Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




Single Machine Scheduling with Release
Dates and Due Dates

Zhongjun Tian

Ph.D.
THE HONG KONG POLYTECHNIC UNIVERSITY
2003



Single Machine Scheduling with Release
Dates and Due Dates

by

Zhongjun Tian

A thesis submitted to
The Hong Kong Polytechnic University
for the degree of

Doctor of Philosophy

Under the Supervisions of
Dr C.T. Daniel Ng
Professor T.C. Edwin Cheng

Department of Management
The Hong Kong Polytechnic University
2003

Pao Yue-Kong Library
Q’t‘/ PolyU ¢ Bong Kong



Abstract of the thesis entitled ‘Single Machine Scheduling with
Release Dates and Due Dates’

submitted by Zhongjun Tian

for the degree of Doctor of Philosophy

at The Hong Kong Polytechnic University in June 2002

In this thesis. we study some classical single machine scheduling problems with
release dates and due dates. In a comprehensive review of prior works, we classify
the literature into different classes, according to the job characteristics and the
optimality criteria. The review reveals that, despite the particular importance
of single machine scheduling models, a few classes of the problems on this topic
are rarely or never touched. These classes are worthy of research because of the
universality of the scheduling models with non-simultaneously released jobs and
the practical significance of due-date-based research. This thesis focuses on two of
these classes, which are the preemptive scheduling on a single machine to minimize
total tardiness with job restrictions, and the single machine due date assignment

with release dates.

In the former class. a set of jobs has to be processed on a single machine that
can perform only one job at a time. Each job has a release date, a processing time,
and a due date. All the data are integers. Preemption is allowed. The objective
is to schedule the jobs so as to minimize the total tardiness. We study two special
cases of this NP-hard problem with the following restrictions, separately:

(1) All processing times are equal, while the release dates and due dates are

arbitrary.

(2) The processing times are arbitrary, while the release dates and due dates

are agreeable, namely, all release dates and due dates are similarly ordered.

For the second case, we consider two subcases where identical release dates cor-

respond to identical and arbitrary due dates, respectively. For each of the specified

i



problems, we investigate the optimality properties and develop an appropriate al-
gorithm. Some of the results are extended to the single machine scheduling problem

without release dates.

In the latter class, a set of jobs has to be processed on a single machine that can
process no more than one job at a time. Each job has a release date, a processing
time, a due date and a weight. All the data are integers. The processing times
and release dates are arbitrary, while the weights are either arbitrary or identical.
The due dates are assigned by three different methods:

(1) Constant (CON): all jobs are given exactly the same flow allowance.

(2) Slack (SLK): jobs are given flow allowances that reflect equal slacks.

(3) Total-work-content (TWK): due dates are based on total work content.

The objective is to schedule the jobs so as to minimize one of the following
criteria: the maximum tardiness, the (weighted) number of tardy jobs and the
total (weighted) tardiness. We examine the complexity of all the problems with
the consideration of the due date assignment methods and the optimality criteria.
For each of the NP-hard problems. we provide an NP-hardness proof; and for
each of the solvable problems, we introduce a polynomial or pseudo-polynomial

algorithm.

ii



Acknowledgements

It is my great pleasure to thank all those who have supported and contributed to

the completion of this Ph.D. thesis.

The great enthusiasm, encouragement and efficient guidance that I have re-
ceived from Dr C.T. Daniel Ng, my chief-supervisor, and Professor T.C. Edwin
Cheng. my co-supervisor, have been beneficial not only for the completion of the

thesis but also for the long-term development of my research career.

This Ph.D. study is financially supported by The Hong Kong Polytechnic Uni-
versity grant number G-V625. The support and financial aid from this university

are greatly appreciated.

[ sincerely thank all of my colleagues and office-mates at The Hong Kong Poly-
technic University. I am very pleased to take this opportunity to thank my wife
and my son. Without their understanding and support. [ can never make this

accomplishment of my Ph.D. study come to be true.

Zhongjun Tian
Hong Kong
June 2002

iii



Contents

Abstract i
Acknowledgements iii
1 Introduction 1
1.1 Preemptive total tardiness problem . . . . .. ... ... .. . .. 2
1.2 Due date assignment problems . . . . . .. ... ... .. .. .. . 3
1.3 Outlineofthethesis . ... ... ... .. ... ... .. ... ... 5
2 Literature review 7
2.1 Introduction . . . .. ... ... .. ... ... ... 7
2.2 Maximum lateness . . ... ... ... ... ... ... ... .. .. 11
23 Numberoftardyjobs . ... ... ... .. .. ... ... . ... . 12
24 Totaltardiness . ... ... ... ... ... ... . ... .. .. .. 14
2.5 Duedateassignment . . .. ... ... ... ... .... .. .. .. 16
2.6 Potential research opportunities . . . . . ... .. ... ... .. .. 18

iv



3 Preemptive scheduling with a regular criterion

3.1 Introduction . . . . ... ... ... ... .. ...
3.2 Definitions . . . . . ... ...
3.3 A dynamic programming algorithm . . . ... ... .. ... .. .
3.4 Optimality properties . . . . . . . .. .. ... ... ... ......
3.5 Conclusions . . ... ... ... ... ...

4 Preemptive total tardiness problem with equal-length jobs
4.1 Introduction . . . . . ... .. ... ...
4.2 Decomposition technique . . . . . . ... .. ... ... .. .. ..
4.2.1 Decomposition in the 1st-stage . ... ... .........
4.2.2 Decomposition in the uth-stage . ... ... ... ... ..
4.23 Schedulingoftheset U . . . ... ... ... .........
43 AnO(n®)algorithm . . . .. ... .. .. ... ... .. ... ... .
44 Discussion . . . .. ...
45 Conclusions . . ... ... ... L

5 Preemptive total tardiness problem with agreeable release dates

and due dates

5.1 Introduction . . . .. ... ... ... ... ...
5.2 NP-hardness . . . . . . ... ...
5.3 Decomposition technique . . . . .. . ... ... ... ... ...

54



5.4 A pseudo-polynomial algorithm . . . ... ... ... ... ... . .
3.5 Specialcases. . . . . . ... ... ...
53.1 Specialcasel:ry=r ... ... ... ... .. ........
5.5.2 Specialcasell: d;=d .. ...................
5.5.3 Special case II: (ry.diyps) . . . . . . . . .. ...
56 Conclusions . ... ... ... ... ... ... . .

Due date assignment problems with release dates

6.1 Introduction . . .. ... ... ... .. ... ... ... .....

62 CONmodels. . . .. ... ... ... ... ... .. .. .....
6.2.1 Maximum tardiness . . . . . ... ... ... ... .. ...
6.22 Numberoftardyjobs. . ... ... ..............
6.23 Totaltardiness ... ......................
6.24 Complexityresults . . . ... ... ... ...........

63 SLKmodels . . . . ... ... ... ... .. ... . .......

64 TWKmodels . ... ... .. ... ... . ... ... .......

6.5 Conclusions . . ... ... ... ... .. ... ... . .......

Total tardiness problem without release dates
7.1 Introduction . . . . .. ... ... ... ... ... ... ...
7.2 An alternative proof for Theorem 3 of Lawler (1977) . .. ... ..

vi

39

61

61

61

61

62

63

63

65

65

66

66

69

69

71

72

74



7.3 Optimality properties . . . . . . . .. ... ... ... ........

7.4 An extension of the results to the case with release dates

7.5 Conclusions . . . . . . . . . ..

8 Conclusions and suggestions

8.1 Conclusions . . .. .. .. . .. . ...

82 Suggestions . . . .. ... ... ...

References

Appendix

vii

83

83

85

86

93



List of Tables

2.1

2.2

2.3

2.4

6.1

6.2

6.3

Single machine maximum lateness problems with release dates . . .
Single machine number of tardy jobs problems with release dates . .
Single machine total tardiness problems with release dates . . . . .

Single machine due date assignment problems with release dates . .

Complexity results of CON due date assighment models. . . . . . .
Complexity results of SLK due date assignment models . . . . . . .

Complexity results of TWK due date assignment models . . . . . .

viii



List of Figures

3.1

4.1

4.2

4.3

Block B after the decomposition by asubset U . . . . .. ... ... 25
The decomposition results in the Ist and 2nd stages . . . . . . . .. 41
The decomposition results in the (u — 1)th and uth stages . . . . . 42

A schedule for block B without job j, . . . . . ... .. ... .. .. 46

ix



Chapter 1

Introduction

Single machine models are important in machine scheduling systems. On the
one hand. single machine environment is a particular case of many industrial and
services environments. On the other hand, scheduling problems with more com-
plicated environments can often be decomposed into subproblems that deal with a
single machine. For example, a complicated environment with a single bottleneck
may give rise to a single machine model. So. the results that can be obtained
for single machine not only provide insights into the single machine environment,
but also provide a basis for heuristics for more complicated environments (Pinedo
1995). Thereby, single machine scheduling problems have been studied by a great
number of researchers since the seminal work by Jackson (1955) and Smith (1956),

and an impressive amount of literature has been created.

Although the single machine environment seems simple, the corresponding
scheduling problems could be rather difficult in case with complicated job char-
acteristics, even for usual optimality criteria. Especially, when jobs are not re-
leased simultaneously. single machine scheduling problems for minimizing all com-
mon due-date-based criteria are NP-hard. As early as 25 years ago, Lenstra et

al. (1977) proved the strong NP-hardness of all these problems. i.e. the sin-



gle machine scheduling problems with release dates to minimize the maximum
lateness, the (weighted) number of tardy jobs and the total (weighted) tardiness,
respectively. However, because of the universality of the scheduling models with
non-simultaneously released jobs, researchers never lose interest in these NP-hard
problems in the past decades. The study on these problems is concentrated on two
areas: the enumerative and approximation algorithms for the general problems,
and the polynomial solutions for the special cases with job restrictions. In both
areas, considerable amount of papers with attractive results have been published.
Nevertheless, a comprehensive review shows that there are still a few sections of
both areas rarely or never touched. In this thesis, we focuses on one of such sections
in the latter area, which is the preemptive single machine total tardiness problem
with job restrictions. Besides, we examine and tackle some other single machine
problems, which are the single machine due date assignment problems with release

dates.

1.1 Preemptive total tardiness problem

An up to date classification for complexity results of scheduling problems can be
found on a web site maintained by Brucker and Knust (2002). Our general ob-
servation from the classification is that, in most cases, preemption can make an
NP-hard single machine scheduling problem easier. If job weights are not con-
sidered, all the strongly NP-hard problems with release dates become polynomi-
ally solvable except the total tardiness problem. Firstly, the preemptive single
machine total completion time problem with release dates can be solved by the
well-known shortest remaining processing time (SRPT) rule. Secondly, Baker et
al. (1983) and Gordon and Tanaev (1983) independently presented an O(n?) al-
gorithm which solves the preemptive single machine maximum lateness problem

with release dates and arbitrary precedence constraints, where n is the number of



the jobs. Lastly, Lawler (1990) provided an O(n®) algorithm for the preemptive
single machine number of tardy jobs problem with release dates, which can also

be solved by an O(n?) algorithm proposed by Baptiste (1999a).

On the other hand, according to Chu (1992), the preemptive single machine to-
tal tardiness problem with release dates is NP-hard, since the counterpart without
release dates is NP-hard and the former is not easier than the latter. But, as the
latter problem is NP-hard in the ordinary sense, the sense of the NP-hardness of the
former problem cannot be determined without a pseudo-polynomial algorithm or
a reduction from a strongly NP-hard problem. So, the preemptive single machine
total tardiness problem with release dates is NP-hard but open to the sense of the
hardness. Particularly, we observe that the complexity status of the special case of
this problem with equal-length jobs remains to be open, too. The importance of
the complexity of this problem to both theoretical and practical scheduling study
is explicit. Nevertheless, to the best of our knowledge, there is no article on any
case of this problem. Therefore, it is both interesting and challenging to focus our

thesis on this untouched field.

1.2 Due date assignment problems

Scheduling problems involving due date assignment are of particular importance
to both researchers and practicing managers and have been studied for decades.
An extensive survey of the study in this area was given by Cheng and Gupta
(1989). In their paper, Cheng and Gupta classified the literature into static and
dynamic job shop situations. Under each job shop environment, the literature
was categorized into single-machine and multiple machine cases. They concluded
that, while the static single machine problems with constant or common due dates
had been well researched, very little or no work had been done on the dynamic

multiple machine problems with sophisticated due date assignment methods. They



also identified and suggested some worthwhile areas, in both static and dynamic

job shop situations. for future research.

Since the publication of Cheng and Gupta’ survey, a large volume of literature
concerning due date assignment has been published. However, because of the com-
plication and difficulty of the analysis of the dynamic models, the new literature
has still been focused on the static job shop situation. While limited results in
the static multiple machine case have been reported, the study on the static single
machine case has been extended to a broader area. The extension follows two main
directions: (1) from the simplest CON due date assignment method to more so-
phisticated methods, such as SLK and PPW, and (2) from the classical view that
due dates are treated as decision variables but are assigned to corresponding jobs
before the scheduling, to an alternate view that each due date is not associated

with a specific job but assigned to a job according to the sequencing result.

An interesting observation from the classical view is that, although release dates
are considered in all types of the due date assignment methods defined by Cheng
and Gupta (1989), almost all papers in the literature do not involve the models
with release dates. To the best of our knowledge, the only exceptions are Gordon
(1993) and Cheng and Gordon (1994). The former paper dealt with the optimal
assignment of SLK due dates to n jobs and scheduling them on a single machine to
minimize the maximum tardiness; while the latter paper involved the same problem
but the due dates are assigned to the jobs by two methods in which release dates
are not considered. In this thesis, we attempt to extend Gordon and Cheng’s
study to some other due date assignment models with release dates, namely, the

(weighted) number of tardy jobs models and the total (weighted) tardiness models.



1.3 Outline of the thesis

In the remainder of this thesis. we study several single machine scheduling problems
with release dates. After a comprehensive literature review in the next chapter,
we introduce some definitions and fundamental properties as well as a basic al-
gorithm in Chapter 3. All the definitions. properties and algorithm in Chapter 3
are applicable to the general preemptive single machine scheduling problem with

a regular criterion.

In Chapter 4, we study the preemptive single machine total tardiness problem
with equal-length jobs. which is posed as open by Baptiste (2000). With the opti-
mality properties and results in Chapter 3, we present a decomposition technique
by which an O(n?) algorithm is constructed for the problem considered. Then, we

assert that the problem is polynomially solvable.

In Chapter 5. we study another special case of the preemptive single machine
total tardiness problem. which is the case with agreeable release dates and due
dates. We first show the NP-hardness of this problem by an obvious reduction
from the well-known NP-hard problem 1|| 3> T;. Then we investigate the optimality
properties and derive a pseudo-polynomial algorithm to solve this problem. thus

ascertaining that it is NP-hard in the ordinary sense.

In Chapter 6, we focus on the complexity of the due date assignment problems
with release dates. The models with CON (Constant) due dates are discussed in
detail, followed by the discussion for the SLK and TWK models. All models with
a regular criterion are considered. With a few exceptions. the complexity of most

of the problems are explicitly determined.

In Chapter 7, we extend the results in the previous chapters to the problem
1|| X T, which is a special case of the problem that we consider in Chapter 5. An

alternative proof of the pseudo-polynomial solvability of this problem is provided,

w



and some polynomially solvable cases are investigated.

In Chapter 8. we present our conclusions and recommendations.



Chapter 2

Literature review

2.1 Introduction

In this chapter, we aim at providing a survey of the literature on classical single
machine scheduling problems involving release and due dates. We concentrate on
deterministic models where a given set of jobs has to be processed on a single
machine that can perform only one job at a time, and where all data required
to define a problem instance are known with certainty. Specifically, we consider
the models concerning the scheduling of n jobs with release dates on a single
machine to minimize a due-date-based criterion. Because of the enormous volume
of the literature and the limited space of this thesis, we focus only on the papers
contributed to the complexity results. For a known NP-hard problem, we refer
to the paper with the NP-hardness proof (and the paper with pseudo-polynomial
algorithm, if the problem is NP-hard in the ordinary sense); for a polynomially
solvable problem, we refer to the papers with polynomial algorithms and indicate

the time complexity of the algorithms.

To define a problem, we adopt the well-known three-field notation ‘a|8|y’ of

Graham et al. (1979) and Chen et al. (1998). where a, 3 and ~ indicate the



machine environment. the job characteristics, and the optimality criterion, respec-
tively. We will extend this notation scheme to reflect the job restrictions and the
due date assignment methods precisely. In particular. we borrow the concept of
‘agreeable’ from Lawler (1977) and Lee et al. (1992) to describe the ‘similarly
ordered’ job characteristics, and the idea of Koulamas and Kyparisis (2001) to

indicate such agreeable features by bracketing the agreeable items.

In a single machine scheduling problem. each job i is characterized by the
following data:

e a processing time p;;

® a release date r,;

® a due date d;; and

e a weight w;.

Given a schedule, for each job i, we can compute:

e Completion time Cj;

e Lateness L; =C; — d;;

e Tardiness T; = max{0, C; - d;};

e Unit penalty U;=1 if C; > d; and U;=0 otherwise; and

e A regular (non-decreasing) cost function f;, = f(C;).

Some regular due-date-based criteria involve the minimization of:
® L. = max; L;: the maximum lateness:

® fmer = max; f;: the maximum cost;

® > (w;)U;: the (weighted) number of tardy jobs;

® > (w;)T;: the total (weighted) tardiness: and

e Y fi =3 f(Ci d;): the total due-date-based cost.

In the three-field descriptor ‘a|8|7’, we will use a=1 to define the single machine
environment, ¥ € {Lmaz, frmaz, L(wi)U;, T(wi)T;. 3 fi} the optimality criterion.
and 3 C {8,. 02,5, 0, 05} the job characteristics as below.

8



o b1 € {o.ri, (ri.di), (rindi)=. (ri, —d;). [ri, di] V.
(ri, di, pi), (ri, di, pi, —ws), (riy pi, —wi). (T i) }

— 31 = o: no release dates are specified;

— 01 = r;: jobs have release dates;

- B = (ri,d;): release dates and due dates are agreeable, in the sense
that r; < r; implies d; < dj;

—~ b1 = (ri,d;)”: release dates and due dates are strictly agreeable, in the
sense that r; < r; implies d; < d; and r; = r; implies d; = dj;

~ By = (ri, —d;): release dates and due dates are reversely agreeable, in
the sense that r; < r; implies d; > d;;

— By = [ri,d;]¥: the intervals [r;, d;] are nested, in the sense that [r;,d;] N
[rj.d;] is either @ or [r;.dy], or [r;.d;}:

- 0, = (ri,d;,p;): all release dates, due dates and processing times are
agreeable. in the sense that r; < r; implies d; < d; and p; < p;:

- By = (ri,di, pi, —w;): all release dates, due dates and processing times
are agreeable, and weights are reversely agreeable, in the sense that
r < T 1mphes di < dj, Di < D;i and w; 2 wy

— By = (ri, pi, —w;): release dates and processing times are agreeable, and
weights are reversely agreeable, in the sense that r; < r; implies p; < p;
and w; > w;:

- 6, = (f;,d;): modified release dates and due dates are agreeable, in
the sense that f; <f; implies d; < d; in case with precedence con-
straints, where the modified release date f; = r; if B(i) = ¢, and
I = max{ri,krgg(x)(fk +pi)} if B(Z) # ¢ (B(i) is the set of all immediate

predecessors of job ¢ in N=1.....n).



o 3 ={o,di=d.d; € {d,...d,},d=r+d,
di=ri+pi+d.d; =1+ kpi.di = kipi + k2, ds = kupi?}
— 02 = o: due dates are arbitrary;
— B2 = d; = d: due dates are common for all jobs, where d is a constant;
- Br=d; € {d,....d,,}: there are m, 1 < m < n, distinct due dates;

— B2 = d; = r; + d: due dates are determined by the CON method, that

is, all jobs are given exactly the same flow allowance;

~ (2 = d; = r; + p; + d: due dates are determined by the SLK method,

that is, jobs are given flow allowance that reflect equal slacks;

— B2 =d; = r; +kp;: due dates are determined by the TWK method, that

is. due dates are based on total work content, where k is a constant:

~ B2 = d; = k1p; + ka: due dates are determined by the PPW (processing-

time-plus-wait) method. where k; and k, are constant;

— Go=d; = k;pf’: due dates are determined by the TWK-power (total-

work-content-power) method.
e 33 € {0.pmtn}
— (B3 = 0: no preemption is allowed;
— 83 = pmtn: preemption is allowed.
e (3, = {0, chain,tree, prec}

— B4 = o: no precedence constraints are specified;

— B3 = chain: precedence constraints on jobs are defined where each

vertex has outdegree and indegree at most one:

— B4 = tree: precedence constraints on jobs are defined by a rooted intree

or outtree;

— (33 = prec: jobs have arbitrary precedence constraints.

10



¢ s ={o,p; = 1.pi = p. (pi. —wi)}
— [s = o: processing times are arbitrary;
— fs = p; = 1: all jobs have unit processing times;
— fs = pi = p: all jobs have equal processing times;

— Bs = (pi, —w;): processing times and weights are reversely agreeable.

The rest of this chapter is organized as follows. Problems with a criterion of the
maximum lateness, the (weighted) number of tardy jobs and the total (weighted)
tardiness are reviewed in Sections 2.2, 2.3 and 2.4, respectively. The due date
assignment problems are considered in Section 2.5. Some potential research op-

portunities are presented in Section 2.6.

2.2 Maximum lateness

Although the general problem 1|ri|L., is shown to be strongly NP-hard by
Lenstra et al. (1977), its preemptive counterpart is polynomially solvable, even
in case with arbitrary precedence constraints. Using a generalized earliest due
date (EDD) algorithm in O(nlogn) time, Horn (1972) constructed an optimal so-
lution for 1|r;, pmtn|Luy.,. Later, Lageweg et al. (1976) proposed an O(nlogn)
algorithm for the problem 1ir;, pmtn, tree|Lm,,. After that, Baker et al. (1983)
and Gordon and Tanaev (1983) independently generalized Lawler’s approach for
the non-preemptive problem 1|prec|fmq.: to l|r;, pmtn, prec|frmaz- The algorithm

solves |r;, pmtn, prec|Lpnq, in O(n?) time.

In the case of unit-length jobs, 1{r;,p; = 1|L.. can be solved in O(n) time
(Frederickson 1983). Even with arbitrary precedence constraints, the problem
ljri, prec, p; = 1|Lmaz can be solved by an O(n?) algorithm presented by Lageweg
et al. (1976). In the case of equal-length jobs, the problem 1jr;, prec, p; = p|Lmaz

11



is still polynomially solvable (Simmon 1978). On the other hand, according to the
generalized EDD rule presented by Horn, a preemption occurs at a release date
in the case that the newly released job has a smaller due date than that of the
job currently being processed, a case that never exist if all release dates and due
dates are agreeable. So, the EDD rule, which is equivalent to the earliest release
date (ERD) rule in this special case, is optimal for the problem 1{(r;,d;)|Lmaz-
Moreover, Gordon (1993) indicated that, if the modified release dates and due
dates are agreeable, the algorithm introduced by Baker et al. (1983) and Gordon
and Tanaev (1983) for the problem l|r;, pmtn, prec| fmaz solves 1|(F;, d;), prec| Loz
and 1{(T;, d;), tree| Loz in O(n?) and O(nlogn) time, respectively.

The detailed complexity results of single machine maximum lateness problems
with release dates are summarized in Table 2.1. As a rule, if a problem with no
precedence constraints is shown as strongly NP-hard. the counterparts with any
precedence constraints must be strongly NP-hard and are not included in the table;
if a problem with arbitrary precedence constraints can be solved by a polynomial
algorithm, all counterparts with simpler or no precedence constraints also can be
solved by this algorithm and are not included, unless a better algorithm exists.
Besides, we use the following notations.

® s-NP: strongly NP-hard;

¢ 0-NP: NP-hard in the ordinary sense;

e NP: NP-hard but open to the sense of hardness;

e open: open to the complexity.

2.3 Number of tardy jobs

As the problem ljchain, p; = 1} Y U; has been proved strongly NP-hard by Lenstra
and Rinnooy Kan (1980), the counterpart with release dates must be strongly NP-

hard. too. So, the literature on this class is focused on the problems with no

12



Table 2.1: Single machine maximum lateness problems with release dates

Problem Status Reference

1|r:|Limazr s-NP Lenstra et al. (1977)

lir,,pi = 1|Lmaz O(n) Frederickson (1983)

lr;, prec,p; = 1|Lnax o(n?) Lageweg et al. (1976)

1|y, prec, pi = p|Lmaz O(n?logn) Simons (1978)

lir;,, pmtn|Lyer O(nlogn) Horn (1972)

lr;, pmtn, tree|L qr O(nlogn) Lageweg et al. (1976)

1|r;, pmtn, prec|Lyaz o(n?) Baker et al. (1983)
Gordon & Tanaev (1983)

1|(ri, di)| Lmax O(nlogn) ERD rule

1/(T:, d;). tree| Lnaz O(nlogn) Gordon (1993)

1|(F., d;), prec} Linar o(n?) Gordon (1993)

precedence constraints. In non-preemptive case. 1|r;| YU, is strongly NP-hard
since 1|r;|Lyq, is already strongly NP-hard (Lenstra et al. 1977). In preemptive
case, the weighted problem 1|r;, pmtn|}_ w;U; is NP-hard in the ordinary sense
and can be pseudo-polynomially solved by an O(n3W?) algorithm presented by
Lawler (1990), where W is the sum of the integer job weights. Consequently, the
unweighted counterpart 1|r;, pmtn| 3" U; can be polynomially solved in O(n®) time.
Recently, Baptiste (1999a) proposed a new dynamic programming algorithm whose

time complexities is O(n?) for the unweighted problem.

With unit-length jobs, 1|r;,p; = 1|3 w;U; can be solved in O(n3) time as an
assignment problem. However. Lawgeweg and Lawler (1995) provided a more ef-
ficient algorithm to solve this problem in O(n?) time. In the case of equal-length
jobs. Baptiste (1999b) presented an algorithm based on dynamic programming to
solve 1|r;, pi = p| ¥ w,U; and l|r;, pmtn, p; = p| - w:U; in O(n”) and O(n'?) time,
respectively. Kise et al. (1978) firstly showed that in the case of agreeable re-

13



lease dates and due dates. the unweighted problem 1|(r;,d;)| 3 U; can be solved
in O(n?) time. Lawler (1990) mentioned that in such an agreeable case, his dy-
namic programming algorithm solves 1|(r;, d;)| ¥ w;U; and 1|(r;, d;), pmtn| Y. w;U;
in O(nW) time, and 1|(r;,d;)| ¥ U, and 1|(r;, d;), pmtn| ¥ U; in O(n?) time, respec-
tively. In another paper, Lawler (1994) generalized the Moore-Hodgson algorithm
that solves the problem 1||{w;U; in O(nW) time, to solve both 1|(r;,d;)| ¥ U; and
1|(ri.d;), pmtn| 3. U; in O(n log n) time. However, we note that even in this special
agreeable case, both 1|(r;,d;)| 3 w;U; and 1{(;, d;), pmtn| ¥ w;U; are still NP-hard,
which is indicated by the NP-hardness of the problem 1|| 3 w;U; whose jobs obvi-
ously have agreeable release dates and due dates. In case with more complicated
restrictions, Tanaev and Gordon (1983) indicated that 1|(r;, d;, p;, —w;)| ¥ w;U; can
be solved in O(n log n) time; Lawler (1994) showed that 1|(r;, —d;), pmtn| Y- w;U; is
pseudo-polynomially solvable in O(nW ) time, and both 1|(r;, p;, —w;), pmtn| ¥ w;U;
and 1|[r;, d;}¥, pmtn, (p;, —w;)| £ w;U; can be solved in O(nlogn) time. The de-
tailed complexity results of single machine number of tardy jobs problems with

release dates are summarized in Table 2.2.

2.4 Total tardiness

Since the strong NP-hardness of the problem 1|chain,p; = 1|3 T; is shown by
Leung and Young (1990), its counterpart with release dates must be strongly NP-
hard. Thus, the literature on this class also focuses on the problems with no
precedence constraints. Again, 1|r;| ¥ T; is strongly NP-hard following the strong
NP-hardness of 1{r;|L., (Lenstra et al. 1977). Chu (1992) gave a proof of the
NP-hardness of 1|r;,pmtn|¥. T;, but did not decide whether it is in the strong
sense or in the ordinary sense. However, the weighted problem 1|r;, pmtn| Y, w;T;

is strongly NP-hard (Labetoulle et al. 1984).

The problem 1l|r;,p; = 1|3, w;T; can be solved in O(n3) time, as it also can

14



Table 2.2: Single machine number of tardy jobs problems with release dates

Problem Status Reference
1r X U; s-NP Lenstra et al. (1977)
Lr;, pmtn| ¥ U; o(n®) Lawler (1990)
O(n#) Baptiste (1999a)
1r, pmtn| 3 w;U; O(r3W?)*  Lawler (1990)
Uri,pi = 1| S wU; O(n?) Lageweg & Lawler (1975)
lri, pi = p| & w:iU; O(n") Baptiste (1999b)
lri, pmtn, p; = p| ¥ w;U; O(n'%) Baptiste (1999b)
1|(ri, d)| X U; O(n?) Kise et al. (1978)
O(nlogn) Lawler (1990,1994)
1|(r:, d;). pmtn| ¥ U; O(nlogn) Lawler (1990.1994)
1|(ri, di)l ¥ w;U; o(nW)* Lawler (1990)
1|(ri, d;). pmin| > w,U; Oo(nW)* Lawler (1990)
1|(ri, —d;), pmtn| 3 w;U; O(nW)* Lawler (1994)
(s, diy piy —wi)| X w;Us O(nlogn) Tanaev & Gordon (1983)
(7. pi, —wi). pmin| 3 w;U; O(nlogn) Lawler (1994)

Ulri, iV, pmtn, (pi, ~wi)| Cwili  O(nlogn)

Lawler (1994)

*: o-NP

be transformed to an assignment problem. In case of equal-length jobs, Bap-

tiste (2000) presented an O(n") algorithm to solve some single machine schedul-

ing problems including 1|r;, p; = p| 3. T;. Nevertheless, according to Brucker and

Knust (2002), the complexity status of all the problems 1|r;, pmtn,p; = p| T},

lri,pi = pl X w;T; and l|r;, pmtn,p; = p| ¥ w;T; are open to date. In case with

agreeable release dates and due dates, 1|(r;,d;)| ¥ T; is proved strongly NP-hard
by Koulamas and Kyparisis (2001) recently, but both 1|(r;,d;),pmtn|3 T; and

1|(ri, di), pmtn| > w;T; are still open to date. The detailed complexity results of

15



single machine total tardiness problems with release dates are summarized in Table

2.3.

Table 2.3: Single machine total tardiness problems with release dates

Problem Status Reference

HEADIY s-NP Lenstra et al. (1977)
Uri, pmtn| ST, NP Chu (1992)

1|ri, pmtn| ¥ w,T; s-NP Labetoulle et al. (1984)
lri,pi = 1| wT; O(n?) Assignment-problem
lripi =pl T O(n7) Baptiste (2000)

lri, pi = p| X w:T; open Brucker & Knust (2002)
llri,pmtn.p; = p| 3 T; open Brucker & Knust (2002)
ljri, pmtn.p; = p| 3. w;T; open Brucker & Knust (2002)
H(r..d:)| T, s-NP Koulamas & Kyparisis (2001)
1|(ri. d;), pmtn| 3. T, open

1|(ri, d), pmtn| 3 wiT; open

2.5 Due date assignment

As the first survey focused on the due date assignment problems, Cheng and Gupta
(1989) covered the research results in the literature up to then. According to Cheng
and Gupta, no paper published before the 1990s dealt with the due date assignment
problems with release dates. Following Cheng and Gupta’ survey, a large volume
of literature concerning due date assignment has been published. In two very
recent papers, Gordon et al. (2002a, 2002b) provided comprehensive surveys of
due date assignment research on CON due date assignment model, and SLK, TWK
as well as other due date assignment models, respectively. Their surveys showed

that, compared with the results summarized in Cheng and Gupta (1989), a large

16



amount of effort has been devoted to the more complicated models such as SLK
and TWK. Moreover, an alternative view that the due dates are specified according
to the position in which a job is completed. rather than the identity of that specific

job. is proposed and has been a hot research topic.

Nevertheless, as indicated in the last section, Gordon (1993) and Cheng and
Gordon (1994) are the only papers in the literature that take release dates into
considerations, with very few exceptions dealing with the positional due date mod-
els or the computer simulation models, both of which are beyond the scope of our
research. Gordon (1993) considered the preemptive SLK due date assignment
problem with precedence constraints. The objective is to find an optimal schedule
S* and an optimal slack d* allowance that jointly minimize a penalty function

given by
f(S,d) = od + maxT;

where a > 0 is the cost per unit time of slack. It is shown that the schedule
obtained by applying the algorithm proposed by Baker et al. (1983) and Gordon
and Tanaev (1983) for the problem 1|r;, pmtn, prec| fmaz, which is called Algorithm
GT-BLLR in a later paper (Cheng and Gordon 1994), is optimal independently
of the value of d, and that the problem is solvable in O(n?) time in the case
of arbitrary precedence constraints and O(nlogn) time in the case of tree-like

precedence constraints.

Cheng and Gordon (1994) studied the same problem as that in Gordon (1993),
but with PPW and TWK-power due date assignment methods. The objective is
to find an optimal schedule S* and optimal values &} and &3 that jointly minimize

a penalty function given by
f(S, kl, kz) = ‘I’(kl k2) +a Héa\.le:

where ®(k|, k2) > 0, a nondecreasing convex functions of k; and k; with $(0,0) =

17



0, is the cost of assigning due dates and @ > 0 is the cost per unit tardiness
incurred by the most tardy job. It is shown that the schedule obtained by applying
Algorithm GT-BLLR is independently optimal of the values k, and k,, and thus,
the scheduling problem is solvable in O(n?) time in the case of arbitrary precedence
constraints and O(n log n) time in the case of tree-like precedence constraints. It is
also showed that. with PPW due date assignment method, the due date assignment

$y (ki) + Baka, where ®,(k;)

problem is solvable in O(n®) time if ®(k,, k;)
is a nondecreasing convex function with $;(0) = 0 and 5 > 0. The detailed
complexity results of single machine due date assignment problems with release

dates are summarized in Table 2.4.

Table 2.4: Single machine due date assignment problems with release dates

Problem Status Reference
l|r;.d; = r; + p; + d. pmtn, tree|ad + rlrg‘igcT, O(nlogn) I
l|r,, di = r; + p; + d, pmtn, preclad + rf.ls?‘\?‘(n O(n?) I
liri. d; = k. p¥2, pmtn, tree|®(k,, k) + a tg%xﬂ Ofnlogn) I1
lri, d, = kp¥2, pmtn, prec|®(k,, k;) + a rg%tﬂ O(n?) I1
lri, d; = kyp; + ka, pmtn, tree|®(k;. k2) + a 1!1‘15?\./\:7',- O(nlogn) II
lri,d; = kyp; + ko, pmtn, prec|®(k,. k) + a r‘rg}vxT, O(n?) I
Uri,di = kyp; + ka, pmtn, tree[®(k,) + Baks + a rlréa‘;cT, O(n?) I

Reference: I, Gordon (1993); II, Cheng and Gordon (1994)

2.6 Potential research opportunities

The review confirms our argument that single machine scheduling problems could
be rather difficult. especially in case with release dates and due-date-based cri-

terion. Despite considerable research effort expended on studying these models,

18



there still exist rich opportunities in this area for further research. The following

are some worthy future research topics.

1. Total cost models with equal-length jobs

Although some of the single machine scheduling problems with arbitrary re-
lease dates and equal-length jobs are polynomially solvable, the review shows that
a few of them are still open to date, as also indicated by Brucker and Knust (2002).
It seems very difficult to determine the complexity of these open problems. On
the one hand. the arbitrary release dates bring about preemptions and/or idle-
ness in an optimal schedule, both of which increase the difficulty of finding an
optimal solution. On the other hand, the equal processing times prevent us from
constructing a reduction from a known NP-hard problem, such as the 2-partition
and 3-partition problems, in most cases. Undoubtedly, all these open problems
are worthy of research. Besides, the time complexity of Baptiste’ (1999b, 2000)
two algorithms for some equal-length jobs problems is not so satisfactory. Better

algorithms or improvement on Baptiste’s algorithms are worthy to be pursued.

2. Total tardiness models with agreeable release dates and due dates

Since the arbitrary due dates models are intractable in most cases, it is both rea-
sonable and valuable to investigate the models with restricted due dates. Lawler,
together with some other researchers, have made an intensively study on the
(weighted) number of tardy jobs models with several different agreeable features.
In spite of the fact that all the agreeable cases in Tables 2.1 and 2.2 are polynomi-
ally or pseudo-polynomially solvable. the corresponding total tardiness problems
are either proved strongly NP-hard or remain to be open. It should be interesting
to study the open problems and the more restricted cases of the known NP-hard

problems.

3. Due date assignment models

19



Scheduling problems involving due date assignment are of permanent interest.
However. hardly any prior research has considered the release dates. Besides the
single machine models with a regular criterion that we have reviewed, there are
plenty of other more complicated models worthy of study. Gordon et al. (2002a,
2002b) showed that, because of the importance of the just-in-time (JIT) systems in
inventory management, most of the papers on CON due date assignment problems
involved earliness, a non-regular criterion, but did not consider release dates. On
the other hand. though a lot of the papers in the literature paid attention to the
multiple machine models, none of them considered release dates. In conclusion,
due date assignment problems with release dates are rarely touched. It is timely

to explore this area with rich opportunities.

20



Chapter 3

Preemptive scheduling with a

regular criterion

3.1 Introduction

As shown in Brucker and Knust’s (2002) classification as well as many scheduling
textbooks, single machine scheduling problems without release dates are relatively
easy to tackle. Except the problem 1|| Y- w;T;, all the others are either polynomially
or pseudo-polynomially solvable. Moreover, even the strongly NP-hard problem
1{| 3. wiT; can be dealt with through dynamic programming (DP), a very useful
technique that can be applied to both polynomially solvable problems and NP-hard
problems. But, if preemption is not allowed, this widely used technique is no longer
applicable to the single machine problems with release dates, even for minimizing
a regular criterion. Consequently, with release dates, all the non-preemptive single
machine scheduling problems with a regular criterion except the makespan are
strongly NP-hard. Nevertheless, dynamic programming is valid for the preemptive
counterparts of these problems, since in the preemptive case, the makespan of a
problem with a regular criterion is schedule independent, which implies that the

21



start and ending times are deterministic in each recursion and the DP approach is
feasible. All based on dynamic programming technique, Algorithm GT-BLLR for
the problem 1|r;, pmtn, prec| fma- is presented by Baker et al. (1983) and Gordon
and Tanaev (1983) independently; an O(n3W?) algorithm for 1ir;, pmin| Y. w,U; is
proposed by Lawler (1990); an O(n*) algorithm for 1|r;, pmtn| Y. U;, which requires
O(n®) time by Lawler’ algorithm, is provided by Baptiste (1999a).

It is also shown in Brucker and Knust’s (2002) classification that all the open
problems in the single machine class except 1|r;,p; = p| Y w;T; involve preemp-
tion. To conquer these preemptive open problems, dynamic programming is a
helpful technique. In this chapter, we intend to present some useful definitions for
the analysis of the preemptive single machine scheduling problems with a regu-
lar criterion, and identify optimality properties for these problems, especially for
the total tardiness problems. Besides, we propose a dynamic programming algo-
rithm. Unless explicitly stated, the definitions, properties and algorithm hold for

all preemptive single machine scheduling problems with a regular criterion, such

as llrivpmtn'fma.r and llri?prntnl Zfl

The rest of this chapter is organize as follows. Several definitions are provided
in the next section. In Section 3.3, we present an algorithm based on dynamic
programming. In Section 3.4, we identify some optimality properties, with our

conclusions given in Section 3.5.

3.2 Definitions

To facilitate presentation, we recall two definitions in the literature first, and then

introduce some new definitions.

Definition 3.1 (Pinedo 1995) A feasible schedule is called nondelay if no ma-

chine is kept idle when there is an operation available for processing.

22



As indicated in Pinedo (1995), nondelay schedules are dominant for all pre-

emptive models with a regular criterion.

Definition 3.2 (Baker et al. 1983) A block B C N is defined as a minimal
set of jobs processed without idleness from r(B) = ?gg{ﬁ} until t(B) = r(B)+p(B)
(p(B) = ¥ p:), such that each job i & B is either completed not later than r(B)
(Ci < r(ée)g or not released before t(B) (r; > t(B)).

Definition 3.3 An ERD schedule is defined as a nondelay schedule in which all
Jjobs are scheduled by the earliest release date (ERD) rule.

By Definition 3.3, even if the jobs are preemptive, no preemption is created in
an ERD schedule. Nevertheless, an ERD schedule is helpful for finding an optimal

schedule for a preemptive problem.

According to Baker et al. (1983). the makespan of a preemptive single ma-
chine scheduling problem with a regular criterion can be determined in advance by
scheduling the jobs by the ERD rule. This ERD schedule naturally decomposes
into some blocks, each of which can be considered separately. So, the scheduling
of an overall problem is decomposed into some sub-problems, each of which in-
volves the scheduling of a block. From here onward, we focus our analysis on the

scheduling of a block B in the initial ERD schedule.

Consider any nondelay schedule for block B. By Definitions 3.1 and 3.2, all
jobs in B are scheduled within [r(B),¢(B)| without idleness. Since preempticn is
allowed, a job i € B may be divided into a number of pieces separated by other
jobs. Suppose we postpone all pieces except the last of a preempted job as late as
possibie. After the postponing, the completion time of this job is unchanged. At
the same time, the completion of any other job is either advanced or unaffected.

Applying this procedure to all preempted jobs, we get a new schedule not worse

23



than the old one. In the new schedule, no job’s completion can be advanced without

postponing the completion of any other job. Such a schedule is called p-active.

Definition 3.4 A preemptive schedule is called p-active if no job’s completion

can be advanced without postponing the completion of any other job.

It is easily seen that a p-active schedule has to be nondelay. However, the
reverse is not necessarily true. For example, consider the scheduling of two jobs
Jyand J, with r; =0, r, = 1 and p, = po = 2. The schedule in which J, is
scheduled within the intervals [0. 1] and [2, 3|, while J» within the intervals 1, 2]
and [3.4], is nondelay, but not p-active, since we can re-schedule J; and J> so that
Jy is scheduled within the interval [0, 2] and J, within the interval [2, 4], with the
completion of J; advanced but no delay to J,. So, p-active schedules are dominant
for all nondelay schedules, and consequently, also dominant for all preemptive
models with a regular criterion. From here onward, only p-active schedules are

considered.

Definition 3.5 An optimal ending job of a set M € N is defined as a job
k € M that can be completed later than any job j € M \ {k} in an optimal

schedule.

By Definitions 3.4 and 3.5, if a job is completed at t(B) in a p-active schedule, it
must have been postponed as late as possible and is scheduled within the interval(s)
where any other job is either completed or unreleased. It is easy to see that a job

set may have more than one optimal ending jobs.

Definition 3.6 A subblock B; C B is defined as a minimal subset of a block
B that can be defined as a block when some jobs j € B are removed from B; a
subblock B; is call optimal if there ezists an optimal schedule in which all jobs in

B; are scheduled within [r(B;), t(B;)|.

24



s, I, 8 I 3, 1, A

aB) rn(B,) uB,) nB) «B,) n8,) B, «B)

Figure 3.1: Block B after the decomposition by a subset U

Consider the initial ERD schedule for block B. Suppose we remove all jobs in
a selected subset U C B from the schedule and advance the rest jobs as early as
possible by the ERD rule. The new ERD schedule for the set B\ U decomposes
into some subblocks B;, i=1.....s. Such a procedure is called a decomposition for

block B (by U). The result of a decomposition is shown in Figure 3.1.

Definition 3.7 A decomposition for a block B is defined as a procedure during
which all jobs in a subset U C B is removed from the initial ERD schedule for B
and the rest jobs in the subset B\ U are re-scheduled by the ERD rule.

After a decomposition by U, block B is artificially decomposed into a number
of subsets: U and B;s. At the same time, the interval [r(B).t(B)] is partitioned
into some smaller intervals: I; occupied by B;, i=I,...,s, and the rest that come to

be idle because of the remove of U. The notations are given as follows.

Notations:

For all i=1....,s,

r(B;) = ?elisn{rj}’ the start of [;;
t(B;) = r(B;) + p(B;), the end of I; (p(B;)= 21:3 pi);
JEB,
I; = [r(B;). t(B;)], the i-th non-idle intervals (I = [r(B), r(B)]);

0; = [t(Bi_1). r(B;)]. the idle interval between I,_; and I;;

A = [t(B,), t(B)], the last idle interval following I;

e A = Ui_,d;, the union of all idle intervals except A.

Whenever there is no ambiguity, we also use 4;, A and A to denote the length

of the interval of §;s, A and A, respectively. Then, we have A+ A = p(U) = Z%jpj.
Jj€

25



We note that §,=0 occurs when ¢(B;_;) = r(B;), but A=0 never occur, according

to Definition 3.2. So. we always have A >0and 0 < A < ¥ p;.
Jet

Consider the result of a decomposition for block B by U. If there exists an
optimal schedule in which all jobs in B; are scheduled within I, i=1,...,s, we always
can get an optimal schedule by optimally scheduling all jobs in U within the idle
intervals, and re-scheduling B; within I;, i=1....,s, separately in an optimal way. In
such a case, we say the decomposition result is optimal. Hence, if a decomposition
result can be proved optimal, the sub-problem of the scheduling of block B is
decomposed into s+1 smaller sub-problems: the scheduling of U within AUA and

B,' within [,', i=1.....s.

3.3 A dynamic programming algorithm

Consider a special decomposition for block B by a subset with only one job k € B
that is known as an optimal ending job of B in advance. By Definitions 3.4 and
3.5, there exists an optimal schedule in which job k is scheduled within A U A,
the interval(s) where any job in B\ {k} is either completed or unreleased, and
completed at t(B). At the same time, all jobs in B; are scheduled within [;,
i=1.....s. So, the decomposition result is optimal and the sub-problem of the
scheduling of block B decomposes into s+1 smaller sub-problems: job A within
AU A and B; within [;, i=1,...,s. As AUA = p;, job k can be scheduled within
the idle intervals immediately after the decomposition. Thus, an optimal schedule
for block B can be gained by repeatedly applying the decomposition procedure
to each of the subblocks. The following algorithm, a generalization of Algorithm
GT-BLLR, can be applied to all preemptive single machine scheduling problems

with a regular criterion.

26



Algorithm SMPP (Single Machine Preemptive Problem)

1. Index the jobs by the ERD rule.
2. Schedule the jobs by the ERD rule.
3. For each block B,

3.1. Identify an optimal ending job k € B.
3.2. Decompose B by job k.
3.3. Schedule job k within A U A.

3.4. For each of the subblocks B;, repeat Step 3, unless |B;| = 1.

In Algorithm SMPP, Steps 1 and 2 require O(nlogn) and O(n) time, respec-
tively. For each block B, Step 3.2 can be done in O(|B|) time, since the jobs are
already in ERD order; Step 3.3 requires no additional time; so the time requirement

is determined by Step 3.1.
In Algorithm GT-BLLR, the condition
fi(t(B)) = min;ep{f;(t(B))} (3.1)

is used to identify an optimal ending job of block B in O(|B|) time. So, Al-
gorithm GT-BLLR solves the problem 1|r;, pmtn|fme: in O(n?) time. However,
it seems impossible to identify an optimal ending job of a block in polynomial
time for many problems in the form of 1|pmtn,r;| Y f;, such as 1|r,, pmtn| ¥ w;C;,
lir;, pmtn| ¥ w;T; and 1|r;, pmtn| 3 T;, all of which have been proved NP-hard (La-
betoulle et al. 1984 and Chu 1992). Nevertheless, the dominance rules introduced
in what follows can help to restrict the search for the optimal ending jobs. So,
Algorithm SMPP can be an efficient enumerate approach for the NP-hard cases.
Moreover, it will be shown that the problem 1|r;, pmtn,p; = p| 3. T; can be poly-
nomially solved by an O(n®) algorithm which is similar to but more complicated

than Algorithm SMPP.

27



3.4 Optimality properties

Let s; denote the start time of a job ¢ in any feasible schedule for a preemptive
single machine scheduling problem with a regular criterion. We have r; < s; for
all jobs i € N. We describe the relation between a job pair i, in a preemptive
schedule by the relation between the intervals I; = s, C], [=i,j. For any job pair
i.j with s; < s;, there are three cases of the relation between /; and I;:
e NI =®o0rs; ie s; <C; <s; <C;, wesay job i precedes job j and
write as { — j.
o ;nl; =[s;.Cy, i.e. 5; <s; < C; < Cj, we say jobs i, j overlap and write as
Lo joi— .
e Iinl; =1 ie s; <s; <C; <Cj, we say job i embeds job j and write as

1] =i

In the case of i = j — i — j. the schedule cannot be p-active. So. we have the

following lemma.
Lemma 3.1 Any two jobs do not overlap in a p-active schedule.

In the case of i — j — i. the schedule also cannot be p-active if: (1) r; < s;, 0r
(2) si < r; but a part of job i is scheduled within [r;,C;]. In other words, in any
p-active schedule, i — j — i implies: (1) r; < s; < r;, and (2) no portion of job i

is scheduled within [r;, C;]. Thus, we have the following lemmas.

Lemma 3.2 For any job pair i.j with r; = rj, either i — j or j — i holds in a

p-active schedule.

Lemma 3.3 For any job pair i.j with r; <1}, in a p-active schedule,
(1) 4 Ci <rj, i = j holds.
(2) i s <r; <C,, either i > j or i = j — i holds.

(3) i r; <s,, either i — j or j — i holds.

28



In the rest of this section. we discuss the determination of the precedence
relations between two preemptive jobs. Apparently, if two jobs i,j € N are in
different blocks, the precedence relation is obvious and needs no consideration. So.
our discussion is focused on a job pair ¢, j € B with r; < r;. By Lemmas 3.2 and
3.3, unless job i is completed not later than the release of job j, the precedence
relation should be determined. In the case of r; = r; or r; < r; < s;, we should
determine which one can be preceded by the other. In the case of s; < r; < C,,
we use ¢~ and (™ to denote the completed and uncompleted part of job i at r;,
respectively, and regard i ™ as an individual job released at r;. We should determine
which of i7, j can be preceded by the other. We first introduce two notations that
will be used.

o E;: the earliest start time of job i.

o L;: the latest completion time of job i.

Both of the concepts E; and L; are first presented by Szwarc (1999) but have
new meanings here. Consider a case where the set of the jobs that should be
scheduled within an interval [r(B),t], r(B) < t < t(B), has been determined but
the scheduling of these jobs is undetermined yet. and a job i € B is not included in
the set. Although no optimal schedule has been gained yet. by assumption, there
must exist an optimal schedule in which ¢t < s; holds. So, all schedules with s; < ¢
can be eliminated without loss of optimality. We call such a time ¢t the earliest
start time of job i and write as E;. Moreover, if another job j € B can be proved
preceding job i later, £; can be postponed to E; = t + p;, which means that the
schedules with ¢ < s; < t + p; also can be eliminated. Obviously, E; is helpful to
restrict the search for an optimal schedule. Similarly, L; is such a time that all
schedules with L; < C; can be eliminated without loss of optimality and is helpful
to restrict the search, too. It is easily seen that the initial value of E; and L; for

any job i € Bis E; = r; and L; = t(B). respectively.

29



Now. we present two theorems for scheduling preemptive jobs to minimize ¥ T},
which are similar to Emmons’ famous theorems for scheduling non-preemptive jobs.
As indicated by Emmons (1969), these properties provide only ezistential prop-
erties "There exists an optimal schedule with property A" rather than universal
properties " All optimal schedules have property A”. However, all these properties
can be accumulated, which means that if "There exists an optimal schedule with
property A" and "There exists an optimal schedule with property B”, " There ex-
ists an optimal schedule with both properties A and B”. More description for the

accumulative existential properties can be found in Emmons (1969).

For any job pair i, j € B with r; < r;, if r; < E; is known, we have the following

theorems to determine the precedence relation between job i and job j.

Theorem 3.1 For any job pair i, j withr; <r; < E,, if:
(1) pi < p; and d; < max{E; + p;.d;}, or
(2) pi 2 p; and d; > max{L; - p;.d;},

there erists an optimal schedule in which i — j holds.

Proof. By the definitions of E; and L;, there exists an optimal schedule satisfying
rn < E <s<C <L, !l =4,j. Consider any optimal schedule S* which satisfies
this inequality. Suppose j — ¢ holds in $*. We have s; < C; <s; <Ci. As
ri < r;, we can re-schedule the pair i. j so that job i is started at s} and job j is not
started before the completion of job i, without affecting any other jobs. In the new
schedule §', i — j holds. Let s; and C] to denote the start and completion time
of job lin 5. I =i, j. respectively. We have s} = 5;, C; =C} and C; < C} ~ p; =
C? —pj. After the re-scheduling. T} increases by §T; = max{C; —max{C;,d;},0},
but T; decreases by 47, = max{C; — max{C, d;}.0}.

In case (1). as p; < p;, we have C! < C; <max{C;.d;}:as E; +p; < s;+p; <
C; and d; < max{E; + p;.d,} by assumption. we have d; < max{C;,d;}: so. we

have max{C}.d:} < max{C;.d,}.

30



In case (2). as C] < C; —p; and C; < L;, we have C] < C; —p; < L;—p;; besides,

max{L;—p;.d;} < d; by assumption: so. we have max{C}.d;} < d; < max{C;,d,}.

In both cases. we have T, — 4T, < 0 and IEZEV AT, < 0, where AT; is the change
in tardiness of job {. as no other job is affected. On the other hand, since S° is
optimal, 3~ AT; > 0. So, only ¥ AT; = 0 holds, which means that S’ is optimal
too. Heri;v, we get an optimallegrchedule in which { — j holds. Recall that by
Lemmas 3.2 and 3.3. if r; < r; < s;, either i = j or j — ¢ holds in an optimal

schedule. We have an optimal schedule in which ¢ — j holds. a

Theorem 3.2 For any job pair i.j withr; <r; < E;, if
(1) pi < p; and d; > max{L; - p;, d;}, or
(2) pi 2 p; and dj < max{E; + p;.d:},

there ezists an optimal schedule in which j — i holds.

Proof. The proof can be done by interchanging i and j in the proof of Theorem

3.1. a

On the other hand. suppose job i is started before but uncompleted until r;. Let
E;- be the earliest start time of i*. We have either i* — j or j — i by Theorems
3.1 and 3.2, in case the corresponding conditions are satisfied. We should note

that Ti+ =T, div- =d;, L,-«» = L,‘ and Ci+ = Ci hold.

Finally, Corollary 3.1 following Theorems 3.1 and 3.2 can be established.
Corollary 3.1 For any job pair i, j with p; = p; = p and r; < rj, there ezists an
optimal schedule in which

(1) i = j holds, if d; < d;.
(2) j = i holds, if d; > d; and E; > r;.

31



3.5 Conclusions

In this chapter, we have presented some definitions for the analysis of the preemp-
tive single machine scheduling problems with a regular criterion, and identified
some optimality properties for these problems, especially for the total tardiness
problems. Besides, we have proposed a dynamic programming algorithm that is
generally applicable. The definitions and optimality properties are not only help-
ful to the analysis of a general preemptive scheduling models, but also vital to the

following research in this thesis.

32



Chapter 4

Preemptive total tardiness

problem with equal-length jobs

4.1 Introduction

In the last few decades, many researchers have been interested in the computational
complexity status and algorithms for scheduling problems of minimizing total tar-
diness, subject to various constraints. A summary of the results can be found in
the review by Chen et al. (1998). Most of these problems have been shown to
be either NP-hard or polynomially solvable. Despite considerable research effort
expended on studying this class of problems, Brucker and Knust (2002) point out
that there are still some unsolved problems whose complexity status is open. The
purpose of this chapter is to settle the complexity status of one of these open

problems by constructing an O(n?) algorithm for it.

The problem addressed in this chapter can be formally stated as follows: A set
of n jobs N = {1.....n} has to be processed on a single machine that can perform
only one job at a time. Each job ¢ has a release date r;, a processing time p;, and

a due date d; (without loss of generality, we assume r; < d;). All ;, p; and d; are

33



integers. The processing times are equal, while the release dates and due dates are
arbitrary. Preemption is allowed. The objective is to schedule the jobs so as to

minimize total tardiness.

To the best of our knowledge, there is no article except Chu (1992) on the prob-
lems of preemptive scheduling on a single machine to minimize the total tardiness.
The NP-hardness of the general problem 1|r;, pmtn| ¥ T; can be reduced by the
well known result that 1|| 3. T; is NP-hard. A detailed reduction can be found in
Chu (1992). However, this problem is still open to the sense of NP-hardness. That
means, neither a pseudo-polynomial algorithm nor a reduction from any known
strongly NP-hard problem is gained till now. In the mean time, the weighted
counterpart of this problem is strongly NP-hard since 1|r;, pmtn| ¥ w;C; is strongly
NP-hard.

In the case that all jobs are released simultaneously, preemption is unnecessary.
The problem is equivalent to 1|p; = p| 3 T}, which can be solved by the EDD rule.
In the case that all jobs have a constant due date, the problem can be denoted as
lri.di = d.pmtn,p; = p| ¥ T;, where d is a constant. Since d; = d holds for all jobs
i € N, it is never necessary to preempt a processing job, of which the rest processing
time is certainly less than p, in favor of a newly released job whose processing time
is equal to p. Hence, this preemptive problem can be solved by the ERD rule, with
no preemption created. In the case that all jobs are released simultaneously and
have a constant due date, the problem is equivalent to 1|d; = d,p; = p| ¥ T; and

the jobs can be scheduled in any order.

If preemption is not allowed, the problem should be denoted as 1|r;, p; = p| = T;
and can be solved by an O(n') algorithm proposed by Baptiste (2000). However,
Baptiste states that the algorithm cannot be applied to the preemptive case, and
poses the complexity status of the problem 1|r;, pmtn, p; = p| 3. T; as open. There-
fore, it is both interesting and challenging to study this problem. In this paper,

we will derive an O(n?) algorithm to solve this problem, thus ascertaining that it
g g

34



is polynomially solvable.

We adopt the concept of block. which has been used to solve another similar
problem, e.g. 1|r;, pmtn. prec| fra. in Baker et al. (1983). Our approach is outlined
as follows. First, we decompose a preemptive scheduling problem into some sub-
problems. each of which involving the scheduling of a block. Then, we provide some
properties for an optimal schedule of a block. Finally, we investigate the scheduling
of a block with equal-length jobs and derive some properties for designing a solution

algorithm for the problem.

The rest of this chapter is organized as follows: In Section 4.2, we present
some optimal properties. In Sections 4.3 and 4.4, we introduce a decomposition
technique and provide an algorithm in O(n?) time, respectively. The number of
preemptions is discussed in Section 4.5, with some concluding remarks given in

Section 4.6.

4.2 Decomposition technique

In the problem addressed, any block consists of equal-length jobs. It is easy to ver-
ify that any simple rules and conditions, including Equation 3.1, is not optimal for
identifying an optimal ending job for such blocks. Nevertheless, the scheduling of
such a block can still be decomposed into some smaller sub-problems, by a special
decomposition procedure. The procedure consists of a multiple stages decomposi-
tion for a block B into B,,...,B, by a subset U C B whose job number increases
with the stages. After the decomposition in each stage, we examine the precedence
relations between the jobs in B; and U to judge whether B; is optimal, from i=1
to s. If the answer is positive for all B;s, the result is optimal; once a negative
result is got or no result can be got, add a new job to U and decompose block B
by the new subset U in the next stage. It will be shown that an optimal result

can be gained in at most |B|-1 stages. With an optimal result, we should schedule

35



the set U within the idle intervals before repeating the decomposition procedure
for the subblocks in the next iteration. So, each iteration for a block/subblock B
is composed of two procedures: (1) the multiple stage decomposition, and (2) the

scheduling of the set U.

We first present some notations and basic properties. Following the notations
for the precedence relations between two jobs, we define the precedence relations
between a subblock B; and a job k ¢ B; as follows.
o If £ — j holds for all jobs j € B;, we say job k precedes B; and write as
k- B;

o If j = k holds for all jobs j € B;, we say B; precedes job k and write as
B; = k:

o If j = k™ holds for all jobs j € B;, we say B; precedes k¥ and write as

B; — k™, which implies &k — B; — k.

Lemma 4.1 For any subblock B; and a job k ¢ B;, if
(1) Ex > r(B;), and
(2) d 2 max d;,

there erists an optimal schedule in which B; — k holds.

Proof. By Corollary 3.1, there must exist an optimal schedule in which j — k
holds for all jobs j € B; with r; < E¢. Let m (m > 1) be the number of such
job(s), we update E so that E; > r(B;) + mp. Suppose that m < |B;|. As B; isa
subblock, there must exist at least one other job j € B; with r; < r(B;)+mp < E.
Again by Corollary 3.1, we have j — k without loss of optimality. Continue in
this way, we have an optimal schedule in which j — & holds for all j € B;. =]

If a job k ¢ B; with r. < ¢(B;) can be preceded by B; in an optimal sched-
ule. we have E; > t(B;). Then, at any decision time within [;, job k needs no

consideration.

36



Lemma 4.2 For any subblock B; and an uncompleted job k ¢ B;, if
(1) only k* and the jobs in B; should be considered within [;, and
(2) di. > max{t(B;), rlxé%)lcdj},

B; is optimal.

Proof. Consider any p-active schedule S in which some jobs j € B; are completed
later than k¥ and job [ is the one latest completed. As ri. < s, < r(B;) < r; and
Ci < Ci, k* — [ holds by Lemma 3.3. Since p.- < p, we have C; < t(B;) <
Ci. We re-schedule k™ and B; so that k¥ is postponed as late as possible and
completed at C;, without affecting any other jobs. By assumption (1), all jobs in
B; can be re-scheduled within I; without postponing the completion of any job
Jj € Bi. If C; < di, no job’s tardiness increases; if di < Ci, only T} increases
by 0Ty = C; — max{d, Ci}, while T; decreases by 0T; > C, — max{t(B;),d;}. As
dr > max{t(B;).d;} by assumption (2), 0T, < 0T;, which implies that the re-
scheduling should be made. In any case, we get a schedule not worse than S. Thus,

there must exist an optimal schedule in which B; is scheduled within ;. O

4.2.1 Decomposition in the lst-stage

Initially, we set U={}. Select a job from B by the latest due date (LDD) rule,
which is equivalent to the condition of Equation 3.1 for all due-date-based criterion.
Add the selected job to U and decomposition block B by the new set U. Suppose
s subblocks are created (ref. Figure 4.1). For the sake of convenience, we let the
job in U be j; and add the number 1 to the subscripts of the notations B;, I, 4;,
A and A used in the last chapter. We note that A, <p=A; + A;.

Property 4.1 For j, € U,
(1) d;, > maxd; holds for all i=1,...,s.
J€B|l

(2) djl 2 T‘(BL.,) Z t(Bh‘) holds fOT’ all i=1,...,3-1.
(3) rj, < t(By1) < r(By;) holds for all i=2,...,s.

37



Proof. (1) According to the LDD rule, d;, = maxd; > maxd;, for all i=1.....s.
JGB JEBll

(2) Consider any job [ € By, released at r(By,). As d; > max d;. we have

J ls
dj, > d,. By the initial assumption of r; < d; for all i € N, r(B,,) = r; < d;. Since
t(Bu) < r(Bi2) < ... < (Bys-1)) < 7(Brs), d;, > 7(B1,) 2 t(By;) holds for all

i=1....,s-1.

(3) rj, < t(By1) is obvious, otherwise, By, and B\ By, should be two indepen-
dent blocks of the overall problem by Definition 3.2. As ¢(Bj;) < r(Bpa) < ... <
r(By,). rj, < r(By;) holds for all i=2.....s. a

Property 4.2 All By;, i=1,...,s-1, must be optimal.

Proof. Suppose dy; (1 <1 < s) is the first non-empty interval among all dy;s.
We have r(By;) = r(B) <r; = E;,. Asd;, > ;Ielg.ﬁdj holds for all i=1,....s-1 by
Property 4.1, there exists an optimal schedule in which B;; — j, holds by Lemma
4.1. So, we have E; = r(By,), and again by Lemma 4.1, we have B, — j
in an optimal schedule. Continue in this way, we have an optimal schedule in
which By; — j; holds for all i=1,... [-1, which implies that all By;, i=1,....[-1, are
optimal. As j, is the only available job within d,;, it should be started before but
uncompleted until r(By;). So, only the set By U {ji'} is available within [;. As
d;, > max{t(Bu),Jrggﬁ d;} holds for all i=1,...,s-1 by Property 4.1, By, is optimal
by Lemma 4.2. Continue in this way, all By;, i=I[+1,...,5-1, can be proved optimal.0

According to Property 4.2, we can separately schedule all jobs in By; within I},

Property 4.3 I} A, = 0, B, is optimal and j, can be an optimal ending job of
block B.

Proof. As A, =0, we have E;, > r(B,,) now. As d;, > max d; by Property 4.1,
JEDL,

By, — j, holds by Lemma 4.1. So. By, is optimal too, and job j; must be wholly

38



scheduled within A; and completed at ¢(B). O

According to Property 4.3, there exists an optimal schedule in which job Jiis
scheduled within {t(B) — p,t(B)] if A; = 0. Generally, for a block in which all
jobs have agreeable due dates (i.e. r; < r; implies d; < d;), the job latest released
always can be selected first as an optimal ending job and wholly scheduled in
the end of the unoccupied interval, since A; = 0 holds in each of the following
decomposition. Finally. we get an optimal schedule without preemption. So,

Lemma 4.3 follows Property 4.3.

Lemma 4.3 The ERD schedule of a block is optimal if the release dates and due

dates are agreeable.

Property 4.4 [j d;, > t(B,,), By, is optimal and j, can be an optimal ending job
of block B.

Proof. If A, = 0, the property holds by Property 3.3. If A, > 0, j, must be
uncompleted until 7(B),; and only the set B, U {j{} is available within I;,. As
dj, > t(B,,) by assumption and d;, > Jrggff d; by Property 4.1, By, is also optimal
by Lemma 4.2. Consequently, j, is scheduled within A; U A; and completed at
t(B). ]

Property 4.5 [j A, > 0 and d;, < t(B,),
(1) By, is not optimal and job j, cannot be an optimal ending job of block B.
(2) an optimal ending job of By, can be an optimal ending job of block B.

Proof. Suppose we continue to schedule B;, with [,,. Job j, should be scheduled
within A; UA, and completed at ¢(B). Let ji" denote the piece of job j; scheduled
within A;. As Aj + A, =pand A; > 0. p;, = A1 < p. Suppose a job | € By,

is the one completed at t(B,,). By Definition 3.2, we have r(B,,) < r;. Since

39



Ay >0, 7, < r(By,). So, we have r;, < r(By,) < r. We can re-schedule job !
and ji", without affecting any other jobs, so that job [ is not started before the
completion of job ji. Let C} and Cj be the completion time of job j, and job [ in
the new schedule, respectively. We have Cj, < C; = t(By,) and C] = C;, = ¢(B).
As d; < dj, by Property 4.1 and d;, < t(B,,) by assumption, the total tardiness
decreases by t(B),) — max{d;,,C} } > 0. So, the new schedule is better than the
old one, which means that By, is not optimal and job j, cannot be completed at
t(B) in any optimal schedule. Consequently. a job [ € B;, must be completed at
t(B) in an optimal schedule. a

By Properties 3.2-3.5, in case (1): A; = 0, or (2): d;, > t(By,). all the s
subblocks are optimal. and the decomposition result is optimal; in case (3): A; >0
and dj;, < t(By,), the result is not optimal, since B), is not optimal. Then, we
should decompose block B by another subset. In this case, the decomposition for

block B is said in multi-stage. In what follows, we discuss the decompositions in

the uth-stage, u > 2.

4.2.2 Decomposition in the uth-stage

In case (3) in the lst-stage, a decomposition for block B by another subset is
necessary. We select a new job from B, by the LDD rule and add it to U. As
a rule. we always let the job added to U in the uth-stage be j,. Suppose we
decompose block B by U = {j,. j»} in two steps: (1) remove job j; and re-schedule
the set B\ {71} by the ERD rule, and (2) remove job j, and re-schedule the set
B\ U by the ERD rule. After Step (1). we get an interim result which is identical
to that in the lIst-stage (see Figure 4.1). As j; € By, and r(By,) < rj,, Step (2)
does not change the existing result before r(B;,). So, following the result in the
Ist-stage, we gain the result in the 2nd-stage directly by removing job j, from

B,, and re-scheduling the set B, \ {j2} by the ERD rule. Obviously, the 2nd-

40



stage decomposition for block B is equivalent to a decomposition for B,, by job
Jja- Suppose the set By, \ {j2} decomposes into z subblocks. The final result is
shown in Figure 4.1. Generally, we use By; to denote the new subblocks created
in the kth-stage, and Ii; the intervals corresponding to B:;. We also use d;; to
denote the idle interval immediately preceding I;;. However, we define A; to be
the union of the d;s but not all ds as defined in the last chapter. On the other

k
hand, A still denotes the last idle interval. Let A, = p — A;. We have A, = 3. A
=1

k
and ¥ A; + Ay = kp. We note that A, < p always holds.
=1

Ist-stage
LT Iy & Iy Iis Ay(Ay)
| | [ .| ] | ] |

nB) r(By) (B;;) n(B,) uB;;) r(By) «(B,,) «(B)

2nd-stage 8 Iy 8. L, M
— - TN TN ) .,

MBy)  uBy) "(B:) UB:,) UB)

Figure 4.1: The decomposition results in the 1st and 2nd stages

Consider the case of dj, < t(Bs:) and Ay > 0, which is similar to case (3)
in the lst-stage. The subblocks By;, i=1,...,s-1, are obviously optimal, since the
available jobs at any decision time within {r(B),r(B,)] are as same as that in the
proof of Property 4.2. It will be shown that all the subblocks B.;, i=1....,z-1, are
also optimal and an optimal ending job of B. can be an optimal ending job of
block B, but B, cannot be proved optimal. Again, the 3rd-stage decomposition
for block B is necessary and the result can be directly gained from the result in
the 2nd-stage by further decomposition for Bs.. Generally, the decomposition for
block B can be repeated by decomposing the newest last subblock by a selected
job subject to the LDD rule, so long as the further decomposition is necessary,

which implies that the newest last subblock cannot be proved optimal. We prove

the correctness of the repetition by induction.
Suppose block B is decomposed in u-1, u > 2, stages and the last subblock in

41



each of the u-1 stages cannot be proved optimal. For the sake of simplicity, we use
V to denote the newest last subblock in the (u-1)th-stage. Select a job from V by
the LDD rule and add it to U. Decompose block B by U = {ji, ..., j,}. Suppose
the set V'\ {j,} decomposes into v subblocks. Figure 4.2 shows the decomposition

results in the (u-1)th and uth stages.

{u=Lith-stage lkzll,
[ | Ayt

r(B) r(Bys) r(B,,) nv) «v) «(B)
wth-stage I Iy A, e ARy
| - Ay
r(B,)) uB,) r(By) uBy) uB)

Figure 4.2: The decomposition results in the (u — 1)th and uth stages

Property 4.6 For all jobs ji,...,j, in U,
(1)d;, > ..>d;, > J(ggi{‘ d; holds for all i=1,...,v.
(2) d;, > ... > dj, 2 r(By) 2 t(By) holds for all i=1,...,v-1.
(3) rj, <...<rj, <t(By) <r(Bu) holds for all i=2,...,v.

Proof. As A; > 0 in each of the first u-1 stages, r;, < ... < rj,. According to

the LDD rule, d;, > ... > d;,. By Property 4.1, we have: (1) d;, > max d; for all
J€D0y,

i=l....t; (2) dj, 2 r(Buy) 2 t(By;) foralli=1.....v-1: and (3) r;, < t(By1) < 7(Buw)

for all i=2,....v. o
Property 4.7 All the subblocks except B,, must be optimal.

Proof. (by induction) The correctness in the 1st-stage is proved in Property
4.2. We should prove the correctness in the uth-stage on the assumption of the
correctness in the Ath-stage for all k=1.....u-1. By this assumption. in the result

of the (u-1)th-stage, all subblocks except V is optimal.

42



As the decomposition for V' does not change the existing result before r(V), all
subblocks except the new ones decomposed from V are still optimal. So, only the
jobs in B,; and some jobs in U are available within I,;. However the jobs in U
should be scheduled within the As before r(B,;), the available jobs from U can be
classified into two subsets: (1) the ones not started until r(B,;); and (2) the ones
started before but uncompleted yet until r(B,;). As d; > jrgg:'(l d; holds for all
Jx € U by Property 4.6, all jobs in subset (1) can be preceded by B, in an optimal
schedule by Lemma 4.1 and need no consideration within /,;. Suppose we schedule
some or all of the uncompleted jobs in subset (2) within I,;, whether partially or
wholly, and get a p-active optimal schedule S*. Let U’ be the set of such jobs and
Jn be the one latest started. All jobs in U’ except j; must be completed before

t(B.1). otherwise, S* cannot be p-active.

Without affecting any other jobs, we re-schedule all jobs in U’, including the
pieces of these jobs scheduled before r(B,;), but excluding the piece(s) of j; after
t(B.1). by the ERD rule. As d;, > t(B,1) holds for all j, € U by Property 4.6, no
job’s tardiness increases and a new optimal schedule is gained. Let U” be the set of
the jobs from U’ that are still scheduled within /,; and job j, be the leftmost one.
Apparently, r(By;) < s;, holds for all jobs in ji € U"”\ {j;}. If r(Bu1) <'s;,. All
jobs in U” can be preceded by B,; as the jobs in subset (1) do. Then, we can get
another optimal schedule in which By, is scheduled within I,;. If s;, < r(B,;), we
also can get another optimal schedule in which no job in U” except Jg is scheduled
within [,;. As d;, > max{t(Bul),Jgggﬁ(l d;} by Property 4.6, B, is optimal by

Lemma 4.2. In both cases, B, is proved optimal.

Then, only B,, and some jobs in U are available within I,,. Again, how-
ever some jobs in U should be scheduled within the As before r(By»). the avail-
able jobs from U can be classified into two subsets: (1) the ones not started
until r(B,2): and (2) the ones started before but uncompleted yet until r(B,,).

We note that the above discussion for the scheduling within [,, is based on no

43



given subsets U’ and U”. So. the conclusion also holds for all I,;, i=2.....v-1. as
d;, > max{t(B,,i),J;r_xgx d;} holds for all ji € U and i=l,....v-1 by Property 4.6.
Therefore, all the subblocks B,;, i=1....,v-1, are optimal. ]

Property 4.8 I/ d;, < t(B,,) and A, > 0, an optimal ending job of B,, can be
an optimal ending job of block B.

Proof. (by induction) The correctness in the lst-stage is proved in Property
4.5. We should prove the correctness in the uth-stage on the assumption of the
correctness in the kth-stage for all k=1....,u-1. By this assumption, an optimal

ending job of V can be an optimal ending job of block B.

Following Property 4.7. we can schedule each of the subblocks except B,, within
the corresponding I's without loss of optimality. So, only B,, and some jobs in U
are available within /,,. As an optimal ending job of V can be an optimal ending
job of block B, there must exist an optimal ending job of block B within the set
B., U {j.}. Suppose we postpone job j, as late as possible so that it is completed
at t(B), and get an optimal schedule S*. Let job [ € B,, be the one completed
later than any other jobs in B,,. t(B,,) < C7 is obvious. As r;, < r(B,,) <r; by
Property 4.6, we can re-schedule job j, and job [ without affecting any other jobs,
so that job [ is completed at ¢t(B). At the same time, job j, can be completed
not later than C}, as p;, = py = p. As d; < d;, by Property 4.6 and d;, < t(B,,)
by assumption, the decrease of Tj, is not less than the increase of T;. So, the
total tardiness does not increase and we get a new optimal schedule in which a job

l € B,, is completed at t(B). a

By Properties 4.7 and 4.8, the decomposition for block B can be repeated
by decomposing the newest last subblock, so long as the inequalities in Property
4.8 hold in any Ath-stage. Apparently, once either of these inequalities is not
satisfied, the repetition discontinues. Without loss of generality. we consider the

discontinuity at the uth-stage. There are only two cases: (I) d;, > t(B,.; and (II)

44



dj, < t(By,) but A, = 0. We have the following properties for cases (I) and (II).

respectively.

Property 4.9 [fd;, > t(B,,), By, is optimal and job j, can be an optimal ending
job of black B.

Proof. According to Property 4.7, we can schedule each of the subblocks except
B,, within the corresponding Is without loss of optimality. By Property 4.6,
dj, > t(By.) and d;, > jrgg:: d; holds for all j; € U. Following the proof for the
optimality of By(,-1) in the proof of Property 4.7, we can easily prove that B,, is
optimal. Consequently. job j, is completed later than any other jobs in V in an
optimal schedule and is an optimal ending job of V. By the assumption that an
optimal ending job of V can be an optimal ending job of block B, job j, can be an

optimal ending job of block B. a

Property 4.10 I{ d;, < t(B,,) and A, = 0, job j, can be an optimal ending job
of block B.

Proof. According to Property 4.7, we can schedule each of the subblocks except
B, within the corresponding Is without loss of optimality. As A, = 0, we have
E;, =r(Buw). Asd,;, > nggf’ d; by Property 4.6, there exists an optimal schedule
in which B,, — j, holds by Lemma 4.1. So, job j, can be an optimal ending job
of V. By the assumption that an optimal ending job of V can be an optimal ending

job of block B. job j, can be an optimal ending job of block B. m]

4.2.3 Scheduling of the set U

We consider case (I). i.e. d;, > t(B,.) first. By Properties 4.7 and 4.9. all the
subblocks are proved optimal and can be separately considered in the next iter-

ation. So, the decomposition is ended at the uth-stage and the jobs in U should

45



be scheduled within all As and A,. We consider two cases: (1) A, < p. and (2)

A, >p.

In case (1). the interval [t(B,,),t{B)] could be completely occupied by job j,,
which could be preceded by all other jobsin U asr;, < r;, holds for all j, € U\{j,}
by Property 4.6. Then, no job in U \ {j,} would be completed later than r(B,,).
As dj, > t(By,) > r(Buy) and dj, 2> d;, for all j, € U\ {j.} by Property 4.6, no
job in U\ {j.} would be tardy. Thus, we can schedule all jobs in U except job
Ju within all As including A, by the ERD rule, and then, job j, within the rest
part of the A, and [t(B,,).t(B)]. We should note that, unlike in the initial ERD
schedule of block B. preemptions exist in the ERD schedule of the set U.

In case (2), job j, should be wholly scheduled within [¢(B) — p, t(B)]. Remove
job j, from U. We have [U| = u - 1. Let L = ¢(B) — p. The reduced set U
should be scheduled within all As and [t(B,,), L]. Suppose we schedule each job
Ji € U within A, respectively. As 0 < A; < p for all jx € U, no job in U can
be completely scheduled. Using j; to denote the uncompleted part of j; at r(V),
we have pj; = Ai. Scheduling all j;, k=1,...,u-1, within A, and [t(By), L] in the

reverse order of r;,, we get a schedule S’ for the reduced block B’ = B\ {j.} (see

Figure 4.3).
e —— A p
t(B) 7(Bs) r(B’—Z) (V) r(B,,) t(Rw) L=‘(B)'P

Figure 4.3: A schedule for block B without job j,

Suppose we decompose B’ by job j,. If L — A, > t(B,,), the ending time of the
last subblock is L —A;. As job j; is selected from B by the LDD rule and B’ C B, it
can be an optimal ending job of B if d;, > L — Ay, and cannot be if d;, < L — A,
according to Properties 4.1-4.5. On the other hand. if L — A, < t(B,,), which

implies that all ji's except a part of j; are scheduled within A, and only the rest

46



of ji is scheduled within [t(B,,), L] in S'. the ending time of the last subblock
is ¢(By.) rather than L — A,. As d;, > dj, > t(Bu), job j must be an optimal
ending job of B’ by Property 4.1-4.4. We note that an optimal ending job of B’ is

also an optimal ending job of U. Generally, we have the following lemma.

Lemma 4.4 Suppose d;, < L — A; holds for all l=1,...,k-1. Job j. € U can be an
optimal ending job of U, if

(1)d;, > L — Ag > t(By,). or

(2) L — Ay < ¢(Buy)-

Proof. Asd;, > t(By,)andd;, > ... > d;,_, > d;, by Property 4.6, L—A, > d;, >
t(By,) holds for all I=1,....k-1, by assumption (1). Following Properties 4.7-4.8,
it can be easily verified that, by decomposing B’ in k-1 stages, the decomposition
for B’ can continue without loss of optimality. In case (1), job jx can be an
optimal ending job of B’ by Property 4.9. In case (2). the ending time of the last
subblock in the kth-stage decomposition for B’ is t(B,,) rather than L — Ac. As
d;, > dj, 2 t(Byy), job jix must be an optimal ending job of B’, also by Property

4.9. In both cases, job ji is an optimal ending job of B’ as well as U. |

If a job ji, A < u — 1, can be identified as an optimal ending job of U by
Lemma 4.4, it should be scheduled in the same way as that for job j,. If none
of the conditions in Lemma 4.4 is satisfied by any job ji, k=1,....u-2, job j,—;
must be an optimal ending job of U, as the ending time of the last subblock in
the (u-1)th-stage decomposition for B’ (by U) must be ¢(B,,) in any case and
dj,_, > d;, > t(Byy) holds. Therefore, all jobs in U can be successfully scheduled
by Lemma 4.4. We note that no decomposition for B’ is necessary indeed, since

all the data needed in Lemma 4.4 are known from the previous decompositions for

block B.

Then, we consider case (II), i.e. d;, < t(B,,) but &, =0. As A, = 0. job j,
can be wholly scheduled within [¢(B) — p, t(B)]. Again we remove job j, from U.

47



We note that B,, is not proved optimal. However, as B,, C V C ... C B, C By,
the analysis about the decomposition for the reduced block B’ = B\ {j,} still
makes sense. So. Lemma 4.4 can be used to search for an optimal ending of B’.
Nevertheless, as d;, < t(B,,) now. it is possible that none of the jobs in U satisfies
either of the conditions in Lemma 4.4. In such a case, an optimal ending job of B,,
can be an optimal ending job of B’ by Properties 4.7-4.8, and so, the decomposition

for block B should be resumed by decomposing B,,.

4.3 An O(n?) algorithm

Algorithm SMPP-ELJTT (SMPP, Equal-Length Jobs and Total Tardiness)

1. Set H,=...=H,={¢}, and i=j=1.
. Index all jobs by the ERD rule.
. Schedule all jobs by the ERD rule, and add all blocks to H,.

(3]

- Index all blocks/subblocks in H; as By.....Biy,| by their start times.

> e w

If | B;|=1, schedule the only job in B; within [;, and goto Step 6; else.
schedule B; by Algorithm BLK-DE, and add all optimal subblocks

in the final result to H;,,.

6. If i # |H;j, set i=i+1, and goto Step 5.

7. If Hj, # {}. set j=j+1 and i=1, and goto Step 4.

8. Stop.

48



Algorithm BLK-DE (Block Decomposition)

1. Set U={}. V=B, and L=t(B;).

Set u=|U|+1. select a job from V by the LDD rule and move it to U as j,.
IV {ju} # {}. schedule V' \ {j,} by the ERD rule; else, goto Step 4.3.

. Reset V to be the new last subblock and define all the new subblocks

o

= W

except V to be optimal.
4.1. If d;, > t(V), and goto Step 4.3.
4.2. If A, > 0, goto Step 2.
4.3. If L — (V') > p, set k=u; else, goto Step 6.
5. Schedule job ji within {L — p, L], remove j; from U.
5.1. Re-index the jobs in U by the ERD rule, set L=L-p, k=1 and A = A;.
5.2. If d;, < t(V), goto Step 2.
53. If dj, <L — A, set k=k+1 and A = A + A, and goto Step 5.2.
54. If L — A > t(V), goto Step 5.6.
5.5. If L ~ t(V') > p, goto Step 5; else, goto Step 6.

5.6. If A > p, goto Step 5; else, schedule {j, ..., ji} within
U*_14; and [L — A, L] by the ERD rule,
remove {jy, ..., jx} from U, and goto Step 5.1.
6. If V # {}, define V to be optimal, and goto Step 7.
7. Schedule all jobs in U \ {j, } within U%_,A; by the ERD rule,
schedule job j, within the rest of A, and [¢(V), L],
and return to Algorithm SMPP-ELJTT.

In Algorithm SMPP-ELJTT, H;, j=1....,n, is a set of blocks/subblocks that
need to be scheduled. Apparently, the optimality of Algorithm SMPP-ELJTT de-
pends on that of Algorithm BLK-DE. To justify Algorithm BLK-DE, we should

prove that: (1) the final decomposition result is optimal, and (2) the set of U

49



is optimally scheduled. In Algorithm BLK-DE, Steps 2-4 deal with the multiple
stage decomposition for B;, while Steps 5-7 involve the scheduling of U. The de-
composition starts with [V| > 1, so V'\ {j,} # {} in the Ist-stage. If |V|=1 after
the decomposition in the uth-stage and the decomposition in the (u+1)th-stage is
necessary, the only job in V must be an optimal ending job of B; by Property 4.8
and should be scheduled within [L — p, L|.

In Step 4, in the case cf (I) d;, > ¢(V), or (II) d;, < ¢(V) but A, = 0, job j, is
an optimal ending job of B; by Properties 4.9 and 4.10, respectively; otherwise, the
decomposition turns to the (u+1)th stage. In Step 4.3, according to the analysis
in Section 4.3, if L —t(V') < p, the last idle interval should be completely occupied
by job j, and the scheduling of U ends by Step 7; if L — ¢(V) > p, job j, should
be wholly scheduled within [L — p, L], and the scheduling for U starts.

In Step 5. the conditions in Lemma 4.4 are tested by Steps 5.2-5.3. In case
(I), the test always ends with an optimal ending job of U identified. In case (11,
d;. < t(V) means that no job in {j, ..., jx} is proved an optimal ending job of U,
nor could the jobs in {ji.1, ..., ju} be, as dj, > ... > d;, by Property 4.6. So, further
test is unnecessary and the decomposition for B; is resumed by decomposing V.
The scheduling of the identified optimal ending job ji as well as the rest jobs in
U are considered in Steps 5.4-5.6. In Step 5.5, L — ¢(V) > p implies A > p, as
L - A <t(V); in Step 5.6, A > p implies L — t(V) > p, as L — A > t(V); in both
cases, job ji could be wholly scheduled within [L—p, L] and the test in Steps 5.2-5.3
should be repeated for the rest jobs in U. In the case of A < p in Step 5.6, all jobs
in {j1. ..., jx-1 } should be scheduled within Us_14;, as U5 A = kp—A > (k—1)p.
So, only the jobs in {jk+1, ..., ju} should be tested by Steps 5.2-5.3. L — t(V)<p
in Step 5 implies A < p, as A < L — (V). Then, the interval [t(V), L] could be
wholly occupied by job ji and no other jobs in U would be tardy. Moreover, the
last subblock V is proved optimal now in case (II), as all jobs in U are scheduled

without [r(V),t(V)]. In any case, the algorithm ends by Step 7 and return to

50



Algorithm SMPP-ELJTT with an optimal final result. while the set U is optimally
scheduled.

Theorem 4.1 l1jr;, pmtn,p; = p| 3. T; can be solved in O(n?) time.

Proof. In Algorithm BLK-DE, suppose an optimal final result for a block/subblock
B; is obtained in u; stages. u; < |B;| is obvious. In each of the u; stages, both
Steps 2 and 3 can be done in O(|V|) time, as all jobs in V are already scheduled
in ERD order before the decomposition for V. So, |V| < | B;| always holds and the
time requirement of all the u; decompositions is in O(u;|B;|) time. In Step 5, an
iteration of Steps 5.1-5.3 requires O(|U|) time, |U| < u;. If the decomposition is
never resumed, at most u; iterations are necessary and the set U can be scheduled
in O(u?) time. If the decomposition is once resumed for some times, which implies
that some iterations fail to identify an optimal ending job of U. the number of the
iterations are still not more than u;, since each of the failures corresponds to a
job that is directly scheduled within [L — p, L] without an iteration (case (II)). As
u; < |Bi|, the time requirement of Algorithm BLK-DE is in O(w;|B;]) time. We

note that all the u; jobs selected in the u; stages are optimally scheduled.

In Algorithm SMPP-ELJTT. suppose the iteration of Steps 4-7 is ended at
Jj=v, which implies that H; = {} holds for all j=v+1....n. Let h; = |H;| and

hJ
u;j = Y u;. As u; < u; holds for all B; in H;, the total time requirement of all
i=1

h, U
subblocks in H; is in O(u; 3 |Bi|) time. Let u, = ¥ u;. u, < n is obvious. As
1=1 =1

h]

3 |Bi| < n holds for all j=1....,v, the total time requirement of all the v iterations

i=1

of Steps 4-7 is in O(n f u;)=0(n?) time. Since Steps 2 and 3 require O(nlogn)
J=1

and O(n) time, respectively, the algorithm is in O(n?) time. a



4.4 Discussion

Although preemption is allowed and assumed to be costless in the preemptive
cases, it is not absolutely free in practice and should be avoided if possible. So, it
is significant to discuss the number of the preemptions. Consider the ties in the
search in Step 2 in Algorithm BLK-DE. If two jobs have identical due dates, either
one can be selected and move to U without loss of optimality. However, it is easily
seen that the remove of a job earlier released generally creates more preemptions
than that of a job later released. Hence, it is beneficial to break the ties by the
latest release date (LRD) rule in the search, which means that if more than one
jobs have identical due dates, the one latest released should be selected. Such an
eligible job can be found out with no additional time requirement. Moreover, as
shown in Lemma 4.3, if all jobs have agreeable release dates and due dates. a block

B can be scheduled by the LDD+LRD rule in O(|B|log|B|) time.

Baker et al. (1983) indicate that their algorithm generates at most n-1 preemp-
tions. The proof is by induction. Suppose a block B decomposes into b subblocks
B;, i=1,....b. and the schedule for B contains at most |B;| preemptions for each B;.
As the selected job k is preempted for at most b times, the total number of pre-
emptions is no more than Xb: (IBil=1)+b = |B| — 1 (Baker 1983). In our algorithm,
if a block B decomposes il;tlo b subblocks after the multiple stage decomposition,
the total number of the preemptions for all the jobs in U in the final schedule is at
most b. too. In Algorithm BLK-DE, according to the decomposition rule, no job
in U is released within any As and A. So, no a job j; € U is preempted by another
job ji € U\ {ji} in any p-active schedule. For all jobs in U, the preemptions
by other jobs in B \ U may occur only at r(B;), i=1.....b, and the total number

is no more than b. Therefore, Algorithm SMPP-ELJTT generates at most n — 1

preemptions.



4.5 Conclusions

In this Chapter, we have considered the problem of preemptive scheduling equal-
length jobs and given release dates on a single machine to minimize total tardiness.
We have analyzed some optimal properties for a block with equal-length jobs and
presented an O(n?) algorithm for the overall problem. For future research, it will be
interesting to investigate the weighted version of this problem and the counterpart

to minimize total weighted completion time.



Chapter 5

Preemptive total tardiness
problem with agreeable release

dates and due dates

5.1 Introduction

The scheduling model on a single machine to minimize total tardiness has extreme
significance in modern manufacturing and service industries, since the ability to
deliver customer orders on time has become an important factor to the success
of a firm. A considerable volume of papers on this model can be found in the
literature, but the study has been focused on the special case with equal release
dates, i.e. 1{|3°T;. The general case with arbitrary release dates, i.e. 1| Y T;,
which has been classified as strongly NP-hard (Lenstra et al. 1977), is seldom
studied. Recently, Koulamas and Kyparisis (2001) proved that the latter problem
remains to be strongly NP-hard even in case with agreeable release dates and
due dates. The preemptive problem 1{r,, pmtn|3 T, is NP-hard, too. The NP-
hardness of this problem can be reduced from the NP-hardness of 14| T: (Chu

54



1992). Nevertheless. to the best of our knowledge. neither a pseudo-polynomial
algorithm nor a reduction from a known strongly NP-hard problem is provided for
this problem. So, it is still open to the sense of NP-hardness. As a matter of fact,
this problem is rarely touched. In this chapter, we study an restricted version of

this problem with agreeable release dates and due dates.

The problem addressed can be formally stated as follows: a set of n jobs N =
{1....,n} has to be processed on a single machine which can perform only one job
at a time. Each job i has a release date r;, a processing time p;, and a due date
d; (without loss of generality, we assume r; < d;). All r;, p; and d; are integers.
The processing times and release dates are arbitrary, while the release dates and
due dates are agreeable, in the sense that r; < r; implies d; < d;. Preemption is

allowed. The objective is to schedule the jobs so as to minimize total tardiness.

The rest of the chapter is organized as follows: In Section 5.2, we investigate
the NP-hardness. A decomposition technique and a pseudo-polynomial algorithm
are provided in Sections 5.3 and 5.4. respectively. Special cases are discussed in

Section 5.5, with some concluding remarks given in Section 5.6.

5.2 NP-hardness

Koulamas and Kyparisis (2001) proved the strong NP-hardness of 1y(ry, d;)|T,
where T denotes the average tardiness, which is equivalent to 1|(r;,d;)| . T;. The
proof is based on the definition of an instance of 1|(r;, d;)|T from an instance of the
well-known strongly NP-hard problem of 1|r;| - C; by setting d; = r, for all i € N.
As d; = r; < C; holds in any feasible schedule, ¥ T; = ¥(C, - r)=YCi-%¥r;
holds. As Y r; is a constant, minimizing T in 1|(r;, d;)|T is equivalent to mini-
mizing 3 C; in 1|r,| 3 C;. The known complexity status of 1|r;| = C, implies that
1)(ri.d)|T is also strongly NP-hard. As minimizing T is equivalent to minimiz-

ing 3_T;. 1|(r:,d:)| £ T; is strongly NP-hard, too. Consequently, (ri, di)| X wiT;

35



is strongly NP-hard. Similarly, the strong NP-hardness of 1|r;, pmtn| Y. w;C; im-
plies that 1|(r:.d;), pmtn| ¥ w;T; is strongly NP-hard. So, we have the following

theorem.
Theorem 5.1 1{(r,.d;). pmtn| ¥ w,T; is strongly NP-hard.

But, the complexity status of 1|(r;,d;), pmtn|Y. T; cannot be determined by
this way, as the corresponding problem 1|r;, pmtn| Y C; is polynomially solvable.
However, the NP-hardness of 1|(r,, d;), pmtn| 3 T, is obvious, since one of its special
cases with r; = 0 for all i € N, where preemption is never necessary, is equivalent
to 1| X T;. a well-known NP-hard problem ( Lawler 1977. Du and Leung 1990).

Thus. we have the following lemma.
Lemma 5.1 1|(r;, pmtn)| 3 T; is NP-hard.

Nevertheless. as 1|{Y. T; is NP-hard in the ordinary sense, the sense of NP-

hardness of 1|(r;.d;), pmtn| ¥ T is still undetermined.

5.3 Decomposition technique

We first give some necessary notations as follows.
For all i=1.....n.
e P=% p;;
Jj=1
o N;={1.2,....i}.
In any p-active schedule,

e Uy: the set of all jobs with 5; < Sk, J EN;

56



e V;: the set of all jobs with s; > s¢. j € N.

By the above definition, we have k € Vi. Assume all jobs i € N are indexed
and scheduled by the ERD rule (with ties broken by the EDD rule), ie., i < j
implies: (1) r, < rj; or (2) r; = r; and d; < d;. Without loss of generality, we also

assume no decomposition occurs in the initial ERD schedule, which implies:
P> (ri.p —my) (5.1)

holds for all 1 < i < n — 1. Obviously, Crnaz = r; + P, holds for any p-active
schedule. where C,,o; is the makespan. Let job k be the one having the largest

index among all jobs satisfying
pi = max{p;}. j € N (5.2)

We consider the case of k = 1 and r; < r; first. As .J; is now the only
available job within [r|, ro], it should be started at r; but cannot be completed at
r2 by Assumption (5.1). Without loss of optimality, we purposely split J; into two
independent jobs with processing times of r» — r; and p; — (r; — r|), respectively.
We define the former one Jy with ro = ry, pg = r5 — r, and dy = ro. In the mean
time, we define the latter one J{ with r\ = ry, p{ =1, +p; — r; and d} = d,.
The scheduling of the new set {Jo} U {Jj} U N\ {J,} is equivalent to the original
problem. As J; should be scheduled within [r2, 7] in any p-active schedule, the
rest task is to schedule the set N’ = {J{} U N\ {J;} within [ra, Cpaz)-

Then. we consider all the other cases. i.e. 1 <k <nork=1butr; =rs.
According to Theorem 3.1. there exists an optimal schedule in which j — k holds,

which implies that:
§; < CJ' < s < Ck (5.3)
holds for all jobs j=1.2....k — 1. On the other hand. if s; < s; holds for a job

J € {k+1,...,n} in a p-active schedule, j — k also holds, as r; < r; now and only

57



J = k holds in case of s; < sk, according to Lemmas 3.2 and 3.3. So, Inequality
(5.3) holds for all jobs j € U. Define ¢(Uy) to be the completion time of the latest
job j € Ui in S. Let P(Ux) = ey, {p;}. we have t(U.) = r, + P(Us), which
indicates that a p-active schedule S is actually decomposed into two subblocks: Uy

and Vi, Vi, = N\ U..

Now, we consider the decomposition of any p-active schedule. Our decomposi-

tion starts with the initial set of Uy with Uy = Ny_; and t(Ui) =1 + Pe_,.

If t(Uk) < rk+1. job k should start at ¢(U,), since it is the only available job now.
The decomposition is finished and we obtain two adjoining subblocks: Uy = N,_,

and Vk =N \ Nk_l.

If t(Uk) > resy, we have re.y < t(Ug) < si. According to Lemmas 3.2 and 3.3,

either k > k+1or k+ 1 — k holds.

In the case of k = k + 1, Cy < si. always holds. Besides, Cy < di..; must
hold. Otherwise, we always can interchange the job pair k, k + 1 without affecting
any other job, while the total tardiness will decrease after the interchanging, as
both dy. < di+1 < Ck and pi.; < pi hold. Moreover. suppose another job j €
{k +2....,n} precedes job k in an optimal schedule which satisfies both k — k + 1
and Cy < di+)- We have C; < s < Ci < diwy. As di < diyy < d; by Equation
(3.2), we always can interchange the job pair j, k without increasing the total
tardiness. By as much as necessary times interchanging, we can get an optimal

schedule in which & — j holds for all j € {k + 1,....,n}. Again, we obtain two
adjoining subblocks: Uy = Ni_; and V, = N\ N_;.

In the case of k+1 — k, Uy is extended to be Uy = Ny U{k+1} = Npoy \ {k}
with ¢(Uy) = r| + Pi=1 — px. Our decomposition continues with the comparison of
the new value of t(Uy) with ry.,. Apparently. further decomposition is unnecessary
if t(Uyx) < ri+2. So. the decomposition will either end with two adjoining subblocks:

Ui = N1 \ {k} and Vi = N\ Ny U {k}, or continues with a new comparison,

o8



and so on.

In conclusion, suppose I, 0 < { < n—k—1, to be the minimum integer satisfying
r1+ Pewt = Pi < Tivi+1, the decomposition ends when Uy = Niy; \ {k}. In the case
that no such an integer exists. the decomposition ends when Uy is updated to be
Ux = N\ k, and in this case, we set [ to be [ = n — k. In any case, we always
obtain [ +1 different decomposition results, each of which consists of two adjoining

subblocks. So. we summarize the results in the following theorem.

Theorem 5.2 Suppose the jobs are indezed by the ERD rule (with ties broken
by the EDD+SPT rule) and P, > (ris; — 1) holds for all 1 < i < n. Let job
k(k#1ork=1butr =ry) be the one having the largest index among all
Jobs satisfying p; = max{p;}, j € N, and | be the minimum non-negative integer
satisfying 1y + Peoy — pi < Tkwts1 (if no such integer exists, let | = n — k), then
there is some integer 6, 0 < d < I, such that there erists an optimal schedule
composed of two adjoining subblocks: Uy = Niis \ {k} and Vi = N\ Niy5 U {k}
for alt 6 = 0.1,...1, which should be independently scheduled within [r|, t(Ux)] and
[t(Uk). Crmaz), Tespectively.

5.4 A pseudo-polynomial algorithm

Our algorithm is based on dynamic programming. The initial decomposition of the
schedule is completed by scheduling all jobs in the ERD order (with ties broken
by the EDD+SPT rule). All blocks in the initial ERD schedule have the same
properties and can be solved by the same algorithm. The total tardiness of the

problem is the sum of the total tardiness of all blocks.

Algorithm SMPP-ARDTT (SMPP, Agreeable Release dates and Due dates, Total

Tardiness)



Without loss of generality, we apply our algorithm to a block composed of m
Jjobs. Our objective is to find an optimal schedule beginning at r(B) = r, and
ending at Cmar = t(B) = r; + P(B), P(B) = P,,. Let job k be the one having the
largest index among all jobs satisfying p; = max{p;}, j € B, and [ be the minimum
non-negative integer satisfying ry + Pry — pi < rii+1 (if no such integer exists,
let [ =n — k). It follows from Theorem 5.2 that. for some integer 4, 0 < § < [,

there exists an optimal schedule in the form of:

(1) the subblock Uy = Ni.s\ {k}. starting at r(B) and ending at r(B)+ P4 —px,

immediately followed by

(2) the subblock Vi = N\ Ni_s5 U {k}. starting at r(B) + Pi.s — pr and ending
at t(B).

The recursion of the dynamic programming is similar to that applied in Lawler
(1977). However. for the sake of simplicity and efficiency, the following procedures

are necessary:

(1) whether the set that is entering into the recursion is the whole block or a
subblock. re-index it as {1.2, ...}, by the ERD rule (with ties broken by the
EDD+SPT rule). and split Ji, if it is necessary;

(2) for 6 = (in the case of 0 <! < n — k), split the new Ji, i.e. job k before the
re-indexing, and redefine the release dates of all jobs j, j € B, whose actual

release dates are earlier than r(B). to r; = r(B).

All the above procedures are in linear time and do not change the power of
the time complexity, so the total time requirement for the block with m jobs is
in O(m'P,,) time, and consequently, the overall time requirement of the whole

problem is in O(n*P) time. Thus, we have the following Theorem.

60



Theorem 5.3 1/(r,,d;),pmtn| T, is NF-hard in the ordinary sense and can be
solved in O(n*P) time.

5.5 Special cases

5.5.1 Specialcase: r;=r

In this case, r; = r; = r (r is a constant) holds for any job pair i,j € N, equiv-
alently, all jobs are released simultaneously. As indicated in Section 5.2, this
problem is equivalent to 1{| 3 T;. which is ordinary NP-hard and can be pseudo-

polynomially solved (Du and Leung 1990 and Lawler 1977).

5.5.2 Special case II: d; = d

In this case. d; = d, = d (d is a constant) holds for any arbitrary job pair i,j € N
and the problem can be denoted as 1|r;. d; = d, pmtn| Y T;. It can be easily reduced
from Theorem 3.1 that this problem can be solved by the SRPT rule.

Lemma 5.2 For 1|r;,d; = d,pmtn| Y. T;, the SRPT rule is optimal.

5.5.3 Special case III: (r;,d;, p;)

In this case, the problem can be denoted as 1|(r;, d;, p;), pmtn| ¥ T;. According to
Theorem 3.1. there exists an optimal schedule i — j holds for any job pair i, j
satisfying 7; < r; and p; < p;, which means that any job should not start before
the completion of all the jobs earlier released. So, none preemption is necessary
and an optimal schedule is composed with several sub-schedules, each of which

consists of the jobs with the same release dates. On the other hand. according to

61



the definitions in Chapter 2. due dates and processing times are agreeable for all
jobs with identical release dates. So, each of the sub-schedules can be gained by

the EDD rule without preemption. Thus. we have the following lemma.

Lemma 5.3 For both 1)(r,.d;. p;). pmtn| Y T; and 1|(r,d;, p;)| X T;, the ERD+EDD

rule is optimal.

5.6 Conclusions

We have considered the problem of the single machine preemptive scheduling with
agreeable release dates and due dates to minimize total tardiness. We proved this
problem to be NP-hard and provided a pseudo-polynomial algorithm for it. So
we asserted this problem to be NP-hard in the ordinary sense. Some special cases
are identified to be polynomially solvable. Despite our efforts, neither a pseudo-
polynomial algorithm nor a reduction from a strongly NP-hard problem is found
for the general version of this problem, in which the due dates are not always
agreeable with the release dates. So, we would like to mention that the sense of

the NP-hardness of 1|r,, pmtn|3_ T; is still open.

62



Chapter 6

Due date assignment problems

with release dates

6.1 Introduction

After the publication of the classical survey of due date assignment research by
Cheng and Gupta (1989). a large amount of literature dealing with the due date
assignment problems appears in the last ten years. As indicated by Gordon et al.
(2002a. 2002b), the new literature has still been focused on the static job shop
situation. However, the study on the static models has been widely extended. One
of the main directions of the extension is from the single machine environment to
the multiple machine environment. A lot of papers on the multiple machine models
are mentioned in Gordon’s et al. two surveys. The latest result can be found in
Cheng and Kovalyov (1999). One other main direction is from the simplest CON
method to much more sophisticated methods, such as SLK and PPW. Gordon et
al. (2002b) focused on the due date assignment problems involving such methods.
The latest results can be found in Gordon and Strusevich (1999) for the SLK
method and in Kahlbacher and Cheng (1995) for the PPW method. Another main

63



direction is from the classical view that due dates are treated as decision variables
but are assigned to corresponding jobs before the scheduling, to an alternate view
that each due date is not associated with a specific job but assigned to a job
according to the sequencing result. The due date assignment method from the
alternate view has drawn much attention and has been a hot research topic for a
few years. Gordon et al. (2002b) also provided an extensive review on this field.

The newest result can be found in Qi et al. (2001).

There is still another important direction of the extension in the study on
the static single machine problem: from the simultaneously arriving model to the
intermittently arriving model. In the latter model, not all jobs are released at the
same time, but the characteristics of all jobs are known to the scheduler before the
scheduling. The latter model is more realistic than the former one in some cases in
service industry, where the customers usually arrive intermittently. Apparently, an
appropriate delivering period is vital to the reputation and benefit of a servicing
business and should be carefully determined. Compared with the exogenous due
date assignment methods. the endogenous ones are undoubtedly superior. The
most popular endogenous methods are SLK and PPW, in which the due date of a
job is based on both of its arriving time and processing time. More sophisticated
endogenous methods that consider shop status information have been proposed
too. such as JIQ and JIS. However, when release dates are considered, analysis of
the endogenous due date assignment methods is so complicated that only a very
few papers are concentrated on such models. The latest results can be found in

Gordon (1993) and Cheng and Gordon (1994).

In this chapter, we extend Cheng and Gordon's study to the total cost problems
with CON/SLK/TWK due dates, but focus on the CON due date assignment
method. The problems addressed can be formally stated as follows: a set of n jobs
N = {1,....n} has to be processed on a single machine which can perform only

one job at a time. Each job i has a release date r;, a processing time p;, a weight

64



w;. and a due date d; (without loss of generality. we assume r; < d;). All r;, p;, w;
and d; are integers. The processing times and release dates are arbitrary, while the
weights are either arbitrary or identical. The due dates are determined by either
of the CON, SLK and TWK due date assignment methods. The objective is to

schedule the jobs so as to minimize:

(1) maximum tardiness T,,.. or
(2) weighted number of tardy jobs _(u;)U;, or
(3) total weighted tardiness 3" (uw;)T;.

The rest of the chapter is organized as follows: In Section 6.2. we study the
complexity of the problems with CON due dates. SLK and TWK models are
discussed in Sections 6.3 and 6.4. respectively, with some concluding remarks given

in Section 6.5.

6.2 CON models

It is easy to see that, a problem with d; = r; +d is a special case of the counterpart
with (r;.d;). and the former is not harder than the latter. Similarly, a problem
with (r;,d;) is a special case of the counterpart with arbitrary r;, and the former

is not harder than the latter also.

6.2.1 Maximum tardiness

According to Gordon (1993), both 1|(%;, d;), tree| fmaz and 1|r;, pmtn, tree| fmaqz are
polynomially solvable in O(nlogn) time. So, both l|r;,d; = r; + d|Tmaz and
lr..d; = r; + d. pmtn|T,,.. can be solved in O(nlogn) time, too. Specifically. for
both of the CON problems. the ERD schedule without preemption is identical with

the EDD schedule and is optimal.



Theorem 6.1 1|r;.d; =r; + d|T,e; and 1|r;.d; = 1, + d, pmtn|Tina. can be solved
by the ERD rule in O(nlogn) time.

6.2.2 Number of tardy jobs

Since both 1|(r;, d;)| ¥ w;U, and 1{(r;. d;). pmtn| 3 w;U; can be pseudo-polynomially
solved in O(nW) time, and both 1{(r;,d;)| ¥ U; and 1{(r;,d;), pmtn| 3 U; can be
polynomially solved in O(nlogn) time (Lawler 1994), we conclude that both
lr,.di = ri+dl ¥ w;U; and 1)r;, d; = r; +d, pmtn| ¥ w;U; are pseudo-polynomially
solvable in O(nW) time, and both l|r;,d; = r; + d|U; and l|r,d; = r; +
d.pmtn| 3 U; are polynomially solvable in O(nlogn) time. For both 1|r;,d; =
ri + d| X wiU; and 1|r;,d; = r; + d.pmtn| Y, w;U;, polynomial algorithm does
not exist, since the problem 1|d; = d| Y w;U;, which is a special case of both
Uridi = ri+d| Y w;U, and 1|r;. d; = r;+d.pmtn| ¥ w;U; withr; =0foralli € N,
is NP-hard in the ordinary sense (Lawler and Moore 1969). Thus, we have the

following theorem.

Theorem 6.2 1|r;.d; = r;+d| Y U; and 1{r;,d; = r; + d, pmtn| Y. U; can be solved

in O(nlogn) time.

Theorem 6.3 ljr,.d; = r; + d| w,U; and l|r;.d; = r; + d,pmtn| Y w;U; are
NP-hard in the ordinary sense and can be solved in O(nW) time.

6.2.3 Total tardiness

In Koulamas and Kyparisis (2001). the strong NP-hardness of 1|(r;,d;)| £ T; is
proved by a reduction from 1|r;| 3 C; by setting d; = r; for all i € N. In the
same way. we proved that 1|(r;.d,), pmtn| 3 w,T; is strongly NP-hard in the last
chapter. where we also proved that 1{(r;,d;). pmtn| ¥ T, is NP-hard in the ordinary

66



sense. Apparently, by setting d = 0. we can easily prove the strong NP-hardness
of all the problems 1|r;.d; = r, +d| T, lri.d; = r; + d| T w;T,, and lr;.d; =

r. +d.pmtn| Y w;T;. Therefore. we have the following theorem.

Theorem 6.4 The following problems are strongly NP-hard:
(1) UYri,di = r; +d| X T;,

(2) lri.d; = r; +d| ¥ w.T,, and

(3) lri.di =r; +d.pmtn| ¥ w,T;.

Nevertheless, the problem 1|r;,d; = r; + d, pmtn| 3 T; is open to date. On the
one hand. it cannot be proved NP-hard by a reduction from 1|r;, pmtn|¥. C; by
setting d = 0 for all { € N. as we did for the problems in Theorem 6.4, since
lr;, pmtn| 3 C; is polynomially solvable (Baker 1974). On the other hand, it
cannot be proved NP-hard by setting r; = 0 for all i € N, as we did in the last
chapter for the problem 1|(r;.d;), pmtn| 3 T;, since its special case with r; = 0 for
all i € NV corresponds to the problem 1|d; = d| ¥_ T;, which is polynomially solvable
in O(nlogn) time (Lawler and Moore 1969). Yet, the following property discloses
the NP-hardness of 1|r;.d; = r; + d,pmtn| T T..

Property 6.1 1|r;,d; = r; + d.pmtn| ¥ T; is at least as hard as T

Proof. We construct the following instance of 1|r;,d; = r; + d, pmtn| ¥ T, with a
Job set of M U N. We assume that all jobs in M and N are indexed by the ERD
rule separately.

e number of jobs: |M|=m > 1. |N|=n.

® release dates: r; =0. jEM; 0<r; <m.i€ N.

® processing times: p; =1. j€ M: p; >1.i€ N.

o duedates: dy=rj+m, le MUN.

67



As all the m unit jobs in M are available at time 0 and have total processing
time of rn, there exists no idleness in any p-active schedule. Consider an arbitrary
p-active schedule S in which a (1 < a < m) unit intervals within [0, m] are occupied
by some jobs from N. Apparently, exactly a jobs from M must be scheduled after
time m. Asd; = r;+m = m holds for all j € M, all the a jobs are tardy, while the
other m —a jobs in M are on time. For each of the a tardy jobs j € M, we can find
a corresponding unit interval within [0, m] that is occupied by a unit piece of a job
i € N. Since preemption is allowed, we always can interchange a job j € M with
the corresponding unit piece of a job i € N. Let C!, [ = i, ], be the completion
time of job [ after the interchanging. We have C}; < m and C] = max{C..C,}.
After the interchanging, 7; decreases by ¢T; = C; —m > 0, as C; > m and
C; < m = d;; while T; remains unchanged (in the case of Ci<CorCi <C;<d)
or increases by 0T; = C; — max{C;,d;} (in the case of max{Ci,d;} < C;). As
d; = ri + m > m. §T; > 0T, holds in any case. So. the interchanging should be
made and the interval [0, m] should be occupied by the m unit jobs j € M in any
optimal schedule. Consequently, all the n jobs in N should be scheduled after time
m. The m unit jobs can be scheduled within [0, m] arbitrarily, since no one of
them would be tardy. Thus. the whole set M U N is optimally scheduled if and
only the subset N is optimally scheduled. As all the n jobs in NV are available
but unscheduled at time m, we can easily transform the scheduling of the subset
N to an equivalent problem 1{| ¥ T; in which each job i € N has a new due date
d; = d; — m =r;. Recall that p; is independent of r; for any i € N by definition.
Thus, 1}r;.d; = r; + d. pmtn| ¥ T; is at least as hard as 1| T T.. |

Property 6.1 shows that 1|r;,d; = r; + d, pmtn| Y. T} is NP-hard, since T
is well known NP-hard in the ordinary sense. On the other hand, as Uri,di =r; +
d, pmtn| 3T, is not harder than 1((r;, d;), pmtn| ¥ T;, which is pseudo-polynomially
solvable by the algorithm that we presented in the last chapter. it is pseudo-

polynomially solvable. too. Thus, we have the following theorem.

68



Theorem 6.5 1|r;.d; = r, + d,pmtn| 3 T, is NP-hard in the ordinary sense and

can be solved in O(n*P) time.

6.2.4 Complexity results

We have investigated the complexity of all the regular models with CON due dates.

The results are summarized in Table 6.1.

Table 6.1: Complexity results of CON due date assignment models

Problem Status Reference
Urid; =r; + d|Thaz O(nlogn) Gordon (1993)
lri.d; =r; + d.pmtn|T paz O(nlogn) Gordon (1993)
lridi =r; +d| S U; O(nlogn) Lawler (1994)
Hridi =r; +d,pmtn| T U; O(nlogn) Lawler (1994)
Uridi =r; +d| T wU; o-NP, O(nW) Theorem 6.3
liri,d; = r; + d.pmtn| ¥ w,U; o-NP, O(nW) Theorem 6.3
Yridi=ri +d| LT, s-NP Theorem 6.4
lrid; =r; +d.pmtn| 3 T, o-NP, O(n*P) Theorem 6.5
lUri.d; =ri +d| 3 wT; s-NP Theorem 6.4
lri d; = r; +d.pmtn| ¥ w,T; s-NP Theorem 6.4

6.3 SLK models

First of all, it is easy to verify that, by SLK due date assignment methods, d; is un-
necessarily agreeable with r;. So, the pseudo-polynomially or polynomially solvable
problems in Table 6.1 whose solvability is based on the precondition of agreeable

release dates and due dates can no longer be solved by the corresponding algo-

69



rithms. Nevertheless, all the preemptive problems except the one for minimizing
total tardiness still are solvable by the algorithms for the corresponding problems
with no restrictions on release dates and due dates. In particular, we have the

following theorem.

Theorem 6.6

(1) lr,.d;i = ri + p; +d, pmtn|T g, can be solved in O(nlog n) time.
(2) lri.di = r; + p; + d.pmtn| Y U; can be solved in O(n?) time.

(3) lri,d. = ri + p; + d.pmtn| 3. w;U; can be solved in O(n*W?) time.

Next, consider the strongly NP-hard cases in Table 6.1. Setting d = 0, we have
di=1i+p;<Ci. AsY T, =3%(Ci—-d) =Y Ci—Xr; — ¥ p: and both >_r; and
3. pi are constants, minimizing ¥(w;)T; is still equivalent to minimizing S (w;)Ci.

So. we have the following theorem.

Theorem 6.7 The following problems are strongly NP-hard:
(1) llridi=r; +p; +d| T T,.

(2) l|ri.d;i =1, + pi +d| ¥ w;T..

(3) 1|ri.d; = r; + p; + d,pmtn| ¥ w;T..

Finally. consider the instance in Property 6.1. Let's redefine the due dates to
bed=r+p+(m-1).1l € MUN. We also can transform the scheduling of
the subset N to an equivalent problem 1|| " 7; in which each job i € N has a new
duedate d; =d;-~m =r;+p; - 1. So, l|r;,d; = r; +p; +d,pmtn| Y. T; is at least
as hard as 1{|3°T:. Since 1||T; is NP-hard in the ordinary sense, we have the

following lemma.
Lemma 6.1 1|r..d; = r; + p; + d,pmtn| 3. T, is NP-hard.

The complexity results of the SLK due date assignment models are summarized

in Table 6.2.

70



Table 6.2: Complexity results of SLK due date assignment models

Problem Status Reference
liri,di = ri + pi + d| Tz open

lri,d; = r; + p; + d, pmtn|T .- O(nlogn) Gordon (1993)
lridi =ri+p; +d| X U; open

Uridi =1 +pi +d| ¥ w,U; open

lri.d; =ri + p; +d.pmtn| 3 U, O(n?) Baptiste (1999a)
lri.d; =r; + p; +d,pmtn| ¥ w,U, o-NP, O(n*W?) Lawler (1990)
lri,di =r;+p;i +d| X T; s-NP Theorem 6.7
lri,di =1+ p; +d| X w;T; s-NP Theorem 6.7
lri,d; = ri + p; + d,pmtn| S T, NP, open Lemma 6.1
lr,.di =r, + p; + d.pmtn| Y w;T; s-NP Theorem 6.7

6.4 TWK models

As d; is also unnecessarily agreeable with r; by the TWK due date assignment

method, we have the following theorem.

Theorem 6.8

(1) l|ri,d; = r; + kp;. pmtn|T e, can be solved in O(nlogn) time.
(2) Yri.d; = r, + kpi, pmtn| X U; can be solved in O(n?*) time.

(3) lrid; = r; + kp;,pmtn| ¥ w;U; can be solved in O(n*W?) time.

For the strongly NP-hard cases in Table 6.1, we also have d; = r; + p; < C; by

Setting £ = 1. Thus, we have the following theorem.

Theorem 6.9 The following problems are strongly NP-hard:
(1) l|ri,di =1 + kpi| 2 T:.

71



(2) llri.d,- =r;+ kp,l Z lL','Tl‘.
(8) l|ri,di = r; + kp;,pmtn| S w;T..

The complexity results of the TWK due date assignment models are summa-

rized in Table 6.3.

Table 6.3: Complexity results of TWK due date assignment models

Problem Status Reference
Uri.d; = r; + kpi|Trnaz open

lri,d; = r; + kpi, pmtn|T oz O(nlogn) Gordon (1993)
lridi =r; + kp;| S U; open

Ur.d; =r; + kp;| & w;U; open

l|r,.d; = r; + kp;, pmtn| 3 U; O(nt) Baptiste (1999a)
lr.d; = r; + kp;, pmtn| ¥ w;U; o-NP, O(n3W?) Lawler (1990)
liridi =r; + kp| X T; s-NP Theorem 6.9
lfri,di =1 + kpi 3 w; T; s-NP Theorem 6.9
Ur,di = r; + kp;, pmin| T T, open

Uri.d; = r; + kp;, pmtn| ¥ w;T; s-NP Theorem 6.9

6.5 Conclusions

We have considered the due date assignment problems on a single machine with
release dates. In each of the problems, n jobs with given release dates should
be scheduled on a single machine. while the due dates are determined by the
CON/SLK/TWK method. All models are concerned with minimizing a regular
criterion. With a few exceptions the complexity of most of the problems are explic-
itly determined. For further study. all the open problems in Tables 6.2 and 6.3 are

worthy of examination. Besides, the multiple machine versions of all types of due

72



date assignment models with given release dates are a broad research area. Also,

the earliness and tardiness models with given release dates are under-explored.

73



Chapter 7

Total tardiness problem without

release dates

7.1 Introduction

Among the classical scheduling problems, the single machine total tardiness prob-
lem without release dates (1|3 T;) is one of the most widely researched. From
here onward, we use SMTTP to denote this problem. Since the first theoretical
development by Emmons (1969). many papers focused on SMTTP have been pub-
lished. Two papers in the literature are of important significance in the study on
this famous problem. Lawler (1977) gave a pseudo-polynomial algorithm to solve
SMTTP in O(n*P) time, which implies that this problem cannot be strongly NP-
hard. By a reduction from a restricted version of the NP-hard Even-Odd Partition
problem. Du and Leung (1990) uncovered the complexity status of SMTTP, which
remained open for decades. Du and Leung’s results, together with Lawler’s pseudo-
polynomial algorithm, clearly indicated the ordinary NP-hardness of SMTTP. Be-
fore the publication of Du and Leung (1990), the majority part of the literature

was concentrated on finding a polynomial algorithm or a reduction proving its NP-

74



hardness. So. a wide variety of enumerative algorithms were proposed. Most of
the algorithms rely heavily on the dominance rules developed by Emmons (1969)
and Lawler (1977), both of which are extended by other researchers. Following
the disclosure of the complexity status of this problem, a substantial body of
the literature was centered on the heuristic algorithms. Koulamas (1994) gave a
comprehensive review on total tardiness problems with an emphasis on critically
evaluating heuristic algorithms for SMTTP. However. as indicated by Chen et al.
(1998), developing approximation algorithms with good performance guarantees
for this problem is difficult. The best ratio guarantee for any of the proposed
heuristics is n/2. On the other hand, Szwarc and some other researchers are still
focusing on the development of the exact algorithms, for which both dynamic pro-
gramming and branch and bound. as well as their hybrid. are applied. Koulamas
(1994) also gave a brief survey of the enumerative algorithms for SMTTP. More
detailed review on this aspect was presented by Chen et al. (1998). The most re-
cent result can be found in Szwarc et al. (2001), which contains a branch algorithm

that handles instance with up to 500 jobs.

Since SMTTP is NP-hard in the ordinary sense, it is worthy to investigate
the polynomially solvable cases. Unfortunately, the relative results are few. The
common due date problem 1|d; = d| 3T, can be solved by the SPT rule according
to Lawler and Moore (1969), while the equal processing times problem lp; =
pl X T; is obviously solvable by the EDD rule, since it is identical with the unit
processing times problem 1l|p; = 1|3 T; in the case of identical release dates.
In the case that the due dates and processing times are agreeable, the problem
1{(di, p;)| X T; is solvable in O(nlogn) time by the SPT or EDD rule according to
Theorem 3 of Lawler (1977), where (d;, p;) denotes the agreeability of due dates and
processing times. Emmons (1969) showed three special cases where SMTTP can be
polynomially solved. Lawler (1977) extended two of Emmons’ result. Koulamas
(1994) reviewed the polynomially solvable cases of SMTTP and developed the

other result of Emmons.



In this chapter, we extend the results in the previous chapters for the problem
Y(ri,d;). pmtn| 3 T;, which takes SMTTP as a special case with all release dates
being identical. to SMTTP. We first propose an alternative proof for a famous
theorem in Lawler (1977) and identify some optimality properties. Then, a special
case of SMTTP with a given number of distinct due dates is proved polynomially
solvable. The problem addressed in this chapter can be formally stated as follows:
A set of n jobs N = {1,...,n} has to be processed on a single machine that can
perform only one job at a time. Each job i has a processing time p; and a due
date d;. All p; and d; are integers. The objective is to schedule the jobs so as to

minimize total tardiness.

The rest of this chapter is organized as follows. In Section 7.2. an alternative
proof for Theorem 3 of Lawler (1977) is proposed. Optimality properties and
complexity analysis for a special case are presented in Section 7.3. In Section 7.4,
the results in previous sections are extended to a general case with release dates.

Some conclusion remarks are given in Section 7.5.

7.2 An alternative proof for Theorem 3 of Lawler

(1977)

Lawler’s (1977) pseudo-polynomial algorithm is based on the key theoretical devel-
opment of Theorem 3 of Lawler (1977), which is based on two preliminary results
(Theorems 1 and 2 of Lawler 1977). The sensitivity of an optimal schedule to
the due dates is considered in Theorem 1, while a dominance rule is presented in
Theorem 2. Taking the idea of the introduction for Theorem 5.2 in this thesis, we
provide an alternative proof for Lawler’s Theorem 3. We first recall the former
part of Lawler's Theorem 2, which is also a result from Theorem 1 of Emmons

(1969). We note that Lawler’s theorems are proposed for the problem 1|3 wiT;

76



with reversely agreeable weights and processing times, namely, 1|(p;, —u;)| 3 w;T,.

Apparently. SMTTP is a special case of this weighted problem.

Theorem 7.1 (ref. Theorem 2 of Lawler 1977 and Theorem 1 of Emmons 1969)
Suppose the jobs are agreeably weighted. Then there erists an optimal sequence =

in which job i precedes job j if d; < d; and p; < p;.

Theorem 7.2 (Theorem 3 of Lawler 1977)

Suppose the jobs are agreeably weighted and numbered in nondecreasing due date
order, i.e. dy < dy < ... < d,. Let job k be such that p;, = max;{p;}. There is
some integer 8, 0 < & < n — k, such that there exists an optimal schedule © in
which k is preceded by all jobs j such that j < k + 9, and followed by all jobs j
such that j > k + 4.

Proof. By Theorem 7.1, there exists an optimal schedule S$* in which j — k holds
for all j < k. Suppose i +1 = k — i holds for a job pairi,i + 1, k < i < n. In the
case of Ci < d;, Y w;T; does not increase if we postpone job i+ 1 and advancing the
following jobs without changing their orders so that job k is immediately followed
by job i + 1. as the only postponed job (job i + 1) is completed at C; after the
interchanging and Cj < d; < d;;, by assumption. In the case of C} > d;, a simple
interchange of the pair k. i does not increase ¥ u; T}, since p, = max;{p;}, wr < w;
and d; < d; < C; by assumption. In both cases, we get a new optimal schedule
in which either {i,i +1} — k or k - {i,i + 1} holds. Repeatedly applying these
two rules, we must obtain an optimal schedule 7 in which for any job pair j, j + 1,

k<j<mn,eitherj—ak—j+1o0r{j,j+1} >k ork— {jj+1} holds. O

77



7.3 Optimality properties

Consider a special case of 1{| T T; in which there are m distinct due dates dy <
... < dy,. where m < n is a given positive integer. Define N; to be the subset of
the n; = | V| jobs with the common due date d;, i=1....,m. Also, suppose the n;
jobs in NN; are indexed by the SPT rule as J;, ..., Jin,- According to Theorem 7.1,

there exists an optimal schedule in which J;; — ... — Jin, holds for all i=1,....m.

Property 7.1 Let Jin, be such a job in Ny that pin, = max, {Pjn,}. There ezists
an optimal schedule in which either Ji,, = N; or N; — Jikn, holds for all i =

Look=-1Lk+1....,m.

Proof. By assumption. pg,, > p;; for all i=1.....m and j=lI.....n;. By Theorem
7.2. there exists an optimal schedule S* in which Ji,, is preceded by all jobs in
Ni. i=l....k — 1. Suppose J;; = Jin, — Jiij+1) holds for some k+1 <i < m
and 1 < j < n;. By assumption, we have d; < d;. In the case of Cin, < d;,
2T does not increase if we postpone J;; so that Ji,, is immediately followed by
Jij, as the only postponed job (J;;) is completed at Ckn, after the interchanging
and Cg, < d; by assumption. Similarly, 3" 7; does not increase if we postpone
Jij-1y in the same way. Continue in this way, we can postpone all Jijo oy Jit
without increase to Y. T; and get an optimal schedule in which Jin, = V; holds.
In the case of C,:m‘ > d;, a simple interchange of Ji,, and Jin, does not increase
the total tardiness. since py,, = max;{p;n, } and di < d; < Cin, by assumption.
In both cases, we get another optimal schedule in which either Ni = Jin, or
Jim,, = N; holds. Repeatedly applying these two rules to all i = k + 1,....m, we
must obtain an optimal schedule in which either Jin, — N; or N; = Jip, holds

foralle=1,..,k-1k+1,...m. a

Theorem 7.3 following Theorem 7.2 and Property 7.1 can be constructed as

follows.



Theorem 7.3 Suppose there are m distinct due dates d; < ... < d',, wherem < n
is a given positive integer, and the jobs in the set N; of the jobs with due date of
d; are indezed by the SPT rule as J;,. ..., Ji,. Let Jin, be such a job in N that
Pkn, = Max;{pin }. There is some integer §, 0 < & < m — k, such that there erists
an optimal schedule 7 in which Jin, is preceded by Ni.\ {Jin, } and all N; such that
i=1l.,k=1k+1,..k+4, and followed by all N; such thati >k + 4.

Now, we consider the time requirement of Lawler’s dynamic programming al-
gorithm for this special case. Equation (3.1) in Lawler (1977) is recalled as below.
We note that the notations in the equation is independent of our notations in

Theorem 7.3.

T(S(i.j.k).t) = min{T(S(i.k + &,k), t) + we max(0. Ce(8) — dir)
+T(S(K +6 + 1. j, k). Ce(8))} (7.1)

where £’ is such that
prv = max{py|j’ € S(i. 5. k)}.

First of all. according to Theorem 7.3. each equation (7.1) requires minimization

over at most m (not n) alternatives and O(m) running time.

Next, consider any equation (7.1). Taking the definition in Chapter 3, we say
the set S(i. j, k), t) is decomposed by job &’ and call job k' the decomposition job.
Suppose a set N/ C N, are included in S(i.j.k). By Theorem 7.3, all jobs in N/
or a reduced set Ny \ {k’}. where &’ is the job with the largest index in N/ and is
selected as the decomposition job, should be wholly included in either S(i, k+4, k')
or S(K"+4d +1,j.k'). As the decomposition job in each recursion is the one with
the largest index among the jobs in the selected subset, the set N/ is always in
the form of {Jy, Ji2, ...}. In other words, job i can only be one of the m jobs J;;,
t = l.....m. Moreover. it is easily seen that, in the case of i = m, all jobs in

S(i.j. k). t) are from N,, and decomposition for S(i, j, k), t) is unnecessary. Hence,

79



there are no more than m — 1 values for index i in the set S(i, j. k).

Then. any J;,, i < m — 1. is preceded only by the jobs in N;, | < i. So. the
possible values of ¢ are not more than (ny +1) X ... X (Am_2+ 1) < [(n+m —
2)/(m - 2)]™" in the case of m > 2. In the case of m = 2, there is only one

possible value of t. i.e. t =0.

In conclusion. the problem 1[d; € {d}, ....d!,}| = T; can be solved by Lawler’s
algorithm in O(m*n?[(n + m — 2)/(m — 2)|™?) = O(m*™n™) time in the case of

2<m<«n.

Finally, we consider the case of m = 2. According to Theorem 7.3, in each
recursion. if &' € V). job K is either immediately followed by J», or immediately
preceded by the job with the largest index among the remaining jobs in N,, which
should also be followed by job k' in the case of ¥ € N.. We note that in the
case of K € N and the latter case of k' € N, the jobs following job k' are
already sequenced in SPT order. So, there are only n;+1 schedules that need to
be considered, i.e. for j = 1, ...,n,, the first j jobs in N, (in SPT order), followed
by the rest jobs in N; and all jobs in N, in SPT order. As the time requirement
of the SPT ordering is in O(nlogn) time, the problem 1|d; € {d},d3}| T T; can be

solved in O(nlogn) time.

Recall that in the case of m=1, the problem addressed is known as lid; =d| T T;
and can be solved in O(nlogn) by the SPT rule (Lawler and Moore 1969). We

have the following theorem.

Theorem 7.4 1(d; € {d},....d,,}] =T, m < n, can be solved in O(nlogn) time

in the case of m = 1,2 and O(m*~™n™) time in the case 0f 2 < m < n.

80



7.4 An extension of the results to the case with

release dates

Consider a special case of the problem that we considered in Chapter 5 where
the release dates and due dates are strictly agreeable, in the sense that r; < T;
implies d; < d; and r; = r; implies d; = d;. By our notation scheme, this
problem can be denoted as 1|(r;.d;)=,pmtn| . T,. By assumption, all jobs si-
multaneously released are given equal slacks. but the slacks for two jobs with
different release dates are unnecessarily equal. It is easy to see that the problem
lfri.di = r; + d.pmtn| T T; that we consider in Chapter 6 is a special case of
1|(ri,di)=.pmtn| T T,. The ordinary NP-hardness of this CON due date problem
implies that 1{(r,.d;)=. pmtn| ¥ T, cannot be polynomially solved. On the other
hand. as a special case of 1|(r;.d;). pmtn| T T;, 1|(ri,d;)=, pmtn| S T; cannot be
strongly NP-hard.

Theorem 7.5 1|(r;.d;)=.pmtn| T T; is NP-hard in the ordinary sense.

Moreover, it is easy to see that the properties identified in the last section hold
even in the case that all jobs in a subset N;, i = 1, ..., m are released simultaneously
at r;, but r; < ri;) holds for any pair subset N; and N;i.,. 1 <i < m. So. Theorem

7.4 also holds for 1{(r;,d;)=. pmtn| T T..
Theorem 7.6 Let m < n be the number of distinct release dates. the problem

Y(ri.di)=.pmtn| T T; can be solved in O(nlogn) time in the case ofm=1,2 and

O(m*~™n™) time in the case of 2 < m < n.

81



7.5 Conclusions

In this chapter. we have studied the single machine total tardiness problem without
release dates. We have proposed an alternative proof for a famous theorem in the
literature. We also have investigated a special case where the number of distinct
due dates is assumed to be much less than the number of the jobs and extended

the results to the case with release dates.

82



Chapter 8

Conclusions and suggestions

8.1 Conclusions

In this thesis we have presented a review on single machine scheduling with release
and due dates and studied several classical single machine scheduling problems

with release dates and due dates.

In surveying prior works, the literature has been classified into four classes,
namely, maximum lateness, (weighted) number of tardy jobs, total (weighted)
tardiness and due date assignment. The review has revealed that, despite the
particular importance of the scheduling problems in these classes, a few of them
are rarely or never touched and are worthy of research. Such classes include the
preemptive scheduling on a single machine to minimize total tardiness with job

restrictions, and the due date assignment with release dates.

In Chapter 3, we have presented some definitions for the analysis of the pre-
emptive single machine scheduling problems with a regular criterion, and identified
some optimality properties for these problems. especially for the total tardiness

problems. Besides. we have proposed a dynamic programming algorithm that is

83



generally applicable.

In Chapter 4. we have studied the problem of preemptive scheduling of equal-
length jobs with given release dates on a single machine to minimize total tardiness.
We have analyzed some optimal properties for a block with equal-length jobs and

presented an O(n?) algorithm for the overall problem.

In Chapter 5. we have investigated the problem of preemptive scheduling with
agreeable release dates and due dates to minimize total tardiness. We proved this
problem to be NP-hard and provided a pseudo-polynomial algorithm for it. So,
we asserted this problem to be NP-hard in the ordinary sense. Some special cases
are identified to be polynomially solvable. Despite our efforts. neither a pseudo-
polynomial algorithm nor a reduction from a strongly NP-hard problem is found
out for the general version of this problem, in which the release dates and due

dates are not always agreeable.

In Chapter 6, we have examined and tackled the class of the due date assign-
ment problems on a single machine with release dates. In each of the problems
within this class, n jobs with given release dates should be scheduled on a single
machine, while the due dates are assigned to the jobs by the CON/SLK/TWK
method. All models with a regular criterion are studied. With a few exceptions,

the complexity of most of the problems are explicitly determined.

In Chapter 7. we have studied the single machine total tardiness problem with-
out release dates. We have proposed an alternative proof for a famous theorem
in the literature. We also have investigated a special case where the number of
distinct due dates is assumed to be much less than the number of the jobs and

extended the results to the case with release dates.

84



8.2 Suggestions

While we have studied some problems in the area of single machine scheduling with

release dates and due dates, there are still many issues worthy of consideration for

the particular problems that we have studied in this thesis. To extend our research

further, we suggest some issues for future work.

L.

o

All problems that we have considered in this thesis are restricted to the
single machine environment. It would be of interesting to extend the study

to multiple machine environment.

In Chapters 4 and 5, we do not consider job weights. From Table 2.3 we
know that both the non-preemptive and preemptive versions of the weighted
counterpart of the problem considered in Chapter 4 are open to date. It is
of great interesting to investigate the complexity of these problems. Though
the weighted counterpart of the problem in Chapter 5 is proved strongly
NP-hard, the special cases with more complicated job restrictions are still

worthy of study.

The general version of the problems considered in Chapters 4 and 5, equiv-
alently, the preemptive single machine total tardiness problem with release
dates but no other restrictions, is open to the sense of NP-hardness. It
is also of interesting to develop a pseudo-polynomial algorithm or a strong

NP-hardness proof for this problem.

. As for the due date assignment problems, all the open problems in Tables

6.2 and 6.3 are worthy of being studied. Besides, the earliness and tardiness

models with given release dates are under-explored.

85



References

Baker, K.R. (1974) Introduction to Sequencing and Scheduling, John Wiley &

Sons. New York.

Baker, K.R.. Lawler, E.L., Lenstra. J.K. and Rinnooy Kan, A.H.G. (1983) Pre-
emptive scheduling of a single machine to minimize maximum cost subject to

release dates and precedence constraints. Operations Research. 31. 381-386.

Baptiste. P. (1999a) An O(n*) Algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Operations Research Letters,

24, 175-180.

Baptiste, P. (1999b) Polynomial time algorithms for minimizing the weighted
number of late jobs on a single machine with equal processing times. Journal

of Scheduling, 2, 245-252.

Baptiste, P. (2000) Scheduling equal-length jobs on identical parallel machines.
Discrete Applied Mathematics, 103, 21-32.

Baptiste, P.. Brucker, P.. Knust, S. and Timkovsky. V. (2002) Fifteen notes on

equal-execution-time scheduling, Technical report.
Brucker, P. (2001) Scheduling algorithms, Springer, New York.

Brucker, P. and Knust. S. (2002). Complexity results for scheduling problems.

URL: www//mathematic.uni-osnabrueck.de/research/OR /class.

86



Chen. B.. Potts. C. and Woeginger. G. (1998) A review of machine scheduling:
complexity. algorithms and approximability. Handbook of Combinatorial Op-

timization, Kluwer Academic Publishers, 21-169.

Cheng, T.C.E. and Gordon, V.S. (1994) Optimal assignment of due-dates for
preemptive single-machine scheduling. Mathematical & Computer Modeling,
20. 33-40.

Cheng, T.C.E. and Gupta. M.C. (1989) Survey of scheduling research involving
due date determination decisions. European Journal of Operational Research,

38, 156-166.

Cheng, T.C.E. and Kovalyov, M.Y. (1999) Complexity of parallel machine schedul-
ing with processing-plus-wait due dates to minimize maximum absolute late-

ness. European Journal of Operational Research, 114. 403-410.

Chu, C. (1992) A branch-and-bound algorithm to minimize total tardiness with

different release dates. Naval Research Logistics. 39, 265-283.

Chu, C. and Portmann, M.C. (1992) Some new efficient methods to solve the
n/1/r;/ 3T, scheduling problem. European Journal of Operational Research,
58, 404-413.

Du, J.Z. and Leung, J.Y.-T. (1990) Minimizing total tardiness on one machine is

NP-hard. Mathematics of Operations Research, 15, 483-495.

Emmons, H. (1969) One-machine sequencing to minimize certain functions of job

tardiness. Operations Research. 17, 701-715.

Frederickson. G.M. (1983) Scheduling unit-time tasks with integer release times

and deadlines. Information Processing Letters, 16, 171-173.

Garey, M.R. and Johnson. D.S. (1979) Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H.Freeman and Company, New York.

87



Gordon. V.S. (1993) A note on optimal assignment of slack due-dates in single-

machine scheduling, Furopean Journal of Operational Research. 70. 311-315.

Gordon. V.S. and Strusevich. V.A. (1999) Earliness penalties on a single machine
subject to precedence constraints: SLK due date assignment. Computer and

Operational Research, 26, 157-177.

Gordon, V S. and Tanaev, V.S. (1983) On minimax problems of scheduling theory
for a single machine (in Russian). Vetsi Akadeii Navuk BSSR. Ser. fizika-

matematychnykh navuk, 3-9.

Gordon. V.S.. Roth. J.M. and Chu. C. (2002a) A survey of the state-of-the-art of
common due date assignment and scheduling research. European Journal of

Operational Research. 139. 1-25.

Gordon. V.S., Proth, J.M. and Chu, C. (2002b) Due date assignment and schedul-
ing: SLK. TWK and other due date assignment models. Production Planning

& Control, 13, 117-132.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979)
Optimization and approximation in deterministic sequencing and scheduling:

a survey. Annals of Operations Research. 5, 287-326.

Horn, W.A. (1972) Single-machine job sequencing with treelike precedence order-
ing and linear delay penalties. SIAM, Journal on Applied Mathematics, 23,
189-202.

Jackson, J.R. (1955) Scheduling a production line to minimize maximum tardi-
ness. Research Report 43, Management Science Research Project, University

of California, Los Angeles.

Kahlbacher. H.G. and Cheng, T.C.E. (1995) Processing-plus-wait due-dates in
single machine scheduling. Journal of Optimal Theory and Application, 85.
163-186.

88



Kise, H.. Ibaraki. T. and Mine.. H. (1978) A solvable case of the one-machine
scheduling problem with ready and due dates. Operations Research. 26.

121-126.

Kovalyov. M.Y. (1997) Batch scheduling and common due date assignment prob-
lem: an NP-hard case. Discrete Applied Mathematics, 80, 251-254.

Koulamas. C. (1994) The total tardiness problem: review and extensions. Oper-

ations Research. 42. 1025-1041.

Koulamas, C. (1997) Polynomially solvable total tardiness problems: review and
extensions. Omega, 25, 235-239.

Koulamas, C. and Kyparisis, G.J. (2001) Single machine scheduling with release
times, deadlines and tardiness objectives. European Journal of Operational

Research, 133, 447-453.

Labetoulle. J., Lawler, E.L.. Lenstra, J.K. and Rinnooy Kan, A.H.G. (1984)
Preemptive scheduling of uniform machines subject to release dates. Progress

in Combinatorial Optimization, Academic Press, New York, 245-261.
Lageweg, B.J. and Lawler, E.L. (1975) Private communication.

Lageweg, B.J.. Lenstra, J.K. and Rinnooy Kan. A.H.G. (1976) Minimizing maxi-
mum lateness on one machine: computational experience and some applica-

tions, Statistica Neerlandica, 30, 25-41.

Lawler. E.L. (1964) On scheduling problem with deferral costs. Management
Science, 11, 280-288.

Lawler. E.L. (1973) Optimal sequencing of a single machine subject to precedence

constraints. Management Science, 19, 544-346.

Lawler. E.L. (1977) A 'pseudopolynomial’ algorithm for sequencing jobs to mini-

mize total tardiness. Annals of Discrete Mathematics. 1. 31-342.

89



Lawler. E.L. (1990) A dynamic programming algorithm for preemptive scheduling
of a single machine to minimize the number of late jobs. Annals of Operations

Research. 26, 125-133.

Lawler, E.L. (1994) Knapsack-like scheduling problems. the Moore-Hodgson algo-
rithm and the "tower of sets’ property. Mathematical and Computer Modeling,

20. 91-106.

Lawler. E.L and Labetoulle, A.J. (1978) On preemptive scheduling of unrelated
parallel processors by linear programming. Journal of the Association for

Computing Machinery, 25. 612-619.

Lawler. E.L. and Moore. J.M. (1969) A functional equation and its application
to resource allocation and sequencing problems. Management Science, 16,

77-84.

Lawler. E.L.. Lenstra. J.K.. Rinnooy Kan, A. H. G. and Shmoys, D. B. (1993) Se-
quencing and scheduling: algorithms and complexity. Logistics of production

and inventory, North-Holland, Amsterdam. Holland.

Lee. C.-Y.. Uzsoy, R. and Martin-Vega, L.A. (1992) Efficient algorithms for
scheduling semiconductor burn-in operations. Operations Research, 40. 764-

773.
Lenstra, J.K. -unpublished.

Lenstra, J.K. and Rinnooy Kan, A.H.G. (1980) Complexity results for scheduling
chains on a single machine. European Journal of Operational Research, 4,

270-275.

Lenstra, J.K.. Rinnooy Kan, A.H.G. and Brucker. P. (1977) Complexity of ma-
chine schedule problems. Annals of Discrete Mathematics. 1, 343-362.

90



Leung, J. Y.-T. and Young, G.H. (1990) Minimizing total tardiness on a single
machine with precedence constraints. ORSA Journal on Computing, 2, 346-

352.

Papadimitriou. C.H. (1998) Combinatorial optimization: algorithms and complez-

ity, Dover. New York.

Pinedo, M. (1995) Schedule: Theory, Algorithms, and Systems, Prentice Hall,

Jersey.

Qi. X.. Yu, G. and Bard, J.F. (2001) Single machine scheduling with assignable
due dates. Discrete Applied Mathematics. 122, 211-233.

Sahni. S. (1979) Preemptive scheduling with due dates. Operations Research. 27,
925-934.

Schrage. L. (1968) A proof of the shortest remaining processing time processing

discipline. Operations Research, 16. 687-690.

Simons, B. (1978) A fast algorithm for single processor scheduling. Proceedings

of the 19th IEEE symposium on Foundations of Computer Science, 246-252.

Smith, W.E. (1956) Various optimizers for single-stage production. Naval Re-
search Logistic Quarterly, 3, 59-66.

Szwarc. W., Croce, F.D. and Grosso, A. (1999) Solution of the single machine

total tardiness problem. Journal of Scheduling, 2, 55-71.

Szwarc. W., Grosso. A. and Croce, F.D. (2001) Algorithmic paradoxes of the
single-machine total tardiness problem. Journal of Scheduling, 4. 93-104.

Tanaev, V.S. and Gordon, V.S. (1983) On scheduling to minimize the weighted
number of late jobs (in Russian). Vestisi Akad. Navuk Belarus Ser. Fiz.-

Mat. Nawvuk. 6, 3-9.

91



Tanaev, V.S., Gordon. V.S. and Shafransky. Y.M. (1994) Scheduling theory:

Single-stage systems. Kluwer. Boston.

92



Appendix

Publications

Refereed Journal Articles:

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2001) Preemptive scheduling with agree-
able due dates to minimize total tardiness. Proceedings of the 5** Interna-

tional Conference on Optimization: Techniques and Applications, 405-412.

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2001) An O(n?) algorithm for scheduling
equal-length preemptive jobs on a single machine to minimize total tardiness.

Accepted by Journal of Scheduling.

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2002) Preemptive scheduling with agree-
able release dates and due dates to minimize total tardiness. Submitted to

Annals of Operations Research.

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2002) Single machine scheduling with
release dates and CON/SLK/TWK due dates. Submitted to Computers and

Operations Research.

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2002) On the single machine total

tardiness problem. Submitted to Furopean Journal of Operational Research.

93



Conference Presentation:

Tian, Z.J., Ng, C.T. and Cheng, T.C.E. (2001) Preemptive scheduling with agree-
able due dates to minimize total tardiness. The 5** International Conference

on Optimization: Techniques and Applications, Hong Kong.

94



