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ABSTRACT

Stability is always the most fundamental issue to consider in the development of

any system with finite resources, simply because an unstable system is not operable

in a real-world environment. In this research, we study the stability problems for

single-server systems with multiple queues in which the server services the customers

arriving at the queue according to some service policy. Our contribution is to tackle

the stability problems from a relative stability point of view and, as a result, to obtain

a number of new systems and queue stability results.

We consider two kinds of stability problems in the single-server-multiple-queue

systems (SSMQSs)—absolute stability and relative stability. The absolute stability

concerns the stability status of the objects under studied. The objects could be

individual queues or the entire system, and an absolute stability analysis answers

questions, such as whether the objects are stable for some given system inputs. The

relative stability, on the other hand, concerns the stability relations among two or

more queues and answers questions, such as whether some queues are more (or less)

stable than others.

There are three types of absolute stability problems: queue stability, system sta-

bility, and degree of stability. The queue/system stability problems aim at obtaining

the queue/system stability conditions, and the degree of stability problem measures

how stable a queue is. On the other hand, the relative stability problem aims at com-

paring the degree of stability for two or more queues. Moreover, it involves obtaining

the conditions for a given relative stability relation to hold. Knowing the relative

stability also helps determine the queue stability conditions. Therefore, our focus of

this work is on the relative stability analysis of the SSMQS.
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Obtaining the relative stability results of the SSMQSs consists of several steps.

First, we provide a criterion to classify the SSMQSs. This classification allows us

to identify system models in which the degree of stability of a queue can be defined

through indirectly utilizing the Loynes’ theorem. The relative stability among the

queues can then be defined for the models. The next step is to investigate useful

properties of the models, and in particular, we discover properties related to the rela-

tive stability. One property is the sufficient and necessary relative stability conditions

for any two queues in the models. Another is the existence of the maximum as stable

as configuration of the system. Through these properties we can solve the relative

stability problems that we have introduced completely. In addition, the properties

also allow us to reformulate three problems—system stability region characterization,

system stabilization, and achieving maximum stable throughput—into one single op-

timization problem and provide clue to solving the optimization problem.

The relative stability properties are not only interesting and important in them-

selves but also essential to solving the queue stability problems. Since queue stability

is more general than system stability, the relative stability is also useful to solving the

system stability problems. To show the importance of the relative stability properties,

we select four practical systems from a class of SSMQS models and investigate both

absolute stability and relative stability conditions of these four systems. With the

relative stability properties, we can see the approach to derive the stability conditions

in the single-server-multiple-queue systems is unified and straightforward, though be-

cause of the complexity of some systems, the exact absolute stability conditions for

those systems may not be found. Nevertheless, through the relative stability results

we can always provide necessary stability conditions for the class of systems.
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1. INTRODUCTION

1.1 Absolute Stability and Relative Stability

In the last two decades, communication and computer networks have experienced

a fascinating advance. New technologies and applications have been invented and de-

veloped at all the layers in the network architecture. More importantly, this marching

to the new developments has never been slow down but become faster and faster. In

order to provide more efficient and effective networking environments and to accom-

modate more new applications, huge efforts have been attracted from the research

community to analyze and improve the performances of network systems.

Typical performance issues of network systems, to list a few, include throughput of

channels, delay of packets, efficiency of paths, schedulability of flows, and stability of

nodes. Very often, these issues can be formulated and analyzed as queueing problems.

Among them, the stability problem is probably the most fundamental one: a stable

network is good, and an unstable network is bad. Generally speaking, a queue is

stable if the length of the queued up customers does not grow to infinity as time goes

by. And a system is stable if all the queues in the system are stable. In this work,

we are interested in the stability issues of the single-server-multiple-queue systems in

which multiple queues contend for services provided by a single server.

For a queueing system, one of the basic questions is to determine whether the

system is stable or not under some given inputs. Moreover, because sometimes it is

possible that some queues are stable while the whole system is not, in these situations,

instead of the whole system, the major concern may be the stability of some special

queues. To differentiate these two kinds of concerns, we call the former as the system

stability while the latter the queue stability. It is easy to see that system stability

implies queue stability but the reverse case is not necessarily true.
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To answer the above stability questions, i.e., to determine the stability status of

a system or some queues for some given inputs, it naturally brings up the needs of

finding the ultimate stability conditions of the system and the queues, which in general

is the goal of stability analysis of queueing systems. Usually, the stability conditions

are in the forms of parameter regions with respect to the traffic input parameters

and called the stability regions. If the given traffic input are within the stability

region, the system or the queues under consideration are stable; otherwise, they are

unstable. Intuitively, we consider that the stability conditions reflect the qualitative

aspect of the stability, i.e., it can determine whether the given system or queues are

stable or not for some given traffic inputs. The stability conditions are also static and

intrinsic to the system, that is, once the system is given, the stability conditions will

be constant and independent to the traffic inputs. The system and queue stability

(status), however, are dynamic as they will be affected by the traffic inputs.

Another kind of questions regarding to stability is to ask, say, if a queue is stable

under some given traffic inputs, how stable it is. This kind of questions in general

cannot be answered directly from the stability conditions. To address the question,

we need to go one step further to find out the degree of stability of the queue for the

given traffic inputs. In particular, we are interested in how the degree of stability

be affected by the traffic inputs. Contrast to the stability conditions, the degree

of stability reflects the quantitative aspect of the stability, i.e., a measurement of

stability, and is dynamic as it will also be affected by the traffic inputs. As both the

stability conditions and degree of stability can tell us the stability status of a system

or a queue, either qualitatively or quantitatively, we refer them collectively as the

absolute stability.

Once we know the degree of stability of the queues, it is natural to compare the

queues’ degree of stability to see which queue is more stable. This comparison leads to

another kind of issues related to stability, and we call them the relative stability. The

reasons of this naming are, firstly, through the relative stability we cannot directly tell

whether a system or some queues are stable or not, and secondly, the relative stability
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concerns the stability relations among the queues. For the relative stability, on one

hand, we are interested in the relative stability relations among the queues, i.e., which

queue is more (or less) stable in terms of degree of stability. These relations of the

queues allow us to derive an order of the queues in terms of stability. On the other

hand, we like to find out the relative stability conditions under which the queues have

certain relative stability relations. The relative stability conditions in general can be

represented by the traffic input parameters of the queues. Therefore, through the

relative stability conditions we can tell how the relative stability relations among the

queues be affected by the traffic inputs. Similar to the absolute stability conditions,

the relative stability condition is also qualitative and static, i.e., it can determine

which queue is more (or less) stable, and is constant and independent to the traffic

inputs. The relative stability relation, on the other hand, is dynamic because whether

a queue is more (or less) stable than another depends on the traffic inputs and how

the inputs vary. Next to the relative stability relation, another step will then be to

find out the differences, or the distances, among the queues in terms of degree of

stability.

Now we must point out that the above discussion is valid only when the concept of

stability as well as the concept of degree of stability are well-defined, and in addition

that the definition of degree of stability is consistent with the definition of stability. At

this point we assume that these definitions can be well-defined and leave the detailed

definitions to Chapters 2 and 4.

Figure 1.1 summarizes the aforementioned stability problems and the intuitive re-

lations and properties among them. The queue stability reflects the stability status of

a given queue. This stability status can be determined by the queue stability condition

(¬). Similarly, we have the system stability and the system stability condition, and

their relation (­). The relation between the queue stability and the system stability

is that the queue stability is necessary to the system stability, as the system stability

is just a special case of queue stability, i.e., all the queues are stable. Therefore, the

queue stability problem is more general than the system stability and we can achieve

3



system stability through queue stability (®), i.e., the conditions for all the queues to

be stable. From the queue stability we may able to introduce the concept of degree of

stability to measure how stable a queue is. The dot-line arrow ¯ indicates that the

definition of the degree of stability depends on the definition of the queue stability.

Once we have a way to compute the degree of stability of a queue, consequently, we

can determine the queue’s stability status as well as the queue stability condition

(°). The intuitive reason of the latter conclusion is that the queue stability condition

is equivalent to the condition of maintaining the degree of stability at certain level.

We call the queue stability, system stability, and the degree of stability collectively

as the absolute stability. Through comparing the degree of stability of the queues, we

can achieve the relative stability relations as well as the relative stability conditions.

The latter conclusion is because the relative stability condition is equivalent to the

condition of maintaining a certain relation among the queues’ degree of stability (±).

The relative stability relation can be determined by the relative stability condition

(²). Finally, the dash-line arrow ³ indicates that the relative stability can assist in

achieving the queue stability. This is because, for a given queue, the relative stabil-

ity can tell us which queues are more (and less) stable than the given queue. This

information is indeed essential to the method developed in this study to study queue

stability.

From Figure 1.1 we can see that the degree of stability is probably the most

dominant problem in the sense that solving the degree of stability can lead to solu-

tions to the other mentioned stability problems. This dominant position, however,

makes the degree of stability the most difficult problem to tackle. Fortunately, as

the relative stability can be determined merely by comparing the queues’ degree of

stability, it is thus possible to have these comparison results indirectly without ex-

plicitly computing the degree of stability of the queues. In this study we achieve

this through investigating a set of relative stability related properties of a class of

single-server-multiple-queue systems. The set of properties allows us to completely

solve the relative stability problems in the systems. Once this is done, as indicated
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Fig. 1.1. A classification of stability problems.

in Figure 1.1 relation ³, we utilize the relative stability to analyze queue stability

problems, and subsequently, through the queue stability to achieve system stability.

This thread will be the main clue in this work to study the stability problems of the

class of single-server-multiple-queue systems. It makes the relative stability the main

object of this study.

1.2 Problem Statement and Motivation

Consider a single-server-multiple-queue system (SSMQS) in which k distributed

queues is multiplexed by a single server. The topological structure of a typical SSMQS

is illustrated in Figure 1.2.

In a SSMQS, at the ith queue, the requests arrive according to some arrival

processes Ai. We assume that there is an unlimited buffer at each queue to store
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Fig. 1.2. A single-server-multiple-queue system.

the unprocessed requests. At certain moment, the single server employs a scheduling

algorithm to determine which queue will be served next. Upon serving a queue, the

server determines how many requests can be entertained according to some service

policies. Furthermore, there are service time processes at each queue, the setup time

processes the server incurred at each queue between its arrival and the actual start of

service, and the switch-over time processes the server incurred between its departure

at one queue and its arrival at the next queue.

In this study, we identify a special class of SSMQSs in which a single definition

of queue stability can be shared based on some common assumptions of the involved

processes, e.g., arrival and service time processes. In addition, the scheduling algo-

rithms and the service policies used in the systems ensure that a stable queue will

always has a stationary regime of the state process even when some other queues are

unstable. For this set of SSMQSs, we address the following issues:

• Degree of stability: Define the concept of degree of stability.

• Relative stability: Analyze the relative stability conditions in those systems;

derive the relative stability conditions for some particular systems.
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• Absolute stability: Utilize relative stability to analyze queue and system stabil-

ity; derive queue and system stability conditions for some particular systems.

• Other issues: Utilize the relative stability to study the characterization prob-

lem of the system stability regions; prove the equivalence of three problems:

the characterization problem of the system stability regions, the stabilization

problem of the system, and achieving the maximum stable throughput of the

system.

This study is motivated by the need of a general study of the relative stability for

SSMQSs. On the theoretical level, we believe that the relative stability is a natural

step to go beyond the absolute stability. The relative stability requires us to compare

queues in terms of stability. This leads to the definition of the concept of degree

of stability, which can be used to measure how stable an individual queue is. The

introduction of the degree of stability enriches the absolute stability, which originally

considers the stability conditions mainly. For the SSMQSs, through the relative

stability conditions, we can tell how the relative stability relations are affected by

the system traffic inputs. This kind of questions simply cannot be answered by the

absolute stability conditions.

On the application level, the relative stability can facilitate the analysis of the

absolute stability conditions of the SSMQSs. This has been evidenced in the stability

analysis for the slotted ALOHA network [17, 47] and polling systems [16, 29]. In

[47], a necessary stability condition and a better sufficient stability condition for the

slotted ALOHA network were derived. In [29] the local stability condition of a version

of polling system was derived. While in [16, 17], the queue stability conditions of the

slotted ALOHA network and a version of polling systems were established. These

results all require the information of the ordering of the queues becoming unstable

when the system traffic increases in certain ways, and this stability ordering infor-

mation can be directly derived from the relative stability conditions of the systems.

Therefore, a general study of relative stability not only facilitates the queue stability
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analysis, but also improves the system stability to a certain extent. This is why we

consider the relative stability can be served as a thread to link the stability problems

together.

1.3 Contributions

We believe this work is the first attempt to study stability problems of the SSMQSs

from the relative stability perspective. The main contribution of this work is the

establishment of relative stability results for a class of SSMQSs. The results consist

of a set of relative stability related properties of the SSMQSs and some approaches

for deriving both absolute and relative stability conditions in the SSMQSs. The set

of properties allow us to better understand the SSMQSs. More importantly, based on

this set of properties, we can develop unified and effective approaches to achieve both

absolute and relative stability conditions in the SSMQSs. The approaches are unified

in the sense that they are applicable to a class of SSMQSs. The approaches are also

effective in the sense that, in terms of relative stability, the approaches can be easily

applied to obtain the relative stability conditions of the SSMQSs completely; while in

terms of absolute stability, the approaches can derive both queue and system stability

conditions, though for some systems, only separate necessary or sufficient stability

conditions can be obtained. In contrast, the existing approaches in general can only

be used to study the system stability conditions, though there are some independent

results regarding to the queue stability conditions as well as the relative stability

have been reported. To investigate the properties, we provide a classification to the

SSMQSs. Such a classification allows us to identify the kind of SSMQSs which is

both specific and general enough in the sense that, on one hand, the relative stability

problems we have mentioned for the systems can be completely solved, and on the

other hand, the systems can cover the typical queueing models that are commonly

used in performance evaluation of computer and communication networks. To study

relative stability, we also propose a formal definition of degree of stability of a queue.
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The introduction of the concept of degree of stability enriches the content of the

absolute stability problems of the SSMQSs.

The second contribution of this work consists of those actual relative and absolute

stability conditions for some practical systems. These results are the direct appli-

cations of our approaches. Besides reproducing the previously reported results, we

are able to obtain new results such as the relative stability conditions for a slotted

ALOHA networks with multipacket receptions, and a necessary system stability con-

dition for the slotted buffered ALOHA network that is better than the existing one.

Through the relative stability related properties, we can also solve the stability re-

gion characterization problems of the SSMQSs, for instances, in this study we obtain

the closure of the system stability region of the ALOHA network with or without

multipacket reception. The properties further allow us to reformulate the following

three problems, namely, the characterization problem of the system stability region,

the stabilization problem of the system for a given traffic point, and finding the max-

imum stable throughput, into a single optimization problem. And the solution of the

optimization problem is to find a specific configuration of the system under which all

the queues have a specific relative stability relation and the stable system through-

put achieves its maximum at the system stability boundary when the system traffic

increases in a certain way.

1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows: In Chapter 2 we provide some

background related to this study. We review some different definitions of the concept

of stability, some different approaches to study the stability in queueing systems,

and some previous stability results of the SSMQSs. In Chapter 3 we study relative

stability relations in three typical SSMQSs. Through the study we show that there

are common factors available to all the three systems. These factors provide us a

clue to classify the SSMQSs in a way such that we can define degree of stability
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for a class of SSMQSs, thus making the relative stability analysis of the class of

SSMQSs possible. Then in Chapter 4 we first identify two classes of SSMQSs and

define the concept of degree of stability. For the special class of SSMQSs, we define

the relative stability relations among the queues. Next we investigate the relative

stability related properties in the special kind of SSMQSs. In Chapter 5, we perform

both relative and absolute stability analysis to some practical systems. Through these

examples, we demonstrate the unified and effective approaches to stability analysis

of the SSMQSs. In addition, some other applications of the relative stability results

will also be discussed in this chapter. These include the characterization problem of

the system stability regions, the stabilization problem of the systems, and finding the

maximum stable throughput of the systems. We conclude the dissertation in Chapter

6 and discuss some further directions of this research there.
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2. BACKGROUND

Although stability is one of the fundamental issues in queueing systems, it is hard to

find a universal definition to cover all its aspects. In this chapter, we first look at some

common definitions of stability for both dynamic systems and stochastic systems. In

particular, we concern about the stability definitions for queueing systems as a proper

definition of queue stability is crucial to the definition of the concept of degree of

stability. Then we briefly survey some methods that can be used to study stability

problems in queueing systems. Finally, we discuss some existing results of stability

analysis in SSMQSs.

2.1 Stability Definitions

2.1.1 Lyapunov Stability

A (deterministic) dynamic system is said stable usually means that the system

has the good properties that it can be operated normally for a long time under certain

conditions, and that the system’s long run behaviour can be predicated. Qualitatively,

the term stability describes the property that if starting the system at some desired

operating point, it will stay close to the point in the equilibrium, and such behaviour

is insensitive to the initial point as well as to the possible perturbations of inputs to

the system. A stable system is the one which has such property.

The formalization of the stability concepts is probably originated by A. M. Lya-

punov in studying nonlinear control systems [48]. Suppose a nonlinear dynamic sys-

tem can be represented by a differential equation

ẋ(t) = f(x(t),u(t)), (2.1)
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where x(t) ∈ D ⊂ Rn is the system state vector with domain D, and u(t) ∈ Rm

represents the input vector, m≤n, and f : Rn×Rm → Rn is a vector function. If f is

continuous, for each measurable and locally bounded u(t) and each initial condition

x0 = x(0), a (not necessarily unique) solution to Eq. (2.1) exists. Denote the set of

solutions ϕ(·) to Eq. (2.1) under the assumptions as Sx0 . Then different levels of

stability of the system at the origin can be defined as follows [61].

Definition 2.1.1 A dynamic system represented by Eq. (2.1) is (Lyapunov) stable

at the origin if for each ε>0 there exists δ>0 such that for each x0 with ‖x0 ‖<δ and

all the solutions ϕ(·)∈Sx0 the following holds: ϕ(·) is right continuable for t≥0 and

‖ϕ(t)‖< ε,∀t ≥ 0. (2.2)

Definition 2.1.2 A dynamic system represented by Eq. (2.1) is locally asymptotically

stable at the origin if it is stable at the origin and if there exists δ0>0 such that for

each x0 with ‖x0 ‖<δ0 and all the solutions ϕ(·)∈Sx0 the following holds:

lim
t→+∞

‖ϕ(t)‖= 0. (2.3)

The origin is said to be globally asymptotically stable if δ0 can be arbitrary large.

Definition 2.1.3 A dynamic system represented by Eq. (2.1) is exponentially stable

at the origin if it is locally asymptotically stable at the origin and if there exists α,

β, and δ1>0 such that for each x0 with ‖x0 ‖<δ1 and all the solutions ϕ(·)∈Sx0 the

following holds:

‖ϕ(t)‖≤ α ‖x0 ‖ e−βt,∀t ≥ 0. (2.4)

In all the definitions above, the stability is in strong sense that the conditions are

required to be held for all the solutions in Sx0 . Follows are the interpretations of the

above definitions:
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• A system is Lyapunov stable if it starts close enough to the equilibrium (at the

origin and ‖x0 ‖<δ), it will stay there close enough forever (‖ϕ(t)‖< ε).

• A system is asymptotically stable means that it not only stays close to the

equilibrium but also converges to it eventually (limt→+∞ ‖ϕ(t)‖= 0).

• A system is exponentially stable means that it not only converges but also

converges fast enough (with bounded convergence rate ‖ϕ(t)‖≤ α ‖x0 ‖ e−βt).

We can see that the definitions indeed reflect the meaning of the term “stability”,

i.e., a stable system in the long run will stay close in some equilibrium states, and

such behaviour is insensitive to the initial conditions and possible perturbations of

the inputs.

2.1.2 Stability of Stochastic Systems

When random factors are added, we have stochastic systems, and the meaning of

stability changes. For general stochastic systems, instead of finding exact solutions

to the system states, it is more realistic to focus on the probabilistic aspects of the

systems, that is, the distribution of the system states in the equilibrium. For these

systems, the stability can refer to the convergence of the state distributions to some

proper limiting probability distributions, and the convergence is independent to the

initial conditions of the system and possible input perturbations. Sometimes, such

convergence is also called ergodicity because we may obtain the limiting probability

distributions through a set of ergodic theorems.

In studies of statistical mechanics of dynamic systems, the term “ergodicity”

means the existence of a time average of the system states, and the time average

equals to the space (phase) average of the system states. Let (Ω,F , µ) be some mea-

sure space with points ω∈Ω, and T : Ω→ Ω be a measure preserving transformation

of the space, i.e., for each measurable set B ∈ F , µ(T−1(B)) = µ(B). If the sys-

tem starts at ω0
def
= T 0ω and let T k+1 = T (T k), then the trajectory of the system
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with respect to time will be T 0ω, T 1ω, . . . , T nω, . . . . For any measurable function

f : (Ω,F)→ (R,BR) we have the time average of the system states with respect to f

along the trajectory as:

1

n

n−1∑

k=0

f(T kω). (2.5)

If f is integrable, then the well-known Birkhoff Ergodic Theorem states that Eq. (2.5)

converges almost everywhere to an integrable limit function f ∗,

lim
n→∞

1

n

n−1∑

k=0

f(T kω)
a.e.
= f ∗(ω), (2.6)

and the function f ∗ is constant on the trajectory, i.e., f ∗(T kω) = f ∗(ω) for any k.

Furthermore, if T itself is ergodic (or called metrically transitive), i.e., T−1B = B

implies either µ(B̄) = 0 or µ(B) = 0, then the limit in Eq. (2.6) (time average) is

constant and equals to Ef(ω) =
∫

Ω
f(ω)µ(dω) (space average). Intuitively speaking,

the ergodic theorem says that, in one run and if it is long enough, the system will

visit all the states and the fraction of time the system will stay in one particular state

is the same as the chance that the system is found in that state in any run.

Now let f(T nω) be an ergodic and stationary random sequence X(n) defined on

some probability space, where X(n)=f(T nω), then Eq. (2.6) can be rewritten as:

lim
n→∞

1

n

n−1∑

k=0

X(k)
a.s.
= Ef(ω). (2.7)

Denote π as the distribution of X(0)=f(ω), then for each measurable function g, its

mean with respect to X will be

lim
n→∞

1

n

n−1∑

k=0

g(X(k))
a.s.
=

∫
g(x)π(dx). (2.8)

If g(x)=IA(x), the indicator function of a set A, then the left-hand side of Eq. (2.8) is

the fraction of time that X(k) spent in A, and this fraction, according to Eq. (2.8), is

independent to the initial state X(0) and converges to π(A). The constant right-hand

side π(A) is the limiting distribution we are looking for. Therefore, the stability of

a stochastic systems, i.e., the existence of a limiting probability distribution of the

14



system states, can be considered as the results of applying ergodic theory to stochastic

processes [12].

Specifically, if X(n) is a Markovian process, then it can be proved that π is the

solution to the equation,

π(A) =

∫
π(dx)P (x,A), (2.9)

where P (x,A) = P{X(1) ∈ A|X(0) = x} is the transition probability. The process

will also be called ergodic if π, the solution to Eq. (2.9), is a probability distribution,

i.e.,
∫
π(dx) = 1. The meaning of Eq. (2.9) is that if we start the process at X(0)

with distribution π, the distribution that the process will be at a state in the set A

at X(1) will have the exact distribution as π.

2.1.3 Stability of Markov Chains

Now we consider definitions of stability of discrete time Markov chains, which

usually are used in modeling queueing systems. An (embedded) discrete time Markov

chain (DTMC) is a collection of random variables X={Xn : n∈Z+} with state space

X and the associated countably generated σ-field B satisfies the following Markovian

property

P (Xn+m∈A|Xm=x,Xl, l<m) = P (Xn+m∈A|Xm=x) = P n
m(x,A). (2.10)

That is, the process X is memoryless for all but its most immediate past. The

transition probability P n
m(x,A) represents the probability that started from state x

at the mth step, the chain will be in the set A after n step of transitions, where A⊂B.

The DTMC with transition probability defined in Eq. (2.10) is called homogeneous if

P n(x,A) is independent to m, i.e., P n
m(x,A) = P n

0 (x,A) for all m. Define the hitting

time of the set A as

τA = inf(n≥1 : Xn∈A), (2.11)
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i.e., the first time the chain reaches (or returns to) the set A. If the state space X is

countable, a chain is called irreducible if for any nonempty set A⊂B and any initial

state x, the following holds

P (τA<∞|X0 = x) > 0. (2.12)

The irreducibility of a chain means that every state is reachable from any other states.

Furthermore, a chain is called recurrent for any nonempty set A⊂B and any initial

state x∈A if

P (τA<∞|X0 = x) = 1. (2.13)

Otherwise, the chain is called transient. It can be proved that an irreducible chain

with countable state space is either recurrent or transient. A chain is recurrent means

that any state can be visited infinitely many times. For an irreducible and recurrent

chain, if the mean of the hitting time for any set A exists and is finite, i.e., E[τA|X0 =

x] < ∞, the chain is called positive recurrent; otherwise, it is called null recurrent.

Furthermore, let d(x) be the period of state x where d(x)=gcd{n≥1 : P n(x, x)>0},
then a DTMC is called aperiodic if for each state x the period d(x) ≡ 1.

For a stochastic system which can be modeled as a DTMC, its stability is ensured if

the underlying DTMC is homogeneous, aperiodic, irreducible, and positive recurrent,

or collectively, ergodic. In other words, an ergodic DTMC admits a unique invariant

distribution (also called the stationary distribution) of the system states satisfies

Eq. (2.9). An important result for ergodic DTMC is that the transition probability

of the chain converges in total variation to its stationary distribution:

‖ P n(x, ·)− π(·) ‖−→ 0. (2.14)

This allows an even stronger sense of stability to be defined: geometric ergodicity. A

DTMC is called geometrically ergodic if there exists a constant r>1 such that

∞∑

n=1

rn ‖ P n(x, ·)− π(·) ‖<∞, (2.15)

where the constant r−1 is the rate of convergence.
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If a DTMC with transition probability law P n(x,A) evolves on a general state

space X , we require the set A to have some reasonable size. For this case, a more

general concept called ϕ-irreducibility is defined. A chain is called ϕ-irreducible if for

any A⊂B and initial state x, there exists a measure ϕ on B such that

ϕ(A) > 0 =⇒ P (τA<∞|X0 = x) > 0. (2.16)

Comparing Eqs. (2.12) and (2.16), it can see that the irreducibility in the count-

able state space is a special case of the ϕ-irreducibility by taking ϕ as the counting

measure of a set. Furthermore, a set A is called Harris recurrent if Eq. (2.13) holds

for all x ∈ A. The chain itself is Harris recurrent if the state space only contains

Harris recurrent subsets. Parallel to the countable state space case, if there exists

an invariant probability distribution π on X satisfies Eq. (2.9), the chain is called

positive recurrent; otherwise it is called null. Therefore, we can see that a DTMC

with a general state space is stable if it is homogeneous, aperiodic, ϕ-irreducible, and

Harris positive recurrent. A rigorous treatment to the stability of Markov chains can

be found in [51].

2.1.4 Stability in Queueing Systems

In queueing systems, the queue length processes of all the queues at some time

can often be modeled as stochastic processes, e.g., DTMCs. Based on the above

discussion, it is natural to define the stability of a queueing system as the convergence

of the queue length processes to some limiting distributions. The convergence implies

that the queue lengths will be finite or even empty infinitely many times in the

equilibrium with probability one, i.e., the queues will not explode to the infinity.

Besides the queue length processes, there are other considerations of the system states,

for instances, the waiting time (delay) processes of the customers, or the remaining

service time at the servers. It is easy to see that a queueing system is stable in terms

of finite queue length implies finite waiting time for any customer and finite remaining

service time for the server.
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Let Qn be the queue length process at some discrete time epoch n, the stability

of a queue can be defined as the existence of a limiting distribution function of the

queue length process [45, 64].

Definition 2.1.4 A queue is stable if the distribution of the queue length process Qn

converges to some limiting distribution function F (x) as n tends to infinity:

lim
n→∞

P (Qn < x) = F (x), and lim
x→∞

F (x) = 1. (2.17)

A weaker version of the above is called substable if the queue length process is

only bounded in probability, namely,

lim
x→∞

lim inf
n→∞

P (Qn < x) = 1. (2.18)

A stable system is of course substable, while a substable system becomes stable when

the queue length process also tends to a limit. If a system is neither stable nor

substable, it is unstable. The above definitions also apply to a multidimensional

queue length process if there are multiple queues in the system, i.e., Qn is a vector

and the limiting distribution function becomes the joint distribution of the queue

length processes.

A special case is that if a queueing system can be modeled as a (multidimensional)

DTMC, the stability and substability of the system imply each other because they

both are equivalent to the ergodicity (positive recurrence) of the chain [13, 19, 51, 64].

Besides, geometric ergodicity can also be considered [5, 73, 74]. Another way to define

stability of queues is to use the existence of finite moments [31, 63, 75], that is, a

queue is stable if the lth-moment of the queue length exists and is finite. It can be

seen that the existence of finite moments is stronger than the existence of limiting

distribution.

All of the above mentioned definitions of stability of queueing systems assume

that the arrival processes to the systems are some stochastic processes. On the other

hand, if a queueing system is fed by some deterministic input processes such as the

ones proposed in [20], i.e., the total arrivals during a period is bounded above and the
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bound only depends on the length of the period, then the stability of the queues in

the system can be defined as the existence of deterministic bounds for the interested

quantities such as queue length or customer delay [14]. Another stability definition

of deterministic queueing systems appears in the sample path analysis of queueing

systems [52]. On a sample path, if the average arrival rate to a queue as well as the

average departure rate from the queue converge and equal to each other, the queue

is called rate stable. In the following table, we summarize the stability definitions

mentioned in this section.

Dynamic Systems: Lyapunov Stability

Asymptotic Stability

Exponential Stability

Stochastic Systems: Existence of Limiting Distribution

Markov Chains: Ergodicity

Geometrical Stability

Moment Stability

Stochastic Queueing Systems: Substability (bounded in probability)

Stability (existence of limiting distribution)

Deterministic Queueing Systems: Rate Stability & Performance Bounds

Table 2.1
Common stability definitions.

2.2 Methods of Studying Stability

2.2.1 Lyapunov Function Methods

To establish stability for (deterministic) dynamic systems, Lyapunov proposed

two methods and the more common one is the second method or the direct method.
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Consider a dynamic system that can be described by Eq. (2.1), the second method

says that if there exists a nonnegative function V (x) of the system state x such that

V (x̄) = 0,

V (x) > 0 for any x 6= x̄,

V̇ (x) < 0,

then x̄ is asymptotically stable. The function V (x) is often called the test function.

Intuitively, if considering the nonnegative function V (x) as the energy or potential

level of the system at state x, the existence of such a test function (with negative

accelerated rate) implies the energy level of the system has a way to continuously

decrease until it reaches the equilibrium x̄ and stays there forever. For the direct

method, however, there is no systematic way for finding suitable test functions for a

given system.

Borrowing the idea from the Lyapunov direct method, test function methods have

been established to study the stability of stochastic systems, especially the Markovian

processes [28, 51]. Consider an irreducible DTMC on a countable state space X
with one-step transition probability matrix P and state X(t) at time t. Let V be a

nonnegative function on X , served as the test function, define the drift function d(i)

at state i as following

d(i) = E[V (X(t+ 1))− V (X(t))|X(t) = i] = PV − V. (2.19)

Intuitively, the drift function represents the average difference of the energy between

this state and the next state. If the drift function is always negative, i.e., correspond-

ing to the negative accelerated rate, we can then conclude the DTMC is stable. The

following theorem, which often referred to as the drift criteria, summarizes the above

idea and can be served as the criteria for the DTMC to be stable [51, 74].

Theorem 2.2.1 If there exists a function V : X −→R+ and a finite subset C of X
such that:
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(a) If {i : V (i) ≤ K} is finite for all K, and if PV − V ≤ 0 on X − C, then X is

recurrent.

(b) If for ε > 0 and b is a constant such that PV −V ≤ −ε+bIC, then X is positive

recurrent.

The meaning of the above theorem can be interpreted as follows. In (a), for any

initial state in X −C, the condition PV −V ≤ 0 ensures that the value of the test

function of the next state is finite. Then because the set {i : V (i) ≤ K} is finite for

all K, the next step can only transit to a finite number of states. The irreducibility

assumption of the chain implies there must be some states that belong to the set C

in those finite number of states. Therefore, the returning time of the chain to the

set C is finite with probability 1, i.e., the chain is recurrent. In (b), for any initial

state in X−C, the conditions that V (·) is nonnegative and PV −V ≤−ε implies the

returning time of the chain to the set C has a finite moment. Once the chain enters

C, the recharging of V (·) is bounded by PV −V ≤−ε+b. This implies that if the

chain ever leaves C again, it will return to C again within a finite period. Therefore,

the chain is positive recurrent, i.e., ergodic.

Following theorems further give the criteria for an irreducible DTMC to be geo-

metrically ergodic and have finite moments, respectively [51, 74].

Theorem 2.2.2 An irreducible DTMC chain is geometrically ergodic if for ε>0 and

a constant b, there exists a test function V (x) ≥ 1 for x ∈ C such that,

PV − V ≤ −εV + bIC .

Theorem 2.2.3 An irreducible DTMC chain has finite moments with respect to a

nonnegative function f(·) if for ε > 0 and a constant b, there exists a test function

such that,

• PV − V ≤ −εf + bIC,

• if V (x) ≥ f(x) for x ∈ X −C and
∑

x∈C πxf(x) <∞, then
∑

x∈X πxf(x) <∞,

21



where πx is the stationary distribution of the chain.

Same as the Lyapunov direct method, one of the major difficulties to use the test

function methods to establish stability of DTMCs is that it is hard to find suitable

test functions for a given DTMC. Nevertheless, the test function methods are still the

most general methods to study stability of queueing systems that can be modeled as

DTMCs.

2.2.2 Fluid Model Approach

Fluid model is an important approach mainly developed in the last two decades

for establishing stability conditions of a class of queueing models called the open

multiclass queueing networks (OMQN) [18, 21, 22, 62]. The idea of the fluid model

approach can be outlined as following. In general, fluid models are deterministic

and continuous approximations of the underlying discrete stochastic networks. The

approximation is done through replacing the stochastically arrived and moved discrete

packets in the network with deterministic and continuous fluids. The rates of the

fluids are the average rates of the corresponding stochastic quantities. For a given

initial state of the stochastic queueing network under consideration, with proper time

and space scaling, if one can prove (through the Functional Strong Law of Large

Numbers) all the sample paths converge, where the limit is called the fluid limit of

the original network, then the stability of the fluid model implies the stability of the

original stochastic network.

More precisely, the dynamic of an open multiclass queueing networks in general

can be formulated as the follows:

Q(t) = Q(0) + E(t) +
K∑

k=1

Φk(Sk(Tk(t)))− S(T (t)) for t ≥ 0i, (2.20)

Q(t) ≥ 0 for t ≥ 0, (2.21)

T (0) = 0 and Tk(·) is nondecreasing for 1 ≤ k ≤ K. (2.22)

Ui(t) = t−
∑

k

Tk(t) is nondecreasing for each station i. (2.23)
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In the above, there are K queues and Q(t) is the queue length at time t, E(t) is the

accumulative arrival to the system up to time t, S(T (t)) is the number of customers

that have been served up to time t if the server totally devoted T (t) among of time

to serve the customers at time t, Φ(t) represents the internal routing functions of the

customers, and U(t) is the total idle time up to time t. If the arrival processes, the

service time processes, and the routing processes satisfy the functional strong law of

large numbers, then the above model has a fluid limit, which can also by represented

by a set of equations similar to the above. A fluid model is stable if there exists t0>0

such that for any fluid model solution, Q̂(t) = 0 for all t ≥ t0|Q̂(0)|. To prove a

fluid model is stable, Lyapunov functions are constructed and then with the following

theorem [21], one can obtain the stability for the original OMQN. In this regard,

fluid model can be considered as an intermediate step of the test function methods

to study stability of complicated queueing models.

Theorem 2.2.4 Fix an open multiclass head-of-line queueing network and consider

“the” associated fluid model. Suppose that the interarrival times have unbounded

support and satisfy a “spread-out” assumption. If the fluid model is stable, then a

Markov process describing the queueing network is positive Harris recurrent.

2.2.3 Non-Markovian Analysis Methods

In the literature, there are some non-Markovian analysis (non-test function) meth-

ods proposed to study stability in SSMQS, even though some of the models may be

able to represented by DTMCs [1, 27, 29, 49, 57, 64]. The advantages of these ap-

proaches are able to avoid the difficulties in finding suitable test functions, or in

considering more general input traffic models such as stationary and ergodic marked

point processes.

In [57] and [64], a dominant system method is used to study the ALOHA type

communication networks and polling systems. In both works, the models under con-

sideration can be represented by multidimensional DTMCs. Let Qn be such a DTMC
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with components Qn
i representing the queue length at each individual queue, and n

is the Markovian epoch. In general, the components Qn
i are not Markovian, and it is

not easy to find a test function for the multidimensional Qn. However, by noticing

the facts that for DTMC the substability (Eq. (2.18)) of the chain is equivalent to

the stability of the chain, the following two isolation theorems allow one to transform

the multiple queue stability problem into single queue stability problem [63].

Theorem 2.2.5 A k-dimensional DTMC Qn = (Qn
1 , Q

n
2 , ..., Q

n
k) is substable if all

the one-dimensional processes Qn
i are stable.

Theorem 2.2.6 If any one-dimensional process Qn
i is unstable, the k-dimensional

DTMC Qn is also unstable.

Then, to obtain the stability of each single queue Qn
i , the famous Loynes’ theorem

[45] is used. Loynes’ theorem specifies stability conditions for a single G/G/1 queue.

Theorem 2.2.7 For a single server queue, let {An} be the interarrival times and

{Sn} be the services times. If the pair {An, Sn} is a strictly stationary and ergodic

process, the following holds:

i if EA < ES, the G/G/1 queue is stable in the sense of Definition 2.1.4,

ii if EA > ES, the G/G/1 queue is unstable,

iii if EA = ES the queue may be stable, substable, or unstable. If {An} and

{Sn} are independent to each other, and one of them is formed of non-constant

mutually independent random variables, then the queue is unstable.

At this point, a subtle technique used in the method is to construct dominant systems

to ensure that the stationary and ergodic requirements of the arrival and service time

processes of the individual queues are satisfied in the multidimensional environment.

The idea of the construction is to split the queues into two subsets, namely, the stable

ones and the persistent ones. For the stable ones, they behave the same as in the
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original system, and because they are stable, the multidimensional DTMC of this

subset of queues are ergodic, which means their contributions to the system state are

stationary and ergodic. For the persistent ones, they are assumed never empty, i.e.,

by sending dummy traffic if necessary. The effect of this assumption is to put the

persistent queues into their worst situations and such situations are predicable. In

other words, under this assumption, together with certain scheduling algorithms and

service policies the server employs, the persistent queues also contribute stationary

and ergodic components to the system state. Then, for any persistent queue, we can

apply Loynes’ theorem directly to obtain its stability condition. It can be prove that

the stability of a queue in the modified system implies the stability of the queue in the

original system, thus the meaning of the dominant systems. Finally, by considering

each queue as one of the persistent queues and intersect the results, the stability of

the original system is achieved. The dominant system approach has been used to

study the stability of a variety of polling and random assess systems [15, 16, 23, 32–

34, 47, 53, 59, 65].

In [29] a polling model with general service policies is studied. The approach

to obtain stability conditions for the system is based on a monotonic property of

the DTMC representation of the system. Specifically, the property states that if the

initial state of the system is empty, then the system queue length process (which is

represented by a multidimensional DTMC) will monotonically increase in distribution

(i.e., stochastically increase) until the steady state is reached. To achieve the stability,

dominant systems have also been constructed to eliminate some of the queues’ random

effects, i.e., let those queues’ contributions to the system become constants. Then

the mathematical induction is used to prove the stability of the system by changing

a persistent queue to a normal queue one at a time. It is worth to mention that

the purpose of the dominant systems in this approach is mainly to eliminate some of

the queues’ random effects, while in [57] and [64] the dominant systems in addition

be utilized to achieve the stationarity and ergodicity of some queues’ contributions
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to the system state, though both have the same dominant system meaning, i.e., the

stability in the dominant system implies the stability in the original system.

In [1, 27, 49], multiple queue systems with stationary and ergodic marked point

processes are studied. The techniques used in [1] and [49] to prove stability are the

Loynes’ construction of stationary system regime and Palm probability, while in [27],

the saturation rule and the concept of the maximal dater have been introduced. All

these approaches may have difficulties in constructing the stationary regime through

Loynes’ backward method, thus the monotonic and contractive [44] properties of the

service policies are essential to these methods.

Besides the aforementioned methods, for stability of the deterministic queueing

systems, there are adversarial queueing theory [11], network calculus method [14],

and the sample-path method [52]. Discussion of methods to studying stability in

stochastic models can also be found in [24, 64].

2.3 Stability Results for Multiple Queue Systems

In this section we briefly review some published works related to this research.

The focus will be given to the stability analysis of SSMQSs, though results for some

others models will also be mentioned.

The concept of relative stability is common in classical control theory [8, 54, 55].

Associated with the relative stability, the degree of stability of a control system can

determine how large a perturbation is required to produce an unstable system, and

it can be measured by either the phase margin or the gain margin. To determine the

phase margin or the gain margin, a commonly used technique is the Nyquist stability

criterion [56]. Besides in control systems, the concepts of relative stability and degree

of stability have also been borrowed and applied in different kinds of networking

problems. Khotimsky and Krishnan utilize the relative stability to compare the degree

of congestion of switching planes in a parallel packet switch architecture [39]. In [37],

the authors use a nonlinear dynamic model of TCP to analyze and design active
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queue management control systems with random early detection scheme. One of the

system design goal is to maintain the systems within stability margins. In [36], an

ATM traffic management model has been formulated as a feedback control system

and the relative stability of the system is measured by the phase margin. In the area

of stability analysis of multiple queue systems, there are some results of stability rank

or stability ordering, which specifies the ranks or ordering of the queues becoming

unstable, have been reported [16, 17, 29, 47]. Specially, a concept of the least stable

queue has been introduced to obtain system stability of a version of polling system

with applications in the satellite communications [15]. It is not hard to find the

least stable queue holds one of the end positions in the stability ordering of the

queues while the other end can be called as the most stable queue. The stability

ordering in [29] is obtained through identifying the individual queue whose stability

implies the stability of a subset of queues (local stability). In [47] the stability rank

is obtained through comparison of each queue’s probability of non-empty and no

queues transmit (including itself) during a slot in the ALOHA network. The way to

find out the stability ordering in [16, 17] is more intuitive, that is, the works first

provide conditions under which any two queues are as stable as each other. Then the

conditions of the other two relations (one queue is more or less stable than the other)

are identified. All these conditions can be represented by some relations of the queues’

arrival rates, and once the condition of the as stable as relation is known, the other

two can then be obtained straightforwardly. For the usage, the stability ordering is

essential when studying the queue stability issues in multiple queue systems [16, 17]

because any single queue in general will be at each position in the ordering some

time. Furthermore, the stability ordering can be used in construction of dominant

systems such that the stables queues are known to any specific dominant system. This

technique has been used in [29, 47, 59] to achieve local stability or tighter bounds

of the stability regions of the systems. Nevertheless, to the best of our knowledge,

this research is the first attempt to provide a general relative stability study of the

SSMQSs.
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For the absolute stability of SSMQSs, most of the attention has been given to

the system stability analysis of two common types of models, namely, the polling

systems [35, 66–69, 76] and random access networks [3, 9]. For polling systems,

works worth to mention are [4–6, 15, 16, 25–27, 29, 30, 32–34, 34, 38, 40, 41, 49, 58].

Among them, almost all the works consider stochastic models of polling systems

except [4], in which deterministic model is used. For the stability definition, most of

the works consider only the existence of a stationary distribution of the queue length

processes, while [5, 6] in addition consider the geometric ergodicity and moment

stability, respectively. However, in [4], stability means the existence of finite bounds

of packet delay. Moreover, system stability is the main concern of all the works,

while local stability and queue stability have also been achieved in [16, 29, 38]. The

main approaches used in the above works are summarized as follows: test functions in

[5, 6, 40], dominant systems approach in [32–34], stationary marked point processes

in [26, 27, 49, 58], monotonicity of Markov chain in [29, 30], the least stable queue in

[15, 41], stability ordering in [16], queue backlog in [38], network calculus in [4]. The

service policies that have been covered in the works including both unlimited type,

such as pure exhaustive and gated policy, and limited type, such as gated-limited or

time-limited, or even mixed type. Also, periodic polling, polling table, and Markovian

polling have been covered. Specially, polling system with multiple server is considered

in [30], while state dependent set-up time and routing have been considered in [15, 16]

and [26], respectively.

In a random access system the single server serves the queues in a random (or

probabilistic) fashion. The most well-known example is the ALOHA network and its

variants [3]. Though the scheme is simple enough, for the asymmetric case, the exact

and computable system stability boundary of an ALOHA network can be solved only

when the system consists of two stations, though there is an exception in [7] in which

a special assumption of the arrival processes is used. Under this special assumption,

the overall system stability region of the ALOHA network can be characterized. In

general, when there are more stations in the system, only inner and outer bounds
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can be obtained [17, 47, 57, 65, 72]. Besides the collision channel in the works cited

above, recently, there are works of stability analysis for random access networks with

multipacket reception [46, 53], broadcast random access [59], and wireless networks

with retransmission diversity [23]. Specifically, [46] confirms the overall system stabil-

ity region of the ALOHA network obtained in [7] through a sensitivity monotonicity

conjecture of the model. In all of these works, the major concern of the stability is

the existence of stationary distribution of the queue length processes, while the main

approach is the dominant system method. Exception is that in [23] the dominant sys-

tem approach is only used to derive sufficient stability for the NDMA and BNDMA

retransmission scheme, while for the sufficient and necessary conditions, both test

function and network calculus methods are used. Furthermore, queue stability has

also been considered in [17].

In communication networks, both polling systems and random access systems can

be used to represented single-hop networks. In practice, these single-hop networks

will be interconnected to form multihop networks. Multihop radio networks with

station activation constrains is considered in [70]. In the findings, the stability region

of the optimal service policy is the superset of the stability regions of all possible

service policies. And the optimal service policy tends to equalize the queue length

differences among the queues. In [10], a version of interconnected single-hop random

access network had been analyzed and the system stability had been obtained. Some

other works that worth to mention are: [42, 43], in which fluid limit approach is

used to study stability for open queueing models and scheduling policies; [1, 2], in

which stationary marked point process is used to study stability for processor-sharing

systems; [14, 77], in which stability of networks with deterministic inputs have been

studied; [50], in which network backlog approach is used to obtain sufficient stability

conditions for some wireless networks.
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2.4 Summary

In this chapter we first reviewed some general definitions of stability of stochastic

and queueing systems. Then we described the commonly used approaches in stability

analysis of those systems. Finally, we briefly introduced some existing stability results

in SSMQSs. In the rest of this dissertation, we adopt the stability definitions as

Eq. (2.17) and Eq. (2.18). The approach we are using in this study is mainly the non-

Markovian analysis. Specifically, we will analyze stability of SSMQSs from a relative

stability perspective. The comparison between our approach and the dominant system

approach will be provided in Chapter 5 after some demonstrations of our approach

are given.

30



3. RELATIVE STABILITY RELATION IN

SINGLE-SERVER-MULTIPLE-QUEUE SYSTEMS

3.1 Introduction

In this chapter we study the relative stability relations among the queues in some

SSMQSs. By relative stability relation we mean whether any two queues’ stability

status can somehow be compared. The purpose of this chapter is to show that such

kind of relations commonly exist in some SSMQSs and the relations have connections

to the traffic inputs of the queues. To achieve the goal, we select three SSMQSs

to study, and the SSMQSs are: a polling system with gated limited service policy, a

slotted buffered ALOHA network, and a processor sharing system. The results in this

chapter can be considered as a prelude to the more general relative stability results

for the SSMQSs.

In this chapter and the sequels, we consider stability in the sense of Eqs. (2.17)

and (2.18). That is, a queueing system or an individual queue are called stable if the

distributions of the queue length processes converge to some limiting distributions;

and the system or the queue are called substable if the limiting queue lengths are

finite with probability 1. Consequently, a queue is called unstable if the following

holds

lim
x→∞

lim sup
n→∞

P (Qn ≥ x) > 0. (3.1)

3.2 A Polling System with Gated Limited Service

For simplicity, we consider in this section only a basic version of the polling systems

which is the same as the one studied in [32]. The polling system consists of a single

server and a finite set of k queues, denoted as qi, i∈ {1, ..., k}. Each qi has infinite
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buffer to store incoming customers. When attached at qi, the server serves a certain

number of customers that already appeared at qi upon the server’s arrival, up to Mi

customers and thus the gated limited service. Each qi has a Poisson arrival with rate

λi, and Ai(t), t≥0, is the total arrivals at qi up to time t. The service time process

at qi, Bi, is generally distributed i.i.d. with finite first moment bi. A switch-over

time, Ui, is spent by the server between its visit finishes at qi and service starts at

qi+1. The switch-over time process is also generally distributed i.i.d. with finite first

moment ui. All the arrival processes, service time processes, and switch-over time

processes are assumed mutually independent to one another. The server visits the

queues in a cyclic order. A cycle is the successive arrivals of the server at a particular

queue. Without loss of generality, we let q1 be that particular queue. Denote u0 as

the average total switch-over time during a cycle, where u0 =
∑k

i=1 ui. Further denote

ρi as the server utilization at qi and ρ as the total server utilization, where ρi=λibi,

and ρ=
∑k

i=1 ρi.

Let Qn
i (1) be the number of customers at qi when the server visits q1 for the nth

time. Each Qn
i (1) evolves according to the following:

Qn+1
i (1) = [Qn

i (1) + A1,n
i −Xn

i ]+ + A2,n
i , (3.2)

where A1,n
i is the number of customers arrived at qi during the period of the server’s

arrival at q1 and its arrival at qi in the nth cycle, A2,n
i is the number of customers

arrived at qi during the period of the server’s arrival at qi in the nth cycle and its

arrival at q1 in the (n+1)th cycle, Xn is the number of served customers at qi during

the nth cycle, and [x]+ = max(x, 0). Note that if qi is q1, then A1,n
i = 0. It can be

proved that the joint queue length process {Qn(1) = (Qn
1 (1), Qn

2 (1), ..., Qn
k(1))}∞n=1 is

a homogeneous, irreducible, and aperiodic Markov chain [32], and we state it as a

lemma in the following.

Lemma 3.2.1 The joint queue length process Qn(1) described above is a homoge-

neous, irreducible, and aperiodic Markov chain.
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Another useful result regarding to our polling model is that if the system is stable,

the long run average of the server’s cycle time and the number of customers served

at a queue during a cycle exist and unique, and the two quantities satisfy a balance

equation [32]. We state this result in the following.

Lemma 3.2.2 Let the Markov chain Qn(1) be positive recurrent (ergodic), then the

expectation of the cycle time EC and the expectation number of customers served at

each qi during any cycle EXi exist and are unique. Furthermore, we have

EC =
u0

1−∑k
i=1 ρi

, (3.3)

and for each qi,

EXi = λiEC. (3.4)

In the following we show that the assumption of Lemma 3.2.2 can be relaxed to

an unstable system. That is, even there are some queues in the polling system are

unstable, the conclusion of Lemma 3.2.2 still holds, i.e., the mean cycle time of the

polling system exists and is unique.

Lemma 3.2.3 Assume that under a certain arrival traffic pattern Λ=(λ1, λ2, ..., λk),

there is a partition of the queues in the polling system, i.e., {q1, q2, ..., qk} = S ∪ U ,

such that all the queues in S are stable while all the queues in U are unstable in the

steady state. Then the expectation of the cycle time EC and the expected number of

customers served at qi ∈ S during any cycle EXi exist and are unique. Furthermore,

we have

EC =
u0 +

∑
qi∈UMibi

1−∑k
qi∈S ρi

, (3.5)

and for each qi ∈ S,

EXi = λiEC. (3.6)

Proof: If U = ∅, the lemma is the same as Lemma 3.2.2. Now assume U 6= ∅ and

there is at least qj ∈ U . This implies that, based on the definition of substability

(Definition 2.18), we have

lim
x→∞

lim inf
n→∞

P (Qn
j (1) < x) < 1,
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which is equivalent to

lim
x→∞

lim sup
n→∞

P (Qn
j (1) ≥ x) > 0. (3.7)

Consider random variable τj = sup{n : Qn
j (1) ≤ Mj}, the last cycle when the server

visits q1 and the queue length at qj is less than or equal to Mj. We claim that

P (τj <∞) = 1. Otherwise, it would contradict with Eq. (3.7). In fact, if that is not

the case we should then have P (τj <∞)< 1, which is equivalent to P (τj =∞)> 0.

In other words, there exists sample path of the system such that P (Qn
j (1)≤Mj)=1.

Then on the sample path we must have

lim
x→∞

lim sup
n→∞

P (Qn
j (1)≥x)=0,

which contradicts with the assumption that qj∈U (Eq. (3.7)).

Similarly, for all other qjs in U we have the same conclusion regarding to the cycle

number τjs. Let τ =sup(τj,∀qj∈U), we also have P (τ <∞)=1. Then for each cycle

n> τ , when the server visits q1, at any qj ∈U , we have P (Qn
j (1)>Mj) = 1, and the

server always serves Mj customers during the cycle. Because the service times are

i.i.d. and are independent to other processes in the system, the time that the server

spends at qj and the subsequent switch-over time will be equal to
∑Mj

l=1 B
n,l
j +Un

j with

mean Mjbj+uj, where Bn,l
j is the service time for the l≤Mj customer during the nth

cycle at qj.

Now consider queues in S and let Qn
S(1) be the queue length process vector for

the stable queues. Define random variable K0 = inf{n > τ : Qn
S(1) = 0}, the first

cycle after τ such that all the queues in S are empty when the server visits q1.

Further define random variables Kn+1 = inf{n > Kn : Qn
S(1) = 0}, R0 = K0, and

Rn+1 =Kn+1−Kn. Because all the queues in S are assumed stable, the |S| dimensional

Markov chain Qn
S(1) is ergodic, therefore, P (K0 <∞) = 1 and consequently P (R0 <

∞) = 1. Furthermore, Qn
S(1) is regenerative with respect to Rn, and Rn defines a

delayed renewal process with R0 as delay and E(R) < ∞. The cycle time Cn
S is

also regenerative with respect to Rn. In fact, we can consider the time that the

server spends at an unstable queue and the subsequent switch-over time as part of
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the server’s switch-over time from a stable queue to another stable queue. Then from

Lemma 3.2.2 we have Eq. (3.5) and Eq. (3.6). Finally, it is easy to see that Eq. (3.5)

is also true when S=∅. 2

Next we present the main result in this section: the relative stability relation of

the queues in the polling system.

Theorem 3.2.1 For any two queues and a given arrival rate vector of the queues

Λ=(λ1, λ2, ..., λk) in the polling system, assume λi

Mi
≤ λj

Mj
, then

(a) qj’s stability implies qi’s stability;

(b) qi’s instability implies qj’s instability.

Proof: For the first part of the theorem, assume that qj is stable but qi is unstable.

Then all the queues can be partitioned into S and U , and we have at least qj ∈ S
and qi∈U . As discussed in Lemma 3.2.3, after the τth cycle all the queues in the set

U will contribute a constant number of customers during a cycle, where τ is the last

cycle that the queue length at all qi ∈U is less than or equal to Mi, P (τ <∞) = 1.

Furthermore, it can be proved that {Qn+1
S (1), Cn

S}∞n>τ is an ergodic Markov chain [32].

Now, using the stationary distribution of the ergodic Markov chain {Qn+1
S (1), Cn

S}∞n>τ
at cycle n= τ+1, we have a stationary cycle time sequence which has a finite and

unique expectation.

For any qk in any cycle n>τ , consider Eq. (3.2) and rewrite it into the following:

Qn+1
k (1)+A1,n+1

k −Xn+1
k = [Qn

k(1)+A1,n
k −Xn

k ]++(A2,n
k +A1,n+1

k −Xn+1
k ). (3.8)

Let W n
k = [Qn

k(1)+A1,n
k −Xn

k ]+ and Hn
k = (A2,n

k +A1,n+1
k −Xn+1

k ), Eq. (3.8) becomes

W n+1
k = [W n

k +Hn
k ]+. (3.9)

Clearly, the function [x]+ is monotonically increasing respect to x. As the cycle time

is stationary and ergodic at each cycle n> τ , and the arrival processes are Poisson,

these imply that the total number of customers arrive at qk, i.e., (A2,n
k +A1,n+1

k ), will
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also be stationary and ergodic. Furthermore, if qk ∈ U , then Xn>τ
k =Mk; if qk ∈ S,

from Lemma 3.2.3 we know that Xn>τ
k also be stationary and ergodic. Consequently,

the variable Hn
k = (A2,n

k +A1,n+1
k −Xn+1

k ) is stationary and ergodic when n>τ . Then,

for the random sequence W n
k , according to Loynes’ lemma [45], the limit limn→∞W n

k

(and equivalently limn→∞Qn
k(1)) exists, though it may either tend to a constant or

infinity. Now for any individual queue we are ready to use Loynes’ theorem to examine

its stability. Because P (τ <∞) = 1 and therefore the cycles up to τ are negligible

when considering the long term average, for qi∈U , the service rate µi is equal to

µi =
Mi

ECS
,

where ECS can be computed from Eq. (3.5). Applying Loynes’ theorem to the un-

stable qi we have

λi >
Mi

ECS
⇒ λi

Mi

>
1

ECS
.

According to Lemma 3.2.3, for qj∈S, we have

Mj ≥ EXj = λjECS ⇒
1

ECS
≥ λj
Mj

.

Then, we have λi

Mi
>

λj

Mj
, which contradicts with the assumption that λi

Mi
≤ λj

Mj
. This

implies that if qj is assumed stable, qi cannot be unstable, i.e., qj’s stability implies

qi’s stability.

Now for the second part of the theorem, assume qi is unstable but qj is stable. We

then have qi∈U and qj∈S. After applying Loynes’ theorem to qi, we have

λi >
Mi

ECS
⇒ λi

Mi

>
1

ECS
.

On the other hand, for qj, we have

Mj ≥ EXj = λjECS ⇒
1

ECS
≥ λj
Mj

.

Again, we have λi

Mi
>

λj

Mj
, which contradicts with the assumption that λi

Mi
≤ λj

Mj
. Thus,

qi’s instability implies qj’s instability. This finishes the proof. 2
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From the above theorem, we can see that a relative stability relation indeed exists

between any two queues in the polling system in the sense that if λi

Mi
≤ λj

Mj
, qj’s stability

implies qi’s stability (or qi’s instability implies qj’s instability). Equivalently, we can

also say if λi

Mi
≤ λj

Mj
, qi is more stable than qj (in the sense that qi’s instability implies

qj’s instability). Though we only consider a simple version of the polling systems in

this section, the analysis can be easily applied to more general polling models such

as the one (with limited service policy only) considered in [29]. In the next section,

we show that the similar properties to the above can also be found in a version of the

ALOHA network.

3.3 A Slotted Buffered ALOHA Network

The ALOHA network considered here consists of a single server (a broadcast

channel) and a finite set of k distributed queues (stations), denoted as qi, i∈{1, ..., k}
[47, 57]. Each queue has infinite buffers for storing incoming fixed-length packets and

transmits packets through the broadcast channel. Transmissions over the channel are

divided into intervals, called slots. A slot duration corresponds to the transmission

time of a packet. Assume that the queues know exactly the boundaries of the slots,

and transmissions can only be started at the beginning of slots. During each slot, qi

attempts to transmit a packet with transmission probability pi, provided that it is

not empty. A successful transmission occurs when only one non-empty queue tries

to transmit a packet during a slot. Otherwise, a collision occurs when more than

one queues try to transmit simultaneously. When a queue successfully transmits a

packet, it removes the transmitted packet from its buffer; otherwise, the queue must

try to retransmit the packet in the next slot. The arrival process of packets to each

qi is assumed Bernoulli with average rate λi. In addition we assume that the arrival

processes to the queues are mutually independent, the operations of each queue are

independent to the operations of the others as well as independent to all other random

processes in the system.
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Let Ani be the number of packets arrived at qi during slot n, and Qn
i be the queue

length of qi at the beginning of slot n. Define Bn
i as the random variable that indicates

whether qi successfully transmits a packet during slot n, i.e., Bn
i =1 when a successful

transmission occurs at qi during slot n and Bn
i = 0 otherwise. Then Qn

i satisfies the

following

Qn+1
i = (Qn

i −Bn
i )+ + Ani . (3.10)

It can be proved that the k-dimensional queue process (Qn = (Qn
1 , Q

n
2 , ..., Q

n
k))∞n=1 is

an irreducible and aperiodic Markov chain [65, 72] and we state it as a lemma below.

Lemma 3.3.1 The joint queue length process Qn of the ALOHA network described

above is an irreducible and aperiodic Markov chain at the beginning of each slot.

According to the meaning of the random variable Bn
i , the expectation of Bn

i is

the successful transmission probability at qi, i.e., EBi = P (Bi = 1). Let zn be a k-

dimensional random binary vector represents the queue length status at the beginning

of the nth slot, i.e., zni = 1 implies that qi is not empty at the beginning of the nth

slot while zni =0 otherwise. Let Θz be the sample space of zn. Then we have

P (Bn
i =1) = pi

∑

ẑ∈Θz,
zn
i =1

[P (zn = ẑ)
∏

i 6=j
(1− pj)z

n
j ]. (3.11)

In the next lemma, we show that for a given traffic pattern of the arrival rates of

the queues, the random variable Bn
i of qi has a stationary distribution in the steady

state.

Lemma 3.3.2 Assume that under a certain arrival traffic pattern Λ=(λ1, λ2, ..., λk),

there is a partition of the queues in the ALOHA network, i.e., {q1, q2, ..., qk} = S ∪U ,

such that all the queues in S are stable while all the queues in U are unstable. Then

for each qi, P
s
i , limn→∞ P (Bn

i =1) exists and equals to

P s
i = pi

∑

ẑ∈Θz,
zi=1

[P (z = ẑ)
∏

i 6=j
(1− pj)zj ] (3.12)
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Proof: In the first case, if U = ∅, then the ALOHA network is stable for the given

arrival traffic pattern Λ. This implies the k-dimensional Markov chain of the queue

length process Qn = (Qn
1 , Q

n
2 , ..., Q

n
k) is ergodic and there exists a stationary distri-

bution π of Qn. Now if we let the process Qn starts with the initial distribution π,

i.e., let Q1 distributes as π, the resulting process Qn is stationary and ergodic. Con-

sequently, the random binary vector zn will also be stationary and ergodic because it

represents the status of whether the queues are empty or not at the beginning of the

nth slot. Let z = limn→∞ zn, then z has a stationary distribution. Take the limit of

Eq. (3.11) with respect to the slot number n, we have the conclusion that P s
i exists

and Eq. (3.12) holds.

Now assume U 6= ∅ and there is at least one qj ∈ U . Define random variable

τj = sup{n : Qn
j = 0}, the last slot that the queue length at qj equals to 0. Similar

to the discussion in the last session, we have P (τj < ∞) = 1, otherwise, it would

contradict with the assumption that qj is unstable. For any other qi in U we can

define τi and can have similar conclusion that P (τi<∞)=1. Let τ=sup(τj,∀qj∈U).

Then at the beginning of each slot n>τ , at any qj ∈U , we have P (Qn
j ≥1)=1. Now

consider the queues in S and let Qn
S be the queue length process vector for the stable

queues. Define random variable K0 = inf{n> τ : Qn
S = 0}, the first slot after τ such

that all the queues in S are empty. Further define Kn+1 = min{n>Kn : Qn
S(1) =0},

R0 = K0, and Rn+1 = Kn+1−Kn. Because we assume that all the queues in S
are stable, the |S| dimensional Markov chain Qn

S is ergodic and therefore we have

P (K0 <∞) = 1 and consequently P (R0 <∞) = 1. Furthermore, Qn
S is regenerative

with respect to Rn, and Rn defines a delayed renewal process with R0 as delay and

E(R)<∞. Consequently, if we let Qn
S , n>τ , starts with the stationary distribution

of Qn
S , then z = limn→∞ zn also exists and the jth component always be 1, where

qj ∈U . When taking the limit of Eq. (3.11) with respect with n, we have Eq. (3.12).

Finally, the same argument applies to the case that S=∅ and this finishes the proof.

2

Next theorem shows the relative stability relation in the ALOHA network.
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Theorem 3.3.1 For any two queues and a given arrival rate vector of the queues

Λ=(λ1, λ2, ..., λk) in the ALOHA network, assume λi(1−pi)
pi
≤ λj(1−pj)

pj
, then

(a) qj’s stability implies qi’s stability;

(b) qi’s instability implies qj’s instability.

Proof: For the first part of the theorem, assume that qj is stable but qi is unstable.

For the arrival traffic pattern Λ, all the queues can be partitioned into S and U , and

we have at least qj∈S and qi∈U . According to Lemma 3.3.2, for both qi and qj, the

random variables Bn
i and Bn

j have stationary distribution P s
i and P s

j in the steady

state, respectively. Recall that P s
i and P s

j is the successful transmission probabilities

of qi and qj in the steady state. Furthermore, P s
i and P s

j are also the service rates of

qi and qj in the steady state.

Now for each queue qk in the system at slot n>τ , consider Eq. (3.10) and rewrite

it into the following:

Qn+1
k −Bn+1

k = [Qn
k−Bn

k ]++(Ank−Bn+1
k ). (3.13)

Let W n
k = [Qn

k−Bn
k ]+ and Hn

k = (Ank−Bn+1
k ), Eq. (3.13) becomes

W n+1
k = [W n

k +Hn
k ]+. (3.14)

Because the arrivals during a slot, i.e., Ank , and the variable Bn+1
k are stationary and

ergodic, the random sequence Hn
k is also stationary and ergodic. According to Loynes’

lemma [45], the sequence W n
j is monotonically increasing with respect to n and the

limit limn→∞W n
j (limn→∞Qn

k) exists, though the limit may be infinite. For a stable

qj, according to Loynes’ theorem, we have

λj < P s
j = pj

∑

ẑ∈Θz,
zj=1

[P (z = ẑ)
∏

j 6=k
(1− pk)zk ]. (3.15)

Multiply
(1−pj)

pj
to both sides of the above inequality and note that the zk components

of qk∈U will always be 1, Eq. (3.15) can be rewritten into

λj(1− pj)
pj

<
∏

qk∈U
(1− pk)

∑

ẑ∈Θz,
zj=1

[P (z = ẑ)
∏

qk∈S
(1− pk)zk ]. (3.16)
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For the unstable qi, according to Loynes’ theorem, we have

λi > P s
i = pi

∑

ẑ∈Θz

[P (z = ẑ)
∏

i 6=k
(1− pk)zk ]. (3.17)

After rewritten and rearranged we have

λi(1− pi)
pi

>
∏

qk∈U
(1− pk)

∑

ẑ∈Θz

[P (z = ẑ)
∏

qk∈S
(1− pk)zk ]. (3.18)

Clearly, the following inequality holds:

∑

ẑ∈Θz

[P (z = ẑ)
∏

qk∈S
(1− pk)zk ] ≥

∑

ẑ∈Θz,
zj=1

[P (z = ẑ)
∏

qk∈S
(1− pk)zk ].

Hence from Eq. (3.16) and (3.18) we have λi(1−pi)
pi

>
λj(1−pj)

pj
, which contradicts with

the assumption that λi(1−pi)
pi

≤ λj(1−pj)

pj
. This implies qi must be stable when qj is

stable, i.e., qj’s stability implies qi’s stability.

Now consider qi is unstable but qj is stable, based on similar discussion to the

above, we can arrive at the same contradiction that λi(1−pi)
pi

>
λj(1−pj)

pj
. Thus, if qi is

unstable, qj is also unstable, i.e., qi’s instability implies qj’s instability. This finishes

the proof. 2

From the above theorem, we can see that the relative stability relations also exist

among the queues in the ALOHA network. Specifically, if λi(1−pi)
pi

≤ λj(1−pj)

pj
, then

qj’s stability implies qi’s stability, and qi’s instability implies qj’s instability. In the

next section, we show the relative stability relations also exist in a processor sharing

system.

3.4 A Processor Sharing System

In this section we study the relative stability relations of a processor sharing

system. There are one server and k queues in the system, denoted as qi, i∈{1, ..., k}.
The arrival process of the customers to the system is assumed as a marked point

process Ψ={[Tl, (Sl, Il)]}∞l=−∞ on the real line with mark space K=R+×{1, · · · , k},

41



where Tl is the arrival epoch of the lth customer, Sl is the service time requirement

of the lth customer, and Il is the queue that the lth customer joins. We assume Ψ

is stationary, ergodic, and simple, i.e., · · ·< T0 ≤ 0< T1 < · · · . The arrivals to qi is

given by the marked point process Ψi ={[Ti,l, Si,l]}∞l=−∞, which is also stationary and

ergodic. Let λi=EΨi((0, 1]×R+) be the intensity of the points occurred during time

interval (0, 1), i.e., the average arrival rate at qi, and bi = ES0
i be the expectation

of the service time S0
i of a typical qi customer according to the event stationary

distribution of the marked point process. The customers are served by the single

server according to the processor sharing policy: the first customers of the non-empty

queues are served by the server simultaneously. More precisely, if Qi(t) is the number

of customers in qi at time t, then totally g(t) =
∑k

i=1 I{Qi(t) > 0} customers will be

served by the server at time t, and each customer receives 1
g(t)

of the capacity of the

server, provided that g(t) is positive.

At time t, let Ri,l(t) ∈ R+ be the residual service time of the lth customer who

arrived at qi before t, l= 1, 2, · · · , ordered reversely of the arrival instants. That is,

Ri,l(t) is the residual service time of the lth last customer who arrived before t when

all the arrivals before t are considered. Further let Ri(t)=(Ri,1(t), Ri,2(t), · · · ) be the

infinite vector of the residual service time in qi, and R(t)=(Ri(t), · · · , Rk(t)) be the

residual service time vector of the system at time t, respectively. In the following, we

construct a stationary and ergodic version of the R(t) based on the sample paths of

Ψ. Let

MK ={ψ={[tl, (sl, il)]}∞l=−∞ : ...<t0≤0<t1<..., lim
l→±∞

tl=±∞, sl∈R+, il∈{1, ..., k}}

be the set of all possible sample paths of Ψ, i.e., P (MK) = 1. For any sample path

ψ∈MK and τ > 0, define the system state as following

r
(τ)
i (t, ψ) = (r

(τ)
(i,1)(t, ψ), r

(τ)
(i,2)(t, ψ), ...), i = 1, ..., k, (3.19)

r(τ)(t, ψ) = (r
(τ)
i (t, ψ), ..., r

(τ)
k (t, ψ)), (3.20)

where r(τ)(t, ψ) is the residual service time for the customers at time t as if the

system was started empty at t−τ with input ψ. Note that r
(τ)
(i,l)(t, ψ) =0 if tl<t− τ
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by definition, i.e., customers arrived before t−τ . The workload and queue length in

qi at time t can be given by the follows respectively,

v
(τ)
i (t, ψ) =

∞∑

l=1

r
(τ)
i,l (t, ψ), i = 1, ..., k, (3.21)

and

Q
(τ)
i (t, ψ) =

∞∑

l=1

I{r(τ)
i,l (t, ψ) > 0}, i = 1, ..., k. (3.22)

For any τ2 > τ1 > 0, and any lth customer in qi, we have r
(τ2)
i,l (t, ψ)≥ r(τ1)

i,l (t, ψ). In

fact, if the lth customer arrived at tl<t− τ2<t− τ1, then r
(τ2)
i,l (t, ψ)=r

(τ1)
i,l (t, ψ)=0.

If it arrived at t − τ2 < tl < t − τ1, then r
(τ2)
i,l (t, ψ) ≥ r(τ1)

i,l (t, ψ) = 0. If it arrived at

t− τ2<t− τ1<tl, by noting that for any qi and any x∈ [tl, t], Q
(τ2)
i (x, ψ)≥Q(τ1)

i (x, ψ),

and each non-empty queue shares an equal portion of the server capacity, we have

1/gτ2(x)≤ 1/gτ1(x), for x∈ [tl, t]. Therefore, we also have r
(τ2)
i,l (t, ψ)≥ r(τ1)

i,l (t, ψ). In

other words, r
(τ)
i,l (t, ψ) is non-decreasing with respect to τ . Because this monotonicity,

the limits as τ →∞ exist:

lim
τ→∞

r
(τ)
i,l (t, ψ) = ri,l(t, ψ), i=1, ..., k, l=1, 2, ..., (3.23)

and

lim
τ→∞

r(τ)(t, ψ) = r(t, ψ), (3.24)

where r(t, ψ) is the system state at t as if it was started empty at time −∞. When

consider all ψ ∈MK , we have the stationary and ergodic process r(t,MK). Based

on the backward construction we know that the process r(t,MK) is the minimal

stationary and ergodic state process that satisfies the system dynamic [45]. From

now on, let R(t) , r(t,MK) and Qi(t) ,
∑∞

l=1 I{ri,l(t,MK)> 0}, where Qi(t) is the

stationary queue length at t, with possibility that the queue length for some qj are

infinite.

Based on the above discussion, we have the following lemma regarding to the

service received by any served customer and by each queue.

Lemma 3.4.1 In the processor sharing system, the expectations of the service share

received by any served customer and by any qi exist and are unique.
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Proof: Let C∗(t) be the service received by any served customer at t, we have

C∗(t) =
1

g(t)
=

1∑k
i=1 I{Qi(t) > 0}

.

Assume C∗(t)=1 if the system is empty. For any qi, the service share it receives at t

is then

Ci(t) = min(Qi(t), 1)C∗(t).

Because Qi(t) is stationary and ergodic, the following two limits exist:

EC∗(0) = lim
t→∞

1

t

∫ t

0

C∗(t)dt, ECi(0) = lim
t→∞

1

t

∫ t

0

Ci(t)dt,

and satisfy

ECi(0) ≤ EC∗(0). (3.25)

This finishes the proof. 2

The next theorem shows the relative stability relation in the process sharing sys-

tem.

Theorem 3.4.1 For any two queues and a given arrival rate vector of the queues

Λ=(λ1, λ2, ..., λk) in the processor sharing system, assume λibi≤λjbj, then

(a) qj’s stability implies qi’s stability;

(b) qi’s instability implies qj’s instability.

Proof: First assume qj is stable but qi is unstable. Because the stationary and

ergodicity of the system state process R(t), we can apply Loynes’ theorem to the

queues. For the stable qj, based on Lemma 3.4.1, the average service share that it

receives is ECj(0). Since the average service time for each customer at qj is bj, the

average service rate at qj is
ECj(0)

bj
. According to Loynes’ theorem, qj is stable implies

λj <
ECj(0)

bj
⇒ λjbj < ECj(0).

On the other hand, for the unstable qi, it will never empty. Therefore, the average

service share qi receives equals to the average service share each served customer
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receives, i.e., ECi(0) = EC∗(0). Thus the service rate of qi is EC∗(0)
bi

. Apply Loynes’

theorem to qi we have

λi >
EC∗(0)

bi
⇒ λibi > EC∗(0).

Because ECj(0) ≤ EC∗(0), we have λibi > λjbj, contradicts with our assumption.

Therefore, qj’s stability implies qi’s stability. Similar contradiction also raises when

assume qi is unstable but qj is stable, and consequently, qi’s instability implies qj’s

instability. This completes the proof. 2

The above theorem indicates that relative stability relations also exist among the

queues in the processor sharing system with a more general arrival process assump-

tion. In this case, if λibi≤λjbj, qj’s stability implies qi’s stability. In the next section,

we summarize the findings in this chapter.

3.5 Summary

In this chapter we studied the relative stability relations for three SSMQSs. From

the results we observe the follows:

1. the relative stability relations exist in all the three systems and the relations

have connections to the queues’ arrival patterns;

2. to obtain the relative stability relations does not require the explicit system or

queue stability conditions;

3. in all the three systems studied, there are stationary regimes of some system

state processes even when the system is unstable.

The first item suggests that in the SSMQSs each single queue’s stability status cor-

relates with other queues’ stability status. Generally, this correlation is caused by

the interaction (through competing the single server’s capacity) among the queues.

Nevertheless, from the results we can see that this correlation can be reflected by the
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relation of the arrival patterns of the queues. Therefore, by observing the relations

of the arrival patterns of the queues, it is possible to tell this correlation (relative

stability relation) among the queues. This also confirms one of our claims about

the relative stability relation, i.e., it is dynamic and will be affected by the systems’

traffic input. Moreover, the diversity of the three systems under consideration also

suggests that the same relations may commonly exist in other SSMQSs. The second

item implies that the relative stability relations among the queues are more acces-

sible than the absolute stability conditions. For instance, even the exact stability

conditions for the ALOHA network is unknown, we are still able to tell the relative

stability relations between any two queues based only on the queues’ arrival rates and

the system settings, i.e., the transmission probabilities of the queues. On the other

hand, as we will see in Chapter 5, the relative stability relations of the queues can be

a useful tool when study the absolute stability conditions of the SSMQSs. The last

item suggests that to use Loynes’ theorem to study relative stability in general, we

may require a SSMQS to preserve some stationary properties even when the system

is unstable. This provide us a clue to identify the SSMQSs in which relative stability

can be studied, and this will be done in the next chapter.

In the proofs in this chapter, a major tool we used is Loynes’ theorem. Conse-

quently, the stationary and ergodicity requirements of Loynes’ theorem is crucial in

our study. In order to show there is a stationary regime of the system state process,

we used two approaches in this chapter: the Markov chain approach and Loynes’

backward construction. Though the systems we selected are the basic ones, the anal-

ysis and arguments we used here are capable to show stationary and ergodicity for

more complicated systems. For instance, in the polling system case, the server can

visit the queues according to an ergodic Markovian routing process in which the tran-

sition probability pni,j is the probability that the server switch from qi to qj, and πi

is the stationary probability that the server will visit qi next. Also, the number of

customers can be served at qi during a visit can be a (random) function of the queue

length, i.e., fi(Q
n
i ), as long as fi is non-decreasing, satisfies fi(x)−fi(y) ≤ x−y if
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x > y, and limn→∞ fi(Qn
i ) <∞. Service policies satisfy the first two properties are

called monotonic and contractive policies [44]. Another possible generalization of the

polling system is to allow each queue to have a reservation of services, i.e., gated

at the server departure, or state dependent set-up time [15, 16]. For the processor

sharing case, an variation can be allowing multiple servers in the system and having

some permanent customers in the system [1, 2].

In the proofs we showed that if a queue is unstable, with probability 1, the queue

length will be finite for only a finite amount of time. To simplify the analysis in the

rest of the dissertation, from now on, we assume the following:

Assumption 3.5.1 The queue length of an unstable queue is infinite as the time

tends to infinity.

This assumption implies that the queue length of an unstable queue will be finite for

only a finite amount of time. We consider this assumption is reasonable since the

heuristic meaning of stability is that the queue length remains finite if it is stable and

otherwise if it is unstable.
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4. RELATIVE STABILITY

4.1 Introduction

In this chapter we are going to present the main results of the dissertation: the

properties with respect to relative stability for a class of SSMQSs. As we mentioned

in the summary of Chapter 3, the stationary requirements of Loynes’ theorem are

crucial to the investigation of relative stability relations in SSMQSs since we use

Loynes’ theorem to examine the queues’ stability. However, to check whether a sta-

tionary regime exists for any given system is rather troublesome and unnecessary,

especially when considering different systems may use different scheduling algorithms

and service policies. Therefore, we adopt another approach.

In the analysis of the three systems in the last chapter we learned that some system

state processes are stationary and ergodic even when the system is unstable, e.g., the

cycle time process in the polling system. This suggests us a criterion to classify

the SSMQSs, that is, to classify SSMQSs based on whether a stationary regime of

some system state processes exists when some of the queues are unstable. From the

classification we identify two types of SSMQSs in this chapter: Type-1 systems and

Type-2 systems, and our main focus will be the Type-1 systems. In Type-1 SSMQSs,

stationary regimes of some system states exist even when the system is unstable,

we can then apply Loynes’ theorem to examine individual queues’ stability. This

allows us to define the degree of stability of a queue as well as the relative stability

relations among the queues. In the definitions we also need to consider the dynamic

of the traffic inputs because the degree of stability and relative stability relations are

dynamic, i.e., affected by the queues’ traffic inputs. This can be done by restricting

the system traffic on certain paths in the traffic space.
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The Type-1 SSMQSs have some useful properties through which we can solve the

relative stability problems mentioned in Chapter 1. The most important property

is probably the sufficient and necessary condition of two queues to be as stable as

each other when the system traffic varies on some linear increasing paths. Intuitively,

two queues are as stable as on a path if they become unstable simultaneously on the

path. Once the paths on which two queues have as stable as relation are found, the

rests of the paths will then be either the ones on which one queue is more stable

than another or vice versa. After the relative stability relations and conditions of

any two queues can be found on any path, by comparing any pair of queues in

turn, we can further derive a stability ordering of the queues for a given path of

the system traffic. This ordering specifies the ordinal of the queues of becoming

unstable when the system traffic increases along the path. Moreover, the as stable

as relation among the queues also suggests an simple approach to find the maximum

stable throughput of a system. Specifically, for a given increasing path of system

traffic, we can show that the maximum stable throughput can be achieved at the

system stability boundary for a configuration of the system parameters such that

all the queues are as stable as one another. Then, another two problems, namely,

the characterization of the overall stability region and the stabilization of the Type-1

systems can be equivalently interpreted and formulated. Worth to mention that these

set of properties are interesting and has not been reported in the literature from our

knowledge.

For Type-2 systems, because of their complexity, we only discuss their properties

through some examples.

4.2 Two Types of Single-Server-Multiple-Queue Systems

Recall that one of the common items we observed in the studies of the three

systems in Chapter 3 is that all the three systems can have stationary regimes of

some system states even when the systems are unstable. This observation inspires us
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to define a general system model accordingly. Based on the existence of stationary

regimes of some system state processes, we are able to define two different types of

SSMQSs. Follows are the definitions.

Definition 4.2.1 (Type-1 Systems)

In a SSMQS with k queues, let the system state process be {Wn=(W n
1 ,W

n
2 , ...,W

n
k )}∞n=1.

If for any qi, i ∈ {1, ..., k}, the queue state process {W n
i }∞n=1 can be represented re-

cursively by the following transformation

W n+1
i = f(W n

i , H
n(Wn)), (4.1)

where Hn(Wn) is a function of the k-dimensional process Wn, and f(x, y) is non-

negative, monotonic increasing and continuous from the left in x. Suppose in addition

that for any given arrival traffic pattern Λ = (λ1, λ2, ..., λk), all the queues can be

partitioned into subsets S and U such that at Λ all the queues in S are stable and all

the queues in U are unstable in the steady state. Then the SSMQS is called a Type-1

system if the sequence Hn(Wn)=Hn((Wn
S ,W

n
U)) is stationary and ergodic under any

partition of (S,U) (even one of them is empty).

In the above definitions, the state process W n
i of qi can be many kinds. For

example, in the polling system and in the ALOHA network studied in the last chapter,

the state processes of qi are the remaining service at qi after the server’s nth visit,

i.e., W n
i = [Qn

i (1)+A1,n
i −Xn

i ]+ and W n
i = [Qn

i −Bn
i ]+, respectively. While in the

processor sharing system, the state process of qi is the remaining service time of all

its customers at time t, i.e., ri(t, ψ). The function f represents the service policies

employed by the server while the sequence of Hn can be considered as the overall

effects to qi from the other queues, the scheduling algorithms employed by the server,

and other server related processes such as the service time processes, the switch-over

time processes, and the set-up time processes. In the polling system, the sequence Hn

of qi is Hn
i = (A2,n

i +A1,n+1
i −Xn+1

i ), the function f is [x]+, and the transformation is

W n+1
i = [W n

i +Hn
i ]+. Similarly, in the ALOHA network, the sequenceHn of qi isHn

i =
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(Ani−Bn+1
i ), the function f is [x]+, and the transformation is W n+1

i = [W n
i +Hn

i ]+. In

the process sharing system, as time is continuous, for qi the equivalence to Hn is the

number of queues with positive queue length at time t, i.e., g(t) =
∑k

i=1 I{Qi(t) > 0},
and the function f and the transformation is represented through the service share qi

received at time t, i.e., Ci(t) = min(Qi(t), 1)C∗(t), because the remaining service time

of a customer at time t at qi will be directly affected by how much share qi received

at time t, i.e., Ci(t).

From Lemmas 3.2.3, 3.3.2, and 3.4.1, for the three systems studied in the last

chapter, we know that some system state processes are stationary and ergodic when

the system is unstable, even with different partition of (S,U), i.e., the Hns. The defi-

nition of the Type-1 SSMQSs is actually based on this observation. Similar definition

to the above can be given to continuous time state processes because we have analyzed

the processor sharing system accordingly. However, if not specifically mentioned, we

assume all the state processes in this study are in discrete time. The following is

the definition of the Type-2 systems. The major difference between the two types of

SSMQSs is that in Type-2 systems the sequence of Hn(Wn) may not be stationary

and ergodic for any partition of (S,U).

Definition 4.2.2 (Type-2 Systems)

Same assumptions as in Definition 4.2.1, a SSMQS is a Type-2 System if the sequence

Hn(Wn)=Hn(Wn
S ,W

n
U) is stationary and ergodic only when any member of a certain

subset of queues E does not belong to U for any partition of (S,U), i.e., E ⊆ S.

In the above definition, some system state processes can have stationary regimes

when all the queues belong to subset E are stable. Otherwise, because the Hn(Wn)

is no longer stationary and ergodic, we may not able to use Loynes’ lemma or other

approach to conclude whether the system has stationary system state processes or

not. In this sense, the Type-2 systems is more complex than Type-1 systems. Note

that the Type-1 and Type-2 systems are not necessarily equivalent to a partition of

the SSMQSs, i.e., it is possible to have other type of SSMQSs. Nevertheless, in the

rest of this dissertation, our main focus will be the Type-1 systems only.
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From the discussion in the Chapter 3, especially from the Eqs. (3.9), (3.14), and

(3.24), we know that all the three systems studied there belong to Type-1 systems. In

general, however, it is hard to enumerate all the members for the two types of systems.

In the following we provide a sufficient condition to identify a Type-1 system. The

model in the theorem is similar to the one discussed in [64]. In condition 2 of the

theorem, the effective visit means that during such visits at least one of the customers

from the queue will be served. This setting allows the theorem to cover systems

such as the ALOHA network. The stationary of the service policy means that the

service policy either will not change over time, or change according to a stationary

distribution. More details about the service policies that satisfy condition 2 can be

found in [44, 64].

Theorem 4.2.1 A SSMQS is Type-1 if the follows hold:

(a) The multiple dimensional queue length process {Qn}∞n=1 is a homogeneous, ape-

riodic, and irreducible Markov chain.

(b) The service policy in each effective visit at each queue is stationary, limited,

monotonic, and contractive.

(c) All the input processes such as arrival processes, service time processes, switch

time processes, routing processes, set-up time processes, etc. are mutually inde-

pendent, stationary, and ergodic.

Proof: As the multiple dimensional queue length process {Qn}∞n=1 is a Markov

chain, in general we are able to represent the queue length process of any queue as

the following

Qn+1 = Qn −Xn + An,

where Xn is the number of customers served during the server’s nth effective visit to

the queue and An is the total arrival between the server’s nth effective visit and its

(n+1)th effective visit to the queue. Rewrite the above into

Qn+1 −Xn+1 = Qn −Xn + (An −Xn+1),
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let W n = (Qn−Xn) and Hn = (An−Xn+1), we have a form of the state process as

in Definition 4.2.1: W n+1 = f(W n, Hn). The monotonicity of the function f can

be checked from the condition that the service policy at each queue is monotonic

and contractive. The stationary of Hn is based on the following two reasons. First,

because the service policy is stationary, limited, contractive, and monotonic, for any

qi, no matter it is stable or not, limn→∞Xn
i exists and is finite. In fact, if the queue

is stable, then the queue has a stationary and ergodic regime. On the other hand,

if the queue is unstable, because the assumption we made in the last chapter that

a unstable queue will have an infinite queue length, and because the service policy

is limited, the server will always serve the allowed maximum number of customers

from the queue. Therefore, in both cases, limn→∞Xn
i exists and is finite. With the

condition that the service time process at any queue is stationary and ergodic, it

implies that the period of time that the server spends in any queue is also stationary

and ergodic. Consequently, the arrivals to any queue during a period is also stationary

and ergodic. The second reason is the condition that all the involved input processes

are mutually independent, stationary, and ergodic. The two reasons imply that the

function of these involved stationary and ergodic processes, Hn, is also stationary and

ergodic. This finishes the proof. 2

4.3 Degree of Stability

Before we discuss the degree of stability in a SSMQS, let us first take a closer look

of a single-server-queue system. Given that the stationary requirements are satisfied,

Loynes’ theorem states that a single G/G/1 queue is stable if and only if the average

arrival rate is less than the average service rate, otherwise the queue is unstable. Care

is needed here because in the theorem by “average service rate”, it actually means the

maximum rate at which the server can complete service times. This rate is equivalent

to the long term service rate that the server can serve the customers when considering

all the customers are already in the queue at time 0 [60]. It is important to distinguish
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this maximum rate with the actual average service rate, which is equivalent to the long

run service rate that the server can serve the customers for a given arrival process, or

alternatively, the average departure rate of the customers when the queue operates

in normal.

A well known balancing argument about a stable queue says that in average the

number of arrivals to the queue should be equal to the average departures from the

queue, i.e., the average arrival rate is equal to the average departure rate for a stable

queue. As we can see, the average departure rate in the above argument has the

meaning of the average service rate, and this average service rate should be less

than or equal to the maximum service rate the server can provide to the queue, and

the equality may be achieved at or beyond the queue’s stability boundary. This is

not surprising because for a given arrival rate if the queue is stable means that the

server can handle the available customers well and may have potential to handle more

customers. When the arrival rate reaches or crosses the queue’s stability boundary,

the server does not have any potential to serve more customers. In summary, in a

single-server-queue system, let λ be the average arrival rate, µ be the average service

rate, and µ̂ be the maximum service rate, then λ=µ≤ µ̂ when λ is within or at the

queue’s stability boundary, i.e., the queue is stable and the equality achieves at the

queue’s stability boundary; on the other hand, λ > µ̂ = µ when λ goes beyond the

queue’s stability boundary, i.e., the queue is unstable. In addition, the value of µ̂ is

a positive constant for the single-server-queue system.

Based on the above discussion, we consider that Loynes’ theorem actually defines

a quantity that can measure the level of stability of a queue. More precisely, the

theorem says that if λ < µ̂ the queue is stable while λ > µ̂ the queue is unstable.

It is then natural to use the quantity 1− λ
µ̂

to measure how stable a queue is, i.e.,

the higher the value, the more stable the queue in the sense that the server has

more potential to serve customers from the queue. Another meaning of the quantity

1− λ
µ̂

is the following geometrical interpretation. In a single-server-queue system the

stability region is bounded, and the arrival rate can only increase along the real line.

54



If for a given arrival rate the system is stable, the arrival rate must be within the

stability region. If we increase the arrival rate, at some point, it must hit the stability

boundary. Hence we can use the difference 1− λ
µ̂

to represent the distance from the

current level of stability to the stability boundary.

Now let us return back to SSMQSs. When there are multiple queues in the

system, the above discussion may not directly applicable as the maximal service rate

that a queue can have in general is not a constant but a function of the system traffic

and service policies at all the queues as well as the server’s scheduling algorithms.

Because in such a situation, multiple queues will compete for the server’s capacity.

This competition also implies that, when become unstable, a queue’s average service

rate in general is not equal to its maximum service rate, i.e., µ̂≥µ. However, if we

set a constrain to the arrival pattern of all the queues such that it can only increase

monotonically along a path (curve), then for each queue, the stability boundary of

the queue is still a single point on the path, and the queue still achieves its maximum

service rate at that point. In this way, we can still use the quantity 1− λ
µ̂

to measure

the stability level of a queue on the given traffic increasing path. We name the

quantity as the degree of stability of a queue for a given system traffic pattern on a

given increasing path, or degree of stability for short, and give its formal definition in

the following.

Definition 4.3.1 (Degree of stability)

In a SSMQS, if the arrival rates of the queues increase monotonically along a curve

L in the system traffic space, for a given traffic point Λ ∈ L and for any queue, we

call the following quantity, Dλ
L(q), as the degree of stability of q at Λ on L:

Dλ
L(q) , 1− λ

µ̂L
, (4.2)

where λ is the arrival rate component of q and µ̂L is the maximum service rate q can

achieve on L.

As we discussed in Chapter 1, in general, the degree of stability problem is dif-

ficult to tackle because the value of µ̂L of a queue in a SSMQS is hard to compute.

55



Nevertheless, the about definition is still useful for solving relative stability problems.

Because for relative stability problems, we only need the comparison results of two

queues’ degree of stability, and in such case, the value of µ̂L is not necessarily needed.

In the above definition we do not have further restrictions of the curve L as long as it

is monotonically increasing. With the definition of degree of stability, we can restate

the Loynes’ theorem for a single queue in the two types of SSMQSs as the following

proposition.

Theorem 4.3.1 (Loynes’ Theorem through Degree of Stability)

For a given SSMQS Q and let the system traffic vary on a given path L, for any

q ∈ Q:

(a) if Q is Type-1, q is stable on L if and only if Dλ
L(q)>0;

(b) if Q is Type-2 and the queues in E are stable, further if q 6∈ E, q is stable on L

if and only if Dλ
L(q)>0; if q ∈ E, q is stable on L only if Dλ

L(q)>0;

Proof: The theorem is a direct result of the Loynes’ theorem when applying it to a

queue in the Type-i systems. For the first assertion, recall the definition of a Type-1

system that for any given traffic point Λ of on L, the state process of any queue can

be represented by

W n+1 = f(W n, Hn(Wn)),

and Hn(Wn) is stationary and ergodic no matter what stability status of all queues

will be. Then based on the Loynes’ lemma [45], the state process W n is stationary

and has a limit. We can then apply Loynes’ theorem to q. Specifically, if q ∈ S, i.e.,

q is stable, it implies λ<µ̂L; if q ∈ U , i.e., q is unstable, it implies λ>µ̂L. It is easy

to see that these conditions are equivalent to the first assertion.

For the second assertion, we first assume q 6∈ E , then the state process is also

stationary and has a limit given that all the queues in E also belong to the subset S.

Using the same argument as in the first assertion, we have the first part of the second

assertion. Now if q ∈ E , then according to the definition of Type-2 systems, q can
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only be in S to have a stationary system state process. Therefore, we can only apply

the necessary part of the Loynes theorem to q∈E , and this implies λ< µ̂L, which is

the second part of the second assertion. This finishes the proof. 2

Note that in Theorem 4.3.1 we intentionally not to discuss the case of Dλ
L(q)=1,

because the stability status of a queue at the boundary is notoriously difficult and

omitting such case will not affect the analysis [45, 47].

It is also worth to note that in the above proposition we can only have the necessary

part for some of the queues in Type-2 systems, i.e., queues in the subset of E in Type-

2 systems. The reason is because the maximum service rates for those queues may

not be able to be defined whenever one of those queues is unstable. Consider a

scenario, say, in a Type-2 system and assume all the queues employ an exhaustive

service policy. Then for a traffic point on a given increasing path, if the system is

stable, because the exhaustive policy, each queue should have the maximum service

rate equals to the server’s capacity. However, whenever one queue becomes unstable,

based on our assumption that the queue length of an unstable queue will grow to

infinity, the queue will occupy the server forever. This implies the rest of the queues

will receive no service at all afterward. Consequently, these queues may never achieve

their maximum service rates. Hence for this system, if it is stable, each queue’s

maximum service rate of course equals to the server’s capacity, and this implies the

necessary part. On the other hand, without knowing whether the system is stable or

not, it is unjustifiable to apply the degree of stability to a queue because it may not

able to achieve its maximum service rate. Another issue is that, in Type-1 systems

each queue always has a constant maximum service rate on a given path, and this is in

general not true for Type-2 systems, even when each queue can achieve its maximum

service rate when all the queues become unstable. This phenomenon is caused by the

non-ergodicity of the function Hn(Wn) in Type-2 systems. Later we will construct

examples to show this claim. The following corollary is a direct result of Theorem

4.3.1.
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Corollary 4.3.1 In a Type-1 system, for a given monotonic increasing path of the

system traffic, and a system traffic point of the queues on the path, i.e., Λ=(λ1, λ2, ..., λk),

assume λi

µ̂i
≤ λj

µ̂j
, then

(a) qj’s stability implies qi’s stability;

(b) qi’s instability implies qj’s instability.

Proof: Assume qj is stable but qi is unstable. Because it is a Type-1 system,

from Theorem 4.3.1 we have D
λj

L (qj) > 0 ⇒ λj

µ̂j
< 1, and Dλi

L (qi) < 0 ⇒ λi

µ̂i
> 1,

thus contradicting with the condition that λi

µ̂i
≤ λj

µ̂j
. Similarly we can have the same

contradiction when letting qi be unstable and assume qj be stable. This finishes the

proof. 2

From the above corollary we can see that the relative stability relations we discov-

ered for the three SSMQSs in Chapter 3 indeed exist commonly in Type-1 SSMQSs.

4.4 Properties and Relative Stability in Type-1 SSMQSs

In this section we are going to derive some useful and interesting properties of

the Type-1 systems. Through these properties, we can solve the relative stability

problems in Type-1 systems.

In a SSMQS, if the server will spend infinite amount of time to serve a queue

solely given that the queue has enough customers, we call the queue a capture type;

and non-capture type otherwise. For example, a queue with the exhaustive service

policy will be a capture type while a queue with limited service policy will be a non-

capture type. On the other hand, in processor sharing systems, though the server

will spend infinite amount of time to serve an unstable queue, it is still able to serve

other queues. In this sense, queues in the process sharing system are of non-capture

type. In the following theorem, we first find out the types of the queues in Type-1

systems.

Theorem 4.4.1 In a Type-1 system all the queues are of non-capture type.
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Proof: This property is a consequence of the stationary and ergodicity of the function

Hn(Wn). Suppose one of the queues in the Type-1 system is of capture type. Then

once the queue becomes unstable, based on the assumption that its queue length will

be infinite, during the server’s visit, the queue will occupy the server forever. This

will at least cause the arrivals to the other queues become infinite, which violates the

stationary and ergodicity of the function Hn(Wn) in the definition of Type-1 systems.

Thus all the queues in a Type-1 system must be of non-capture type. 2

Later we will construct an example of Type-2 systems in which all the queues

are of non-capture type. This suggests that the condition of non-capture type of

queues is only necessary for a SSMQS to be Type-1. In some systems, the concept of

non-capture type is equivalent to the concept of limited type, which has the meaning

that the maximum number of customers can be served at a queue is finite. However,

in systems such as the one with processor sharing policy, a server will always serve

customers from an unstable queue, i.e., the maximum number of customers that can

be served is infinite. For this reason, we consider the concepts of capture and non-

capture types of queues are more general and are better for reflecting the properties

of the Type-1 systems.

Theorem 4.4.2 In a Type-1 system, all the queues have positive constant average

service rates when all the queues are unstable.

Proof: Based on Theorem 4.4.1, all the queues in the Type-1 system are of non-

capture type implies the server will spend only a finite amount of time (or capacity) at

any queue when all the queues are unstable. Moreover, the stationarity and ergodicity

of the function Hn(Wn) further implies that this amount of time (or capacity) will

be stationary and ergodic. Together with the assumption that all the other involved

processes, e.g., the arrival processes, the service time processes, the switchover time

processes, etc. are stationary and ergodic, we can conclude that when all the queues

become unstable the average service rate for each queue exists and is unique. This

finishes the proof. 2
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In the following, we use the concept unique system instability state of average

service rate to reflect the fact proved in Theorem 4.4.2, and unique instability state

for short. In Type-2 systems, however, some of the queues may not have this guar-

anteed service share. Before we investigate more properties of Type-1 SSMQSs, in

the following, we first introduce the concepts of relative stability relations of any two

queues in Type-1 systems. The idea is to use the degree of stability of the queues as

metrics to compare the queues in terms of stability.

Definition 4.4.1 (Relative Stability Relations on a Point)

In Type-1 SSMQSs, at a given traffic point Λ=(λ1, λ2, ..., λk) on a given monotonic

increasing path L of the system traffic in the traffic space, if both qi and qj are stable

at point Λ, then at Λ on L

• qi is said less stable than qj if Dλi
L (qi)<D

λj

L (qj), denoted as qi≺(L,Λ) qj;

• qj is said more stable than qi if Dλi
L (qi)>D

λj

L (qj), denoted as qi�(L,Λ) qj;

• qi is said as stable as qj if Dλi
L (qi)=D

λj

L (qj), denoted as qi�(L,Λ) qj.

On a give path L, if qi ≺(L,Λ) qj on any Λ on which both queues are also stable,

we can then say qi is less stable than qj on the path L. Accordingly, we have the

following definition of relative stability relations of two queues on a path L.

Definition 4.4.2 (Relative Stability Relations on a Path)

In Type-1 SSMQSs, on a given monotonic increasing path L of the system traffic in

the traffic space and at any Λ on L on which both queues are also stable,

• qi is said less stable than qj if qi≺(L,Λ) qj at any such Λ, denoted as qi≺qj;

• qj is said more stable than qi if qi�(L,Λ) qj at any such Λ, denoted as qi�qj;

• qi is said as stable as qj if qi�(L,Λ) qj at any such Λ, denoted as qi�qj;
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Because of this, we also use the notation DL(qi)<DL(qj) to represent at every

traffic point Λ on L on which both queues are stable, Dλi
L (qi)<D

λj

L (qj). The other

two relations will be notated similarly. For convenience, we also say that qj is at least

as stable as qi on a path if either qi � qj or qi ≺ qj, and we denote this relation by

qi � qj. Besides the relations of two queue’s degrees of stability, another meaning

of the relative stability relations of the two queues on a path is that, say, if qi ≺ qj
and we keep increasing the system traffic along the path, the less stable queue (qi)

becomes unstable first, i.e., the two queues have a relative stability relation on the

path such that qi’s stability implies qj’s stability, and qj’s instability implies qi’s

instability. Furthermore, the as stable as relation implies both queues are either

stable or unstable at the same time. Alternatively, we can also say, when the system

traffic increases along the path, qi will hit its stability boundary before qj does if qi

is less stable, and they will hit their stability boundaries at the same time if they are

as stable as each other.

Even though we do not have any restriction for the path L besides monotonically

increasing in the above definitions, it is easier to analyze the relative stability related

problems for Type-1 SSMQSs if the paths are simple. Therefore, in the follows,

we only consider L as linear increasing paths. To this end, let Λ = (λ1, λ2, ..., λn)

be a traffic point, where λi is qi’s arrival rate. The set of all traffic points forms an

Euclidean space, referred to as the traffic space and denoted by Rn. LetO=(0, 0, ..., 0)

be the origin of Rn. For any given traffic point Λ∈Rn, consider a linear increasing

path which starts from O and passes through Λ. We represent the increasing path in

its parameterized form, i.e., each point on the path can be represented by Λ = λ ·K,

where K is the direction vector of the line, i.e., K = (k1, k2, ..., kn), ki ∈ R+ is the

direction component of qi, and λ is a free variable λi=λ · ki, ∀i (when some of the ki

are 0, the corresponding queues can be excluded from the model). Hereafter, for a

given K, we denote the corresponding linear increasing path as LK and a traffic point

on the path as ΛK . In the next property, we show that on a given path, the stability

boundary of any queue is a fixed point, or equivalently, the maximum service rate of
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any queue on a given path is a constant. For a given LK , we denote qi’s maximum

service rate as µ̂Ki .

Theorem 4.4.3 In Type-1 SSMQSs, on a given linear increasing path LK, each

queue’s maximum service rate is a constant.

Proof: If this is not true, assume that there is at least one qi does not have constant

maximum service rate, and assume the maximum service rate of qi has a distribution

of G(x) = P (µ̂Ki ≤ x). Then when qi just becomes unstable, it achieves its maximum

service rate and the time that the server spends at qi will be bi/µ̂
K
i with the same

distribution as G(x), where bi is the average service time of a customer at qi. There-

fore, the visit time of the server at the queue becomes a mixture of some stationary

processes. This implies the visit time process is not ergodic, which contradicts with

the definition of Type-1 SSMQSs. Hence, each queue must have constant maximum

service rate on a given path, or equivalently, each queue’s stability boundary on a

given path is a fixed point. 2

The next property is a direct result of Theorem 4.4.3, which states the relative

stability relations of any two queues on a given path LK .

Theorem 4.4.4 In Type-1 SSMQSs and for a given linear increasing path LK of the

system traffic, qi�qj ⇔ ki

µ̂K
i
≥ kj

µ̂K
j

.

Proof: Definition 4.4.2 states that if qi�qj on LK , we have DL(qi)≤DL(qj) on LK .

Based on the meaning of DL(q) and Eq. (4.2), and note that both µ̂Ki and µ̂Kj are

constants on LK from Theorem 4.4.3, the condition qi�qj implies the following holds

at every traffic point (on which both queues are stable) on LK :

λi
µ̂Ki
≥ λj
µ̂Kj
⇔ λ · ki

µ̂Ki
≥ λ · kj

µ̂Ki
⇔ ki

µ̂Ki
≥ kj
µ̂Ki

.

As a result, the theorem holds. 2

From Theorem 4.4.4 we can obtain the relative stability relations for any two

queues on a given path once we know the two queues’ maximum service rates on the
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path. Consequently, we can know the relative stability relations for all the queues on

the path. To clearly address these relations, we define the stability ordering in Type-1

SSMQSs for a given linear increasing path as following.

Definition 4.4.3 (Stability Ordering)

For a Type-1 SSMQS and a given linear increasing path LK, the ordering under which

the queues becoming unstable is called the stability ordering of the path. Specially,

the first queue becoming unstable is called the least stable queue and the last queue

becoming unstable is called the most stable queue.

From Theorem 4.4.4 it is easy to see that for any given LK , the stability ordering

is unique. However, for a given LK , the jth queue becoming unstable may not be

unique since two or more queues can be as stable as each other on the path. Another

useful point is that if two queues are as stable as each other on a given path implies

the two queues have the same stability boundary on the path. In other words, the

stability boundaries of the two queues have an intersection on a particular point on

that path. Based on this observation, we have the next property states that in Type-1

SSMQSs, for any two queues qi and qj, if the linear increasing paths can be selected

arbitrary, then there are paths for each of the three relative stability relations to hold

i.e., we can find paths for each of the relations qi≺qj, qi�qj, and qi�qj.

Theorem 4.4.5 In Type-1 SSMQSs and for any given two queues qi and qj, there

are linear increasing paths for each of the three relative stability relations to hold given

that the paths can be selected arbitrarily.

Proof: First we notice that for any qi and qj, there are paths for both qi ≺ qj and

qi � qj. In fact, from Theorem 4.4.2, each queue can receive a guaranteed service

from the server even when all the queues are unstable. We can select paths on which

qi’s arrival rate increases sufficiently slow when compare to its guaranteed service

rate and all other queues have arrival rates increase sufficiently fast when compare to

theirs, and keep qi’s arrival rate less than its guaranteed service rate when all other
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queues exceed theirs. Then when qi approaches its stability boundary on the paths

all the other queues will be unstable already. On these paths, we have qi�qj relation.

Similar, we can have paths on which qi ≺ qj holds. For the paths on which qi � qj
holds, qj’s stability boundary is within qi’s, while for the paths on which qi≺qj holds,

qi’s stability boundary is within qj’s. Next by noting that the stability regions of

qi and qj are bounded, their stability boundaries must have at least an intersection.

Otherwise, there will be a “hole” at the point at where the two queues’ stability

boundaries cross, and this is obviously not true. Therefore, there is at least one path

on which the relation qi�qj holds. 2

In the above theorem, if the paths cannot be selected arbitrarily, the conclusion

may not be true. Consider an example of a symmetric polling system with gated

limited service policy at each queue. In this system, this is only one possible linear

increasing path of the queues, namely, λ1 = λ2 = ... = λn. On this path only one

relative stability relation can exist for all the queues, that is, all the queues are as

stable as one another. In the following, if not mentioned specifically, we assume all

the linear increasing paths can be selected arbitrarily.

At this point, we have defined relative stability for Type-1 SSMQSs based on the

concept of degree of stability. Also we have provided conditions under which the rela-

tive stability relations of queues can be determined on a given linear increasing path.

Consequently, the stability ordering on the path can be known. However, to apply

the above results in any practical systems, we must also provide ways to compute the

degree of stability of the queues for any given linear increasing path, which in turn

requires the explicit stability conditions of a queue because the maximum service rate

of a queue is achieved at its stability boundary. This, however, is not an easy task

in general. Nevertheless, as we have seen and discussed in Chapter 3, to determine

the relative stability relations of the queues for the three systems on a given traffic

point, the explicit stability condition is not necessarily required. In other words, we

are able to have the comparison results of the degree of stability of the queues on a

given linear increasing path without knowing the degree of stability of the queues at
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the points on the path. The reason, as we are going to state in Theorem 4.4.7, is

that in Type-1 SSMQSs the relative stability relations of any two queues only depend

on the relations of their arrival rates (direction components) and are independent to

factors of other queues.

To prove the theorem, we need several steps. In Lemma 4.4.1, we first show the

necessary condition for any two queues to be as stable as each other in the traffic

space. Then we show the sufficient conditions for any one queue to be more stable

than or less stable than any other queue in Lemma 4.4.2. Next we prove in Lemma

4.4.3 that for any two queues to have a relative stability relation on a given path,

the ratio of their direction components is independent to any other queues’ influence.

Finally we have the sufficient conditions for any two queues to be as stable as each

other, the necessary conditions for any one queue to be more stable than or less stable

than any other queue in Lemma 4.4.4. The combination of Lemmas 4.4.1, 4.4.2, 4.4.3,

and 4.4.4 leads to the Theorem 4.4.7.

We start the proof with Lemma 4.4.1, which states the necessary conditions for

any two queues to be as stable as each other in the whole parameters.

Lemma 4.4.1 In Type-1 SSMQSs, any two queues are as stable as each other on a

given linear increasing path LK only if the ratio of their direction components of the

path is an independent constant, i.e., qi�qj =⇒ ki/kj =Ci,j, where Ci,j is a universal

constant independent to LK.

Proof: It is equivalent to prove that all the paths on which qi�qj can only be given

by ki/kj =Ci,j. Note that in the n-dimensional traffic space ki/kj =Ci,j is a (n−1)-

dimensional hyperplane. To prove the proposition, we first show that the instability

region of all queues of Type-1 SSMQSs is an open n-dimensional cuboid in the traffic

space.

Consider all the linear increasing paths on which q1 is the most stable queue.

On any of these paths, once all the other queues become unstable, the stability

boundaries of q1 on all these paths should be the “same”, i.e., have the same value
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of the maximum service rate, and correspondingly, the same value of arrival rate at

the stability boundaries on the paths. In other words, for any two paths LK1 and

LK2 on which q1 is the most stable queue, µ̂K1
1 and µ̂K2

1 should be the same. The

reasons are: firstly, all the other queues will behave the same after being unstable

on the two paths because of the infinite queue length assumption of the unstable

queue; and secondly, the unique system instability state, i.e., q1 is the last one to

become unstable on both LK1 and LK2 . Therefore, µ̂K1 will be a constant for all LKs

on which qi is the most stable queue and we let µ̂K1 = α. This implies λ1 = α is

the queue stability boundary of q1 for all the paths on which q1 is the most stable

queue. Similar, we can have λ2 = β as the queue stability boundary of q2 for all

the paths on which q2 is the most stable queue, and so on. Then, for each qi, when

the queue is the most stable queue, its queue stability boundary in the traffic space

will be a n-dimensional hyperplane with formula λi = yi, where yi is a constant.

Next, noting the meaning that if two queues are both the most stable queues on a

path, they have the same stability boundary on the path, i.e., their queue stability

boundaries intersect on a particular point on the path. This implies the intersections

of those hyperplanes actually are the stability boundaries of some (as stable as) most

stable queues. Because the traffic space is assumed Euclidean and the hyperplanes

are linear, we can conclude that the instability region of all queues is an open n-

dimensional cuboid such that U = {(λ1, λ2, ..., λn) ∈ Rn : α < λ1, β < λ2, ..., γ < λn},
where α, β, and γ are constants.

Now specifically consider the paths on which qi and qj are both the most stable

queues. The above discussion implies the direction components of qi and qj on these

paths satisfy ki

yi
=

kj

yj
, where λi=yi and λj =yj are the stability boundaries given that

qi and qj are the most stable queues, respectively. Let yi

yj
=Ci,j. Then the hyperplane

H1 : ki

kj
=Ci,j is a hyperplane that satisfies the conclusion of the theorem when qi and

qj are both the most stable queues.

Assume there are other path LK on which qi�qj and ki

kj
= Ĉ 6=Ci,j. Now consider

paths only on the hyperplane H2 : ki

kj
= Ĉ. Because Ĉ 6= Ci,j, hyperplanes H1 and
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H2 will never intersect except at the axis. This implies on H2 we can have any

linear increasing paths but the ones on which both qi and qj are the most stable

queues at the same time because all such paths are on H1. This is obvious not

true because qi and qj are already assumed as stable as each other on LK and the

selection of paths on H2 is assumed arbitrary (Theorem 4.4.5). Consequently, such a

LK cannot exist, hence implying all the paths on which qi � qj can only be on H1,

i.e., qi � qj =⇒ ki/kj = Ci,j. This finishes the proof. 2

A direct result from the above Lemma is that, in Type-1 SSMQSs there is one

and only one path on which all the queues are as stable as one another. As we are

going to consider situations that the systems are allowed to be reconfigured, the one

and only one path claim only applies to a fixed system configuration and we state the

fact in the following theorem.

Theorem 4.4.6 In Type-1 SSMQSs, for a fixed system configuration there is one

and only one linear increasing path LK on which all the queues are as stable as one

another, and LK is given by

k1

µ̂K1
=
k1

µ̂K2
= ... =

k1

µ̂Kn
,

where µ̂Ki is the (maximum) service rate of qi when all the queues are unstable.

Proof: As stated in Lemma 4.4.1, the paths on which two given queues are as stable

as each other can only be on a hyperplane. Then the intersection of these hyperplanes

for any two queues is the path on which all the queues are as stable as one another.

The existence and uniqueness of such a path is guaranteed by Theorem 4.4.5 and the

Euclidean structure of the traffic space and it is easy to see that the intersection is

a straight line LK . Since on LK all the queues will be unstable at the same time,

the maximum service rate of each queue will then equals to the service rate of the

queue in the unique instability state. Therefore, we can have the desired result and

this finishes the proof. 2
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The following lemma gives a sufficient condition under which a queue is more

(less) stable than another in the traffic space in Type-1 SSMQSs.

Lemma 4.4.2 In Type-1 SSMQSs, on any given linear increasing path such that

ki

kj
6=Ci,j, we have ki

kj
> (<)Ci,j =⇒ qi≺(�)qj.

Proof: As the two cases are symmetric, we prove only the case for qi≺ qj and the

other part can be proved similarly. Consider a partition of the traffic space, in which

the paths satisfy ki

kj
>Ci,j. First, note that we can always find a path in this partition

that gives qi ≺ qj by setting kj to a sufficiently small value. Second, we claim that

either qi ≺ qj or qj ≺ qi holds for all the paths in this partition. If this is not the

case, the two queues’ stability boundaries should have at least one intersection in the

partition. Then it implies that there is an increasing path in the partition on which

the two queues are as stable as each other, but we know from Lemma 4.4.1 that this

conclusion is not true as all such paths can only be in the hyperplane ki

kj
=Ci,j. Hence,

qi≺qj holds for all paths in this partition, i.e., ki

kj
>Ci,j =⇒ qi≺qj. This finishes the

proof. 2

The above two lemmas are not “complete” in the sense that in Lemma 4.4.1 we do

not know whether there are paths on the hyperplane ki

kj
=Ci,j can cause qi≺(�)qj or

not. Consequently, Lemma 4.4.1 is only a necessary condition while Lemma 4.4.2 is

only a sufficient condition. Before the above properties can be “completed”, another

property of the Type-1 SSMQSs is needed. Such property states that the relative

stability of any two queues will not be affected by factors of any other queues. Until

now, the properties of the Type-1 SSMQSs are given under the assumption that the

system parameters of the queues are fixed. In other words, we only consider the system

under a certain configuration. For example, in the polling system we considered fixed

Mis for qis, while in the ALOHA network we considered fixed pis for qis. However,

to prove the relative stability of any two queues is independent to factors of other

queues we must also consider situations that the system parameters of the queues can

be changed on a given linear increasing path, e.g., for polling systems to allow Mis to
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change and for ALOHA network to allow pis to change. For a given configuration of

the system, we use G to denote the configuration of the queues, and Ci,j(G) to denote

the constant of the hyperplane which includes all the paths on which qi � qj for the

configuration G. By changing the configuration of the system for a given path we

mean that first to consider the system on the path under the original configuration

G1, then to consider the system again on the same path with another configuration

G2. Note that a system is not necessarily be reconfigurable, e.g., the processor sharing

system is not configurable.

Lemma 4.4.3 In reconfigurable Type-1 SSMQSs, the ratio of any two queues’ direc-

tion components on a given path is independent to any other queues’ configurations

in the sense that if ki/kj T Ci,j(G1) for configuration G1, then for any other configu-

ration G2 (without changing qi and qj’s settings), we also have ki/kj T Ci,j(G2), and

Ci,j(G1)=Ci,j(G2).

Proof: Let qi, qj, and qk be the queues in concern. We first consider the system under

configuration G1. For G1, from Lemma 4.4.1 we know that there is a constant Ci,j(G1)

for qi and qj. Divide all the linear increasing paths into three subsets, namely, A(G1)=

{Lk|ki/kj = Ci,j(G1)}, B1(G1) = {Lk|ki/kj > Ci,j(G1)}, and B2(G1) = {Lk|ki/kj <
Ci,j(G1)}. Now reconfigure the system to G2 by changing the parameters of qk. For

configuration G2 we also have a constant Ci,j(G2) and subsets of paths A(G2), B1(G2),

and B2(G2). If Ci,j(G1)=Ci,j(G2), because of the linear structure of the Hyperplanes

in the traffic space, the property is true. Now assume Ci,j(G1) 6=Ci,j(G2), and without

loss of generality, further assume Ci,j(G1) > Ci,j(G2). Then it is easy to see that

A(G1)⊂B1(G2), B1(G1)⊂B1(G2), and A(G2) ∪ B2(G2)⊆B2(G1). Specifically, all the

paths in the subset of B2(G1) will be distributed to the subsets A(G2), B1(G2), and

B2(G2). Also, all the paths in subsets A(G1) and B1(G1) under configuration G1 will

be in the subset of B1(G2) under configuration G2. This implies that for all the paths

on which qi � qj in the configuration G1, the qi � qj relation cannot be kept in the

configuration G2. Similar conclusion can be drawn if we change the configuration G2
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back to G1, i.e., for all the paths on which qi� qj in the configuration G2, the qi� qj
relation cannot be kept in the configuration G1. Now for both configurations G1 and

G2, if we project the n-dimension traffic space into a (n−1)-dimension traffic space

by letting λk=0, in the (n−1)-dimension traffic space we will have two sets of paths

on which qi � qj and all the queues are having the same settings. The two sets of

paths are {Lk|ki/kj = Ci,j(G1)} and {Lk|ki/kj = Ci,j(G2)}, and Ci,j(G1) 6= Ci,j(G2).

This contradicts to Lemma 4.4.1 that if on paths qi and qj have relation qi�qj then

ki/kj must be a constant. Therefore, for any configuration G1 and qi, qj, and qk, a

reconfiguration of the system G2 by changing qk’s setting and having Ci,j(G1)>Ci,j(G2)

cannot exist. Similarly, a reconfiguration that causes Ci,j(G1)<Ci,j(G2) cannot exist

as well. The only possible case will then be Ci,j(G1)=Ci,j(G2). Because qk is selected

arbitrarily, the conclusion is true if we select any other queue (rather than qi and qj).

Now for any initial configuration G1, and final configuration G2, besides qi and qj, if

there are more than one queue has different settings, we can change the setting of one

queue at a time and this will not affect the ratio of ki/kj. In this way, we can have

the final configuration G2 and still have the desired result, i.e., Ci,j(G1) = Ci,j(G2).

This finishes the proof. 2

With Lemma 4.4.3 we can now have the sufficient part of Lemma 4.4.1 and the

necessary part of Lemma 4.4.2 in the next Lemma.

Lemma 4.4.4 In Type-1 SSMQSs, a given linear increasing path LK satisfies ki/kj =

Ci,j implies qi � qj on the path; on the other hand qi ≺ (�)qj on a path implies the

path satisfies ki/kj> (<)Ci,j.

Proof: For the first part, we know that there must be a LK on which qi � qj and

ki/kj =Ci,j. Now assume there are also paths L̄K on which qi ≺ qj and ki/kj =Ci,j

(or qi� qj and ki/kj =Ci,j). Because change any queues’ settings will not affect the

ki/kj values (Lemma 4.4.3). We can project the n-dimension space to a 2-dimension

space by letting λk=0 for all qk, where qk 6=qi, qj. Then in the 2-dimension space we

have the path ki/kj =Ci,j on which both qi � qj and qi ≺ qj (or qi � qj) hold. This
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obviously is not true. Hence the first part of the proposition is true. Since now the

condition of ki/kj = Ci,j is sufficient and necessary for qi � qj on a path, it implies

qi ≺ (�)qj =⇒ ki/kj > (<)Ci,j, i.e., the second part of the proposition is also true.

This finishes the proof. 2

Now we are ready to present the relative stability condition of the Type-1 SSMQSs,

which is the combination of Lemmas 4.4.1, 4.4.2, 4.4.3, and 4.4.4.

Theorem 4.4.7 (Relative Stability Condition of Type-1 SSMQSs)

In Type-1 SSMQSs, the sufficient and necessary condition for any two queues qi and

qj to have qi�qj on a given linear increasing path is that the direction components of

the two queues on the path satisfy ki/kj =Ci,j, where Ci,j is a universal constant and

independent to any other queues. Furthermore, the sufficient and necessary condition

for qi≺(�)qj on a path is ki

kj
> (<)Ci,j.

Proof: The theorem is the direct result of Lemmas 4.4.1, 4.4.2. 4.4.3, and 4.4.4.

2

Theorem 4.4.7 says that the relative stability of two queues in Type-1 SSMQSs

will not be affected by other queues as long as the two queues’ arrival rates satisfy

some conditions. The intuition behind the property is, firstly, the interaction between

the two queues is constrained as they will have unique instability state when all the

queues are unstable. Secondly, no matter what effects the rest of the queues can bring

to the two queues, the effect should affect them equally. As Ci,j is a constant, it can

be determined by just finding one linear increasing path LK on which qi � qj. On

such a LK , Ci,j = µ̂Ki /µ̂
K
j , where µ̂Ki and µ̂Kj are the maximum service rates of qi and

qj, respectively. Obviously, the path given in Theorem 4.4.6 is a good candidate.

As this point, we have solved the major problems of relative stability in Type-1

SSMQSs. Namely, on one hand, for any given linear increasing path, we are able to

tell the relative stability relations of any two queues, and consequently, the stability

ordering on the path; on the other hand, for any given relative stability relation of
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any two queues, (as well as the stability ordering of all the queues), we are able to

tell what kind of condition a linear increasing path should satisfy in order to obtain

the given relative stability relation of the two queues, (and the stability ordering of

all the queues).

Here, two points are worth to mention. First, from Lemma 4.4.3 we know that if

we want to change the relative stability relation of qi and qj on a path, (or the ratio

of ki/kj), the only way is to reconfigure the settings of either qi or qj, or both queues.

Second, in Type-1 SSMQSs, the paths on which two queues are as stable as each

other are unique in the sense that these paths form a (n−1)-dimension hyperplane in

the traffic space.

In the next theorem we give another important property of the Type-1 SSMQSs,

which is a result of the Theorem 4.4.6.

Theorem 4.4.8 In reconfigurable Type-1 SSMQSs, for a given linear increasing path

LK and a traffic point Λ on the path such that if under configuration G0 the system is

stable at Λ, then there exists a reconfiguration of the system G1 such that on LK all

the queues are as stable as one another, and the system is also stable at Λ.

Proof: There is nothing to prove if the queues are already as stable as one another

on LK . Assume that there are at least two queues are not as stable as each other on

the path under G0. Now consider a new configuration G1. Recall that the condition

given in Theorem 4.4.6, i.e., k1

µ̂K
1

= k1

µ̂K
2

= ... = k1

µ̂K
n

, which specifies the path on which

all the queues are as stable as one another, and µ̂Ki is the maximum service rate

received by qi at the unique system instability state. Then the theorem is true if

Λ== (λ1, λ2, ..., λn)=(µ̂K1 , µ̂
K
2 , ..., µ̂

K
n ), where µ̂Ki is the maximum service rate of qi on

LK under G1, i.e., Λ is the stability boundary for all queues on LK under configuration

G1. To find out G1, let µ̂Ki = fi(G1), where fi is the function to calculate the maximum
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service rate of qi on a given path for the system configuration G1. Then to find out

G1 is equivalent to solve the set of equations:




λ1 = f1(G1),

λ2 = f2(G1),

. . . . . . . . . . . .

λn = fn(G1).

(4.3)

We argue the target configuration G1 is solvable for the following reasons. First, there

are stable reconfigurations exist at Λ. This is because the server’s capacity allows (the

system is stable at Λ), which implies that for each qi a better configuration exists in

the sense that under such a configuration qi may still be stable once the traffic point

passes beyond Λ. For example, G0 may be such a better configuration. Second, the

traffic point Λ is given, which means in Eq. 4.3 there are totally k unknowns in a

set of k equations, assume that there is only one system parameter for each queue .

Lastly, as we are going to solve the configuration such that Λ is the stability boundary

for all the queues, the function fi(G1) is independent to Λ because we can consider

all the queues as if they are already unstable. Therefore, G1 is solvable. Based on the

way of finding the configuration G1, we conclude that under G1 all the queues will be

as stable as one another on LK and have Λ as their stability boundaries, i.e., stable

at Λ. This finishes the proof. 2

Theorem 4.4.8 is very useful as it allows us to characterize the stability region

of Type-1 SSMQSs. Furthermore, it can also serve as the criterion to stabilize a

Type-1 SSMQS, and to obtain the maximum stable throughput of the system on a

given linear increasing path. To see this, we first define the following concept of the

maximum as stable as configuration on a given path.

Definition 4.4.4 (Maximum as stable as configuration)

In reconfigurable Type-1 SSMQSs, for a given linear increasing path LK, a con-

figuration of the system is called the maximum as stable as configuration, denoted

as Gm(LK), if under Gm(LK) all the queues are as stable as one another on LK
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and the stability boundary of the queues on LK, denoted as Λm(LK), is the maxi-

mum in the sense that for any other configuration of the system that can make the

queues be as stable as one another and has stability boundary Λ(LK) on LK, we have

‖Λ(LK)‖≤‖Λm(LK)‖.

Now for a given path LK and a system configuration G, denote the system stability

boundary as Λ(LK ,G), then the stability region of the system on the path, denoted

as S(LK ,G), will be S(LK ,G) = {Λ|Λ∈LK , ‖Λ‖< ‖Λ(LK ,G)‖}. Let O(LK) be the

closure of S(LK ,G) for LK and all possible G, i.e., O(LK)=∪GS(LK ,G). Then the set

of O(LK) can be interpreted as the overall system stability region on LK because for

any Λ∈O(LK), there exists a configuration of the system such that at Λ the system is

stable. Now it can see that Theorem 4.4.8 actually suggests that, on a given path LK ,

we have O(LK)={Λ|Λ∈LK , ‖Λ‖<‖Λm(LK)‖}. If O is the overall stability region in

traffic space, i.e., O=∪LK
O(LK), then we have O=∪LK

{Λ|Λ∈LK , ‖Λ‖<‖Λm(LK)}.
We state this conclusion in the following corollary.

Corollary 4.4.1 In reconfigurable Type-1 SSMQSs, we have

O=∪LK
{Λ|Λ∈LK , ‖Λ‖<‖Λm(LK)‖} (4.4)

Proof: To prove the corollary is equivalent to prove that for any given LK the

following holds:

O(LK)={Λ|Λ∈LK , ‖Λ‖<‖Λm(LK)‖}.

First note that on LK for the maximum as stable as configuration Gm(LK), we have

S(LK ,Gm) ⊆ O(LK) according to the definition of Gm(LK) and O(LK). Then for

each S(LK ,G), Theorem 4.4.8 implies that there exists a G0 such that on LK all the

queues are as stable as one another and S(LK ,G)⊆S(LK ,G0). Because S(LK ,G0)⊆
S(LK ,Gm) as Gm is the maximum as stable as configuration on LK , and noting

that G is arbitrarily selected, we have ∪GS(LK ,G) ⊆ S(LK ,Gm), or equivalently,

O(LK) ⊆ S(LK ,Gm). Hence, O(LK) = {Λ|Λ ∈ LK , ‖Λ‖ < ‖Λm(LK)‖}, and this

finishes the proof. 2
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Because Gm(LK) is an as stable as configuration of the system on LK , the value

of Λm(LK) can be easily obtained. Therefore, Corollary 4.4.1 suggests that to char-

acterize the overall system stability region for Type-1 SSMQSs is equivalent to find

the maximum as stable as configuration on a linear increasing path of the systems.

Now consider the stabilization problem of a Type-1 system: for a given traffic

point Λ, whether there exists a configuration that can stabilize the system at Λ. The

existence of such a configuration implies Λ ∈O. Therefore, according to Corollary

4.4.1, to find whether such a configuration exists or not is equivalent to consider

the maximum as stable as configuration Gm(LK) on the linear increasing path LK

that passes the origin and Λ. If Λ∈S(LK ,Gm), the system can be stabilized at Λ;

otherwise, the system can never be stable at Λ.

Another related problem is to find the maximum stable throughput on a given

path LK . From Corollary 4.4.1, it is easy to see that the maximum stable throughput

of the system can be achieve at ΛmLK . Therefore, to find the maximum stable

throughput on LK is also equivalent to find Gm(LK).

From the above discussion, with Theorem 4.4.8 and Corollary 4.4.1, we can see

that in Type-1 SSMQSs, the characterization problem of the overall system stability

region, the stabilization problem of the system, and finding the maximum stable

throughput can all be reformulated as an optimization problem, that is, to find the

maximum as stable as configuration on a linear increasing path.

Another usage of Theorem 4.4.8 and Corollary 4.4.1 is finding a necessary queue

stability condition for a given queue when it is the least stable queue. Consider

Eq. (4.3) and fix λ2, λ3, ..., λk and the system parameter associated with q1, we have

a set of k equations with k unknowns, i.e., the system parameters associated with

each queue. Now finding the maximum as stable as configuration in terms of λ1 is

equivalent to finding the maximum stability boundary of q1 with given arrival rates of

the other queues, i.e., (λ2, λ3, ..., λk). Denote this maximum stability boundary of q1

as λ̂1. According to Corollary 4.4.1, the queue stability boundary of q1 in the original

system configuration with the given λ2, λ3, ..., λk must be less than or equals to λ̂1.
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Because, for the given λ2, λ3, ..., λk, λ̂1 is the maximum stability boundary when

considering q1 has a fixed associated system parameter while all other queues can

have any possible associated system parameters. Therefore, λ̂1 is a necessary queue

stability condition of q1 when given λ2, λ3, ..., λk in the original system configuration.

A special case is that for q1 with a fixed associated system parameter, if there is only

one as stable as configuration on a given path, then the necessary queue stability

condition is also sufficient. We will demonstrate this point for the polling system

in the next chapter. Also, in the next chapter, we will use this method to obtain a

necessary stability condition for the slotted buffered ALOHA network and show that

the new condition is better than the existing one obtained in [47].

It is worth to mention that the above results only hold for reconfigurable Type-1

SSMQSs. For non-configurable Type-1 SSMQSs, the conclusions in general are not

necessarily true.

To end this section, we provide two examples of Type-2 systems and discuss some

properties of them.

The first example is a polling system with all queues having exhaustive service

policy. We called this system E1. In E1, once any queue becomes unstable, it will

occupy the server forever. This makes the cycle time become infinite. Consequently,

the random sequence Hn(Wn) defined in Definition 4.2.2 will be non-stationary and

non-ergodic. Only when all the queues are stable, then Hn(Wn) is stationary and

ergodic. The queues in E1 are of capture type. On any given linear increasing path,

the maximum service rate of a queue is a constant, which equals to the server’s

capacity. However, a queue may not able to achieve this maximum service rate once

another queue captures the server and becomes unstable. Therefore, the queues do not

have guaranteed service share because a queue may receive 0 service. Furthermore,

the queues have variable service rates when all queues are unstable and this depends

on which queue can capture the server. In E1, any queue becomes unstable will cause

all other queues become unstable. In this sense, there is only one possible relative

stability relation for all queues on any paths, that is, the as stable as relation. In
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other words, the relative stability relation of the queues is independent to the paths.

However, one should note that the instability of all the queues in this case is caused

by service starvation.

For the second example, consider a two queues polling system with gated limited

service. Let m1, m2, and m be three positive integers. In the system, let the maximum

number of customers that can be served at each queue determined in the following

way: if the queue length of qi is less than or equal to mi when the server visits qi,

then the server can serve all the customers during the visit; if the queue length of

qi is more than mi when the server visits qi, the server can serve at most mi + m

customers. During any cycle, the server cannot serve more than m1+m+m2 customers.

In addition, the maximum number of customers that can be served at a queue during

is not decreasing, i.e., not less than the maximum number of customers that can be

served in previous visits. We called this system E2. One can see that the difference

between E2 and the polling system we considered in Chapter 3 is that in E2 the

maximum number of customers that can be served at a queue by the server during a

cycle varies (variable-limit), while the polling system in Chapter 3 has fixed service

limits at the queues (fixed-limit). For E2, when any queue becomes unstable, the time

that the sever spends at that queue is a stationary mixture and therefore not ergodic.

Hence, E2 is also a Type-2 SSMQS. However, in the contrast to E1, queues in E2 are of

non-capture type and have guaranteed service share, i.e., for qi at least mi per cycle.

Furthermore, in E2, the maximum service rate of a queue on a given path varies,

depends on the share it has contended previously. For E2, only for some paths we can

tell the relative stability relation of the queues, for example, k1/m1>k2/(m2+m) on

which q1≺q2, and k2/m2>k1/(m1+m) on which q1�q2. For other paths, the relative

stability relation cannot be told even when the path is given, though paths for each

of the three relative stability relation exists. Consequently, the relative stability of

the queues in E2 is also not directly dependent to the linear increasing path. Lastly,

in E1, the paths on which any two queues are as stable as each other are not unique.
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From the above examples, we can see that Type-2 SSMQSs do not have the “good”

properties as the Type-1 SSMQSs.

4.5 Summary

In this chapter we first identified the SSMQSs into two kinds. This allows us to

use Loynes’ theorem to define the concept of degree of stability of a queue. For the

Type-1 SSMQSs, we defined three relative stability relations between any two queues

on a path. Then we study the properties with respect to relative stability of Type-1

SSMQSs. In particular, these properties include the relative stability conditions for a

specific relative stability relation among the queues. As we have seen, the conditions

are closely related to how the system traffic changes in the traffic space. In the next

chapter we are going to apply these properties in analyzing both the relative and

absolute stability for some practical SSMQSs. As we will see, these properties allow

us to develop a unified, intuitive, yet simple approach to study the stability issues in

those systems and to obtain new results.
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5. APPLICATIONS

In this chapter we use the relative stability results of Type-1 SSMQSs developed in

Chapter 4 to study stability related issues for some SSMQSs. We start with the

relative stability conditions of the SSMQSs. Then we study the absolute stability

conditions of the systems. The results include both queue stability conditions and

system stability conditions. For systems whose exact stability conditions cannot

be obtained, we provide a simple method for the necessary condition of the system

stability. Lastly, we consider the characterization of the system stability region. Some

of the results in this chapter had been reported previously, while some are new.

Nevertheless, through the analysis we can see that the relative stability results indeed

provides us a unified, intuitive, and simpler method not only able to reproduce most of

the previous results but also able to derive new ones. More importantly, our approach

applies to not just one particular one system but all the Type-1 SSMQSs.

5.1 The Models

In this chapter, we select four SSMQSs to study. Two of them are the polling

system with gated limited service and the slotted buffered ALOHA network, which

have been described in Chapter 3. The other two systems are: wireless network pro-

tocols dubbed network-assisted diversity multiple access (NDMA) and blind NDMA

(BNDMA) [23], and the slotted buffered ALOHA with multipacket reception [53].

We have already seen that both the polling system and the ALOHA network belong

to Type-1 SSMQSs. In the follows, we describe the other two models.
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5.1.1 NDMA and BNDMA

The NDMA and BNDMA protocols were proposed in [71, 78], respectively, and

their system stability were studied in [23]. Both of the protocols were proposed to

address the collision resolution problem in wireless communication networks. The idea

of the protocols is “to generate diversity via immediate simultaneous retransmissions

of all collided packets induced by the medium access control layer protocol” [23].

Practically, if M packets collide totally M times, given that the resultant M linear

mixtures of the collision of the original packets are linearly independent, then one

station which collects these mixtures may able to recover the original packets by

solving the associated linear system. To achieve that, it requires the original packets

contain additional known prefixes that enable detection and estimation of the mixing

matrix. The resultant protocol is the NDMA. A variation is that the set of linear

equations can be solved blindly, given that one more collision is provided and a certain

type of packet phase modulation is employed at the transmitters. This variation is

the BNDMA. More details of the two protocols are referred to [23, 71, 78].

Now assume there are one server and k queues in the system which employs

either NDMA or BNDMA protocols. Each queue has unlimited buffer to store in-

coming packets. The arrival process to qi is Poisson with arrival rate λi, and the

arrivals at all queues are mutually independent. The transmissions are slotted,

which duration equals to the transmission time of a packet. All the transmissions

at the queues are synchronized at the beginning of a slot, given that the queues are

not empty. In NDMA, a M -fold collision requires (M −1) retransmissions, while

in BNDMA it requires M retransmissions. The slots used for the first transmis-

sion and subsequent retransmission comprise a collision resolution (CR) cycle. Let

(Qn = (Qn
1 , Q

n
2 , ..., Q

n
k))∞n=1 be the joint queue length process of the queues at the

beginning of slot n. Then for each qi, the following holds:

Qn+1
i =





Qn
i − 1 + Ani , Qn

i > 0

Ani , Qn
i = 0

(5.1)
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where Ani is the number of new arrivals to qi during the n slot and has a mean

NDMA: EAni = λi

[
k∑

j=1

I{Qn
i > 0}+ δ(

k∑

j=1

Qn
i )

]
, (5.2)

or

BNDMA: EAni = λi

[
k∑

j=1

I{Qn
i > 0}+ 1

]
, (5.3)

respectively. Here δ(x) is the Kronecker delta function, i.e., δ(0)=1, and δ(x)=0 for

other values of x. It can be shown that the above joint queue length process Qn is a

homogeneous, irreducible, and aperiodic Markov chain [23]. In addition, the arrival

processes and the service policies in both protocols satisfy the conditions of Theorem

4.2.1, therefore, both NDMA and BNDMA are Type-1 SSMQSs. Also note that both

NDMA and BNDMA are non-configurable.

5.1.2 A Slotted Buffered ALOHA Network with Multipacket Reception

The multipacket reception (MPR) model is similar to the slotted buffered ALOHA

network considered in Chapter 3. However, this model is more general that it allows

the receiver to receive multiple packets simultaneously [53]. Let K be the set of all

queues. During a slot, if there is a subset of queues S ⊆ K transmit packets, then

define R⊆S as the subset of queues whose packets can be successfully received. In

particular, define the conditional probability qR,S as

qR,S = P (only packets from R are successfully received |S transmits). (5.4)

The packet receptions are independent from slot to slot. Furthermore, the marginal

probability of success R given the set S is then

qR|S =
∑

V:R⊆V⊆S
qR,S . (5.5)

For example, if there are two queues in the system, we have

q{1},{1} = P (q1 transmits successfully | only q1 transmits),
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q{1},{1,2} = P (q1 transmits successfully | both q1 and q2 transmit),

q{1,2},{1,2} = P (q1 and q2 transmit successfully | both q1 and q2 transmit).

The marginal successful transmission probability for qi, i=1, 2, will be

q{i}|{i} = q{i},{i},

and

q{i}|{1,2} = q{i},{1,2} + q{1,2},{1,2}.

For the MPR model, we use the same assumptions as in the ALOHA network de-

scribed in Chapter 3. Then the joint queue length process (Qn = (Qn
1 , Q

n
2 , ..., Q

n
k))∞n=1

at the beginning of slot n is a Markov chain. If q{i}|{i}>0, then the chain is irreducible

and aperiodic [53]. Furthermore, for each qi, the following holds:

Qn+1
i = (Qn

i −Bn
i )+ + Ani , (5.6)

where Bn
i represents whether there is a departure from qi and Ani is the number of

new arrivals to qi during slot n. Based on Theorem 4.2.1, we can see that the MPR

model also belongs to the Type-1 SSMQSs.

5.2 Relative Stability of Type-1 Systems

In this section we establish the relative stability for the four Type-1 SSMQSs.

More precisely, for all the four systems, we provide the sufficient and necessary con-

ditions of the relative stability relation for any two queues on a linear increasing

path. Furthermore, we also give the sufficient and necessary conditions of the sta-

bility ordering of all queues on a path. As we have shown in Chapter 3 and Section

1 of this chapter, all the four systems considered in this chapter are of Type-1 SS-

MQSs. Therefore, the relative stability results are the direct applications of Theorem

4.4.7 and Theorem 4.4.6. The relative stability results for the polling system and the

ALOHA network have been reported previously [16, 17, 29, 47], while for the other

two models the results presented here are new.
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5.2.1 The Polling System with Gated Limited Service

Consider the polling system described in Chapter 3. According to Theorem 4.4.7,

the relative stability relations of any two queues qi and qj only depend on the ratio of

their direction components and the constant Ci,j. The constant Ci,j can be obtained

through any paths on which qi � qj as long as the configurations of the two queues

remain unchanged. To compute the Ci,j, we select the linear increasing path given by

Theorem 4.4.6 on which all the queues are as stable as one another. In the following

theorem we provide the relative stability relation of any two queues in the polling

system.

Theorem 5.2.1 In the polling system with gated limited service policy, for a given

configuration of the system, qi � qj ⇐⇒ ki

kj
≤ Mi

Mj
on the linear increasing path LK.

Proof: We first consider the linear increasing path LA on which all queues are as

stable as one another. From Theorem 4.4.6, we know on this path

µAi =
Mi∑k
l=1Ml

,

and

µAj =
Mj∑k
l=1Ml

.

Because we have qi � qj on LA, therefore ki/µ
A
i = kj/µ

A
j and it is easy to see that

Ci,j = µAi /µ
A
j = Mi/Mj. Then, according to Theorem 4.4.7, we have qi � qj ⇐⇒

ki

kj
≤ Mi

Mj
on any path LK . This finishes the proof. 2

The stability ordering in the polling system is an immediate result of the above

theorem.

Corollary 5.2.1 In the polling system with gated limited service policy, for a given

configuration, the stability ordering of the queues q(1) � q(2) � ... � q(k) ⇐⇒ k(1)

M(1)
≤

k(2)

M(2)
≤ ... ≤ k(k)

M(k)
on the linear increasing path LK, where (1), (2), ...(k) is a permuta-

tion of the sequence 1, 2, ..., k.

Proof: The conclusion is a direct result of Theorem 5.2.1. 2
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5.2.2 The Slotted Buffered ALOHA Network

Consider the ALOHA network described in Chapter 3. Applying the same meth-

ods in the last subsection, we have relative stability conditions for the ALOHA net-

works in the following theorem and corollary.

Theorem 5.2.2 In the slotted buffered ALOHA system, for a given configuration of

the system, qi�qj ⇐⇒ ki(1−pi)
pi
≤ kj(1−pj)

pj
on the linear increasing path LK.

Proof: We consider again the linear increasing path LA on which all the queues are

as stable as one another. From Theorem 4.4.6, we know on this path

µAi = pi
∏

l 6=i
(1− pl),

and

µAj = pj
∏

l 6=j
(1− pl).

Because we have qi � qj on LA, therefore ki/µ
A
i = kj/µ

A
j and it is easy to see that

Ci,j = µAi /µ
A
j = (pi/(1 − pi))/(pj/(1 − pj)). Then, according to Theorem 4.4.7, we

have qi � qj ⇐⇒ ki(1−pi)
pi
≤ kj(1−pj)

pj
on any path LK . This finishes the proof. 2

The stability ordering in the ALOHA network is given in the following corollary.

Corollary 5.2.2 In the slotted buffered ALOHA network, for a given configuration,

the stability ordering of the queues q(1) � q(2) � ... � q(k) ⇐⇒ k(1)(1−p(1))

p(1)
≤

k(2)(1−p(2))

p(2)
≤ ... ≤ k(k)(1−p(k))

p(k)
on the linear increasing path LK, where (1), (2), ...(k)

is a permutation of the sequence 1, 2, ..., k.

Proof: The conclusion is a direct result of Theorem 5.2.2. 2
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5.2.3 NDMA and BNDMA

Now consider the NDMA and BNDMA protocols. Applying the same approach

in the last two subsections, we have relative stability conditions for the protocols in

the following theorem and corollary.

Theorem 5.2.3 In the NDMA and BNDMA protocols, qi� qj ⇐⇒ ki≤ kj on the

linear increasing path LK.

Proof: We consider again the linear increasing path LA on which all the queues are

as stable as one another. For the NDMA protocol, from Theorem 4.4.6, we know on

this path

µAi =
1

k
,

and

µAj =
1

k
.

For the BNDMA on path LA we have

µAi =
1

k + 1
,

and

µAj =
1

k + 1
.

Because we have qi�qj on LA, therefore ki/µ
A
i = kj/µ

A
j and it is easy to see that for

both NDMA and BNDMA Ci,j = µAi /µ
A
j = 1. Then, according to Theorem 4.4.7, we

have qi � qj ⇐⇒ ki≤kj on any path LK . This finishes the proof. 2

The stability ordering in the NDMA and BNDMA protocols is given in the fol-

lowing corollary.

Corollary 5.2.3 In both NDMA and BNDMA protocols, the stability ordering of the

queues q(1) � q(2) � ... � q(k) ⇐⇒ k(1) ≤ k(2) ≤ ... ≤ k(k) on the linear increasing

path LK, where (1), (2), ...(k) is a permutation of the sequence 1, 2, ..., k.

Proof: The conclusion is a direct result of Theorem 5.2.3. 2
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5.2.4 The MPR Model

Now consider the MPR model. Before we proceed, we introduce the notation of

~pi and ~qi for qi in the MPR model. Both ~pi and ~qi are vectors with 2(k−1) components,

given that there are k queues in the model. For qi, let Bi = (b1, b2, ..., bi−1, bi+1, ..., bk)

be a binary vector with (k−1) components. There are totally 2(k−1) possible values

for Bi. For a particular value of Bi, let

pi(Bi) = pi

k∏

l 6=i
[p

(bl)
l p̄

(1−bl)
l ],

where p̄l = (1−pl). Now let ~pi be the vector formed by pi(Bi) for all 2(k−1) different

values of Bi. Similarly, let qi|Bi
represent the marginal successful transmission prob-

ability of qi such that ql ∈ S if and only if bl = 1, where l 6= i. Again, let ~qi be the

vector formed by qi|Bi
for all 2(k−1) different values of Bi. The ordering of the vectors

~pi and ~qi match to each other in the sense that the lth components of both vectors

have the same Bi value.

Now applying the same approach in the last three subsections, we have relative

stability for the model in the following theorem and corollary.

Theorem 5.2.4 In the MPR model, for a given configuration of the system, qi �
qj ⇐⇒ ki

~pi·~qi
≤ kj

~pj ·~qj
on the linear increasing path LK, where ~pi · ~qi is the dot product

of the two vectors.

Proof: We consider again the linear increasing path KA on which all the queues are

as stable as one another. For the MPR protocol, from Theorem 4.4.6, we know on

this path

µAi = ~pi · ~qi,

and

µAj = ~pj · ~qj.

Because we have qi � qj on LA, therefore ki/µ
A
i = kj/µ

A
j and it is easy to see that

Ci,j = µAi /µ
A
j = ~pi · ~qi/~pj · ~qj. Then, according to Theorem 4.4.7, we have qi � qj ⇐⇒

ki
~pi·~qi
≤ kj

~pj ·~qj
on any path LK . This finishes the proof. 2
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The stability ordering in the MPR model is given by the following corollary.

Corollary 5.2.4 In the MPR model, for a given configuration, the stability ordering

of the queues q(1)� q(2)� ...� q(k) ⇐⇒ k(1)

~p(1)· ~q(1)
≤ k(2)

~p(2)· ~q(2)
≤ ...≤ k(k)

~p(k)· ~q(k)
on the linear

increasing path LK, where (1), (2), ...(k) is a permutation of the sequence 1, 2, ..., k.

Proof: The conclusion is a direct result of Theorem 5.2.4. 2

In this section, we have established the relative stability conditions for the four

SSMQSs. As we have shown, with the relative stability related properties of Type-1

SSMQSs, the procedure to find the relative stability condition for a particular system

is straightforward and simple. The results for the polling system and the ALOHA

network we have obtained in this section are consistent with Theorems 3.2.1 and

3.3.1. However, in Theorems 3.2.1 and 3.3.1 we are only able to consider the relative

stability relation of two queues in the sense that one queue’s stability implies another

queue’s stability on a single traffic point. If two queues have the same stability status

on a point, e.g., both stable or unstable, then it is not very meaningful to discuss

which one is more stable or unstable. On the other hand, if a linear increasing path

of the traffic pattern is given, we can then compare their stability in the sense that to

tell which queue is more stable or less stable, and to have the stability ordering on the

path. Hence, in a more general sense, the relative stability reflects the trend of the

stability of the queues. The results of the polling system and the ALOHA networks

we have obtained in this section are also consistent with those that have previously

reported.

5.3 Absolute Stability Conditions of Type-1 SSMQSs

In this section we demonstrate how to use the relative stability results to establish

absolute stability conditions for Type-1 SSMQSs. As a system or a queue’s stability

conditions are often equivalent to the region of arrival patterns within which the

system or the queue are stable, we use the term stability condition and stability
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region interchangeably in this section. Now we describe our approach first. Simply

speaking, the idea to obtain stability condition of a system is to establish queue

stability condition in the system first. Then there are two ways to obtain system

stability condition through the queue stability condition. The first way is to consider

the intersection of all the queues’ queue stability regions, while the second way is to

consider the union of every individual queue’s queue stability regions within which

the queue is the least stable queue. We illustrate the two methods through a Type-1

SSMQSs with two queues in Figs. 5.1 and 5.2. In Fig. 5.1 (a) and (b) the light

shadow areas represent the queue stability regions of q1 and q2, respectively. The

system stability region (the dark shadow area) in Fig. 5.1 (c) is then the intersection

of the two queues’ queue stability regions. In Fig. 5.2 (a) and (b) the shadow areas

represent the queue stability regions of q1 and q2 when they are the least stable queues,

respectively. Then the system stability shown in Fig. 5.2 (c) is the union of these two

shadow areas.

Fig. 5.1. The first method to achieve system stability.

Fig. 5.2. The second method to achieve system stability.
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To obtain queue stability condition, we consider the queues on a given linear

increasing path. The stability ordering of the queues on the path can be know through

the relative stability results. For the target queue, we can divide all the queues into

three groups, namely, the queues that are less stable than, as stable as, and more

stable than the target queue. Then consider the target queue in the state as if it

just passes its queue stability boundary. Consequently, the queues that are as stable

as and less stable than the target queue will be unstable. Now all the queues are

partitioned into two sets, i.e., the stable ones and the unstable ones. Based on our

definition of Type-1 SSMQSs, we still can construct a stationary and ergodic regime

of the system state. This implies we can apply the second part (the instability part)

of Loynes’ theorem’s to the target queue and obtain its queue instability boundary.

Because Loynes’ theorem is sufficient and necessary, that boundary is also the target

queue’s stability boundary. At this point, theoretically, we need to calculate the

maximum service rate of the target queue in order to apply Loynes’ theorem. Note

that in practice, however, for some systems, the maximum service rate may not be

analytically computable due to the nonlinear feature of the systems. The ALOHA

network and the MPR model belong to this kind of systems. Nevertheless, once the

maximum service rate can be computed, the queue stability condition of the target

queue on the given path can be achieved. Then repeat the procedure for every possible

linear increasing path, we achieve the stability condition of the target queue for the

traffic space.

A necessary stability condition for the target queue through the reconfiguration

method is discussed in the last chapter. That is, assume the target queue with fixed

associated system parameter on a given linear increasing path is the least stable

queue, then a necessary condition of the queue is the solution of the maximum as

stable as configuration of the system in terms of the target queue’s arrival rate.
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5.3.1 The Polling System with Gated Limited Service

We consider first the queue stability condition of a target queue qt on a linear

increasing path LK . As described in the outline of the approach, on LK , all the

queues can be categorized into 3 groups with respect to qt. Let Mt be the set of

queues that are more stable than qt, Lt be the set of queues that are less stable than

qt, and At be the set of queues that are as stable as qt. Now assume we can push

the traffic pattern along the path and let it just pass qt’s queue stability boundary.

Then qt, the queues in Lt and At will be unstable. Because there exists a stationary

and ergodic regime of the system, the mean cycle time of the server can be given as

following,

EC =
∑

ql∈Mt

(Xlbl) +
∑

ql∈({qt}∪At∪Lt)

(Mlbl) + u0, (5.7)

where Xl ≤ Ml is the average number of customers served at ql ∈ Mt. In Eq. (5.7),

the first term corresponds to the time incurred by the set of stable queues whereas

the second term correspond to the time incurred by the set of unstable queues, and

the last term is the total switch-over time of the server. According to Lemma 3.2.3,

we have Xl=λlEC for ql∈Mt, which implies

EC =

∑
ql∈({qt}∪At)∪Lt)

Mlbl + u0

1−∑
ql∈Mt

ρl
. (5.8)

On LK , the value of µ̂Kt thus is equal to Mt

EC
. By applying Loynes’ theorem, qt is

unstable on LK if and only if the λt >
Mt

EC
. Therefore, the stability boundary of qt is

then

λt <
Mt

EC
.

From the above discussion for a given LK , we can now consider the set of paths

on which the queues are partitioned into the same sets as Mt,Lt, and At. This can

be done because of Theorem 5.2.1 and Corollary 5.2.1. Let Γo ≡ (Mt,o,Lt,o, At,o) be

a particular partition of all the queues given that qt is the target queue, we denote

the set of paths that can partition the queues into Γo by L(Γo). Therefore, we have

the following queue stability condition of qt with respect to the set L(Γo).

90



Lemma 5.3.1 The target queue qt is stable on LK ∈ L(Γo) if

λt <
Mt

EC
, (5.9)

where Γo ≡ (Mt,o,Lt,o,At,o), and

EC =

∑
ql∈({qt}∪At,o)∪Lt,o) Mlbl + u0

1−∑
ql∈Mt,o

ρl
. (5.10)

Moreover, qt is unstable if λt >
Mt

EC
.

Proof: From the discussion of qt’s stability on a particular linear increasing path,

and noting the set of queues in the partition Γo do not change, the term EC is

well defined and is given by Eq. (5.10). The target queue’s maximum service rate is

therefore given by µ̂Kt = Mt

EC
on any LK ∈ P (Γo). By Loynes’ theorem, the queue is

unstable if λt >
Mt

EC
, and stable if λt <

Mt

EC
. This finishes the proof. 2

When consider all possible partitions of the queues with respect to qt, we can then

have the queue stability condition for qt in the whole traffic space.

Theorem 5.3.1 The stability region of qt in the whole traffic space is given by ∪ΓoR(Γo),

where R(Γo) is qt’s stability region for the set of paths L(Γo).

Proof: The proof is straightforward because the stability region of qt’s is simply the

union of R(Γo) for all possible Γo with respect to qt, and R(Γo) can be obtained by

Lemma 5.3.1. 2

As we can see, the essential part in the above results is that we are able to identity

paths on which the queues are partitioned identically as a given Γo with respect to

qt. And this can be achieved only when we have the relative stability conditions of

the system.

Next we show that the qt’s stability condition when it is the least stable queue on

a path LK can also be obtained through the reconfiguration method. Let G be the

original configuration and Λ be the stability boundary of qt on Lk. Now reconfigure
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the system by changing the parameters of qi 6= qt from Mi to M ′
i . Let the new

configuration be Gm. To make all the queues be as stable as one another, on path Lk,

G1 should satisfy the following set of equations





kt

Mt
= k1

M ′1
,

kt

Mt
= k2

M ′2
,

. . . . . . . . .

kt

Mt
= kk

M ′k
.

Then for each qi 6= qt, we have M ′
i =kiMt/kt. For convenience, also denote M ′

t =Mt.

For the configuration Gm, since all the queues are as stable as one another, when the

traffic point just passes qt’s boundary, the mean cycle time will be

EC =
k∑

j=1

M ′
jbj + u0.

The stability condition of qt under Gm through Loynes’ theorem will be

λt < M ′
t/EC.

Substitute all the M ′
i = kiMt/kt to the above and note that λi = kλ, where λ is the

free parameter, we can have the necessary queue stability condition for qt as the same

as in Eq. (5.9). It is easy to see that once we have the solution of the boundary of

λt, the solution of M ′
is can be obtained and they are unique for the given Mt and Lk.

This implies the necessary queue stability condition of qt obtained is also sufficient,

as on LK and the given Mt, there is only one as stable as configuration of all the

queues.

Now we show how to derive the system stability conditions from the queue stability

conditions. The first approach is to consider the set of paths on which qi is the least

stable queue. Denoted such set of paths as Lli. If we can obtain the corresponding

queue stability region for qi on the paths in Lli, denoted by Rl
i, then the system will

also be stable within the region of Rl
i, since the system stability boundary point on

a path is the same as the least stable queue’s boundary point. Therefore, the system
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stability region can be expressed as a union of Rl
i, i = 1, . . . , k, and we have the

following system stability result.

Theorem 5.3.2 The polling system is stable in the region ∪qi∈KRl
i, where Rl

i is given

by

∪LK∈Ll
i
{λi <

Mi

EC
} and EC =

u0

1−∑
i=1,...,k ρi

. (5.11)

Proof: According to Lemma 5.3.1, qi is stable on a path in Lli if λi <
Mi

EC
, where

EC = u0

1−∑
i=1,...,k ρi

. Thus, we can obtain Rl
i as in Eq. (5.11). Since each queue is the

least stable queue in some nonempty partition, the entire system stability region is

the union of Rl
i for all qi. 2

Instead of performing a set union operation as in the last method, another method

is based on a set intersection method. That is, taking an intersection of all queues’

stability regions will yield the system stability region, because only the regions corre-

spond to the least stable queues will remain after the intersection operation. For the

purpose of illustration, we consider a polling system with two queues. According to

Theorem 5.3.1, q1 is stable in the region R1
1 ∪R1

2, where

R1
1 =





λ1

M1
≥ λ2

M2

λ1 <
M1−M1λ2b2
M1b1+u0

and

R1
2 =





λ1

M1
< λ2

M2

λ1 <
M1

M1b1+M2b2+u0
.

Similarly, q2’s stability region is given by R2
1 ∪R2

2, where

R2
1 =





λ1

M1
≥ λ2

M2

λ2 <
M2

M1b1+M2b2+u0
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and

R2
2 =





λ1

M1
< λ2

M2

λ2 <
M2−M2λ1b1
M2b2+u0

.

Then the intersection of R1
1 ∪R1

2 and R2
1 ∪R2

2 is given by R1 ∪R2, where

R1 =





λ1

M1
≥ λ2

M2

λ1 <
M1−M1λ2b2
M1b1+u0

and

R2 =





λ1

M1
< λ2

M2

λ2 <
M2−M2λ1b1
M2b2+u0

.

One can easily verify that R1∪R2 is identical to the system stability region obtained

through Theorem 5.3.2.

5.3.2 The Slotted Buffered ALOHA Network

It is well known that the exact queue and system stability conditions for the

ALOHA network is only available when there are two queues in the system. If there

are more than two queues in the ALOHA network, the analytical results of the abso-

lute stability conditions are still open problems. In this subsection, instead of repro-

ducing those published results [17, 47, 57], we derive a new necessary system stability

condition for the ALOHA network through the method of finding the maximum as

stable as configuration described in Chapter 4. We then compare our necessary sta-

bility condition with the ones obtained in [47]. Without loss of generality, we assume

q1 is the target queue. As discussed in Chapter 4, a necessary condition of q1 can

be obtained by finding the stability condition of q1 for the maximum as stable as
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configuration in terms of λ1 on a path. For the given p1 and λ2, λ3, ..., λk, such a path

satisfies the following according to Theorem 5.2.2 and Corollary 5.2.2:

λ1(1− p1)

p1

=
λ2(1− p′2)

p′2
= .. =

λk(1− p′k)
p′k

,

where p′is are the transmission probability of qi 6= q1 for the maximum as stable as

configuration. Rewrite the above into the following




λ1(1−p1)
p1

=
λ2(1−p′2)

p′2
,

λ1(1−p1)
p1

=
λ3(1−p′3)

p′3
,

. . . . . . . . . . . . . . . . . .

λ1(1−p1)
p1

=
λk(1−p′k)

p′k
.

Then we have a set of k−1 equations with k−1 unknowns. For each qi 6=q1, we have

p′i =
λiP1

λ1+λiP1
, where P1 = p1/(1 − p1). On this path, with the new p′is, all the queues

will be as stable as one another, therefore, the stability boundary of q1 will be

λ1 < p1

k∏

i=2

(1− p′i).

Substitute p′i=
λiP1

λ1+λiP1
into the above, we reach at

k∏

i=2

(λ1 + P1λi) < p1λ
(k−2)
1 .

Then the maximum λ1 that satisfies the above inequality is the outer bound of λ1

for the given p1 and λ2, λ3, ..., λk. Moreover, any λ′1 satisfies the above inequality will

lead to a path (or, in other words, provide a set of pi’s) such that all the queues

are as stable as one another on the path and have the boundary at (λ1, λ2, ..., λk).

Among them, the minimum λ′1 will lead to the path on which q1 is the most stable

queue in the original configurations, i.e., the original pis, while the maximum λ′1 will

lead to the path on which q1 is the least stable queue in the original configurations.

Therefore, the maximum λ′1 satisfies the above inequality is the necessary system

stability condition for the ALOHA network. As the minimum λ′1 can also serve as

the sufficient system stability condition, it will be too loose when compare with the

sufficient system stability conditions obtained in [47, 57].
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In Tables 5.1-5.4 we compare our necessary condition with the one obtained in

[47]. From the simulation results, one can find that our bound is tighter than [47]’s.

The reason is that the necessary bound obtained in [47] can be considered as the

solution of the maximum λ1 for all the paths when considering q1 is the least stable

queue and has a fixed p1. In our approach, we only consider those paths on which all

the queues are as stable as one another. Note that on these paths, q1 is also the least

stable queue. This implies our necessary bound is tighter than [47]’s.

λ2 λ3 Simulation Our bound [47]’s bound

0.0 0.0 0.500 0.500 0.500

0.0 0.12 0.380 0.380 0.380

0.06 0.06 0.3646 0.3703 0.380

0.12 0.123 0.1508 0.1704 0.257

0.12 0.13 0.130 0.130 0.250

Table 5.1
Comparison of upper bounds of λ1 for k = 3 and p1 = p2 = p3 = 0.5

λ2 λ3 Simulation Our bound [47]’s bound

0.0 0.0 0.800 0.800 0.800

0.0 0.05 0.600 0.600 0.600

0.018 0.028 0.5817 0.6026 0.616

0.03 0.05 0.3282 0.4233 0.480

0.035 0.0561 0.1565 0.3444 0.4356

0.025 0.0563 0.3363 0.4214 0.4748

Table 5.2
Comparison of upper bounds of λ1 for k = 3 and p1 = 0.8, p2 = 0.7, p3 = 0.6
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λ2 λ3 λ4 λ5 Simulation Our bound [47]’s bound

0.0 0.0 0.0 0.0 0.500 0.500 0.500

0.0 0.0 0.0 0.015 0.485 0.485 0.485

0.0 0.0 0.015 0.015 0.4693 0.4695 0.470

0.0 0.015 0.015 0.015 0.4525 0.4535 0.455

0.015 0.015 0.015 0.015 0.4337 0.4368 0.440

0.03 0.03 0.03 0.03 0.3357 0.3643 0.380

0.03 0.03 0.03 0.033 0.3274 0.3604 0.377

0.033 0.032 0.031 0.03 0.3158 0.3563 0.374

0.0325 0.032 0.0315 0.03 0.3138 0.3563 0.374

Table 5.3
Comparison of upper bounds of λ1 for k = 5 and pi = 0.5 for all i = 1..5

λ2, λ3, ..., λ10 Simulation Our bound [47]’s bound

λ2 = ... = λ10 = 0.0 0.10 0.10 0.10

λ2 = 0.0, λ3 = ... = λ10 = 0.019 0.0812 0.0815 0.083

λ2 = ... = λ10 = 0.019 0.07881 0.07883 0.081

λ2 = ... = λ10 = 0.036 0.0494 0.0501 0.064

λ2 = 0.039, λ3 = ... = λ10 = 0.036 0.0485 0.0491 0.0636

λ2 = ... = λ5 = 0.039, λ6 = ... = λ10 = 0.036 0.0453 0.0459 0.0627

Table 5.4
Comparison of upper bounds of λ1 for k = 10 and pi = 0.1 for all i = 1..10.

5.3.3 NDMA and BNDMA

For stability conditions of the NDMA and BNDMA, again, we start with queue

stability conditions. In the NDMA protocol, for a target queue qt and a given LK , all

the queues can be grouped into three sets with respect to qt according to the relative

stability relation on the path, namely, Mt, Lt, At. Let ln be the length of the nth

collision resolution cycle. Because the protocol is a Type-1 SSMQS, ln has a unique

and finite expectation even when some of the queues are unstable. Denote the mean
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as El. Then when the system traffic increases along LK and just passes qt’s stability

boundary, qt as well as the queues in the sets of Lt and At will never empty. We have

El =
∑

qi∈Mt

λiEl + |{qt} ∪ Lt ∪ At|

The first item in the right hand side represents the average number of packets that

can be served from queues in theMt set during El. Because all the queues inMt are

stable, based on the balance argument that the average number of arrivals during a

period is equal to the average number of departures, we have the average departures

from the queues as
∑

qi∈Mt
λiEl. The second item in the right hand side represents

the number of packets that can be served from queues in the set of {qt}∪Lt∪At.
Because all these queues will never empty, the value of |{qt}∪Lt∪At| is a constant

and also equals to 1+|Lt∪At|. Solve El we have

El =
1 + |Lt∪At|

1−∑
qi∈Mt

λi
.

Therefore, the queue stability of qt on Lk will be

λt <
1

El
=

1−∑
qi∈Mt

λi

1 + |Lt∪At|
. (5.12)

Let Γo ≡ (Mt,o,Lt,o, At,o) be a particular partition of all the queues given that qt

is the target queue, we denote the set of paths that can partition the queues into Γo

by L(Γo). Then, we have the following queue stability condition of qt with respect to

the set L(Γo).

Lemma 5.3.2 In NDMA protocol, the target queue qt is stable on LK ∈ L(Γo) if

λt <
1

El
, (5.13)

where Γo ≡ (Mt,o,Lt,o,At,o), and

El =
1 + |Lt,o∪At,o|
1−∑

qi∈Mt,o
λi
. (5.14)

Moreover, qt is unstable if λt >
1
El

. 2
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When consider all possible partitions of the queues with respect to qt, we have the

queue stability condition for qt in the whole traffic space.

Theorem 5.3.3 In NDMA protocol, the stability region of qt in the whole traffic

space is given by ∪ΓoR(Γo), where R(Γo) is qt’s stability region for the set of paths

L(Γo). 2

From Eq. 5.14 it is easy to see when qt is the least stable queue on LK , El =

1/(1−∑
i 6=t λi). Hence, the system stability of NDMA on LK is

λt < (1−
∑

i 6=t
λi)⇐⇒

∑

i

λi < 1.

The above form will not change when consider every LK and the least stable queue

on LK , therefore, the system stability condition of the NDMA protocol in the whole

parameter space is also
∑

i λi < 1, and we state it as the following theorem.

Theorem 5.3.4 The system stability condition of NDMA protocol is

∑

i

λi < 1.

2

For the BNDMA protocol, as one more slot is needed in the collision resolution

cycle, we have

El =
2 + |Lt∪At|

1−∑
qi∈Mt

λi
.

And the queue stability conditions of the BNDMA are as follows.

Lemma 5.3.3 In BNDMA protocol, the target queue qt is stable on LK ∈ L(Γo) if

λt <
1

El
, (5.15)

where Γo ≡ (Mt,o,Lt,o,At,o), and

El =
2 + |Lt,o∪At,o|
1−∑

qi∈Mt,o
λi
. (5.16)

Moreover, qt is unstable if λt >
1
El

. 2
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Theorem 5.3.5 In BNDMA protocol, the stability region of qt in the whole traffic

space is given by ∪ΓoR(Γo), where R(Γo) is qt’s stability region for the set of paths

L(Γo). 2

Finally, when qt is the least stable queue on LK , the system stability will be

λt <
(1−∑

i 6=t λi)

2
⇐⇒

∑

i

λi + λt < 1.

If qt is the least stable queue on a path, according to Theorem 5.2.3, λt will be the

largest among all the λi. Therefore, the system stability condition of the BNDMA

protocol can be given in the following.

Theorem 5.3.6 The system stability condition of BNDMA protocol is

∑

i

λi + max
i
λi < 1.

2

The system stability conditions for the NDMA and BNDMA protocols had been

obtained in [23] with different approaches. As we have seen, the method we used in

this section is more simple, especially for the BNDMA protocol. Moreover, the queue

stability conditions of the protocols can also be easily obtained.

5.3.4 The MPR Model

For the MPR model, similar to the ALOHA network, the exact queue and system

stability conditions for systems with more than two queues are still unknown. In this

subsection, we demonstrate our approach by deriving the queue and system stability

conditions for a two queue system. Moreover, we use the maximum as stable as

configuration method to obtain a necessary stability condition for a k queue system.

We start with queue stability conditions. Consider q1 and q2 in the system, according
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to Theorem 5.2.4, in the partition (λ1/(~p1 · ~q1))≤ (λ2/(~p2 · ~q2)), q1� q2, i.e., q2 is the

least stable queue. Therefore, the queue stability condition of q2 in this partition is





λ1/(~p1 · ~q1)≤λ2/(~p2 · ~q2),

λ2 < p2q{2}|{2}(1− λ1
~p1· ~q1

) + (~p2 · ~q2) λ1
~p1· ~q1

.
(5.17)

While in the partition (λ1/(~p1· ~q1))≥(λ2/(~p2· ~q2)), where q2 is the most stable queue,

q2’s queue stability condition is





λ1/(~p1 · ~q1)≥λ2/(~p2 · ~q2),

λ2 < ~p2 · ~q2.
(5.18)

Hence, the queue stability condition of q2 in the traffic space is





λ2 < p2q{2}|{2}(1− λ1
~p1· ~q1

) + (~p2 · ~q2) λ1
~p1· ~q1

, if λ1/(~p1 · ~q1)≤λ2/(~p2 · ~q2),

λ2 < ~p2 · ~q2, if λ1/(~p1 · ~q1)≥λ2/(~p2 · ~q2).
(5.19)

Similar, we have the queue stability condition of q1 as following.





λ1 < p1q{1}|{1}(1− λ2
~p2· ~q2

) + (~p1 · ~q1) λ2
~p2· ~q2

, if λ1/(~p1 · ~q1)≥λ2/(~p2 · ~q2),

λ1 < ~p1 · ~q1, if λ1/(~p1 · ~q1)≤λ2/(~p2 · ~q2).
(5.20)

Lastly, when intersect the region represented by Eqs. (5.19) and (5.20), we have the

system stability for a two queue MPR model.





λ1 < p1q{1}|{1}(1− λ2
~p2· ~q2

) + (~p1 · ~q1) λ2
~p2· ~q2

, if λ1/(~p1 · ~q1)≥λ2/(~p2 · ~q2),

λ2 < p2q{2}|{2}(1− λ1
~p1· ~q1

) + (~p2 · ~q2) λ1
~p1· ~q1

, if λ1/(~p1 · ~q1)≤λ2/(~p2 · ~q2),
(5.21)

One can easily verify Eq. (5.21) is the same as the one obtained in [53].

For a MPR model with k queues, by using the maximum as stable as configuration

approach, we can have the necessary system stability condition (which is also the

necessary queue stability condition when consider the queue is the least stable queue)

in the following.

Theorem 5.3.7 For a MPR model with given p1 and ~qi for each i=1..k, a necessary

system stability condition (as well as a necessary queue stability condition of q1 when
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it is the least stable queue) is the maximum λ1 which satisfies the following set of

inequalities. 



λ1/(~p1
′ · ~q1)=λ2/(~p2

′ · ~q2),

λ1/(~p1
′ · ~q1)=λ3/(~p3

′ · ~q3),

. . . . . . . . . . . . . . . . . . . . . . . .

λ1/(~p1
′ · ~q1)=λk/(~pk

′ · ~qk),
λ1 < ~p1

′ · ~q1.

2

5.3.5 Stability Region Characterization

As discussed in Chapter 4, we can reformulate the overall system region char-

acterization problem as an optimization problem of finding the maximum as stable

as configuration of the system on a given path. As examples, we can immediately

provide the overall system stability region of the ALOHA network in the following

theorem.

Theorem 5.3.8 In the slotted buffered ALOHA network, we have

O = {(λ1, λ2, ...λk)|λi < gi for all i},

where gi is the solution of the following set of equations in terms of pi ∈ [0, 1] and

subject to max{∑k
i=1 g

2
i } 




g1 = p1

∏
i 6=1(1− pi),

g2 = p2

∏
i 6=2(1− pi),

. . . . . . . . . . . . . . . . . . . .

gk = pk
∏

i 6=k(1− pi).

Proof: As discussed in Chapter 4. 2

Theorem 5.3.8 confirms the overall stability region of the ALOHA network ob-

tained in [7] (through a special assumption of the arrival process) and [46] (through

a sensitivity monotonicity of the ALOHA network).
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For ALOHA network with two queues, from Theorem 5.3.8, the equations in the

above becomes 



g1 = p1(1− p2)

g2 = p2(1− p1)

Since both p1, p2, 1− p1, and 1− p2 are positive. For g1, we have p1(1− p2) ≤
√
p1+(1−p2)/2, and the equal sign holds when p1 =(1−p2) (or p1+p2 =1). For g2, we

have p2(1−p1) ≤
√
p2+(1−p1)/2, and the equal sign holds p2 =(1−p1). This happens

to be p1 +p2 = 1 again, i.e., when p1 +p2 = 1 both g1 and g2 reach their maximums.

Therefore, the sum g2
1 +g2

2 also reaches its maximum when p1+p2 =1. Hence, the O

for the two queue ALOHA network is bounded by the curve
√
p1+
√
p2 =1.

For the MPR model, we can have a similar result.

Theorem 5.3.9 In the MPR model, we have

O = {(λ1, λ2, ...λk)|λi < gi for all i},

where gi is the solution of the following set of equations in terms of pi ∈ [0, 1] and

subject to max{∑k
i=1 g

2
i } 




g1 = ~p1 · ~q1,

g2 = ~p2 · ~q2,

. . . . . . . . . .

gk = ~pk · ~qk.

2

5.4 Summary

In this chapter, based on the relative stability results established in last chapter,

we derive both the relative and absolute stability conditions for some Type-1 SSMQSs.

As we have shown, the approach used to derive those stability conditions is unified

and simple. For the relative stability, the conditions can be solved completely. While

for the absolute stability, both the queue and system stability conditions can be
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analyzed. Though for some systems such as the ALOHA and MPR model, the exact

absolute stability conditions cannot be given, the approach still allows us to obtain

necessary stability conditions directly. This can be considered as an evidence of one

of the claims we have made in the Chapter 1: the relative stability indeed can help

in the analysis of the absolute stability conditions.

To end this chapter, we briefly compare our approach of deriving stability condi-

tions for Type-1 SSMQSs with the dominant system approach introduced in [57, 64].

Both approaches require Loynes’ theorem to derive system stability conditions for the

systems studied in this chapter. However, the dominant system approach is limited

in the following aspects. First, in the dominant system approach, dominant systems

are constructed for two purposes, namely, to satisfy the stationary and ergodic re-

quirements of Loynes’ theorem, and to eliminate the interaction among the queues

so that a target queue can be isolated. To set up the dominant system, one essential

assumption is the Poisson or Bernoulli arrival processes so that the joint queue length

process can be represented as a Markov chain. Second, the dominant system alone

in general cannot solve the queue stability problem except the stability ordering on

a path is known, such as the case for the ALOHA [47]. Lastly, the dominant system

approach cannot provide an effective way to find out the relative stability conditions

of the queues in general.

At the contrast, in our approach, we constrain ourself only to concentrate on

Type-1 SSMQSs. This constrain allows us to remove the difficulty of proving the

stationary and ergodic requirements from the stability analysis of the system, though

the difficulty of proving a target system is a Type-1 SSMQS still remains. Never-

theless, our approach to the system stability can accommodate more general arrival

processes such as the one assumed for the processor sharing model in Chapter 3. Of

course, to use our approach, one still needs to show that systems with such arrival

processes have stationary regimes. Second, because our approach is based on the

relative stability properties of Type-1 SSMQSs, it provides simple ways to solve the

relative stability problems. This further allows us to derive not only system but also
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queue stability conditions of Type-1 SSMQSs in similar steps. In these senses, we

consider our approach is more general.
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6. CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

In this work we have studied the stability problems for the SSMQSs from a relative

stability point of view. In the following, we first conclude the study, then we outline

some possible extensions for the results established here.

Chapter 1: We briefly introduced the stability problems of SSMQSs. Especially,

we described two different kinds of stability problems, namely, the absolute stability

and the relative stability. For absolute stability we can have queue/system stability

and the corresponding stability conditions, and degree of stability. For relative sta-

bility we can have relative stability relations and conditions. We then discussed the

connections among these stability problems, in particular that the relative stability

can help in achieving queue stability. This last point, together with the fact that there

is a lack of studying relative stability of SSMQSs motivate us to have this study.

Chapter 2: We gave a condensed literature survey in this chapter. The survey

reviewed different kinds of stability definitions in different settings, e.g., in dynamic

systems, in stochastic systems, and in queueing systems. Then some commonly used

methods for analyzing stability problems were discussed. Lastly, some existing sta-

bility results of SSMQSs were mentioned.

Chapter 3: In this chapter we studied the queues’ relative stability relations in

three SSMQSs, namely, a polling system with gated limit service, a slotted buffered

ALOHA network, and a processor sharing system. Through examining these three

systems, we observed that there are some properties that commonly shared by some

SSMQSs. In particular, for all three systems, we found that some system state pro-

cesses may have stationary regime even when some queues are unstable, i.e., the

system is unstable. In addition, we found that any two queues in those three systems
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can have relative stability relations in the sense that the stability of one queue im-

plies the stability of another queue, and this kind of relations can be reflected by the

relations of the queues’ arrival rates. Desirably, the explicit queue or system stability

conditions are not required to derive the queues’ relative stability relations. These

observations provide us clues to study SSMQSs’ relative stability more generally later.

In the study of the relative stability relations of the three systems, we applied two

different approaches, namely, the non-Markovian approach for Poisson or Bernoulli

arrivals, and Loynes’ backward reconstruction method for stationary marked point

arrival processes.

Chapter 4: Based on the observations in Chapter 3, we identified two classes

of SSMQSs based on the criterion whether there exists a stationary regime of some

system state processes when the system is unstable. For the Type-1 SSMQSs we can

define the concept of degree of stability as well as three relative stability relations

among any two queues when comparing their degree of stability. That is, when the

system traffic increases along a given path, a queue can be more stable than, less

stable than, or as stable as another queue. Then we studied the properties related

to the relative stability in the Type-1 SSMQSs. These properties allow us to obtain

the relative stability conditions of Type-1 SSMQSs easily. In particular, one of the

properties allows us to find the maximum as stable as configuration of the system on

a given path. Then the characterization problem of the system stability region, the

stabilization problem of the system, and finding the maximum stable throughput of

the system can all be reformulated equivalent to finding such a configuration.

Chapter 5: In this chapter we provided a unified approach to the stability anal-

ysis of Type-1 SSMQSs. The approach is based on the relative stability results of the

Type-1 SSMQSs. We used the approach to obtain both relative and absolute stability

conditions for four Type-1 SSMQSs. The approach allows us to reproduce most of

the previous results regarding to the stability of the systems and also obtain some

new results. In particular, we derived a necessary stability condition of the ALOHA
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network which is better than the existing ones. We have also derived the relative

stability condition for the MPR model.

6.2 Future Research

One possible future extension of this research will be finding the criteria for Type-

1 SSMQSs. In this study we are only able to provide one sufficient condition to

determine whether a given SSMQS is Type-1. For generally assumed models, a case

by case analysis is still needed. Therefore, In order to make use of the relative stability

results in general, such criteria are very desired.

Another extension is to further explore the problems of degree of stability. In

this study, though we proposed a definition of the concept through which the relative

stability of SSMQSs can be defined and studied, however, we have not touched on

how to compute the degree of stability of a queue. In addition, the meaning of our

definition of degree of stability can be considered as the distance between the current

traffic point to the stability boundary on a given path. In other words, it highly

depends on how the traffic patterns varies. This means that, without the path, the

degree of stability will become not well-defined. Therefore, another kind of definition

of the degree of stability may be needed such that it can tell us how stable a queue

is only based on a given traffic point. We consider the empty probability of a queue

is a good candidate for the purpose. Intuitively, the empty probability of a queue

only depends on the current traffic input to the systems. We believe this kind of

exploration can help us to know more about the concept of the degree of stability.

In this study we have seen the importance of the as stable as relation among the

queues. In fact, in the study of multihop radio networks, a result states that the

optimal service policy of the models tends to equalize the queue length differences

among the queues [70]. As the connection between queue stability and queue length

is obvious, we consider that our results about the as stable as relation also have a

connection to the results in [70] regarding the optimal service policy. This is evidenced
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by the maximum as stable as configuration of the system, i.e., to configure the system

such that all the queues are as stable as one another can achieve the maximum stable

throughput. Therefore, to further investigate the optimality of the as stable as relation

will be another possible extension.

Finally, through the relative stability results and approaches established in this

study we can try to derive both absolute and relative stability conditions for more

Type-1 SSMQSs. This can on one hand let us have the conditions for individual

systems and on the other hand let us understand the Type-1 SSMQSs better in

general.
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