

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

An Approach to Multiple DNA Sequences Compression

Wu Choi Ping Paula

A thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Philosophy

February 2009

- ii -

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written

nor material which has been accepted for the award of any other degree or

diploma, except where due acknowledgement has been made in the text.

___________________________ (Signed)

__WU CHOI PING PAULA_____ (Name of student)

- iii -

Summary of contribution

The original contributions reported in this thesis are as follows:

1. A similarity study of the sixteen chromosome sequences of

Saccharomyces cerevisiae.

We have performed an extensive study of the sixteen chromosome

sequences of Saccharomyces cerevisiae (S. cerevisiae). In particular,

similar subsequences have been searched throughout these sixteen

sequences. Their location and length have been investigated so as to

quantify the potential gain in cross-sequence compression. Our study

indicates that there are significant cross-sequence similarities among these

sixteen sequences. Also, the similar subsequences from different

chromosome sequences do not overlap in position, hence, two types of

cross-chromosomal predictions are proposed to improve the overall

sequences compressibility.

2. A new algorithm for multiple sequence compression

All state-of-the-art compression algorithms are based on finding similar

subsequences within the current sequence only. The average bits per base

(bpb) is reduced by 0.08 in S. cerevisiae as compared with the no-

compression case. We have proposed a multiple sequence compression

algorithm that compresses a number of sequences together to take into

account both self-sequence similarity and cross-sequence similarity. The

experimental results show that our proposed algorithm can consistently

reduce the average bpb used while maintaining a low computational

complexity.

- iv -

3. The implementation of a software tool for multiple sequence compression

A software tool written using Matlab has been developed that allows users

to compress a number of sequences together. Information, such as the

execution time and the bpb of compressing with and without a reference

sequence, can also be shown by the software tool.

- v -

Abstract

Deoxyribonucleic acid (DNA) technologies have been widely used in

genetic engineering, forensics and anthropology applications. A DNA

sequence is a long sequence consisting of four types of nucleotides called bases.

The number of bases of the 24 chromosomes in humans ranges from 50 to 250

million. Without any compression, two bits per base are required for storage

which results in a large number of bits for encoding DNA sequences. An

effective way to compress these sequences is thus desirable in order to reduce

the storage space required.

General-purpose compression tools such as gzip use more than two bits

to encode a base. This is because these tools do not make use of the special

characteristics of a DNA sequence. For example, it is well known that a DNA

sequence has long-term correlation in that subsequences in different regions of

a DNA sequence are similar to each other. State-of-the-art DNA compression

schemes all rely on exploiting this long-term correlation. In particular,

repetitions within the DNA sequence are searched so that similar subsequences

can be encoded with reference to each other. For these DNA compression

schemes, the reduced average bits per base (bpb) are around 0.25 for the

benchmark DNA sequences. Thus, the compression gain is not large.

- vi -

It is well known that there are similarities among different chromosome

sequences. All state-of-the-art compression algorithms exploit only self-

sequence similarities, and specifically ignore the cross-sequence similarities.

We have performed a thorough study of similarities within the same

chromosome sequence as well as similarities among different chromosome

sequences. These similarities are characterized by the existence of similar

subsequences in different chromosome sequences. Our study indicates that

these cross-sequence similarities are often significant when compared to self-

sequence similarities. In the experimental results from the sixteen

chromosome sequences in S. cerevisiae, the average repetitive length from

cross-sequence prediction was almost fourteen times of that from self-sequence

prediction.

To make use of both self-sequence and cross-sequence similarities in

DNA compression, we have proposed a multi-sequence compression algorithm.

Our scheme compresses two or more sequences together so that similar

subsequences found among multiple sequences can be encoded together. In

this scheme, we first create a list of similar subsequences, from either the

reference sequence or the current sequence which are ordered according to

their importance. The list is then modified by removing the overlapping

- vii -

similar subsequences. After reordering the list according to their position and

removing similar subsequences from the current sequence, Arith-2 coder is

used to further compress the non-repetitive regions.

Our experimental results show that compressing a sequence with

reference to another sequence achieves an average of 5.5% saving in bpb as

compared with that without reference to another sequence, hence the bpb of

compressing two chromosome sequences together is consistently better than

that of compressing them separately. This shows the importance of cross-

sequence similarities. We have also extended the cross-sequence predictions to

more than two chromosome sequences. We found that there is always

additional savings in bpb by compressing a number of chromosome sequences

together. Since by making use of the cross-sequence similarities, our proposed

multiple sequence compression algorithm can outperform other single

sequence-based compression algorithms.

- viii -

Table of Contents
Abstract .. v
Table of Contents .. viii
List of Figures .. x
List of Tables .. xii

1 Introduction ... 1

1.1 Problems ... 2
1.2 Objectives ... 4
1.3 Organization of the Thesis ... 5

2 Literature Review .. 7

2.1 Characteristics of DNA Sequences ... 8
2.1.1 Repeats .. 9
2.1.2 Complementary Palindromes ... 10
2.1.3 Three-base periodicity ... 11

2.2 Compression Methods ... 14
2.2.1 Compression Methods for DNA Sequences 15
2.2.2 Experimental Results ... 19

2.3 Repetitions in DNA sequences ... 25
2.3.1 Blastn .. 26
2.3.2 PatternHunter .. 27

3 Similarity Study ... 28

3.1 Existence of Similar Subsequences Among Chromosomes 29
3.1.1 About S. cerevisiae .. 30
3.1.2 Self-referencing ... 31
3.1.3 Cross-referencing .. 34

3.2 Analysis with Similar Sequences between Chromosomes 39
3.2.1 Length of Similar Sub-sequences ... 39
3.2.1 Location of Similar Subsequences ... 43

3.3 Analysis with Cross-chromosomal Predictions ... 48
3.4 Chapter Summary .. 52

4 Our proposed multiple sequence compression algorithm 54

4.1 Overview ... 55
4.1.1 Encoding Processes ... 55
4.1.2 Decoding Processes ... 56

4.2 DNAComp coder ... 57
4.2.1 Encoder ... 58
4.2.2 Decoder ... 66

4.3 Arith-2 coder ... 67

- ix -

4.4 Performance Measurement... 69
4.5 Chapter Summary .. 69

5 Simulation Results ... 71

5.1 Simulation Results on S. cerevisiae .. 71
5.1.1 Single sequence compression ... 71
5.1.2 Two-sequence compression.. 76
5.1.3 Multiple sequence compression ... 84

5.2 Simulation Results on S. pombe .. 89
5.2.1 Single sequence compression ... 89
5.2.2 Two-sequence compression.. 91
5.2.3 Multiple sequence compression ... 95

5.3 Chapter Summary ... 95

6 Conclusions & Future Work .. 97

References .. 101
Appendix – Accepted and submitted papers... 115

Published papers – Conference .. 115
Accepted/published papers – Journal ... 115

- x -

List of Figures

Figure 1. An example of a DNA sequence. [18] 8

Figure 2. Examples of (a) substitution, (b) insertion and (c) deletion

in approximate matches. The sequence is a part of a DNA
sequence. .. 10

Figure 3. An example of a complementary palindrome. The sequence

is a part of a DNA sequence. ... 11

Figure 4. Two bits per base. [18] ... 14

Figure 5. The lengths of the sixteen chromosome sequences in S.

cerevisiae. The y-axis is the number of bases in 1000 units. 30

Figure 6a. The lengths of the top four longest repetitive regions

found within the current chromosome sequence in S.
cerevisiae. The first, second, third and fourth scores are
illustrated by black, grey, light grey and white color bars
respectively. The y-axis denotes the lengths of the repetitive
regions. ... 33

Figure 6b. A study of the lengths of the repetitive regions and non-

repetitive regions in S. cerevisiae. The light grey parts
indicate the length of self-referencing repetitive regions. The
black parts indicate the length of non-repetitive regions. The
y-axis is the number of bases in 1000 units 33

Figure 7. The lengths of the top three score repetitive regions

between (a) Chr I, (b) Chr VIII, (c) Chr III and (d) Chr XI
and the other fifteen chromosome sequences of S. cerevisiae.
The first, second and third scores are illustrated by black,
grey and light grey color bars respectively. The highlighted
boxes indicate self-chromosomal similarity. Y-axis denotes
the length of the repetitive regions... 38

Figure 8. Locations of similar subsequences for (a) the first class, (b)

the second class and (c) the third class. Self-similarity is
shown in black color while cross-similarities with other
chromosome sequences are in other colors. The sequence
number of the chromosome sequence is marked inside the
colored region. Only significant regions are presented and
are drawn on scale with the chromosome sequence. 47

Figure 9. The encoding processes. ... 55

Figure 10. An example of a sequence called NC_001133.seq. 56

- xi -

Figure 11. The decoding processes. ... 57

Figure 12. An example record of NC_001133.aln. 60

Figure 13. The coder. .. 68

Figure 14. The relationship between the length and the execution

time of the sixteen chromosomes in S. cerevisiae. The
performance of CTW, GenCompress and the proposed
algorithm are repseneted by the line with rhombus, square
and triangle respectively. X-axis marks the length of the
chromosome sequences while y-axis marks the execution
time in seconds(s). .. 75

Figure 15. The percentage of self-sequence and corss-sequence

similarities in S. cerevisiae. The dark grey and the light grey
color bars indicate the proportion of the self-similarity and
the cross-similarities respectively. ... 79

Figure 16. The percentage of self-sequence and corss-sequence

similarities in S. pombe. The dark grey and the light grey
color bars indicate the proportion of the self-similarity and
the cross-similarities respectively. ... 93

- xii -

List of Tables

Tab1e 1. Four types of nucleotides, Adenine (A), Guanine (G),

Thymine (T) and Cytosine (C), and their complements. 8

Tab1e 2. Amino acids formed by triplets of bases (codons). 13

Tab1e 3. Information on the standard benchmark DNA sequences.

Note KB stands for kilo bytes. ... 20

Tab1e 4. The bits per base (bpb) used by various DNA-oriented

compression methods .. 23

Tab1e 5. The compression gains of various DNA-oriented

compression methods. ... 24

Tab1e 6. The bits per base (bpb) used for Three-state model and

DNACompress in S.cerevisiae. .. 25

Table 7. Total lengths of subsequences in Chr a that can be predicted

from certain regions in Chr b. The bolded value represents
self-similarity (i.e., self-prediction) while the highlighted
boxes represent those entries that have greater values than the
self-predicted one. ... 41

Table 8. Lengths of cross-chromosomal and self-chromosomal

repetitions and the number of bits required/saved in
compressing two chromosome sequences 51

Table 9. The bpb (bits pre base) of compressing the 16 chromosome

sequences in S. cerevisiae. ... 75

Table 10. The execution time (seconds) of compressing 16

chromosome sequences in S. cerevisiae. 75

Table 11. The experimental results of compressing a sequence in S.

cerevisiae provided with a reference sequence. 78

Table 12a. The encoding time(s) of compressing 2 sequences in S.

cerevisiae together. .. 81

Table 12b. The execution time(s) including encoding and decoding

time of compressing 2 sequences in S. cerevisiae together. 81

Table 13. The experimental results of compressing 2 sequences in S.

cerevisiae together. .. 82

- xiii -

Table 14. The experimental results of compressing 3 to 6 chromosome
sequences in S. cerevisiae together. ... 87

Table 15. The bpb (bits pre base) of compressing the 3 chromosome

sequences in S. pombe. .. 90

Table 16. The execution time (seconds) of compressing the 3

chromosome sequences in S. pombe. ... 90

Table 17. The experimental results of compressing a sequence in S.

pombe provided with reference sequence. 92

- 1 -

1 Introduction

Due to the recent progress in human genome sequencing, there is a great

surge in demand for storing and transmitting deoxyribonucleic acid (also known

as DNA) sequences. Compression thus becomes essential in order to reduce the

size of DNA sequence to save storage space and transmission time.

DNA sequences contain four kinds of nucleotides or bases: adenine (A),

cytosine (C), guanine (G) and thymine (T). Without compression, two bits are

required for representing each base. If general compression tools such as gzip

are used, it has been found that more than two bits are often needed to represent a

base [1]. Consequently, these general compression tools cannot compress, but

rather expand the DNA sequences [1-2]. Compression algorithms that are

designed specifically for DNA sequences thus need to be developed.

DNA sequences are not purely random sequences. If these sequences

were totally random, the most efficient and logical way to store them would be

using two bits per base (bpb). Because DNA contains genetic information and

codes for protein in living organisms, it must contain a logical organization and

some redundancies could be exploited through the compression strategies. The

main source of redundancy in DNA sequences lies in the long-term repetitions,

- 2 -

in the form of either approximate repeats or complementary palindromes; as a

result, current DNA compression algorithms focus heavily on the exploitation of

repetitions within the DNA sequence. However, even though these DNA

compression algorithms obtain better results than general purpose compression

algorithms, the compression ratios are not high [2]. For example, the context

tree weighting method [21] achieved an average 0.05 bpb reduction for the

sixteen chromosome sequences of Saccharomyces cerevisiae (S. cerevisiae)

when compared to the no-compression case.

 To achieve further compression in encoding DNA sequences, it is

important to understand the special properties associated with DNA sequences

and to fully utilize these properties in compressing them [3]. The main

objectives of this thesis are to study the similarity among different DNA

sequences and to investigate how the similarity can be used effectively for DNA

sequence compression.

1.1 Problems

 Current DNA compression schemes are based on searching repetitions

within the DNA sequence. These repetitions can be in the form of exact matches

or approximate matches. Exact matches mean that the repetitive sequence is

- 3 -

exactly the same as the original one, while approximate matches mean the two

sequences look identical only if substitutions, insertions and/or deletion of

certain bases are performed during matching [3-7]. Note that DNA sequences

are very long. For example, the lengths of the 24 chromosomes in humans range

from 50 to 250 million base pairs. Thus, the time to find exact or approximate

matches can also be very long and searching for all repeats in a DNA sequence is

not a trivial task [3]. Some researchers have modified the searching strategy

from greedy algorithms [2, 3, 8-11] to dynamic programming in order to reduce

the searching time [2]. Tools for finding these exact and approximate matches

are available freely [27-28].

 In the field of video compression, images can be compressed either as an

I-frame or as a P-frame [12-13]. The I-frame means that an image is intra-coded

and redundancy is exploited within itself only. By contrast, the P-frame means

that an image is inter-coded and redundancy is exploited between two

consecutive images. The P-frame consistently has a better compression ratio

than the I-frame. As for DNA compression, current algorithms are analogous to

intra-coded image compression as redundant information is exploited only within

the current DNA sequence. Therefore, besides self-sequence redundancy, cross-

sequence redundancy can also be exploited in DNA sequence compression.

- 4 -

Although cross-sequence similarity is well known and is the basis of

sequence analysis algorithms, such as multiple sequence alignment or

phylogenetic analysis, the idea of exploiting this information specifically for

DNA sequence compression is novel. These similarities are characterized by the

existence of similar subsequences among different DNA sequences. The longer

the similar subsequences are, the higher the cross-sequence similarities are.

While only a modest compression ratio might be achieved for one DNA

sequence, we hypothesized that a higher compression ratio can be achieved for

multiple sequence compression since multiple sequence compression can benefit

from both self-sequence similarity and cross-sequence similarities.

1.2 Objectives

This thesis attempts to give a quantitative analysis of sequence

similarities and develop an effective compression algorithm for DNA sequences.

In particular, we will 1) study the self-sequence similarities as well as cross-

sequence similarities among different chromosome sequences of S. cerevisiae; 2)

investigate the lengths and locations of similar subsequences found at various

chromosome sequences; 3) develop a strategy to combine both self-sequence and

cross-sequence similarities to achieve compression; and finally, 4) perform a

comparative study with some existing DNA compression schemes such as CTW

- 5 -

[21] and GenCompress [4-6] to see the effectiveness of incorporating cross-

sequence similarities in compression.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter Two reviews the

literature on DNA sequences and compression schemes. This includes reviews

on the characteristics of DNA sequences, some existing DNA compression

algorithms that take into account DNA sequence characteristics, and some

software tools for finding repetitions in DNA sequences. Chapter Three provides

a detailed study of the similarities among DNA sequences. We discuss the

importance of cross-sequence similarities in terms of their repetitive length and

repeated location as compared with self-sequence similarity through some

experiments on the sixteen chromosome sequences of S. cerevisiae. Chapter

Four presents the structure of our proposed multiple sequence compression

algorithm. Our proposed algorithm first searches for all the repeats among the

different DNA sequences; these repeats are then sorted according to their

significance in bits reduction. After removing all the repeats in different

sequences, an entropy coder is used to compress the remaining non-repeating

regions. In Chapter Five, we evaluate our proposed algorithms by

experimenting on real datasets. The results are also compared with some

- 6 -

existing algorithms such as CTW and GenCompress. Chapter Six concludes our

work with suggestions on the future development of our proposed multiple

sequence compression algorithm.

- 7 -

2 Literature Review

Deoxyribonucleic acid (DNA) is a molecule composed of

deoxyribonucleotides connected by phosphodiester linkages [8]. The genome is

the complete DNA sequence of a living organism. Regions in a genome that

code for proteins are known as genes. The largest publicly accessible DNA data

are maintained in: GenBank (National Center for Biotechnology Information

Genetic Databank) [14], EMBL (European Molecular Biology Laboratory) [15],

and DDJB (DNA Database of Japan) [16]. Each of these databases shares their

information with the others. In February 2008, GenBank reported that there

were approximately 85,759,586,764 bases in 82,853,685 DNA sequence records

in the traditional GenBank database, and 108,635,736,141 bases in 27,439,206

DNA sequence records in the WGS (Whole Genome Shotgun) division [14].

A large number of DNA sequences have been stored in these databases,

and the size of the databases is expected to increase exponentially. Compression

is hence desirable to reduce the storage requirements as well as the transmission

time. This chapter first gives a brief review about the characteristics of DNA

sequences, and then some existing DNA compression algorithms that exploit

these DNA characteristics are presented.

- 8 -

2.1 Characteristics of DNA Sequences

DNA is a long sequence consisting of four kinds of nucleotides: adenine

(A), cytosine (C), guanine (G) and thymine (T). It is in the form of a double

helix held together by hydrogen bonds. The nucleotides (A, T) and (C, G) are

complement pairs, as shown in Table 1. Each nucleotide in one DNA strand

always binds to its complementary nucleotide in another strand. The two strands

are biologically similar to each other. Thus, only one strand needs to be encoded

while another strand can be deduced from this strand.

Tab1e 1. Four types of nucleotides, Adenine (A), Guanine (G), Thymine (T) and
Cytosine (C), and their complements.

Bases Notation Complement

Adenine A T

Cytosine C G

Guanine G C

Thymine T A

Figure 1. An example of a DNA sequence. [18]

lbsc
Rectangle

- 9 -

DNA sequences are not random sequences. They contain long-term

repetitions in which subsequences that are thousands of bases apart could be

similar to each other. There are two forms of long-term repetitions, namely

repeats and complementary palindromes. These are often exploited by DNA

sequence-oriented compression algorithms.

2.1.1 Repeats

Repeats include exact matches and approximate matches with some

operations such as substitution, deletion and insertion. An exact match means

two subsequences consist of identical nucleotides along the whole subsequence.

Approximate matches with substitution, deletion and insertion, are illustrated in

Figures 2(a), 2(b) and 2(c), respectively. In Figure 2(a), the DNA sequence is

“ACGCTTACGCAT”. The first six nucleotides, i.e., “ACGCTT”, form the first

subsequence and the last six nucleotides, i.e., “ACGCAT” form the second

subsequence. The second subsequence can be obtained from the first

subsequence if the 5th base “T” in the first subsequence is substituted by “A”.

This is called an approximate match with substitution. In Figure 2(b), the DNA

sequence is “ACGCTACGCAT”, the first subsequence is formed from the first

five nucleotides, i.e., “ACGCT” and the second subsequence is formed from the

last six nucleotides, i.e., “ACGCAT”. The second subsequence can be obtained

- 10 -

if the base “A” is inserted between the 4th and the 5th bases of the first

subsequence. The two subsequences can thus be matched with an insertion

operation. In Figure 2(c), the DNA sequence is “ACGCTTACGCT”, the first

subsequence is formed from the first six nucleotides, i.e., “ACGCTT” and the

second subsequence is formed from the last five nucleotides, i.e., “ACGCT”.

The second subsequence is obtained if the 5th base “T” in the first subsequence is

deleted. This is called an approximate match with deletion.

ACGCTTACGCAT

1 ACGCTT 6
|||| |

7 ACGCAT 12

ACGC?TACGCAT

1 ACGC-T 5
|||| |

6 ACGCAT 12

ACGCTTACGC?T

1 ACGCTT 6
|||| |

7 ACGC-T 11

2.1.2 Complementary Palindromes

The complementary palindrome is also referred to in the literature as

reversed repeat, palindrome, complemented palindrome, complemented inverted

repeat, or reverse complement repeat [2, 7]. A repeat is said to be

complementary palindrome if nucleotides in a subsequence are the reverse

ordering of nucleotides in another subsequence with each nucleotide replaced by

Figure 2. Examples of (a) substitution, (b) insertion and (c) deletion in

approximate matches. The sequence is a part of a DNA sequence.

(a) (b) (c)

- 11 -

its complement. For instance, the subsequences “AAACGT” and “ACGTTT”

are complementary palindrome since (A,T) and (C,G) are complement pairs.

In Figure 3, the 12 bases sequence “ACGCTTAAGCGT” is a part of a

DNA sequence. If we consider a subsequence “AAGCGT” formed from the last

six bases, the complement of “AAGCGT” is “TTCGCA”. Its reverse ordering is

“ACGCTT”, which is the same as the first six bases of the original 12 bases

sequence. Thus, the repeat is called a complementary palindrome.

2.1.3 Three-base periodicity

Functionally, a DNA sequence consists of two types of regions, namely

protein-coding and non-protein-coding regions [26]. In organisms with a distinct

cellular nucleus, called Eukaryotes, the coding regions are usually divided into

several disconnected fragments known as exons. The non-coding regions in-

ACGCTTAAGCGT
TTCGCA *complement
ACGCTT *reverse

1 ACGCTT 6
||||||

12 ACGCTT 7

Figure 3. An example of a complementary palindrome.

The sequence is a part of a DNA sequence.

- 12 -

between the exons are known as introns. Before producing proteins, introns are

removed so that exons are joined together to form an “uninterrupted” gene.

Codons combined by three consecutive bases represent a protein unit, i.e., an

amino acid. As listed in Table 2, sixty-four possible codons can be formed by

four bases but there are only twenty amino acids. For example, GCT, GCC,

GCA and GCG represent the amino acid “Alanine” as in the first row of Table 2.

One of the characteristics of the protein-coding region is its three-base

periodicity [41]. This periodicity might be due to the codon structure. The three-

based periodicity implies that the power spectrum of the subsequence in a

protein-coding region would have a strong component at the period-3 frequency,

i.e., 2π/3.

- 13 -

Tab1e 2. Amino acids formed by triplets of bases (codons).

Amino acids Codon

Ala GCT, GCC, GCA, GCG

Arg CGT, CGC, CGA, CGG, AGA, AGG

Asn AAT, AAC

Asp GAT, GAC

Cys TGT, TGC

Gln CAA, CAG

Glu GAA, GAG

Gly GGT, GGC, GGA, GGG

His CAT, CAC

Ile ATT, ATC, ATA

Leu TTA, TTG, CTT, CTC, CTA, CTG

Lys AAA, AAG

Met ATG

Phe TTT, TTC

Pro CCT, CCC, CCA, CCG

Ser TCT, TCC, TCA, TCG, AGT, AGC

Thr ACT, ACC, ACA, ACG

Trp TGG

Tyr TAT, TAC

Val GTT, GTC, GTA, GTG

START ATG

STOP TAG, TGA, TAA

- 14 -

2.2 Compression Methods

There are two kinds of compression methods, namely lossless

compression and lossy compression. Retrieving from compressed data without

loss is defined as lossless, while that with data loss is defined as lossy. Since it is

not possible to sacrifice any of the data in a DNA sequence, only lossless

compression is considered for DNA sequence compression. As there are only

four bases in a DNA sequence, two bits are required to code each nucleotide

without any compression. An example is shown in Figure 4. The four bases {A,

C, G, T} are represented by {00, 01, 10, 11}. Thus, two bits per base is the

minimum requirement for compressing a DNA sequence.

Some researchers have examined the use of a general-purpose

compression algorithm for compressing DNA sequences. The two main

compression approaches are statistical and substitutional [8] methods. In the

statistical approach, blocks of fixed length subsequences are encoded with

respect to their occurrence probabilities. For example, in Huffman coding [19],

short codewords are used for encoding frequent patterns while long codewords

Figure 4. Two bits per base. [18]

lbsc
Rectangle

- 15 -

are used for encoding non-frequent patterns. In the substitutional approach such

as LZ77 [20], pointers are used to locate previous occurrences. So, the lengths of

subsequences to be encoded are not fixed, in contrast to the statistical approach.

General-purpose compression algorithms often do not perform well for

DNA sequences. Some of these algorithms, such as gzip, use more than 2 bits

per base [1]. The reason behind is that these algorithms do not consider the

special characteristics in a DNA sequence, such as ignoring the long term

repetitions in a DNA sequence. Some of them, such as context tree weighting

(CTW) [21], are very slow and use a great deal of memory in finding

characteristic patterns in the long DNA sequences. To sum up, lossless

compression algorithms for DNA sequences need to be developed. These

algorithms should exploit DNA sequence characteristics, such as the long-term

repetitions, effectively and efficiently. Consequently, DNA-oriented

compression methods such as Biocompress-2, GenCompress, context tree

weighting (CTW)+LZ and DNACompress, have been developed [3-8].

2.2.1 Compression Methods for DNA Sequences

Biocompress [22] was the first algorithm designed by Grumbach et al. in

1993 specifically for compressing DNA sequences. Biocompress-2 [8] is its

- 16 -

second version. These two algorithms are based on a sliding window algorithm,

known as LZ77, proposed by Ziv and Lempel [23]. A subsequence is encoded

by reference to an identical subsequence occurring in the past, i.e., only the

position of the previously occurred similar subsequence and the repetition length

are encoded. Biocompress detects exact matches and complementary

palindromes, while Biocompress-2 introduces an additional order-2 arithmetic

coding (Arith-2). Biocompress-2 uses Arith-2 if no significant repetition is

found. For both Biocompress and Biocompress-2, the compression ratio is

higher when the length of similar subsequences is longer.

Cfact proposed by Rivals et al. [9-10] is another compression technique

based solely on exact matches. A two-pass strategy is used. In the first pass, the

whole sequence is parsed by using a suffix tree. A list of repetitive subsequences

sorted according to their lengths is produced. In the second pass, the

subsequences are encoded with reference to previously occurred similar

subsequences. Two bits per base are then used to encode the remaining non-

repetitive regions.

GenCompress-2 [4-6] proposed by Chen et al. achieves a significantly

better compression ratio than the previously presented algorithms. Contrary to

- 17 -

Biocompress and Cfact, GenCompress utilizes approximate matches instead of

exact matches. GenCompress-1 considers only substitutions for the repeats,

while GenCompress-2 considers deletion, insertion and substitution for finding

the repeats. As with Biocompress, GenCompress considers whether it is

worthwhile to encode a subsequence. If not, Arith-2 is used for encoding.

DNACompress [3] employs the Ziv-Lempel compression scheme as

Biocompress-2 and GenCompress. It consists of two phases. The first phase is

to find all approximate repeats, including complementary palindromes. The

second phase is to encode approximate repeat regions by referring to the

previous regions in the sequence and non-repeat regions by Arith-2. To identify

all the similar subsequences, a software tool called PatternHunter [27] is used,

which is a fast and sensitive homology search engine. Besides providing

additional compression gains, DNACompress is considerably faster than

GenCompress.

CTW+LZ proposed by Matsumoto et al. [7] is a technique based on the

context tree weighting (CTW) method and LZ-based compression. Basically,

long exact or approximate repeating subsequences including complementary

palindromes are encoded by a LZ-based algorithm, whereas short subsequences

- 18 -

are compressed using CTW. Though CTW+LZ obtains good compression ratios,

its execution time is too long, especially for long sequences.

DNAC [11] is a DNA compression scheme consisting of four phases. In

the first phase, a suffix tree is built to locate exact matches. In the second phase,

all the exact repeats are extended to approximate repeats by dynamic

programming. In the third phase, the non-overlapping repeats with the highest

scores are extracted from the overlapping regions. In the last phase, all the

repeats are encoded.

GeNML, proposed by Tabus et al. [24], is based on normalized maximum

likelihood discrete regression or approximate block matching. The compression

performance and speed are both improved in comparison with Biocompress-2,

GenCompress-2, CTW+LZ and DNACompress [25]. A DNA sequence is

divided into fixed-size blocks, and GeNML encodes the fixed-size blocks by

reference to a previously encoded subsequence with minimum substitution

operations.

DNAPack, proposed by Behzadi et al. [2], considers only substitutions

for the repeats and complementary palindromes, and uses either CTW or Arith-2

- 19 -

for encoding non-repeating regions. In identifying repeats, it uses dynamic

programming approaches instead of greedy techniques. DNAPack provides a

better compression gain, on average, when compared with DNACompress for a

number of short DNA sequences [26].

All of the above compression algorithms exploit the long-term repetitions

in a DNA sequence. Recently, Pinho et al. proposed a Three-state model for

compressing the DNA protein-coding regions [26, 42]. As the protein-coding

regions contain three-base periodicity, three finite-context models are used to

characterize the periodicity statistically. It is reported that the compression ratio

for the protein coding regions is better than DNACompress for some DNA

sequences. However, the proposed algorithm is not a complete compression

algorithm as the three-state model can be used in the protein-coding regions only,

not for the whole DNA sequence.

2.2.2 Experimental Results

Most of the DNA-oriented compression methods have been tested on a

set of standard benchmark DNA sequences downloadable from [43]. These

sequences together with their lengths [5] are listed in Table 3.

- 20 -

Tab1e 3. Information on the standard benchmark DNA sequences. Note KB stands
for kilo bytes.

Sequence name Length Sources File size (KB)
CHMPXX
(or MPOCPCG) 121024

chloroplasts
29.55

CHNTXX 155844 38.05
HEHCMVCG
(or HS5HCMVCG) 229354 complete genome

from viruses 55.99

HUMDYSTROP 38770

sequences from
humans

9.47
HUMGHCSA 66495 16.23
HUMHBB 73323 17.90
HUMHDABCD 58864 14.37
HUMHPRTB 56737 13.85
MPOMTCG 186608 complete genomes

of mitochondria

45.56
MTPACGA
(or PANMTPACGA) 100314 24.49

VACCG 191737 complete genome
from viruses 46.81

The eleven sequences shown in Table 3 come from various sources such

as chloroplasts, mitochondria, human and virus. The length refers to the number

of bases in the sequence. The file size in KBytes is obtained by using 2 bits for

each base. This is then the file size required without any compression.

The experimental results of compressing these eleven sequences by

various compression algorithms are summarized in Table 4 [2-11]. The

compression ratio is calculated by the bits per base (bpb) used. Without

compression, 2 bpb is required. Thus, a good compression ratio implies that we

have a bpb considerably smaller than 2. Biocompress-2, GenCompress and

DNACompress are represented by ‘BioComp-2’, ‘GenComp-2’ and ‘DNAComp’

- 21 -

respectively. We can see that the average bpb ranges from 1.70 to 1.78 for most

of the DNA-oriented compression methods.

Table 5 shows the compression gain of the various compression methods.

The compression gain is defined as 1-(|O|/2|I|)x100%, where |O| is the number of

bits required for storing the compressed sequence, and |I| is the number of bases

of a particular DNA sequence. The compression gain ranges from 11% to 15%.

This means that most algorithms can reduce the DNA sequence size by less than

20%. Note that there is no compression result for GeNML for the sequence

HUMHBB. According to other compression methods, the result for compressing

HUMHBB is always above the average value, therefore, the average bpb and the

average compression gain without considering HUMHBB are shown in the last

row of Table 4 and Table 5 respectively. From the average values, we can see

that GeNML preformed slightly better than other compression schemes for these

eleven sequences.

As for the compression of the protein-coding regions in the sixteen

chromosome sequences of the yeast named S. cerevisiae, Table 6 shows the bpb

used by the three-state model and the DNACompress [26]. The bolded value

indicates the better compression ratio for a particular sequence. Within the

- 22 -

sixteen chromosome sequences of S. cerevisiae, DNACompress performs better

in six chromosome sequences while the three-state model performs better in ten

chromosome sequences (i.e., Chr II, Chr III, Chr VI, Chr VII, Chr VIII, Chr IX,

Chr X, Chr XI, Chr XIV and Chr XV). The average bpb of the three-state model

is slightly lower than that of DNACompress, as shown in the last row of Table 6.

Although the three-state model performs comparably to DNACompress, the

algorithm is applicable to protein-coding region only. Thus, the sequence is first

required to be divided into two regions: protein-coding region and non-protein-

coding region. Then, the three-state model is applied to the protein-coding

region only while other compression algorithm is required for the non-protein-

coding region. The three-state model is not yet a complete compression scheme

as DNACompress.

- 23 -

Tab1e 4. The bits per base (bpb) used by various DNA-oriented compression methods

Sequence name BioComp-2 GenComp-2 DNAComp CTW+LZ DNAC GeNML DNAPack DNAMem
CHMPXX 1.6848 1.6730 1.6716 1.6690 1.6716 1.6617 1.6602 1.6601
CHNTXX 1.6172 1.6146 1.6127 1.6129 1.6127 1.6101 1.6103 1.6101
HEHCMVCG 1.8480 1.8470 1.8492 1.8414 1.8492 1.842 1.8346 1.8349
HUMDYSTROP 1.9262 1.9231 1.9116 1.9175 1.9116 1.9085 1.9088 1.9084
HUMGHCSA 1.3074 1.0969 1.0272 1.0972 1.0272 1.0089 1.0390 1.0311
HUMHBB 1.8800 1.8204 1.7897 1.8082 1.7897 - 1.7771 1.7765
HUMHDABCD 1.8770 1.8192 1.7951 1.8218 1.7951 1.7059 1.7394 1.7395
HUMHPRTB 1.9066 1.8466 1.8165 1.8433 1.8165 1.7639 1.7886 1.7884
MPOMTCG 1.9378 1.9058 1.8920 1.9000 1.8920 1.8822 1.8932 1.8925
PANMTPACGA 1.8752 1.8624 1.8556 1.8555 1.8556 1.8440 1.8535 1.8533
VACCG 1.7614 1.7614 1.7580 1.7616 1.7580 1.7644 1.7583 1.7582

average bpb 1.7838 1.7428 1.7254 1.7389 1.7254 1.6992 1.7148 1.7139
average bpb

without HUMHBB 1.7742 1.7350 1.7190 1.7320 1.7190 1.6992 1.7086 1.7077

- 24 -

Tab1e 5. The compression gains of various DNA-oriented compression methods.

Sequence name BioComp-2 GenComp-2 DNAComp CTW+LZ DNAC GeNML DNAPack DNAMem
CHMPXX 15.76% 16.35% 16.42% 16.55% 16.42% 16.92% 16.99% 17.00%
CHNTXX 19.14% 19.27% 19.37% 19.36% 19.37% 19.50% 19.49% 19.50%
HEHCMVCG 7.60% 7.65% 7.54% 7.93% 7.54% 7.90% 8.27% 8.26%
HUMDYSTROP 3.69% 3.85% 4.42% 4.13% 4.42% 4.58% 4.56% 4.58%
HUMGHCSA 34.63% 45.16% 48.64% 45.14% 48.64% 49.56% 48.05% 48.45%
HUMHBB 6.00% 8.98% 10.52% 9.59% 10.52% - 11.15% 11.18%
HUMHDABCD 6.15% 9.04% 10.25% 8.91% 10.25% 14.71% 13.03% 13.03%
HUMHPRTB 4.67% 7.67% 9.18% 7.84% 9.18% 11.81% 10.57% 10.58%
MPOMTCG 3.11% 4.71% 5.40% 5.00% 5.40% 5.89% 5.34% 5.38%
PANMTPACGA 6.24% 6.88% 7.22% 7.23% 7.22% 7.80% 7.33% 7.34%
VACCG 11.93% 11.93% 12.10% 11.92% 12.10% 11.78% 12.09% 12.09%

average 10.81% 12.86% 13.73% 13.05% 13.73% 15.04% 14.26% 14.30%
average

without HUMHBB 11.29% 13.25% 14.05% 13.40% 14.05% 15.04% 14.57% 14.62%

- 25 -

Tab1e 6. The bits per base (bpb) used for Three-state model and DNACompress in
S.cerevisiae.

Chr Reference No. of bases Three-state
model

DNA
Compress

I GI:50593113 143157 1.911 1.884
II GI:50593115 605184 1.897 1.912
III GI:42759850 217332 1.911 1.918
IV GI:50593138 1129605 1.890 1.846
V GI:7276232 391086 1.901 1.883
VI GI:42742172 183702 1.904 1.932
VII GI:50593213 784707 1.893 1.897
VIII GI:50882583 402792 1.903 1.907
IX GI:6322016 310041 1.903 1.933
X GI:42742252 557103 1.899 1.907
XI GI:50593424 478620 1.895 1.938
XII GI:42742286 784695 1.898 1.863
XIII GI:44829554 693291 1.894 1.886
XIV GI:50593505 576585 1.900 1.930
XV GI:42742309 785568 1.897 1.901
XVI GI:50593503 687666 1.896 1.889

average 545696 1.8995 1.9016

2.3 Repetitions in DNA sequences

Basically, all DNA-oriented compression methods make use of the ideas

of finding repeats and complementary palindromes in DNA sequence. In fact,

most of the time needed to run these compression programs are in searching of

the repeats. Thus, searching for repetitions in DNA sequences effectively and

efficiently becomes a very important problem. It is often not a trivial task to

search for all approximate repeats in a very long DNA sequence. Algorithms

such as CTW+LZ algorithm [7] take a long time to find approximate repeats that

are optimal for compression [3]. Recently, several homology search engines

have been developed for searching approximate repeats and complementary

- 26 -

palindromes. Examples include PatternHunter [27] and Blastn [28].

DNACompress is a well-known example of utilizing PatternHunter for searching

repetitions.

2.3.1 Blastn

The Basic Local Alignment Search Tool (BLAST) [29] is a utility that is

maintained by the National Center for Biotechnology Information (NCBI).

BLAST is a set of similarity search programs designed to explore all the

available sequence databases, regardless of whether the query is a protein or

DNA sequence [28]. The BLAST programs have been designed for speed, with

a minimal sacrifice of sensitivity to distant sequence relationships. The scores

assigned in a BLAST search have a well-defined statistical interpretation, in

order to make real matches easier to distinguish from random background hits.

BLAST uses a heuristic algorithm that seeks local as opposed to global

alignments, and is therefore able to detect relationships among sequences that

share only isolated regions of similarity.

Blastn is a type of BLAST search for a DNA sequence in which similar

nucleotide sequences are searched throughout the contents of a nucleotide

sequence database. It is freely available on the Web [30].

- 27 -

2.3.2 PatternHunter

Pattern Hunter is a homology search engine like Blastn, but with

modifications aimed at improving sensitivity, alignments, memory use and speed

[3]. It is more sensitive; is two orders of magnitude faster than Blastn when

processing long sequences; and requires only a fraction of the memory. By using

a patented spaced seed technology and algorithm for handling hit generation, hit

extension and gap extension, all approximate repeats, including complementary

palindromes, are produced and arranged in the order of a score [31]. The score

indicates the similarities in the repeats. Thus, a large score implies highly similar

repeats.

- 28 -

3 Similarity Study

How to minimize the value of bits per base (bpb) in DNA sequence

compression is always a question for researchers. As we can see from the

experimental results in Table 4, the average bpb of the first compression

algorithm is 1.78 and that of the recent algorithm is 1.71. Thus, over the twelve

years of research in DNA compression, the improvement of the average bpb is

only about 0.06. How to further reduce the value of bpb is the main focus of this

thesis.

As discussed in Chapter 2, state-of-the-art DNA compression methods are

always based on searching repetitions within the DNA sequence. Compression is

achieved only if there are similar subsequences along the current DNA sequence.

In fact, similarities in DNA sequences could exist among different species that

are close in terms of evolutionary distance [33-34]. Similarities could also exist

among different chromosome sequences of one species [35]. These similarities

imply that similar subsequences can be found among different DNA sequences

which can thus be used beneficially for compression.

To verify the cross-sequence similarities, we studied similarities in DNA

sequences among different chromosome sequences of Saccharomyces cerevisiae

- 29 -

(S. cerevisiae). The 16 chromosome sequences can be downloaded from

ftp://ftp.ncbi.nlm.nih.gov/genomes/. Firstly, the self-sequence similarity and the

cross-sequence similarities of these 16 chromosome sequences are studied.

Secondly, the location and length of similar subsequences will be discussed.

Finally, the result of cross-chromosomal prediction will be analyzed. To

facilitate the discussion, similar subsequences located within the chromosome

sequence are called self-(chromosomal) similarity/ self-referencing while those

located in another chromosome sequence are called cross-(chromosomal)

similarity/ cross-referencing.

3.1 Existence of Similar Subsequences Among Chromosomes

In this section, the search engine PatternHunter (Section 2.3.2) is

employed to search for all approximate repeats and approximate complementary

palindrome repeats in one DNA sequence or between a pair of DNA sequences

[27]. The approximate repeats are repeats that contains errors, i.e., with certain

unmatched nucleotides between two subsequences (Section 2.1.1). The

complementary palindrome repeats mean nucleotides in a sequence is the reverse

ordering of nucleotides in another sequence with each nucleotide replaced by its

complement.

- 30 -

All approximate repeats obtained from PatternHunter are ranked by a

score. Besides, details of the repeats, including the location of the repetitive

regions and the length of the repetitive regions, are output to an “aln” file.

3.1.1 About S. cerevisiae

In S. cerevisiae, the 16 chromosome sequences are denoted as Chr I to

Chr XVI. The longest chromosome sequence is Chr IV which has around 1540k

bases while the shortest chromosome sequence is Chr I which has around 230k

bases. Figure 5 shows the number of bases in each chromosome sequence of S.

cerevisiae.

Figure 5. The lengths of the sixteen chromosome sequences in S. cerevisiae. The y-

axis is the number of bases in 1000 units.

- 31 -

3.1.2 Self-referencing

Self-referencing is defined as finding repetitions within the current DNA

sequence. All state-of-the-art DNA compression algorithms consider self-

referencing only. PatternHunter is used to search for repetitions within one

chromosome sequence. The following shows part of the outputs from the

PatternHunter in finding the self-similarity within Chr I.

Identities = 13159/14613 (90%)
Identities = 2434/2588 (94%)
Identities = 2071/2298 (90%)
Identities = 1610/1759 (91%)
Identities = 1573/1759 (89%)

The self-similarities are sorted according to the score which is obtained

from the repetitive lengths. In the first record, the total length and the number of

identical nucleotides of the repetitive regions are ‘14613’ and ‘13159’,

respectively. The length of the repetitive regions is of special interest in our

study. It is because the repetitive regions can be encoded with respect to similar

regions that have been encoded in the past. Thus the longer the matching

sequences are, the higher the compression ratios attained. The above shows that

the longest repetitive region found within Chr I contains about 13000 bases.

Figure 6a shows the lengths of the top four score repetitive regions found inside

Chr I, Chr III, Chr IV, Chr V, Chr VII, Chr VIII, Chr XI, Chr XII, Chr XIII, Chr

XIV, Chr XV and Chr XVI. Most repetitive regions have a length of around

- 32 -

6000 bases. Chr I is one special case as the length of the longest repetitive

region is around 13000 but that of the second longest drops to around 2000.

Besides, the lengths of the top four longest repetitive regions of Chr III and Chr

XI are very short, they are around 1000 only.

Figure 6b shows the length of self-referencing repetitive regions and non-

repetitive regions in S. cerevisiae. The grey parts in the bars are the length of

self-similar subsequences while the black parts are the length of non-repetitive

regions. We can see that the lengths of grey parts for all the chromosome

sequences are very short. The self-similar subsequence parts in Chr III and Chr

XI can even be unseen since the portions are too small when comparing with the

lengths of non-repetitive regions. This means that the self-referencing repetitive

regions are often not very significant.

- 33 -

0

2000

4000

6000

8000

10000

12000

14000

I III IV V VII VIII XI XII XIII XIV XV XVI

Self-Referencing

Figure 6b. A study of the lengths of the repetitive regions and non-repetitive

regions in S. cerevisiae. The light grey parts indicate the length of self-referencing

repetitive regions. The black parts indicate the length of non-repetitive regions. The

y-axis is the number of bases in 1000 units.

Figure 6a. The lengths of the top four longest repetitive regions found within the

current chromosome sequence in S. cerevisiae. The first, second, third and fourth

scores are illustrated by black, grey, light grey and white color bars respectively.

The y-axis denotes the lengths of the repetitive regions.

- 34 -

3.1.3 Cross-referencing

Cross-referencing is defined as finding repetitions from different

chromosome sequences. It attempts to find similarities among different

chromosome sequences. To show the similarities between different chromosome

sequences in S. cerevisiae, cross-referencing between Chr I and Chr VIII are

explored. Using PatternHunter, the top five score repetitive regions between Chr

I and Chr VIII are obtained as follows,

Identities = 17034/17466 (97%)
Identities = 12502/13765 (90%)
Identities = 6407/6790 (94%)
Identities = 5677/6041 (93%)
Identities = 1518/1904 (79%)

We can see that the two longest similar regions found between Chr I and

Chr VIII are about 17000 and 12500 bases long. In fact, if we compare the top

four results, the lengths of similar regions between Chr I and Chr VIII are greater

than that of similar subsequences found within Chr I. To have a clear picture,

Figure 7 is provided which depicts the lengths of the top three score repetitive

regions between a particular chromosome sequence and the other fifteen

chromosome sequences of S. cerevisiae.

Figure 7(a) summarizes the lengths of the top three score repetitive

- 35 -

regions between Chr I and the other fifteen chromosome sequences of S.

cerevisiae. We can see that the lengths of the repetitive regions found between

Chr I and Chr VIII are always larger than those found within Chr I alone. In

addition, the lengths of the repetitive regions found between Chr I and other

chromosome sequences such as Chr II, Chr IV, Chr VII, Chr XII, Chr XIII and

Chr XVI are significant too.

Figure 7(b) shows the lengths of the top three score repetitive regions

between Chr VIII and the other fifteen chromosome sequences of S. cerevisiae.

Compared with Figure 7(a), the lengths of the repetitive regions found between

Chr I and Chr VIII are always larger than those found within Chr VIII alone. At

the same time, the lengths of the repetitive regions found between Chr I and

other chromosome sequences (with an exception of III, IX and XI) are

noteworthy too. The interesting point is that the lengths of the repetitive regions

found between Chr I and Chr VIII are always larger than those found within Chr

VIII alone or those found within Chr I alone. Besides, the lengths of the

repetitive regions found between Chr I and other chromosome sequences (except

VIII), shown in Figure 7(a), and that between Chr VIII and other chromosome

sequences (except I), shown in Figure 7(b), are nearly the same.

- 36 -

Figure 7(c) illustrates the lengths of the top three score repetitive regions

between Chr III and the other fifteen chromosome sequences of S. cerevisiae. In

this case, we can see that the self-similarity inside Chr III is small, as compared

with the cross-similarities between regions in other chromosome sequences.

The same is true for Chr XI as shown in Figure 7(d). In fact, similar

observation is obtained from other chromosome sequences of S. cerevisiae. This

shows that besides self-similarity within the chromosome sequence itself, cross-

similarities with other chromosome sequences are often significant and should

not be ignored. These cross-similarities can be exploited which should be

beneficial for compression applications.

- 37 -

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI

Similarity with Chromosome I

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI

Similarity with Chromosome VIII

(b)

- 38 -

0

1000

2000

3000

4000

5000

6000

7000

8000

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI

Similarity with Chromosome III

(c)

0

1000

2000

3000

4000

5000

6000

7000

8000

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI

Similarity with Chromosome XI

 (d)

Figure 7. The lengths of the top three score repetitive regions between

(a) Chr I, (b) Chr VIII, (c) Chr III and (d) Chr XI and the other fifteen chromosome

sequences of S. cerevisiae. The first, second and third scores are illustrated by black,

grey and light grey color bars respectively. The highlighted boxes indicate self-

chromosomal similarity. Y-axis denotes the length of the repetitive regions.

- 39 -

3.2 Analysis with Similar Sequences between Chromosomes

In the previous section, we have shown that similarities among different

chromosome sequences are often significant as compared with self-similarity. To

quantify the potential gain in cross-sequence compression, we need to find out

whether any subsequence in the current sequence can be predicted from regions

in another sequence. If so, there will be gain if these two sequences are

compressed together by reference to each other. We termed this as cross-

sequence compression. The length of these cross-reference subsequences

determines the potential compression gains that would result by considering

multiple DNA sequences in compression. The longer the length is, the higher the

potential compression gain will be. In this section, we studied the length and the

location of these similar subsequences.

3.2.1 Length of Similar Sub-sequences

Table 7 shows the total lengths of subsequences that can be predicted

either from the current chromosome sequence or from other chromosome

sequences. Each column entry in the table represents the total lengths of

subsequences in Chr a that can be predicted from certain regions in Chr b. So

the first entry for Chr I, “24807”, represents the total length of similar

subsequences that can be found within Chr I. In other words, a total of 24807

- 40 -

nucleotides can be predicted by reference to itself. Similarly, the second entry

“15253” represents the total lengths of similar subsequences in Chr I that can be

predicted from Chr II. In other words, a total of 15253 nucleotides in Chr I can

be encoded with reference to similar subsequences in Chr II. Furthermore, the

first entry for Chr III “12411” is highlighted since that is greater than “11361”

which is the total length of similar subsequences that can be found within itself.

- 41 -

Table 7. Total lengths of subsequences in Chr a that can be predicted from certain regions in Chr b. The bolded value represents self-similarity (i.e., self-
prediction) while the highlighted boxes represent those entries that have greater values than the self-predicted one.

 a
 b

I III IV V VII VIII XI XII XIII XIV XV XVI

Length of Chr a 230208 316617 1531918 576869 1090946 562643 666454 1078175 924429 784333 1091289 948062

Class of Chr a 3 1 3 1 2 1 1 3 2 1 2 2

I 24807 12411 31766 13354 23469 36809 8459 22818 18084 19422 33736 15894

II 15253 17228 58017 35443 56365 22205 9926 36714 29897 40236 43754 40400

III 9964 11361 29904 12292 26207 13925 15414 26790 11836 32780 22574 13006

IV 16241 22604 82152 47444 55529 35110 12097 87680 41181 46787 70059 43633

V 10988 11933 56508 25003 37456 20144 7095 42686 32899 37707 29723 26308

VI 9634 12218 33910 16000 34056 23460 6975 30481 19089 30273 26885 22531

VII 16149 14952 67605 39911 43212 26373 11571 79301 45231 35342 41149 67663

VIII 50536 14030 48346 27718 29262 20263 19659 32142 24432 35704 25680 30953

IX 7623 9438 19237 21098 27053 16160 12521 17685 16718 34194 32314 14307

X 14274 20753 61192 37469 37470 28774 35014 41511 37283 41269 38576 34794

XI 7467 17228 13789 8715 15015 19735 7169 12743 19559 11450 17025 8671

XII 7623 17316 77913 37045 62116 29828 9765 84170 51846 41057 48221 40916

XIII 13193 14127 46460 29155 44821 31372 21718 46768 37573 35588 46740 40699

XIV 13049 28820 53655 39883 39941 27743 13460 55506 31969 22881 49117 24580

XV 25981 16711 73035 35748 46149 24951 13033 64470 51032 51085 37964 55019

XVI 10455 14598 55231 34973 66621 33132 9145 58181 43181 26549 58936 34648

- 42 -

The self-referencing values are bolded in Table 7. All entries that have a

greater number of nucleotides predicted from other chromosome sequences than

the self-referencing value are highlighted. Results can be grouped into three

classes. The first class, consisting of Chr III, Chr XI, Chr XIV, Chr VIII and Chr

V, has high similarities with chromosome sequences other than itself. We can see

that more than half of chromosome sequences have larger cross-referencing

values than the self-referencing value. This implies that a potentially high

compression gain can be obtained if these chromosome sequences employ a

cross-referencing strategy with subsequences obtained from other chromosome

sequences in addition to self-referencing.

The second class consists of Chr XV, Chr XVI, Chr VII and Chr XIII.

The numbers of highlighted entries for Chr XV, Chr XVI, Chr VII and Chr XIII

are 8, 7, 6 and 5 respectively. Although its numbers are not as high as that in the

first class, a potential compression gain is also expected since the cross-

referencing values are still big. As self-referencing is still considered in

compression, an effective cross-referencing strategy should improve the overall

compression ratio.

The last class consists of Chr I, Chr XII and Chr IV. The numbers of

- 43 -

highlighted entries for Chr I and Chr XII are 2 and 1 respectively. There is no

highlighted entry for Chr IV. For Chr I, a total of 50536 nucleotides can be

predicted from Chr VIII. In contrast, only 24807 nucleotides can be self-

referenced within Chr I itself. The number is almost doubled if a reference is

made to Chr VIII. This is consistent with the findings in Figure 7(a). For Chr

XII, a total of 87680 nucleotides can be predicted from Chr IV. This is

comparable to the self-referencing value which is 84170. As the length of Chr

XII is 1078175, these self- and cross-referencing numbers are indeed significant.

For Chr IV, the self-similarity consists of 82152 nucleotides. In contrast, the

largest cross-similarity is 77913 with Chr XII. While this is smaller than the

self-referencing value, the combination of self-referencing and cross-referencing

values should contribute to a better compression.

3.2.1 Location of Similar Subsequences

Besides considering the total length of subsequences that can be

referenced from other chromosome sequences, the distribution of these repetitive

regions within a chromosome sequence is also important. Let the subsequence in

a sequence S that is similar to a subsequence in sequence i be S(i) and the

subsequence in S that is similar to a subsequence in sequence j be S(j). The total

length of subsequences within S that can be referenced from i and j is given by

- 44 -

T=|S(i)|+| S(j)|−|S(i)∩S(j)|. Obviously if these subsequences are well spread out

such that |S(i)∩S(j)| is zero, i.e., they do not overlap in position, T is maximized.

This implies that a high proportion of the nucleotides within S can be predicted

by cross-referencing among different chromosome sequences, which can result in

a high compression gain.

Figure 8 provides a detailed analysis on the locations of similar

subsequences. The similar subsequences are well spread out. This shows the

potential benefits of encoding multiple DNA sequences together. In order to

present the locations of similar subsequences clearly, we only considered those

repeats with scores above 100. Also, the illustration only shows the repeat

lengths which are above 20. Figure 8(a), 8(b) and 8(c) demonstrate the locations

of similar subsequences for the first, the second and the third class respectively.

For self-similarity, only the repetitive regions are marked. Note that the symbol

* next to the chromosome sequences represent those sequences without

significant self-similar subsequence.

In Figure 8(a), we can see that the portions of self-referencing regions in

all the five chromosome sequences are very small, as compared with that of

cross-referencing regions with other chromosome sequences. In the case of Chr

- 45 -

XI, Chr XIV, Chr VIII and Chr V, we cannot even see the self-referencing

subsequences in the figure. Besides, similar subsequences predicted from other

chromosome sequences contribute to different locations. For example, the four

similar subsequences found from Chr X, Chr XIII, Chr VIII and Chr II contribute

to four different areas in Chr XI. Similar observations can be seen from Figure

8(b) about the second class.

Figure 8(c) shows locations of similar subsequences for the third class.

For Chr I, we can see that the portions of cross-referencing regions with either

Chr VIII or Chr XV are much larger than that of self-referencing regions. For

Chr XII, the portions of cross-referencing regions with Chr XIII or Chr IV are

comparable to that of self-referencing regions. For Chr IV, the portions of cross-

referencing regions with Chr XII are comparable to that of self-referencing

regions too.

Figure 8 shows that the cross-referencing regions with other chromosome

sequences are often significant when compared with self-referencing regions

within itself. Also, similar subsequences from different chromosome sequences

contribute to different locations in the current sequence. As a result, our study

shows that it would be advantageous to compress different chromosome

- 46 -

sequences together to be beneficial from both self-chromosomal and cross-

chromosomal similarities.

- 47 -

(a)

(b)

(c)
Figure 8. Locations of similar subsequences for (a) the first class, (b) the second class and (c) the third class. Self-similarity is shown in black color while

cross-similarities with other chromosome sequences are in other colors. The sequence number of the chromosome sequence is marked inside the colored

region. Only significant regions are presented and are drawn on scale with the chromosome sequence.

- 48 -

3.3 Analysis with Cross-chromosomal Predictions

We considered two cases for cross-chromosomal prediction. In the first

case named prediction-2, the prediction is restricted to only two chromosome

sequences including the current chromosome sequence. In the second case

named prediction-16, the prediction is from the current chromosome sequence

and the other 15 chromosome sequences. The self-prediction and cross-

predictions are examined to remove all those overlapping regions and are sorted

to produce a combined list. This combined list is then used to show all the

repetitive regions including both self-chromosomal and cross-chromosomal

repetitions.

Table 8 shows the experimental results. Column 2 and 3 give the class

and the number of bases for a particular chromosome sequence denoted as Chr b

respectively. Chr a in Column 4 is the most similar chromosome sequence with

Chr b in Column 1. In Column 5, the sub-columns (a)(b) and (c)(d) provide the

length of repetitive regions in cross-chromosomal prediction from Chr a (i.e.

prediction-2) and from the other 15 chromosome sequences (i.e. prediction-16)

respectively. The sub-columns (a)(c) and (b)(d) refer to cross-chromosomal and

self-chromosomal predictions respectively.

- 49 -

In prediction-2, the cross-predictions come from another chromosome

sequence that gives the longest similar subsequences. In Column 5(a) and (b), it

is clear that the cross-predictions are always significant, as compared with the

self-predictions. In particular, the cross-predictions are in the range of 5% to

22%. In contrast, the self-predictions are always less than 3.5%. In prediction-

16, the cross-predictions from the other 15 chromosome sequences are in the

range of 12.5% to 32% as listed in Column 5(c), whereas the self-predictions are

always less than 3%. As a result, our study indicates that different chromosome

sequences should be compressed together to take into account both self-similarity

and cross-similarities.

We consider two different ways of using GenCompress in compressing

two chromosome sequences. In the first way, these two chromosome sequences

are compressed separately, i.e., only self-chromosomal similarities are

considered. In the second way, the two chromosome sequences are compressed

together, i.e., both self-chromosomal and cross-chromosomal similarities are

considered. In Table 8, the total number of bits required for storing Chr a and

Chr b without any compression is listed in Column 6(a). For the first case that

considers self-chromosomal similarities only, the total number of bits required by

GenCompress is shown in Column 6(b). In considering both self-chromosomal

- 50 -

and cross-chromosomal similarities, the total number of bits required is shown in

Column 6(c). Column 7(a) shows the number of bits saved in self-chromosomal

similarity case, it is obtained by calculating the difference between Column 6(a)

and Column 6(b). It is obvious that less number of bits is required for

compressing Chr a and Chr b together than that for compressing them separately;

but the time taken for the former case is more than double of the latter case.

Column 7(b) shows the additional saving in bits from cross-chromosomal

repetition which is obtained by comparing Column 6(b) and Column 6(c). In

other words, Column 7(a) is the savings resulting from self-chromosomal

predictions as compared with the no compression case while Column 7(b) is the

savings resulting from cross-chromosomal predictions as compared with no

compression case. Column 7(c) is the savings from cross-chromosomal

predictions as compared with the self-chromosomal predictions.

We can see that there is always extra savings by considering cross-

chromosomal predictions in addition to self-chromosomal predictions. Since the

cross-prediction found between Chr I and Chr VIII is the highest as shown in

Column 5(a), the saving from cross-chromosome predictions is the largest.

While the size of repetitive regions in cross-predictions ranged from 5% to 22%,

their savings in bits are between 9% and 60%.

- 51 -

Table 8. Lengths of cross-chromosomal and self-chromosomal repetitions and the number of bits required/saved in compressing two chromosome sequences

1.
Chr

b

2.
Class

of
Chr

b

3.
Length

of Chr b

4.
Chr

a

5. Repetitive length in terms of the no. of bases (%) 6. Total no. of bits required for
Chr a and Chr b 7. Total no. of bits saved (%) from

Prediction-2 Prediction-16

a. Cross-
predictions

b. Self-
predictions

c. Cross-
predictions

d. Self-
predictions

a.
Without

compression

b.
Compressing

separately

c.
Compressing

together

a. Self-
predictions

b. Cross-
predictions

c. %
improvement

of
(b) over (a)

I 3 230208 VIII 50536
(22.0%)

5526
(2.4%)

74058
(32.2%)

4209
(1.8%) 1585702 1499256 1447264 86446

(5.8%)
138438
(9.6%)

51992
(60.1%)

III 1 316617 XIV 28818
(9.1%)

6416
(2.0%)

54714
(17.3%)

4737
(1.5%) 2201900 2112392 2096936 89508

(4.2%)
104964
(5.0%)

15456
(17.3%)

IV 3 1531918 XII 79909
(5.2%)

44897
(2.9%)

197093
(12.9%)

31532
(2.1%) 5220186 4855360 4815592 364826

(7.5%)
404594
(8.4%)

39768
(11.9%)

V 1 576869 VII 39909
(6.9%)

6859
(1.2%)

94421
(16.4%)

4094
(0.7%) 3335630 3177920 3149392 157710

(5.0%)
186238
(5.9%)

28528
(18.1%)

VII 2 1090946 XVI 66619
(6.1%)

17936
(1.6%)

156422
(14.3%)

5812
(0.5%) 4078016 3881368 3841968 196648

(5.1%)
236048
(6.1%)

39400
(20.0%)

VIII 1 562643 I 36808
(6.5%)

15086
(2.7%)

104628
(18.6%)

6129
(1.1%) 1585702 1499256 1447432 86446

(5.8%)
138270
(9.6%)

51824
(59.9%)

XI 1 666454 X 35013
(5.3%)

3930
(0.6%)

85186
(12.8%)

2655
(0.4%) 2824398 2729104 2720464 95294

(3.5%)
103934
(3.8%)

8640
(9.1%)

XII 3 1078175 IV 87678
(8.1%)

36310
(3.4%)

164488
(15.3%)

27744
(2.6%) 5220186 4855360 4816424 364826

(7.5%)
403762
(8.4%)

38936
(10.7%)

XIII 2 924429 XII 51845
(5.6%)

17079
(1.9%)

117607
(12.7%)

12670
(1.4%) 4005208 3742920 3713616 262288

(7.0%)
291592
(7.9%)

29304
(11.2%)

XIV 1 784333 XV 51084
(6.5%)

8952
(1.1%)

122687
(15.6%)

6396
(0.8%) 3751244 3604120 3566944 147124

(4.1%)
184300
(5.2%)

37176
(25.3%)

XV 2 1091289 IV 70056
(6.5%)

14168
(1.3%)

183165
(16.8%)

7434
(0.7%) 5246414 4973664 4931832 272750

(5.5%)
314582
(6.4%)

41832
(15.3%)

XVI 2 948062 VII 67662
(7.1%)

8658
(0.91%)

145116
(15.3%)

4860
(0.5%) 4078016 3881368 3845376 196648

(5.1%)
232640
(6.0%)

35992
(18.3%)

Average 55495
(7.9%)

15485
(1.8%)

124965
(16.7%)

9856
(1.2%) 3594384 3401007 3366103 193376

(5.7%)
228280
(6.8%)

34904
(23.0%)

- 52 -

We find that cross-chromosomal similarities are always significant as

compared with self-chromosomal similarities. For example, the average

percentage of similar subsequences between two chromosome sequences is about

10% in which 8% comes from cross-chromosomal prediction and 2% from self-

chromosomal prediction. For the 16 chromosome sequences of S. cerevisiae, the

average percentage is about 18% in which 16.8% comes from cross-

chromosomal prediction and 1.2% from self-chromosomal prediction. Therefore,

it would be advantages to compress different chromosome sequences together to

take advantage of cross-chromosomal similarities.

Our experimental results in Table 8 demonstrate that on average an

additional 23% of storage is reduced in cross-chromosomal predictions as

compared with self-chromosomal predictions. Therefore, a high compression

ratio could be obtained by considering both self-prediction and cross-predictions

for the entire set of chromosome sequences.

3.4 Chapter Summary

In this chapter, a detailed study of the sixteen chromosome sequences of S.

cerevisiae has been described. Our study indicated that the length of similar

repeated regions within one chromosome sequence is about 4.5% of the total

- 53 -

sequence length. In contrast, the average percentage of similar subsequences

between two chromosome sequences is about 10%, in which only 2% comes

from the self-chromosome sequence. In characterizing similarities of the sixteen

chromosome sequences, the percentage of similar subsequences is about 18%, in

which only 1.2% comes from the self-chromosome sequence, while the rest is

from the other fifteen sequences. This indicates that it would be highly

advantageous to consider cross-chromosomal similarities in addition to self-

chromosomal similarities in DNA sequence compression.

- 54 -

4 Our proposed multiple sequence compression

algorithm

Cross-chromosomal similarities have found to be as important as self-

chromosomal similarity. However, state-of-the-art compression algorithms work

by finding self-similar subsequences within the current sequence only. In

particular, identical subsequences are encoded by reference to their previous

occurrences to achieve compression. These algorithms thus ignore the cross-

chromosomal similarities completely. We proposed a multiple sequence

compression algorithm that takes both the self-chromosomal and cross-

chromosomal similarities into account. Identical subsequences within a number

of sequences are identified and encoded together to achieve data compression.

One may argue that more sequences would have to be sent if multiple sequence

compression is considered. In fact, researchers always download a complete set

of chromosome sequences to study their characteristics. Thus, multiple sequence

compression can be used.

This chapter is organized as follows. First, an overview about the

proposed compression method will be presented. Second, two components of

our proposed algorithm, namely the DNAComp coder and Arith-2 coder, are

- 55 -

discussed. Finally, we will discuss the performance measures for our proposed

algorithm.

4.1 Overview

Our proposed compression algorithm adopts a similar approach as

DNACompress [3]. In particular, PatternHunter [27] is used for finding

repetitive subsequences from a number of chromosome sequences. A strategy is

then developed to remove the overlapping regions in these repetitive

subsequences. Similar subsequences are then sorted according to their

importance and encoded together. Finally, Arith-2 coder is used to further

minimize the size of the sequences. In the following, the structure of the

encoding and the decoding processes are briefly discussed.

4.1.1 Encoding Processes

The encoding process as shown

in Figure 9 includes two encoders

called DNAComp and Arith-2 encoders.

Firstly, the original file containing the

uncompressed chromosome sequence

En
co

di
ng

 p
ro

ce
ss

es

DNAComp
encoder

Arith-2
encoder

Compressed file
e.g. NC_001133.cmp

Original file
e.g. NC_001133.seq

Figure 9. The encoding processes.

- 56 -

(such as NC_001133.seq) is inputted into the DNAComp encoder. An example

of the input sequence “NC_001133.seq” is shown in Figure 10. Secondly, the

output of the DNAComp encoder is passed to Arith-2 encoder to make a

compressed file. The file size of the compressed file is expected to be smaller

than that of the original file.

4.1.2 Decoding Processes

Figure 11 illustrates details of the decoding process which reverses the

order of the encoding process in Figure 9. After the compressed file is passed

through the two decoders (Arith-2 and DNAComp decoders), the reconstructed

Figure 10. An example of a sequence called NC_001133.seq.

- 57 -

Compressed file
e.g. NC_001133.cmp

D
ec

od
in

g
pr

oc
es

se
s Arith-2

decoder

DNAComp
decoder

Reconstructed file
e.g. NC_001133de.seq

Figure 11. The decoding processes.

file is formed. Due to the use of

lossless mechanism, it is expected that

the reconstructed file in Figure 11 is

exactly the same as the original file in

Figure 9, i.e., NC_001133de.seq is the

same as NC_001133.seq.

4.2 DNAComp coder

DNAComp coder is a core component of our proposed compression

algorithm. Its main function is to identify similar subsequences among a set of

DNA sequences and then encodes these similar subsequences together to achieve

bits savings. The skeleton of the encoder and the decoder of DNAComp will be

introduced below.

- 58 -

4.2.1 Encoder

There are altogether five steps in the DNAComp encoder. These steps are

as follows,

1. Extraction of similar subsequences within a DNA sequence or from a

number of DNA sequences;

2. Ordering of similar subsequences according to their importance;

3. Removal of overlapping similar subsequences;

4. Reordering of non-overlapping similar subsequences according to

their position; and

5. Preparation of final sequences for further compression using Arith-2

coder.

In the first step, similar subsequences among a number of chromosome

sequences are extracted using PatternHunter. Here similar subsequences mean

either approximate repeats or approximate reverse repeats. Also, similar

subsequences can refer to those subsequences found from the current sequence or

from any one of the other chromosome sequences. For example, if there are two

chromosome sequences, we will have results stored at two “aln” files:

o “self.aln”: stores the self-similar subsequences;

o “reference.aln”: stores the cross-similar subsequences found from

another sequence.

- 59 -

In each aln file, information about similar subsequences including the

scores, the direction, the starting and the ending positions of query and subject

sequences is recorded. An example record is shown in Figure 12. The query and

the subject sequences refer to the similar subsequences in the current sequence in

the case of self-referencing (i.e., self.aln). They refer to the reference sequence

and the current sequence respectively in the case of cross-referencing (i.e.,

reference.aln). The scores relate to the similarity between the query and the

subject sequences. High score indicates that they are similar to each other. The

direction can be either ‘plus’ or ‘minus’. The ‘plus’ direction means an

approximate repeat, so the sequence should be read in ascending order. The

‘minus’ direction means a reverse complement repeat, hence the sequence should

be read in reverse direction. The starting and ending position of the subsequence

marks its location in the original sequence. A list is created for storing

information about repetitive records with score over a threshold. The threshold is

set so that only significant similar subsequences are considered by our proposed

compression algorithm.

- 60 -

Figure 12. An example record of NC_001133.aln.

In the third step, each repetitive record in the combined list from the

second step is examined. In particular, overlapping similar subsequences from

two records are trimmed. If the subject sequences in two repetitive records are

overlapped with each other in position, the overlapping part will be kept in the

record with a higher score and be removed in the other record with a lower score.

The rationale behind is to keep a long repetitive length rather than a short one. If

the length of the trimmed repetitive record is less than the threshold after

removing the overlapping part, the repetitive record will be removed from the list.

- 61 -

After removing all the overlapping parts in the similar subsequences,

DNAComp saves the differences between the two similar subsequences. This

step is essential as approximate repeats, rather than exact repeats, are considered

in DNAComp. Thus, operations such as deletion, insertion and substitution

might be required to match the two subsequences (see Section 2.1.1 for details).

Each repetitive record contains two lists, namely an offset list and a base

list, for storing information about the operations. The offset list essentially

marks the relative positions at where the bases are different in the two similar

subsequences. Besides, the symbol ‘0’ in the offset list is used to indicate an

insertion operation. The base list stores the replacement base for a substitution

operation and the inserted base for an insertion operation. The symbol “-” in the

base list is used to indicate a deletion operation. It is not necessary to store the

bases which are deleted in the query sequence, but the relative position must be

stored in the offset list.

Consider a simple example shown above. The query subsequence from

the 10th base to the 34th base and the subject subsequence from the 40th base to

- 62 -

the 65th base are found to be an approximate repeat. This example includes all

the operations - substitution, deletion and insertion.

For example, the base “C” in the fifth position of the query subsequence

is replaced by “A” in the corresponding position of the subject subsequence.

There are two more bases added in the subject subsequence in between the

twelve and the thirteen bases of the query subsequence. The twenty-sixth base

“A” in the query subsequence is deleted in matching to the subject subsequence.

Initially, the base list and the offset list are empty. In matching the query

and the subject subsequences, the first operation is substitution where the base

‘C’ is replaced by the base ‘A’ in the 5th position. So ‘5’ is added to the offset list

for indicating the location of the change and ‘A’ is stored in the base list, i.e.,

Offset list = {5}

Base list = {A}

12345

- 63 -

As relative positioning is used, the 5th position of the query subsequence

is reset so the next position becomes the 1st position now. The second

substitution operation is at the 4th position, so ‘4’ is added to the offset list and

‘C’ is stored in the base list, i.e.,

Offset list = {5, 4}

Base list = {A, C}

Similarly, the third operation is substitution, so the new lists become,

Offset list = {5, 4, 1}

Base list = {A, C, T}

The fourth operation is an insertion. The symbol ‘0’ is first inserted to the

offset list to indicate that a base will be inserted in the subject subsequence. The

1234

1

12

- 64 -

added base is ‘T’ which is to be added at the 2nd position, so ‘2’ is added to the

offset list and ‘T’ is stored in the base list. Thus, the new lists become,

Offset list = {5, 4, 1, 0, 2}

Base list = {A, C, T, T}

The next operation is in insertion where the base to be added is ‘C’ just

next to the previous operation. Hence the two lists are,

Offset list = {5, 4, 1, 0, 2, 0, 1}

Base list = {A, C, T, T, C}

The next operation is a substitution, where the base ‘C’ is replaced by ‘T’,

i.e.,

Offset list = {5, 4, 1, 0, 2, 0, 1, 1}

Base list = {A, C, T, T, C, T}

1

1

- 65 -

Deletion is then required in matching the two subsequences. In particular,

the base ‘A’ is deleted from the query sequence. ‘5’ is added to the offset list

since this is the 5th position after the previous operation, and the symbol ‘-’ is

stored in the base list to indicate a deletion. Hence we have,

Offset list = {5, 4, 1, 0, 2, 0, 1, 1, 5}

Base list = {A, C, T, T, C, T, - }

The final operation is a substitution where the base ‘C’ is based by ‘A’,

i.e.,

Offset list = {5, 4, 1, 0, 2, 0, 1, 1, 5, 6}

Base list = {A, C, T, T, C, T, -, A}

Since the end positions of both query subsequence and subject

subsequence are not marked, it is important to include the offset from the final

operation to the end of the subsequence. The resultant offset list and base list are,

Offset list 5 4 1 0 2 0 1 1 5 6 2
Base list A C T T C T - A

12345

123456

12

- 66 -

Afterwards, the non-overlapping repetitive records are sorted according to

their starting positions. Therefore, redundancy can be removed sequentially from

one end of the sequence to the other end. Finally, similar subsequences are

removed from the sequence to form another sequence that contains non-repetitive

subsequences only. This non-repetitive sequence will be sent to Arith-2 for

further compression. Besides the non-repetitive sequence, Arith-2 will also be

used to encode the offset and the base lists, the starting positions and the

direction of the query and the subject sequences.

4.2.2 Decoder

Basically, DNAComp decoder reverses the operations done in the encoder.

However, the structure of the decoder is much simpler than the DNAComp

encoder. In particular, there is no need to identify similar subsequences among a

number of chromosome sequences. Also, no overlapping detection or sorting is

required to be performed in the decoder.

First, the Arith-2 decoder will send out a sequence containing non-

repetitive records only. Similar subsequences are then needed to be added back

to the non-repetitive sequence sequentially. In the encoder, operations such as

deletion, insertion and substitution to match two subsequences have been

- 67 -

recorded. Thus, this information is used to construct the similar subsequences

which are then added back to the non-repetitive sequence. Note that the addition

of the similar subsequences is done sequentially according to their starting

positions. The original sequence should be reconstructed losslessly after all the

repetitive records have been added.

4.3 Arith-2 coder

Arith-2 stands for two-order arithmetic coder or second order finite-

context arithmetic coder. It is used to further compress the shortened non-

repetitive sequence and the related information. Arithmetic coding [44-47]

replaces a stream of symbols with a single floating-point output number, which is

less than 1 and greater than or equal to 0. It is a lossless compression scheme so

that the original stream of symbols can be uniquely reconstructed. Initially, the

probability of each symbol is assigned. The output number, represented by a

sub-interval of the cumulative probability of the symbol sequence, is formed by

recursively sub-dividing the interval between 0 and 1. Arith-2 is always involved

in DNA-based compression, such as Biocompress-2 and GenCompress, because

it can compress DNA sequence efficiently. The compression gain is higher when

the current base and the base that are two bases apart from the current base are

the same. Indeed, order-2 means the context to be used are the last two symbols.

- 68 -

This seems to correspond to the codons structure of amino-acid in a protein [2,

26]. An adaptive arithmetic coder is used so that the occurrence probabilities of

A, C, G and T in a sequence can be calculated and updated inside the coder. The

source code and document of the arithmetic coder utilized is available from [36-

39].

En
co

di
ng

 p
ro

ce
ss

es

DNAComp
encoder

Arith-2
encoder

Compressed file
e.g. NC_001133.cmp

D
ec

od
in

g
pr

oc
es

se
s Arith-2
decoder

DNAComp
decoder

Reconstructed file
e.g. NC_001133de.seq

Figure 13. The coder.

Original file
e.g. NC_001133.seq

- 69 -

4.4 Performance Measurement

Due to the use of a lossless compression scheme, there is no difference

between the original and the reconstructed DNA sequences. The performance of

our proposed compression algorithm is measured by the execution time, bits per

base (bpb) used and compression gain.

The execution time is counted by adding a timer at the beginning of the

encoding process and the end of the decoding process as shown in Figure 13.

The value of bpb can be calculated by |O|/|I| where |O| is the number of bits for

the compressed file and |I| is the number of bases of the original sequence. The

compression gain is obtained by 1-|O|/2|I| as two bits are required for each base

without compression.

4.5 Chapter Summary

In this chapter, a new multiple sequence compression algorithm has been

proposed to take into account both self-sequence and cross-sequence similarities.

Our proposed algorithm contains the following steps: 1) to search for all the

similar subsequences among a number of sequences that are to be compressed

together; 2) to identify and remove the overlapping subsequences; 3) to form two

lists containing operations and the relative positions that are required in matching

- 70 -

two similar subsequences; 4) to identify the non-repetitive sequences; and 5) to

use an Arith-2 coder to compress the non-repeating sequences, the offset and the

base lists, the starting positions and the direction of the query and the subject

sequences. Then the decoder and the principle of Arith-2 coder have been

introduced briefly. Finally, the performance measures for our proposed

algorithm, including the execution time, bpb used and compression gain have

been discussed

- 71 -

5 Simulation Results

To evaluate the effectiveness of our proposed algorithm, two real datasets

are considered. They are the sixteen chromosome sequences of S. cerevisiae and

the three chromosome sequences of S. pombe. The average length of S.

cerevisiae and S. pombe are 800k and 4200k respectively. Therefore, we can

study the performance of our proposed algorithm on cases where there is a large

number of chromosome sequences and where there is large variation of average

chromosome length. We first present the results on single sequence compression,

which is followed by multiple sequence compression.

5.1 Simulation Results on S. cerevisiae

In this experiment, we consider compressing the sixteen chromosome

sequences of Saccharomyces cerevisiae (S. cerevisiae). These sequences can be

downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/. The average length of S.

cerevisiae is 800k.

5.1.1 Single sequence compression

Table 9 shows the resultant bits per base (bpb) used of our proposed

compression algorithm in compressing each chromosome sequence separately. A

comparative study with gzip [40], Arith [36-39], CTW [7], and GenComp [4-6] is

- 72 -

also performed. Column 1 in Table 9 shows the current chromosome sequence to

be compressed. Column 2 specifies the number of bases in the chromosome

sequence. Column 3 specifies the bpb for gzip. Without any compression, 2 bpb

is required. Thus, the average bpb of 2.32 achieved by gzip is not satisfactory. It

cannot compress, but expand, the size of the sequence. In fact, the result is

expected as gzip is a general purpose compression scheme and does not design to

capture characteristics in a DNA sequence.

 Column 4 of Table 9 shows the bpb for Arith. The average bpb is slightly

less than 2. Note that for cases like Chr I and Chr III, Arith uses more than 2 bpb.

Column 5 shows the results for CTW. Its performance is rather stable as the bpb

for all the chromosome sequences are between 1.94 and 1.95. Column 6 shows

the bpb for the GenCompress. Its performance is the best as the average bpb is

1.91 only. Column 7 shows the bpb for our proposed algorithm. It is slightly

higher than that for the GenCompress.

- 73 -

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16
x 100000

The relationship
between the length and the execution time

CTW

GenComp

proposed

Besides the compressibility indicated by bpb, another important

consideration is the execution time. As DNA is a long sequence, finding

repetitive subsequences is often time-consuming. Table 10 shows the execution

time used by various compression algorithms. We can see that on average, the

execution times of gzip and Arith are very short. They use less than 1 second to

compress the long DNA sequences. In contrast, GenCompress has the longest

executive time. It spends long time in searching for repetitive records, especially

for long sequences such as Chr III, Chr IV, Chr VII and Chr XV. We can see

that the time increases non-linearly for sequences with an average length more

than 800k. Our proposed algorithm uses about 4 seconds, which compares

Figure 14. The relationship between the length and the execution time of the sixteen

chromosomes in S. cerevisiae. The performance of CTW, GenCompress and the

proposed algorithm are repseneted by the line with rhombus, square and triangle

respectively. X-axis marks the length of the chromosome sequences while y-axis

marks the execution time in seconds(s).

- 74 -

favorably with GenComp and CTW. Figure 14 shows the relationship between

the length and the execution time of the sixteen chromosome sequences in S.

cerevisiae. The line with rhombus, square and triangle represent the

performance of CTW, GenComp and the proposed algorithm respectively. In

general, the execution time increases exponentially with the length of the

sequences for GenComp. However, for both CTW and our proposed algorithm,

the execution time increases linearly with the length of the sequences. There is

one exception case for GenComp, the execution time is about 550s for Chr III

which contains about 300K bases. Although Chr III is not a long sequence,

GenComp takes over ten hours to search for similar sequences since less similar

sequences can be found within Chr III (see Figure 6b).

- 75 -

 Table 9. The bpb (bits pre base) of compressing the 16 chromosome sequences in S.
cerevisiae.

cur Length gzip Arith CTW GenComp proposed
I 230208 2.30 2.02 1.95 1.83 1.88
II 813178 2.33 1.98 1.94 1.93 -- --
III 316617 2.33 2.00 1.94 1.91 1.94
IV 1531918 2.31 1.97 1.94 1.88 1.90
V 576869 2.33 1.99 1.95 1.91 1.93
VI 270148 2.34 2.01 1.95 1.95 -- --
VII 1090946 2.33 1.97 1.94 1.91 1.92
VIII 562643 2.32 1.99 1.95 1.91 1.94
IX 439885 2.32 1.99 1.95 1.93 -- --
X 745745 2.32 1.98 1.95 1.93 -- --
XI 666454 2.33 1.98 1.94 1.94 1.96
XII 1078175 2.27 1.98 1.94 1.84 1.86
XIII 924429 2.31 1.98 1.94 1.91 1.93
XIV 784333 2.33 1.98 1.95 1.92 1.94
XV 1091289 2.33 1.97 1.95 1.92 1.94
XVI 948062 2.33 1.97 1.94 1.90 1.92

average 2.32 1.98 1.95 1.91 1.92

Table 10. The execution time (seconds) of compressing 16 chromosome sequences in
S. cerevisiae.

cur Length gzip Arith CTW GenComp proposed
I 230208 0.07 0.15 4.90 26.67 2.05
II 813178 0.24 0.37 16.45 115.68 -- --
III 316617 0.09 0.17 6.69 544.27 1.25
IV 1531918 0.45 0.64 30.75 390.70 9.89
V 576869 0.17 0.27 11.78 54.72 2.46
VI 270148 0.08 0.15 5.57 42.48 -- --
VII 1090946 0.31 0.48 22.00 200.93 5.78
VIII 562643 0.16 0.27 11.57 54.35 2.34
IX 439885 0.13 0.22 9.12 106.53 -- --
X 745745 0.24 0.34 15.12 89.59 -- --
XI 666454 0.19 0.31 13.56 77.88 1.87
XII 1078175 0.31 0.47 21.77 179.18 6.08
XIII 924429 0.27 0.41 18.66 138.80 3.93
XIV 784333 0.23 0.35 16.01 118.27 2.34
XV 1091289 0.31 0.47 22.11 193.48 5.14
XVI 948062 0.27 0.42 19.11 144.46 4.24

average 0.22 0.34 15.32 154.87 3.95

- 76 -

In summary, our proposed algorithm maintains a good balance in

compressibility and execution time. Despite that, single-sequence compression

considers only self-repetition. Although GenComp has the best result of 1.91, it

achieves a saving of 0.09 only as compared with the no-compression case. In the

next section, cross-sequence repetition is considered in a hope to reduce the bpb.

5.1.2 Two-sequence compression

Since the academic version of PatternHunter does not work properly for

Chr II, Chr VI, Chr IX and Chr X, the remaining twelve chromosome sequences

of S. cerevisiae are considered in this part. The first case we considered is the

potential advantage of compressing one chromosome sequence if one more

chromosome sequence is given. Table 11 shows the experimental results of

compressing a sequence by reference to its most similar sequence obtained from

Table 8.

Column 1 of Table 11 shows the chromosome sequence to be compressed

(denoted as “cur”) while Column 2 shows the reference sequence (denoted as

“ref”). In other words, “cur” is compressed by considering both self-repetition

and cross-sequences repetition with “ref”. Column 3 shows the number of bases

in “cur”. Column 4 is the bpb used for single-sequence compression, thus, it

- 77 -

considers self-repetition only. Column 5 is the bpb used for two-sequence

compression in which similar subsequences from the “cur” and the “ref” are

considered. The sixth and the last column list the additional saving in bpb and

the saving percentage (%) respectively. For Chr I, the bpb of compressing itself

alone is 1.8838 while that of compressing Chr I with reference to itself and Chr

VIII is 1.4656. Hence, the saving is around 0.42 bpb (i.e., 22%). In the second

row, the bpb of compressing Chr III with reference to itself and Chr XIV is

1.7853 while that of compressing itself alone is 1.9430, so the saved bpb is

around 0.16 and saving percentage is around 8.1%.

For each chromosome sequence shown in Table 11, we can see that the

bpb is always lower when the current sequence is compressed by considering the

reference sequence in addition to itself. In fact, the additional savings depend on

the similarity between the current and the reference chromosome sequences. An

interesting observation is that the additional savings for the long sequences such

as Chr IV, Chr VII, Chr XII and Chr XV are not too high as compared with that

for the short sequences. Further investigation on the biological significance is

required.

- 78 -

Table 11. The experimental results of compressing a sequence in S. cerevisiae
provided with a reference sequence.

cur ref Length

Without
given ref
sequence

(bpb)

With
given ref
sequence

(bpb)

Additional
saving
(bpb)

Additiona
l saving

(%)

I VIII 230208 1.8838 1.4656 0.4182 22.2%

III XIV 316617 1.9430 1.7853 0.1577 8.1%

IV XII 1531918 1.8964 1.8473 0.0491 2.6%

V IV 576869 1.9286 1.8312 0.0974 5.0%

VII XV 1090946 1.9244 1.8649 0.0595 3.1%

VIII I 562643 1.9397 1.7686 0.1711 8.8%

XI XIII 666454 1.9614 1.9135 0.0479 2.4%

XII IV 1078175 1.8557 1.7859 0.0698 3.8%

XIII XII 924429 1.9270 1.8550 0.0720 3.7%

XIV XV 784333 1.9402 1.8526 0.0876 4.5%

XV IV 1091289 1.9378 1.8666 0.0712 3.7%

XVI VII 948062 1.9204 1.8519 0.0685 3.6%

average 1.9215 1.8074 0.1142 5.9%

In the last row of Table 11, the average bpb of compressing a sequence

alone is 0.11 bpb larger than that of compressing a sequence with reference to

another sequence. Thus, from 1.92 to 1.81, an additional 5.9% savings in bpb

can be achieved.

Figure 15 shows the distribution of self-similarity and cross-similarities

for various chromosome sequences in S. cerevisiae. The dark grey color bar

displays the proportion of similar repetitive subsequence found from the

sequence itself while the light grey color bar shows the proportion of similar

repetitive subsequence found from the reference sequence where the reference

- 79 -

sequence is defined as the most similar sequence as shown in Column 2 of Table

11. For example, in Chr I, the self-similarity is about 18% when the cross-

similarity is about 82%. We can see the repetition found from reference

sequence is always more than 60% of the whole repetitive part.

There are four steps in compressing two sequences, namely finding self-

repetitions, finding cross-repetitions, performing compression in DNAComp

encoder and further compression by Arith-2 encoder. Table 12a and Table 12b

list the execution times (in second) for each individual steps in compressing 2

sequences together in S. cerevisiae. In Table 12a, Column 3 and Column 4

represent the time required for finding repetitions in self sequence and reference

Figure 15. The percentage of self-sequence and corss-sequence similarities in S.

cerevisiae. The dark grey and the light grey color bars indicate the proportion of the

self-similarity and the cross-similarities respectively.

- 80 -

sequence respectively. The time required for the DNAComp encoder and Arith-

2 encoder are shown in Column 5 and Column 6 respectively. The total

encoding time, which is the sum of the time required for each of the four steps, is

listed in the last column of Table 12a. The average encoding time is 8.82

seconds. In Table 12b, the time required for encoding and the decoding are

shown in Column 4 and Column 5 respectively. The total execution time is

listed in Column 6. The average encoding time is 2s more than the decoding time

due to the need to find repetitive sequences.

Next, we consider the compression results in compressing two

chromosome sequences together. In other words, both current and reference

sequences are compressed by cross-referencing. Table 13 lists the results for S.

cerevisiae. Column 1 lists the two chromosome sequences in a group which will

be compressed together. Column 2 shows the total number of bases of a

particular chromosome sequence denoted as Chr. Column 3 and Column 4 list

the number of bases of non-repetitive sequence and the bpb, respectively, when

compressing the two chromosome sequences separately. Thus, 1.8838 bpb and

1.9387 bpb are required respectively for compressing Chr I and Chr VIII alone

and the average bpb is 1.9236. Column 5, Column 6 and Column 7 show

respectively the number of bases of non-repetitive sequence, bpb and execution

- 81 -

time in seconds when the two chromosome sequences are compressed together.

Thus, 1.8020 bpb is required if Chr I and Chr VIII are compressed together. It

takes only 7.5 seconds to compress Chr I and Chr VIII together.

Table 12a. The encoding time(sec) of compressing 2 sequences together in S.
cerevisiae.

cur ref Self-
repetitions

Cross-
repetitions DNAComp Arith-2

Total
Encoding

Time
I VIII 0.86 1.34 1.98 0.15 4.33

III XIV 1.11 1.66 2.02 0.15 4.94
IV XII 3.52 3.77 9.33 0.19 16.80
V IV 1.33 3.42 4.05 0.15 8.95

VII XV 2.31 2.97 5.95 0.17 11.40
VIII I 1.11 1.22 2.09 0.15 4.57
XI XIII 1.33 2.12 2.16 0.16 5.77
XII IV 2.20 3.92 8.32 0.17 14.61
XIII XII 1.78 2.86 5.02 0.16 9.83
XIV XV 1.34 2.22 3.34 0.15 7.05
XV IV 2.09 1.78 3.48 0.17 7.52
XVI VII 1.81 3.08 5.05 0.16 10.10

average 1.73 2.53 4.40 0.16 8.82

Table 12b. The execution time(sec) including encoding and decoding time of
compressing 2 sequences together in S. cerevisiae.

cur ref Length Encoding
Time

Decoding
Time

Total
Time

I VIII 230208 4.33 3.18 7.50
III XIV 316617 4.94 6.73 11.67
IV XII 1531918 16.80 10.38 27.18
V IV 576869 8.95 4.10 13.05

VII XV 1090946 11.40 14.28 25.68
VIII I 562643 4.57 3.16 7.73
XI XIII 666454 5.77 5.68 11.45
XII IV 1078175 14.61 6.01 20.62
XIII XII 924429 9.83 7.01 16.84
XIV XV 784333 7.05 7.01 14.06
XV IV 1091289 7.52 9.06 16.57
XVI VII 948062 10.10 5.49 15.59

average 8.82 6.84 15.66

- 82 -

Table 13. The experimental results of compressing 2 sequences in S. cerevisiae together.

Chr Total no. of
bases

Compressing separately Compressed together

The no. of bases of
non-repetitive sequence bpb

The no. of bases of
non-repetitive

sequence
bpb Time(s)

I 230208 205382 1.8838
716107 1.8020 7.5 VIII 562643 542351 1.9387

 Total: 792851 Total: 747733 Average: 1.9236
III 316617 305230 1.9430

1042785 1.8957 11.7 XIV 784333 761426 1.9402
 Total: 1100950 Total: 1066656 Average: 1.9410

IV 1531918 1449733 1.8964
2403013 1.8508 27.2 XII 1078175 993958 1.8557

 Total: 2610093 Total: 2443691 Average: 1.8798
V 576869 551827 1.9286

1973051 1.8786 13.1 IV 1531918 1449733 1.8964
 Total: 2108787 Total: 2001560 Average: 1.9053

VII 1090946 1047675 1.9244
1919695 1.8907 25.7 XV 1091289 913386 1.9378

 Total: 2182235 Total: 1961061 Average: 1.9306
VIII 562643 542351 1.9387

716107 1.8020 7.8 I 230208 205382 1.8838
 Total: 792851 Total: 747733 Average: 1.9236

- 83 -

Chr Total no. of
bases

Compressing separately Compressed together
The no. of bases of

non-repetitive sequence bpb The no. of bases of non-
repetitive sequence bpb Time(s)

XI 666454 659274 1.9614
1527006 1.9214 11.5 XIII 924429 886815 1.9270

 Total: 1590883 Total: 1546089 Average: 1.9417
XII 1078175 993958 1.8557

2403013 1.8508 20.6 IV 1531918 1449733 1.8964
 Total: 2610093 Total: 2443691 Average: 1.8798

XIII 924429 886815 1.9270
1849416 1.8554 16.8 XII 1078175 993958 1.8557

 Total: 2002604 Total: 1880773 Average: 1.8893
XIV 784333 761426 1.9402

1777731 1.9022 14.1 XV 1091289 1053289 1.9204
 Total: 1875622 Total: 1814715 Average: 1.9287

XV 1091289 1053289 1.9378
1346647 1.8840 16.6 IV 1531918 305230 1.8964

 Total: 2623207 Total: 1358519 Average: 1.9285
XVI 948062 913386 1.9204

1919379 1.8907 15.6 VII 1090946 1047675 1.9244
 Total: 2039008 Total: 1961061 Average: 1.9225

average 1860765 1664440 1.9162 1632937 1.8687 15.7

- 84 -

For all the cases shown in Table 13, it is always beneficial to compress

two sequences together. In the last row of Table 13, an average of 1.8687 bpb is

achieved if two chromosome sequences are compressed together. It is smaller

than that of 1.9162 bpb of separately compression case. The average number of

bases of non-repetitive sequence in the separately compression case is about

1.66x106. However, it is about 1.63 x106 when the two sequences are

compressed together. Thus there is a reduction of about 32k bases. By

comparing the average bpb of compressing two chromosome sequences

separately in the Column 4 with that of compressing those sequences together,

the performance of the compression together case is consistently better than that

of compressing separately case. Moreover, the execution time is only 15.7s on

average for the twelve chromosome sequences with an average of 800k bases.

The execution time of more than 10s is for the case when the total lengths in the

two most similar chromosome sequences have more than 1800k bases. Thus the

reduction in bpb does not result in a significantly long execution time.

5.1.3 Multiple sequence compression

From Table 13, we can see the bpb of compressing two chromosome

sequences together is consistently better than that of compressing them

separately. The case of compressing a number of chromosome sequences

- 85 -

together is considered. Table 14 shows the experimental results. Column 1

indicates the number of chromosome sequences that are compressed together

while Column 2 shows the respective chromosome sequence. Column 3 lists the

total number of bases of the particular chromosome sequence. Column 4 and

Column 5 indicate the number of non-repetitive bases and the bpb used

respectively if each of the chromosome sequence is compressed separately.

Column 6 and Column 7 show respectively the number of non-repetitive bases

and the bpb if those sequences are compressed together. Column 8 and Column

9 list respectively the additional savings and the execution time in seconds. We

can see that the bpb of compressing various chromosome sequences always is

smaller than that of compressing them separately. On average, there is an

additional 4.5% savings in bpb. The execution time is around 37 seconds. Thus,

the savings can be achieved without significantly increasing the execution time.

The grouping strategy for choosing the chromosomes sequences that are

to be compressed together are as follows. In the first step, we choose a similar

chromosome sequences pair from Table 13. In the second step, we find another

similar chromosomes sequences pair where one of them is the already selected

chromosome sequence in the first step. For example, the pair consisting Chr IV

and Chr XII is selected first in Table 13. To include more chromosome

- 86 -

sequences, we search chromosome sequences that are similar to either Chr IV or

Chr XII. As a result, Chr V and Chr XV are founded. To include more

chromosome sequences in a group, the second step can be repeated.

- 87 -

Table 14. The experimental results of compressing 3 to 6 chromosome sequences in S. cerevisiae together.

Chr Total no. of
bases

Compressing separately Compressed together
The no. of bases
of non-repetitive

sequence
bpb

The no. of bases
of non-repetitive

sequence
bpb Additional

Saving (%) Time(s)

3

IV 1531918 1449733 1.8964

2926331 1.8378 4.40% 27.9
V 576869 551827 1.9286

XII 1078175 993958 1.8557
 Total: 3186962 Total: 2995518 Average: 1.8885

3

IV 1531918 1449733 1.8964

3444430 1.8361 4.75% 32.4
XII 1078175 993958 1.8557

XV 1091289 1053289 1.9378

 Total: 3701382 Total: 3496980 Average: 1.8967

4

IV 1531918 1449733 1.8964

3967748 1.8450 4.16% 38.3
V 576869 551827 1.9286

XII 1078175 993958 1.8557

XV 1091289 1053289 1.9378

 Total: 4278251 Total: 4048807 Average: 1.9010

4

IV 1531918 1449733 1.8964

4168872 1.8556 3.59% 37.4
XII 1078175 993958 1.8557

XIV 784333 761426 1.9402

XV 1091289 1053289 1.9378

 Total: 4485715 Total: 4258406 Average: 1.9044

- 88 -

5

III 316617 305230 1.9430

4450231 1.8415 4.72% 40.5

IV 1531918 1449733 1.8964

XII 1078175 993958 1.8557

XIV 784333 761426 1.9402

XV 1091289 1053289 1.9378

 Total: 4802332 Total: 4563636 Average: 1.9069

5

III 316617 305230 1.9430

4020269 1.8464 5.34% 34.6

IV 1531918 1449733 1.8964

V 576869 551827 1.9286

XIV 784333 761426 1.9402

XV 1091289 1053289 1.9378

 Total: 4301026 Total: 4121505 Average: 1.9226

6

III 316617 305230 1.9430

4973549 1.8398 4.79% 46.4

IV 1531918 1449733 1.8964

V 576869 551827 1.9286

XII 1078175 993958 1.8557

XIV 784333 761426 1.9402

XV 1091289 1053289 1.9378
 Total: 5379201 Total: 5115463 Average: 1.9092

average 4304981 4085759 1.9113 3993061 1.8432 4.5% 36.8

- 89 -

5.2 Simulation Results on S. pombe

In this experiment, we consider testing our proposed algorithm on another

real dataset. The three chromosome sequences of Schizosaccharomyces pombe

(S. pombe) are tested. S. pombe is a species of yeast. It is often used as a model

organism in molecular and cell biology. These sequences can be downloaded

from ftp://ftp.ncbi.nlm.nih.gov/genomes/. Note that the average length of S.

pombe is 4200k, which is significantly longer than that of S. cerevisiae. Thus,

the long length would increase the compression time considerably as it would

take much longer time to search for the repetitive records in the sequences.

5.2.1 Single sequence compression

Table 15 lists the bits per bases (bpb) of the three chromosome sequences

of S. pombe. Column 1 and Column 2 denote the chromosome sequence and its

length respectively. Column 3, Column 4, Column 5 and Column 6 show

respectively the bpb for the gzip, Arith, CTW, and our proposed algorithm.

Similar to the case of S. cerevisiae, gzip uses an average of 2.3 bpb that expands

the sequences. The Arith and CTW have stable performances which use 1.95

and 1.93 bpb respectively for all the three chromosome sequences. Our proposed

algorithm uses an average of 1.90 bpb which is the lowest among the four

algorithms. Note that the execution time of GenCompress is over 10 hours.

- 90 -

Since it is not practical to compress and decompress a file over 1 hour, the

experiment for GenCompress is terminated manually.

To sum up, the proposed scheme performs comparably with other DNA

oriented compression schemes. In single sequence compression case, only self-

repetition is considered. From the results, we can see that if only long-term

correlation in the current sequence is considered, the compression gain is not

high. From 2 to 1.9 bpb, the compression gain is only about 5%. Therefore, an

effective way for characterizing DNA sequences is much desirable to achieve

further savings.

Table 15. The bpb (bits pre base) of compressing the 3 chromosome sequences in S.
pombe.

cur Length gzip Arith CTW proposed
I 5570797 2.31 1.95 1.93 1.92
II 4468099 2.32 1.95 1.93 1.91
III 2456786 2.28 1.95 1.93 1.89

average 2.30 1.95 1.93 1.90

Table 16. The execution time (seconds) of compressing the 3 chromosome sequences
in S. pombe.

cur Length gzip Arith CTW proposed
I 5570797 1.61 2.36 115.99 53.16
II 4468099 1.30 1.87 94.51 44.13
III 2456786 0.70 1.10 52.23 27.95

average 1.20 1.78 87.57 41.75

- 91 -

5.2.2 Two-sequence compression

Table 17 shows the experimental results of compressing a sequence by

reference to its most similar sequence. Note that “cur” represents the

chromosome sequence to be compressed. Its most similar sequence is

represented as “ref”. Column 3 shows the number of bases in the current

sequence. Column 4 is the bpb of compressing the current sequence alone, i.e.

without considering similar subsequences from the reference sequence. This is

the same as the last column in Table 15. Column 5 gives the bpb of compressing

a current sequence by considering similar subsequences from the current

sequence as well as reference sequence. Column 6 and Column 7 list the

additional saving in bpb and percentage (%) respectively.

Table 17. The experimental results of compressing a sequence in S. pombe provided
with reference sequence.

cur ref Length

Without
given ref
sequence

(bpb)

With
given ref
sequence

(bpb)

Additional
saving
(bpb)

Additional
saving

(%)

I II 5570797 1.9176 1.8857 0.0318 1.66%
II I 4468099 1.9074 1.8678 0.0397 2.08%
III II 2456786 1.8894 1.8069 0.0825 4.37%

average 4165227 1.9048 1.8535 0.0513 2.69%

- 92 -

From Table 17, we can see that the bpb is always smaller when the

current sequence is compressed by considering one more sequence in addition to

itself. The actual savings depend on the length of similar subsequences between

the current sequence and the reference sequence. On average there is 0.05 bpb

saving in using one more reference sequence. Although the additional saving in

S. pombe is not as high as that in S. cerevisiae, the actual file size reduced in the

chromosome sequences of S. pombe is larger than that of S. cerevisiae due to the

long sequence length.

Figure 16 illustrates the distribution of self-similarity and cross-

similarities for the three chromosome sequences of S. pombe. The dark grey

color bar displays the proportion of similar repetitive subsequence found from

itself while the light grey color bar shows the proportion of similar repetitive

subsequence found from the reference sequence. We can see the repetition found

from the reference sequence is always more than 50% of the whole repetitive

part. Thus, the combination of self-similarity and cross-similarities should lower

the bpb used.

- 93 -

As can be seen from Table 17 and Figure 16, the combination of self-

repetition and cross-repetition should have positive effect on compression gain.

Table 18 lists the results of compressing two chromosome sequences together.

Column 1 lists the two chromosome sequences in a group which will be

compressed together. Column 2 shows the length of the particular chromosome

sequences and Column 3 shows the bpb of compressing the chromosome

sequence in Column 1 alone. Thus, 1.9176 bpb and 1.9074 bpb are required for

compressing Chr I and Chr II alone respectively. Column 4 shows the bpb when

the two chromosome sequences are compressed together, so 1.8954 bpb is

required if Chr I and Chr II are compressed together. The final column lists the

execution time for compressing the two chromosome sequences in seconds. It

takes about 92 seconds to compress Chr I and Chr II together.

Figure 16. The percentage of self-sequence and corss-sequence similarities in S.

pombe. The dark grey and the light grey color bars indicate the proportion of the

self-similarity and the cross-similarities respectively.

- 94 -

Table 18. The experimental results of compressing 2 sequences in S. pombe
together.

Chr Total no. of
bases

Compressing
separately Compressed together

bpb bpb Time(s)
I 2456786 1.9176

1.8954 92.0 II 4468099 1.9074
 Total: 6924885 Average: 1.9110

II 4468099 1.9074
1.8954 75.8 I 2456786 1.9176

 Total: 6924885 Average: 1.9110
III 5570797 1.8894

1.8718 156.0 II 4468099 1.9074
 Total: 10038896 Average: 1.8974

average 7962889 1.9078 1.8875 107.9

For all the cases in Table 18, it is always beneficial to compress two

sequences together. An average of 1.8875 bpb is required to compress two

chromosome sequences together. It is smaller than the average bpb in separated

compression case. Although a reduction of 0.0203 bpb seems to be small, the

average chromosome sequence length is 8000k bases in S. pombe. Thus, a small

drop in bpb can significantly decrease the resultant file size. For example, with

reduction of 0.01 bpb, 40,000 bits can be reduced for a sequence length with

4000k bases while only 8000 bits can be reduced for a sequence length with 800k

bases. Moreover, the execution time is about 108s on average for these long

chromosome sequences. The execution time of compressing Chr I and Chr II is

around 92s because the total number of bases in these two sequences is 10,000k.

Therefore, the execution time is in direct proportion to the number of bases.

- 95 -

5.2.3 Multiple sequence compression

The experimental results of compressing three chromosome sequences of

S. pombe together are listed in Table 19. The average bpb in compressing

separately is 1.9048 while that in compressing together is 1.8780. Thus an

additional saving of 3.22% is achieved. The time taken for compression is 166.3

seconds as the total number of bases involved is 12,500k.

5.3 Chapter Summary

The performance of our proposed multiple sequence compression

algorithm has been evaluated using two real datasets. They are the sixteen

chromosome sequences of S. cerevisiae and the three chromosome sequences of

S. pombe. The results indicate that the multiple sequence compression strategy

can always outperform the single sequence compression strategy as the bit per

base used can be reduced by taking into account both self-sequence and cross-

sequence similarities. The execution time does not increase significantly when

Table 19. The experimental results of compressing 3 sequences in S. pombe
together.

Chr Total no. of
bases

Compressing
separately Compressed together

bpb Additional
Saving (%) bpb Time(s)

3 I 2456786 1.9176

3.22% 1.8780 166.3
II 4468099 1.9074
III 5570797 1.8894

 Total:
12495682

Average:
1.9084

- 96 -

compressing a number of sequences together. From the experiment results, we

can see the average additional saving in bpb is about 6% in S. cerevisiae if a

chromosome sequence is compressed with reference to the most similar

chromosome sequence. Also, the percentage of cross-sequence similarities is

always more than 60% while that of the self-sequence similarity is less than 40%.

The bpb of compressing three or more chromosome sequences is always lower

than that of compressing each chromosome sequence separately. Therefore, we

can see the benefit of multiple sequence compression.

- 97 -

6 Conclusions & Future Work

The compression gain of state-of-the-art DNA compression schemes is

not large due to the fact that they search only similar subsequences within the

current sequence. In other words, the cross-chromosomal similarities are

completely ignored. The objective of this work was to exploit the uses of cross-

sequence similarities in compressing a number of sequences together.

We have investigated similarities between the sixteen chromosome

sequences in S. cerevisiae and the three chromosome sequences in S. pombe.

Although cross-sequence similarities have been recognized and exploited in

many applications, we have quantified it here for the first time with a view to an

efficient multiple DNA sequence compression. A detailed similarity analysis

including the length and location of similar subsequences between chromosome

sequences has been performed. In particular, the percentage of cross-sequence

similarities is always over 55% and that of self-sequence similarity always under

45% in both S. cerevisiae and S. pombe. While current DNA compression

considers only repetitions found within the sequence itself, our study implies that

it would be highly advantageous to compress different chromosome sequences

together.

- 98 -

A multiple sequence compression algorithm has been proposed to take

into account the self-sequence and the cross-sequence similarities. The proposed

algorithm first searches for all the similar subsequences among a number of

sequences. Then the overlapping regions in these similar subsequences are

removed to form a list containing non-overlapping similar subsequences.

Afterwards, the similar subsequences are removed to form a non-repetitive

sequence for further compression by an arithmetic coder. Information such as

the operations needed for matching two similar subsequences is also compressed

by the arithmetic coder.

Our proposed multiple sequence compression algorithm was tested on

two real datasets: S. cerevisiae and S. pombe. Our experimental results showed

that the bpb of compressing two or more chromosome sequences together is

lower than that of compressing each chromosome sequence separately.

Therefore, it is always advantageous to compress a number of sequences together

to benefit from both self-sequence similarity and cross-sequence similarities.

Our proposed algorithm is also efficient as the execution time does not increase

significantly, even for long sequences. Over the past twelve years of research

into DNA compression, the improvement of the average bpb has been only about

0.06. However, the experimental results on average for our proposed algorithm

- 99 -

shows an improvement of 0.11bpb in S. cerevisiae when two chromosome

sequences are compressed together.

Our future work is to extend this study to the DNA sequences of other

species. For example, it is well known that monkeys and humans are closely

related species. In fact, the monkey genome is more than 95% similar to the

human genome [33-34], so similarity in DNA sequences among different species

should be explored for an efficient multiple sequence compression. As shown in

Table 4, the average bpb that can be saved for the five sequences in humans is

0.32. Since similarities exist between multi-species sequences, additional bpb

can be saved with multiple sequence compression. To implement multiple

sequence compression with different species, the first step is to conduct a

similarity study between the sequences from different species, such as that of

chimpanzees and humans. The lengths and locations of the repetitive

subsequences can be explored. The second step would be to group similar

sequences pairs and the final step would be to compress with those similar pairs

together.

Although both S. cerevisiae and S. pombe are yeasts, their chromosome

sequences have similarities and dissimilarities. In particular, both species share

- 100 -

genes with humans that they do not share with each other. For example, S.

pombe contains the same heterochromatin genes as humans, while S. cerevisiae

does not. Our future direction is to investigate how this information can be

incorporated effectively into our multiple sequence compression algorithm.

- 101 -

References

[1] T. Matsumoto, K. Sadakane, H. Imai and T. Okazaki, “Can General-Purpose

Compression Schemes Really Compress DNA Sequences?”, Currents in

Computational Molecular Biology, pp.76-77, 2000.

[2] B.Behzadi and F. Le Fessant, “DNA Compression Challenge Revisited”,

Symposium on Combinatorial Pattern Matching (CPM'2005), pp. 190–200,

June 2005.

[3] X. Chen, M. Li, B. Ma and J. Tromp, “DNACompress: Fast and Effective

DNA Sequence Compression”, Bioinformatics, vol. 18, no. 12, pp. 1696-

1698, 2002.

[4] X. Chen, S. Kwong and M. Li, “A Compression Algorithm for DNA

Sequences and Its Applications in Genome Comparison”, The 10th

Workshop on Genome Informatics (GIW’99), pp 51-61, Tokyo, Japan, 1999.

[5] X. Chen, S. Kwong and M. Li, “A Compression Algorithm for DNA

Sequences”, IEEE Engineering in Medicine and Biology Magazine, vol.

20(4), pp. 61-66, Jul/Aug 2001.

- 102 -

[6] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney and H. Zhang, “An

Information-Based Sequences Distance and Its Application to Whole

Mitochondrial Genome Phylogeny”, Bioinformatics, vol. 17(2), pp. 149-

154, 2001.

[7] T. Matsumoto, K. Sadakane and H.Imai, “Biological Sequence Compression

Algorithms”, Genome Informatics Workshop, Universal Academy Press, vol.

11, pp. 43-52, 2000.

[8] S. Grumbach and F. Tahi, “A New Challenge for Compression Algorithms:

Genetic Sequences”, Journal of Information Processing and Management,

vol. 30, pp.857-866, 1994.

[9] E. Rivls, J,P. Delahayem M. Dauchet and O. Delgrange, “A Guaranteed

Compression Scheme for Repetitive DNA Sequences LIFL”, Université des

Science et Technologies de Lille, Tech, Rep. IT-95-285, Nov 1995.

[10] E. Rivls, J,P. Delahayem M. Dauchet and O. Delgrange, “A Guaranteed

Compression Scheme for Repetitive DNA Sequences”, in Proc. Data

Compression Conf. (DCC-96), Snowbird, UT, pp. 453, 1996.

[11] Chang C. H., “DNAC: A Compression Algorithm for DNA Sequences by

Non-overlapping Approximate Repeats”, Master Thesis, 2004.

- 103 -

[12] I. E. G. Richardson, “H.264 and MPEG-4 Video Compression – Video

Coding for Next-generation Multimedia”, John Wiley & Sons, ISBN 0-470-

84837-5, 2003.

[13] Y. Wang, J. Ostermann and Y. Q. Zhang, “Video Processing and

Communications”, Prentice Hall, ISBN 0-13-017547-1, 2002.

[14] GenBank Overview: http://www.ncbi.nlm.nih.gov/Genbank/index.html

[15] The EMBL Nucleotide Sequence Database: http://www.ebi.ac.uk/embl/

[16] DDBJ Homepage: http://www.ddbj.nig.ac.jp/Welcome-e.html

[17] DNA Sequence Alignment: http://michael.dipperstein.com/dna

[18] "The Inquiry into BSE and Variant CJD in the United Kingdom", copyright

held by Crown Copyright.

[19] D.A. Huffman, “A Method for the Construction of Minimum-redundancy

Codes”, In Proc. IRE, vol.40, pp. 1098-1101, Sept 1952.

[20] A. Lempel and J. Ziv, “On the Complexity of Finite Sequences”, IEEE

Trans. Inform. Theory, vol. 22(1), pp. 75-81, 1976.

- 104 -

[21] K. Sadakane, T. Okazaki and H. Imai, “Implementing the Context Tree

Weighting Method for Text Compression”, Proc. Of IEEE Data

Compression Conference, 2000.

[22] S. Grumbach and F. Tahi, “Compression of DNA Sequences”, In Data

compression conference, pp. 340-350. IEEE Computer Society Press, 1993.

[23] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data

Compression”, IEEE Trans. Inform. Theory, vol. IT-23, pp.337-343, May

1977.

[24] I. Tabus, G. Korodi and J. Rissanen, “DNA Sequence Compression using the

Normalized Maximum Likelihood Model for Discrete Regression”, in Proc.

Data Compression Conf. (DCC-2003), Snowbird, UT, pp.253-262, 2003.

[25] G. Korodi and I. Tabus, “An Efficient Normalized Maximum Likelihood

Algorithm for DNA Sequence Compression”, ACM Trans. Inf. Syst., vol. 23,

no. 1, pp. 3-34, Jan 2005.

[26] A. J. Pinho, A. J. R. Neves, C. A. C. Bastos and P. J. S. G. Ferreira, “A

Three-State Model for DNA Protein-Coding Regions”, IEEE Tran. on

Biomed. Eng. vol. 53, no. 11, Nov 2006.

[27] B. Ma, J. Tromp and M. Li, “PatternHunter - Faster and More Sensitive

Homology Search”, Bioinformatics. vol. 18, pp. 440-445, 2002.

- 105 -

[28] BLAST Overview: http://www.ncbi.nlm.nih.gov/blast/blast_overview.shtml

[29] DB2 Universal Database:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.i

bm.db2.ii.doc/opt/c0007271.htm

[30] Sequence Similarity Search – BLAST: http://blast.genome.jp/

[31] Bioinformatics Solutions Inc.:

http://www.bioinformaticssolutions.com/products/ph

[32] M. Ruvolo, “Molecular phylogeny of the hominoids: inferences from

multiple independent DNA sequence data sets”, Mol Biol Evol 14 (3),

pp.248-65.

[33] J. W. Thomas et al., “Comparative analyses of multi-species sequences from

targeted genomic regions.” Nature 424, pp. 788-793, 2003.

[34] Tarjei S. Mikkelsen et al., “Initial sequence of the chimpanzee genome and

comparison with the human genome.” Nature, vol. 437, pp.69-87, 2005.

[35] Wentian Li, Gustavo Stolovitzky, Pedro Bernaola-Galvan and Jose L. Oliver,

“Compositional Heterogeneity within, and Uniformity between, DNA

Sequences of Yeast Chromosomes”, Genome Research 8, pp. 916-928, 1998.

- 106 -

[36] FastAC: Arithmetic Coding Implementation

http://www.cipr.rpi.edu/~said/FastAC.html

[37] Amir Said, “Arithmetic Coding” in Lossless Compression Handbook, (K.

Sayood, Ed.), Academic Press, San Diego, CA, 2003.

[38] Amir Said, “Introduction to Arithmetic Coding Theory and Practice”,

Hewlett-Packard Laboratories Report, HPL-2004-76, Palo Alto, CA, April

2004.

[39] Amir Said, “Comparative Analysis of Arithmetic Coding Computational

Complexity”, Hewlett-Packard Laboratories Report, HPL-2004-75, Palo

Alto, CA, April 2004.

[40] The gzip home page: http://www.gzip.org/

[41] E. N. Trifonov and J. L. Sussman, “The pitch of chromatin DNA is reflected

in its nucleotide sequence,” Proc. Natl. Acad. Sci. USA, vol. 77, no. 7, pp.

3816–3820, July 1980.

[42] Paulo J. S. G. Ferreira, Ant´onio J. R. Neves, Vera Afreixo and Armando J.

Pinho, “Exploring Three-Based Periodicity for DNA Compression and

Modeling”, IEEE ICASSP, vol. V, pp. 877-880, 2006.

- 107 -

[43] The GeNML homepage: http://www.cs.tut.fi/~tabus/genml/results.html

[44] Ida M. Pu., “Fundamental Data Compression”, Butterworth-Heinemann,

Chapter 6: Arithmetic coding, 2006.

[45] Mark N. and Jean-Loup G., “The Data Compression Book”, 2nd Ed., M&T

Books, Chapter 5: Huffman One Better: Arithmetic Coding, 1996.

[46] David S., “Data Compression”, Springer, Section 2.14: Arithmetic Coding,

1997.

[47] James A. S., “Data Compression methods and theory”, Computer science

press, Section 2.9 Arithmetic Codes, 1988.

[48] Manzini G. and Rastero M., “A simple and fast DNA compressor. Software:

Practice and Experience”, vol. 34(14), pp. 1397-1411, 2004.

[49] Willems F. M. J., Shtrakov Y. M. and Tjalkens T. J., “The Context Tree

Weighting Method: Basic Properties”, IEEE Trans. Inform. Theory, IT-41(3),

pp 653-664, 1995.

[50] Powell et al., D.R. Powell, D.L. Dowe, L. Allison and T.I. Dix,

“Discovering simple DNA sequences by compression”, In: Hawaii, Pacific

Symposium on Biocomputing (1998b), pp. 597–608. 1998.

- 108 -

[51] Milosavljevic and Jurka, A. Milosavljevic and J. Jurka, “Discovering simple

DNA sequences by the algorithmic significance method”, Comp. Appl.

BioSci., vol. 94, pp. 407-411, 1993.

[52] Waterman, M.S., “Mathematical Methods for DNA Sequences”, CRC Press.

[53] Huffman, D.A., “A method for the construction of minimum-redundancy

codes”, In: Proc. IRE volume 40, pp. 1098–1101.

[54] Arquès, D.G. and Michel, C.J., “Periodicities in coding and noncoding

regions in genes”, Journal of Theoretical Biology 143, pp. 307–318.

[55] Oliver, S.G. et al., “The complete DNA sequence of yeast chromosome III”,

Nature, vol. 357, pp. 38–46.

[56] R. Curnow and T. Kirkwood, “Statistical analysis of deoxyribonucleic acid

sequence data-a review,” J. Royal Statistical Soc., vol. 152, pp. 199-220,

1989.

[57] E.J. Gardner, M.J. Sinnoms, and D.P. Snustad, Principles of Genetics, 8th ed.

New York: Wiley, 1991.

[58] K. Lanctot, M. Li, and E.H. Yang, “Estimating DNA sequence entropy”, in

Proc. SODA 2000.

- 109 -

[59] A. Lempel and J. Ziv, “Compression of individual sequences via variable-

rate coding,” IEEE Trans. Inform. Theory, vol. 24, pp. 530-536, 1978.

[60] D. Loewenstern and P. N. Yianilos. Significantly lower entropy estimates

for natural DNA sequences. Computational Biology, 6(1):125–142, 1999.

[61] A. Milosavjevic, “Discovery by minimal length encoding: A case study in

molecular evolution,” Mach. Learn., vol. 12, pp. 68-87, 1993.

[62] I.H. Witten, R. Neal, and J.G. Cleary, “Arithmetic coding for data

compression,” Commun. ACM, vol. 30, pp. 52-541, Jun. 1987.

[63] H.E. Williams and J. Zobel, “Compression of Nucleotide Databases for Fast

Searching,” Computer Applications in the Biosciences, vol. 13, no. 5, pp.

549-554, 1997.

[64] L. Stern, L. Allison, R. L. Coppel, and T. I. Dix., “Discovering patterns in

plasmodium falciparum genomic DNA”, Molecular & Biochemical

Parasitology, vol. 118, pp. 175–186, 2001.

[65] D. R. Powell, L. Allison, and T. I. Dix., “Modelling alignment for non-

random sequences”, Advances in Artificial Intelligence, pp. 203–214, 2004.

[66] A. Hategan and I. Tabus., “Protein is compressible”, NORSIG, pp. 192–195,

2004.

- 110 -

[67] J. G. Cleary and I. H. Witten., “Data compression using adaptive coding and

partial string matching”, IEEE Trans. Comm., COM-32(4), pp. 396–402,

April 1984.

[68] L. Allison, T. Edgoose, and T. I. Dix., “Compression of strings with

approximate repeats”, ISMB, pp. 8–16, 1998.

[69] A. Apostolico and S. Lonardi. “Compression of biological sequences by

greedy off-line textual substitution”, DCC, pp. 143–152, 2000.

[70] D. Adjeroh and F. Nan., “On compressibility of protein sequences”, DCC,

pp. 422-434, 2006.

[71] Galvan P.B., Carpena P., Roldan R.R., and Oliver J.L., “Study of Statistical

Correlations in DNA Sequences”, Gene, vol. 300, no. 1-2, pp. 105–115,

2002.

[72] Buldyrev S.V.,Goldberger A.L.,Havlin S., et al., “Long-Range Correlation

Properties of Coding and Noncoding DNA Sequences: GenBank Analysis,”

Phys.Rev.E, vol. 51, no.5, pp. 5084–5091, 1995.

[73] Chakravarthy N, Spanias A, Iasemidis LD, et al., “Autoregressive Modeling

and Feature Analysis of DNA Sequences”, EURASIP Journal on Applied

Signal Processing, Jan. 2003.

- 111 -

[74] Zhenqiang Tan, Xia Cao, Beng Chin Ooi, and Anthony K. H. Tung., “The

ed-tree: An index for large dna sequence databases”, ssdbm, 00:151, 2003.

[75] Yong Zhang, Rahul Parthe, and Don Adjeroh. “Lossless compression of dna

microarray images”, csbw, vol. 0, pp. 128-132, 2005.

[76] Toshio Modegi., “Development of lossless compression techniques for

biology information and its application for bioinformatics database

retrieval”, Genome Informatics, vol. 14, pp. 695-696, 2003.

[77] I. Sadel. “Universal data compression algorithm based on approximate

string matching”, In Probability in the Engineering and Informational

Sciences, pp. 465-486, 1996.

[78] Hisahiko Sata, Takashi Yoshioka, Akihiko Konagaya, and Tetsuro Toyoda.,

“Dna compression in the post genomic era”, Genome Informatics, vol. 12,

pp. 512-514, 2001.

[79] E. Rivals and M. Dauchet., “Fast discerning repeats in DNA sequences with

a compression algorithm”, In Proc. Genome Informatics Workshop, pages

215-226. Universal Academy Press, Tokyo, 1997.

[80] D. Kotlar and Y. Lavner, “Gene prediction by spectral rotation measure: A

new method for identifying protein-coding regions,” Genome Res., vol. 13,

pp. 1930-1937, 2003.

- 112 -

[81] V. R. Chechetkin and A. Y. Turygin, “Size-dependence of three-periodicity

and long-range correlations in DNA sequences,” Phys. Lett., A, vol. 199, pp.

75–80, 1995.

[82] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya, and R.

Ramaswamy, “Prediction of probable genes by Fourier analysis of genomic

sequences,” Bioinformatics, vol. 13, pp. 263–270, 1997.

[83] B. Issac, H. Singh, H. Kaur, and G. P. S. Raghava, “Locating probable genes

using Fourier transform approach,” Bioinformatics, vol. 18, no. 1, pp. 196–

197, 2002.

[84] D. Kotlar and Y. Lavner, L. Rowen, G. Mahairas, and L. Hood, “Sequencing

the human genome,” Science, vol. 278, pp. 605–607, Oct. 1997.

[85] M. Z. Ludwig, “Functional evolution of noncoding DNA,” Curr. Opin.

Genetics Develop., vol. 12, no. 6, pp. 634–639, 2002.

[86] L. Allison, L. Stern, T. Edgoose, Dix TI, “Sequence complexity for

biological sequence analysis”, Computers and Chemistry, vol. 24, pp. 43-55,

2000.

[87] G. Korodi and I. Tabus, “An Improved Pruning Condition for Tree Machines

and Applications to Random-Access Coding,” in Proc. ISCCSP 2006.

- 113 -

[88] G. Korodi, J. Rissanen and I. Tabus, “Lossless data compression using

optimal tree machines,” Proc. IEEE Data Compression Conference (DCC

2005), pp. 348–357, 2005.

[89] Kannan, SK and Myers, EW., “An algorithm for locating non-overlapping

regions of maximal alignment score”, SIAM J Comput. vol.25, pp.648–662,

1996.

[90] Benson, G., “Tandem repeats finder: a program to analyze DNA sequences”,

Nucleic Acids Res., vol. 27, pp. 573–580, 1999.

[91] Kurtz, S and Schleiermacher, C. “REPuter - fast computation of maximal

repeats in complete genomes”, Bioinformatics, vol. 15, pp. 426–427, 1999.

[92] Gusfield, D., “Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology”, New York: Cambridge University

Press, 1997.

[93] Volfovsky N, Haas B J and Salzberg S L., “A clustering method for repeat

analysis in DNA sequences”, Genome biology, vol. 2(8), 2001.

[94] Lehman, E., “Approximation Algorithms for Grammar-based Data

Compression”, PhD thesis, Massachusetts Institute of Technology, 2002.

- 114 -

[95] Lehman, E., and Shelat, A., “Approximation algorithms for grammar-based

compression”, In Proceedings of the 13th Annual ACM-SIAM Symposium

On Discrete Mathematics (SODA- 02), ACM Press, pp. 205–212, Jan 2002.

[96] Cherniavski N. and Lander R., “Grammar-based Compression of DNA

sequences”, 2004.

[97] T. I. Dix, D. R. Powell, L. Allison, S. Jaeger, J. Bernal, and L. Stern.,

“Exploring long DNA sequences by information content”, Probabilistic

Modeling and Machine Learning in Structural and Systems Biology,

Workshop Proc, pp. 97-102, 2006.

- 115 -

Appendix – Accepted and submitted papers

Published papers – Conference

1. Paula Wu, N. F. Law, and W. C. Siu, “Study of Inter-sequence Similarity for

Multiple DNA Sequence Compression”, International Symposium on

Computational Models for Life Sciences, Australia, pp.167-176 Dec 2007.

Accepted/published papers – Journal
1. Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Cross chromosomal

similarity for DNA sequence compression”, Bioinformation 2(9): 412-416,

2008.

http://www.bioinformation.net/002/008900022008.htm

2. Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Analysis of cross

sequence similarities for multiple DNA sequences compression”,

International Journal of Computer Aided Engineering and Technology

(accepted), 2009.

	theses_copyright_undertaking
	b23067883

