


 

The Hong Kong Polytechnic University 

Department of Building Services Engineering 

 

 

 

Development of An Intelligent Building Integration 

Platform Based On Web Services Middleware 

Technologies 

 
 
 
 

Xu Zhengyuan 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

 

December 2008 



 i 

CERTIFICATE OF ORIGINALITY 

 

I hereby declare that this thesis is my own work and that, to the best of 

my knowledge and belief, it reproduces no material previously published 

or written, nor material that has been accepted for the award of any other 

degree or diploma, except where due acknowledgement has been made in 

the text. 

 

__________________________________ (Signed) 

_______Xu Zhengyuan_______________ (Name of student) 

Department of Building Services Engineering 

The Hong Kong Polytechnic University 

Hong Kong, P. R. China 

December 2008 



 ii 

ABSTRACT 

 

Abstract of thesis entitled: Development of An Intelligent Building 

Integration Platform Based on Web Services Middleware Technologies 

Submitted by: Xu Zhengyuan 

For the degree of: Doctor of Philosophy 

at The Hong Kong Polytechnic University in Dec., 2008. 

The intelligent building integration platform presented in this thesis 

(named as IBmanager) employs standard communication protocol and 

distributed computing technologies, including object-oriented 

programming, data-subscription & event-driven technology, Web 

Services, XML driver technology, and value-added services plug-ins 

technology，to realize data and services integration and interoperation 

among distributed BASs on the Intranet/Internet.  

The designed integration platform - IBmanager acts as an autonomous, 

self-contained unified integration unit (UIU). The IBmanager can work 

standalone as a full-function BMS, or just as a part of large-scale BMS 

applications. The distributed IBmanager installations can be deployed at 

chain-type architecture.  



 iii 

The IBmanager is designed consisting of a batch of function objects, 

allowing the systems to have good extensibility. The Data Point Objects 

are the core components of the overall platform, they drive the high-level 

functions running. Data-subscription & event-driven method is greatly 

used for the communication between function objects. Only the 

subscribed objects can trigger the events specified in the subscription 

process, and only the subscribers will handle the events they subscribe.  

The bi-directional communication method is designed based on Web 

Service, this makes the transportation of COV (change of value) and A/E 

(alarm/event) messages based on Web Service feasible. The Web Service 

technology is used for the communication between the IBmanager and 

the driver, the communication between the IBmanager and its client, and 

access process to the remote database. Hence Web Service 

communication becomes the sole communication interface among 

IBmanager installations, remote database, drivers and their clients. The 

IBmanager can integrate other Web Services, meanwhile provides Web 

Services interfaces which can be invoked by other IBmanager 

installations, or other client applications. 

Various sub-systems/devices can be integrated into the IBmanager 

with the designed XML Driver technology. Based on this technology, 

data from different protocols can be converted to common XML-encoded 



 iv 

messages. The sub-systems/devices can be anywhere on the Internet since 

the XML-encoded message can be transported by Internet standard 

protocol - HTTP. This expands the distributed driver communication 

beyond the LAN. 

The remote heterogeneous databases can be integrated by Web 

Service. Every remote database is wrapped as a Web Services provider. 

Based on the design of Database Agent Object, a unified database access 

interface for the remote heterogeneous databases is presented. 

With the help of the powerful communication capability of Web 

Services on heterogeneous platform and on the Internet, the middleware 

technology becomes a seamless integration platform on the Internet. With 

the support of the XML Driver and the Web Services interfaces presented, 

the middleware platform might be used to integrate other services, for 

example, weather report service. HVAC systems can optimize their 

control according to the data obtained from Web Services of the 

(government) Weather Bureau. Maintenance application can read 

specification data and manual of devices from manufacturers. Meanwhile 

the IBmanager middleware platform might be integrated by other 

applications on the Internet. For example, FDD (Fault Diagnosis & Detection) 

applications can read real time data and historical data from the 

IBmanager. By the same way, ERP (Enterprise Resource Planning) 



 v 

application can obtain the energy consumption of the entire enterprise 

from the IBmanager. It ensures integration and interoperability among 

diverse facility systems/devices by connecting them to each other, to 

enterprise systems, and to the Internet in real time mode. This allows 

personnel using a standard web browser to measure, manage, and control 

a wide variety of energy, building, and security applications from 

anywhere in the world. 

The system performance has been discussed and measured primarily. 

The communication latency resulted from drivers and client 

communication has been discussed, the roundtrip time of the IBmanager 

and the client has been measured. 

As a common integration platform, users can develop their own 

applications based on the IBmanager. A practical HVAC optimization 

application is on-going on a big-scale project - the International 

Commercial Center (ICC) project. The IBmanager provides integration 

and value-added services platform support for this project. 



 vi 

ACKNOWLEDGEMENTS 

 

I would like to express my sincerest appreciation to Prof. Shengwei Wang, 

my supervisor, Prof. Jiannong Cao and Dr. Mingli Chen, my 

co-supervisors for their invaluable guidance, patience and continuous 

support during the course of this research. 

My special thanks go to Sun Hung Kai Properties Limited for their 

providing funding to support a practical project - International 

Commercial Center (ICC) to apply the research output. My special thanks 

also go to all other participants of the ICC project, from Takasago 

Thermal Engineering (H.K.) Co., Ltd, J. Roger Preston Limited, Johnson 

Controls Hong Kong Limited, for the benefits received from the 

exchanges and communications with them when applying the research 

output on the ICC site.  

I would like to thank Mr. Siu Lo for his cooperation on supporting 

programming in the early stage of developing the integration platform. I 

also want to thank the colleagues in the department for their sincere care 

and help. The long road to accomplish this research is memorable 

because of their company. 

Finally, I would like to express my deepest appreciation to my family 



 vii 

members: my father (although he left me two decades ago, his love and 

education has always been benefiting me in all my life), my mother, my 

honey daughter, especially my wife Yanping Huang for their 

unconditional trust and support in my life. This thesis is to them. 



 viii 

LIST OF FIGURES 
Figure 1.1 Concept of broader BAS integration ....................................................................... 3 
Figure 1.2 Overall architecture of Intelligent Building platform to be developed .................... 9 
Figure 1.3 BAS protocol evolution ......................................................................................... 14 
Figure 1.4 Evolution of Information Technology.................................................................... 16 
Figure 1.5 Middleware layer in context .................................................................................. 18 
Figure 1.6 Generic Web Service architecture .......................................................................... 27 
Figure 2.1 Architecture compare of integration based on traditional driver and OPC ............ 46 
Figure 2.2 BAS integration via OPC ....................................................................................... 46 
Figure 2.3 Latest developments of OPC technologies ............................................................ 49 
Figure 2.4 Integration of BAS systems using Web Services ................................................... 56 
Figure 3.1 Architecture of Unified Integration Unit (IBmanager) .......................................... 60 
Figure 3.2 Two typical application cases of the IBmanager ................................................... 61 
Figure 3.3 Three-tier architecture............................................................................................ 62 
Figure 3.4 Network topology of BAS integration ................................................................... 63 
Figure 3.5 Vertical chain-type deployments of IBmanager Installations ................................ 65 
Figure 3.6 Horizontal chain-type deployments of the IBmanager installations ...................... 67 
Figure 3.7 Communication method of Web Service ............................................................... 70 
Figure 3.8 Application case of chain-type IBmanager installation ......................................... 71 
Figure 3.9 Transport notifications by “Peer to Peer” method ................................................. 73 
Figure 3.10 Transport notifications by Web Services “piggybacking” technology ................. 74 
Figure 3.11 Asynchronous Web Service communication ........................................................ 77 
Figure 3.12 Grouping update information of data points by interval ...................................... 79 
Figure 3.13 Aggregating update information within a duration .............................................. 80 
Figure 3.14 Architecture for accessing database by Web Service wrapper ............................. 82 
Figure 3.15 SOAP message compressed on AfterSerialize stage (server side) ....................... 84 
Figure 4.1 Component architecture of the IBmanager ............................................................ 85 
Figure 4.2 Object model of the IBmanager ............................................................................. 88 
Figure 4.3 Driver Object model .............................................................................................. 89 
Figure 4.4 Convert data of various protocols to common Data Point Objects ........................ 92 
Figure 4.5 Common Data Point Object model ........................................................................ 93 
Figure 4.6 Architectures of traditional and designed integration methods .............................. 98 
Figure 4.7 Value update of Virtual Data Point Object ........................................................... 101 
Figure 4.8 Schedule Object model ........................................................................................ 103 
Figure 4.9 Timing model of Schedule Object ....................................................................... 103 
Figure 4.10 Alarm/Event Object model ................................................................................ 104 
Figure 4.11 Interoperation between sub-systems within the IBmanager .............................. 106 
Figure 4.12 Interoperation across IBmanager installations ................................................... 106 
Figure 4.13 Traditional polling method for interoperation trigger term ................................ 107 
Figure 4.14 Interoperation Object Model .............................................................................. 108 
Figure 4.15 Event-driven method for interoperation trigger ................................................. 109 
Figure 4.16 Database Agent Object model............................................................................ 110 
Figure 4.17 Caching remote historical data .......................................................................... 112 



 ix 

Figure 4.18 Principle of caching and querying data .............................................................. 114 
Figure 4.19 Architecture of Database Agent ......................................................................... 116 
Figure 4.20 Session Object model ........................................................................................ 119 
Figure 5.1 XML Client Driver model – command from IBmanager to devices ................... 125 
Figure 5.2 XML Client Driver model – “Peer to Peer” technology ...................................... 126 
Figure 5.3 XML Client Driver model – “piggybacking” technology .................................... 127 
Figure 5.4 XML Server Driver model - command from IBmanager to devices ................... 128 
Figure 5.5 XML Server Driver model – send notification to IBmanager ............................. 129 
Figure 5.6 Procedure of transforming XML message to HTML web page ........................... 135 
Figure 5.7 Command based on priority mechanism.............................................................. 142 
Figure 5.8 Anti-fluctuation mechanism ................................................................................. 143 
Figure 5.9 Redundant IBmanager installations ..................................................................... 145 
Figure 5.10 Software arbitration ........................................................................................... 146 
Figure 5.11 Invocation of third-party DLLs .......................................................................... 147 
Figure 6.1 Connected products from various manufacturers in PolyU IB Lab ..................... 149 
Figure 6.2 One corner of the IB Lab ..................................................................................... 149 
Figure 6.3 Architecture of Honeywell BAS in the PolyU IB Lab ......................................... 150 
Figure 6.5 BACnet control system from (Honeywell) Alerton ............................................. 152 
Figure 6.6 IBON Test Kit Architecture ................................................................................. 153 
Figure 6.7 Architecture of integration by traditional driver technology ............................... 155 
Figure 6.8 Roundtrip time measurement ............................................................................... 158 
Figure 6.9 Time measurement method of one-way transportation ........................................ 159 
Figure 7.1 Latency in the driver level ................................................................................... 161 
Figure 7.2 Sub-systems integration using IBmanager in PolyU IB Lab ............................... 163 
Figure 7.3 Illustration of roundtrip time measurement experiment setup ............................. 164 
Figure 7.4 System load after running IBmanager ................................................................. 167 
Figure 8.1 A view of the ICC building .................................................................................. 169 
Figure 8.2 Implementation architecture of ICC project ........................................................ 172 
Figure 8.3 Two research environments in ICC project for IBmanager ................................. 174 
Figure 8.4 Simulation environment of IBmanager in ICC project ........................................ 175 
Figure 8.5 Adding sub-systems ............................................................................................. 176 
Figure 8.6 Browsing and adding data points ......................................................................... 177 
Figure 8.7 Accessing data points of various sub-systems within one display ....................... 178 
Figure 8.8 Interoperation between various sub-systems ....................................................... 179 
Figure 8.9 Common historical data structure of data points of various sub-systems ............ 179 
Figure 8.10 Definition of alarm ............................................................................................ 180 



 x 

LIST OF TABLES 
Table-1 Comparison of different middleware technologies .................................................... 26 
Table-2 Comparison of the characteristics of these two methods ........................................... 76 
Table-3 Example of Database Mapping Table ...................................................................... 117 
Table-4 Several time measurement methods in Windows platform ...................................... 156 
Table-5 Comparison of roundtrip time of the IBmanager over the Internet .......................... 166 

 



 xi 

TABLE OF CONTENTS 
 
CERTIFICATE OF ORIGINALITY .................................................................................................. i 
ABSTRACT ......................................................................................................................................ii 
ACKNOWLEDGEMENTS ............................................................................................................. vi 
LIST OF FIGURES ...................................................................................................................... viii 
LIST OF TABLES ............................................................................................................................ x 
CHAPTER 1 INTRODUCTION ...................................................................................................... 1 

1.1 Motivation ........................................................................................................................... 1 
1.1.1 Need of Integration of Various Communication Protocols ...................................... 4 
1.1.2 Need of Accommodating Value-added Services ...................................................... 5 
1.1.3 Need of Integration with Enterprise Applications .................................................... 6 
1.1.4 Necessity of Integration Platforms Development .................................................... 7 

1.2 Literature Review ................................................................................................................ 9 
1.2.1 Definition and Classification of System Integration .............................................. 10 
1.2.2 Evolution of IB Communication Protocols ............................................................ 12 
1.2.3 Evolution of IT and Its Influence on IB ................................................................. 15 
1.2.4 Traditional Middleware Technologies and Its Applications in IB Integration........ 17 
1.2.5 Web Services and Its Applications on IB Integration ............................................. 25 
1.2.6 Offline and Online Value-added Service ................................................................ 31 
1.2.7 Conclusive Remarks............................................................................................... 32 

1.3 Aim and Objectives ........................................................................................................... 35 
1.4 Organization of the Thesis ................................................................................................ 37 

CHAPTER 2 SYSTEM DESCRIPTION AND METHODOLOGY .............................................. 41 
2.1 Difficulties of System Integration ..................................................................................... 41 

2.1.1 Incompatible Field Bus Protocols .......................................................................... 41 
2.1.2 Disparate Data Models ........................................................................................... 42 
2.1.3 Various Distributed Technologies........................................................................... 42 
2.1.4 Heterogeneous Database Management System ...................................................... 43 

2.2 Integration Based on OPC Technologies ........................................................................... 45 
2.2.1 Investigation on OPC ............................................................................................. 45 
2.2.2 Disadvantages of OPC ........................................................................................... 47 
2.2.3 Latest Development of OPC Technologies ............................................................ 49 

2.3 Integration Based on Web Service Technologies .............................................................. 50 
2.3.1 The Core Technologies of Web Services ................................................................ 50 
2.3.2 Integration Based on of Web Services Technologies ............................................. 55 

2.4 Conclusive Remarks ......................................................................................................... 57 
CHAPTER 3 OVERALL SYSTEM MODEL ................................................................................ 58 

3.1 Overall System Design ...................................................................................................... 58 
3.1.1 Principles of System Design .................................................................................. 58 
3.1.2 Design of Integration Platform ............................................................................... 59 
3.1.3 Three-Tier Model ................................................................................................... 61 
3.1.4 Network Topology.................................................................................................. 63 



 xii 

3.2 Chain-type Deployment of IBmanager Installations ......................................................... 64 
3.2.1 Vertical Chain-type Deployment ............................................................................ 64 
3.2.2 Horizontal Chain-type Deployment ....................................................................... 66 

3.3 Bi-Directional Communication Model Based on Web Service ......................................... 67 
3.3.1 XML/HTTP Request/Response Model .................................................................. 67 
3.3.2 The Restriction of Web Service .............................................................................. 69 
3.3.3 Reverse Message Transportation Methods ............................................................. 71 
3.3.4 Reliability of the Reverse Communications ........................................................... 76 
3.3.5 Synchronous/Asynchronous Communication ........................................................ 76 
3.3.6 Point Aggregation/Grouping .................................................................................. 78 

3.4 Heterogeneous Databases Integration by Web Service ..................................................... 80 
3.4.1 Remote Heterogeneous Databases ......................................................................... 80 
3.4.2 Integration of Remote Database by Web Service ................................................... 81 
3.4.3 Data Compress for Web Service Transportation .................................................... 82 

CHAPTER 4 OBJECT MODEL OF THE IBMANAGER ............................................................. 85 
4.1 Overview of System Architecture ..................................................................................... 85 

4.1.1 Software Architecture ............................................................................................. 85 
4.1.2 Object Model .......................................................................................................... 87 

4.2 Driver Object Model ......................................................................................................... 88 
4.2.1 Driver Object Model .............................................................................................. 88 
4.2.2 Elements of Driver Object ..................................................................................... 89 

4.3 Common Data Point Object Model ................................................................................... 91 
4.3.1 Data Point Object Model ........................................................................................ 91 
4.3.2 Elements of Data Point Object ............................................................................... 93 
4.3.3 N+m Architecture ................................................................................................... 97 
4.3.4 Event-driven Model among Components .............................................................. 98 
4.3.5 XML Hierarchy and Object Encode ....................................................................... 99 
4.3.6 Virtual Point Object/Data Fusion ......................................................................... 100 

4.4 Schedule Object Model ................................................................................................... 102 
4.5 Alarm/Event Object ......................................................................................................... 104 
4.6 Interoperation Object ...................................................................................................... 105 

4.6.1 Two Different Interoperation Environments ........................................................ 105 
4.6.2 Interoperation Object Model ................................................................................ 107 

4.7 Database Agent Object .................................................................................................... 109 
4.7.1 Database Agent Object Model.............................................................................. 110 
4.7.2 Local Central Database ........................................................................................ 111 
4.7.3 Local Cache Database .......................................................................................... 111 
4.7.4 The Common Database Access Interface ............................................................. 115 

4.8 Session Object ................................................................................................................. 119 
4.8.1 Session Object Model .......................................................................................... 119 
4.8.2 Communication between Session Object and Client ........................................... 120 

CHAPTER 5 IMPLEMENTATION ISSUES OF IBMANAGER PLATFORM .......................... 123 
5.1 Distributed XML Driver Model ...................................................................................... 123 

5.1.1 Two Kinds of XML Driver Models ...................................................................... 124 



 xiii 

5.1.2 Reading Values & Caching Values in Advance .................................................... 130 
5.2 Human Machine Interface (HMI) Based on Web ............................................................ 131 

5.2.1 Benefits of Web Human Machine Interface ......................................................... 131 
5.2.2 Web HMI Based on XML Message ..................................................................... 132 
5.2.3 Review of Web Client Technologies Concerned .................................................. 135 

5.3 Concurrent Operation ...................................................................................................... 142 
5.3.1 Concurrent Command .......................................................................................... 142 
5.3.2 Anti-fluctuation Operation ................................................................................... 143 

5.4 Redundancy and Fault-tolerant ....................................................................................... 144 
5.5 Value-added Services DLL.............................................................................................. 146 

CHAPTER 6 TEST FACILITIES AND METHODS ................................................................... 148 
6.1 The Intelligent Building Lab ........................................................................................... 148 

6.1.1 The Overall Architecture of the IB Lab ................................................................ 148 
6.1.2 Honeywell Products ............................................................................................. 149 
6.1.3 Johnson Control’s Products .................................................................................. 150 
6.1.4 BACnet Products .................................................................................................. 152 
6.1.5 LonWorks Products .............................................................................................. 153 

6.2 Integration/Interoperation Test Environment .................................................................. 154 
6.2.1 Integration at Automation/Field Level ................................................................. 154 
6.2.2 Integration at Management Level ........................................................................ 155 

6.3 Communication Performance Test Method ..................................................................... 156 
6.3.1 Time Measurement Method ................................................................................. 156 
6.3.2 Measurement Method of Communication ............................................................ 157 
6.3.3 Measurement Method of Application Load.......................................................... 159 

CHAPTER 7 PERFORMANCE ANALYSIS AND EVALUATION OF IBMANAGER ............ 160 
7.1 Analysis of Communication Latency .............................................................................. 160 

7.1.1 Latency in Driver Level ....................................................................................... 160 
7.1.2 Latency between IBmanager and Its Client ......................................................... 162 
7.1.3 Latency Caused by Web Update........................................................................... 162 

7.2 Integration/Interoperation Test of IBmanager Platform .................................................. 162 
7.3 Roundtrip Time Test of IBmanager Platform .................................................................. 164 
7.4 Load Test of the IBmanager Platform ............................................................................. 166 

CHAPTER 8 PRACTICAL USE OF IBMANAGER PLATFORM IN A LARGE BUILDING .. 168 
8.1 Introduction of ICC Project ............................................................................................. 168 
8.2 Current Status and Difficulties of Optimization Application .......................................... 170 
8.3 Architecture of the BA System Used in ICC ................................................................... 171 
8.4 Simulation and Test in Lab.............................................................................................. 173 
8.5 Functions Realized in ICC Project .................................................................................. 176 

CHAPTER 9 CONCLUSIONS AND DISCUSSIONS ................................................................ 181 
9.1 Conclusions ..................................................................................................................... 181 
9.2 Discussions and Future Work .......................................................................................... 185 

9.2.1 Load-balancing ..................................................................................................... 186 
9.2.2 Mobile application ............................................................................................... 186 
9.2.2 Security of Web Service ....................................................................................... 187 



 xiv 

9.2.3 Public Services ..................................................................................................... 187 
References ..................................................................................................................................... 189 
Appendix A - Flow Chart of IBmanager Components .................................................................. 196 
Appendix B - Standard of the Common Interface for DLLs ......................................................... 200 
Appendix C – Installation and Operation Manual of IBmanager ................................................. 203 



 1 

CHAPTER 1 INTRODUCTION 

1.1 Motivation  

Nowadays there is a huge installation base of building automation system (BAS). 

These installations are compliant with various technologies, open or proprietary. They 

can be at the very beginning of their life cycles, the very end, or anywhere in between. 

Every installation represents a significant investment that the customer has already 

made. Unfortunately, some installations are getting obsolete as they have dedicated 

front-end interfaces and little integration to other systems. It is important to recognize 

that this investment must be protected, while at the same time allowing the customer 

to take advantage of today's open and standard technologies. In addition, there are 

many customers who have multiple systems, protocols and data format that they have 

to maintain. Although these multiple systems are declared open systems, they are 

different systems. In today's competitive world, this presents an exceedingly heavy 

burden for the owner, to train operating personnel and maintain their knowledge 

levels on multiple systems [3].  

Ethernet/Internet connectivity, Web browser support, remote management 

services, connecting with back-end business applications – customers are demanding 

more advanced capabilities from today’s building intelligence. The ever-lasting 

developed IT industry is providing technology source for intelligent building (IB) 

industry. In particular, the broad acceptance and ever lowering cost of 



 2 

Ethernet/Internet/XML (eXtensible Markup Language)/Web Service communications 

is finding its way into IB industry [1].  

Operators/managers don’t satisfy with the basic functions of building automation 

(BA) system any more, they continually present some new requirements for 

high-level value-added services. These value-added services include high-level 

energy-saving control strategy, FDD (Fault Diagnosis & Detection), decision analysis, 

data-mining and others. These services can make the facilities and buildings work 

with better performance and more automatic functions.  

Nowadays, BAS is gradually recognized as a part of enterprise application. 

Enterprise systems are making a huge impact on corporations and other types of 

non-profit organizations. These enterprise systems include business financial systems, 

CRM (customer relationship management), human resources, and supply chain 

management. Some companies as well as consulting groups are providing integration 

services to make organizations very efficient. Buildings and facilities are now a 

significant area for organizations to include in such enterprise systems, corporations 

now appreciate that the effectiveness of their facilities can make a huge difference to 

their financial reports [2].  

In conclusion, broader integration of BASs as Figure 1.1 is necessary to be 

developed. The solution should allow operators/managers to configure and manage 

equipments remotely and connect different systems and applications together via the 

Internet, thereby lowering support costs and acquiring broader information. It should 

integrate with enterprise applications and accommodate value-added services to 



 3 

enable more complicated service offerings, such as predictive maintenance, 

performance analysis, and comprehensive reporting. For achieving this, there exist 

two challenges to be overcome. One is the incompatibilities and limited opportunities 

for the integration and interoperation of BASs from products of different vendors. 

What is needed is not only integrating the heterogeneous information together, but 

also making these diverse products communicate and interoperate together acting as a 

united system. The other is how to integrate BASs with enterprise applications and 

provide value-added services via the Internet. The integrated BAS will not only 

provide real-time information, but historical data for some complicated analysis and 

calculation of enterprise applications or value-added services. Meanwhile, the 

high-level applications (for example, a portal application) can supervise all the 

integrated BASs. These two challenges have frustrated real estate developers, building 

owners/operators, consultants and system integrators for many years.  

Building
Automation

Access 
Control

Access
Controller

Video 
Streamers

Camera

Fire Safety

Fire
Controller

Lighting Control 
& Power Monitor

Power 
Meter

TCP/IP Internet/Intranet

Controller

Gateway

DCCTV

Lighting 
Controllers

Energy 
Management

Integration Platform

Financial/Business 
Management

Facilities/Equipments 
Management

Maintenance / 
Operations

Building
Automation

Access 
Control

Access
Controller

Video 
Streamers

Camera

Fire Safety

Fire
Controller

Lighting Control 
& Power Monitor

Power 
Meter

TCP/IP Internet/Intranet

Controller

Gateway

DCCTV

Lighting 
Controllers

Energy 
Management

Integration Platform

Financial/Business 
Management

Facilities/Equipments 
Management

Maintenance / 
Operations

 

Figure 1.1 Concept of broader BAS integration 



 4 

1.1.1 Need of Integration of Various Communication Protocols 

In a typical BAS setup, different communication protocols are employed, even 

the products from the same syndicate. The products compliant with these different 

communication protocols cannot communicate together directly. A popular way to 

integrate the products compliant with various protocols is to employ hardware 

gateways [4]. The hardware gateway plays the role to convert a protocol to another 

protocol by mapping data points from one protocol to another protocol [5]. However, 

the development of the hardware gateway requires significant efforts and the 

developer needs to understand the technical details of the two protocols for 

conversion. Considering so many protocols existing currently (mainly proprietary 

protocols) and protocols-specific characteristic of gateway, the development of 

gateways is very costly. A lot of configuration efforts in the field are needed for the 

gateway to map the data points correctly when field engineers commission the system. 

This makes gateways expensive and complex to use [6]. The gateway also slows 

down the response due to the time required for the conversion. Furthermore, one can 

hardly program and configure a controller through a gateway [22]. Another approach 

(maybe the best approach) is to try to employ open and standard communication 

protocols to uniform the communication process from bottom layer to top layer. 

Several open solutions have become available in recent decades. One such solution is 

provided by BACnet: The Building Automation and Controls Network [7]. BACnet is 

a standard for data communication in building automation and controls systems that 

has been developed by the American Society of Heating, Refrigerating and 

Air-Conditioning Engineers (ASHRAE). In 1995, BACnet was also adopted by ANSI 

(American National Standards Institute), and is now an American National Standard 

(ANSI/ASHRAE 135-1995) and ISO Standard (ISO 16484-5) [8]. Another 



 5 

completely different solution is called LonWorks [9]. Various vendors have used 

LonWorks successfully in recent years to provide solutions for controls systems 

applications, in some cases involving multiple vendors [10]. In the recent years, great 

progress has been made on open standard communication protocols of BAS. BACnet 

has been developed as a full-fledged international standard, which can be used from 

bottom layer (field layer) to top layer (management layer) for intelligent building 

application. In the period of this study, ASHRAE has issued BACnet Web Services 

Interface Specification for Public Review [11]. The LonWorks camp has 

accommodated part of their products with Web Services interface as well [12].  

However, proprietary protocols still dominate the current BAS market even today 

mainly due to business reasons according to the Frost and Sullivan Report A143-19, 

namely, "North American Building Automation Protocol Analysis" [13]. As a result, 

the endeavor to solve the integration and interoperation problem from bottom layer to 

top layer using a common protocol seems to have a long way to go. So the integration 

and interoperation of various communication protocols in the management layer is a 

beneficial and the last resort when the integration/interoperation on automation/field 

layer is not achieved. By this way, the information from various communication 

protocols is converted into a kind of common information model. 

1.1.2 Need of Accommodating Value-added Services 

Nowadays, operators/managers are gradually not satisfied with the basic building 

automation functions, they show great interest to present new ideas to make building 

“smarter”. They want that their own value-added services can be provided or 

developed based on the basic BAS. The services may be various, for example, the 



 6 

acquiring of real-time weather broadcast information, the global pre-optimization of 

the total HVAC (Heating, Ventilation and Air Conditioning) system in a building, the 

control strategy of HVAC system. The latest services may be the data mining and 

decision-analysis [14], which can extract valuable data to provide decision support 

from a great volume of seemingly-useless data.  

In order to fulfill these requirements, BAS must present an open and standard 

data exchange method for these value-added services. BAS acts as a data source and 

executor/distributor of output of the value-added services. This requires that they both 

must have a common data model to share data, and be designed to have good 

mechanism to cooperate together. Thus, when the optimization service reads and 

analyzes the data from BAS, then returns the optimization parameters to the BAS, 

thus BAS can make the facilities run according to these optimization parameters for 

better performance instantly. 

1.1.3 Need of Integration with Enterprise Applications 

During the past years, BASs have been increasingly seen as part of a much larger 

information system. Facility managers now routinely resort to specialized software for 

managing their tenant spaces, their assets, their equipment maintenance, and even for 

their energy procurement [17]. Facilities owners today are looking for a BAS as a data 

source to help them better run their business based on the infrastructure of their 

existing Intranets, Internet and the same standards as other IT (information technology) 

devices [1]. The requirements for "information integration" are now much broader 



 7 

than those in the past. Broader “information and services” integration, more powerful 

functions integration among BASs, and even integration with other enterprise 

applications on the Internet become more and more important today [18]. Let’s take 

campus scheduling as a clear example. A system that can reserve a meeting room can 

automatically schedule the environmental, lighting, and security systems to adjust 

themselves on the basis of knowing when the room will be in use, and all this 

information is tied into the corporate scheduling, telephone conference, A/V resources 

and so on [2]. Other examples include room scheduling in hotels that would allow 

heating and cooling to be controlled based on whether a guest has checked in or 

checked out, controlling the HVAC and lighting in a college classroom based on the 

room's teaching schedule, and any other high-level business function that needs to 

interact with building systems [51]. 

An apparent trend in BAS industry is to enable the mechanical and electrical 

control systems in buildings to communicate with enterprise applications, and to 

provide a platform for developing new classes of applications that integrate control 

systems with other enterprise functions. Enterprise functions include processes such 

as Human Resources, Finance, Customer Relationship Management (CRM), and 

Manufacturing [19].  

1.1.4 Necessity of Integration Platforms Development 

However, current BMS is not good enough to meet the requirements mentioned 

above. So based on the necessity of integration with enterprise system/value-added 



 8 

services and the situation of diverse communication protocols in the market, 

developing a middleware platform to achieve integration among BASs on higher level, 

namely, management layer is very useful. This middleware platform will focus on 

integration/interoperation on management layer and data-exchange with value-added 

services/enterprise applications. It will not substitute or influence directly the 

manufacturer-specific products, protocols, and configuration tools. That means, on the 

automation layer and field device layer, the control networks can keep untouched, 

running as the original architecture and with the original protocols, the controllers can 

be configured by the original configuration tools from the manufacturers.  

The fast-developed standard IT technologies can provide ideas and support for 

the building automation industry greatly. In today’s IP centric world, one can expect 

real-time access to information in order to make informed, intelligent and strategic 

business decisions. Based on the integration platform to be designed with the latest IT 

technologies, one should expect the same from the building automation system. 

This integration platform will accommodate the heterogeneous sub-systems 

compliant with diverse communication protocols, provide a unified data model and 

interface for integration/interoperation applications and value-added services. By this 

platform, the sub-systems/field devices are not only integrated to provide real-time 

and historical data information to people and the enterprise, but interoperate each 

other. With the standard open technologies, this platform will communicate with 

enterprise system and be thought as part of the enterprise system. Figure 1.2 shows 

the overall architecture of Intelligent Building platform to be developed. 



 9 

Web Services
Value-Added Services
Enterprise Applications

Facility Management
Energy Management
Building Automation Systems
Historical Database

HVAC, Lighting, Access Control, 
Security, Fire Safety, Metering

Intelligent Building

BACnet, LonWorks, Modbus…

Enterprise
Applications

Integration
Platform

Building
Systems

 

Figure 1.2 Overall architecture of Intelligent Building platform to be developed 

1.2 Literature Review 

In an intelligent building, there install a great deal of devices. These devices need 

to communicate with each other as well as with data acquisition and processing 

systems. The data acquisition and processing systems will automate the 

communication and interpretation of the mass of data for various value-added services. 

It is known as M2M (Machine-to-Machine) – connecting machines to people, each 

other and the enterprise. The focused issues include how these machines communicate, 

how they are managed, and most importantly, how the world (humans, businesses, 

and society) interacts with them in an open manner almost anywhere in the world 

[21]. 

In some modern complex with multiple sub-systems from various manufacturers 

installed, these sub-systems are supervised via their own BAS software usually. These 



 10 

BAS software from different manufacturers may be based on various hardware 

platforms and OSs, providing different communication interfaces. The integration 

software will communicate with the various BAS software or field devices directly. In 

both cases, the integration software must make various BAS software/devices 

communicate effectively to realize interoperation/integration among various 

sub-systems and enterprise applications. These will relate to the conversion of 

disparate communication protocols and data format. The evolution of communication 

protocols and data manipulation technologies will be reviewed later. 

The definition of system integration has been in the continual flux from the scope 

and depth. The architecture of integration system has been always in evolution as well. 

The architecture of IT industry has greatly evolved in the past decades. The IB 

industry can learn a lot from IT industry. The distributed architecture makes the 

different parts/components of the integrated systems (including devices, driver, server, 

and client) to work together flexibly. The middleware technologies are evolved to 

facilitate the development of distributed computing programming. Several different 

kinds of middleware technologies has been developed and popularly used in IT 

industry. So the system integration, its architecture and middleware technologies used 

will be reviewed as well. 

1.2.1 Definition and Classification of System Integration 

Systems integration is the process of connecting building systems together to 

provide a common user interface and also to achieve functionality between systems.  

Examples of systems integration are connecting all of the HVAC equipment together 

into a cohesive system or connecting together card access, lighting control and HVAC 



 11 

so that when an employee swipes their card after hours the lights and HVAC come on. 

The connected card access, lighting control and HVAC may be compliant with 

different communication protocols from different providers. [24] 

i). Primary System Integration 

According to McGowan J., system integration is defined in very distinct ways 

based upon whether the focus is on control or interface communication. The basic 

definition for system integration with focus on control has traditionally been the 

process of achieving control interaction between the sequences for fire, security and 

DDC for HVAC [25]. This is a primary integration way by wiring the I/O 

(input/output) to the same control system and making the logic sequences among the 

I/O points. This method has phased out gradually today. 

ii). Interoperability System Integration 

In the integration case with focus on interface communication, communication 

must be addressed to accomplish some form of data interchange between existing or 

"legacy" systems. This requires "drivers" or specialized software packages that 

translate between languages to allow communication between legacy and new open 

systems from one point of interface. This may be the most common type of system 

integration occurring today, and can also come to interoperability, which allows for 

seamless communication, or interface interoperability, between systems [25]. In this 

stage buildings are always considered to be operated in a largely standalone manner. 



 12 

iii). Enterprise Application Integration 

As building connectivity technology matures and increasingly adopts IT-based 

solutions, the building is fast becoming another component of today’s enterprise 

systems. This provides corporations with an advanced level of facility control as a 

result of new, important information previously unavailable without assistance of the 

IT network [26].  

The interaction applications of buildings and the enterprise include energy 

management, business process interaction, efficiency improvement, as well as core 

functions of facilities, all in order for facilities to house the corporation’s business 

activities. For example, an enterprise integration may look at all of the energy use 

from a group of buildings in several cities, read utility rates in real time, and then 

place all of the buildings into a particular energy saving mode based on the rate.  A 

second example would be bringing critical building parameters up to the enterprise 

then using that information to make maintenance decisions. What we observed is that 

the integration of building systems is one of the last portions of business to be 

connected.  Other critical business functions such as human resources, finance, sales 

and marketing, and manufacturing have been connected to enterprise applications as a 

matter of course [27]. 

1.2.2 Evolution of IB Communication Protocols 

Beginning in the 1980's, more and more manufacturers of HVAC-related 

equipment began incorporating microprocessor-based controllers in their products at 

the factory. In the beginning, these controllers were designed to be stand-alone. With 



 13 

the increase in popularity of networked building automation and energy management 

systems, communications ports were added to these stand-alone controllers and 

various communications protocols or languages evolved. The earliest of these 

protocols were often proprietary to the equipment manufacturer. Later, several of the 

most common protocols became de facto standards, for example Modicon's 

MODBUS [96]. Other companies recognized the need for a common protocol as a 

business opportunity and developed their own protocols together with supporting 

products to supply to the industry (Echelon's LonWorks, Bosch's CAN [97], etc.). 

Eventually, several industry standards bodies formed committees to define protocols 

that would be available to be deployed without licenses or royalties 

(ASHRAE-BACnet [8], OPC Foundation-OPC [99], Profibus International-Profibus 

[98], etc.) [17]. 

Basically, the protocols can be classified into two categories: protocols with flat 

data structures and protocols with object-oriented data structures as Figure 1.3 [17]. 

Initially these standard protocols utilized flat data structures of independent and 

possibly unrelated values (MODBUS registers, LonTalk Network Variables, OPC 

Items, etc.). In a flat data structure, each piece of information stands alone. For 

example, 76.6 might represent a temperature, but the units and name of that data 

sample would each be stored separately in the program. As object-oriented 

programming paradigms gained widespread acceptance as an alternative to flat data 

structures, a more object-oriented approach toward field data was desired. In an 

object-oriented data structure, 76.6 would be packaged with the units (℃) and the 



 14 

name (Zone Temperature). Having these related pieces of information stored together 

as an object assists in data interpretation. In addition, multiple objects can then be 

grouped together into another object in a hierarchical fashion. For example, the Zone 

Temperature and Zone Setpoint objects might be grouped into a Zone Control object. 

This movement toward object-oriented programming gave birth to the current 

generation of object-oriented protocols - BACnet, LonMark Functional Profiles [100], 

and European Installation Bus Object Interface Specification (EIB - ObIS), among 

others [17]. 

Flat,
Register-Oriented
Protocols:

Modbus

LonTalk

C-Bus
.
.
.

Hierarchical 
Object-Oriented
Protocols:

BACnet

LonMark Functional 
Profiles

EIB-Obis
.
.
.

Flat,
Register-Oriented
Protocols:

Modbus

LonTalk

C-Bus
.
.
.

Hierarchical 
Object-Oriented
Protocols:

BACnet

LonMark Functional 
Profiles

EIB-Obis
.
.
.

 

Figure 1.3 BAS protocol evolution 

In the 1980's, there wasn't a protocol that could meet the majority of a Building 

Automation system's needs. As it goes into the 21st century, the problem is not one of 

"not enough" but one of "too much." We now have not one, but several standard 

protocols that can meet the needs of an average building automation system. The 



 15 

various building automation system manufacturers build products that support one or 

more of the standard protocols that are available, however, integrating more than one 

protocol into a single system can be a challenge. Although the data structures for the 

standard protocols are similar, their implementations are quite different. Gateways 

between any two of the standard protocols tend to be complex, and bridging more 

than two can become unwieldy [17]. 

In order to be compatible to the various standard protocols, the integration 

platform must be made to communicate various products from different vendors or 

compliant with various protocols. Various protocols should be connected and their 

different data formats are interpreted to common data format together. 

1.2.3 Evolution of IT and Its Influence on IB 

Above, evolution of communications methods from proprietary, flat protocols to 

open, object-oriented information models is described. Simultaneous with this 

development, a parallel evolution has been taking place in the Information 

Technology (IT) realm. The 1970's were the years of the mainframe/dumb terminal 

architecture. The 1980's saw the birth of the PC. The 1990's brought networked PC's 

with client-server architecture. In the late 90's and early 00's, (due largely to the 

explosive popularity of the Internet) we're seeing a return to the 70's style approach 

relabeled the "thin-client architecture." Dumb terminals have been replaced with web 

browsers. Mainframe computers have been replaced with Web server/Web Services 

farms as Figure 1.4 [17]. 



 16 

I
n
t
e
r
n
e
t

I
n
t
e
r
n
e
tDumb 

Terminal

Dumb 
Terminal

Personal 
Computers Server

Client

Client

Notebook

Desktops Servers

Mainframe 
Computer

PDA, 
Mobile Phone



I
n
t
e
r
n
e
t

I
n
t
e
r
n
e
tDumb 

Terminal

Dumb 
Terminal

Personal 
Computers Server

Client

Client

Notebook

Desktops Servers

Mainframe 
Computer

PDA, 
Mobile Phone



 

Figure 1.4 Evolution of Information Technology 

In their white paper “Web Services - The Web's next revolution”, IBM points out 

several trends that are becoming apparent [17, 92]: 

 Content is becoming dynamic – There are a lot of content from many 

different sources. That may include furniture inventories, maintenance 

schedules and work orders, energy consumption and forecasts, as well as 

traditional building automation information. Today, building integration 

software may be required to provide up-to-the-minute content, incorporating 

news headlines, weather forecasts, and current chilled water supply 

temperatures on the same page. 

 Bandwidth is getting cheaper - Some analysts predict that in a few years, 

there will be enough bandwidth for a full-motion video channel that records 

the life of every person on earth. Whether that happens or not, bandwidth is 

growing exponentially cheaper year after year. 

 Storage is getting cheaper - The capacities of hard drives, DVDs, CD-ROMs, 

and removable storage media are far greater than they were a few years ago. 



 17 

This trend is likely to continue.  

 Enterprise computing is becoming more important - The need to integrate 

information from our familiar desktop PCs with mobile phones, pagers, and 

palmtop computers on the low-end and with mini and mainframe-based 

corporate information systems on the high-end is increasing.  

The evolution of IT has been influencing the development of intelligent building 

industry greatly. The latest IT technologies are getting more applications in the IB 

industry sooner than before. As a result, the IB industry has been going to IP 

technologies and Web applications as well. 

1.2.4 Traditional Middleware Technologies and Its Applications in IB Integration 

(i) Middleware Concept 

Middleware is a class of software technologies designed to help manage the 

complexity and heterogeneity inherent in distributed systems. It is defined as a layer 

of software above the operating system but below the application program that 

provides a common programming abstraction across a distributed system, as shown in 

Figure 1.5 [29]. In doing so, it provides a higher-level building block for programmers 

than Application Programming Interfaces (APIs) such as sockets that are provided by 

the operating system. This significantly reduces the burden on application 

programmers by relieving them of this kind of tedious and error-prone programming. 

Middleware is sometimes informally called “plumbing” because it connects parts of a 

distributed application with data pipes and then passes data between them [29]. 



 18 

Middleware API

Middleware                  

Distributed 
Application

Operating System API

Operating                                            
System                                              

Comm. Processing Storage

Host1

Middleware API

Middleware                  

Distributed 
Application

Operating System API

Operating                                            
System                                              

Comm. Processing Storage

NetworkNetwork

Host2

 

Figure 1.5 Middleware layer in context 

(ii) Traditional Middleware Technologies 

The ability to construct applications using objects from different vendors, running 

on different machines, and on different operating systems, it is not an easy task. The 

need for interaction between the software objects led to the specification of 

middleware models. The most widely-publicized middleware initiatives, including 

COM/DCOM (Component Object Model/Distributed Component Object Model) [30], 

CORBA (Common Object Request Broker Architecture) [31], and JAVA/RMI (remote 

Method Invocation) [32] have been developed to facilitate the communication among 

distributed applications.  

CORBA 

CORBA is short for Common Object Request Broker Architecture, an 

architecture that enables pieces of programs, called objects, to communicate with one 

another regardless of what programming language they were written in or what 



 19 

operating system they're running on. CORBA was developed by an industry 

consortium known as the Object Management Group (OMG).  

CORBA relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for 

remoting objects. Everything in the CORBA architecture depends on an Object 

Request Broker (ORB). The ORB acts as a central Object Bus over which each 

CORBA object interacts transparently with other CORBA objects located either 

locally or remotely. Each CORBA server object has an interface and exposes a set of 

methods. To request a service, a CORBA client acquires an object reference to a 

CORBA server object. The client can now make method calls on the object reference 

as if the CORBA server object resided in the client's address space. The ORB is 

responsible for finding a CORBA object's implementation, preparing it to receive 

requests, communicate requests to it and carry the reply back to the client. A CORBA 

object interacts with the ORB either through the ORB interface or through an Object 

Adapter - either a Basic Object Adapter (BOA) or a Portable Object Adapter (POA). 

Since CORBA is just a specification, it can be used on diverse operating system 

platforms from mainframes to UNIX boxes to Windows machines to handheld 

devices as long as there is an ORB implementation for that platform. Major ORB 

vendors like Inprise have CORBA ORB implementations through their VisiBroker 

product for Windows, UNIX and mainframe platforms and Iona through their Orbix 

product [33]. 

DCOM 

COM is a technology that Microsoft developed to replace OLE (Object Linking 

and Embedding) and DDE (Dynamic Data Exchange).  This framework was defined 

by the combination of COM and OLE Controls (OCX). Distributed Component 



 20 

Object Model (DCOM) emerged to address COM's shortcomings in supporting 

remote components.  DCOM is an extension to COM that allows networked 

interaction between two programs even if they are written in different programming 

languages [34]. DCOM which is often called "COM on the wire”, supports remoting 

objects by running on a protocol called the Object remote Procedure Call (ORPC). 

This ORPC layer is built on top of DCE's RPC and interacts with COM's run-time 

services. A DCOM server is a body of code that is capable of serving up objects of a 

particular type at runtime. Each DCOM server object can support multiple interfaces 

each representing a different behavior of the object. A DCOM client calls into the 

exposed methods of a DCOM server by acquiring a pointer to one of the server 

object's interfaces. The Session Object then starts calling the server object's exposed 

methods through the acquired interface pointer as if the server object resided in the 

client's address space. As specified by COM, a server object's memory layout 

conforms to the C++ vtable layout. Since the COM specification is at the binary level 

it allows DCOM server components to be written in diverse programming languages 

like C++, Java, Object Pascal (Delphi), Visual Basic and even COBOL. As long as a 

platform supports COM services, DCOM can be used on that platform. DCOM is now 

heavily used on the Windows platform. Companies like Software AG provide COM 

service implementations through their EntireX product for UNIX, Linux and 

mainframe platforms; Digital for the Open VMS platform and Microsoft for Windows 

and Solaris platforms [33]. 

Java/RMI 

Java Remote Method Invocation (Java/RMI) enables the programmer to create 

distributed Java technology-based to Java technology-based applications, in which the 



 21 

methods of remote Java objects can be invoked from other Java virtual machines, 

possibly on different hosts. Java/RMI relies on a protocol called the Java remote 

Method Protocol (JRMP). Java relies heavily on Java Object Serialization, which 

allows objects to be marshaled (or transmitted) as a stream. Since Java Object 

Serialization is specific to Java, both the Java/RMI server object and the Session 

Object have to be written in Java. Each Java/RMI Server object defines an interface 

which can be used to access the server object outside of the current Java Virtual 

Machine (JVM) and on another machine's JVM. The interface exposes a set of 

methods which are indicative of the services offered by the server object. For a client 

to locate a server object for the first time, RMI depends on a naming mechanism 

called an RMIRegistry that runs on the Server machine and holds information about 

available Server Objects. A Java/RMI client acquires an object reference to a 

Java/RMI server object by doing a lookup for a Server Object reference and invokes 

methods on the Server Object as if the Java/RMI server object resided in the client's 

address space. Java/RMI server objects are named using URLs and for a client to 

acquire a server object reference, it should specify the URL of the server object as you 

would with the URL to a HTML page. Since Java/RMI relies on Java, it can be used 

on diverse operating system platforms from mainframes to UNIX boxes to Windows 

machines to handheld devices as long as there is a Java Virtual Machine (JVM) 

implementation for that platform. In addition to Javasoft and Microsoft, a lot of other 

companies have announced Java Virtual Machine ports [33]. 

 (iii) Weakness of Traditional Middleware Technologies  

Weakness of DCOM and CORBA/IIOP: 

DCOM and CORBA are both reasonable protocols for server-to-server 



 22 

communications. However, both DCOM and IIOP have severe weaknesses for 

client-to-server communications, especially when the client machines are scattered 

across the Internet [35].  

DCOM and CORBA/IIOP both rely on single-vendor solutions to use the 

protocol to maximum advantage. Though both protocols have been implemented on a 

variety of platforms and products, the reality is that a given deployment needs to use a 

single-vendor's implementation. In the case of DCOM, this means every machine runs 

Windows. (Although DCOM has been ported to other platforms, it has only achieved 

broad reach on Windows.) In the case of CORBA, this means that every machine runs 

the same ORB product. Yes, it is possible to get two CORBA products to call one 

another using IIOP. However, many of the higher-level services (such as security and 

transactions) are not generally interoperable at this time. Additionally, any 

vendor-specific optimizations for same-machine communications are very unlikely to 

work unless all applications are built against the same ORB product. 

DCOM and CORBA/IIOP both rely on a closely administered environment. The 

odds of two random computers being able to successfully make DCOM or IIOP calls 

out of the box are fairly low. This is especially true when security is involved. While 

it is possible to write a shrink-wrap application that can use DCOM or IIOP 

successfully, doing so requires much more attention to detail than the typical 

sockets-based application. This is especially applicable to the unglamorous but 

necessary task of configuration/installation management. 

DCOM and CORBA/IIOP both rely on fairly high-tech runtime environments. 

While in-process COM is simple, building the COM/DCOM remoting plumbing is 

definitely not an easy project. IIOP is a simpler protocol to implement than DCOM, 



 23 

but both protocols have their fair share of complex rules dealing with data alignment, 

type information, and bit twiddling. This makes it difficult for the average 

programmer to simply make a CORBA or DCOM call without the benefit of an ORB 

product or OLE32.DLL. 

Perhaps the most damning limitation of DCOM and CORBA/IIOP is their 

inability to work in Internet scenarios. In the case of DCOM, it is a great headache to 

configure and pass the domain-based authentication with your servers. Worse, if a 

firewall or proxy server separates the client and server machines, the likelihood of 

either IIOP or DCOM packets getting through is extremely low due to the HTTP bias 

of most Internet connectivity technology. While vendors like Microsoft, Iona, and 

Visigenic have all built tunneling technology, these products tend to be very sensitive 

to configuration mistakes and are not interoperable [36].  

Although the disadvantages discussed above, DCOM or IIOP are still suitable to 

work within a server farm. All of the host machines in the server farm are under a 

common administrative domain, which makes consistent configuration quite likely. 

The relatively small number of machines also helps to keep the costs of using 

commercial ORB products under control, as a smaller number of ORB licenses are 

needed. Finally, it is likely that all of the host machines in a server farm will have 

direct IP connectivity, removing the firewall-related problems of DCOM and IIOP 

[37]. 

Weakness of RMI: 

RMI was developed as a simple distributed-objects programming model for Java. 

Simplicity has its advantages, e.g. better performance, but it is also RMI’s primary 



 24 

weakness. JAVA/RMI has the disadvantages as below: 

 Synchronous communication: calling process blocks until there is a response 

 Tightly coupled: client must find recipients, and know method arguments 

 No persistence 

 A lot of connections can be difficult to scale [38] 

 Java/RMI only supports Java 

 Proprietary protocol by single vendor 

 Requires RMI-lookup 

 Requires non-standard port [39] 

(iv) Applications of Traditional Middleware Technologies in IB Industry 

Lu N. et al. [40], Wang Y. et al. [42], Zheng F. et al. [23] and Guo H. et al. [41] 

have made the primary design about CORBA used on IB system. Some may have 

been used in practical projects. However, no broader applications can be found. 

JAVA/RMI can be seen on some mobile IB applications and agent applications [32] 

and hasn’t been used broadly in the IB integration because Java/RMI can only be used 

with the Java programming language. 

Probably due to the broad use in the automation industries and the popularity of 

Windows platform, some manufacturers have applied DCOM-based OPC (OLE for 

Process Control) technology on BAS integration [43]. It seems OPC has broader use 

than the other middleware technologies mentioned above. In the beginning of this 

research, OPC is adopted as main technology for integration platform. However this 

choice was changed after practical trials. In this thesis, the OPC technology will be 

discussed later as part of this research as well. 



 25 

1.2.5 Web Services and Its Applications on IB Integration 

(i) Web Services  

A new promising technology is Web Services. XML and Web Services 

technology is put forward by World Wide Web Consortium (W3C) organization [44]. 

It will help greatly integration and interoperation among applications over the Internet. 

SOAP is communication protocol for accessing a Web Service. As an emerging 

distributed middleware technology that uses a lightweight and simple XML-based 

protocol, SOAP allows applications to exchange structured and typed information 

across the Web. It is designed to support automated Web Services based on a shared, 

decentralized, and open web infrastructure. SOAP applications can be written in a 

wide range of programming languages (such as Java, C++, C, Perl, and C#), used in 

combination with a variety of Internet protocols and formats (such as HTTP, SMTP, 

and MIME), and can support many types of applications ranging from messaging 

systems to RPC (remote procedure call) [45]. 

Rather than competing with existing middleware technologies, Web Services is 

evolving into a role of integrating middleware. Unlike its RPC and EAI (Enterprise 

Application Integration) technology predecessors, Web Services technologies and 

standards enjoy unprecedented industry backing. All the major players and most of 

the minor ones fully support and endorse the standardization of SOAP and WSDL 

(Web Services Description Language). So far, the industry remains unfragmented with 

respect to these standardization efforts, something that never happened for Sun RPC, 

DCE, COM/DCOM, CORBA, or J2EE. Web Service comes to being able to integrate 

different types of middleware, including CORBA, J2EE, and Microsoft .NET [45]. It 

is even called “Middleware for Middleware”. The comparison of different middleware 



 26 

technologies is conducted in Table-1. 

Table-1 Comparison of different middleware technologies [46] 

 Platform availability Applicable to Mechanism Implementations 

COM 
/DCOM 

Originally PC platforms, 
but becoming available 
on other platforms 

“PC-centric” 
distributed systems 
architecture 

APIs to 
proprietary system 

one 

CORBA Platform-independent 
and interoperability 
among platforms 

General distributed 
system architecture 

Specification of 
distributed object 
technology 

many 

Java/RMI Where Java virtual 
machine (VM) executes 

General distributed 
system architecture 
and Web-based 
Intranets 

Implementation of 
distributed object 
technology 

various 

Web 
Services 

Platform-independent 
and interoperability 
among platforms 

General distributed 
system architecture 
and Web-based 
Intranets 

XML and SOAP 
(Simple Object 
Access Protocol ) 

many 

While traditional middleware platforms provide great implementation vehicles 

for services, none of them is a clear winner. The strengths of the Web Services as an 

information integrator and distributor, namely simplicity of access and ubiquity, are 

important in resolving the fragmented middleware world where interoperability is 

hard to come by. The Web Services complements these platforms by providing a 

uniform and widely accessible interface and access glue over services that are more 

efficiently implemented in a traditional middleware platform. Viewed from an n-tier 

application architecture perspective, the Web Service is a veneer for programmatic 

access to a service which is then implemented by other kinds of middleware. Access 

consists of service-agnostic request handling (a listener) and a facade that exposes the 

operations supported by the business logic. The logic itself is implemented by a 

traditional middleware platform as Figure 1.6 [47]. 



 27 

Listener

Business Facade

Business Logic
(traditional middleware)

XML Request XML Response

 

Figure 1.6 Generic Web Service architecture 

(ii) Researches/Applications of Web Services on IB 

As a new breed of Web application, Web Services is self-contained, modular 

applications that can be run over the Internet and can be integrated into other 

applications. Web Services perform functions that can be anything from simple 

requests to complicated business processes. For example, a weather bureau could 

offer a Web Service that allows a building automation system to automatically retrieve 

temperature forecast data for use by various control algorithms. Similarly, the 

building automation system itself could offer a Web Service that allows a tenant's 

accounting system to obtain up-to-the-minute figures on energy consumption. In the 

past, this type of data exchange would require a custom, "hard coded" data request to 

retrieve information that already existed in the host computer. A Web Service, on the 

other hand, is a way to allow any authorized client to actually run an application on 

the host computer and generate data that didn't previously exist. In an accounting 



 28 

example, the tenant's computer would provide information on the inclusive dates and 

building areas, and the Web Service host computer would calculate and return the 

energy consumption data [17]. 

Donlon M. claimed “Finally, using TCP/IP connections, protocols like XML will 

dominate the future of interoperability among embedded devices - even in building 

automation.” [48]. Craton D. and Robin E. appealed to construct information models 

based on Web Services [17]. They also claimed that “it might be possible to expose 

information as XML at a building-controller level, it would not be practical to do so at 

a zone or unitary-controller level.” At the duration of this research on-going, there are 

some communities engaged in the research of Web Services application in IB 

industry. 

(i) oBIX 

oBIX (Open Building Information eXchange) is an industry-wide initiative to 

define XML- and Web Services-based protocol to enable communications between 

building mechanical and electrical systems and enterprise applications. oBIX will 

instrument the control systems for the enterprise. oBIX was originally established as a 

working group within CABA (Continental Automated Buildings Association) [49], 

then the CABA Board of Directors announced that it has initiated a process to transfer 

governance of oBIX to a technical committee (TC) at the Organization for the 

Advancement of Structured Information Standards (OASIS) in April 28, 2004 [50]. 

OASIS is a global, non-profit consortium that focuses on the development and 

adoption of e-business standards [2]. This defined protocol will enable facilities and 

their operations to be managed as full participants in knowledge-based businesses. 



 29 

The oBIX specification will utilize Web Services for exchange of information with 

the mechanical and electrical systems in commercial buildings. The oBIX TC 

proposes to develop a publicly available Web Services interface specification that can 

be used to obtain data in a simple and secure manner from HVAC, access control, 

utilities, and other building automation systems, and to provide data exchange 

between facility systems and enterprise applications. In addition, the TC will develop 

implementation guidelines, as needed, to facilitate the development of products that 

use the Web Service interface [66]. 

From the “Committee Specification 01 - oBIX 1.0” which is issued on 5 

December 2006, we can find it specifies an object model and XML format used for 

machine-to-machine (M2M) communication [67]. However, its focus is only on the 

definition of standard interface, not the implementation of the integration platform. 

(2) BACnet/Web Services 

The BACnet/XML Working Group also is working on BACnet/Web Services, 

using XML to represent BACnet messages so that Web Services gateways can provide 

building data to enterprise systems across the Internet or an Intranet [28]. At 

ASHRAE's 2004 Annual Meeting, the Standard 135 committee proposed addendum 

135-2004c for public review. This addendum defines a standard means of using Web 

Services to integrate facility data from disparate data sources, including BACnet (A 

Data Communication Protocol for Building Automation and Control Networks) 

networks, with a variety of business enterprise applications [8]. September 2006 this 

addendum is approved as part of formal standard [20]. 



 30 

The addendum provides ways to standardize and use XML in representing certain 

data types that are relevant to BACnet and defines the services as below: 

getValue Service 

getValues Service 

getRelativeValues Service 

getArray Service 

getArrayRange Service 

getArraySize Service 

setValue Service 

setValues Service 

getHistoryPeriodic 

getDefaultLocale 

getSupportedLocales 

Naturally the addendum is compatible with the BACnet protocol, but it is not 

limited to BACnet. Indeed, one of its most useful applications may be to serve as a 

standard for exchanging data between building automation systems using different 

protocols. Web Services could be an ideal way to make a “top end” connection 

between systems running BACnet, LonWorks, MODBUS, or any proprietary protocol. 

Engineers would not have to learn the details of each individual protocol to program 

the connections, they would only have to understand the Web Services standard. A 

Web Services connection would also avoid the problems with incompatible baud rates, 

wire types, proprietary communication chips, and all the other issues that can come 

into play when a gateway is used to connect dissimilar protocols [68]. 



 31 

1.2.6 Offline and Online Value-added Service 

In the current real application project, the Value-added Service (for example, 

HVAC optimization application) is mainly restricted in off-line application. The 

current normal optimization software reads or imports data from the historical 

database of some commercial BAS software platforms. They calculate and make 

some suggestions for facility managers based on the historical data. However, the 

environment (for example, weather) may be changed fast, the offline optimization 

software cannot suggest and adjust the parameters timely. Thus, the parameters 

suggested by offline method cannot command the BAS directly for lack of in-time 

and flexible communication channel. The optimization is processed offline and needs 

the intervention of operator. 

So online method is good method to be used to keep real-time data-exchange 

between Value-added Service and BAS. In Aug. 2008, Lawrence Berkeley National 

Laboratory (LBNL) was published to be developing an online system used to connect 

building simulation and BAS [101]. The published paper “describes the Building 

Controls Virtual Test Bed (BCVTB) that is currently under development at Lawrence 

Berkeley National Laboratory. An earlier prototype linked EnergyPlus with controls 

hardware through embedded SPARK models and demonstrated its value in more 

cost-effective envelope design and improved controls sequences for the San Francisco 

Federal Building”. “The BCVTB is a more modular design based on a middleware 

that we built using Ptolemy II”, which is Java based developed by the University of 



 32 

California at Berkeley. “In future work we will also implement a BACnet interface 

that allows coupling BACnet compliant building automation systems to Ptolemy II”. 

“The BCVTB is a modular, extensible, open-source software platform that allows 

designers, engineers and researchers of building energy and control systems to 

interface different simulation programs with each other and, in the future, with 

Building Automation Systems (BAS)”. From the text above, we can see that the 

connection with BAS is still on development on the publish time. 

Optimization calculation process needs integration of great volume of data and 

powerful CPU calculation capability. These will lead to remarkable calculation delay. 

So there are some issues to be solved in online method. 

 

1.2.7 Conclusive Remarks 

From the literature reviewed above, it can be found that Web application, 

integration of various communication protocols, accommodation of value-added 

services, integration with enterprise application and adoption of Web Services are the 

trends of IB integration.  

A. Information Model for Various Communication Protocols 

Since BACnet, EIB objects and LonMark functional profiles are information 

models, and XML is a modeling language, these high level information models could 



 33 

be expressed in XML and in so doing make them compatible with the emerging Web 

Services architecture. Because of the flexibility of XML and the Web Services 

architecture, these high level models could be expanded to include other types of 

facility-related (but not necessarily building automation-related) information. If each 

building automation protocol had its own XML model, there would be similar but 

incompatible system models. Today's problems of translating from one protocol to 

another at the building controller level would become tomorrow's translation 

problems at the Web Services level. What's needed is a unified system model, in XML, 

that can be used by any building automation protocol. If BACnet, EIB objects, and 

LonMark functional profiles are methods of modeling information, what is needed is 

a unified information model to include these BAS protocols as well as other 

facility-related applications [17]. 

B. Value-added Services in IB Integration 

Value-added services can be developed in IB integration system. The common 

method is offline calculation method nowadays. The value-added services software 

calculates according to the historical data from historical database, and then tells the 

control system the optimization parameters or FDD consequences. This method can 

tell whether facilities or entire building work on a good performance, and how to 

change the parameters for better performance. This method is an off-line method, 

cannot adjust the HVAC running parameters instantly. However, the working 

condition, such as weather, outside temperature, is changed continually, the calculated 



 34 

parameters may not be best when the conditions change. 

From the view point of implementation architecture, the normal traditional 

method is to embed the value-added services into the supervisory software. The 

value-added services are hardcoded in the supervisory software as one part of the 

latter. However, this method has disadvantages of inflexibility. It needs the software 

manufacturer to cooperate to recompile the source code when some new services need 

to be added or changed. The designers of optimization applications cannot add and 

modify their implementation methods flexibly as they wish. 

C. Integration with Enterprise Application 

The integration with enterprise application is data-sharing between BAS and 

enterprise applications which have two different meanings, batch data processing and 

real-time data processing. In the batch data processing way, the data, configuration, 

and report can be exported from BAS to enterprise application, vice versa. The 

export/import usually is made on the basis of scheduled tasks or personal operations. 

In the real-time data processing way, data exchange between BAS and enterprise 

applications can be made frequently. The information in one side can be transported to 

the other side instantly.  

Nowadays, due to the lack of common standard interface, the communication and 

data-sharing between BAS and enterprise application mainly is based on batch data 

processing. In this way, one side cannot get information from the other side instantly. 



 35 

D. Web Services in BA Integration 

Although oBIX and BACnet/Web Services define the standard interface to   

provide building data to enterprise systems across the Internet or an Intranet, however, 

little information on design and implementation of integration based on Web Services 

has been published. 

The currently-used integration software systems usually realize integration and 

interoperation of BASs in the LAN. The access method to building management 

system (BMS) on the Internet is provided by browsing web pages on the proxy web 

server computer as well. However, these solutions haven’t truly achieved the 

integration based on the Internet. They integrate sub-systems based on LAN, only 

providing Web pages which end-user can use to access the BAS by web browser over 

the Internet. What they realized is an interactive interface to end-user, instead of 

mutual data communication among BASs. They cannot realize communication among 

BASs distributed on the Internet. It may be more suitable to call them “user 

web-access” or Web pages-enabled. They are not integration among BASs based on 

the Internet. 

1.3 Aim and Objectives 

The aim of this research project is to design and implement an Intelligent 

Building integration platform based on the latest middleware technologies, providing 

integration of various BA sub-systems and value-added services on the Internet. This 

aim is achieved by addressing the following objectives: 



 36 

A). Design bi-directional information transportation based on Web Services 

In the service model of Web Service, the normal control and monitoring functions 

for BAS are achieved by the client-request-server-reply communication process. The 

information transportation of Web Services is based on http or other Internet protocol. 

Web Server/Web Services are connectionless and stateless (HTTP is a stateless 

protocol). It is a problem how to breakthrough the restriction of Web Service to make 

Web Service as the bi-directional standard communication technology to transfer 

real-time and historical data on the Internet. 

B). Develop an extensible and scalable integration platform 

A middleware platform will be designed and implemented for the integration of 

intelligent building systems. As discussed before, this platform will adopt Web 

Services and object-oriented technologies to realize a unified integration model. The 

platform will have the features as listed as below: 

 Based on XML/Web Services 

 Flexible integration/interoperation among heterogeneous BAS systems 

 Accommodate various communication interfaces 

 Integration with enterprise applications on the Internet 

 Unified data/object model 

 Provide value-added services. 

C). Implement and Validate Software Platform in A Large Building   

This integration platform is implemented and validated in a large building – 

International Commercial Center (ICC). In the research of the HVAC system 



 37 

optimization of the ICC project, a few optimization services will be implemented 

based on this middleware platform. In our group, some team members are engaged in 

FDD and data fusion research of HVAC system. FDD can diagnose whether a 

temperature sensor is bad or greatly value-shifted by analyzing data from other 

sources or sensors [15]. Data fusion is the fully automated method of merging diverse 

data into a single, coherent representation of a tactical, operational or strategic 

situation. For example, cooling load of a building can be calculated by flow rate and 

temperature difference of chilled water, however the measurement of the flow rate 

may have great gap with the true value. The cooling load can be adjusted by data 

fusion method with the power consumption measurement [16]. All the HVAC 

optimization applications which belong to value-added services are realized based on 

the designed integration platform. 

1.4 Organization of the Thesis 

This thesis will introduce the design and implementation of the integration 

platform based on middleware technologies. Based on the trends and requirements of 

the industry and comparison of different middleware technologies reviewed, a unified 

integration unit (UIU) - IBmanager is presented. The IBmanager employs standard 

communication protocol and distributed computing technologies, including 

object-oriented programming, data-subscription & event-driven technology, Web 

Services, XML driver technology, and value-added services plug-ins technology, to 

realize data and services integration and interoperation among distributed BASs on 



 38 

the Intranet/Internet. The implementation of this platform was made in the laboratory 

and is being deployed in an practical project – International Commercial Center (ICC) 

in Hong Kong. The evaluation of its performance is conducted primarily as well. This 

thesis is organized as follows. 

Chapter 1 presents motivation of the research and conducts literature review of 

related study and application. Section 1.1 introduces the necessity of integrating BAS 

with enterprise system/value-added services and the current situation of diverse 

communication protocols in the market, concludes that developing a middleware 

platform to achieve integration among BASs on higher level, namely, management 

layer is very necessary. Section 1.2 reviews the evolution of BAS communication 

protocols and information technology, classifies the definition of system integration 

and compares various middleware technologies. Section 1.3 concludes the objectives 

to develop an integration platform based on Web Service technology and deploy a 

series of optimization services for HAVC applications based on it. 

Chapter 2 introduces the issues and difficulties in IB integration and 

methodologies based on existing two possible technologies. Section 2.1 introduces 

technology difficulties in IB integration. Section 2.2 introduces the characteristic and 

its disadvantages of the OPC technology which was used as the main technology in 

the beginning of this study, the latest development of OPC is introduced as well. 

Section 2.3 introduces the details of Web Services technology and the related 

researches. Section 2.4 concludes Web Services technology is good choice for IB 

integration. 



 39 

Chapter 3 presents the designed platform - IBmanager. Section 3.1 introduces 

system model of IBmanager and its chain-type deployment. Section 3.2 and Section 

3.3 introduce the fundamental technologies in the IBmanager, bi-directional 

communication model based on Web Service and heterogeneous databases integration 

by Web Service. 

Chapter 4 presents the object model of the IBmanager, including Driver Objects, 

Data Point Object, Database Agent Objects, Alarm/Event Objects, Interoperation 

Object, and Session Object. The corresponding functions realized by these objects are 

introduced as well. 

Chapter 5 introduces some implementation issues of the designed platform, 

including its distributed XML Driver model, Human Machine Interface (HMI) based 

on Web, concurrent operation, redundancy and fault-tolerant, value-added services 

implementation. 

Chapter 6 introduces test facilities and integration methods in the Intelligent 

Building Lab of Dept. Building Service Engineering (BSE), The Hong Kong 

Polytechnic University, together with communication performance test method. 

Chapter 7 presents performance analysis and evaluation of the designed platform. 

The analysis of communication latency, integration and interoperation test, the 

roundtrip time test and application load test are conducted and introduced. 

Chapter 8 introduces practical use of IBmanager platform in the International 

Commercial Center (ICC) project. The introduction of the ICC project, the 

deployment architecture, the functions realized are presented in details. 



 40 

Chapter 9 presents conclusions of the integration platform and discussions about 

future work. Load-balancing, mobile application, security of Web Service, public 

services are some issues to be addressed in the future work. 



 41 

CHAPTER 2 SYSTEM DESCRIPTION AND 

METHODOLOGY 

2.1 Difficulties of System Integration 

2.1.1 Incompatible Field Bus Protocols 

There were dozens or more networks and communication protocols in use 

throughout the building controls industry. Multiple DDC Manufacturers with multiple 

generations of products contributed a proliferation of system networks based on 

countless proprietary protocols, commonly referred to today as "legacy systems". 

System users had long voiced concerns about the complexity of DDC system 

management and expansion. This was due to the inability of systems to share data or 

communication networks. The industry became aware of the role that communication 

played in the long-term success of DDC systems and the importance of protocols and 

networking. The incompatible protocols frustrate field engineers greatly when 

integration and interoperation is necessary. The same challenges remain today, but 

with a tremendous simplification, there are only several standards or common 

protocols shared the majority market rather than dozens protocols before [52].  

The situation is getting worst when coming to broader integration. The other 

systems, including access system, security system, video surveillance, fire safety, and 

enterprise applications, introduce more communication protocols to join the protocols 

family to be integrated. 



 42 

2.1.2 Disparate Data Models 

Besides the disparate communication protocols, the data definition models from 

different protocols or products may be different. Let’s elaborate it by BACnet and 

LonWorks as examples. One of the main and enduring values of BACnet is its data 

definition model, i.e., the way BACnet provides a comprehensive representation of 

the functionality of building automation and control equipment (its object model). 

LonWorks also has its data model on building automation, although it was not 

designed specifically for building systems [51]. BACnet and LonWorks have totally 

different data model. 

Web Services provides a standard way to locate and gather data. But if every 

computer application has a different data model, the data may have limited use only. 

This has been proved to be a problem in some of the early Internet based 

business-to-business transactions that predate Web Services. XML provided a 

universal way to format the data, but if the data structures used by the two systems 

were fundamentally different there was still a lot of hand coding required. One 

suggestion has been to develop "vertical standardization," that is, standard data 

models within each industry. A data model that works in the Electric Utilities industry 

would probably not fit the needs of the Real Estate industry, but standardization 

within the utilities industry would make it much easier to develop a Web Service that 

would work with multiple utility companies [55]. 

2.1.3 Various Distributed Technologies 

There are a series of middleware platform technologies. Different BAS 

manufacturers may have different favorites. DCOM, OPC, RMI, CORBA, etc., can be 



 43 

found in the BAS applications. These middleware platforms provide great 

implementation vehicles for services, and have different characteristics, advantages 

and disadvantages. How to make them work coordinately is a challenging task. 

2.1.4 Heterogeneous Database Management System 

There are different database management systems in the BAS applications, 

including Access, SQL Server [93], MySQL [94], even proprietary database. The 

differences among the database management systems include [54]: 

Technical heterogeneity: different file formats, access protocols, query languages 

etc., often called syntactic heterogeneity from the point of view of data;  

Data model heterogeneity: different ways of representing and storing the same 

data, it also is referred as schematic heterogeneity; 

Semantic heterogeneity: data across constituent databases may be related but 

different. 

The integration software needs to retrieve information from a combination of 

databases which have been constructed in different ways, i.e., heterogeneous 

databases. The common problems of heterogeneous database access occur where 

databases are constructed that share some elements, yet are different in any of several 

ways, such as [72]: 

 The databases follow different commonly used models – e.g. 

object-oriented, relational, and hierarchical. 

 Missing or conflicting data – where the same data are entered in two 



 44 

databases that may conflict. Recording-time and reliability metadata will be 

required to choose between alternatives. 

 The structure of the models could be different. 

 Different levels of abstraction may be used to model the same entities – 

e.g. “price” may be defined as including local taxes, or it may be left implicit as 

to whether they are included.  

 The defined scope of concepts in models may vary – e.g. “price” may 

include or exclude service charges or local taxes.  

 The representational structure of objects and properties in the model may 

vary.  

 The role in the model may differ for the same object to convey its role in 

different processes – e.g. the same person may be entered in a database as both a 

“customer” and a “supplier” for different products.  

 Precision – e.g. a raw score or a rounded score may be stored.  

 Format differences: data type – e.g. a part number as an integer or 

alphanumeric string. 

 Units or measurement scales may vary – e.g. the units of currency may 

be Euro or US dollars. 

 The name used for the same concept is different – homonym, e.g. 

“motor”, “car”, “auto” for the same motor vehicle.  

 Languages may vary – cross-language homonym e.g. the natural 

language from which the element label is derived may be different. 



 45 

2.2 Integration Based on OPC Technologies 

At the beginning of this research, OPC is selected as the main technologies to 

achieve the integration platform. After deep study and development for some time, 

Web Services is adopted instead of OPC as the main communication technology. Even 

so, OPC is investigated as well for comparison. 

2.2.1 Investigation on OPC 

OPC stands for "OLE for Process Control", it is a communication standard based 

on OLE/COM technology. It brings the same benefits to industrial hardware and 

software that standard printer drivers brought to word processing [55]. Based on 

Microsoft's OLE, COM (Component Object Model) and DCOM (Distributed Object 

Model) technologies, OPC consists of standard interfaces, properties and methods for 

use in process control and manufacturing-automation applications. 

The OLE/COM/DCOM technologies define how individual standard components 

can interact and share data. OPC provides an interfacing standard for factory 

automation where every system and every communication driver can freely connect 

and communicate. Having such a standard, the communication and interactions 

between different applications, from the plant to the MIS (Management Information 

System), becomes easier with truly open enterprise communication as Figure 2.1 [55]. 



 46 

Software
Driver

Software
Driver

Software
Driver

Software
Driver

Display
Application

Trend
Application

Report
Application

Software
Driver

Software
Driver

Software
Driver

Software
Driver

Display
Application

Trend
Application

Report
Application

Software
Driver

Software
Driver

Software
Driver

Software
Driver

OPC OPC OPC OPC

Display
Application

Trend
Application

Report
Application

OPC OPC OPC

Software
Driver

Software
Driver

Software
Driver

Software
Driver

OPC OPC OPC OPC

Display
Application

Trend
Application

Report
Application

OPC OPC OPC

 

Figure 2.1 Architecture compare of integration based on traditional driver and 

OPC 

The application of the OPC standard interface makes possible interoperability 

between various systems in the BAS management level as Figure 2.2. Traditionally, 

each software or application developer was required to write a custom interface, or 

server/driver, to exchange data with hardware field devices. OPC eliminates this 

requirement by defining a common interface that permits this work to be done once, 

and then easily reused by HMI (Human Machine Interface), SCADA (Supervisor 

Control and Data Acquisition), control and custom applications [56]. 

Web Server BAS Station

OPC Client Interface OPC Client Interface

BAS 1 BAS 2

BACnet Devices LonWorks Devices

LAN

LonWorks
OPC Driver

BACnet
OPC Driver

OPC Server 
Interface

OPC Server 
Interface

BAS2 
Software

Control Net

BAS1 
Software

Control Net

 

Figure 2.2 BAS integration via OPC  



 47 

In Figure 2.2, BAS 1 and BAS 2 software systems have provided the OPC server 

interface, so BAS station software and Web applications can communicate with them 

via the OPC interface. Another situation is that a standalone OPC server is provided 

with a device. In this case it is easier for the devices being connected directly via OPC 

server. Both the standalone OPC server and BAS software with OPC interface provide 

data to the BAS Station, they can be distributed on different computers other than the 

BAS Station. New BA system/devices with OPC interface/driver can be added with 

little difficulty for the unified interface.  

2.2.2 Disadvantages of OPC 

However, this implementation with OPC still has problems as discussed as below. 

(i) No enough complex data structures definition 

OPC is not a new standard bus or a universal protocol, but it is an interface 

definition defined by different companies from industrial automation and Microsoft. 

The complex data structures definition are not yet fully defined in OPC, leaving them 

dependent on the application. From the view point of a driver, it is still vendor 

specific. 

Earlier OPC specifications failed to provide a single coherent data model - e.g., 

the Data Access item hierarchy was totally disjoint from that offered by Alarms & 

Events [57]. 



 48 

(ii) Not suitable on Internet 

OPC uses COM/DCOM as the core technology for the software interface. 

Therefore, when an OPC client on a computer connects to an OPC server located on 

another computer, the DCOM security must be configured correctly. Many installers 

experienced this requirement as a problem. As a result, DCOM security is often 

disabled, leading to severe security risks. Obviously, it gets even more risky when 

using an OPC server over the Internet [58]. When you try to use DCOM over the 

Internet, you will likely be thwarted by DCOM's tight coupling with Microsoft 

Windows NT security and its use of dynamically allocated TCP/IP ports (not typically 

allowed through corporate firewalls) [59]. Due to these problems, it is not practical to 

use it over the Internet. 

XML technology has been used to fill these gaps in a new development of OPC 

technology. The latest progress is the new OPC XML-DA (Data Access) standard. In 

this new standard, OPC allows manufacturers to process data which can be accessed 

via the Internet. In this case, the OPC server is configured as a Web Service [60].  

 (iii) Windows Platform Specific 

Microsoft designed COM/DCOM as a modern, object-based RPC (remote 

Procedure Call) mechanism to facilitate cross-component, cross-process and 

cross-machine communications used in the Microsoft Windows environment. 

Although Microsoft has opened the door to non-Microsoft implementations, 



 49 

COM/DCOM never really caught on outside of Microsoft, and is not available on 

most non-Microsoft platforms [59].  

(iv) Difficult to Connect with Enterprise Application 

Manufacturing enterprise applications like MRP (Material Requirement Planning) 

need real-time plant floor data that is often available via servers that implement the 

OPC-COM interfaces. The problem is that most of these higher-level applications do 

not implement the OPC-COM interfaces necessary to talk to OPC-COM servers. 

Many cases these applications are on non-Microsoft platforms, making it all but 

impossible to communicate via COM [59]. 

2.2.3 Latest Development of OPC Technologies 

In the duration of this study, the OPC Foundation is struggling to re-design the 

OPC architecture to give OPC new life. 

OPC-UA

DCOM
retires

.NET
new

Communication
architecture

Better
Integration
(DA, HDA, AE)

More Areas of
Application
(MES, ERP)

Internet

Service
Oriented

 

Figure 2.3 Latest developments of OPC technologies 

The next generation of OPC - OPC Unified Architecture (UA) is being developed, 



 50 

whose first parts of specification were released in June 2006. OPC Unified 

Architecture (UA) adopts Web Service technologies and unifies functionality across 

the existing OPC specifications as Figure 2.3 [57]. The UA initiative offers a single 

coherent data model, and uses Web Services for primary transport [61]. 

2.3 Integration Based on Web Service Technologies 

Web Services is the fundamental building block in the move to distributed 

computing on the Internet. Open standards and the focus on communication and 

collaboration among people and applications have created an environment where Web 

Services are becoming the platform for application integration. Applications are 

constructed using multiple Web Services from various sources that work together 

regardless of where they reside or how they were implemented.  

Web Services are built on XML, SOAP, WSDL and UDDI specifications. These 

constitute a set of baseline specifications that provide the foundation for application 

integration and aggregation. From these baseline specifications, companies are 

building practical solutions and getting real value from them. 

2.3.1 The Core Technologies of Web Services 

(1) XML 

XML is a derivative of SGML, the Standard Generalized Markup Language, 

which is a standard, vendor-independent and platform-independent language way to 



 51 

represent and store data. HTML, the language used to create the web pages that you 

see in your browser, is also a language that was originally created as a part of SGML. 

While being well suit to displaying information, HTML does not provide the structure 

necessary to organize and exchange data. XML allows data to be stored in a human 

readable file format that can be viewed using a web browser or even a word processor. 

Other tools available on the market, and many free or shareware applications, allow 

XML to be viewed and edited in a hierarchical way, much like Microsoft Explorer 

allows the files and directories on your hard drive to be viewed in an intuitive “tree” 

structure. The reason the data can be represented in this familiar way is that XML uses 

tags, much like HTML data tags, to record the relationships between the data elements. 

When an XML data file is read, it is easy to see that the device is called “Controller” 

and it contains objects such as points, messages, and alarms. Using HTML, it would 

be impossible to represent those points, messages, and alarms are part of the 

“Controller”, but instead the data would appear to be a simple list [62]. 

Here is an example of what's contained in an XML file that might be used to 

configure a controller: 

    <Controller>  

            <Point1> 

                <name>Outside Air Temperature</name> 

                 <conversion-formula>Degrees F</conversion-formula>  

                <location>Near Door 7</location> 

            </Point1> 



 52 

            <Point2> 

                <name>Space Temperature</name>  

                <conversion-formula>Degrees F</conversion-formula>  

                <location>Ground Floor</location> 

            </Point2> 

    </Controller> 

Although XML allows data to be represented, stored and recalled, it does not 

address the issue of what kinds of data should be used to represent a particular 

physical or software object. To solve this problem, the XML community has adopted 

the idea of a schema. A schema is simply a definition that says if you wish to 

represent something called a "Point" object, to use the previous XML example, it 

should contain the properties called name, conversion-formula, and location. While 

XML is the language that allows the data exchange, the schema is the agreement as to 

what types of data will be necessary as part of the exchange. 

(2) SOAP 

SOAP is a protocol for exchanging XML-based messages over computer 

networks, normally using HTTP/HTTPS. SOAP forms the foundation layer of the 

Web Services protocol stack providing a basic messaging framework upon which 

abstract layers can be built. There are several different types of messaging patterns in 

SOAP, but by far the most common is the remote Procedure Call (RPC) pattern, in 

which one network node (the client) sends a request message to another node (the 

server) and the server immediately sends a response message to the client [64]. 



 53 

The SOAP specification defines what an HTTP message containing a SOAP 

message must look like. This HTTP binding is important because HTTP is supported 

by almost all modern operating systems (and several not so modern operating 

systems). The HTTP binding is optional, but almost all SOAP implementations 

support it because it is the only standardized protocol. For this reason, there's a 

common misconception that SOAP required HTTP. Some implementations support 

MSMQ, MQ Series, SMTP, or TCP/IP transports [63]. 

The SOAP specification defines the structure of an XML document that can be 

used to exchange data between two applications. It defines a way to represent 

programming language specific data types in XML, although it is not required. The 

SOAP specification defines a way to use SOAP to request-response RPC style 

messaging, but does prevent you from using other styles of messaging. It also defines 

a way to exchange SOAP messages over an HTTP transport, but doesn't limit you to 

using that transport. This flexibility means that SOAP is widely applicable to a large 

number of communications requirements [63]. 

(3) WSDL 

The Web Services Description Language (WSDL, pronounced 'wiz-dəl' or spelled 

out, 'W-S-D-L') is an XML-based language that provides a model for describing Web 

Services. For our purposes, we can say that a WSDL file is an XML document that 

describes a set of SOAP messages, and how the messages are exchanged. In other 

words, WSDL is to SOAP as the interface definition language (IDL) is to CORBA or 



 54 

COM. Since WSDL is XML, it is readable and editable, but in most cases, it is 

generated and consumed by software [63].  

WSDL is often used in combination with SOAP and XML Schema to provide 

Web Services over the Internet. A client program connecting to a Web Service can 

read the WSDL to determine what functions are available on the server. Any special 

data types used are embedded in the WSDL file in the form of XML Schema. The 

client can then use SOAP to actually call one of the functions listed in the WSDL. 

WSDL can make it much easier when exposing SOAP services for others to call or 

consuming SOAP services. 

(4) UDDI Services 

UDDI Services, a dynamic and flexible infrastructure for Web Services. This 

standards-based solution enables companies to run their own UDDI (Universal 

Description, Discovery, and Integration) directory for intranet or extranet use, making 

it easier to discover Web Services and other programmatic resources. Developers can 

easily and quickly find and reuse the Web Services available within the organization. 

IT administrators can catalog and manage the programmable resources on their 

network. Enterprise UDDI Services also helps companies build and deploy smarter, 

more reliable applications [65]. 

UDDI Services provides easy discovery of Web Services and other programmatic 

resources inside an organization. Two common scenarios for UDDI Services inside an 



 55 

organization are Developer Reuse and Dynamic Application Configuration: 

 Developer Reuse. At design time, developers search UDDI Services for Web 

Services and other programmatic resources to reuse in building new 

applications. UDDI Services exposes all of the information needed to invoke 

a service, making it easy for the developer to integrate the service into an 

application. 

 Dynamic Application Configuration. At run time, an application queries 

UDDI Services to discover the current binding information for the services it 

needs, and then connects directly to those services. An example of this is a 

stock broker application that queries UDDI Services first thing in the 

morning to get configuration information for the different services that are 

part of the application, such as a stock ticker, customer service updates, or 

settlement services [65]. 

2.3.2 Integration Based on of Web Services Technologies 

This research aims to design and implement a middleware platform for IB 

integration based on Web Services technologies. As discussed above, oBIX and 

BACnet/WS mainly provide definitions of data and service model by Web Services, 

not provide a total solution for implementation or application.  



 56 

Web Services Web Services

Weather Report

Integration 
Application

Portal

BAS 2

BAS 3

BAS 1

 

Figure 2.4 Integration of BAS systems using Web Services 

Using the Web Service technology, BAS systems from different vendors, even on 

different platforms can be integrated easily. As shown in Figure 2.4, the Portal 

application can access different BASs via Web Services, the non-BAS systems can be 

easily integrated as well. For example, a weather bureau could offer a Web Service 

that allows a building automation system to automatically retrieve temperature 

forecast data for use by various control algorithms. Similarly, the building automation 

system itself could offer a Web Service that allows a tenant's accounting system to 

obtain up-to-the-minute figures on energy consumption [17]. However, since the 

SOAP request/response is enveloped in XML format, it will be too complex to be 

used in the communication of field level control in some situation and will increase 

the need to the processor power and additional response time. Therefore, it is not 

suitable for field level up to now because of much traffic overhead [6]. Meanwhile, 

the traditional technologies have been broadly used in this industry. So the process of 

monitoring and controlling the field devices or BAS networks still needs to resort to 

field bus communication protocols or traditional middleware technologies. 



 57 

Upon to the beginning of this study, practical research about the application of 

Web Service on IB is not sufficient, especially how Web Services technology 

coordinates with field level devices and traditional middleware technologies and how 

to accommodate value-added services is not addressed in detail.  

2.4 Conclusive Remarks 

The traditional OPC technology has been used in the automation industry for 

many years with broad popularity. However, with the development of IT and broad 

application of Internet technologies, it is not suitable as a fundamental technology of 

intelligent building integration platform. OPC Foundation has addressed this problem 

and presented a new OPC Unified Architecture, which is based on Web Services. 

Almost at the same time of this progress, we gave up traditional OPC and resort to 

Web Services as well. 

In the jungle of distributed technologies, since it is text-coded and based on 

standard protocols, Web Services is a good choice to integrate BAS systems from 

different vendors compliant with different protocols, even on different platforms. The 

chapters behind will elaborate how the designed middleware platform communicates 

with field level devices and traditional middleware by Web Services, and how to 

provide a unified data points and services for upper-layer applications. 



 58 

CHAPTER 3 OVERALL SYSTEM MODEL 

3.1 Overall System Design 

3.1.1 Principles of System Design 

The integration platform is designed to meet the principles as below: 

 Object-Oriented: BMS functions are capsulated into objects. This will 

benefit the BMS with better scalability and extensibility; 

 Communicate by event or message between components: The 

components are loosely-coupled by communicating with events or messages. 

This will increase the system stability and robustness;  

 Data-subscription & event-driven: BMS needs to realize many 

automation functions (alarming, scheduling, data recording). Some of them are 

optional to be realized and some will be implemented only to specified data 

points. Polling every data point will be a great waste of time. The 

data-subscription & event-driven are adopted to reduce this overhead. Only the 

data points being subscribed with specific functions will process these functions; 

 Scalability and Extensibility: The platform can be suitable for 

different-sized scales applications. The entire platform is comprised of a series of 

modules, which can be loaded dynamically according to the requirements of 

specific project. The new BAS product/system can be added just by building the 

driver according to the driver specification; 



 59 

 Flexible deployment: System can work standalone as a full-functional 

BMS, or work together with other applications or other instances of this platform; 

 Self-contained, autonomous unit: The different deployed instances of the 

designed platform can cooperate together, meanwhile every deployed instance is 

a full-functional unit which can achieve the all functions of BMS standalone by 

itself; 

 Standard communication technologies: The standard communication 

technologies, such as BACnet, OPC, Web Services must be accommodated to 

keep this platform extensible; 

 Internet-friendly: Internet has greatly influence people’s life and work. It 

is a must-have capability to work over the Internet for this platform; 

 Integration with enterprise application: It must exchange data with 

enterprise applications. 

3.1.2 Design of Integration Platform 

This section presents the system model of the integration platform designed using 

the most updated technologies, including object-oriented, data-subscription & 

event-driven, XML and Web Services to realize integration and interoperation of 

intelligent building system. This middleware platform, namely “IBmanager”, is 

designed as “Unified Integration Unit (UIU)”, which aims to realize the integration of 

information and services among BASs in the LAN or over the Internet by M2M 

(Machine to Machine) communication, not just providing web pages for users to 

access which exists popularly nowadays.  



 60 

The IBmanager is designed to integrate various sub-systems/devices to share data 

and information. It can work as an autonomous, self-contained unit as Figure 3.1. Its 

core part is the Application Server (App. Server). Together with the front end 

technologies (Human Machine Interface), distributed driver technologies, database 

agent, it forms a full-fledged BMS (Building Management System).  

HMI / Other IBmanager
/ Customized Client

Unified Integration Unit (UIU) 
- IBmanager

Web Server App. Server

Drivers Pool

Database Agent
Web Service

 

Figure 3.1 Architecture of Unified Integration Unit (IBmanager) 

In the IBmanager, the Drivers Pool is responsible to communicate with other 

BAS/BMS software or control networks directly. The standard Web Services 

communication driver has been made as default driver in the implementation of the 

Drivers Pool, meanwhile other kinds of communication protocols can be developed 

for the IBmanager according to the driver interface specification. Application Server 

(App. Server) is the core part of IBmanager, the operation logic and BMS high-end 

functions are realized in it. Web Server here acts as http parser for Web Services 

invocation besides its original functions. Database Agent is in charge of accessing 

local database and remote database. There are two kinds of interfaces to database, one 

is to access local database via ODBC, SQL technologies, and another is to access 

remote database via Web Services. The database caching, query decomposition and 



 61 

response composition are included in Database Agent, whose details will be presented 

later. The “HMI/Other IBmanager/Customized Client” can be the Human Machine 

Interface for user to access, another IBmanager installation or customized clients. The 

communication between HMI (or other IBmanager installations, customized client) 

and the IBmanager employs a high-level M2M interface using Web Service. 

The IBmanager have two kinds of typical application cases. In the first case it 

acts as a standalone application in which it has been deployed with full-functional 

HMI Web pages, user can access this system by popularly-used web browser. In the 

second case it just acts as a data source to be integrated into other IBmanager 

installations or customized client applications by Web Services interface. In this case, 

HMI for the IBmanager is not necessary. The main difference between these two cases 

is whether HMI is deployed, the main parts of the IBmanager is identical. These two 

typical applications are not exclusive. They can exist on the same time as Figure 3.2. 

Web Server App Server

Drivers Pool

Unified Integration Unit (UIU) 
- IBmanager

Database Agent

Web Service

Web Browser

Other IBmanager or 
Customized Client

HTTP+XML

 

Figure 3.2 Two typical application cases of the IBmanager 

3.1.3 Three-Tier Model 

The IBmanager meets the three-tier model as Figure 3.3. Driver layer is 



 62 

responsible to communicate with different products with various protocols from field 

device/network or high-level BAS software. A driver configuration tool is provided to 

configure the drivers and data points for the IBmanager, including the functions of 

add/edit/delete drivers and data points. This is useful to load data points and drivers 

dynamically. In the driver layer, the physical data points can be given a 

human-friendly name for convenient configuration and easy access by upper-layer. 

Application layer accomplishes the building management functions, operation 

logic and the access to local and remote database. The access to local and remote 

database is processed by a database agent. A logic configuration is used to configure 

the operation logic of application layer.  

Presentation layer presents the human interface to users or communication 

interface to other IBmanager installations or customized client applications. For 

human access, the web HMI is presented in this design. Display authoring tool is used 

to build the display pages for HMI. Users can use the popularly-used web authoring 

software as well, such as FrontPage, Dreamweaver. 

Presentation Layer

Application Layer

Driver Layer

Local DB

Driver Configuration

Display Authoring

Logic Configuration

BACnet LonWorks OPC DDE Web Service Other Interfaces

Remote DB

Web Services

Database
Agent

Web Services

 

Figure 3.3 Three-tier architecture 



 63 

3.1.4 Network Topology 

Figure 3.4 shows the networks topology of this integration and management 

platform. In the bottom right corner of this figure, the IBmanager-2 doesn’t provide 

web pages to be accessed by users, just provides public Web Services interfaces to be 

accessed by other applications or other IBmanager installation. It is a data source for 

integration of greater scope applications.  

InternetInternet

Other IBmanager /
Customized Client

Third-Party BAS SoftwareIBmanager 2





BMS Station 
(Browser)

InternetInternet

SOAP (XML/Web Services)

LAN

Third-Party BAS Software

Controllers

IBmanager 1

Control NetControl Net

Controllers

Control NetControl Net



BMS Station 
(Browser)

 

Figure 3.4 Network topology of BAS integration  

In the top right corner of this figure, the IBmanager-1 is full-functional BAS 

software which provides building management functions for the corresponding BA 

system/network. It provides web pages to be accessed by users and can work as a 

standalone building management system. At the same time it provides public Web 

Services interfaces to be accessed by other applications or other IBmanager 

installations as well. 



 64 

The main difference of these two application cases is on their direct client and 

whether the IBmanager is equipped with HMI. The direct client in the former case is 

another IBmanager installation or other application, it is M2M communication with 

no need of HMI, the direct client in the latter case is HMI for human access. In both 

cases, users can easily develop their own applications to monitor and control the BAS 

system by the Web Services interface. Facility Management company can manage, 

monitor and control their managed BASs by browsing the web pages, or make some 

value-added services including decision analysis or data mining. 

3.2 Chain-type Deployment of IBmanager Installations 

Although the system supports any kind of driver as long as the driver is compliant 

to the driver development specification, Web Service driver is natively supported. 

With the Web Service support, the Drivers Pool of one IBmanager installation can be 

consumer/client of the Web Services of another IBmanager installation. In this case, 

the former IBmanager acts as consumer/client of the latter IBmanager. Thus the 

IBmanager installations are deployed as chain-type installations. From the view point 

of topology, the IBmanager installations can be deployed as chain-type horizontally or 

vertically.  

3.2.1 Vertical Chain-type Deployment 

Figure 3.5 is the example of vertical chain-type deployment. In vertical 

chain-type deployment, IBmanager installations are deployed in different levels, from 



 65 

control network, building network to enterprise network. The directions drawn 

between IBmanager installations are the integration directions instead of 

communication directions. The deployed installation at lower level works as data 

source of the deployed installation at higher level. The IBmanager is designed to be 

suitable from small-scope to large-scope applications as a unified integration unit. 

This embodies the scalability of the IBmanager. 

XML/Web Service

Enterprise Network

Building Network

XML/Web Service

Control Network

Web Server App Server

Drivers Pool

Database
Agent

Web Server App Server

Drivers Pool

Database
Agent

IBmanager

Web Server App Server

Drivers Pool

Database
Agent

IBmanager

IBmanager

 

Figure 3.5 Vertical chain-type deployments of IBmanager Installations 

Although the IBmanager can be deployed in various levels with the same 

architecture, it has the flexibility to adjust the configuration according to the 

characteristic of the deployed level. The IBmanager deployed in higher level 

integration can extract the data points which it is interested in from the IBmanager 



 66 

installations deployed in lower level, ignoring the data points what it is not interested 

in. Even in the data points extracted, the IBmanager installations deployed in high 

level can just care about part information of these data points. The IBmanager 

installations deployed in high level can create their own virtual data points and 

calculate the values of these virtual data points based on the IBmanager installations 

deployed in low level. These virtual data points usually are made and calculated for 

decision-making or data fusion from a great volume of data points. 

3.2.2 Horizontal Chain-type Deployment 

Figure 3.6 is the example of horizontal chain-type deployment. In this case, the 

IBmanager installations are deployed in the same level. The data sharing and 

interoperation is achieved across the IBmanager installations. Every IBmanager 

installation can integrate other IBmanager installations as its sub-systems by Web 

Service driver. In this deployment case, IBmanager-1 can integrate the information of 

IBmanager-2, vice versa. These two IBmanager installations work in parallel.  

The data points managed in one IBmanager installation can be accessed by the 

client of another IBmanager installation. This is conducted by two methods. One 

method is direct access, that is, the client accesses all the IBmanager installations 

directly by Web Services. The other method is indirect access, the original data points 

in the former IBmanager installation have been integrated into the latter IBmanager 

installation as its own data points. Thus the client accesses the data points of the 

former IBmanager installation through the latter IBmanager installation. In the latter 



 67 

method, information from different IBmanager installations can be integrated into one 

IBmanager installation, so the client of one IBmanager installation can access 

information of all other IBmanager installations by this way. Similarly, users can 

develop a Web Services portal to access all the IBmanager installations with the 

integration of Web Service methods provided various IBmanager installations. This 

integration is not a simple integration of web pages, but also the integration of data 

and services based on M2M communication. 

HMI / Other IBmanager
/ Customized Client XML/Web Service

XML/Web Service

Web Server App Server

Drivers

Database
Agent

Web Server App Server

Drivers

Database 
Agent

XML/Web Service

IBmanager 1

Method 1

Method 2

IBmanager 2

 

Figure 3.6 Horizontal chain-type deployments of the IBmanager installations 

3.3 Bi-Directional Communication Model Based on Web Service 

3.3.1 XML/HTTP Request/Response Model 

HTTP messages consist of requests from client to server and responses from 

server to client.  



 68 

       HTTP-message   = Request | Response     ; HTTP/1.1 messages 

Request and Response messages use the generic message format of RFC 822 for 

transferring entities (the payload of the message). Both types of message consist of a 

start-line, zero or more header fields (also known as "headers"), an empty line (i.e., a 

line with nothing preceding the CRLF) indicating the end of the header fields, and 

possibly a message-body [69].  

        generic-message = start-line 

                          *(message-header CRLF) 

                          CRLF 

                          [ message-body ] 

        start-line      = Request-Line | Status-Line 

The XML encode message is transferred as http payload. The example of XML 

message over http [70]: 

Send a XML request:  

  <TransferRequest> 

    <Method> SynReadPoint </ Method > 

    <Point> Outside Temp </ Point > 

  </TransferRequest> 

Receive a XML Response:  

  <TransferResponse> 

    <Method> SynReadPointAck </ Method > 



 69 

    <Point> Outside Temp </ Point > 

    <Value> 23.6 </ Value > 

  </TransferResponse> 

3.3.2 The Restriction of Web Service 

In the service model of Web Service, the normal control and monitoring functions 

for BAS are achieved by the client-request-server-reply communication process. For 

example, in the IBmanager architecture, clients (i.e., HMI, another IBmanager 

installation in chain-type deployment or customized clients with Web Service 

consumer interface) submit requests to the services provided by the IBmanager. The 

App. Server of the IBmanager executes specific services upon requests and returns 

data to the clients.  

However, some BAS functions need a contrary communication process at the 

same time, that is, the server sends data to its clients automatically. This occurs in 

case of the transportation of notifications, such as Alarm/Event (A/E) and Change of 

Value (COV). When such alarms occur, client should be notified immediately since 

the alarm may cause serious consequences. In these cases, alarm/event and COV 

information are necessary to send from server-side (the IBmanager) to client (HMI, 

another IBmanager installation or customized clients) as Figure 3.7.  

In the other technologies, such as DCOM world (and also in other environments) 

there are such things as callbacks, i.e., the direction of interaction changes. When this 



 70 

occurs, the server invokes a method at the client. In OPC DCOM DA this feature is 

used to deliver data automatically from the server to the client if the data has changed 

[71]. However, the communication interfaces which the IBmanager releases are Web 

Services. This “callback” feature is not available with Web Services. The information 

transportation of Web Services is based on http or other Internet protocol. Web 

Server/Web Services are connectionless and stateless (since HTTP is a stateless 

protocol). Each server call is self-contained and independent of previous calls. The 

server initiated callbacks are not possible, the client always has to request the server 

for data. This kind of communication process belongs to so-called “pull” approach in 

which only clients can initiate the communication process to get information from 

servers and servers cannot initialize sending messages to clients. So how to realize the 

alarm/event and COV based on Web Services communication is a problem to be 

solved. 

IBmanager /
Web Service Server

Client/
Web Service Consumer

Request Response
1 2 How?

Notification

 

Figure 3.7 Communication method of Web Service 



 71 

3.3.3 Reverse Message Transportation Methods 

In order to realize sending message from server to client automatically, we need 

analyze the different deployment cases of the IBmanager, and make corresponding 

solutions. In one case, multiple IBmanager installations are chain-type deployed, the 

notifications and bi-directional communication needs to be realized between the 

IBmanager installations. Every end of communication is IBmanager installation, 

which is Web server since Web Service server must be Web server (http server) at the 

same time. Every end can be a client to initiate request and a server to make response 

at the same time. Every end can send out COV and alarm/event messages as a Web 

Service client at the same time when necessary. They can make bi-directional 

communication by “Peer to Peer” mode as Figure 3.8.  

 

IBmanager /
Web Service Server

Another IBmanager/
Web Service Server

Read/Write/Browse
Response

1 2

Event/Alarm, COV
Request Request

1 2
Response

 

Figure 3.8 Application case of chain-type IBmanager installation 

Another case is the communication between the IBmanager and its client which is 

installed in a computer without Web server, this client may be HMI or other 

applications discussed above except the IBmanager. The host of the client application 



 72 

usually has not construct an http server environment to be ready to receive the http 

request, so the IBmanager cannot send “callback” messages, including COV, 

alarm/event messages to the client. To provide the way in which the IBmanager sends 

out notifications to client by the Web Services, two methods are designed for this aim.  

Method 1: Peer to Peer Technology 

One method defined as “Peer to Peer” method can be used to realize the “push” 

communication from the IBmanager to its client. Using this method, the client is also 

configured as a Web Service server, but it only provides the minimal set of Web 

Services to deal with A/E and COV messages. Therefore, it actually is a mini Web 

Services server. Its operation process is illustrated in Figure 3.9. Firstly, the client 

subscribes the A/Es and COV events in the IBmanager, the IBmanager will maintain a 

subscriber table, which contains the subscribers’ IP and events subscribed. When an 

event occurred, the IBmanager needs to send notifications to the clients by sending a 

Web Service request to the client. The client will analyze the event type, deal with it, 

and then return an ACK (acknowledgement) Web Service message to the IBmanager. 

Thus, a “Peer to Peer” communication is realized [6]. In this method, it has no need to 

employ an additional communication means besides the existing Web Services 

technology, and no need extra polling packets. Alarm/event and COV are sending as 

Web Service requests, every request will get a corresponding response as 

confirmation. Thus every notification is acknowledged with confirmation. This 

provides the reliability of communication. Actually, the chain-used IBmanager 



 73 

installations discussed above are of this kind of application. 

InternetInternet

InternetInternet

BAS1 Software

Control Net

Control Net





Web Browser

Reverse Request (AE or COV)

ACK Response (Confirm)

BAS2 Software

Control Net

HMI/Customized 
Client Applications

(+mini Web Services)

IBmanager 1

IBmanager 2



BMS Station 
(Browser)

 

Figure 3.9 Transport notifications by “Peer to Peer” method 

Method 2: “Piggybacking” Technology 

Another method can be called “piggybacking” technology, it is to “piggyback” 

the notification information when the IBmanager responds its client with the 

requested information as Figure 3.10. Normally, when the client requests information, 

the IBmanager will send back the corresponding response information. In this 

“piggybacking” design, besides the desired response of the request the IBmanager 

will piggyback additional notification information to client meanwhile. The 

notification information is piggybacked within the response packets. This 

piggybacked information will be received and processed by the client. In order to 

ensure the reliability, the client - piggybacked information receiver will send 



 74 

confirmation request to the IBmanager. Thus, the reverse message transferring is 

realized.  

However, the frequency of the issued requests by client are not time-deterministic, 

how does the IBmanager send notification to the client when no request is made from 

the client to the IBmanager? In order to keep the notification messages can be 

transported timely, the client is designed to initiate null-contented requests frequently 

even when it has no real information to be retrieved from the IBmanager. So a timer is 

defined, if the client has no real request to the IBmanager, a null-contented request 

message will be sent to poll the IBmanager for possible notification messages when 

this timer event is triggered. 

InternetInternet

InternetInternet

BAS1 Software

Control Net

Control Net




Web Browser

Normal Request/Blank Request

Response /w
piggybacking info

BAS2 Software

Control Net

IBmanager 1

IBmanager 2



BMS Station 
(Browser)

HMI/Customized 
Client Applications 
without http server

Confirmation Request

 

Figure 3.10 Transport notifications by Web Services “piggybacking” technology 



 75 

Comparison between these two methods 

Regardless of which method, it should have a subscription process in advance to 

let the IBmanager know which information the client is interested in. Only when this 

subscription process is settled, the IBmanager can send the correct information to the 

right receiver. 

Both these methods achieve the bi-directional information transportation. The 

advantage of “Peer to Peer” method is that the A/E and COV information will be 

conveyed without latency and no additional packet added, its disadvantage is that it 

need deploy a Web server in the client computer, which will add system load and is 

not always feasible, for example, when firewall blocks the port. The advantage of 

“piggybacking” technology is that it need not change the architecture of the system, 

need not deploy a Web server at the client computer. Its disadvantage is the latency 

the timer-triggered-request leads to. One can adjust the latency by changing the 

interval of the polling timer. Compared to the “Peer to Peer” method, the 

acknowledge process need additional request packet to ensure the communication, so 

it increases the network traffic. 

Table-2 compares the characteristics of these two methods. The choice of these 

two methods depends on the application environment. 

 

 



 76 

Table-2 Comparison of the characteristics of these two methods 

 additional Web Server / 

Service on client side 

additional traffic latency 

“Peer to Peer” 

method 

Need No No 

“piggybacking” 

method 

No yes(acknowledgement) yes(triggered 

polling) 

3.3.4 Reliability of the Reverse Communications 

By the two methods of reverse message transportation discussed above, the 

alarm/event and Change-Of-Value (COV) is transported from the IBmanager to client. 

However, the reliability of the communication must be considered. For example, if 

COV message related to one data point is missed and no more COV about the data 

point occur in a subsequent duration, the information about the data point in the client 

will not be updated to correct value in this duration. That is, the client will keep a 

wrong value until receiving the next COV massage. In order to avoid this, these two 

reverse communication methods above are designed with confirmation. After the 

sender receives the return confirmation from the receiver, it thinks the transportation 

and the process is finished, otherwise it thinks the transportation or the process fails 

and sends the packet again.  

3.3.5 Synchronous/Asynchronous Communication 

HTTP is a synchronous protocol since a client connects to a server and it submits 

some information and waits for a response. The communication based on HTTP is 



 77 

synchronous communication, since no callback method can be used to notify the 

arrival of the reply. Web Service is based on HTTP protocol; it is a synchronous 

protocol certainly. 

However, based on the reverse message transportation methods presented above, 

an asynchronous communication method of Web Service can be achieved as Figure 

3.11. When the client sends a request, the IBmanager responds with a delay-indication 

message indicated that the response is delayed and will be sent later. After receiving 

this delay-indication response, the http server process in the client can take other tasks 

and need not wait for the “true” response. When the IBmanager finishes executing the 

task and the client-requested information is ready, the IBmanager will “callback” the 

client and send back the “real” response. The “callback” can be any one of the two 

methods discussed above. Thus an asynchronous communication method of Web 

Service is achieved.  

Caller

Request

Callee

Response with delay-indication

Response by Piggybacking 
or P2P

 

Figure 3.11 Asynchronous Web Service communication 



 78 

3.3.6 Point Aggregation/Grouping 

The communication will be much more frequent if the operation related to every 

data point is sent in a standalone data packet. This will lead to great overhead for the 

network traffic. Some methods are introduced to decrease the traffic, for example, 

data points grouping and aggregation. 

Grouping 

This method is used in the “piggybacking” technology. In the design, all the 

subscribed data points with the same update interval will be grouped into one group. 

The subscribed data points with the different update interval will be grouped into 

different group when subscription. Once receiving normal request or null-contented 

request, the groups’ management software (the IBmanager) will decide update 

information of which group will be sent to the client according to its update interval 

as Figure 3.12. The group with smaller interval will send notification more frequently. 

When the condition is satisfied, the update information of all the data points in the 

group to be sent will be transferred in packets (information may be fragmented by http 

handler).  



 79 

… Data points with 
update Interval 1

…
…

…
...

Data points with 
update Interval 2

Data points with 
update Interval n

 

Figure 3.12 Grouping update information of data points by interval 

Aggregation  

Another method is to aggregate the information of data points, it is suitable for 

“Peer to Peer” method discussed before. In this method, the time to send information 

is decided by the IBmanager, in order to decrease the frequency of sending data, the 

IBmanager will not sent out the update information immediately it occurs. All the 

update information occurred within the WaitingTime (a variable which user can adjust) 

duration will be aggregated into one package to send as Figure 3.13. This aggregating 

method doesn’t maintain a steady points list, just aggregates the occurred update 

information which to be sent in the WaitingTime duration together. In this method, the 

most unfortunate data point will have a latency value of WaitingTime in maximum. If 

WaitingTime is set to zero, the packets will be sent out immediately. 



 80 

Send Send Send

WaitingTime WaitingTime WaitingTime  

Figure 3.13 Aggregating update information within a duration 

3.4 Heterogeneous Databases Integration by Web Service 

The integration platform needs retrieve configuration and historical data from 

local or other remote databases. The access to local database is easy with the flexible 

and standard interfaces. The integration of remote heterogeneous databases is a 

challenging task. This section will focus on the integration of remote heterogeneous 

databases. 

3.4.1 Remote Heterogeneous Databases 

These remote databases from which the integration platform needs retrieve data 

from are constructed and maintained by various providers with different technologies. 

Some databases are open for users to direct access with popularly-used RDMS (for 

example, Microsoft Access, Microsoft SQL Server), some databases can be accessed 

with SQL-based operation query language, some databases can be accessed by API 

invocations, and some use proprietary export tools to export to open format data (for 

example, Excel format or Access database). 



 81 

3.4.2 Integration of Remote Database by Web Service 

In order to integrate various remote databases by Web Service, a Web Service 

wrapper was developed for remote database and enables the remote database 

management software as a Web Service provider. In this design, the Web Service 

wrapper provides Web Service interface which a remote client can call as Figure 3.14. 

The Web Services interface that has been described in the WSDL file typically bind to 

an underlying program or middleware application that handles the incoming request, 

executes a database query, and returns the output of the query. It is then up to the Web 

Service wrapper to encode the output of the application in SOAP message, and send 

the message back to the requesting client.  

At the forefront of the Web Service wrapper is the SOAP engine for handling 

incoming SOAP request messages. Web Service wrapper demarshalls and decodes 

SOAP messages, and forwards the decoded tasks to the “DB Query Module” that 

executes corresponding tasks on the database using an ODBC driver. After executing 

an SQL statement through ODBC, the data return is passed back to Web Service 

wrapper from the “DB Query Module”, to where the data is marshalled into a SOAP 

response message and return to the Web Service requester [73]. 



 82 

W
eb

 S
er

vi
ce

 R
eq

ue
st

er

SOAP 
Request/
Response W

eb
 S

er
vi

ce
 W

ra
pp

er

D
B 

Q
ue

ry
 M

od
ul

e

Database

 

Figure 3.14 Architecture for accessing database by Web Service wrapper 

3.4.3 Data Compress for Web Service Transportation 

On some Web Services request to database, the SOAP response could be a very 

large dataset. For instance, after it is serialized to XML, a dataset that contains all 

columns of the table "orders" from sample Northwind database in the SQL Server 

installation is about 454 KB. If one creates an application that retrieves this dataset by 

invoking a Web Service, the SOAP response would contain all of that data. The 

transfer of data through a network, and especially the Internet, the bandwidth 

associated with data transfer remains a bottleneck in many distributed systems. One 

solution to this problem is to acquire more bandwidth, but this is not always practical. 

Another solution is to minimize the amount of data to be transferred by compressing it. 

When the content is text, its space can be reduced up to 80% after compressing. This 

means that the bandwidth requirements between consumers and servers decrease at an 

analogous percentage [74]. Since dataset is serialized to XML and XML content is 



 83 

text, the compressing can greatly reduce the data to be transferred. 

There are different ways to compress SOAP messages. SOAP Extensions is an 

option for this aim. SOAP extensions is a Microsoft ASP.NET WebMethod 

interception mechanism that can be used to manipulate SOAP requests/responses 

before they are sent on the wire. Using SOAP extensions, the size of SOAP messages 

traveling on the wire can be reduced greatly when a consumer invokes a method from 

a Web Service. Developers can write code that executes before and after the 

serialization and deserialization of messages.  

In most cases SOAP requests are much smaller in size than SOAP responses (for 

example, a large dataset), the increase in performance resulting from compressing 

SOAP requests would be insignificant, so only compressing SOAP responses is 

considered in the example below. In order to compress our Web Service's SOAP 

responses, two things need to be done: 

 Compress the SOAP response message after serialization on the server 

 Decompress the SOAP response message before deserialization on the client 

As Figure 3.15 on server side and AfterSerialize stage the SOAP response is 

compressed and travels on the wire as a compressed SOAP message, on client side 

and BeforeDeserialize stage the compressed SOAP message is decompressed in order 

deserialization process to follow successfully [74]. 



 84 

 
SOAP 

message

XML

SOAP 
message

XML

SOAP 
message

Compressed

SOAP 
message

Compressed

SOAP 
message

XML

SOAP 
message

XML

SOAP 
message

XML

SOAP 
message

XML

SOAP 
message

XML

SOAP 
message

XML

Proxy
Object

XML Web
service object

SOAP
request

Network

SOAP
response

Network

Client
Web 
Server

BeforeDeserialize:
Decompress SOAP

AfterSerialize:
Compress SOAP

SOAP 
message

Compressed

SOAP 
message

Compressed

Phase2
Deserialize

Phase3
Serialize

Phase4
Deserialize

Phase1
Serialize

 

Figure 3.15 SOAP message compressed on AfterSerialize stage (server side) and 

decompressed on BeforeDeserialize stage (client side) 



 85 

CHAPTER 4 OBJECT MODEL OF THE IBMANAGER 

4.1 Overview of System Architecture 

4.1.1 Software Architecture 

Figure 4.1 illustrates the component architecture of IBmanager platform. The 

middleware platform can be divided into several parts, i.e., the Drivers Pool, the 

Database Agent, Application Server, Web Services interfaces and Web Server, Client 

or BMS HMI.  

Client (Other IBmanager or 
Customized Application)

Third-Party Software

Web Server

Web Services Interface

Controller

Drivers Pool

Application Server
(BMS Functions | Operation Logic)

Unified IB 
Integration Unit 

(IBmanager)

SOAP (XML/Web Services)

Browser

Other 
Interface

Unified Data Point Objects

HTML + 
XML/Web Service

Local DB

Remote DB

DB 
Agent

 

Figure 4.1 Component architecture of the IBmanager 

Driver Objects are responsible to manage various drivers, realizing real time 

data access, and interfaces to third-parties applications. In the Drivers Pool, BASs 



 86 

from different manufacturers and with various protocols are connected. The 

connections may be conducted by various communication ways, including:  

 Communication interfaces or APIs provided by BAS software or 

 Protocol driver accompanied with devices or  

 Customized communication interfaces converted from other drivers or 

other interfaces.  

Usually the third-parties’ BAS software provides, at least, one high-level 

interface, including OPC server, DDE, COM/DCOM or other interface. For example, 

Honeywell EBI providing OPC Server interface [80], LNS providing DDE interface 

[83]. All these high-level interfaces can be connected into the IBmanager. 

A unified Data Point Object model is presented. All the real time data read from 

Driver Object are encapsulated as the unified Data Point Object model, Data Point 

Objects are the core part of IBmanager. It supervises the real time data value from 

sub-systems/devices, transfer events/messages to BMS function objects to achieve the 

high-level BMS functions, including Schedule Object, Interoperation Object, 

Alarm/Event Object, Session Object, and Database Agent Object. For example, values 

of the data point are recorded into a historical database if the data points are 

configured as history-recording data points.  

Application Server (App. Server) realizes various BMS functions and operation 

logic. BMS function components executes the tasks of real time data access, alarms & 

events process/dispatch, historical data access, scheduling, trending and scripting 

logic. All these functions are encapsulated as different objects.  

Database Agent provides a unified interface to access local database and remote 



 87 

database. It shields the differences between local database and remote database to 

provide a unified access interface. 

The functions provided by the IBmanager for public invocation are wrapped as 

public Web Services interfaces which can be invoked by other applications (HMI or 

other client applications) or other chain-type used IBmanager installations.  

The Web Server deployed in the IBmanager is not only used for web page 

storage and access, but also used for http protocol parser since transportation method 

for Web Services adopted here is http protocol. It is responsible to parse the Web 

Service request from http messages and forward the request to the Application Server. 

These Web Services interfaces are public to provide services. The Web pages in the 

Web server provides Web human machine interface (HMI) to users, the components 

in the Web pages communicate with the IBmanager by Web Services technology. 

4.1.2 Object Model 

In typical BAS/BMS, several important functions should be implemented, such as 

real time data access, alarm/event, historical data, and trending, scheduling, network 

management [7]. In this design, the function blocks of the IBmanager are 

encapsulated as objects as Figure 4.2. The communication with sub-systems/field 

devices is accomplished by Driver Objects, information management of data point is 

accomplished by Data Point Objects, historical data access is managed by Database 

Agent Objects, alarms & events is dispatched and managed by Alarm/Event 

Objects, interoperation is charged by Interoperation Object, scheduled tasks are 

arranged by Schedule Objects, the communication with clients is responsible by 



 88 

Session Object. Figure 4.2 shows functions blocks and objects in this middleware 

platform. 

Database

IBmanager

Driver Object Driver Object Driver Object Driver Object… … …

Schedule Object

Web Service Interface

Web Server

Scripting

Session Object

Interoperation Object

Data Point
Object

Unified Data Point 
Object

DB Agent Object

Alarm/Event Object

Session Object….

Data Point
Object

Data Point
Object

Data Point
Object

…

 

Figure 4.2 Object model of the IBmanager 

4.2 Driver Object Model 

4.2.1 Driver Object Model 

The driver is encapsulated as object as Figure 4.3. The Driver Objects can be 

generated dynamically as need. Adding driver for new sub-system is easy by creating 

and loading a Driver Object as the driver specification (Appendix A) defined. 

Meanwhile, user can unload a Driver Object easily when the sub-system 

corresponding to this driver is not connected any longer. This will avoid unnecessary 

overload of the IBmanager. By the Driver Object, various data points from diverse 



 89 

products or protocols are converted to the unified Data Point Object model. 

Add/Delete/Edit

Read/
Write

Configure Points

Timer

Return Value 
/Ack

Data Point Objects

Browse

Browse Raw Items

Read/Write

Point-Data Point Object 
Mapping

Map to 
Data Point Objects

Read/Write Device

 

Figure 4.3 Driver Object model 

4.2.2 Elements of Driver Object 

Configure Points 

Besides the method to read/write the value of data points, the Driver Object 

should support the methods to Browse/Add/Edit/Delete data points as well. The 

browse method is to browse the raw data points of the connected systems/devices. 

The original BAS or BMS may have a great collection of data points, usually the new 

integration software is only interested in part of the entire data point collection. From 

the data points browsed, users can select data points interested and add them to 

IBmanager system with “Add data point” method, at the same time ignore the data 

points which users don’t care about. This keeps this system is flexible and scalable. In 



 90 

order to meet the users’ habit, users can assign an human-friendly alias for the added 

points, after that, the high level operations will be conducted to this alias instead of 

raw item name. Users can edit/delete the added data points by “Edit/Delete data 

points” methods as well.  

Mapping of Points - Data Point Objects and Value Update 

In traditional way, when the Driver Object receives the request related to its data 

point, it will search the database (if the values of data points are stored in database) to 

get the value of the data point or just begin to read the value from field devices. 

However, the response performance from the database query or field devices may be 

not good. It will be a serious problem when the driver maintains a great volume of 

points.  

In this design, the Driver Object will maintain a memory collection table, which 

maps the selected data points’ name to Data Point Objects. The current values of data 

points are saved in the corresponding Data Point Objects. In order to keep the values 

update, timers in the Driver Object are used to trigger the event to update the value of 

data points frequently, the updated values will be saved to the Data Point Objects in 

advance. Usually the upper-level functions or objects will read the values of data 

points saved in the Data Point Objects, instead read directly from the 

subsystems/devices by drivers. This will leverage the speed of the operations. In this 

model, the timer as a polling timer is used to trigger the “read data points” operation 

to update the value of data points frequently.  



 91 

Besides this timer-triggered reading in advance, “ReadDevice” method of Data 

Point Object is defined as well for direct access to the data source system as an option. 

Data Point Object can issue out a request to read value from the field 

device/sub-systems directly if necessary. 

4.3 Common Data Point Object Model 

A common Data Point Object model is designed as the intermediate between 

driver layer (Driver Objects) and upper layer. The different data models from all 

sub-systems are converted into the common Data Point Object model. These common 

Data Point Objects are the core part of IBmanager; all the high level functions are 

based on these Data Point Objects. The high level functions include scheduling, 

interoperation, alarm/event, database access, session management. The 

communication between Data Point Objects and high level function objects is mainly 

conducted by events. Usually, trigger term is set in the Data Point Object by high 

level function objects, the Data Point Object fires event when the trigger term meets. 

The event will be captured and handled by the corresponding high level function 

objects. 

4.3.1 Data Point Object Model 

The Data Point Object maintains the configuration information of the data point, 

reads/writes values triggered by the timer in the Driver Object, raises events, and 

dispatches the event messages to high-level BMS functions objects.  



 92 

The Data Point Objects are instantiated and maintained by the corresponding 

Driver Object. When the Driver Object is constructed, all these Data Point Objects 

belonged to the Driver Object are instantiated by the Driver Object according to its 

configuration table. The Driver Object will invoke “ReadValue” method of Data Point 

Objects frequently with triggered by a polling timer, thus the values of these data 

points are kept updated. The main communication methods to the high-level function 

objects are sending events/messages to these high-level objects when they subscribe 

the corresponding events/messages.  

Figure 4.4 shows the application model of the Data Point Object. There exists 

communications between the Data Point Objects besides the communication between 

Data Point Objects and upper layer entities. These communications are used to realize 

the interoperation/interlock among the Data Point Objects. One Data Point Object can 

operate another Data Point Object when necessary. 

Data Point 
Object

Driver Object

….

Upper Layer Entity

Data Point 
Object

 

Figure 4.4 Convert data of various protocols to common Data Point Objects 



 93 

4.3.2 Elements of Data Point Object 

Every Data Point Object contains properties, methods, events defined as Figure 

4.5. 

Properties

Value
Point Name

…
isClientSubscribed

isAlarmArmed
InteroperationTerm

isHistoricalPoint
IsPartOfVirtualPoint

Methods

Read/Write Point
ReadDevice

…
SetInteroperationTerm (term)
SubscribedByClient (Client)

SetAlarmEvent (term)
SetVirtualPointValue (value)

Events

ValueUpdate
InteroperationEvent

Subscribe-ValueUpdate
AlarmEvent-Fire

Historical-ValueUpdate
NotifyVPUpdate(Value)

 

Figure 4.5 Common Data Point Object model 

Every Data Point Object has properties and events as below:  

Properties: 

Value 

Unit 

Point name 

Pre scale 

Deadband   //deadband for value-update event firing  

Alias Name   //a human-friendly name 

Permission   //only readable or readable/writeable 

 

InteroperationTerm  //Interoperation event will be fired when the term meets 

IsClientSubscribed  //the Subscribe-ValueUpdate event is fired when it is 

true and the value-change is beyond deadband 



 94 

IsAlarmArmed  //the alarm/event will be fired when the AlarmTerm is met 

and this property is set true 

AlarmTerm   //the term for firing AlarmEvent-Fire event 

IsHistoricalPoint  // whether the data point is of history-recording 

HistoricalInterval   //the interval to record this data point 

IsPartOfVirtualPoint //a NotifyVPUpdate event will be fired or synchronous 

method to be executed to calculate the virtual point when this property is true and the 

data point has an value update 

 

Methods: 

Read Point 

Write Point 

ReadDevice    //read data point directly from sub-systems/devices 

SetInteroperationTerm (InteroperationTerm)  //the InteroperationTerm may be 

composite term 

SubscribedByClient (Client) 

SetAlarmEvent (AlarmTerm)   //the AlarmTerm may be composite term 

SetVirtualPointValue(Value)   //synchronous method to update virtual data point 

 

Events: 

ValueUpdate 

InteroperationEvent 

AlarmEvent-Fire 

Subscribe-ValueUpdate 

Historical-ValueUpdate  //event to notify to record historical data 

NotifyVPUpdate(Value)  //event to notify virtual data point to re-calculate 

In order to easily introduce these elements, the main elements can be categorized 

to groups according to the functions. 

i. General/Basic: 



 95 

The object properties Value, Unit, Point name, Pre scale, Deadband, Alias Name, 

Permission and event ValueUpdate are for generic use.  

Deadband and ValueUpdate are used to trigger value-update notifications. The 

event ValueUpdate is the basic event of some high-level events which includes 

“InteroperationEvent”, “Subscribe-ValueUpdate”, “NotifyVPUpdate(Value)” and 

“Historical-ValueUpdate”. 

ii. Interoperation: 

The “SetInteroperationTerm (InteroperationTerm)” and “InteroperationEvent” are 

used to trigger to execute the interoperation action. On initialization, the 

Interoperation Object will invoke the “SetInteroperationTerm (InteroperationTerm)” 

of interoperation-related data points to set the term to trigger interoperation. After that, 

when the term is satisfied, the “InteroperationEvent” event will be fired. The 

Interoperation Object will catch the event and make the corresponding operations. 

iii. Client Connection Session: 

The “SubscribedByClient (Client)” and “Subscribe-ValueUpdate” is used to 

notify the ValueUpdate to the Session Object. Once a client connects to the 

IBmanager, a Session Object will be instantiated. This Session Object will invoke the 

“SubscribedByClient (Client)” of related data points to subscribe the Value-Update 

event. After that, when the general Value-Update is fired, the Data Point Object will 

judge whether some Session Objects have subscribed this event, if yes the 



 96 

“Subscribe-ValueUpdate” event will be fired and processed by the Session Object. 

Thus the Session Object will know the Value-Update of the interested data points only. 

Its advantage is that every session will only monitor the data points it is interested in. 

This will greatly decrease the system load and net traffic. 

iv. Alarm/Event:  

The “SetAlarmEvent (AlarmTerm)” and “AlarmEvent-Fire” are used to set the 

alarm/event term and fire alarm/event when the alarm/event term is satisfied. On 

initialization, the Alarm/Event Object will invoke the “SetAlarmEvent (AlarmTerm)” 

of alarm/event-related data points to set the term to trigger alarm/event. After that, 

when the term is satisfied, the “AlarmEvent-Fire” event will be fired. The 

Alarm/Event Object will capture the event and make the corresponding operations, for 

example, judging whether a combinational alarm/event term is met, distribute the 

alarms/events to related clients. Every alarm/event has corresponding receivers, so 

every client can subscribe only the alarms/events it cares about. 

v. Historical Recording: 

“IsHistoricalPoint”, “HistoricalInterval“ and “Historical-ValueUpdate” are used 

to notify the Database Agent Object to record the value of the data point. On 

initialization of Database Agent Object, the Database Agent Object will set the 

“IsHistoricalPoint” property to “True” and “HistoricalInterval“ for the historical data 

points. After that, when there is general ValueUpdate, the historical Data Point Object 



 97 

will judge the time and interval to decide whether the “Historical-ValueUpdate” event 

will be fired. If the “Historical-ValueUpdate” event is fired, the event will notify the 

Database Agent Object to record the value.  

vi. Virtual Data Point: 

Virtual Data Point is a kind of Data Point Object whose value is based on the 

calculation of the values of other data points existed. The Virtual Data Points have the 

same elements with the common Data Point Objects but without corresponding 

physical control or monitor data points. It is useful for some intermediate calculation 

results, for example, enthalpy is the multiply of humidity and temperature. So its 

value is related to other data points and should be re-calculated when the related data 

points have value-update event. “IsPartOfVirtualPoint (VirtualPoint)”, 

“SetVirtualPointValue(Value)” together with “NotifyVPUpdate(Value)” event  is used 

to automatically update the value of virtual data point. It will be discussed in details 

later. 

4.3.3 N+m Architecture 

By transforming the different data points from diverse systems into normalized 

Data Point Objects, the IBmanager provides a common data format for upper layer 

applications. The data format what the upper layer applications deal with is only the 

common data format. When upper layer applications with number N are deployed, it 

forms an N+m architecture that provides substantial benefits over traditional 



 98 

drivers-based integration methods that suffer the complexity of N*m architecture as 

Figure 4.6. Any sub-system/field device normalized by the IBmanager immediately 

becomes compatible with any other sub-system connected to the platform. This 

benefit provides true inter-system interoperability and uniform data presentation to 

enterprise applications. As a result, N+m architecture greatly decreases development 

and maintenance labor of developers and engineers. 

1 2 3 m

1 N

Unified Data Points

Integration Applications

BACnet LonMark Modbus Proprietary

Traditional Integration Method Integration Method based on 
Unified Data Point Object

….

…. 1 2 3 m
BACnet LonMark Modbus Proprietary

….

1 N

Integration Applications

….

 

Figure 4.6 Architectures of traditional and designed integration methods 

4.3.4 Event-driven Model among Components 

Usually the high-level function components have two different methods to know 

the update of the values of data points. In one method, the high level function 

components poll the drivers about the data point value frequently. In this case, the 

IBmanager maintains a great collection of data points and polls the values of data 

points frequently as the configured intervals, regardless of whether the values are 



 99 

changed. This method will greatly increase the burden of computer. 

The second method uses an event-driven model instead of polling model. Every 

Data Point Object in the Driver Object has a “deadband” property. Only when the 

value of the Data Point Object has changed beyond the defined “deadband”, the Data 

Point Object will fire an event named “ValueUpdate (point name)” event. The value 

changed within the scope of deadband will not fire the event. These “ValueUpdate 

(point name)” events then trigger various specific events when the trigger terms 

configured in the Data Point Objects are met, such as 

“InteroperationEvent”, ”Subscribe-ValueUpdate”, “AlarmEvent-Fire”, 

“Historical-ValueUpdate”. These specific events trigger the specific operations in 

high-level function objects. Main communications among the components in the 

IBmanager are conducted by events/messages. 

The trigger terms of the Data Point Objects are configured by high level function 

objects. This is similar to “subscribe”, when one high level function object cares 

about specific information of a data point, it will “subscribe” or “declare” what it is 

interested in. when the term is met, the Data Point Object will notify the high level 

function objects what happens. 

4.3.5 XML Hierarchy and Object Encode 

XML is easy to be used to encode the hierarchy data. The object can be serialized 

as XML message to transfer. The elements of object can be coded as xml sub-element, 



 100 

if this element is also an object, then it has also some sub-element. Below is an 

example of serializing object to XML message. 

Class Data 

{ 

  int value; 

  String name; 

  Date updated; 

} 

This object can be serialized as: 

<Data> 

  <Value style='int'>123</Value> 

  <Name>Temperature</Name> 

  <Updated>2006-10-04T17:23:23.123+0800</Updated> 

</Data> 

That’s very natural encoding method. On the counterpart side, the XML message 

will be decoded to the original object. By this method, complex data structure as 

object can be transferred as XML messages.  

4.3.6 Virtual Point Object/Data Fusion 

The Virtual Data Point Object can be used to realize complicated calculation and 

some kind of data fusion. More importantly, the Virtual Data Point Object is identical 



 101 

to common Data Point Object, it can be manipulated alike common Data Point 

Objects by other part of the IBmanager, like display and alarm/event. 

On initialization of Virtual Data Point Object, the Virtual Data Point Object will 

set the “IsPartOfVirtualPoint” property of related data points composing the Virtual 

Data Point Object to “True” and pass in the name of the Virtual Data Point Object. 

After that, the value-update process of the Virtual Data Point can be conducted in two 

different ways. One is synchronous operation method as Figure 4.7, when the related 

data points fire general ValueUpdate, they will invoke “SetVirtualPointValue (Value)” 

method to transfer their changed values to the Virtual Data Point if 

“IsPartOfVirtualPoint” is true. The Virtual Data Point will recalculate its value 

according to the updated values of the related data points. Thus, the value of the 

Virtual Data Point will be updated when any related data points have fired 

ValueUpdate event. This method is just like a “callback” mechanism. The advantages 

are more direct and without events being processed by a lot of Data Point Objects. 

Virtual Point Object

Point3.Value=
Point1.Value+Point2.Value

Data Point Object 1

IsPartOfVirtualPoint(Point)
SetVirtualPointValue(Value)

subscribe

subscribe

“callback”

“callback”

Data Point Object 2

IsPartOfVirtualPoint(Point)
SetVirtualPointValue(Value)

 

Figure 4.7 Value update of Virtual Data Point Object 



 102 

The second method is event notification method based on 

“IsPartOfVirtualPoint(VirtualPoint)” together with “NotifyVPUpdate(Value)” event. 

When the related data points fire general ValueUpdate, “NotifyVPUpdate(Value)” 

event will be fired, the “NotifyVPUpdate(Value)” event will be caught by the Virtual 

Data Point, and the Virtual Data Point will trigger the re-calculation of its value. 

4.4 Schedule Object Model 

The unified Schedule Object maintains all the scheduling tasks with Schedule 

Table as Figure 4.8. The Schedule Table maintains a collection to contain all the 

trigger time – task pairs and task repeat information. These pairs and task repeat 

information are defined by users and stored in database. When the IBmanager starts, 

they are read into Schedule Table of this Schedule Object as Figure 4.9. The time gap 

to the earliest trigger time in this table is set as interval of the timer. Thus, the interval 

of the timer is dynamic, the timer will sleep until the earliest trigger time without not 

necessary event- firing. When the timeout event of timer is fired, the corresponding 

task is activated. After one trigger time – task pair is fired with event, the new trigger 

time of the task will be recalculated as the repeat parameter if it has. The time gap of 

the new earliest trigger time is set to the timer as interval. Thus, only one timer is kept 

for all the scheduled trigger time – task pairs. Since all the schedules uses the same 

sole timer, and it uses dynamic interval method instead of fixed interval, this method 

can decrease overhead of the system greatly.  



 103 

(Trigger time-Task-Repeat)

Configure

Schedule Table

Scheduled 
Command

Trigger Event Configure Schedule

Timer

 

Figure 4.8 Schedule Object model 

Trig Time n+1 Trig Time n Trig Time 1….

Timer

Operation n+1 Operation n Operation 1

trigger time –
task pairs 
Collection

events

 

Figure 4.9 Timing model of Schedule Object 

The time restrict of the timer is 65535ms (about 65s) in Windows, however, the 

interval of the schedule may be a long time, so a multiply number is defined for long 

interval. This number will decrease one when the timer fires short interval event. 

When the number meets zero, the timer will fire long interval event. So the long 

interval is multiply number times of the short interval. 



 104 

The overall task is finished in the Schedule Object. In order to provide a chance 

for some possible higher layer operations, such as user-defined scripts, these events 

will be thrown outside the Schedule Object and can be captured by higher layer 

functions. 

4.5 Alarm/Event Object 

In the Alarm/Event Object as Figure 4.10, the Alarm/Event Term Table keeps the 

trigger terms of alarms/events, which are loaded from database at startup. They can be 

configured and modified by users’ configure commands. After modifications, the 

updated information will be saved into the Alarm/Event Term Table and database. 

Event Handler

Configure
Alarm/Event Term Table

AlarmEvent-Fire 
from Data Point 

Object

ConfigureAlarm/Event
to Session Object

To Database

Compare the term

Load/Write

 

Figure 4.10 Alarm/Event Object model 

Alarm/Event Object sets the “isAlarmArmed” property and invokes 

“SetAlarmEvent (term)” of Data Point Object to configure its trigger term according 



 105 

to the Alarm/Event Term Table. The Alarm/Event Object monitors AlarmEvent-Fire 

event from Data Point Object, when the event is fired and captured, it will save the 

information of the event into the Alarm/Event Term Table. Since the AlarmEvent-Fire 

from Data Point Object is only related to one Data Point Object, however the 

Alarm/Event term may be composite and relate to more than one data point, so it need 

check other conditions to decide whether the composite Alarm/Event term is met. If 

the Alarm/Event term is met, an Alarm/Event will send to corresponding Session 

Object. At the same time, this Alarm/Event will be logged into database.  

4.6 Interoperation Object 

4.6.1 Two Different Interoperation Environments 

The interoperations may occur at two kinds of environments. One occurs between 

the BASs managed in one IBmanager installation as Figure 4.11, another is across 

different IBmanager installations as Figure 4.12. These two different application cases 

are described as below.   

The first case is the interoperation among sub-systems which are connected to the 

same IBmanager installation. This interoperation is realized internally by the 

IBmanager. The second case is the interoperation among IBmanager installations, it 

may be across the Internet, involving Web Service communication. However, based 

on the unified data model and the unified communication interface, the interoperation 

methods in these two cases are realized identically. 



 106 

InternetInternet

InternetInternet

BAS1 
Software

Control Net

BAS1 
Software
BAS1 
Software

Control Net

Control NetControl Net

IBmanager 1



 SOAP Messages

SOAP Messages

Control NetControl Net
BAS2 
Software

Control Net

BAS2 
Software
BAS2 
Software

Control Net

Web Browser

HMI/Other IBmanager/
Customized Client



BMS Station 
(Browser)

IBmanager 2

 

Figure 4.11 Interoperation between sub-systems within the IBmanager 

InternetInternet

InternetInternet

BAS1 
Software

Control Net

BAS1 
Software
BAS1 
Software

Control Net

Control NetControl Net



 SOAP Messages

SOAP Messages

Control NetControl Net
BAS2 
Software

Control Net

BAS2 
Software
BAS2 
Software

Control Net

Web Browser 

BMS Station 
(Browser)

HMI/Other IBmanager/
Customized Client

IBmanager 2

IBmanager 1

 

Figure 4.12 Interoperation across IBmanager installations 



 107 

4.6.2 Interoperation Object Model 

How does IBmanager know which term will result in interoperation operation? 

Traditional method is comparing the every interoperation trigger term with the real 

situation as Figure 4.13, even the data points are not related to interoperation trigger 

term. It will consume much CPU power and lead to bad performance if this method is 

used in great project with a great amount of points. So a new Interoperation Object 

model is defined.  

Pointy=xPointn=xxn

…

…

Point5=xPoint2=On2

Point4=xPoint1=31

OperationTrigger 
Term

No.

Pointy=xPointn=xxn

…

…

Point5=xPoint2=On2

Point4=xPoint1=31

OperationTrigger 
Term

No.

Point2=OnPoint1=22

Compare every point with 
Interoperation Trigger Term Table

Interoperation Trigger Term Table

 

Figure 4.13 Traditional polling method for interoperation trigger term 

The new design is realized by cooperation between Data Point Object and 

Interoperation Object as Figure 4.14. It adopts an event-driven method. Every Data 

Point Object has an “interoperation-term” property and “InteroperationEvent” event. 

When an Interoperation Object is defined, it will set the “interoperation-term” 

property of the Data Point Object by “SetInteroperationTerm(term)” invocation as 

Figure 4.15. Only when the “interoperation-term” of the Data Point Object meets, it 



 108 

will fire an event named “InteroperationEvent”. The Interoperation Object will 

capture this event and check the corresponding interlock and make the desired action 

or just store the value and wait for other interoperation conditions to meet (when the 

trigger term is composite term). This will decrease greatly the work load of the 

IBmanager. 

(Interoperation Term-Action)
Interoperation Table

Interoperation 
Action

Event Handler

InteroperationEvent

Data Point Object

Set Term for 
Interoperation

 

Figure 4.14 Interoperation Object Model 

Point1

Pointy=xPointn=xxDPn

…

…

Point5=xPoint2=OnDP2

Point4=xPoint1=3DP1

OperationTrig TermData Point

Pointy=xPointn=xxDPn

…

…

Point5=xPoint2=OnDP2

Point4=xPoint1=3DP1

OperationTrig TermData PointSet Trigger 
Term Property

Trigger Event

Not Interoperation 
Related Data 
Point Object

Term:Point2=On

Interoperation Related 
Data Point Object

Table in Interoperation Object  



 109 

Figure 4.15 Event-driven method for interoperation trigger 

The interoperation trigger term table will be saved in a database, but it is kept in 

memory to facilitate the comparison. In VB, collection is used to maintain this table, 

the collection can automatically map the trigger-terms to the actions. The collection is 

kept in memory, no need to query to database frequently.  

4.7 Database Agent Object 

Database is the important part of the IBmanager to store system configuration 

information and historical data. Every BAS to be integrated has its own database. 

These databases are distributed on other computers with totally different architectures, 

sometimes on different locations geographically. So the IBmanager need exchange 

data with the remote heterogeneous databases. Section 3.4 discussed the 

communication technologies on local database and remote database. However, when 

the communication objectives come to several databases, the queries will be sent out 

to a few databases, engineers/developers need to deal with interfaces to a few 

databases. These will increase the difficulty on system operations. It is tougher 

especially when across-databases query, for example, query the power consumption 

among various buildings located at different cities. 

In order to facilitate the cross-databases query and provide a common query 

interface for users, a Database Agent Object and several local databases are designed. 



 110 

4.7.1 Database Agent Object Model 

The Database Agent Object model is designed as Figure 4.16. There is a 

Historical Points Table maintained in the Database Agent Object, which indicates the 

data points to be recorded locally. This Historical Points Table is saved in the central 

database and been loaded to Database Agent Object on initialization. On initialization, 

the Database Agent Object will set the “isHistoricalPoint” property of the 

corresponding Data Point Object to “True” according to the Historical Points Table. 

When this property is set “True”, the Data Point Object will fire 

“Historical-ValueUpdate” event when the Data Point Object has value-update beyond 

the deadband (if deadband is set). With the events and its input parameters, the 

information of historical data points is recorded into the historical database. The data 

points which are not historical data points will not fire this kind of events, their values 

will not be recorded into database.  

Event Handler

Configure

Historical Points Table

Historical-ValueUpdate
Events

Recordset
Command

Query

DB Interface

Set properties of Data 
Point Objects

Central Database

WS Interface Remote DatabaseDB Agent

Cache Database

 

Figure 4.16 Database Agent Object model 



 111 

4.7.2 Local Central Database 

A local central database is installed to store the historical data with the defined 

format. The data in this database has two sources. One is the historical data of the 

local historical data points defined in the IBmanager. Another is the historical data 

retrieved from remote historical databases on the other BASs. User can manually 

download the historical data from remote databases to local central database by some 

transfer methods provided. In some transfer methods, user can browse the historical 

data points and decide which data point will be selected to transfer. The data imported 

of every data point will be stored as a standalone table in the central database, whose 

table name is named related to the name of the original data point. So the original 

remote database structure will not be kept in the local central database. After this 

operation, all the queries related to this data point will be forwarded and executed in 

the local central database first. However, the imported/downloaded historical data will 

not be updated automatically and continually, so users must keep in mind the data 

may be not the latest. These manually-downloaded data stored in local central 

database may accelerate the speed of query process to remote historical data together 

with the local cache database discussed as below. 

4.7.3 Local Cache Database 

Even with narrowing the query conditions and data compressing, the queries to 

remote database are time-waste task, especially frequent query. Generally there may 

be much repetitive data between the responses of different historical data queries. So 



 112 

it is necessary to cache the return data to facilitate the query process. In order to 

achieve this, a local cache database is used to cache data from remote database as 

Figure 4.17. This cache database constructs and maintains one table for every cached 

data point, regardless which remote database and table it is from. Only historical data 

acquired by consecutive time query is cached, that is, the query “select A.Dp1.Value 

from DB1.Table as A within #Time1# and #Time2#” will be cached, the query “select 

A.Dp1.Value from DB1.Table as A where A.Dp1.Value= B.Dp1.Value” will not be 

cached since the data may not be consecutive in the original database. 

Return Data
Create/
Add Cache

Query Data
Query to Cache

Remote DB Interface

DP1 Historical
Data Table

DP1 Segment
Management Table

Cache Database

DP n Historical
Data Table

…

….

DP n Segment
Management Table

Response from Cache

 

Figure 4.17 Caching remote historical data 

Cached Data Segmentation and Management 

Cached data may be obtained from return data of many times’ queries, the data 

from different queries may be not consecutive in the original database. So the cached 

data is divided into a few segments within which the records are consecutive 

originally. All these segments belong to one data point are saved in the same table. In 

order to mark and manage these segments, Segmentation Management Table for 



 113 

cached data point is defined to maintain the data segments for every data point as 

Figure 4.17. The segments bounder is decided by the start and end time of the queries, 

regardless the timestamps of original data are consecutive or not. That means, even if 

the original data is not time-consecutive, they are in the same segment if they return in 

a query with a sole time segment condition. 

When a query has data return, if the related data point has not been cached with 

historical data, a new cache historical data table will be created. If the data point has 

been cached before, the Database Agent Object will compare the start and end time of 

every segment, and decide whether adding some new data to the cache as Figure 4.18. 

So the cache will keep all the maximum historical data about the queried data point. If 

return data for a new query covers the discontinued time segment, the new data will 

be inserted into the corresponding time segment and amend the data gap. After 

amending, the discontinued segments may be converged to become one new 

consecutive segment.  



 114 

:

T2

T3

:

T5

:

:

:

:

:

:

:

T4

T6

T1

:

T2

T3

:

T5

:

:

:

:

:

:

:

T4

T6

T1

Segment1

Segment2

Segment3

:
:
:

Amend 
the gapNew 

Queried 
Data

Query

Entire Cache Hit

Query

Partial Cache Hit

Query for un-cached data

Query

No Cache Hit  

Figure 4.18 Principle of caching and querying data  

Entire/Partial Cache Hit 

When Database Agent Object queries the cached table, it will compare the start 

and end time of all segments in the cached table with the query condition as Figure 

4.18. If the start and end time of any queried segment is within the duration of the 

cached table, an entire cache hit is achieved. If only one of start time or end time of 

any queried segment is located within the duration of the cached table, a partial cache 

hit is achieved. Otherwise, cache fit fails. In partial cache hit case, the time term in the 

query will be modified and narrowed to the un-cached part. The query for un-cached 



 115 

part is then directed to the original remote database. This method increases greatly the 

chance of cache hit, and decreases the network traffic. 

4.7.4 The Common Database Access Interface 

Database Agent Object is designed responsible for the database access and 

maintenance. The information in database is mainly configuration setting and 

historical data in local or remote. User can access the data whether the queried 

database is local or remote database although the query methods may be totally 

different. The local database is constructed and maintained by the IBmanager, the 

IBmanager has absolutely knowledge and permission to query and operate local 

database. So it is easy to access the local database. The access to remote database is 

totally different. The remote databases are constructed and maintained by various 

providers with different technologies. 

However, a common database query method is achieved by Database Agent, user 

can query the database no matter that the database is local or remote just like the 

database is a local database as Figure 4.19. Thus the operations to these 

heterogeneous databases can be unified. All the queries to databases are received by 

this agent, and then are distributed by this agent to target databases. The compositive 

query related to several databases will be decomposed to several queries to several 

single databases by the agent. The return data queried from these physical databases 

will be recomposed in the agent and then sent to the requester.  



 116 

D
B

 Q
uery (C

aller)

Q
uery D

ecom
pose / R

esponse C
om

pose

D
B

 Interface
D

B
 Interface

D
B

 Interface

Central
Database

Remote
Database

Remote
Database

D
B

 Q
uery M

apping

Cache 
Database

Query 
the mapping

D
B

 Interface

Database Mapping Table 
in Central Database

 

Figure 4.19 Architecture of Database Agent 

Map Abstract DB Query to Queries to Physical DB 

Users can issue out simple abstract query to the agent which only relates to the 

data point name, not assign any database name, although the query may involve to 

different databases. In order to finish the query, the query needs to be redirected to 

specific physical databases. For example, user can issue out a query “select Dp1.Value, 

Dp2.Value where Dp1.Value =Dp2.Value”, in this query, user needn’t assign which 

database and which table Dp1, Dp2, Dp3 are in, they just simply think they are in the 

same database. In the “DB Query Mapping”, the data points are mapped to the real 

physical databases and tables as Figure 4.19. For example, the query above will be 

mapped as “select A.Dp1.Value, B.Dp2.Value from DB1.Table as A, DB2.Table as B 

where A.Dp1.Value =B.Dp2.Value”, in this stage, the data points are specific to 



 117 

specific database and specific table.  

A mapping table named as “Database Mapping Table” is created in local central 

database to maintain the mapping relationship of data points with the corresponding 

historical database as Table-3. With the help of this table, the agent accomplishes the 

mapping and redirecting. This mapping table is firstly constructed by scanning the 

historical data points and records in the remote and local databases, some 

measurements are taken to make this mapping table updated. In one situation, when a 

new historical recording for a data point has been added in the remote database, user 

need add this record entry manually or rescan this database since the IBmanager have 

no idea about this change automatically. In another situation, when new historical 

recording for a data point is increased in the central database, or data records from 

remote database are imported to the central database, or a new record data for a data 

point is cached in local cache database, the new entries will be added to the mapping 

table automatically.  

Table-3 Example of Database Mapping Table 

No

No

Yes

Yes

Imported

NoHVACLDServer1DP4

YesLightingHDStation2DP3

NoElectricHDataStation1DP2

YesFloor1HistorianRd-LabDP1

CachedTable NameDB NameHost NameData Point Name

No

No

Yes

Yes

Imported

NoHVACLDServer1DP4

YesLightingHDStation2DP3

NoElectricHDataStation1DP2

YesFloor1HistorianRd-LabDP1

CachedTable NameDB NameHost NameData Point Name

 



 118 

If one data point has local data and remote data at the same time, the local data 

will be accessed first. If one data point has data from central database and cache 

database, the query to the cache database will be executed first. If the cache hit fails, 

the query will be redirected to the central database. If the central database doesn’t 

meet the query, the query will be redirected to the original database then. So the 

priority from high to low is: cache database, central database, remote database. 

Query Decomposition/Response Composition 

Since a query may be composite and refer to a few databases, no methods for 

across-databases query exist directly. This composite query must be decomposed to a 

few queries to physical databases. In order to decompose the composite query and 

distribute decomposed queries to various physical databases, a decomposition rule of 

composite query must be defined. Several rules of the decomposition include: 

 The queries must be decomposed until they refer to sole database, and  

 Will not continue when the query refer to sole database, and 

 The query must be decomposed to a consecutive time segment. 

Let’s take the query above as example, the query “select A.Dp1.Value, 

B.Dp2.Value from DB1.Table as A, DB2.Table as B where A.Dp1.Value 

=B.Dp2.Value” relates to various databases. It must be decomposed before it can be 

executed. This query will be decomposed to “select A.Dp1.Value from DB1.Table as 

A”, “select B.Dp2.Value from DB2.Table as B”, “select Dp1.Value, Dp2.Value where 



 119 

Dp1.Value =Dp2.Value”. The first two queries will be forwarded to the target remote 

database and the return data will be cached when they are from remote databases, the 

last query will be executed based on the cached data in the local cache database.   

4.8 Session Object 

4.8.1 Session Object Model 

The Session Object keeps the information of all the client connections as Figure 

4.20. Session Object is the sole components interfaced to the outside. Every client 

connection is managed by a Session Object. 

(Point-Value-Client) Event Handler

Subscribe/ReadCache

Subscribe Table

Subscribe-ValueUpdate Events
Or Alarm/Event from A/E Object

Subscribed Notification Request

Read/Write

Read/
Write

Alarm/Event

Read/Write 
Return Data

Alarm/Event
Table

Authorization

 

Figure 4.20 Session Object model 

The Session Object is responsible to communicate with client applications. As a 

component of the IBmanager, it can receive and dispatch the requests from the client 



 120 

after authorization. It has two methods to send data to the client applications to realize 

bi-directional communications. One is sending direct requests to the client 

applications by Peer to Peer method if the client host is a Web server as well, another 

is sending notification to the client according to the subscription table by 

“piggybacking” method.  

The main communication of the Session Object and the client is 

subscription/notification method. The information about subscription/notification is 

maintained as Subscription Table. There are two methods to add data points to 

Subscription Table. The method one is, when one client initiates a request to a data 

point at the first time, the IBmanager will automatically add this data point to the 

Subscription Table; this is an implicit subscription. The method two is explicit 

“subscribe” command. After receiving the “subscribe” command, the Session Object 

will add the related subscribed data points to the table. This Subscription Table is 

maintained in memory. This table always keeps the values of subscribed data points in 

cache for faster access by client. 

4.8.2 Communication between Session Object and Client 

There are two kinds of communication between Session Object and client, one is 

read/write command from client to the IBmanager, the other is subscribe/notification 

method to keep the client updated. 

i. Read/Write command from client 



 121 

The client initiates “Read/Write” requests to the Session Object directly. The 

“Read/Write” command will be passed on to corresponding Data Point Object. The 

return value of the Data Point Object in “Read” command will be sent to the 

Subscription Table to keep the table updated if this data point is subscribed. If the 

“Write” command is executed successfully, the response packet (acknowledge packet) 

will be sent back from the Session Object. Meanwhile, if the commanded data point is 

in the Subscription Table and the value of this data point changes, a 

“Subscribe-ValueUpdate” event will be fired in the Data Point Object to update the 

cached value in the Subscription Table. 

ii. Subscribe/Notification 

In this method, the client subscribes the data points which it is interested in, and 

then the Session Object will send out the notification to the client. 

The Session Object sets the “isClientSubscribed” property of Data Point Objects 

according to the Subscription Table. Once the “isClientSubscribed” property is set 

“True”, Data Point Object will fire “Subscribe-ValueUpdate” event when its value 

changes beyond the deadband. When the Data Point Object fires this event, event 

handler in the Session Object will judge whether the events are from the data points 

subscribed. If yes, it will synchronize the value of the corresponding data point in the 

Subscription Table to the new value, thus the new values will be kept in the 

Subscription Table to serve the client by ReadCache method. On the contrary, it will 

ignore this update event. In this kind of design, the Session Object only cares about 



 122 

the events of the data points subscribed by its corresponding client. This decreases the 

overhead.  

The Session Object monitors the Alarm/Event messages from Alarm/Event 

Objects as well. If an Alarm/Event message from Alarm/Event Objects is what the 

Session Object cares about, it will be handled and distributed to its corresponding 

client.



 123 

CHAPTER 5 IMPLEMENTATION ISSUES OF 

IBMANAGER PLATFORM 

5.1 Distributed XML Driver Model  

The sub-systems/devices usually distribute on different computers, even on 

different locations geographically. The IBmanager need communicate with these 

various sub-systems/devices to realize the monitoring and control functions. 

Traditionally these communication processes can be achieved by various specific 

drivers which are usually realized by some APIs invocation. Every application needs a 

specific driver for one protocol. From the discussion in Section 4.3.3, we know that 

traditional method is a complicated N*m architecture to be maintained difficultly.  

In traditional drivers, the computer as a center is installed with all the drivers, 

connects to sub-systems/devices by various physical interfaces, including serial port, 

TCP/IP. All these physical interfaces need connect to the central computer directly, 

hardly connect across the Internet. This is another disadvantage of the traditional 

drivers. 

In order to simplify the architecture and equip the drivers with Internet 

communication capability, distributed XML Driver model is designed. In the design, 

the communication between the IBmanager and distributed XML Drivers is 

conducted by XML communication technology. The XML messages may be 

transported on various technologies, for example, TCP, HTTP, FTP, SNMP, etc. This 



 124 

provides great flexibility for users. When using HTTP as the transportation, the XML 

Driver is actually Web Service-based driver. Below we will elaborate the distributed 

XML Driver with HTTP as transportation. 

5.1.1 Two Kinds of XML Driver Models 

There are two kinds of implementation models of XML driver. In model one the 

Driver Object acts as XML Server (XML Server Driver), in model two the Driver 

Object acts as XML Client (XML Client Driver). 

A. XML Client Driver Model 

In this model, Driver Object in the IBmanager acts as XML Client, the remote 

counterpart – remote XML Converter acts as XML Server. The remote XML 

Converter is used to convert other protocols to XML/Web Service. The IBmanager as 

a XML Client initiates requests to the remote side. The IP address and communication 

port of the remote XML Converter should be set and known by the IBmanager in the 

configuration process. The IBmanager will communicate with the remote XML 

Converter by the assigned IP and communication port.  

(i) Control from the IBmanager to sub-systems/devices 

The XML Client Driver as a client initiates requests to the remote XML 

Converter when the IBmanager needs to send command to sub-systems/devices. The 

remote XML Converter will respond with acknowledge as Figure 5.1. 



 125 

IBmanager

XML Client Driver

LAN

XML Converter (Server )

BACnet

XML Converter (Server )

LonWorks

Request (Command)

Response 
(Acknowledge)

W
eb Server

1

2

 

Figure 5.1 XML Client Driver model – command from IBmanager to devices 

(ii) Send notification from sub-systems/devices to the IBmanager 

As discussed before, XML/HTTP is stateless and based on request/response 

model. Only http client can initiate request to http server, the reverse operation is not 

supported. In this designed driver model, the remote XML Converter acts as XML 

Server (it is Web server as well since http is adopted as transportation technology), the 

computer installed with the IBmanager is equipped with Web Server as well. Thus 

both sides can act as Web Server, this increases the flexibility of achieving 

bi-directional communication greatly. The two methods discussed before, that says, 

Peer to Peer method and “piggybacking” technology, can be used to send notification 

from the remote XML Converter (Server) to the IBmanager. In the Peer to Peer 

method, the remote XML Converter (Server) acts as a client sends notification in its 

request to the Driver Object in the IBmanager directly as Figure 5.2. The Driver 

Object in the IBmanager acts as a Web Service provider to process the Web Service 

request (notification message). 



 126 

IBmanager

XML Client Driver

LAN

XML Converter (Server )

BACnet

XML Converter (Server )

LonWorks
W

eb Server

Response 
(Acknowledge)

Request (Notification)

1

2

3 4

 

Figure 5.2 XML Client Driver model – “Peer to Peer” technology 

When “piggybacking” technology is used, the notification message will be 

piggybacked within the response from the remote XML Converter (Server) to the 

IBmanager. When the IBmanager issues command to the remote XML Converter 

(Server) and the remote XML Converter (Server) responds to the IBmanager, the 

remote XML Converter (Server) will check whether it has notifications to send to the 

IBmanager besides the desired reply. If yes, the notification message will be sent out 

within the response packet as Figure 5.3. When the IBmanager issues no command to 

the remote XML Converter (Server), the IBmanager will send null-contented request 

to the remote XML Converter (Server) frequently to achieve the same function. 



 127 

IBmanager

XML Client Driver

LAN

XML Converter (Server )

BACnet

XML Converter (Server )

LonWorks

Request (command)
/ Null-contented request

Response/
piggybacking (notification)

1
2

W
eb Server

 

Figure 5.3 XML Client Driver model – “piggybacking” technology 

2. XML Server Driver Model 

In this model, Driver Object in the IBmanager acts as XML Server, the remote 

counterpart – the remote XML Converter acts as the XML Client. The remote XML 

Converter (Client) need know the IP address and communication port of the 

IBmanager at configuration. The remote XML Converter (Client) will connect to the 

IBmanager according to the assigned IP and communication port. The bi-directional 

communication is achieved as follows. 

(i) Control from the IBmanager to sub-systems/devices 

In this design, the remote XML Converter (Client) usually will not be deliberately 

deployed with a Web server. So the Peer to Peer technology can not be used, the 

“piggybacking” technology is the suitable choice. The XML Server Driver in the 

IBmanager will issue command to the remote XML Converter (Client) using the 

“piggybacking” technology. When the IBmanager receives the request issued from the 



 128 

remote XML Converter (Client) and makes response, it will check whether it has 

something (it means command message here) to send to the remote XML Converter 

(Client). If yes, the command message will be sent out within the response packet as 

Figure 5.4. When the remote XML Converter (Client) has no request to the 

IBmanager, the remote XML Converter (Client) will send request with null-contented 

frequently to the IBmanager to achieve the same function. 

IBmanager

XML Server Driver

LAN

XML Converter (Client )

BACnet

XML Converter (Client )

LonWorks

Request (notification)
/Null-contented request

Response/
piggybacking 
(command) 12

 

Figure 5.4 XML Server Driver model - command from IBmanager to devices 

In this communication process, the computer installed with the remote XML 

Converter (Client) needn’t host an http server (Web server).  

(ii) Send notification from sub-systems/devices to the IBmanager 

The remote XML Converter (Client) as a client initiates requests to the 

IBmanager when it needs to notify its change-of-value (COV) or alarm/event to the 

IBmanager as Figure 5.5.  



 129 

IBmanager

XML Server Driver

LAN

XML Converter (Client )

BACnet

XML Converter (Client )

LonWorks

Request (notification)

12

Response 
(Acknowledge)

 

Figure 5.5 XML Server Driver model – send notification to IBmanager 

3. Comparison of these two models 

These two models can be compared as below: 

 These both models can use the same “piggybacking” technology. 

Although “piggybacking” has the same time performance, the “piggybacking” 

contents in these two models and their influences to performance are different. 

The information piggybacked in the XML Server Driver model is command from 

the IBmanager, however it is alarm/event or COV notification in the XML Client 

Driver model. Command should have higher priority and be sent out immediately, 

however the “piggybacking” technology will result in latency. So from the view 

point of sending command to devices fast, XML Client Driver model is better. 

 In the XML Client Driver model, Web server (if XML/HTTP is used) is 

deployed in the remote XML Converter side. Sometimes this is a disadvantage or 

blocked by firewall.  



 130 

 Peer to Peer transportation is supported in the XML Client Driver model. 

It is usually not supported in the XML Server Driver model. The advantage of 

Peer to Peer method is that it will not lead to latency. 

 The easiness of the configuration: In the XML Client Driver model, the 

IP addresses and communication ports of the remote XML Converters are 

configured in one location - the IBmanager. In the XML Server Driver model, the 

IP address and communication port of the IBmanager should be set and known to 

every remote XML Converter. This will increase the labor and flexibility of 

configuration especially when the remote XML Converters are distributed 

geographically. 

Based on the considerations above, the XML Client Driver model is selected as 

our implementation model. At the same time, the Peer to Peer method is suggested 

because of less traffic and simplicity. 

5.1.2 Reading Values & Caching Values in Advance 

When the driver reads/writes data points of the field devices directly, the 

communication speed may be slow compared to the software process speed, 

sometimes the reading process even fails. In the reading/writing progress, the 

IBmanager will wait for the response and do no other thing until time-out if the 

reading is conducted in a blocked way. The slower communication and failure will 

influence the performance of the entire system. In order to avoid the possible slow 

field communication decelerates the performance of the IBmanager, a cache 



 131 

mechanism for driver is designed. 

In this cache mechanism, the driver will read the values of monitored data points 

in advance frequently. The reading scheme can be adjusted flexibly, if it has a large 

volume of points, the reading can be conducted in batches in advance (for example, 

ReadPropertyMultiple in BACnet protocol), and the interval can be adjusted 

accordingly. After that the reading data of the IBmanager from the driver is actually 

reading the cached value. Thus the reading speed will be greatly accelerated, and the 

system performance will be improved. Meanwhile since the interval can be set small, 

the latency will be kept in an unnoticed scope. 

5.2 Human Machine Interface (HMI) Based on Web 

5.2.1 Benefits of Web Human Machine Interface 

Web technology is found almost everywhere. The following attributes go with the 

Internet, which are also valid for Web applications within BAS [55]: 

 Global connectivity  

 Global companies need global BMS information  

 Easy to operate  

 Access at any time, from everywhere, immediately  

 Use mainstream technology  

 IT-world compliance   

 Slim, inexpensive clients  



 132 

In addition, the Web technology facilitates and centralizes software maintenance, 

updates and support, offers new services and opens up new business opportunities. 

The greatest advantage of Web application is ubiquitous access by B/S 

(Browser/Server) architecture without installing special software. In the BAS industry, 

Web application is a trend. Using the web browser, one can make configuration, 

monitor status, control actuators, receive and acknowledgment alarms/events, and 

view trend log of data points.  

In order to achieve good compatibility and extensibility, Web HMI is constructed 

based on XML in this design. However, since the Web technology is based on http 

request-response model, manipulation of XML message and how to update real time 

data and A/Es timely to user is problems to be considered. 

5.2.2 Web HMI Based on XML Message 

The ASP (Active Service Page) files are located in the Web server of the 

IBmanager (the host of Web server may be standalone from the computer of the 

IBmanager). When the Web browser submits a request to the Web server, the Web 

server will parse this request and send request to invoke Web Services in the 

IBmanager and then get XML response from the IBmanager. The return XML 

message includes BAS information which the user requests. In order to show this 

message to user, the XML message should be transformed to html with Extensible 

Style Sheet Language Transformations (XSLT) file as template and displayed in the 



 133 

user’s browser.  

There are two methods to realize the transformation from XML message to 

HTML web page. Method one is to transform return XML messages to html file in the 

Web server, and then send it as an html file to the web browser. It can be achieved to 

generate a single HTML by applying a stylesheet at server side on XML document. 

This does not enforce client browser support for XML. The asp code is like below 

[75]: 

Dim myXML,myXSL 

myXML=Server.CreateObject("Microsoft.XMLDOM") 

myXSL=Server.CreateObject("Microsoft.XMLDOM") 

'Fill myXML with one of the methods mentioned above 

'Load a stylesheet 

myXSL.load "xsl_path" 

strHTML = mydoc.transformNode(myXSL.documentElement) 

Response.write strHTML 

Another method is to generate a full XML document and sending it to the client 

as is, a stylesheet reference is included in the XML itself and browser will apply that 

stylesheet to the XML document to compose html file. This requires that the client 

browser supports XML. The asp code is like below [75]: 

Dim mydoc,myelement 

Set mydoc=Server.CreateObject("Microsoft.XMLDOM")  



 134 

mydoc.load("xml_file_path") 

Response.ContentType = "text/xml"  

Response.write mydoc.xml 

Or  

Response.write "xml_as_string"  

Here ContentType is set to text/xml so that an XML-aware client browser knows 

what to do with it. Raw XML can be sent in the form of string as well. 

The latter method is chosen in the middleware development in this study. In this 

method, XML response return from the IBmanager is forwarded to the browser by the 

Web server. The response XML message includes a URL (Unified Resource Location) 

of the XSLT file. The browser then gets XSLT file and converts the XML message 

into an html file. If an XSLT file was downloaded before and not updated, the browser 

will use the XSLT file in cache. Because XSLT files do not change frequently, only 

the contents of the XML message needs to be updated frequently. This will decrease 

the amount of traffic greatly as compared with the first method [6]. The work 

procedure is shown as Figure 5.6. 



 135 

Web Server
Request

XML Response

Web Browser

Request 
XSLT file

XSLT file

HTML

1

5

6

2

IBmanager

3

4

 

Figure 5.6 Procedure of transforming XML message to HTML web page 

5.2.3 Review of Web Client Technologies Concerned 

About the automatic update of the information in the user interfaces, including 

how the notification (including COV and alarm/event) in the IBmanager are sent to 

the client, how the web page interacts with user. These problems can be addressed by 

a few technologies. With these technologies, the notification information can be 

delivered to web client instantly. Below several options are discussed and provided to 

achieve this objective. 

1. Webpage refresh method 

By adding tag <META HTTP-EQUIV=REFRESH CONTENT= "time; 

URL=url" > in the web page, a browser refreshes the page according to the preset 

time frequently. This tag also can be sent by ASP program from server, such as 

“Response.Write <META HTTP-EQUIV=REFRESH CONTENT= "time; 

URL=url" >”. However, this refresh will refresh the entire webpage and lead to heavy 



 136 

traffic and low performance, especially when loading large-size pictures. In order to 

decrease traffic, one should limit the items to be refreshed, such as refreshing only 

one ASP URL to finish the request. The web page technologies such as IFrame can be 

employed to restrict the items to be refreshed.  

Using an IFRAME in conjunction with a script on your web server or a database 

of static HTML files is an easy option available. The IFRAME has been part of the 

HTML specification since version 4 and is supported in nearly all modern browsers. 

For example, code <P ALIGN=center><IFRAME SRC="foo.html" WIDTH=300 

HEIGHT=100></IFRAME></P> will restrain content to foo.html in this Iframe. If 

foo.html includes the code to refresh automatically, it will only refresh the Iframe and 

will not affect the contents outside of the Iframe. On the server, you can use your 

scripting language of choice to process page requests made to the IFRAME [76].  

However, not all browsers support IFRAME. And the IFRAME will increase the 

complexity of web pages when many IFRAMEs are used. 

2. ActiveX control/Java Applet 

ActiveX control or Applet are applications embedded in web page, they can 

refresh themselves and “pull” data from server periodically, or they create and keep a 

socket connection and listen (as a server) the messages coming from server, such as 

A/E message. By embedding an ActiveX component, a Java applet into your web 

page, one is capable of making HTTP requests and interacting with the client-side 



 137 

JavaScript code.  

The disadvantages are: 

 Using an embedded object for remote scripting requires the end-user to 

install additional proprietary software; 

 ActiveX does only work on the Windows platform, and Java can cause 

some difficulties with some versions of Internet Explorer.  

Unless you're developing in an environment where browser homogeneity can be 

assumed, these technologies may not be a good choice for updating information at 

client-side [76].  

3. XMLHTTP 

Short for Extensible Markup Language Hypertext Transfer Protocol, XMLHTTP 

is a set of APIs that enables XML, HTML or binary data to be transmitted to and from 

Web servers over the Internet using HTTP. An advantage of XMLHTTP is that when 

files that are ASPs or CGI (common gateway interface) programs are queried from the 

server, the XMLHTTP object continuously queries the server transparently to retrieve 

the latest information without the user having to repeatedly refresh the browser. 

XMLHTTP enables streamed content through DHMTL rather than ActiveX controls 

or Java applets. 

With the support of the XMLHttpRequest object, developers can [77]: 

 Update a web page with new data without reloading the page  



 138 

 Request data from a server after the page has loaded  

 Receive data from a server after the page has loaded  

 Send data to a server in the background  

 The XMLHttpRequest object is supported in all modern browsers. 

The request can be handled asynchronously. This means that the script continues 

to run after the send() method of XMLHTTP, without waiting for a response from the 

server. The onreadystatechange event of XMLHTTP complicates the code. But it is 

the safest way if one wants to prevent the code from stopping when no response is got 

from the server [77]. Below is some sample code for XMLHTTP. 

<script type="text/javascript"> 

var xmlhttp; 

function loadXMLDoc(url) 

{ 

xmlhttp=null; 

if (window.XMLHttpRequest) 

  {// code for all new browsers 

  xmlhttp=new XMLHttpRequest(); 

  } 

else if (window.ActiveXObject) 

  {// code for IE5 and IE6 

  xmlhttp=new ActiveXObject("Microsoft.XMLHTTP"); 

  } 

if (xmlhttp!=null) 

  { 

  xmlhttp.onreadystatechange=state_Change; 

  xmlhttp.open("GET",url,true); 

  xmlhttp.send(null); 



 139 

  } 

else 

  { 

  alert("Your browser does not support XMLHTTP."); 

  } 

}function state_Change() 

{ 

if (xmlhttp.readyState==4) 

  {// 4 = "loaded" 

  if (xmlhttp.status==200) 

    {// 200 = OK 

    // code to write the response to components of web page 

    } 

  else 

    { 

    alert("Problem retrieving XML data"); 

    } 

  } 

} 

</script> 

The XMLHTTP object queries the server transparently to retrieve the latest 

information. The response can be retrieved by XMLHTTP and be processed by script 

components. Thus it realizes the page update without refresh the entire page. 

4. Ajax 

Ajax (also known as AJAX), shorthand for "Asynchronous JavaScript and XML", 

is a web development technique for creating interactive Web applications. The intent 

is to make web pages feel more responsive by exchanging small amounts of data with 



 140 

the server behind the scenes, so that the entire web page does not have to be reloaded 

each time the user requests a change. This is intended to increase the web page's 

interactivity, speed, and usability [78].  

Ajax isn’t a technology, it is really several technologies, each flourishing in its 

own right, coming together in powerful new ways. Ajax incorporates [79]: 

 standards-based presentation using XHTML and CSS;  

 dynamic display and interaction using the Document Object Model;  

 data interchange and manipulation using XML and XSLT;  

 asynchronous data retrieval using XMLHttpRequest (also known as 

'remote scripting');  

 and JavaScript binding everything together. 

The classic Web application model works like this: Most user actions in the 

interface trigger an HTTP request back to a web server. The server does some 

processing — retrieving data, crunching numbers, talking to various legacy systems 

— and then returns an HTML page to the client. While the server is doing its thing, 

what’s the user doing is waiting. And at every step in a task, the user waits some more. 

This approach makes a lot of technical sense, but it doesn’t make for a great user 

experience [79]. 

An Ajax application eliminates the start-stop-start-stop nature of interaction on 

the Web by introducing an intermediary — an Ajax engine — between the user and 



 141 

the server. Instead of loading a webpage, at the start of the session, the browser loads 

an Ajax engine — written in JavaScript and usually tucked away in a hidden frame. 

This engine is responsible for both rendering the interface the user sees and 

communicating with the server on the user’s behalf. The Ajax engine allows the user’s 

interaction with the application to happen asynchronously — independent of 

communication with the server. So the user is never staring at a blank browser 

window and an hourglass icon, waiting around for the server to do something [79]. 

4. Conclusive Remarks 

Although these several methods can keep the HMI updating data and receiving 

alarms/events notification timely without reloading the entire web pages. Users can 

select one or several according to their development environments, even just their 

habits. 

XMLHTTP and Ajax can greatly promote user interaction experience and keep 

the value update with low traffic. It is a good choice for web applications. Although 

XMLHTTP and Ajax are originally presented for prompting user interaction 

experience, they can be uses to request and update value of data points automatically 

as well. 



 142 

5.3 Concurrent Operation 

5.3.1 Concurrent Command 

There exists situation in which several clients to control data points 

simultaneously. These may lead to abnormal operation and over-frequent actions. In 

order to keep the system operate correctly in this situation, a command priority 

mechanism is defined. Every login user or client connection has assigned a specific 

privilege, for example, from 1 to 16. Value 1 is the topmost privilege. When 

multi-clients send commands to the server simultaneously, all the commands will 

filled into the corresponding elements in a priority array according to the assigned 

priority as Figure 5.7. The final execution will depend on the element with highest 

priority. The command with highest privilege will be executed. 

4

5

6

7

8

9

14

15

16

10

11

2

3

12

13

1

4

5

6

7

8

9

14

15

16

10

11

2

3

12

13

1

Command from Client n

Command to execute

Priority-Command 
Table for Data Point 

Command from Client 1

 

Figure 5.7 Command based on priority mechanism 



 143 

5.3.2 Anti-fluctuation Operation 

Frequent startup-stops may lead to damage for some facilities, for example, 

chillers. In order to keep the devices from fluctuate needlessly, after a command is 

executed, the executed command will promoted to a priority higher than the priority 

of the sequence control logic or other command source and stay on the higher priority 

level for an interval. In this interval, commands from the sequence control logic or 

other command source will not execute since the just-executed command keeps on a 

higher priority. After this interval, the just-executed command will return to its 

original priority. Other commands with higher priority will be effective. This process 

is shown as Figure 5.8. 

4

5

6

7

8

9

14

15

16

10

11

2

3

12

13

1

4

5

6

7

8

9

14

15

16

10

11

2

3

12

13

1

Command from Client n

Command to execute

Priority-Command 
Table for Data Point 

Command from Client 1

Command from Client 1 Command to execute

Stay in an interval

 

Figure 5.8 Anti-fluctuation mechanism 



 144 

5.4 Redundancy and Fault-tolerant  

For the reliability of the system, the IBmanager is configured to be redundant. 

Let’s take two IBmanager installations as example. One server acts as primary server, 

another server acts as backup server. The server running as primary communicates 

with the sub-systems/devices. If the primary server fails, the backup server becomes 

the primary and takes over communications with the sub-systems/devices. For 

example, if Server A is running as the primary server and fails, the arbitration 

software detects this and switches Server B from running as backup to running as 

primary.  

When the primary and backup servers are running in redundant mode, all 

database changes on the primary server are sent to the backup server to keep the two 

servers to have consistent data. The date and time on the primary and backup servers 

need to be synchronized to ensure that all dates and/or times associated with events in 

the database are consistent between servers. In the design, the primary server is used 

as the time source and the backup server is configured to synchronize with the 

primary server. This process is illustrated as Figure 5.9. 



 145 

InternetInternet

BAS1 Software

Control Net

Control Net

BAS2 Software

Control Net



BMS Station 
(Browser)

HMI/Other IBmanager/
Customized Client

Information 
Exchange & Time 
Synchronization

IBmanager 1 with
arbitration software

IBmanager 2 with
arbitration software

 

Figure 5.9 Redundant IBmanager installations 

Redundant arbitration is the task of deciding which of the servers will run as the 

primary server and which will run as the backup server. The arbitration based on 

software is called software arbitration. In some software arbitration, software running 

on the primary and backup servers provides the arbitration. Each server polls the other 

(via the network) so that it knows if the other server has failed [80]. However, if a 

server loses connection to another server, how can it be judged which server fails? 

Either one is possible to have failed. A new arbitration method is designed for 

accurate judge as Figure 5.10. Server A and Server B will modify one data point in a 

device to different value frequently, for example, Server A modifies it to value 1, 

Server B modifies it to value 2. Every server will judge whether the other server has 

modified the value and therefore been working normally or failed. For example, If 

Server B can read the value of the data point and finds the value of the data point 



 146 

hasn’t be modified to value 1 frequently, then it knows Serve A or the communication 

to Server A has failed. 

Server A Server B

Device

Data Point

 

Figure 5.10 Software arbitration 

5.5 Value-added Services DLL 

As a powerful integration platform, the IBmanager provides a flexible way to 

extend its functions – the method to add customers’ value-added services, for example, 

HVAC optimization application, some decision analysis application. IBmanager 

presents a method to invoke value-added services as configurable plug-ins which can 

be added/removed from the IBmanager. 

Users can develop their own DLL (dynamic link library) to add functions to the 

IBmanager. The DLL must be compliant the specifications of the interface to the 

IBmanager. Some configuration work should be done in the IBmanager to let it know 

how to invoke these DLLs with their parameters. Every invoked DLL has a 

corresponsive entry in the configuration file. After adding new DLL entries in the 



 147 

configuration file, the newly-added entries will be submitted to the IBmanager 

immediately. The related DLLs will be loaded immediately. This way provides a 

flexible method for uses who want to add some their own functions to the IBmanager.  

IBmanager

Configuration File DLL

1 2

 

Figure 5.11 Invocation of third-party DLLs 

In an practical project – ICC project which will be introduced later, the 

IBmanager need invoke Matlab DLL to achieve some complicated HVAC 

optimization calculation. In the configure information, the functions invoked and their 

input parameters and output parameters are assigned, the IBmanager then knows how 

to invoke it. 

The traditional method is to hardcode the optimization calculation in the platform 

software. If the user has some new ideas about the calculation, the entire platform 

must be compiled again even a small modification.



 148 

CHAPTER 6 TEST FACILITIES AND METHODS 

6.1 The Intelligent Building Lab 

The Intelligent Building Lab of The Hong Kong Polytechnic University (PolyU) 

was founded and constructed by Professor Shengwei Wang in 2002. The IB 

Laboratory provides the learning/teaching test and demo facilities for postgraduate 

and undergraduate subjects on Intelligent Building, the test facilities for R&D on 

Intelligent Building technologies, as well as the test facilities for postgraduate and 

undergraduate student research projects.  

6.1.1 The Overall Architecture of the IB Lab 

The laboratory facilities include: a comprehensive IB system of Honeywell, a full 

scale BMS of Johnson Controls, LonWorks control networks, a home automation 

(X-10) system, building emulators, BACnet control networks, etc. as Figure 6.1 and 

Figure 6.2. All these different products provide a good chance for testing the 

integration platform.  

Internet

LAN

Browser

Integration 
Software

 



 149 

Figure 6.1 Connected products from various manufacturers in PolyU IB Lab 

 

Figure 6.2 One corner of the IB Lab 

6.1.2 Honeywell Products 

The products from Honeywell can support BACnet, OPC, LonWorks, DDE 

interfaces. The installation in the lab includes the subsystems as below: 

 HVAC control 

 Security 

 Digital CCTV 

 Life Safety 

 Lighting Control 

 Power Monitoring 

All these sub-systems are connected to Ethernet as the backbone as Figure 6.3. 



 150 

The management software - EBI (Enterprise Building Integrator) communicates with 

them via Ethernet [80].  

EBI provides OPC server, BACnet Server interfaces for invocation by third-party 

software. In the lab tests of this study, the IBmanager will monitor and command 

Honeywell system by OPC Server interface of EBI software.  

SimulationSimulation

Building
Automation

Access 
Control

Access
Controller

Video 
Streamers

Camera

Fire Safety

Fire
Controller

IB Unit

Lighting Control 
& Power Monitor

Power 
Meter

Hub

Client
(BMS Station)

TCP/IP LAN

EBI 
Server

Controller

Gateway

DCCTV

Lighting 
Controllers

InternetInternet

Remote 
Browser

Chilling 
Panel

FCU Panel

VAV Panel

AHU Panel

Building 

Emulator



EBI 
Station

 

Figure 6.3 Architecture of Honeywell BAS in the PolyU IB Lab 

6.1.3 Johnson Control’s Products 

The installation of Johnson Controls in the lab includes the sub-systems listed 

below. Their communication protocols including BACnet, N1 protocols [81]. 

 HVAC control 

 Security 

 Digital CCTV 



 151 

 Life Safety 

 Power Monitoring 

All these sub-systems are connected to Ethernet as the backbone as well. The 

management software – M3, M5 (Metasys) communicates with them via Ethernet. 

They integrate the sub-systems by OPC Servers, including BACnet OPC Server, N1 

OPC Server as Figure 6.4. 

In the lab tests of this study, the IBmanager will monitor and command the 

system of Johnson Controls by OPC Server interface. 

10BT Ethernet/ BACnet IP

Security StationM-web Service

Internet

IE

OWS

CK720

Seurity Demo
Board

FLOOR 8 AHU                             11:40

         Select: Home Page
                 Point Data
                 Alarm Summary
                 Alarm Log
                 Time Schedules
                 Holidays
                 Optimal Start/Stop
                 Time/Date
                 Password
Alarm:                              Total:00

!
esc

N30

DX-9100 DT-9100

VMA

S S

TC-9100 TM-9180

XTM

XT XP XP

DX-9100

Chiller Plant
Dome Board

FCU Dome
Board

AHU Dome
Board

VAV Box Dome
Board

Power Analyse (Intega 2000)

CCTV Camera

PTZ Camera

Video Sever

door
contact
door
lock

Figure 6.4 Architecture of the system of Johnson Controls 



 152 

6.1.4 BACnet Products 

There are also native BACnet products from (Honeywell) Alerton (Alerton has 

been merged into Honeywell in 2005). Their products support BACnet Class 3. The 

workstation software – Envision for BACtalk supports ActiveX interface instead of 

OPC as Figure 6.5 [82]. 

There are two methods can integrate (Honeywell) Alerton’s BACnet products in 

the IB Lab. One is by ActiveX interface it supplies. In this method, a remote XML 

Converter can be used to convert the ActiveX interface to XML protocol. Another 

method is a standalone BACnet OPC Server package. This interface can read BACnet 

and map to OPC data items directly without accessing (Honeywell) Alerton’s 

software.  

Ethernet (local or IP)BACtalk Station BACtalk Server

Firefighter
panel

Modbus Interface Global Controller/
Router

Interface with
Simplex

Gateway

Modbus
Device

Modbus 
Sensor

Extensible
Controller

ARCnet
2.5Mbps

MS/TP
76.8Kbps

BACtalk Controller

Belimo
Actuator

Simplex
AFA

Pull
站

Smoke 
Detector

Legacy
System

Sensor

Extensible
Controller

 

Figure 6.5 BACnet control system from (Honeywell) Alerton 



 153 

6.1.5 LonWorks Products 

Besides LonWorks-compliant products from Honeywell, the lab has included 

Building Open Network Test Kit (IBON) based on LonWorks products from Echelon 

in 2001 [4]. Figure 6.6 is the schematic figure of the IBON. LonMaker from Echelon 

provides DDE interface for other applications [83].  

In the lab tests of this study, LonWorks network was accessed by DDE interface 

provided by commercial software – LNS DDE Server. 

iLon1000 LED and Switch
Panel 1 DIO-10

LPR-12
Sub1-1

SCH-10
Sub1-2

DI-10
Sub1-3

DO-10
Sub1-4

AI-10
Sub1-5

AO-10
Sub1-6

LPR-12
Sub2-1

SCH-10
Sub2-2

DI-10
Sub2-6

DO-10
Sub2-5

AI-10
Sub2-4

AO-10
Sub2-3

PLCTA20 (PCI) Computer plug card

LED and Switch Panel 2

TCP/IP LAN

Sub net 1, 78kbps

Sub net 2, 78kbps

1.25mbps backbone of LonWorks 
network
78 kbps subnet of LonWorks network  

Figure 6.6 IBON Test Kit Architecture 



 154 

6.2 Integration/Interoperation Test Environment 

BAS products from a few manufacturers were involved in the tests of this study. 

The products are compliant with different protocols. The communication between 

different protocols may be conducted by various methods in two levels. 

6.2.1 Integration at Automation/Field Level 

Direct communication 

Ideal BASs should be integrated in the automation/field level. The controllers 

which are complaint with the same protocols from different vendors can communicate 

each other. For example, in the lab, Johnson Control’s N30 network controller 

supports BACnet, while (Honeywell) Alerton’s system is BACnet compliant. 

Therefore they can be connected together directly. Honeywell’s Excel5000 supports 

LonWorks. Echelon LonPoint series are LonWorks compliant. They can be connected 

together. However, there exist a lot of control devices which are complaint with 

different protocols in the real applications. For example, BACnet products cannot 

communicate with LonWorks products in the Lab. In this case expensive specific 

gateway is necessary, or the data exchange needs to be realized at the management 

level, which will be discussed later. 

Integration by Gateway 

Another integration method in the automation/field level is gateway. In this 



 155 

method, the conversion between different communication protocols is conducted by 

gateway. For example, in the PolyU IB Lab, c-bus protocol in the lighting control 

system is connected to Honeywell EBI by converting the c-bus to LonWorks. This 

gateway is a product-specific, the customized development service is necessary. The 

communication between BACnet and LonWorks can be conducted similarly. 

6.2.2 Integration at Management Level 

Traditional integration of diverse drivers 

In the traditional integration method of management level, sub-systems/devices 

are connected to the integration software by various communication drivers. All 

drivers for diverse interfaces are installed in the PC hosting the integration software as 

Figure 6.7. The disadvantage of this architecture is its N*m architecture described in 

Section 4.3.3. 

Integration Applications

…Serial Ports Card
Serial Port 1

Networks Controller

for System A

Serial IP Converter

for System B

Serial Port n

Driver for Sys A Driver for Sys B

Driver for Serial 1

Driver for Serial n

 

Figure 6.7 Architecture of integration by traditional driver technology 



 156 

Integration based on the IBmanager 

IBmanager can communicate with these various sub-systems/devices by 

high-level interfaces in management level or field bus protocols in field level by the 

unified XML Driver technology. Some products may have more than one interface to 

be integrated into the IBmanager. For the system of Honeywell and Johnson Controls, 

OPC and BACnet can be used to connect to the IBmanager. For BACnet products 

from (Honeywell) Alerton, ActiveX interface, BACnet and OPC can be used. For 

LonWorks from Echelon, LonWorks, DDE and LNS can be used. All these different 

interfaces are converted into XML Driver model of the IBmanager.  

6.3 Communication Performance Test Method 

6.3.1 Time Measurement Method 

The measurement of response/process time is an important method to evaluate the 

performance of the middleware platform. Several time measurement methods of 

differing accuracy are offered by the Windows operating system [84] as Table-4. 

Table-4 Several time measurement methods in Windows platform 

Function Units Resolution 

Now, Time, Timer seconds 1 second 

GetTickCount milliseconds approx. 10 ms 

TimeGetTime milliseconds approx. 10 ms 

QueryPerformanceCounter milliseconds approx. 1 ms 

In our test, QueryPerformanceCounter method is used for high-resolution timings 



 157 

if the computer system supports this high-resolution counter. The resolution in this 

case is on the order of a microsecond. Since the resolution is system-dependent, there 

are no standard units that it measures. You have to divide the difference by the 

QueryPerformanceFrequency to determine the number of seconds elapsed [84]. The 

sample code in VB is as below: 

    Private Declare Function QueryPerformanceCounter Lib "kernel32" 

(lpPerformanceCount As Currency) As Long  

    Private Declare Function QueryPerformanceFrequency Lib "kernel32" 

(lpFrequency As Currency) As Long       

    ‘DelayNum is delay count (ms)   

Private Sub DelayTime (ByVal DelayNum As Long)  

     Dim Ctr1, Ctr2, Freq As Currency  

     Dim Count As Double       

     If QueryPerformanceFrequency (Freq) Then  

      QueryPerformanceCounter Ctr1  

      Do  

       QueryPerformanceCounter Ctr2  

       Loop While (Ctr2 - Ctr1) / Freq * 1000 < DelayNum  

      Else  

       MsgBox "Not support high accuracy counter!"  

     End If  

End Sub 

6.3.2 Measurement Method of Communication 

Roundtrip time measurement 

The method is to measure the time to make request and the time to receive 

response in the request/client side, both the request and response time is recorded in 



 158 

the same communication side, their time difference is the roundtrip time of the entire 

communication as Figure 6.8. 

Client (Requester)
Request time      Response time

Server (Responder)
 

Figure 6.8 Roundtrip time measurement 

One-way transportation time 

In this method, the request time is transported to the server side, and then the 

server can calculate the time difference between the request time and the receive time 

to get the one-way transportation time as Figure 6.9. The time of event transportation 

can be measured as this. Event is the important message transportation method, the 

time to fire the event can be transported to the handler as parameter of the event, and 

then the handler can calculate the time of event transportation. 

Client (Requester)
Request time

Receive time minus Request time
d

Server (Responder)

Package with 
Request time 
information

 



 159 

Figure 6.9 Time measurement method of one-way transportation 

6.3.3 Measurement Method of Application Load  

How does an application influence the computer system? How much does the 

IBmanager increase CPU usage and memory usage? The influence can be viewed by 

Windows Task Manager.  

Windows Task Manager is a task manager application included with Microsoft 

Windows NT family of operating systems that provides detailed information about 

computer performance and running applications, processes and CPU usage, commit 

charge and memory information, network activity and statistics, logged-in users, and 

system services. The Task Manager can also be used to set process priorities, 

processor affinity, forcibly terminate processes, and shut down, restart, hibernate or 

log off from Windows [85]. 



 160 

CHAPTER 7 PERFORMANCE ANALYSIS AND 

EVALUATION OF IBMANAGER 

7.1 Analysis of Communication Latency 

In general, latency is the period of time that one component in a system is 

spinning its wheels waiting for another component. Latency, therefore, is wasted time. 

For example, in accessing data on a disk, latency is defined as the time it takes to 

position the proper sector under the read/write head [86]. In this study, the 

communications inside the IBmanager are based on event-driven model, in which the 

events will be fired immediately when the terms are met. These will not introduce 

latency. In the peripheral communications, there are two communications possible to 

lead to latency. One is in the communication between the IBmanager and the driver 

part, the second is in the communication between the IBmanager and its clients.  

7.1.1 Latency in Driver Level 

In the driver level, latency can be introduced in the polling interval of the remote 

XML Converter to sub-systems/devices, and the communication between Driver 

Object and the remote XML Converter as Figure 7.1. The total latency in driver level 

is the sum of these two ones. 



 161 

Driver Object

XML Converter

Sub-systems/Devices
Polling Values

Tlatency=Tpolling

Tlatency=Taggregate (aggregation used, Peer to Peer) 
Tlatency=Tnull-contented request timer (“piggybacking”)

 

Figure 7.1 Latency in the driver level 

The remote XML Converter reads the data points’ values to memory cache in 

advance by timer-trigger. The lead latency is the interval of polling timer.  

T latency=T polling 

In the communication between Driver Object and the remote XML Converter, 

there exist various communication models.  

The first one is Peer to Peer method. It is suitable when the two sides both can 

initiate communication. When Peer to Peer method is used, the latency is the time for 

aggregating points if the aggregation method is used.  

T latency=T aggregate 

The second one is “piggybacking” method. When the “piggybacking” method is 

used, the timer which triggers the null-contented request will result in latency. The 

interval of the timer is the maxim latency of this method. The “piggybacking” 

methods is similar to polling method, it has the same latency characteristic of polling 



 162 

method. 

7.1.2 Latency between IBmanager and Its Client 

In these communications of IBmanager and its client, “piggybacking” and Peer to 

Peer methods are used. When Peer to Peer method is used, the latency is the time for 

aggregating points if the aggregation method is used.  

 T latency=T aggregate 

When the “piggybacking” method is used, the timer which triggers the 

null-contented request will result in latency.  The interval of the timer is the main 

latency of value update of data point.  

T latency=T timer 

7.1.3 Latency Caused by Web Update 

As discussed before, there are many technologies to be used in update 

information in Web page without loading the entire web page. No matter that what 

technologies are used, the client application (HMI) always needs to request 

information from the IBmanager. The update of information in Web pages is triggered 

by timer automatically. The timer-triggered process will result in latency. 

7.2 Integration/Interoperation Test of IBmanager Platform 

On the basis of the middleware framework, a test integration instance was 



 163 

deployed in the PolyU IB Lab, which integrated four BA sub-systems from four 

different vendors in the IB Laboratory. Integration and interoperation of different 

vendors’ systems are realized over campus network as Figure 7.2. Tests were 

conducted to verify and confirm the integration/interoperability of the middleware 

framework as well as the technologies associated.    

In the IB lab, all the products are connected to the IBmanager. Various interfaces 

are used, for example, OPC interface by Honeywell EBI and Johnson Controls’ M5, 

DDE interface from Echelon LonMaker, ActiveX interface from (Honeywell) 

Alerton’s Envision. All these interfaces are converted into XML Drivers of the 

IBmanager. The integration/interoperability of the IBmanager has been tested and 

worked well. 

InternetIBmanager

LAN

Station

Browser

XML Converter XML Converter XML Converter XML Converter

Alerton’s 
ActiveX

LonMaker 
DDE

OPC/Net 
DDE

OPC/ 
BACnet

 

Figure 7.2 Sub-systems integration using IBmanager in PolyU IB Lab 



 164 

7.3 Roundtrip Time Test of IBmanager Platform 

In particular, to measure the response speed of the middleware framework 

developed, experiments to test the performance of this IBmanager model were 

conducted as Figure 7.3. In these response speed experiments, we used a “roundtrip 

time testing client” to read an item in the OPC Server Simulator which connects to the 

IBmanager. The OPC Server Simulator and the IBmanager are located in the PolyU 

IB Lab in Hong Kong. The OPC Server Simulator used is a free software package 

available on Internet [87], which comprises a serial of groups and items. In order to 

test the roundtrip time in different cases, the tests were conducted in three test 

environments. In the first test environment, the “roundtrip time testing client” was 

located in Mainland China (Shenzhen) connecting to the Internet via cable modem 

provided by public services provider. In the second test environment, “roundtrip 

time testing client” was located in a building out of the university campus connected 

to the Internet via public broadband service. In the third test environment, 

“roundtrip time testing client” was located in a building in the university campus 

network. 

InternetInternet

IBmanager
SOAP Messages

LAN

OPC Sever 
Simulator

Round Trip Time 
Testing Client

 

Figure 7.3 Illustration of roundtrip time measurement experiment setup 



 165 

The values of the roundtrip time measurements are presented in Table-5. 

Examining the data listed in the table, the roundtrip time of access from Mainland 

China was 6.85 seconds and 0.71 second, respectively, for the first and successive 

communications. The roundtrip time of access between the middleware framework 

and the remote client in Hong Kong was 1.612 second and 0.301 second, respectively, 

for the first and successive communications. The roundtrip time of access between the 

middleware framework and the client within the university campus network was 

0.738 second and 0.218 second, respectively, for the first and successive 

communications. It can be observed that the first communication took more time and 

the successive roundtrip time of Web Service was significantly less. Response speed 

of the remote access within Hong Kong was noticeably slower than that of the access 

within the campus network, but the difference is not significant. The response speed 

of the remote access between Mainland China and Hong Kong was significantly 

slower. In fact, it is generally believed that efficiency of the Internet connection 

between Mainland China and Hong Kong is rather low. The efficiency of the Internet 

connection between USA/Europe and Hong Kong could be much better. Nevertheless, 

the test results show that the response speed of the middleware framework developed 

based on Web Services is satisfactory for BAS applications for both remote 

applications within a city and between different countries.  

These results can also be compared with the roundtrip time of the Internet access 

from client in USA to server in Europe using XML-DA Gateway to OPC DA Server, 

which belongs to OPC XML-DA – new development of OPC technology. The 



 166 

reported roundtrip time was 1.2 seconds [88]. Therefore, the response speed of the 

middleware framework developed in this study is noticeably faster than that from 

available benchmark besides its benefits in BAS applications.  

Table-5 Comparison of roundtrip time of the IBmanager over the Internet 

 Average of 
first accesses 
(ms) 

Average of 
successive accesses 
(ms) 

Between Mainland China and Hong Kong  6122 673.3 
Within Hong Kong 1612 300.5 
Within campus network 737.5 218.3 
XML-DA to OPC DA Server (between 
Europe and US) [88]   

1200 

7.4 Load Test of the IBmanager Platform 

The system load after running the IBmanager has been tested to make sure the 

system work robust. A typical measurement with 1000 data points is presented as 

Figure 7.4. In this measurement, data source is one thousand OPC items which is 

simulated by software. After adding these 1000points to the IBmanager with OPC 

communication rate 5s, from the CPU usage chart, we can find that the CPU usage 

and memory usage is reasonable, and the CPU usage fluctuates with 5s interval 

identical to OPC communication interval. 



 167 

 

Figure 7.4 System load after running IBmanager



 168 

CHAPTER 8 PRACTICAL USE OF IBMANAGER 

PLATFORM IN A LARGE BUILDING 

8.1 Introduction of ICC Project 

The IBmanager platform is used in the on-going project “energy efficiency 

through intelligent control and diagnosis”. This project is one of four application 

research projects which are funded by the largest local property developer for The 

Hong Kong Polytechnic University over 5 years. Figure 8.1 is the schematic profile of 

the building “International Commerce Center” (ICC). This building is super 

high-rising of 490 meter high above the ground with about 440,000 m2, involving a 

basement of four floors, a block building of 6 floors and a tower building of 112 

floors. The basement is mainly used for car parking with about 24,000 m2. The block 

building from the ground floor to 5th floor mainly serves as commercial center 

involving restaurants, shopping markets and exhibition halls. The gross area is about 

67,000 m2. For the tower building, the 6th and 7th floors serve as mechanical floor to 

accommodate chillers, cooling towers, pumps etc. The 8th is refugee floor. From 9th 

to 98th floors, there are mainly commercial office floors with each floor of length 66 

m and width 65 m except that the 41st and 77th floors are used as refugee floors, and 

the 42nd, 78th and 99th floors are used as mechanical floors to accommodate 

mechanical equipments such as heat exchangers, pumps, PAU and fans etc. A 

high-graded hotel is located from the 100th to 118th floors. 



 169 

 

Figure 8.1 A view of the ICC building 

In this project, we are required to implement sophisticate control strategies and 

propose more energy efficient control strategies to saving more energy while 

maintaining the indoor environmental requirement on the basis of original design of a 

being constructed super high rising commercial office building. These strategies cover 

chiller system, water side systems and air-side systems etc. To apply the control 

strategies, some measurement instruments are needed to add into the original systems 

to allow more effective and efficient control. These measurements are integrated to 

the intended ATC (automatic temperature control) system and building management 

system (BMS). The software of control strategies and supervisory control and the 

corresponding hardware are also needed to be connected or be parallel to the 

originally intended control platforms [89].  



 170 

As the support platform of the control strategies and supervisory control in the 

ICC project, IBmanager is customized for the application. The platform reads the 

status data of HVAC system, invokes the optimization software to calculate the 

optimized parameters, and then transfers the optimized parameters to the originally 

intended control platform. The entire optimization task is done by online mode. The 

change of status data may lead to the change of running parameters, hence to make 

the overall HVAC system works in an energy-saving status. This process is conducted 

online by an automatic mode. 

8.2 Current Status and Difficulties of Optimization Application 

As reviewed before, in the current real application project, the HVAC 

optimization application is mainly restricted in offline application. It calculates and 

makes some suggestions for facility managers based on the historical data. However, 

the environment (for example, weather) may be changed fast, the offline optimization 

software cannot suggest and adjust the parameters timely.  

With the support of the IBmanager platform and research work of other 

colleagues in HVAC optimization group of BSE Department in The Hong Kong 

Polytechnic University, IBmanager realizes the online optimization application of 

HAVC system. These colleagues have developed practical simplified optimization 

calculation, which is implemented on the IBmanager platform with the support of the 

flexible interfaces and unified data format. 



 171 

8.3 Architecture of the BA System Used in ICC 

Figure 8.2 shows the implementation architecture of ICC optimization project, 

which includes control optimizers and the robust control strategies of air systems and 

chiller plant. All the DDC controllers of air systems (including PAU, AHU and VAV 

terminals) are integrated into a LAN-based BMS.  

Supply air control optimizer is to optimize the temperature set point and static 

pressure set point with minimum energy consumption while keeping comfortable 

temperature and humidity environment as well as enough air circulation. The 

optimizer will be programmed in AHU local control stations because of not very 

complicated programming and demand on computation power. Fresh air control 

optimizer is to optimize the fresh air flow rate of each AHU. Optimal fresh air intake 

can guarantee acceptable IAQ (Indoor Air Quality) with minimum energy 

consumption. The control optimizer will also be programmed in same local control 

station. The control/optimization logic and formulas will be provided by the group of 

PolyU. The HVAC&BMS contractors implement the strategy in the programmable 

control stations with the support of the group of PolyU [89]. 



 172 

LAN

VAV Box
AHU PAU

Supply air control
optimizer

Fresh air control
optimizer

Fresh air
terminal

ATC

Decision Supervisor

OPC/XML Interface

Building
Management

System

OPC/XML Interface

DiagnosisOptimizer

Overall KVA,  etc. Control
Parameters

Chiller Plant Control Optimizer 
and Diagnosis

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

LAN

VAV Box
AHU PAU

Supply air control
optimizer

Fresh air control
optimizer

Fresh air
terminal

ATC

Decision Supervisor

OPC/XML Interface

Building
Management

System

OPC/XML Interface

DiagnosisOptimizer

Overall KVA,  etc. Control
Parameters

IBmanager with 
Chiller Plant Control Optimizer and Diagnosis

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

Control Setting
from PolyU

Control Setting
from ATC 

Manual
Control

 

Figure 8.2 Implementation architecture of ICC project 

The robust chiller sequencing control strategy and chiller plant optimizer 

include the supervisory control of chillers and pump as well as cooling towers. It is 

done by a complicated program with high demand on computation power. Therefore, 

a standalone control and optimization software package and a diagnosis package are 

developed running on a PC station interfaced with the main station of the chiller 

control system (BMS), as the control/optimization and diagnosis need a great deal of 

the plant operation information. The standalone package will run in parallel with the 

chiller sequencing program provided by the HVAC&BMS contractors. The 

contractors provide the protocol or an interface for the communication between these 

packages and the main station of chiller control system. The control parameters of the 



 173 

optimizer mainly involves numbers of chiller, cooling tower, and pump to be operated, 

the set-point of supply chilled water temperature, the set-point of supply cooling 

water temperature, the set-point of water pressure differential of the worst water loop 

etc. When plant (chiller, cooling tower, pumps, etc.) sequencing is of concern, the 

chiller plant optimizer provided by PolyU will only provide the number of them to be 

operated and the chiller control system (ATC) will determine which one is used. A 

decision supervisor in the chiller control system is designed for the operators to set if 

the settings given by the “chiller plant control optimizer” are used or ignored (not 

used). The chiller performance monitoring and diagnosis strategy will be 

implemented in a standalone package probably running in the same PC station as the 

optimization package. This package will provide diagnosis information to 

management staff and will not feedback to chiller control. Both the optimizers and 

diagnosis packages are realized based on the middleware platform designed in the 

thesis and research – the IBmanager [89].  

8.4 Simulation and Test in Lab 

In order to validate the optimization software based on the IBmanager, the 

optimization project is conducted as two stages as Figure 8.3. One stage is the 

simulation stage in the PolyU IB Lab environment, the second stage is the deployment 

in the ICC project site. In the simulation stage, the IBmanager communicates with 

the Virtual Building software which is developed by Prof. Wang based on simulation 

software - TRNSYS. The IBmanager passes data to and gets response from the Virtual 



 174 

Building software just like it is interacting with a real building system. In the ICC site 

commissioning stage, the IBmanager communicates with and acquires data from the 

original ATC and BMS. In either environment, all the data interested are transformed 

into common Data Point Objects. The optimization strategy is calculated and realized 

with Matlab [95]. The Matlab code is compiled as Dynamic Link Library (DLL) to be 

invoked by the IBmanager. The IBmanager passes data to the Matlab DLL, after the 

calculation, the result returns to the IBmanager. The return value is mapped as 

“virtual” common Data Point Objects. These virtual Data Point Objects can be 

accessed like actual Data Point Objects, for displays or calculations although they are 

not corresponding to actual data points in the physical systems. As the optimized 

set-points, these calculated values of the virtual Data Point Objects will influence and 

optimize the running of the physical systems.  

System
Diagnosis

System
Diagnosis

IBmanager based on the UIIU

Communication Interfaces

Real Building
Systems 

Simulation 
Environment
Simulation 

Environment

Control
Optimizers

Control
Optimizers

MatlabMatlab

Control    
Parameters

Status 
Data

TRNSYSTRNSYS

Human Machine Interface 

Remote Monitoring

 

Figure 8.3 Two research environments in ICC project for IBmanager  



 175 

In the simulation environment, Virtual Building software is used to simulate the 

characteristics of a building, including inside temperature, inside humidity. These data 

can be read by communication interface, just similar to read data from a real BMS of 

a building as Figure 8.4. In order to be similar to a real building automation system, 

the Virtual Building software is kept online to IBmanager that means, IBmanager 

reads data frequently from the Virtual Building software, and send new parameters to 

the Virtual Building software after the calculation gives out consequence. The Virtual 

Building software will instantly simulate new environment of the virtual building 

according to the new parameters. Data of the new environment simulated is sent to 

IBmanager instantly. This is a real-time online system. The sole difference to actual 

BMS is the communication interface. In the simulation, the interface to transfer data 

between IBmanager and the Virtual Building software is text file.  

Virtual Building System (TRNSYS)

Remote Monitoring 

Control 
Parameters

Database

Interface 
(Virtual Building System)

Diagnosis & Optimizer
(Matlab-Compiled DLL)

IBmanager

Status 
Data

Status 
Data

Optimization 
Parameters

Virtual Building System (TRNSYS)

Remote Monitoring 

Control 
Parameters

Database

Interface 
(Virtual Building System)

Diagnosis & Optimizer
(Matlab-Compiled DLL)

IBmanager

Status 
Data

Status 
Data

Optimization 
Parameters

 

Figure 8.4 Simulation environment of IBmanager in ICC project 



 176 

8.5 Functions Realized in ICC Project 

The IBmanager platform has been provided with a few drivers as Figure 8.5. The 

IBmanager can communicate with sub-system/devices by these drivers. New 

sub-systems can be added into the IBmanager if the corresponding driver is developed 

compliant with specification. After the corresponding driver is developed, the 

sub-system can be easily added into the IBmanager.  

 

Figure 8.5 Adding sub-systems 

After the sub-system is added into the IBmanager, users can browse and 

add/edit/remove data points within the driver as Figure 8.6. Users can give a 

human-friendly alias to the raw data point name for convenient management.  



 177 

 

Figure 8.6 Browsing and adding data points 

When the data points from different sub-systems are added into the IBmanager, 

all these data points have the same elements/structure. Regardless which sub-system a 

data point is from, it has been capsulated as the same common Data Point Object like 

all other data points. Its human-friendly alias is its identification instead of its original 

raw name. All the Data Point Objects can see each other and interoperate. Users can 

make a single graphics display which monitors the data points from various 

sub-systems as Figure 8.7. 



 178 

 

Figure 8.7 Accessing data points of various sub-systems within one display 

Users can define the interoperation between the common Data Point Objects from 

various sub-systems as Figure 8.8.  



 179 

 

Figure 8.8 Interoperation between various sub-systems 

The historical data of data points from various sub-systems has been saved as the 

same structure in database as Figure 8.9. 

 

Figure 8.9 Common historical data structure of data points of various sub-systems 



 180 

The alarm will be triggered when the trigger term is met. The alarm conditions 

can be defined and attached to any data point as Figure 8.10. 

 

Figure 8.10 Definition of alarm 



 181 

CHAPTER 9 CONCLUSIONS AND DISCUSSIONS 

9.1 Conclusions 

The integration platform presented in this thesis employs standard 

communication protocol and distributed computing technologies, including 

object-oriented programming, data-subscription & event-driven technology, Web 

Services, XML driver technology, and value-added services plug-ins technology，to 

realize data and services integration and interoperation among distributed BASs on 

the Intranet/Internet.  

Support platform for integration applications 

The IBmanager can accommodate the heterogeneous sub-systems compliant with 

diverse communication protocols, provide a unified data model and interface for 

integration/interoperation applications and value-added services. By this platform, the 

BA field devices are not only integrated to provide real-time and historical data 

information to people and the enterprise, but interoperate each other. With the 

standard open technologies, this platform will communicate with enterprise system 

and be thought as part of the enterprise system. 

Accommodate various communication interfaces 

With the XML driver technology, IBmanager can accommodate various 

communication interfaces, including open protocols and proprietary protocols. With 



 182 

the standard Web Service technology, the communication scope of the drivers has 

been extended to the Internet. Users can develop their own drivers for the IBmanager, 

according to the driver specification provided. 

Capable to develop customized value-added services 

Users can develop their value-added services to be integrated into the IBmanager. 

These value-added services will be loaded into the IBmanager as plug-ins, running in 

the same process with the IBmanager. This make the value-added services can be run 

online with good performance. As mentioned above, a few optimization services, 

including FDD and data fusion have been implemented based on the IBmanager. 

Unification and uniformity for deployment 

The IBmanager realizes an autonomous, self-contained unified integration unit 

(UIU). It can be deployed in flexible ways, standalone application, vertical chain-type 

deployment and horizontal chain-type deployment. In different deployment 

architecture, all IBmanager installations have the identical characteristics, this 

decreases the training and maintenance cost of multiple installations at large-scope 

applications.  

Extensibility and scalability 

The IBmanager is designed consisting of batch of function objects that keep the 

systems to have good extensibility. These objects can be instantiated and loaded as per 



 183 

the requirement of projects. The Data Point Objects are the core components of the 

overall platform, which drive the high-level functions running. Data-subscription & 

event-driven methods are mainly used for the communication between function 

objects. Only the events subscribed by other objects/components will be fired when 

the term is met, and only the subscribers will handle and respond the events they 

subscribe. This makes the system can accommodate large amount of data points 

without scarifying performance significantly. 

Unified standard communication technology 

The platform adopts standard Web Services as its communication technology. The 

bi-directional communication method is designed based on Web Service, this makes 

the transportation of COV and A/E messages based on Web Service feasible. The Web 

Service technology is used for the communication between the platform and the driver, 

the communication between the platform and its client, and access to the remote 

database. Hence Web Service communication becomes the unified communication 

interface among the platforms, remote database, drivers and their clients. The 

platform can integrate other Web Services, meanwhile provides Web Services 

interfaces which can be invoked by other IBmanager installations, or other 

customized client applications. 

Various sub-systems/devices can be integrated into the IBmanager with the 

designed XML Driver technology. Based on this technology, different protocols can 

be converted to common XML-encoded messages. The sub-systems/devices can be 



 184 

anywhere on the Internet since the XML-encoded message can be transported by 

Internet standard protocol - HTTP. This expands the driver communication beyond the 

LAN. 

Heterogeneous databases integration 

The remote heterogeneous databases can be integrated by Web Service. Every 

remote database is wrapped as a Web Services provider. Based on the design of 

Database Agent Object, a unified database access interface for the remote 

heterogeneous databases is designed. 

With the help of the powerful communication capability of Web Services on 

heterogeneous platform and on the Internet, the middleware technology becomes a 

seamless integration platform on the Internet. By the XML Driver and the Web 

Services interfaces presented by the IBmanager, the designed IBmanager installations 

can be deployed as chain-type architecture. The IBmanager can work standalone as a 

full-function BMS, or just as a part of large-scale BMS applications.  

Services integration interface with enterprise applications 

The middleware platform might be used to integrate other services, for example, 

weather report service. HVAC systems can optimize their control according to the 

data obtained from Web Services of the (government) Weather Bureau. Maintenance 

application can read specification data and manual of devices from manufacturers. 

Meanwhile the IBmanager middleware platform might be integrated by other 



 185 

applications on the Internet. For example, FDD applications can read real time data 

and historical data from the IBmanager by Web Services interfaces. By the same way, 

ERP (Enterprise Resource Planning) application can obtain the energy consumption of 

the entire enterprise from Web Services interfaces of the IBmanager. It ensures 

complete integration and interoperability among diverse facility systems and devices 

by connecting them to each other, to enterprise systems, and to the Internet in real 

time mode. This allows personnel using a standard web browser to measure, manage, 

and control a wide variety of energy, building, and security applications from 

anywhere in the world. 

System performance and actual applications 

The system performance has been discussed and measured primarily. The 

communication latency resulted from drivers and client communication has been 

discussed, the roundtrip time of the communication between the IBmanager and its 

client has been measured. 

As an integration platform, users can develop their own applications based on the 

IBmanager. A practical HVAC optimization application is on-going on a big-scale 

project - the International Commercial Center (ICC) project. The IBmanager provides 

integration and value-added services platform support for this project.  

9.2 Discussions and Future Work 

The integration platform is still on development process. Some works may be 



 186 

done in the future to enhance it functions. 

9.2.1 Load-balancing 

It is needed to design and implement the load-balancing scheme for the 

IBmanager in a real wide-area environment. For example, multiple IBmanager 

installations can be deployed, load can be moved from one IBmanager installation to 

another to keep load-balancing among various IBmanager installations, when some 

IBmanager installations are heavily loaded or not working properly. Measurements of 

load will be defined to provide an assessment for the load-balancing schemes. Load 

distribution strategy will be determined according to the measurements. For example, 

if faster communication service is required by data points, a load measurement that 

puts higher weight on communication bandwidth will be selected. Thus, an 

IBmanager installation with greater communication bandwidth can be selected to 

connect to the data points with more possibility. 

9.2.2 Mobile application 

The mobile applications include various media and applications, for example, 

SMS alarming, accessing the BMS by PDA (personal digital assistant) or mobile 

phone. By PDA/mobile phone applications, user can make client using Java 2 Micro 

Edition to provide UI (user interface) to monitor the BMS, or browse the web pages 

by embedded browser. The traditional protocol is WAP, now html has got broader 

support in PDA/mobile phone.  



 187 

9.2.2 Security of Web Service  

The security of Web Service is not implemented in the IBmanager platform yet. 

At the beginning of the research, the security of Web Services has become a hot topic 

to users and organizations. Because it is based on program-to-program interactions as 

opposed to human-to-program interaction, it is important for Web Service security to 

address topics such as access control, authentication, data integrity and privacy. Today 

the most common security scheme is SSL (Secure Sockets Layer), but when it comes 

to Web Services there are limitations with SSL. The Web Service technology has been 

moving towards different XML-based security schemes for Web Services. Some of 

the XML-based security technologies include the following [91]:  

 XML digital signature 

 XML Encryption 

 XKMS (XML Key Management Specification) 

 SAML (Secure Assertion Markup Language) 

 WS-Security (Web Services Security) [90] 

 ebXML Message Service [91] 

The implementation of security is an important consideration for the IBmanager 

in the future development. 

9.2.3 Public Services 

In the future development, more services may be developed based on this 



 188 

platform, such as data-mining, building energy analysis. Anyone with interest can 

develop their own value-added services based on the IBmanager. These value-added 

services can be placed on the Internet for public access. 



 189 

References 

1. Ehrlich P. “Guideline for XML/Web Services for Building Control”, BuilConn 
2003, Dallas, Apr. 2003 

2. OASIS Open Building Information Exchange (oBIX) TC, oBIX FAQ, 
http://www.oasis-open.org/committees/obix/faq.php as viewed on June 11, 2008 

3. Oswald P., Rockwell G., “Bringing the Power of the Internet to Real-time Control 
and Automation Systems”, AutomatedBuildings.com Article, July 2000; 

4. Wang S.W. and Xie J.L. "Integrating Building Management System and Facility 
Management on Internet", Automation in Construction, V11(6), pp. 707-715, 2002 

5. Wang S.W., Xu Z.Y., Li H., Hong J. and Shi W.Z. “Investigation on Intelligent 
Building Standard Communication Protocols and Application of IT Technologies”, 
Automation in Construction, V13(5), pp. 607-619, Sep. 2004 

6. Wang S.W, Xu Z. Y., Cao J.N., and Zhang J.P., “A Middleware for Web 
Service-enabled Integration and Interoperation of Intelligent Building Systems”, 
Automation in Construction, V16(1), pp.112-121,Jan. 2007 

7. ANSI/ASHRAE Standard 135-2001: BACnet® - A Data Communication Protocol 
for Building Automation and Control Networks, Atlanta Georgia: American 
Society of Heating Refrigerating, and Air-Conditioning Engineers, 2001 

8. ASHRAE SSPC 135, Official Website of ASHRAE SSPC 135, 
http://www.bacnet.org/ as viewed on 2008-5-17; 

9. EIA Standard “Control Network Protocol Specification” EIA/CEA-709.1-B 
(Revision of EIA-709.1-A), Jan., 2002 

10. Fisher D.M., "BACnet & LonWorks: A White Paper", July, 1996, 
http://www.bacnet.org/ 

11. The Cover Pages Web Site, “ASHRAE Releases BACnet Web Services Interface 
Specification for Public Review“, http://xml.coverpages.org/ni2004-10-22-a.html, 
October 22, 2004. 

12. Echelon Corporation, “i.LON 100 e3 User's Guide”, 
http://www.echelon.com/support/documentation/manuals/cis/078-0310-01B.pdf as 
viewed on June 11, 2008 

13. Frost and Sullivan Co., "North American Building Automation Protocol Analysis", 
Frost and Sullivan Report A143-19，May, 2002 

14. Huang H.Y., Yen J.Y., Chen S.L., Ou F. C., Development of an intelligent energy 
management network for building automation, Automation Science and 
Engineering, IEEE Transactions, V1(1), July 2004, pp. 14 - 25 

15. Xiao F., Sensor Fault Detection and Diagnosis of Air Handling Units, thesis for 
Doctor of Philosophy, at The Hong Kong Polytechnic University in April, 2004 

16. Huang G.S., Wang S.W. and Sun Y.J., Improving reliability of chiller sequencing 
control using fused measurement of building cooling load, HVAC&R Research, In 

http://www.oasis-open.org/committees/obix/faq.php�
http://www.bacnet.org/�
http://www.bacnet.org/Bibliography/DMF-7-96/DMF-7-96.htm�
http://www.bacnet.org/�
http://xml.coverpages.org/ni2004-10-22-a.html�
http://www.echelon.com/support/documentation/manuals/cis/078-0310-01B.pdf�


 190 

Press 
17. Craton E., Robin D., “Information Model: The Key to Integration”, 

AutomatedBuildings.com Article, January 2002, 
http://www.automatedbuildings.com/news/jan02/art/alc/alc.htm as view June 11, 
2008; 

18. Fisher D. M., “XML, Web Services, and the Problems of Enterprise-Level Data 
Exchange,” HPAC Engineering, vol. 76, no. 4, pp. 13–14, April 2004 

19. Overview, OASIS Open Building Information Exchange (oBIX) TC,  
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix as viewed 
on May 12, 2008; 

20. ANSI/ASHRAE Addendum c to ANSI/ASHRAE Standard 135-2004, American 
Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, 2006 

21. What is M2M Expo & Conference? 
http://www.m2mexpo.com/content/whatism2m.asp?tab=a as viewed on June 11, 
2008; 

22. Bushby S.T., "Communication Gateways: Friend or Foe? ", ASHRAE Journal 
V40(4), pp. 50-53, April, 1998 

23. Zheng F.W., Pu H.M., Huang D.M., Integrating Intelligent Building with CORBA, 
Microelectronics and Computer, V21(5), pp.25-29, May 2004 

24. Sinclair K., “Corporate Enterprises Are Forever Changed With Real-Time 
Building Information”, May 2005, 
http://www.automatedbuildings.com/news/may05/articles/esarticle/sinclair.htm as 
viewed on June 11, 2008; 

25. McGowan J.,  “Expanding Horizons for System Integration”, 
AutomatedBuildings.com Article, January 2002, 
http://www.automatedbuildings.com/news/jan02/art/mcg/mcg.htm as view June 
11, 2008; 

26. Ehrlich P., “Buildings - Part of the Enterprise”, Enterprise@BuilConn, March 23, 
2005, 
http://www.builconn.com/agenda/track_overview.asp?qsTID=29&qsEID=9&qsst
yle=1 as viewed on June 11, 2008 

27. Ehrlich P. and Sinclair K., EMAIL INTERVIEW, Enterprise@BuilConn, 
AutomatedBuildings.com Interview, February 2005, 
http://www.automatedbuildings.com/news/feb05/interviews/ehrlich.htm as view 
June 11, 2008; 

28. Tom S., Web services and BACnet, ASHRAE Journal, v 46, n 10, October, 2004, p 
S14-S17 

29. Bakken D. E., MIDDLEWARE, Washington State University, Encyclopedia of 
Distributed Computing, Kluwer Academic Press, 2003; 

30. Microsoft Corporation, “Understanding the Distributed Object Component Model 
(DCOM) Architecture”, 
http://www.microsoft.com/ntserver/techresources/appserv/COM/DCOM/1_Introdu

http://www.automatedbuildings.com/news/jan02/art/alc/alc.htm�
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix�
http://www.m2mexpo.com/content/whatism2m.asp?tab=a�
http://www.automatedbuildings.com/news/may05/articles/esarticle/sinclair.htm�
http://www.automatedbuildings.com/news/jan02/art/mcg/mcg.htm�
http://www.builconn.com/agenda/track_overview.asp?qsTID=29&qsEID=9&qsstyle=1�
http://www.builconn.com/agenda/track_overview.asp?qsTID=29&qsEID=9&qsstyle=1�
http://www.automatedbuildings.com/news/feb05/interviews/ehrlich.htm�
http://www.microsoft.com/ntserver/techresources/appserv/COM/DCOM/1_�


 191 

ction.asp as viewed on October 10, 2004 
31. Object Management Group, http://www.omg.org/ as viewed on June 11, 2008 
32. Java Remote Method Invocation - Contents, 

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html as viewed on 
June 11, 2008 

33. Raj G. S., “A Detailed Comparison of CORBA, DCOM and Java/RMI”, 
http://my.execpc.com/~gopalan/misc/compare.html as viewed on May 14, 2008; 

34. MIMOSA, “Open Systems Architecture for Condition-Based Maintenance 
web-based training, Middleware Technologies”, 
http://www.osacbm.org/Documents/Training/TrainingMaterial/TrainingWebsite/c1
p4.html as viewed on June 11, 2008 

35. Gisolfi D., Web Services architect, Part 3: Is Web Services the reincarnation of 
CORBA? 01 Jul 2001 
http://www.ibm.com/developerworks/webservices/library/ws-arc3/ as viewed on 
June 11, 2008 

36. Box D., A Young Person's Guide to The Simple Object Access Protocol: SOAP 
Increases Interoperability Across Platforms and Languages, 
http://www.neovis.pe.kr/AspNet/Lec/download.aspx?file=SOAP.pdf as viewed on 
June 11, 2008 

37. Würth D., “Dynamic Service Discovery across Technology Boundaries, A Thesis 
submitted in partial fulfillment of the requirements for the degree of Master of 
Science in Computer Science”, 
http://www.emn.fr/x-info/emoose/alumni/thesis/dwurth.pdf as viewed on June 11, 
2008 

38. School of Computer Science and Engineering , BeiHang University, Chapter 4: 
Message-Driven Bean, Feb. 2006 
http://act.buaa.edu.cn/Download/ch4%20Message-Driven%20Bean.ppt as viewed 
on June 11, 2008 

39. Maechling P., UNAVCO/IRIS Web Services Joint Workshop, 8 June 2005 
http://www.iris.edu/workshops/2005stevenson/ws_presentations/Maechling_WS_
Workshop.ppt as viewed on June 11, 2008 

40. Lu N., Liang J., You J. Y., Dept. of Computer Sci. and Eng. Shanghai Jiaotong 
Univ., “Design and Implementation of Building Intelligent Management System”, 
Journal of Shanghai Jiaotong University, July, 2000  

41. Guo H., Chen R., Hu L.M., “Research on integrated model based on XML, 
CORBA and agent”, Proceedings of the International Conference on Computer 
Supported Cooperative Work in Design, pp.344-348, July, 2001 

42. Wang Y., Wang Z.Y., “Design and Implementation of Intelligent Building 
Management System (IBMS) based on CORBA”, Computer and Digital 
Engineering, vol29(2), pp.16-22, 2001 

43. Johnson Controls Inc., “Product Information”, 
http://cgproducts.johnsoncontrols.com/tree.asp as viewed on October 10, 2004 

http://www.omg.org/�
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html�
http://my.execpc.com/~gopalan/misc/compare.html�
http://www.osacbm.org/Documents/Training/TrainingMaterial/TrainingWebsite/c1p4.html�
http://www.osacbm.org/Documents/Training/TrainingMaterial/TrainingWebsite/c1p4.html�
http://www.ibm.com/developerworks/webservices/library/ws-arc3/�
http://www.neovis.pe.kr/AspNet/Lec/download.aspx?file=SOAP.pdf�
http://www.emn.fr/x-info/emoose/alumni/thesis/dwurth.pdf�
http://act.buaa.edu.cn/Download/ch4%20Message-Driven%20Bean.ppt�
http://www.iris.edu/workshops/2005stevenson/ws_presentations/Maechling_WS_Workshop.ppt�
http://www.iris.edu/workshops/2005stevenson/ws_presentations/Maechling_WS_Workshop.ppt�


 192 

44. The World Wide Web Consortium, http://www.w3.org/ as viewed on October 10, 
2007 

45. Schmidt D. C., “Object Interconnections: CORBA and XML - Part 3: SOAP and 
Web Services”, 2001, http://www.ddj.com/cpp/184403802 

46. Carnegie Mellon Software Engineering Institute, “Object Request Broker, 
Software Technology Roadmap”, 
http://www.sei.cmu.edu/str/descriptions/orb.html 

47. Vasudevan V., “A Web Services Primer”, April 04, 2001, 
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/  

48. Donlon M., “Standard Internet Protocols in Building Automation”, Engineered 
Systems, V19(2), pp61-68, Feb., 2002 

49. The Continental Automated Buildings Association (CABA), “CABA XML/Web 
Services guideline committee states mission & objectives” July 15, 2003, 
http://www.caba.org 

50. OASIS Open Building Information eXchange Technical Committee, “History of 
oBix”, http://www.obix.org/ as viewed on October 10, 2004 

51. Newman H. M., "BACnet/XML: BACnet Opens Doors for New Technology." 
ASHRAE Press Briefing for BACnet. January 27, 2004, revised January 28, 2004. 
http://www.ashrae.org/publications/detail/14844  

52. McGowan J., “DDC Networks: …is the question really BACnet or LonWorks?”, 
AutomatedBuildings.com Article, Sept 2000, 
http://www.automatedbuildings.com/news/sep00/articles/jmcg/jmcg.htm as 
viewed on 2008-5-17 

53. Sidebar on Web Services, 
http://www.automatedbuildings.com/news/sep02/articles/stom/stom.htm as 
viewed on 2008-5-17 

54. Wikimedia Foundation, Inc., “Wikipedia, Heterogeneous Database System”, 
http://en.wikipedia.org/wiki/Heterogeneous_Database_System#Technical_Hetero
geneity 

55. Kranz H. R. & Gisler O., “How standardization and IT technology will shape the 
BACS industry in the future”, AutomatedBuildings.com Article,  January 2002, 
http://www.automatedbuildings.com/news/jan02/art/hk/hk.htm 

56. FieldServer Technologies, 
http://www.ahrexpo.com/showpreview/buildingautomationcontrol.php, February 
7-9, 2005 

57. OPC Unified Architecture, http://www.opcconnect.com/ua.php as viewed on 
2008-5-17 

58. Claus E., "Synchronic Extending interoperability and connectivity", 
AutomatedBuildings.com Article, March, 2002, 
http://www.automatedbuildings.com/news/mar02/art/isys/isys.htm as viewed on 
June 11, 2008 

http://www.w3.org/�
http://www.w3.org/�
http://www.ddj.com/cpp/184403802�
http://www.sei.cmu.edu/str/descriptions/orb.html�
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/�
http://www.caba.org/�
http://www.obix.org/�
http://www.ashrae.org/publications/detail/14844�
http://www.automatedbuildings.com/news/sep00/articles/jmcg/jmcg.htm%20as%20viewed%20on%202008-5-17�
http://www.automatedbuildings.com/news/sep00/articles/jmcg/jmcg.htm%20as%20viewed%20on%202008-5-17�
http://www.automatedbuildings.com/news/sep02/articles/stom/stom.htm�
http://en.wikipedia.org/wiki/Heterogeneous_Database_System#Technical_Heterogeneity�
http://en.wikipedia.org/wiki/Heterogeneous_Database_System#Technical_Heterogeneity�
http://www.automatedbuildings.com/news/jan02/art/hk/hk.htm�
http://www.ahrexpo.com/showpreview/buildingautomationcontrol.php�
http://www.opcconnect.com/ua.php�
http://www.automatedbuildings.com/news/mar02/art/isys/isys.htm�


 193 

59. Luth, J., "OPC Brings XML-DA to the Factory Floor," Control Solutions, Vol. 
75(7), pp. 34-36, 2002. 

60. Baumann G. and Damm M., "Industrial Communication System-independent and 
flexible", PRAXIS Profiline - OPC, Vogel Verlag, Wuerzburg, No. 1, pp.43-46, 
http://www.is.siemens. de/data/presse/docs/isfb01033112e.pdf, Jan., 2003 

61. OPC Foundation, “OPC Foundation's Unified Architecture to be Released at ARC 
Forum”, Archive Press Release, June 27, 2006, 
http://news.thomasnet.com/companystory/489072 

62. Desmarais R., “XML Esperanto for Data”, AutomatedBuildings.com Article, May 
2000, http://www.automatedbuildings.com/news/may00/articles/teletrol/ttrol.htm 
as viewed on June 11, 2008 

63. Wolter R., “Extreme XML Simply SOAP”, October 15, 2001, 
http://msdn.microsoft.com/en-us/library/ms950803.aspx as viewed on June 11, 
2008 

64. Wikimedia Foundation Inc., “SOAP, From Wikipedia”, 
http://en.wikipedia.org/wiki/SOAP as viewed on June 11, 2008 

65. Microsoft Corporation, “What's New in Enterprise UDDI Services”, July 17, 2003, 
http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddi.
mspx as viewed on June 11, 2008 

66. OASIS Forms Open Building Information Exchange (oBIX) Technical Committee, 
News: Cover Stories, May 11, 2004, 
http://xml.coverpages.org/ni2004-05-11-a.html as viewed on June 11, 2008 

67. OASIS Open Building Information Exchange TC, “oBIX 1.0, Committee 
Specification 01”, OASIS, 5 Dec. 2006 

68. Tom S., “Web Services A New BACnet Standard”, December 2004, 
AutomatedBuildings.com Article, 
http://www.automatedbuildings.com/news/dec04/articles/alc/stom.htm as viewed 
on June 11, 2008 

69. Hypertext Transfer Protocol -- HTTP/1.1, HTTP Message, 
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html as viewed on June 11, 
2008 

70. Microsoft Cooperate, SOAP Request Message Structure, 
http://msdn.microsoft.com/en-us/library/ms190796.aspx as viewed on June 
11,2008 

71. Iwanitz F., “Technical Article: XML-DA opens windows beyond the firewall”, 
http://ethernet.industrial-networking.com/articles/articledisplay.asp?id=21 as 
viewed on June 11, 2008 

72. W3C UK and Ireland Regional Office, “Demonstration: Query Multiple 
Databases using Semantic Web Technology”, 
http://www.w3c.rl.ac.uk/QH/WP1/demo.html as viewed on June 11, 2008 

73. Carroll N. L., Calvo R. A., “Querying Data from Distributed Heterogeneous 
Database Systems through Web Services”, 

http://news.thomasnet.com/companystory/489072�
http://www.automatedbuildings.com/news/may00/articles/teletrol/ttrol.htm�
http://msdn.microsoft.com/en-us/library/ms950803.aspx�
http://en.wikipedia.org/wiki/SOAP�
http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddi.mspx�
http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddi.mspx�
http://xml.coverpages.org/ni2004-05-11-a.html�
http://www.automatedbuildings.com/news/dec04/articles/alc/stom.htm�
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html�
http://msdn.microsoft.com/en-us/library/ms190796.aspx�
http://ethernet.industrial-networking.com/articles/articledisplay.asp?id=21�
http://www.w3c.rl.ac.uk/QH/WP1/demo.html�


 194 

http://ausweb.scu.edu.au/aw04/papers/refereed/carroll/paper.html as viewed on 
June 11, 2008 

74. Nikitas M., “Improve Web Services' Performance by Compressing SOAP”, Jan. 
2003, 
http://dotnetjunkies.com/Article/46630AE2-1C79-4D5F-827E-6C2857FF1D23.dc
ik as viewed on June 11, 2008 

75. Joshi B., “Accessing XML Data using ASP”, 
http://www.4guysfromrolla.com/webtech/101200-1.2.shtml as viewed on June 11, 
2008 

76. Apple Inc., remote Scripting with IFRAME, 
http://developer.apple.com/internet/webcontent/iframe.html as viewed on June 11, 
2008 

77. W3Schools, The XMLHttpRequest Object, 
http://www.w3schools.com/Xml/xml_http.asp as viewed on 2008-5-28 

78. Wikimedia Foundation Inc., “Ajax (programming)”, 
http://en.wikipedia.org/wiki/Ajax_(programming) as viewed on 2008-5-28 

79. Garrett J.J., “Ajax: A New Approach to Web Applications”, February 18, 2005, 
http://www.adaptivepath.com/publications/essays/archives/000385.php as viewed 
on 2008-5-28 

80. Honeywell Limited Australia, “Enterprise Buildings Integrator Configuration and 
Administration Guide”, Australia, Feb.2002  

81. Johnson Controls, “Systems Integration”, 
http://www.johnsoncontrols.com/publish/us/en/products/building_efficiency/capa
bilities/systems_integration.html as viewed on 2008-5-28 

82. (Honeywell) Alerton, “Programmer’s Guide and Reference, BACtalk Systems”, 
USA, 2007 

83. Echelon Corporation, “LNS DDE Server User's Guide Version 2.01”, CA, USA 
84. Microsoft Cooperation, “How To Use QueryPerformanceCounter to Time Code”, 

http://support.microsoft.com/kb/172338/en-us/ as viewed on 2008-5-28 
85. Wikimedia Foundation Inc., “Windows Task Manager”, 

http://en.wikipedia.org/wiki/Windows_Task_Manager as viewed on 2008-5-28 
86. “What is latency - A Word Definition From the Webopedia Computer Dictionary”, 

http://www.webopedia.com/TERM/l/latency.html as viewed on 2008-5-28 
87. ICONICS, Inc. ICONICS OPC Server Simulator, http://www.iconics.com/ as 

viewed on October 10, 2004 
88. Advosol Inc., XMLDA.NET White Paper (2004) 

http://www.advosol.com/driver.aspx?Topic=WhitePaperXMLDANET as viewed 
on Oct. 2007  

89. Wang S.W., Xu X.H. and Ma Z.J., “Evaluation of Energy Saving Potential of New 
Buildings in Construction through Intelligent Control”, SICHUAN - HONG 
KONG Joint Symposium 2006, Chengdu, 30th June - 1st July 2006 

http://ausweb.scu.edu.au/aw04/papers/refereed/carroll/paper.html�
http://dotnetjunkies.com/Article/46630AE2-1C79-4D5F-827E-6C2857FF1D23.dcik�
http://dotnetjunkies.com/Article/46630AE2-1C79-4D5F-827E-6C2857FF1D23.dcik�
http://www.4guysfromrolla.com/webtech/101200-1.2.shtml�
http://developer.apple.com/internet/webcontent/iframe.html�
http://www.w3schools.com/Xml/xml_http.asp�
http://en.wikipedia.org/wiki/Ajax_(programming)�
http://www.adaptivepath.com/publications/essays/archives/000385.php�
http://www.johnsoncontrols.com/publish/us/en/products/building_efficiency/capabilities/systems_integration.html�
http://www.johnsoncontrols.com/publish/us/en/products/building_efficiency/capabilities/systems_integration.html�
http://support.microsoft.com/kb/172338/en-us/�
http://en.wikipedia.org/wiki/Windows_Task_Manager�
http://www.webopedia.com/TERM/l/latency.html�
http://www.iconics.com/�
http://www.advosol.com/driver.aspx?Topic=WhitePaperXMLDANET�


 195 

90. International Business Machines Corp., “Web Services Security”, Updated 01 Mar 
2004, http://www-128.ibm.com/developerworks/library/specification/ws-secure/ 
as viewed on 2008-5-28 

91. “Understanding Web Services”, 
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/web_services.
asp as viewed on 2008-5-28 

92. Tidwell D., “Web services: The Web's next revolution. 2000”, 1.
 http://www.cn-java.com/download/book/wsbasics-a4.pdf as viewed on 2008-5-28 

93. Microsoft Corporation, “SQL Server 2008 Overview, data platform, store data  
Microsoft”,  http://www.microsoft.com/sqlserver/2008/en/us/default.aspx as 
viewed on 2008-5-28 

94. Sun Microsystems, “MySQL The world's most popular open source database”, 
http://www.mysql.com/ as viewed on 2008-5-28 

95. The MathWorks, Inc., “The MathWorks - MATLAB and Simulink for Technical 
Computing”, http://www.mathworks.com/  

96. Modbus-IDA, http://www.modbus.org/ as viewed on 2008-5-28 
97. CAN in Automation (CiA) group, “CAN in Automation (CiA) Controller Area 

Network (CAN)”, http://www.can-cia.org/ as viewed on 2008-5-28 
98. PROFIBUS & PROFINET International (PI) , “PROFIBUS”, 

http://www.profibus.com/ as viewed on 2008-5-28 
99. OPC Foundation, “The OPC Foundation - Dedicated to Interoperability in 

Automation”, http://www.opcfoundation.org/ as viewed on 2008-5-28 
100. LonMark International, “LonMark - Guides & Specifications - Functional 

Profiles”, 
http://www.lonmark.org/technical_resources/guidelines/functional_profiles as 
viewed on 2008-5-28 

101. Michael Wetter and Philip Haves, “A MODULAR BUILDING CONTROLS 
VIRTUAL TEST BED FOR THE INTEGRATION OF HETEROGENEOUS 
SYSTEMS”, Third National Conference of IBPSA-USA, Berkeley, California, 
July 30 – August 1, 2008 

102. Xu Z. Y., Wang S. W., “Intelligent Building Integration System based on  
OPC and Web Service MiddlewareTechnology, Intelligent Building & City 
Information, V1, pp.42-45, Jan. 2007 

http://www-128.ibm.com/developerworks/library/specification/ws-secure/�
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/web_services.asp�
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/web_services.asp�
http://www.cn-java.com/download/book/wsbasics-a4.pdf�
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx�
http://www.mysql.com/�
http://www.mathworks.com/�
http://www.modbus.org/�
http://www.can-cia.org/�
http://www.profibus.com/�
http://www.opcfoundation.org/�
http://www.lonmark.org/technical_resources/guidelines/functional_profiles�


 196 

Appendix A - Flow Chart of IBmanager Components 

Start

Instantiate 
Kernel Object

Query drivers to 
be loaded from DB

Init driver object

Query data points of 
this driver from DB

Instantiate Data 
Point Object

Add Point to Driver 
Object

End of point 
query result?

End of drivers 
query result?

Instantiate 
DataServer Object

Instantiate 
NotifyServer Object

Instantiate 
HistoryServer Object

Instantiate 
Client Object

Request from 
Client?

Invoke methods of 
DataServer Object

No

Loop

NO
NO

 

Flow Chart of IBmanager Server Components 



 197 

NotifyServer Class

Query update interval 
of points from DB

Add timer for every 
interval

Timer triggered?

Read values of points 
with this interval into 

IBServer from Driver by 
methods of DataServer

End of query 
result?

Fire COV event if point 
value is changed

No

NO

HistoryServer Class

Query record interval 
of histories from DB

Add timer for every 
interval

Timer triggered?

write values of 
histories with this 
interval into DB

End of query 
result?

No

No

 
Flow Chart of NotifyServer class and HistoryServer class 



 198 

AlarmServer Class

Query alarm 
conditions from DB

Instantiate Alarm 
Object

COV Event from 
NotifyServer Object?

End of query 
result?

Fire alarm event and 
make action

No

No

Whether the alarm 
condition meets?

No

Loop

TaskServer Class

Query task 
information from DB

Add timer for every 
task

End of query 
result?

No

Timer triggered?

Execute the task and 
adjust time for next 

execution

No

Loop

 

Flow Chart of AlarmServer class and TaskServer class 

Client Class

Get NotifyServer  
Reference

Get AlarmServer  
Reference

Get DataServer  
Reference  

Flow Chart of Client class 



 199 

Start

Reference Client Class 
of IBServer

SynReadValue 
to show value

Render control ‘s 
display

COV Event from 
NotifyServer Object?

Update Value Display

Alarm from 
AlarmServer Object?

Update Alarm Display

Read/Write Request 
from User?

Invoke read/write 
method of DataServer

Get NotifyServer  
Reference

Get AlarmServer  
Reference

Get DataServer  
Reference

No No

No

 
Flow Chart of client components 

 



 200 

Appendix B - Standard of the Common Interface for DLLs 

 

Properties: 

IsConnected  

Returns TRUE if the object is currently connected to back-end service, 

FALSE otherwise. 

ItemCount 

Returns number of items currently hold in the driver object. 

Items 

Returns a long string containing item information as follows. The string 

is multi-line string, i.e. using CR-LF combination to separate each, and 

every line contains key-value pairs, as shown below.  

alias=HWtemp;perm=R;... 

alias=HWdoor;perm=RW;... 

alias=HWcamera;perm=R;...  

Pre-defined keys are: 

• alias - the alias submitted by AddPoint() method.  

• perm - the permission actually applied (not requested) to the data 

point.  

Methods: 

InitObject(InitString) as boolean 

Initialize the driver object. 



 201 

• InitString (string) - a string of key-value pairs which specify how 

a specific data source to be connected and described. Return TRUE 

if the initialization process is successful, FALSE otherwise.  

o OPC: "Node=xxxx;ProgID=xxxxx;"  

Connect() as boolean 

Make the driver to connect to the back-end system. True if connected, false 

otherwise.  

Disconnect()  

Disconnect from the back-end system 

Browse([out] RawItemList) as boolean 

Returns all accessible data items in a row form. 

• RawItemList (string) - [out] this string is ued to store the item 

list in this format: each item name forms one line, terminated by 

a CR-LF combination (0x13,0x10).  

AddPoint(Alias, ItemName, ReqPermission, Options) 

as boolean 

Add a data point to the object internal container for later access. Return 

true if item successfully added, false otherwise. 

• Alias (string) - the alias representation for a data point in IB 

Manager  

• ItemName (string) - the original item name by the back-end 

environment. e.g. for OPC, it would be OPC item name.  

• ReqPermission (string) - the permission to the data point requested. 

Include "R" to mean Read, "W" to mean write. E.g., it can be "RW" 

or "R".  

• Options (string) - string of key-value pairs to supply additional 

options to the object.  



 202 

SyncRead(Alias, [out] Value, [out] Timestamp) as 

boolean 

Read an alias (mapped with data point) in synchronous way. Return true 

if the operation succeeded, false otherwise. 

• Alias (string) - the alias  

• Value (variant) - [out] the value read, if succeeded.  

• Timestamp (long) - [out] the timestamp of the operation, value is 

the number of seconds since 01-Jan-1970, 0:00:00.  

SyncWrite(Alias, Value) as boolean 

Write a value to a data point. Return true if successful, false otherwise. 

• Alias (string) - data point to write to  

• Value (variant) - value to write  

AsyncWrite(Alias, Value) as boolean 

Write a value to a data point, in asynchronous way. Return true if 

successful, false otherwise. The function will return as soon as possible, 

not waiting the back-end operation to complete. This specification does 

not define how it notify the caller the completion of the write. 

• Alias (string) - data point to write to  

• Value (variant) - value to write  



 203 

Appendix C – Installation and Operation Manual of 

IBmanager 

1. Install OPC_DA20_Components.exe for OPC access; 

2. Install OPC Simulator, run setup.exe in iconics OPC-server.zip 

(OPC Simulator provided as a data source to test IBmanager 

system when no real BAS system/device is connected); 

3. Install Matlab runtime components and DLL by running 

MCRInstaller.exe; 

4. Install IBServer, then add “IUSR_***” user to have write & read 

permission on the IBServer installation folder; it can solve the 

error “[Microsoft][ODBC Microsoft Access Driver] Could not use 

'(unknown)'; file already in use.”; 

5. Make a system DSN with name “ibserver”, which refers to 

IBServer.mdb in the ibserver installation folder; 



 204 

 

 



 205 

6. Install IBcontrol (include HMI IBcontrol, OPC driver DLL, 

BACnet driver DLL) 

Note: If you want to input data from a file, you should put the data file 

in the folder the same with IBMDrvFilePoint.dll 

7. Install IBSation (Do not change the default installation folder - 

C:\Program Files\IBWebStation\) 

8. Make a virtual folder refer to the asp file folder in the IBStation 

folder in the Internet Services Manager 

Step1: Open the IIS Manager Window 

 

Step 2: Locate the “Local Path” for the website 



 206 

 

Step 3: Add index.asp to default document 



 207 

 

9. Reboot the PC; 

10. Then browse the index.asp in the virtual folder from the IE browser 

(http://localhost/index.asp ). It should automatically start IBServer. 

If it pops up a security alarming message, configure the security 

setup of IE as below: 

http://localhost/index.asp�


 208 

 

 



 209 

 

11. log in the web station, username:wang, password:wang 

12. Then you can do the operations below: 

Maintenance: 

(1) View Server Log 



 210 

 
 

(2) View Operation Log 

 

 

(3) View Historical Data 



 211 

 
(4) View Alarm History 

 

 

 

 

(5) Maintain Users 



 212 

 

 

Configuration: 

(1) Configure Drivers 

 

 



 213 

(2) Configure Data Points 

 
 

 

Displays: 

 
 



 214 

 

 

 
 

The pictures used are placed in C:\Program 

Files\IBWebStation\WebApp\Images folder. 

End. 


	theses_copyright_undertaking
	b23210618



