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Abstract 

Recently, a technique known as self-similar analysis has been utilized to study 

linearly chirped pulses in optical fibers and fiber amplifiers. The self-similar 

pulses have attracted much attention since the linear chirp facilitates efficient 

pulse compression. In addition, these pulses can propagate without pulse break-up 

at high powers. However, because of the relatively small dispersion of optical 

fibers, this scheme requires long fiber lengths, and only a few dispersion profiles 

are practically feasible. A more attractive solution consists of pulse compression 

in a highly dispersive nonlinear medium such as a fiber Bragg grating (FBG). 

Grating dispersion just outside the stop band is up to six orders of magnitude 

larger than that of silica fiber and can be tailored simply by changing the grating 

profile. This potential suggests utilizing this huge dispersion to construct a short 

compressor. 

   Through the self-similar analysis, we have theoretically investigated the linearly 

chirped Bragg soliton near the photonic bandgap (PBG) structure of FBG. 

Efficient Bragg soliton compression can be achieved with the exponentially 

decreasing dispersion. The stepwise approximation of exponentially decreasing 

dispersion is carried out by concatenation of grating segments with constant 

dispersion. For the proposed compression scheme, the input pulse must be pre-

chirped in a prescribed manner, and a simple pre-chirper, such as a linear fiber or 

grating, is used to add the required chirp profile to initial chirp-free hyperbolic 

secant or Gaussian pulse. The comparisons between nonlinear Schrödinger (NLS) 

equation, pulse parameter evolution equations, and nonlinear coupled-mode 

equations are given.  

   Higher order nonlinearities must be considered if the optical pulse intensity is 
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high or the nonlinear coefficients of the materials are large, for instance, in 

semiconductor doped glasses. Therefore, we have investigated the existence of 

chirped solitary wave solutions in the cubic-quintic nonlinear media with 

exponentially decreasing dispersion. We numerically show that competing cubic 

and quintic nonlinearities stabilize the chirped solitary wave propagation against 

perturbations of initial pulse parameters. In addition, we studied the possibility of 

rapid compression of Townes solitons by the collapse phenomenon in the 

exponentially decreasing dispersion. We also found that the collapse could be 

postponed if the dispersion increases exponentially.  
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Chapter 1 

Introduction 

Optical phenomena have been attracting increasing attention in view of their 

potential capability to handle a large volume of information, for acquisition, 

transmission, processing, storage and display of data [1]. The explosive 

developments which have been taking place in information technology would not 

be possible without optics. The naming of “photonics”, is similar to the naming of 

“electronics”. However, “photonics” straddles the border between optics and 

electronics to provide technology and infrastructure for global Internet and for 

mobile communications. 

   There is a general trend in modern society to generate and consume as much 

information as possible. Having more information, one has better chance to create 

new activities, which in turn demands more information. This positive feedback 

mechanism may be an underlying driver of information society. The high bit-rate 

transmission systems for the intercontinental submarine network reached nearly 1 

Tbit/s throughput [1]. Also new services for Internet and users create a strong 

demand for a high bit-rate metropolitan network supporting more than 100 Gbit/s 

throughput [1].  

    Consequently, among the variety of optical phenomena, the generation and 
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control of ultrashort optical pulses have attracted much attention. Besides the 

need of ultrashort pulse in telecommunication applications, ultrashort optical 

pulses are valuable tools when experimentalists require femtosecond and 

picosecond time resolution, high peak powers, or large optical bandwidths [2]. As 

a result, short pulse optical sources are becoming a key technology. Because of 

the high time resolution (femtosecond), short pulse has been used in ultrafast 

spectroscopy, physical and biological processes, femto-chemistry, high speed 

electric circuit testing and sampling of electrical signals. Because of the high 

spatial resolution (sub-micrometer), short pulse has been used in optical imaging, 

e.g. optical coherence tomography. Because of the high bandwidth (terahertz), 

short pulse has been used in communications. Because of the high intensity 

(terawatt to petawatt), short pulse has been used in nonlinear frequency 

conversion, laser material processing, surgery and high intensity physics. 

1.1    Pulse Compression Techniques 

Short pulses can be generated from many laser sources directly. Picosecond laser 

pulses were first producted in a passively mode-locked ruby laser [3] and a Nd: 

glass laser [4], respectively. However, pulses emitted from practical laser sources 

are often chirped. As an alternative, we can use pulse compression to reduce the 

pulse duration. There is variety of methods for temporally compressing optical 

pulses, i.e. to reduce the pulse duration. These methods can be grouped into two 

categories: linear pulse compression and nonlinear pulse compression.  

1.1.1   Linear Pulse Compression 

In linear pulse compression, the duration of chirped pulse can be reduced by 

removing (or at least reducing) the chirp, i.e. by flattening the spectral phase. De-

chirping can be accomplished by sending the pulse through an optical element 
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with a suitable amount of chromatic dispersion for the purpose of dispersion 

compensation, e.g. a grating compressor, a prism pair, an optical fiber, or a 

chirped mirror. The smallest possible pulse duration is then set by the optical 

bandwidth of the pulses, which is not modified by linear compression. In the ideal 

case, transform-limited pulses are obtained. 

   To see how such dispersion compensation can produce shorter pulses, we 

consider the propagation of chirped Gaussian pulse inside an optical fiber. In the 

case of chirped Gaussian pulses, the incident field can be written as  

( )
2

2
0

10, exp ,
2
iC tE t

T
⎛ ⎞+

= −⎜ ⎟
⎝ ⎠

                                                                           (1.1) 

where C is the chirp parameter, 0T  is the half-width (at 1/e intensity point) of  

input pulse. ( ),E z t  satisfies the following linear partial differential equation:  

2
2

2 ,
2

E Ei
z t

β∂ ∂
=

∂ ∂
                                                                                           (1.2) 

where z is the distance, t is the time, and 2β  is the group velocity dispersion 

(GVD) coefficient. 

Then we have 

( ) ( )
( )

2
0

22
0 2 20 2 2

1
, exp ,

2
iC tTE z t

T i z C zT i z C z β ββ β

⎡ ⎤+
⎢ ⎥= −

− +⎢ ⎥− + ⎣ ⎦
                          (1.3) 

Eq. (1.3) can be used to find the compression factor 0 /C pF T T=  as a function of 

propagation distance, where pT  is the pulse width parameter of the compressed 

Gaussian pulse. CF  can be given by     

( ) ( ){ } 1/ 22 2
21 sgn .CF Cξ β ξ ξ

−

⎡ ⎤= + +⎣ ⎦                                                                (1.4) 

The propagation distance / Dz Lξ =  is normalized to dispersion length 
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2
0 2/DL T β= [5]. Eq. (1.4) shows that a pulse can be compressed only if 

( )2sgn 0.Cβ <  This means that chirp cancellation occurs only if the initial chirp 

and group velocity dispersion (GVD) induced chirp are opposite. Positively 

chirped pulses ( 0)C >  require anomalous GVD for compression and vice versa 

[6]. 

   Eq. (1.4) also shows that the shortest pulse is obtained at a specific distance 

given by ( )2/ 1 .C Cξ = +  The maximum compression factor at the distance is  

fixed by the input chirp as 21 .CF C= +  This limit is easily understood by noting 

that spectrum of a chirped input pulse is broadened by a factor of  21 C+  

compared with that of an unchirped pulse [5]. In the time domain, the 

compression process can be visualized as follows [6]. Different frequency 

components of the pulse travel at different speeds in the presence of GVD. If the 

leading edge of the pulse is delayed by just the right amount to arrive nearly with 

the trailing edge, the output pulse is compressed. Positively chirped pulses 

(frequency increasing toward the trailing side) require anomalous GVD in order 

to slow down the red-shifted leading edge. By contrast, negatively chirped pulses 

require normal GVD to slow down the blue-shifted leading edge.  

   Early pulse-compression studies made use of both normal and anomalous GVD, 

depending on the technique through which frequency chirp was initially imposed 

on the pulse [6]. In the case of negatively chirped pulses, pulses were transmitted 

through liquids or gases such that they experienced normal GVD [7]. In the case 

of positively chirped pulses, a grating pair was found to be most suitable for 

providing anomalous GVD [8]. In these early experiments, pulse compression did 

not make use of any nonlinear optical effects, although the use of the nonlinear 
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process of self-phase modulation (SPM) for pulse compression was suggested as 

early as 1969 [9]. The experimental work on SPM-based pulse compression took 

off only during the 1980s when the use of single-mode silica fibers as a nonlinear 

medium became widespread [6].  

1.1.2   Nonlinear Pulse Compression 

Nonlinear pulse compression relies on the interaction of Kerr nonlinearity and 

quadratic dispersion. These techniques are inherently nonlinear and can generate 

an increased bandwidth, which is an effect that purely linear devices are incapable 

of doing [2]. This important property, in turn, allows for the compression of 

transform-limited pulses into shorter transformation-limited pulses [2]. Pulse 

compressors based on nonlinear fiber optics can be classified into two broad 

categories: grating fiber compressors and soliton-effect compressors. Grating 

fiber compressors are useful for compressing pulses in the visible and near-

infrared regions while soliton-effect compressors work typically in the range from 

1.3 to 1.6 μm [6]. The wavelength region near 1.3 μm offers special opportunities 

since both kinds of compressors can be combined to yield large compression 

factors by using dispersion-shifted fibers [6].  

   Grating fiber compressor, first proposed by Tomlinson et al. [10], a fiber with 

positive dispersion, imposes a nearly linear, positive chirp on a pulse through the 

combined effect of SPM and positive GVD. SPM occurring in the optical fiber 

generates new frequencies in the pulse spectrum, and simultaneously the GVD 

linearizes the chirp and squares the pulse. The linear chirp on the pulse can be 

compensated by another dispersive element with negative GVD, such as a grating 

pair or a prism pair, producing a nearly transform limited compressed pulse. This 

technique has been applied successfully in Ref. [11]. A severe limitation on the 
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performance of grating fiber compressors for ultrashort pulses 0( 50 fs)T <  is 

imposed by the grating pair that no longer acts as a quadratic compressor. For 

such short pulses, the third order dispersion effect becomes comparable to the 

second order dispersion effect. An ultimate limitation on the performance of 

grating fiber compressors is imposed by stimulated Raman scattering [12−15]. 

Even though the compression factor can be in theory increased by increasing the 

peak power of the incident pulse, it is limited in practice since the peak power 

must be kept below the Raman threshold to avoid the transfer of pulse energy to 

the Raman pulse. Furthermore, even if some energy loss is acceptable, the Raman 

pulse can interact with the pump pulse through cross-phase modulation and 

deform the linear nature of the frequency chirp. It is still possible to achieve large 

compression even in the Raman regime, but a significant part of the pulse remains 

uncompressed because of mutual interaction between the pump and Raman pulses. 

For highly energetic pulses, parametric processes such as four-wave mixing can 

suppress the Raman process to some extent, but they eventually limit the extent of 

pulse compression [16]. 

   Several pulse compression schemes based on soliton effect have been proposed. 

These schemes rely on the robust nature of optical solitons. Mollenauer et al. [17] 

reported the first experimental observation of higher-order soliton compressor, 

which consists simply of a single piece of fiber with negative dispersion, whose 

length is suitably chosen. A transform limited pulse with appropriate peak 

intensity, propagating in this fiber, is compressed through the interplay between 

SPM and GVD [17]. The compression is due to an initial narrowing phase that 

occurs during the evolution of a higher-order soliton, before the initial soliton 

shape is restored after one soliton period [18]. The degree of compression is quite 
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large but the compressed pulse is accompanied by a serious pedestal, leading to 

nonlinear interactions between neighboring solitons. Some techniques, such as 

residual pedestal nonlinear intensity discrimination technique [19, 20] can help to 

reduce the pedestals, but energy is wasted. 

   By varying the GVD along the direction of propagation in an optical fiber, 

Chernikov and Mamyshev have demonstrated the manipulation of a fundamental 

soliton resulting in adiabatic pulse compression [21]. Adiabatic pulse compressors 

typically use a dispersion profile with monotonically decreasing GVD along the 

propagation direction, and is formally equivalent to distributed amplification [21, 

22]. If the dispersion varies slowly enough, the soliton self-adjusts to maintain 

balance between GVD and nonlinearity, reducing its pulse width—hence the term 

adiabatic compression [2]. This compression scheme is attractive because it 

inherently maintains the transform-limited characteristics of the pulse as it 

compresses, resulting in a clean pulse and avoiding any requirement for bulk 

optics [2]. However, adiabatic condition must be satisfied, i.e. change must be 

gradual. Such compression has been demonstrated experimentally by a variety of 

schemes to achieve the effect of decreasing dispersion [23].  

   As Moores pointed out in Ref. [24], exact chirped-soliton solutions to the NLS 

equation exist when we have distributed gain ( ) ( )0 0/ 1g z g g z= −  or 

exponentially varying dispersion. One of the advantages of this compression 

scheme is that adiabatic condition does not need to be satisfied and rapid 

compression is possible. More recently, a technique known as self-similar 

analysis has been utilized to study linearly chirped pulses in optical fibers and 

fiber amplifiers [25−28]. The self-similar pulses have attracted much attention 

since the linear chirp facilitates efficient pulse compression. In addition, these 
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pulses can propagate without pulse break-up, called optical wave-breaking, even 

at high powers [29]. Krugolv et al. investigated the linearly chirped self-similar 

solitary waves in optical fiber amplifiers [26, 27]. Billet et al. generated the 

linearly chirped parabolic pulses experimentally and achieved efficient pulse 

compression by using a hollow-core photonic bandgap fiber [28]. Experimental 

demonstration of similariton pulse compression in a comblike dispersion-

decreasing fiber amplifier has been shown in Ref. [30]. However, because of the 

relatively small GVD of optical fibers, this scheme requires long fiber lengths, 

and only a few dispersion profiles are practically feasible. Moreover, fabrication 

of fibers with complex dispersion profiles usually involves splicing of several 

different fibers or drawing the fiber with an axially varying core diameter.  

1.2   Fiber Bragg Gratings as Pulse Compressor 

A more attractive solution consists of pulse compression in a highly dispersive 

nonlinear medium such as a fiber Bragg grating (FBG). Grating dispersion just 

outside the stop band is up to six orders of magnitude larger than that of silica 

fiber and can be tailored simply by changing the grating profile. Almost any 

grating profile can be manufactured using the state-of-the-art grating-writing 

techniques. This potential suggests utilizing the large dispersion to construct a 

compact compressor.  

   We study the linearly chirped self-similar Bragg solitary pulses near the 

photonic bandgap (PBG) structure theoretically. Efficient pulse compression can 

be achieved with the appropriate grating induced dispersions.  

1.2.1   Background 

Silica fibers can change their optical properties permanently when exposed to 

intense radiation from a laser operating in the blue or ultraviolet spectral region. 
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This photosensitive effect can be used to induce periodic changes in the refractive 

index along the fiber length, resulting in the formation of an intracore Bragg 

grating [6]. The changes in the refractive index of the fiber at a wavelength λ  

may be calculated from the observed changes in the absorption spectrum in the 

ultraviolet using the Kramers-Kronig relationship [31, 32], 

( )
( )

( )( )
( )

1

2

2

2 2 2

'1 ',
'2

in d
λ

λ

α λ λ
λ λ

λ λπ

Δ ⋅
Δ = Σ

−∫                                                               (1.5) 

where the summation is over discrete wavelength intervals around each of the i 

changes in measured absorption, .iα  

   Typically, index change nΔ  is 410−∼  in the 1.3- to 1.6-μm wavelength range, 

but can exceed 0.001 in fibers with high Ge concentration [33, 34]. However, 

standard telecommunication fibers rarely have more than 3% of Ge atoms in their 

core, resulting in relatively small index changes. The use of other dopants such as 

phosphorus, boron, and aluminum can enhance the photosensitivy (and the 

amount of index change) to some extent, but these dopants also tend to increase 

fiber losses [6]. It was discovered in the early 1990s that the amount of index 

change induced by ultraviolet absorption can be enhanced by two orders of 

magnitude ( )0.01nΔ >  by soaking the fiber in hydrogen gas at high pressures 

(200 atm) and room temperature [35].    

    A one-dimensional photonic crystal is considered, such as a Bragg grating, 

located in the core of a fiber, whose axis is in the z-direction. The linear refractive 

index is given by 

( ) ( ) ( ) ( )0
2cos ,n z n n z n z z zπδ ⎡ ⎤= + + Δ + Φ⎢ ⎥Λ⎣ ⎦

                                         (1.6) 

where 0n  is the refractive index of the fiber core, ( )n zδ  is the change in the 
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average refractive index, ( )n zΔ  is refractive index modulation depth, Λ  is the 

grating period, and ( )zΦ  is the phase that allows for grating period variations. 

For typical gratings in optical fiber, 0 1.5,n ∼  both ( )n zΔ  and ( )n zδ  can be as 

large as 0.01 in 2H  loaded fibers [36], and the period is usually of the order of 

0.5μmΛ∼ [36].  

   Uniform Bragg gratings are well understood. If the wavelength of the incident 

light is close to the resonant Bragg wavelength of the periodic grating structure 

then light will be strongly reflected. For a grating with a period ,Λ  the Bragg 

wavelength is 2 ,B nλ = Λ where 0 .n n nδ= +  The width λΔ  of the band of 

wavelengths that are strongly reflected by the grating, referred to as the photonic 

bandgap, is 

.
B

n
n

λ
λ
Δ Δ

≅                                                                                        (1.7) 

If the wavelength of the incident light lies within the PBG, the field envelopes in 

the grating are evanescent and light is mostly reflected, while outside the PBG, 

the fields are propagating waves and light is mostly transmitted. 

   In the grating with a uniform index modulation, spectral side lobes are present 

in the transmission spectrum for wavelengths outside the photonic band gap (i.e. 

in the passband). These side lobes are accompanied by distortion, in the form of 

ripple in the GVD of the grating [37]. They result from a mismatch in the 

effective index of the grating and the surrounding medium (i.e. bare fiber), and 

can be removed by allowing the index modulation to vanish smoothly at each end, 

a process known as apodization [38]. This technique is widely exploited in 

designing photonic components for wavelength division multiplexing applications 



 

 11

in which the out-of-band reflections are highly undesirable [39, 40]. Apodization 

is critical in the design and implementation of fiber grating-based pulse 

compressors. 

   Apodized gratings are just one example of nonuniform Bragg gratings in which 

one or more of the quantities, ( ) ,n zδ ( )n zΔ and ( )zΦ are slowly varying 

functions along the length of the grating. Figure 1.1 shows three examples of 

nonuniform gratings: Figure 1.1(a) represents a uniform grating with constant 

index modulation; Fig 1.1(b) represents a linearly tapered fiber grating with an 

index modulation that varies linearly along the length of the grating (constant 

average refractive index); and Fig 1.1(c) represents an apodized grating with the 

index modulation vanishing smoothly at each of the grating (constant average 

refractive index). Each point on the horizontal axis of the diagram corresponds to 

a particular point along the grating with a specific detuning. The shaded region 

corresponds to those frequencies that are strongly reflected, whereas the 

frequencies in the clear region are transmitted. 

   Gratings are often fabricated in photosensitive fiber using the phase mask 

scanning technique [39, 41, 42], in which an ultraviolet beam (with a wavelength 

of typically 242-248 nm) is scanned along the length of the phase mask. Gratings 

as long as 1 meter have been fabricated using this method [43]. Fabrication of 

apodized gratings, in which the grating amplitude varies along the length of 

grating, involves a two-step procedure [39]. First, an ultraviolet beam is varied as 

the beam is scanned along the length of phase mask. The intensity of the 

ultraviolet beam is varied as the beam is scanned along the axis of the fiber 

creating the modulated component of the grating. Second, the un- modulated 

component of the grating is then imprinted in the same manner without the phase 
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Figure 1.1: Schematic reflection band diagrams illustrating light propagation through Bragg 

gratings: (a) uniform Bragg gratings with constant index modulation, (b) linearly tapered fiber 

Bragg gratings with an index modulation that varies linearly along the length of the grating 

(constant average refractive index), and (c) apodized fiber Bragg gratings with the index 

modulation vanishing smoothly at each of the grating (constant average refractive index). The 

horizontal axis is positioned along the length of the grating and the vertical axis is detuning. 

The shaded region corresponds to those frequencies that are strongly reflected, whereas the 

frequencies in the clear region are transmitted. (After Ref. [2], © 2000 Taylor & Francis) 
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mask present. This two-step technique ensures that the average refractive index of 

the grating remains approximately constant along the length of the grating even 

though its strength changes, minimizing side lobes [2].   

  The frequency-domain coupled-mode equations are [6] 

  

� �

�

,

,

u i u i v
z

v i v i u
z

δ κ

δ κ

∂
= +

∂
∂

− = +
∂

�

� �
                                                                                          (1.8) 

where  � /u v�   is the fourier transform of  the forward/backward propagating wave, 

z is the distance, t is the time, δ is the frequency detuning, and κ is the coupling 

coefficient. One needs to consider the dispersion relation ( ) ,kω which is also the 

relationship between the frequency detuning parameter ( )1 Bδ β ω ω= −  with 1β  is 

the group delay per unit length, and the propagation constant ,Bk kβ = −  where 

ω  and k  are the optical frequency and the propagation wavenumber, respectively. 

A general solution of Eq. (1.8) takes the form  

� ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

exp exp ,

exp exp ,

u z A i z A i z

v z B i z B i z

β β

β β

= + −

= + −�                                                                 (1.9) 

where β  is to be determined. The constants 1,A 2 ,A 1,B  and 2B  are 

interdependent and satisfy the following four relations: 

( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

,       ,

,       .

A B B A

B A A B

β δ κ β δ κ

β δ κ β δ κ

− = + = −

− = + = −
                                                         (1.10) 

These equations are satisfied for nonzero values of 1,A 2 ,A 1,B  and 2B  if the 

possible values of β  obey the dispersion relation 

2 2 ,β δ κ= ± −                                                                                              (1.11) 

which is illustrated in Fig. 1.2, for both a uniform medium (dashed curve) and a 
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periodic medium (solid curve). Figure 1.2 shows that for frequencies in the range 

,κ δ κ− ≤ ≤ defining the PBG, no propagating solutions are allowed; this 

corresponds to the regions of high reflectivity. Light can propagate outside the 

region, which corresponds to the passband. 

   The effective propagation constant of the forward- and backward-propagating 

waves is .e Bβ β β= ±  The frequency dependence of eβ  indicates that a grating 

will exhibit dispersive effects even if it was fabricated in a nondispersive medium 

[6]. In optical fibers, grating induced dispersion adds to the material and 

waveguide dispersion, and the contribution of grating dominates among all 

sources responsible for dispersion. We expand eβ   in a Taylor series around the 

carrier frequency 0ω [6]: 

( ) ( ) ( ) ( )2 3
0 0 1 0 2 0 3

1 1 ...,
2 6eβ ω β ω ω β ω ω β ω ω β= + − + − + − +                    (1.12) 

where mβ  with  1,2,...m =  is defined as 

0 0

1 .
m

m m

m m m
g

d
v dω ω ω ω

β ββ
ω δ

= =

⎛ ⎞∂
= ≈ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

                                                                    (1.13) 

   The group velocity of the pulse inside the grating is 

2 2
11/ 1 / ,G gV vβ κ δ= = ± −                                                                              (1.14) 

where the choice of ±  signs depends on whether the pulse is moving forward or 

backward.  

   Second- and third-order dispersive properties of the grating are 

2 2
1

2 2 2 3/ 2

sgn( ) ,
( )

δ κ ββ
δ κ

−
=

−
 

2 3
1

3 2 2 5/ 2

3
.

( )
δ κ β

β
δ κ

=
−

                                                           (1.15) 

In the absence of the grating, light ropagates at the speed of light in the medium. 

In the presence of the grating, the group velocity vanishes at the band edge and 
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asymptotically approaches the speed of light in the medium far from the Bragg 

resonance. The reduction in the group velocity can be explained in terms of the 

multiple Fresnel reflections that occur at each of the individual grating rulings, 

resulting in additional path length [2]. The extreme variation in the group velocity 

over such a relatively small range of wavelengths (roughly equal to the bandwidth 

of the grating) leads to strong GVD [2]. 

 

Figure 1.2: Dispersion relation of a uniform Bragg grating. The vertical axis is the detuning 

parameter and the horizontal axis is the propagation constants. (After Ref. [2], © 2000 Taylor & 

Francis) 

   On the long-wavelength side of the band gap (δ κ< − ), the grating GVD is 

positive, and can be used to compensate for the negative dispersion effects which 

are caused by propagation in optical fiber at communication wavelength. [44]. On 

the short-wavelength side of the photonic band gap (δ κ> ), the grating GVD is 

negative and solitons are supported [45, 46].  

1.2.2   Dispersion of Fiber Bragg Gratings 

It is well known that Bragg gratings can exhibit strong dispersion when they are 

used in reflection [36, 37]. Typically, in such experiments the Bragg grating is 

linearly chirped, so different frequencies reflect at different positions in the 

grating. Because the grating acts essentially as a mirror that is located at a 

frequency-dependent positions in the grating, strong dispersion results, which is 

lbsc
Rectangle
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roughly six orders of magnitude larger than that of bare fiber. Indeed, in reflection, 

chirped fiber gratings have been shown to be able to compensate for the 

chromatic dispersion in long fiber links [47, 48]. 

   In 1991 Russell [49] pointed out that gratings also exhibit strong dispersion in 

transmission for frequencies close to the Bragg resonance. This dispersion, which 

does not rely on any chirp or other grating nonuniformity, is due to the strong 

frequency dependence of group velocity of light propagating through a grating. 

The strong dispersion happens close to the Bragg resonance, but not so close so as 

to be inside the PBG where the reflectivity is high. The resulting dispersion was 

recently used for the compensation of dispersion in a 72-km fiber link, leading to 

error-free transmission of a 10-Gbit signal [44]. 

   The first experimental observation of nonlinear propagation effects in FBGs, 

resulting in nonlinear optical pulse compression and soliton propagation, is 

reported in Ref. [45]. These solitons occur at frequencies near the PBG structure 

of the grating, and propagate at velocities well below the speed of light in the 

uniform medium. Adiabatic soliton compression in nonuniform grating structures 

has been proposed in Ref. [50]. The Adiabatic Bragg soliton compressor scheme 

is based on adiabatic soliton compression using a nonuniform grating in which the 

dispersion decreases along the grating. This technique has the advantage that it 

only requires one component (i.e. one grating) and produces a clean nearly 

transform limited pulse.  

   The scheme that we consider in this study, relies on self-similar pulse 

compression in nonlinear fiber Bragg gratings operating in transmission. The 

dispersion profile required to support self-similar solution is the exponentially 

decreasing dispersion profile. 
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To vary the dispersion along the propagation direction z, we can vary the 

period of the grating ,Λ  the average effective index n, or the grating modulation 

depth .nΔ  The Bragg frequency is directly related to the period and the average 

index through B
n
c

πω =
Λ

, so that varying the period or the average index will 

mainly vary δ (and, more weakly, κ ) [50]. By contrast, varying nΔ  will vary 

only κ [50]. The detuning has to be positive (δ > κ ) to yield anomalous 

dispersion and soliton effects. 

In summary, we use Table 1.1 to give a comparison between different 

nonlinear pulse compression schemes. 

1.3   Modelling 

Light propagation in optical fibers is governed by the nonlinear schrödinger (NLS) 

equation which is derived from the Maxwell’s equation [5] using the slowing 

varying envelope approximation.     

   The basic form of the NLS equation contains chromatic dispersion and Kerr 

effect. We can include higher-order dispersion and nonlinear effects by adding the 

appropriate terms in the NLS equation. Normally, for pulse width larger than 1ps, 

we can neglect higher-order dispersions, self-steepening, and intrapulse Raman 

scattering [15]. Split-step Fourier method [Appendix B] is used to solve NLS 

equation and cubic-quintic NLS equation, 

Nonlinear pulse propagation in FBGs is governed by the nonlinear coupled 

mode equations (NLCMEs) which describe the coupling between the forward and 

backward traveling modes in the FBGs [6]. When the center frequency of the 

pulse is being tuned outside but close to the PBG structure, one can apply the 

multiple scale analysis [6, 51, 52] to reduce the NLCMEs into the NLS equation. 
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We use implicit fourth-order Runge-Kutta method described in Ref. [53] to solve 

NLCMEs, and compare the results with that of the NLS approximation.  A brief 

introduction on the implicit fourth-order Runge-Kutta method is offered in 

Appendix G. 

   Besides numerical methods, an effective way to describe the pulse dynamics is 

the pulse parameter equations. With a suitable ansatz, one can derive a set of 

ordinary differential equations (ODEs) governing the evolution of the pulse 

parameters. Typically, a set of coupled ODEs has to be solved numerically by the 

Runge-Kutta method. Results can be obtained much faster by this semi-analytic 

method than full simulations. However, the pulse dynamics depend on the chosen 

ansatz. As we do not know the exact solution form, the results obtained from the 

pulse parameter equations are only approximations. 

1.4   Outline 

In this thesis, we study the compression of linearly chirped self-similar pulses. 

Efficient pulse compression can be achieved with appropriate induced dispersions, 

such as the exponentially decreasing dispersion.  

   Split-step Fourier method and implicit fourth-order Runge-Kutta method will be 

introduced in the Appendix B and G, respectively. In Chapter 2, we study the 

linearly chirped self-similar pulse compression in nonlinear fiber Bragg gratings 

(NFBGs) with exponentially decreasing dispersion in the NLS limit. We discuss 

the physical mechanisms that determine the evolution of the self-similar soliton. 

We demonstrate the stepwise approximation of the exponentially decreasing 

dispersion profile, and numerical simulation results confirm that the compressed 

pulse is nearly chirp-free and almost pedestal-free. We show that the number of 

concatenated sections is associated with the compression factor and initial chirp 
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value. A simple pre-chirper is used to add the required chirp profile to initial 

chirp-free hyperbolic secant pulse or Gaussian pulse. We have found that the 

initial Gaussian profile evolves into a hyperbolic secant profile after the 

compression in the NFBG. A comparison between NLS equation and pulse 

parameter evolution equations will be given. The NLS equation in Chapter 2 only 

considers the second order dispersion, while the generalized NLCMEs, which 

include all orders of dispersions, are more accurate in describing the pulse 

propagation in nonlinear gratings. Chapter 3 presents the simulation results of the 

NLCMEs. Chapter 4 considers the evolution of nonlinear optical pulses in the 

cubic-quintic nonlinear media wherein the pulse propagation is governed by the 

generalized NLS equation with exponentially varying dispersion, cubic and 

quintic nonlinearities, and gain/loss. From the stability analysis, we show that the 

solitary wave solution in the anomalous dispersion regime is stable whereas the 

solitary wave solution in the normal dispersion regime is unstable. Numerical 

simulations results show that competing cubic-quintic nonlinearities stabilize the 

chirped soliton pulse propagation against perturbations in the initial soliton pulse 

parameters. Finally we conclude the thesis and discuss the future work in Chapter 

5. 
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Table 1.1: Comparison between different nonlinear pulse compression schemes. 
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Chapter 2 

Pulse Compression in Nonlinear 

Fiber Bragg Gratings in the NLS 

Limit 

We demonstrate almost chirp-free and pedestal-free optical pulse compression in 

NFBGs with exponentially decreasing dispersion. The exponential dispersion 

profile can be well approximated by a few gratings with different constant 

dispersions. In Section 2.1.1, we investigate pedestal-free Bragg soliton pulse 

compression near the photonic bandgap structure using self-similar analysis. We 

discuss the physical mechanisms that determine the evolution of the self-similar 

soliton in Section 2.1.2 and pulse parameter evolution equations in Section 2.1.3. 

To check the possibility of soliton pulse propagation of the variable coefficient 

NLS equation, we apply the well known Painlevé analysis in Section 2.1.4. We 

present the essential steps for deriving the exact soliton solution of the variable 

coefficient NLS equation using the Bäcklund transformation method in Section 

2.1.5. Section 2.2 demonstrates the stepwise approximation of the exponentially 

decreasing dispersion profile, and numerical simulation results confirm that the 
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compressed pulse is nearly chirp-free and almost pedestal-free. We show that the 

required number of sections is proportional to the compression ratio, but inversely 

proportional to the initial chirp value. Section 2.3 proposes a compact pulse 

compression scheme, which consists of a linear grating and a nonlinear grating, to 

effectively compress both hyperbolic secant and Gaussian shaped pulses. We 

have found that the initial Gaussian profile evolves into a hyperbolic secant 

profile after the compression in the NFBG. The comparison between simulation 

of the NLS equation and pulse parameter evolution equations will be given. 

2.1   Compression of Chirped Optical Pulses 

2.1.1   Self-Similar Analysis  

Nonlinear pulse propagation in FBGs is governed by the nonlinear coupled mode 

equations which describe the coupling between the forward and backward 

traveling modes in the FBGs [6]. When the center frequency of the pulse is being 

tuned outside but close to the PBG structure, one can apply the multiple scale 

analysis [6, 51, 52] to reduce the NLCMEs into a NLS-type equation as 

2
22

2

( ) 0,
2 g

zE Ei E E
z t

β γ∂ ∂
− + =

∂ ∂
                                                                        (2.1) 

where ( ),E z t  is the envelope of the Bloch wave associated with the grating, z is 

the distance variable, t  is the time variable, 2 ( )zβ   represents the dispersion of the 

grating, and gγ  is the effective nonlinear coefficient. For Eq. (2.1), adiabatic 

Bragg soliton pulse compression has been discussed wherein the maximum 

compression factor of 4 was achieved [50, 52] and the pedestal generated is very 

small [50]. Later, using perturbation theory, Tsoy and Sterke [54, 55] have 

investigated the pulse compression based on the perturbed NLS equation in 

NFBG. Contrary to the above pulse compression studies, recently, Rosenthal et al. 
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have proposed the pulse compression based on the reflected pulse in NFBG [56] 

and Bragg soliton pulse compression based on in-gap soliton [57]. 

   More recently, the self-similar analysis has been utilized to investigate linearly 

chirped pulses in optical fibers and fiber amplifiers [25−28]. Self-similarity is a 

common phenomenon in nature. Common objects such as tree branches, 

snowflakes, clouds, rivers, or shorelines look similar at a wide range of 

magnification scales. An object is said to be self-similar if it looks roughly the 

same on any scale.  Thus, self-similarity is defined as the property whereby an 

object or a mathematical function preserves its structure when multiplied by a 

certain scale factor [58]. Self-similarity however is more than a curiosity of nature. 

Theoretical studies based on the self-similarity analysis of the NLS equation with 

constant gain, have revealed that the interplay of normal dispersion, nonlinearity, 

and gain produces a linearly chirped pulse with a parabolic intensity profile which 

resists the deleterious effects of optical wave-breaking [25]. Asymptotic self-

similar solitary pulses have been investigated using NLS-type equations in the 

presence of gain [26]. Chirped solitary pulse compression has been demonstrated 

in these optical amplifiers. In the following, we use self-similar analysis to show 

that it is possible to achieve pedestal-free compression with maximum 

compression factor beyond the limit obtained by the adiabatic compression 

process. Eq. (2.1) has the well known soliton solutions when the dispersion and 

nonlinearity are constant.  We are concerned here, however, with solutions 

characterized by a linear chirp. The complex function ( ),E z t  can be written as 

( ) ( ) ( ), , exp , ,E z t U z t i z t⎡ ⎤= Φ⎣ ⎦                                                                          (2.2) 

where U  and Φ  are real functions of z and t. In general case when the 

coefficients of the NLS equation are functions of the distance z, the amplitude  
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( ),U z t  of the self-similar solutions has the form: 

( )
( )

( )1, ,U z t R
z

θ=
Γ

                                                                       (2.3) 

where the scaling variable θ  is 

( )
.ct T

z
θ −

=
Γ

                                                                                                 (2.4) 

Energy is conserved by the definition of the amplitude shown in Eq. (2.3) and Eq. 

(2.4). Here ( )zΓ  and ( )R θ  are some functions which we seek, where without 

loss of generality we can assume that ( )0 1.Γ =  

   Below we look for self-similar solutions of Eq. (2.1) assuming that the phase 

has a quadratic form: 

( ) ( ) ( ) ( )22
1, .

2 c

z
z t z t T

α
αΦ = + −                                               (2.5) 

Equations (2.1) – (2.5) yield the function ( )2 zα  and ( )zΓ  as: 

( ) ( )
20

2
20

,
1

z
D z

αα
α

=
−

( ) ( )201 ,z D zαΓ = −                                         (2.6) 

where the function ( )D z  is: 

( ) ( )20
' '. 

z
D z z dzβ= ∫                                                                 (2.7)  

The self-similar solution is possible if and only if the dispersion varies 

exponentially, i.e.  

( ) ( )2 20 20 20exp , .z zβ β σ σ α β= − =                                 (2.8) 

The function ( )R θ  obeys the nonlinear differential equation  

( )
( )

( ) ( )
( )

22
31

2
2 2

2 2
0.

z z zdd R R R
d z dz z

γα
θ β β

Γ Γ
+ − =                                      (2.9) 
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In the general case the coefficient in Eq. (2.9) is a function of the variable z but 

the function ( )R θ  depends only on the scaling variable .θ  Therefore, Eq. (2.9) 

has nontrivial solution if and only if the coefficients of Eq. (2.9) are constants. 

( )
( )

2
1

1
2

2
,

z d
z dz

αλ
β
Γ

= −                                                                       (2.10) 

( ) ( )
( )2

2

.
z z

z
γ

λ
β

Γ
= −                                                            (2.11)    

Equation (2.11) yields 

( ) ( )
( )

21
1 10 20

20

'
',

2 1 '

z z
z dz

D z

βλα α
α

= −
⎡ ⎤−⎣ ⎦

∫                                                       (2.12) 

where 1λ  is the integration constant. The coefficient 2λ  is given by  

2 20/ .gλ γ β= −   

   Integrating Eq. (2.9) for the case 2 0gβ γ <  and using Eq. (2.3), we find the 

amplitude of the solitary wave solution: 

( ) ( ) ( )
2

0 20 0 20

( ) 1, sech ,
1 1

c

g

z t TU z t
T D z T D z

β
γ α α

⎧ ⎫−⎪ ⎪= ⎨ ⎬
− −⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

                 (2.13) 

where the integration constant 1λ   is equal to 2
01/T , and 0T  is the initial pulse 

width parameter. 

   Finally, the chirped bright solitary wave is given by 

( ) ( ) ( ) ( ) ( ) ( )22 2
1

0 20 0 20

( ) 1, sech exp ,
21 1

c
c

g

z zt TE z t i z i t T
T D z T D z

β α
α

γ α α

⎧ ⎫ ⎡ ⎤−⎪ ⎪= + −⎨ ⎬ ⎢ ⎥− −⎡ ⎤ ⎡ ⎤ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
                                     

                                                                                                                          (2.14)                                  
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Note that the FWHM of the pulse is given by 01.76 .T  Equations (2.8) and (2.14) 

are the key results of this work which state that efficient pedestal-free Bragg 

soliton pulse compression is possible using NFBG with an exponentially 

decreasing dispersion profile. Since the pulse width parameter is given by 

( ) ( )0 exp ,T z T zσ= −  the pulse compression ratio is ( ) ( )0 / expT T z zσ=  which is 

the same as the ratio of the initial dispersion to the final dispersion. We note that 

while the chirp parameter increases exponentially ( ) ( )2 20 exp ,z zα α σ=  the 

normalized chirp value decreases exponentially 

( ) ( ) ( ) ( )2 2
2 20 0 exp .C z z T z T zα α σ= = −  Thus as the self-similar soliton 

compresses, the normalized chirp decreases. Consequently, the time-bandwidth 

product approaches 0.315, which is the value for transform-limited hyperbolic 

secant pulses. Figure 2.1(a), (b) and (c) show the evolution of pulse shapes, 

optical spectra, and time-bandwidth product of the compression of a self-similar 

soliton in which the initial pulse parameters are 0 10 psT = and 

2
20 0.01 THz ,α = − respectively. The nonlinear grating has an exponentially 

decreasing profile with ( ) ( )2 20 expz zβ β σ= −  where initial dispersion 

value 2
20 33 ps /cmβ = −  [2] and the dispersion decay rate 0.33 /cm.σ = The 

nonlinear coefficient of the grating 15 / W / km.gγ =  The time-bandwidth product 

decreases from 0.761 to 0.316 after the soliton travels 12 cm of the nonlinear 

grating. 

2.1.2   Evolution of the Self-Similar Soliton 

In this section, we will study how the physical mechanisms determine the 

evolution of the self-similar soliton of Eq. (2.14) as the grating and pulse 
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(a) 

 

(b) 

 

(c) 

Figure 2.1:  Evolution of  (a) pulse shapes, (b) spectra and (c) time-bandwidth product of a 

chirped self-similar soliton.  The initial pulse parameters are T0 = 10 ps and α20 = −0.01 THz2. 

The grating parameters are β20 = −33 ps2/cm, σ  = 0.33 /cm, γg = 15 /W/km, and L = 12 cm. 
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parameters vary. Since the soliton is chirped, the soliton evolution depends on the 

interaction between the pulse chirp and the grating dispersion and also between 

the grating dispersion and the nonlinearity. The effect of dispersion and 

nonlinearity can be measured by the distance-dependent dispersion length and 

nonlinear length which are defined respectively as ( ) ( ) ( )2
2/DL z T z zβ=  and 

( ) ( ) ( )1/ /N gL z z P zγ=  where ( )P z  is the peak intensity of the optical pulse. 

The dispersion length is defined for a chirp-free pulse. To account for the effect 

of the pulse chirp, we define a chirp length in analogy to the dispersion length 

as ( ) ( ) ( ) ( )2
2/ / .CL z T z C z zβ=  For a linear medium governed by GVD only, 

the dispersion length and the chirp length completely characterize the evolution of 

a chirped pulse. For the self-similar soliton in Eq. (2.14), we have 

( ) ( ).D NL z L z=  We also find that the chirp length 1/CL σ=  which is 

the characteristic length of the exponentially varying dispersion. Thus the self-

similar soliton evolves in such a way that the dispersion length always equals the 

nonlinear length while the chirp length remains constant.    

   The evolution of the self-similar soliton depends on the relative strength of the 

chirp length and the dispersion length.  For the ease of discussion, we assume in 

the following that the dispersion is exponentially decreasing, i.e. σ > 0. Since the 

nonlinear length or dispersion length is exponentially decreasing, even if the 

effect of chirp dominates initially, i.e. N CL L�  at 0,z =  the nonlinear effect will 

eventually become dominant as the distance becomes very large, i.e. N CL L�  as 

.z → ∞  When the effect of chirp is large, the self-similar soliton evolves quasi-

linearly. The compression of the soliton is mainly due to the unwinding of the 

pulse chirp by the grating dispersion. When the effect of chirp is small, the soliton 
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evolves nonlinearly. The soliton compression is mainly due to the interplay 

between the dispersion effect and the self-phase modulation. Thus the physical 

mechanism governing the compression of the self-similar soliton depends on the 

initial grating parameters. Note that the initial soliton chirp coefficient 

20 20/ ,α σ β=  where 20 /β σ  is the total dispersion of the FBG with infinite length. 

The total dispersion of FBG with length L is ( ) ( ) ( )20 / 1 exp .S L Lβ σ σ= − −⎡ ⎤⎣ ⎦  

Thus if N CL L�  at z = 0, the soliton will evolve quasi-linearly in the beginning 

of the grating, then evolve according to a combination of linear and nonlinear 

effects around intermediate distance, and finally, nonlinearly for large value of z. 

If N CL L∼  or N CL L�  at 0z = , we will only observe part of the transition from 

quasi-linear evolution to nonlinear evolution. To demonstrate that the soliton 

evolves quasi-linearly when ,N CL L�  we consider a distance 0z  such that 

0/ ( ) 1.C DL L zε = �  We then normalize Eq. (2.1) as  

( ) ( ) 2
220

2

sgn
0,

2
fU Ui U U

β ζ
ζ τ

∂ ∂
− + =

∂ ∂
                                                      (2.15) 

where 
0

/ ,Dz Lζ = ( ) 0/ct T Tτ = −  and 
0g NU E Lγ=  are the normalized space, 

time and electric field, respectively. The parameters 
0DL  and 

0NL are the 

dispersion length and nonlinear length at 0.z z= The function 

( ) ( ) ( )2 20/ exp /f zζ β β ζ ε= = −  is a rapidly varying function of .ζ  We also 

note that the quadratic phase in Eq. (2.14) in the normalized variable is given by   

( ) ( ) 2exp / / 2 /φ η ζ ζ ε τ ε= +  where ( ) ( )1 0 .DLη ζ α ζ=  Thus the quadratic phase 

of the soliton is a large and rapidly varying function of .ζ  We use the multiple 

length scale expansion to determine the evolution of the soliton under a rapidly 
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varying dispersion and large and rapidly varying chirp. We introduce the fast and 

slow space and time variables 

1 1

2 2

/ ,  / ,
,      ,

ζ ζ ε τ τ ε
ζ ζ τ τ

= =
= =

                                                                                     (2.16) 

where the subscript ‘1’ and ‘2’ represent the fast and slow variables, respectively. 

The normalized pulse is now a function of both the fast and slow variables, i.e. 

( )1 2 1 2, , , .U ζ ζ τ τ  We then expand the normalized electric field  ( )1 2 1 2, , ,U ζ ζ τ τ  in 

terms of the small parameter ε  as 

( ) ( ) ( ) ( )(0) (1) 2 (2)
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , , , , , , , ...U U U Uζ ζ τ τ ζ ζ τ τ ε ζ ζ τ τ ε ζ ζ τ τ= + + +

                                                                                                                (2.17) 

 where  ( )( )
1 2 1 2, , , ,jU ζ ζ τ τ  0,1,2,j = ∞"  is the j-th order expansion of 

( )1 2 1 2, , , .U ζ ζ τ τ  

Finally, substitution of Eqs. (2.16) and (2.17) into Eq. (2.15) and at order 1/ ,ε  we 

obtain 

( ) ( )
(0) 2 (0)

20 1 2
1 1

1 sgn exp 0,
2

V Vi β ζ
ζ τ

∂ ∂
− − =

∂ ∂
                                                   (2.18) 

where we further assume a separation of variables 

( ) ( ) ( )(0) (0) (0)
1 2 1 2 1 1 2 2, , , ,  ,U V Wζ ζ τ τ ζ τ ζ τ=  because the coefficient in Eq. (2.18) 

depends on the fast variables only. Thus from Eq. (2.18), when 

( )0/ 1,C NL L zε = �  the fast behavior of the soliton is governed by the grating 

dispersion only.  The nonlinear effect affects the soliton evolution at slow space 

and time scales. The above analysis demonstrate that the self-similar chirped 

soliton evolves quasi-linearly when .N CL L�  As an example, Fig. 2.2(a) shows 

the evolution of the FWHM of the chirped hyperbolic secant pulse in which 

0 80 psT =  and 2
20 0.01 THz .α = −  The grating parameters are 2

20 33 ps /cm,β = −  
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L = 6 cm and σ = 0.33/cm. The dots and solid curve represent the evolution of 

FWHM with and without the nonlinearity respectively. Initially at 0,z =  

194 cm, DL ∼ 3 cm,CL ∼ 0.0156.ε ∼ At grating length of 6 cm, 

26.8 cm,DL ∼ 3 cm,CL ∼ 0.11.ε ∼  We observe that the evolution of the FWHM 

of the soliton shown in Fig. 2.2(a) is well approximated by the linear evolution. 

Figure 2.2(b) plots the evolution of FWHM of an initial chirp free hyperbolic 

secant pulse with the same parameters as the chirped soliton in Fig. 2.2(a) except 

that 20 0.α =  The dots and solid curve represent the evolution of FWHM with and 

without the nonlinearity respectively. We observe that the pulse width does not 

vary significantly and the linear evolution does not agree the nonlinear evolution 

at all. Thus demonstrating the importance of the chirp in the self-similar soliton 

evolution. 

   Finally if N CL L�  at 0,z =  then grating dispersion ( )2 20( ) expz zβ β σ= −  

varies slowly and the normalized chirp ( )0( ) expC z C zσ= −  is very small. Hence 

in the distance on the order of ,NL  the pulse evolution is governed mainly by the 

interaction between the dispersion and the nonlinearity. The chirp affects the 

pulse evolution only at distance on the order of .CL  

2.1.3   Pulse Parameter Evolution Equations 

Equation (2.14) is the exact soliton solution to Eq. (2.1). To determine the pulse 

compression when the grating dispersion profile is not exponential varying or the 

initial pulse deviates from the self-similar soliton solution, we can either 

numerically simulate Eq. (2.1) or use semi-analytical techniques such as the 

Lagrangian variational method (LVM) [59] or the projection operator method 

(POM) [60, 61] to derive the equations governing the evolution of the pulse 
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                                                                      (a) 

 

                                                                        (b) 

Figure 2.2: Evolution of the FWHM of (a) chirped hyperbolic secant pulse 

( 0 80 ps,T = 2

20 0.01 THzα = − ) and (b) unchirped hyperbolic secant pulse 

( 0 80 psT = , 20 0α = ) in exponentially decreasing dispersion ( 2

20 33 ps /cm,β = − σ = 0.33 /cm). 

The dots and solid curve represent the evolution with nonlinearity ( 15 / W/ kmgγ = ) and 

without nonlinearity, respectively.  
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parameters.  In both the LVM and the POM, the success of the approximation 

depends on the ansatz chosen. For the NLS-type equation like Eq. (2.1), both 

hyperbolic secant pulse shape [Eq. (2.19)] and Gaussian pulse shape [Eq. (2.20)] 

with a quadratic phase variation are common ansatz, i.e.  

2
3

1 4
2

sech exp ,
2

ix ttE x ix
x

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
                                                       (2.19) 

22
3

1 42
2

exp ,
2

ix ttE x ix
x

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
                                                           (2.20) 

where ( ) ,ix z  i = 1, 2, …, 4 are the amplitude, pulse width, chirp, and phase of the 

optical pulse. Equations (2.21) give the equations governing the evolution of the 

pulse parameters generated by the LVM and the POM using the hyperbolic secant 

pulse and Gaussian pulse ansatz. The coefficients ci, i = 1,2,3,4 are constants 

indepent of the distance z but depend on the reduction method and the ansatz used. 

In other words, the pulse parameters equations resulting from the two reduction 

methods and two different pulse ansatz have the same function form. Only some 

of the coefficients in the equations are different.                                 

( )

( )

( )

( )

1
2 1 3

2
2 2 3

2
123

2 3 1 24 2
2 2

2 24
3 4 12

2

1 ,
2

,

1 ,

.

g

g

dx z x x
dz
dx z x x
dz

xdx z x c c
dz x x

zdx c c x
dz x

β

β

γ
β

β
γ

=

= −

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

= +

                                               (2.21) 

Table 2.1 lists the values of the constant ci’s for different combinations of the 

reduction methods and ansatz used. 

Table 2.1: The values of the constants ci in Eq. (2.21).  LVM stands for Lagrangian variational 
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method and POM stands for the projection operator method. 

Method Ansatz c1 c2 c3 c4 

LVM hyperbolic 

secant 2

4
π

 2

4
π

 1
3

 5
6

 

POM hyperbolic 

secant 4

30
π

 4

30
π

 
2

1 5
6 4π

⎛ ⎞+⎜ ⎟
⎝ ⎠ 2

2 5
3 4π

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

LVM/POM Gaussian 4  2  1  5
4 2

 

 

   For ansatz like Gaussian which has an inherent symmetric property between the 

pulse parameters will result the same set of ODEs derived either from the LVM or 

POM. But for ansatz like hyperbolic secant, which lacks this kind of symmetric 

property between the pulse parameters, one needs to derive both sets of ODEs to 

study their dynamics [62]. 

   In general, the solutions to the pulse parameter equations are only the “best” 

approximation to the solution of the original equations under the assumption of 

the ansatz and the reduction method used. However, if the functional form of the 

ansatz coincides with that of the exact solution, as in the case of the ansatz Eq. 

(2.19) to Eq. (2.20), then the pulse parameter equations will yield the exact 

solution to the original equations. Using the LVM and the hyperbolic secant pulse 

as ansatz, the first three equations in Eq. (2.21) can be written as 

( )

( )

( ) ( ) ( )

1 1

2 2

3 3
2 2

2

,
2

,

4 1 1 ,

C

C

C D N

dx x
dz L z
dx x
dz L z

dx x
dz L z x L z L zπ

=

= −

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

                                  (2.22) 

where ( ) ( )3 21/ ,CL z x β= ( ) 2
2 2/DL z x β= −  and ( ) ( )2

11/N gL z xγ=  represent the 
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chirp, dispersion and nonlinear lengths, respectively. Equation (2.22) can be 

solved readily if we assume ( ) ( ) ,D NL z L z=  i.e. the well-known condition in 

which the dispersion length equals to the nonlinear length. The solutions are 

( ) ( ) ( )1 1 0

10 exp 1/ ' ' ,
2

z

Cx z x L z dz⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ( ) ( ) ( )( )2 2 0

0 exp 1/ ' ' ,
z

Cx z x L z dz= −∫  and 

( ) ( ) ( )( )3 3 0
0 exp 1/ ' ' .

z

Cx z x L z dz= ∫ It is then necessary to substitute ( )1 ,x z  

( )2x z  and ( )3x z  into the condition ( ) ( )D NL z L z=  to check for consistency. 

There are two possibilities for the parameter CL  that needed to be treated 

separately. First, we consider ,CL → ∞  i.e. 3 2 0,x β = which means ( )3 0x z =  

since ( ) 0.zβ ≠ In this case, 1,x  2x  and 3x  are independent of z. The condition 

( ) ( )D NL z L z=  means that ( )2 20zβ β=  is a constant and the parameters 1x  

and 2x  satisfy the condition ( )2 2
2 20 1/ 1/ .gx xβ γ− =  In other words, we obtain the 

conventional soliton solutions of the NLS equation with the constant dispersion. 

Next, we consider the case when CL  is finite. Thus 

( ) ( ) ( ) ( )( )2 3 0
1/ 0 / exp 1/ ' ' .

z

C Cz x L z L z dzβ ⎡ ⎤= −⎣ ⎦ ∫ The condition ( )DL z =  ( ) ,NL z  

which becomes ( ) ( ) ( ) ( )2 2
2 3 10 0 1/ 0 ,C gx x L z xγ⎡ ⎤− = ⎣ ⎦  can be satisfied if and only 

if CL  is a constant independent of z. As a result ( )1 ,x z  ( )2 ,x z ( )3x z  and ( )2 zβ  

vary exponentially with distance z which is the chirped soliton solution of NLS 

equation with exponentially varying dispersion. In summary, we observe that the 

soliton solutions to the NLS equation with the constant dispersion and 

exponentially varying dispersion share the same characteristics; both of them 

evolve such that the dispersion length equals to the nonlinear length and the chirp 
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length remains unchanged.   

   In the following, we will use the pulse parameter equations [Eq. (2.21)] as well 

as numerical simulation [Eq. (2.1)] to study the self-similar optical pulse 

compression.  

2.1.4   Painlevé Analysis 

To check the possibility of soliton pulse propagation of Eq. (2.1), we apply the 

well known Painlevé analysis. The Painlevé analysis implies that the dispersion 

must vary in an exponential manner (or the dispersion should be constant) for the 

system equation (2.1) to be completely integrable (for details refer Appendix H). 

That is, soliton solution is possible if the dispersion varies exponentially as 

2 20( ) exp( ),z zβ β σ= −                                                         (2.23) 

where 20β  and σ  are integration constants. It should be emphasized that the 

exponential scaling (for the dispersion profile), obtained here by Painlevé analysis, 

is the same as that obtained through self-similar analysis [26]. The integrable 

form of Eq. (2.1) can be written as (with 20 20σ α β= ) 

220 20 20exp( ) 0.
2z tt g

ziE E E Eβ α β γ−
− + =                               (2.24) 

We would like to point out a conjecture regarding the resonance values derived in 

the Painlevé analysis. The resonances r = −1, 0, 3, 4 obtained here for the variable 

coefficient NLS equation [Eq. (2.1)] are the same as those for the constant 

coefficient NLS equation. Past experience has shown that such coincidences 

usually imply that the newly derived integrable nonlinear evolution equation 

could be connected to existing systems of equations [63]. This is in fact true and 

there is a connection between the variable coefficient NLS equation shown by Eq. 

(2.24) and the conventional NLS equation. We consider the gauge transformation  
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2
20exp( / 4);E Q i Tα= 20 20exp( / 2),t T zα β= −                            (2.25)            

which maps the exponentially varying dispersion NLS equation [Eq. (2.24)] into 

the following variable coefficient NLS equation: 

2 2 220 20 20
20 20 0.

2 8 4z TT giQ Q Q Q T Q i Qβ β βγ α α− + − − =              (2.26) 

Eq. (2.26) has been analyzed for its integrability through Painlevé analysis and 

possesses a transformation connecting it to constant coefficient NLS equation 

[64]. 

   Thus the above mentioned conjecture about the resonance values of the 

Painlevé analysis holds good as there is a connection between the integrable 

dispersion varying NLS equation [Eq. (2.24)] and the conventional constant 

coefficient NLS equation. Equation (2.26) is also applicable in many physical 

contexts like averaged dispersion managed (DM) fiber system, nonlinear 

compression of chirped solitary waves, quasi-soliton propagation in DM optical 

fiber and other settings [24, 65−69]. More recently, 1–, 2– bright and dark 

solitons, as well as the periodic wave solutions were also calculated for the 

variable coefficient NLS equation by the Hirota bilinear method [70]. Here, it 

should be emphasized that even though the results on Painlevé analysis, for the 

NLS equation with the variable coefficient, have been reported in different 

contexts in the literature, it is fair to say that there is no clear physical 

understanding has emerged regarding the existence and the formation of chirped 

optical solitons in nonlinear optical media. Therefore, in what follows, we will 

address this issue. 

2.1.5   Chirped Soliton: Bäcklund Transformation Method 

Now we present the essential steps for deriving the exact soliton solution of the 
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variable coefficient NLS equation [Eq. (2.26)] using the Bäcklund transformation 

method. Before investigating the chirped soliton, it is the usual practice to 

construct the Lax pair associated with Eq. (2.26). The details of the Lax pair for 

the governing equation have been presented in the Appendix I [68]. To construct 

the chirped soliton of Eq. (2.26), we start with the zero-soliton solution q = 0. By 

using this trivial solution, the explicit form of Γ(0) is obtained as  

(0) exp[ ( , ) ( , )],z t i z tζ θΓ = +                                                              (2.27)  

where ζ(z, t) and θ(z, t) are given by 

( ) ( ) ( )20( , ) 2 4 ,z T z T z z dzζ χ β σ χ= − ∫                                                 (2.28) 

( ) ( ) ( )2 2
20( , ) 2 2 .z T z T z z dzθ σ β σ χ⎡ ⎤= − + −⎣ ⎦∫                            (2.29) 

The explicit form of ζ  and θ  can be respectively derived from the above two 

equations using the variable spectral parameter (Appendix I). The one soliton 

solution for Eq. (2.26) can be written as  

( ) ( )2
20

2
sech( )exp / 4 ,

z
Q i T

χ
ζ θ α

μ
⎡ ⎤= +⎣ ⎦                                                    (2.30) 

where 20/ .gμ γ β= −  Now using the 1–soliton solution [Eq. (2.30)] and the 

gauge transformation [Eq. (2.25)], the exact 1–soliton solution for the 

exponentially decreasing dispersion NLS equation [Eq. (2.24)] can be derived as 

(For simplicity, we assume 0 01/(2 )I Tλ =  and 0 0Rλ = , where 0T  is real constant 

which represents the initial pulse width parameter):  

20 2020 20 20 20 20 20/ 2 2
0 20

2
0 0 20 0

sech( )exp ,
2 2

zz z z

g

t ee te eE i i
T T T

α βα β α β α ββ α
γ α

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
              (2.31) 

This soliton solution is similar to that reported earlier in the literature [24, 27, 71]. 

From the 1–soliton solution [Eq. (2.31)], it is clear that the soliton pulse intensity 
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and chirp are exponentially increasing and the width is exponentially decreasing 

at the same rate along the propagation direction. Our self-similar solution, in fact, 

chirped optical soliton, will have the same attractor property as shown by Fig. 2 in 

[72]. One of the properties of solitons is that initial pulses with different shapes 

will evolve into soliton pulses.  In the terminology of nonlinear dynamics, 

solitons are attractors. For any initial pulse, we can numerically find out the 

asymptotical soliton solution, i.e. the soliton that it will evolve into. Then we can 

use the parameters of the soliton at this point as the normalization constant for the 

intermediate pulse. 

   In what follows, we discuss the implementation of chirped soliton as an 

effective pulse compression technique. We explain the physical process whereby 

we show how one could achieve the chirp free compressed pulse using the 

chirped soliton pulse compression technique through the phase plane diagram. 

We plot the the phase plane diagram in terms of the normalized chirp and 

intensity. Figure 2.3 explains the phase plane diagram in terms of normalized 

chirp and normalized intensity. The dot-dashed curve represents the pre-chirping 

of the initial chirp free hyperbolic secant pulse using the pulse parameter 

equations [Eq. (2.21), γg = 0]. Once the required chirp is achieved, then the pulse 

will be sent to nonlinear medium with exponentially decreasing dispersion. Hence 

the pulse will be compressed and the normalized chirp decreased in the 

compression process (solid curve). However, the residual chirp can be removed 

by the de-chirping process (dashed curve). In Fig. 2.3, pulse compression has 

been analyzed for two different initial chirp. In the first case, we consider the 

initial chirp to be ( )C z = −0.4012. During the compression the chirp decreases 

and eventually the compressed pulse possess a tiny amount of chirp ( )C z =  
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Figure 2.3: Phase plane diagram for the chirped soliton pulse compression in terms of 

normalized chirp and intensity: dot-dashed curve (pre-chirping); solid curve (compression); 

dashed curve (de-chirping). 
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−0.1046. If the initial chirp is relatively large, ( )C z = −1.3374, the pulse 

undergoes relatively higher compression as shown in Fig. 2.3, and after 

compression chirp has been reduced to  −0.1373. In both the cases, the 

compressed pulses possess a tiny amount of chirp. The chirp free pulses will be 

achieved by the de-chirping process (dashed curve). 

2.2   Stepwise Approximation 

Self-similar soliton requires the grating dispersion to vary exponentially. 

Although almost any grating profile can be manufactured using the state-of-the-

art grating-writing techniques, fabrication of FBGs with an exact exponentially 

decreasing dispersion profile for an extended length is still challenging, especially 

when the grating length L is significantly larger than the characteristic length of 

the grating 1/ .CL σ= Similar problems have been encountered in utilizing 

dispersion decreasing fibers to reduce pulse broadening or the non-adiabatic 

effects caused by lumped amplifiers in fiber soliton transmission systems.  

Hasegawa et al. have shown that a stepwise dispersion-decreasing fiber can 

reduce the collision-induced jitters in soliton-based wavelength-division 

multiplexing systems [73] when the number of steps is sufficiently large (four or 

more). Therefore, in this section, we will study the feasibility of using the 

stepwise constant function to approximate the exponentially decreasing dispersion 

profile and determine the effects of the stepwise approximation (SWA) on the 

quality of the compressed pulse. SWA could be easily realized by concatenating 

FBGs with different uniform dispersions together. We assume that a non-uniform 

grating is divided into a number of sections with equal lengths.  We then 

determine the total dispersion in each section of gratings and replace each section 

with a uniform grating with the same total dispersion value. If N sections are used, 
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the constant dispersion value bi for the i-th  section is given by  

( )
( ) 20 20 201

exp .
L
N

L
N

i

i i
b z dzβ α β

−
′ ′= −∫                                                                        (2.32) 

   From Section 2.1.2, only one grating with constant dispersion will be sufficient 

to well approximate the pulse compression in the chirp dominated regime, i.e. 

.C DL L�  In this case, the pulse evolves quasi-linearly as shown in Fig. 2.2. The 

pulse compression is determined by the total dispersion in the grating, and the 

detail of the dispersion profile is not important. This regime is obviously not of 

interest. Similarly, we are not interested in the nonlinear regime in which 

,C DL L�  because the chirp is not playing an important role unless the grating 

length is of the order of CL . We therefore will focus on pulse compression when 

C DL L∼  and study both dispersion exponentially decreasing FBG (DDFBG) and 

the SWA to the dispersion profile.  

   As an example, we consider a grating length of 6 cm,gL = the initial grating 

dispersion is 2
20 33 ps /cmβ = −  and the decay rate σ = 0.33/cm. Thus the grating 

length is almost twice the characteristic length of grating. We assume an initial 

pulse width parameter 0 10 ps,T =  and the initial chirp coefficient 

2
20 0.01 THz .α = −  The initial dispersion length 

0
3 cm.DL ∼  Hence initially 

0
.D CL L=  At the end of the grating, the dispersion decreases to ( )2 Lβ  ~ − 4.56 

ps2/cm  and ( ) 0.14 .D g CL L L∼  Figure 2.4(a) shows the exponentially decreasing 

dispersion profile (dashed curve) and the 6-section SWA (solid curve). Figure 

2.4(b) shows the initial pulse profile (dot-dashed curve) and compressed pulse 

using the DDFBG (solid curve) and the 6-section SWA (dashed curve). The 

compression ratio is ~7 in both cases. A small pedestal appears in the SWA 
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profile. The amount of pedestal generated is 1.12%. We calculate the pedestal 

using the method described in Ref. [74]. Figure 2.4(c) shows the evolutions of the 

dispersion length ( DL ) and nonlinear length ( NL ). In DDFBG, DL  always equals 

to NL  (dots). The nonlinear length of the SWA (dashed curve) agrees with that of 

exponentially decreasing dispersion profile while the dispersion length of the 

SWA (solid curve) shows discontinued jumps at the boundaries of each grating 

section. From Fig. 2.4(c), it is obvious that the dispersion length LD  of  the SWA 

approximates the nonlinear length NL  very well, showing that the area under the 

solid curve is almost equal to the area under the dashed curve. Figure 2.4(d) and 

(e) give the evolutions of bandwidth and time-bandwidth product during pulse 

compression for both dispersion profiles, respectively. The solid curve and the 

dashed curve represent the results from the DDFBG, and the 6-section SWA, 

respectively. At the end of the grating the time-bandwidth product is 0.354 for the 

DDFBG and 0.359 for the 6-section SWA. Thus, the compressed pulse becomes 

almost transform-limited. We use the fourth order Runge-Kutta (RK) method to 

solve Eq. (2.21) using the hyperbolic secant pulse as ansatz. Figure 2.4(f) shows 

the evolution of the FWHM in the 6-section SWA, where the dots represent the 

self-similar soliton, the solid curve represents the simulation results of Eq. (2.1) 

using the SSFM, the dashed curve represents the results of the LVM using the 

hyperbolic secant pulse ansatz, and the dot-dashed curve represents the results of 

the POM using the hyperbolic secant pulse ansatz. The result from the LVM and 

the POM are similar and both approximate the exact solution very well.  For pulse 

compression, it is important to determine the number of sections required to 

approximate the required exponentially decreasing dispersion. The number of 

sections required obviously depends on tolerance of the pedestal generated. The 
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    (a)                                                          (b) 

  
   (c)                                                          (d) 

  
(e) (f) 

 
Figure 2.4: The exponentially decreasing dispersion profile (dashed curve) and the 6-section 

SWA (solid curve). (b) The pulse profile at z = 0 (dot-dashed curve) and at  z = 6 cm in the 

DDFBG (solid curve) and the 6-section SWA (dashed curve). (c) Evolutions of the dispersion 

length LD  and nonlinear length LN . The dots, dashed curve and solid curve represent LD  (=LN  )  

in DDFBG,  LN in SWA and LD  in SWA, respectively. (d) Bandwidth broadening in DDFBG 

(solid curve) and the 6-section SWA (dashed curve). (e) Time-bandwidth product for DDFBG 

(solid curve) and the 6-section SWA (dashed curve). (f) Evolution of FWHM in the 6-section 

SWA for the self-similar solutions (dots), the full numerical simulations (solid curve), the 

LVM with hyperbolic secant pulse ansatz (dashed curve), and the POM with hyperbolic secant 

pulse ansatz (dot-dashed curve). 
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tighter the tolerance, the more the number of sections required. By varying the 

initial dispersion coefficient ( 20β ), the decay rate of the exponentially decreasing 

dispersion (σ ), the compression ratio (CR) and the initial pulse width, we have 

found that the number of sections required only depends on the compression 

factor [ exp( )gCR Lσ= ] and the ratio of initial chirp length to initial dispersion 

length (
0

2
20 0 0/ 1/ / 1/ ,C DL L T Cε α= = = where 0C  is the  initial normalized chirp 

value). If ε  is the same for different pulses, it is obvious that the one with a larger 

CR requires more sections. If CR is fixed, the one with larger ε  requires more 

sections. In Fig. 2.5(a), solid curve and dots represent 1/ 4ε =  and 1/ 8ε =  

respectively. The tolerance of the pedestal energy is set to <0.5% when we 

implement the SWA. From Fig. 2.5(a), if the objective is to reduce the number of 

constant segments, then ε  should be kept small but, of course, ε  cannot be too 

small otherwise we will be in the chirp dominated regime. The chirp dominated 

regime is not of interest because there is no significant bandwidth broadening. 

Figure 2.5(b) shows the dependence of pulse bandwidth on the pulse chirp for a 

chirped Gaussian pulse of the form ( ) 2 2
0 0A exp 1 / / 2iC t T⎡ ⎤− −⎣ ⎦  (solid curve) and 

a chirped hyperbolic secant pulse of the form ( ) ( )2 2
0 0 0A sech / exp  / / 2t T i Ct T  

(dashed curve). We observed that the ratio of the bandwidth of the chirped pulse 

to that of the unchirped pulse [ ( ) ( )/ 0Cω ωΔ Δ ] increases linearly and 

quadratically with the chirp ( C ) for the hyperbolic secant pulse and Gaussian 

pulse, respectively. The bandwidth contributed by the chirp equals to that of an 

unchirped pulse occur at |C| = 0.87 for the Gaussian pulse and 0.36 for the 

hyperbolic secant pulse. Beyond the respective chirp values, the chirp contributes 

more significantly to the pulse bandwidth. 
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                                                                     (a) 

 

                                                                    (b) 

Figure 2.5:  (a) Number of sections versus the compression ratio for ε = 1/4 (solid curve) and 

ε = 1/8 (dots). The tolerance of the pedestal energy is <0.5%. (b) Ratio of the bandwidth of 

chirped pulses versus that of unchirped pulses for Gaussian pulses (solid curve) and hyperbolic 

secant pulses (dashed curve). The dot-dashed curve represents the contribution of the chirp to 

the bandwidth equals to that of an unchirped pulse. 
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2.3   Compression of Unchirped Optical Pulses 

Unlike conventional solitons of the NLS equation with constant dispersion, the  

solution to the NLS equation with exponential varying dispersion is chirped. The 

linear chirp of the solution is a key feature of the self-similar characteristics of the 

solution which allows pedestal-free pulse compression. However in pulse 

compression, typically the input pulse is unchirped although the pulse after 

compression is usually chirped. Thus for the proposed nonlinear pulse 

compression, the input pulse must be chirped in the prescribed manner before 

pulse compression in the nonlinear grating can take place. In general, it is not 

easy to produce the precise pulse shape and chirp [75]. Therefore in this section 

we study the compression of initially chirp-free pulse using a linear FBG to 

produce the required chirp profile for the compression in NFBG with 

exponentially decreasing dispersion. In particular, we assume that the input pulse 

is chirp-free hyperbolic secant pulse or Gaussian pulse. Our simulation results 

show that the pedestal generated from an input Gaussian pulse is much smaller 

than that of an input hyperbolic secant pulse showing that the compression by the 

NFBG is more sensitive to the chirp profile than the pulse shape. We also find 

that the initial Gaussian profile evolves into a hyperbolic secant profile after the 

compression in the NFBG. 

2.3.1   Prechirping 

Firstly, we study chirping of an initially chirp-free hyperbolic secant pulse of the 

form, ( )0 0sech / ,A t T  by using a linear FBG with normal dispersion, where 0A  is 

the pulse amplitude. Here a normal dispersive medium is used to introduce a 

negative 20α  for the subsequent nonlinear pulse compression. Figures 2.6(a) 

shows the evolution of a generated pedestal with the length of the linear FBG. 

The pedestal energy increases with the length of the linear FBG. Figure 2.6(b) 
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shows the evolution of the normalized chirp ( )linC z in a linear FBG. The chirp 

value is determined by carrying out a polynomial fit of the pulse phase. We find 

that the higher order chirp terms are negligible. The normalized chirp ( )linC z  

initially increases and then decreases with the length of the linear FBG. We note 

that ( ) ( ) 2
lin 2 0C z z Tα=  and ( )2 zα  is associated with the decay rate of NFBG 

20 20.σ α β=  Thus for a compact optical pulse compressor, we choose the length of 

the linear grating to maximize the value of ( )2 .zα  From Fig. 2.6(b), the 

maximum point ( )linC z  occurs at / 0.56Dz L = with ( )lin 0.3992.C z = −     

   For the chirping of an initially chirp-free Gaussian pulses of the form 

( )2 2
0 0exp / / 2 ,A t T−  it is well known that linear dispersive media only modify the 

quadratic chirp coefficient of a Gaussian shape but leave the pulse shape 

unchanged.  The chirp coefficent 20α  is given by 

( )4 2 2
20 2,lin 0 2,lin/ 0z T zα β β= − + <  where 2,linβ  is the dispersion coefficient of the 

linear FBG [5]. Figure 2.6(c) shows the evolution of the normalized chirp ( )linC z  

in a linear grating for the Gaussian pulse.  The maximum normalized chirp 

( )lin 0.5C z =  occurs at 2
0 2/ .Dz L T β= = Figure 2.6(d) shows the evolution of the 

broadening factor until the maximum chirp occurs. The solid curve and the 

dashed curve represent the broadening factor in the chirping of a hyperbolic 

secant and Gaussian pulse. The maximum broadening factors are 1.26 and 1.41 

for hyperbolic secant and Gaussian pulse. 

   As an illustration, we consider the compression of a chirp-free hyperbolic 

secant pulse and a chirp-free Gaussian pulse with same FWHM 16.65 ps, 

corresponding to 0T  = 9.45 ps for hyperbolic secant pulse, and 0T  = 10 ps for 

Gaussian pulse. For the hyperbolic secant input pulse, the dispersion coefficient 
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       (a)                                                                   (b) 

 

 
     (c)                                                               (d) 

                                                 
Figure 2.6: (a) Pedestal generated and (b) evolution of α2(z)T0

2 in the chirping of a hyperbolic 

secant pulse using a linear FBG as a function of grating length. (c) The evolution of α2(z)T0
2 in 

the chirping of a Gaussian pulse using a linear FBG versus grating length. (d) Evolution of the 

broadening factor until the maximum chirp occurs. The solid curve and dashed curve represent 

the broadening factor in the chirping of a hyperbolic secant and Gaussian pulse. The parameter 

LD is the dispersion length of the linear grating. 
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and the length of the linear FBG are 25 ps2/cm and 2 cm, respectively. For the 

Gaussian input pulse, the dispersion coefficient and the length of the linear FBG 

are 25 ps2/cm and 4 cm, respectively. We use linear FBGs with same dispersion 

but vary the grating length to achieve maximum chirp value 20α  in the chirping of 

the hyperbolic secant and Gaussian pulses. In our chosen examples, 20α  is found 

to be 2
 0.0045 THz− for the pre-chirped quasi-hyperbolic secant pulse, and 

2
 0.005 THz− for the pre-chirped Gaussian pulse. 

2.3.2   Nonlinear Compression 

Next, we launched the pre-chirped hyperbolic secant pulse, from Section 2.3.1, 

into the NFBG with exponentially decreasing dispersion. The power of the optical 

pulse input to the NFBG is chosen as ( )2
0 20 sech/ / ,g LFBGP T Lβ γ=  where 

( )sech LFBGT L  is the pulse width parameter of the hyperbolic secant pulse used to fit 

the linear FBG output when the input is a hyperbolic secant pulse, and 20β  is the 

initial dispersion value of the NFBG. The pulse width parameter of the pre-

chirped pulse is ( )sech 11.9 ps,LFBGT L = the initial dispersion coefficient is 20β =  

−25 ps2/cm, the decay rate of the exponentially decreasing dispersion is 

0.1125/cm,σ =  the nonlinear coefficient of NFBG is 15/W/km,gγ =  and the 

length of  NFBG is 19.2 cm. Figure 2.7(a) and (b) show the initial pulse (solid 

curve) and pre-chirped pulse (dashed curve) in linear and logarithmic scales. We 

note that the chirped pulse deviates slightly from the hyperbolic secant profile. 

Figures 2.7(c) and (d) show the pulse profile after the NFBG (19.2 cm) in both 

linear and logarithmic scales. The fitted hyperbolic secant profile [dots in Fig. 

2.7(c) and dashed curve in Fig. 2.7(d)] has the same peak power and FWHM as 

the final compressed pulse. Figure 2.7(e) shows the evolution of FWHM in the 
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linear FBG (the pre-chirper) and NFBG (the pulse compressor), where the dots 

represent self-similar soliton, the solid curve represents the simulation results of 

NLS equation, the dashed curve represents the results of the LVM using the 

hyperbolic secant pulse ansatz, and the dot-dashed curve represents the results of 

the POM using the hyperbolic secant ansatz. The deviation is slightly larger here  

because of the two reduction methods are not very accurate in determining the 

FWHM using the hyperbolic secant ansatz in the pre-chirping process. We note 

that the LVM performs slightly better than the POM. The total compression factor 

(compared to the initial chirp-free pulse) is 6.28, and the generated pedestal is 

6.24% (Table 2.2).  

   Then we launched the chirped Gaussian pulse, from Section 2.3.1, into the 

NFBG with the exponentially decreasing dispersion. Following Ref. [62] we 

choose the parameters  

( )2
20 0/ 2 / 1/ / ,Gauss LFBG gT L Pβ γ=                                                                 (2.33) 

where ( )Gauss LFBGT L is the pulse width parameter of the pre-chirped Gaussian 

pulse which is achieved after the linear FBG, 0P  is the power of pulse input to the 

NFBG, and 20β  is the initial dispersion value of the NFBG. In our example, 

2
20 25 ps /cm,β = − ( ) 10 2 ps,Gauss LFBGT L = 0.125/cm,σ = 15/W/km,gγ = and the 

NFBG is 16 cm long. Figure 2.8(a) and (b) show the initial pulse (solid curve) 

and pre-chirped pulse (dashed curve) in linear and logarithmic scales. Figure 

2.8(c) and (d) show the pulse profile after the NFBG (16 cm) in both linear and 

logarithmic scales. From Fig. 2.8(d), the main portion of the compressed pulse is 

almost the same as the fitted hyperbolic secant pulse, indicating the initial 

Gaussian profile has evolved into a hyperbolic secant profile after the 
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compression in the NFBG. For the compression of Gaussian pulse, we solve the 

pulse parameter equations using the LVM and the POM using the hyperbolic 

secant pulse ansatz  [Eq. (2.19)] and Gaussian ansatz [Eq. (2.20)]. We assume that 

the pulse launched into the NFBG is chirped hyperbolic secant pulse or chirped 

Gaussian pulse with same FWHM. Figure 2.8(e) shows the compressed pulse. 

The solid curve, dashed curve, dots, and dot-dashed curve represent the results 

from the full simulation, the LVM with hyperbolic secant pulse ansatz, the POM 

with hyperbolic secant pulse ansatz, and the LVM (or POM) with Gaussian pulse 

ansatz, respectively. The LVM with hyperbolic secant pulse ansatz approximates 

the full simulations results better. Figure 2.8(f) shows the evolution of the FWHM 

in the linear FBG and NFBG. The solid curve, dashed curve, dot-dashed curve 

and dots represent the results from the full simulation, the LVM with hyperbolic 

secant pulse ansatz, the POM with hyperbolic secant pulse ansatz, and the LVM 

(or POM) with Gaussian pulse ansatz, respectively. Results from both the 

reduction methods using either ansatz are all very close. The total compression 

ratio when compared to the initial chirp-free pulse is 6.28 and the generated 

pedestal is 0.0935% (Table 2.2).   

   As shown in Table 2.2, the final compressed pulse of the initial hyperbolic 

secant and Gaussian pulse have the same FWHM (2.65 ps). The final compressed 

pulses are almost chirp-free. We observe that the pedestal generated from an input 

Gaussian pulse is much smaller than that of an input hyperbolic secant pulse. By 

varying 20 ,β  20 ,α  and 0 ,T  we find that the compression ratio mainly depends on 

the designed value of CR, and the generated pedestal is associated with both 

designed CR and ε  discussed before. 

   In the compression of initial Gaussian pulses, we use Eq. (2.33) to determine 
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   (a)                                                                     (b) 

  
   (c)                                                                     (d) 

 
(e) 

 

Figure 2.7: Hyperbolic secant input pulse. The pulse profiles before (solid curve) and after the 

linear FBG (dashed curve) in (a) linear and (b) logarithmic scales. The pulse profiles after the 

NFBG (solid curve) and a “fitted” hyperbolic secant pulse profiles in (c) linear (dots) and (d) 

logarithmic scales (dashed curve). (e) Evolution of the FWHM in the pre-chirper (the linear 

FBG) and the NFBG for the self-similar soliton (dots), the full numerical simulation (solid 

curve), the LVM using hyperbolic secant pulse ansatz (dashed curve), and the POM using 

hyperbolic secant pulse ansatz (dot-dashed curve). 
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  (a)                                                                (b) 

  
  (c)                                                                (d) 

   
  (e)                                                               (f) 

 
Figure 2.8:  Gaussian input pulse. The pulse profiles before (solid curve) and after the linear 

FBG (dashed curve) in (a) linear and (b) logarithmic scales. The pulse profiles after the NFBG 

(solid curve) and a “fitted” hyperbolic secant pulse profiles in (c) linear (dots) and (d) 

logarithmic scales (dashed curve). (e) The compressed pulse in logarithmic scale. (f) Evolution 

of the FWHM in pre-chirper (linear FBG) and the NFBG. For (e) and (f), the solid curve, 

dashed curve, dots, and dot-dashed curve represent the full numerical simulation, the LVM 

with hyperbolic secant pulse ansatz, the POM with hyperbolic secant pulse ansatz, and the 

LVM or POM with Gaussian ansatz, respectively. 
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Figure 2.9: Evolution of the FWHM versus distance for different values of the ratio LD0,Gauss / 

LN0,Gauss. The dashed curve represents self-similar solitons, and the solid curve represents 

simulation results. The values of ratio LD0,Gauss / LN0,Gauss from (a) to (f) are 1, 1.2, 2 ,  1.6, 1.8 

and 2, respectively. 
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the NFBG parameters. We find that the design gives good quality compressed 

pulses. We want to determine whether Eq. (2.33) gives the optimal design 

parameters for the NFBG. We define the 

0,Gauss 0,Gaussratio / ,D NL L= where ( )2
0,Gauss Gauss 20/D LFBGL T L β=  and 

0,Gauss 01/ /N gL Pγ=  are the initial dispersion length and initial nonlinear length of 

the Gaussian pulse input into the NFBG.   We obtain different ratios of  

0,Gauss 0,Gauss/D NL L  by either changing the initial dispersion value of the NFBG 

( 20β ) or changing the peak power of the initial pulse. Different lengths of NFBG 

are used to achieve the same FWHM of the final compressed pulse. Table 2.3 

gives the percentages of pedestals generated. We observe that the amount of 

pedestal generated mainly depends on the ratio 0,Gauss 0,Gauss/D NL L  and the optimal 

point is 0,Gauss 0,Gauss/ 2.D NL L =  Figure 2.9 shows the evolution of the pulse width 

(FWHM) with respect to the change in the ratio 0,Gauss 0,Gauss/ .D NL L  Thus Eq. (2.33) 

is a good and simple criterion to design the NFBG for compression of Gaussian 

pulses. 

2.3.3   Stepwise Approximation  

Finally, we consider the SWA of the NFBG used in the compression of an initial 

hyperbolic secant pulse discussed in Section 2.3.1. Figure 2.10(a) and (b) 

respectively show the change of FWHM and percentage of pedestal generated of 

the final compressed pulse with respect to number of sections used. The dots 

represent the FWHM or the pedestal generated versus the number of sections used, 

and the circle represents that by using DDFBG. When the number of section 

increases, the compressed pulse from the SWA becomes closer to that by using 

DDFBG. Figure 2.10(c) shows the evolution of the FWHM in the compression 
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Table 2.2: Comparison between the compression of hyperbolic secant input pulse and 

Gaussian input pulse. C(0) is the normalized chirp coefficient of the chirped hyperbolic secant 

or Gaussian input pulse. The normalized chirp coefficient after the linear FBG, C(0), is 

determined by fitting the phase of the pulse using C(0)t2/T2(LLFBG)/2, where T(LLFBG) is the 

pulse width parameter of the hyperbolic secant or Gaussian pulse.  Similarly, the chirp 

coefficient of compressed pulse, C(z), is determined by fitting the phase of the pulse using 

C(z)t2/T2(LNFBG)/2, where T(LNFBG) is the pulse width parameter of compressed pulse. 

 

 Compression of  
“sech” input pulse 
(Figure 2.7) 

Compression of  
Gaussian input pulse (Figure 2.8)  

 C(0)  − 0.63  − 1 
 C(z)  − 0.16  −0.097 
FWHM of compressed pulse   2.65 ps   2.65 ps 
Pedestal of compressed pulse  6.24% 0.0935% 
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Table 2.3: Comparison of the pedestal generated for different values of the ratio=LD0,Gauss / 

LN0,Gauss , where LD0,Gauss =T2
Gauss (LLFBG)/|β20| and LN0,Gauss = 1 / γg / P0 and are the initial 

dispersion length and the nonlinear length, respectively. The different values of  LD0,Gauss / 

LN0,Gauss  are obtained by either changing the initial dispersion value of NFBG β20 or changing 

the peak power of the initial pulse. Different lengths of NFBG are used to achieve the same 

FWHM of the final compressed pulse.   

 

Ratio Change of 20β Change of peak  power

1 6.49% 6.49% 

 1.2 1.47% 1.47% 

 20.5 0.0935% 

 1.6 1% 1% 

 1.8 2.42% 2.38% 

    2 3.69% 3.68% 
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process, where the solid curve represents the full simulation of DDFBG, the dots 

represent the full simulation using 8-section SWA, the dashed curve represents 

the results of the LVM using hyperbolic secant pulse ansatz and 8-section SWA, 

and the dot-dashed curve represents the results of the POM using hyperbolic 

secant pulse ansatz and 8-section SWA. We observe that results from the LVM 

and POM using the hyperbolic secant pulse ansatz are very close to each other. 

   Next, we consider the SWA of the NFBG used in the compression of an initial 

Gaussian pulse discussed in the Section 2.3.1. Figures 2.11(a) and (b) respectively 

show the change of the FWHM and the percentage of pedestal generated from the 

final compressed pulse versus the number of sections used. The dots represent the 

FWHM or the pedestal generated using different number of sections, and the 

circle represents that by using DDFBG. Again when the number of section 

increases, the compressed pulse from the SWA becomes closer to that achieved in 

the DDFBG. Figure 2.11(c) shows the evolution of the FWHM in the 8-section 

SWA and DDFBG. In this case, eight FBGs with constant dispersions can 

approximate the exponentially decreasing dispersion profile very well. Finally Fig. 

2.11(d) compares the results from the full simulation, the LVM and POM with 

hyperbolic secant pulse ansatz and Gaussian pulse ansatz. The dots represent full 

simulation of the 8-section SWA, the dashed curve represents the results of the 

LVM with hyperbolic secant pulse ansatz and 8-section SWA, the dot-dashed 

curve represents the results of the POM with hyperbolic secant pulse ansatz and 

8-section SWA, and the solid curve represents the result of the LVM or POM 

with Gaussian pulse ansatz and 8-section SWA. The results from the two 

reduction methods with different ansatz are similar and deviate slightly from that 

of full simulations. 
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2.4   Summary 

We have shown that self-similar chirped Bragg soliton solutions for the NLS 

equation exist for exponentially varying dispersion. The evolution of the pulse 

width follows that of the exponentially varying dispersion. Thus, nonlinear fiber 

Bragg gratings with exponentially decreasing dispersion can be used to carry out 

pedestal free compression of optical pulses. Unlike the solitons of the NLS 

equation with constant dispersion, these self-similar solitons are chirped. The 

chirped soliton evolves such that the dispersion length equals to the nonlinear 

length. Both the dispersion length and the nonlinear length vary with distance, but 

the chirp length is constant. As a result, if the ratio of the initial chirp length to the 

dispersion length is small, the characteristics of the pulse evolution will change 

from initially quasi-linear in the beginning of the grating, to a combination of 

linear and nonlinear for intermediate portion of the grating, to finally fully 

nonlinear towards the end of the grating.    

   We have also shown that the exponentially varying dispersion of the nonlinear 

fiber Bragg gratings can be approximated by using a concatenation of nonlinear 

fiber Bragg gratings with different constant dispersions. For a given tolerance on 

the pedestal generated, we have found that the number of concatenated sections is 

proportional to the compression ratio, but inversely proportional to the initial 

chirp value. We have also studied the effect of pre-chirping using linear fiber 

Bragg grating to produce the required chirp profile for initially chirp-free 

hyperbolic secant and Gaussian pulse. We have found that the pedestal generated 

from an input Gaussian pulse is much smaller than that of a hyperbolic secant 

pulse showing that the compression by the nonlinear fiber Bragg grating is more 

sensitive to the chirp profile than the pulse shape. We have also found that the 
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initial Gaussian profile evolves into a hyperbolic secant profile after the 

compression in the nonlinear fiber Bragg grating. Finally, we study the use of 

stepwise approximation to the exponentially decreasing dispersion on initial 

hyperbolic secant and Gaussian pulses chirped by a linear fiber Bragg grating. We 

have found that high quality compressed pulses can be generated. 

   In this study, based on NLS-type equation, we consider the pulse propagation 

close to the PBG structure of FBG. We will include the results using full 

nonlinear coupled-mode equations which include all orders of dispersion in 

Chapter 3.  
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   (a)                                                                    (b) 

 
    (c) 

 

Figure 2.10: Hyperbolic secant input pulse and SWA to the exponentially decreasing 

dispersion. (a) The FWHM and (b) pedestal of final compressed pulse using 1 to 8 sections for 

SWA (dots) and DDFBG (circle). (c) Evolution of the FWHM in the DDFBG (solid curve), 

the 8-section SWA using the full simulation (dots),  the LVM with hyperbolic secant pulse 

ansatz and 8-section SWA (dashed curve), and the POM with hyperbolic secant pulse ansatz 

and 8-section SWA (dot-dashed curve). 
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                                      (a)                                                                   (b) 

 
 

  (c)                                                                    (d) 

 

Figure 2.11: Gaussian input pulse and SWA to the exponentially decreasing dispersion. (a) 

Evolution of the (a) FWHM and (b) pedestal of the final compressed pulse using 1 to 8 

sections for SWA (dots) and DDFBG (circle). (c) Evolution of the FWHM in DDFBG (solid 

curve) and 8-section SWA using full numerical simulation (dots). (d) Evolution of FWHM for 

the full numerical simulation on 8-section SWA (dots), the LVM with hyperbolic secant pulse 

ansatz and 8-section SWA (dashed curve), the POM with hyperbolic secant pulse ansatz and 

8-section SWA (dot-dashed curve), and Gaussian pulse ansatz and 8-section SWA (solid 

curve). 
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Chapter 3 

Pulse Compression in Nonlinear 

Fiber Bragg Gratings and 

Nonlinear Coupled Mode 

Equations 

In Chapter 2, we have discussed nearly chirp-free and pedestal-free optical pulse 

compression in nonlinear fiber Bragg gratings with exponentially decreasing 

dispersion in the nonlinear Schrödinger limit. The nonlinear Schrödinger equation 

used in Chapter 2 only considers the second order dispersion effect. The 

generalized nonlinear coupled mode equations, which include all orders of 

dispersions, are more accurate in describing pulse propagation in nonlinear 

gratings. In this chapter, we present numerical simulation results of the 

generalized nonlinear coupled mode equations. 
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3.1   Introduction 

The NLS model used in Chapter 2 only includes the second order dispersion ( 2β ). 

While 2β  is exponentially decreasing, the profile of the third order dispersion ( 3β ) 

has not been studied in Chapter 2. Normally the second order dispersion length 

( DL ) and the third order dispersion length ( 'DL ) are used to compare the relative 

importance of the second order and third order dispersion. For the self-similar 

pulse compression discussed in Chapter 2, both the pulse width parameter ( )T z  

and second order dispersion 2β  decrease exponentially at the same rate, therefore 

the second dispersion length DL ( ( )2
2/T z β= ) also decreases exponentially. 

However, if the third order dispersion is present, the third order dispersion length 

'DL ( ( )3
3/T z β= ) will decrease much faster compared to DL  if 3β  is a constant. 

In this Chapter, the nonlinear coupled mode equations (NLCMEs), which include 

all orders of dispersions, are used here to have a full study of the grating based 

compressor. We compare the results of the NLCMEs with the nonlinear 

schrödinger equation (NLSE) approximation. We define a figure of merit for the 

optimization of the grating parameters to generate compressed pulse with good 

quality. The exponential dispersion profile of the grating is also well 

approximated by a number of gratings with constant dispersions. The chapter is 

arranged as follows. Section 3.2 introduces the theoretical models which describe 

the pulse propagation in NFBGs. Section 3.3 discusses the compression of 

chirped hyperbolic secant pulse and chirped Gaussian pulse in NFBGs with 

exponentially decreasing dispersion and their stepwise approximation.  In 

particular, we discuss the effect of initial chirp, dispersion and pulse width on 

compression of chirped hyperbolic secant pulse in Section 3.4. Section 3.5 
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presents a compact compression scheme which consists of a pre-chirper and a 

NFBG, to effectively compress both the hyperbolic secant and Gaussian shaped 

pulses. Section 3.6 provides a study on the minimum pulse width that can be 

achieved by the proposed compressor. Some conclusions are offered in Section 

3.7. 

3.2   Theoretical Model 

Nonlinear pulse propagation in FBGs can be described by the NLCMEs which 

describe the coupling between the forward-propagating wave (u) and backward-

propagating wave (v) [6]. 

 

2 2
1

2 2
1

( 2 ) 0,

( 2 ) 0,

u ui i u v u v u
z t

v vi i v u v u v
z t

β δ κ γ

β δ κ γ

∂ ∂
+ + + + + =

∂ ∂
∂ ∂

− + + + + + =
∂ ∂

                                          (3.1)   

where 1β  is the group delay per unit length, ( ) /c Bn cδ ω ω= −  (center wavelength 

is 1.55 μm in this work) is the frequency detuning from the Bragg frequency Bω  

( / /Bn cω π⋅ = Λ ), with c being the speed of light in vacuum, n being the average 

refractive index, Λ  being the period of FBG. / / / 2n nκ η π= ⋅Δ ⋅ Λ  is the 

coupling coefficient, with η  ( 0.8η =  is used in this work) being the fraction of 

the fiber mode that overlaps with the grating, and nΔ  being the refractive-index 

modulation. The parameter γ  is the nonlinear coefficient, z is the distance, and t 

is the time. NLCMEs can be reduced to the well-known NLSE [Eq. (3.2)] 

provided two conditions are met [6]. The first condition requires 0Pγ κ�  or 

1,NLκ � where NL  is the nonlinear length. This requirement is easy to satisfy in 

practice even at peak power levels as high as 2100 GW/cm .  Second, the third-

order dispersion induced by grating should be negligible. 
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∂ ∂
                                                          (3.2) 

A fiber grating operating in the passband but close to the stop band acts as a 

highly dispersive element with a second order dispersion ( 2β ) and third order 

dispersion ( 3β ) given by [6] 
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The connection between γ  in the NLCMEs [Eq. (3.1)] and gγ  in NLSE [Eq. (3.2)] 

is  

23 ,
2g

f
f

γ γ−
=                                                                               (3.5) 

2 21 / .f κ δ= ± −                                                                          (3.6) 

We consider that the second order dispersion decreases exponentially, i.e. 

( ) ( )2 20 exp ,z zβ β σ= −  where 20β  is the initial second order dispersion of the 

NFBG. We also assume that nonlinear coefficient is constant and ( ) ( )z b zδ κ= . 

The detuning has to be positive (δ κ> ) to yield anomalous dispersion and soliton 

effects. Therefore, 

( )3/ 22 2
1 20( ) exp( ) / 1 / .z z bκ β σ β= − −                                                    (3.7) 

Then different order dispersion is found to be 

( )exp 1 ,       3.m m z mβ σ⎡ ⎤− − ≥⎣ ⎦∼                                                               (3.8) 

If the pulse width parameter decreases exponentially as ( ) ( )0 exp ,T z T zσ= − the 

different order dispersion length is  
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( ) ( )/ exp .
m

m
D mL T z zβ σ= ∼                                                                    (3.9) 

Consequently, we have 

2
/ ,     3.

mD D mL L C m= ≥                                                                   (3.10)    

Eq. (3.10) is a very important result, which implies the relative importance of 

different order dispersions keeps unchanged in the whole compression process.  

   Similar to [76], we define a figure of merit (M) to quantify the relative 

importance of the second order and third order dispersions. M is defined to be the 

ratio of 
2DL  to 

3DL . For optimum pulse compression, M should be as small as 

possible. 

2

3

2 2
2 20

3
3 0 1

( ) / ( ) 3 1
.

( ) / ( )
D

D

L T z z b b
M

L T z z T
β β
β β

−
= = =                                            (3.11) 

We note that the value of M is proportional to 20β  and b, but inversely 

proportional to the initial pulse width parameter 0.T  

   Our designed compressor works in the transmission region, therefore we need 

to make sure the pulse spectrum does not overlap the reflection spectrum of the 

grating. For a chirped Gaussian pulse of the form 
2

2
0

1exp( ),
2
iC t

T
+

−  the 

bandwidth (FWHM) is given by 2
02 (1 ) ln 2 / .C TωΔ = +  In order to avoid the 

pulse spectrum falling into the stop band, we have to ensure that half of the 

spectral bandwidth must be smaller than the spectral distance from the band edge 

( )δ κ= [77]: 

( ) ( ) ( ) ( )2
01 ln 2 / exp .nz z C z T z

c
δ κ σ⎡ ⎤ ⎡ ⎤− > + −⎣ ⎦⎣ ⎦                              (3.12) 

For the self-similar pulse considered here, ( ) ( )0 exp ,C z C zσ= −  we have 
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2 1 0

2
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1 1 .
1 ln 2

Tb b
C

β

β
+ − <

+
                                                 (3.13) 

Another constraint is imposed by the grating modulation depth ,nΔ  which can be 

as large as 0.01 in H2 loaded fibers [36], and nΔ  is associated with .κ  Therefore, 

( ) ( )
( )

2
1

3/ 22
20

exp 0.01 .
21

z
z

nb

β σ η πκ
β

= ≤
Λ−

                                                          (3.14) 

Typically, ~ 0.8, ~ 0.5 μm, ~ 1.5nη Λ [36]. 

3.3   Compression of Chirped Optical Pulses 

3.3.1   Numerical Examples 

The NLCMEs are solved by the implicit 4th-order Runge-Kutta method [53]. For 

the finite length L considered here, ( ), 0.v L t =  In addition, we assume that the 

system initially contains no energy, i.e. ( ,0) 0u z =  and ( ,0) 0.v z =  The initial 

pulse is chirped hyperbolic secant pulse of the form 

2
0 0 20(0, ) sec h( / ) exp( / 2),u t P t T i tα= where the initial pulse width parameter 

0 10 psT = (FWHM = 17.63 ps) and the initial chirp 2
20 0.005 THz ,α = − or, 

chirped Gaussian pulse of the form 2 2 2
0 0 20exp( / / 2)exp( / 2),P t T i tα−  where 

0 10.586 psT =  (FWHM = 17.63 ps) and 2
20 0.005 THz .α = −  For the launched 

hyperbolic secant pulse, 2
0 20 0/ 1/ /gT Pβ γ= , where 0P  is the  peak power of the 

launched pulse. For the launched Gaussian pulse, 2
0 20 0/ 2 / 1/ / ,gT Pβ γ=  where 

0P  is the peak power of the launched pulse. The grating parameters are 

2
20 25 ps /cm,β = − 0.125 /cm,σ =  b = 2, 5 /W/km,γ = and 16 cm.L =  Figure 3.1 

discusses the compression of chirped hyperbolic secant pulse. Figure 3.1(a) 

depicts the launched pulse ( 0, ),u z t= the transmitted pulse ( , ),u L t and Fig. 3.1(b) 
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shows the reflected pulse ( 0, ).v z t=  Most of the light is transmitted through 

while a small amount is reflected back. The transmitted pulse experiences 

effective compression, and the FWHM of the compressed pulse is 2.3 ps. Figure 

3.1(c) shows the compressed pulse shapes in logarithmic scale. The solid curve, 

dashed curve, and dot-dashed curve represent the results using the NLCMEs, 

NLSE with 3,β  and NLSE without 3,β  respectively. The three results are 

relatively similar, and small amount of pedestal is due to the presence of higher 

order dispersions. The calculation of pedestal follows the method described in Ref. 

[73]. Table 3.1 gives the comparison (FWHM, compression factor, normalized 

chirp, pedestal) between the results from three models (NLCMEs, NLSE with 3,β  

NLSE without 3β ). The normalized chirp ( )C z L=  has been greatly reduced, 

when compared to the initial normalized chirp ( )0 ,C z = indicating the 

compressed pulse is almost chirp-free. From the comparison shown in Table 3.1, 

the results of NLCMEs are closer to the results of NLSE without 3.β  Figure 3.2 

discusses the compression of chirped Gaussian pulse. Figure 3.2(a) depicts the 

launched pulse ( 0, ),u z t= the transmitted pulse ( , ),u L t and Fig. 3.2(b) shows the 

reflected pulse ( 0, ).v z t=  Similarly, most of the light is transmitted through 

while a small amount is reflected back. Figure 3.2(c) shows the compressed pulse 

shapes (solid curve: NLCMEs; dashed curve: NLSE with 3β ; dot-dashed curve: 

NLSE without 3β ) in logarithmic scale. It is obvious that the initial Gaussian 

pulse has evolved into a hyperbolic secant profile. Table 3.2 gives the comparison 

(FWHM, compression factor, normalized chirp, pedestal) between results from 

three models (NLCMEs, NLSE with 3,β  NLSE without 3β ). The results of 

NLCMEs are closer to the results of NLSE without 3.β  
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   Until now, we have discussed the compression of chirped hyperbolic secant 

pulse and Gaussian shaped pulses in the same NFBG with exponentially 

decreasing dispersion. The initial chirped hyperbolic secant and Gaussian pulses 

are assumed to have same FWHM, and the compressed pulses have similar 

compression factor, residual chirp, and pedestal. 

3.3.2   Design of Grating  

In order to vary the dispersion along the propagation direction, we can vary the 

period of grating ,Λ  the average effective index n, or the grating modulation 

depth nΔ [50]. Varying the period or the average index will mainly vary δ , and 

varying nΔ  will only vary .κ  Figures 3.3 and 3.4 give two possible structures to 

achieve exponentially decreasing dispersion of the NFBG in Section 3.3.1. The 

design shown in Fig. 3.4 is relatively easier to fabricate, because of the difficulty 

in the precise control of Λ  in Fig. 3.3. Figure 3.5 gives the corresponding profiles 

of coupling coefficient and frequency detuning under the design in either Fig. 3.3 

or Fig. 3.4. 

3.3.3   Stepwise Approximation  

Similar to Section 2.2, in this section, we study the feasibility of using the 

stepwise constant function to approximate to the exponentially decreasing 

dispersion profile, but using the NLCMEs.  

   Figure 3.6 and Fig. 3.7 give 8-section approximation of Fig. 3.3 and Fig. 3.4, 

respectively. The designs in Fig. 3.6 and Fig. 3.7 are easier to be fabricated 

compared to those in Fig. 3.3 and Fig. 3.4. Figure 3.8 gives the profiles of 

coupling coefficient and frequency detuning which correspond to the designs in 

Fig. 3.6 and Fig. 3.7. For the compression of chirped hyperbolic secant pulse, Fig. 

3.1(d) shows the 8-section SWA of Fig. 3.1(c), where the solid curve and dashed 
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    (a)                                                                  (b) 

 

  (c)                                                              (d) 

 

Figure 3.1: Chirped hyperbolic secant pulse is the initial pulse. (a) Launched pulse u(z=0,t) 

and transmitted pulse u(L,t). (b) Reflected pulse v(z=0,t). (c) Transmitted pulse (solid curve: 

NLCMEs; dashed curve: NLSE with β3; dot-dashed curve: NLSE without β3) in logarithmic 

scale. (d) Initial (solid curve) and transmitted pulse (dashed curve) in 8-section SWA.  

Discussion on Fig. 3.1 (d) will be offered in Section 3.3.3. The grating parameters are β20 = 

−25 ps2/cm, σ = 0.125 /cm, b = 2, γ = 5 /W/km, and L = 16 cm. 
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   (a)                                                                (b) 

 

  (c)                                                               (d) 

 

Figure 3.2: Chirped Gaussian pulse is the initial pulse. (a) Launched pulse u(z=0,t) and 

transmitted pulse u(L,t). (b) Reflected pulse v(z=0,t). (c) Initial pulse (dots) and transmitted 

pulse (solid curve: NLCMEs; dashed curve: NLSE with β3; dot-dashed curve: NLSE without 

β3) in logarithmic scale. (d) Initial pulse (solid curve) and compressed pulse (dashed curve) in 

8-section SWA. Discussion on Fig. 3.2(d) will be offered in Section 3.3.3. The grating 

parameters are β20 = −25 ps2/cm, σ = 0.125 /cm, b = 2, γ = 5 /W/km, and L = 16 cm. 
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           (a) 

 

            (b) 

        Figure 3.3: Grating design Ι. 
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           (a) 

 

                                                                          (b) 

     Figure 3.4:  Grating design П. 
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        (a) 

 

                                                                       (b) 

  Figure 3.5:  Profiles of (a) coupling coefficient and (b) frequency detuning. 
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                                                                       (a) 

 

                                                                               (b) 

Figure 3.6: Grating design П 
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                                                                         (a) 

 

                                                                               (b) 

Figure 3.7: Grating design Ι 
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                                                                       (a) 

 

                                                                              (b) 

Figure 3.8:  Profiles of coupling coefficient (a) and frequency detuning (b). 
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Table 3.1: Compression of chirped hyperbolic secant pulse in DDFBG and its 8-section SWA. 

 FWHM (ps) Comp. factor C(0) C(z = L) Pedestal (%) 

NLCMEs 2.3 7.6 −0.0668 0.57 

NLSE 2.39 7.39 −0.0677 0 

DDFBG 

NLSE+β3 2.1 8.4 −0.2 6.87 

8- section (NLCMEs) 2.4 7.3 

 −0. 5 

−0.014 0.45 
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Table 3.2: Compression of chirped Gaussian pulse in DDFBG and its 8-section SWA. 

 FWHM (ps) Comp. factor C(0) C(z = L) Pedestal (%) 

NLCMEs 2   8.8  −0.06 1 

NLSE 2.1 8.5 −0.05 1 

DDFBG 

NLSE+β3 1.97 8.9 −0.3 6.35 

8-section (NLCMEs) 2.1  8.2 

−0.56

−0.003 0.43 
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curve represent the initial pulse and compressed pulse respectively. The 

compressed pulse shapes in Fig. 3.1(c) and Fig. 3.1(d) are quite similar, and the 

comparison in detail is given in Table 3.1. For the compression of chirped 

Gaussian pulse, Fig. 3.2(d) gives the 8-section SWA of Fig. 3.2(c), where the 

solid curve and dashed curve represent the initial pulse and compressed pulse 

respectively. Table 3.2 gives the comparison between the compression of chirped 

Gaussian pulse in DDFBG and its 8-section SWA, showing 8-section is a good 

approximation here. 

3.3.4   Compression of Chirped Hyperbolic Secant Pulses at Different b 

For the example in Section 3.3.1, according to the two constraints imposed by Eq. 

(3.13) and Eq. (3.14), b should be within 1.9 and 4.2. In Fig. 3.9, we extend Δn 

further to 0.03, corresponding to b = 1.5. We also investigate pulse compression 

for b = 4.5, 5, 5.5 and 6, in which the transmission is expected to be lowered. 

Figures 3.9(a), (b), (c) and (d) show the compression factor, pedestal (%), 

transmission (%) and value of M when b = 1.5, 2, 2.5, … 6, respectively. The dots 

and crosses represent the results of hyperbolic secant pulse and Gaussian pulse, 

respectively. From Fig. 3.9(a), the compression factor drops with the increase of b. 

From Fig. 3.9(b) and (c), both the pedestal energy and transmission initially 

increase and then decrease with the increase of b. From Fig. 3.9(d), the value of 

M increases with the increase of b, meaning the effect of third order dispersion is 

becoming more and more important. For the hyperbolic secant pulse, the smallest 

value of M (0.25) occurs when b = 1.5, and the second smallest value of M (0.52) 

occurs when b = 2. For the Gaussian pulse, the smallest value of M (0.24) occurs 

when b = 1.5, and the second smallest value of M (0.5) occurs when b = 2. The 

third order dispersion is important because of the large M value. As shown in 
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Table 3.1, for the compression of hyperbolic secant pulse, the compression factor 

is 7.39 and the compressed pulse is pedestal free in the NLS approximation. As 

shown in Table 3.2, for the compression of Gaussian pulse, the compression 

factor is 8.5 and the pedestal is 1% in the NLS approximation. The results of 

NLCMEs are close to the NLS approximation at b = 1.5, 2, 2.5. Figure 3.10(a), (c) 

and (e) show the compressed pulse at different b when chirped hyperbolic secant 

pulse is the initial pulse. The dashed curve, solid curve and dot-dashed curve in 

Fig. 3.10(a) represent the pulse shape at b = 1.5, 2, and 2.5, respectively.  The 

pulses (peak power from high to low) in Fig. 3.10(c) correspond to b = 3, 3.5 and 

4. The pulses (peak power from high to low) in Fig. 3.10(e) correspond to b = 4.5, 

5, 5.5 and 6. Figure 3.10(b), (d) and (f) show the compressed pulse when chirped 

Gaussian pulse is the initial pulse. The dashed curve, solid curve and dot-dashed 

curve in Fig. 3.10(b) represent the pulse shape at b = 1.5, 2, and 2.5, respectively. 

The pulses (peak power from high to low) in Fig. 3.10(d) correspond to b = 3, 3.5 

and 4. The pulses (peak power from high to low) in Fig. 3.10(f) correspond to b = 

4.5, 5, 5.5 and 6. For both the hyperbolic secant and Gaussian shaped pulses, the 

compressed pulses experience severe distortions at large b (4.5, 5, 5.5 and 6). 

   Figure 3.11 shows the (a) compression factor, (b) pedestal, (c) transmission, and 

(d) M versus b in NFBGs with different length. The initial pulse is chirped 

hyperbolic secant pulse, ( ) ( )2
0 20sech / exp / 2 ,t T i tα  where 0 10 ps,T = and 

2
20 0.005 THz .α = − The grating parameters are 2

20 25 ps /cm,β = − 0.125 /cm,σ =   

5 /W/km,γ = L = 16 cm (dots), 20 cm (circles), and 25 cm (crosses).  The 

compression factors in the NLS limit are 7.39 (16 cm), 12.18 (20 cm), and 22.76 

(25 cm). According to Eq. (3.13) and Eq. (3.14), 1.91<b<4.2 for L = 16 cm, 

2.18<b<4.2 for L = 20 cm, and 2.59<b<4.2 for L = 25 cm. For L = 16 cm, b = 2, 
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2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6. For L = 20 cm, b = 2.2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6. For 

L = 25 cm, b = 2.6, 3, 3.5, 4, 4.5, 5, 5.5, 6. As expected, at same b, the 

compression factor is higher for a longer grating. When b<=3.5, the pedestals are 

of similar levels in different lengths of NFBG, when b>=4, the levels of pedestals 

in NFBGs with different lengths differ. Compressed pulses in different lengths of 

NFBGs have similar transmission, and same value of M at same b. Figures 3.12, 

3.13 and 3.14 show the evolution of (a) peak power (b) peak power difference (c) 

FWHM and (d) FWHM difference along the grating length. Peak power 

difference is defined as ( )0 0/ ,P P P−  where P  and 0P  stand for the peak power in 

NLCM simulation and NLS limit, respectively. FWHM difference is defined as 

( )0 0/ ,F F F−  where F and 0F  stand for the FWHM in NLCM simulation and 

NLS limit, respectively. The physical parameters in Fig. 3.12 are same as that of 

the dots in Fig. 3.11 when b = 2. The physical parameters in Fig. 3.13 are same as 

that of the circles in Fig. 3.11 when b = 2.2. The physical parameters in Fig. 3.14 

are same as that of the crosses in Fig. 3.11 when b = 2.6. The solid curve and dots 

respresent the results in NLS limit and the NLCM simulation, respectively. We 

note that the peak power and FWHM evolve almost exponentially, but the peak 

power difference and FWHM difference show oscillations. 

3.4   Effect of Initial Chirp, Dispersion and Pulse Width on the 

Compression of Chirped Hyperbolic Secant Pulse 

3.4.1   Different Initial Chirp 

Here we discuss the compression of hyperbolic secant pulses 

( ( ) ( )2
0 20sech / exp / 2 ,t T i tα 0 10 psT = ) in NFBGs with exponentially decreasing 

dispersion where the values of the initial chirp are different. These compressed 
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   (a)                                                               (b) 

  
  (c)                                                             (d) 

Figure 3.9: (a) Compression factor (b) pedestal (%) (c) transmission (%) (d) M versus b( = 

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6). Chirped hyperbolic secant pulse (dots, sech(t/T0) 

exp(iα20t2/2), FWHM = 17.63 ps, α20 = −0.005 THz2) and chirped Gaussian pulse (crosses, 

exp(−t2/2/T0
2)exp(iα20t2/2), FWHM = 17.63 ps, α20 = −0.005THz2) are launched into the 

NFBGs with exponentially decreasing dispersion. The grating parameters are β20 = −25 

ps2/cm, σ = 0.125 /cm, γ = 5 /W/km and L = 16 cm.  
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  (a)                                                              (b) 

 
 (c)                                                             (d) 

 
 (e)                                                              (f) 

Figure 3.10: Compressed pulse when chirped hyperbolic secant pulse is the initial pulse with 

(a) b = 1.5 (dashed curve), b = 2 (solid curve), b = 2.5 (dot-dashed curve); (c) b = 3, 3.5, 4 

(peak power from high to low); (e) b = 4.5, 5, 5.5, 6 (peak power from high to low). 

Compressed pulse when chirped Gaussian pulse is the initial pulse with (b) b = 1.5 (dashed 

curve), b = 2 (solid curve), b = 2.5 (dot-dashed curve); (d) b = 3, 3.5, 4 (peak power from high 

to low); (f) b = 4.5, 5, 5.5, 6 (peak power from high to low). The physical parameters are same 

as that in Fig. 3.9. 
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   (a)                                                               (b) 

 
                                           (c)                                                            (d) 

 
Figure 3.11: (a) Compression factor (b) pedestal (c) transmission (d) M versus b. The initial 

pulse is sech(t/T0)exp(iα20t2/2), where T0 = 10 ps, α20 = − 0.005 THz2. The grating parameters 

are β20  = −25 ps2/cm, σ = 0.125 /cm, γ = 5 /W/km, L = 16 cm (dots), 20 cm (circles), and 25 

cm (crosses).  For L = 16 cm, b = 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6. For L = 20 cm, b = 2.2, 2.5, 3, 

3.5, 4, 4.5, 5, 5.5, 6. For L = 25 cm, b = 2.6, 3, 3.5, 4, 4.5, 5, 5.5, 6. 
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       (a)                                                                    (b) 

  
              (c)                                                                  (d) 

 
Figure 3.12: Evolution of (a) peak power (b) peak power difference (c) FWHM and (d) 

FWHM difference along grating length.  The physical parameters are same as that of the dots 

in Fig. 3.11 when b = 2.  The solid curve and dots represent the self-similar solution, and the 

results of NLCM simulation, respectively.  
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        (a)                                                                  (b) 

 
                                 (c)                                                                 (d) 

 
Figure 3.13: Evolution of (a) peak power (b) peak power difference (c) FWHM and (d) 

FWHM difference along grating length.  The physical parameters are same as that of the 

circles in Fig. 3.11 when b = 2.2. The solid curve and dots represent the self-similar solution, 

and the results of NLCM simulation, respectively.  
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       (a)                                                                  (b) 

 
      (c)                                                                (d) 

Figure 3.14: Evolution of (a) peak power (b) peak power difference (c) FWHM and (d) 

FWHM difference along grating length.  The physical parameters are same as that of the 

crosses in Fig. 3.11 when b = 2.6. The solid curve and dots represent the self-similar solution, 

and the results of NLCM simulation, respectively.  

 

 
 

 



 

 91

pulses have same compression factor in the NLS limit. The solid curve in Fig. 

3.15 (a), (b), (c) and (d) corresponds to the compressed pulse in Fig. 3.1. Figure 

3.15(a) and (c) show the compressed pulse in linear and logarithmic scale 

respectively, where the physical parameters for the dashed curve 

are 2
20 0.0025 THz ,α = − 2

20 25 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 

32 cm.L =  The compressed pulse is 2.28 ps (FWHM) with 0.06% pedestal. 

Figure 3.15(b) and (d) show the compressed pulse in linear and logarithmic scale 

respectively, where the physical parameters for the dashed curve are 

2
20 0.01 THz ,α = − 2

20 25 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 

8 cm.L =  The compressed pulse is 2.38 ps (FWHM) with 3.4% pedestal.  The 

pulse with a larger initial chirp has a wider bandwidth, therefore the compression  

in the transmission region is not as effective as the one with a smaller initial chirp. 

Figure 3.15(e) and (f) show the spectra of initial pulse (solid curve) and 

compressed pulse (dashed curve) for Fig. 3.15(a) and (b), respectively. For both 

the cases, the compressed pulses experience obvious bandwidth broadening.  

3.4.2   Different Initial Dispersion 

Here we discuss the compression of hyperbolic secant pulses 

( ( ) ( )2
0 20sech / exp / 2 ,t T i tα 2

20 0.005 THz ,α = − 0 10 psT = ) in NFBGs with 

exponentially decreasing dispersion where the values of the initial dispersion are 

different. These compressed pulses have same compression factor in the NLS 

limit. The solid curve in Fig. 3.16 (a), (b), (c) and (d) corresponds to the 

compressed pulse in Fig. 3.1. Figure 3.16(a) and (c) show the compressed pulse in 

linear and logarithmic scale respectively, where the physical parameters for the 

dashed curve are 2
20 12.5 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 
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32 cm.L =  The compressed pulse is 2.24 ps (FWHM) with 0.2% pedestal. Figure 

3.16(b) and (d) show the compressed pulse in linear and logarithmic scale 

respectively, where the physical parameters for the dashed curve are 

2
20 50 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 8 cm.L =  The 

compressed pulse is 2.55 ps (FWHM) with 2% pedestal. According to Eq. (3.11), 

the value of M is proportional to the initial dispersion. Thus, the one with a 

smaller initial dispersion has better pulse quality, showing shorter pulse and less 

pedestal. Figure 3.16(e) and (f) show the spectra of initial pulse (solid curve) and 

compressed pulse (dashed curve) for Fig. 3.16(a) and (b), respectively. For both 

the cases, the compressed pulses experience obvious bandwidth broadening.  

3.4.3   Different Initial Pulse Width 

Here we discuss the compression of hyperbolic secant pulses 

( ( ) ( )2
0 20sech / exp / 2 ,t T i tα 2

20 0.005 THzα = − ) in NFBGs with exponentially 

decreasing dispersion where the initial pulse widths are different. The solid curve 

in Fig. 3.17 (a), (b), (c) and (d) corresponds to the compressed pulse in Fig. 3.1. 

Figure 3.17(a) and (c) show the compressed pulse in linear and  logarithmic scale 

respectively, where the physical parameters for the dashed curve are  

0 5 ps,T = 2
20 25 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 

16 cm.L = Figure 3.17(b) and (d) show the compressed pulse in linear and 

logarithmic scale respectively, where the physical parameters for the dashed 

curve are 0 50 ps,T = 2
20 25 ps /cm,β = −  20 20 ,σ α β= 2,b = 5 /W/km,γ =  and 

16 cm.L =  Figure 3.17(e) and (f) show the spectra of initial pulse (solid curve) 

and compressed pulse (dashed curve) for Fig. 3.17(a) and (b), respectively. The 

pulse compression shown in Fig. 3.17 (b), (d) and (f) are quite different from the 
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cases we have discussed. The compressed pulse has serious distortions, and 

becomes asymmetric with an oscillatory structure near the trailing edge. Despite 

the compression in time domain, there is no obvious bandwidth broadening. This 

is the so called quasi-linear case discussed in Chapter 2. The ratio of chirp length 

to initial nonlinear length  0/C NL L  is found to be 0.08, which is much smaller 

than 1. Therefore, the fast behavior of the soliton is governed by the dispersion 

only. Because of the large and positive third order dispersion here, deep 

oscillations appear near the trailing edge. 

3.5   Compression of Prechirped Hyperbolic Secant and Gaussian 

Pulses 

Similar to Section 2.3, here, we study the compression of initially chirp-free pulse 

using a linear FBG or fiber to produce the required chirp profile for the 

compression in NFBGs with exponentially decreasing dispersion. Here, we 

assume that the input pulse is chirp-free hyperbolic secant pulse or Gaussian pulse. 

We study the pre-chirping process in the linear grating or linear fiber. Our 

simulation results show that the pedestal generated from an input Gaussian pulse 

is much smaller than that from an input hyperbolic secant pulse showing that the 

compression by the NFBG is more sensitive to the chirp profile than the pulse 

shape. The initial Gaussian profile evolves into a hyperbolic secant profile after 

the compression in the NFBG.  

3.5.1   Prechirp by Grating or Fiber 

We consider using either linear grating or linear fiber with normal dispersion as a 

pre-chirper. Grating and fiber have same total dispersion 2,lin 0 ,Lβ  where 2,linβ  and 

0L  are dispersion and length of the pre-chirper, respectively. The pre-chirping  
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 (a)                                                              (b) 

 
  (c)                                                              (d) 

 

    (e)                                                              (f) 
 
Figure 3.15: Chirped hyperbolic secant pulse (sech(t/T0) exp(iα20t2/2), T0=10ps) is the initial 

pulse. Compressed pulse in (a) linear and (c) logarithmic scale where the physical parameters 

for the dashed curve are α20 = −0.0025 THz2, β20 = −25 ps2/cm, b = 2, γ = 5 /W/km, L = 32 cm. 

Compressed pulse in (b) linear and (d) logarithmic scale where the physical parameters for the 

dashed curve are α20 = −0.01 THz2, β20 = −25 ps2/cm, b = 2, γ = 5 /W/km, L = 8 cm.  The solid 

curve in (a, b, c, d) corresponds to the compressed pulse in Fig. 3.1. (e) Spectra of initial pulse 

(solid curve) and compressed pulse (dashed curve) for Fig. 3.15 (a). (f) Spectra of initial pulse 

(solid curve) and compressed pulse (dashed curve) for Fig. 3.15 (b). 
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Table.3.3: FWHM(ps) and pedestal(%) of compressed pulse in the simulation of NLCMEs 

and NLSE. Chirp-free “sech” or Gaussian pulse with same FWHM is the initial pulse. #: 

DDFBG; *: 8-section SWA. 

 FWHM(ps) Pedestal(%)

“sech” (NLSE) 2.65# 

2.73* 

6.24# 

5.09* 

“sech” (grating prechirper) 2.41# 

2.52* 

3.5# 

2.5* 

“sech” (fiber prechirper) 2.36# 

2.47* 

3.43# 

2.39* 

Gaussian (NLSE) 2.65# 

2.74* 

0.1# 

0.92* 

Gaussian (grating prechirper) 2.64# 

2.74* 

1# 

0.1* 

Gaussian (fiber prechiper) 2.56# 

2.66* 

0.76# 

0.21* 
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  (a)                                                              (b) 

 
    (c)                                                              (d) 

 
    (e)                                                               (f) 

 
Figure 3.16: Chirped hyperbolic secant pulse (sech(t/T0) exp(iα20t2/2), α20 = −0.005 THz2, T0 

= 10 ps) is the initial pulse. Compressed pulse in (a) linear and (c) logarithmic scale where the 

physical parameters for the dashed curve are β20 = −12.5 ps2/cm, b = 2, γ = 5 /W/km, L = 32 

cm. Compressed pulse in (b) linear and (d) logarithmic scale where the physical parameters for 

the dashed curve are β20 = −50 ps2/cm, b = 2, γ = 5 /W/km, L = 8 cm. The solid curve in (a, b, 

c, d) corresponds to the compressed pulse in Fig. 3.1. (e) Spectra of initial pulse (solid curve) 

and compressed pulse (dashed curve) for Fig. 3.16(a). (f) Spectra of initial pulse (solid curve) 

and compressed pulse (dashed curve) for Fig. 3.16(b). 
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  (a)                                                               (b) 

 
   (c)                                                               (d) 

 

     (e)                                                               (f) 
 

Figure 3.17: Chirped hyperbolic secant pulse (sech(t/T0) exp(iα20t2/2), α20 = −0.005 THz2) is 

the initial pulse. Compressed pulse in (a) linear and (c) logarithmic scale where the physical 

parameters for the dashed curve are T0 = 5 ps, β20 = −25 ps2/cm, b = 2, γ = 5 /W/km, L = 16 

cm. Compressed pulse in (b) linear and (d) logarithmic scale when the physical parameters for 

the dashed curve are T0 = 50ps, β20 = −25 ps2/cm, b = 2, γ = 5 /W/km, L = 16 cm. The solid 

curve in (a, b, c, d) corresponds to the compressed pulse in Fig. 3.1. (e) Spectra of initial pulse 

(solid curve) and compressed pulse (dashed curve) for Fig. 3.17 (a). (f) Spectra of initial pulse 

(solid curve) and compressed pulse (dashed curve) for Fig. 3.17 (b). 
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process in the linear grating and fiber are described by NLCMEs ( 0γ = ) and 

NLSE ( 0gγ = ), respectively. If 2
2,lin 25 ps /cm,β = using Eq. (3.12) and Eq. (3.14) 

when 0,C = and 0,σ = we have 1.3<|b|<4.35 and 1.3<|b|<4.49 for the pre-

chirping of hyperbolic secant and Gaussian pulse, respectively. Chirp free 

hyperbolic secant pulse ( 0sech( / ),t T 0 9.45 ps,T = FWHM = 16.65 ps) is launched 

into a linear grating ( 2
2,lin 25 ps /cm,β = 1.3 ,δ κ= − 0 2 cmL = ) or a dispersion 

compensated fiber (DCF, 2
2,lin 100 ps /km,β = 3

3,lin 0.5 ps /km,β = −  loss = 0.5  

dB/km, 0 0.5 kmL = ). The pre-chirped “sech” like pulses are shown in Fig. 

3.18(a), where the solid curve and dashed curve represent the pre-chirped pulse in 

grating pre-chirper and fiber pre-chirper, respectively. Similarly, chirp-free 

Gaussian pulse ( 0 10 ps,T = FWHM =16.65 ps) is launched into a linear grating 

( 2
2,lin 25 ps /cm,β = 1.3 ,δ κ= − 0 4 cmL = ) or a dispersion compensated fiber 

(DCF, 2
2,lin 100 ps /km,β = 3

3,lin 0.5 ps /km,β = −  loss = 0.5dB/km, 0 1 kmL = ). The 

pre-chirped Gaussian pulses are shown in Fig. 3.18(b), where the solid curve and 

dashed curve represent the pre-chirped pulse in grating pre-chirper and fiber pre-

chirper, respectively. Grating pre-chirped “sech” like pulse is 21 ps (FWHM), 

with chirp 20α =  −0.0044 THz2 and 6.4% pedestal, while fiber pre-chirped “sech” 

like pulse is 21 ps (FWHM), with 20α = −0.0045 THz2 and 6.5% pedestal. Grating 

pre-chirped Gaussian pulse is 23.5 ps (FWHM), with 20α = −0.0049THz2 and 

0.2% pedestal, while fiber pre-chirped Gaussian pulse is 23.5 ps, with 

20α = −0.005 THz2 and 0.007% pedestal. The value of 20α  is determined by the 

polynomial fit of the phase of the pre-chirped pulse. The pedestal energy is 

calculated when fit the pre-chirped pulse with hyperbolic secant or Gaussian 
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shaped pulse.  

3.5.2   Compression of Prechirped Pulses 

Pre-chirped “sech” like pulse by grating or fiber is sent to the NFBG with 

exponentially decreasing dispersion. The grating parameters are 

19.2 cm,L = 2
20 25 ps /cm,β = −  20 20.σ α β=  According to Eq. (3.13) and (3.14), 

we have 1.97<b<4.32, and we will use 2b =  for the following discussions. The 

grating pre-chirped “sech” like pulse can be compressed to 2.4 ps (FWHM) with 

small pedestal (3.5%), as shown by the solid curve in Fig. 3.18(c). The fiber pre-

chirped “sech” like pulse can be compressed to 2.36 ps (FWHM) with small 

pedestal (3.4%), as shown by the dashed curve in Fig. 3.18(c). We implement 8-

section stepwise approximation (SWA) of the nonlinear compression of the 

grating/fiber pre-chirped “sech” like pulse, and it can be compressed to 2.5 ps 

(FWHM) with 2.5% pedestal, and 2.5 ps (FWHM) with 2.4% pedestal, 

respectively, as shown by the solid curve and dashed curve in Fig. 3.18(e). The 

compressed pulse in 8-section SWA is very close to the one in DDFBG. Similarly, 

the pre-chirped Gaussian pulse by grating or fiber is sent to the NFBG with 

exponentially decreasing dispersion. The grating parameters are 16 cm,L =  

2
20 25 ps /cm,β = −  20 20.σ α β=  According to Eq. (3.13) and (3.14), we have 

1.92<b<4.48, and we will use 2b =  for the following discussions. The grating 

pre-chirped Gaussian pulse can be compressed to 2.6 ps (FWHM) with 1% 

pedestal, as shown by the solid curve in Fig. 3.18(d). The fiber pre-chirped 

Gaussian pulse can be compressed to 2.6 ps (FWHM) with 0.8% pedestal, as 

shown by the dashed curve in Fig. 3.18(d). We implement 8-section SWA of the 

nonlinear compression of the grating/fiber pre-chirped Gaussian pulse, and it can 

be compressed to 2.7 ps (FWHM) with 0.1% pedestal, 2.7 ps (FWHM) with 0.2% 
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pedestal, respectively, as shown by the solid curve and dashed curve in Fig. 

3.18(f). The compressed pulse in 8-section SWA is very close to the one in the 

DDFBG.  

   Table 3.3 compares the FWHM and pedestal of the compressed pulse in the 

simulations of NLCMEs and NLSE, which shows that NLSE is a rather good 

approximation. Under the NLS approximation, chirp-free hyperbolic secant pulse 

and chirp-free Gaussian pulse, which have same FWHM, can be compressed to 

hyperbolic secant pulse with same FWHM. However, the pedestal generated from 

the initial Gaussian pulse is smaller. The compressed pulses from the linear 

grating pre-chirper and linear fiber pre-chirper are similar. The Gaussian 

compression scheme is more attractive, showing a larger chirp can be obtained 

from pre-chirping, which means a shorter NFBG can be used. 

3.6   Minimum Pulse Width 

Here we study the minimum pulse width that can be achieved by the proposed 

NFBG with exponentially decreasing dispersion. We calculate the minimum pulse 

width under the limit of nΔ  is 0.01. Eq. (3.14) can be rewritten as  

( ) ( )3/ 22
20

2
1

10.01exp .
2

b
z

n
βη πσ

β

−
≤

Λ
                                         (3.15) 

From Eq. (3.15), the ideal compression factor ( )exp zσ  is associated with the 

value of b, and the value of 20β . For large compression factor, large b and 

large 20β  are expected. Therefore, we study the compressed pulse width and 

pedestal versus different b or 20β . As discussed in Section 2.1.2, we are 

interested in the cases when ( )/ 0 ~ 1.C DL Lε =  Figure 3.19 shows the FWHM 

and pedestal of the compressed pulse versus different initial dispersion. b = 2 is 
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(a)                                                             (b) 

 

 (c)                                                             (d) 

 

 (e)                                                              (f) 
 

Figure 3.18: Pre-chirped pulse when (a) chirp-free hyperbolic secant pulse or (b) chirp-free 

Gaussian pulse is the initial pulse. Compressed pulses when (c) chirp-free hyperbolic secant 

pulse or (d) chirp-free Gaussian pulse is the initial pulse. (e) Compressed pulse in 8-section 

SWA of Fig. 3.18(c). (f) Compressed pulse in 8-section SWA of Fig. 3.18(d). Solid curve: 

linear grating is the prechirper. Dashed curve: linear fiber is the prechirper. 
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used in Fig. 3.19. For the given b, the upper limit of 20β  can be calculated by Eq. 

(3.13). And we have calculated the minimum pulse width when 20β = 25, 37.5, 

50…100 2ps /cm.  Dots represent the results where 0 10 ps,T =  

2
20 0.005 THz ,α = − 2.ε = Circles represent the results 

where 0 10 ps,T = 2
20 0.01 THz ,α = − 1.ε = Crosses represent the results 

where 0 20 ps,T = 2
20 0.005 THz ,α = − 0.5.ε =  Plus signs  represent the results  

where 0 5 ps,T = 2
20 0.04 THz ,α = − 1.ε =  For each case, the FWHM of 

compressed pulse decreases with the increase of 20 ,β  but the pedestal of 

compressed pulse increases with the increase of  20 .β  At same 20 ,β  the one 

with a larger ε  has a smaller pedestal, such as dots, circles and crosses.  If 

sameε , such as circles and plus signs, the pedestal is determined by the value of 

M. A smaller M corresponds to a smaller pedestal. Figures 3.20 and 3.21 show the 

FWHM and pedestal of the compressed pulse versus different b.  

2
20 25 ps /cmβ =  is used in Fig. 3.20, and 2

20 100 ps /cmβ =  is used in Fig. 3.21. 

For a given 20β , the upper limit of b can be calculated by Eq. (3.13). In both Fig. 

3.20 and Fig. 3.21, dots represent the results where 

0 10 ps,T = 2
20 0.005 THz ,α = −  circles represent the results where 

0 10 ps,T = 2
20 0.01 THz ,α = −  crosses represent the results where 

0 20 ps,T = 2
20 0.005 THz ,α = −  and plus signs represent the results where 

0 5 ps,T = 2
20 0.04 THz .α = −  Similarly, the FWHM of compressed pulse 

decreases with the increase of b, but the pedestal of compressed pulse increases 

with the increase of b. At same b, the one with a larger ε  has a smaller pedestal, 
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                                     (a)                                                               (b) 

Figure 3.19: (a) FWHM (ps) and (b) pedestal (%) of the compressed pulse versus different 

initial dispersion. Dots: b = 2, T0 = 10 ps, α20 = −0.005 THz2, ε =2; circles: b = 2, T0 = 10 ps, 

α20 = −0.01 THz2, ε = 1; crosses: b = 2, T0 = 20 ps, α20 = −0.005 THz2, ε = 0.5; plus signs: b = 

2, T0 = 5 ps, α20 = −0.04 THz2, ε =1. 
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                                   (a)                                                               (b) 

Figure 3.20: (a) FWHM (ps) and (b) pedestal (%) of the compressed pulse versus different b. 

Dots: β20 = −25 ps2/cm, T0 = 10 ps, α20 = −0.005THz2; circles: β20 = −25 ps2/cm, T0 = 10 ps, 

α20 = −0.01THz2; crosses: β20 = −25 ps2/cm, T0 = 20 ps, α20 = −0.005THz2; plus signs: β20 = 

−25 ps2/cm, T0 = 5 ps, α20 = −0.04 THz2. 
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(a)                                                    (b) 
 

Figure 3.21: (a) FWHM (ps) and (b) pedestal (%) of the compressed pulse versus different b. 

Dots: β20 = −100 ps2/cm, T0 = 10 ps, α20 = −0.005THz2; circles: β20 = −25 ps2/cm, T0 = 10 ps, 

α20 = −0.01THz2; crosses: β20 = −100 ps2/cm, T0 = 20 ps, α20 = −0.005THz2; plus signs: β20 = 

−100 ps2/cm, T0 = 5 ps, α20 = −0.04 THz2. 
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such as dots, circles and crosses.  If sameε , such as circles and plus signs, the  

pedestal is determined by the value of M. 

3.7   Summary 

In Chapter 2 we have demonstrated the nonlinear Fiber Bragg Grating with 

exponentially decreasing dispersion allows for almost chirp-free and pedestal-free 

pulse compression in short length, leading to a novel all-fiber compression device. 

Our earlier studies are based on the NLS approximation. In this Chapter, we have 

looked into the effect of higher order dispersions, and use the generalized 

nonlinear coupled mode equations to have a full study of the proposed 

compressor. It turns out that, while the second order dispersion is exponentially 

decreasing, the relative importance of different higher order dispersions keeps 

unchanged in the whole compression process. Therefore, we define a figure of 

merit M, which is the ratio of the second order dispersion length and third order 

dispersion length to measure the effect of higher order dispersions. The value of 

M is proportional to the value of 20β  and b, but inversely proportional to the 

initial pulse width parameter. For optimum pulse compression, M should be as 

small as possible. From a realistic point of view, the exponential decreasing 

dispersion profile is well approximated by a number of gratings with constant 

dispersions. However, the solution to the NLS type equation with exponentially 

decreasing dispersion is chirped. Therefore, we suggest a compact compression 

scheme which consists of a pre-chirper (linear grating or linear fiber) and a NFBG. 

The proposed scheme can effectively compress both hyperbolic secant and 

Gaussian shaped pulse profiles. The initially Gaussian shaped pulse has evolved 

into hyperbolic secant shaped pulse. We have also studied the minimum pulse 

width that can be achieved by the NFBG with exponentially decreasing dispersion, 
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and 500 fs (FWHM) with around 5% pedestal can be obtained. 

  The short compressor requires high input intensity, making these compressors 

very useful for high-power YAG-type systems. Using high- 2n  fiber will lower the 

required intensity, making this compressor useful for many other laser systems. 

Chalcogenide fibers have measured values of 2n  that are ~100 larger than silica at 

1.55 μm [78] and fabrication of Bragg gratings in chalcogenide glass fiber using 

the transverse holographic method has been reported in [78]. 

  Although the nonlinear Fiber Bragg grating is a good candidate for the self-

similar pulse compression, structures other than FBGs, such as deep-etched 

gratings with large nΔ  or other types of photonic crystals, where the structure’s 

parameters may easily be controlled, may also be used. 
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Chapter 4 
 
Robust Pulse Compression in 

Cubic-Quintic Nonlinear Media 

 

In this chapter, we consider the evolution of nonlinear optical pulses in the cubic-

quintic (CQ) nonlinear media wherein the pulse propagation is governed by the 

generalized nonlinear Schrödinger equation with exponentially varying dispersion, 

cubic and quintic nonlinearities, and gain/loss. Section 4.2 discusses the 

theoretical model and the origin of the fifth order (quintic) nonlinearity. In 

Section 4.3, we find the chirped bright soliton solutions in the anomalous and 

normal dispersion regimes using the self-similar analysis. We then determine the 

relation among the dispersion length, cubic nonlinear and quintic nonlinear length. 

From the stability analysis, we show that the solitary wave solution in the 

anomalous dispersion regime is stable whereas the solitary wave solution in the 

normal dispersion regime is unstable. Numerical simulation results show that 

competing cubic-quintic nonlinearities stabilize the chirped soliton pulse 

propagation against perturbations in the initial soliton pulse parameters. We 

characterize the quality of the compressed pulse by calculating the generated 

pedestal energy and compression factor when the initial pulse is perturbed from 

the soliton solutions. We also presented the chirped self-similar Townes soliton of 
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the pure quintic NLS equation with exponentially varying dispersion in Section 

4.4, and we study the possibility of rapid compression of Townes solitons by the 

collapse phenomenon in the exponentially decreasing dispersion. We also found 

that the collapse could be postponed if the dispersion increases exponentially. 

Finally, we conclude in Section 4.5. 

4.1   Introduction 

Contrary to the conventional pulse compression techniques discussed in Chapter 4, 

a new technique has been proposed based on the filamentation and plasma 

generation in the high intensity region [79−82]. When the intensity of the incident 

field is high enough in the range of 1013 to 1014 W/cm2, or the intensity reaches 

the value where the Kerr nonlinearity saturates, the important physical effects like 

self-focusing, plasma de-focusing etc., come into play. When a pulse with power 

exceeding the critical power for self-focusing, Pcr, propagates in gases, it supports 

a narrow coherent structure known as filaments. The filament is generated after 

the dynamical balance of the two counteracting physical effects namely focusing 

due to Kerr effect and defocusing due to plasma generated by multiphoton 

ionization. The filament has been observed in gases as air [83], in solids as silica 

glasses [84] and in liquids [85]. 

   Pulse propagation in the presence of competing nonlinearities has received 

much attention lately because competition between nonlinearities of different 

orders could lead to strong stabilization of pulse propagation [86]. Higher order 

nonlinearities must be considered if the optical pulse intensity is high or the 

nonlinear coefficients of the materials are large, for instance, in semiconductor 

doped glasses [86, 87]. One example of the effect of competing nonlinearities are 

the stabilization of vortices and vortex tori in cubic-quintic nonlinear media [88–
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91]. In the constant dispersion case, the bright and dark solitons have been 

extensively investigated in the cubic-quintic nonlinear media [92, 93]. The bright 

and dark quasi solitons for the cubic-quintic nonlinearity have also been studied 

[94]. In recent years, a number of experiments reported the measurement of the 

cubic-quintic nonlinearity [95−99]. In this chapter, we investigate pedestal-free 

pulse compression of the chirped soliton pulse under the influence of cubic and 

quintic nonlinearities. Numerical results reveal that competing cubic-quintic 

nonlinearities can stabilize the pulse propagation and will lead to more robust 

pulse compression. As a special case, we also discuss chirped Townes solitons in 

pure quintic media, i.e. power law nonlinearity, and study the possibility of rapid 

pulse compression by wave collapse and exponentially decreasing dispersion. We 

note that the pure quintic nonlinearity aptly models the Tonks-Girardeau (TG) 

regime in Bose-Einstein condensation (BEC) [100, 101]. 

4.2   Theoretical Model 

The cubic-quintic nonlinearity arises from a nonlinear correction to the refractive 

index of a medium in the form 2
2 4 ...,n n I n Iδ = + +  where I is the light intensity 

and the coefficients 2 ,n  4n  determine the nonlinear response of the medium. The 

coefficients 2n  and 4n  are related to the third order (3)χ  and fifth order 

susceptibility (5)χ  through ( )(3)
2 03 / 8n nχ=  and ( )(5)

4 05 / 16 ,n nχ=  where 0n  is 

the linear refractive index [102]. The nonlinear correction to the refractive index 

can also be investigated using other forms of nonlinearity of the medium: (i) the 

closed saturated form: ( ) 1
2 1 / ,sn n I I Iδ −= +  where sI  is the saturation intensity 

[103]. For weak fields, / 1,sI I   it yields the usual self-focusing Kerr response, 

2 .n n Iδ =  When the intensity increases, it is necessary to take higher order 
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nonlinearities into account; (ii) the exponential form: ( )2 1 exp /s sn n I I Iδ = − −⎡ ⎤⎣ ⎦ ; 

(iii) the form: ( ) ( )2 2 / / 1 /s sn n I I I I Iδ = + +  [104]. In all three cases, expansion 

of these three functions in powers of I and retaining second order terms yields a 

cubic-quintic NLS equation in which the nonlinear coefficients are determined by 

the choice of the form of the model function and the value of .sI  However, in 

practice, there might not be functional relation between the coefficients 2n  and 

4.n  For example, in semiconductor double-doped optical fibers [92, 105] the 

doping of the silica glass with two appropriate semiconductor particles leads (in a 

regime far from saturation) to the cubic-quintic form of the refractive index with 

an effectively increased value of 4n  and a decreased one of 2n  (not related by any 

expansion procedure). In other materials the value of 2n  and 4n  may also depend 

on the doping or on the direction of light propagation. So, in a certain sense the 

cubic-quintic description is more general. It can be adopted to any given material 

and is preferable when considering real situations. 

   Pulse propagation in a medium with cubic-quintic nonlinearities is governed by 

the generalized cubic-quintic NLS (CQNLS) equation 

( ) ( ) ( ) ( )2
2 4

2 0,
2 2
z g zE Ei z E E z E E i E

z t
β

γ δ∂ ∂
− + − − =

∂ ∂
                        (4.1) 

where ( ),E z t  is the slowly varying envelope of the axial electrical field, t  is the 

retarded time, z is the propagating distance, ( )zβ  is the group velocity dispersion 

and ( )g z  is the distributed gain or loss function. The cubic and quintic nonlinear 

parameters are given by ( )2 02 / effn Aγ π λ= and ( )2
4 02 / ,effn Aδ π λ= − where 0λ  is 

the central wavelength and effA  is the effective area of the fiber. All the physical 
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parameters ( ) ,zβ  ( ) ,zγ  ( )zδ  and ( )g z  are functions of the propagation 

distance z. 

   We now investigate the chirped soliton solution of the CQNLS equation by self-

similar analysis. We assume the complex function ( ),E z t  in the form,  

( ) ( ) ( ), , exp , ,E z t Q z t i z t= Φ⎡ ⎤⎣ ⎦                                                  (4.2) 

where Q  and Φ  are the amplitude and phase of the envelope function A 

respectively. In order to study the generation of chirped solitons of Eq. (4.1), we 

assume a quadratic phase given by  

( ) ( ) ( ) ( )22
1, ,

2 c

z
z t z t T

α
αΦ = + −                                             (4.3) 

where ( )1 zα  and ( )2 zα  are functions of z and cT  is the center of the pulse. We 

assume that the amplitude depends on the scaling variable θ  which is a 

combination of variables ( )ct T−  and some function ( )zΓ  of the variable z. Since 

the self-similar solutions possess scaling structure, we represent the amplitude 

( ),Q z t  as 

( )
( )

( ) ( )1, exp .
2

G z
Q z t R

z
θ

⎡ ⎤
= ⎢ ⎥

Γ ⎣ ⎦
                                    (4.4) 

The scaling variable θ  and the function ( )G z  are given by  

( )
,ct T

z
θ −

=
Γ

 ( ) ( )
0

' '.
z

G z g z dz= ∫                                                   (4.5) 

Here ( )zΓ and ( )R θ  are some functions which have to be determined. We also 

assumed that ( )0 1Γ =  without loss of generality. Substituting Eqs. (4.2) to (4.4) 

into Eq. (4.1), the quadratic phase coefficient ( )2 zα  and the function ( )zΓ  are 
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found to be  

( ) ( ) ( ) ( )20
2 20

20

, 1 ,
1

z z D z
D z

αα α
α

= Γ = −
−

                                          (4.6) 

where ( )20 2 0 0α α= ≠  because the phase is assumed to be a quadratic function of 

the variable ( )ct T−  and the cumulative dispersion function ( )D z  is given by 

( ) ( )
0

' '.
z

D z z dzβ= ∫                                                                   (4.7) 

In addition to the above conditions, we also find 

( ) ( )
2 2

3 51
2

2 2 2exp exp 2 0.dd R R G z R G z R
d dz

α γ δ
θ β β β

Γ Γ
+ − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦           (4.8)                             

Note that the coefficients in Eq. (4.8) are functions of the variable z but the 

function ( )R θ  depends only on the scaling variable .θ  Therefore, Eq. (4.8) 

possesses nontrivial solutions ( ) 0R θ ≠⎡ ⎤⎣ ⎦  if and only if the coefficients in Eq. 

(4.8) are constants, i.e. 

( )
( )

2
1

1

2
,

z d
z dz

α λ
β
Γ

− =                                                                       (4.9) 

( ) ( )
( ) ( ) 2exp ,

z z
G z

z
γ

λ
β

Γ
=⎡ ⎤⎣ ⎦                                                             (4.10) 

 ( )
( ) ( ) 3exp 2 ,
z

G z
z

δ
λ

β
=⎡ ⎤⎣ ⎦                                                                 (4.11) 

where 1 2,λ λ  and 3λ  are constants. Equations (4.9), (4.10), and (4.11) yield 

1
1

0 0

2 ,
z

d
dz
αλ

β
=

= − 0
2

0

,γλ
β

= 0
3

0

,δλ
β

=                                           (4.12) 

because ( )0 1Γ =  and ( )0 0.G =  The parameters ( )0 0 ,β β= ( )0 0γ γ= and  

( )0 0 .δ δ= Thus for the nontrivial case, Eq. (4.8) can be written as 
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2
3 5

1 2 32 2 2 0.d R R R R
d

λ λ λ
θ

− + + =                                                          (4.13) 

The solution of Eq. (4.9) is 

( ) ( )
( )

1
1 10 20

20

'
',

2 1 '

z z
z dz

D z

βλα α
α

= −
−⎡ ⎤⎣ ⎦

∫                                             (4.14) 

where 10α  is an integration constant. Now we proceed to find the distributed gain 

function using Eqs. (4.9) and (4.10) 

( ) ( )
( )

( )
201 ,

zdg z
z dz z

α βη
η

= −
Γ

                                                            (4.15) 

where we define the function ( )zζ  as 

( ) ( )
( )

,
z

z
z

γ
η

δ
=                                                                               (4.16) 

From Eqs. (4.10) and (4.11), the condition for the variation of the quintic 

nonlinear parameter is  

( ) ( ) ( )
( )

2 2
3
2

2

.
z z

z
z

γ λδ
β λ

Γ
=                                                         (4.17) 

Eqs. (4.6), (4.7), and (4.12)−(4.17) are the required  conditions for the existence 

of self-similar solutions in Eqs. (4.2)−(4.5) of the generalized CQNLS equation 

with distributed coefficients, i.e. Eq. (4.1). We observed that for the self-similar 

solutions of Eq. (4.1), only two of the four parameters ( ) ( ) ( ), ,z z zβ γ δ  and 

( )g z  in Eq. (4.1) are free parameters. For example, if ( )zβ  and ( )zγ  are 

chosen to be the free parameters, then ( )g z  and ( )zδ  will be determined from 

Eqs. (4.15) and (4.17) respectively. 

   Different physical situations lead to different choices of the two free parameters. 

For example consider both the cubic and quintic nonlinear coefficients do not 
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vary with distance, i.e. both ( )zγ  and ( )zδ  are constant. A self-similar solution 

to Eq. (4.1) exists if the dispersion and gain/loss vary in the form 

( ) ( )2
0 20 0/ 1z zβ β α β= +  and ( ) ( )20 0 20 0/ 1 .g z zα β α β= + If the cubic nonlinear 

parameter ( )zγ  is constant and there is no gain/loss [ ( ) 0g z = ], then the 

dispersion and the quintic nonlinearity must vary exponentially, 

i.e. ( ) ( )0 20 0expz zβ β α β= −  and ( ) ( )0 20 0exp .z zδ δ α β= −  In this case, the 

function ( ) ( )20 0exp .z zα βΓ = −  Thus from Eq. (4.5), the pulse width will vary 

exponentially as the dispersion ( ).zβ  Since we are interested in pedestal-free 

compression of optical pulses, we will focus on the soliton solutions to the 

CQNLS equation with exponentially varying dispersion in Section 4.3. Another 

special case is pure quintic nonlinearity with no gain/loss, i.e. ( ) ( ) 0.z g zγ = =  

From Eq. (4.11), the quintic nonlinearity ( )zδ  is then directly proportional to the 

dispersion ( )zβ  which can take any functional form. We will study this special 

case in Section 4.4. 

4.3   Chirped Self-Similar Bright Solitons in the Anomalous and 

Normal Dispersion Regimes 

In this section, we assume that cubic nonlinear parameter ( )zγ  is constant and 

there is no gain or loss i.e. ( ) 0g z = . The dispersion and the quintic nonlinearity 

therefore vary exponentially as ( ) ( )0 20 0expz zβ β α β= −  and 

( )zδ = ( )0 20 0exp .zδ α β−  From Section 4.2, the phase and amplitude of the self-

similar solutions of the generalized CQNLS equation with distributed coefficients 

are given by Eqs. (4.3) and (4.4). We determine the amplitude of the bright 
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solitary wave by integrating Eq. (4.13) and obtain  

( )
( )

( ) ( )

( )

1/ 2

1

2
0 20 1

22
0 202 0 20

21, exp ,
1 81 cosh 2 1

13 1
c

E z t i
T D z t T

T D zT D z

ρ
α ρ

αρ α

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= Φ⎨ ⎬

⎡ ⎤ ⎛ ⎞− −⎪ ⎪⎣ ⎦ + ±⎜ ⎟⎪ ⎪⎜ ⎟⎡ ⎤−⎡ ⎤− ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∓                                     

                                                                                                           (4.18)                                  

where ( ) ( ) ( )1 /z z zρ β γ=  and ( ) ( ) ( )2 / .z z zρ β δ=  The integration constant 1λ  

is chosen to be 2
01/ ,T  where 0T  is the initial pulse width. The upper signs in Eq. 

(4.18) correspond to the soliton in the anomalous dispersion regime while the 

lower signs correspond to that in the normal dispersion regime. In the anomalous 

dispersion regime, the following physical conditions, 0,β <  0,γ >   0δ >  

(competing cubic-quintic nonlinearity) or 0,β <  0,γ >  0δ <  (cooperating 

cubic-quintic nonlinearities) should be maintained for the existence of soliton. 

Similarly, 0,β >  0,γ >  0δ > (competing cubic-quintic nonlinearity) has to be 

valid for the soliton in the normal dispersion regime. Equation (4.18) is a linearly 

chirped self-similar bright solitary pulse since it propagates in a self-similar 

manner in a fiber medium under the influence of cubic-quintic nonlinearity. In a 

semiconductor double-doped optical fiber, self-similar solitons in both normal 

and anomalous dispersion regimes are possible depending on the doping materials, 

the operating frequency, and the optical pulse intensities [93]. 

4.3.1   Length Scales 

Unlike the conventional soliton in Kerr media, where the dispersion and nonlinear 

lengths are proportional to each other, we found that the dispersion, cubic and 

quintic nonlinear lengths for the self-similar solitons in a CQ medium follow a 

harmonic relationship  
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( )
( )

( )
( )

( )
( )4 2

2sgn sgn sgn
0,

3 n n DL z L z L z
δ γ β

− − =                                                     (4.19) 

where the dispersion [ ( )DL z ], cubic [ ( )2nL z ] and quintic [ ( )4nL z ] nonlinear 

lengths are given by 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
0

2 4 2
0 0

1 1,    ,    .D n n

T z
L z L z L z

z z P z z P zβ γ δ
Γ

= = =       (4.20) 

Here 2
0 maxP E=  is the peak power of the chirped soliton, where maxE  is the 

maximum amplitude [which is given in Eq. (4.23)]. Note that all the three length 

scales vary with distance because the coefficients of the CQNLS equation depend 

on distance. We note that when the quintic nonlinearity is switched off i.e. 

4 ,nL → ∞  Eq. (4.19) is reduced to the well-known condition 2D nL L=  for soliton 

formation in Kerr media. In this case, the linearly chirped bright soliton in Eq. 

(4.18) will be reduced to the the chirped soliton solution for Kerr nonlinearity [26, 

27]. 

   From Eq. (4.18), the energy of the chirped bright soliton is calculated as 

( ) 2
2 1

2
0

2 1 1ln ,
1

z bW E dt
bT b

ρ∞

−∞

+ −
= = −

Γ −
∫    ( 1)b <                         (4.21) 

( ) ( )2 1 1

2
0

2
sin 1/ ,

21

z
W E dt b

T b

ρ π∞ −

−∞

⎡ ⎤= = ⎢ ⎥⎣ ⎦Γ −
∫ ∓ ∓  ( 1)b >                           (4.22) 

where ( )2 2
3 2 01 8 / 3b Tλ λ= +  is a constant. In terms of length scales, the 

parameter b can also be written as b =
( )

( )
( ) ( ) ( )2

22

4
1 sgn .n

D n
D

L z
L z L z

L z
β γ⎡ ⎤+ ⋅ +⎣ ⎦  

Equation (4.21) represents the energy of the soliton in the anomalous dispersion 

regime when 1.b <  The upper sign in Eq. (4.22) corresponds to the soliton energy 
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in the anomalous dispersion regime when 1.b >  The lower sign corresponds to 

the soliton energy in the normal dispersion regime for all values of 0.b >  The 

condition 1b >  ( )1<   corresponds to ( )0 0/ 0 0 .δ β > < For optical fibers, the cubic 

nonlinear coefficient 0.γ >  Thus in the anomalous dispersion regime, the 

condition 1b >  means 0δ <  representing cooperating cubic-quintic nonlinearities, 

whereby the effect of dispersion is balanced by the cubic and quintic 

nonlinearities. The other condition 1b <  means 0δ >  representing the competing 

cubic-quintic nonlinearities, wherein the effect of cubic nonlinearity is balanced 

by that of dispersion and quintic nonlinearity. The condition 1b =  is not of 

interest because it corresponds to ( ) ( )2D nL z L z=  which is possible only if 

4 ,nL → ∞   i.e. 0.δ =  In the normal dispersion regime, normally 1b >  because 

( )sgn 0.γ >  Thus, in the anomalous dispersion regime, the parameter b 

determines whether the nonlinearities are cooperating or competing. 

   We find that the soliton solution in the anomalous regime will approach the 

chirped soliton solution reported in [26, 27] when the coefficient of the quintic 

nonlinearity approaches zero ( 0).δ →  However, the energy of Eq. (4.22) goes to 

infinity when 30 ( 0).δ λ→ →  Thus, the quintic nonlinearity is crucial to the 

formation of chirped solitons in the normal dispersion regime. Similarly, the peak 

intensity and FWHM are given by  

( ) ( )12
2 2max

0

21 ,
1
z

E
T b

ρ
=

Γ ±
∓                                                            (4.23) 

( )2
0 ln 2 2 1 ,t T y y⎡ ⎤Δ = Γ ± + ± −⎢ ⎥⎣ ⎦

                                                   (4.24) 

where 1/ .y b=  The upper signs in Eqs. (4.23) and (4.24) correspond to the peak 

intensity and the pulse width of soliton in the anomalous dispersion regime while 
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the lower signs correspond to that in the normal dispersion regime. 

   Note that the Eq. (4.24) represents the FWHM of the chirped soliton pulse after 

the compression process. Further from the same relation, as we know the initial 

and final width of the pulse, one can easily determine the pulse compression 

factor with the following relation 

( ){ } 1
20 ln 2 2 1 .T y y

t

−
⎡ ⎤= Γ + + ± −⎢ ⎥⎣ ⎦Δ

                                    (4.25) 

4.3.2   Stability of the Chirped Soliton 

Strictly speaking, the localized solution given in Eq. (4.18) is not a soliton, but 

rather a solitary wave. It is therefore crucial to determine the stability of the 

solution. Ideally, analytical techniques such as the Vakhitov-Kolokolv (VK) 

criterion should be used to determine the stability of the solitary waves [106]. The 

VK criterion has been well established for the constant coefficient NLS-type 

equations (for both cubic and cubic and quintic nonlinearities). However, 

mathematically the VK criterion is applicable to the ground states of NLS-type 

equations only. Thus, the VK criterion cannot be applied to analyze the stability 

of the chirped soliton given in Eq. (4.18). As a result, we have to resort to using 

numerical simulation to determine the stability of the chirped solitons. From 

extensive numerical simulations, we find that the chirped soliton in the anomalous 

dispersion regime is stable whereas that in the normal dispersion regime is 

unstable (for details see Section 4.3.3). Therefore, hereafter, we focus on pulse 

compression in the anomalous dispersion regime only. 

   Before we leave this subsection, we would like to illustrate the relationship 

between the three length scales discussed in Section 4.3.1. We consider the case 

in which the cubic nonlinearity γ  = constant and gain or loss ( ) 0.g z =  Thus the 
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dispersion and the quintic nonlinearity parameters are given by 

( ) ( ) ( ) ( )0 0exp ,    exp ,z z z zβ β σ δ δ σ= − = −                                 (4.26) 

where 0 00, 0β δ< >  and 20 0 0σ α β= >  for dispersion decreasing fibers. As an 

example of pulse compression, we consider a semiconductor-doped 

(chalcogenideAS2Se3) fiber of length L = 400 m. The effective mode area of the 

fiber is assumed to be 10 µm2. The cubic and quintic nonlinear coefficients are 

assumed to be 0 0.2362 /W/mγ =  and 2
0 0.4724 /W /m,δ =  respectively. The 

initial GVD 0β  is chosen to be 20.5 ps /m.−  The other parameters chosen are 0T  = 

5 ps, σ = 0.005/m, 2
20 0.01 THzα = −  and g = 0. Figure 4.1(a) plots the variation 

of dispersion, cubic and quintic nonlinearly length for a soliton solution. From Fig. 

4.1(a), in the beginning of compression, the cubic nonlinear length and the 

dispersion length dominate. As the pulse propagates and compresses, its peak 

intensity increases, hence the quintic nonlinear length decreases and becomes 

comparable to the dispersion length and the cubic nonlinear length. Figure 4.1(b) 

shows the compression of the bright soliton under the influence of the competing 

cubic-quintic nonlinearities. The compression factor of the above fiber is found to 

be 7.39. We also numerically integrated Eq. (4.1) using the exact soliton solution 

as the initial condition. The numerical results agree very well with the analytic 

solution as illustrated in Fig. 4.1(b). 

4.3.3   Perturbations in the Input Peak Power and Chirp 

Since Eq. (4.1) is not integrable, for optical compression application it is 

necessary to study the effects of perturbations on evolution of the solitary wave 

solution given in Eq. (4.18). In the following, we investigate the effect of 

perturbations of the initial peak power and initial chirp on the pulse evolution. 
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      (a) 

 

                                                                       (b) 

Figure 4.1: (a) Variation of the dispersion length (dots), cubic nonlinear length (solid curve) 

and quintic nonlinear length (dashed curve) for a chirped soliton in a cubic-quintic nonlinear 

medium. The physical parameters are: T0 = 5 ps, α20 = −0.01 THz2, β0 = −0.5 ps2/m, σ = 0.005 

/m, γ0 = 0.2362 /W/m, δ0 = 0.4724 /W2/m, g = 0 and z = 400 m. (b) Compression of a chirped 

bright soliton pulse. The dots and solid curve represent analytical and numerical results 

respectively. 
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First, we consider variations in the initial peak power and initial chirp and study 

the corresponding changes in peak power and chirp. We determined the quality of 

the compressed pulse by monitoring the pedestal generated and the compression 

factor when the initial pulse is perturbed. Figure 4.2 shows the deviations in peak 

power and chirp coefficient at L = 400 m from the analytic solution when the 

input peak power deviates from the ideal peak power from −20% to +20% but the 

pulse width of the solitary pulse remained unchanged. The choice of fiber and 

pulse parameters is the same as that in Fig. 4.1. The dots represent results for 

competing cubic-quintic nonlinearities, circles represent the results for 

cooperating cubic-quintic nonlinearity, and crosses represent the results for pure 

cubic nonlinearity. 

   Figure 4.2(a) shows that the deviation of the peak power from the ideal solution 

is smallest for the case of competing cubic-quintic nonlinearities and largest for 

cooperating cubic-quintic nonlinearities. Here it should be emphasized that the 

larger deviation in the latter case is owing to the beam collapse which occurs in 

the case of cooperating cubic-quintic nonlinearities. In Fig. 4.2(a), the deviation 

in peak power under different perturbations of initial peak power has been 

calculated with the following expression perturbed ideal ideal( ) / 100%.P P P− ×  From Fig. 

4.2(b), the same observation holds for the deviations of the chirp parameter, but 

the variations in the chirp parameter is more sensitive to the perturbation. Here, 

the chirp of the perturbed solitary pulse is measured by carrying out a polynomial 

fit of the phase. From the polynomial fitting, the chirp remains close to the 

quadratic chirp since the chirp contributed by all higher order terms are very 

small. Based on the numerical results, the soliton solutions in competing cubic 

quintic nonlinearities are more robust to perturbations. The amount of pedestal 
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generated during pulse compression is an important parameter characterizing the 

quality of the compressed pulses. The pedestal energy is defined as the relative 

difference between the total energy of the transmitted pulse and the energy of a 

hyperbolic-secant pulse having the same peak power and width as those of the 

transmitted pulse, i.e. pedestal energy(%) = (Eperturbed −ECQ) / Eperturbed ×100%. 

Here, Eperturbed is the energy of the perturbed pulse. Note that the energy of a 

hyperbolic-secant type pulse ECQ in the CQ media is calculated using curve fitting 

to obtain the best fit from the data. We use the function  

( )2
1 2 3/ cosh 2 / 1E ζ ζ χ ζ= +⎡ ⎤⎣ ⎦  to fit the intensity of the hyperbolic secant type 

pulse, where the values of the parameters 1 2,ζ ζ  and 3ζ  are determined by the 

curve fitting. Figure 4.2(c) shows the amount of pedestal generated for the 

corresponding perturbation in initial peak power. The results show that competing 

cubic-quintic nonlinearities generate only small amount of pedestal energy 

comparing to cooperating cubic-quintic nonlinearities and pure cubic nonlinearity. 

However, the amounts of pedestal generated in all three cases are very small. 

Even in the worst case in which the initial peak power is only 80% of the ideal 

value for cooperating nonlinearities, the pedestal energy is only 1.6%. Figure 

4.2(d) shows the compression factor for the corresponding perturbation in the 

peak power for all the three cases. As expected, the compression factor is the 

highest for cooperating cubic-quintic nonlinearities and the lowest for the 

competing case. Thus the pulse compressor using competing nonlinearities are 

more robust to perturbation of the input pulse parameters at the expense of the 

compression factor. 

   Figures 4.3(a) and (b), respectively, show the deviation in peak power and the 

chirp when the initial chirp of the input pulse deviates from the ideal value. 
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      (a)                                                                     (b) 

 

    (c)                                                                   (d) 
 

Figure 4.2: (a) Deviations of the peak power from the exact solution, (b) the chirp coefficient, 

(c) the pedestal energy, and (d) the compression factor at L = 400 m when the input peak 

power deviates from the ideal peak power from −20% to +20%. The physical parameters are 

same as those in Fig 4.1. The dots represent results for competing cubic- quintic nonlinearities 

(δ0 = 0.4724 /W2/m), circles represent results for cooperating cubic- quintic nonlinearities (δ0 = 

−0.4724 /W2/m), and crosses represent results for pure cubic nonlinearity (δ0 = 0). 
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Unlike the perturbations in peak power, the deviations in peak power are small 

and are very similar for the three different cases. Again, the deviation of the chirp 

value is the smallest for competing cubic-quintic nonlinearities and the largest for 

cooperating case. Figures 4.3(c) and (d) show the pedestal energy and 

compression factor, respectively, for the corresponding perturbations in the initial  

chirp. The pedestal energy generated in all three cases is only a fraction of one 

percent. The deviations in compression factor are small and similar for all the 

three cases. Thus the soliton is very robust to perturbation in the initial chirp in all 

three cases.  

   We have carried out extensive numerical simulations on the perturbations of 

initial power and initial chirp by varying the decay rate of dispersion and 

changing the strength of quintic nonlinearity. In all cases we have studied, we 

find that the compressed pulse in the case of competing nonlinearities has the 

smallest deviations in peak power and chirp. The pedestal energy is also the 

smallest but the compression factor is also the smallest when compared to the 

case of pure cubic nonlinearity and cooperating cubic-quintic nonlinearities.   

Figure 4.4 shows the evolution of the (a) peak power, (b) chirp, (c) pedestal 

energy and (d) compression factor when the peak power of the initial solution is 

+20% larger than the ideal solution given in Eq. (4.21) for competing cubic-

quintic nonlinearities and Eq. (4.22) for cooperating cubic-quintic nonlinearities. 

The distance traveled is 400 m. The parameter LD0 is the initial dispersion length 

as z = 0. The dashed curve represents the soliton solution of the CQNLS equation. 

The dots represent perturbation results for competing cubic-quintic nonlinearities, 

the circles represent that for cooperating cubic-quintic nonlinearities, and the 

crosses represent that for pure cubic nonlinearity. From Fig. 4.4(a), (b), (c) and 
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    (a)                                                                      (b) 

 

    (c)                                                                   (d) 
 
Figure 4.3: (a) Deviations of the peak power from the exact solution, (b) the chirp coefficient, 

(c) the pedestal energy, and (d) the compression factor at L = 400 m when the initial chirp 

deviates from the chirp value of the exact solution from −20% to +20%. The physical 

parameters are same as those in Fig 4.2. The dots represent results for competing cubic and 

quintic nonlinearities (δ0 = 0.4724 /W2/m), circles represent results for cooperating cubic and 

quintic nonlinearities (δ0 = −0.4724 /W2/m), and crosses represent results for pure cubic 

nonlinearity (δ0 = 0). 
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        (a)                                                                      (b) 

 

  (c)                                                                   (d) 
 

Figure 4.4: Evolution of the (a) peak power, (b) chirp, (c) pedestal energy, and (d) 

compression factor when the initial peak power deviates +20% from the ideal peak power 

when distance varies from 0 to 400 m for the same physical parameters used in Fig 4.1. The 

parameter LD0 is the initial dispersion length. The dashed curve represents results for the exact 

solution, dots represent results for competing cubic-quintic nonlinearities (δ0 = 0.4724 /W2/m), 

circles represent results for cooperating cubic-quintic nonlinearities (δ0 = −0.4724 /W2/m), and 

crosses represent results for pure cubic nonlinearity (δ0 = 0).  
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(d), the peak power, chirp, pedestal and compression factor of the solitary pulse 

undergo periodic oscillations during the evolution. We note that the oscillation 

periods are different for the three different cases. Without quintic nonlinearity and 

for the constant dispersion, the oscillation has a period of 08z  for soliton where 

0z ( )/ 2DLπ=  is the soliton period, because of the resonance of the perturbation  

with the soliton wavevector ( )02 / 8zπ  [107].  

   In what follows, for the completeness of the investigation, we predict the 

oscillations exhibited by the peak power and pulse width during the evolution. 

Figure 4.5(a) represents the behavior of change in peak power perturbed idealP P PΔ = −  

along the propagation direction when the initial peak power deviates from the 

peak power from −20% to +20%. We have halved the dispersion decay rate and 

doubled the pulse propagation distance in Fig. 4.5(a) when compared to that used 

in Fig. 4.3 in order to observe more oscillations. For Fig. 4.5(a), the solid curve 

represents the competing cubic-quintic nonlinearities, the dashed curve represents 

the cooperating cubic-quintic nonlinearities, and the dot-dashed curve represents 

the pure cubic nonlinearity. From Fig. 4.5(a), the deviation PΔ  is the smallest for 

the competing cubic-quintic nonlinearities case. Figure 4.5(b) shows that the 

period of oscillations decreases exponentially along the propagation direction. 

The solid curve represents exponential fits for the three different cases. The rate 

of change of the period is found to be 0.002474/m for the competing cubic-quintic 

nonlinearities (dots), 0.002716/m for the cooperating cubic-quintic nonlinearities 

(circles), and 0.002637/m for pure cubic nonlinearity (crosses). All three decay 

rates for the three different cases are close to the decay rate of the dispersion 

which is 0.0025/m. Thus, the period of oscillation decreases exponentially as the 
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  (a)                                                                    (b) 

                                

Figure 4.5: (a) Evolution of ΔP = Pperturbed − Pideal along the propagation direction. The solid 

curve represents results for competing cubic-quintic nonlinearities (δ0 = 0.4724 /W2/m), 

dashed curve represents results for cooperating cubic-quintic nonlinearities (δ0 = −0.4724 

/W2/m), dot-dashed curve represents results for pure cubic nonlinearity (δ0 = 0). The physical 

parameters are T0 = 5 ps, α20 = −0.005 THz2, β0 = −0.5 ps2/m, σ = 0.0025 /m, γ0 = 0.2362 

/W/m, g = 0 and z = 800 m. (b) Variation of the oscillation periods along the propagation 

direction. The dots represent results for competing cubic-quintic nonlinearities (δ0 = 

0.4724/W2/m), circles represent results for cooperating cubic-quintic nonlinearities (δ0 = 

−0.4724/W2/m), crosses represent results for pure cubic nonlinearity (δ0 = 0). The solid curve 

represents exponential fittings for the three different cases.  
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dispersion decreases along the propagation direction. The oscillations in PΔ  

represent a gradual adjustment towards ideal pulse shape under investigation. 

Figure 4.6 shows curve fitting of the evolution of PΔ  for competing cubic- 

quintic nonlinearities with the function ( )f ξ =  

( ) ( ) ( )1 2 3 4 5 6exp exp sin exp ,c c c c c cξ ξ ξ+ ⎡ ⎤⎣ ⎦  where 0/ ,Dz Lξ =  0DL  is the initial 

dispersion length and ci, i =1,…,6 are constants. The solid curve represents the  

simulation results of the evolution of PΔ  for competing cubic and quintic 

nonlinearities when the initial peak power is 20% larger than that of the ideal 

solution. The dashed curve represents the curve fitting results using the method of 

steepest descent where c1 = 0.0917, c2 = 0.1238, c3 = 0.08, c4 = −0.0177, c5 = 

−7.6532 and c6 = 0.1043. It is obvious that PΔ  oscillates along a exponential 

function, whose increasing rate (c2) almost equals to the decay of exponentially 

decreasing dispersion (0.125). The evolution of PΔ  agrees with the fitting fuction 

very well.  

   Figure 4.7 shows the evolution of the (a) peak power, (b) chirp, (c) pedestal 

energy and (d) compression factor when the initial chirp is +20% larger than that 

of the ideal solution. The dashed curve represents the soliton solution of the 

CQNLS equation. The dots represent perturbation results for competing cubic- 

quintic nonlinearities, the circles represent that for cooperating cubic-quintic 

nonlinearities, and the crosses represent that for pure cubic nonlinearity. We 

observe that the peak power and the compression factor (pulse width) of the 

solitary pulse undergo only very small periodic oscillations. The deviations in 

peak power and compression factor are very small. The pedestal energy 

undergoes relatively larger periodic oscillations during the evolution but the 

magnitude of the variation is smaller than that for the perturbation in the peak 
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Figure 4.6: Curve fitting the evolution of ΔP for competing cubic and quintic nonlinearities 

by the function f(ξ) = c1exp(c2ξ) + c3exp(c4ξ)sin[c5exp(c6ξ )], where ξ = z/LD0 and ci, i=1, . . . , 

6 are constants. The solid curve represents the simulation results of the evolution of ΔP for 

competing cubic-quintic nonlinearities when the initial peak power deviates +20% from the 

ideal value. The dashed curve represents the fitting results using the method of steepest 

descent where c1 = 0.0917, c2 = 0.1238, c3 = 0.08, c4 = −0.0177, c5 = −7.6532 and c6 = 0.1043, 

and the dashed curve represents the results for the fitting function. 
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      (a)                                                                           (b) 

 

  (c)                                                                   (d) 

Figure 4.7:  Evolution of the (a) peak power, (b) chirp, (c) pedestal energy, and (d) 

compression factor when the initial chirp deviates +20% from the exact chirp when the 

distance varies from 0 to 400 m for the same physical parameters in Fig 4.1. The dashed curve 

represents results for the exact solution, dots represent results for competing cubic- quintic 

nonlinearities (δ0 = 0.4724 /W2/m), circles represent results for cooperating cubic- quintic 

nonlinearities (δ0 = −0.4724 /W2/m), and crosses  represent results for pure cubic nonlinearity 

(δ0 = 0).  
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power. 

4.4   Chirped Self-Similar Townes Soliton 

From the previous section, the soliton solution in the normal dispersion regime of 

the CQNLS equation with exponentially varying dispersion is unstable. Further, 

in the absence of quintic nonlinearity, the combination of cubic nonlinearity and 

normal dispersion, exponentially varying or not, does not support soliton 

solutions. However, pure quintic nonlinear medium does support soliton solution 

known as the quintic Townes solitons which are discovered for the two-

dimensional NLS equation in nonlinear optics and describe the collapsing and 

dispersing of optical pulses [108]. Pulse propagation in a pure quintic NLS 

(QNLS) equation with distributed dispersion and distributed linear gain is given 

by  

( ) ( ) ( )2
4

2 0.
2 2
z g zE Ei z E E i E

z t
β

δ∂ ∂
− − − =

∂ ∂
                                       (4.27) 

Equation (4.27) describes nonlinear pulse propagation in many fields of nonlinear 

science, for example, in the nonlinear optics under the power law nonlinearity. It 

is known that physically, various materials, including semiconductors, exhibit 

power law nonlinearity. Spatial solitons have been investigated in media that have 

a power-law dependence on the intensity qI  for continuum values of q (where I 

being the intensity) [109−111]. However, in general, it may be difficult to find 

suitable nonlinear optical media which exhibit pure quintic nonlinearity because 

manipulation of the magnitude and the sign of nonlinearity is not easy. However, 

the QNLS equation aptly models the BECs especially in the TG regime. 

Experimental generation of such a gas had also been reported [100]. Recently, it 

has been shown that the magnitude as well as the sign of nonlinearity, which is 
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determined by the interactions between atoms in the condensate, could be 

manipulated by varying the external magnetic field near the Feshbach resonance 

[101]. Therefore, it is physically relevant to discuss the chirped Townes soliton in 

the BECs. The formation of soliton in BEC is similar to nonlinear optics, where 

the bright and dark solitons are supported by the focusing and defocusing 

nonlinearity, respectively, whereas in BECs, s-wave scattering interaction 

between atoms actually determines the soliton formation. Thus, bright and dark 

solitons are found in condensates with attractive and repulsive interactions. We 

now discuss the generation of chirped Townes soliton in the pure quintic media. 

The complex envelope of the chirped Townes soliton is obtained by applying the 

following physical condition ( ) 0zβ <  and ( ) 0zδ <  in Eq. (4.27). 

( ) ( )
( )

( ) ( )
( )

( ) ( )
1/ 2

2
0 20 0 200

21, sech exp .
1 12 0 0 / 3/

cz t T
E z t i

T D z T D zT

β
α αδ β

⎧ ⎫⎛ ⎞−⎪ ⎪= Φ⎜ ⎟⎨ ⎬⎜ ⎟− −⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭

                                       

                                                                                                             (4.28) 

The relation between the dispersion length and the quintic nonlinear length is 

4.2 / 3D nL L=  The energy and peak intensity of the chirped Townes soliton are 

given by 

( )
( ) ( ) ( )20

3
,

1 8 0 0

z
W

D z

π β

α δ β
=

−⎡ ⎤⎣ ⎦
                                                   (4.29) 

( )
( ) ( ) ( )

2
max 2

0 20

3
.

1 2 0 0

z
E

T D z

β

α δ β
=

−⎡ ⎤⎣ ⎦
                                            (4.30) 

   We then proceed to investigate the stability of the chirped Townes soliton. For 

the constant coefficient case, it has been demonstrated that the Townes soliton is 

marginally stable in homogeneous media (g = 0) according to VK criterion. As 

has been discussed in Section 4.3.2, VK criterion does not apply to the chirped 
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Townes soliton in Eq. (4.28). However, unlike Section 4.3.2, it is not possible to 

numerically establish that a solution is marginally stable. We would try to infer 

the character of the solution in Eq. (4.28) by numerically studying the evolution 

of inputs with amplitude above and below that of the solution. First we study the 

evolution of analytic chirped Townes soliton. Figure 4.8 plots the evolution of 

analytic chirped Townes soliton solutions for constant (solid 

curve 2
0 0.5 ps /mβ = − ), exponentially increasing (dot-dashed curve  =σ  −0.005 

/m), and exponentially decreasing (dashed curve =σ  0.005 /m) dispersions. The 

dots represent the results obtained by dint numerical simulation. Note that the 

analytical results are in good agreement with the results obtained by numerical 

simulation for the distance simulated. 

   So far, we have discussed the conventional pulse compression technique 

whereby we utilized the cubic nonlinearity and dispersion to achieve pulse 

compression. A non-conventional pulse compression technique based on the wave 

collapse phenomenon has been reported [112]. It is well established that the pure 

quintic model exhibits collapse [113]. However, the occurrence of collapse could 

either be arrested or postponed by physical effects like damping, nonlinearity 

saturation etc [114, 115]. Recently, it has been shown that the quintic damping 

effect, which arises from the three body interaction of an imaginary component, 

and cubic nonlinearity management help to arrest/suppress the occurrence of 

collapse [114]. 

   Figure 4.9 shows the deviations of peak power from the exact Townes soliton 

when the input peak power deviates from the ideal peak power by (a) −5% and 

(b)+5% for constant dispersion (solid curve), exponentially decreasing dispersion 

(dashed curve), and exponentially increasing dispersion (dot-dashed curve). The 



 

 136

physical parameters used here are the same as those in Fig. 4.8. For constant 

dispersion (solid curve), the pulse disperses because the input power is less than 

the critical power as shown in Fig. 4.8(a). When the dispersion increases 

exponentially (dot-dashed curve), the self-similar effect and the wave collapse act 

together to broaden the pulse. Thus the pulse undergoes fast broadening. When 

the dispersion decreases exponentially (dashed curve), the self-similar effect and 

the collapse act in opposite. Thus the pulse initially compresses slightly as the 

self-similar effect dominates but eventually the wave collapse effect takes over. 

The self-similar compression in the exponentially decreasing dispersion can be 

used to postpone the wave dispersion in pure quintic media. 

   Similarly, when the dispersion is constant, the pulse undergoes collapse when 

the input peak power is higher than the critical power, as shown by the solid curve 

in Figure 4.9(b). Rapid compression is achieved by the combined action of the 

collapse phenomenon and self-similar pulse compression in the exponentially 

decreasing dispersion (dashed curve). The occurrence of collapse is postponed in 

the case of exponentially increasing dispersion (dot-dashed curve) since the self-

similar effect in the exponentially increasing dispersion acts against the collapse. 

Our numerical results show that the chirped Townes soliton exhibits similar 

property as the Townes soliton with constant dispersion when the input peak 

power deviates from the ideal peak power. Thus it is likely that the chirped 

Townes soliton is also marginally stable. 

   Finally, in general it is difficult to realize a medium exhibiting pure quintic 

nonlinearity. It is therefore important to determine the tolerance of chirped 

Townes soliton of a quintic medium to the presence of a small amount of cubic 

nonlinearity. Figure 4.10 shows the change in peak power of the Townes soliton 
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in the presence of cubic nonlinearity. The parameters in Fig. 4.10 are same as 

those in Fig. 4.1 except γ (0) = 10−5 /W/m (solid curve), γ (0) = 10−4 /W/m (dot-

dashed curve) and γ (0) = 10−3 /W/m (dashed curve). The dots represent results of 

pure quintic nonlinearity. The solid curve, dot-dashed curve and dashed curve 

represent the results when the ratio of cubic nonlinear length to quintic nonlinear 

length 2 4( / )n nL L  are 12000, 1200 and 120 respectively. It is clear that the pure 

quintic result almost matches with cubic-quintic result only for the chosen value 

of cubic nonlinearity ( 2 4/n nL L 12000). As the cubic nonlinearity increases, Figure 

4.10 shows that the evolution of the chirped Townes soliton is very sensitive to 

the presence of even a small amount of cubic nonlinearity ( 4 2/ 0.1%n nL L < ). As 

the cubic nonlinearity increases, the chirped Townes soliton pulse becomes 

unstable.  

4.5   Summary 

By using self-similar scaling analysis, we have found the chirped bright soliton 

solutions in the anomalous and normal dispersion regimes of cubic-quintic 

nonlinear media. By means of direct numerical simulation, we show that the 

chirped soliton in the anomalous dispersion regime is stable whereas that in the 

normal dispersion regime is unstable. For these chirped solitons, the dispersion 

length, the cubic nonlinear length, and the quintic nonlinear length are related. If 

the quintic nonlinear length goes to infinity, dispersion length will equal cubic 

nonlinear length. We observed that by the use of exponentially decreasing 

dispersion, it is possible to utilize these self-similar solitons to achieve pedestal 

free pulse compression in cubic-quintic nonlinear media. We then studied the 

evolution of the chirped bright solitons when the initial peak power or the initial 

chirp is perturbed. We have found that the evolution of the soliton is not 
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significantly affected even when the perturbations in the initial parameters is 

±20% of its ideal values. The solitons have better tolerance to perturbations in the 

initial chirp than initial peak power. We have carried out extensive numerical 

simulations by varying the decay rate of dispersion and changing the strength of 

the quintic nonlinearity. From the numerical simulations, we have observed that 

competition between the cubic and quintic nonlinearities stabilizes the pulse 

against perturbations in initial pulse parameters. Hence, one can construct a stable 

pedestal free optical pulse compressor by using competing cubic quintic 

nonlinearities. 

   Finally, we studied the chirped Townes soliton in pure quintic nonlinear media. 

As the Townes solitons with constant dispersion are marginally stable, we studied 

the perturbation of the chirped Townes soliton in terms of peak power. We found 

that we can achieve fast pulse compression by combining the wave collapse and 

exponentially decreasing dispersion when the perturbation is higher than the ideal 

one. The occurrence of collapse can also be postponed by using the exponentially 

increasing dispersive media. These two issues (fast and slow compression) could 

be implemented depending on the physical situation and requirement. 

Applications in terms of BEC in the TG regime have also been discussed. 
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Figure 4.8: Evolution of the peak power of Townes soliton when the dispersion is constant 

(solid curve, β0 = −0.5 ps2/m), exponentially increasing (dot-dashed curve, σ = −0.005 /m) and 

exponentially decreasing dispersion (dashed curve, σ = 0.005 /m). The dots represent the 

results obtained by numerical simulation. The physical parameters are same as those in Fig. 

4.1 except γ  = 0.  
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          (a) 

 

      (b) 

Figure 4.9:  (a) The deviations of peak power from the exact Townes soliton solution when 

the input peak power deviates from the ideal peak power by (a) −5% and (b) +5% when the 

dispersion is constant (solid curve), exponentially decreasing (dashed curve), and 

exponentially increasing (dot-dashed curve). The physical parameters are same as those in Fig. 

4.8.  
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Figure 4.10: Evolution of the peak powers of chirped Townes solitons in the presence of 

cubic nonlinearity. The dots represent results of the pure quintic nonlinearity. The solid curve, 

dot-dashed curve and dashed curve represent the results when the ratio of cubic nonlinear 

length to quintic nonlinear length (Ln2 / Ln4) are 12000, 1200 and 120, respectively. The 

corresponding values of cubic nonlinearity are γ0 = 10−5 /W/m, 10−4 /W/m and 10−3 /W/m, 

respectively. The other physical parameters are same as those in Fig. 4.1. 
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Chapter 5 

Conclusions 

Generation of short optical pulses has always been of great scientific and 

technological interest. There is variety of methods for temporally compressing 

optical pulses. These methods can be grouped into two categories: linear pulse 

compression and nonlinear pulse compression. Nonlinear compression, which 

relies on the iteration of Kerr nonlinearity and quadratic dispersion, can generate 

an increased bandwidth, which is an effect that linear compression is incapable of 

doing. There are two widely used techniques to achieve optical pulse compression; 

namely, higher-order soliton compression and adiabatic pulse compression. The 

former can have a large degree of compression, but the compressed pulses suffer 

from significant pedestal generation, leading to nonlinear interactions between 

neighboring solitons. Some techniques, such as the nonlinear intensity 

discrimination technique [19, 20] can reduce the pedestals, but typically energy is 

wasted. Adiabatic soliton compression typically utilizes a dispersion map with 

monotonically decreasing dispersion along the propagation direction, and is 

formally equivalent to distributed amplification [21]. If the dispersion varies 

slowly enough, the soliton self-adjusts to maintain the balance between dispersion 

and nonlinearity [2]. This compression scheme is attractive because it inherently 

maintains the transform-limited characteristics of the pulse as it compresses [2]. 
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However, adiabatic condition must be satisfied, i.e. change must be gradual. Such 

compression has been demonstrated experimentally by a variety of schemes to 

achieve the effect of decreasing dispersion.  

   As Moores pointed out in [24], exact chirped soliton solutions to the NLS 

equation exist when we have distributed gain or exponentially varying dispersion. 

One of the advantages of this compression scheme is that the adiabatic condition 

does not need to be satisfied and rapid compression is possible. More recently, a 

technique known as self-similar analysis has been utilized to study linearly 

chirped pulses in optical fibers and fiber amplifiers [25−28]. Self-similar pulses 

have attracted much attention since the linear chirp facilitates efficient pulse 

compression. In addition, these pulses can propagate without pulse breakup, 

called optical wave breaking, even at high powers. However, because of the 

relatively small group velocity dispersion of optical fibers, this scheme requires 

long fiber lengths, and only a few dispersion profiles are practically feasible. 

Moreover, fabrication of fibers with complex dispersion profiles usually involves 

the splicing of several different fibers or drawing fibers with an axially varying 

core diameter. A more attractive solution to achieve pulse compression is by 

utilizing a highly dispersive nonlinear medium such as a FBG. Grating dispersion 

just outside the stop band is up to 6 orders of magnitude larger than that of silica 

fiber and can be tailored simply by changing the grating profile. Grating 

dispersion can exceed 100 ps2 /cm for a fiber grating, and this feature has been 

used for dispersion compensation in transmission [76]. Moreover, almost any 

grating profiles can be manufactured using the state of-the-art grating-writing 

techniques. This potential suggests utilizing this huge dispersion to construct a 

compact optical pulse compressor.  
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   In this thesis, we consider the attractive solution consists of pulse compression 

in a highly dispersive nonlinear medium such as a FBG. Using the self-similar 

analysis, we have theoretically investigated the linearly chirped Bragg solitary 

pulses near the PBG structure of FBG. The Painlevé analysis is carried out to 

obtain the condition for the soliton pulse propagation governed by the NLS 

equation with varying dispersion. Two dispersion profiles satisfying this criterion 

are the constant dispersion and exponentially decreasing dispersion profiles. In 

the exponentially varying dispersive media, we explain the existence and 

formation of chirped optical soliton through the variational equation for the chirp 

parameter. For further elucidation, we provide the phase plane diagram in terms 

of the normalized chirp and intensity (peak power) which clearly explains the 

physical process of linearly chirped soliton pulse compression in the 

exponentially decreasing dispersion media. In addition, we present the essential 

steps for driving the exact soliton solution of the variable coefficient NLS 

equation using the Bäcklund transformation method. Efficient Bragg soliton pulse 

compression can be achieved with the exponentially decreasing dispersion. The 

main advantages of this compression scheme are the high degree of compression 

and the high pulse quality. Our simulation results show that the exponentially 

decreasing dispersion profile is not a must, and stepwise approximation is carried 

out by concatenation of grating segments with different constant dispersion 

coefficients. The required section number is found to be associated with the 

compression factor and initial chirp value. Unlike conventional solitons, the 

solution to the NLS type equation with exponentially varying dispersion is 

chirped. The linear chirp is a key feature of the self-similar characteristics of the 

solution which allows pedestal-free pulse compression. In pulse compression, 
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typically the input pulse is unchirped although the pulse after compression is 

usually chirped. Thus for the proposed compression scheme, the input pulse must 

be pre-chirped in a prescribed manner. Therefore, a simple pre-chirper, such as a 

linear fiber or grating, is used to add the required chirp profile to initial chirp-free 

hyperbolic secant or Gaussian pulse. In particular, the initial Gaussian profile has 

evolved into a hyperbolic secant profile after the compression in nonlinear FBG. 

The comparisons between simulation of NLS type equation, pulse parameter 

evolution equations, and nonlinear coupled-mode equations have been given.  

   The NLS equation with Kerr effect has been successful in explaining a large 

number of nonlinear effects. However, higher order nonlinearities must be 

considered if the optical pulse intensity is high or the nonlinear coefficients of the 

materials are large, for instance, in semiconductor doped glasses. We have 

investigated the existence of chirped bright solitary wave solutions in the cubic-

quintic nonlinear media with exponentially decreasing dispersion. From the 

stability analysis, we show that the solitary wave solution in the anomalous 

dispersion regime is stable whereas the one in the normal dispersion regime is 

unstable. Numerical simulation results show that competing cubic and quintic 

nonlinearities stabilize the chirped solitary wave propagation against 

perturbations of the initial pulse parameters. In addition, we studied the 

possibility of rapid compression of Townes solitons by the collapse phenomenon 

in the exponentially decreasing dispersion. We also found that the collapse could 

be postponed if the dispersion increases exponentially.  

   Until now we only carry out the theoretical study and we plan to conduct 

experimental research on the performance of this novel pulse compressor in the 

near future. 
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Appendix A: Acronyms 

                                   BA                         bare approximation 

                                   BEC                       Bose-Einstein Condensate 

                                   CQ                         cubic-quintic 

                                   CQNLS                 cubic-quintic nonlinear Schrödinger 

                                   DCF                       dispersion compensating fiber 

                                   DM                        dispersion managed 

                                   DDFBG                 dispersion exponentially decreasing FBG 

                                   FBG                       fiber Bragg grating 

                                   FFT                        fast Fourier transform 

                                   FWHM                  full width at half maximum intensity 

                                   GVD                      group velocity dispersion 

                                   IST                         inverse scattering transform 

                                   LVM                      Lagrangian variational method 

                                   NFBG                    nonlinear fiber Bragg grating 

                                   NLCM                   nonlinear coupled-mode  

                                   NLCMEs               nonlinear coupled-mode equations  

                                   NLS                       nonlinear Schrödinger 

                                   NLSE                     nonlinear Schrödinger equation 

                                  ODE                       ordinary differential equation 

                                  PBG                        photonic bandgap  

                                  PDE                        partial differential equation 

                                  QNLS                     pure quintic nonlinear Schrödinger 

                                  RK                          Runge-Kutta 
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                                  SPM                       self-phase modulation 

                                  SSFM                     split-step Fourier method 

                                  SWA                      stepwise approximation 

                                  VA                         variational analysis 

                                  VK                         Vakhitov-Kolokolov 

                          WDM                   wavelength-division multiplexed 
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Appendix B: Split-Step Fourier 

Method 

The NLS equation governing the evolution of the slowly varying envelope of an 

optical pulse including the effect of dispersion and Kerr effect is given by  

2
22

2 0,
2

q qi q q
z t

β γ∂ ∂
− + =

∂ ∂
                                                                  (B.1) 

where ( , )q z t  is the slowly varying amplitude of the pulse envelope, z is the 

distance, t  is the time, 2 ( )zβ  is the group velocity dispersion coefficient, and γ  

is the nonlinear parameter. The second term and the third term on the left hand 

side of Eq. (B.1) represents the effect of GVD and SPM, respectively. In general, 

the dispersion coefficient 2 ( )zβ  is distance dependent. Effects such as loss and 

higher order dispersions are not included in Eq. (B.1).  We solve Eq. (B.1) as an 

initial value problem, i.e. given the initial shape ( )0, ,q z t= we want to find the 

pulse shape at z = L, i.e. ( ), .q z L t=  

   The NLS equation is a nonlinear partial differential equation that does not 

generally have analytic solutions except for some specific cases in which the 

inverse scattering (IST) method [116] can be employed.  Even though sometimes 

IST solves the NLS equation exactly, it is seldom used in the study of soliton 

propagation in optical fibers because IST is a rather complex method and it is 

difficult to incorporate perturbative effects in the IST formulation. Therefore, a 

numerical approach is often needed to understand the pulse propagation in optical 

fibers. Two types of numerical methods are commonly used in solving NLS-type 
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equations; they are finite-difference methods and pseudo-spectral methods [5]. 

Among the different numerical methods, SSFM, a type of pseudo-spectral method, 

is the most widely used. The use of FFT algorithm in the SSFM, make the SSFM 

faster by up to two orders of magnitude compared with most finite-difference 

schemes [117]. In the SSFM, the equation is split into multiple partial equations 

each of which contains some of the operators in the original equation. At each 

propagation step, the partial equations are solved in some chosen order. For 

example, the NLS equation can be split into the following equations, 

2
2

2 0,
2

q qi
z t

β∂ ∂
− =

∂ ∂
                                                                                (B.2) 

2 0.qi q q
z

γ∂
+ =

∂
                                                                                 (B.3) 

Equation (B.2) contains the effect of GVD only, while Eq. (B.3) contains the 

effect of SPM only. The algorithm consists of solving Eqs. (B.2) and (B.3) 

alternately at each propagation step size .zΔ  In general, dispersion and 

nonlinearity act together along the length of fiber. The SSFM obtains an 

approximate solution by assuming that in propagating the optical field over a 

sufficiently small distance ,zΔ  the dispersive and nonlinear effects can be 

assumed to act independently [5]. The iterative solutions of Eqs. (B.2) and (B.3) 

approximate that of the NLS equation. Both Eqs. (B.2) and (B.3) can be solved 

exactly for a given initial pulse. See Appendix C and D. The mathematical terms 

due to dispersion and nonlinearity are separate and decoupled in the NLS 

equation. It is this fact that allows the use of the SSFM for solving the NLS 

equation. For NLS equation given by Eq. (B.1), we write it in the form of  

l l( ) ,q D N q
z

∂
= +

∂
                                                                                   (B.4) 
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where l
2

2
2 ,

2
iD

t
β ∂

= −
∂

and l 2 .N i Aγ=  For each propagation step, mathematically  

( ) l( ) l( ) ( ), exp exp , .q z z t zD zN q z t+ Δ ≈ Δ Δ                                           (B.5) 

The SSFM for solving the NLS equation is summarized in the following. 

I   Transform the pulse ( ),q z t  into the frequency domain ( ),q z ω�  using a FFT      

algorithm, where ( ),q z t  is the envelope of the electric field and ( ),q z ω�  is 

the envelope of spectrum. 

II  Propagate the spectral components by, ( ) ( ) ( )2
2', , exp / 2 .q z q z i zω ω β ω= Δ� �  

This is the dispersion step. 

III Transform the spectrum ( )',q z ω�  back to the time domain ( )',q z t  by the 

inverse FFT. 

IV Propagate the solution by, ( ) ( ) ( )( )2
, ', exp ', .q z z t q z t i q z t zγ+ Δ = Δ This is 

the nonlinear step. 

V  Repeat from STEP I to IV. Substitute ( ),q z t  with ( ),q z z t+ Δ  and iterate 

until the accumulated distance is equal to the required transmission distance. 

   Apart from its simplicity, the SSFM is unconditionally stable. Numerical 

stability is a desirable property of numerical algorithms. If not, small errors can 

be magnified instead of damped leading to enormous errors.  
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Appendix C: Solution of 

Dispersion Equation 

We apply Fourier transform to the following equation, 

2
2

2 0,
2

q qi
z t

β∂ ∂
− =

∂ ∂
                                                                                  (C.1) 

22 ( )( , ) exp( ) ( ) ( , ) exp( ) 0,
2 4

zi q z i t d i q z i t d
z

βω ω ω ω ω ω ω
π π

∞ ∞

−∞ −∞

∂
− − − − =

∂∫ ∫
� �      (C.2) 

where ( , )q z ω�  is the spectrum of the pulse q(z, t). Eq. (C.2) can be rewritten as, 

2
2 ( )( , ) ( , ) 0.

2
zq zi q z

z
β ωω ω∂

+ =
∂
� �                                                      (C.3) 

Hence 

2

20
( , ) (0, ) exp ( ) .

2
Liq L q z dzωω ω β

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫� �                                               (C.4) 
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Appendix D: Solution of SPM 

Equation 

Before solving 2 0,qi q q
z

γ∂
+ =

∂
 we show that 2q is independent of z. 

2*( ) 0,qq i q q
z

γ∂
+ =

∂
                                                                                      (D.1) 

*
2*( ) 0.qq i q q

z
γ∂⎡ ⎤+ =⎢ ⎥∂⎣ ⎦

                                                                    (D.2) 

Subtracting Eq. (D.1) from Eq. (D.2), we have 

*
4 4*( ) 0,q qiq q iq q

z z
γ γ

⎡ ⎤∂ ∂⎛ ⎞+ − − + =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
                                                 (D.3) 

*
* 0,q qq q

z z
∂ ∂

+ =
∂ ∂

                                                                                 (D.4) 

( )2

0.
q

z

∂
=

∂
                                                                                      (D.5) 

Hence 2q is a constant. Eq. (D.3) can then be solved directly, we have 

2 0,qi q q
z

γ∂
+ =

∂
                                                                            (D.6) 

2

0 0

1 ,
L Lqi dz q dz

q z
γ∂

= −
∂∫ ∫                                                                               (D.7) 

2( , ) (0, )exp( (0, ) ).q L t q t i q t Lγ=                                                         (D.8) 

For 2 4 0,qi q q q q
z

γ δ∂
+ − =

∂
 similarly we have 
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2 4* 0,qq i q q q q
z

γ δ∂⎛ ⎞+ − =⎜ ⎟∂⎝ ⎠
                                                              (D.9) 

*
2 4* 0.qq i q q q q

z
γ δ⎡ ⎤∂⎛ ⎞+ − =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

                                                      (D.10) 

Substracting Eq. (D.9) from Eq. (D.10), we have 

( )2

0.
q

z

∂
=

∂
                                                                                       (D.11) 

Then 

( ) ( ) ( )2 4, 0, exp (0, ) (0, ) .q L t q t i q t L i q t Lγ δ= −                              (D.12) 
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Appendix E: Errors Associated 

with the Split-Step Fourier 

Method 

The SSFM was first applied in 1973 [118] to study the pulse propagation in 

optical fibers. Since then, this method has been used extensively for studying 

various nonlinear effects in optical fibers [119−127]. Although the method is 

relatively straightforward to implement, it requires that step sizes in z and t be 

selected carefully to maintain the required accuracy [128]. A few guidelines are 

available in [129−132] for the optimum choice of step sizes. The use of FFT in 

the SSFM imposes periodic boundary conditions. This is acceptable in practice if 

the temporal window used in simulation is much wider than the pulse width. 

Typically, the temporal window is chosen to be 10 to 20 times the pulse width [5].  

Errors arise from the wrong choice of the numerical parameters. But, these errors 

can be avoided by the proper choice of step-size in z / t and spectral / temporal 

window. However, the primary source of error for the SSFM is due to the 

noncommuting operators lD  and lN  ( l l, 0D N⎡ ⎤ ≠⎣ ⎦ ). Physically, this implies that 

the origin of dispersive and nonlinear effects is intrinsically coupled. 

   To estimate the accuracy of the SSFM, we note that the exact solution of Eq. 

(B.1) is 

( ) l l( ) ( ), exp , .q z z t z D N q z t⎡ ⎤+ Δ = Δ +
⎣ ⎦

                                                  (E.1) 
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if lN  is assumed to be z independent.  

   For two noncommuting operators l ( )D zΔ  and l ( ) ,N zΔ  the expansion of  

l( ) l( )exp expzD zNΔ Δ can be obtained using the Baker-Hausdorff theorem [133], 

l( ) l( ) l l l l l m l l1 1exp exp exp , , , ... .
2 12

zD zN z D N D N D N D N⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤Δ Δ = Δ + + + − +⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎣ ⎦
 

                                                                                                              (E.2) 

A comparison of Eq. (E.1) and (E.2) shows that the SSFM with 

l( ) l( )exp expzD zNΔ Δ  is only first order accurate. A second order accurate result 

can be obtained by symmetrizing the algorithm such as using 

l l( ) lexp exp exp
2 2
z zD zN DΔ Δ⎛ ⎞ ⎛ ⎞Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 instead of l( ) l( )exp exp .zD zNΔ Δ  We will 

show that the symmetrized algorithm is second order accurate in the following. 

  The exact solution ( ),q z z t+ Δ of Eq. (B.1), can be obtained by using Taylor 

series expansion of ( ),q z t at z, 

( )
2 3

, ...,
2! 3!z zz zzz
z zq z z t q zq q qΔ Δ

+ Δ = + Δ + + +                   (E.3) 

where zq  represents /q z∂ ∂  at z, zzq  represents 2 2/q z∂ ∂  at z, and so on. Using 

Eq. (B.1) and set 2 ( ) 1zβ = −  and 1,γ =  we have 

21 ,
2z ttq i q q q⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

2 2 42 *1 2 2 ,
4zz tttt tt t tq q q q q q q q q q⎛ ⎞= − + + + +⎜ ⎟

⎝ ⎠
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( )

2* 2 * 2 *

2 6 2 4* * * 2

22 2 2 23 * 2 * 2 *

1 5 53 7
8 2 2

112 3 5
2

3 112 2 ,
2 4

zzz tttttt tt t ttt t tt t tt

tt t ttt t ttt t tt

tttt t t tt tttt

q i q q q q q q q q q q

q q qq q qq q q q q q q q q

q q q q q q q q q q q q

⎡= − + + + +⎢⎣

+ + + + + +

⎤+ + + + + ⎥⎦

                 (E.4)                                  

where tq  represents /q t∂ ∂  at z, ttq  represents 2 2/q t∂ ∂ , etc, and *q  is the 

complex conjugate of  ( ), .q z t  

   Evaluation of the numerical algorithm l l( ) lexp exp exp ,
2 2
z zD zN DΔ Δ⎛ ⎞ ⎛ ⎞Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 up 

to ( )3zΔ gives 

2

2
ˆexp exp ,

2 4
z zD q i q

t
⎡ ⎤Δ Δ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 

               ( ) ( )2 3

...
4 32 384tt tttt tttttt

z zzq i q q i q
Δ ΔΔ

= + − − +  

l( ) ( )2 2 42 * 21 1 1 1 1ˆexp exp
2 4 32 2 4 2tt tttt tt tt
zzN D q i z q q q z q q q q q q qΔ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = + Δ + − Δ + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) 2 23 2 * * 21 1 1 1 1
384 32 8 16 16tttttt tttt tt tttt tti z q q q q q q q q q⎛Δ − − + − − +⎜

⎝
 

2 4 62 *1 3 1 ...
4 8 6tt ttq q q q q q q ⎞− − +⎟

⎠
 

l l( ) l ( )2 2 221 1exp exp exp
2 2 2 8tt tttt tt t
z zD zN D q i z q q q z q q q q qΔ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛Δ = + Δ + − Δ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝
 

( )4 2 2 4 632 * * 21 1 1 1 1 3 3 1
2 2 48 4 4 8 4 6t tttttt tt tttt tt ttq q q q i z q q q q q q q q q q q⎞ ⎡+ + − Δ + + + + +⎟ ⎢⎠ ⎣

 

( )22 2 2 22 * * * * 2 3 *1 1 1 3 3 1 ...
4 2 2 4 2 4t tt t tt t ttt t ttt t t tq q q q q q q qq q q q q q q q q q ⎤+ + + + + + + +⎥⎦

 

                                                                                                                 (E.5)                                  
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From Eq. (E.5), the coefficients of the zΔ  and ( )2zΔ  terms are the same as that of 

the true solution, the deviation is proportional to ( )3 .zΔ  Therefore, the accuracy 

of the symmetric SSFM is second-order accurate. The difference between the 

exact solution and numerical solution at ( )3zΔ  is 

2 2* 2 2 * */ 24 / 6 / 6 /12 / 6exact app tt t tt t tt tt t tttq q q i q q q q q q q q qq q⎡Δ = − = − + + + +⎣  

( ) ( )22 4 2 2 2 3* 2 3 * 2 * 2 */12 / 6 / 2 /12 / 6 / 24t tt t t tt ttttq q q q q q q q q q q q q q q z⎤+ + + + + + Δ⎥⎦
 

                                                                                                           (E.6)  

In Fig E.1, we plot the magnitude of the coefficient before ( )3zΔ  in Eq. (E.11) for 

a fundamental soliton solution of Eq. (B.1); ( ) ( ) ( ), sech exp / 2 .q z t t iz= The 

maximum difference is about 0.1667 at t = 0. Figure E.1 is obtained by using 

Maple. 

   The FFT and inverse FFT are the most computational intensive parts of the 

SSFM. For each step in the second order algorithm, four FFTs are required; two 

for the forward transform and two for the backward transform. It therefore 

appears that 4n FFTs are required for distance .z n z= Δ  In practice, the SSFM can 

be made to run much faster by noting 

( ) l l( ) l ( ), exp exp exp 0, ,
2 2

n
z zq z n z t D zN D q t⎡ Δ Δ ⎤⎛ ⎞ ⎛ ⎞= Δ = Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                  (E.7) 

l l( ) l( ) l ( )exp exp exp exp 0, ,
2 2

nz zD zD zN D q tΔ Δ⎛ ⎞ ⎛ ⎞⎡ ⎤= − Δ Δ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
                 (E.8) 

or 

l l( ) l( ) l ( )exp exp exp exp 0, .
2 2

nz zN zN zD N q tΔ Δ⎛ ⎞ ⎛ ⎞⎡ ⎤= − Δ Δ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
                     (E.9) 
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Therefore, except for the first and last steps, all intermediate steps can be carried 

over the whole segment length .zΔ  As a result, the required number of FFTs can 

be reduced roughly by a factor of 2 and the numerical code has been speed up by 

the same factor.   

 

 

 

Figure E.1: The coefficient leading order (Δz)3 error term in a symmetrized split-step Fourier 

algorithm. The simple soliton solution q(z, t) = sech(t)exp(iz/2) is used. 
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Appendix F: Modified SSFM for 

Exponentially Varying 

Dispersion 

Here, we discuss the modified SSFM for the NLS-type equation with 

exponentially varying dispersion. Consider the NLS-type equation given by 

 ( ) 2
22

2 0.
2

zE Ei E E
z t

β
γ∂ ∂

− + =
∂ ∂

                                                                (F.1) 

Let us introduce the normalized distance ,ξ  the normalized amplitude U and the 

normalized time τ  given by 

0 0

, , ,
N

z E tU
L A T

ξ τ= = =                                                      (F.2) 

where 2
0

1 ,N
g

L
Aγ

= 0A  is the initial amplitude,  and 0T  is the initial pulse width 

parameter. 

Then, we have 

( ) 2
22

2 2
0

0.
2

N NL LU Ui U U
T

β ξ
ξ τ

∂ ∂
− + =

∂ ∂
                                               (F.3) 

Split (F.3) into 

( ) 2
2

2 2
0

0,
2

N NL LU Ui
T

β ξ
ξ τ

∂ ∂
− =

∂ ∂
                                                           (F.4a)   

2 0.Ui U U
ξ

∂
+ =

∂
                                                                             (F.4b) 
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For dispersion step (F.4a), it is readily solved by using the Fourier-transform 

method. If ( ),U z ω�  is the Fourier transform of ( ), ,U z τ such that it satisfies an 

ordinary differential equation 

( ) 2
2

1 .
2

Ui z U
z

β ω∂
= −

∂

� �                                                                          (F.5) 

Considering the exponentially decreasing dispersion ( ) ( )2 20 exp ,z zβ β σ= −  the 

solution of Eq. (F.5) is given by 

( ) ( ) ( ) ( )2
20

1 exp
, , exp exp .

2
N

N

L
U U i L

σ ξ
ξ ξ ω ξ ω ω σξ β

σ
− − Δ⎡ ⎤

+ Δ = −⎢ ⎥
⎣ ⎦

� �         (F.6) 

For nonlinear step (F.4b), the solution is given by                                                                   

( ) ( ) ( )2, , exp .U U i Uξ ξ τ ξ τ ξ+ Δ = Δ                                            (F.7) 

We propose two schemes to simulate exponentially decreasing dispersion profile. 

lD  stands for the dispersion step in Eq. (F.6), while lN  stands for the nonlinear 

step in Eq. (F.7).  

1st scheme: l l ( ) l ( ) l1
.

2 2

n
N N D Nξ ξξ ξ

− Δ Δ⎛ ⎞ ⎛ ⎞⎡ ⎤Δ Δ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
 

2nd scheme: ll ll ll ll
( )

( )
ll

( )

2 13 5
2 2 2 2

2 13 2 30
22 2 2

...... .
k

k
kkDN DN DN DN DN

ξξ ξ ξ ξ
ξξ ξ ξ

− ΔΔ Δ Δ
Δ

− ΔΔ Δ − Δ∫ ∫ ∫ ∫ ∫  

The first scheme has same expression for all the dispersion steps, while the 

second scheme has to consider the dispersion step at different position. Therefore, 

the first one is easier to implement.  
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Appendix G: Numerical 

Solutions to the NLCM 

Equations on a finite Interval 

In our studies of pulse compression in nonlinear FBG, we need to study the 

dynamics of geometries of finite extent, and it can be solved by the numerical 

approach [53] which uses the characteristics of the equations and integrates 

forward in time by using an implicit fourth-order Runge-Kutta formula.  

   The particular set of coupled-mode equations that we consider is  

( )
( )

2 2
1

2 2
1

2 0

2 0,

u ui i u v u v u
z t

v vi i v u v u v
z t

β δ κ γ

β δ κ γ

∂ ∂
+ + + + + =

∂ ∂
∂ ∂

− + + + + + =
∂ ∂

                                      (G.1) 

where z and t are spacelike and timelike coordinates, 1β  is the group delay per 

unit length, u, v denotes the envelope functions of the forward- and backward-

traveling modes that determine the electric field inside the system, δ  is the 

frequency detuning from the Bragg frequency, κ  is the coupling coefficient, and γ  

is the nonlinear coefficient. As illustrated in Figure G.1, the system has length L 

and is driven by radiation coming in at z = 0. The incoming radiation is given by 

( ).A t  With this notation the boundary conditions now attain the well-known form 

( ) ( )
( )
0, ,

, 0.

u t A t

v L t

=

=
                                                                               (G.2)   
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Figure G.1: Schematic of our geometry. The incoming radiation is denoted by A(t), while the 

reflected and transmitted radiation is designated by R(t) and T(t), respectively. L is the length. 

(After Ref. [53], © 1991 OSA.) 

 
   In addition, we assume that the system initially contains no energy, so that  

( )
( )

,0 0,

,0 0.

u z

v z

=

=
                                                                                      (G.3) 

   In practice it is often useful for Eqs. (G.1)−(G.3) to be solved in a rotated frame 

[53]. Equations (G.1)−(G.3) constitute a well-posed hyperbolic initial-value 

problem [53]. We want to calculate the envelope functions ( ),u z t  and ( ), ,v z t  

which correspond to the transmitted and reflected radiations. The amplitudes of 

the reflected and transmitted radiation, indicated schematically in Fig. G.1, are 

given by ( )R t =  ( )0,v t  and ( ) ( ), ,T t u L t=  respectively. 

    Equations (G.1) have the important property that their characteristics [53] are 

straight lines. By applying the coordinate transformations  

1 1

, ,
2 2 2 2
z t z tζ τ

β β
= + = − +                                                            (G.4) 

we obtain the equations 

( )2 22 ,u i u v u v uδ κ γ
ζ

∂ ⎡ ⎤= + + +
⎣ ⎦∂

                                                         (G.5a) 

( )2 22 ,v i v u v u vδ κ γ
τ

∂ ⎡ ⎤= + + +
⎣ ⎦∂

                                            (G.5b) 

lbsc
Rectangle
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so that the integration directions coincide with the characteristics. Both equations 

(G.5) look like ordinary differential equations (ODEs). But, they are coupled 

through their right-hand sides. As a result, if the envelope functions are known at 

a given point in space and time, say ( )0 0, ,ζ τ  one can apply some numerical 

method to Eq. (G.5a), to calculate ( )0 0, ,u ζ δζ τ+  and to Eq. (G.5b), to find 

( )0 0, .v ζ τ δτ+  By suitably combining the results of several such integrations one 

can, starting at t = 0, find the envelope functions at all later times. In order to have 

better explaination of the process, we refer to Fig. G.2, which shows the 

integration domain in the new coordinates ζ  and .τ  The front of the system 

corresponds to 0,ζ τ− =  whereas the back corresponds to .Lζ τ− =  As 

indicated in Fig. G.2 by the dotted lines, time is constant along the straight lines 

for which .Cζ τ+ =  Equations (G.5) show that u is integrated to the right in Fig. 

G.2, or toward the back of the system, while v is integrated upward, or toward the 

front. More details of the method can be found in [53]. Figure G.3 shows the 

resulting transmitted amplitude, for a calculation with N = 28, in which κ = 5.0, δ 

= 4.5, L = 1.0, and γ = 0.1. In the rotating frame the incoming radiation has an 

amplitude ( ) ( )0 2.0.A t A= =   The driving force is not applied instantaneously, 

and it increases smoothly for 0 < t < 2 from ( )0 0A =  to ( ) 02 ,A A=   as described 

in [53]. ( ) 0A t A=  for 2.t ≥  Figure G.3 shows that it takes  more than a single 

time unit for the transmission signal to reach an appreciable value because it 

requires more than one time unit in order to travel the length of the structure. 

After a short transient regime, the system shown in Fig. G. 3 exhibits self-pulsing 

but with a decreasing amplitude. Such behavior for these systems is quite 

common and is discussed in more detail in [134]. 
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Figure G.2: Integration domain in the coordinates ζ and .τ  The boundaries of this domain 

are given by thick solid lines. The dotted lines indicate points of equal time. In a finite-

difference scheme the integration takes place along the dashed lines. The parameter Tr 

designates a single roundtrip time. (After Ref. [53], © 1991 OSA.) 
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Figure G.3: Numerical results for a calculation in which our method is applied to Eqs. (G.1). 

Shown is the magnitude of the transmitted radiation |u(L, t)| as a function of time. The 

parameters are κ = 5.0, δ = 4.5, γ  = 0.1, L = 1.0; in the rotating frame a constant incoming 

signal of A(t) = A0 = 2.0. This driving signal is taken to increase smoothly from A(0) = 0 to 

A(2) =A0 in order to avoid shocks. A(t) = A0 for t>=2.  
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Appendix H: Painlevé Analysis 

We now apply the well established Painlevé analysis to Eq. (2.1) to derive the 

parametric condition on ( )2 zβ  for which the NLSE [Eq. (2.1)] is completely 

integrable [135]. To proceed further with the Painlevé analysis, we introduce a 

new set of variables a(= E ) and b(= *E ). By Eq. (3.1), a and b can be written as 

22 ( ) 0,
2z tt g

zia a a bβ γ− + =                                                                    (H.1) 

22 ( ) 0.
2z tt g

zib b b aβ γ− − + =                                                          (H.2) 

Generalized Laurent series expansion of a and b are, 

0
,r u

r
r

a a ϕ
∞

+

=

= ∑        
0

,r
r

r

b b δϕ
∞

+

=

= ∑                                             (H.3) 

with 0 0, 0,a b ≠  where u  and δ are negative integers, ar and br are set of expansion 

coefficients which are analytic in the neighborhood of the non-characteristic 

singular manifold ( , ) 0.z tϕ =  Looking at the leading order, 0
ua a ϕ≈ and 0b b δϕ≈  

are substituted in Eq. (H.1) and upon balancing dominant terms, the results 

obtained are: u = δ = −1 and 2
0 0 ( ) / .t ga b zϕ β γ=  

  Substituting the full Laurent series (H.3) in Eq. (H.1) and considering the 

leading order terms the resonances are found to be, r = −1, 0, 3, 4. The resonance 

at r = −1 represents the arbitrariness of the singularity manifold and r = 0 

corresponds to the fact that either a0 or b0 is arbitrary. Collecting and balancing 

the coefficients of the different powers of ϕ  show that a sufficient number of 

arbitrary functions exists only for the following parametric condition on ( )2 zβ  
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22

2 2
22

( ) ( )( ) 0.d z d zz
dz dz
β ββ ⎡ ⎤− =⎢ ⎥⎣ ⎦

                                                             (H.4) 

On solving this equation, we have 

2 20( ) exp( ).z zβ β σ= −                                                                       (H.5) 

Constant dispersion is also another solution of Eq. (H.4) which is not our 

interesting case. 
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Appendix I: Bäcklund 

Transformation 

The Lax pair associated with Eq. (2.21) 

1
E U E
T

∂
=

∂
,  

1 2(     )TE E E=  

where 

1 *

i q
U

q i
λ μ

μ λ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                     (I.1) 

where 20/ ,μ γ β= − 2
20exp( / 2)q E i Tα= −  and λ is the variable spectral 

parameter given by 

( ) ( );z i zλ σ χ= + 20 20 / 2;zλ α β λ= 0;Tλ =                                     (I.2) 

( )0 20 20exp / 2 ;zλ λ α β= ( ) ( )0 20 20exp / 2 ;Rz zσ λ α β=  ( ) ( )0 20 20exp / 2 .Iz zχ λ α β=                                  

                                                                                                  (I.3) 

Here ( )0 0ReRλ λ=  and ( )0 0ImIλ λ= , are respectively, the real and imaginary 

parts of the hidden isospectral parameter λ. Space evolution of eigenfunction E is 

given by  

1
E V E
z

∂
=

∂
 

22 2 20
1 20 20 1 20 20 2 3

1 1 1 ,
2 2 2 2

iV T q R T R Rμββ α λ λ μ μβ α λ⎛ ⎞ ⎛ ⎞= − + + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

with 
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1

0
,

0
i

R
i

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
2 *

0
,

0
q

R
q

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

3 *

0
,

0
T

T

q
R

q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                              (I.4)                               

Equation (2.21) can be obtained from the compatibility condition 

1 1 1 1[ , ] 0.z TU V U V− + =                                                                     (I.5) 

We derive the Bäcklund transformation from the time evolution equation of the 

eigenfunction. In order to construct the Bäcklund transformation, let us write 

down equation in terms of the Riccati equation. For this purpose, we introduce a 

new variable (or pseudopotential) 

1

2

E
E

Γ =                                                                                                     (I.6) 

The above equation yields, 

* 22T i q qλ μ μΓ = − Γ + + Γ                                                                  (I.7)   

Now transformation of variables ',Γ → Γ  ',λ λ→  'q q→ which keep the form 

of the above equation invariant are sought. The simplest transformation can be 

tried by setting ' ,Γ = Γ  *'λ λ=  and looking for 'q  in the form 

( )
*

2

2 ( )' .
1

iq q λ λ

μ

− Γ
− =

+ Γ
                                                            (I.8)  

The above equation defines the Bäcklund transformation of Eq. (2.21) with 

2
20exp( / 2).q E i Tα= −  Here the primed quantities refer to N-soliton solution and 

the unprimed quantities refer to (N −1) soliton solution.  
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