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Abstract i

ABSTRACT

Historically, the two major approaches to pattern classification are statistical
(or decision theoretic) based and syntactic (or structural) based. In terms of its
modelling, syntactic approach is quite satisfactory for rigid objects but not non-rigid
ones, without increasing the number of reference patterns for each class. It is even
more problematic if the number of classes is very large, like that in Chinese character
recognition. Comparatively, statistical approach may be easy enough to handle non-
rigid objects. However, it is always a difficult task to choose or designate an
effective feature set for such problems. Hence, there is always a need to opt for an
alternative approach that does not require sophisticated feature extraction process and

1s effective in handling non-rigid objects.

Recently, there has been a growing interest in deformable models (DMs).
They generally possess shape-varying capability, making them particularly suitable
for extracting and recognizing non-rigid objects. When compared with syntactic
approach, DM is in fact a kind of flexible graph matching algorithm. Due to its ability
to deform, there is basically no need to increase the number of feference models for
each pattern class. When compared with statistical approach, it can also be treated as
a kind of feature extraction algorithm, in which the resultant value of objective
function is the most obvious feature being extracted. In the simplest case, it is
possible to designate the objective function value as the only feature, and so there is
basically no need to have a sophisticated feature extraction scheme. DMs have been
proposed for many different pattern recognition tasks. However, it i1s observed that
most of the existing DMs do not incorporate structural information into the model
and can merely deform according to the spatial relationship between primitives.
Structural information, which is essential in various pattern recognition tasks, is
usually ignored. Even for those attempted to incorporate structural information into

the model, most of them are indeed only capable to model open or close contours,
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without any mechanism to account for highly structural patterns. In this dissertation,
we address this issue by proposing a new class of DMs called structural deformable
model (SDM) which is capable to model the complex structure of patterns and being

able to deform in a well-controlled manner.

The new model takes structural information into accounts by representing an
image as a hierarchy of components, namely, image, objects, snakes, segments and
snaxels that are structurally connected with each others. It deforms by minimizing the
distortion of its inter-object and intra-object structure while matching with the desired
image. Concepts like inter-object distance, snaxel evenness, orientation of snaxel
edge, and point-to-edge matching are employed in formulating the internal and
external energy functionals of the SDM. In addition, a smoothing scheme 1s
introduced to achieve coarse-to-fine matching, making the deformation process
behaved in a desirable way. Classification is carried out by treating every deformable
matching as a kind of feature extraction process. Two features, namely, resultant
objective function value and clustering error are extracted and used by a Bayes
classifier to determine the class label of the input image. The effectiveness of the
proposed model has been demonstrated through various experiments in Chinese

character recognition, which is well-known for its highly structural patterns.
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Chapter 1

INTRODUCTION

1.1 Classical Approaches to Pattern Classification

Computer, after its first commercial introduction in 1951, has demonstrated its
~ effectiveness in offloading humans’ works. However, it has been quite limited to
those routine jobs like automating a set of accounting ledges. Soon, when our
expectation becomes higher and higher, we would like it to do more, in particular
those difficult tasks. For example, we are expecting it to be able to do weather
forecasting and economic prediction, to do face, speech and character recognition, to
do fingerprint identification and signature verification, and even to communicate and
talk with us naturally. Thus, researchers have been trying every effort in making
computers more intelligent. However, it is certainly not easy, particularly for pattern
recognition tasks. Being able to differentiate and understand complex patterns s still

a unique capability of human beings.

Historically, the two major approaches to pattern classification are statistical
(or decision theoretic) based [1-3] and syntactic (or structural) based [1,4-5].
Statistical approach relies on a statistical framework for classification under which a
set of representative features of the pattern of interest is extracted and classified into
one of a finite number of pattern classes. For each pattern class in the feature space,
it is usually specified by a multivariate probability distribution function that may be
known a priori or estimated from a series of training samples. The classifier on the
other hand is designed typically with the criterion of minimizing the Bayesian error
probability or a cost function based upon it. However, there is always a concern that
the pattern cannot be fully described by the numerical feature values. The

relationship between features, which yields the so-called structural information,
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should also be an important cue to effective classification. In this regard, syntactic
approach was advocated, aiming at taking the structural information into accounts.
One syntactic approach [1,4-5] is to relate the structure of patterns with the syntax of
a formally defined language. By constructing a grammatical model for each pattern
class characterized by its structure primitives, a pattern is classified to a pattern class

whose grammatical model can generate itself by parsing technique.

In these two classical approaches, an image1 characterized by quantifiable and
measurable features is matched against each pattern class and classified to the one
with highest similarity. In terms of modelling technique, syntactic approach is quite
satisfactory in modelling rigid objects like machinery parts but not those non-rigid
objects such as handwriting patterns, gestures and human faces without increasing the
number of reference patterns for each class. It is even more problematic if the
number of classes is very large, like the case in Chinese character recognition with
over thousands of pattern classes. Comparatively, statistical approach may be easy
enough to handle non-rigid objects. However, it is always a difficult task to choose
or designate an effective feature set for such problems, particularly when the shape of
the objects varies significantly, e.g., different writing style of handwritings. Could it
be possible to by-pass these problems fundamentally ? Is there any alternative
approach that does not require sophisticated feature extraction process and is

effective in handling non-rigid objects ?

1.2 Deformable Models

Recently, there has been a growing interest in deformable model (DM) based
approach which is considered being situated somewhere between the previous two
conventional approaches. When compared with syntactic approach, DM is in fact a
kind of flexible graph matching algorithm. Due to its ability to deform, there is
basically no need to increase the number of reference models for each pattern class in
classification problems. When compared with statistical approach, it can also be

treated as a kind of feature extraction algorithm, in which the most obvious feature



Chapter 1 Introduction P3

being extracted is the resultant value of objective function. [n the simplest case, it is
possible to designate the objective function value as the only feature, and so there is

basically no need to have a sophisticated feature extraction scheme.

DMs have been proposed for many different pattern recognition tasks as they
generally possess shape-varying capability, making them particularly suitable for
extracting and recognizing objects with large shape variations. DMs have been
shown to be able to capture the natural variability within a class of shapes and can be
used in 1mage search to find examples of the structures that they represent [6]. They
have been successfully applied to edge and subjective contour detection [7], motion

tracking [8], object matching [9] and more recently handwriting recognition [10-15].

DM is mainly characterized by some energy terms/functionals that govern the
way it deforms and moves onto the image. On one hand, it is required to preserve its
original shape while on the other hand, it is required to match with the desired object
or objects in an image. This can be achieved by two opposing forces, namely,
internal and externat (or image) force. Matching is performed by minimizing the

total energy to attain equilibrium of the two forces.

The development of DMs has been carried out for about two decades.
Widrow [16] is considered the first exploring DMs by constructing a so-called
“Rubber-Mask” to classify human chromosome and highly irregular waveforms of
different kinds. Later in 1981, Burr [17] tried to apply elastic model technique to line
drawings by defining a set of pushing and pulling forces as a kind of displacement
vectors which align the line drawing model with the target one in a number of

stretches.

In 1988, Kass ef al. [18] tried to formulate DM as “Snakes™ which is in fact an
energy-minimizing spline guided by external constraint forces and influenced by
image forces that pull it toward features such as lines and edges, while being able to

preserve a certain kind of local continuity and smoothness. All forces are specified

" Unless otherwise stated, we will focus on image patterns in the rest of the dissertation
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by energy functionals, and thus the resulted deformation task has been formulated as

an energy minimization problem.

Such energy minimizing technique has now been widely used by various DMs
to tackle different object identification, extraction, and classification problems.
However, among existing DMs, it is observed that most of them model their shapes
mainly as a set of the relative displacement between model primitives. Structural
information, which is essential in various pattern recognition tasks, is usually
ignored. Consequently, deformation can only be made based on the spatial

relationship between primitives rather than on the their structure.

Jain et al.’s rubber sheet model [19] is a typical example of DMs of which the
model does not explicitly carry any structural information. It has been shown to be
effectivc in handwritten digit recognition [10]. To control how the rubber sheet
deforms, a displacement function, which consists of trigonometric functions of
different frequencies, varying from global and smooth to local and coarse, is defined
for each location of the rubber sheet. Although such DM can be used to model
almost any 2D image pattern, nearly all structural information inside the pattern has
been ignored. Simulations have been conducted on this type of DMs and it is
observed that the deformation being made on the spatial relationship only is not quite
natural. The DM proposed by Wakahara [11] has adopted a different way to do
deformation, i.e., based on local affine transformation (LAT) technique. Matching is
carried out by determining the LAT parameters that yield the best match in each local
area of two images. Again, no structural information has been explicitly incorporated

in its modelling.

Some researchers have proposed spline-like DMs, like the Generative Model
{12], for handwritten digit recognition. Each digit is modelled by a deformable B-
spline with “ink generators” spaced along the path of the spline. The similarity
between patterns is interpreted as how likely the input pattern is generated by those
“ink generators”.  Although some form of structural information has been .
incorporated into the model, it can merely model open or close contours but not
highly structural patterns. Similar to spline-like DMs, the snake-like DMs, e.g., [13],7

have also been proposed to recognize handwritten digits. Structural information has
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been taken into considerations but it is only limited to local properties such as local
continuity and aspect ratio. No higher level structural information has been

incorporated.

On the other hand, Nishida and Mori [14] tried to model global structure by
developing a novel DM charactenized by its quasi-topological features (1.e., convexity
and concavity), directional features, and singular points (i.e., branch points and
crossings). A number of structural transformation rules or operators are also defined
for removing or merging primitives inside the structural patterns, while keeping its
so-called global structure preserved. Although global structural information has been
incorporated into the model, too much freedom is allowed and hence the model may
easily deform into many shapes not necessarily similar to the original structure.
Hence, it may not be under proper control when dealing with highly structured

patterns like Chinese characters.

1.3 Objectives of the Research

In view of the superiority of DMs in handling non-rigid objects and the limitations of
most existing DMs for their deficiency in handling structural information, the main
objective of this work is to develop a new class of DMs called structural deformable
model (SDM) which

e explicitly take the structural information into accounts,

e incorporate it into its modelling process, and hence

¢ can handle highly structural patterns like Chinese characters and signatures.

As mentioned in previous section, the structural information has been ignored
by most existing DMs in their modelling process and consequently deformation takes
place in the spatial domain only. Even for those who attempted to incorporate
structural information into the model, most of them are indeed only capable to model
open or close contours, without any mechanism to.account for highly structural
patterns. There are still some others who tried to model the global structure of

patterns, however, it is found that their models may easily deform into undesirable
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shapes for their overmuch deformation flexibility. Hence, in this research, we aim at
devising a model that is capable to model complex structure and can deform in a

well-controlied manner.

Despite the intention to develop a class of SDMs for object classification as
well as object extraction {potentially being useful in content-based image retrieval
[20]), we have chosen to concentrate on Chinese character recognition, which is well-
known for its highly structural patterns. In this regard, the SDM is expected to be a
post-processor of statistical or syntactic recognizers, 1.e., it helps to pick a much more

accurate class label from a list of n choices produced.

1.4 Organization of the Thesis

The thesis is made up of six chapters. In Chapter 2, general concepts about DMs will
be introduced. A probabilistic interpretation of deformable matching is also included
which serves as the basic of the Bayesian framework for SDM described in Chapter
4. At the end of the chapter, several kinds of classification of DMs are presented and
they are the conceptual tools being used to derive the proposed model in subsequent
chapters. Chapter 3 is devoted to describe the proposed model, from preprocessing,
model structure hierarchy down .to the derivation of various energy functionals.
Chapter 4 describes the integration of the SDM into a Bayesian framework as well as
the incorporation of global-to-local deformation ability into the SDM in order to
enable it to deform in a well-controlled manner. The classification scheme adopted by
the SDM is also presented there. The effectiveness of the proposed model
demonstrated through various experiments 1is reported in Chﬁpter 5 where paramétcr
sensitivity analysis, feature extraction analysis and functionality analysis are also
included. The last chapter concludes the thesis by summarizing the contributions and
limitations of the proposed model together with some suggestions for further

research.
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Chapter 2

DEFORMABLE MODELS

2.1 General Concepts

Deformable model (DM) is generally referred to a kind of models which possess
shape-varying capability {18]. Once a pattern is captured or modelled by a DM, it is
changed from a rigid body to a non-rigid one which in turns can deform itself freely.
This technique is quite useful in various matching problems. Instead of matching by
simple affine transformations or some regular transformations, the reference pattern
modelled by a DM can be matched by irregular transformations. One may call this
kind of irregular transformation as deformable transformation or simply deformation.
However, as DM may keep distorting itself in an attempt to match with the target
pattern, there is a problem of defining the termination criteria and the similarity
measure. In fact, two criteria are required for desirable deformation, namely, shape

preservation and data match.

2.1.1 Shape Preservation Criterion

The preservation of the model shape during deformation can be achieved by using an
internal energy which measures how good/bad the model maintains its original shape.
The smaller the internal energy, the better the model has preserved its shape. It is this
internal energy which stops the model from deviating too much from its

representative class.

Consider a particular type of DMs called active contour model or snake:

proposed by Kass et al. [18]. It is in fact an elastic spline that is slithering under
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forces created by some kinds of energy and is represented by a set of ordered points
b, =(x,y)lie c} where v, denotes the position vector of each interpolated node
called snaxel along the snake contour ¢. Figure 2.1 shows an example of a snake

consisting of eight snaxels. An internal energy functional E, which is designed to

preserve the shape of the snake [18], is formulated as

E.=| (alv;|2+ ﬁ]v;f) di @.1)
where the first and second spatial derivatives with respect to snaxels correspond to
the evenness and smoothness of the snake respectively. In this case, when the shape
of the snake, i.e., the evenness of inter-snaxel distance or contour smoothness,
deviates too much from the original one, internal energy will be comparatively high
and the snake will subsequently experience a friction/force which stops it from

further distorting its shape.

Figure 2.1 A snake composing of eight snaxels

2.1.2 Data Match Criteriorn

In DMs, matching between patterns can be achieved via an external energy which
measures the data mismatch. The higher the external energy, the larger the data
discrepancy between the model and the target pattern. Such a discrepancy provides a

guidance or force for the model to deform towards the target pattern.
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For example in contour extraction applications, a snake is expected o move
towards pixel positions with shape edges. The corresponding external energy

functional can be formulated as

E = j[—| W(v,.)| )di (2.2)

where V/ (v,.) is the edge magnitude or intensity gradient of the pixel coincident with

snaxel v.. In this case, when the snake is adjacent to an edge, external energy will be

comparatively high {compared with the case when the snake is situated on an edge)
which in turn induces an attraction force to the snake. Under the influence of this
attraction force, the snake will move towards the edge and external energy will be
decreased subsequently. When the external energy becomes small, the snake knows

that it is close to the edge and will stop moving eventually.

2.1.3 Regularization

Intuitively, we enable the model to deform; but if the model shape starts to distort, we
should stop the process. Thus, the internal and external energies should be
considered collectively and the resultant DM will have shape-varying capability
together with shape preservation ability. To combine these two conflicting criteria,
i.e., data match and shape preservation, the most common way is to define a
combined criterion function as a weighted suni of internal and external energy
functionals, which is given by
E,=w, E, +w, E_ (2.3)

This technique is called regularization [15] and trade-off can be made by properly

setting the regularization parameters, w,, and w, .

ens
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2.2 Matitching

Loosely speaking, when a DM has reached a state that it is close or align with (if
possible) the target pattern and not deviated too much from its original shape, the
deformation is considered to be finished. In that sense, the final state corresponds to
an equilibrium of the two energy functionals. Seeking the equilibrium state can be
achieved by minimizing the combined criterion function E_,. There exists a number
of minimization schemes ever proposed, see, e.g., Dynamic Programming [21],
Greedy Algorithm [22] and Hopfield Network [23]. Thus, the elastic matching

process is eventually formulated as an energy minimization problem.

From a probabilistic point of view, internal energy E,, and external enecrgy

EE

» of a DM can be interpreted in a different way. The former can be interpreted as
the uncertainty that it is deformed from some particular model while the latter can be
interpreted as the uncertainty that the data come from some particular model. With
_ the help of Gibbs distribution, these two uncertainties can be converted to probability

distributions

1 E.
M)=——exp| - == 2.4
p( ) Zim (o-im ) exp( Gt'nr ] ( )

and

1 E
Ji = _Zent .
p( M ) Zexr (o-ex: ) exp[ o J (2 S)

ext

respectively, where ¢

int

and o, control the spread of the probability distributions,

Z,., and Z_  are used to normalize the two distributions. Under the probabilistic

interpretation, p(M) and p(I1M) are called prior distribution and likelihood
respectively. By using Bayes rule, they can be combined to obtain the a posteriori
probability density of the deformed model given the input image, i.e.,

11M)-p{M)

plr)

o1 11)= 2 2.6)
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The problem of deformable matching is usually formulated as a problem of
maximizing the a posteriori probability p(Ml[ ) which in turn is equivalent to
minimizing the Bayes objective function given by
I
1 -E +—E,, 2.7
g

int O-e.::r

Y=

In fact, this objective function is exactly the same as £, in eq.(2.3) with

o 1 i
regularization parameters as — and . As a result, one may consider the

a.

mn

a

£xt
importance of the probabilistic interpretation of deformable matching more than just

a nice theoretical framework.

2.3 Classification of DMs

DMs can be categorized in many different ways. For example, in terms of modelling
techniques, DMs can be categorized into parametric and non-parametric one. In this
section, we further introduce several classification schemes of DMs which serve as

important conceptual tools to develop the proposed model in subsequent chapters.

2.3.1 Image Guided Search (IGS) and Model Guided Search (MGS)

DMs can be employed for searching the desired objects elastically in an image for its
shape varying capability. This kind of search can be categorized into a local one or an
extensive one. For a local search, the DMs will merely look for the nearby image
primitives actively by itself. Not all image primitives will provide image force for it
to deform. We call this feature as model guided search (MGS). For the extensive
search, on the contrary, the DMs will search over the whole image. All image
primitives will provide image forces for its deformation. In this way, DMs seem to
possess a global picture of the image and searching is guided by all image primitives.
We call this feature as image guided search (IGS). The notion simular to the
categorization of DMs into MGS and IGS like the forward matching and backward
matching proposed by Cheung et al. [24-25].
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Almost all contour extraction problems tackled by DMs are solved using
MGS. Using MGS will result in finding a sub-image as it searches for the image
locally and does not account for the whole image. For problems like object location
where it does not require to account for the whole image, searching sub-image is
already enough to achieve the goal. DMs like Snake [18] and the rubber sheet model
{19] are using MGS. An important drawback of models using MGS is that they will
easily get trapped in local minimum either under the influence of noise or undesirable

image primitives.

On the other hand, for matching problems, we are required to determine if two
patterns are in total match rather than locating a sub-image. From image explanation
point of view, the problem can be tackled by examining if every part of the image can
be explained by the model. In this way, IGS should be used instead. The advantage
of using IGS is that initializing the model close to the image is not necessary. Instead
of searching actively by the model, huge amount of information (i.e., the entire
image) is provided for movement guidance. DMs like Generative Model [12] are
using IGS. However, in order to achieve a total match between patterns, the
following two requirements are considered necessary:

1. Every part of the image should have some model primitives nearby, and
2. every part of the model should have some image primitives nearby.
In fact, adopting IGS satisfies the former while adopting MGS satisfies the latter. As

a result, the integration of both schemes is proposed in the SDM.

2.3.2 Pixel Matching and Edge Matching

In previous section, we mentioned model primitives and image primitives which are
employed by DMs for image matching. The most commonly used primitives are
pixels and edge segments, and the resultant matching schemes are called pixel

matching and edge matching respectively.

By adopting pixel matching {11,12,19,26], all pixels will participate in the

 matching process, and thus no information of the pattern image are missed. However,
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it is quite time consuming to carry out pixel matching and hence some tackle the
problem by using multi-resolution approach in which matching is carried out in a

coarse-to-fine manner {19].

On the other hand, due to the fact that pixel matching i1s computationally
expensive, some researchers chose to adopt edge matching [17,27]. In the literature,
among those adopting edge matching approach, some of them tried to use one-to-one
edge mapping. For example, Wakahara and Odaka [27] employed one-to-one edge
matching technique for the problem of on-line Kanji character recognition. Since it is
on-line recognition, one-to-one stroke correspondence could be easily extracted from
the available temporal information, even before actual deformation taking place.
However for off-line cases tackled by, say, relaxation approach of elastic matching
{28], it is not so easy to find accurate stroke correspondence without the requirement
of a sophisticated preprocessing like redundant strokes deletion, connected strokes
separation, and possible substrokes mergence. There exist some other researchers
considering other types of edge matching, like many-to-many edge mapping
employed by Burr [17]. No matter what edge matching technique one has adopted,

processing time will be substantially reduced compared with that of pixel matching.

2.3.3 Active-Shape Preservation (ASP) and Passive Shape Preservation (PSP)

In Section 2.1, we have mentioned two deformation criteria, namely, shape
preservation and data match. In general, all DMs consider both criteria, but not all of
them will define internal and external energy functionals to realize them. instcad, one
may employ some schemes to replace one or both of the energy functionals. For
example, Burr [17] realized two deformation criteria by defining a scheme in which
displacement vectors correspond to image force and neighbourhood of influence
corresponds to internal force. In this scheme, at each iteration of deformation, all
displacement vectors will be updated and then a smoothing function is applied to
produce a smoothed version of the displacement vectors. Deformation can be
performed accordingly. On the other hand, Wakahara’s model [11] only made use of
an external energy functional which is minimized by computing two parameters used

by the Local Affine Transformation (LAT). No internal energy functional is used
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because the shape preservation criterion has already been considered in LAT by using

the neighbourhood of influence.

Although whether using energy functionals or not is the way of realizing two
deformation criteria, it reflects how DMs preserve their shape (Note that the model
shape is defined differently in different models). For those who made use of two
energy functionals to realize the two deformation criteria, minimization can not be
carried out solely according to the internal energy but also to the external energy. By
minimizing both energies via regularization, the total energy can be made
monotonically decreasing but it does not hold for the individual energy term. As a
result, the preservation of the model shape can not be ensured due to the need to
minimize external energy. This phenomenon is due to the fact that the shape is not
preserved actively, i.e., instead of restricting its movement to preserve its shape at
each iteration, they defined an internal energy together with an external energy,
hoping that its shape can be preserved by minimizing both of them. We call this kind

of shape preservation mode as Passive Shape Preservation {PSP).

For those who made use of some schemes to preserve the model shape, like
those in Burr’s model [17] and Wakahara’s model [11], its movement is restricted at
each iteration to preserve the overall model shape. As the shape is actively preserved,
we named such kind of shape preservation mode as Active Shape Preservation (ASP).
The main difference between PSP and ASP is that the latter has a higher chance of

preserving the model shape.
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Chapter 3

STRUCTURAL DEFORMABLE MODEL (SDM)

3.1 System Overview

The proposed system using SDM can be divided mto five main modules; namely,
data acquisition, preprocessing, modelling & initialization, deformation and finally
object classification and extraction. lts flowchart is depicted in Figure 3.1. In this
dissertation, we will concentrate on applying SDM to object classification problems,
in particular handwriting recognition, and the discussion hereafter will only be

referred to this type of applications unless otherwise stated.

In data acquisition module, image patterns (in binary format) are either
captured via a flat-bed scanner or obtained from an available database. For object
classification applications, an unknown image as well as a number of class
representative images (templates) will be fed into the next module. We may either
feed the whole set of templates for problems with small number of classes, e.g.,
handwritten digits classification, or feed merely those most probable template
candidates which can be selected by users or other recognition systems, e.g., a
statistical recognition system with top n choices. In the latter case, SDM will behave

like a postprocessor of another system.

Upon receiving the required images, the preprocessing module starts with a
noise removal process which filters out those salt-and-pepper noises. The cleaned
images will undergo a thinning process which extracts the line skeletons of the
objects (characters). Then, feature points such as 3-fork and 4-fork points will be
extracted from the thinned images, which will be employed by the modelling process

in next module.
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Chapter 3 Structural Deformable Model (SDM ) P17

In modelling and initialization module, templates are modelled as a hierarchy
of structure elements which will be described in details in Section 3.3. Based on the
structure hierarchy, deformation can be made accordingly. The unknown image on
the other hand is simply modelled as a set of sampled pixels without any structure
associated, which will be fixed during the deformation process. After the modelling
step, initialization takes place for the unknown image which will firstly be size-
normalized and center-positioned. Then, each template will be initialized to the

image as close as possible before deformation starts.

The deformable matching of each template with the unknown image is carried
out in the deformation module. It consists of three processes which are performed
iteratively, namely, minimization, smoothing and actual movement. In order to
enable the model to deform in a well-controlled manner, a global-to-local
deformation ability is incorporated. It is realized by applying a smoothing process in
each iteration to convert the set of displacement vectors resulted from the
minimization to a set of smoothed displacement vectors before the actual movement

taking place. Such smoothing process will be described in detail in Section 4.2.

In fact, the deformable matching itself can be interpreted as a kind of feature
extraction process which will be elaborated in Section 4.3. So after deformation, a
set of features representing the dissimilarity between the image and each template is
extracted. They will be employed by a dedicated classification algorithm to

determine the class label. Details of this module will be presented in next chapter.
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Figure 3.2 An overall process of the system using SDM on character recognition



Chapter 3 Structural Deformable Model (SDM) P.19

In Figure 3.2, an example showing the overall process of the system using
SDM on character recognition is depicted. Supposing that in the data acquisition
module a raw template and a raw image are captured, the system is required to
deform the template towards the image in order to extract some features of their
dissimilarity for classification. In the preprocessing module, they undergo a noise
removal and a thinning process. Besides, feature points are extracted and are denoted
by stars in the figure. In the next module, the template pattern is modelled as a
hierarchy of structure elements which will be described in Section 3.3 and i1s finally
sampled by a set of snaxels denoted by solid circles. Based on the structure hierarchy,
the deformation afterwards can be made accordingly. The image on the other hand is
simply modelled as a set of sampled pixels (denoted by hollow circles) which are
interpolated between feature points previously extracted and are kept fixed during the
deformation process of the template. In this case, |l snaxels and 14 pixels are
sampled respectively. Then these two patterns are initialized such that the template
pattern will be brought to the image as close as possible to facilitate the subsequent
deformation. The resulted position of two patterns is shown in the figure. In the
deformation module, an iterative application of energy minimization and smoothing
process is carried out and three deformation snapshots are shown. Finally, features
indicating the dissimilarity between two patterns from the final deformation snapshot
like the resultant value of objective function are extracted for the Bayesian

classification.

In the rest of this chapter, the preprocessing module will be described first.
Details of the modelling & initialization module will be given in Section 3.3. Before
elaborating the deformation and classification modules, various energy functionals
which serve as an engine for giving the SDM ability to move (deform) will be

presented in Section 3.4 and 3.5.
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3.2 Preprocessing
3.2.1 Noise Removal

In order to incorporate the SDM with a capability to differentiate highly similar
patterns, all pixels inside the image will be treated as valuable matching primitives.
As a result, a noise removal process is considered necessary to be carried out
beforehand. Due to its simplicity, the removal of salt-and-pepper noise is introduced

in which a 3x3 window mask depicted in Figure 3.3 is required.

Ps | Py | P
Pz | Po | Ps
Ps | Ps | Py

Figure 3.3 A 3 x 3 window mask

A neighbourhood count y(P,) representing the total number of nonzero neighbours

of Py is given by
8

y(P)=2P 3.1
i=f

where P; € {0,1}. Salt-and-pepper noise is removed by sliding the window mask on
the image from upper left to lower right and setting the center pixel Py according to
the following rule:

PZF if y(P,)=8

° 0 ifpP)=0 G2)
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3.2.2 Thinning

Like the other DM, the serious problem that exists in the proposed model is the great
computational cost. To make it work as efficient as possible, a thinning process is
introduced to reduce the total number of matching primitives in deformable
matching. A fast parallel thinning algorithm proposed by Zhang and Suen [29] has
been adopted for the efficiency and the effectiveness being claimed. For the sake of
self-containment, a general concept of how it works is described. In this algonthm, a
crossing count y(P,) representing the connectivity of Py is defined as
8

|
X(Pa)zgz

PP | (3.3)

where Ps refers back to P; in Figure 3.3. The topological meaning of ¥ is clear and is

shown in Table 3.1.

The method iteratively removes contour pixels in two sub-iterations: one
aimed at deleting the south-east boundary points and the north-west corner -points
while the other one aimed at deleting the north-west boundary points and the south-
east corner points. The iterations continue until no more pixels can be removed in
either sub-iteration. In order to preserve end points of each skeleton line and pixel
connectivity, some other constraints of pixel deletion are incorporated and are

summarized in Table 3.2.

Table 3.1 Topological meaning of different values of ¥(P,)

Value of y(P,) Meaning of Py
0 Isolated point
1 End point
2 Link point
3 3-fork point
4 4-fork point
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Table 3.2 Conditions of contour pixel deletion in thinning

Py is deleted if following conditions are satisfied :

1* sub-iteration 2" sub-iteration
a) 2<y(P)<6 and a) 2<y(P)<6 and
b) ¥(P)=1 and b) x(P)=1 and
c)P;xP;xPs=0 and Py xP;xP;=0 and
d)P; xPsx P;=0 )Py xPsxP;=0

3.2.3 Feature Points Detection

In order to make use of structural information inside the image being modelled, it is
suggested to designate some primitives as ordinary feature points and some as
perceptual important points based on their structure information embedded, rather
than treating all of them as the same kind. It is this set of feature points that
decomposes the model into a hierarchy of structure elements which in turn-enables
the model to deform according to the pattern structure. Ordinary feature points that
we are in interests consist of end points, 3-fork points and 4-fork points. By using the
crossing count ¥ defined in eq.(3.3) and according to the Table 3.1, ordinary feature

points can be easily extracted.

Perceptual important points are also required by the modelling proce#s in next
module. They carry higher level of information compared with the ordinary one, and
in our case are referred to those points with high curvature. They can be extracted by
polygonal approximation of curves and the resultant vertices are the points we look
for. Before the polygonal approximation of curves is carried out, it is necessary to
extract all the curves terminated by ordinary feature points. It can be achieved by
tracing through link points from each ordinary feature point to the others. By

employing the algorithm proposed by Lowe [30], which is stated to be the most
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optimum algorithm in terms of fidelity and efficiency in polygonal approximation of
curves [31], a set of straight-line segments for each curve are located. For the sake of

self-containment, the general concept of Lowe’s algorithm is described.

Lowe’s algorithm approximates curves by straight line segments. Firstly, the
significance of a straight line fit to a list of points is defined as a ratio of the length of
the line segment divided by the maximum deviation of any point from the line. Then,
a segment is recursively subdivided at the point with maximum deviation from a line
connecting its endpoints. This process is repeated until each segment is no more than
4 pixels in length, producing a binary tree of possible subdivisions. Next, unwinding
the recursion back up the tree, a decision is made at each junction as to whether to
replace the current lower-level description with the single higher-level segment. If
the maximum significance of any of the sub-segments is greater than the significance
of the complete segment, then the sub-segments are returned; otherwise, the single

segment is returned.

After approximating all curves by straight-line segments, perceptual important
points correspond to the vertices of these line segments and are subsequently utilized

by the next module.

3.3 Modelling and Initialization
3.3.1 Hierarchical Structure of SDM

Given an image to be modelled, in order to take its structure information into
account, it is modelled as a hierarchy of structure elements depicted in Figure 3.4.
The top-most level of the model (SDM) is the image itself. Inside the image, it may
consist of a number of separated components. Each of them is referred to an object
here. To relate all objects inside an image, pseudo-connections that will be described
in Section 3.3.3 are employed. Each object is then represented as a set of active
contours (snakes) that are structurally connected with each other. Traditionally, snake

is composed of snaxels. But in the proposed model, one more encapsulation is
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introduced in between. It is segment and can be extracted via ordinary feature points
and perceptual important points described previously. The former ones are used to
decompose an object into a number of snakes while the latter ones are used to divide
a snake into a number of segments. Finally, for each segment, it will be interpolated

by snaxels characterized by their position vectors and associated edge orientation

vectors.
Image
: Object ¢ e+ e Object L ¢ Object
Snake * = e Snake LA Snake
| Segment s o o Segment . - e Segment
Snaxel * s e Snaxel ¢ s Snaxel
AN AN

T x Associated Edge, <
- Orientation Vector . .

"Position Vecior |

Figure 3.4 A hierarchical structure of SDM

To demonstrate the modelling process, let’s consider a Chinese character
image in Figure 3.5(a). Inside the image, three separated components are found and

each of them is called an object OBJ,. To maintain the inter-object structure,

pseudo-connections joining the centroids of every two objects are introduced and are
denoted by dotted lines in Figure 3.5(b). The next step is to extract all ordinary
feature points and perceptual important points. They are denoted by solid circles and

hollow circles respectively in Figure 3.5(c). After all the feature points are extracted,
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the image is ready to be decomposed into snakes and segments. Firstly, ordinary
feature points will be utilized here for object decomposition. The existence of a 3-
fork point will result in three separated snakes while that of a 4-fork point will result

in four separated snakes. As shown in Figure 3.5(d), the object OBJ, is decomposed

into three snakes, S ,y, S and S, ; while the object OBJ, is decomposed into
four snakes, S, S22, Sz and S, - For object OBJ,, there is no 3-fork points
or 4-fork points and only one snake S, is resulted. For snake decomposition, a

snake will be bisected into two segments for every perceptual important point being

found. As shown in Figure 3.5(¢), the snake S, ,, has a perceptual important point
and hence it is decomposed into two segments, i.e., SEG, , , and SEG(, 4 ;). As there

is no perceptual important points in all other snakes, only one segment for each of
them is resulted. The final step of the hierarchical structure decomposition is the
interpolation of snaxels which are denoted by stars in Figure 3.5(f). In our
experiments, the interpolation interval of snaxels and pixels are fixed at 1/10 of the
image normalization size. Based on the structure hierarchy just developed, internal
energy functional(s) can be formulated accordingly, giving the model an ability to

deform according to the pattern structure.
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Figure 3.5 A hierarchical structure decomposition process of a Chinese character
image. (a) The original image. (b) Image decomposition. (c) Feature
points extraction. {d) Objects decomposition. (e} Snakes decomposition.

(f) Snaxels interpolation.
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3.3.2 Formal Representation of SDM

The formal representation of SDM is given here. According to the hierarchical
structure of SDM presented in previous section, the SDM consisting N objects is
given by

spM ={ 0BJ, lo=1,-,N } (3.4)
where OBJ, is the o-th object in an image. With the help of ordinary feature points,

each object can be decomposed into a set of inter-connected snakes and is given by

0B, ={ 5, 15=1,-N, | 3.5)

(0.5)
where S5 is the s-th snake inside the object OBJ, and N, is the total number of
snakes inside. Again, with the help of those perceptual important points, each snake

is further decomposed into a set of segments, ie.,

S( = { SEG(O.s,g) tg= 1’""‘Nr(ms) } (3.6)

2,5}
where SEG, s is the g-th segment in the snake Si.5) and N ) is the total number of
segments inside. Finally, each segment is interpolated by snaxels characterized by

their position vectors and associated edge orientation vectors, i.e.,

0T,y Ma=1 N } (3.7)

where N, ;g 15 the total number of snaxels in segment SEGose and T 5.4 15 the

SEG(o.s.g) ={ (T

(0.5,8.a)?

position vector of the a-th snaxel inside. Orientation vector O(Tio.5..0)) associated
with snaxel T, s.z.q) is defined as

T"-‘ a _To; a ifFa< N
O(T(o,s.g.a))={ wsgarn " Tosga ¥ (0,5,8) 3.8)

T( T otherwise

2,5,8.0)  {os.g.a-1)

In addition, our model also includes connectivity between snakes which is given by

C= Chh (S(o,sl)’ S(a,sz))’cht (S(a,s,}’ S(o,sz))’
Clh (S(o.:, Ik S(o,sz } )’ Car (S(a,s,)’ S{o,sz ))

where Ch’l(S(O,Jl)’S(a,Jg))’ Chr (S(u,s,)’S{o.sz})’ C:h (S(o,sl)’S(a,sz]) and Cn (S(a.s,]’S(o,szl) are the

o€ N;s5,,5,€ Nﬂ} (3.9

head-head, head-tail, tail-head and tail-tail connectivity between the s5,-th snake and

the s,-th snake inside the object OBJ, with value 1 means “connected” and 0 means

“unconnected”. In order to simplify the symbol indexing for the subsequent
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formulation of energy functionals, the SDM can be alternatively defined as a set of

snaxels with structure implicitly associated and is given by
SDM ={ THli=1, Nk =1, M } (3.10)
where T, N,, and M correspond to the position vector of snaxel i in scgment &, the

total number of snaxels in segment k, and the total number of segments in the image

respectively.

With the SDM represented formally, the dynamic behavior such as the way
they preserve their structure and what kinds of structural deformation are allowed
should be discussed. In this regard, the following two subsections are devoted to
describe the underlying structure preservation and deformation rationale from inter-

object and intra-object viewpoint respectively.

3.3.3 Inter-object Structure

In the SDM, an image is composed of a number of isolated components and each of
them is called an object. In order to preserve the infrastructure of the image, we seek
to preserve the relative positions of all its underlying objects. It can be achieved by
incorporating pseudo-connections as a web link among objects. For two objects,

pseudo-connection is defined as a link joining their centroids.

An example is depicted in Figure 3.6(a) in which there are three objects

OBJ,, OBJ, and OBJ,. Their centroids are denoted by C,, C, and C,

respectively. To maintain its inter-object structure, pseudo-connections joining every
pair of centroids are introduced. By making the image translational and rotational
invariant, in terms of objects distribution, we chose to preserve merely the length of
pseudo-connections during deformation. As a result, the rotated version shown in
Figure 3.6(b) can be obtained without experiencing any penalty. To achieve this goal,

an energy functional is formulated and will be presented in Section 3.4.1.
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(b)

* Centroids ——-  Pseudo connections

Figure 3.6 Pseudo-connections are constructed for an image consisting of three
objects. (a)The original configuration. (b)The image is made rotational
invariant in terms of objects distribution.

3.3.4 Intra-object Structure

Having mentioned the structure between objects, we shift our focus to that of the
object itself. In the SDM, each object is modelled as a structural entity which
consists of snakes, segments and snaxels. Preservation of intra-object structure
requires preserving both the snaxel evenness in each segment and the snaxel edge
orientation. In each segment, as long as the evenness of inter-snaxel distance and the
snaxel edge orientation are maintained, we consider its structure still preserved.
Considering a snake with five segments shown in Figure 3.7(a), some of the possible

deformations while keeping its structure preserved are shown sequentially in Figure

3.7(b) - ().
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-1 ]
(a) (b) ] (<)
Y
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® Segment delimiters *  Snaxels

Figure 3.7 (a) A snake with five segments. (b)-(f) A sequence of its allowable
deformations with structure preserved.

By representing this deformation process symbolically (with snaxel edge

orientation hidden) in anti-clockwise direction, we can have:

(a) G s G s G s S G s s G S s G
=) G s G s G s ] G s s G_s_s5_G
=) G s G s G ] S G_ s s G _s_s_G
=) G S G_. s G s s G_ s s _G_s_s_G
-} G s__ G S G_s_ s G_s s G_s_s_G
—({) G s G s G _s_s8 G_s _s__G s_s_G

where segment-delimiter, snaxel and edge are denoted by “G”, “s” and “_”

respectively. In fact, syntactic approach is also using the similar technique to carry
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out flexible matching {1,4-5]. For example, given a class of the form ab"cd"e,

where a, b, ¢, d and e are primitives of the class, the allowable deformation will be:

abcde
- abbcddddde
— abbbbbbcdde

This kind of “transformations” is actually a kind of structural deformation
because deformation is performed on the structure of the pattern rather than on the
spatial relationship among primitives. It is this structural deformation that we will

apply on each object of the SDM.

The major difference between the structural deformation in syntactic approach
and that in the SDM lies on the flexibility of deformation. In syntactic approach,
once a class is given a specific form of structure, like ab"cd"e, the pattern must
deform accordingly without any deviation. However in SDM, because it is a kind of
DM, it allows certain degree of deviation freedom. So, the following deformation is
possible although the penalty of structure preservation in case 2 is greater than that in

case I:

In the SDM, two internal energy functionals are required for the preservation
of both the snaxel evenness in each segment and snaxel edge orientation and will be

formulated in Section 3.4.2.
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3.3.5 Initialization

Like the other DMs, a good initialization, 1.e., a good starting point, can substantially
off-load the minimization or deformation process and leads to better results. To our
concern, two image patterns are given and it is required to determine whether they
belong to the same class or whether they are in total match. So, initialization process
serves the purpose of bringing them together as close as possible in order to facilitate
the deformable matching in the next module. In this regard, an effective initialization
scheme that combines scale and translation transformation has been developed. By
first centering and scale-normalizing the input image to a predefined window size
(the normalization window is fixed at 100x100 pixels in our experiments), the

initialization of the model takes place as follows:

1. Center the model to the input image and uniforimly scale it by a factor F, say
80%, of the normalization window. The value of F controls the degree that
the pattern preserves its original aspect ratio. The smaller the value of F, the
larger the allowance for flexible scaling in which the vertical and the

horizontal scaling are independent to each other.

2. Translate the model by one step in each of the eight possible directions (left,
top-left, etc.) and locate it to the position with the smallest evaluation energy.
The evaluation energy is defined as the sum of the average distance from all
pixels to their nearest snaxels and that from all snaxels to their nearest pixels.

The translational step size, in terms of number of pixels, is denoted as SP,.

3. Scale up the model horizontally in three scales and stop at a scale with the
smallest evaluation energy. The horizontal scale-up step size is denoted as .

SP;; (in terms of number of pixels)

4. Scale up the model vertically in three scales and stop at a scale with the
smallest evaluation energy. The vertical scale-up step size is denoted as SPy;

(in terms of number of pixels)

5. Repeat step 2 to step 4 until no further modification.
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This initialization scheme allows a certain degree of flexible scaling while at
the same time carrying out translation transformation. The smaller the values of F,
SP;, SPy, and SP;;, the more accurate the initialization, at the expense of
computational cost. Figure 3.8 shows the difference between a simple uniform
normalization and the proposed initialization scheme. Obviously, the later one

provides a better starting point for the model to deform.

() (b)

Figure 3.8 Initialization of SDM * ¥ ” (solid square chain) to the input image “ ="
(hollow square chain) by (a) uniform normalization and (b) the proposed
initialization scheme.

3.4 Shape Preservation Criterion

Before proceeding to describe the deformation module, this two sections (i.e.,
Sections 3.4 and 3.5) are devoted to formulate the shape preservation criterion and
data match criterion of the SDM respectively. For the shape preservation criterion,
preserving the overall shape of the model requires preserving both its inter-object and

intra-object structure. Subsections 3.4.1 & 3.4.2 below describe their formulation.

3.4.1 Inter-object Shape Preservation Criterion

As described in Section 3.3.3, pseudo-connections are employed to preserve the
relative positions of all objects in an image. For every two objects, a pseudo-

connection joining their centroids is constructed. For example, a web link of pseudo-
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connections for an image consisting of four objects (Figure 3.9(a)) is constructed as
in Figure 3.9(b). To make the distribution of objects translational and rotational
invariant, we do not take into considerations of the orientation of pseudo-connections.
We try to preserve the inter-object structure by minimizing the length distortion of

each pseudo-connection during deformation.

& =ja-ch-fe -alf e %
Ez=0|c.—csl—lc:'-f-?llf ”

SRR

(d) (e (0

Figure 3.9 (a) A template consisting of four isolated objects. (b) Construction of
pseudo-connections among objects. (c) Energy functionals are
formulated for all connections. (d)-(f) The distorted template experiences
restoration forces during energy minimization.

Taking the top-right object in Figure 3.9(b) as center, three pseudo-
connections to the other objects are constructed (Figure 3.9(c)). In order to preserve
the inter-object structure, the length distortion of each pseudo-connection should be
minimized during deformation. It can be achieved by formulating an energy

functional for each pseudo-connection to reflect the corresponding length distortion
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and have it minimized during deformation. In this case, an energy functional E; is
formulated for the pseudo-connection between the object centroids C; and C;, which
corresponds to the squared difference between the current and the original length of
the pseudo-connection. Similarly, energy functionals E; and E; are formulated for the
other two pseudo-connections. 'Supposing that at iteration ¢ they are moving far apart
from each others as shown in Figure 3.9(d), mmmimizing £,, £, and £; causes the
induction of an inward force between every pair of objects which enables each
pseudo-connection to restore to its original length. For the case shown in Figures
3.9(d)-(f), being caused by the inward forces, they keep moving until all the pseudo-

connections are restored to their original length.

Taking the other objects as centers in turn, their energies can be generalized

by
N N
=Y Y{c -c| co|f G.11)
i=t =l
where
N is the total number of objects or centroids,
C, is the current centroid position vector of the i-th object, and

C?  is the initial centroid position vector of the i-th object
In order to bias the influence of a close centroid, a weighting factor governed by a
Gaussian window is introduced, w;. The smaller the distance between one and the
centroid, the larger the value of the weighting factor and this in turn induces a greater

force to preserve the relative displacement in between. The resultant internal energy

functional for preserving the inter-object structure is given by

E s = ii{ Q|C c,|-ler C)Z] (3.12)
i=l j=
where
e.-cf
P 2apseudo
Wi = (3.13)
“le-af

z P zapszudﬂ
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The parameter o is indeed the size of the Gaussian window which helps to

pendo
define which is close centroid and which is not. One may imagine that only those

centroids falling within the window (actually with a fuzzy boundary) of size o

prewdo
are regarded as close centroids that can provide a large preservation forces.

Considering a strategy in which & is made decreasing during the course of

pseudo
deformation, the influence of neighbourhood centroids will become smaller and
smaller and a global-to-local shape preservation is resulted. Such strategy of shape

preservation is adopted by the SDM.

3.4.2 Intra-object Shape Preservation Criterion

Having defined the inter-object shape preservation criterion, we proceed to formulate
energy functional(s) for intra-object shape preservation. In traditional snake model,
two internal energy functionals are used to control its shape, i.e., snaxel evenness and
contour smoothness. They are usually employed in contour detection problems in
which these two energy functionals make the model able to align with nearby edges.
However in our case, the smoothness energy functional is no longer suitable. Instead,
the orientation of edges is an important indicator of whether the pattern’s shape is
distorted. Besides, an evenness energy functional is also required to give the model a
. flexibility of deformation according to snaxel evenness, i.e., a kind of structure we
imposed as described in Section 3.3.4. The formulation of evenness and orientation

energy functionals is presented as follows:

Evenness Preservation

In order to increase the flexibility of deformation according to the structure, the
preservation of snaxel evenness in the SDM is carried out in each segment
independently rather than in the whole snake like the case in traditional snake model.
It enables snaxels in different segments (delimited by perceptual important points,

i.e., high curvature points) to move independently.
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An internal energy functional measuring the snaxel evenness distortion in
segment & 1s defined as

= EQITk T.fd

D,f (3.14)

where

N,  is the total number of snaxels inside segment £,
T 1s the position vector of snaxel 7 in segment k, and
D, is the average inter-snaxel distance of segment k
E, is in fact corresponding to the average difference between the current and the

average inter-snaxel distance. Generally for an image consisting of M segments, the
generalized internal energy functional representing the overall snaxel evenness

distortion is given by

Ny -

l M
even _ﬁzl[ 1< IQ|Tk r+l

D, )2] (3.15)

Orientation Preservation

As the edge orientation distortion is considered to be an important indicator of

whether the object is distorted or not, an internal energy functional measuring the
average edge orientation distortion is defined as

M N -l

E e =—— > 2|4D(T} I (3.16)
Z —1) —

k=

M is the total number of segments,

N,  is the total number of snaxels inside segment &, and

Tt is the position vector of snaxel § in segment k



Chapter 3 Structural Deformable Model (SDM) P.38

The angle distortion AD( ,") is the angle difference between the current and the
initial orientation of the edge associated with 7. By using dot product rule, it is

given by

olrt) o°(r*)
otz |-Jor

where O° (Tf.") is the initial position of the orientation vector O(T,."). As our proposed

AD(T*)= cos™ (3.17)

system in current stage is targeted on handwritten Chinese character recognition and
it is considered that most of Chinese character handwritings are not rotated, rotational
invariance is not imposed. But in general, it can be easily achieved by incorporating a

penalty-free affine transformation into the image frame during deformation.

Combined Preservation

As mentioned in Section 2.1.3, regularization is one of the most common ways to
combine internal and external energies. However, even within the internal or external

energy functional itself, there may consist of a number of sub-terms like E, _, and

even

E__ in our case. Additional weighting factors may be required to integrate them

orient
before the final combination (of internal and external energies) takes place. In view of
the difficulties to determine an optimal or sub-optimal weightings, attempts have
been made to reduce the number of sub-terms in both energies. Recall that the shape
preservation criterion involves inter-object and intra-object considerations. The

former one is governed by energy E while the latter one is governed by both

pseudo

E. and E__ . In this section, energy terms £, and E for intra-object shape

even orient even orient

preservation are integrated and the resultant energy functional is given by

Epps = ——— ]} o) (3.18)
Z —1
k
where
M is the total number of segments,
N, is the tota! number of snaxels inside segment &, and
Tt is the position vector of snaxel / in segment k



Chapter 3 Structural Deformable Model (SDM) P.39

6"(7}*) denotes the vector in same direction as O”(T,.k). If its length is fixed at a

value the same as that of 0°(T*), minimizing E,

e Will result in the preservation of
original edge length and orientation. If its length is kept updating to reflect the up-to-

date average inter-snaxel distance in its segment (i.e., segment k), minimizing E,

will result in the preservation of snaxel evenness and edge orientation. Needless to
say, the latter strategy will be adopted by the SDM. The details of this reformulation
are attached in Appendix A.

Since the model structure is maintained merely by preserving snaxel evenness
and edge orientation, it is possible that some segments may lengthen itself infinitely
without any penalty introduced. So, apart from the snaxel evenness and edge
orientation, the shape preservation scheme of the model should also maintain a

certain degree of original edge length. It can be achieved by imposing an upper-

bound and a lower-bound on the length of 0° (T,*) during its updates. In the proposed

model, they are specified as the ratios of the length of O"(’I}") and are fixed at values

. 2.0 and 0.5 respectively in our experiments.

~ As the flexibility of deformation according to snaxel evenness is one of the
largest gain from using the structural information of the image, its impact on the
deformation is demonstrated by a real case of deformable matching as shown in
Figure 3.10. Given two Chinese character patterns of the same class, “#&", the
system is required to deform the template towards the image to extract the
dissimilarity in between. Pay attention to the top-most horizontal strokes of the image
and the template that the length of the former is much longer than that of the latter.
Two patterns are quite similar except for this horizontal stroke. For the matching with

the flexibility to deform according to snaxel evenness (see the left column in the
figure), achieved by updating the length of (3"(’1']") in each minimization iteration to

reflect the up-to-date average inter-snaxel distance of their corresponding segments, it
is observed that such horizontal stroke of the template can easily lengthen to cover

the whole image stroke. For the matching without such flexibility (see the right

column in the figure), achieved by fixing the length of (3"(7}") equal to that of
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O"(Tf), it is observed that although such horizontal stroke of the template has made
every effort to cover the correspondence in the image, there is a little bit to the perfect
coverage and it in turn gives rises to the dissimilarity measure eventually. Besides,
since it doesn’t have the flexibility to deform according to snaxel evenness, the

resultant value of E.  is found nearly double that of the former case. Hence, in this

mira

case, the incorporation of such flexibility really can enable the model to deform

according to its structure without resulting in a high dissimilarity measure, like £, .



Chapter 3 Structural Deformable Model (SDM ) P41

...l-“"r‘- -
Il'r _N_,-x"_;-"
g -
-r ) = i o,
J H| e - s
' e 1
doh .-"'""" Raw template e Raw image

Positions of template and image

after modclling and initialization

( solid squares : template snaxels
hollow squares : image pixeis )

Deformation with flexibility to Deformation without flexibility to
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Figure 3.10 Demonstration of the deformable matching with (left column) and
without (right column) the flexibility to deform according to snaxel
evenness. Snapshots of deformation are shown in sequence from top to

bottom.
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3.5 Data Match Criterion
3.5.1 Point Patterns Matching and Line Patterns Matching

Before proceeding to formulate the external energy functional for SDM, let’s first
consider the simplest matching problem —~ point patterns matching. Two cases are
described, namely, one point matching and two points matching. At the end, the line

patterns matching, that our proposed model dealt with, is discussed.

Case |: One Point Matching

The simplest case of point patterns matching is the one point matching. Considering a
template with one snaxel T and an image with one pixel P as shown in Figure 3.11,
we are required to match the template with the image by bringing the snaxel towards
the pixel while keeping the pixel fixed. Tackling by energy minimization approach,
its external energy functional can be formulated as

B =|7 P (3.19)
It actually corresponds to the squared distance in between. By minimizing it alone, -
the snaxel will experience a force towards the pixel (Figure 3.12). At subsequent
iterations, the snaxel will move towards the pixel and in this case, they are

overlapped finally.

maich

= O

®
T

Template Image

Figure 3.11 A template with one snaxel T is matched with an
image with one pixel P.
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The template is The snaxel T The snaxel T They are
matched with experiences a moves towards overlapped
the image force towards the pixel P finally
the pixel P

Image

Figure 3.12 The deformation process of one point matching

Case 2: Two Points Matching

The external energy functional for the case of two points matching is of a little bat
more complicated than the previous one. Considering a template and an image as
shown in Figure 3.13 in which each of them consists of two points, we are required to
~ match the template with the image by bringing the snaxels towards the pixels while
keeping pixels fixed. The dotted lines shown between snaxels and pixels are for

demonstration purpose, which do not exist in reality.

e
7 match
2 G-
/ ! 2
T, /
@
Template Image

Figure 3.13 A template consisting of two snaxels (7, and T3) is
matched with an image consisting of two pixels
(P; and P5).
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In this case, we do not know what pixel to which each snaxel is matched and
it 1s assumed that we are now no need to preserve the shape of the template during
deformation. In order to find a match for two snaxels, a strategy has been adopted in
whicﬁ each snaxel is tried to match with the nearest pixel. To implement this strategy,
a fitness that the snaxel has found the nearest pixel should be formulated beforehand.
Consider that the 2D image in Figure 3.13 is mapped to a 1D plane as shown in
Figure 3.14. If a snaxel T is put somewhere between these two pixels, according to
the above strategy, it will either move to the left towards P, or to the right towards P;,
depending on which pixel it is more closer to. So, a fitness graph that the snaxel has
found the nearest pixel can be constructed as the one shown in the Figure 3.14 such
that P; and P, are the positions where the snaxel loves to move to. The fitness

equation corresponding to this graph can be formulated as

Zexp I

(3.20)
O'

ext

where ¢, specifies the spread of the Gaussian window function. The overall fitness
that two snaxels T; and T, have found their nearest pixels is defined as the geometric
mean of their individual fitness (denoted by Gz, and Gt,), that is,

F =,/Gt, xGt, (3.21)
Finally, the external energy functional is defined as the negative log of the overall

fitness and is given by

Eﬂrﬂ == log(F)

2
%Zlog Zexp

(3.22)

C.U

It is the smallest when all snaxels have found and matched with their nearest pixels
successfully. Consider the Figure 3.13 again. By minimizing this external energy,
each snaxel will try to look for the nearest pixel as shown in Figure 3.15. In this case,
snaxel T has found P, as its nearest pixel and 7; has found P, as its nearest pixel. In
subsequent iterations, 7; and 7> will move towards their nearest pixels, and

eventually they are overlapped with their correspondences.
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Figure 3.14 The formulation of the fitness graph that a snaxel has found the nearest
pixel
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Figure 3.15 The deformation process of two points matching



Chapter 3 Structural Deformable Model (SDM} P46

Case 3: Line Patterns Matching

The final case is the line patterns matching. It is also the problem that our proposed
model dealt with. Consider a template and an image shown in Figure 3.16 with each
of them consisting of one curve line. We are required to match the template with the
image while keeping the image fixed. In order to reduce the computational cost, both
the template and the image will be interpolated by snaxels and pixels respectively.
Please note that the total number of snaxels and pixels after interpolation may not
equal all the times. In this case, four snaxels (7;-T;) and three pixels (P;-F;) are
resulted. If using the previous points matching strategy to find a maich, some
undesirable image alignment are observed. According to the previous strategy, each
snaxel tries to look for the nearest pixel, and in this case, snaxels T and T3 happen to
have the same nearest pixel P;. They will move towards P, in subsequent iterations
and are eventually overlapped. It results in a severe distortion of model shape,
particularly the snaxel evenness. However, for the line patterns matching, apart from
points, there is an additional information — edge available for matching. So, instead of
performing a point-to-point matching, a point-to-edge matching could be adopted as
shown in Figure 3.16. In this case, four snaxels are not required to search for the
nearest pixels but edges instead, giving them more freedom to move and finally the
template aligns with the image without a severe distortion in model shape,

particularly the snaxel evenness.

Compared with point-to-point matching, an uneven sampling of snaxels and
pixels is possible here because each snaxel is not required to look for pixels but edges
instead. Thus, some higher order of feature points can be incorporated as sampling
points, like perceptual important points employed by SDM. With such sampling
allowed, computational requirement could be substantially reduced. Compared with
one-to-one edge matching, ours on the other hand does not require to extract an
accurate one-to-one edge correspondence beforehand which is considered to be so

difficult without the requirement of a sophisticated preprocessing.
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Figure 3.16 A deformable matching of two curve lines. An unnecessary distortion of
the model shape is observed in point-to-point matching but not in point-
to-edge matching.
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3.5.2 Point-to-edge Displacement Function

For the case 2 of point patterns matching in previous section, the term ”T, - Pj” inside

the external energy functional E, , defined in eq.(3.22) is actually corresponding to

exr2
point-to-point displacement. If a point-to-edge matching is adopted, it should be
replaced by a point-to-edge displacement function and the resultant external energy

functional is given by

Epy= —% Z log{%iew{— HE,E, )H (3.23)

¥
T
where h(T,.,Pj) is the point-to-edge displacement function which measures the
displacement between the snaxel 7; and an edge formed by P; and its adjacent pixel.

Generally for a template consisting of N sampled snaxels and an image consisting of

M sampled pixels, the above external energy functional is generalized as

En = —%ihg[ﬂ% ien{— i, p) H (3.24)
i J

O
In the SDM, h(T,.,Pj) is made up of two measures, namely, positional

difference and directional incompatibility as orientation is also an important cue for

proper matching. Given a snaxel 7 and an image edge (P,,Pz), positional difference

15 specified by a continuous and differentiable function f (T, P, ,Pz) where

,

_(T-P)-(R-P
e
ATR,R)=¢  |T-P] if(T—lﬁg)'_(';’"_P‘) >0 (3.25)
H(T _ ir;))x (“:2”_ A 1| otherwise
2 N

In fact, it is the perpendicular distance from T to the edge (P,,Pz), butif T is not on
top of the edge, it is defined as the distance to the nearest edge terminal, i.e., P, or

P, . In Figure 3.17(a), the contour of function f with respect to an edge (Pl,Pz) is

depicted. In this case, both snaxels T° and T” lying on the same contour line share
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the same value of f tothe edge,ie., f = f”.

On the other hand, the directional incompatibility between a snaxel T and an

edge (P, P,) is defined as the angle difference between the edge formed by T and its

adjacent snaxel and the edge (P,,Pz), le.,
lo)-(p, —P,W

loT)-17. - £]

where O(T') is the associated orientation vector of T. It is illustrated in Figure

g(T,P,P)= cos"[ (3.26)

3.17(b) in which T, is the adjacent snaxel of T'. The value of function g is just the

angle difference between two edge vectors.

Finally, the overall point-to-edge displacement h(T,.,Pj) between the snaxel T,
and the edge formed by P, and its adjacent pixel (denoted by Pj') is simply defined

as the sum of their square and is given by

h(lﬂ,P,-)=f(i'},P,-,P,-’)2+g( ,-,P,-,P,-’)2 (3.27)
f T T” T
cantour ’ ’
lf N P
| / Tz >I
P, P -
O ! m| 2
( ) e
02 O
PI PZ
- (a) (b)

® Snaxels O [Image pixels

Figure 3.17 (a) The contours of the function f(T,P,P,). (b) Directional
incompatibility between a snaxel 7 and an edge (P,PR), ie,
g (T9PI » F. 2)
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3.5.3 Model Guided Search and Image Guided Search

Finally, as mentioned in Section 2.3.1, the following two requirements are considered
necessary for a total maich:

1. Every part of the model should have some image primitives nearby, and

2. every part of the image should have some model primitives nearby.
So far, the first requirement has already been coped with but not the second one. In
order to satisfy the second requirement, another part of the equation should be

appended to the external energy functional E, , just defined in eq.(3.24). It is exactly

the same as the first part except that the role of snaxel and pixel are interchanged. The
external energy functional is resulted to be

EL,y =—%inog[ﬁ‘_$exp(_ h(ﬁ’ﬂ)]]_ﬁi,og[ L 2“"[_ ﬁ(a;rj)J}

ol p o

exy ext

(3.28)
In fact, the first part of equation enables each snaxel to search for the nearest pixel
edge actively, i.e., model guided search (MGS) while the second part of equation
enables each pixel to search for the nearest snaxel edge, i.e., image guided search
(IGS). In other words, it integrates both the MGS and the IGS. A weighting factor &
is introduced such that their weighting can be adjusted. The smaller the value of o,
the less the contribution of MGS in the overall searching mechanism. In addition, the
parameter o, specifying the spread of the Gaussian window function can be
interpreted as the size of a searching window such that snaxels (and pixels) will
mainly look for pixel edges (and snaxel edges) falling inside. The energy functional

E’ . is the resultant external energy functional adopted by the SDM and is denoted

ext

by E,, in the rest of the thesis, i.e.,

E_=E

ext ext3

Sl S ML Sl S of 401

exr ext

(3.29)
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Chapter 4

BAYESIAN FORMULATION,
GLOBAL-TO-LOCAL DEFORMATION AND
CLASSIFICATION

Having introduced the model representation and the deformation criteria in previous
chapter, we proceed to formulate the deformation process of SDM under a Bayesian
framework. Furthermore, the incorporation of a global-to-local deformation ability
into the SDM as realized by a smoothing scheme will be described. At the end of the

chapter, a classification scheme based on SDM will be elaborated.

4.1 Bayesian Formulation and Objective Function

Like the other DMs, the process of deformation (or deformable matching) of the -
SDM can be formulated under a Bayesian framework. Using Bayes rule, the prior

probability of the deformed template P(M ) and the likelihood of the input image
given the deformed template P(I1M) can be combined to obtain the a posteriori
probability density of the deformed template given the input image pM1I).

Mathematically,

P(rim)pP(M)

PMI1I)= 20

(4.1)

As a resuit, deformation is realized by maximizing the a posteriori probability
density. When the local or global maxima (if possible) is reached, the template is
considered close to the image while being able to keep its shape in minimum

distortion, and the deformation will be stopped. The formulation of prior distribution,



Chapter 4 Bayesian Formulation, Global-to-local Deformation and Classification P.52

likelihood and posterior probability density, followed by the minimization scheme

adopted by SDM, are given below:

Prior Distribution

To bias the possible shape of the deformed template such that the template with no
distortion in terms of inter-object structure and intra-object structure is the most

favoured, the prior probability of the deformed template is defined as

(Ep:cud‘a + Er'nrm ):|

P(M ) =f. exp[— - “4.2)

where B is the normalizing constant. In fact, P{M) under the Bayesian scheme

reflects the prior knowledge of the template shape.

Likelihood

The likelihood specifies the probability of observing an input imagé given a
deformed template. Using the external energy defined in Section 3.5, the likelihood is

defined as

P(llM)=y-exp(—iJ (4.3)
G,

where ¥ is the normalizing constant. The maximum likelihood is achieved when it

satisfies both requirements of the total match, i.e., each image pixel has got a snaxel

edge nearby and each snaxel has got a pixel edge nearby.
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Posterior Probability Density

Based upon Bayes rule, the prior probability of the deformed template in eq.(4.2) and
the likelihood of the input image given the deformed template in eq.(4.3) can be
combined to obtain the a posteriori probability density of the deformed template

given the input image, 1.e.,

Pl 11)=P4 'f()l')P(M)
=CI-P(I1M) P(M) (4.4)
- of ) 2

Taking natural logarithms on both sides results in:

E E,
IOg(P(M | I)) = log(CZ)- E"ﬂ - ( pseudy + l'mra)

ag, 0,
1 a ‘
=C3 —E_:I:Eexr +?T(Epseudo + Er’mra ):i (45)
=C3- L [E‘m + A(Epjguda + Er’nrra )]
2
where
1% | (4.6)
o-l

C1, C2 and C3 are constants.

Our objective is to maximize the a posteriori probability or, equivalently, minimize
the following Bayesian objective function with respect to all snaxels positions:

w=E,_+ME, . +E,.) .7

where A can be regarded as a relative weighting between the total internal energy

(E

pseudo

+E, ) and the external energy (Em).

pseudo intra
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Minimization

With ¥ defined, the template can be deformed towards the image by minimizing this
Bayesian objective function. Due to 1ts simplicity, the steepest descent method is
adopted. In view of its success in neural network training, a momentum term is

included as well. The updating equation for each snaxel 7, at z-th iteration is given

by
T,(e+1)=T,{t)+ AT (¢) (4.8)
where
_ ) s ar
AT (1) = na],‘_(:)ﬂ“ AT ~1) (4.9)

In fact, AT,(r) corresponds to the displacement vector of snaxel T;. 77 and ¢ denote

the learning rate and momentum respectively. In each iteration, displacement vectors

AT,(r} of all snaxels are computed, aiming at decreasing ¥. Such minimization

process continues until ¥ cannot be further decreased for a certain period of time,
i.e., the minimization process is considered converged. However, it is observed that
if snaxels move merely according to these set of displacement vectors, the flexibility
of deformation will be too large that the model may start to deviate significantly from
its original shape and search locally once the deformation starts (A case will be given
later). We found that it is essential to guide the model to deform globally at the very
beginnings so as to escape from some local minima as introduced by the improper
initialization. Deforming locally means that some model primitives do not follow the
global movement of the model like the case shown in Figure 4.1(a) in which the

snaxel 7, tends to search/deform locally by moving backwards while all the other
snaxels (T,, T,, T, and T; which may or may not be connected) tend to move

forwards. We try to develop a scheme called smoothing in the following section
which enables them to move globally (like the one shown in Figure 4.1(b)) initially

and locally at the later stage of deformation.



Chapter 4 Bayesian Formulation, Global-to-local Deformation and Classification P55

T,v / T[ _/’
O O
T, T,
o—> T o— T
5 5
O O
4+ 0 \‘ Tzo _____ N \)
TJO Tz T3O
(a) (b)

O  Snaxels ——p  Displacement vectors

~-p  Smoothed displacement vector

Figure 4.1 A template consisting of five snaxels which may or may not be
connected. (a) Before a smoothing process is applied. (b) After a
smoothing process is applied (particularly on snaxel T3)

4.2 Smoothing Scheme

The smoothing scheme presented here aims at incorporating a global-to-local
deformation ability into the SDM. The rationale behind is from the concept of ASP,
described in Section 2.3.3, that it makes use of some schemes Lo preserve model
shape actively. For examples, Burr’s model {17] and Wakahara’s model [11] are the

ones who are based on ASP.

The smoothing scheme adopted by SDM mainly follows the idea in Burr’s
model [17] that the movement of model primitives (refer to snaxels here) is restricted
according to the spatial relationship between primitives. The resultant flowchart of
the deformation module is depicted in Figure 4.2, After each iteration of

minimization, a set of displacement vectors, i.e., AT,(z), for all snaxels is computed

(according to €q.(4.9)). The smoothing process is introduced here to convert this set

of displacement vectors to a set of smoothed displacement vectors (denoted here as
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A'T,(t)) before the actual movement of snaxels taking place. A'T,(t) is defined as the
weighted average of neighbouring displacement vectors. To provide the effect that
nearby neighbours influence more than far away ones, a Gaussian weighting function
is employed. Finally, all snaxels are updated according to A‘T,-(t) before next
minimization iteration starts. Refer to Figure 4.1 again. Actually, the displacement
vectors and the smoothed displacement vectors are corresponding to solid arrows and
dotted arrows respectively here. In this case, the smoothing process is applied to the
displacement vector of T,, making the snaxel to follow the global movement of the

other snaxels as shown in Figure 4.1(b).

Deformation Moduie

HI Minimization |

displacement vectors

b 4
I Smoothing ]

smoothed
Vdisplacement vectors

I Actuai Movement !

Figure 4.2 The flowchart of deformation module

Here we start to formulate the smoothing process mathematically. Based on
the displacement vectors given by eq.(4.9), the smoothed displacement vector of

snaxel T, at f-th iteration is defined as

ylw,r,) a7 ]
AT (t)=-2 (4.10)

>wir.T)
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where the Gaussian weighting function W(T,.,Tf.) is given by

W(T,,T,)=exp| - -~

j (4.11)
g

The parameter & specifies the size of the window in which snaxels will provide

smouth

significant neighbourhood smoothing forces to the current snaxel 7,. It is this

parameter which governs the global-to-local deformation of the SDM. The larger the

value of o the more global the deformation. If &, .. is equal to zero, a pure

smaath ?

local deformation is resulted. So, a global-to-local deformation can be achieved by

starting o at a higher value and reducing its value gradually during the course of

smooth

deformation.

In view of the hierarchical structure of SDM that each separated component
inside an image is treated as an object and the preservation of inter-object structure
has already been coped with by pseudo connections, neighbourhood of influence here
is further modified to be restricted to the same objects. Thus, the smoothed

displacement vector in €q.(4.10) is fine-tuned as

Z[ w(r,,T, ) AT, (t) |

AT (p) = L8 (4.12)

| S wir,r,)

]
jeabj(i}

of which the implementation is much more easier and efficient. With the smoothing
process introduced, each snaxel will be updated according to its smoothed

displacement vector, i.e.,

L +)=T,()+ 8T, () (4.13)

To demonstrate the impact of adopting the smoothing process in reality, a real
éase of deformable matching is shown in Figure 4.3. Given two Chinese character
patterns of the same class, “®9”, the system is required to deform the template
towards the image to extract the dissimilarity features in between. Supposing in this
case that the initialization process fails to bring them together resulting in a far apart
distance in between, the burden is shifted to the deformation process that the model

needs to move a long way and tries its best to escape from many local minima in
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order to align with the image. For the case without the incorporation of smoothing
{see the right column in the figure), the template starts to search locally and deviates
much from its original shape in just a few iterations of deformation. Although in this
case it is so lucky to align with the image properly, there are cases that the template
corrupted eventually. On the contrary, if smoothing is incorporated (see the left
column in the figure), the deformation of the template is properly guided such that its
global shape can be well maintained during the deformation process. In the proposed
model, such kind of deformation is required so that the model can deform globally at
the very beginnings so as to escape from some local minima as introduced by the

improper initialization, like this case.
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,‘_.‘r-'ﬁ' ————— | i
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e Raw template Raw image

Positions of template and image
after modelling and initialization
( solid squares : template snaxels
hollow squares : image pixels )
Snapshots of deformation with smoothing Snapshots of deformation without smoothing

Figure 4.3 Demonstration of the deformable matching with smoothing(left column)
and without smoothing(right column). Sequence is from top to bottom.
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4.3 Feature Extraction and Classification

The most straightforward way to carry out classification using SDM/DMs is to
compare the objective function values ¥ (after the minimization process) for the
pattern classes of concern and pick the one with the lowest value. It does not require
any sophisticated feature extraction step and in fact an important merit of using DMs
for classification tasks. In fact, one may view differently that the resultant objective
function value is the most obvious feature being extracted by a deformable matching.
In other words, SDM can be considered as a feature extraction method which
includes the resultant objective function value as the most representative feature.
Such a view is adopted, elaborated by introducing other features and described

below.

4.3.1 Feature Extraction

Although the classification can be carried out simply by using the resultant objective
function value, it is found insufficient because it doesn’t tell us explicitly how good
the template aligns with the image which is considered to be an important indicator of
whether two images are in good match. In this regard, an additional feature
measuring the al_ignmént fitness 1s extracted — clustering error. 1t is in fact a counter
counting the total number of unmatched pixels and snaxels after deformation. To sum
up, in the proposed model, two features are extracted for classification:
1. resultant objective function value, and

2. clustering error.

The objective function values ¥ in eq.(4.7) can be obtained easily after the
deformation process. The clustering error on the other hand is described below.
Although a cleaner formulation can be obtained by incorporating the clustering error
into the criteria used by the SDM, it i1s found difficult to do so because some of the
dissimilarity measure are considered too complex to be formulated as a general
function which is continuous and differentiable and can in turn be minimized. Even,

some of them are really processes rather than functions, like the calculation of
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clustering error which is in fact a process that investigates on the clustering statistics

and can only be performed after the deformation process.

Similarity measurement between two binary images (image and template) can
be regarded as a clustering problem. Both image pixels and snaxels can be treated as
clusters which group snaxels and pixels respectively. If both parties can obtain an
even clustering, i.e., the number of clustered points is the same for each pixel/snaxel,
high similarity exists between both images. In the proposed model where point-to-
edge matching is adopted, snaxels and image pixels have been sampled to reduce the
computational cost. To carry out clustering in a more detail manner, snaxels and
image pixels should be added back by interpolation between adjacent sampled
snaxels and pixels. The clustering process remains the same except that the total
number of clusters is increased by those interpolated snaxels and pixels. As long as
the interpolation rate of both parties are the same, the requirements of the total match
mentioned in' Section 2.3.1 can be redefined such that all clusters are required to have
one and only one clustered point for the total match. In this regard, a clustering error
is considered if either of the following cases happens:

1. some cluster(s) have more than one clustered points, and

2. some cluster(s) are empty.

@ Original template snaxels @ Original template snaxels @ Interpolate’d template snaxels
O Original image pixels O Original image pixels © Interpolated image pixels
¢ Interpolated template snaxels - Cluster boundaries of snaxels
o Interpolated image pixels

Figure 4.4 An undesirable clustering error
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However, by using the SDM for pattern matching, some undesirable
clustering errors are observed, like the one shown in Figure 4.4. The left-most picture
is the final deformation snapshot extracted from Figure 3.2. Visually, two strokes of
the template are mapped properly into those in the image. Since it is a point-to-edge
mapping, it is possible that one snaxel edge may be mapped to two pixel edges, like
the case highlighted in this picture. In this case, they are considered to be properly
aligned (at least in the case of one-to-two edge mapping) and there 1S no severe
distortion in model shape, i.e., the evenness of snaxels and orientation of edges.
However, after an even interpolation of snaxels and pixels, it is found that some
- clusters have more than one clustered points (snaxels are treated as clustering party).
In this case, among clusters C;-Cs, the cluster C4 has two clustered elements. Hence a
clustering error occurs according to its definition stated in above. In order to reduce
such kind of undesirable clustering error if strokes have been considered to be
properly mapped, an increase in the interpolation rate for the clustering party is
proposed. Nevertheless, such proposal will result in a number of clusters with no
elements (i.e., the second condition of clustering error} even if strokes have been
considered to be properly aligned, making it difficult to differentiate the case when
the image is found to be the sub-part of the template. In fact, the second condition of
the clustering error can be neglected by treating both snaxels and pixels as clusters in
turn. By treating pixels as clusters, if the image is really a sub-part of the template,
then there should exist some pixel clusters with more than one elements, i.e., the first
condition of clustering error. To summarize, the clustering error can be calculated by

the following steps:
1. Treating snaxels as the clustering party.
2. Interpolating snaxels and pixels among the existing ones. Interpolation rate of
the clustering party (i.e., snaxels) should be set higher than (say, double) that

~ of the other.

3. Clustering all the pixels and then counting the total number of pixels in each

cluster.
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4. If the total number of pixels in a particular cluster is greater than 1, then the
clustering error associated with that cluster is equal to the total number of

pixels in that cluster minus 1, or else it is equal to zero.

5. Summing up ail the clustering error of all clusters and a total clustering error

by treating snaxels as the clustering party is resulted.

6. Treating pixels as the clustering party and repeating steps 2-5 with the role of
snaxel and pixel interchanged, and finally another total clustering error is

resulted. The overall clustering error is simply defined as their sum.

Mathematically, the clustering error of the SDM is given by

: M

Edu:ren'ng = z 1_‘1 (4 14)
where

(4.15)
0 otherwise

- _{N(c,. )-1 i N(C, )>1
The function N(C‘.) measures the total number of clustered elements in the i-th
cluster, i.e., C;, which can be either a snaxel cluster or a pixel cluster (including those

sampled and interpolated ones). I', denotes the clustering error in each cluster while

M denotes the total number of snaxel and pixel clusters, and finally the overall

clustering error E

clustering

is formulated as the summation of all the underlying

individuals,

4.3.2 Classification Scheme

The classification algorithm adopted by SDM is simply a statistical one, i.e., a Bayes
classifier. The overall classification scheme of the SDM is depicted in Figure 4.5. It
consists of two stages, feature extraction stage and classification stage. In the feature
extraction stage, an unknown image is required to match with all N class templates

and a 2-D feature vector is resulted after each. Let ¥, =(y,,y,) be the 2-D feature
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vector resulted after the deformable matching with template i. In the classification

stage, all feature vectors (¥,,...,¥, ) will be fed to the Bayes classifier in which the

discriminant function for class { is given by ( let x be the unknown image )
d,(x}=plxl®,) (4.16)

where
plxlw;)=(27)"|z.|2 exp[—%(x—u,- VEM - g )] (4.17)

Note here that we have assumed the probabilities of the occurrence of all pattern

classes, i.e., P(w,), are the same. In fact, the term (x—g,) is actually corresponding
to ¥, previously extracted, which reflects the distance between the image and the

cluster center in feature space. By substituting Y, into the term (x—-g.) inside

I

p(x1@,), d.(x) can be determined and the image will be classified to the class with

the largest d,(x).

For each d,(x), the covariance matrix X. should be determined before

classification taking place. In other words, a training process is required to construct

the density distributions of all pattern classes. Suppose in class i, there are N, training

samples and one of them is chosen as the representative template. By deforming it

with the other training samples, (N,. —1) feature vectors will be resulted and let them
be (Z, ,...,ZNE;,) where Z, =(z,,z,). Assuming that (z4,2;,) are stochastically

independent , . can be calculated by
N—t
5=z} )] (4.18)

N, -17%

T =1

with covariance elements, i.e., & i for all j # k set to zero. In our implementation,

template selection is performed by a cross-over deformation among different training
samples within each class. The template with a density distribution which maximize
the probability of observing all the other training samples within the same class is

selected.
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Figure 4.5 A pictorial view of the classification scheme using SDM
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Chapter 5

EXPERIMENTAL RESULTS

5.1 Character Image Database

In this chapter, the performance of the proposed model is examined through various
experiments. All the training and testing samples employed are extracted from a
public database “IPTP CD-ROM2” of handwritten KANIJI character images [32].
Inside the database, all the samples were digitized from actually used postcards with
400-dpi and 8-bit resolution, and have already been segmented into characters and

binarized. The typical recognition rate on the database with first choice is 78.6 %[33].

Like the other DMs, SDM also has the same problem -~ a great computational
cost. So, instead of being proposed as an alternative recognizer, the SDM is mainly
proposed as a post-processor of other recognition systems, i.e., it helps to verify the
candidates they produced. Investigation will be carried out on the performance of the
SDM by stmulating it as -

1. a post-processor of a system adopting structural approach, and

2. apost-processor of a system adopting statistical approach.

All training aﬁd testing samples are coming from 50 character catégories as
shown in Table 5.1. Ten training samples and ten testing samples are extracted
exclusively for each category. For each row (Gi) in the table, there are ten different
character categories which are specially selected from the database with high
similarity in structure. These five groups of characters, i.e., G1-G5, are simulated as
the candidates given by a structural based system since it is expected that recognition
using structural approach will result in characters with high similanty in structure.

Another five groups of character categories corresponding to the five columns of
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characters in Table 5.1, i.e., V1-V5, are simulated as the candidates produced by
those systems adopting statistical approach. Since the statistical based recognizer
classifies characters based on a statistical framework, it does not guarantee to produce
candidates with similar structure. However, as statistical approach may also find
some character candidates in similar structure, one adjacent character category in
each row is added to the corresponding candidate set and finally, the groups V1-V5
are formed. For each group, whether it is Gi or Vi, a one-out-of-ten classification is

performed.

Before proceeding to the performance analysis on the database in detail, a
parameter sensitivity analysis, a feature extraction analysis as well as a functionality
analysis are carried out aiming at looking for the optimum parameters for subsequent
experiments and investigating the performance of different functional components

and mechanism being adopted in the model.

Table 5.1 Character categories for performance analysis
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5.2 Parameter Sensitivity Analysis

A sensitivity analysis of the parameters adopted by the proposed model is reported in
this section. Before the initialization process taking place, all images are pre-
normalized to size of 100x100 pixels. The interpolation intervals of all snaxels and
pixels are fixed at 1/10 of the image normalization size. Initially, the following

parameter values are chosen: 7=03, {=0.7, A=1.75, e=1, 0,,=07, ¢

smuath

and o are decreased from 1/3 of the image normalization size by 0.3 each

preudo
iteration. The parameter sensitivity analysis is carried out by observing the
performance of the SDM against each parameter. All the recognition rate reported
here is the average accuracy of recognizing images in groups G1-G5 and V1-V5 with
first choice. Parameters being investigated are summarized in- Table 5.2 and are

described in detail as follows:

Table 5.2 Parameters to be examined

Parameters Meaning Refer to equation(s)

A Weighting between internat and external 4.7
cnergies

o Weighting between two searching (3.29)
strategies, MGS and IGS

o The size of searching window for snaxels (3.29)
o and pixels
O oo AN O poeudo Neighbourhood of influence (4.11) and (3.13)

Weighting between internal and external energies { A )

The first parameter to be analyzed is the relative weighting 4 between internal and
external energies in eq.(4.7). Values {0.5,1,1.75, 2.5,3.25} are examined and the
corresponding performance of SDM is plotted in Figure 5.1. Tt is observed that the
SDM is not quite sensitive to the values of 4 but the values between 1 and 2.5 are the

preferred setting to obtain an acceptable performance .
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Figure 5.1 The performance of SDM against A
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Figure 5.2 The performance of SDM against (ao o )

Weighting between MGS and IGS ( o )

The second parameter to be examined is the relative weighting @ between two
searching strategies, MGS and IGS in €q.(3.29). How the weighting of MGS and IGS
influences the performance of SDM is investigated by using the following updating
equation for « :

alt)=min{{o, +¢-a,, ) 1) (5.1)

where ¢ is an index of deformation iterations, ¢, and «, . are the initial value and the

rate
increasing rate of & respectively. In fact, a heuristic is adopted in which the template
pattern is required to be distributed evenly on the image before it actively searches

for the image. Five sets of value (aa,afm,e ), Le.,

1(0.5,0.004),(0.5,0.005),(0.8,0.002), (0.8,0.003), {1, 0)}
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ranging from a slow active search to a fast active search are examined. The
corresponding performance of the SDM is plotted in Figure 5.2. It is observed that
the SDM is not sensitive to how « is set and what strategy is used. So, the stmplest

way is to fix @ at | during deformation.

Searching window for snaxels and pixels ( o,, )

Next, the parameter o,, specifying the size of searching window for snaxels and

pixels in €q.(3.29) is examined. Values {0.3,0.5,0.7,1,1.3} were examined and the
corresponding performance of the proposed model is plotted in Figure 5.3. It is found

that the model is not performing quite good when o, is small because the searching

windows are so small that most of snaxels and pixels are not able to locate their
nearest neighbours and consequently, the template cannot align well with the image.

It is suggested to set o, within the range from 0.5 to 1 for an acceptable

performance.

Average Accuracy

03 0.5 o7 1 1.3
Cext

Figure 5.3 The performance of SDM against &,

Neighbourhood of influence (o . and o pscudo )

Inside the smoothing process and the inter-object structure preservation criterion,

their neighbourhood of influence are governed by o, in eq.(4.11) and & in

pseudo

£q.(3.13) respectively. For simplicity, they share the same value and are here denoted
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by o, . In order to carry out a global-to-local deformation during the course of

matching, o is updated by the following equation at each iteratton of energy

p

minimization:
1 o
o, ()= max((g (Normalization Size)—¢ - T oRare } OJ (5.2)

where ¢ is an index of deformation iterations and & is the decreasing rate of o, .

spRare
Thus, the neighbourhood of influence at the very beginning, i.e., global deformation
stage, is one-third of the image normalization size. Values {0.3,0.5,0.7, 1,1.3}
ranging from a small to a large decreasing rate are examined. The first one will make

o, drop to zero in about 110 iterations while the last one in about 25 iterations. The

corresponding performance of the SDM is plotted in Figure 5.4 and it is found that

the proposed model is not sensitive to how o is adjusted.

= 96%
o 94.10% .
5 94% 1 .\;LEM 92 30% 92.30%
g 92% - ¢ + *
° 90% -
g 88%
5 86% 1
84% ‘ T -
0.3 0.5 0.7 1 1.3
TspRate

Figure 5.4 The performance of SDM against &

spRate

Based on the results, the optimum values of parameters are { A=1.75, a, =1,

a2, =0, 0,=07 and o =0.3 } which will be adopted by the SDM in

spRate

subsequent analysis.
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5.3 Feature Extraction Analysis

In the SDM, two features are extracted, namely, the resultant value of objective
function and the clustering error. In fact, the former one is the core feature indicating
the dissimilarity between two images while the latter one is an assistant feature which
provides one more information (alignment fitness) to the classification. By combining
these two features, a 2D feature classification is carried out. In this seclion, the
performance of the SDM with and without the assistant feature is investigated, that is,
2D and ID feature classification. It is summarized in Table 5.3 and is plotted in
Figure 5.5. It is observed that the performance of the SDM increases when an
additional feature, ie., the alignment fitness, is introduced. In other words, the

extraction of clustering error as an additional feature can actually improve the model

performance.
100%
e 98%
13
(4
& 96% T
=
|-
o
2 94% -
]
(4
o 0, .
g 92%
S
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88%

1 ' 2 3

[—e—
First n Choices i 1D feature
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Figure 5.5 The performance of SDM with one and two features extracted
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Table 5.3 Details on the recognition rate of SDM with one and two features extracted

First choice First 2 choices First 3 choices
1D 2D 1D 2D 1D 2D

Post-processing { 888 % | 922% | 968% | 976% | 98.6% | 988 %

of structural
bascd system
(avg of G1-G3)
Post-processing | 952 % | 960% | 98.6% | 982% | 994% | 90%
of statistical
based systcm
(avg of VI-V3)
Average 9020% | 941% § 97.7% | 979% | 990% | 989 %

recognition rate

5.4 Functionality Analysis

Apart from the parameter sensitivity analysis and feature extraction analysis, a
functionality analysis is carried out as well to examine the impact of various
components like structural deformation and global-to-local deformation ability on the
SDM. In the SDM, the structural deformation is realized by inter-object and intra-
object structure preservation while the global-to-local deformation ability is realized
by a smoothing process. It is interesting to know whether they actually improve the
performance of a DM and hence a set of experiments was conducted to find out their
corresponding impact. For comparison purpose, the performance of the SDM without
structural deformation and global-to-local deformation ability is also examined. It is
achieved by having the model to preserve merely the original edge length and the
orientation of each snaxel edge. The flexibility of deformation according to snaxel
evenness is turned off. The resultant performance of the SDM is summarized in Table

5.4 and is plotted in Figure 5.6.

It is observed that the performance of the proposed model increases with each
functionality introduced, in particular for the components, inter-object preservation
and smoothing process, they improve the performance significantly. As a result, it is
reasonable to conclude that the incorporation of structural deformation and global-to-

local deformation abilities into a DM is justifiable and worthwhile.
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Table 5.4 Details on the recognition rate of SDM in functionality analysis

Structural Global-to-local Recognition Rate
Deformation Deformation
Intra-object Inter-object Smoothing Post-processing of | Post-processing of | Average
structural structural scheme structural based statistical based accuracy
preservation preservation systems systems
(evenness) (pseudo (average of G1-G3) | (average of VI-V3)
connection) First choice First choice
b 4 b 4 } 4 9.6 % 948 % 922 %
v 4 X 89.2 % 95.4 % 923 %
v v X 90.6 % 95.6 % 931 %
v v v 922 % 96.0 % 9.1 %
94.5%
94.1%
o 894.0% -
o
g 93.5% 7 93.1%
§, 93.0% -
o
& 925%- 92.2% 92.3%
) *~—
& 92.0% |
<
91.5% 1
91.0% T
Nil Structural Structural Structural and
Deformation (Intra- Deformation (Intra & Global-to-local
object) Inter-object) Deformation

Functionality Components

Figure 5.6 The performance of the SDM with different functional components
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5.5 Performance Analysis of Chinese Character Recognition

Having reported the parameter sensitivity analysis as well as the impact of different
functional components and mechanism on the proposed model, a detail analysis of
the model performance on Chinese character recognition is presented in this section.
Apart from simulating the SDM as a post-processor of a structural recognizer and a
post-processor of a statistical recognizer, an additional set of experiment has been
conducted as well to investigate the performance of SDM by treating it as a stand-
alone recognizer. A 1-out-of-30 stand-alone classification by utilizing all 50 character
categories in Table 5.1 is carried out. All the characters will be recognized without
any rejection. In order to compare with a DM, the rubber sheet model proposed by
Jain and Zongker [10] has been implemented for performance comparison. The
results are presented accordingly. In the rest of this chapter, the rubber sheet model is

denoted by “RSM”.

5.5.1 Recognition as Post-processing of Structural Based Systems

Figure 5.7 shows the recognition rate by treating the SDM and the RSM as post-
processors of a structural based recognizer. All data points shown were recorded as
an average of five readings obtained from performing recognition in five groups Gl-
GS5. Table 5.5 shows the details of their performance. It is observed that our model

outperforms the RSM and has obtained a 92.2 % accuracy for first choice.
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Figure 5.7 The performance comparison of the SDM and RSM : post-processing of
structural based systems

Table 5.5 Details on the recognition rate of the SDM and RSM : post-processing of
structural based systems

Groups First choice First 2 choices First 3 choices
SDM RSM SDM RSM SDM RSM
Gl 89 % 64 % 96 % 77 % 98 % 85 %
G2 93 % 60 % 100 % 79 % 100 % 85 %
G3 91 % 33 % 96 % 53 % 98 % 63 %
G4 92 % 71 % 97 % 86 % 99 % 91 %
G5 96 % 65 % 99 % 86 % 99 % 93 %
Average | 92.20% | 58.60% | 97.60% | 76.20% | 9880 % 83.40 %
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In order to demonstrate the performance of our model visually, five cases of
correct classification extracted from each group are shown in Figure 5.8 - 5.12
respectively. For each figure, a particular image is classified and the deformation of
the resultant top three choices of template candidates are shown. In Figure 5.8, an
image B is fed to the system. As the proposed model adopted a deformable
matching approach rather than a statistical one, the first few choices of template
candidates should exhibit a certain degree of structure similarity with the image,
which is reflected by this example. Also in this case, the image will not be wrongly
classified as ¥ and & because penalty is induced for their existence of extra snaxel
strokes as compared with the input image. It is reflected in Table 5.6 that their final
external energy and the clustering error are much higher than that of the winning

case.

The second case of correct classification is shown in Figure 5.9 and Table 5.7.
Like the previous one, three template patterns with similar structure as that of the
image are resulted. Again, the second and the third choices of template candidates
cannot be the winner due to their existence of extra snaxel edges. It leads to a high

clustering error obtained eventually (see E in Table 5.7). These extra snaxel

clusiering
edges also tried to align with some pixel edges by altering its internal shape. It is

+ E.

nira

pseuds ) as compared with that

reflected by their high internal energies E,, (i.e., E
of the winner class. However, due to the need of shape preservation, some snaxel
edges may not be able to situate on any pixel edges and hence, their external energies

are also greater than that of the winner one.



Chapter 5 Experimental Results P.78

Figure 5.8 These three rows correspond to the deformation of top three choices of
template candidates, H , ¥ and & (in dark colour) respectively when
feeding an image H (in light colour). From left to right, they are the
original position of two patterns, their configurations after initialization
(solid and hollow squares are snaxels and pixels respectively), a
snapshot during deformation and the resultant configuration after
deformation. Note that the original position of each snaxel is shown by a
small dot.

Table 5.6 Energy values after deformation in Figure 5.8

E, (E psewdo T Er'nrra) E,., b3 clustering
8 - 8 matching 6.48 11.32 22.66 13
8 - ¥ matching 5.05 2401 | 32.83 38
8 - &7 matching 6.89 34.40 46.45 55
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Figure 5.9 The deformation of top three choices of template candidates, H-, B and
A when feeding an image H-.

Table 5.7 Energy values after deformation in Figure 5.9

E,, (Epsmda + Er,.;m) E, kg clustering
- matching 1.94 9.63 13.03 31
- B matching 12.73 17.88 40.16 57
- A matching 11.99 16.78 37.77 54
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Another example of correction classification is shown in Table 5.8 and Figure
5.10 in which the image & has found three template patterns (A, < and A) with
highest discriminant function in the proposed classification scheme. In this case, &
cannot be the winner because its extra vertical stroke in the middle causes it to have a
high internal and external energy and also a high clustering error. For the template
7%, our structural deformation scheme is demonstrated by its ability to shorten its
longest horizontal stroke and to lengthen its bottom two strokes to match with the

image without a much increase in the internal energy £, (.e., E

e

preudo + Er'mra ) N
However, as it does not have an extra structure component to cater for the short edge
at the bottom of the image (reflected by a high external energy and clustering error),

it fails to be the winner.

Next, the correct classification of an image -+ bas been shown in Figure 5.11
and Table 5.9. Consider the case when the template -F is deformed to match with
-+ . Under the influence of our structural deformation scheme, the stroke at the head
of - has an ability to shorten itself as long as an evenness of snaxels is maintained
without a much increase in the internal energy. However, in this case, such behaviour
is undesirable because all the concerning snaxels are overlapped together. Although it
cannot be reflected by the internal energy as well as the external energy, it 1s tackled
by the clustering error measure which indicates the alignment fitness. As reflected in
Table 5.9, its clustering error is much higher than that of the winning case, that is, a
bad alignment is found. Consider the case when the template T is deformed to
match with —+. Although the proposed scheme of the structural deformation gives it
an ability to shorten its tail, it can by no means to cater for the head of -+ without an

increase in internal energy.
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+

Figure 5.10 The deformation of top three choices of template candidates, &, =<
and A when feeding an image & .

Table 5.8 Energy values after deformation in Figure 5.10

Eim (E psevdo + Et'nrra) Ecn ‘¥ E clustering
& - A matching 1.91 7.56 10.91 5
A -7 matching 4.73 3341 41.69 <20
A_- A~ matching 10.81 30.33 4925 34
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Figure 5.11 The deformation of top three choices of template candidates, -+, T
and -F when feeding an image .

Table 5.9 Energy values after deformation in Figure 5.11

i (E i+ Euu) | Een ¥ E pering
-+ --+ matching 0.80 6.07 7.48 0
-t-- T matching 7.14 i1.09 23.59 21
-+ --F matching 1.71 6.15 9.15 17
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Figure 5.12 The deformation of top three choices of template candidates, £, ¥
- and =. when feeding an image % .

‘Table 5.10 Energy values after deformation in Figure 5.12

E, (E pseuda T Eimra) E,, k3 E cpiering
% - % matching 2.28 7.35 11.34 I
£ - & matching 10.79 37.72 56.60 66
£ - = matching 3.62 20.96 27.30 46
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5.12 and Table 5.10. In this case, the second and the third choices of the template
candidates cannot be the winner as they are not capable to handle the right-most
stroke of the image £, resulting in a high external energy and clustering error shown
in Table 5.10. In addition, the point-to-edge matching strategy can be demonstrated
by this example. Considering the right-most strokes of both the winning template %
and the image *, the former is composed of three snaxel edges while the latter is
composed of one pixel edge. Since each snaxel and each pixel are required to perform
a point-to-edge searching rather than a point-to-point searching, they can easily stay
on the edge, and eventually a three-to-one edge mapping is resulted without any

unnecessary overlapping of snaxels. Please note that the snaxel evenness still

The last example of correct classification we demonstrate is depicted in Figure

maintained even if the stroke is shortened.

Table 5.11 Confusion matrices of groups G1-G5 for SDM

input Gl Recognition Result input G2 Recognition Result input G3 Recognition Result
image/0 1 2 3 4 5 6 7 8 9f |maged 1 2 3 4 5 &6 7 8 9| |imagef0 2345 67 89
0 {6 4 0|5 5 0 {lo
1 1 8 1 1 9 1 1
2 10 2 9 1 2 10
3 9 I 3 10 3 10
4 2 1 4 10 4
5 | 9 5 10 5 10
& |1 9 6 o - 6 {1
711 9 7 10 7 2
8 10 8 10 g8 |2
9 10 9 10 9 1
input G4 Recognition Result input G5 Recognition Result
imagef 0 | 2 3 4 5 6 7 8 9| limagel0 1| 2 3 4 5 6 7 8 9
o |9 i 0 19 1
1 10 1 10
2 73 2 10
3 10 3 10
4 11 8 1 4 | 9
5 i0 5 10
6 10 6 91
7 10 7 9 1
8 i 9 g 10
9 | 9 9 10

matrix of each group, ie., G1-GS5, for SDM. It is found that most of the
misclassification is mainly due to the large distortion between the desirable template

pattern and the image, and also the high deformation flexibility of our model such

Regarding the misclassification cases, Table 5.11 lists out the confusion
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that some undesirable template patterns may deform into an image easily without any
severe penalty introduced. One of the cases is shown in Figure 5.13 in which an
image ¥ is misclassified as the class 7. It is mainly due to the fact that the top
horizontal stroke of the template ¥ is much longer than the corresponding part in the
image and that cannot compensate the penalty introduced by the top vertical stroke in

the template &5 which has been overlapped with other snaxel edges eventually. It is

reflected by the values of clustering error E

clusiering

and the external energy E,, shown

in Table 5.12 that they are much higher in “¥ -w” matching than in “&-d”
matching. Although in the proposed model, this horizontal stroke can be shortened
without any penalty as long as it can maintain its evenness, it depends on the actual
case. If snaxels inside find some other pixel edges which are much closer, they will
be attracted towards them. Like in this case, a left-most vertical stroke in the image is
found to be much closer and as a result this horizontal stroke is lengthened rather than

shortened.

Another misclassification example is shown in Figure 5.14 in which an image
£l is misclassified as the class A . In this case, the lower right stroke of the template
A consists of two segments (right vertical and bottom horizontal) since a high
curvature point exists at the corner. As in SDM, each segment 1s allowed to lengthen
or shorten itself as long as it can maintain the evenness of its internal snaxels, this

bottom horizontal segment can align with the bottom stroke of the image B easily

by lengthening itself without much penalty introduced in E,  (see Table 5.13). Even

143

in this case, its internal energy E;, is smaller than that of ** B - B ” matching as the

template B may need to cater for other image distortions. The misclassification is
mainly because the deformation flexibility of the SDM is so great that an undesirable
template can be deformed towards an image easily without a large penalty
encountered in the finer stage of matching. Although the smoothing scheme is
introduced to incorporate some global deformation ability to the model, it applies in
coarse-to-fine manner that local deformation should be resulted finally. This kind of
misclassification is considered uneasy to be tackled because local deformation should

be allowed for detail matching.
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e

Figure 5.13 These two rows are corresponding to the deformation of two template
patterns, &9 and W respectively when feeding an image w7 .

Table 5.12 Energy values after deformation in Figure 5.13

E int (E preudo + Eirura) E ext b3 clustering
® - &y matching 5.55 9.40 19.10 31
¥ - ¥ matching 493 22.33 30.97 49
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Figure 5.14 Deformation when feeding an image B to template patterns A and B .

Table 5.13 Energy values after deformation in Figure 5.14

Er'm (E pseuds + Einrm) E ext b g E clustering
B - A matching 3.86 14.06 20.80 27
B - B matching 5.85 16.13 26.38 56
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5.5.2 Recognition as Post-processing of Statistical Based Systems

Figure 5.15 shows the recognition rate obtained by the SDM and RSM when both are

treated as a post-processor of statistical based recognizers. All data points shown here

were recorded as an average of five readings obtained from the five groups V1-V5,

Details of the recognition rate and the confusion matrices of groups V1-V5 are shown

in Table 5.14 and 5.15 respectively. It is observed that the proposed model

outperforms the RSM by attaining a 96.0 % accuracy for the first choice. Since the

candidates produced by a statistical based system do not ensure to have high

sumilarity in structure, the SDM can easily get them differentiated and so a high

recognition rate compared with that of the previous section is resulted. This is also

true for RSM.
100% " $
95% 1 ¢ 98.20% 99.00%
96.00%
3 90% -
L) 1=/
% 85% - 90.00%
e 2,
:-E BO% - 84.60%
]
e 75% 9
o
14 %, -
o 70% 73.20%
£ 65% -
>
< 60% -
55%
50%
1 2 3

First n Choices ——SDM - RSM

Figure 5.15 The performance comparison of the SDM and RSM : post-processing of

statistical based systems
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Table 5.14 Details on the recognition rate of the SDM and RSM : post-processing
of statistical based systems

Group First choice First 2 choices First 3 choices

SDM RSM SDM RSM SDM RSM
Vi 95 % 72 % 98 % 84 % 99 % 89 %
V2 95 % 74 % 98 % 383 % 99 % 89 %
V3 99 % 71 % 99 % 86 % 100 % 91 %
V4 95 % 72 % 99 % 83 % 99 % 88 %
V5 %6 % 77 % 97 % 87 % 98 % 93 %

Average | 96.00% | 73.20% | 98.20% | 84.60 % | 99.00 % 90.00 %

Table 5. l.S Confusion matrices of groups V1-V5 for SDM (For each group shown in -
Table 5.1, character categories are numbered from left to right and top to

bottom)

input V1 Recognition Result laput V12 Recognition Result input V3 Recognition Result
imagel0 | 2 3 4 5 6 7 8 9| (magef0 1 2 3 4 5§ 6 7 8 9| |imagej0 1 2 3 4 5 6 7 8 9

0 |10 0 |8 2 o |91

1 10 1 9 1 1 10

2 10 2 9 1 2 [0

3 0 3 10 3 10

4 10 4 16 4 10

5 10 5 10 5 i0

& 1o 6 10 6 10

7 |1 3 & 7 1 9 7 10

8 9 1 3 10 8 10

9 10 9 10 9 10
input V4 Recogniticn Result lnput V5 Recognition Result
imagel0 | 2 3 4 5 6 7 8 9| [lmage]0 | 2 3 4 5 6 7 8 9

0|9 1 0 [10

I 10 1 10

2 10 2 19

3 10 3 10

4 10 4 10

5 10 5 10

6 i0 6 10

7 10 7 8 2

8 1 31 3 10

9 2 9 L 9
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5.5.3 Stand-alone Recognition

An additional set of experiment is also conducted to investigate the performance of
SDM and RSM by treating them as stand-alone recognizers. A l-out-of-50 stand-
alone classification by utilizing all 50 character categories in Table 5.1 is carried out.
The overall performance is plotted in Figure 5.16 and it is observed that SDM has

achieved a 87.80% accuracy for the first choice and outperforms the RSM again.

Although RSM can model almost any 2D image pattern, nearly all structural
information inside the pattern has been ignored. Consequently, deformation can only
be made based on the spatial relationship between primitives rather than on the their
structure. Comparatively, the deformation flexibility of SDM is much higher than that
of the RSM since the deformation of SDM is made according to the image structure,
and that in turn makes it more able to cope with the complex distortion in the image
during matching. It is reflected by the experimental results reported in these three

sections that the SDM has attained a superior performance compared with RSM.

100% —
90% - .—//’:;0% 96.60%
o 80% 87.80%
[+
T o70%-
Q
% 60% - £9.60%
gn . 61.40%
. g 50 /o )
5 40% - 48.80%
g
5 30% 1
>
L4 20%
10%
0%
1 2 3
First n Choices ——SDM —&—RSM

Figure 5.16 The performance comparison of the SDM and RSM : stand-alone
recognition
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5.6 Large Scale Experiment

A large scale experiment which tries to justify the practical use of the proposed
model has been conducted. 200 Chinese character categories (including 50 in Table
5.1) from the same database have been extracted and there are altogether 4000 image
samples for verification. These characters are grouped into four tables. Like the first
table as shown in Table 5.1, the other three (summarized in Appendix B) are also
divided 1into five structural groups (G1-G5) and five statistical groups (V1-V5).
Inside each structural group, characters are specially selected from the database with
high similarity in structure (say, with same radical) and are simulated as the
candidates from structural based systems while the characters inside each statistical

group are simulated as the candidates from statistical based systems.

In order to compare with a statistical recognizer, the model proposed by Li
and Yu [34] has also been implemented and it is denoted by “STAT” in the
following. As a result, the performance of three approaches, namely, SDM, RSM and
STAT can be compared and are summarized in Table 5.16. Among these 4000
samples, half of them are testing samples and another half is training samples. The
performance of these three approaches when they are used to verify the candidates
from testing samples and from training samples are recorded. The result of the former
one is plotted in Figure 5.17 in which the SDM outperforms the other two approaches
in recognizing unknown images. However, the performance of the SDM in
recognizing training samples is not as good as that of the STAT. It is because the
calculation of Gaussian density distribution in each class by STAT is much more
accurate than that by SDM in which the mean cannot be accurately calculated but is
implicitly represented- by the position of the template. Finally, the .average
performance of three approaches in recognizing both testing and training samples is
plotted in Figure 5.18. Although it is observed that the performance of the proposed
model is comparable with that of STAT and much higher than that of RSM, it can
merely be proposed as a post-processor of other recognizers due to its great

computational cost.



Chapter 5 Experimental Results

P.92

Table 5.16  Details on the recognition rate of STAT, SDM and RSM for a large
scale Chinese character recognition

Post-processor of Post-processor of Overall
structural based systems statistical based systems Average
(average of G1-G5) {average of V1-V5)
First choice First choice
Testing | Training | Average | Testing | Training | Average
samples | samples samples | samples
STAT 808% | 976% | 892% | 884% | 993% | 939% | 91.53 %
SDM 888% | 932% | 91.0% { 933% | 97.1% | 952% | 93.05%
RSM 497 % | 548% | 522% | 625% | 643% | 634% | 57.80 %
100%
PR 88.8%
4
‘E 80%
£ 70% |
3
& 60%
§' 50% 1
Z 0%

30%

Structural Systems

Statistical Systems

Post processor of

OSTAT MSDM HRSM

Figure 517 The performance of STAT, SDM and RSM in verifying testing
samples




Chapter 5 Experimental Results P.93

100%

gg.oo, 91.0%

20%

80%

70%

60%

i

50%

Average Recognition Rate

"

40%

30%
Structural Systems Statistical Systems

Post processor of OSTAT MspDM EIRSM

Figure 5.18 The performance of STAT, SDM and RSM in verifying both the
testing and training samples
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Chapter 6

CONCLUSIONS

6.1 Contributions

In this work, a SDM which explicitly takes structural information into its modelling
process and 1s able to deform in a well-controlled manner through an ability of
global-to-local deformation has been developed. The preliminary versions of SDM
have been published in [35-36]. The main contributions of this work can be

summarized as follows:

Incorporation of Structural Information

It is considered that if deformation can be made according to the pattern structure, the
flexibility of deformation will be increased, making the model more able to cope with
the complex distortion in the image during matching. However, it is observed that
most of the existing DMs do not incorporate structural information into the model,
and can merely deform according to the spatial relationship between primitives rather
than the structure of patterns. To address this issue, a new class of DMs called
structural deformable model (SDM) which explicitly takes the structural information
into accounts and is able to model complex structure has been proposed. It works by
modelling an image as a structured entity which is constructed by a hierarchy of
components, namely, image, objects, snakes, segments and snaxels that are
structurally connected with each others. With proper formulation of an internal
energy functional to maintain its inter-object and intra-object structure, SDM results

to have flexible deformation based on the pattern structure.
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Global-to-tocal Deformation Ability

It is observed that if SDM deforms merely according to its structure, the flexibility of
deformation would be too large that it may start to deviate significantly from its
original shape and search locally once the deformation starts. In order to guide the
model to deform globally at the earlier stage and locally at the latter stage of the
deformation process, a smoothing scheme has been proposed to actively restrict the
movement of model primitives according to their spatial relationship. Some
parameters are used to adjust the relative weighting between the global and the local
deformation on the model such that a coarse-to-fine matching can be achieved. As a
result, the model has not only been given a high flexibility of deformation according

to the structure, but also a capability of global-to-local deformation.

Formulation of Deformable Matching as a Feature Extraction Method

Feature extraction is both an important and difficult process in pattern recognition.
Difficulties do not lie on how features are extracted but what they are as there is no
general method for choosing or designating features. In this work, the SDM has been
newly developed as a feature extraction method which is expected to be able to give a
more separable clustering in feature space. Apart from the resultant value of objective
function which corresponds to the core feature of the dissimilarity between images,
an additional feature being extracted called the clustering error is newly introduced
aiming at providing the information - alignment fitness to the classification. From the
experiments, this additional feature is found to be able to give rises to the model
performance, which further increases the capability of the model to differentiate

between like images.
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6.2 Limitations and Suggestions for Further Research

Multi-resolution Matching Strategy

Almost all applications adopting deformable model based approach suffer from the
same problem - a great computational cost. The SDM also cannot escape from this
and takes about 10 seconds in average for each deformable matching (excluding
preprocessing) in SUN UltraS workstations. In order to speed-up the process, a multi-
resolution matching strategy is suggested for its ability of skipping most of local
minima and deforming to the desired object quickly. Currently in the SDM, the
sampling rates of snaxels and pixels are kept fixed during the course of deformation.
In fact, a speed-up on the deformable matching can be achieved by starting the

sampling rates at small values (coarse stage) and increasing gradually.

Incorporation of Noise Model

SDM has a capability to differentiate highly similar patterns as it treats all pixels or
pixel edges in the image as valuable matching primitives. It is this capability that
makes the SDM sensitive to noise. In order to equip it with both the capability of
differentiation between highly similar patterns and the ability to be insensitive to
noise, a modification to the model can be made by introducing a noise model in the
data match formulation, like the one proposed by Revow er al. [12]. For this kind of
noise model, a value called “noise ratio” can be adjusted to specify the amount of
noise existing in the image. It is in fact a probability imposed on all image pixels or
pixel edges to give each of them the possibility to be a valuable matching primitive or
a noise. The trade-off can be made by tuning this noise ratio. The larger its value, the
more the model is noise insensitive but at the same time, the less it is capable to

differentiate highly similar patterns.
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Writing Styles Extraction

SDM, apart from its ability to do pattern matching, is a good tool in extracting
writing style from human handwritings for its shape varying capability. This kind of
writing style can be used in many ways, especially in enhancing recognition rate by
influencing the way how DM deforms and its template selection process. However,
such writing style 1s quite difficult to define and 15 considered as an interesting topic

worth for further investigation.

Using Both Classification Rankings

As a post-processor of other recognition systems, the classification scheme of the
SDM can be enhanced by considering both the original ranking from other
recognition systems and that resulted from the SDM itself. In this way, the
classification result will not be biased by the SDM. Even, it can give nises to the
confident level of the correctness of the result because the class label should be

agreed by both recognition schemes before it wins.

Investigation on Feature Designation

In the current stage for the SDM, only two features are extracted and employed in
classification; namely, the resultant value of objective function and the clustering
error. As it is possible that there are still many features which can give a more well
separated clustering, a possible direction for further research is to investigate on the
feature designation. Although previously feature designation is stated to be a difficult
task, it only applies to statistical approach but not deformable matching approach. It
is because choosing features to represent the dissimilarity between images
(deformable matching approach) is easier than choosing features to characterize an

image (statistical approach).
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Appendix A

INTEGRATION OF E,,., AND E, ..
FOR INTRA-OBJECT
SHAPE PRESERVATION CRITERION

The integration of E..., and E,... for intra-object shape preservation criterion is
prescntéd here in detail. Whether it is minimizing E..., or E ..., alone, a force will be
induced to bring the model to a low energy state. Let them be F,., and Fen
respectively. For a force, it has both the magnitude and direction. However, even if
the magnitude of Fo., and F... are neglected, it is not certain whether their
directions are the same all the time. It is possible that sometimes they are 180° out of
phase. An example is depicted in Figure A.l in which the edge (P;,P2) is deformed
in a way that two induced forces, Fey.n and F,.n are nearly in opposite direction.
(The original edge and the deformed edge are denoted as (I_’,,_Ijz) and (P,,Pz)
respectively) As it becomes shorter (assuming the average length remains
unchanged), F..., is pointed outwards. As it deviates from the original orientation,
Foriens is pointed inwards. In this way, although both energies are constructed for
preserving intra-object shape, they could not cooperate all the time and sometimes,
their forces are cancelled out against each another. It is another reason for us to

integrate E,,., and E,.,, apart from the requirement of parameters determination.

Considering the energy functional E,,., defined in eq.(3.15), D, is the
averaged inter-snaxel distance in each segment. After each deformation iteration, D,

should be updated to reflect the up-to-date averaged inter-snaxel distance in each
segment. In fact, if D, is fixed during the course of deformation, it is a special case

of maintaining evenness that it actually preserves original edge length. In the
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following, let us first consider that D, is fixed and as a result, integrating E,,., and

Eqriens Will result in a process of preserving original edge length and orientation. As it
is translational invariant, all edges can be modelled as vectors and the problem is then
reduced to the formulation of a single force for keeping the size and direction of each

vector preserved.

After some even
ilerations of
deformation

o
™~ @
-

O  Snaxel P, & Snaxel P,

L]

Figure A.1 The possibility of the cancellation of forces induced by E,,., and E, .,

Consider a case that there is an edge inside a template pattern. The original

positions of its two terminal snaxels are denoted by two vectors, P’ and P}. At t-th
iteration of deformation, their positions are denoted by P/ and P;, and are shown in

Figure A.2. Having modelled by vectors L’ and L' respectively, the preservation of
the original edge length and orientation can be achieved by simply minimizing the

distance d which is given by

d=“E—U

| G-t @

By minimizing the distance d, a force F will be induced following the path of 4 down

to the original vector L°. Nolte that the preservation of original edge length and
orientation is eventually enabled by only one force shown in the figure. Refer back

to the energy functional £, So far, D, is kept fixed during the course of

£\ Peo “uc-TTeng Library
q@' PolyU + Hong Kong
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deformation. In order to have the model preserving the evenness of inter-snaxel
distance, D, shouid be updated at each deformation iteration to reflect the up-to-date
average inter-snaxel distance in 1ts segment. To incorporate this process into the
existing mechanism, it can be implemented by periodically updating the length of L’

like that of D, while keeping its direction unchanged.

2
- v
P/ L'=(P-P) .~
- Modelted as
L 2
P;'. Deformation -Defermation
. ® —
Pe Pr L°=(P,°-P/)
Vectors
Recognization
. Force
L'=( PZI-P "){/.-’1}7 Interpretation L'=( PZ’-P l')___,.—"ii
- t o !
= I ) i
La=( on_ Plo ) La=( on_ Plo )

----------------- #  Deformed veclor
— »  Onginal vector

Figure A.2 Integration of forces, Fouen and Fopiens
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To make it generalized for the whole image patiern, the preservation of both
the evenness of inter-snaxel distance within each segment and edge orientation can be

achieved by minimizing an energy functional £,,,,, which is given by

(A2)

M is the total number of segments,

N, 1s the total number of snaxels inside segment k, and
Tt is the position vector of snaxel i in segment &
O°(T}) denotes the vector in same direction as 0°{r*} which is defined in Section

3.4.2. If its length 1s fixed at a value the same as that of O (T,."), minimizing E,

will result in the preservation of original edge length and orientation. If its length is
kept updating to reflect the up-to-date average inter-snaxel distance in its segment

(i.e., segment k), minimizing £, will result in the preservation of snaxel evenness

and edge orientation. Needless to say, the latter strategy will be adopted by the SDM.
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Appendix B

LARGE SCALE DATABASE

Totally 200 KANJI character categories are extracted from the database “IPTP CD-
ROM?2” {32]. They are grouped into four tables. Table 5.1 is the first one while the
other three are summarized below as Table B.1 — B.3. Similar to Table 5.1, each of
them is divided into five structural groups (G1-G5) and five statistical groups (V1-
V5). Inside each structural group, characters are specially selected from the database

with high similarity in structure, such as the ones with same radical or with similar

patterns. For example, characters with the same radical “~", “{» and "+ are
grouped respectively in Table B.1 G2, Table B.2 Gl and Table B.3 G2. They are
simulated as the candidates from structural based systems while the characters inside

each statistical group are simulated as the candidates from statistical based systems.

Table B.1 The second table of characters inside the large database

HEEE e
e e TR
lFRg B eHmTE
e E I LR i ]
i 1 T R R v [ 17
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Table B.2 The third table of characters inside the large database

Vi V2 V3 V4 V5
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Table B.3 The fourth table of characters inside the large database
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