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Summary of contribution 
 
The original contributions reported in this thesis are as follows: 

 
1. A similarity study of the sixteen chromosome sequences of 

Saccharomyces cerevisiae.  

We have performed an extensive study of the sixteen chromosome 

sequences of Saccharomyces cerevisiae (S. cerevisiae).  In particular, 

similar subsequences have been searched throughout these sixteen 

sequences.  Their location and length have been investigated so as to 

quantify the potential gain in cross-sequence compression.   Our study 

indicates that there are significant cross-sequence similarities among these 

sixteen sequences.  Also, the similar subsequences from different 

chromosome sequences do not overlap in position, hence, two types of 

cross-chromosomal predictions are proposed to improve the overall 

sequences compressibility.     

 
2. A new algorithm for multiple sequence compression 

All state-of-the-art compression algorithms are based on finding similar 

subsequences within the current sequence only.  The average bits per base 

(bpb) is reduced by 0.08 in S. cerevisiae as compared with the no-

compression case.  We have proposed a multiple sequence compression 

algorithm that compresses a number of sequences together to take into 

account both self-sequence similarity and cross-sequence similarity.  The 

experimental results show that our proposed algorithm can consistently 

reduce the average bpb used while maintaining a low computational 

complexity.   
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3. The implementation of a software tool for multiple sequence compression 

A software tool written using Matlab has been developed that allows users 

to compress a number of sequences together.  Information, such as the 

execution time and the bpb of compressing with and without a reference 

sequence, can also be shown by the software tool.   
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Abstract 

Deoxyribonucleic acid (DNA) technologies have been widely used in 

genetic engineering, forensics and anthropology applications.  A DNA 

sequence is a long sequence consisting of four types of nucleotides called bases.  

The number of bases of the 24 chromosomes in humans ranges from 50 to 250 

million.  Without any compression, two bits per base are required for storage 

which results in a large number of bits for encoding DNA sequences.  An 

effective way to compress these sequences is thus desirable in order to reduce 

the storage space required. 

 

General-purpose compression tools such as gzip use more than two bits 

to encode a base.  This is because these tools do not make use of the special 

characteristics of a DNA sequence.  For example, it is well known that a DNA 

sequence has long-term correlation in that subsequences in different regions of 

a DNA sequence are similar to each other.  State-of-the-art DNA compression 

schemes all rely on exploiting this long-term correlation.  In particular, 

repetitions within the DNA sequence are searched so that similar subsequences 

can be encoded with reference to each other. For these DNA compression 

schemes, the reduced average bits per base (bpb) are around 0.25 for the 

benchmark DNA sequences.  Thus, the compression gain is not large.   
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It is well known that there are similarities among different chromosome 

sequences.  All state-of-the-art compression algorithms exploit only self-

sequence similarities, and specifically ignore the cross-sequence similarities.  

We have performed a thorough study of similarities within the same 

chromosome sequence as well as similarities among different chromosome 

sequences.   These similarities are characterized by the existence of similar 

subsequences in different chromosome sequences.  Our study indicates that 

these cross-sequence similarities are often significant when compared to self-

sequence similarities.  In the experimental results from the sixteen 

chromosome sequences in S. cerevisiae, the average repetitive length from 

cross-sequence prediction was almost fourteen times of that from self-sequence 

prediction.  

 

To make use of both self-sequence and cross-sequence similarities in 

DNA compression, we have proposed a multi-sequence compression algorithm.  

Our scheme compresses two or more sequences together so that similar 

subsequences found among multiple sequences can be encoded together.   In 

this scheme, we first create a list of similar subsequences, from either the 

reference sequence or the current sequence which are ordered according to 

their importance.  The list is then modified by removing the overlapping 
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similar subsequences.  After reordering the list according to their position and 

removing similar subsequences from the current sequence, Arith-2 coder is 

used to further compress the non-repetitive regions.   

 

Our experimental results show that compressing a sequence with 

reference to another sequence achieves an average of 5.5% saving in bpb as 

compared with that without reference to another sequence, hence the bpb of 

compressing two chromosome sequences together is consistently better than 

that of compressing them separately.  This shows the importance of cross-

sequence similarities.  We have also extended the cross-sequence predictions to 

more than two chromosome sequences.  We found that there is always 

additional savings in bpb by compressing a number of chromosome sequences 

together.  Since by making use of the cross-sequence similarities, our proposed 

multiple sequence compression algorithm can outperform other single 

sequence-based compression algorithms.   
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1  Introduction 

Due to the recent progress in human genome sequencing, there is a great 

surge in demand for storing and transmitting deoxyribonucleic acid (also known 

as DNA) sequences.  Compression thus becomes essential in order to reduce the 

size of DNA sequence to save storage space and transmission time. 

 

DNA sequences contain four kinds of nucleotides or bases: adenine (A), 

cytosine (C), guanine (G) and thymine (T).  Without compression, two bits are 

required for representing each base.  If general compression tools such as gzip 

are used, it has been found that more than two bits are often needed to represent a 

base [1].  Consequently, these general compression tools cannot compress, but 

rather expand the DNA sequences [1-2].  Compression algorithms that are 

designed specifically for DNA sequences thus need to be developed.   

 

DNA sequences are not purely random sequences.  If these sequences 

were totally random, the most efficient and logical way to store them would be 

using two bits per base (bpb).  Because DNA contains genetic information and 

codes for protein in living organisms, it must contain a logical organization and 

some redundancies could be exploited through the compression strategies.  The 

main source of redundancy in DNA sequences lies in the long-term repetitions, 
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in the form of either approximate repeats or complementary palindromes; as a 

result, current DNA compression algorithms focus heavily on the exploitation of 

repetitions within the DNA sequence.  However, even though these DNA 

compression algorithms obtain better results than general purpose compression 

algorithms, the compression ratios are not high [2].   For example, the context 

tree weighting method [21] achieved an average 0.05 bpb reduction for the 

sixteen chromosome sequences of Saccharomyces cerevisiae (S. cerevisiae) 

when compared to the no-compression case.   

 

 To achieve further compression in encoding DNA sequences, it is 

important to understand the special properties associated with DNA sequences 

and to fully utilize these properties in compressing them [3].  The main 

objectives of this thesis are to study the similarity among different DNA 

sequences and to investigate how the similarity can be used effectively for DNA 

sequence compression. 

 

1.1 Problems 

 Current DNA compression schemes are based on searching repetitions 

within the DNA sequence.  These repetitions can be in the form of exact matches 

or approximate matches.   Exact matches mean that the repetitive sequence is 
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exactly the same as the original one, while approximate matches mean the two 

sequences look identical only if substitutions, insertions and/or deletion of 

certain bases are performed during matching [3-7].  Note that DNA sequences 

are very long.  For example, the lengths of the 24 chromosomes in humans range 

from 50 to 250 million base pairs.  Thus, the time to find exact or approximate 

matches can also be very long and searching for all repeats in a DNA sequence is 

not a trivial task [3].  Some researchers have modified the searching strategy 

from greedy algorithms [2, 3, 8-11] to dynamic programming in order to reduce 

the searching time [2].  Tools for finding these exact and approximate matches 

are available freely [27-28].   

 

 In the field of video compression, images can be compressed either as an 

I-frame or as a P-frame [12-13].  The I-frame means that an image is intra-coded 

and redundancy is exploited within itself only.  By contrast, the P-frame means 

that an image is inter-coded and redundancy is exploited between two 

consecutive images.  The P-frame consistently has a better compression ratio 

than the I-frame.  As for DNA compression, current algorithms are analogous to 

intra-coded image compression as redundant information is exploited only within 

the current DNA sequence.  Therefore, besides self-sequence redundancy, cross-

sequence redundancy can also be exploited in DNA sequence compression.   
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Although cross-sequence similarity is well known and is the basis of 

sequence analysis algorithms, such as multiple sequence alignment or 

phylogenetic analysis, the idea of exploiting this information specifically for 

DNA sequence compression is novel.  These similarities are characterized by the 

existence of similar subsequences among different DNA sequences.  The longer 

the similar subsequences are, the higher the cross-sequence similarities are.  

While only a modest compression ratio might be achieved for one DNA 

sequence, we hypothesized that a higher compression ratio can be achieved for 

multiple sequence compression since multiple sequence compression can benefit 

from both self-sequence similarity and cross-sequence similarities.   

 

1.2 Objectives 

This thesis attempts to give a quantitative analysis of sequence 

similarities and develop an effective compression algorithm for DNA sequences.  

In particular, we will 1) study the self-sequence similarities as well as cross-

sequence similarities among different chromosome sequences of S. cerevisiae; 2) 

investigate the lengths and locations of similar subsequences found at various 

chromosome sequences; 3) develop a strategy to combine both self-sequence and 

cross-sequence similarities to achieve compression; and finally, 4) perform a 

comparative study with some existing DNA compression schemes such as CTW 
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[21] and GenCompress [4-6] to see the effectiveness of incorporating cross-

sequence similarities in compression.   

 

1.3 Organization of the Thesis 

The rest of the thesis is organized as follows.  Chapter Two reviews the 

literature on DNA sequences and compression schemes.  This includes reviews 

on the characteristics of DNA sequences, some existing DNA compression 

algorithms that take into account DNA sequence characteristics, and some 

software tools for finding repetitions in DNA sequences.  Chapter Three provides 

a detailed study of the similarities among DNA sequences.  We discuss the 

importance of cross-sequence similarities in terms of their repetitive length and 

repeated location as compared with self-sequence similarity through some 

experiments on the sixteen chromosome sequences of S. cerevisiae.  Chapter 

Four presents the structure of our proposed multiple sequence compression 

algorithm.  Our proposed algorithm first searches for all the repeats among the 

different DNA sequences; these repeats are then sorted according to their 

significance in bits reduction.  After removing all the repeats in different 

sequences, an entropy coder is used to compress the remaining non-repeating 

regions.   In Chapter Five, we evaluate our proposed algorithms by 

experimenting on real datasets.  The results are also compared with some 
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existing algorithms such as CTW and GenCompress. Chapter Six concludes our 

work with suggestions on the future development of our proposed multiple 

sequence compression algorithm.   
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2  Literature Review 

Deoxyribonucleic acid (DNA) is a molecule composed of 

deoxyribonucleotides connected by phosphodiester linkages [8].  The genome is 

the complete DNA sequence of a living organism.  Regions in a genome that 

code for proteins are known as genes.  The largest publicly accessible DNA data 

are maintained in: GenBank (National Center for Biotechnology Information 

Genetic Databank) [14], EMBL (European Molecular Biology Laboratory) [15], 

and DDJB (DNA Database of Japan) [16].  Each of these databases shares their 

information with the others.  In February 2008, GenBank reported that there 

were approximately 85,759,586,764 bases in 82,853,685 DNA sequence records 

in the traditional GenBank database, and 108,635,736,141 bases in 27,439,206 

DNA sequence records in the WGS (Whole Genome Shotgun) division [14].   

 

A large number of DNA sequences have been stored in these databases, 

and the size of the databases is expected to increase exponentially.  Compression 

is hence desirable to reduce the storage requirements as well as the transmission 

time.  This chapter first gives a brief review about the characteristics of DNA 

sequences, and then some existing DNA compression algorithms that exploit 

these DNA characteristics are presented.   
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2.1 Characteristics of DNA Sequences  

DNA is a long sequence consisting of four kinds of nucleotides: adenine 

(A), cytosine (C), guanine (G) and thymine (T).  It is in the form of a double 

helix held together by hydrogen bonds.  The nucleotides (A, T) and (C, G) are 

complement pairs, as shown in Table 1.  Each nucleotide in one DNA strand 

always binds to its complementary nucleotide in another strand.  The two strands 

are biologically similar to each other.  Thus, only one strand needs to be encoded 

while another strand can be deduced from this strand.   

 

 

 

 

Tab1e 1.  Four types of nucleotides, Adenine (A), Guanine (G), Thymine (T) and 
Cytosine (C), and their complements. 

Bases Notation Complement 

Adenine A T 

Cytosine C G 

Guanine G C 

Thymine T A 
 

Figure 1.  An example of a DNA sequence. [18] 

lbsc
Rectangle
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DNA sequences are not random sequences.  They contain long-term 

repetitions in which subsequences that are thousands of bases apart could be 

similar to each other.  There are two forms of long-term repetitions, namely 

repeats and complementary palindromes.  These are often exploited by DNA 

sequence-oriented compression algorithms.   

 

2.1.1 Repeats 

Repeats include exact matches and approximate matches with some 

operations such as substitution, deletion and insertion.  An exact match means 

two subsequences consist of identical nucleotides along the whole subsequence.  

Approximate matches with substitution, deletion and insertion, are illustrated in 

Figures 2(a), 2(b) and 2(c), respectively.  In Figure 2(a), the DNA sequence is 

“ACGCTTACGCAT”.  The first six nucleotides, i.e., “ACGCTT”, form the first 

subsequence and the last six nucleotides, i.e., “ACGCAT” form the second 

subsequence.  The second subsequence can be obtained from the first 

subsequence if the 5th base “T” in the first subsequence is substituted by “A”.  

This is called an approximate match with substitution.  In Figure 2(b), the DNA 

sequence is “ACGCTACGCAT”, the first subsequence is formed from the first 

five nucleotides, i.e., “ACGCT” and the second subsequence is formed from the 

last six nucleotides, i.e., “ACGCAT”.  The second subsequence can be obtained 
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if the base “A” is inserted between the 4th and the 5th bases of the first 

subsequence.  The two subsequences can thus be matched with an insertion 

operation.   In Figure 2(c), the DNA sequence is “ACGCTTACGCT”, the first 

subsequence is formed from the first six nucleotides, i.e., “ACGCTT” and the 

second subsequence is formed from the last five nucleotides, i.e., “ACGCT”.  

The second subsequence is obtained if the 5th base “T” in the first subsequence is 

deleted.  This is called an approximate match with deletion. 

 

ACGCTTACGCAT

1 ACGCTT 6
|||| |

7 ACGCAT 12

ACGC?TACGCAT

1 ACGC-T 5
|||| |

6 ACGCAT 12

ACGCTTACGC?T

1 ACGCTT 6
|||| |

7 ACGC-T 11

 
 

 
2.1.2 Complementary Palindromes 

The complementary palindrome is also referred to in the literature as 

reversed repeat, palindrome, complemented palindrome, complemented inverted 

repeat, or reverse complement repeat [2, 7].  A repeat is said to be 

complementary palindrome if nucleotides in a subsequence are the reverse 

ordering of nucleotides in another subsequence with each nucleotide replaced by 

Figure 2.  Examples of (a) substitution, (b) insertion and (c) deletion in 

approximate matches. The sequence is a part of a DNA sequence. 

(a)                       (b)                        (c) 
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its complement.  For instance, the subsequences “AAACGT” and “ACGTTT” 

are complementary palindrome since (A,T) and (C,G) are complement pairs.   

 

In Figure 3, the 12 bases sequence “ACGCTTAAGCGT” is a part of a 

DNA sequence.  If we consider a subsequence “AAGCGT” formed from the last 

six bases, the complement of “AAGCGT” is “TTCGCA”. Its reverse ordering is 

“ACGCTT”, which is the same as the first six bases of the original 12 bases 

sequence.  Thus, the repeat is called a complementary palindrome.   

 

   

 

 

2.1.3 Three-base periodicity 

Functionally, a DNA sequence consists of two types of regions, namely 

protein-coding and non-protein-coding regions [26].  In organisms with a distinct 

cellular nucleus, called Eukaryotes, the coding regions are usually divided into 

several disconnected fragments known as exons.  The non-coding regions in-

ACGCTTAAGCGT
TTCGCA *complement
ACGCTT *reverse

1 ACGCTT 6
||||||

12 ACGCTT 7

Figure 3.  An example of a complementary palindrome. 

The sequence is a part of a DNA sequence. 
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between the exons are known as introns.  Before producing proteins, introns are 

removed so that exons are joined together to form an “uninterrupted” gene.  

Codons combined by three consecutive bases represent a protein unit, i.e., an 

amino acid.  As listed in Table 2, sixty-four possible codons can be formed by 

four bases but there are only twenty amino acids.  For example, GCT, GCC, 

GCA and GCG represent the amino acid “Alanine” as in the first row of Table 2.  

One of the characteristics of the protein-coding region is its three-base 

periodicity [41].  This periodicity might be due to the codon structure.  The three-

based periodicity implies that the power spectrum of the subsequence in a 

protein-coding region would have a strong component at the period-3 frequency, 

i.e., 2π/3.   
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Tab1e 2.  Amino acids formed by triplets of bases (codons). 

Amino acids Codon 

Ala GCT, GCC, GCA, GCG 

Arg CGT, CGC, CGA, CGG, AGA, AGG 

Asn AAT, AAC 

Asp GAT, GAC 

Cys TGT, TGC  

Gln CAA, CAG 

Glu GAA, GAG 

Gly GGT, GGC, GGA, GGG 

His CAT, CAC 

Ile ATT, ATC, ATA  

Leu TTA, TTG, CTT, CTC, CTA, CTG  

Lys AAA, AAG 

Met ATG  

Phe TTT, TTC  

Pro CCT, CCC, CCA, CCG 

Ser TCT, TCC, TCA, TCG, AGT, AGC 

Thr ACT, ACC, ACA, ACG 

Trp TGG  

Tyr TAT, TAC  

Val GTT, GTC, GTA, GTG  

START ATG  

STOP TAG, TGA, TAA  
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2.2 Compression Methods 

There are two kinds of compression methods, namely lossless 

compression and lossy compression.  Retrieving from compressed data without 

loss is defined as lossless, while that with data loss is defined as lossy.  Since it is 

not possible to sacrifice any of the data in a DNA sequence, only lossless 

compression is considered for DNA sequence compression.  As there are only 

four bases in a DNA sequence, two bits are required to code each nucleotide 

without any compression.  An example is shown in Figure 4.  The four bases {A, 

C, G, T} are represented by {00, 01, 10, 11}.  Thus, two bits per base is the 

minimum requirement for compressing a DNA sequence.   

 

 

 

Some researchers have examined the use of a general-purpose 

compression algorithm for compressing DNA sequences.  The two main 

compression approaches are statistical and substitutional [8] methods.  In the 

statistical approach, blocks of fixed length subsequences are encoded with 

respect to their occurrence probabilities.  For example, in Huffman coding [19], 

short codewords are used for encoding frequent patterns while long codewords 

Figure 4.  Two bits per base. [18] 

lbsc
Rectangle
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are used for encoding non-frequent patterns.  In the substitutional approach such 

as LZ77 [20], pointers are used to locate previous occurrences.  So, the lengths of 

subsequences to be encoded are not fixed, in contrast to the statistical approach.   

 

General-purpose compression algorithms often do not perform well for 

DNA sequences.  Some of these algorithms, such as gzip, use more than 2 bits 

per base [1].  The reason behind is that these algorithms do not consider the 

special characteristics in a DNA sequence, such as ignoring the long term 

repetitions in a DNA sequence.  Some of them, such as context tree weighting 

(CTW) [21], are very slow and use a great deal of memory in finding 

characteristic patterns in the long DNA sequences. To sum up, lossless 

compression algorithms for DNA sequences need to be developed.   These 

algorithms should exploit DNA sequence characteristics, such as the long-term 

repetitions, effectively and efficiently.   Consequently, DNA-oriented 

compression methods such as Biocompress-2, GenCompress, context tree 

weighting (CTW)+LZ and DNACompress, have been developed [3-8].   

 

2.2.1 Compression Methods for DNA Sequences 

Biocompress [22] was the first algorithm designed by Grumbach et al. in 

1993 specifically for compressing DNA sequences.  Biocompress-2 [8] is its 



- 16 - 

second version.  These two algorithms are based on a sliding window algorithm, 

known as LZ77, proposed by Ziv and Lempel [23].  A subsequence is encoded 

by reference to an identical subsequence occurring in the past, i.e., only the 

position of the previously occurred similar subsequence and the repetition length 

are encoded.  Biocompress detects exact matches and complementary 

palindromes, while Biocompress-2 introduces an additional order-2 arithmetic 

coding (Arith-2).  Biocompress-2 uses Arith-2 if no significant repetition is 

found.  For both Biocompress and Biocompress-2, the compression ratio is 

higher when the length of similar subsequences is longer. 

 

Cfact proposed by Rivals et al. [9-10] is another compression technique 

based solely on exact matches.  A two-pass strategy is used.  In the first pass, the 

whole sequence is parsed by using a suffix tree.  A list of repetitive subsequences 

sorted according to their lengths is produced.  In the second pass, the 

subsequences are encoded with reference to previously occurred similar 

subsequences.  Two bits per base are then used to encode the remaining non-

repetitive regions. 

 

GenCompress-2 [4-6] proposed by Chen et al. achieves a significantly 

better compression ratio than the previously presented algorithms.  Contrary to 
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Biocompress and Cfact, GenCompress utilizes approximate matches instead of 

exact matches.  GenCompress-1 considers only substitutions for the repeats, 

while GenCompress-2 considers deletion, insertion and substitution for finding 

the repeats.  As with Biocompress, GenCompress considers whether it is 

worthwhile to encode a subsequence.  If not, Arith-2 is used for encoding.   

 

DNACompress [3] employs the Ziv-Lempel compression scheme as 

Biocompress-2 and GenCompress.  It consists of two phases.  The first phase is 

to find all approximate repeats, including complementary palindromes.  The 

second phase is to encode approximate repeat regions by referring to the 

previous regions in the sequence and non-repeat regions by Arith-2.  To identify 

all the similar subsequences, a software tool called PatternHunter [27] is used, 

which is a fast and sensitive homology search engine.  Besides providing 

additional compression gains, DNACompress is considerably faster than 

GenCompress.   

 

CTW+LZ proposed by Matsumoto et al. [7] is a technique based on the 

context tree weighting (CTW) method and LZ-based compression.  Basically, 

long exact or approximate repeating subsequences including complementary 

palindromes are encoded by a LZ-based algorithm, whereas short subsequences 
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are compressed using CTW.  Though CTW+LZ obtains good compression ratios, 

its execution time is too long, especially for long sequences. 

 

DNAC [11] is a DNA compression scheme consisting of four phases.  In 

the first phase, a suffix tree is built to locate exact matches.  In the second phase, 

all the exact repeats are extended to approximate repeats by dynamic 

programming.  In the third phase, the non-overlapping repeats with the highest 

scores are extracted from the overlapping regions.  In the last phase, all the 

repeats are encoded.   

 

GeNML, proposed by Tabus et al. [24], is based on normalized maximum 

likelihood discrete regression or approximate block matching.  The compression 

performance and speed are both improved in comparison with Biocompress-2, 

GenCompress-2, CTW+LZ and DNACompress [25].  A DNA sequence is 

divided into fixed-size blocks, and GeNML encodes the fixed-size blocks by 

reference to a previously encoded subsequence with minimum substitution 

operations.   

 

DNAPack, proposed by Behzadi et al. [2], considers only substitutions 

for the repeats and complementary palindromes, and uses either CTW or Arith-2 
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for encoding non-repeating regions.  In identifying repeats, it uses dynamic 

programming approaches instead of greedy techniques.  DNAPack provides a 

better compression gain, on average, when compared with DNACompress for a 

number of short DNA sequences [26]. 

 

All of the above compression algorithms exploit the long-term repetitions 

in a DNA sequence.  Recently, Pinho et al. proposed a Three-state model for 

compressing the DNA protein-coding regions [26, 42].  As the protein-coding 

regions contain three-base periodicity, three finite-context models are used to 

characterize the periodicity statistically.  It is reported that the compression ratio 

for the protein coding regions is better than DNACompress for some DNA 

sequences.  However, the proposed algorithm is not a complete compression 

algorithm as the three-state model can be used in the protein-coding regions only, 

not for the whole DNA sequence.     

 

2.2.2 Experimental Results 

Most of the DNA-oriented compression methods have been tested on a 

set of standard benchmark DNA sequences downloadable from [43].  These 

sequences together with their lengths [5] are listed in Table 3.   
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Tab1e 3.  Information on the standard benchmark DNA sequences.  Note KB stands 
for kilo bytes. 

Sequence name Length Sources File size (KB) 
CHMPXX  
(or MPOCPCG) 121024 

chloroplasts 
29.55  

CHNTXX 155844 38.05  
HEHCMVCG  
(or HS5HCMVCG) 229354 complete genome 

from viruses 55.99  

HUMDYSTROP 38770 

sequences from 
humans 

9.47  
HUMGHCSA 66495 16.23  
HUMHBB 73323 17.90  
HUMHDABCD 58864 14.37  
HUMHPRTB 56737 13.85  
MPOMTCG 186608 complete genomes 

of mitochondria 

45.56  
MTPACGA  
(or PANMTPACGA) 100314 24.49  

VACCG 191737 complete genome 
from viruses 46.81  

 

The eleven sequences shown in Table 3 come from various sources such 

as chloroplasts, mitochondria, human and virus.  The length refers to the number 

of bases in the sequence.  The file size in KBytes is obtained by using 2 bits for 

each base.  This is then the file size required without any compression.  

 

The experimental results of compressing these eleven sequences by 

various compression algorithms are summarized in Table 4 [2-11].   The 

compression ratio is calculated by the bits per base (bpb) used.  Without 

compression, 2 bpb is required.  Thus, a good compression ratio implies that we 

have a bpb considerably smaller than 2.  Biocompress-2, GenCompress and 

DNACompress are represented by ‘BioComp-2’, ‘GenComp-2’ and ‘DNAComp’ 
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respectively.  We can see that the average bpb ranges from 1.70 to 1.78 for most 

of the DNA-oriented compression methods.  

 

Table 5 shows the compression gain of the various compression methods.  

The compression gain is defined as 1-(|O|/2|I|)x100%, where |O| is the number of 

bits required for storing the compressed sequence, and |I| is the number of bases 

of a particular DNA sequence.  The compression gain ranges from 11% to 15%.  

This means that most algorithms can reduce the DNA sequence size by less than 

20%.  Note that there is no compression result for GeNML for the sequence 

HUMHBB.  According to other compression methods, the result for compressing 

HUMHBB is always above the average value, therefore, the average bpb and the 

average compression gain without considering HUMHBB are shown in the last 

row of Table 4 and Table 5 respectively.    From the average values, we can see 

that GeNML preformed slightly better than other compression schemes for these 

eleven sequences. 

 

As for the compression of the protein-coding regions in the sixteen 

chromosome sequences of the yeast named S. cerevisiae, Table 6 shows the bpb 

used by the three-state model and the DNACompress [26].  The bolded value 

indicates the better compression ratio for a particular sequence.  Within the 
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sixteen chromosome sequences of S. cerevisiae, DNACompress performs better 

in six chromosome sequences while the three-state model performs better in ten 

chromosome sequences (i.e., Chr II, Chr III, Chr VI, Chr VII, Chr VIII, Chr IX, 

Chr X, Chr XI, Chr XIV and Chr XV).  The average bpb of the three-state model 

is slightly lower than that of DNACompress, as shown in the last row of Table 6.  

Although the three-state model performs comparably to DNACompress, the 

algorithm is applicable to protein-coding region only.  Thus, the sequence is first 

required to be divided into two regions: protein-coding region and non-protein-

coding region.  Then, the three-state model is applied to the protein-coding 

region only while other compression algorithm is required for the non-protein-

coding region.  The three-state model is not yet a complete compression scheme 

as DNACompress.   
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Tab1e 4.  The bits per base (bpb) used by various DNA-oriented compression methods 

Sequence name BioComp-2 GenComp-2 DNAComp CTW+LZ DNAC GeNML DNAPack DNAMem 
CHMPXX 1.6848 1.6730 1.6716 1.6690 1.6716 1.6617 1.6602 1.6601 
CHNTXX 1.6172 1.6146 1.6127 1.6129 1.6127 1.6101 1.6103 1.6101 
HEHCMVCG 1.8480 1.8470 1.8492 1.8414 1.8492 1.842 1.8346 1.8349 
HUMDYSTROP 1.9262 1.9231 1.9116 1.9175 1.9116 1.9085 1.9088 1.9084 
HUMGHCSA 1.3074 1.0969 1.0272 1.0972 1.0272 1.0089 1.0390 1.0311 
HUMHBB 1.8800 1.8204 1.7897 1.8082 1.7897 - 1.7771 1.7765 
HUMHDABCD 1.8770 1.8192 1.7951 1.8218 1.7951 1.7059 1.7394 1.7395 
HUMHPRTB 1.9066 1.8466 1.8165 1.8433 1.8165 1.7639 1.7886 1.7884 
MPOMTCG 1.9378 1.9058 1.8920 1.9000 1.8920 1.8822 1.8932 1.8925 
PANMTPACGA 1.8752 1.8624 1.8556 1.8555 1.8556 1.8440 1.8535 1.8533 
VACCG 1.7614 1.7614 1.7580 1.7616 1.7580 1.7644 1.7583 1.7582 

average bpb 1.7838  1.7428  1.7254  1.7389  1.7254  1.6992  1.7148  1.7139  
average bpb 

without HUMHBB 1.7742  1.7350  1.7190  1.7320  1.7190  1.6992  1.7086  1.7077  
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Tab1e 5.  The compression gains of various DNA-oriented compression methods. 

Sequence name BioComp-2 GenComp-2 DNAComp CTW+LZ DNAC GeNML DNAPack DNAMem 
CHMPXX 15.76% 16.35% 16.42% 16.55% 16.42% 16.92% 16.99% 17.00% 
CHNTXX 19.14% 19.27% 19.37% 19.36% 19.37% 19.50% 19.49% 19.50% 
HEHCMVCG 7.60% 7.65% 7.54% 7.93% 7.54% 7.90% 8.27% 8.26% 
HUMDYSTROP 3.69% 3.85% 4.42% 4.13% 4.42% 4.58% 4.56% 4.58% 
HUMGHCSA 34.63% 45.16% 48.64% 45.14% 48.64% 49.56% 48.05% 48.45% 
HUMHBB 6.00% 8.98% 10.52% 9.59% 10.52% - 11.15% 11.18% 
HUMHDABCD 6.15% 9.04% 10.25% 8.91% 10.25% 14.71% 13.03% 13.03% 
HUMHPRTB 4.67% 7.67% 9.18% 7.84% 9.18% 11.81% 10.57% 10.58% 
MPOMTCG 3.11% 4.71% 5.40% 5.00% 5.40% 5.89% 5.34% 5.38% 
PANMTPACGA 6.24% 6.88% 7.22% 7.23% 7.22% 7.80% 7.33% 7.34% 
VACCG 11.93% 11.93% 12.10% 11.92% 12.10% 11.78% 12.09% 12.09% 

average 10.81% 12.86% 13.73% 13.05% 13.73% 15.04% 14.26% 14.30% 
average 

without HUMHBB 11.29% 13.25% 14.05% 13.40% 14.05% 15.04% 14.57% 14.62% 
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Tab1e 6.  The bits per base (bpb) used for Three-state model and DNACompress in 
S.cerevisiae.  

Chr Reference No. of bases Three-state 
model 

DNA 
Compress 

I GI:50593113 143157 1.911 1.884 
II GI:50593115 605184 1.897 1.912 
III GI:42759850 217332 1.911 1.918 
IV GI:50593138 1129605 1.890 1.846 
V GI:7276232 391086 1.901 1.883 
VI GI:42742172 183702 1.904 1.932 
VII GI:50593213 784707 1.893 1.897 
VIII GI:50882583 402792 1.903 1.907 
IX GI:6322016 310041 1.903 1.933 
X GI:42742252 557103 1.899 1.907 
XI GI:50593424 478620 1.895 1.938 
XII GI:42742286 784695 1.898 1.863 
XIII GI:44829554 693291 1.894 1.886 
XIV GI:50593505 576585 1.900 1.930 
XV GI:42742309 785568 1.897 1.901 
XVI GI:50593503 687666 1.896 1.889 

average 545696 1.8995 1.9016 
 
 

2.3 Repetitions in DNA sequences 

Basically, all DNA-oriented compression methods make use of the ideas 

of finding repeats and complementary palindromes in DNA sequence.  In fact, 

most of the time needed to run these compression programs are in searching of 

the repeats.  Thus, searching for repetitions in DNA sequences effectively and 

efficiently becomes a very important problem.  It is often not a trivial task to 

search for all approximate repeats in a very long DNA sequence.  Algorithms 

such as CTW+LZ algorithm [7] take a long time to find approximate repeats that 

are optimal for compression [3].  Recently, several homology search engines 

have been developed for searching approximate repeats and complementary 
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palindromes.  Examples include PatternHunter [27] and Blastn [28].  

DNACompress is a well-known example of utilizing PatternHunter for searching 

repetitions. 

 

2.3.1 Blastn 

The Basic Local Alignment Search Tool (BLAST) [29] is a utility that is 

maintained by the National Center for Biotechnology Information (NCBI).  

BLAST is a set of similarity search programs designed to explore all the 

available sequence databases, regardless of whether the query is a protein or 

DNA sequence [28].  The BLAST programs have been designed for speed, with 

a minimal sacrifice of sensitivity to distant sequence relationships.  The scores 

assigned in a BLAST search have a well-defined statistical interpretation, in 

order to make real matches easier to distinguish from random background hits.  

BLAST uses a heuristic algorithm that seeks local as opposed to global 

alignments, and is therefore able to detect relationships among sequences that 

share only isolated regions of similarity.   

 

Blastn is a type of BLAST search for a DNA sequence in which similar 

nucleotide sequences are searched throughout the contents of a nucleotide 

sequence database.  It is freely available on the Web [30]. 
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2.3.2 PatternHunter 

Pattern Hunter is a homology search engine like Blastn, but with 

modifications aimed at improving sensitivity, alignments, memory use and speed 

[3].  It is more sensitive; is two orders of magnitude faster than Blastn when 

processing long sequences; and requires only a fraction of the memory.  By using 

a patented spaced seed technology and algorithm for handling hit generation, hit 

extension and gap extension, all approximate repeats, including complementary 

palindromes, are produced and arranged in the order of a score [31].  The score 

indicates the similarities in the repeats.  Thus, a large score implies highly similar 

repeats. 



- 28 - 

3  Similarity Study 

How to minimize the value of bits per base (bpb) in DNA sequence 

compression is always a question for researchers.  As we can see from the 

experimental results in Table 4, the average bpb of the first compression 

algorithm is 1.78 and that of the recent algorithm is 1.71. Thus, over the twelve 

years of research in DNA compression, the improvement of the average bpb is 

only about 0.06.  How to further reduce the value of bpb is the main focus of this 

thesis. 

 

As discussed in Chapter 2, state-of-the-art DNA compression methods are 

always based on searching repetitions within the DNA sequence.  Compression is 

achieved only if there are similar subsequences along the current DNA sequence.  

In fact, similarities in DNA sequences could exist among different species that 

are close in terms of evolutionary distance [33-34].  Similarities could also exist 

among different chromosome sequences of one species [35].  These similarities 

imply that similar subsequences can be found among different DNA sequences 

which can thus be used beneficially for compression.   

 

To verify the cross-sequence similarities, we studied similarities in DNA 

sequences among different chromosome sequences of Saccharomyces cerevisiae 
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(S. cerevisiae). The 16 chromosome sequences can be downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/.  Firstly, the self-sequence similarity and the 

cross-sequence similarities of these 16 chromosome sequences are studied.  

Secondly, the location and length of similar subsequences will be discussed.  

Finally, the result of cross-chromosomal prediction will be analyzed.  To 

facilitate the discussion, similar subsequences located within the chromosome 

sequence are called self-(chromosomal) similarity/ self-referencing while those 

located in another chromosome sequence are called cross-(chromosomal) 

similarity/ cross-referencing. 

 

3.1 Existence of Similar Subsequences Among Chromosomes 

In this section, the search engine PatternHunter (Section 2.3.2) is 

employed to search for all approximate repeats and approximate complementary 

palindrome repeats in one DNA sequence or between a pair of DNA sequences 

[27].  The approximate repeats are repeats that contains errors, i.e., with certain 

unmatched nucleotides between two subsequences (Section 2.1.1).  The 

complementary palindrome repeats mean nucleotides in a sequence is the reverse 

ordering of nucleotides in another sequence with each nucleotide replaced by its 

complement.  
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All approximate repeats obtained from PatternHunter are ranked by a 

score.  Besides, details of the repeats, including the location of the repetitive 

regions and the length of the repetitive regions, are output to an “aln” file.  

 

3.1.1 About S. cerevisiae 

In S. cerevisiae, the 16 chromosome sequences are denoted as Chr I to 

Chr XVI.  The longest chromosome sequence is Chr IV which has around 1540k 

bases while the shortest chromosome sequence is Chr I which has around 230k 

bases.  Figure 5 shows the number of bases in each chromosome sequence of S. 

cerevisiae. 

 

 

 

 

 

Figure 5.  The lengths of the sixteen chromosome sequences in S. cerevisiae. The y-

axis is the number of bases in 1000 units. 
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3.1.2 Self-referencing 

Self-referencing is defined as finding repetitions within the current DNA 

sequence.  All state-of-the-art DNA compression algorithms consider self-

referencing only.  PatternHunter is used to search for repetitions within one 

chromosome sequence.  The following shows part of the outputs from the 

PatternHunter in finding the self-similarity within Chr I. 

 
Identities = 13159/14613 (90%) 
Identities = 2434/2588 (94%) 
Identities = 2071/2298 (90%) 
Identities = 1610/1759 (91%) 
Identities = 1573/1759 (89%)  

 

The self-similarities are sorted according to the score which is obtained 

from the repetitive lengths.  In the first record, the total length and the number of 

identical nucleotides of the repetitive regions are ‘14613’ and ‘13159’, 

respectively.  The length of the repetitive regions is of special interest in our 

study.  It is because the repetitive regions can be encoded with respect to similar 

regions that have been encoded in the past.  Thus the longer the matching 

sequences are, the higher the compression ratios attained.  The above shows that 

the longest repetitive region found within Chr I contains about 13000 bases.  

Figure 6a shows the lengths of the top four score repetitive regions found inside 

Chr I, Chr III, Chr IV, Chr V, Chr VII, Chr VIII, Chr XI, Chr XII, Chr XIII, Chr 

XIV, Chr XV and Chr XVI.  Most repetitive regions have a length of around 
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6000 bases.  Chr I is one special case as the length of the longest repetitive 

region is around 13000 but that of the second longest drops to around 2000.  

Besides, the lengths of the top four longest repetitive regions of Chr III and Chr 

XI are very short, they are around 1000 only.   

 

Figure 6b shows the length of self-referencing repetitive regions and non-

repetitive regions in S. cerevisiae.  The grey parts in the bars are the length of 

self-similar subsequences while the black parts are the length of non-repetitive 

regions.  We can see that the lengths of grey parts for all the chromosome 

sequences are very short.  The self-similar subsequence parts in Chr III and Chr 

XI can even be unseen since the portions are too small when comparing with the 

lengths of non-repetitive regions.  This means that the self-referencing repetitive 

regions are often not very significant.   
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Figure 6b.  A study of the lengths of the repetitive regions and non-repetitive 

regions in S. cerevisiae.  The light grey parts indicate the length of self-referencing 

repetitive regions.  The black parts indicate the length of non-repetitive regions.  The 

y-axis is the number of bases in 1000 units. 

Figure 6a.  The lengths of the top four longest repetitive regions found within the 

current chromosome sequence in S. cerevisiae. The first, second, third and fourth 

scores are illustrated by black, grey, light grey and white color bars respectively. 

The y-axis denotes the lengths of the repetitive regions. 
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3.1.3 Cross-referencing 

Cross-referencing is defined as finding repetitions from different 

chromosome sequences.  It attempts to find similarities among different 

chromosome sequences.  To show the similarities between different chromosome 

sequences in S. cerevisiae, cross-referencing between Chr I and Chr VIII are 

explored.  Using PatternHunter, the top five score repetitive regions between Chr 

I and Chr VIII are obtained as follows, 

 

Identities = 17034/17466 (97%) 
Identities = 12502/13765 (90%) 
Identities = 6407/6790 (94%) 
Identities = 5677/6041 (93%) 
Identities = 1518/1904 (79%)      
  

We can see that the two longest similar regions found between Chr I and 

Chr VIII are about 17000 and 12500 bases long.  In fact, if we compare the top 

four results, the lengths of similar regions between Chr I and Chr VIII are greater 

than that of similar subsequences found within Chr I.  To have a clear picture, 

Figure 7 is provided which depicts the lengths of the top three score repetitive 

regions between a particular chromosome sequence and the other fifteen 

chromosome sequences of S. cerevisiae.  

 

Figure 7(a) summarizes the lengths of the top three score repetitive 
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regions between Chr I and the other fifteen chromosome sequences of S. 

cerevisiae.  We can see that the lengths of the repetitive regions found between 

Chr I and Chr VIII are always larger than those found within Chr I alone.  In 

addition, the lengths of the repetitive regions found between Chr I and other 

chromosome sequences such as Chr II, Chr IV, Chr VII, Chr XII, Chr XIII and 

Chr XVI are significant too. 

 

Figure 7(b) shows the lengths of the top three score repetitive regions 

between Chr VIII and the other fifteen chromosome sequences of S. cerevisiae.  

Compared with Figure 7(a), the lengths of the repetitive regions found between 

Chr I and Chr VIII are always larger than those found within Chr VIII alone.  At 

the same time, the lengths of the repetitive regions found between Chr I and 

other chromosome sequences (with an exception of III, IX and XI) are 

noteworthy too.  The interesting point is that the lengths of the repetitive regions 

found between Chr I and Chr VIII are always larger than those found within Chr 

VIII alone or those found within Chr I alone.  Besides, the lengths of the 

repetitive regions found between Chr I and other chromosome sequences (except 

VIII), shown in Figure 7(a), and that between Chr VIII and other chromosome 

sequences (except I), shown in Figure 7(b), are nearly the same.  
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Figure 7(c) illustrates the lengths of the top three score repetitive regions 

between Chr III and the other fifteen chromosome sequences of S. cerevisiae.  In 

this case, we can see that the self-similarity inside Chr III is small, as compared 

with the cross-similarities between regions in other chromosome sequences.   

 

The same is true for Chr XI as shown in Figure 7(d).  In fact, similar 

observation is obtained from other chromosome sequences of S. cerevisiae.  This 

shows that besides self-similarity within the chromosome sequence itself, cross-

similarities with other chromosome sequences are often significant and should 

not be ignored.  These cross-similarities can be exploited which should be 

beneficial for compression applications.   
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Figure 7.  The lengths of the top three score repetitive regions between  

(a) Chr I, (b) Chr VIII, (c) Chr III and (d) Chr XI and the other fifteen chromosome 

sequences of S. cerevisiae. The first, second and third scores are illustrated by black, 

grey and light grey color bars respectively. The highlighted boxes indicate self-

chromosomal similarity. Y-axis denotes the length of the repetitive regions. 
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3.2 Analysis with Similar Sequences between Chromosomes 

In the previous section, we have shown that similarities among different 

chromosome sequences are often significant as compared with self-similarity.  To 

quantify the potential gain in cross-sequence compression, we need to find out 

whether any subsequence in the current sequence can be predicted from regions 

in another sequence.  If so, there will be gain if these two sequences are 

compressed together by reference to each other.  We termed this as cross-

sequence compression.  The length of these cross-reference subsequences 

determines the potential compression gains that would result by considering 

multiple DNA sequences in compression.  The longer the length is, the higher the 

potential compression gain will be.  In this section, we studied the length and the 

location of these similar subsequences. 

 

3.2.1 Length of Similar Sub-sequences 

Table 7 shows the total lengths of subsequences that can be predicted 

either from the current chromosome sequence or from other chromosome 

sequences.  Each column entry in the table represents the total lengths of 

subsequences in Chr a that can be predicted from certain regions in Chr b.  So 

the first entry for Chr I, “24807”, represents the total length of similar 

subsequences that can be found within Chr I.  In other words, a total of 24807 
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nucleotides can be predicted by reference to itself.  Similarly, the second entry 

“15253” represents the total lengths of similar subsequences in Chr I that can be 

predicted from Chr II.  In other words, a total of 15253 nucleotides in Chr I can 

be encoded with reference to similar subsequences in Chr II.  Furthermore, the 

first entry for Chr III “12411” is highlighted since that is greater than “11361” 

which is the total length of similar subsequences that can be found within itself. 
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Table 7.  Total lengths of subsequences in Chr a that can be predicted from certain regions in Chr b.  The bolded value represents self-similarity (i.e., self-
prediction) while the highlighted boxes represent those entries that have greater values than the self-predicted one. 

                      a 
 b                     

I III IV V VII VIII XI XII XIII XIV XV XVI 

Length of Chr a 230208 316617 1531918 576869 1090946 562643 666454 1078175 924429 784333 1091289 948062 

Class of Chr a 3 1 3 1 2 1 1 3 2 1 2 2 

I 24807 12411 31766 13354 23469 36809 8459 22818 18084 19422 33736 15894 

II 15253 17228 58017 35443 56365 22205 9926 36714 29897 40236 43754 40400 

III 9964 11361 29904 12292 26207 13925 15414 26790 11836 32780 22574 13006 

IV 16241 22604 82152 47444 55529 35110 12097 87680 41181 46787 70059 43633 

V 10988 11933 56508 25003 37456 20144 7095 42686 32899 37707 29723 26308 

VI 9634 12218 33910 16000 34056 23460 6975 30481 19089 30273 26885 22531 

VII 16149 14952 67605 39911 43212 26373 11571 79301 45231 35342 41149 67663 

VIII 50536 14030 48346 27718 29262 20263 19659 32142 24432 35704 25680 30953 

IX 7623 9438 19237 21098 27053 16160 12521 17685 16718 34194 32314 14307 

X 14274 20753 61192 37469 37470 28774 35014 41511 37283 41269 38576 34794 

XI 7467 17228 13789 8715 15015 19735 7169 12743 19559 11450 17025 8671 

XII 7623 17316 77913 37045 62116 29828 9765 84170 51846 41057 48221 40916 

XIII 13193 14127 46460 29155 44821 31372 21718 46768 37573 35588 46740 40699 

XIV 13049 28820 53655 39883 39941 27743 13460 55506 31969 22881 49117 24580 

XV 25981 16711 73035 35748 46149 24951 13033 64470 51032 51085 37964 55019 

XVI 10455 14598 55231 34973 66621 33132 9145 58181 43181 26549 58936 34648 
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The self-referencing values are bolded in Table 7.  All entries that have a 

greater number of nucleotides predicted from other chromosome sequences than 

the self-referencing value are highlighted.  Results can be grouped into three 

classes.  The first class, consisting of Chr III, Chr XI, Chr XIV, Chr VIII and Chr 

V, has high similarities with chromosome sequences other than itself.  We can see 

that more than half of chromosome sequences have larger cross-referencing 

values than the self-referencing value.  This implies that a potentially high 

compression gain can be obtained if these chromosome sequences employ a 

cross-referencing strategy with subsequences obtained from other chromosome 

sequences in addition to self-referencing. 

 

The second class consists of Chr XV, Chr XVI, Chr VII and Chr XIII.  

The numbers of highlighted entries for Chr XV, Chr XVI, Chr VII and Chr XIII 

are 8, 7, 6 and 5 respectively.  Although its numbers are not as high as that in the 

first class, a potential compression gain is also expected since the cross-

referencing values are still big.  As self-referencing is still considered in 

compression, an effective cross-referencing strategy should improve the overall 

compression ratio. 

 

The last class consists of Chr I, Chr XII and Chr IV.  The numbers of 
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highlighted entries for Chr I and Chr XII are 2 and 1 respectively.  There is no 

highlighted entry for Chr IV.  For Chr I, a total of 50536 nucleotides can be 

predicted from Chr VIII.  In contrast, only 24807 nucleotides can be self-

referenced within Chr I itself.  The number is almost doubled if a reference is 

made to Chr VIII.  This is consistent with the findings in Figure 7(a).  For Chr 

XII, a total of 87680 nucleotides can be predicted from Chr IV.  This is 

comparable to the self-referencing value which is 84170.  As the length of Chr 

XII is 1078175, these self- and cross-referencing numbers are indeed significant.  

For Chr IV, the self-similarity consists of 82152 nucleotides.  In contrast, the 

largest cross-similarity is 77913 with Chr XII.  While this is smaller than the 

self-referencing value, the combination of self-referencing and cross-referencing 

values should contribute to a better compression. 

 

3.2.1 Location of Similar Subsequences 

Besides considering the total length of subsequences that can be 

referenced from other chromosome sequences, the distribution of these repetitive 

regions within a chromosome sequence is also important.  Let the subsequence in 

a sequence S that is similar to a subsequence in sequence i be S(i) and the 

subsequence in S that is similar to a subsequence in sequence j be S(j).  The total 

length of subsequences within S that can be referenced from i and j is given by 
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T=|S(i)|+| S(j)|−|S(i)∩S(j)|.  Obviously if these subsequences are well spread out 

such that |S(i)∩S(j)| is zero, i.e., they do not overlap in position, T is maximized.  

This implies that a high proportion of the nucleotides within S can be predicted 

by cross-referencing among different chromosome sequences, which can result in 

a high compression gain. 

 

Figure 8 provides a detailed analysis on the locations of similar 

subsequences.  The similar subsequences are well spread out.  This shows the 

potential benefits of encoding multiple DNA sequences together.  In order to 

present the locations of similar subsequences clearly, we only considered those 

repeats with scores above 100.  Also, the illustration only shows the repeat 

lengths which are above 20.  Figure 8(a), 8(b) and 8(c) demonstrate the locations 

of similar subsequences for the first, the second and the third class respectively.  

For self-similarity, only the repetitive regions are marked.  Note that the symbol 

* next to the chromosome sequences represent those sequences without 

significant self-similar subsequence.   

 

In Figure 8(a), we can see that the portions of self-referencing regions in 

all the five chromosome sequences are very small, as compared with that of 

cross-referencing regions with other chromosome sequences.  In the case of Chr 
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XI, Chr XIV, Chr VIII and Chr V, we cannot even see the self-referencing 

subsequences in the figure.  Besides, similar subsequences predicted from other 

chromosome sequences contribute to different locations.  For example, the four 

similar subsequences found from Chr X, Chr XIII, Chr VIII and Chr II contribute 

to four different areas in Chr XI.  Similar observations can be seen from Figure 

8(b) about the second class.   

 

Figure 8(c) shows locations of similar subsequences for the third class.  

For Chr I, we can see that the portions of cross-referencing regions with either 

Chr VIII or Chr XV are much larger than that of self-referencing regions.  For 

Chr XII, the portions of cross-referencing regions with Chr XIII or Chr IV are 

comparable to that of self-referencing regions.  For Chr IV, the portions of cross-

referencing regions with Chr XII are comparable to that of self-referencing 

regions too. 

 

Figure 8 shows that the cross-referencing regions with other chromosome 

sequences are often significant when compared with self-referencing regions 

within itself.  Also, similar subsequences from different chromosome sequences 

contribute to different locations in the current sequence.  As a result, our study 

shows that it would be advantageous to compress different chromosome 
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sequences together to be beneficial from both self-chromosomal and cross-

chromosomal similarities. 
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(a) 
 

 

 
 

 

(b) 
 

 
 
 

(c) 
Figure 8.  Locations of similar subsequences for (a) the first class, (b) the second class and (c) the third class.  Self-similarity is shown in black color while 

cross-similarities with other chromosome sequences are in other colors.  The sequence number of the chromosome sequence is marked inside the colored 

region.  Only significant regions are presented and are drawn on scale with the chromosome sequence. 
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3.3 Analysis with Cross-chromosomal Predictions 

We considered two cases for cross-chromosomal prediction.  In the first 

case named prediction-2, the prediction is restricted to only two chromosome 

sequences including the current chromosome sequence.  In the second case 

named prediction-16, the prediction is from the current chromosome sequence 

and the other 15 chromosome sequences.  The self-prediction and cross-

predictions are examined to remove all those overlapping regions and are sorted 

to produce a combined list.  This combined list is then used to show all the 

repetitive regions including both self-chromosomal and cross-chromosomal 

repetitions.   

 

Table 8 shows the experimental results.  Column 2 and 3 give the class 

and the number of bases for a particular chromosome sequence denoted as Chr b 

respectively.  Chr a in Column 4 is the most similar chromosome sequence with 

Chr b in Column 1.  In Column 5, the sub-columns (a)(b) and (c)(d) provide the 

length of repetitive regions in cross-chromosomal prediction from Chr a (i.e. 

prediction-2) and from the other 15 chromosome sequences (i.e. prediction-16) 

respectively.  The sub-columns (a)(c) and (b)(d) refer to cross-chromosomal and 

self-chromosomal predictions respectively.   

 



- 49 - 

In prediction-2, the cross-predictions come from another chromosome 

sequence that gives the longest similar subsequences.  In Column 5(a) and (b), it 

is clear that the cross-predictions are always significant, as compared with the 

self-predictions.  In particular, the cross-predictions are in the range of 5% to 

22%.  In contrast, the self-predictions are always less than 3.5%.  In prediction-

16, the cross-predictions from the other 15 chromosome sequences are in the 

range of 12.5% to 32% as listed in Column 5(c), whereas the self-predictions are 

always less than 3%.  As a result, our study indicates that different chromosome 

sequences should be compressed together to take into account both self-similarity 

and cross-similarities.   

 

We consider two different ways of using GenCompress in compressing 

two chromosome sequences.  In the first way, these two chromosome sequences 

are compressed separately, i.e., only self-chromosomal similarities are 

considered.  In the second way, the two chromosome sequences are compressed 

together, i.e., both self-chromosomal and cross-chromosomal similarities are 

considered.  In Table 8, the total number of bits required for storing Chr a and 

Chr b without any compression is listed in Column 6(a).  For the first case that 

considers self-chromosomal similarities only, the total number of bits required by 

GenCompress is shown in Column 6(b).  In considering both self-chromosomal 
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and cross-chromosomal similarities, the total number of bits required is shown in 

Column 6(c). Column 7(a) shows the number of bits saved in self-chromosomal 

similarity case, it is obtained by calculating the difference between Column 6(a) 

and Column 6(b).  It is obvious that less number of bits is required for 

compressing Chr a and Chr b together than that for compressing them separately; 

but the time taken for the former case is more than double of the latter case.  

Column 7(b) shows the additional saving in bits from cross-chromosomal 

repetition which is obtained by comparing Column 6(b) and Column 6(c).  In 

other words, Column 7(a) is the savings resulting from self-chromosomal 

predictions as compared with the no compression case while Column 7(b) is the 

savings resulting from cross-chromosomal predictions as compared with no 

compression case.  Column 7(c) is the savings from cross-chromosomal 

predictions as compared with the self-chromosomal predictions.   

 

We can see that there is always extra savings by considering cross-

chromosomal predictions in addition to self-chromosomal predictions.  Since the 

cross-prediction found between Chr I and Chr VIII is the highest as shown in 

Column 5(a), the saving from cross-chromosome predictions is the largest.  

While the size of repetitive regions in cross-predictions ranged from 5% to 22%, 

their savings in bits are between 9% and 60%.   



- 51 - 

Table 8.  Lengths of cross-chromosomal and self-chromosomal repetitions and the number of bits required/saved in compressing two chromosome sequences 

1. 
Chr 

b 

2. 
Class  

of 
Chr 

b 

3. 
Length 

of Chr b  

4. 
Chr 

a 

5. Repetitive length in terms of the no. of bases (%) 6. Total no. of bits required for 
Chr a and Chr b 7. Total no. of bits saved (%) from 

Prediction-2 Prediction-16 

a. Cross- 
predictions 

b. Self- 
predictions 

c. Cross- 
predictions 

d. Self- 
predictions 

a.  
Without 

compression 

b. 
Compressing 

separately 

c. 
Compressing 

together 

a. Self- 
predictions 

b. Cross- 
predictions 

c. % 
improvement 

of  
(b) over (a) 

I 3 230208 VIII 50536 
(22.0%) 

5526 
(2.4%) 

74058 
(32.2%) 

4209 
(1.8%) 1585702 1499256 1447264 86446 

(5.8%) 
138438 
(9.6%) 

51992 
(60.1%) 

III 1 316617 XIV 28818  
(9.1%) 

6416 
(2.0%) 

54714 
(17.3%) 

4737 
(1.5%) 2201900 2112392 2096936 89508 

(4.2%) 
104964 
(5.0%) 

15456 
(17.3%) 

IV 3 1531918 XII 79909  
(5.2%) 

44897 
(2.9%) 

197093 
(12.9%) 

31532 
(2.1%) 5220186 4855360 4815592 364826 

(7.5%) 
404594 
(8.4%) 

39768 
(11.9%) 

V 1 576869 VII 39909  
(6.9%) 

6859 
(1.2%) 

94421 
(16.4%) 

4094 
(0.7%) 3335630 3177920 3149392 157710 

(5.0%) 
186238 
(5.9%) 

28528 
(18.1%) 

VII 2 1090946 XVI 66619  
(6.1%) 

17936 
(1.6%) 

156422 
(14.3%) 

5812 
(0.5%) 4078016 3881368 3841968 196648 

(5.1%) 
236048 
(6.1%) 

39400 
(20.0%) 

VIII 1 562643 I 36808  
(6.5%) 

15086 
(2.7%) 

104628 
(18.6%) 

6129 
(1.1%) 1585702 1499256 1447432 86446 

(5.8%) 
138270 
(9.6%) 

51824 
(59.9%) 

XI 1 666454 X 35013  
(5.3%) 

3930 
(0.6%) 

85186 
(12.8%) 

2655 
(0.4%) 2824398 2729104 2720464 95294 

(3.5%) 
103934 
(3.8%) 

8640   
(9.1%) 

XII 3 1078175 IV 87678  
(8.1%) 

36310 
(3.4%) 

164488 
(15.3%) 

27744 
(2.6%) 5220186 4855360 4816424 364826 

(7.5%) 
403762 
(8.4%) 

38936 
(10.7%) 

XIII 2 924429 XII 51845  
(5.6%) 

17079 
(1.9%) 

117607 
(12.7%) 

12670 
(1.4%) 4005208 3742920 3713616 262288 

(7.0%) 
291592 
(7.9%) 

29304 
(11.2%) 

XIV 1 784333 XV 51084  
(6.5%) 

8952 
(1.1%) 

122687 
(15.6%) 

6396 
(0.8%) 3751244 3604120 3566944 147124 

(4.1%) 
184300 
(5.2%) 

37176 
(25.3%) 

XV 2 1091289 IV 70056  
(6.5%) 

14168 
(1.3%) 

183165 
(16.8%) 

7434 
(0.7%) 5246414 4973664 4931832 272750 

(5.5%) 
314582 
(6.4%) 

41832 
(15.3%) 

XVI 2 948062 VII 67662  
(7.1%) 

8658 
(0.91%) 

145116 
(15.3%) 

4860 
(0.5%) 4078016 3881368 3845376 196648 

(5.1%) 
232640 
(6.0%) 

35992 
(18.3%) 

Average 55495  
(7.9%) 

15485 
(1.8%) 

124965 
(16.7%) 

9856 
(1.2%) 3594384 3401007 3366103 193376 

(5.7%) 
228280 
(6.8%) 

34904 
(23.0%) 
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We find that cross-chromosomal similarities are always significant as 

compared with self-chromosomal similarities.  For example, the average 

percentage of similar subsequences between two chromosome sequences is about 

10% in which 8% comes from cross-chromosomal prediction and 2% from self-

chromosomal prediction.  For the 16 chromosome sequences of S. cerevisiae, the 

average percentage is about 18% in which 16.8% comes from cross-

chromosomal prediction and 1.2% from self-chromosomal prediction.  Therefore, 

it would be advantages to compress different chromosome sequences together to 

take advantage of cross-chromosomal similarities.   

 

Our experimental results in Table 8 demonstrate that on average an 

additional 23% of storage is reduced in cross-chromosomal predictions as 

compared with self-chromosomal predictions.  Therefore, a high compression 

ratio could be obtained by considering both self-prediction and cross-predictions 

for the entire set of chromosome sequences.   

 

3.4 Chapter Summary 

In this chapter, a detailed study of the sixteen chromosome sequences of S. 

cerevisiae has been described.  Our study indicated that the length of similar 

repeated regions within one chromosome sequence is about 4.5% of the total 
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sequence length.  In contrast, the average percentage of similar subsequences 

between two chromosome sequences is about 10%, in which only 2% comes 

from the self-chromosome sequence.  In characterizing similarities of the sixteen 

chromosome sequences, the percentage of similar subsequences is about 18%, in 

which only 1.2% comes from the self-chromosome sequence, while the rest is 

from the other fifteen sequences.  This indicates that it would be highly 

advantageous to consider cross-chromosomal similarities in addition to self-

chromosomal similarities in DNA sequence compression.    



- 54 - 

4  Our proposed multiple sequence compression 

algorithm 

Cross-chromosomal similarities have found to be as important as self-

chromosomal similarity.  However, state-of-the-art compression algorithms work 

by finding self-similar subsequences within the current sequence only.  In 

particular, identical subsequences are encoded by reference to their previous 

occurrences to achieve compression.  These algorithms thus ignore the cross-

chromosomal similarities completely.  We proposed a multiple sequence 

compression algorithm that takes both the self-chromosomal and cross-

chromosomal similarities into account.  Identical subsequences within a number 

of sequences are identified and encoded together to achieve data compression.  

One may argue that more sequences would have to be sent if multiple sequence 

compression is considered.  In fact, researchers always download a complete set 

of chromosome sequences to study their characteristics.  Thus, multiple sequence 

compression can be used.   

 

This chapter is organized as follows.  First, an overview about the 

proposed compression method will be presented.  Second, two components of 

our proposed algorithm, namely the DNAComp coder and Arith-2 coder, are 
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discussed.  Finally, we will discuss the performance measures for our proposed 

algorithm.   

 

4.1 Overview 

Our proposed compression algorithm adopts a similar approach as 

DNACompress [3].  In particular, PatternHunter [27] is used for finding 

repetitive subsequences from a number of chromosome sequences.  A strategy is 

then developed to remove the overlapping regions in these repetitive 

subsequences.  Similar subsequences are then sorted according to their 

importance and encoded together.  Finally, Arith-2 coder is used to further 

minimize the size of the sequences.  In the following, the structure of the 

encoding and the decoding processes are briefly discussed.   

 

4.1.1 Encoding Processes 

The encoding process as shown 

in Figure 9 includes two encoders 

called DNAComp and Arith-2 encoders.  

Firstly, the original file containing the 

uncompressed chromosome sequence 

En
co

di
ng

 p
ro

ce
ss

es
 

DNAComp 
encoder 

Arith-2 
encoder 

Compressed file 
e.g. NC_001133.cmp 

Original file 
e.g. NC_001133.seq 

Figure 9.  The encoding processes. 
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(such as NC_001133.seq) is inputted into the DNAComp encoder.  An example 

of the input sequence “NC_001133.seq” is shown in Figure 10.  Secondly, the 

output of the DNAComp encoder is passed to Arith-2 encoder to make a 

compressed file.  The file size of the compressed file is expected to be smaller 

than that of the original file.  

 

 

 

 

4.1.2 Decoding Processes 

Figure 11 illustrates details of the decoding process which reverses the 

order of the encoding process in Figure 9.  After the compressed file is passed 

through the two decoders (Arith-2 and DNAComp decoders), the reconstructed 

Figure 10.  An example of a sequence called NC_001133.seq. 
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Compressed file 
e.g. NC_001133.cmp 

D
ec

od
in

g 
pr

oc
es

se
s Arith-2 

decoder  

DNAComp 
decoder 

 

Reconstructed file 
e.g. NC_001133de.seq 

Figure 11.  The decoding processes. 

file is formed.  Due to the use of 

lossless mechanism, it is expected that 

the reconstructed file in Figure 11 is 

exactly the same as the original file in 

Figure 9, i.e., NC_001133de.seq is the 

same as NC_001133.seq.  

 

4.2 DNAComp coder 

DNAComp coder is a core component of our proposed compression 

algorithm.  Its main function is to identify similar subsequences among a set of 

DNA sequences and then encodes these similar subsequences together to achieve 

bits savings.  The skeleton of the encoder and the decoder of DNAComp will be 

introduced below.  
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4.2.1 Encoder 

There are altogether five steps in the DNAComp encoder.  These steps are 

as follows, 

1. Extraction of similar subsequences within a DNA sequence or from a 

number of DNA sequences; 

2. Ordering of similar subsequences according to their importance; 

3. Removal of overlapping similar subsequences; 

4. Reordering of non-overlapping similar subsequences according to 

their position; and 

5. Preparation of final sequences for further compression using Arith-2 

coder. 

 

In the first step, similar subsequences among a number of chromosome 

sequences are extracted using PatternHunter.  Here similar subsequences mean 

either approximate repeats or approximate reverse repeats.  Also, similar 

subsequences can refer to those subsequences found from the current sequence or 

from any one of the other chromosome sequences.  For example, if there are two 

chromosome sequences, we will have results stored at two “aln” files:  

o “self.aln”: stores the self-similar subsequences; 

o “reference.aln”: stores the cross-similar subsequences found from 

another sequence. 
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In each aln file, information about similar subsequences including the 

scores, the direction, the starting and the ending positions of query and subject 

sequences is recorded.  An example record is shown in Figure 12.  The query and 

the subject sequences refer to the similar subsequences in the current sequence in 

the case of self-referencing (i.e., self.aln).  They refer to the reference sequence 

and the current sequence respectively in the case of cross-referencing (i.e., 

reference.aln).  The scores relate to the similarity between the query and the 

subject sequences. High score indicates that they are similar to each other.  The 

direction can be either ‘plus’ or ‘minus’.  The ‘plus’ direction means an 

approximate repeat, so the sequence should be read in ascending order. The 

‘minus’ direction means a reverse complement repeat, hence the sequence should 

be read in reverse direction.  The starting and ending position of the subsequence 

marks its location in the original sequence.  A list is created for storing 

information about repetitive records with score over a threshold.  The threshold is 

set so that only significant similar subsequences are considered by our proposed 

compression algorithm.   
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Figure 12.  An example record of NC_001133.aln. 

 

In the third step, each repetitive record in the combined list from the 

second step is examined.  In particular, overlapping similar subsequences from 

two records are trimmed.  If the subject sequences in two repetitive records are 

overlapped with each other in position, the overlapping part will be kept in the 

record with a higher score and be removed in the other record with a lower score.  

The rationale behind is to keep a long repetitive length rather than a short one.  If 

the length of the trimmed repetitive record is less than the threshold after 

removing the overlapping part, the repetitive record will be removed from the list. 



- 61 - 

After removing all the overlapping parts in the similar subsequences, 

DNAComp saves the differences between the two similar subsequences.  This 

step is essential as approximate repeats, rather than exact repeats, are considered 

in DNAComp.  Thus, operations such as deletion, insertion and substitution 

might be required to match the two subsequences (see Section 2.1.1 for details).   

 

Each repetitive record contains two lists, namely an offset list and a base 

list, for storing information about the operations.  The offset list essentially 

marks the relative positions at where the bases are different in the two similar 

subsequences.  Besides, the symbol ‘0’ in the offset list is used to indicate an 

insertion operation.  The base list stores the replacement base for a substitution 

operation and the inserted base for an insertion operation.  The symbol “-” in the 

base list is used to indicate a deletion operation.  It is not necessary to store the 

bases which are deleted in the query sequence, but the relative position must be 

stored in the offset list.  

 

 

 

Consider a simple example shown above. The query subsequence from 

the 10th base to the 34th base and the subject subsequence from the 40th base to 
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the 65th base are found to be an approximate repeat.  This example includes all 

the operations - substitution, deletion and insertion.   

 

 

 

For example, the base “C” in the fifth position of the query subsequence 

is replaced by “A” in the corresponding position of the subject subsequence.  

There are two more bases added in the subject subsequence in between the 

twelve and the thirteen bases of the query subsequence.  The twenty-sixth base 

“A” in the query subsequence is deleted in matching to the subject subsequence. 

 

 

 

Initially, the base list and the offset list are empty.  In matching the query 

and the subject subsequences, the first operation is substitution where the base 

‘C’ is replaced by the base ‘A’ in the 5th position.  So ‘5’ is added to the offset list 

for indicating the location of the change and ‘A’ is stored in the base list, i.e., 

Offset list = {5} 

Base list = {A} 

 

 

 

12345 



- 63 - 

 

 

 

As relative positioning is used, the 5th position of the query subsequence 

is reset so the next position becomes the 1st position now.  The second 

substitution operation is at the 4th  position, so ‘4’ is added to the offset list and 

‘C’ is stored in the base list, i.e., 

Offset list = {5, 4} 

Base list = {A, C} 

 

 

 

 

Similarly, the third operation is substitution, so the new lists become, 

Offset list = {5, 4, 1} 

Base list = {A, C, T} 

 

 

 

 

The fourth operation is an insertion.  The symbol ‘0’ is first inserted to the 

offset list to indicate that a base will be inserted in the subject subsequence.  The 

1234 

1 

12 
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added base is ‘T’ which is to be added at the 2nd position, so ‘2’ is added to the 

offset list and ‘T’ is stored in the base list.  Thus, the new lists become, 

Offset list = {5, 4, 1, 0, 2} 

Base list = {A, C, T, T} 

 

 

 

 

The next operation is in insertion where the base to be added is ‘C’ just 

next to the previous operation.  Hence the two lists are, 

Offset list = {5, 4, 1, 0, 2, 0, 1} 

Base list = {A, C, T, T, C} 

 

 

 

 

The next operation is a substitution, where the base ‘C’ is replaced by ‘T’, 

i.e., 

Offset list = {5, 4, 1, 0, 2, 0, 1, 1} 

Base list = {A, C, T, T, C, T} 

 

 

 

1 

1 
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Deletion is then required in matching the two subsequences.  In particular, 

the base ‘A’ is deleted from the query sequence.  ‘5’ is added to the offset list 

since this is the 5th position after the previous operation, and the symbol ‘-’ is 

stored in the base list to indicate a deletion.  Hence we have,  

Offset list = {5, 4, 1, 0, 2, 0, 1, 1, 5} 

Base list = {A, C, T, T, C, T, - } 

 

 

 

The final operation is a substitution where the base ‘C’ is based by ‘A’, 

i.e., 

Offset list = {5, 4, 1, 0, 2, 0, 1, 1, 5, 6} 

Base list = {A, C, T, T, C, T, -, A} 

 

 

 

Since the end positions of both query subsequence and subject 

subsequence are not marked, it is important to include the offset from the final 

operation to the end of the subsequence.  The resultant offset list and base list are,  

Offset list 5 4 1 0 2 0 1 1 5 6 2 
Base list A C T T C T - A    

 

12345 

123456 

12 
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Afterwards, the non-overlapping repetitive records are sorted according to 

their starting positions.  Therefore, redundancy can be removed sequentially from 

one end of the sequence to the other end.  Finally, similar subsequences are 

removed from the sequence to form another sequence that contains non-repetitive 

subsequences only.  This non-repetitive sequence will be sent to Arith-2 for 

further compression.  Besides the non-repetitive sequence, Arith-2 will also be 

used to encode the offset and the base lists, the starting positions and the 

direction of the query and the subject sequences.  

 

4.2.2 Decoder 

Basically, DNAComp decoder reverses the operations done in the encoder.  

However, the structure of the decoder is much simpler than the DNAComp 

encoder.  In particular, there is no need to identify similar subsequences among a 

number of chromosome sequences.  Also, no overlapping detection or sorting is 

required to be performed in the decoder.   

 

First, the Arith-2 decoder will send out a sequence containing non-

repetitive records only.  Similar subsequences are then needed to be added back 

to the non-repetitive sequence sequentially.  In the encoder, operations such as 

deletion, insertion and substitution to match two subsequences have been 
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recorded.  Thus, this information is used to construct the similar subsequences 

which are then added back to the non-repetitive sequence.  Note that the addition 

of the similar subsequences is done sequentially according to their starting 

positions.  The original sequence should be reconstructed losslessly after all the 

repetitive records have been added. 

  

4.3 Arith-2 coder  

Arith-2 stands for two-order arithmetic coder or second order finite-

context arithmetic coder.  It is used to further compress the shortened non-

repetitive sequence and the related information.  Arithmetic coding [44-47] 

replaces a stream of symbols with a single floating-point output number, which is 

less than 1 and greater than or equal to 0.  It is a lossless compression scheme so 

that the original stream of symbols can be uniquely reconstructed.  Initially, the 

probability of each symbol is assigned.  The output number, represented by a 

sub-interval of the cumulative probability of the symbol sequence, is formed by 

recursively sub-dividing the interval between 0 and 1.  Arith-2 is always involved 

in DNA-based compression, such as Biocompress-2 and GenCompress, because 

it can compress DNA sequence efficiently.  The compression gain is higher when 

the current base and the base that are two bases apart from the current base are 

the same.  Indeed, order-2 means the context to be used are the last two symbols. 
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This seems to correspond to the codons structure of amino-acid in a protein [2, 

26].  An adaptive arithmetic coder is used so that the occurrence probabilities of 

A, C, G and T in a sequence can be calculated and updated inside the coder.  The 

source code and document of the arithmetic coder utilized is available from [36-

39]. 
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4.4 Performance Measurement 

Due to the use of a lossless compression scheme, there is no difference 

between the original and the reconstructed DNA sequences.  The performance of 

our proposed compression algorithm is measured by the execution time, bits per 

base (bpb) used and compression gain. 

 

The execution time is counted by adding a timer at the beginning of the 

encoding process and the end of the decoding process as shown in Figure 13.  

The value of bpb can be calculated by |O|/|I| where |O| is the number of bits for 

the compressed file and |I| is the number of bases of the original sequence.  The 

compression gain is obtained by 1-|O|/2|I| as two bits are required for each base 

without compression. 

 

4.5 Chapter Summary 

In this chapter, a new multiple sequence compression algorithm has been 

proposed to take into account both self-sequence and cross-sequence similarities.  

Our proposed algorithm contains the following steps: 1) to search for all the 

similar subsequences among a number of sequences that are to be compressed 

together; 2) to identify and remove the overlapping subsequences; 3) to form two 

lists containing operations and the relative positions that are required in matching 
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two similar subsequences; 4) to identify the non-repetitive sequences; and 5) to 

use an Arith-2 coder to compress the non-repeating sequences, the offset and the 

base lists, the starting positions and the direction of the query and the subject 

sequences.  Then the decoder and the principle of Arith-2 coder have been 

introduced briefly.  Finally, the performance measures for our proposed 

algorithm, including the execution time, bpb used and compression gain have 

been discussed   

 

 

 



- 71 - 

5  Simulation Results  

To evaluate the effectiveness of our proposed algorithm, two real datasets 

are considered.  They are the sixteen chromosome sequences of S. cerevisiae and 

the three chromosome sequences of S. pombe.  The average length of S. 

cerevisiae and S. pombe are 800k and 4200k respectively.  Therefore, we can 

study the performance of our proposed algorithm on cases where there is a large 

number of chromosome sequences and where there is large variation of average 

chromosome length.  We first present the results on single sequence compression, 

which is followed by multiple sequence compression. 

 

5.1 Simulation Results on S. cerevisiae 

In this experiment, we consider compressing the sixteen chromosome 

sequences of Saccharomyces cerevisiae (S. cerevisiae).  These sequences can be 

downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/.  The average length of S. 

cerevisiae is 800k.   

 

5.1.1 Single sequence compression 

Table 9 shows the resultant bits per base (bpb) used of our proposed 

compression algorithm in compressing each chromosome sequence separately.  A 

comparative study with gzip [40], Arith [36-39], CTW [7], and GenComp [4-6] is 
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also performed.  Column 1 in Table 9 shows the current chromosome sequence to 

be compressed.  Column 2 specifies the number of bases in the chromosome 

sequence.  Column 3 specifies the bpb for gzip.  Without any compression, 2 bpb 

is required.  Thus, the average bpb of 2.32 achieved by gzip is not satisfactory.  It 

cannot compress, but expand, the size of the sequence.  In fact, the result is 

expected as gzip is a general purpose compression scheme and does not design to 

capture characteristics in a DNA sequence.  

 

 Column 4 of Table 9 shows the bpb for Arith.  The average bpb is slightly 

less than 2.  Note that for cases like Chr I and Chr III, Arith uses more than 2 bpb.  

Column 5 shows the results for CTW.  Its performance is rather stable as the bpb 

for all the chromosome sequences are between 1.94 and 1.95.  Column 6 shows 

the bpb for the GenCompress.  Its performance is the best as the average bpb is 

1.91 only.  Column 7 shows the bpb for our proposed algorithm.  It is slightly 

higher than that for the GenCompress.   
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Besides the compressibility indicated by bpb, another important 

consideration is the execution time.  As DNA is a long sequence, finding 

repetitive subsequences is often time-consuming.  Table 10 shows the execution 

time used by various compression algorithms.  We can see that on average, the 

execution times of gzip and Arith are very short.  They use less than 1 second to 

compress the long DNA sequences.  In contrast, GenCompress has the longest 

executive time.  It spends long time in searching for repetitive records, especially 

for long sequences such as Chr III, Chr IV, Chr VII and Chr XV.  We can see 

that the time increases non-linearly for sequences with an average length more 

than 800k.  Our proposed algorithm uses about 4 seconds, which compares 

Figure 14.  The relationship between the length and the execution time of the sixteen 

chromosomes in S. cerevisiae.  The performance of CTW, GenCompress and the 

proposed algorithm are repseneted by the line with rhombus, square and triangle 

respectively.  X-axis marks the length of the chromosome sequences while y-axis 

marks the execution time in seconds(s).   
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favorably with GenComp and CTW.  Figure 14 shows the relationship between 

the length and the execution time of the sixteen chromosome sequences in S. 

cerevisiae.  The line with rhombus, square and triangle represent the 

performance of CTW, GenComp and the proposed algorithm respectively.  In 

general, the execution time increases exponentially with the length of the 

sequences for GenComp.  However, for both CTW and our proposed algorithm, 

the execution time increases linearly with the length of the sequences.  There is 

one exception case for GenComp, the execution time is about 550s for Chr III 

which contains about 300K bases.  Although Chr III is not a long sequence, 

GenComp takes over ten hours to search for similar sequences since less similar 

sequences can be found within Chr III (see Figure 6b).   
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 Table 9.  The bpb (bits pre base) of compressing the 16 chromosome sequences in S. 
cerevisiae. 

cur  Length gzip Arith CTW GenComp proposed 
I  230208 2.30  2.02  1.95  1.83  1.88  
II 813178 2.33  1.98  1.94  1.93  -- -- 
III 316617 2.33  2.00  1.94  1.91  1.94  
IV 1531918 2.31  1.97  1.94  1.88  1.90  
V 576869 2.33  1.99  1.95  1.91  1.93  
VI 270148 2.34  2.01  1.95  1.95  -- -- 
VII 1090946 2.33  1.97  1.94  1.91  1.92  
VIII 562643 2.32  1.99  1.95  1.91  1.94  
IX 439885 2.32  1.99  1.95  1.93  -- -- 
X 745745 2.32  1.98  1.95  1.93  -- -- 
XI 666454 2.33  1.98  1.94  1.94  1.96  
XII 1078175 2.27  1.98  1.94  1.84  1.86  
XIII 924429 2.31  1.98  1.94  1.91  1.93  
XIV 784333 2.33  1.98  1.95  1.92  1.94  
XV 1091289 2.33  1.97  1.95  1.92  1.94  
XVI 948062 2.33  1.97  1.94  1.90  1.92  

average 2.32  1.98  1.95  1.91  1.92  

Table 10.  The execution time (seconds) of compressing 16 chromosome sequences in 
S. cerevisiae. 

cur Length gzip Arith CTW GenComp proposed 
I  230208 0.07  0.15  4.90  26.67  2.05  
II 813178 0.24  0.37  16.45  115.68  -- -- 
III 316617 0.09  0.17  6.69  544.27  1.25  
IV 1531918 0.45  0.64  30.75  390.70  9.89  
V 576869 0.17  0.27  11.78  54.72  2.46  
VI 270148 0.08  0.15  5.57  42.48  -- -- 
VII 1090946 0.31  0.48  22.00  200.93  5.78  
VIII 562643 0.16  0.27  11.57  54.35  2.34  
IX 439885 0.13  0.22  9.12  106.53  -- -- 
X 745745 0.24  0.34  15.12  89.59  -- -- 
XI 666454 0.19  0.31  13.56  77.88  1.87  
XII 1078175 0.31  0.47  21.77  179.18  6.08  
XIII 924429 0.27  0.41  18.66  138.80  3.93  
XIV 784333 0.23  0.35  16.01  118.27  2.34  
XV 1091289 0.31  0.47  22.11  193.48  5.14  
XVI 948062 0.27  0.42  19.11  144.46  4.24  

average 0.22  0.34  15.32  154.87  3.95  
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In summary, our proposed algorithm maintains a good balance in 

compressibility and execution time.  Despite that, single-sequence compression 

considers only self-repetition.  Although GenComp has the best result of 1.91, it 

achieves a saving of 0.09 only as compared with the no-compression case.  In the 

next section, cross-sequence repetition is considered in a hope to reduce the bpb. 

 

5.1.2 Two-sequence compression 

Since the academic version of PatternHunter does not work properly for 

Chr II, Chr VI, Chr IX and Chr X, the remaining twelve chromosome sequences 

of S. cerevisiae are considered in this part.  The first case we considered is the 

potential advantage of compressing one chromosome sequence if one more 

chromosome sequence is given.  Table 11 shows the experimental results of 

compressing a sequence by reference to its most similar sequence obtained from 

Table 8.   

 

Column 1 of Table 11 shows the chromosome sequence to be compressed 

(denoted as “cur”) while Column 2 shows the reference sequence (denoted as 

“ref”).  In other words, “cur” is compressed by considering both self-repetition 

and cross-sequences repetition with “ref”.  Column 3 shows the number of bases 

in “cur”.  Column 4 is the bpb used for single-sequence compression, thus, it 
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considers self-repetition only.  Column 5 is the bpb used for two-sequence 

compression in which similar subsequences from the “cur” and the “ref” are 

considered.  The sixth and the last column list the additional saving in bpb and 

the saving percentage (%) respectively.  For Chr I, the bpb of compressing itself 

alone is 1.8838 while that of compressing Chr I with reference to itself and Chr 

VIII is 1.4656.  Hence, the saving is around 0.42 bpb (i.e., 22%).  In the second 

row, the bpb of compressing Chr III with reference to itself and Chr XIV is 

1.7853 while that of compressing itself alone is 1.9430, so the saved bpb is 

around 0.16 and saving percentage is around 8.1%.   

 

For each chromosome sequence shown in Table 11, we can see that the 

bpb is always lower when the current sequence is compressed by considering the 

reference sequence in addition to itself.  In fact, the additional savings depend on 

the similarity between the current and the reference chromosome sequences.  An 

interesting observation is that the additional savings for the long sequences such 

as Chr IV, Chr VII, Chr XII and Chr XV are not too high as compared with that 

for the short sequences. Further investigation on the biological significance is 

required.   
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Table 11.  The experimental results of compressing a sequence in S. cerevisiae 
provided with a reference sequence. 

cur ref Length 

Without 
given ref 
sequence 

(bpb) 

With 
given ref 
sequence 

(bpb) 

Additional 
saving 
(bpb) 

Additiona
l saving 

(%) 

I  VIII 230208 1.8838  1.4656  0.4182  22.2% 

III XIV 316617 1.9430  1.7853  0.1577  8.1% 

IV XII 1531918 1.8964  1.8473  0.0491  2.6% 

V IV 576869 1.9286  1.8312  0.0974  5.0% 

VII XV 1090946 1.9244  1.8649  0.0595  3.1% 

VIII I 562643 1.9397  1.7686  0.1711  8.8% 

XI XIII 666454 1.9614  1.9135  0.0479  2.4% 

XII IV 1078175 1.8557  1.7859  0.0698  3.8% 

XIII XII 924429 1.9270  1.8550  0.0720  3.7% 

XIV XV 784333 1.9402  1.8526  0.0876  4.5% 

XV IV 1091289 1.9378  1.8666  0.0712  3.7% 

XVI VII 948062 1.9204  1.8519  0.0685  3.6% 

average 1.9215 1.8074 0.1142 5.9% 
 

In the last row of Table 11, the average bpb of compressing a sequence 

alone is 0.11 bpb larger than that of compressing a sequence with reference to 

another sequence.  Thus, from 1.92 to 1.81, an additional 5.9% savings in bpb 

can be achieved.  

 

Figure 15 shows the distribution of self-similarity and cross-similarities 

for various chromosome sequences in S. cerevisiae.  The dark grey color bar 

displays the proportion of similar repetitive subsequence found from the 

sequence itself while the light grey color bar shows the proportion of similar 

repetitive subsequence found from the reference sequence where the reference 
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sequence is defined as the most similar sequence as shown in Column 2 of Table 

11.  For example, in Chr I, the self-similarity is about 18% when the cross-

similarity is about 82%.  We can see the repetition found from reference 

sequence is always more than 60% of the whole repetitive part.   

 

 
 

 

 

 

There are four steps in compressing two sequences, namely finding self-

repetitions, finding cross-repetitions, performing compression in DNAComp 

encoder and further compression by Arith-2 encoder.  Table 12a and Table 12b 

list the execution times (in second) for each individual steps in compressing 2 

sequences together in S. cerevisiae.  In Table 12a, Column 3 and Column 4 

represent the time required for finding repetitions in self sequence and reference 

Figure 15.  The percentage of self-sequence and corss-sequence similarities in S. 

cerevisiae.  The dark grey and the light grey color bars indicate the proportion of the 

self-similarity and the cross-similarities respectively.   
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sequence respectively.  The time required for the DNAComp encoder and Arith-

2 encoder are shown in Column 5 and Column 6 respectively.  The total 

encoding time, which is the sum of the time required for each of the four steps, is 

listed in the last column of Table 12a.  The average encoding time is 8.82 

seconds.  In Table 12b, the time required for encoding and the decoding are 

shown in Column 4 and Column 5 respectively.  The total execution time is 

listed in Column 6. The average encoding time is 2s more than the decoding time 

due to the need to find repetitive sequences. 

 

Next, we consider the compression results in compressing two 

chromosome sequences together.  In other words, both current and reference 

sequences are compressed by cross-referencing.  Table 13 lists the results for S. 

cerevisiae.  Column 1 lists the two chromosome sequences in a group which will 

be compressed together. Column 2 shows the total number of bases of a 

particular chromosome sequence denoted as Chr.  Column 3 and Column 4 list 

the number of bases of non-repetitive sequence and the bpb, respectively, when 

compressing the two chromosome sequences separately.  Thus, 1.8838 bpb and 

1.9387 bpb are required respectively for compressing Chr I and Chr VIII alone 

and the average bpb is 1.9236.  Column 5, Column 6 and Column 7 show 

respectively the number of bases of non-repetitive sequence, bpb and execution 
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time in seconds when the two chromosome sequences are compressed together.  

Thus, 1.8020 bpb is required if Chr I and Chr VIII are compressed together.  It 

takes only 7.5 seconds to compress Chr I and Chr VIII together.  

Table 12a.  The encoding time(sec) of compressing 2 sequences together in S. 
cerevisiae. 

cur ref Self-
repetitions 

Cross-
repetitions DNAComp Arith-2 

Total 
Encoding 

Time 
I VIII 0.86  1.34  1.98  0.15  4.33  

III XIV 1.11  1.66  2.02  0.15  4.94  
IV XII 3.52  3.77  9.33  0.19  16.80  
V IV 1.33  3.42  4.05  0.15  8.95  

VII XV 2.31  2.97  5.95  0.17  11.40  
VIII I 1.11  1.22  2.09  0.15  4.57  
XI XIII 1.33  2.12  2.16  0.16  5.77  
XII IV 2.20  3.92  8.32  0.17  14.61  
XIII XII 1.78  2.86  5.02  0.16  9.83  
XIV XV 1.34  2.22  3.34  0.15  7.05  
XV IV 2.09  1.78  3.48  0.17  7.52  
XVI VII 1.81  3.08  5.05  0.16  10.10  

average  1.73  2.53  4.40  0.16  8.82  

 

Table 12b.  The execution time(sec) including encoding and decoding time of 
compressing 2 sequences together in S. cerevisiae. 

cur ref Length Encoding 
Time 

Decoding 
Time 

Total 
Time  

I VIII 230208  4.33  3.18  7.50  
III XIV 316617  4.94  6.73  11.67  
IV XII 1531918  16.80  10.38  27.18  
V IV 576869  8.95  4.10  13.05  

VII XV 1090946  11.40  14.28  25.68  
VIII I 562643  4.57  3.16  7.73  
XI XIII 666454  5.77  5.68  11.45  
XII IV 1078175  14.61  6.01  20.62  
XIII XII 924429  9.83  7.01  16.84  
XIV XV 784333  7.05  7.01  14.06  
XV IV 1091289  7.52  9.06  16.57  
XVI VII 948062  10.10  5.49  15.59  

average  8.82  6.84  15.66  
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Table 13.  The experimental results of compressing 2 sequences in S. cerevisiae together. 

Chr Total no. of 
bases 

Compressing separately Compressed together 

The no. of bases of 
non-repetitive sequence bpb 

The no. of bases of 
non-repetitive 

sequence 
bpb Time(s) 

I 230208 205382 1.8838 
716107 1.8020 7.5 VIII 562643 542351 1.9387 

 Total: 792851 Total: 747733 Average: 1.9236 
III 316617 305230 1.9430 

1042785 1.8957 11.7 XIV 784333 761426 1.9402 
 Total: 1100950  Total: 1066656  Average: 1.9410 

IV 1531918 1449733 1.8964 
2403013 1.8508 27.2 XII 1078175 993958 1.8557 

 Total: 2610093  Total: 2443691  Average: 1.8798 
V 576869 551827 1.9286 

1973051 1.8786 13.1 IV 1531918 1449733 1.8964 
 Total: 2108787  Total: 2001560  Average: 1.9053 

VII 1090946 1047675 1.9244 
1919695 1.8907 25.7 XV 1091289 913386 1.9378 

 Total: 2182235  Total: 1961061  Average: 1.9306 
VIII 562643 542351 1.9387 

716107 1.8020 7.8 I 230208 205382 1.8838 
 Total: 792851  Total: 747733  Average: 1.9236 
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Chr Total no. of 
bases 

Compressing separately Compressed together 
The no. of bases of 

non-repetitive sequence bpb The no. of bases of non-
repetitive sequence bpb Time(s) 

XI 666454 659274 1.9614 
1527006 1.9214 11.5 XIII 924429 886815 1.9270 

 Total: 1590883  Total: 1546089  Average: 1.9417 
XII 1078175 993958 1.8557 

2403013 1.8508 20.6 IV 1531918 1449733 1.8964 
 Total: 2610093  Total: 2443691  Average: 1.8798 

XIII 924429 886815 1.9270 
1849416 1.8554 16.8 XII 1078175 993958 1.8557 

 Total: 2002604  Total: 1880773  Average: 1.8893 
XIV 784333 761426 1.9402 

1777731 1.9022 14.1 XV 1091289 1053289 1.9204 
 Total: 1875622  Total: 1814715  Average: 1.9287 

XV 1091289 1053289 1.9378 
1346647 1.8840 16.6 IV 1531918 305230 1.8964 

 Total: 2623207  Total: 1358519  Average: 1.9285 
XVI 948062 913386 1.9204 

1919379 1.8907 15.6 VII 1090946 1047675 1.9244 
 Total: 2039008  Total: 1961061  Average: 1.9225 

average 1860765 1664440 1.9162 1632937 1.8687 15.7 
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For all the cases shown in Table 13, it is always beneficial to compress 

two sequences together.  In the last row of Table 13, an average of 1.8687 bpb is 

achieved if two chromosome sequences are compressed together. It is smaller 

than that of 1.9162 bpb of separately compression case.  The average number of 

bases of non-repetitive sequence in the separately compression case is about 

1.66x106.  However, it is about 1.63 x106 when the two sequences are 

compressed together.  Thus there is a reduction of about 32k bases.  By 

comparing the average bpb of compressing two chromosome sequences 

separately in the Column 4 with that of compressing those sequences together, 

the performance of the compression together case is consistently better than that 

of compressing separately case.  Moreover, the execution time is only 15.7s on 

average for the twelve chromosome sequences with an average of 800k bases.  

The execution time of more than 10s is for the case when the total lengths in the 

two most similar chromosome sequences have more than 1800k bases.  Thus the 

reduction in bpb does not result in a significantly long execution time. 

 

5.1.3 Multiple sequence compression 

From Table 13, we can see the bpb of compressing two chromosome 

sequences together is consistently better than that of compressing them 

separately.  The case of compressing a number of chromosome sequences 
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together is considered.  Table 14 shows the experimental results.  Column 1 

indicates the number of chromosome sequences that are compressed together 

while Column 2 shows the respective chromosome sequence.  Column 3 lists the 

total number of bases of the particular chromosome sequence.  Column 4 and 

Column 5 indicate the number of non-repetitive bases and the bpb used 

respectively if each of the chromosome sequence is compressed separately.  

Column 6 and Column 7 show respectively the number of non-repetitive bases 

and the bpb if those sequences are compressed together.  Column 8 and Column 

9 list respectively the additional savings and the execution time in seconds.  We 

can see that the bpb of compressing various chromosome sequences always is 

smaller than that of compressing them separately.  On average, there is an 

additional 4.5% savings in bpb.  The execution time is around 37 seconds.  Thus, 

the savings can be achieved without significantly increasing the execution time. 

 

The grouping strategy for choosing the chromosomes sequences that are 

to be compressed together are as follows.  In the first step, we choose a similar 

chromosome sequences pair from Table 13.  In the second step, we find another 

similar chromosomes sequences pair where one of them is the already selected 

chromosome sequence in the first step.  For example, the pair consisting Chr IV 

and Chr XII is selected first in Table 13.  To include more chromosome 
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sequences, we search chromosome sequences that are similar to either Chr IV or 

Chr XII.  As a result, Chr V and Chr XV are founded.  To include more 

chromosome sequences in a group, the second step can be repeated.  
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Table 14.  The experimental results of compressing 3 to 6 chromosome sequences in S. cerevisiae together. 

 

Chr Total no. of 
bases 

Compressing separately Compressed together 
The no. of bases 
of non-repetitive 

sequence 
bpb 

The no. of bases 
of non-repetitive 

sequence 
bpb Additional 

Saving (%) Time(s) 

3 

IV 1531918 1449733 1.8964 

2926331 1.8378 4.40% 27.9 
V 576869 551827 1.9286 

XII 1078175 993958 1.8557 
 Total: 3186962 Total: 2995518  Average: 1.8885 

3 

IV 1531918 1449733 1.8964 

3444430 1.8361 4.75% 32.4 
XII 1078175 993958 1.8557 

XV 1091289 1053289 1.9378 

 Total: 3701382 Total: 3496980  Average: 1.8967  

4 

IV 1531918 1449733 1.8964 

3967748 1.8450 4.16% 38.3 
V 576869 551827 1.9286 

XII 1078175 993958 1.8557 

XV 1091289 1053289 1.9378 

 Total: 4278251 Total: 4048807  Average: 1.9010  

4 

IV 1531918 1449733 1.8964 

4168872 1.8556 3.59% 37.4 
XII 1078175 993958 1.8557 

XIV 784333 761426 1.9402 

XV 1091289 1053289 1.9378 

 Total: 4485715  Total: 4258406  Average: 1.9044  
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5 

III 316617 305230 1.9430 

4450231 1.8415 4.72% 40.5 

IV 1531918 1449733 1.8964 

XII 1078175 993958 1.8557 

XIV 784333 761426 1.9402 

XV 1091289 1053289 1.9378 

 Total: 4802332  Total: 4563636  Average: 1.9069  

5 

III 316617 305230 1.9430 

4020269 1.8464 5.34% 34.6 

IV 1531918 1449733 1.8964 

V 576869 551827 1.9286 

XIV 784333 761426 1.9402 

XV 1091289 1053289 1.9378 

 Total: 4301026 Total: 4121505  Average: 1.9226  

6 

III 316617 305230 1.9430 

4973549 1.8398 4.79% 46.4 

IV 1531918 1449733 1.8964 

V 576869 551827 1.9286 

XII 1078175 993958 1.8557 

XIV 784333 761426 1.9402 

XV 1091289 1053289 1.9378 
 Total: 5379201  Total: 5115463  Average: 1.9092  

average 4304981  4085759 1.9113 3993061 1.8432 4.5% 36.8 
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5.2  Simulation Results on S. pombe 

In this experiment, we consider testing our proposed algorithm on another 

real dataset.  The three chromosome sequences of Schizosaccharomyces pombe 

(S. pombe) are tested.  S. pombe is a species of yeast.  It is often used as a model 

organism in molecular and cell biology.  These sequences can be downloaded 

from ftp://ftp.ncbi.nlm.nih.gov/genomes/.   Note that the average length of S. 

pombe is 4200k, which is significantly longer than that of S. cerevisiae.  Thus, 

the long length would increase the compression time considerably as it would 

take much longer time to search for the repetitive records in the sequences. 

 

5.2.1 Single sequence compression 

Table 15 lists the bits per bases (bpb) of the three chromosome sequences 

of S. pombe.  Column 1 and Column 2 denote the chromosome sequence and its 

length respectively.  Column 3, Column 4, Column 5 and Column 6 show 

respectively the bpb for the gzip, Arith, CTW, and our proposed algorithm.  

Similar to the case of S. cerevisiae, gzip uses an average of 2.3 bpb that expands 

the sequences.  The Arith and CTW have stable performances which use 1.95 

and 1.93 bpb respectively for all the three chromosome sequences.  Our proposed 

algorithm uses an average of 1.90 bpb which is the lowest among the four 

algorithms.  Note that the execution time of GenCompress is over 10 hours.  
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Since it is not practical to compress and decompress a file over 1 hour, the 

experiment for GenCompress is terminated manually.   

 

To sum up, the proposed scheme performs comparably with other DNA 

oriented compression schemes.  In single sequence compression case, only self-

repetition is considered.  From the results, we can see that if only long-term 

correlation in the current sequence is considered, the compression gain is not 

high.  From 2 to 1.9 bpb, the compression gain is only about 5%.  Therefore, an 

effective way for characterizing DNA sequences is much desirable to achieve 

further savings.  

 

Table 15.  The bpb (bits pre base) of compressing the 3 chromosome sequences in S. 
pombe. 

cur  Length gzip Arith CTW proposed 
I  5570797 2.31  1.95  1.93  1.92 
II 4468099 2.32  1.95  1.93  1.91 
III 2456786 2.28  1.95  1.93  1.89  

average 2.30  1.95  1.93  1.90  
 

Table 16.  The execution time (seconds) of compressing the 3 chromosome sequences 
in S. pombe. 

cur Length gzip Arith CTW proposed 
I  5570797 1.61  2.36  115.99  53.16  
II 4468099 1.30  1.87  94.51  44.13 
III 2456786 0.70 1.10  52.23  27.95  

average 1.20  1.78  87.57  41.75  
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5.2.2 Two-sequence compression 

Table 17 shows the experimental results of compressing a sequence by 

reference to its most similar sequence.  Note that “cur” represents the 

chromosome sequence to be compressed.  Its most similar sequence is 

represented as “ref”.  Column 3 shows the number of bases in the current 

sequence.  Column 4 is the bpb of compressing the current sequence alone, i.e. 

without considering similar subsequences from the reference sequence.  This is 

the same as the last column in Table 15.  Column 5 gives the bpb of compressing 

a current sequence by considering similar subsequences from the current 

sequence as well as reference sequence.  Column 6 and Column 7 list the 

additional saving in bpb and percentage (%) respectively.   

 

Table 17.  The experimental results of compressing a sequence in S. pombe provided 
with reference sequence. 

cur ref Length 

Without 
given ref 
sequence 

(bpb) 

With 
given ref 
sequence 

(bpb) 

Additional 
saving 
(bpb) 

Additional 
saving 

(%) 

I II 5570797 1.9176  1.8857  0.0318 1.66% 
II I 4468099 1.9074  1.8678  0.0397 2.08% 
III II 2456786 1.8894  1.8069  0.0825 4.37% 

average 4165227 1.9048 1.8535 0.0513 2.69% 
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From Table 17, we can see that the bpb is always smaller when the 

current sequence is compressed by considering one more sequence in addition to 

itself.  The actual savings depend on the length of similar subsequences between 

the current sequence and the reference sequence.  On average there is 0.05 bpb 

saving in using one more reference sequence.  Although the additional saving in 

S. pombe is not as high as that in S. cerevisiae, the actual file size reduced in the 

chromosome sequences of S. pombe is larger than that of S. cerevisiae due to the 

long sequence length. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 illustrates the distribution of self-similarity and cross-

similarities for the three chromosome sequences of S. pombe.  The dark grey 

color bar displays the proportion of similar repetitive subsequence found from 

itself while the light grey color bar shows the proportion of similar repetitive 

subsequence found from the reference sequence.  We can see the repetition found 

from the reference sequence is always more than 50% of the whole repetitive 

part.  Thus, the combination of self-similarity and cross-similarities should lower 

the bpb used. 
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As can be seen from Table 17 and Figure 16, the combination of self-

repetition and cross-repetition should have positive effect on compression gain.  

Table 18 lists the results of compressing two chromosome sequences together.  

Column 1 lists the two chromosome sequences in a group which will be 

compressed together. Column 2 shows the length of the particular chromosome 

sequences and Column 3 shows the bpb of compressing the chromosome 

sequence in Column 1 alone.  Thus, 1.9176 bpb and 1.9074 bpb are required for 

compressing Chr I and Chr II alone respectively.  Column 4 shows the bpb when 

the two chromosome sequences are compressed together, so 1.8954 bpb is 

required if Chr I and Chr II are compressed together.  The final column lists the 

execution time for compressing the two chromosome sequences in seconds.  It 

takes about 92 seconds to compress Chr I and Chr II together.  

Figure 16.  The percentage of self-sequence and corss-sequence similarities in S. 

pombe.  The dark grey and the light grey color bars indicate the proportion of the 

self-similarity and the cross-similarities respectively.   
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Table 18.  The experimental results of compressing 2 sequences in S. pombe 
together. 

Chr Total no. of 
bases 

Compressing 
separately Compressed together 

bpb bpb Time(s) 
I 2456786 1.9176 

1.8954 92.0 II 4468099 1.9074 
 Total: 6924885  Average: 1.9110  

II 4468099 1.9074 
1.8954 75.8 I 2456786 1.9176 

 Total: 6924885  Average: 1.9110  
III 5570797 1.8894 

1.8718 156.0 II 4468099 1.9074 
 Total: 10038896  Average: 1.8974  

average 7962889 1.9078 1.8875 107.9 
 

For all the cases in Table 18, it is always beneficial to compress two 

sequences together.  An average of 1.8875 bpb is required to compress two 

chromosome sequences together.  It is smaller than the average bpb in separated 

compression case.    Although a reduction of 0.0203 bpb seems to be small, the 

average chromosome sequence length is 8000k bases in S. pombe.  Thus, a small 

drop in bpb can significantly decrease the resultant file size.  For example, with 

reduction of 0.01 bpb, 40,000 bits can be reduced for a sequence length with 

4000k bases while only 8000 bits can be reduced for a sequence length with 800k 

bases.  Moreover, the execution time is about 108s on average for these long 

chromosome sequences.  The execution time of compressing Chr I and Chr II is 

around 92s because the total number of bases in these two sequences is 10,000k.  

Therefore, the execution time is in direct proportion to the number of bases.   
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5.2.3 Multiple sequence compression 

The experimental results of compressing three chromosome sequences of 

S. pombe together are listed in Table 19.  The average bpb in compressing 

separately is 1.9048 while that in compressing together is 1.8780.  Thus an 

additional saving of 3.22% is achieved.  The time taken for compression is 166.3 

seconds as the total number of bases involved is 12,500k. 

 

5.3  Chapter Summary 

The performance of our proposed multiple sequence compression 

algorithm has been evaluated using two real datasets.  They are the sixteen 

chromosome sequences of S. cerevisiae and the three chromosome sequences of 

S. pombe.  The results indicate that the multiple sequence compression strategy 

can always outperform the single sequence compression strategy as the bit per 

base used can be reduced by taking into account both self-sequence and cross-

sequence similarities.  The execution time does not increase significantly when 

Table 19.  The experimental results of compressing 3 sequences in S. pombe 
together. 
 

Chr Total no. of 
bases 

Compressing 
separately Compressed together 

bpb Additional 
Saving (%) bpb Time(s) 

3 I 2456786 1.9176 

3.22% 1.8780 166.3 
II 4468099 1.9074 
III 5570797 1.8894 

 Total: 
12495682 

Average: 
1.9084 
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compressing a number of sequences together.  From the experiment results, we 

can see the average additional saving in bpb is about 6% in S. cerevisiae if a 

chromosome sequence is compressed with reference to the most similar 

chromosome sequence.  Also, the percentage of cross-sequence similarities is 

always more than 60% while that of the self-sequence similarity is less than 40%.  

The bpb of compressing three or more chromosome sequences is always lower 

than that of compressing each chromosome sequence separately.  Therefore, we 

can see the benefit of multiple sequence compression.   
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6  Conclusions & Future Work 

The compression gain of state-of-the-art DNA compression schemes is 

not large due to the fact that they search only similar subsequences within the 

current sequence. In other words, the cross-chromosomal similarities are 

completely ignored.  The objective of this work was to exploit the uses of cross-

sequence similarities in compressing a number of sequences together.   

 

We have investigated similarities between the sixteen chromosome 

sequences in S. cerevisiae and the three chromosome sequences in S. pombe.  

Although cross-sequence similarities have been recognized and exploited in 

many applications, we have quantified it here for the first time with a view to an 

efficient multiple DNA sequence compression.  A detailed similarity analysis 

including the length and location of similar subsequences between chromosome 

sequences has been performed.  In particular, the percentage of cross-sequence 

similarities is always over 55% and that of self-sequence similarity always under 

45% in both S. cerevisiae and S. pombe. While current DNA compression 

considers only repetitions found within the sequence itself, our study implies that 

it would be highly advantageous to compress different chromosome sequences 

together.    
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A multiple sequence compression algorithm has been proposed to take 

into account the self-sequence and the cross-sequence similarities.  The proposed 

algorithm first searches for all the similar subsequences among a number of 

sequences.  Then the overlapping regions in these similar subsequences are 

removed to form a list containing non-overlapping similar subsequences.  

Afterwards, the similar subsequences are removed to form a non-repetitive 

sequence for further compression by an arithmetic coder.  Information such as 

the operations needed for matching two similar subsequences is also compressed 

by the arithmetic coder.   

 

Our proposed multiple sequence compression algorithm was tested on 

two real datasets: S. cerevisiae and S. pombe.  Our experimental results showed 

that the bpb of compressing two or more chromosome sequences together is 

lower than that of compressing each chromosome sequence separately.  

Therefore, it is always advantageous to compress a number of sequences together 

to benefit from both self-sequence similarity and cross-sequence similarities.  

Our proposed algorithm is also efficient as the execution time does not increase 

significantly, even for long sequences.  Over the past twelve years of research 

into DNA compression, the improvement of the average bpb has been only about 

0.06. However, the experimental results on average for our proposed algorithm 



- 99 - 

shows an improvement of 0.11bpb in S. cerevisiae when two chromosome 

sequences are compressed together.   

 

Our future work is to extend this study to the DNA sequences of other 

species.  For example, it is well known that monkeys and humans are closely 

related species.  In fact, the monkey genome is more than 95% similar to the 

human genome [33-34], so similarity in DNA sequences among different species 

should be explored for an efficient multiple sequence compression.  As shown in 

Table 4, the average bpb that can be saved for the five sequences in humans is 

0.32.  Since similarities exist between multi-species sequences, additional bpb 

can be saved with multiple sequence compression.   To implement multiple 

sequence compression with different species, the first step is to conduct a 

similarity study between the sequences from different species, such as that of 

chimpanzees and humans. The lengths and locations of the repetitive 

subsequences can be explored.  The second step would be to group similar 

sequences pairs and the final step would be to compress with those similar pairs 

together. 

 

Although both S. cerevisiae and S. pombe are yeasts, their chromosome 

sequences have similarities and dissimilarities.  In particular, both species share 
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genes with humans that they do not share with each other.  For example, S. 

pombe contains the same heterochromatin genes as humans, while S. cerevisiae 

does not.  Our future direction is to investigate how this information can be 

incorporated effectively into our multiple sequence compression algorithm. 
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