusion is loose and is suitable only for systems that can tolerate a

loose security policy (i.e., allowing high false acceptance error). The OR fusion suffers

the same problem as the voting method when the decisions of individual classifiers

do not agree with each other.

In score fusion, the scores of modality-specific classifiers are combined and the

final score is used to make a decision (see Figure 1.2(b)). Typically, the output of

modality-specific classifiers are linearly combined through a set of fusion weights [17].
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The final score is obtained from

s =
K∑

i=1

wisi, (1.1)

where K is the number of modalities or experts, {wi} are a set of fusion weights,

and {si} are the scores obtained from the K modalities. This kind of fusion is also

referred to as the sum rule [17, 20].

Scores can be interpreted as posteriori probabilities in the Bayesian framework.

Assuming that scores from different modalities are statistically independent, the final

score can be combined by using the product rule [17, 20]:

s =
K∏

i=1

si. (1.2)

To account for the discriminative power and reliability of each modality, a set of

weights can be introduced as follows:

s =
K∏

i=1

(si)
wi . (1.3)

It has been stated that the independence assumption is unrealistic in many situa-

tions. However, for some applications, this assumption does hold. For example, in

audio-visual verification systems, facial and speech features are largely independent.

Therefore, fusion of audio and visual data at the score level is a possible solution to

increasing verification accuracy.

The fusion weights wi can be non-adaptive and adaptive. Non-adaptive weights are

learned from training data and kept fix during recognition. For example, in [15, 21, 22],

the fusion weights were estimated by minimizing the misclassification error on a held-

out set; in [23], the parameters of a logistic regression model are estimated from the
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dispersion between the means of speaker’s scores and impostors’ scores. The non-

adaptive weights, however, may not be optimal in mismatch conditions. Adaptive

weights, on the other hand, are estimated from observed data during recognition,

e.g., according to the signal-to-noise ratio [24, 25], degree of voicing [12], degree of

mismatch between training and testing conditions [26], and amount of estimation

error presented in each modality [27]. Lau et al. [28] proposed using fuzzy logic

decision fusion to account for environmental mismatches.

Another important approach to adapting the fusion weights is to use score/rank

hybrids or rank order statistics extracted from observed data during recognition. For

example, the score-rank couples of individual experts can be concatenated to form

vectors which is to be classified by another classifier [29]. Alternatively, they can

be used for computing the score dispersion over a few best recognition hypothesis

[30, 31]. The key idea is that the confidence of a modality should be proportional to

the score dispersion.

The linear combiners mentioned earlier assume that the combined scores obtained

from different classes are linearly separable. In case the linearly separable condi-

tion cannot be met, the scores obtained from d modalities can be considered as

d -dimensional vectors and nonlinear binary classifiers (e.g., support vector machines,

radial basic function networks, multilayer perceptrons, binary decision trees, Fisher’s

linear discriminant, and Bayesian classifiers) can be trained from a held-out set to

classify the vectors [32–34]. This kind of fusion strategy is also known as learning-

based fusion [35, 36].

1.3 Research Objectives

In recent years, research has focused on using fusion techniques to improve the per-

formance of biometric systems. One popular approach is to fuse the scores obtained
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from audio and visual channels. The rationale behind most audio-visual systems is

that when audio signals are contaminated by acoustic noise, visual cues can help re-

duce the recognition errors. In many cases, the weight applied to the audio channel

is dependent on the acoustic SNR. While this approach is reasonable, it is also im-

portant to point out that acoustic distortion can be minimized by channel and noise

compensation techniques. Fusion will become more effective if compensation tech-

niques are also used. The objective of this research is to develop fusion algorithms

for improving the performance of multimodal verification systems. To this end, this

work investigates several approaches to computing the fusion weights and proposes

a fusion algorithm in which the fusion weights are not only dependent on the audio

quality but also on the effectiveness of the compensation techniques.

Another problem of conventional audio-visual fusion is that the fusion weights are

either determined “off-line” during training or determined “online” during recognition

based on the quality of the test data. This thesis proposes a method that uses both

training and recognition data for determining the fusion weights.

Besides multi-modalities fusion, fusion techniques can also be applied to fuse the

decisions or scores from a single modality. Therefore, another objective of this study is

to investigate the fusion of scores obtained from a single modality in order to increase

verification accuracy.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives a brief overview of speaker ver-

ification systems. Chapter 3 describes the fusion approaches for improving the per-

formance of speaker verification systems. Chapter 4 extends the fusion approaches

proposed in Chapter 3 to audio-visual biometric authentication. Finally, Chapter 5

draws a conclusion of the thesis.



Chapter 2

Speaker Verification Systems

Speaker verification is to verify a speaker’s claimed identity based on his or her voice.

A speaker claiming an identity is called a claimant, and an unregistered speaker

posing as a registered speaker is an impostor. An ideal speaker verification system

should not reject registered speakers (false rejection) or accept impostors as registered

speakers (false acceptance). This chapter describes the architecture of typical speaker

verification systems. Compensation of channel distortion in the feature domain will

also be discussed.

2.1 Components of Speaker Verification Systems

Typically, a speaker verification system is composed of a front-end feature extractor

(Section 2.2), a classifier (Section 2.3), and a decision unit. Figure 2.1 shows the

architecture of a typical speaker verification system.

The spectra of speech signals encode the formants and pitch harmonics that rep-

resent the vocal-tract shape (e.g., length and cross-section area) and glottal source

information of speakers. Therefore, the feature extractor extracts speakers’ features

10
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Figure 2.1: Architecture of a typical speaker verification system.

from the spectra of speech signals; the resulting feature vectors are used for train-

ing speaker-dependent models. Besides speaker models, a background model is also

trained using the features extracted from the speech of a large number of speakers.

The purpose of the background model is to normalize the scores of the speaker mod-

els, which has the effect of minimizing the speaker-independent variations such as

background noise and channel distortion. Finally, the normalized scores are passed

to a decision unit for making an accept or reject decision. The decision unit can be a

simple thresholding unit. More specifically, if the normalized score is greater than a

predefined threshold, the system will accept the claimant; otherwise, the system will

reject the claimant. A more detailed description of speaker recognition systems can

be found in Campbell [37].

2.2 Feature Extraction

Although speech signals are nonstationary, their short segments can be considered

quasi-stationary. Therefore, Fourier transform can be applied to short segments of
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speech signals, which results in a sequence of short-time spectra. For speaker recog-

nition, a sequence of features vectors can be extracted from the short-time spectra.

One of the popular features for speaker recognition is the cepstral coefficients derived

from linear prediction (LP) analysis [38, 39]. These features are commonly referred to

as LP-derived cepstral coefficients (LPCCs). One positive property of LPCCs is that

they can represent the envelopes of speech spectra. Because the spectral envelopes

capture the resonance frequencies, length, and spatially-varying cross-section areas

of the vocal tract, LPCCs can represent speaker-dependent characteristics. Another

advantage of LPCCs is that they can be computed efficiently.

Apart from LPCCs, mel-frequency cepstral coefficients (MFCCs) [40] are often

used in speaker verification systems. MFCCs are obtained by applying DCT to the

outputs of a set of nonuniformly spaced filters. The idea comes from the fact that

human perception of sound frequencies is nonlinear [37]. Research has shown that

MFCCs are effective features for speaker recognition [41].

2.3 GMM classifiers

The state-of-the-art approach to text-independent speaker verification consists in us-

ing Gaussian mixture models (GMMs) for modeling client speakers and background

speakers [42]. GMMs use semi-parametric techniques for approximating probability

density functions (pdf). The output of a GMM is the weighted sum of M mixture

densities.

Given B speaker models {Λωbi
, i = 1, 2, . . . , B} other than the client model Λωc ,

i.e., Λωbi
6= Λωc∀i, the log-likelihood of the claimant being an impostor can be found

as follows:

log p(X|Λωb
) =

1

B

B∑
i=1

log p(X|Λωbi
), (2.1)
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where

log p(X|Λωbi
) =

1

T

T∑
t=1

log p(xt|Λωbi
). (2.2)

The set of speaker models {Λωbi
} are known as the cohort set in the literature [44].

Alternatively, a universal background model (UBM) [42] can be created by using the

speech of a general population. In such case, B = 1 and Λωb1
= Λωb

is a GMM repre-

senting the distribution of speaker-independent features. The universal background

model is shared by every client speaker in the system. During verification, given a

sequence of vectors X derived from an utterance, the normalized score is calculated

as

s(X; Λ) = log p(X|Λωc)− log p(X|Λωb
). (2.3)

The UBM has the form

p(xt|Λωb
) =

M∑
m=1

P (Θm|b|ωb)p(xt|ωb, Θm|b), (2.4)

where p(xt|Λωb
) is the GMM’s output for input vector xt, Θm|b represents the pa-

rameters of the m-th mixture component, M is the number of mixture components,

p(xt|ωb, Θm|b) ≡ N (xt; µm|b, Σm|b) is the probability density function of the m-th com-

ponent, and P (Θm|b|ωb) is the prior probability (also called mixture coefficients) of the

m-th component. Here, we assume that the component density function p(xt|ωb, Θm|b)

is Gaussian, i.e.,

p(xt|ωb, Θm|b) = N (xt; µm, Σm) (2.5)

=
1

(2π)
D
2 |Σm| 12

exp

{
−1

2
[xt − µm]T (Σm)−1 [xt − µm]

}
,

where D is the input dimension and µm and Σm are the mean vector and covariance

matrix of mixture component m, respectively.
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The training of UBM-GMMs can be formulated as a maximum-likelihood problem

where the mean vectors {µm}, covariance matrices {Σm}, and mixture coefficients

{P (Θm|ω)} are typically estimated by the expectation-maximization (EM) algorithm

[43]. More specifically, the parameters of a GMM are estimated iteratively by

µ(j+1)
m =

∑T
t=1 P (j)(Θm|xt)xt∑T

t=1 P (j)(Θm|xt)
,

Σ(j+1)
m =

∑T
t=1 P (j)(Θm|xt)[xt − µ

(j+1)
m ][xt − µ

(j+1)
m ]T∑T

t=1 P (j)(Θm|xt)
, and

P (j+1)(Θm) =

∑T
t=1 P (j)(Θm|xt)

T
, (2.6)

where j denotes the iteration index and P (j)(Θm|xt) is the posterior probability of

the m-th mixture (m = 1, . . . , M). The latter can be obtained by Bayes’ theorem,

yielding

P (j)(Θm|xt) =
P (j)(Θm)p(j)(xt|Θm)∑M
k=1 P (j)(Θk)p(j)(xt|Θk)

. (2.7)

Instead of creating the target speaker model Λωc from training patterns of the tar-

get speaker using the EM algorithm, in the GMM-UBM system, the target speaker

model is obtained by adapting the parameters of the UBM using maxiumum a pos-

teriori (MAP) estimation [42]. Given a UBM Λωb
and T independent and identically

distributed patterns X = {xt; t = 1, 2, . . . , T} from a target speaker, we compute the

posterior probability

P (i|xt) =
πipi(xt)∑M

j=1 πjpj(xt)
, i = 1, . . . , M. (2.8)

Then, P (i|xt) and xt are used to compute the sufficient statistics for the mixture
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coefficients, mean vectors, and covariance matrices:

ni =
T∑

t=1

P (i|xt),

Ei(X) =
1

ni

T∑
t=1

P (i|xt)xt, and

Ei(X
2) =

1

ni

T∑
t=1

P (i|xt)x
2
t . (2.9)

These new sufficient statistics from the training data are used to update the old UBM

to obtain the adapted parameters of the target speaker model:

π̂i = [αw
i ni/T + (1− αw

i )πi] γ,

µ̂i = αm
i Ei(X) + (1− αm

i )µi, and

σ̂2
i = αv

i Ei(X
2) + (1− αv

i )(σ
2
i + µ2

i )− µ̂2
i , (2.10)

where the scale factor, γ, is computed over all adapted mixture weights to ensure

that they sum to unity and {αw
i , αm

i , αv
i } are the adaptation coefficients controlling

the balance between old and new estimates for the mixture coefficients, means and

variances, respectively. These coefficients are defined as

αρ
i =

ni

ni + rρ
, ρ ∈ {w, m, v}, (2.11)

where rρ is a fixed relevance factor for parameter ρ. Reynold et al. [42] suggested

that adapting the means only (i.e. αw
i = αv

i = 0) and setting αm
i in Eq. 2.11 to 16

achieve the best performance.
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2.4 Channel Compensation

One shortcoming of using LPCCs or MFCCs as features is that the system perfor-

mance can be easily degraded by the mismatches between training and verification

conditions. However, there are several techniques to compensate for the effects of the

acoustic mismatches. The most popular one is cepstral mean subtraction (CMS)[45],

which approximates a linear channel by the long-term average of distorted cepstral

vectors. However, CMS fails to deal with the effect of background noise. To bring the

test data closer to the training data, affine transformation [46] can be applied. Both

convolutional distortion and additive noise can be compensated simultaneously by us-

ing this approach. This subsection explains two feature-based channel compensation

algorithms that are based on the idea of affine transformation.

2.4.1 Stochastic Feature Transformation with Handset De-

tection

In most speaker verification scenarios, speech signals used for verification are codec-

and handset-distorted. As a result, there is a spectral mismatch between the en-

rollment and verification data. A technique called stochastic matching [47] can be

used during verification to minimize the mismatch. Stochastic matching is originally

designed for speaker adaptation and channel compensation. Its main idea is to trans-

form the distorted data to fit the clean speech models or to transform the clean speech

models to better fit the distorted data.

In the case of feature transformation, the channel can be represented by a cepstral

bias b, i.e., the transformed vectors is given by

x̂t = fν(yt) = yt + b (2.12)
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where yt is a D-dimensional distorted vector, ν = {bi}D
i=1 is the set of transfor-

mation parameters, and fν(·) denotes the transformation function. Given distorted

speech yt, t = 1, . . . , T , and an M -center Gaussian mixture model (GMM) ΛX =

{πX
j , µX

j , ΣX
j }M

j=1 with mixing coefficients πX
j , mean vectors µX

j and covariance ma-

trices ΣX
j derived from the clean speech of several speakers (e.g., ten speakers in

Mak and Kung [48]), the maximum-likelihood estimates of ν can be obtained by

maximizing an auxiliary function

Q(ν ′|ν) =
∑T

t=1

∑M

j=1
hj(fν(yt)) · log

{
πX

j p(yt|µX
j , ΣX

j , ν ′)
}

=
∑T

t=1

∑M

j=1
hj(fν(yt)) · log

{
πX

j p(fν′(yt)|µX
j , ΣX

j )/|Jν′(yt)|
}

(2.13)

with respect to ν ′. In Eq. 2.13, ν ′ = {b′i}D
i=1 and ν = {bi}D

i=1 represent respectively

the new and current estimates of the transformation parameters, T is the number of

distorted vectors, fν(yt) denotes the transformation, |Jν′(yt)| is the determinant of

the Jacobian matrix whose (r, s)-th entry is given by Jν′(yt)rs = ∂fν′(yt)r/∂yt,s, and

hj(fν(yt)) is the posterior probability given by

hj(fν(yt)) =
πX

j p(fν(yt)|µX
j , ΣX

j )∑M
l=1 πX

l p(fν(yt)|µX
l , ΣX

l )
, (2.14)

where

p(fν(yt)|µX
j , ΣX

j ) = (2π)−
D
2 |ΣX

j |−
1
2 exp

{
−1

2
(fν(yt)− µX

j )(ΣX
j )−1(fν(yt)− µX

j )

}
.

(2.15)

Assuming diagonal covariance (i.e., ΣX
j = diag{(σX

j1)
2, . . . , (σX

jD)2}), Eq. 2.13 can be
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written as

Q(ν ′|ν) =
T∑

t=1

M∑
j=1

hj(fν(yt))

{
−1

2

D∑
i=1

(yt,i + b′i − µX
ji)

2

(
σX

ji

)2

}
+ C. (2.16)

where C is a constant independent on ν ′.

In the M-step of each EM iteration, we maximize Q(ν ′|ν) with respect to ν ′ to

obtain

b′i =

∑T
t=1

∑M
j=1 hj(fν(yt))(σ

X
ji )

−2(µX
ji − yt,i)∑T

t=1

∑M
j=1 hj(fν(yt))(σX

ji )
−2

i = 1, . . . , D. (2.17)

In this work, the feature transformation was combined with a handset selector

[49, 50] for robust speaker verification. Specifically, before verification takes place,

we compute one set of transformation parameters for each type of handsets that

claimants are likely to use. Then, during a verification session, we identify the most

likely handset that is used by the claimant and select the best set of transformation

parameters accordingly. Let us denote Γ
(i)
k as the GMM representing the speech

obtained from the k-th handset and the i-th coder. Given an utterance, the most

likely handset is selected according to

k∗ = arg
H

max
k=1

∑T

t=1
log p(yt|Γ(i)

k ), (2.18)

where H is the number of handsets and p(yt|Γ(i)
k ) is the density of the distorted

data given the k-th handset and the i-th coder. The transformation parameters

corresponding to the k∗-th handset are used to transform the distorted vectors.
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2.4.2 Blind Stochastic Feature Transformation

In speaker verification, it is important to ensure that channel variations are sup-

pressed so that the interspeaker distinction can be enhanced. In particular, given

a claimant’s utterance recorded in an environment different from that during en-

rollment, one aims to transform the features of the utterance so that they become

compatible with the enrollment environment. The stochastic feature transformation

with handset detection described in the preceding subsection achieves this objective

by assuming that (1) the effect of background noise is negligible, (2) the handset and

channel are linear, and (3) the handset used by a claimant can be detected as one

of the known handsets in a handset database. Once the handset model is identified,

a priori knowledge about the identified handset can be used to shift the distorted

features in the cepstral domain. Although this approach has shown to be effective for

both handset- and coder-distorted speech [51, 52], it has two drawbacks. First, from

the theoretical perspective, the adverse effect of the linearity assumption limits the

performance improvement. Second, from the practical perspective, the requirement of

handset detection gives rise to practicality problems. It will be much more practical

and cost effective if handset detector-free systems are adopted.

This subsection describes a feature-based blind transformation approach to over-

come these drawbacks. The transformation is blind in that it compensates the handset

distortion without a priori information about the handset’s characteristics. Hereafter,

this transformation approach is referred to as blind stochastic feature transformation

(BSFT) [53, 54].

Two Phases of BSFT

Figure 2.2 illustrates a speaker verification system with BSFT, whose operations are

divided into two separate phases: enrollment and verification.
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Figure 2.2: Estimation of BSFT parameters. The background model ΛN
b , speaker

model ΛN
s , and composite model Λ2M

c produced during the enrollment phase, are
subsequently used for verification purposes.

Enrollment Phase. The speech of all client speakers are used to create a compact

universal background model (UBM) ΛM
b with M components. Then, for each

client speaker, a compact speaker model ΛM
s is created by adapting the UBM

ΛM
b using maximum a posteriori (MAP) adaptation [42]. Because verification

decisions are based on the likelihood of the speaker model and background

model, both models must be considered when the transformation parameters

are computed. This can be achieved by fusing ΛM
b and ΛM

s to form a 2M -

component composite GMM Λ2M
c . During the fusion process, the means and

covariances remain unchanged but the value of each mixing coefficient is divided
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by 2. This step ensures that the output of the composite GMM represents a

probability density function.

Verification Phase. Distorted features Y = {y1, . . . ,yT} extracted from a verifica-

tion utterance are used to compute the transformation parameters ν = {A,b}.
This is achieved by maximizing the likelihood of the composite GMM Λ2M

c given

the transformed features X̂ = {x̂1, . . . , x̂T}:

x̂t = fν(yt) = Ayt + b, t = 1, . . . , T, (2.19)

where A is a D × D identity matrix for zeroth-order transformation and A =

diag{a1, a2, . . . , aD} for first-order transformation, and b is a bias vector.1 The

transformed vectors X̂ are then fed to a full size speaker model ΛN
s and a full

size UBM ΛN
b for computing verification scores in terms of log-likelihood ratio:

s(X̂) = log p(X̂|ΛN
s )− log p(X̂|ΛN

b ).

The main idea of BSFT is to transform the distorted features to fit the com-

posite GMM Λ2M
c , which ensures that the transformation compensates the acoustic

distortion. Compared with Eq. 2.12, the transformation in Eq. 2.19 is more flexible

because the inclusion of the matrix A allows changing the variances of the transformed

vectors, which is detrimental to the compensation of background noise and nonlinear

convolutive distortion in the time domain (see [55] for the effect of background noise

and nonlinear distortion on ceptral vectors). From the practical point of view, the

algorithm is suitable for a broader scale and more economical deployment than the

conventional approaches because it does not require a handset detector.

1see Kung, Mak, and Lin [55] for the computation of A and b.
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2.5 Performance Evaluation

Typically, verification is a two-class problem: either the claimant is the one (client)

or is not the one (impostor) he or she claims to be. Therefore, the system needs to

either accept or reject the claimant. For this kind of hypothesis testing problem, two

types of errors can be made:

1. False rejection (FR): a registered client is rejected.

2. False acceptance (FA): an impostor is accepted.

As a result, the false rejection rate (FRR) and the false acceptance rate (FAR) can be

used to evaluate the performance of speaker verification systems. These error rates

are obtained as follows:

FRR =
number of FRs

number of true speaker trials
× 100% (2.20)

FAR =
number of FAs

number of impostor attempts
× 100% (2.21)

Because it might be difficult to compare the performance of systems using two num-

bers, the half total error rate (HTER, i.e., FAR + FRR
2 ) and the equal error rate

(EER, i.e., FAR = FRR) are often used.

Because users may adjust the decision threshold to set the FRR or FAR to a

desirable level, system performance is often characterized by two graphs: receiver

operating characteristic (ROC) [56] and detection error trade-off (DET) [57]. Both

graphs represent FRR as a function of FAR. The main difference between ROC and

DET is their scale. ROC uses linear scales and DET, on the contrary, uses nonlinear

scales. It is difficult to judge which method is better, but DET is more preferable

when the systems to be compared have very good performance [57]. Therefore, EER

and DET plots were used as a performance measure in this work.



Chapter 3

Multisample Speaker Verification

Although decision fusion is mainly applied to combine the outputs of modality-

dependent classifiers, it can also be applied to fuse the decisions or scores from a

single modality. The idea is to consider the multiple samples extracted from a single

modality as independent but coming from the same source. The approach is com-

monly referred to as multisample fusion [58]. This chapter investigates the fusion

of scores from multiple utterances to improve the performance of speaker verifica-

tion from GSM-transcoded speech. Fusion weights for individual scores are based on

the score distribution of the utterances and on the prior score statistics determined

from enrollment data. We refer to this type of fusion as data-dependent decision

fusion. To further enhance the robustness of the proposed fusion algorithm, the

prior score statistics are adapted during verification based on the probability that

the claimant is an impostor. Because the variation in handset characteristics and the

encoding/decoding process introduce substantial distortion to the speech signals [59],

stochastic feature transformation [48] is also applied to the feature vectors extracted

from the GSM-transcoded speech before presenting them to the clean speaker model

and background model.

23
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3.1 Data-Dependent Decision Fusion

3.1.1 Architecture

Assume that K streams of features vectors (e.g., MFCCs) can be extracted from K

independent utterances U = {U1, . . . ,UK}. Let us denote the observation sequence

corresponding to utterance Uk by

O(k) = {o(k)
t ∈ <D; t = 1, . . . , Tk}, k = 1, . . . , K (3.1)

where D and Tk are the dimensionality of o
(k)
t and the number of observations in O(k),

respectively. We further define a normalized score function

s(o
(k)
t ; Λ) ≡ log p(o

(k)
t |Λωc)− log p(o

(k)
t |Λωb

), (3.2)

where Λ = {Λωc , Λωb
} contains the Gaussian mixture models (GMMs) characterizing

the client speaker (ωc) and the background speakers (ωb), and log p(o
(k)
t |Λω) is the

output of Λω, ω ∈ {ωc, ωb}, given observation o
(k)
t .

In Mak et al. [60], frame-level fused scores are computed as

s(o
(1)
t , . . . ,o

(K)
t ; Λ) = s(Ot; Λ) =

K∑

k=1

α
(k)
t s(o

(k)
t ; Λ) with

K∑

k=1

α
(k)
t = 1, (3.3)

where Ot = {o(1)
t , . . . ,o

(K)
t } contains the K observations from the K utterances at

time t and α
(k)
t ∈ [0, 1] represents the confidence (reliability) of the observation o

(k)
t .

The mean fused score

s(U ; Λ) =
1

T

T∑
t=1

s(Ot; Λ) (3.4)

is compared against a decision threshold for decision making. Figure 3.1 depicts the

architecture of the fusion model.
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Figure 3.1: Architecture of the multisample decision fusion model.
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In Eq. 3.3, a larger (respectively smaller) fusion weight means a greater (respec-

tively lesser) influence on the final decision. Fusion weights can be estimated using

training data; alternatively, they can be determined purely from the observation

data during recognition. Rather than using either training data or recognition data

exclusively, Mak, Cheung, and Kung [60] proposed a new approach in which the fu-

sion weights depend on both training data (prior information) and recognition data.

Specifically, during enrollment, the mean score of each client speaker (µ̃c) and of the

background speakers (µ̃b) are determined. Then, a prior score and a prior variance

are computed as follows:

µ̃p =
Kcµ̃c + Kbµ̃b

Kc + Kb

and σ̃2
p =

1

Kc + Kb

Kc+Kb∑
n=1

[
s(Õ(n); Λ)− µ̃p

]2

, (3.5)

where s(Õ(n); Λ) = 1
Tn

∑Tn

t=1 s(õ
(n)
t ; Λ) is the mean score of the n-th training utter-

ance and Kc and Kb are the numbers of client speaker’s utterances and background

speakers’ utterances, repectively. Then, during verification, the claimant is asked to

utter K utterances, and the data-dependent fusion weights are computed as:

α
(k)
t =

exp
{

[s
(k)
t − µ̃p]

2
/

2σ̃2
p

}

∑K
l=1 exp

{
[s

(l)
t − µ̃p]2

/
2σ̃2

p

} k = 1, . . . , K, (3.6)

where for ease of presentation, we have defined s
(k)
t ≡ s(o

(k)
t ; Λ).

Note that this method requires the K utterances to contain the same number of

feature vectors, i.e., Tk = T ∀ k = 1, . . . , K. If not, the tail of the longer utterances

can be appended to the tail of the shorter ones to make the number of vectors in all

utterances equal.1

1Because it is likely that the utterances are obtained from the same speaker under the same
environment in a verification session, moving feature vectors from utterances to utterances will have
the same effect as partitioning a long utterance into several equal-length short utterances.
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3.1.2 Gaussian Example

Figure 3.2 illustrates an example in which the distributions of the client-speaker scores

and impostor scores are assumed to be Gaussian. It is also assumed that both the

client and the impostor utter two utterances. The client speaker’s mean scores for

the first and second utterances are equal to 1.2 and 0.8, respectively. Likewise, the

impostor’s mean scores for the two utterances are equal to −1.3 and −0.7. Obviously,

equal-weight fusion will produce a mean speaker score of 1.0 and a mean impostor

score of −1.0, resulting in a score dispersion of 2.0. These two mean scores (−1.0

and 1.0) are indicated by the two vertical lines in Figure 3.2(b). We can see from

Figures 3.2(b) and 3.2(c) that when the prior score µ̃p is set to a value between these

two means (i.e., between the vertical lines), the data-dependent fusion algorithm

can produce a score dispersion larger than 2.0. Because the mean of fused score is

used to make the final decision, increasing the score dispersion can decrease speaker

verification error rates.

3.2 Theoretical Analysis

This section provides a theoretical analysis of the fusion algorithm. The analysis aims

to explain how and why the fusion algorithm achieves better performance than the

equal-weight fusion approach. The reason behind the increase in the score dispersion

in Figure 3.2 is also explained.

We consider the case where the score sequences of two independent utterances are

fused, i.e., K = 2 in Eq. 3.3. The extension to multiple sequences is trivial. Because

the two utterances are independent, their scores s
(1)
t and s

(2)
t are also independent.

Differentiating both side of Eq. 3.6 with respect to s
(k)
t and using the independence

between s
(1)
t and s

(2)
t , we obtain
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Figure 3.2: (a) Distributions of client scores and impostor scores as a result of four
utterances: two from a client speaker and another two from an impostor. The means
of client scores are 0.8 and 1.2, and the means of impostor scores are −1.3 and −0.7.
(b) The mean of fused client scores and the mean of fused impostor scores versus the
prior score µ̃p. (c) Difference between the mean of fused client scores and the mean of
fused impostor scores under different values of prior scores µ̃p’s based on equal-weight
(EW) fusion and data-dependent fusion (DF) with and without score sorting.
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∂α
(k)
t

∂s
(k)
t

=

(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)

s
(k)
t −µ̃p

σ̃2
p

(
e{(s

(k)
t −µ̃p)2/2σ̃2

p}
)

(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)2

−

(
e{(s

(k)
t −µ̃p)2/2σ̃2

p}
)

s
(k)
t −µ̃p

σ̃2
p

(
e{(s

(k)
t −µ̃p)2/2σ̃2

p}
)

(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)2

=
s
(k)
t − µ̃p

σ̃2
p

e{(s
(k)
t −µ̃p)2/2σ̃2

p}




(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)
−

(
e{(s

(k)
t −µ̃p)2/2σ̃2

p}
)

(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)2




=
s
(k)
t − µ̃p

σ̃2
p

e{(s
(k)
t −µ̃p)2/2σ̃2

p}




(∑

l 6=k

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)

(∑

l

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)2




=
C

(
s
(k)
t − µ̃p

)

σ̃2
p




e{(s
(k)
t −µ̃p)2/2σ̃2

p}
(

2∑

l=1

e{(s
(l)
t −µ̃p)2/2σ̃2

p}
)2




k = 1, 2. (3.7)

where C =
∑

l 6=k e{(s
(l)
t −µ̃p)2/2σ̃2

p} > 0. Eq. 3.7 suggests that when s
(k)
t > µ̃p,

∂α
(k)
t /∂s

(k)
t > 0, and vice versa for s

(k)
t < µ̃p.

Let us consider two scenarios:

Scenario A: µ̃p < µ, where µ is the mean score of the two utterances. In this

scenario (see Figure 3.3), the claimant is more likely to be a client speaker

than an impostor because the two utterances produce many large pattern-based
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scores to make µ > µ̃p; for example, µ = 1 for the two client utterances in Figure

3.2(a). Because the majority of the pattern-based scores (s
(k)
t and s

(l)
t , which

are any two scores from the verification utterance l and k, respectively.) are

large, we have the following conditions:

Condition A-1 (Figure 3.3(a)):

P (s
(k)
t > µ̃p) > P (s

(k)
t < µ̃p) k ∈ {1, 2}
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Condition A-2 (Figure 3.3(b)):

P (emphasizing large scores)

= P (S1 ∪ S2 ∪ S3)

= P ({(s(k)
t > µ̃p) ∩ (s

(l)
t > µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t − µ̃p > µ̃p − s

(l)
t )} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (µ̃p − s

(k)
t < s

(l)
t − µ̃p)})

= P ({(s(k)
t > µ̃p) ∩ (s

(l)
t > µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t + s

(l)
t > 2µ̃p)} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (2µ̃p < s

(k)
t + s

(l)
t )})

> P ({(s(k)
t < µ̃p) ∩ (s

(l)
t < µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t + s

(l)
t < 2µ̃p)} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (2µ̃p > s

(k)
t + s

(l)
t )})

from Condition A-1

= P ({(s(k)
t < µ̃p) ∩ (s

(l)
t < µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t − µ̃p < µ̃p − s

(l)
t )} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (µ̃p − s

(k)
t > s

(l)
t − µ̃p)})

= P (S4 ∪ S5 ∪ S6)

= P (emphasizing small scores)

P (S) in Condition A-2 stands for the probability of having the scores fall on the

set S, and its value can be obtained by integrating the 2-D Gaussian density

function over the region defined by S. Because the peak of the 2-D density

function falls on S1 (see Figure 3.3(b)), the volume under S1∪S2∪S3 should
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be larger than that under S4 ∪ S5 ∪ S6. This observation agrees with the

inequality in Condition A-2.

The above argument shows that P (S1∪S2∪S3) > P (S4∪S5∪S6). Here, we

explain why P (S1∪S2∪S3) is the probability of emphasizing large scores and

P (S4∪S5∪S6) is the probability of emphasizing small scores.2 In S1, because

both s
(k)
t and s

(l)
t are larger than the prior score µ̃p, Eq. 3.6 will emphasize the

larger score only. In S2, although s
(l)
t is smaller than the prior score µ̃p, Eq.

3.6 still emphasizes the larger score (i.e., s
(k)
t in this set) because the difference

between s
(k)
t and µ̃p is larger than that between s

(l)
t and µ̃p. The situation in S3

is similar to that in S2, except that the large score is s
(l)
t and the small score

is s
(k)
t ; again the larger score s

(l)
t is emphasized because it is further away from

µ̃p than s
(k)
t is. Therefore, by merging these three sets together, we can obtain

the probability of emphasizing large scores. Similar arguments can be applied

to S4, S5, and S6 to obtain the probability of emphasizing the small scores.

Scenario A suggests that when the majority of scores are greater than the prior

score µ̃p, the fusion algorithm has a higher chance of emphasizing large scores.

Meanwhile, Eq. 3.7 suggests that if the score s
(k)
t increases, the fusion weight

α
(k)
t for s

(k)
t will also increase (because ∂α

(k)
t /∂s

(k)
t > 0). These two observa-

tions suggest that the mean fused score is more likely to be larger than the

mean scores of the two utterances.3

Scenario B: µ̃p > µ, where µ is the mean score of the two utterances. In this

scenario (see Figure 3.4), the claimant is more likely to be an impostor because

the two utterances produce many small pattern-based scores to make µ < µ̃p;

2Emphasizing large scores means that larger weights are assigned to the large scores, and em-
phasizing small scores means that larger weights are assigned to the small scores.

3For a proof, please refer to Appendix A.
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for example, µ = −1 for the two impostor utterances in Figure 3.2(a). Because

the majority of the pattern-based scores (s
(k)
t and s

(l)
t ) are small, we have the

following conditions:

Condition B-1 (Figure 3.4(a)):

P (s
(k)
t < µ̃p) > P (s

(k)
t > µ̃p) k ∈ {1, 2}

Condition B-2 (Figure 3.4(b)):

P (emphasizing small scores)

= P (S4 ∪ S5 ∪ S6)

= P ({(s(k)
t < µ̃p) ∩ (s

(l)
t < µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t − µ̃p < µ̃p − s

(l)
t )} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (µ̃p − s

(k)
t > s

(l)
t − µ̃p)})

> P ({(s(k)
t > µ̃p) ∩ (s

(l)
t > µ̃p)} ∪

{(s(k)
t > µ̃p) ∩ (s

(l)
t < µ̃p) ∩ (s

(k)
t − µ̃p > µ̃p − s

(l)
t )} ∪

{(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (µ̃p − s

(k)
t < s

(l)
t − µ̃p)})

from Condition B-1

= P (S1 ∪ S2 ∪ S3)

= P (emphasizing large scores)

In Condition B-2, P (S) stands for the probability of having the scores fall on the

set S, and its value can be obtained by integrating the 2-D Gaussian density

function over the region defined by S. Because the peak of the 2-D density

function falls on S4 (see Figure 3.4(b)), the volume under S4∪S5∪S6 should
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be larger than that under S1 ∪ S2 ∪ S3. This observation agrees with the

inequality in Condition B-2.

Scenario B suggests that when the majority of scores are smaller than the prior

score µ̃p, the fusion algorithm has a higher chance of emphasizing small scores.

We can also observe from Eq. 3.7 that the score s
(k)
t decreases, the fusion weight

α
(k)
t for s

(k)
t will increase (because ∂α

(k)
t /∂s

(k)
t < 0). These two observations lead

to the conclusion that the mean fused score of the two utterances is more likely

to be smaller than the utterances’ mean score.

The preceding analysis suggests that if the claimant is more likely to be a client

speaker, the fusion algorithm will increase his or her mean fused score and vice versa

if he or she is an impostor. This has the effect of increasing the score dispersion, as

demonstrated in Figure 3.2(c).

The regions of emphasizing large scores and small scores illustrated in Figures

3.3 and 3.4 can be highlighted by plotting α
(k)
t against s

(k)
t and s

(l)
t . Figure 3.5(a)

illustrates the fusion weights α
(1)
t as a function of s

(1)
t and s

(2)
t where s

(k)
t ∈ [−12, 12],

k ∈ {1, 2}, µ̃p = −2, and σ̃p = 3.5. A closer look at Figure 3.5(a) reveals that scores

falling on the upper-right region of the dashed line L will be increased by the fusion

function Eq. 3.3. This is because in that region, for s
(1)
t > s

(2)
t , α

(1)
t ≈ 1 and α

(2)
t ≈ 0;

moreover, for s
(1)
t < s

(2)
t , α

(1)
t ≈ 0 and α

(2)
t ≈ 1. Both of these conditions make Eq.

3.3 to emphasize the larger score. On the other hand, the fusion algorithm will put

more emphasis on the small scores if they fall on the lower-left region of the dashed

line L. The effect of the fusion weights on the scores is depicted in Figure 3.5(b).

Evidently, the fusion weights will favor large scores if they fall on the upper-right

region, whereas the fused scores will be close to the small scores if they fall on the

lower-left region.

The rationale behind this fusion approach is the observation that most of the
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Figure 3.3: Illustration of the two conditions in Scenario A (µ̃p < µ). (a) P (s
(k)
t >

µ̃p) > P (s
(k)
t < µ̃p); (b) P (emphasizing large scores) > P (emphasizing small scores).
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(l)
t < µ̃p) ∩ (s

(k)
t − µ̃p < µ̃p − s

(l)
t )}

S6 = {(s(k)
t < µ̃p) ∩ (s

(l)
t > µ̃p) ∩ (µ̃p − s

(k)
t > s

(l)
t − µ̃p)}

S1

S3

s
(k)
t = µ̃p

s
(l)
t

s
(k)
t s

(l)
t = µ̃p

S2
S5

S4 S6

µ

µ

s
(k)
t = −s

(l)
t + 2µ̃p

(b) Condition B-2

Figure 3.4: Illustration of the two conditions in Scenario B (µ̃p > µ). (a) P (s
(k)
t >

µ̃p) < P (s
(k)
t < µ̃p); (b) P (emphasizing small scores) > P (emphasizing large scores).
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Figure 3.5: (a) Fusion weights α
(1)
t as a function of scores s

(1)
t and s

(2)
t . (b) Contour

plot of fused scores based on the fusion formula Eq. 3.3 and the fusion weights in (a).

client-speaker scores are larger than the prior score, but most of the impostor scores

are smaller than the prior score. As a result, if the claimant is a client speaker, the

fusion algorithm will assign large weights to the large scores; on the other hand, the

algorithm will weight small scores more heavily if the claimant is an impostor. This

has the effect of reducing the overlapping area of the score distribution of the client

speakers and the impostors, thus reducing the error rate.

3.3 Fusion of Sorted Scores

Because the proposed fusion algorithm depends on the pattern-based scores of indi-

vidual utterances, the positions of scores in the score sequence also affect the final

fused scores. Moreover, as illustrated in Section 3.2, the emphasis of large speaker

scores under Scenario A and the de-emphasis of small impostor scores under Scenario

B are probabilistic, i.e., there is no guarantee that these situations will always occur.

To overcome this limitation, Cheung, Mak, and Kung [61] proposed to sort the scores

before fusion so that small scores will always be fused with large scores.
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3.3.1 Theoretical Analysis

Here, we provide a theoretical analysis to explain the benefit of sorting the scores

before fusion. We assume that there are two sorted score sequences (s
(1)
t and s

(2)
t ) with

equal mean (µ), s
(1)
t being arranged in ascending order and s

(2)
t in descending order.

We further assume that the scores in the sequences follow a Gaussian distribution.

If the numbers of scores in the sequences are sufficiently large, we can obtain the

following relationship:4

µ− s
(1)
t ≈ s

(2)
t − µ, i.e., s

(2)
t ≈ 2µ− s

(1)
t , (3.8)

where s
(1)
t and s

(2)
t represent the scores less than and greater than the score mean µ,

respectively. When µ = 1, Eq. 3.8 represents the straight line L1 in Figure 3.5(b).

Evidently, Line L1 lies in the region where large scores are emphasized. As a result,

an increase in the mean fused score can be guaranteed.

Without loss of generality, we denote the smaller score as s
(1)
t and the larger one

as s
(2)
t , i.e., s

(1)
t < s

(2)
t . Substituting Eq. 3.8 into Eq. 3.6, the fusion weight for the

small scores s
(1)
t can be expressed as

α
(1)
t =

exp{(s(1)
t − µ̃p)

2/2σ̃2
p}∑2

l=1 exp{(s(l)
t − µ̃p)2/2σ̃2

p}

=
exp{(s(1)

t − µ̃p)
2/2σ̃2

p}
exp{(s(1)

t − µ̃p)2/2σ̃2
p}+ exp{(2µ− s

(1)
t − µ̃p)2/2σ̃2

p}
. (3.9)

4The relationship is obtained by assuming that the two utterances have the same mean and
variance.
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Differentiate both side of Eq. 3.9 with respect to s
(1)
t , we obtain

∂α
(1)
t

∂s
(1)
t

=

[
e{(s

(1)
t −µ̃p)2/2σ̃2

p} + e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}
]

s
(1)
t −µ̃p

σ̃2
p

e{(s
(1)
t −µ̃p)2/2σ̃2

p}

[
e{(s

(1)
t −µ̃p)2/2σ̃2

p} + e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}
]2

−
e{(s

(1)
t −µ̃p)2/2σ̃2

p}
[

s
(1)
t −µ̃p

σ̃2
p

e{(s
(1)
t −µ̃p)2/2σ̃2

p} − 2µ−s
(1)
t −µ̃p

σ̃2
p

e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}
]

[
e{(s

(1)
t −µ̃p)2/2σ̃2

p} + e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}
]2

=

2(µ−µ̃p)

σ̃2
p

e{(s
(1)
t −µ̃p)2/2σ̃2

p}e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}

[
e{(s

(1)
t −µ̃p)2/2σ̃2

p} + e{(2µ−s
(1)
t −µ̃p)2/2σ̃2

p}
]2 .

Therefore, we have

∂α
(1)
t

∂s
(1)
t





< 0 when µ̃p > µ

= 0 when µ̃p = µ

> 0 when µ̃p < µ.

(3.10)

Similarly, we can show that

∂α
(2)
t

∂s
(2)
t





< 0 when µ̃p > µ

= 0 when µ̃p = µ

> 0 when µ̃p < µ.

(3.11)

Eqs. 3.10 and 3.11 suggest that when µ̃p > µ (i.e., the prior score µ̃p is larger

than most of the pattern-based scores), the fusion weights for small scores α
(1)
t increase

when s
(1)
t decreases, and the fusion weights for large scores α

(2)
t decrease when s

(2)
t

increases. Therefore, Eqs. 3.3 and 3.6 will assign larger weights to the small scores and

thus decrease the mean fused score. In Figure 3.2(b), the right vertical line represents

the mean of client scores and the left vertical line the mean of impostor scores, i.e.,

they represent the means of equal-weight fused scores. The figure shows that both

the mean of the fused client scores and that of the fused imposter scores obtained
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by data-dependent fusion are smaller than that of their respective equal-weight fused

scores when the prior score µ̃p is greater than the respective score mean of the two

utterances, i.e., µ̃p > 1.0 for the client scores and µ̃p > −1.0 for the impostor scores.

When µ̃p < µ (i.e., the prior score µ̃p is smaller than most of the pattern-based

scores), Eqs. 3.10 and 3.11 suggest that the fusion weights for small scores α
(1)
t

decrease when s
(1)
t decreases, and the fusion weights for large scores α

(2)
t increase

when s
(2)
t increases. As a result, the proposed fusion algorithm (Eqs. 3.3 and 3.6)

emphasizes larger scores when µ̃p < µ, which has the effect of increasing the mean

fused scores. Again, Figure 3.2(b) shows that both the mean of the fused client

scores and that of the fused imposter scores are greater than that of their respective

equal-weight fused scores when the prior score µ̃p is smaller than the respective score

mean of the two utterances, i.e., µ̃p < 1.0 for the client scores and µ̃p < −1.0 for the

impostor scores.

When µ̃p = µ, data-dependent fusion will be equivalent to equal-weight fusion.

This can be observed from Figure 3.2(b) where the curves intersect each other when

the prior score µ̃p is equal to the mean of client scores or impostor scores. This suggests

that the mean of fused scores is equal regardless of the fusion algorithm used. Figure

3.2(b) also shows that when the prior score is set between the means of client scores

and impostor scores (i.e., between the two vertical lines), theoretically the mean of

fused client scores increases and the mean of fused impostor scores decreases. This

has the effect of increasing the difference between the means of fused client scores

and that of the fused impostor scores, as demonstrated in Figure 3.2(c). Because the

mean of fused scores is used to make the final decision, increasing the score dispersion

can decrease the speaker verification error rate.

To conclude, the fusion algorithm will either increase or decrease the mean of

fused scores depending on the value of the prior score µ̃p and the score mean µ before

fusion. Because the increase or decrease in the mean fused scores is guaranteed rather
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Figure 3.6: Fused scores derived from (a) unsorted and (b) sorted score sequences
obtained from a client speaker. The assumption is that µ̃p = 0 and σ̃2

p = 1 in Eq. 3.6.

than probabilistic, the degree of increase or decrease for the fusion of sorted scores is

larger than that for the fusion of unsorted scores, as demonstrated in Figure 3.2(b).

3.3.2 Numerical Example

In the previous subsection, we argue that the fusion of sorted score sequences increases

the score dispersion. Here, we compare the fusion of unsorted scores with the fusion

of sorted scores via a numerical example. Figure 3.6 shows a hypothetical situation in

which the scores were obtained from two client utterances. For client utterances, Eq.

3.6 should emphasize large scores and de-emphasize small scores. However, Figure

3.6(a) illustrates the situation in which a very small score (5th score of utterance

2—i.e., −2) is fused with a relatively large score (5th score of utterance 1—i.e., 0.0).

In this case, α
(1)
t = e0

e0+e2 ≈ 0.0 and α
(2)
t = e2

e0+e2 ≈ 1.0, which means the fifth fused

score (−1.76) is dominated by the fifth score of utterance 2. This is undesirable for

client utterances.

The influence of these extremely small client scores on the final mean fused score

can be reduced by sorting the scores of the two utterances in opposite order before
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fusion such that small scores will always be fused with large scores. With this ar-

rangement, the contribution of some extremely small client scores in one utterance

can be compensated by the large scores of another utterance. As a result, the mean of

the fused client scores will be increased. Figure 3.6(b) shows that the mean of fused

scores increases from 1.32 to 2.86 after sorting the scores. Likewise, if this sorting

approach is applied to the scores of impostor utterances with a proper prior score µ̃p

(i.e., greater than the mean of impostor scores, see Figure 3.2(b)), the contribution of

some extremely large impostor scores in one utterance can be greatly reduced by the

small scores in another utterance, which has the net effect of minimizing the mean

of the fused impostor scores. Therefore, this score sorting approach can further in-

crease the dispersion between client scores and impostor scores, resulting in a lower

error rate. This is demonstrated in Figure 3.2(c) where the score dispersion achieved

by data-dependent fusion with score sorting is significantly larger than that without

score sorting.

3.3.3 Effect on Real Speech Data

To further demonstrate this phenomenon, we select two client speakers (faem0 and

mdac0) from the HTIMIT corpus [62] and plot the distributions of the fused speaker

scores and fused impostor scores in Figure 3.7. In Eq. 3.5, we use the overall mean µ̃p

as the prior score. However, because the number of background speakers’ utterances

is usually much larger than that of client speaker’s utterances during the training

phase, the overall mean is very close to the mean score of background speakers, i.e.,

µ̃p ≈ µ̃b. According to Figure 3.2(b) and the third row of Figure 3.7, when µ̃p ≈ µ̃b,

the mean of fused impostor scores are almost identical for all fusion algorithms under

investigation. However, the same µ̃p will increase the mean of fused client scores

significantly, especially when the client scores were sorted before fusion.

Figure 3.7(a) shows that the mean of client scores increases from 0.35 to 1.08 and
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Figure 3.7: Distributions of pattern-by-pattern client scores (top row) and impostor
scores (second row), the mean of fused client scores and the mean of fused impostor
scores (third row), and difference between the mean of fused client scores and the mean
of fused impostor scores (bottom row) based on equal-weight fusion (score averaging)
and data-dependent fusion with and without score sorting. The means of speaker
scores and impostor scores obtained by both fusion approaches are also shown.
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the mean of impostor scores decreases from −3.45 to −3.59 after sorting the score

sequences.5 Therefore, the dispersion between the mean client score and the mean

impostor score increases from 3.80 to 4.67. We can notice from Figure 3.7(b) (top

and second figure) that after sorting the scores, both the mean of client scores and

the mean of impostor scores increase. This is because the means of impostor scores

obtained from verification utterances are greater than the prior score µ̃p. This causes

the increase in the mean of fused impostor scores. However, because the increase

in the mean client scores is still greater than the increase in the mean impostor

scores, there is still a net increase in the score dispersion. Specifically, the dispersion

in Figure 3.7(b) increases from 2.14(= 0.24 − (−1.90)) to 2.63(= 0.94 − (−1.69)).

Because verification decision is based on the mean scores, the wider the dispersion

between the mean client scores and the mean impostor scores, the lower the error

rate.

3.3.4 Experiments and Results

Experiments Based on Telephone Speech

Speech Corpora and Feature Extraction. The HTIMIT corpus [62] was used

in this part of the experiments. HTIMIT was obtained by playing a subset of the

TIMIT corpus through nine telephone handsets and a Sennheizer head-mounted mi-

crophone. We also used a GSM speech coder [64] to transcode the HTIMIT corpus

and applied the data-dependent fusion techniques described in Section 3.1 to the

resynthesized coded speech. In the sequel, we denote the two corpora as HTIMIT

and GSM-HTIMIT.

Speakers in HTIMIT were divided into: a speaker set, an impostor set, and two

pseudo-impostor sets (PI-20 and PI-100). The speaker identities of these sets are

5The decrease in the mean of fused impostor scores is caused by the prior score µ̃p being greater
than the mean of the unfused impostor scores—see the fourth figure of Figure 3.7(a).
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Table 3.1: Speaker identities in the speaker set, impostor set and pseudo-impostor
sets. The speakers in these sets are arranged alphabetically.

speaker set impostor set pseudo-impostor set PI-20 pseudo-impostor set PI-100

(50 female and 50 male) (25 female and 25 male) (10 female and 10 male) (50 female and 50 male)

fadg0,faem0,. . .,fdxw0 feac0,fear0,. . .,fjem0 fjen0,fjhk0,. . .,fjrp1 fjen0,fjhk0,. . .,fmbg0

mabw0,majc0,. . .,mfgk0 mfxv0,mgaw0,. . .,mjlg1 mjpm1,mjrh0,. . .,mpgr1 mjpm1,mjrh0,. . .,msrr0

mjls0,mjma0,mjmd0

mjmm0,mpdf0

shown in Table 3.1. Similar to the speakers in HTIMIT, speakers in GSM-HTIMIT

were also divided into three sets and the speaker identities of these sets are identical

to those in HTIMIT.

12th-order mel-frequency cepstrum coefficients (MFCC) [40] were extracted from

the utterances in the corpora. The extracted feature vectors were computed using a

Hamming window of 28ms at a frame rate of 14ms.

Enrollment Procedures. For each speaker in the speaker set, we used the

SA and SX utterances from handset “senh” of HTIMIT to create a 32-center GMM

speaker model. A 64-center universal GMM background model [42] was also created

based on the speech of 100 client speakers in the speaker set. The background model

was shared among all client speakers in subsequent verification sessions. Besides

the speaker models and background model, a 2-center GMM (ΛX in Section 2.4.1)

was also created using the uncoded HTIMIT utterances (from handset senh) of 10

speakers. A set of transformation parameters (b’s in Eq. 2.12) were then estimated

using this model and the handset- and codec-distorted speech (see Section 2.4.1).

We fed the SA and SX utterances of all speakers in the speaker set to the back-

ground model and each of the speaker models to obtain the speaker scores corre-

sponding to the enrollment data. For each speaker, the SA and SX utterances of all
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other speakers in the speaker set were also fed to the background model and the cor-

responding speaker model to obtain the pseudo-impostor scores. These scores were

used to compute the client score mean µ̃c and background speakers’ score mean µ̃b,

as illustrated in Figure 3.1. These score means were then used to compute the prior

score µ̃p and prior variance σ̃2
p according to Eq. 3.5.

Verification Procedures. The SI sentences in the corpora were used for veri-

fication. We assume that a claimant will be asked to utter two sentences during a

verification session, i.e., K = 2 in Eq. 3.1. To obtain the scores of the claimant’s ut-

terances, the utterances were first fed to a handset detector [48–50] to determine the

set of feature transformation parameters to be used. The features were transformed

and then fed to the claimed speaker model and the background model to obtain two

streams of normalized scores (Eq. 3.2), one for each utterance. Then, the proposed

fusion algorithms were applied to fuse the two streams of scores.

The fusion algorithm (Eqs. 3.3 and 3.4) requires that the two streams of scores

have identical length. This can be achieved by appending the tail of the longer score

sequence to the shorter one.6 In this work, this length was calculated according to

L = bL1 + L2

2
c, (3.12)

where L is a positive integer and L1 and L2 represent the length of the first and

second utterance, respectively. Figure 3.8 illustrates how the length-equalization

procedure is performed. In the figure, there are 105 and 138 feature vectors in the

first and second utterance, respectively. According to Eq. 3.12, the equal length is

121 (= b(105 + 138)/2c). After finding the equal length, the remaining scores in the

longer score stream (Utterance 2 in this case) were appended to the end of the shorter

6We cut out the tail of the longer utterance and appended it to the shorter utterance because we
want to maximize the numbers of fused scores. Dynamic programming algorithms such as dynamic
time warping was not used because the acoustic contents of different utterances may not be the
same.
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Figure 3.8: Procedure for making equal-length score streams. The tail of the longer
stream is appended to the tail of the shorter one.

one (Utterance 1 in this case). In this example, one extra score in Utterance 2 was

discarded to make the score length equal.

To compare with the score averaging approach proposed in [58], we also fused the

utterances’ scores using equal-weight fusion, i.e., α
(1)
t = α

(2)
t = 0.5 ∀t = 1, . . . , L.

Results of Fusion of Sorted and Unsorted Scores. Figure 3.9 depicts the

detection error tradeoff (DET) curves based on 100 client speakers and 50 impostors

using utterances from handset “cb1” for verification. Figure 3.9 shows that (1) with

feature transformation, data-dependent fusion can reduce the error rates significantly;

and (2) sorting the scores before fusion can reduce the error rate further. However,

without feature transformation, the performance of data-dependent fusion with score

sorting is not significantly better than that of the equal-weight fusion. This is caused

by the mismatch between the prior scores µ̃p’s in Eq. 3.6 and the scores of the

distorted features. Therefore, it is very important to use feature transformation to

reduce the mismatch between the enrollment data and verification data.

Figure 3.10 shows the detection error trade-off curves based on 100 client speakers
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Figure 3.9: DET curves for equal-weight fusion (score averaging) and data-dependent
fusion with and without score sorting. The curves were obtained by using the utter-
ances of handset “cb1” as verification speech.

and 50 impostors using the scores of ten handsets. It shows that data-dependent

fusion with score sorting outperforms equal-weight fusion for all operating points and

by 23% in terms of equal error rate.

Table 3.2 shows the speaker detection performance of 100 speakers and 50 impos-

tors for the equal-weight fusion approach and the proposed fusion approach with and

without sorting the score sequences. Table 3.2 clearly shows that the proposed fusion

approach outperforms the equal-weight fusion one. In particular, after sorting the

score sequences, the equal error rates are further reduced. Compared to the unsorted

cases, an 11% error reduction has been achieved.

Experiments Based on Cellular Phone Speech

Speech Corpus and Feature Extraction. To further demonstrate the capabil-

ity of data-dependent fusion under practical situations, evaluations were performed
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Equal−weight Fusion EER=8.38%              
Data−dependent Fusion without sorting EER=6.83%
Data−dependent Fusion with sorting EER=6.46%  

Figure 3.10: DET curves for equal-weight fusion (score averaging) and data-dependent
fusion with and without score sorting. The curves were obtained by concatenating
the scores of ten handsets.

Table 3.2: Equal error rates achieved by different fusion approaches, using utterances
from 10 different handsets for verification. Each figure is based on the average of
100 speakers, each impersonated by 50 impostors. DF stands for data-dependent
fusion. “No fusion” means that the verification results were obtained from using a
single utterance per verification session. “Average” denotes the average EER of 10
handsets.

Equal Error Rate (%)
Fusion Method cb1 cb2 cb3 cb4 el1 el2 el3 el4 pt1 senh Average

No fusion 6.31 6.36 19.96 15.35 5.89 10.83 11.79 8.18 9.38 4.90 9.90
Equal-weight fusion 5.11 4.33 19.15 12.89 4.42 8.31 9.96 6.29 7.57 2.99 8.10
DF w/o sorting 4.01 3.27 15.92 10.55 3.04 6.51 8.67 4.75 7.51 2.32 6.67
DF w/ sorting 3.60 2.86 15.30 9.91 3.49 4.65 6.81 4.02 6.59 1.99 5.92
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using cellular phone speech: the 2001 NIST speaker recognition evaluation set [65].

The 2001 NIST evaluation set contains cellular phone speech of 174 target speakers

(clients) with 74 male and 100 female. Another set of 60 speakers is also available

for development. Each target speaker has 2 minutes of speech for training, and the

duration of test utterances varies from 15 to 45 seconds. The evaluation set provides

a total of 20,380 gender-matched verification trials. The ratio between target and

impostor trials is roughly one to ten.

In the experiments, 12 MFCCs and their delta coefficients were extracted from

the utterances at a rate of 71Hz using a 28ms Hamming window. Cepstral mean

subtraction (CMS) [66] was applied to all MFCCs before they were appended to the

delta MFCCs.

Enrollment Procedures. A 1024-component universal background model (UBM)

was created based on the speech of 60 speakers in the development set of the corpus.

Then, for each client speaker, a speaker-dependent GMM was created by adapting the

UBM using maximum a posteriori (MAP) adaptation [42]. The speaker-dependent

prior scores µ̃p and variances σ̃2
p in Eq. 3.6 were then estimated from all the test-

ing speech in the development set of the corpus. This was achieved by considering

the testing speech in the development set as produced by pseudo-impostors and by

presenting their feature vectors to the speaker and background models to obtain a

sequence of speaker-dependent pseudo-impostor scores. The utterances used for train-

ing the speaker models were also presented to the speaker and background models

to obtain a sequence of client scores. The averages of these scores were then used to

estimate the prior scores and variances as in Eqs. 3.5 and 3.6. The dotted box in

Figure 3.1 illustrates the process of estimating the prior scores and variances.

Verification Procedures. For each verification session, the feature sequence

Y obtained from a claimant’s utterance was transformed by blind stochastic fea-

ture transformation (BSFT) [53, 54] to form a sequence of transformed vectors Yν .
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Figure 3.11: Process of fusion of single utterance.

First-order BSFT with 64 components (M = 64 in Section 2.4.2) was used. The

transformed vectors were then fed to a 1024-component speaker model (Λ1024
s ) and a

1024-component UBM (Λ1024
b ) to obtain a sequence of normalized scores

S(yν) = log p(yν |Λ1024
s )− log p(yν |Λ1024

b ), yν ∈ Y.

The average of these scores was used for decision making.

The proposed fusion algorithm was applied to compute the weight of each score.

Because there is only one test utterance in each verification session, the utterance was

split into two segments and then fusion was performed. Figure 3.11 illustrates the

procedure of splitting a utterance for fusion. In this case, the length was calculated

according to

T = bL
2
c,

where T is a positive integer and L represents the length of the test utterance.

Performance Measures. We used detection error tradeoff (DET) curves and
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detection cost function (DCF) as performance measures. DCF is defined as follows:

DCF = CFAPr(FA|I)Pr(I) + CFRPr(FR|T )Pr(T ), (3.13)

where Pr(I) and Pr(T ) are the prior probability of impostors and target speakers,

respectively, and CFA and CFR are the costs of false alarm and false rejection, respec-

tively. In this work, we set Pr(I) = 0.99, Pr(T ) = 0.01, CFA = 1 and CFR = 10, as

suggested in Przybocki and Martin [67].

Results and Discussions. Figure 3.12 compares the speaker detection per-

formance of equal-weight fusion and data-dependent fusion. Figure 3.12(a) shows

that multisample data-dependent fusion performs better than equal-weight fusion. In

particular, the equal error rate (EER) achieved by data-dependent fusion (without

BSFT) is 12.27%. When compared to equal-weight fusion (which achieves an EER

of 12.86%), a relative error reduction of 5% was obtained. Data-dependent fusion

also achieves a 3% improvement in terms of minimum DCF as compared with the

baseline. With BSFT, data-dependent fusion has a 22% relative error reduction as

compared to the baseline. Regarding minimum DCF, a 11% improvement is achieved

as compared to the baseline. The results suggest that BSFT is important to both

equal-weight and data-dependent fusions.

Figure 3.12(b) shows that in terms of error rates, data-dependent fusion with

score sorting performs better than that without score sorting. However, it has just

a slightly improvement. This may be due to the increase in the sensitivity of prior

scores. To reduce the influence of prior scores on the fusion weights, we modified the

fusion equation (Eq. 3.6) to the following:

α
(k)
t =

exp{(|s(k)
t − µ̃p|)

/
2σ̃2

p}∑K
l=1 exp{(|s(l)

t − µ̃p|)
/
2σ̃2

p}
. (3.14)
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Speaker Detection Performance

BSFT+EW EER=10.68%
DCF=0.0439        
BSFT+DF EER=10.03%
DCF=0.0438   
BSFT+DF with sorting using Eq. 3.5 EER=9.87%
DCF=0.0430        
BSFT+DF with sorting using Eq. 3.19 EER=9.28%
DCF=0.0397        

(b)

Figure 3.12: Speaker detection performance for data-dependent (DF) fusion with
and without score sorting and equal-weight (EW) fusion. BSFT stands for blind
stochastic feature transformation. (a) Highlighting the importance of BSFT in equal-
weight and data-dependent fusion. (b) Highlighting the benefit of score sorting. For
ease of comparison, the labels in the legend are arranged in decreasing EERs.
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Figure 3.12(b) shows that after replacing Eq. 3.6 by Eq. 3.14, data-dependent fusion

with score sorting performs better than that without score sorting in terms of both

EERs and minimum DCF. Specifically, a relative error reduction of 7.5% was achieved.

Regarding minimum DCF, a 9% improvement was obtained.

3.4 Adaptation of Prior Scores

3.4.1 Rationale for Adapting Prior Scores

Eq. 3.6 uses the overall mean µ̃p as the prior score. However, because the number

of background speaker’s utterances is much larger than that of speaker’s utterances

during the training phase, the overall mean is very close to the mean score of the

background speakers, i.e., µ̃p ≈ µ̃b. This causes most of the client-speaker scores

larger than the prior score; moreover, only part of the impostor scores will be smaller

than the prior score. An example of this situation is illustrated in Figure 3.13 in

which the distributions of the pattern-by-pattern speaker scores and impostor scores

corresponding to speaker “mdac0” are shown. Figures 3.5 and 3.13 show that if the

claimant is a client speaker, the fusion algorithm will emphasize large scores because

most of the speaker scores in Figure 3.13 are larger than the prior score. On the other

hand, the algorithm will have equal preference on both small and large scores if the

claimant is an impostor because the prior score lies on the middle of the impostor

scores distribution.

The ultimate goal of Eq. 3.3 is to apply a larger weight to the large scores to make

the fused score larger when the claimant is a client speaker; on the other hand, if the

claimant is an impostor, Eq. 3.3 should apply a smaller weight to the small scores

to keep the fused score small. In other words, the goal is to increase the separation

between client speaker’s scores and impostors’ scores. As a result, when the claimant
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Figure 3.13: Distribution of pattern-by-pattern speaker scores and impostor scores
corresponding to speaker “mdac0”. Note: Most of the speaker scores are larger than
the prior score and that only some of the impostor scores are smaller than the prior
score.

is a true speaker, the prior score should be smaller than all possible speaker scores so

that Eq. 3.3 only emphasizes larger scores; on the other hand, when the claimant is an

impostor, the prior score should be larger than all possible impostor scores so that Eq.

3.3 only favors smaller scores. However, satisfying these two conditions simultaneously

is almost impossible in practice because the true identity of the claimant is never

known. Therefore, the optimal prior score should be equal to the intersection point

of the speaker score distribution and impostor score distribution (see Figure 3.13).

At that point, the number of speaker scores smaller than the prior score plus the

number of impostor scores larger than the prior score is kept to a minimum.

3.4.2 Adaptation Algorithm

Here, we propose a method to adapt the prior score during verification to achieve the

goal mentioned in Section 3.4.1. For each client speaker, a one-dimensional GMM
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score model Ωs = {πj, µj, Σj}M
j=1 with output

p(s̃; Ωs) =
M∑

j=1

πjp(s̃|j) =
M∑

j=1

πjN (s̃; µj, Σj) (3.15)

is trained to represent the distribution of the utterance-based background speakers’

scores s̃ ≡ 1
T

∑T
t=1 s(ot; Λ) obtained during the training phase. During verification,

a claimant will be asked to utter K utterances U = {U1, . . . ,UK}. For the k-th

utterance, the normalized likelihood that the claimant is an impostor is computed:

ζ =
p(s̃k|Ωs)

max−∞≤s≤∞ p(s|Ωs)
(3.16)

where

s̃k ≡ 1

Tk

Tk∑
t=1

s(ot; Λ) (3.17)

is the score of the k-th utterance. The purpose of the denominator in Eq. 3.16 is to

determine the maximum value of the likelihood that the claimant is an impostor. By

having this term, we can limit ζ to fall within the range [0,1]. In Eq. 3.16, when the

normalized likelihood ζ is close to 1, the claimant is likely to be an impostor. There-

fore, the prior score should be increased such that the large scores of this claimant are

deemphasized so that the system can reject this claimant. On the other hand, when

the normalized likelihood ζ is close to 0, the claimant is likely to be the true speaker.

As a result, the prior score should remain unchanged such that the large scores of this

claimant can be emphasized. Figure 3.9 gives an example of the relationship between

the adapted prior score and normalized likelihood. When the value of the normalized

likelihood is close to zero, the adapted prior score will be close to the original value,

i.e., −5. However, when the value of the normalized likelihood is close to one, the

prior score is adapted to a maximum value.
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The prior score is then adapted according to

µ̂(k)
p = µ̃p + f(ζ), (3.18)

where µ̂
(k)
p is the adapted prior score and f(ζ) is a monotonic increasing function

controlling the amount of adaption. Then, we replace µ̃p in Eq. 3.6 by µ̂
(k)
p to compute

the fusion weights. The reason of using a monotonic increasing function for f(ζ) is

that if the normalized likelihood of a claimant is large, he or she is likely to be

an impostor. As a result, the prior score should be increased by a large degree

to de-emphasize the large scores of this claimant. With the large scores being de-

emphasized, the claimant’s mean fused score will become smaller, thus increasing the

chance of rejecting this potential impostor.

Notice that Eq. 3.18 increases the prior score rather than decreasing it because we

found that the optimal prior score is always greater than the unadapted prior score

µ̃
(k)
p [63]. A monotonic function of the form

f(ζ) =
a(ebζ − 1)

eb − 1
(3.19)

was suggested, where a represents the maximum amount of adaptation and b controls

the rate of increase of f(ζ) with respect to ζ. Figure 3.14 shows the effect of varying

a and b on the adapted prior scores.

The values of a and b should not be too large. If a is too large (e.g., a = 20 in

Figure 3.14), Eq. 3.18 will lead to a large adapted prior score µ̂
(k)
p even for utterances

with low normalized likelihood ζ. As a result, almost all of the claimant scores will

become smaller than the prior score, which is undesirable. Moreover, a large a will

result in poor verification performance when there is a large mismatch between the

pseudo-impostor score model and verification scores. This is because in a severe

mismatch situation, Eq. 3.16 will produce incorrect normalized likelihood. This will
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Figure 3.14: The influence of varying a and b of Eq. 3.19 on the adapted prior scores
µ̂

(k)
p , assuming µ̃p = −5.

lead to incorrect adaptation of the prior score, which in turn results in incorrect

fusion weights. On the other hand, if b is too large, there will be a sharp bend in the

adaptation curves, as illustrated in Figure 3.14. As a result, the prior score will be

adapted only when the verification utterances give high likelihood in Eq. 3.16. We

found that the best range for parameter a is 5 to 20 and that for b is 5 to 8.

3.4.3 Effect on Score Distributions

To demonstrate the effect of the proposed prior score adaptation on fused score distri-

butions, we have selected arbitrarily a client speaker (mdac0) from GSM-transcoded

HTIMIT [59] and plot the distributions of the fused speaker scores and fused impostor

scores in Figure 3.15, using equal-weight fusion (α
(1)
t = α

(2)
t = 0.5 ∀t), data-dependent

fusion without prior score adaptation (Eq. 3.6), and data-dependent fusion with prior

score adaptation (Eq. 3.18). Evidently, the upper part of Figure 3.15 shows that the
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number of large client-speaker scores is larger in data-dependent fusion. However,

the distribution of client-speaker pattern-based scores are almost identical before and

after prior score adaptation. This is because the pseudo-impostors’ score model gives

low likelihood for client speaker’s utterances. Therefore, the normalized likelihood ζ

for client speaker’s utterances will be close to zero. As a result, the prior score remains

unchanged or only increases slightly. Therefore, the client score distribution remains

unchanged. The lower part of Figure 3.15 shows that there are more small impostor

scores in data-dependent fusion than in equal-weight fusion. More smaller scores are

emphasized after applying data-dependent fusion with prior score adaptation. The

figures also show that data-dependent fusion with prior score adaptation outperforms

the other two fusion approaches.

Further evidence demonstrating the advantage of prior score adaptation can be

found in Table 3.3, which shows that the dispersion between the mean client score

and the mean impostor score increases from 2.63 (= −0.53 − (−3.16)) to 4.04 (=

0.25 − (−3.79)) without prior score adaptation and to 4.61 (= 0.22 − (−4.39)) with

prior score adaptation. Because verification decisions are based on the mean scores,

the wider the dispersion between the mean client scores and the mean impostor scores,

the lower the error rate. We can also notice from Table 3.3 that with prior score

adaptation, both the mean speaker score and the mean impostor score are reduced.

The reason for a reduction in the mean speaker score is that there is a small increase

in the prior score when the claimant is a true speaker, which increases the number

of scores that are smaller than the prior score. In other words, more small speaker

scores are emphasized by Eq. 3.6, which lowers the fused speaker scores as well as

the mean speaker score.
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Table 3.3: The mean fused speaker scores and fused impostor scores of speaker mdac0
obtained by different fusion approaches. EW and DF represent equal-weight and
data-dependent fusion, respectively. PS stands for prior score.

EW DF without PS adaptation DF with PS adaptation

prior score N/A −3.67 Vary for different utterances
mean speaker score −0.53 0.25 0.22
mean impostor score −3.16 −3.79 −4.39
score dispersion 2.63 4.04 4.61

3.4.4 Experiments and Results

Experiments Based on Telephone Speech

Enrollment Procedures. The enrollment procedures were the same as the one

described in Section 3.3.4. However, in this part of the experiments, two sets of scores

were collected. For the first set, we fed the SA and SX utterances of all speakers in

the speaker set to the background model and each of the speaker models to obtain the

speaker scores corresponding to the enrollment data. For the second set, we fed the

utterances of all speakers in the pseudo-impostor sets to the background model and

each of the speaker models to obtain the pseudo-impostor scores corresponding to

“unseen” impostor data. One pseudo-impostor score was obtained from each pseudo-

impostor utterance. These two sets of scores were used to compute the client score

mean µc and background speakers’ score mean µb, as illustrated in Figure 3.1. These

score means were then used to compute the prior score µ̃p and prior variance σ̃2
p

according to Eq. 3.5. The resulting utterance-based pseudo-impostor scores were

also used to create a 2-center 1-D GMM pseudo-impostor score model (Ωs in Eq.

3.15).

Results of Adaptation of Prior Scores. In the experiments, we set the pa-

rameters a and b in Eq. 3.18 to 10 and 5, respectively. Figure 3.16 depicts the speaker
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Figure 3.15: Distribution of pattern-by-pattern speaker scores (upper figure) and
impostor scores (lower figure) based on equal-weight fusion (score averaging) and
data-dependent fusion. Solid : equal-weight fusion. Thin Dashed : Data-dependent
fusion without prior score adaptation. Thick Dashed : Data-dependent fusion with
prior score adaptation.

detection performance based on 100 speakers and 50 impostors for equal-weight fu-

sion and data-dependent fusion with and without prior score adaptation. Figure

3.16 shows that with feature transformation, data-dependent fusion with prior score

adaptation achieves the lowest error rates. In particular, the equal error rate (EER)

achieved by data-dependent fusion with prior score adaptation is 4.01%. When com-

pared to equal-weight fusion (which achieves an EER of 5.11%), a relative error

reduction of 22% was obtained.

In Figure 3.16, we used the speakers in the speaker set to train the pseudo-impostor

score model. It is of interest to see the distribution of pseudo-impostor scores obtained

from unseen data. These distributions are illustrated in Figure 3.17. A comparison

between Figures 3.17(a) and 3.17(c) reveals that there is a mismatch between the
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Figure 3.16: Speaker detection performance for equal-weight fusion (score averaging)
and data-dependent fusion with and without prior score (PS) adaptation.

pseudo-impostor score distribution and the impostor score distribution. In particular,

there are more small scores in Figure 3.17(a) than in Figure 3.17(c). This mismatch

affects the adaptation of prior scores because the likelihood ζ in Eq. 3.16 is no longer

accurate. This is evident in Table 3.4 where the equal error rates using different

numbers of pseudo-impostors with speech extracting from different corpora are shown.

In particular, the second column of Table 3.4 shows that the improvement after

adapting the prior scores is just 3.14% (from 4.14% to 4.01%).

To create more stable and reliable pseudo-impostor score models, we used another

pseudo-impostor set (namely PI-100) that contains 100 pseudo-impostors to train the

pseudo-impostor score models. Also, we used the GSM-transcoded speech instead of

HTIMIT speech to train the model in an attempt to create a verification environ-

ment as close to the real one as possible. We also transformed the GSM-transcoded

speech before calculating the scores. Figures 3.17(b) and 3.17(c) show that the scores
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Figure 3.17: Distribution of pseudo-impostor scores for speaker “fadg0” obtained by
using (a) HTIMIT speech in the speaker set and (b) GSM-transcoded speech in the
pseudo-impostor set. (c) Distribution of impostor scores for speaker “fadg0” during
verification using GSM-transcoded speech.

distributions are much closer after using the transformed features. The improvement

after adapting the prior score is 17% (from 3.52% to 2.92%), as demonstrated in the

second column (PI-100 GSM) of Table 3.4.

Table 3.4 indicates that even for pseudo-impostor set containing as little as 20

speakers (PI-20 GSM), a lower equal error rate (3.01%) can still be obtained by using

the GSM-transcoded speech to train the pseudo-impostor score models. Error rates

can be further reduced (from 3.01% to 2.55%) by applying the prior score adaptation

together with score sorting.
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Table 3.4: EERs achieved by data-dependent fusion approaches. The values inside the
parentheses are the EERs obtained by using the score sorting approach. The EERs
achieved by “No Fusion” (single utterance) and “EW Fusion” are 6.31% and 5.11%,
respectively. Each figure is based on the average of 100 speakers, each impersonated
by 50 impostors. DF stands for data-dependent fusion.

PI-20 GSM PI-100 GSM PI-100 HTIMIT SS-100 HTIMIT

DF w/o PS adaptation 3.61% (2.81%) 3.52% (2.67%) 3.92% (3.80%) 4.14% (3.60%)
DF w/ PS adaptation (a=10) 3.01% (2.55%) 2.92% (2.25%) 3.68% (3.51%) 4.01% (3.60%)
DF w/ PS adaptation (a=20) 2.80% (2.78%) 2.57% (2.71%) 4.22% (4.23%) 4.05% (3.69%)

The abbreviations in the first row of the table denote the data used for creating the
pseudo-impostor score models. They are detailed as follows:

• PI-20 GSM: Pseudo-impostor set containing 20 speakers, with GSM-transcoded speech from
handset “cb1”

• PI-100 GSM: Pseudo-impostor set containing 100 speakers, with GSM-transcoded speech
from handset “cb1”

• PI-100 HTIMIT: Pseudo-impostor set containing 100 speakers, with HTIMIT speech from
handset “senh”

• SS-100 HTIMIT: Speaker set containing 100 speakers, with HTIMIT speech from handset
“senh”

By using GSM-transcoded speech, real verification environments can be modeled

so that parameter a can be increased to obtain a much lower EER (from 3.01% to

2.80% when using 20 pseudo-impostors and from 2.92% to 2.57% when using 100

pseudo-impostors). However, the error rates increase from 3.68% to 4.22% and from

4.01% to 4.05% when there is a mismatch between the pseudo-impostor score dis-

tributions and the pseudo-impostor score models. Because the fusion weights are an

exponential function of the distance between the individual scores and the prior score,

Eq. 3.6 puts more emphasis on small scores when the prior score increases. Therefore,

if the claimant is an impostor, the mean impostor score will become smaller. On the

other hand, if the prior score is wrongly adapted, the mean speaker score will also
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become smaller because there are more scores smaller than the prior score.

Figure 3.14 shows that for the same likelihood, the increase in prior scores is larger

when parameter a is increased from 10 to 20. In other words, even if inaccurate like-

lihood is obtained, its influence on the system performance is small when parameter

a is small. Therefore, if stable and reliable pseudo-impostor score distributions can

be obtained, parameter a can be increased to further improve the verification perfor-

mance. This is because if an utterance gives high likelihood in Eq. 3.16, the claimant

is more likely to be an impostor; Eq. 3.6 can then be made to emphasize small scores

only. On the other hand, when an utterance gives low likelihood in Eq. 3.16, the

prior score should be slightly increased to make it close to the optimal prior score

(see Figure 3.13) because impostors’ utterances can also give low likelihood. The

parameter a should be kept small so that system performance is not degraded when

stable and reliable pseudo-impostor score models cannot be obtained.

Experiments Based on Cellular Phone Speech

Enrollment Procedures. The enrollment procedures have been detailed in Sec-

tion 3.3.4. However, in this part of the experiments, the testing speech in the devel-

opment set was also used to create a 2-center 1-D GMM pseudo-impostor score model

(Ωs in Eq. 3.15).

Results and Discussions. Figure 3.18 shows that data-dependent fusion with

prior score adaptation performed better than data-dependent fusion without prior

score adaptation and equal-weight fusion. In addition, it suggests that data-dependent

fusion (based on Eq. 3.14) with prior score adaptation and score sorting attains the

best performance. Specifically, it achieves 9.14% EER and 0.0397 minimum DCF,

which represent a 29% and 19% relative reduction in terms of EERs and minimum

DCF when compared to the baseline. Table 3.5 summarized the results obtained

using equal-weight fusion and data-dependent fusion with and without sorting score
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Figure 3.18: Speaker detection performance for data-dependent (DF) fusion and
equal-weight (EW) fusion. BSFT stands for blind stochastic feature transformation.
For ease of comparison, the labels in the legend are arranged in decreasing EERs.

and prior score adaptation.

Because the NIST 2001 has a standard evaluation protocol, the results reported

in this subsection can be compared with those of the short-time Gaussianization

approach proposed by Xiang et al. [68].7 The work of Xiang et al. focuses on feature-

level processing to minimize channel distortions. The approach proposed here, on

the other hand, first reduces channel distortions at the feature level and then weighs

more heavily on those useful scores at the score level. This two-level optimization

approach helps reduce the error rate further: 9.14% EER (our fusion approach) versus

10.84% EER (short-time Gaussianization). In addition, data-dependent fusion can

achieve a slightly lower minimum detection cost (0.0397) than that of short-time

Gaussianization (0.0440).

7The short-time Gaussianization approach used 512 mixtures to model the speakers but we used
1024 mixtures in our experiments.
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Table 3.5: Speaker detection performance for data-dependent (DF) fusion and equal-
weight (EW) fusion. BSFT stands for blind stochastic feature transformation.

Method EER(%) Minimum DCF

EW 12.86 0.0493
DF 12.27 0.0478
BSFT+EW 10.68 0.0439
BSFT+DF 10.03 0.0438
BSFT+DF with sorting using Eq. 3.6 9.87 0.0430
BSFT+DF with sorting using Eq. 3.14 9.28 0.0397
BSFT+DF with adaptation only 9.85 0.0437
BSFT+DF with adaptation + sorting using Eq. 3.6 9.64 0.0429
BSFT+DF with adaptation + sorting using Eq. 3.14 9.14 0.0397

3.5 Concluding Remarks

This chapter has presented a score fusion algorithm that makes use of the prior score

statistics and distribution of recognition data. The statistics of pseudo-impostor

scores are used to adapt the prior scores in the fusion algorithm. The fusion algorithm

was combined with feature transformation for speaker verification. Results based on

the HTIMIT corpus and the 2001 NIST evaluation set show that the proposed fusion

algorithm outperforms equal-weight fusion. It was found that system performance

can be further improved by sorting the scores before fusion and by adapting the prior

scores.



Chapter 4

Audio-Visual Biometric

Authentication

Various biometric studies have suggested that no single modality can provide an

adequate solution for high-security applications. These studies agree that it is vital

to use multiple modalities such as visual, infrared, acoustic, chemical sensors, and so

on to improve the robustness of biometric systems.

To cope with the limitations of individual biometrics, researchers have proposed

using multiple biometric traits concurrently for verification. Such systems are com-

monly known as multimodal biometric systems [69]. By using multiple biometric

traits, systems gain more immunity to intruder attack. For example, it is more diffi-

cult for an impostor to impersonate another person using both audio and visual infor-

mation simultaneously. Multimodal biometrics also helps improve system reliability.

For instance, while background noise has a detrimental effect on the performance

of voice biometrics, it does not have any influence on face biometrics. Conversely,

although the performance of face recognition systems depends on lighting conditions,

lighting does not have any effect on voice quality. As a result, audio and visual (AV)

biometrics has attracted a great deal of attention in recent years.

68
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Figure 4.1: Architecture of multi-source multi-sample fusion. N ote: S(m) contains
multiple samples obtained from the m-th modality, i.e., S(m) =

⋃
k S(m,k).

In Chapter 3, we have shown that decision fusion techniques can be easily adapted

to fuse the scores of a single modality to improve performance. Built on the success

of this fusion technique, this chapter proposes a multi-source multi-sample fusion

approach to identity verification. Specifically, fusion is performed at two levels: in-

tramodal and intermodal. In intramodal fusion, the scores of multiple samples (e.g.,

utterances or video shots) obtained from the same modality are linearly combined,

where the combination weights are dependent on the difference between the score

values and a client-dependent reference score obtained during enrollment. This is

followed by intermodal fusion in which the means of intramodal fused scores obtained

from different modalities are fused. The final fused score is then used for decision

making. Figure 4.1 depicts the architecture of multi-source multi-sample fusion. It

was found that making the frame-based intramodal fusion weights data-dependent

helps the subsequent intermodal fusion to lower the error rates.
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4.1 Intramodal Fusion

4.1.1 Equal-Weight Fusion

Assume that in each verification session, T (m) scores can be obtained from the m-th

modality, that is

S(m) = {s(m)
t ∈ <; t = 1, . . . , T (m)}, (4.1)

where s
(m)
t is the score of frame t. For the special case where S(m) contains speakers’

scores, we have

s
(m)
t = log p(x

(m)
t |Λ(m)

c )− log p(x
(m)
t |Λ(m)

b ), (4.2)

where Λ
(m)
c and Λ

(m)
b represent the client and background models, respectively [42],

and x
(m)
t is the t-th feature vector obtained from the audio channel.

In the equal-weight fusion approach [58], the mean score

s̄(m) =
1

T (m)

T (m)∑
t=1

s
(m)
t (4.3)

is used for decision making. The factor 1/T (m) in Eq. 4.3 can be considered as

a constant weight applying to all scores. In other words, all scores are weighted

equally.

4.1.2 Data-Dependent Fusion

Instead of assigning an equal weight to all scores, different weights can be assigned to

different scores. This can be achieved by using the data-dependent fusion explained

in Mak et al. [60]. Specifically, the approach splits a score sequence S(m) into K

subsequences:

S(m,k) = {s(m,k)
t ∈ <; t = 1, . . . , T (m)/K} k = 1, . . . , K. (4.4)
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The frame-level fused scores are then computed as

ŝ
(m)
t =

∑K

k=1
α

(m,k)
t s

(m,k)
t , (4.5)

where t = 1, . . . , T (m)/K, and α
(m,k)
t ∈ [0, 1] represents the confidence (reliability) of

the score s
(m,k)
t . The fusion weights α

(m,k)
t are made dependent on both the training

data (prior information) and recognition data (scores):

α
(m,k)
t =

exp{(s(m,k)
t − µ̃

(m)
p )2

/
2(σ̃

(m)
p )2}

∑K
l=1 exp{(s(m,l)

t − µ̃
(m)
p )2

/
2(σ̃

(m)
p )2}

, (4.6)

where t = 1, . . . , T (m)/K and k = 1, . . . , K. By using enrollment data, the user-

dependent prior score µ̃
(m)
p and prior variance (σ̃

(m)
p )2 are computed as follows:

µ̃(m)
p =

Kcµ̃
(m)
c + Kbµ̃

(m)
b

Kc + Kb

(4.7)

and

(σ̃(m)
p )2 =

1

Kc + Kb

Kc+Kb∑

k=1

[
s̄(m,k) − µ̃(m)

p

]2
, (4.8)

where Kc and Kb are respectively the numbers of client’s enrollment samples and

pseudo-impostors’ samples, µ̃
(m)
c and µ̃

(m)
b are respectively the score means of client’s

and pseudo-impostors’ samples, and s̄(m,k) denotes the mean score of the k-th enroll-

ment sample. Finally, the intramodal fused score

ŝ(m) =
K

T (m)

∑T (m)/K

t=1
ŝ
(m)
t (4.9)

is computed for decision making.
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4.2 Zero-Normalization

A system that uses a single client-independent decision threshold must ensure that all

client and impostor scores have values comparable to the threshold. This requirement

can be fulfilled by normalizing the scores so that they fall into a predefined range.

One possible approach (called Z-norm [70]) shifts and scales the impostor scores so

that their mean and variance become zero and unity, respectively. More specifically,

the claimant’s score s̄(m) in Eq. 4.3 or ŝ(m) in Eq. 4.9 is normalized:

s(m)
norm =

s(m) − µ
(m)
b

σ
(m)
b

s(m) ∈ {s̄(m), ŝ(m)}, (4.10)

where µ
(m)
b and σ

(m)
b are the mean and standard deviation of pseudo-impostor scores,

respectively. These scores can be obtained during training by testing a client model

against nontarget observations.

4.3 Intermodal Fusion

Instead of asking the individual modalities to make decisions based on the Z-norm

scores, these modality-dependent scores can be further fused to produce more reli-

able scores. There are many ways to fuse the modality-dependent scores. Typical

approaches include (1) the sum rule and product rule in rule-based fusion; and (2) sup-

port vector machines, multilayer perceptrons, and binary decision trees in learning-

based fusion. Research has shown that the sum rule and support vector machines are

generally superior [17, 32, 34, 35].
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4.3.1 Sum Rule

Given the intramodal fused scores s
(m)
norm, the intermodal fused score can be computed

by the sum rule:

s =
M∑

m=1

βms(m)
norm, (4.11)

where βm is the fusion weight for the m-th modality.

For audio-visual biometrics, the audio-visual score s is obtained by linearly com-

bining the audio score s(A) and visual score s(V ):

s = βs(A)
norm + (1− β)s(V )

norm, (4.12)

where s
(m)
norm,m ∈ {A, V }, is the Z-norm score (Eq. 4.10) and β is a combination

weight that can be computed using training data or made dependent on the quality

of audio or visual data [12, 24, 26]. The audio and visual scores must have the same

range for the fusion to be meaningful. This can be achieved by normalizing the scores,

as in Eq. 4.10.

4.3.2 Support Vector Machines

A support vector machine (SVM) [71, 72] is a binary classifier that maps input pat-

terns xi ∈ <D to output labels yi ∈ {−1, 1}, where i = 1, . . . , l, and l is the number

of patterns. Generally, an SVM has the form

f(x) =
∑
j∈Ω

αjyjK(x,xj) + b, (4.13)

where αj are the Lagrange multipliers, Ω contains the indexes to the support vectors

for which αj 6= 0, b is a bias term, x is an input vector to be classified, and K(x,xj)

is a kernel function. The most common kernels are:
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• Polynomial:

K(x,xj) = (x · xj + 1)p, p > 0; (4.14)

• Radial Basis Function:

K(x,xj) = exp(−‖x− xj‖2/2σ2). (4.15)

For audio-visual biometrics, x is typically composed of audio and visual scores

(i.e., x = [s
(A)
norm s

(V )
norm]T ) and decisions are based on whether the value f(x) is above

or below a threshold. Research has found that the polynomial kernel is superior to

the RBF kernel for audio-visual fusion [32].

4.4 Experimental Evaluations

This section explains how the intramodal and intermodal fusion techniques described

in the previous sections can be applied to audio-visual biometric authentication.

4.4.1 Audio-Visual Feature Extraction

Audio-Visual Data Sets

The XM2VTSDB corpus [73, 74] was used in the evaluations. XM2VTSDB is an

audio-visual corpus designed for biometric research. The corpus consists of the au-

dio and video recordings of 295 subjects taken over a period of four months. We

adopted Configuration II as specified by Luettin and Maitre [74] in the evaluation.

More precisely, the database was divided into 200 clients, 70 impostors (part of the

95 impostors in DVD003b) for testing, and 25 pseudo-impostors (the remaining im-

postors in DVD003b) for finding decision thresholds or other system parameters. For

each client, the first two sessions were used for training, and the last session was used
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for testing. Each client was impersonated by 70 impostors using the audio and video

data of the four sessions.

Preprocessing of Audio Files

Because the original audio files were captured in a quiet, controlled environment

using a high-quality microphone, the error rate using the audio data alone is very

low (about 0.7% half-total error rate); as a result, performing audio-visual fusion was

unnecessary. Therefore, coder distortion and factory noise were introduced to the

sound files in an attempt to simulate a more realistic acoustic environment.

The audio files in the corpus were down-sampled from 32kHz to 8kHz. The down-

sampled PCM files were then transcoded by a GSM codec [64]. Factory noise (“fac-

tory1.wav” of the NOISE92 database [75]) was added to the test files at a signal-to-

noise ratio of 1dB. Therefore, training utterances were distorted by downsampling and

GSM transcoding, whereas test utterances were not only distorted by downsampling

and transcoding but also contaminated by factory noise. This introduces acoustic

mismatch between the training and testing utterances. Nineteen MFCCs and their

time derivative (delta MFCCs) were extracted from the files using a 28ms Hamming

window at a rate of 71Hz.

We used the training sessions of 200 client speakers in the speaker set to create a

128-center background model. The background model was then adapted to speaker

models using MAP adaptation [42]. As defined in Configuration II of XM2VTSDB,

two sessions (i.e., four utterances) per speaker were used for model training. Cepstral

mean subtraction (CMS) was performed on all MFCCs before they were used for

training, testing, and evaluation.
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Preprocessing of Video Files

Similar to audio files, the quality of video files in the corpus is also very good, making

audio-visual fusion unnecessary (because face verification on the original video data

already approaches 0% half-total error rate). As a result, distortion was introduced

to the video sequences using PhotoShop Version 7.0 as follows. First, each of the AVI

files in the corpus was converted into a sequence of high-quality JPEG files with 720

× 576 pixels. Second, the frame rate was reduced to one frame per second; for each

frame, the JPEG image was downsampled to 176 × 144 pixels. Third, the image was

blurred by setting the “Gaussian Blur” of PhotoShop to 1.0. Finally, Gaussian noise

was added to the image by setting the “Gaussian Noise” of PhotoShop to 3.0. Figure

4.2 shows the effect of these operations on the downsampled images.

Both enrollment and verification used the blurred, noise-added images (see Figure

4.2(c)).1 During verification, a blurred and noise-added image sequence of a claimant

was input to a face verification system based on the Identix’s Face Verification SDK

(FaceIT) [76] to locate the head and compute the scores. The scores range from 0 to

10; the higher the score, the more likely the claimant is genuine.

4.4.2 Audio-Visual Fusion

We assumed that one utterance and one video shot can be obtained from the claimant

in a verification session. The utterance and the video shot were divided into two

equal-length subutterances and two equal-length subvideo shots, i.e., K = 2 and

m ∈ {A, V } in Eq. 4.4, where A represents the audio channel and V the video

channel. Feeding these subutterances and subvideo shots to the speaker verification

system and the face verification system gives two streams of audio scores and two

streams of visual scores. We applied intramodal fusion to the two audio score streams

1Here we assumed that the same camera was used for both enrollment and verification. Therefore,
the constructions of noisy images for both enrollment and verification are the same.
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(a)

(b)

(c)

Figure 4.2: Example of preprocessed images. (a) Downsampled image; (b) after
Gaussian blurring; (c) after adding Gaussian noise.
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and also to the two visual score streams independently to obtain the mean of the fused

audio scores, ŝ(A), and the mean of the fused visual scores, ŝ(V ). These scores were

further normalized according to Eq. 4.10 to ensure that they have the same range.

The client-dependent fusion parameters, including the prior scores and prior variances

(µ̃
(m)
p ,(σ̃

(m)
p )2; m ∈ {A, V }), were obtained by feeding the utterances and video shots

of 25 pseudo-impostors to the client and background models.

The normalized scores of every clients and of the 25 pseudo-impostors were used

for training a second-degree polynomial SVM, i.e., p = 2 in Eq. 4.14. We used

the training data of all clients and all pseudo-impostors to obtain 400 clients scores

(2 × 200) and 40,000 pseudo-impostors scores (8 × 25 × 200) and used these scores

to train a client-independent SVM. Because a client-independent SVM was used, Z-

norm was applied to all of the audio and visual scores to ensure that the decision

threshold is appropriate for all clients.

During verification, a total of 400 client trials (200 clients × 2 utterances per

client) and 120,000 impostor attempts (200 clients × 75 impostors per client × 8

utterances per impostor) were used to test the system.

4.5 Results and Discussions

4.5.1 Intramodal Fusion

Tables 4.1 and 4.2 show the error rates of speaker verification and face verification

using different types of intramodal fusion techniques described in Section 4.1, and

Figure 4.3 plots the corresponding DET curves. The false acceptance rate (FAR),

false rejection rate (FRR), and half-total error rate (HTER) were obtained using a

posteriori thresholds.2 The results show that (1) data-dependent fusion generally

2Because of the low resolution in FRR (1/400), the FARs and FRRs are not identical even using
posteriori thresholds.
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performs better than equal-weight fusion and (2) Z-norm helps lower the HTER of

both equal-weight fusion and data-dependent fusion.

4.5.2 Cascading Intramodal and Intermodal Fusion

Figure 4.4 shows the HTERs of two-level audio-visual fusion for different values of

the combination weight β in Eq. 4.12. It shows that when β is equal to 0.6, both

equal-weight fusion and data-dependent fusion achieve the lowest HTER. However,

obtaining this optimum value requires the true identities of claimants to be known

prior to verification, which is unrealistic in practice. A better approach is to determine

the value of β using training data. Therefore, similar to SVM-based intermodal fusion,

the normalized scores of every clients and of the 25 pseudo-impostors were used for

determining the value of β. More specifically, the value of β that produces minimum

HTER in the training data was used for fusing the audio and visual scores during

verification. It was found that β = 0.7 gives the lowest HTER in the training data

set.

Table 4.3 summarizes the error rates obtained by applying the two-level audio-

visual fusion with β in Eq. 4.12 set to 0.7, and Figure 4.5 plots the corresponding DET

curves. The results show that data-dependent fusion always performs better than

equal-weight fusion. The results also show that applying intermodal fusion (either

linear combination or SVMs) on intramodal fused scores can further reduce HTERs.

Figure 4.6 plots the decision boundary created by the sum rule and the second-degree

polynomial SVM. It shows that the SVM can create a nonlinear boundary to separate

the client scores from the impostor scores, which results in lower error rates.
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4.5.3 Compared with Related Fusion Approaches

It is of interest to compare the proposed two-level fusion approach with the multi-

frame–multi-expert system proposed by Czyz et al. [15]. In their system, two different

face verification algorithms were applied to the same facial sequence to create two sets

of scores. The frame-based scores were then fused using the minimum rule to obtain

two minimum scores, which were subsequently fused using an SVM. The multi-frame

part of [15] can be considered as a special case of our data-dependent intramodal

fusion because when µ̃
(m)
p in Eq. 4.6 is large, α

(m,k)
t in Eq. 4.5 will be close to 1

for small scores and close to 0 for large scores, which has the effect similar to the

minimum rule.

4.6 Concluding Remarks

This chapter has presented an audio-visual biometric authentication system. A novel

two-level fusion technique that fuses the scores obtained from speaker and face models

was detailed. The proposed technique is general and is applicable to multi-modal bio-

metric systems. This is evident by promising experimental results on the XM2VTSDB

audio-visual database. It was found that an error rate reduction of up to 71% can

be achieved when the proposed fusion technique is applied to fuse the scores derived

from speaker models and face models.
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Figure 4.3: DET plots of different intramodal fusion techniques in (a) speaker verifi-
cation and (b) face verification. EW stands for equal-weight fusion and DF stands
for data-dependent fusion. EW+Znorm means that Z-norm was performed on the
mean fused scores of equal-weight fusion. A similar definition applies to DF+Znorm.
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Intramodal Fusion Method Error Rate Rel. Red. of HTER
(Applied to voice only) FAR FRR HTER (w.r.t. EW fusion)

EW 14.29% 14.75% 14.52% N.A.
EW+Znorm 10.08% 10.50% 10.29% 29.13%
DF 9.70% 9.75% 9.73% 32.99%
DF+Znorm 8.39% 8.50% 8.45% 41.80%

Table 4.1: Speaker verification error rates and relative reduction (Rel. Red.) of
half-total error rate (HTER) with respective to equal-weight fusion achieved by the
speaker verification systems using data-dependent intramodal fusion. Note: Fusion
takes place only within the audio and visual scores, not between them. EW+Znorm
(DF+Znorm) means that Z-norm was performed on the mean fused scores of equal-
weight intramodal fusion (data-dependent intramodal fusion). EW and DF stand for
equal-weight and data-dependent intramodal fusion, respectively.

Intramodal Fusion Method Error Rate Rel. Red. of HTER
(Applied to face only) FAR FRR HTER (w.r.t. EW fusion)

EW 9.53% 9.75% 9.64% N.A.
EW+Znorm 4.96% 5.50% 5.23% 45.75%
DF 8.01% 9.00% 8.51% 11.72%
DF+Znorm 4.80% 4.75% 4.77% 50.52%

Table 4.2: Face verification error rates and relative reduction (Rel. Red.) of half-total
error rate (HTER) with respective to equal-weight fusion achieved by the face verifica-
tion systems using data-dependent intramodal fusion. Note: Fusion takes place only
within the audio and visual scores, not between them. EW+Znorm (DF+Znorm)
means that Z-norm was performed on the mean fused scores of equal-weight in-
tramodal fusion (data-dependent intramodal fusion). EW and DF stand for equal-
weight and data-dependent intramodal fusion, respectively.



CHAPTER 4. AUDIO-VISUAL BIOMETRIC AUTHENTICATION 83

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

β

H
T

E
R

(%
)

EW+Znorm
DF+Znorm

Figure 4.4: HTERs of two-level audio-visual fusion for different values of the combi-
nation weight β in Eq. 4.12. EW and DF stand for equal-weight and data-dependent
intramodal fusion, respectively.

Intramodal Intermodal Error Rate Rel. Red. of HTER
Fusion Type Fusion Type FAR FRR HTER (w.r.t. face only)

EW+Znorm Sum Rule 1.95% 2.00% 1.98% 62.14%
DF+Znorm Sum Rule 1.73% 1.75% 1.74% 66.73%
EW+Znorm SVM 1.85% 2.00% 1.93% 63.10%
DF+Znorm SVM 1.53% 1.50% 1.51% 71.13%

Table 4.3: Voice+Face verification error rates and relative error reduction with respect
to the HTER of face verification (Table 4.2) obtained by linearly combining the means
of intramodal fused scores and by polynomial SVMs. The combination weight β in
Eq. 4.12 was set to 0.7. EW and DF stand for equal-weight and data-dependent
intramodal fusion, respectively.
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Figure 4.5: DET plots showing the performance of the sum rule and SVMs in fusing
the audio and visual scores. EW stands for equal-weight intramodal fusion and DF
stands for data-dependent intramodal fusion. EW+Znorm means that Z-norm was
performed on the mean fused scores of equal-weight intramodal fusion. A similar
definition applies to DF+Znorm.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work has investigated several fusion techniques for biometric authentication.

Most of today’s fusion techniques focus on combining the information from different

experts. However, combining information from a single expert is also worth studying.

To this end, this work proposed a new fusion approach that combines the scores of a

speaker verification system in an attempt to improve its performance. Traditionally,

the scores of multiple samples are averaged and the average score is compared against

a threshold for decision making. The average score, however, may not be optimal

because the score distribution is ignored. To addresses this limitation, a new fusion

model was proposed; the model incorporates the score distribution by making the

fusion weights dependent on the dispersion between the frame-based scores and the

prior score statistics obtained from training data. Because the fusion weights depend

on verification data, the positions of scores in the score sequences are detrimental to

the final fused scores. Therefore, a score sorting method was introduced to enhance

the fusion model. Besides sorting the verification scores, adaptation of prior scores was

also applied. During verification, the prior score is adapted based on the likelihood
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of the claimant being an impostor. The fusion model was evaluated on a speaker

verification task using a GSM-transcoded corpus and the NIST2001 evaluation set.

Experimental results show that the proposed fusion approaches improve the system

performance significantly.

Build on the success of the data-dependent fusion model, this work extended the

modal to audio-visual biometric authentication. The technique is different from the

conventional ones in that it divides the fusion process into two stages. In the first

stage, the method assigns a larger weight to the more reliable scores in a frame-by-

frame basis. This weight assignment process is performed on the audio and visual

modalities independently. In the second stage, the weighted sum of the frame-based

scores from the audio and visual modalities are further fused by either the sum rule

or a support vector machine. The proposed technique is general and is applicable

to multimodal biometric systems. This is evident by the encouraging experimental

results based on the XM2VTSDB corpus.

5.2 Future Work

The data-dependent decision fusion uses prior score statistics to compute intramodal

fusion weights without taking the type of sound into account. Knowing the type

of sound, however, may lead to a new dimension of determining the fusion weights.

For example, we may make use of the fact that certain sounds (e.g., high-energy

nasals and vowels) contain more speaker-dependent information than the others and

assign larger weights to these sounds accordingly [77, 78]. In such case, the frame-

based fusion weights become phoneme-based fusion weights. Another possibility is to

weight individual frames according to their degree of voicing, i.e., assign large weights

to those frames with a high degree of voicing. The degree of voicing can be easily

obtained from the pitch gain parameter of a code-excited linear predictive encoder
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[79]. The reliability of individual frames can also be obtained from the posterior

probability of observing a particular articulatory feature [80]. In this approach, a

high probability of observing an articulatory features suggests that the corresponding

frames contain significant speaker-dependent information.

The performance of face-based verification systems is affected by the accuracy of

face detection. Therefore, the scores obtained from a face detector can also be used

to determine fusion weights.
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Appendix A

The mean fused score can only be proved to be probabilistically larger than the mean

scores of the two utterances. Below is a proof:

The mean fused score is given by
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According to Figure 3.5(a), when s
(1)
t > s
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t will be larger than 0.5.
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similar proof can be applied to the cases where smaller scores are emphasized.

By Condition A-2, the probability of emphasizing large scores is larger than the

probability of emphasizing small scores. This leads to
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As a result, we have

P (s(U ; Λ) > µ) > P (s(U ; Λ) < µ). ∵ Eq. A.1


