Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Mechanical Engineering

Hard Chrome Plating
for

Ring Grooves of Piston Crown

By

Andrew Ning

Supervisor: Dr. T.T. Wong

Co-Supervisor: Prof. C.W. Leung

A Thesis submitted in partial fulfillment of the
requirements for the Degree of Master Philosophy at the
Hong Kong Polytechnic University

November, 2003

Pao Yue-kong Library
PolyU + Hong Kong



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written nor
material which has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

Andrew Ning



ACKNOWLEDGEMENTS

The author wishes to thank Dr. T.T. Wong, Prof. C.W. Leung and Mr. Harvey
Wong. These are the people who encourage my continual growth in all facets of my
life. The author also wishes to thank the Innovation and Technology Commission of
the Government of the Hong Kong Special Administrative Region and .Brigantine
Services (Hong Kong) Limited for the financial support of the project. (ITF Project

Reference. UIT/010)



TABLE OF CONTENTS

Table of Contents . i
List of Figures 1
Listof Tables . it
Abstract v
1. Introduction . 1
1.1 Background
1.2 Objectives of study
1.3 Layout of thesis
2. Literature review 9
2.1 Process variables of hard chrome plating

2.1.1 Bath composition
2.1.2  Current density
2.1.3 Throwing power

2.2 Process modeling and prediction -
statistical approach
2.3 Process modeling and prediction -
artificial intelligence approach
2.4 Proposed approach
3. Design of pilot plant for rotary plating system ceeeee 27
3.1 The original hard chrome plating system
in the teaching company
3.2 Practical constraints of hard chrome plating system
in the teaching company
3.3  Design of the pilot plant
4. Construction of experimental seewp . 39
5. Process modeling and prediction by
Full Factorial Design (FFD) approach ... 42
5.1 The influential factors for the hard chrome
plating process
5.1.1 Bath composition
5.1.2 Temperature setting
5.1.3 Current density
5.1.4 Plating time
: 5.1.5 Rotary speed
5.2 Experimental design
5.3  Experimental procedure
5.4  Analysis of experimental data
5.5 Multiple regression analysis



5.6

Multiple coefficients of correlation

5.7 Model adequacy diagnosis
5.7.1 Normal probability plot of residuals
5.7.2 Interaction analysis
5.7.3 OQutlier analysis
5.7.4 Influential cases
5.7.5 Leverage analysis

5.8  Verification of FFD results

0. Process modeling and prediction by

Neural Network (NN) approach

6.1 NN approach for process modeling and prediction
6.1.1 Types of NN models
6.1.2 Back-propagation NN mode! architecture
6.1.3 The learning ability of NN model
6.1.4 The advantage of using NN model for
process modeling and prediction
6.2  The development of NN model for
process modeling and prediction
6.2.1 Training of NN model
6.2.2 Testing and validation of NN model
7. Discussion of results
7.1.  Comparison of FFD and NN methods
7.2.  Discussion on research methods
7.3.  Effect of impurities
7.4.  Effect of solution conductivity
7.5.  Effect of chromic/sulphuric acid ratio
7.6.  Limitations of study
7.6.1. Limitation of time
7.6.2. Limitation of NN
8. Conclusion
9. Suggestions for future work
References
Appendices

Appendix A Details of the assembly process of

the rotary plating machine parts

Appendix B Details of the commissioning of the

rotary plating machine

Appendix C  Determination of Chromium(VT)

ion in hard chrome piating solution



Appendix D

Appendix E

Appendix F

Determination of Sulphate ion
in hard chrome plating solution

The procedure for the training of a
NN model using Qnet software

The data sets for the training, testing and
validation of a NN model



Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:
Figure 13:

Figure 14:
Figure 15:

Figure 16:

Figure 17:

LIST OF FIGURES

A photo shows a sample piston crown of a
diameter 900mm .

A photo shows the appearance and dimension of
the piston crown ring grooves .

A photo shows a sample of the original static
hard chrome playing system in the

teaching company

Flow chart for the proposed approach in
this study e,

Flow chart for the hard chromium plating
process in the teaching company ...

Dimensions of the ring grooves ...

A sample CAD drawing of piston crown
spectfication.

Construction of the piston crown and the
electricanodes

Construction of the piston crown and the
supportingshat

The plating machine is about to be put into the
platingtank

The rinsing process ..

A photo shows the appearance of ring grooves
of the refurbished piston cown ..

The primary current distribution on a rotary cylinder
clectrode with concentric counter electrode ...

A machine drawing of the rotary plating machine ..........
The rotary plating machine is ready for action  ..........

The effect of chromic acid concentration on
current effictency .

Flow chart for the experimental procedure ...



Figure 18:
Figure 19:

Figure 20:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:
Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:
Figure 33:

Figure 34:

Figure 35:

Figure 36:

The plot of plating thickness vs. actual run order  .......... 56
A normal plotofresidwals L 65

The interaction graph between chromic acid
concentration and electric current ... 67

The interaction graph between chromic acid
concentration and sulphuric acid concentration ~ .......... 68

The interaction graph between chromic acid
concentration and plating ime ... 69

A plot between the Run numbers and the Qutlier T .......... 70

A plot between the Run numbers and
the Cook’s distance . 71

A plot between the Run numbers and :
the Leverage valees L 72

Back-propagation NN models with multi-layered

architecture 79
A schematic diagram for the training of NN model .......... 90
The transfer function used in the training of NN model....... 90

The plot of RMS error after 300,000 iterations of
the training of NNmodel .~ ... 20

A plot of the difference between the predicted
(FFD} values vs. the actual values ... 95

A plot of the difference between the predicted

(NN) values vs. the actual values ... 95
The side view of the rotary plating machine ~ .......... 113
The back view of the rotary plating machine — .......... 113

A closer view of the internal section of the
rotary plating machine ... 114

The bearing section and the carbon brush section
of the rotary plating machine ... 114

The piston holding section of the
rotary plating machine ... 15



Figure 37:
Figure 38:
Figure 39:

Figure 40:

Figure 41:

Figure 42:

The commissioning of the rotary plating machine

The new design of the electric anode
The appearance of the rotary plating machine

Damage of the anode upon the completion of
plating process

The modified anode

The final design of anode



Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table &:

Table 9:

Table 10:

Table 11:

Table 12;

Table 13:

Table 14:

Table 15:

Table 16:

Table 17;

LIST OF TABLES

Basic chromium plating baths 12
The influential factors and their ranges in this study .......... 46
The number of runs for 2“ FFD method ... 47

The High (+1) and Low (-1) Setting for
the experiwent 48

A 2 two-level, FFD table showing runs in preset
runorder 50

A design table for a two-level
FFD with four factors, replicated twice ... 52

A design table for a two-level
FFD with four factors, replicated twice,
with random run order indicated ... 53

A design table with the plating thickness
of the hard chrome deposition as outcome ..., 57

The design summary of the hard chrome plating
process for a piston crown of diameter 900mm  .......... 59

Analysis Of Variance (ANOVA) for the initial
FEFDmodel . 60

The calculation of R-squared coefficient ... 61

A comparison between the predicted (FFD) values
vs. the actual valuees 63

A comparison between the values obtained from
predicted (FFD) model vs. the ones obtained
from the confirmationeun 73

The configuration for the training of a NN model  .......... 91

Typical sample data for hard chrome plating
process with the use of rotary plating machine ... 91

A comparison between the predicted (NN) values
vs. the actual values 91

The average and maximum errors in the
predictions by FFDand NN 95



Abstract

Today hard chromium plating is generally accepted in engineering as an
invaluable means of prolonging the life of all types of metal parts subjected to wear
by friction or abrasion. Such parts can be protected from new or they can be
reconditioned to as gbod as new state when they are worn and would otherwise be

scrapped.

At the commencement of this Innovation Technology Fund project, the
chromium plating bath employed in the Teaching Company was a static system,
which involved fixing the anode close to the surface of the work-piece while the
work-piece was kept at the cathode. Electric current of appropriate strength was then
applied and passed from the anode through the plating solution to the cathode.
Chromium was then gradually deposited onto the unmasked surface of the work-
piece. Thickness and quality of the chromium deposits depend on several operating
parameters, viz. current density, temperature and concentration of the plating
solution. Best electroplating result depends on the optimization of these operating
parameters, which involves a very complicated analytic process. This project was
aimed to improve the hard chrome plating process through (i) the development of a
more efficient plating system and (ii) to predict plating thickness through the
development of an empirical model between plating thicknesses and the input

variables.

On completion of this study, a rotary electroplating system was constructed
and predictions of the plating thickness were achieved by using the Full Factorial

Design (FFD) and the Neural Network (NN) me[hodé. The values obtained by both



methods were compared with the experumental values of the plating thickness to

evaluate about the accuracy of the predictions.

Within the range of input variables for the present study, the results showed
that NN came ahead of the FFD in n.eamess of the predictions to the experimental
values of plating thickness. The average errors in the plating thickness in the case of
NN were less than that obtained using FFD (average error is 1.5% for NN as
compared to 4.4% in case of FFD predictions; maximum deviation is 4.2% for NN as

compared to 9.8% in case of FFD predictions).

The information gained as well as the proposed methodology in this study
contributes reliable and reproducible data on the absorption of chromium metal. A
significant contribution has been made to provide in-depth understanding of the
industrial electroplating process. Another significant contribution made to the
present investigation is the development of a new approach in the hard chrome

plating of ring grooves of piston crowns.



1. Introduction

1.1 Background

Electroplated chromium is widely used in military and industry. The
extreme hardness of the metal and its low coefficient of friction, combined with
its corrosion resistance, make it particularly valuable as a coating where
resistance to the various types of wear is important [Dubpemell, 1963; Shreir,
1976]. Thick functional deposits applied for this purpose are referred to as ‘hard
chrome’ to distinguish them from thin decorative deposits [Dennis & Such,
1993]. Chromium plating is infamous for its low current efficiency (10-25%) and

low throwing power.

The vast majority of decorative, and almost all hard, chromium plating is
carried out using CrO; as the electrolyte. The electrochemical reactions of
chromium are complicated, but the main reactions on cathode can be summarized

[Griffin, 1971] as:

CrO& +8H +6¢ > Cr+4H,0  E°=0.336V vs. NHE (D)
2H" +2¢" — H; E°=0V vs. NHE .. (2)
CrOs +8H + 3¢ > Cr** +4H,0 E°=1477V vs. NHE . (3)

And those reactions occurring on the anode are:
2H,0 — Oy +4H" + 4¢” E°=123V  vs.NHE o (B

Cr'* +4H,0 —» CrOs~ + 8H + 3¢ E°=1477V vs. NHE . (5)



where E° = Electromotive Force and the superscript refers the
standard state pressure 1 atmosphere
NHE = Normal Hydrogen Electrode at standard state pressure

1 atmosphere

More than 50% of electric charges are consumed by the unwanted
hydrogen and oxygen evolving on the cathode and anode, respectively. The fact
that chromium can be deposited from hexavalent (Cr6+) solutions but not from
simple aqueous solutions of salts is a disadvantege for the following reasons

[Edwards, 1997; Greenwood, 1981]: -

* Because the electrochemical equivalent of Cr in a CrOj solution is
0.3234 g/h and cathode current efficiency is typically 10% to 20%,

;the passage of current of one-hour yields only 0.032 to 0.64 gram of
metal. This is 15 to 30 times less than nickel, and 18 to 36 times less

than for copper from acid solution. The only way to offset this is to
_increase the working current density via increase in mass transport

and temperature and/or plating time.

+ ‘The minimum current density at which electro-deposition takes place
is two to three orders of magnitude larger than that in the case of other

metals (Zn, Ni, Ag, etc.).



The electro-deposition of chromium is more sensitive to operating
conditions (temperature and current density) than any other deposition

process.

In contrast to other processes, the cathodic current efficiency varies
inversely with temperature but is proportional to current density

(which causes low throwing power).

Chromium will plate only in the presence of a catalyst (e.g. H,SOq),

whose concentration influences the plating rate.

On the positive side, hexavalent chromium electrolytes are relatively
less sensitive to the presence of impurities, and the anode material is
usually lead or lead alloy, which can easily be made to conform to

any shape.

Despite its paramount technological and with all the advances of modern

science and instrumentation, the exact mechanisms of chrome plating are still

open to considerable assumption. The chrome-plating bath, used for decorative

and hard chrome baths, is still mostly of the type originally investigated by

Sargent [1997]. It is the simplest plating bath to make up, and it consists of two

essential ingredients:

+

A water-soluble salt of chromium



* A small but critical amount of an anion, which acts as a catalyst. Such
catalyst is supplied in the form of sulphuric acid alone or in
combination with another acid radical, usually flioride, fluoroborate

or a mixture of them.

In 1986, an organic acid radical in the form of alkene-sulphonic acid, has
been successfully included in the high-energy efficiency formulations (HEEF)

introduced by Atotech Company (USA) [Chessin & Newby, 1986].

Because chromium metal will not serve satisfactory as an anode, owing to
i’s close to 100% anodic dissolution efficiency, insoluble anodes are used.
generally as a lead alloy. The source for the chromium trioxide, CrO5 (chromic
anhydride), is commonly referred to as chromic acid. It is a deep red to reddish-
brown crystal that volatilizes at 110°C. It is highly soluble in water (165g/100g at
0°C and 206g/100g at 100°C), producing a solution containing a mixture of

H,Cr,07 and polychromic acids.

Despite the established understanding of the principle, such hard chrome
plating process usually has to be tailored in order to produce a specific hard
chrome deposition. This is due to the cost and inefficiency of the empirical
approach currently used to determine the process parameters to yield a specific
hard chrome composition, and as a result such electroplating process has been

utilized only in a limited manner.



Furthermore, at the commencement of this nnovation Technology Fund
project, the chromium plating bath employed in the Teaching Company was a
static system, which involved fixing the anode close to the surface of the work-
piece while the work-piece was kept at the cathode. The deposition material was
hard chrome and the electropiating area was the ring grooves of a piston crown.
The diameter of the piston crown varies form 350mm to 900mm, and it weighs
up to 1000 kilograms. Electric current of appropriate strength was then applied
and passed from the anode through the plating solution to the cathode.
Chromium was then gradually deposited onto the unmasked surface of the work-
picce. Figure 1 shows a sample piston crown of diameter 900mm and Figure 2
shows the appearance as well as the dimension of the ring grooves. Figure 3

shows a typical sample of the original static hard chrome plating system.

Figure 1: A photo shows a sample piston crown of a diameter 900mm

LA



Figure 2: A photo shows the appearance and dimension of the piston crown ring
grooves

Support and
Holding Shaft

@;? ALY
S iy

Figure 3: A photo shows a sample of the original static hard chrome playing
system in the teaching company



The greatest limitations of the original static hard chrome plating system
include the very large size of the substrate (piston crown) and the very long
process time (the set-up time plus the plating time for 1 plating process can take
up to 120 man hours). In addition, there is a lack of understanding in the
combined effects of process variables on plating thickness. As a result, the
workers have to use their knowledge (accumulated through many trial-and-error
operations) in order to estimate the process variables to achieve a particular hard
chrome deposition. Moreover, it can be quite difficult to produce a uniform
chromium distribution onto product parts. Best electropiating result depends on
the process modelling of these operating pﬁrameters, which involves a very

complicated analytic process.

1.2 Objectives

The objectives of this research study comprise the development of a
faster speed plating system and the determination of the optimal operating
conditions for such system. Using the experimental results established in the
early stages of this study, the individual and combined effects of various process
variables on the hard chrome deposition would be evaluated, i.e. the influences
of apparent current density, anode diameter, plating temperature, etc. would be
assessed. Then a process prediction with respect to the thickness of the chrome-
plating outcome would be carried out through statistical modeling technique. It is
anticipated that with an increase in the understanding of relationships between
process parameters in hard chrome plating, a more effective maintenance and

process control will be achieved.



1.3 Layout of thesis

A literature review in the areas of hard chrome plating, process modeling
and prediction techniques is presented in the next chapter. [n chapter three, the
design of pilot plant for rotary plating system is presented. The construction of
the experimental setup is depicted in chapter four. The process modeling and
prediction by full factorial design approach is described in chapter five. The
neural network approach is presented in chapter six. A discussion of results is
provided in chapter seven. The conclusion is given in chapter eight, and the

suggestion for future work is given in chapter nine.



2. Literature review

2.1 Process variables of hard chrome plating

Electroplated chromium can be classified among the most important
plated metals and is used almost exclusively as the final deposit on parts.
Without the physical properties offered by such deposits, the service life of most
parts would be much shorter due to wear, corrosion, etc [Edwards, 1997).
Product parts would have to be replaced or repaired more frequently, or they
would have to be made from more expensive materials, thus wasting valuable

resources.

In general there are two categories of electroplated chromium, namely
decorative and functional. The thickness of decorative chromium deposit is
usually about several micrometers. Decorative chromium deposits offer a
pleasing, reflective appearance while also providing corrosion resistance, and
durability. They are typically. plated over nickel but are occasionally plated

directly over the substrate of the part.

On the other hand, the thickness of functional chromium (hard chrome)
deposits 1s usually from several micrometers to several millimetres. Hard chrome
deposits are usually plated directly on the substrate, which is the other way round
when comparing to decorative chromium deposits. Industrial coatings take
advantage of the special properties of chromium, including resistance to heat,

hardness, wear, corrosion, and erosion, and a low coefficient of friction. In



addition, hard chrome deposits are also used on parts such as cutting tools and
strip steel [Greenwood, 1981]. Moreover, they have been used to protect against
abrasion, oxidation and hot corrosion; or to provide lubrication [Mevrel, 1989;
Sofer, Yarnitzky & Dirnfeld, 1990]. The hard chrome plating process can be
used to make dispersion-strengthened alloy components and high surface area
cathodes that are used electro catalysts for hydrogen electrodes in industrial

water electrolysis {Pushpavanam & Co., 1993].

The most common and oldest commercial type of chromium process
utilizes hexavalent chromium (Cr®*) in an aqueous solution containing one or
more catalysts. The commercial process of hexavalent chromium plating resulted
principally from the work .in 1923 and 1924 of Fink and Eldridge [Fink, 1931;
Dubpernell, 1963]. Liebreich [{1927] made similar discoveries more or less
simultaneously, but his work was masked by an overemphasis of the importance
of the trivalent chromium ion. Then early in the 1970s aqueous trivalent
chromium (Cr3+) solutions started to attain commercial success for decorative
applications. Even though much work has been done on functipnal trivalent
chromium deposits, there are only very restricted number of applications due to

limitations in the physicals properties of thick deposits.

Significant improvement in hexavalent chromium plating came with the
introduction of double and organic catalysed systems. Double catalysed (or
mixed catalyst) systems introduced in 1949 generally contain sulphate and silico-
fluoride in forms, which are either self-regulating [Stareck, Passal, & Mahlstedt,

1950] or operator regulated. In comparison to the initial commercial processes



(which are only sulphate catalysed), the double catalysed processes offer higher
plating speeds and help activate the part prior to plating by mildly etching the
substrate. Another noteworthy improvement in hexavalent chromium plating
came with the introduction of organic catalysed systems. Such systems offer an
increase in plating speeds, an improvement of physical properties in chromium
deposit, and they do not etch iron substrate [Morisset, Oswald, Draper, & Pinner,

1954; Dubpernell, 1963].

In the carly 1990s, several review papers regarding electroplating have
been published over the years. Papers by Buelens & Co. [1992] provided good
reviews in the early 1990s, of proposed electroplating mechanisms and models of
the process. Hovestad & Janssen [1995] published an overview in 1995 which
presented more details of the experimental trends, possible mechanisms and
process models. More recently, Helle & Walsh [1996] presented a review
addressing the shortcomings of the theories to predict the composition of the

deposits.

According to the researches on hard chrome plating, temperature, current
density and bath composition affect the film characteristics and current efficiency
[Dennis and Such, 1993; Edwards, 1997]. These parameters are therefore
carefully controlled in order to obtain specific deposit properties and plating rates.
The influence that a particular variable has on the process is typically assessed by
the change in the amount of particle incorporation obtained when that variable is

adjusted.



2.1.1 Bath composition

The conversion of a pure chromic acid solution to a chrome-plating bath
solution constitutes a sulfate catalyst. With a given set of conditions of bath
temperature, current density, and chromic acid concentration, too low amounts of
catalyst will result in either no current flow, at first, or no plate or in an iridescent
to brown oxide stains. Too high a catalyst content will result in an adverse effect:
either partial plating with poor throwing power or, with great excess, no plate at
atl. The later effect is due to depolarization action or easy formation of trivalent
chromium (Cr’**) at the cathode. A typical formula for chromium plating using a

sulfate as the catalyst acid radical is presented in Table 1.

Table 1: Basic chromium plating baths

Dilute Bath Standard Bath Concentrated Bath

Gramy/Liter| Molarity {Gram/Liter| Molarity jGram/Liter| Molarity
Chromic 100 1.000 250.0 2.500 400 4.00
Acid, Cr(3
Sulfate, l 0.001 2.5 0.025 4 0.04
S04
Ratio 100 100 {00
Cr0,/504

Although concentrations of chromic acid from about 50 gram/liter up to
saturation (about 900 gram/liter) can be used, most commercial baths are
operated between 150 and 400 gram/liter. Still higher concentration gives very
low current efficiencies. The important requirement is the proper ratio already

mentioned.

Bath containing 200 gramvliter chromic acid has a slightly higher current

efficiency than more concentrated solutions. They also have a lower conductivity



and therefore a higher voltage for a given current density. The more dilute baths
are also more sensitive to the changes of catalyst from drag-in and drag-out.
Hence they require more frequent and more careful adjustment for maintenance.
Usually the more concentrated solutions are favored for decorative applications

and more dilute baths for heavy hard chrome plating,

Silicofluoride has had wide use as a catalyst in chromic acid baths since
Fink and McLeese first proposed it in 1932 [Fink & McLeese 1932]. Such
solutions were difficult to analyze and maintain. Yet those baths have definite
advantages compared to sulfate only catalyzed baths. They have inherently
higher current efficiency, can be operated at higher deposition rates, and produce
somewhat harder and brighter deposits. Fluorides give better throwing power and
covering power. On the other hand, there are some important disadvantages.
These metals are sensitive toward changes in composition and toward impurities
such as iron and aluminum, and consequently more careful attention to bath
purification, frequent analytical control is required. Also analytical control of
simple or complex fluorides is relatively more complicated, and finally, those
solutions will attack or etch the base metal at low current density as well as
unmasked areas such as blind holes. If masking is less than optimum, which
sometimes cannot be avoided, proper attention must be paid to the possible
etching effect. The solutions are aggressive toward plating equipment such as

tank liners and heating/cooling coils.

The extra efficiency available from fluoride containing baths still resulted

in chromium deposition rates which, were much lower than for most other

13



plating baths (in relation to the high current densities employed). However, in
1986, proprietary plating solutions were introduced that had higher cathodic
efficiencies than obtainable from the fluoride containing bath and these baths
were established as viable industrial processes. They are based on chromic acid
solutions that do not contain any fluorides or other halogens. Their chromic acid
content is between 250 and 300 gram/liter. The only other component of these
solutions that is known is the primary catalyst (presumably a sulfate ion), within
the ratio of 100:1, and 1% to 3% of alkene sulfonic acid as secondary catalyst.
These proprietary solutions provide extra cathodic efficiencies of up to 25%.
These components catalysts have either been patented [Chessin & Newby, 1986;
Korbach, 1989; Korbach & McMullen, 1989; Martyak, 1989] or kept secret. The
properties of the deposits have been documented [Newby, 1999], together with
optimum operating parameters of these plating processes. The solutions are
usually operated at temperatures between 55°C and 60°C and typical cathodic
current densities are 30 to 50 A/dm’. Even at these high current densities, deposit
distribution is-superior to that obtained from conventional baths, with less edge
buildup. The deposits have good hardness (about 1000HV Vickers), and retain
such hardness better than conventional chromium when heated. The chromium

plate always shows plenty of micro-cracks, e.g. 200 to 400 cracks per centimeter.

One of the greatest benefits of these fluoride-free plating solutions is that
they do not attack steel on those portions of the cathodes where the current
density is too low for chromium to be deposited. This low current density etching
is especially detrimental when complex shaped steel objects are hard chrome

plated for a long period of time in fluoride containing baths. The fluoride ion



dissolves the protective oxide file off those portions of the substrate steel
exposed to low current densities and thus the acid solution can then dissolve it
with consequent iron buildup. This etching attack has been a limiting factor in

the use of those baths for hard chrome deposit.

In practice, relatively high concentrations of chromic acid are used, ¢.g.
from 250 to 400 gram/liter of CrO;. This increase in concentrations increases the
conductivity up to a maximum but decreases the cathode efficiency. It should be
noted that in some cases these two factors, concentration and conductivity, may
offset each other at higher current density obtainable at a given voltage in a more
concentrated chromic acid bath and may not yield a faster rate of chromium

deposition.

2.1.2 Current density

The amount of chrome particles deposition in Cr-Al;O; system has been
found to increase when the current density is increased. In addition, a minimum
of chrome particle deposition as a function of current density was also found
when the loading in suspension exceeded 100 gram/liter [Narayan &
Chattopadhyay, 1982]. The relationship between the current density and applied
voltage can be revealed using polarization scans. The effect of particles in
suspension on the polarization scans have been reported for some electrolytes
used in electroplating systems. A higher current density has been observed for a
given cathodic potential in the presence of particles at high voltage where the

transport of metal ions to the cathode becomes an important factor. Moreover, it

L5



has been discovered that by adding particles to the electrolyte, mass transport
could be enhanced. At low voltage, the particles near cathode suppress metal ion
reduction, which effectively lowers the current density at a given voltage

[Hovestad & Janssen, 1995; Edwards, 1997].

2.1.3 Throwing power

]

Besides keeping the current density as nearly uniform as possible, the
throwing power is another measure towards a good chrome-plating outcome. By
definition, the throwing power of a plating bath means its ability to uniformly
deposit chromium on the cath(_)de surface [Greenwood, 1981]. The major factors
influencing the throwing power in a chrome-plating bath are the primary current
distribution, polarization, secondary current distribution, and cathode efficiency.
The primary current distribution is a function of the geometrical properties of the
plating system, meaning the shape and the distance between the anode and the
cathode. Increasing the anode to cathode gap 1s helpful, but this usually requires
higher operating voltage, and also an initial high strike current may be .necessary

in order to obtain adequate coverage of chromium deposit.

increasing the plating bath temperature and plating current density
generally improve the throwing power [Edwards, 1997]. However, in the case of
irregular cathodes, the current density varies widely, being highest on corners,
edges and areas closest to the anode, whereas it is lowest in recesses, re-entrant
angles, and arcas farthest from the anode. It is then evident that cathode

efficiencies being highest at the high current density areas result in heavier

16



chromium deposition, whereas the low current density areas have thinner

chromium deposition,

As shown in the above review, hard chrome plating process can be very
application-specific, thus the operating conditions for a particular hard chrome
. plating process to obtain a uniform chromium distribution can be significantly
different from those necessary to obtain a gradient chrome deposition. Although
the effect of each of the process variables on such plating process has been
reported in the literature, the results are usually contradictory. In addition, while
considerable researches have been conducted on hard chrome plating, they
usually focus on improving a specific characteristic of the hard chrome
deposition rather than evaluating the interdependence between process variables.
In spite of this, there seems to be a common thread which unites the bulk of the
electroplating literature and that is the lack of discussion regarding the possibility

of interaction relationship between process variables.

It is the aim of this research work to establish a thorough experimental
foundation on hard chrome plating. With a further understanding of
interdependent relationships between process variables, a more effective

maintenance and process control could be achieved.



2.2 Process modeling and prediction - statistical

approach‘

It is very often that the end-product of a research study is a statistical
model or set of models, whether it is aimed for prediction, explanation, or quality
control. A statistical model is an abstract description of the real world. A model
1s a simple representation of the complex forms, processes, and functional
relationships of a “real world” counterpart. Because many of the processes
underlying scientific research are complex and a function of many inputs
(independent variables), the statistical models representing them by necessity are
much simpler [Cichocki & Amari, 2002]. In fact, a primary objective of
statistical modeling is to represent complex phenomenon with as simple a model

as posstble.

Although it is usually possible to identify the primary objective of a
research project, models estimated for predictive or explanatory purposes are
related. When the analyst can identify functional or cause-effect relationships
betweeﬁ objects or events, then superior models result, and often are useful for
both explanation and prediction. In many cases, however, the suspected ‘causal’
independent variables are not directly measurable, are too expensive or
impractical to measure, and so the analyst seeks surrogate variables that are

correlated with the causal ones.

Two fundamental features characterize all models: form (relationships)

and content (variables.) The choice of form establishes the ease of mani pulating
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and interpreting the content; detecting errors of omission and commission; and

refining and improving the model to better serve its purpose.

Process optimization involves the minimization (or maximization) of an
objective function, which can be established from a technical and/or economic
viewpoint. In general, the decision variables are subject to constraints such as
valid ranges (maximum and minimum limits) as well as constraints related to
safety considerations and those that arise from the process model equations.
Another most challenging aspects of multivariate analysis is finding the optimal
variable settings that maximize (or minimize) a response [Shaffer, 1996]. On the
other hand, the algorithms for process modeling, prediction and optimization can
also be regarded as a general name for techniques that are designed to solve such
problems. The process modeling, prediction and optimization can be defined
mathematically as the search for the settings of the n variables of a function, such

as f{xy, X2..., Xn), that optimize f(x).

Broadly speaking, there are two classes of these kinds of problems. One
class includes the problems that can be solved analytically through direct means.
These kinds of problems require the knowledge of the mathematical form of the
function being optimized. A simple example is finding the root(s) of a
polynomial function. However, process modeling and prediction applications in
electroplating are usually not simple. The relationships between the process
variables and f(x} may not be well understood and indirect methods need to be

employed.
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If indirect methods are employed in trying to model and/or predict a
function f(x), “Guesses” for the settings for the n variables are carefully
calculated. Hence the employment of indirect methods is sometimes called
iterative trial and error approaches. Decisions about what “Guesses” to make are
called search heuristics. When indirect methods are being used, the setting of
process variables is modified in some logical way after each iteration and then
presented to an objective function to determine whether this particular
combination of process variables is an improvement. Such objective function
would include numericai[y the performance of a particular combinatioﬁ of

process variable.

The principles of the most common indirect process modeling and
prediction method, single-factor-at-a-time, can be illustrated by way of an
example in hard chrome plating process. In this case, the objective function is the
thickness of hard chrome deposition and the variables to be modeled and
predicted are the chromic acid concentration and sulphuric acid concentration. In
the first step of this approach, the settings for chromic acid concentration are
modified, while the setting for sulphuric acid concentration is held constant. The
variable setting for the chromic acid concentration that caused the thickness of
hard chrome deposition to be the largest is considered the setting for that variable.
Next, the sulphuric acid concentration is modeled and predicted, while the
chromic acid concentration is held constant at its preset setting. The single-
factor-at-a-time optimization procedure is inherently flawed, however, because it
does not take into account any interdependencies that may be present among the

variables. Interdependencies are caused by variables that affect the objective

20



function differently based on the settings for the other variables. In analytical
applications, interdependencies among the variables are the rule rather than the
exception. If, in the hard chrome plating example above, the impact .that chromic
acid concentration had in the thickness of hard chrome deposition changed as a
function of the sulphuric acid concentration, a univariate approach such as the
single-factor-at-a-time approach would not be able to predict the thickness of
hard chrome deposition. However, a multivariate approach in which both
variables are modified at each step would overcome this drawback. Multivariate
methods have been employed to solve challenging problems in many areas of
science and engineering [Cooper, 1974; Law & Kelton, 1982; Press & Co, 1986;
Arora, 1989; Hajela, & Berke, 1991; Peace, 1993; Hinkelman,‘l994; Wang &

Grandhi, 1994; Montgometry, 1997].

According to the algorithms for process modeling and prediction most
frequently seen in the science and engineering literature, they can be divided into
three general groups: experimental design methods, methods that require
derivatives of the function being optimized, and methods that do not require
derivatives to be computed [Cooper, 1974; Press & Co, 1986 Montgomery,
2001]. Experimental design methods offer valuable insights into the
improvement and understanding of the response from a system and are
considered very general and versatile [Daniel, 1976]. As it is very often a
scientific experimental outcome may depend on many factors, the factors chosen
for examination would be tested at a number of levels reflecting likely operating
levels for such factors. Experiments of this type come under the domain of

Factorial (Experimental) Designs where both effects and interaction effects can
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be investigated to determine the level of influence, if any, such factors have and
how it may be occurring in the observed response measurements. (One advantage
of this kind of design is that it allows one to examine how different process

variables operate together (or "interact") to produce a combined effect.)

In general, there:are two types of Factorial Design, namely Full Factorial
Design and Fractional Factorial Design. In simple terms, going_through the Full
Factorial Design approach would exhaustively try every possible combination of
all levels of all factors, while only a fraction of possible combination of all levels
of a;l factors .would be berformed in the Factional Factorial Design approach. In
this research study, Full Factorial Design approach has been adopted because the '
iiitial guess for the number of process variables is not going to be many and the

Teaching Company Associate would like to find the individual and combined

effects.of the process variables.

2.3 Process modeling and prediction - artificial

intelligence approach

In many applications, the calculation of the derivative is not possible
analytlcaily or it is very time consuming or numerically inaccurate. An
alternative to the statlstlcal approach for the deve[opment of controlled systems
is the artificial intelligence approach. There a;e many techniques available in the

artificial intelligence approach and one of the popular choices is Neural Network

(NN).
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Generally speaking, NN is an information processing paradigm that 1s
inspired by the way biological nervous systems, such as the brain, process
information. According to the DARPA Neural Network Study (1988), the
definition of NN can be regarded as a system composed of many simple
processing elements operating in parallel whose function is determined by
network structure, connection strengths, and the processing performed at
computing elements or nodes. In addition, according to Haykin (1994), a NN is a
massively parallel distributed processor that has a natural propensity for storing
experiential knowledge and making it available for use. It resembles the brain in
two respects: (i) Knowledge is acquired by the network through a learning
process and {i1) interneuron connection strengths known as synaptic weights are

used to store the knowledge.

The key element of the NN paradigm is the novel structure of the
information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in unison to solve specific
problems. NN possess the ability to ‘learn” what happens in the process without
actually modeling the physical and chemical laws that govern the system.
Furthermore, NN can be configured for a specific application, such as pattern
recognition or data classification, through a learning process. Leaming in
biological systems involves adjustments to the synaptic connections that exist

between the neurons and this is true for NN as well.

(3]
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Recently, NN has been applied to an increasing number of real-world
problems of considerable complexity. Their most important advantage is in
solving problems that are too complex for conventional technologies -- problems
that do not have an algorithmic solution or for which an algorithmic solution is
too complex to be ‘found. In general, because of their abstraction from the
biological brain, NN are well suited to problems that people are good at solving,
but for which computers are not. Moreover, the distinct features of the NN make
the model itself very useful in situations where a functional dependence between
‘the inputs and outputs i1s not clear. In this context, a NN model can handle
multiple independent and dependent process variables simultaneously in one
model (e.g., back propagation model). The functional relationship between the
independent and dependent process variables need not be known since the NN
model can learn the latent relationships between the causal factors and response.

[Vanderplaats, 1984; Carpenter & Hoffman, 1995].

On the other hand, the NN model has modeling, prediction and
formulation capabilities, and can be updated with new data. It can also be used to
predict the response for new experimental conditions afier the models are trained

{Haykin, 1994; Takahara, Takayama & Nagai, 1997; Basheer & Hajmeer, 2000).

In this research study, the NN approach has been adopted because of its
remarkable ability to derive meaning from complicated or imprecise data, not to
mention the possible usage to extract patterns and predict trends that are too
complex to be noticed by cither humans or other computer techniques. A trained

NN can be thought of as an "expert" in the category of information it has been
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given to analyze. This expert can then be used to provide projections given new

situations of interest and answer "what if" questions.

Despite the availability of various algorithms for process modeling and
prediction, not much work have been done in trying to adopt these techniques in
the area of electroplating process in order to model and predict chrome plating
conditions for selected piston crowns. It is the aim of this research study to
compare the prediction results generated from the full factorial design approach,

the trained NN and the actual experiments.

2.4 Proposed approach

At the commencement of this Innovation and Technology Fund (JTF)
project, the Teaching Company Associate (TCA) was expected to interview the
relevant staff in the Teaching Company in order to understand the details of the
company operation. For the data collection process, the TCA needed to work
with company staff in order to obtain the necessary information regarding the
current practice of the hard chrome plating operation. With the Teaching
Company’s expectation to shortten the process time of the current plating system,

the development of a new plating machine was the main target.

On the other hand, the TCA needs to evaluale the process variables of the
hard chrome plating system for the purpose of developing a model for the hard
chrome plating system. In particular, a statistical approach (such as Full Factorial

Design) is suggested because it is essential to find the individual and combined
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effects of every process variables. Alternatively, an adificial intelligence
approach (such as Neural Network) can be adopted because of its processing
paradigm that is inspired by the way biological nervous systems. Next, a
comparison of results obtained from the actual experiments, the statistical
approach and the computational approach would be presented. Figure 4 provides

a flow chart for the proposed approach in this research study.

A Study of Original — _ -
Hard Chrome Completion of the

ew plating ine
new plating machin
F X

Plating System

Design of a new .1 Construction of the
Pilot Plant new Pilot Plant

Literature Review of Plating Process Variables

Y

r Y

Process Modeling & Process Modeling &
Prediction by Prediction by
Statistical Approach Computational Approach

h 4 A 4

Confirmation & Duplicate Runs for Model Vahidation

Figure 4: Flow chart for the proposed approach in this study
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3. Design of pilot plant for rotary plating system

3.1 The original hard chrome plating system in the

teaching company

Electroplating is the process of applying a metallic coating to an object by
passing an electric current through an electrolyte in contact with the object,
thereby forming a surface having properties or dimensions different from those
of the article. Essentially any electricatly conductive surface can be electroplated.
Special techniques, such as coéting with metallic-loaded paints or silver-reduced
spray, can be used to make nonconductive surfaces, such as plastic, electrically
conductive for electroplating. Electroplated materials are generally used for a
specific property or function, although there may be some overlap, €.g., a
material may be electroplated for decorative use as well as for corrosion

resistance [Metal Finishing Guidebook and Directory, 1993; Homer, 1994].

The essential components of an electroplating process are an electrode to
be plated (the cathode or substrate), a second electrode to complete the circuit
(the anode), an electrolyte containing the metal ions to be deposited, and a direct
current power source. The electrodes are immersed in the electrolyte with the
anode connected to the positive leg of the power supply and the cathode to the
negative leg. As the current is increased from zero, a point is reached where
metal plating begins to occur on the cathode. The plating tank is either made of

or lined with totally inert materials to protect the tank. Anodes can be either
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soluble or insoluble, with most electroplating baths using one or the other type.
The majority of power supplies are solid-state silicon rectifiers, which may have

a variety of modifications, such as constant current and constant voltage.

At the commencement of this Innovation Technology Fund project, the
hard chrome plating system employed in the Teaching Company was a static
system, which involved fixing the anode (lead alloy) close to the surface of the
work-piece while the work-piece was kept at the cathode, as shown in Figure 1, 2
& 3. Figure 5 presents a process flow diagram for hard chrome electroplating.
The process consists of pretreatment, alkaline cleaning, acid dipping, chromic
acid anodizing, and chromium electroplating. The p‘retreatment step would
mnclude polishing, grinding, and degreasing. Degreasing consists of cither
dipping the part in organic solvents, such as trichloroethylene or
perchloroethylene, or using the vapors from organic solvents to remove surface
grease. Chromic acid anodic treatment, which was optional, cleaned the metal
surface and enhances the adhesion of chromium in the electroplating step. The

final step in the process is the electroplating operation itself.
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Substrate to be plated (Ring Grooves of Piston Crown)

|

Pretreatment Step (polishing, grinding and degreasing)

L A
Chromic Acid Treatment

4

Electroplating of Chromium

Y

Rinsing Process

'

Hard Chrome Plated Ring Grooves

Figure 5: Flow chart for the hard chromium plating process in the teaching
company
Ideally the plating tanks typically are equipped with some types of heat
exchangers. And preferably, mechanical agitators or compressed air supplied
through pipes on the tank bottom would provide unifdrmity of bath temperature
and composition. Unfortunately, no such device was installed in the Teaching

Company.

Chromium electroplating requires constant control of the plating bath
temperature, current density, plating time, and bath composition. Hard chrome
plating baths are the most widely used baths to deposit chromium on metal. Such
hard chrome baths are composed of chromic acid, sulfuric acid, and water. The
chromic acid is the source of the hard chrome that reacts and deposits on the

metal and is emitted to the atmosphere. The sulfuric acid in the bath catalyzes the
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chromium deposition reactions. The evolution of hydrogen gas from chemical
reactions at the cathode consumes 80 to 90 percent of the power supplied to the
plating bath, leaving the remaining 10 to 20 percent for the deposition reaction.
When the hydrogen gas evolves, it causes misting at the surface of the plating

bath, which results in the loss of chromic acid to the atmosphere.

The original hard chrome plating system in the Teaching Company aims
to refurbish the ring grooves of piston crown. The depth of a ring groove is
usually within the range 1Smm ~ 30mm. The width is usually within the range
8mm ~ 28mm. Usually it is required that 0.7mm thickness of chromium is to be
deposited only onto the top and bottom part of the ring grooves. Figure 6
describes the range of dimensions of the ring grooves. The piston crown is in
cylindrical shape. Its diameter is usually within the range 450mm ~ 900mm and
its height is usually within the range 210mm ~ 550mm. A sample CAD drawing

of piston crown specification has been shown in Figure 7.

Once the surface of the ring grooves, electric anodes and supporting shaft
have been cleaned, masked, those items would be constructed as shown in Figure
8 & 9. When the preparation work has been finished, the whole plating machine
could be put into the plating tank, as shown in Figure 10. The plating time for
each operation ranges between 50 hours to 80 hours depending on the dimension
of the piston crown. When the time is due, the plating machine would be taken
out of the plating tank and be gone through the rinsing process, as shown in

Figure 11. After dismantling the plating machine, the refurbished piston crown is
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ready for precise surface machining and eventually to be delivered to the

customer (Figure 12).
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Figure 6: Dimensions of the ring grooves
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Figure 7: A sample CAD drawing of piston crown specification
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Figure 9: Construction of the piston crown and the supporting shaft
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The plating machine has
reached the preset plating
time and has been taken
out of the plating tank

_ e

Figure 11: The rinsing process
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The surface of the newly
electrodeposited hard chrome

poery 7%3

Figure 12: A photo shows the appearance of ring grooves of the refurbished
piston crown

3.2 Practical constraints of hard chrome plating system

in the teaching company

There are a number of constraints for the original static hard chrome

plating system and these include:

¢+ The very large size of the substrate (piston crown), thus a thorough
cleaning operation {a necessary pre-treatment prior to the start of the
actual plating operation) consumes a lot of time;

¢+ The relatively small area to be hard chrome plated (ring groove), and

+ The long process time (the set-up time plus the plating time for 1

plating process can take up to 120 man hours)
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In addition, there seems to be a lack of understanding in the interaction of
process variables. As a result, the workers have to make use of their experience
(accumulated through many trial-and-error operations) in order to estimate the
process variables to achieve a particular hard chrome deposition. Moreover, it
can be quite difficult to produce a uniform chromium distribution onto product
parts. Best electroplating result depends on the optimization of these operating
parameters, which involves a very complicated analytic process. Hence, this
research project has been aimed to improve the hard chrome plating process
through (i) the development of a more efficient plating system and (ii) to predict
plating thickness through an estimatioﬁ of the statistical relationship between
different thicknesses and the input variables. Such objectives have been agreed

by the Teaching Company and the Supervisors of this research study.

3.3 Design of the pilot plant

Design of an appropriate electroplating machine s crucial for successful
investigation of the relationships among parameters in electroplating operation.
Such machine would allow accurate determination and control over as many
process variables as possible, thereby providing reproducible experiments. Also
accurate control and measurement of process values is important to obtaining

meaningful data [Gileadi, 1993].

The process variables affected by the machine design include the total

current and potential difference (between the working electrode and the plating

35



solution), and the hydrodynamics. The current-potential relationship is affected
by the hydrodynamics of the electroplating system. In particular, if the plating
system is not mixed sufficiently, the electroder reactions will cause a depletion of
reactants. This in turn limits the amount of current that can be passed through the

plating system [Brimi & Luck, 1965].

In a plating system without forced convection, natural convection would
eventually develop due to the concentration gradients resulting from the
electrochemical reactions. In addition, there would be vapors, mist and gases that
are generated during the plating process. The main source of vapors, mist and
gases is the small gas bubbles which form at the electrodes when the électric
current is on. The bubbles rise to the surface and burst, creating a fine mist above
the bath. However, the bubbles form resistive gas ‘blankets’ that would result a
possible reduction in the deposition current. In this case, by adopting an agitation
approach such as cathode motion, the forced convection would remove the
resistive gas ‘blankets’ away from the plating surface, thus ensuring good quality

in the plating outcome.

Furthermore, because of the greater reproducibility and higher allowable
rates of reaction, forced convection is generally preferred to natural convection.
This argument explains the reason behind the long plating time (up to 90 hours)
in order to achiev-e the necessary thickness of hard chrome deposition. As a result,
the plating time is expected to be less if a rotary approach can be employed in the

design of the new plating system.
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With the need to adopt a rotary approach as a research direction, the
rotary cylinder electrode approach [Pickett, 1979] seems to have an advantage
over the rotary disk electrode approach [Gabe, 1974]. First, the rotary cylinder
approach has the hydrodynamic advantage over the rotary disk electrode
approach in that the average shear force on the rotary cylinder electrode is
uniform over the entire surface. Next, the hydrodynamic diffusion layer is
uniform regardless of whether the flow is laminar or turbulent. Figure 13
schematically illustrates the uniformity in potential, hence current density, for the
concentric cylinder configuration. The need of uniformity in current density
distribution is essential because it will result a more uniform hard chrome

deposition, thus reducing the process time for the final precise surface machining,

N

Equipotential
Surfaces

Electrodes

Figure 13: The primary current distribution on a rotary cylinder electrode with
concentric counter electrode

In addition, the rotary cylinder electrode approach allows the best control

over the process variables that are believed to influence the hard chrome plating



process. Such machine geometry would provide uniform current distribution
along the length of the metal substrate, thus enhancing the chance to obtain a

more uniform thickness of hard chrome. Finally, the rotary cylinder approach

facilities forced convection in the plating prdcess.

Eventually, after taking account of the characteristics of piston crowns,

anodes and the choice of construction materials, the pilot plant has been designed

as shown in Figure 14.
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Figure 14: A machine drawing of the rotary plating machine
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4. Construction of experimental setup

The construction of the rotary plating machine was started in early April
2001 and finished in late October 2001. The course of the construction and
commission of the new rotary plating machine was not a smooth process. The
details of the assembly of the rotary plating machine parts have been listed in
Appendix A. The details of the commissioning of the rotary plating machine

have been listed in Appendix B.

The first successful trial was completed in late October 2001. The
feedback showed that the surface of the ring grooves were shinny and clean, just
like the plating outcomes normally observed from the static plating process.

However, some observations were:

w  The minimum rotary speed of the new plating machine was 10
revolutions per minute (rpm) and should be no higher than 15 rpm.
If the rotary speed was set below 10 rpm, then the new plating
machine would not start rotating. The problem could be due to the
piston crown, which could weigh up to 1000 kilograms. Because of
its weight, it would need a very large force to initialize the rotary
action. On the other hand, if the rotary plating speed was set to
higher than 15 rpm, smoke fume would start coming out from
carbon brush section of the plating machine. Therefore, the rotary

speed for the subsequent trials was set between 10~15 rpm.
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w  With the temperature of the plating bath fixed at 55 degree C (the
optimum plating temperature), plus the adoption of the rotary plating
approach, it is believed that enough turbulence would be created by
such forced convection for mixing the plating solution and
transferring heat from the solution to the air by evaporative cooling.

w It appeared that it was quite difficult to hold the electric anode at the
centerline of the ring groove. This was a necessary requirement to be
met, otherwise short-circuit would happen if the electric anode got in
contact with the ring groove surface (the electric cathode). Later,
with a change of design of the electric anode (as shown in Figure 40

& 41 in Appendix A), this major obstacle was cleared.

After the specified hardness (>750 HV) for the newly hard chrome plated
surface had been achieved with several runs, the Teaching Company Associate
was asked to optimize the rotary plating process. Figure 15 shows the eventual

design and appearance of the new rotary plating machine.
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Figure 15: The rotary plating machine is ready for action
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S. Process modeling and prediction by Full

Factorial Design (FFD) approach

5.1 The influential factors for the hard chrome plating

process

The factors which contribute to the enhancement of hard chrome plating

process by the application of rotary approach are listed below:

Bath Composition
Temperature
Current Density
Plating Time

Rotary Speed

5.1.1 Bath composition

Chromic acid and Sulphate (generated from Sulphuric Acid) are the
necessary ingredients. Chromic-to-sulfate ratios range from 73:1 to 250:1. The
composition depends primarily on the application. In single-catalyst baths,
cathode efficiency decreases proportionally with chromic acid concentration (see
Figure 16). Solutions with higher concentrations of chromic acid tolerate a higher
level of trivalent chromium and tron oxide contaminants. Addition of a
secondary catalyst ifnproves cathode efficiency at high concentrations of chromic

acid, up to 300 g/liter.
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Current efficiency (%)

160 200 300 400
Chromic Acid {g/liter)

A. Single catalyst (sulfate)
B. Cocatalyzed bath
C. High-speed seif-regulated bath

Figure 16: The effect of chromic acid concentration on current efficiency [Zaki,
2000} (A single catalyst bath has been employed in this study)

In the Teaching Company, the density of each plating bath sample is
measured using accurate Baume hydrometers. In addition, the Teaching
Company also quantifies, by titration, the amount of chromic acid present. Such
procedure [Brigantine Services Ltd., 2003] is listed in Appendix C. Furthermore,
the Teaching Company specifies the density of a brand new bath, and can relate
this density to the amount of chromium trioxide that has been dissolved in water.
[n other words, there exists a strong relationship between the density of the bath,
" as expressed in degrees of Baume, and the chromic acid concentration. This

relationship is often shown in tabular form in Baume charts from various sources.

On the other hand, the Teaching Company uses a chemical analysis
method for the measurement of concentration of Sulphuric Acid. Such procedure

[Brigantine Services Ltd., 2003] has been listed in Appendix D.
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5.1.2 Temperature setting

Generally, the higher the current density, the higher the temperature

requirement. For hard chrome plating, the range is 49-65.5 degree C.

However, according to the pilot study that had been done by the Teaching
Company Associate, there was not much difference (+3%) in terms of the
thickness of the hard chrome deposition when different temperature settings (50- .
65 degree C) within the operating range were used. Therefore for the core
experiments, the Teaching Company Associate has decided that process

temperature would be maintained at 55 degree C for the subsequent trials.

The new plating machine had been preheated to the expected bath
temperature (55 degree C) before it was introduced to the plating tank to ensure
uniformity of deposit. [n addition, both heating and cooling coils have been used

in the same tank in order to maintain a precise temperature.

5.1.3 Current density

At given solution composition and temperature, the current density
affects cathode efficiency. Generally, the optimum current density is
recommended by the manufacturer of the plating chemicals used. At too high a
current density, burning or roughness of hard chrome deposition occurs. At too

low a current density, lack of chromium coverage can be expected.
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Current Density is calculated by the amount of applied electric current
divided by the surface area to be hard chrome plated. Since in this research study,
only one type of piston crown (with a diameter = 900mm) has been used, so the
expected area to be hard chrome plated is fixed, leaving the amount of applied

electric current as the process variable.

The Teaching Company has used three-phase rectifiers with a maximum
of 5% AC npple, which would supply an uninterrupted flow of current
throughout the plating cycle. Standard current densities are in the range of 23.25-

100 amp/dm2 for hard chromium plating.

5.1.4 Plating time

Generally speaking, it is believed that the longer the plating time, more
hard chrome deposition would be found on the surface of the ring grooves.
However, one should note that in general, if the plating time is higher than 100

hours, the uniformity of hard chrome deposition would generally be disturbed.

5.1.5 Rotary speed

Since the chromic acid solutions used are fairly concentrated and viscous,
stratification may occur. This results in uneven temperature distribution within
the solution. Agitation is therefore required to equalize the bath temperature,
produce uniform brightness and, in the case of hard chromium, improve deposit

hardness.
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Unfortunately, according to the report described in Chapter 4, the rotary
speed for the new plating machine has to be set within the range 10~135 rpm.
Therefore, the Teaching Company has decided that the rotary speed for the

subsequent trials would be set at 10 rpm.

In summary, the new hard chrome plating practice is expected to have 4

influential factors. Their operating ranges are listed in Table 2.

Table 2: The influential factors and their ranges in this study

Factors Minimum | Maximum | Unit
Chromic Acid Concentratiqn 160.0 240.0 | Gran/Liter
Sulphuric Acid Concentration 2.4 3.6 | Gram/Liter
Electric Current 800.0 950.0 | Amps
Plating Time 39.0 52.0 { Hours

The Temperature would be maintained at 53 degree C and the Rotary
Speed would be set at 10rpm. It was assumed that the errors were independent

and identically distributed with zero mean and common variance.
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5.2 Experimental design

As discussed in Chapter 2, Full Factorial Design (FFD) method is

selected in the expectation to obtain valuable insights in terms of the

improvement and understanding of the response from the hard chrome plating

system. A common FFD method is one with all input factors set at two levels

each. These levels are called ‘high’ and ‘Low’ or ‘“+1” and *-1> respectively. A

design with all possible high/low combinations of all the input factors is called a

full factorial design in two levels. If there are ‘k’ factors, each at 2 levels, a FFD

method has 2* runs. Table 3 shows the number of runs for 2° FFD and Table 4

shows the High (+1) and Low (-1) setting for the experiment.

Table 3: The number of Runs for 2* FFD method

Number of Factors Number of Runs

2 4

3 8

4 1¢
5 32
6 64
7 128
8 256
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Table 4: The High (+1) and Low (-1) setting for the experiment

Factors Low (-1) | High (+1) | Unit
Chromic Acid Concentration (X} 160.0 240.0 Gram) Liter
Electric Current (X3) 800.0 950.0 | Amps
-Sulphuric Acid Concentration (X3) 2.4 3.6 | Gram/Liter
Plating Time (X4) -39.0 52.0 | Hours

As shown by the above table, when the number of factors is 5 or greater,
a FFD requires a large number of runs and is not very efficient. For 5 or more
factors, a “Fractional Factorial Design” or a “Plackett-Burman Design” would be

a better choice.

In this research study, one of the objectives is that, given a set of process
variables, the thickness of the hard chrome deposition on the ring groove surface
can be confidently predicted. The four inputs (factors) that are considered
important to the Teaching Company’s new hard chrome plating process are the
Chromic Acid Concentration (X,), Electric Current (X3), Sulphuric Acid
Concentration (X3) and Plating Time (Xy). It is the aim to establish the individual
and combined effect of each of these factors on the Thickness of the hard chrome

deposition (Y).
The process variables (Chromic Acid Concentration, Electric Current,

Sulphuric Acid Concentration and Plating Time) can all be varied continuously

along their respective scales, from a low to a high setting. The Thickness of hard
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chrome deposition is observed to vary smoothly when progressive changes are

made to the inputs.

Note that if there are k factors present, each run at two levels, there will
be 2% different combinations of the levels. In this research study, k = 4 and 2* =

16.

Running the full complement of all possible factor combinations means
that all the main and interaction effects can be estimated. There are a mean effect,
four main effects, six two-factor interactions, four three-factor interactions and

one four-factor interaction, all of which appear in the full model as follows:

Y = Ao + A(X1) + Aa(Xa) + A3(K3) + AalXs)
(X1 X2) + Aa(XiXs) + Aa(Xi Xa)
+ A2a(X2X3) + Aaa(X2Xa) + A3a(X3Xs)
+ A 23X XaX5) + Agae( X XaXa) + Ri2a(X X Xa) + A23a(XaX3Xa)

+ A23a( X X2 X3Xy) ... (0)

where (X,) = Chromic Acid Concentration
(X3) = Electric Current
(X3) = Sulphuric Acid Concentration
(X4) = Plating Time

(Y) = Plating Thickness of Hard Chrome Deposition

A full factorial design allows us to estimate all fifteen ‘A’ coefficients

(Ao ... Ai1234)-
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Next, the factor settings need to be coded, replacing the low setting by -1

and the high setting by +1, as shown in Table 5.

Table 5: A 2* two-level, FFD table showing runs in preset run order

Preset Run Order Xy X, X3 X4
1 -1 -1 -1 -1
2 +1 +1 -1 -1
3 +1 +1 +1 +1
4 -1 +1 +1 +1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 -1
8 -1 -1 +1 +1
9 -1 -1 -1 +1
10 +1 +1 +1 -1
11 -1 +1 +1 -1
12 +1 -1 +1 +1
13 +1 -1 -1 -1
14 -1 +1 -1 -1
15 +1 -1 +1 -1
16 +1 +1 -1 +1

Running the entire design more than once makes for easier data analysis.

The benefit is that for each run, an average value of the response as well as some



idea about the dispersion (variability, consistency) of the response at that setting.
One of the usual analysis assumptions is that the response dispersion is uniform

across the experimental space.

Replication permits check this assumption and possibly find the setting
combinations that give inconsistent yields, thus avoiding that area of the factor
space. Table 6 shows the constructed design tabie for a two-level full factorial in

four factors, replicated twice.

If the design is going to be run, as shown in Table 6, one key deficiency
would appear, i.c. no randomization. Using randomization is the most reliable
method of creating homogeneous treatment groups, without involving any
potential biases or judgments. The more freely one can randomize experimental
runs, the more insurance one has against extraneous factors possibly affecting the

results.

Table 7 shows the design table with the rows randomized. The preset run

order column is also shown for comparison.
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Table 6: A constructed design table for a two-level FFD with four factors,
replicated twice

Preset Run Order X, X5 X3 X4
| -1 -1 -1 -1
2 +1 +1 -1 -1
3 +1 +1 +1 +1
4 -1 +1 +1 +1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 -1
8 -1 -1 +1 +1
9 -1 -1 -1 +1
10 +1 +1 +i -1
11 ‘ -1 +1 +1 -1
12 +1 -1 +1 +1
i3 +1 -1 -1 -1
14 -1 +1 -1 -1
15 +1 -1 +1 -1
16 +1 +1 -1 +1
17 . -1 +1 +1 +1
18 -1 -1 -1 +1
19 -1 -1 +1 -1
20 -1 -1 -1 -1
21 -1 +1 +1 -1
22 +1 o+l -1 -1
23 +1 +1 -1 +1
24 +1 -1 +1 +1
25 +1 +1 +1 -1
26 -1 -1 +1 +1] .
27 +1 -1 -1 -1
28 -1 +1 -] -1
29 +1 +1 +1 +1
30 +1 -1 +1 -1
31 -1 +1 -1 +1
32 +1 -1 -1 +1




Table 7: A constructed design table for a two-level FI'D with four factors,
replicated twice, with random run order indicated

Randem Run Order | Preset Run Order | X| Xs X3 X4
2 1 -1 -1 -1 -1
7 2 +1 +1 -1 -1
31 3 +1 +1 +1 +1
6 4 -1 +1 +1 +1
19 5 +1 -1 -1 +1
22 6 -1 +1 -1 +1
10 7 -1 -1 +1 -1
20 8 -1 -1 +1 +1
17 9 -1 -1 -1 +1
16 10 +1 +1 +1 -1
21 11 -1 +1 +1 -1
28 12 +1 -1 +1 +1
4 13 +1 -1 -1 -1
5 14 -1 +1 -1 -1
12 15 +1 -1 +1 -1
9 16 +1 +1 -1 +1
29 17 -1 +1 +1 +1
18 18 -1 -1 -1 +1
30 19 -1 -1 +1 -1
1 20 -1 -1 -1 -1
14 21 -1 +1 +1 -1
8 22 +1 +1 -1 -1
23 23 +1 +1 -1 +1
27 24 +1 -1 +1 +1
15, 25 +1 +1 +1 -1
25 26 -1 -1 +1 +1
3 27 +1 -1 -1 -1
13 28 -1 +1 -1 -1
32 29 +1 +1 + +1
11 30 +1 -1 +] -1
20 31 -1 +1 -1 +1
24 32 +1 -1 -1 +1




5.3 [Experimental procedure

The flow chart of the experimental procedure for the new hard chrome

plating system is shown in Figure 17.

Rotary Plating Anode Piston
Machine Parts Crown
\ (i) Pretreatment
(ii) Parts Assembly
Rotary Plating Machine
Y
Chromic Acid Plating Tank

Mix —¥

Sulphuric Acid

Set Process
Variables

Y

Hard Chrome Plated
Ring Grooves

Thickness Measurement

Figure 17: Flow chart for the experimental procedure
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5.4 Analysis of experimental data

Recalling the description of this research experiment:

Purpose: To determine the eftect of process factors on plating thickness
Response variable: Plating Thickness of Hard Chrome Deposition (10':Z mm)

Number of observations = 16 (a complete 2* factorial design)

Response Variable Y Plating Thickness of Hard Chrome Deposition
Factor | = Chromic Acid Concentration

(2 levels: Low (160 g/l) and High (240 g/1)]
Factor 2 = Electric Current

[2 levels: Low (800 amps) and High (950 amps})}
Factor 3 = Sulphuric Acid Concentration

[2 levels: Low (2.4 g/1) and high (3.6 g/1)]

Factor 4 = Plating Time

{2 levels: Low (39 hrs) and High (52 hrs}]

The design matrix, with the plating thickness of the hard chrome

deposition responses, appears in Table 8. The actual randomized run order is

given in the first column.

In the context of the FFD method, the investigation procedure would

include the following steps:
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To identify any constraints on the selected key factors in order to
specify the experimental region.

To identify the key response variable to be measured.

To propose an appropriate model for modeling the response data as
function of the factors selected.

To select an experimental design that is sufficient not only to fit the

proposed model, but which allows a test of model adequacy as well.

Through the study, it is assumed that the errors are independent and

identically distributed with zero mean and common variance.

Figure 18 shows the Plot of Responses versus Run Order to check
whether there might be a time sequence component affecting the response levels.
As expected, this plot does not indicate that time order has much to do with the

response levels,

120

100

A
ATy
AN

1 f/\vf
\

40 %

60

Plating Thickness

20 —

0 ) 10 15 20 25 30
Actual Run QOrder

Figure 18: The plot of plating thickness vs. actual run order
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Table 8: A design table with the plating thickness of the hard chrome deposition

as outcome
Random Run Chromic Electric Sulphuric Plating Actual
Order Acid Current Acid time Result
Conc. Conc.

2 1 160 800 24 39 72
7 2 214 950 24 39 77
31 3 214 950 36 52 90
6 4 160 950 2.4 39 92
19 5 214 800 2.4 52 63
22 6 160 950 2.4 52 88
10 7 160 800 36 39 89
20 8 160 800 3.6 52 64
17 9 160 800 2.4 52 90
16 10 214 950 3.6 39 110
21 11 160 950 36 39 89
28 12 214 800 36 52 100
4 13 214 800 2.4 39 39
5 14 160 950 2.4 39 92
12 15 214 800 36 39 102
9 16 214 950 2.4 52 88
29 17 160 950 36 52 38
18 18 160 800 2.4 52 90
30 19 160 800 36 39 40
1 20 160 800 2.4 39 70
14 21 160 950 3.6 39 76
8 22 214 950 2.4 39 77
23 23 214 950 2.4 52 87
27 24 214 800 3.6 52 39
15 25 214 950 3.6 39 106
25 26 160 800 3.6 52 74
3 27 214 800 2.4 39 36
13 28 160 950 24 39 76
32 29 214 950 36 52 a0
11 30 214 800 3.6 39 102
26 31 160 950 2.4 52 73
24 32 214 800 2.4 52 87
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5.5 Multiple regression analysis

The most powerful application in using FFD method is for understanding
how the changes in process variables would affect the response of the system.
This s performed by determining the individual and combined effects of the
process vartables. For instance, if three process variables jointly influence the
response, this would be a three-way combined effect. Such stimulus is judged
statistically significant if the variation in the response caused by changing the
combination of variable settings is larger than the experimental error.in the
measurement of the response. Several statistical methods can be employed for
the determination of the main and interaction effects including Yate's algorithm
and Analysis Of Variance (ANOVA). Discussion of Yate's algorithm is beyond
the scope of this review, but is fully described in several textbooks on
experimental design methodology [Daniel, 1976; Law & Kelton, 1982; Arora,

1989; Hinkelman, 1994].

With the assistance of JMP® software [SAS Institute, Inc., 1995}, the
experimental design matrix for the hard chrome plating process for a piston
crown of diameter 900mm is constructed as shown in Table 9. Multiple
regression technique was used to model the main effects and interactions

between selected key factors.
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Table 9: The design summary of the hard chrome plating process for a piston
crown of diameter 900mm

Study Type Factorial

Experiments 32

Initial Design 2 Level Factorial

Center Points 0

Design Model 2F1

Response Name Units Observations - Min  Max

Y! Thickness 0.01lmm 32 36.3 1100

Factor | Name Units Low High Low High

Actual | Actual Coded | Coded

X Chromic | Gram/Liter 160.00 214.00 -1 1
Acid

X2 Electric Amps 800.00 950.00 -1 1
Current '

X3 Sulphuric | Granv/Liter 2.40 3.60 -1 I
Acid :

Xa Plating Hours 39.00 52.00 -1 1
Time

The analyze procedure for this research study comprises the following:

J Form an initial model

¢ Perform statistical testing
¢ Refine model

. Analyze residuals

' Interpret results

With a 2* full factorial experiment, one can fit a model containing a mean
term, four main effect terms, six two-factor interaction terms, four three-factor
interaction terms and one four-factor interaction term (16 parameters). However,
it can be assumed that all three factor and higher interaction terms are non-
existent, since it is infrequently that for such high-order interactions to be

significant. That allows us to accumulate the sums of squares for these terms and
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use them to estimate an error term. As a result, a theoretical model can be started
out with 11 unknown constants, hoping the data will clarify which of these are
the significant main effects and interactions for the development of the final

model. Table 10 shows the ANOVA for the initial FFD model.

Table 10: Analysis Of Variance {ANOVA) for the initial FFD model
Response: Plating Thickness
ANOVA for Selected Factorial Model

Analysis of variance table

Source Sumof (D | Mean F Value Probability > F
Squares Square :
Model 12688.951 10 1268.90 47.15 | <0.0001
Xy 658.85 1 658.85 24.48 | <0.0001
Xs 588.25 1 588.25 21.86 | <0.000]
X3 159.31 1 159.31 5.92 | <0.0024
X4 413.28 1 413.28 15.36 | <0.0008
X1 X; 1800.00 1 1800.00 66.89 | <0.0001
X X3 3473.61 | 3473.61 129.08 | <0.0001
X1 X4 42.78 i 42.78 1.59 1 0.2212
X2X5 3030.31 1 3030.31 112.61 | <0.0001
X2 X4 1267.56 i 1267.56 47.10 { <0.0001
X3Xy 1255.01 l 1255.01 46.64 | <0.0001
Residual 565.10 21 26.91
Pure Error 54241 16 3.39

According to Table 11, this fit has high R? and adjusted R? coefficients,
but has one high (>0.10) p-values (in the "Prob>F" column), makes it clear that
the source (X;X4) can be regarded as an unnecessary term. In other words, X, Xa,
X3, Xg, (XiX2), (X1X3), (XaX3), (XoXs), (X5X,) are significant model terms. The
Model F-value of 47.15 implies the model is significant. Also, there is only a
0.01% chance that a "Model F-Value" of this magnitude could occur due to noise.
Furthermore, the values of "Probability > F" less than 0.0500 indicate model

terms are significant.
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5.6 Multiple coefficients of correlation

In this section, the objective is to find out how accurate is the model, and
it is done via the examination of R-squared coefficient. The R-squared
coefficient is the square of the correlation coefficient between Y (the observed
value of dependent variable) and the predicted value of Y from the fitted line. If
all the observations fall on the regression line, R? is 1. If there is no linear

relationship between the dependent and independent variables, R? is 0.

The statistically adjusted R? attempts to correct R? to more closely reflect
the goodness of fit of the model in the population. Adjusted R? is given by the

following formula:

(Adjusted R)> =R* - [p(1 = RH/(N - p-1)]

where p is the number of independent variables (4 in the present case).

Table 11: The calculation of R-squared coefficient

Std. Dev. 5.19 R-Squared 0.9574
Mean 81.69 Adj R-Squared 0.9371
C.V. 6.35 Pred R-Squared 0.9010
PRESS 1312.17 Adeq Precision 25.3870

According to Table 11, the “Predicted R-Squared”™ (measures the amount
of variation in new data explained by the model) of 0.9010 is in reasonable
agreement with the “Adj R-Squared” of 0.9371. The term “Adeq Precision”

measures the range in predicted response relative to its associated error, in other
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words a signal to noise ratio. A ratio greater than 4 is desirable. The ratio of
25.387 indicates an adequate signal. This model can then be used to navigate the

design space.

The next step is to do a result comparison between the FFD and the actual
experiment. From the above examination, one can classify the following equation

as a valid equation:

Plating Thickness (Y)

= -263.72037
-3.30185 (X)) +0.60074 (Xy) + 145.?3418 (X3) + 14.32888 (X4)
+3.70370E-003 (X X2} +0.643135 (X, X3) - 0.21625 (X2X3)

- 0.012910 (X3X4) - 1.60577 (X3X4)

where (X;) = Chromic Acid Concentration
(X3;) = Electric Current
(X3) = Sulphuric Acid Concentration
(X4) = Plating Time |

(Y) = Plating Thickness of Hard Chrome Deposition

A comparison between the values obtained from the FFD vs. the actual
values is shown in Table 12. According to the table, the maximum deviation
between the predicted (FFD) value and the actual value is 9.8%. As the

maximum deviation is less than £10% of the actual value, the equation obtained
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from the FFD method can be regarded as a good tool to predict the plating

thickness of hard chrome deposition.

Table 12: A comparison between the predicted (FFD) values vs. the actual values

Electric

Random | Run Chromic Sulphuric Plating FFD | Actual Diff.
QOrder Acid Conc. Current | Acid Conc. Time | Result | Result (%)
2 1 160 800 24 39 71 72 -1.4
7 2 214 950 24 39 85 77 9.8
31 3 214 950 3.6 52 86 90 -4.6
6 4 160 950 2.4 39 97 92 5.4
19 5 214 800 2.4 52 62 63 -1.9
22 6 160 950 2.4 52 87 88 -1.6
10 7 160 800 36 39 87 89 -1.8
20 8 214 800 2.4 52 62 64 -3.6
17 9 160 800 2.4 52 87 90 -2.9
16 10 214 950 36 39 116 110 5.2
21 11 160 950 24 52 87 89 -2.1
28 12 214 800 36 52 94 100 5.7
4 13 214 800 24 39 42 39 7.7
5 14 160 950 24 39 97 92 5.1
12 15 214 800 36 39 99 102 -2.8
9 16 160 800 36 39 87 88 -0.7
29 17 180 950 3.6 52 39 38 26
18 18 160 800 2.4 52 87 90 -2.9
30 19 160 950 3.6 52 39 40 -2.0
1 20 180 800 2.4 39 71 70 1.0
14 21 180 950 3.6 39 73 76 -3.9
8 22 214 950 24 39 84 77 8.5
23 23 214 950 24 52 93 87 7.1
27 24 214 800 3.6 52 94 99 -5.4
15 25 214 950 36 39 116 106 9.3
25 26 160 800 3.6 52 77 74 4.2
3 27 214 800 24 39 39 36 8.0
13 28 160 950 3.6 39 73 76 -3.9
32 29 214 950 36 52 86 g0 -4.2
11 30 214 800 3.6 39 99 102 -2.9
26 3t 160 800 3.6 52 77 73 5.5
24 32 214 950 2.4 52 93 87 7.3

With the completion of the comparison between the predicted vs. the

actual values, the focus is now switched to model adequacy checking, including

the checking of normality of residuals, outliers, and influential cases.
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5.7 Model adequacy diagnosis

5.7.1 Normal probability plot of residuals

Non-significant effects would effecttvely follow an approximately normal
distribution with the same {ocation and scale. Significant effects will vary from
this normal distribution. Therefore, another method of determining significant
cffects is to generate a normal plot of all 32 effects. Those effects that are
substantially away from-the straight line fitted to the normal plot are considered
significant. Although this is a somewhat subjective criterion, it tends to work
well in practice. It is helpful to use both the numerical output from the fit and
graphical techniques such as the normal plot in deciding which terms to keep in

the model.

Linearity shown on a normal probability plot of the studentized residuals
will indicate the normality of residuals. The studentized residual is the number of
standard deviations that separate the actual and predicted response values. It is
the residual divided by the estimated standard deviation of the residual. As
shown in Figure 19, almost all of the studentized residuals fall into a straight
gradient line. Therefore, it indicates no abnormalities, meaning the plot looks OK

in this case.
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Normal Plot of Residuals
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Figure 19: A normal plot of residuals

5.7.2 Interaction analysis

An interaction effect usually means a combined and simultaneous
influence of two or more independent variables on the dependent variable.
Alternatively, interaction effects are sometimes called moderator effects because
the interacting third variable which changes the relation between two original
variables is a moderator vartable which moderates the original relationship. For
instance, the relation between income and conservatism may be moderated
depending on the level of education. The significance of an interaction effect is
the same as for any other variable, except in the case of a set of dummy variables
representing a single ordinal vanable. When an ordinal variable has been entered
as a set of dummy variables, the interaction of another variable with the ordinal

variable will involve multiple interaction terms.
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Figure 20 shows an interaction relationship exists between the Chromic
Acid Concentration and the applied Electric Current, with the concentration of
the Sulphuric Acid is set at 3 grams/liter and the Plating Time is set at 43.5 hours.
According to Figure 20, it shows that when the amount of Electric Current being
applied is 800 amps, an increase in the concentration of Chromic Acid would
have a decreasing effect in the plating thickness of the hard chrome deposition.
On the other hand, when the amount of Electric Current being applied is 950
amps, an increase in the concentration of Chromic Acid would have an
increasing effect in the plating thickness of the hard chrome deposition. Those
points that have non-overlapping intervals are significantly different. In this case
the spread of the points 611 the right side of the graph (where concentration of
Chromic Acid is high) is much larger than the spread between the points at the
left side of the graph (where concentration of Chromic Acid is low.) In other
words, the effect of the Electric Currént is much more significant at the high
level of the concentration of Chromic Acid. Therefore, the experimenters usually
need to maintain a high concentration of Chromic Acid and supply a high
amount of Electric Current in order to maintain the required rate of hard chrome

deposition.
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Interaction Graph

AB int tion o 8: Current
X = A: Clwomic Acid Conc
¥ = 8: Curent Current has 0

= §-800.000 e been kept at /
& 8+ 950.000 950 amps

Actual Factors
C: Sufphamic Acid Cone = 3.00
b: Plating time = 4550 _‘_//
: Cunrent has

8
E ns | &
©
£ been kept at
800 amps
ST
%3
1 I T T T
160.60 i 167,00 20050 21,00
A: Chromic: Acid Conc

Figure 20: The interaction graph between chromic acid concentration and electric
current

And in Figure 21, an interaction relationship also exists between the
Chromic Acid Concentration and the Sulphuric Acid Concentration, with the
Electric Current being set at 875 amps and the Plating Time at 45.5 hours.
According to Figure 21, it shows that when the concentration of Sulphuric Acid
is set at 2.4 gram/liter, an increase in the concentration of Chromic Acid would
have a decreasing effect in the plating thickness of the hard chromé deposition.
On the other hand, when the concentration of Sulphuric Acid 1s set at 3.6
gram/liter, an increase in the concentration of chromic acid would have an
increasing effect in the plating thickness of the hard chrome deposition. Those
points that have non-overlapping intervals are different. In this case the spread of
the points on the right side of the graph (where concentration of Chromic Acid is
high) is slightly larger than the spread between the points at the left side of the

graph (where concentration of Chromic Acid is low.) In other words, the effect of
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the concentration of Sulphuric Acid is slightly more significant at the high level
of the concentration of Chromic Acid. Therefore, if the experimenters want to
increase the concentration of Chromic Acid, they need to increase concentration

of Sulphuric Acid as well in order to maintain the required rate of hard chrome

deposition.

Interaction Graph
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Figure 21: The interaction graph between chromic acid concentration and
sulphuric acid concentration
Figure 22 shows that, with the Electric Current being set at 875 amps and
the concentration of Sulphuric Acid being set at 3.6 gram/liter, there is no
interaction relationship between the Chromic Acid Concentration and the Plating

Time. In fact, this is the only case that shows no interaction relationship.

68



Interaction Graph
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Figure 22: The interaction graph between chromic acid concentration and plating
time

5.7.3 Outlier analysis

Outliers are data points which lie outside the general linear pattern of
which the midline is the regression line. A rule of thumb is that outliers are
points whose standardized residual is greater than 3.3. The removal of outliers
from the data set under analysis can at times dramatically affect the performance
of a regression model. Qutliers should be removed if there is reason to believe
that other variables not in the model explain why the outlier cases are unusual --
that is, these cases need a separate model. Alternatively, outliers may suggest
that additional explanatory variables need to be brought into the model. Another
alternative is to use robust regression, whose algorithm gives less weight to

outliers but does not discard them.
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In the case of the possibility in locating any outliers, one can spot outliers
readily'on residual plots, since they are cases with very large positive or negative
residuals. In general standardized residual values greater than an absolute value
of 3 are considered outliers. From Figure 23, there seems nothing out of the

ordinary here - all the points fall well within the red lines set at plus-or-minus 3.5.
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Figure 23: A plot between Run numbers and the Qutlier T

5.7.4 Influential cases

Certain observations in a set of data can have a large influence on
estimates of the dependent variable. One way to identify an influential case is to
consider changes in all residuals when a certain case is omitted — Cook’s distance.
Cook's distance is one of the measures of the influence of a case. Cases with

larger Cook’s distance values than the rest of the data are those which have
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unusual leverage. Fox [1991] suggests as a cut-off for defecting influential cases,
values of the Cook’s distance greater than 4/(n - k - 1), where n is the number of
cases and k is the number of independents. A large Cook’s distance identifies the
case as an influential point. The plot of Cook's Distance can review the influence
rof each point on the model fit to help you decide whether to remove an outlier. In
this case, according to Figure 24, the probability to have any influential cases

seems to be quite smali.
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Figure 24: A plot between the Run numbers and the Cook’s distance
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5.7.5 Leverage analysis

The leverage analysis is another method to identify cases which influence
the regression model more than others. The leverage statistic varies from 0 (no
influence on the_ model) to | (completely determines the model). A rule of thumb
is that cases with leverage under 0.2 are not a problem, but if a case has leverage
over 0.5, the case has undue leverage and should be examined for the possibility
of measurement error or the need to model such cases separately. In this case,
according to Figure 25, there seems to be littte chance for a design point to
influence the fit of the model coefficients. However, it should be noted that
Leverage near unity should be avoided. Generally, one can replicate the point or

add more design points to reduce leverage.
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Figure 25: A plot between the Run numbers and the Leverage values
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5.8 Verification of FFD results

When the analysis of the experiment is completed, one must verify that
the predictions are good. These are called confirmation runs. The interpretation
and conclusions from an experiment may include a "best" setting to use to meet
the goals of the experiment. Even if this "best" setting were included in the
design, such experimental design would be run again as part of the confirmation
runs to make sure nothing has changed and that the response values are close to
their predicted values would get. In an industrial setting, it is very desirable to

have a stable process.

Therefore, in this research study, 6 runs have been conducted to allow an
estimate of variability at that setting. Apart from the two extreme cases (the case
with coded variables -1,-1,-1,-1; the case with coded variables +1,+1,+1,+1), the
rest of confirmation runs had changes in either Electric Current or Plating Time.
The results obtained from the confirmation run were shown in Table 13. It was
verified that the predictions are good since the maximum difference was still

within the range obtained from the FFD experiment.

Table 13: A comparison between the values obtained from the predicted (FFD)
model vs. the ones obtained from the confirmation run

Run Chromic Electric Sulphuric Plating FFD Confirmation | Diff
Acid Cong. Current Acid Conc. time Resuit | Run Result (%)

1 160, (-1) 800, (-1) 24, (-1 39, (-1 71 78 -9.0
3 214 (+1) 950 (+1) 3.6 (+1) 52 (+1) 86 88 -2.3
4 160, (-1) 950, (+1) 24 (-1) 39, (-1) 97 98 1.0
6 160, (-1) 950, (+1) 2.4, (-1) 52, (+1) 87 87 0.0
9 160, (-1) 800, (-1) 24, (-1) 52, (+1) 87 92 -5.4
10 214, (+1) 950, (+1) 3.6, (+1) 39, (-1 116 110 55
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Despite the difficulties, such as the handling of large size of the piston
crown and the working environment, these confirmation runs were conducted in
an environment as similar as possible to the original experiment. For example, if
the experiments were initialized in the afternoon and the rotary plating machine
needed to be pre-heated before actual operation, the confirmation runs would
then be initialized in the afternoon after the rotary plating machine had been
preheated. Other extraneous f{actors that might change or affect the results of the
confirmation runs include the possible break down of the motor, the
person/operator on the equipment, the sudden collapse of the rectifier/heat

exchanger, etc.
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6. Process modeling and prediction by Neural

Network (NN) Approach

In engineering applications, process variable-based control systems are
normally employed in situations where variables such as heating temperature and
component concentration need to be adjusted to achieve the required outcome of
the overall condition. Traditionally, Proportional-integral-Derivative (PID)
control algorithms are adopted to deal with these parameter-based control
situations albeit complex mathematical equations need to be used to analyze the
operating conditions [Buchanan & Shortliffe, 1989; Lau & Wong, .2000].
However, the mathematical analysis based on relevant algorithms may become
more complex when dealing with multiple input/output control situations where
more than one input is used with more than oae output. The mathematical
equations involved in the PID control algorithms of such situation are rather
complex. Computational methods of non-linear programming with constraints
usually have to cope with problems such as numerical evaluation of derivatives
and feasibility issues. On the other hand, direct search methods, are usually less
efficient and more time-consuming, as they usually require a higher number of
iterations. The lower efficiency of direct search methods resuits from the

necessity of solving the non-linear model equations in each iteration process.

This chapter intends to introduce a process modeling and prediction

approach incorporating NN capabilities. Such approach can be more reliable,
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readily deals with constraints, avoids several typical numerical problems of

conventional optimization tools, and is not computationally time-consuming.

6.1 NN approach for process modeling and prediction

A Neural Network (NN) comprises computer programs that are designed
to simulate some functions of the human brain using different learning
algorithms, which can learn from experience. NN has the remarkable information
processing features of human brain such as nonlinearity, high paralletism,
robustness, fault and failure tolerance, learning, ability to handle imprecise and
fuzzy information and their capability to generalize [Basheer & Hajmeer, 2000].
Thus, NN can be used to solve complicated real life problems such as pattern
classification, clustering, function approximation, process modeling and

prediction.

There are many kinds of NN models that have been developed for
numerous different applications. Based on the learning (training) algorithm,
training of the NN model could be supervised or unsupervised. For supervised
training, the NN model is presented with input/output data sets; for unsupervised
training, the NN model is presented with input data alone, and the model learns
to recognize patterns in the data. Based on the topology, the connection of NN
could be feedforward and feedback. In a feedforward NN model, the connections
between the nodes do not form cycles. In a feedback or recurrent NN model,
there are cycles in the connections. In some feedback NN models, each time an

input is presented, the NN model must iterate for a potentially long time before it
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produces a response. Feedback NN models are usually more difficult to train

than feedforward NN models [Sarte, 2002).

6.1.1 Types of NN models

NN models can be classified into three categories based on their functions

[Bourquin et. al., 1997]:

Associating networks
Feature extracting networks

Nonadaptive networks

Associating networks, which are employed for data classification and
prediction, need input (independent variable) and correlated output (dependent
variable) values to perform supervised learning. Feature-extracting networks,
which are used for data dimension reduction, need only input values to perform
unsupervised or competitive learning. Nonadaptive networks need input values to
learn the pattern of the inputs and reconstruct them when presented with
incomplete data set. Among these three types of NN models, associating
networks can be employed to develop controlled release formulations, because
the relationship in hard chrome plating between formulation and process

variables may not be linear, and 1s not well understood.

Associating NN models can map the relationship between the formulation
and process variables through learning or training processes. These networks can

then be used to predict the plating thickness of hard chrome deposition with
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different piston crown dimensions and process variables. These networks can
also be used for optimization, in which the optimal formulation and process
parameters can be selected by a trained NN model. Rumelhart et al. [1986] first
introduced the associating NN based on delta rule back-propagation of errors.
Since then, many learning algorithms based on the back-propagation have been
developed. These algorithms are the most commonly employed in NN for

process modeling and prediction.

6.1.2 Back—propagaﬁon NN model architecture

Back-propagation NN models have multi-layered architecture as shown
in Figure 26 [Wu et al., 2000]. The first layer is called the input layer, which
does not have computing activity. It is simply used to input independent
variables such as various significant formulations and process factors (inputs), to
the first hidden layer. The last layer is called the output layer, which is used to
process outcome for the dependent variables such as in vitro drug release profiles
(outputs). Hidden layers stay in between the input and output layers, and provide
the interconnection between the input and output layers. The connection could be
fully connected or partially connected. For a fully connected NN model, each
node on the first layer is connected to every node on the second layer. For
partially connected NN models, a node of the first layer does not have to be
connected to all the nodes on the second layer. The direction of the connection
can be feed forward and bi-directional. For feed forward connection, the nodes
on the first layer send their output to the nodes on the second layer, but they do

not receive any input back from the nodes on the second layer. For the bi-
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directional connection, there is another set of connections carrying the output of

the nodes of the second layer into the nodes of the first layer.

Inpt Laver HiddenLayer  Cutput Laver

Figure 26: Back-propagation NN model with multi-layered architecture [Wu et
al., 2000]
The number of hidden layers is determined by the complexity of the
problem. Many NN models consist of only one hidden layer, since one hidden
layer i1s normally adequate to provide an accurate prediction. More than one

hidden layer can be used for modeling complex problems.

The building components in NN are processing elements, which are
called artificial neurons or nodes. These artificial nodes process information
based on weighted inputs using their transfer function and send out outputs. The
nodes in adjacent layers are fully or partially interconnected with weighted links.
The net input into the jth layer node (i[j]) equals the sum of weighted outputs

from the prior ith layer (o[i]) [Erb, 1993]:
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Net input to a node = i[j] = 2i{wlji} o[i]} .. (D

where, w[ji] is the weight factor.

The weight factors of the links between the processing nodes play a
critical role during the learning process by the NN model. They are part of the
memory capacity of the NN model, since the numerical valpes of the weight
factors change according to the training data sets, in order to minimize the
difference between the actual outputs and model predicted outputs. Thus, the
relationship between causal factors and response is mapped during the learning

process.

The transfer function of processing nodes is used to determine the output
value of the node based on the total net input from nodes in prior layer. The most
widely used transfer function is a sigmoid function, which is shown in the

following equation [Erb, 1993]:

Output from a node = ofj] = I/{1+exp(-i[j]} .. (8)
where, oj] is the output from each jth hidden layer node and; i[j] is the

sumn of the net inputs from nodes in the prior layer.

The number of nodes in the input layer is determined by the number of
independent variables that need to be investigated. The number of nodes in the
output layer is determined by the number of dependent variables. The number of
hidden layers and number of hidden nodes in each layer is strongly dependent on

the complexity of the problems such as number of input and output variables,
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number of training data set and required prediction accuracy, which need to be
studied. The optimal number of hidden nodes depends on the following number

of factors:

numbers of input and output nodes

number of training data sets

amount of noise in the targets

complexity of the function or classification to be learned
architecture

type of hidden node activation function

training algorithm

Too few hidden layers and number of hidden nodes would hamper the
learning capability of the NN model, while too many of them can cause over
fitting or memorization of the training data set. Several rules of thumb to select
the number of hidden nodes in an NN model have been proposed by various
investigators. Kolomogorov's theorem states that twice the number of input
variables plus one is enough hidden nodes to compute any arbitrary continuous
function [Hecht-Nielsen, 1987]. Jadid and Fairbairn {1996} proposed an upper

limit of number of hidden nodes using the following equation:

Nhiddcn = Ntm / [R + (Ninp"'Noul)] e (9)
where Npiggen 1S the number of hidden nodes;
Ny 18 the number of training sample;

R is a constant with values ranging from 5 to 10;
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Ninp 15 the number of inputs;

Nou 15 the number of outputs.

The number of nodes in the hidden layer is normally defined on the basis
of heuristic guidelines. A very common approach to select the optimal number of
hidden nodes is by trial and error method using the aforementioned rules as
guidance. Some other optimizing techniques such as growing and pruning
methods have also been used to select the optimal number of hidden nodes

[Sietsma & Dow, 1988].

6.1.3 The learning ability of NN model

NN models learn from experience, which is acquired through a training
process. The training process involves fitting of the data to a neural network
model. Training is supervised for an associating NN model in which the model is
presented with input/output data sets. Training or learmming by the NN model is
the process of adjusting the weighting factors of links among the processing
nodes when the training data sets (known input/output data sets) or data are
presented to the NN model. Training data set can be presented to the network
model example-by-example or as the whole batch [Wythoff, 1993; Zupan &
Gasteiger, 1993]. The weights are updated after processing each sample for the
incremental training process or after processing the entire training set for the
batch training process. The method used to adjust the weight factor is called
training algorithm. For back-propagation NN models, delta rule back-

propagation of errors is used as the training algorithm. After an NN model has
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been designed and the initial weight factors assigned random small values, the
NN model can be trained through an iterative process of presenting {raining data
sets to the model and adjusting weight factors. Each iteration includes two steps,

a feedforward step and a back-propagation step.

During the feedforward step, the training data set is presented to the
model. The processing nodes in the hidden layer sum the inputs based on the
randomly assigned weight values as shown in Equation (7), and then apply the
sigmoid transfer function to compute the output, as shown in Equation (8). The
predicted output(s) for this input can be obtained at the output layer. During the
back-propagation step, the error for the output is calculated first. This is
accomplished by comparing the actual output values to the predicted output
values. Errors for all the processing nodes are calculated and weight adjustment
are then computed for all interconnections. The weight adjustment is then sent
back to the model for slight weight correction. This iterative training process

keeps on going until the error has reached the criteria set by the model designer.

The back-propagation learning rate and the momentum coefficient are
two parameters that need to be defined for the back-propagation NN model
training. The learning rate is an adjustable factor that controls the speed of the
learning process. With a faster learning rate, the NN model will learn faster.
However, if the learning rate is too high, the oscillation of weight change can
impede the convergence of the error surface, and may lead to overshooting of a
near-optimal weight factor w. In coutrast, if the learning rate is too slow, the NN

mode! may get caught in a local error minimum instead of the global minimum.
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The learning process can be facilitated by starting with a high learning rate
initially, followed by a gradual reduction in the learning rate. A constant learning
rate of 0.1-10 throughout the training process has 2lso been proposed by

Wythoff [1993]} and 0.3-0.6 has been proposed by Zupan & Gasteiger [1993].

Momentum coefficient 1s used in weight updating for back-propagation
NN to avoid local minima and to reduce oscillation of weight change. To obtain
faster learning without oscillation, the weight change is related to the previous
weight change to provide a smooth effect. The momentum coefficient determines

the proportion of the last weight change that is added into the new weight change.

Convergence is the process of searching a set of weight factors for the
NN model so that the prediction errors can be reduced to a minimum. The most
common criterion of convergence is based on the sum of squared errors.
Supervised NN networks measure the difference (error) between the predicted
output value and the actual output value during the training process. The sum of
squared errors (SSE) for the training and test subsets can be calculated using the

following equation {Basheer & Hajmeer, 2000].

1 N M

SSE=FZ (t, -0, ) ... (10)

p=l =l
where, 0, is the actual output of ith output node from pth sample; t,; is
the target output of ith output node from pth sample; N is the number of training

samples; and M is the number of output nodes.
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Training error such as SSE for the training data set decreases indefinitely
with increasing number of hidden nodes or training iterations. The initial quick
drop of SSE is due to learning. However, the subsequent slow reduction of SSE
could be attributed to memorization or over-fitting because of the excessively
large number of training cycles or excessive number of hidden nodes. On the
other hand, the test error decreases initially, but subsequently increases due to
memorization and over-fitting of the NN model. Thus, the training would be
stopped when the test error starts to increase, and the optimal number of hidden

nodes would be picked when the test error is the minimum.

6.1.4 The advantage of using NN model for process modeling

and prediction

Process modeling and prediction of a particular process can be achieved
through a number of approaches. The initial atterpt to develop a mathematical
model is probably through the derivative from first principal models. However,
in most of the engineering problems, the first principle models are non-linear and
computationally time-consuming. The replacement of the first-principle model
by an equivalent NN for the process modeling and prediction takes the advantage
of high speed processing, since simulation with a NN involves only a few non-
iterative algebraic calculations [Haykin, 1994; Aleksander & Morton, 1995]. In
these works, the NN model was obtained from data simulated by a previously
available first-principle model. In the modeling step, the first-principle model is
used to generate a large set of simulated data under different operation conditions

and these simulated data are used to train the NN model. In this sense, it 1s
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possible to obtain a NN model that represents the first principle model in the

range of interest.

The use of a NN takes advantage of the comparative rapidity of the NN
simulation. In this way, even a detailed grid search can be achieved in reasonable
time, as long as there were not too many variables been optimized. This approach
is more reliable, readily deals with constraints, avoids several typical numerical
problems of conventional optimization tools, and is not computationally time-
consuming. As an additional benefit, the full mapi)ing of the objective function
allows one to identify multipte optima easily, an important feature not presented
by conventional optimization methods. Moreover, the constraints are easily
treated afterwards since the points with violated constraints can be recognized

and classified.

Once the map is obtained, it is easy to choose the optimum point, to
identify whether multiple ‘optima are present, to check if constraints were
violated, and so on. This approach definitely provides more comprehensive
information for the engineer’s analysis than the conventional non-linear
programming procedure. This algorithm can be straightforwardly extended to

treat multi-objective optimization problems as well.

6.2 The development of NN model for process modeling

and prediction

The main objective of employing NN model! is to model the hard chrome
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plating process as well as predict the plating thickness of hard chrome deposition
(with no more than £10% deviation). To build an NN model, the architecture of
the NN model, which includes number of nodes in both the input and output
layers, number of hidden layer, and number of hidden nodes, need to be defined
first. The number of inputs and outputs are defined based on the hard chrome
plating operation. The number of inputs 1s expected to be four (the Chromic Acid
Concentration, Electric Current, Sulphuric Acid Concentration and Plating Time).
The most important decision in the NN mode! building is to decide how many
hidden nodes to be used. As mentioned in the above NN basic architecture
section, there is no magic formula to select the number of hidden nodes. In this

research study, by using Kolomogorov's theorem [Hecht-Nielsen, 1987]:

Number of inputs =4 >>>> Number of hidden nodes =(4*2) +1

=9

6.2.1 Training of NN model

To train an NN model, the data collected from experiments are normally
divided into three sets, namely, training set, test set and validation set. The
training set is used to train the NN model by adjusting the link weights of
network model, which would include the data covering the entire experimental
space. This means that the training data set has to be fairly large to contain all the
required information and must include a wide variety of data from different

experimental conditions.

The test data set is an independent data set, which is reserved, and not
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actually used for training, in the back propagation algorithm. It is presented to
the NN model periodically, and is used to check the training progress of the NN
model. In other words, it is used to keep an independent check on the progress of
the algorithm. As mentioned earlier, both the training and the test errors initially
drop. However, when the test error stops decreasing, or alternatively starts to rise,
it indicates that the NN model is starting to over-fit the data, and at this point, the
training must be stopped. When over-fitting or over-learning occurs during the
training process, it is usually advisable to decrease the number of hidden units
and/ or hidden layers. In contrast, if the network is not sufficiently powerful to
modél the underlying function, over-learning is not likely to occur, and neither
the training nor test errors will drop to a satisfactory level. "fherefore, the test

data can be used to check the architecture and training progress of a NN model.

The validation data set is used to ensure that the relationship between
inputs and outputs, based on the training and test sets are real, and not artifacts of
the training process. The validation data set should include data, which are not
included in the other data sets, but lie in the data boundaries of the training data _
set. The final model is tested with the validation data set to confinm its accuracy

betore it becomes trained for implementation.

[o this research study, for the training of the NN model, the process
variables had been set and the resulting schematic diagram for such NN model
was shown in Figure 27. The configuration for the trainir.g of the NN model was
shown in Table 14. The transfer function that had been employed was a sigmoid

transfer function, as shown in Figure 28. Such transfer function took the input,
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which might have any value between plus and minus infinity, and squashed the
output into the range 0 to 1. The reason of choosing this transfer function was

that it was differentiable.

With the assistance of Qnet software [Qnet, 2003], a trained NN model
has been developed. The procedure of using Qnet software to train a NN mode!
has been listed in Appendix E. Figure 29 show the value of RMS error has
reached the desirable value after 300,000 iterations of the training of such NN,
Two historical data that have been obtained from industrial plant are shown in
Table 15 and Table 16 shows a comparison between the predicted (NN) vs. the

actual values,
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Figure 27: A schematic diagram for the training of NN model
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Figure 28: The transfer function used in the training of NN model
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Figure 29: The plot of RMS error after 300,000 iterations for the training of NN
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Table 14: The configuration for the training of a NN model

Desire Network Name HCP NN
Number of layers 3
Number of input nodes 4
Number of hidden layers 1
Number of nodes in hidden layer 9
Number of output nodes |

Table 15: Typical sarﬁple data for hard chrome plating process with the use of
rotary plating machine

Chromic Acid

Sulphuric Acid

Electric | Plating

Piston Concentration | Concentration | Current} Time Thickness
Model No. {Run|  {gram/liter) (gram/liter) | (amps) { (hours) [mm}
MC90] 1 160 24 800 39 0.71
MCse0] 3 214 3.6 950 52 0.86

Table 16: A comparison between the predicted (NN) values vs. the actual values
Standard Run Chromic | Electric | Sulphuric | Plating NN Actual | Diff (%)
Acid Current Acid time Result Result
Conc. Conc.
2 I 160 800 24 39 72 72 -0.6
7 2 214 930 2.4 39 78 77 1.2
3 3 214 950 36 52 90 90 -0.2
6 4 160 930 2.4 39 93 92 1.5
19 5 214 800 2.4 52 63 63 3.0
22 6 160 950 24 52 89 88 0.8
10 7 160 800 3.6 39 89 89 0.0
20 8 214 800 2.4 32 64 64 -0.6
L7 9 160 800 24 52 90 90 0.8
16 10 214 950 36 39 112 110 1.2
21 11 160 930 2.4 52 %0 89 1.1
28 12 214 800 3.6 32 98 100 -6
4 13 214 300 24 39 41 39 3.8
3 14 160 950 2.4 39 91 92 -1.2
12 15 214 800 3.6 39 100 102 -1.3
9 - 16 160 800 3.6 39 89 88 1.0
29 17 160 930 3.6 52 39 38 2.1
18 18 160 800 24 32 90 90 0.6
30 19 160 950 36 52 41 40 1.8
1 20 160 800 2.4 39 70 70 0.0
14 21 160 930 3.6 39 73 76 -1.1
8 22 214 930 24 19 79 77 1.9
23 23 214 930 2.4 52 89 87 2.6
27 24 214 §00 3.6 32 99 a9 -0.5
15 25 214 950 36 39 i10 106 34
23 26 160 800 36 52 76 74 2.6
3 27 214 800 24 39 38 36 4.2
13 28 160 930 36 39 76 76 -0.4
32 29 214 930 36 52 89 90 -1.0
il 30 214 800 3.6 39 102 102 0.4
26 31 160 800 3.6 52 74 73 1.6
24 32 214 950 24 52 89 87 2.2
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A comparison between the values obtained from the NN method vs. the
actual values i1s shown in Table 16. According to such table, the maximum
deviation between the predicted (NN) value and the actual value is 4.2%. As the
maximum deviation is less than £10% of the actual value, the developed NN
model can be regarded as a good tool to predict the plating thickness of hard

chrome deposition.

6.2.2 Testing and validation of NN modei

For the testing and validating of NN model, there are no mathematical
rules to determine the required number of data in each set for training the NN
models. [Basheer and Hajmeer, 2000] There are only some rules of thumb that
can be used as guidance to divide the collected data into training set, test set and
validation set. Baum and Haussler [1989] proposed that the training subset
should be at least equal to the product of the number ¢f weights in the model
multiplied by the iHVGII’SC of the minimum target error. Dowla and Rogers [1995]
suggested that the ratio of sample in training subset to number of weight factors
should be larger than 10. Looney (1996) recommended that 65% of data should

be used for training, 25% of data for testing and 10% for validation.

In this study, the Looney (1996) approach has been adopted. There are a
total number of 140 data sets (including the original 32 data sets) for the NN
model development. Those 140 data sets have been divided into 3 groups,

namely the training data set, the testing data set and the validation data set.
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7. Discussion of results

7.1 Comparison of FFD and NN methods

In this research study, FFD method and regression modeling techniques
were shown to be efficient tools for exploring little known processes, as was the
case with hard chrome plating process. A limited experimental effort, consisting
of only 32 trials with the test conditions structured according to a central
composite statistical design, was sufficient to provide a relatively detailed
overview of the process behavior. The statistical models revealed that this
process behavior was quite complex and depends on a number of synergistic and
antagonistic interactions between the process variables. These interactions had
not only been identified but their relative impact on the plating thickness of hard
chrome deposition had been quantified. The predictive models developed here
using regression analysis had served to simulate the process at various operating
regimes, thereby making it possible to identify certain key reaction mechanisms.
A further advantage offered by the statistical modeling performed in this study
resided in the fact that it provided a comprehensive picture of the process which
links the isolated elements of the basic electrochemistry. In turn, these
electrochemical analyses supported the behavior predicted by the models and

helped shed some light on the underlying fundamental mechanisms responsible.

The empirical model presented in Table 10 indicated that there exists a
number of interactions between process variables which significantly affected the
plating thickness of hard chrome deposition. The effect of the Sulphuric Acid

Concentration was coupled with that of several other process variables. While the



linear effect (or first-order effect) of Sulphuric Acid Concentration alone was of
minor significance, the interactions of Chromic Acid Concentration with
Sulphuric Acid Concentration as well as with Electric Current were important
contributors to accelerating both the principal reaction mechanisms in place as

well as that of the side reactions.

After determining the regression equations of all the process variables
and also the training of NN model, the predictions by both the techniques were
found out. The predicted values of the plating thickness, obtained through FFD
method and NN method were compared with the actual values for the validation
set of experirr-lents. These comparisons had been described in terms of percentage

error in Figure 30 & 31 for validation set of experiments.

From Table 17 it is evident that for the set of data that had been used for
this research study, the NN model predicted thicknesses are nearer to the actual

experimental values than the FFD model.

The use of FFD and NN methods to approximate the limit state function
could reduce the total effort on the hard chrome plating evalﬁation. For
parametric evaluations significant reduction of the total computational effort with
a relative good precision might be attained. Moré studies would need to be
performed to compare other possible alternatives, although the FFD and NN
methods seem to be very promising techniques in the case of hard chrome plating

operation.
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Figure 29: A plot of the difference between the predicted (FFD) values vs. the
actual values
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Figure 30: A plot of the ditference between the predicted (NN) values vs. the
actual values

Table 17: The average and maximum errors in the predictions by FFD and NN

Percentage Error (FFD) Percentage Error (NN)

Average 4.4 1.5

Maximum 9.8 4.2
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7.2  Discussion on research methods

In this research study, FFD method had been chosen due to its important
features. First, it shows greater flexibility for exploring or enhancing the “signal”
{(treatment) in this research study. Whenever it is interested in examining
treatment variations, FFD method would be strong candidates as the designs of
choice. Second, FFD method was efficient. Instead of conducting a series of
independent studies one would effectively be able to combine these studies into

one.

On the other hand, FFD method is- the only effective way to examine
interaction effects. There are two ways one could determine whether there is an
interaction. First, when the statistical analysis was initialized, the statistical table
would report on all main effects and interactions. Second, one could always spot
an interaction in the graphs of group means -- whenever there were lines that
were not parallel there was an interaction present. If one checks out the main
effect graphs above, then all of the lines within a graph were parallel. On the
contrary, for all of the interaction graphs, one would see that the lines are not

parallel.

Secondly, the FFFD method and regression modeling techniques have been
shown to be efficient tools for exploring little known processes, as is the case
with hard chrome plating process. A limited experimental effort, consisting of
only 32 trials with the test conditions structured according to a central composite
statistical design, was sufficient to provide a relatively detailed overview of the

process behavior. The statistical models revealed that this process behavior was
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quite complex and depended on a number of synergistic and antagonistic
interactions between the process variables. These interactions had not only been
identified but their relative impact on the plating thickness of hard chrome
deposition was also quantified. The predictive models developed here using
regression analysis has served to simulate the process at various operating
regimes, thereby making it possible to identify certain key reaction mechanisms.
A further advantage offered by the statistical modeling performed in this research
study resided in the fact that it provides a comprehensive picture of the process
which links the isolated elements of the basic electrochemistry. In turn, these
electrochemical analyses supported the behavior predicted by the models and

helped shed some light on the underlying fundamental mechanisms responsible.

Conversely, while the developed FFD-based model is very useful to the
understanding of the physical mechanisms involved in hard chrome plating
process, it could also possess application difficulties, essentially for the following
reasons: (1) they required a large number of parameters for modeling the
complexity of hard chrome plating process dynamics; and (2) extension of such
model.to even slightly different situations could be very difficult. The black-box
models, on the other hand, though might not necessarily lead to a better
understanding of the hard chrome plating process (in a physically realistic
manner), have an advantage in that they are easier to apply under different
conditions since the modeling and forecasting procedure is usually analogous.
Furthermore, the analysis of the characteristic parameters of the black-box

models could furnish useful information on the dynamics of the phenomenon.
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In the absence of accurate information about the physical mechanisms
underlying or the “exact’ equations involved in the dynamics of hard chrome
plating process, the use of a black-box model seems to have an edge over the use
of a FFD-based model, since the former was capable of representing arbitrarily
the complex non-linear hard chrome plating process by relating the inputs and
the outputs of the underlying system. In view of this, this research study has
incorporated the investigation of using a non-linear black-box approach for
predicting the hard chrome plating process dynamics. The NN method, which
has been employed in this research study, is a global approximation approach, in
the sense that it uses all the values that were generated in the past as input for the
prediction. In other words, the NN method has the capability of relating the input
and output parameters, learning from examples through iteration, without
requiring a prior knowledge of the relationships of the process parameters. Its
structure is relatively simple, with connections in parallel and sequence between
neurons. This means a much shorter computing time and a high potential of

robustness and adaptive performance.

7.3  Eftect of impurities

One process variable was not taken into consideration for this study, i.e.
the effect of impurities/contaminations within chrome plating solution. There are
two general classes of impurities in a chrome-plating bath: (1) inorganic
impurities such as chlorides, excess of sulfates or fluorides, and (2) metallic
impurities. The former is most common in the form of detrimental impurities
such as iron, copper and zinc. These metals enter the plating solution from parts

accidentally dropped into the plating bath and not recovered, from the attack of
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the solution on supporting racks, and from attack on anode and cathode. The
maximum acceptable concentrations of these metals would depend on the overall
bath composition, and the approximate limits for iron and copper are 10
gram/liter and 0.2 granm/liter respectively. At or near these concentrations, copper
and iron would reduce the brightness of the plating outcome, especially in the
low current density area. However, it should be noted that the harm caused by
metallic impurities was very much synergetic. What it means 15 that while one
impurity alone even at high concentration is not necessary highly damaging, a
combination of impurities (even with less concentration} would certainly cause
significant damage. Nevertheless, if the level of impurities/contaminations has
exceeded the general industrial standard, the efficiency of the hard chrome
plating process could be significantly reduced or even stopped. As a result,
further development of this research model would best incorporate the effect of

tmpurities/contaminations.

7.4 Effect of solution conductivity

Solution conductivity is often associated with power consumption
(electric current). Usually, the effect of conductivity loss can be primary
compensated by increasing the electric current. In this study, the power input is
quite high (> 800 amps), therefore the effect of conductivity loss is not

significant.

Although there are bubbles forming resistive gas ‘blankets” during the

plating process, it is believed that the amount of (hydrogen) gas generated is
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relatively small and would not contribute to a significant lowering of the solution

conductivity.

7.5 Effect of chromic/sulphuric acid ratio

According to Dubpernell [1963], Dennis & Such [1993] and Edwards
[1997], the normal range for chromic/sulphuric acid ratio is between 80 and 120.
In the case of a high chrorﬁic/su[phuric acid ratio, milky or hazy hard chrome
deposit will result. On the contrary, rough deposit is usually caused by low
chromic/sulphuric acid ratio. In this study, it is the Teaching Company’s policy
to maintain a steady deposition rate; hence some of the chromic/sulphuric acid
ratios used are below 80. Consequently, the surfaces of some of the plated ring
grooves require additional surface machining. It is suggested that this ratio will

be incorporated in future study.

7.6 Limitations of study

7.6.1 Limitation of time

A major objective of the study is to improve productivity of the chrome
plating process for marine pistons. However, it should be noted that the
necessary time required for completing a hard chrome plating process can be
enormous (up to 120 man-hours). This is due to the rather long setup time for the
preparation of a piston crown, which includes the processes of machining,

pretreatment, etc. To achieve this aim, the idea of a rotarv plating system instead
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of expanding the original static system was discussed and finally it was agreed to

put into action.

In view of this deviation from the original static design, considerable time
and effort was spent on the design and construction of a prototype rotary plating
machine. Additional trials have been performed. Throughout the commissioning
process, quite a number of mechanical and process design modifications were
made and new machine parts have been constructzd. For example, the
replacement of a damaged bright shaft with a new elongatéd one, the introduction
of an extra bearing at the end of the shaft, etc. This kind of modifications has
taken rﬁore time than expected, and because of this, the commissioning process

has been extended considerably.

Although subsequent trial results showed less and less deviations in terms
of deposited chromium thickness, the successful rate (<60%) did not meet the
company expectation. It took quite a while to tdentify the causes of the problem.
Eventually it was found that the main problem lied in the positioning of the
anode. However, this problem was not an easy one to soive, because of the very
limited space in the ring groove and also the rotary movement of the piston

crown during the electroplating process.

Later, with the development of a new anode design, which repositioned the
anode to a central position, the above-mentioned problem was solved. Providing
that right procedures are followed at the pre-treatment stage, there would be little

or almost no rotary movement of the piston crown throughout the plating process.
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Because of this accomplishment, much less deviations in deposited chromium
thickness were resulted and the successful rate of the chrome plating process has

been greatly enhanced.

As depicted in the above paragraphs, deign and commissioning of the new
rotary plating machine has taken up more time than expected in this research
study. In addition, this study has to follow the operating schedule in the Teaching
Company. As a result, the number of completed trial runs could be obtained is
restricted by the availability of company resources, not to mention fhe sudden

occurrence of machine failure.

7.6.2 Limitation of NN

It should be noted that NN models could not be used to elucidate the
mechanistic nature of the correlation established between the process variables.
To obtain a reliable and trained NN model, a formulator might need a lot of
training data and computer time to do the training. Because of the rather long
process time of the original hard chrome plating system (even with the
development of a new rotary plating machine), the data set for the NN training
could not be regarded as large. As time goes on, more process information could

be accumulated, thus a more reliable NN model could be developed.
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8. Conclusion

At the commencement of this [nnovation Technology Fund project, the
chromium plating bath employed in the Teaching Company was a static system,
which involved fixing the anode close to the surface of the work-piece while the
work-piece was kept at the cathode. Due to the fact that the original plating
system had become a bottleneck when the whole piston crown recondition
process was considered, the demand from the Teaching Company was to
improve the hard chrome plating process through (i) the development of a more
efficient plating system and (i1) to predict plating thickness through an empirical

model between different thicknesses and the input variables.

Towards the latter half of the project, a rotary electroplating system was
constructed and predictions of the response variables were made using the Full
Factorial Design (FFD) and the Neural Network (NN) methods. The models and
the predicted vatues obtained by both of the methods were compared with the
experimental values of the response variables to evaluate the accuracy of the

predictions.

On completion of project, quite a number of the staff in the Teaching
Company acquired a better knowledge about its electroplating process because of
this research study. Furthermore, the electroplating solution has been
systematically monitored ever since. As a result, the probability in getting a poor
electroplating outcome is greatly reduced. For a particular piston crown model, a

cost saving of 50% in plating parts (e.g. anodes: 8 pairs — 4 pairs) and 40%
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saving in process lead time (e.g. total time for the whole piston crown
recondition process: 96 hours — 58 hours) could be achieved if the
recommended process parameters were used. More importantly, the pilot plant of
the rotary plating machine was accepted by the Teaching Company and would be

mass produced in the near future.

Within the range of input variables for the present case, the results
showed that the NN method came ahead of the FFD method in nearness of the
predictions to the experimental values of plating thickness as the average errors
in the plating thickness in case of NN are less than that obtained using FFD
(average error is 1.5% tor NN as compared to 4.4% in the case of FFD
predictions; maximum deviation is 4.2% for NN as compared to 9.8% in the case
of FFD predictions). Both the FFD and NN models found could be used to

predict the plating thickness given process parameters.

In conclusion, the benefits of the adoption of the proposed approach are
obvious. The suggested models (either FFD or NN) with an easy-to-follow
roadmap illustrated here offered an alternative approach for those who are
interested to investigate the various options for solving complex process control
problems. In particular, the suggested approaches, which have not been
adequately discussed in the area of electroplating, provide a novel technique to
deal with the process variables in hard chrome plating system, thereby
minimizing the tedious analytical process associated with traditional plating

control algorithm. This would pave the way for future research.
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Finally, two technical publications based on the results obtained in this

study, have been accepted for publication:

= A.Ning, T.T. Wong & and C.W. Leung (2002}, Optimization of Chrome
Plating Process Design: A Neural Network Approach, The 8th ISSAT
International Conference on Reliability and Quality Design, Anaheim,

California: USA, pp. 331-335.

« A Ning, T.T. Wong & and C.W. Leung (accepted for publication), Hard
Chrome Plating of Marine Engine Pistons, The 4th Conference for New Ship

and Marine Technology, Oct 26-29, 2004, Shaanghai, China.



9. Suggestions for future work

The results of this rescarch study further confirmed that a statistical
approach and an artificial intelligence approach is a highly efficient and reliable
way of providing credible models of the process. The next step in this research
study will be to apply these models to identify economical conditions for
optimizing the plating thickness of hard chrome deposition at commercial
production rates. The complexities of the interactions which exist between
process variables suggest that a numerical optimization will be required. Once a
promising set of conditions is identified, commercial tests can be conducted to

validate model predictions.

Another area which can be suggested for future work is to incorporate the
status of the surface roughness of the refurbished ring groove as another
objective function on top of the thickness of the hard chrome depositton. This is
because any changes in the originally quoted process variables (chromic acid
concentration, sulphuric acid concentration, electric current and plating time),
may sometime produce different surface roughness. A knowledge of the plating

surface roughness will facilitate the planning of surface machining process.

Subsequently, the Response Surface Method (RSM) can be used to
optimize both the plating thickness and surface roughness simultaneously. RSM
is a blend of statistical design techniques, empirical model-building and
optimization methods. In other words, it allows the calculation and prediction of
process variables. RSM has been applied extensively in the industrial world for

process and product development and optimization. It is possible to integrate
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RSM into the suggested FFD and NN models to enhance the accuracy of

developed models.
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Appendices

Appendix A: Details of the assembly process of

the rotary plating machine parts

bt &

P 2emgnd

Figure 33: The back view of the rotary plating machine



Figure 35: The bearing section and the carbon brush section of the rotary plating
machine
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Figure 37: The testing of the rotary plating machine
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Figure 38: The new design of the electric anode
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Appendix B:  Details of the commissioning of the

rotary plating machine

o The construction of the rotary plating machine was finished in October 2001.

o The first successful trial was completed on 23" October 2001, using Full-
circle anodes (2 semi-circle ones). For the subsequent trials a detachable
piston crown was used in order to test the hardness after rotary plating

process. Figure 39 shows the appearance of the rotary plating machine

Figure 39: The appearance of the rotary plating machine
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o General plating outcome observations from the trials between October 2001

and February 2002:

Positive Feedback

Negative Feedback

|

Development of “needle” has been kept at
minimum

Appearance is shinny, like the plating
outcomes normally observed from the static
plating process

It is very difficult to hold anodes at the
centerline of ring groove

Sometimes the anode restrictions have been
thrown out

The anodes are usually not straight in shape

Teflon buttons are stuck within ring grooves
after the plating process (Figure 40 shows the
damage of anode upon the completion of
plating process)

The hardness measurements are not totally
satisfactory

The Undamaged
Masked Area after
the Compietion of

Plating Process

it

Figure 40: Damage of the anode upon the completion of plating process
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In order to address the positioning of anodes, it is decided that only 1 semi-
circle anode (covering half of the ring groove} would be used, instead of 2
semi-circle ones, as shown in Figure 41. Such modification was applied to

trials after 7" March 2002.

New Design

Figure 41: The modified anode

Plating outcome observations from the trial on 7" March 2002:
Positive Feedback — ltis easier to keep the anodes at the centerline
— The appearance and the deposit rate are very
much the same as the anes observed from the

static plating process

— Only half number of anodes are needed,
meaning saving in resources

Negative Feedback — The anodes have touched the surface of ring
grooves

— The anodes are usually not straight in shape

— The hardness measurements are not totally
satisfactory still
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The rotary wheels have swapped position in order ‘o increase the rotating
speed. The original maximum rotary speed was 8.5 rpm, but now 15rpm
could be achieved casily. The results show that less deviation in terms of

chrome thickness on the same ring groove surface is observed.

In order to reduce/eliminate the development of “needle”, plastic strip was

used on the edge of the ring groove.

Using the detachable piston crown as a testing medium, the results showed
that if the thickness of the newly deposited chromium reached 0.5mm or

above, its hardness value would be not less than 760HV Vickers.

Because of the collected experience and confidence, it had been decided that

scrap piston crown would be used for subsequent trials from May 2002.

[n July 2002, some major modifications in machine design were carried out.
For example the shaft was elongated and an extra bearing was added. The
trial showed that the appearance of the chrome-plated surface was the same
as the one using traditional method, which was shinny and flat. On the other
hand, it was found that no more than 1000 amps of electric current should be

applied to the anodes.

in September 2002, the design of anodes has been modified. PVC Through

Thread Rods were used to replace the Steel Through Thread Rods. Also two
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extra restriction Rods have been used, as shown in Figure 42. The tnal
confirmed that such modifications seemed to have solved the anode-

positioning problem.

Figure 42: The final design of anode

o In October 2002, new copper-graphite brushes replaced the copper brushes.
The use of graphite element is to provide lubricating effect during shaft
rotation.

o In November 2002, Zinc strip was used instead of hard plastic strip in order
to further reduce/eliminate the development of “needle”. However, the result
reviewed that although the shininess and flatness was better, the chromium
deposition rate was about 20% slower. As a result, it was decided not to
swilch from hard plastic strip to Zinc strip.

o The probability in obtaining a satisfactory result by using the rotary chrome

plating result could now be regarded as over 90%.
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Appendix C: Determination of Chromium(VI) ion in

hard chrome plating solution

Reagents

50% v/v sulphuric acid
0.1N ferrous ammonium sulphate

0.1N potassium permanganate (standard volumetric solution)

Method
1. Pipette 40ml of 0.IN ferrous ammonium sulphate into a 250ml conical flask.
2. Add 50m! DI water and 10ml 30% sulphuric acid.

. Titrate with 0.1N potassium permanganate to pink end point.

ed

4, Record titre = A mls.

. Pipette a 10ml aliguot of the plating solution into a 500m! volumetric flask and

L

make up to the mark with DI water.

6. Mix thoroughly.

7. Pipette 10ml of this dilution into a 250mi conical flask.

8. Add 50mt DI water and 10ml 50% sulphuric acid.

9. Pipette 40ml 0.IN ferrous ammonium sulphate into the flask.
10. Titrate with 0.1N potassium permanganate to a pink end point.

11. Record titre = B mils.

Calculation

(A - B)*16.64 = g/L chromic acid

122



Appendix D:  Determination of Sulphate ion in hard
chrome plating solution

Reagents

Conc. hydrochloric acid
Hydrogen peroxide solution
30% barium chloride solution

5% v/v hydrochioric acid

Method

1. Filter a sample of the working solution.

]

. Pipette a 10ml aliquot of the filtered solution into a 500ml beaker.

. Add 20ml DI water and 20ml conc. hydrochloric acid.

(W)

4. Add hydrogen peroxide dropwise until no further effervescence is seen and the

solution is a blue-green colour.

. Heat to boiling and add 2mi of 30% barium chleride solution.

LA

6. Continue boiling for 2 mins.

~l

. Add 200mls boiling DI water and continue boiling for 2 hours.
8. Allow to stand overnight.

9. Filter into a Whatman 542 filter paper.

10. Bobby out the beaker and rinse into filter with hot DI water.

11. Rinse beaker into filter paper with hot 5% hydrochloric acid.



12. Rinse filter with hot DI water until paper is clean.
13. Weigh a dried crucible and record weight as A" grams.

14. Transfer paper to the crucible and burn off in furnace for 1 hour at 800 degree

C.
15. Ensure no carbon residues remain in the crucible.
16. Transfer crucible to a dessicator and allow cooling.

17. Weigh the crucible and record weight as ‘B’ grams.

Calculation

(B-A)*42.02 = g/L sulphuric acid (sulphate).
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Appendix E:  The procedure for the training of a NN

model using Qnet software

Step Target Procedure
| Prepare a set of = Sample data file has been prepared, named
data as HCP NN data.xls
2 Define the input = [Input:
and output of the Chromic Acid Conc. / Electric Current /
Neural Network Sulphuric Acid Conc. / Plating Time
*  Qutpul:
Plating Thickness of Hard Chrome
Deposition

» Rearrange the sets of data that fit the setup

= Put # in the 1st data record, as shown in the
highlight box

= Save file as File02.xls.

Convert Excel table =  From the menu bar, choose File — Save As

into a Text-format

file. *« From Save as type (bottom of the dialogue),
choose Text (Tab delimited) (*.txt)

(8]

= Save file as File02.txt
»  Choose OK

= File02.txt looks like the picture as shown

here.
4 Start to use the *  Open Qnet software program
Qnet software
program * A main dialogue would be displayed
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N

7

To train a Neural
Network

Setup the Design of
the Neural Network

Define the Training
Data for the
training process

Input the Training
Parameters for the
training process

Save the definitions

Click New, and a dialogue appears

Click Network Design

Input the following information:

— Desire Network Name (HCP NN)

— Number of layers (3)

—  Number of input nodes (4)

— Number of hidden layer (1)

— Number of nodes in hidden layer (9)
— Number of output nodes (1)

Click OK

Click Traintng Data

Click Input Node Data File, and select
File02.txt

Next to Data Start Column, input 1 (-
Chromic Acid Conc. is in the 1* column)

Click Target Node Data File, and select
File02.txt

Next to Data Start Column, input 3 (-

Plating Thickness is in the 5™ column)

Next to Number of Test Cases, input 500
Choose None inclusion method

Click OK

Click Training Parameters
Next to Max lteration, input 100,000

Next to Learn Rate Control Start [teration,
tnput 100001

Click OK

Click Save Network Sztup



10

11

12

13

of the Traning
process

Observing the
training process

Refine the training
of the Neural
Network

Save the trained
Neural Network

Preparing a set of
recall data to
generate a

prediction feedback

* Input File.net
» Click OK

* Then click OK to start the Neural Network
{raining process

* During the training process, notice the
changes in the RMS Error value and
Correlation value

«  Wait until the training process has been
finished (Max Iteration reached!)

» (Click the icon RMS E:ror History vs
Iteration to get a rough picture about the
performance of the training.

=  User may like to change the previously set
training parameters in order to see the
difference of several training results.

= [f desire result has been achieved, the
trained Neural Network has to be saved to
form a data repository for the development
of future application.

» From the menu bar, choose File — Save
Network As

= Input File Trained.net

= (lick Save

Then restart Qnet.

*  With the available of a trained Neural
Network, it is time to prepare a set of data,
which is then being input into the Qnet
program, in order to get a prediction
feedback.

» A sample file has been created, named as
File02 Recall.xls
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14

15

16

17

19

Convert the Recall
data set into a Text-
format file.

Prepare the
prediction process

Recall the Trained
Neural Network
and input the
prepared data set

Completing the
prediction process

Gather the
prediction result

Saving the
predicted result

Remember to put # in the Ist data record, as
shown tn the highlight box.

Save the Excel file into a Text file
(File02 Recall.txt)

Restarted the Qnet program:

From the Main dialogue, select Recall
mode

Click the Open icon

Choose File Trained.net

Click Input Node Data File, and select
File02 Recall.txt

Next to Data Start Column, input 1 (-
Chromic Acid Conc. is in the 1% column)

Click OK

A screen that shows the network definitions
has been displayed.

To see the predicted results that are created
from the trained Neural Network:

From the menu bar, choose Info

From the drop down menu, choose
Network Qutputs/Targets

A result that is similar to the shown fligure
has been displayed.

Close the displayed result.

From the reappeared dialogue:



= [From the menu bar, choose File

=  From the drop down menu, choose Save
Qutputs/Targets

= Save the output data into a file called
File02 Output.txt (Note: A Text-format file
1s needed for the next step).

20 Importing the «  Open the Excel program
predicted result
*  From the menu bar, choose File

*  From the drop down menu, choose Open

= Select File02 Qutput.txt, a Text Import
Wizard would appeared

= Press Next 2 times, then press Finish to
complete the import process.

= Asshown from the figure, the
File(2 Output.txt file has been converted
into an Excel table.

21 Constructing final = Finally, by combining the File02 Recall.txt
Excel prediction and the File02_ Output.txt, a predicted
result table result Excel tabie can be gathered.
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Appendix F:

The data sets for the training, testing and

validation of a NN model (total number =

140)

Training data sets = 91 (65% of 140)

Run | Chromic | Electric | Sulphuric | Plating NN Actual | Diff (%)
Acid | Current Acid Time Result Resuit
Cong. Conc. '

1 160 800 2.4 39 72 72 -0.6
2 214 950 2.4 39 78 77 1.2
3 214 950 3.6 52 a0 90 -0.2
4 160 950 24 39 93 92 1.5
5 214 800 24 52 65 63 3.0
6 160 950 2.4 52 89 88 0.8
7 160 800 3.6 39 89 89 0.0
8 214 800 2.4 52 64 64 -0.6
9 160 800 2.4 52 90 a0 0.8
10 214 950 36 39 112 110 1.2
11 160 950 2.4 52 a0 89 1.1
12 214 800 3.6 52 98 100 -1.6
13 214 860 2.4 39 41 39 3.8
14 160 950 2.4 39 91 92 -1.2
15 214 800 3.6 39 100 102 -1.5
16 160 800 36 39 89 88 1.0
17 160 950 36 52 39 38 2.1
18 160 800 2.4 52 a0 90 0.6
19 160 950 3.6 52 41 40 1.8
20 160 800 2.4 39 70 70 0.0
21 160 950 36 39 75 76 -11
22 214 950 2.4 39 79 77 1.9
23 214 950 2.4 52 89 87 26
24 214 800 3.6 52 99 99 -0.5
25 214 950 36 39 110 106 3.4
26 160 800 36 52 76 74 2.6
27 214 800 24 39 38 36 4.2
28 160 950 3.6 39 76 76 0.4
29 214 950 36 52 89 90 -1.0
30 214 800 3.6 39 102 102 0.4
31 160 800 3.6 52 74 73 1.6
32 214 950 24 52 89 87 2.2
33 160 800 2.4 39 72 73 -1.4
34 214 950 2.4 39 78 78 0.4
35 214 950 3.6 52 90 89 1.0
36 160 950 2.4 39 93 92 1.5
37 214 800 2.4 52 65 64 1.7
38 160 950 2.4 52 89 87 2.4
39 160 800 36 39 89 88 0.7
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40 214 800 24 52 64 65 1.7
41 160 800 2.4 52 90 88 2.6
42 214 950 3.6 39 112 109 24
43 160 950 2.4 52 90 89 1.0
44 214 800 3.6 52 98 98 01
45 214 800 2.4 39 41 40 1.3
46 160 950 2.4 39 91 91 0.2
47 214 800 3.6 39 100 104 -3.5
48 160 800 36 39 89 89 -0.6
49 160 950 3.6 52 39 40 -3.0
50 160 800 24 52 S0 91 -1.0
51 160 950 3.6 52 41 40 1.3
52 160 800 2.4 39 70 72 -2.4
53 160 850 3.6 39 75 76 -1.1
54 214 950 2.4 38 79 79 -0.1
55 214 950 2.4 52 89 88 1.2
56 214 800 3.6 52 99 100 -11
57 214 950 3.6 38 110 106 3.5
58 160 800 3.6 52 76 73 3.8
59 214 800 2.4 39 38 36 4.2
60 160 950 3.6 39 76 74 2.3
61 214 950 3.6 52 89 88 1.0
62 214 800 36 39 102 - 103 0.6
63 160 800 36 92 74 75 -1.1
64 214 950 2.4 52 89 87 1.8
65 160 800 2.4 39 72 70 2.9
66 214 950 2.4 39 78 80 -2.1
67 214 950 3.6 92 30 91 -1.2
68 160 950 24 39 93 92 1.5
69 214 800 2.4 52 65 65 0.2
70 160 950 2.4 52 89 91 -2.1
71 160 800 3.6 39 89 91 -2.6
72 214 800 2.4 52 64 62 3.1
73 160 800 2.4 52 90 92 -1.8
74 214 950 3.6 39 112 108 3.3
75 160 950 24 52 90 g1 -1.2
76 214 800 3.6 92 98 98 0.1
77 214 800 24 39 41 42 -3.6
78 160 950 2.4 39 91 93 -1.9
79 214 800 36 39 100 99 t.4
80 160 800 3.6 39 89 30 -1.7
81 160 950 36 52 39 39 -0.5
82 160 800 2.4 52 80 88 2.4
83 160 950 3.6 52 41 40 1.8
84 160 800 2.4 39 70 72 -2.4
85 160 550 3.6 38 75 77 -2.3
86 214 950 2.4 39 79 81 -2.6
87 214 950 2.4 52 89 86 36
88 214 800 3.6 52 99 101 -2.1
88 214 550 3.6 39 110 111 -1.2
920 160 800 36 52 5 76 -0.3
91 214 800 24 39 38 39 -3.6




Testing data sets = 35 (25% of 140)

Run | Chromic | Electric | Sulphuric | Plating NN Actual | Diff (%)
Acid | Current Acid Time Result Result
Conc. conc. '

g2 160 950 36 39 76 78 -2.9

93 214 950 36 52 B9 92 -3.4

94 214 800 36 39 102 100 2.4

95 160 800 3.6 52 74 72 3.1

96 214 950 24 52 89 85 42

a7 214 950 2.4 52 89 86 3.0

98 160 950 36 39 76 78 -29

a9 160 950 36 52 41 40 1.3
100 214 950 3.6 39 112 113 -1.2
101 160 800 24 39 72 72 -06
102 214 950 2.4 39 78 79 -0.9
103 214 950 36 52 g0 91 -1.2
104 160 950 2.4 39 93 92 1.5
105 214 800 2.4 52 65 64 1.7
106 160 950 2.4 52 89 90 -1.0
107 160 800 3.6 39 89 88 07
108 214 800 2.4 52 64 65 1.7
109 160 800 2.4 52 90 91 -0.8
110 214 950 36 39 112 111 0.5
111 160 950 2.4 52 90 90 -0.1
112 214 800 3.6 52 98 99 -0.9
113 214 800 24 39 41 40 1.3
114 160 950 24 39 91 92 -1.2
115 214 800 36 39 100 101 -0.6
116 160 800 36 39 89 90 1.7
117 160 950 36 52 39 40 -3.0
118 160 800 2.4 52 90 92 2.1
119 160 950 36 52 41 42 -3.6
120 160 800 2.4 39 70 71 -1.0
121 160 950 36 39 75 77 2.3
122 214 950 2.4 39 79 78 1.2
123 214 950 2.4 52 89 91 -2.1
124 214 800 3.6 52 99 08 0.9
125 214 950 36 39 110 108 1.6
126 160 800 3.6 52 76 78 -2.8




Validation data sets = 14 (10% of 140)

Run | Chromic | Electric | Sulphuric | Plating NN Actual | Diff {%)
Acid | Current Acid Time Result [ Result
Conc. Conc.
127 214 800 2.4 39 38 36 4.2
128 160 950 36 39 76 77 -1.7
129 214 950 36 52 89 86 3.4
130 214 800 3.6 38 102 100 2.4
131 160 800 36 52 74 75 -1.1
132 214 950 2.4 52 B9 88 0.7
133 214 950 2.4 39 78 77 1.7
134 160 950 2.4 52 89 80 -1.0
135 160 950 2.4 52 20 90 -0.1
136 160 800 2.4 52 90 92 -2.1
137 214 950 2.4 52 89 86 3.6
138 214 800 2.4 39 38 39 -3.6
139 214 800 3.6 39 102 106 -3.4
140 214 950 2.4 52 89 88 0.7
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