

The Hong Kong Polytechnic University

Department of Computing

Enriching User and Item Profiles for Collaborative Filtering:

From Concept Hierarchies to User-Generated Reviews

LEUNG Wing Ki, Cane

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

September, 2008

To Grandpa

Abstract

Collaborative Filtering (CF) is a recommender systems technique that generates

personalized recommendations for users based on user preferences. Such pref-

erences are usually expressed in the form of numerical ratings, or binary votes

such as purchase data. Despite its considerable success and popularity in both

research and practice, CF suffers from the problems of data sparseness and cold-

start recommendation, which is an extreme form of data sparseness. Specifically,

CF algorithms have difficulty with generating reliable recommendations when

data are sparse, and they cannot recommend items that have not received any

ratings from users.

This thesis addresses the problems of data sparseness and cold-start rec-

ommendation of CF along two dimensions. Firstly, we developed two novel

recommendation algorithms based on association rule mining techniques. The

proposed algorithms, namely FARAMS and CLARE, exploit the relationships be-

tween items that are encoded in the concept hierarchies of the items when users’

preference data are too limited for generating recommendations. Specifically,

FARAMS makes use of interesting associations between item categories to find

recommendable items for users having limited known preferences, while CLARE

generates recommendations for a given cold-start item by finding other items in

the system that are highly correlated with the attributes of the cold-start item.

We evaluated both algorithms based on widely adopted benchmarking datasets

of CF. Results show that both algorithms outperform related algorithms in

addressing data sparseness and the cold-start problem under similar experimental

settings.

i

Secondly, we investigated the use of user-generated reviews for generating

personalized recommendations. We made three major contributions in this

area. First, we collected and analyzed a set of movie reviews to understand

how user opinions are expressed in user-generated reviews, which are free-

form texts written in natural language. Based on the results of our analysis,

we proposed a novel method for determining the sentimental orientations and

strength of user opinions. Second, we proposed a rating inference framework,

namely PREF, for augmenting ratings for CF. PREF aims at determining and

representing the overall sentiments expressed in reviews as numerical ratings

that can readily be used by existing CF algorithms. In other words, PREF enables

existing CF algorithms to utilize textual reviews as an additional source of user

preferences, thereby lessens the problem of data sparseness. Third, we found

that user-generated reviews contain valuable information for constructing the

interest profiles of users and domain items based on a real-world dataset of

tourist attraction reviews. Using such information for generating personalized

recommendations significantly improve the prediction quality and coverage of

traditional CF algorithms. While existing CF algorithms operate on numerical

ratings or binary votes of items, our research represents an important pioneering

step towards a novel CF paradigm based on user-generated reviews.

ii

Publications Arising from the

Thesis

Listed in reverse chronological order:

1. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. A probabilistic

rating inference framework for mining user preferences from reviews.

Submitted to World Wide Web - Internet and Web Information Systems

(under revision).

2. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. An empirical study of

a cross-level association rule mining approach to cold-start recommenda-

tions. Knowledge-based Systems, 21(7): 515–529, October 2008.

3. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. Evaluation of a

rating inference approach to utilizing textual reviews for collaborative

recommendation. In A. T. S. Chan et al. (Eds), Cooperative Internet

Computing. World Scientific, pages 94–109, 2008.

4. C. W. K. Leung and S. C. F. Chan. Sentiment analysis of product reviews.

In J. Wang (Eds.), Encyclopedia of Data Warehousing and Mining -

Second Edition, Information Science Reference, pages 1794–1799, 2008.

5. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. Applying cross-level

association rule mining to cold-start recommendations. In Proceedings

of the IEEE/WIC/ACM WI-IAT Workshop on Web Personalization and

Recommender Systems, pages 133–136, 2007.

iii

6. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. A collaborative filtering

framework based on fuzzy association rules and multiple-level similarity.

Knowledge and Information Systems, 10(3):357–381, 2006.

7. C. W. K. Leung, S. C. F. Chan, and F. L. Chung. Integrating collaborative

filtering and sentiment analysis: A rating inference approach. In Proceed-

ings of The ECAI 2006 Workshop on Recommender Systems, pages 62–66,

2006.

8. C. W. K. Leung, S. C. F. Chan, and K. F. L. Chung. Towards collaborative

travel recommender systems. In Proceedings of the 4th International

Conference on Electronic Business, pages 445–451, 2004.

iv

Acknowledgements

I would like to express my sincere gratitude to my Ph.D. supervisor, Dr. Stephen

Chan. Thank you very much for offering me an opportunity to begin my research

studies five years ago, an opportunity that has widened my horizon. Thank you

for your continuous support, encouragement, guidance and patience throughout

my studies, for sharing with me your perspectives of research, teaching and life

as a supervisor, a teacher and a friend. I have learned a lot more from you than

you realize.

I would like to thank my co-supervisor, Dr. Korris Chung, for all interesting

discussions and directions he gave me on my studies.

I sincerely thank the chairman and members of my thesis committee. They

include Dr. James Liu, Department of Computing, The Hong Kong Polytechnic

University, Prof. Nick Cercone, Faculty of Science and Engineering at the York

University, Canada, and Dr. William Cheung, Department of Computer Science,

Hong Kong Baptist University. Thank you very much for all your invaluable

comments and suggestions which helped improve this thesis.

Thanks must be given to the Technical Team and General Office staff,

especially Ms. Miu Tai, of the Department of Computing at the Hong Kong

Polytechnic University. Thanks for all the technical and administrative support

throughout the years.

I also appreciate Karen Tso, from the University of Hildesheim, and Stefan

Hauger, from the University of Freigburg, for research collaboration during my

studies.

Most of all, I would like to express my deepest appreciation to my family

v

and friends. Thank you Grandpa, for your love, for your encouraging words,

for everything. To my parents and sisters, thank you for supporting me, even

when you are not sure what I have been doing all these years. I also thank Bo

the Cat, Big Head the Cat and Nat the Cat, for keeping me company night after

night when I was working hard writing up this thesis. Ada, thank you for always

being there for me during my ups and downs. Thank you Askin and Siu Man,

who believe in me more than I do in myself. Finally, I would like to thank my

dear friends, especially Bo, Chan Man Yee, Din, Elaine and Venus, for always

asking me “what do you actually study?” and “(when) will you get it done?”.

Once again, my heartfelt thanks to all of you.

vi

Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgements v

Table of Contents vii

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Recommender Systems and Collaborative Filtering (CF) 1

1.2 Research Challenges . 3

1.2.1 Scalability . 3

1.2.2 Data Sparseness . 4

1.2.3 Cold-start Problem . 5

1.3 Objectives . 6

1.4 Contributions . 6

1.5 Organization of the Thesis . 9

2 Literature Review 10
2.1 Recommender Systems Overview 10

2.1.1 CF-based Recommender Systems 11

2.1.2 Content-based Recommender Systems 11

2.1.3 Knowledge-based Recommender Systems 13

2.1.4 Strengths and Weaknesses of Recommender Systems . . 14

2.2 Collaborative Filtering (CF) . 17

2.2.1 Terminology and Notations 17

vii

2.2.2 User Preferences in CF 18

2.2.3 Tasks of CF . 19

2.2.4 User- and Item-based CF 19

2.2.5 Evaluating CF Algorithms 21

2.3 Association Rule Mining (ARM) 26

2.3.1 Association Rules and Their Interestingness 27

2.3.2 Adaptive-Support ARM for CF 31

2.3.3 Fuzzy Association Rule (FAR) Mining 32

2.3.4 Cross-level Association Rule (CAR) Mining 37

2.4 Text Data Mining Basics . 37

2.4.1 Analyzing Text Documents 39

2.4.2 Representing Text Documents 40

2.4.3 Determining Term Weights 40

2.4.4 The Text Classification Task 43

2.5 Sentiment Analysis of User-Generated Reviews 44

2.5.1 Sentiment Analysis . 45

2.5.2 Extracting Interesting Features 47

2.5.3 Determining SO and Strength of Opinions 48

2.5.4 Classifying Reviews 51

3 Alleviating Data Sparseness by Fuzzy Association Rule Mining
and Item Taxonomies 54
3.1 Introduction . 54

3.2 Related work on ARM-based CF 56

3.3 The FARAMS Framework . 56

3.3.1 Data Preprocessing . 57

3.3.2 Mining User Preferences 60

3.3.3 Predicting Scores of Recommendable Items 65

3.3.4 Generating Recommendations 66

3.4 Experimental Results . 68

3.4.1 Datasets . 68

3.4.2 Experimental Settings 69

3.4.3 Results and Discussions 70

3.5 Summary . 76

viii

4 Cold-start Recommendations by Cross-level Association Rule Min-
ing 77
4.1 Introduction . 77

4.2 Existing Approaches to Cold-start Recommendations 78

4.2.1 The Aspect Model . 78

4.2.2 The Naive Filterbot Algorithm 79

4.3 Problem Description . 80

4.3.1 Data Representation . 83

4.4 CLARE: Cold-start Recommendations by CAR Mining 83

4.4.1 Data Preprocessing . 84

4.4.2 Mining Association Rules 84

4.4.3 Generating Recommendations 87

4.5 Experimental Results . 88

4.5.1 Dataset . 88

4.5.2 Method and Evaluation Metrics 89

4.5.3 Parameters . 90

4.5.4 Evaluation of CLARE 90

4.5.5 Comparisons with Related Work 99

4.6 Summary . 103

5 Augmenting Ratings from Reviews for CF by Rating Inference 106
5.1 Introduction . 106

5.2 Analysis of Movie Reviews . 108

5.2.1 Data Collection . 108

5.2.2 Preliminary Experiments and Observations 109

5.3 PREF: A Probabilistic Rating Inference Framework 114

5.3.1 Data Preparation . 114

5.3.2 Feature Extraction . 115

5.3.3 Opinion Dictionary Construction 116

5.3.4 Rating Inference . 117

5.4 Experimental Results . 120

5.4.1 Method . 120

5.4.2 Parameters . 122

5.4.3 Evaluation of PREF . 122

5.4.4 Comparisons with Related Work 127

ix

5.5 Integrating PREF and CF . 133

5.6 Summary . 136

6 Towards Review-based Recommender Systems: A Case Study on
TripAdvisor 138
6.1 Introduction . 138

6.2 Relation to Other Work . 140

6.3 Travel Reviews on TripAdvisor 141

6.3.1 Data Collection and Filtering 142

6.3.2 Data Model . 143

6.3.3 Data Characteristics and Implications 144

6.4 Generating Item Predictions from Reviews 147

6.4.1 Sentiment Analysis of Reviews 147

6.4.2 Building User, Item and Category Profiles 152

6.4.3 Making Predictions . 154

6.5 Experimental Study . 161

6.5.1 Method . 162

6.5.2 Existing Tools Adopted 162

6.5.3 Parameters . 163

6.5.4 Results and Discussions 163

6.6 Summary . 170

7 Conclusions 173
7.1 Summary of Contributions . 173

7.2 Suggestions for Future Research 175

Bibliography 177

x

List of Figures

Figure 1.1 – Recommendation list associated with a book title on

Amazon.com. 2

Figure 2.1 – A conceptual ratings matrix in CF. 18

Figure 2.2 – Sample fuzzy sets and membership functions. 33

Figure 2.3 – Major steps in the typical text mining process. 38

Figure 3.1 – Example of an item taxonomy. 55

Figure 3.2 – Recall rates achieved using different maximum rule

lengths. 71

Figure 3.3 – Recall rates achieved using different interestingness

measures for predicting the scores of recommendable items. . 72

Figure 3.4 – Recall rates achieved with and without utilizing multiple-

level similarity between items. 73

Figure 3.5 – Recall rates achieved with and without using fuzzy

association rules on the MovieLens dataset. 73

Figure 3.6 – Recall rates achieved with and without using fuzzy

association rules on the Jester dataset. 74

Figure 3.7 – Performance of MAR and FARAMS for the Movielens

dataset. 76

Figure 4.1 – Illustration of the proposed preference model com-

prising user-item and item-item relationships. 80

Figure 4.2 – A motivating example 81

Figure 4.3 – Recommendation quality produced using different in-

terestingness measures (M) for predicting preferences for rec-

ommendable items, and Plot as attribute for mining CARs. . . 92

Figure 4.4 – Recommendation quality produced using different at-

tributes for mining CARs, and H(FC, CORR) for predicting

preferences for recommendable items. 95

xi

Figure 4.5 – Coverage of cold-start items achieved using different

item attributes for mining. 96

Figure 4.6 – Comparison between recommendation quality achieved

for all test users, and that for users having at least 20 known

ratings in the training set. CARs were mined using Director +

Plot as attributes. 98

Figure 4.7 – Comparison between CLARE and MS-based recom-

mendation (hybrid), using Genre as attribute. 101

Figure 4.8 – Comparison between CLARE and Naive Bayes (NB)

recommender (content-based), using Director + Plot as at-

tributes. 103

Figure 5.1 – Overview of PREF 115

Figure 5.2 – Distribution of ratings in our movie reviews dataset. . 120

Figure 5.3 – Learning curves of PREF and the majority baseline

showing how (a) MAE, and (b) MSE change with respect to

the size of training set in the 3-point and the 4-point settings. . 126

Figure 5.4 – Mean and standard deviation of PSP of reviews hav-

ing different ratings in our dataset. 132

Figure 6.1 – A user-generated travel review on TripAdvisor. 142

Figure 6.2 – Distribution of ratings in our attraction reviews dataset. 143

Figure 6.3 – Distribution of review count by user. 144

Figure 6.4 – Distribution of review count by attraction. 145

Figure 6.5 – Tasks in the sentiment analysis of user-generated re-

views. 148

Figure 6.6 – Number of distinct features versus number of reviews. 150

Figure 6.7 – Illustration of the contents of the opinion dictionary. . 151

Figure 6.8 – Summary of results achieved using SO and user-specified

ratings. 164

Figure 6.9 – Summary of results achieved using various feature

weighting schemes and feature selection levels. 166

Figure 6.10 – Summary of prediction quality and coverage of all

prediction models. 168

xii

List of Tables

Table 2.1 – A confusion matrix. 23

Table 2.2 – A sample decision table. 31

Table 2.3 – A sample user-item (U × I) ratings matrix in CF. . . . 34

Table 2.4 – Fuzzified ratings. 34

Table 2.5 – Fuzzified ratings with normalization. 35

Table 3.1 – Transforming user preferences for (a) items and (b)

item categories into transactions. 58

Table 3.2 – A relation matrix of items (e.g. movies) and their

categories (e.g. movie genres). 58

Table 3.3 – Transactions containing 〈Item, Fuzzy Set〉 pairs and

normalized membership degrees. 59

Table 3.4 – Transformed transactions in the vertical TID-list for-

mat for efficient support counting. 60

Table 3.5 – TID-lists of 〈i1, L〉 and 〈i2, D〉. 62

Table 3.6 – Performance of ASARM and FARAMS for the Each-

Movie dataset. 75

Table 4.1 – Important notations used to represent user preference

data in CLARE. 84

Table 4.2 – Averaged statistics about training and test sets. 89

Table 4.3 – Statistics about the various attributes. 94

Table 5.1 – Top 15 opinion words with relative frequencies. 112

Table 5.2 – Top 1 opinion words with relative frequencies. 112

Table 5.3 – Summary of experimental results on PREF and the

baseline algorithms. Each training set contained 1500 reviews

with uniform class distribution. 123

Table 5.4 – Seed adjectives used for pruning the opinion dictionary. 125

xiii

Table 5.5 – Summary of comparisons between the majority base-

line, PREF, NB classifier, a method based on Dave et al. [25],

and SVR. Each training set contains 1,500 reviews with uniform

class distribution. 128

Table 5.6 – Comparison with SVR: Each training set contains 4,800

reviews with uniform class distribution. 130

Table 5.7 – Comparison with SVR: Each training set contains 1,500

reviews, and retained the original class distribution of the dataset. 131

Table 5.8 – Comparison with the graph-based approach [41] to

rating inference: Each training set contains 1,500 reviews, and

retained the original class distribution of the dataset. 133

Table 5.9 – Performance achieved using different datasets for per-

forming CF. 135

Table 6.1 – Brief descriptions of prediction models. 154

Table 6.2 – Relative improvements in MAE and MSE achieved

using SO. 165

xiv

Chapter 1

Introduction

1.1 Recommender Systems and Collaborative Fil-

tering (CF)

Recommender systems are automated recommendation engines designed to help

users in alleviating the well-known problem of information overload. They

intend to efficiently and automatically search through vast information spaces,

and then recommend to users only information that are relevant to their interests

[18, 139, 4, 63]. Recommender systems are also valuable tools that help e-

commerce applications engage visitors and enhance online sales. For instances,

they have the potential to turn browsers into customers, and may improve cross

sales by suggesting additional products that are of interest to customers [139].

One of the most well-known and successful e-commerce applications employing

recommender system technologies is Amazon.com1, which has the following

long-term vision according to Jeff Bezos:

“... if we have 25 million customers, we should have 25 million

stores ... building a place where people can find anything they might

want to buy online.”

– Jeff Bezos, CEO of Amazon.com [169]

Amazon.com has been fulfilling its mission by providing personalized rec-

ommendations to its users and customers. One of the most noticeable recom-

mendation features Amazon.com provides might be that when a user browses the
1Amazon.com: http://www.amazon.com

1

Figure 1.1: Recommendation list associated with a book title on Amazon.com.

information page of a book title, (s)he is presented with a recommendation list

showing what other book titles have been bought with the selected book title as

Figure 1.1 shows. The underlying technique for generating this recommendation

list is known as Collaborative Filtering (CF).

CF has been well-acknowledged to be the most promising recommender sys-

tems technique. It has achieved great success in both research and practice since

its introduction in the early 90’s [42, 127, 144, 97]. CF provides personalized

recommendations to users based on user preferences, usually in the form of

user-specified ratings or previous interactions between the users and the system

(e.g. purchase or browsing histories). Traditionally, CF exploits the similarities

between users for generating recommendations. Such user-based CF systems

compare the known preferences of a given user, known as the active user, with

the known preferences of other users to find the k most similar users, known

as the k-nearest neighbors (k-nn), of the active user. They then predict the

preference of the active user for a particular item based on the preferences of

his/her neighbors for that item. Alternatively, CF-based systems may suggest to

the active user a list of N items that were of interest to his/her neighbors.

As CF-based systems make recommendations based on user preferences,

they are particularly useful for recommending taste-based items. For examples,

2

they have been successfully applied to the recommendation of books [90],

movies (e.g. MovieLens2), jokes [43], music [144, 7] and television programs

[148].

1.2 Research Challenges

CF-based systems suffer from several challenges despite their success and pop-

ularity. In what follows, we describe, among others, the three most well-known

challenges of CF. They include scalability, data sparseness and the cold-start

problem. We also outline general approaches for addressing each of those

challenges.

1.2.1 Scalability

Traditional user-based CF lacks scalability due to its memory-based nature. It

determines the k-nn of the active user by making statistical computations over the

entire database of user preferences. Such a similarity computation step is done

in an online phase before recommendations can be made [136]. This leads to

severe latency for generating recommendations, and the problem may get worse

as the number of users in the system grows over time.

Researchers have proposed a class of model-based CF algorithms in view

of the poor scalability of user-based CF. Model-based CF algorithms construct

compact models about users or items using various data mining techniques. They

then generate recommendations based on the compact models rather than the

entire database. Note that such models are constructed offline to ensure the

scalability of model-based algorithms, and they serve as a reduced information

space for generating recommendations. For instance, Ungar and Foster [158]

proposed to group similar users or items into clusters based on training data, and

generate recommendations for an active user or a given item from the cluster to

which the user or item belongs.

The item-based CF model proposed by Sarwar et al. [136] can be considered

a model-based variant of user-based CF. Item-based CF exploits the similarities

between items, and recommends to the active user items that are similar to those

that the user has previously shown a preference for. Sarwar et al. observed

2MovieLens: http://movielens.umn.edu

3

that neighbors of items in a recommender system are relatively more static than

those of users. Similarities between items can therefore be pre-computed offline

to reduce the online computations required for generating recommendations.

1.2.2 Data Sparseness

Data sparseness poses a challenge to CF because the set of items examined by

a particular user is usually very small in a given system (imagine the number

of book titles available on Amazon.com and the number of books that an active

user could have purchased from it). CF generates recommendations based on

similarities between users or items as noted. Such similarities are derived from

overlapping items, or co-rated items, in users’ known preferences. In a system

with large user and item spaces, the number of co-rated items between an active

user and his/her neighbors might be very limited. This may result in less reliable

computations of similarity or correlation between users, which may in turn result

in less accurate recommendations [14, 138, 109].

There are three major strategies for addressing data sparseness in CF. The

first strategy attempts to improve the density of a ratings dataset by injecting

ratings into it. Breese et al. [14] described a simple default voting scheme that

assigns a default vote to items that have neither been rated by the active user nor

by his/her neighbors. Some researchers made use of rating robots that rate new

items based on their quality as reflected by their content-based information, such

as the number of misspelled words in an article [137, 44]. The second strategy is

to apply dimensionality reduction methods to sparse datasets, thereby increases

the density of the datasets and improves the results of similarity computations

between users [135, 138]. The third strategy is to incorporate content-related

features about domain items into collaborative filters, resulting in hybrid content-

and CF-based recommendations.

There exist various methods for generating hybrid recommendations. A

typical method is to combine content- and CF-based methods sequentially by

computing similarities between users or items based on content analysis first, and

then generating collaborative recommendations using the resulting similarities

(e.g. [9]). Another method computes content-based and CF-based recommen-

dations simultaneously. It then determines the final recommendation results by

combing both types of recommendations based on some weighting schemes (e.g.

4

[23, 103]). A similar method described in [109] computes similarities between

items based on their semantic attributes, which are content-based information, as

defined in an domain-specified ontology. It then uses such semantic similarities

along with item similarities computed from ratings data for performing item-

based CF.

1.2.3 Cold-start Problem

The cold-start problem, also known as the early-rater problem and the ramp-up

problem [137], is a crucial shortcoming of CF. As pure CF generates recommen-

dations solely based on user preferences, it cannot recommend new items that

have not yet been observed or rated by users in the system. Similarly, CF cannot

provide personalized recommendations to new users who have not yet expressed

any preferences. Note that the cold-start problem does not only apply to new

items and users. It also happens when no neighbor can be found for items or

users due to the lack of overlapping preferences.

The cold-start problem is an extreme form of data sparseness. Thus, it has

been addressed using methods similar to those for addressing data sparseness.

For examples, several researchers explored the use of aspect models for gener-

ating cold-start recommendations [121, 140]. Such models are actually hybrid

content- and CF-based recommendation models. They generate recommenda-

tions for a given cold-start item by estimating the probability that an active user

would like the attributes it possesses. Park et al. [117] described the use of the

naive filterbot algorithm for addressing the cold-start problem. The algorithm

injects pseudo users, or bots, into a recommender system. The bots then generate

user ratings according to the attributes of the items or the users in the system as

an attempt to increase the density of the ratings matrix.

Solutions for the cold-start problem in the literature mostly focus on the

new item problem. As Schein et al. [140] suggest, however, the new user

problem is actually symmetric if user attributes (demographic data) are available.

There are also studies on acquiring preferences of new users and on generating

recommendations for new users [105, 125, 76]. For example, Middleton et al.

[105] made use of an ontology to construct interest profiles of new users for

research article recommendation. They defined an ontology that models people,

projects, papers (articles), events and research interests, which are considered

5

important concepts related to research articles. They then populated such an

ontology from a personnel database and a publication database as initial user

profiles. Specifically, their work makes use of the research publication list of a

new user, who has not interacted with their system before, to establish his/her

initial interest profile, based on which recommendations are generated.

1.3 Objectives

The primary objectives of this thesis is to alleviate two crucial challenges of CF,

namely data sparseness and the recommendations of cold-start items. Pure CF

algorithms that operate solely on user preferences cannot recommend cold-start

items as noted. In order to solve the cold-start problem, the proposed methods

are hybrid methods that exploit information sources other than user preferences

for enriching the interest profiles of users and items. Further, the proposed

methods are model-based due to the scalability issue of memory-based (user-

based) CF, although we do not explicitly discuss the scalability issue of CF in

this thesis. For the proposed methods to be meaningful, we base our studies on

real world datasets that can simulate the problems of data sparseness and cold-

start recommendations in CF.

1.4 Contributions

We address the problem of data sparseness and cold-start recommendations

along two dimensions. Firstly, we proposed novel methods for generating hybrid

recommendations based on concept hierarchies of items. This area of work

focuses on how recommendations are generated. Secondly, we proposed and

investigated into the use of user-generated reviews for generating personalized

recommendations. From a CF perspective, our work in this area is concerned

with what information about user preferences and domain items to consider in

the recommendation process. However, our work is not only related to CF, but

also to text mining and computational linguistics. This is because our work

involves understanding user preferences expressed in user-generated reviews,

which are free-form texts written in natural language.

The major technical contributions made in this thesis are summarized as

follows:

6

Hybrid recommendation techniques: We proposed in Chapters 3 and

4 two hybrid recommendation techniques based on Association Rule Mining

(ARM). ARM allows for the flexibility to integrate concept hierarchies into the

rule mining process. By taking advantage of this, and by utilizing taxonomies as

well as attributes of domain items, we addressed the problems of data sparseness

and cold-start recommendations in CF. We validated our proposed techniques

against related techniques based on standard benchmarking datasets for CF.

Understanding user preferences in user-generated reviews: In Chapter 5,

we presented an experimental study on the use of opinion words in a real world

dataset of movie reviews. Based on the results of the study, we identified

a shortcoming of a class of existing methods that estimates the sentimental

orientation of opinion words based on the semantic similarity between the words,

and proposed a novel method for determining the sentimental orientation and

strength of opinion words.

Using user-generated reviews for personalized recommendations: In

Chapter 5, we proposed a probabilistic rating inference approach for estimating

the overall sentiments expressed in reviews and representing those sentiments

as numerical ratings. Such ratings can be fed into existing CF algorithms for

generating personalized recommendations. We demonstrated experimentally the

benefit of using the rating inference approach for augmenting ratings for CF.

In Chapter 6, we investigated further into the use of user-generated reviews

for generating personalized recommendations. Our work attempts to construct

user profiles based on their preferences expressed in reviews, and makes use

of review contents to derive similarities between items and those between item

categories. We performed an experimental evaluation of eight prediction models,

including rating-based, review-based and non-personalized prediction models.

Results suggest that user-generated reviews contain valuable user preferences

that can be utilized for making personalized recommendations. Further, review-

based models improve greatly the coverage of traditional rating-based CF mod-

els, with comparable or significantly better prediction accuracies. This indicates

that deriving similarities between items and those between item categories based

on feature terms extracted from reviews effectively addresses data sparseness

and the cold-start problem with no loss of accuracy.

A recent survey of the state-of-the-art and possible extensions of recom-

mender systems suggests that recommender systems that utilize textual reviews

7

by text mining techniques are yet to be developed [4]. However, we report the

use of sentiment analysis, which is a text mining task, for understanding and

extracting user sentiments in textual reviews. We also studied two different

approaches for using such sentiments for generating personalized recommen-

dations. As aforementioned, the rating inference approach we proposed allows

existing CF algorithms to utilize user-generated reviews as an additional source

of user preferences. The review-based prediction models we presented in

Chapter 6 are developed along the idea of item-based CF, which is a classical

CF model that is generally acknowledged to be promising in the literature.

More importantly, we demonstrated the utilization of user-generated reviews

for generating personalized recommendations in the tourist attraction domain, in

which tremendous collections of textual reviews are available but most existing

recommender systems are built upon knowledge-based techniques. The signifi-

cance of what we discussed in this paragraph is that our research represents an

important pioneering step on review-based recommendations. Further, our work

opens up interesting opportunities for researchers to extend CF to domains where

rating-based recommendations are not common.

We noticed that some researchers have previously raised the possibility of

using user opinions in reviews for generating personalized recommendations.

Pang and Lee [114] mentioned that inferring fine-grained ratings from reviews

would be helpful for performing CF. Several researchers confirmed, by means of

user studies, the usefulness of user-generated reviews in helping users making

decisions about online purchases [131, 78, 46]. Further, there exist e-commerce

websites that provide recommendations to users based on user-generated re-

views. For instance, BooRah3 provides restaurant recommendations using their

patent-pending technologies. Unfortunately, such technologies are not known

to the public. To the best of our knowledge, our work is the first on reporting

empirical research that systematically studies the use of user-generated reviews

for generating personalized recommendations. We hope our work can compel

further research into this area of work, which we believe is very interesting and

useful given the current developments and popularity of Web 2.0 technologies.

3BooRah restaurant search: http://www.boorah.com/restaurants/

8

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 is a literature review that provides background information for

our discussions in later chapters. It also reviews previous and related studies on

CF and sentiment analysis.

Chapter 3 presents a CF framework that addresses the problem of data

sparseness by the use of fuzzy association rule mining and item taxonomies.

Chapter 4 discusses our effort on addressing the problem of cold-start rec-

ommendations in CF. Our approach is based on a preference model comprising

user-item and item-item relationships, as well as the cross-level association

mining technique.

Chapter 5 investigates the use of sentiment analysis for eliciting user pref-

erences from user-generated reviews. It describes our experimental study on the

use of opinion words in a movie reviews dataset. It also presents our initial

effort on integrating sentiment analysis and CF by rating inference, which aims

at mapping the overall sentiments expressed in textual reviews onto a numerical

rating scale.

Chapter 6 looks further into the use of user-generated reviews for modeling

user preferences in CF, and for deriving similarities between domain items and

their categories. It presents an experimental evaluation of prediction models

that make predictions for users based on different forms of user preference

information.

Chapter 7 concludes with a summary of our research findings and sugges-

tions for future research.

9

Chapter 2

Literature Review

2.1 Recommender Systems Overview

Recommender systems are automated recommendation engines designed to

address the well-known problem of information overload [18, 139, 4, 63].

Specifically, they receive information from users about their needs, and then

help users navigate through a large information space by recommending to them

information that they may be interested in. Such recommended information may

be of different forms, such as books to purchase, movies to watch, and articles to

read. All recommender systems make use of information about users to generate

recommendations. Such information about users are usually referred to as user

profiles, user models, or user preferences. Recommender systems that exploit

content information about domain items also maintain item profiles, which are

content descriptors of items. Examples include the topics of books [178] and the

cast of movies [103].

Recommender systems can be classified into three major types based on the

underlying recommendation techniques they employ: social-filtering- or CF-

based, content-based, and knowledge-based [18, 4]. Moreover, there are hybrid

systems that combine some of these recommendation techniques to avoid the

pitfalls of individual techniques [9, 10, 19, 103]. The following subsections

introduce the three major types of recommender systems and comment on their

strengths and weaknesses.

10

2.1.1 CF-based Recommender Systems

The term “Collaborative Filtering” (CF) was coined by Goldberg et al. [42],

for an information filtering technology in which “people collaborate to help one

another perform filtering by recording their reactions...”. CF-based recommender

systems are sometimes referred to as social-filtering-based recommender sys-

tems in the literature. Pure CF-based systems generate personalized recommen-

dations solely based on user preferences, which are subjective evaluations of

users [42, 127, 144, 97]. As such, they are particularly useful for recommending

taste-based items, such as movies, audio CDs, and jokes [139, 43]. The

underlying philosophy of CF is that each individual user belongs to a larger

group of like-minded users. CF-based systems therefore maintain preference

data about users’ purchasing habits or interests, and use such data to identify

groups of similar users. They then recommend to a given active user items liked

by other, similar users.

Tapestry [42] is the first CF-based system. It allows users to annotate

electronic documents they have read, for example, as “interesting” or “uninter-

esting”. Such annotations can be accessed by other users, to help them decide

which documents to (or not to) read. CF-based systems have later become

fully automated by tracking user preferences through users’ interactions with the

systems. GroupLens [127, 75], a CF-based system of Usenet articles, gathers

ratings on articles from users. It then makes numerical predictions about how

much a user would like an article that (s)he has not read before, based on

the ratings given by similar users who have read that article. Most other CF-

based systems work in a similar way. Examples are MovieLens, which gathers

user ratings on movies for performing CF, and Amazon.com, which generates

recommendations based on the purchase histories of previous customers.

2.1.2 Content-based Recommender Systems

Content-based recommender systems have their roots in Information Retrieval

(IR) and Information Filtering (IF) systems [35, 11, 8]. They model information

needs of users and generate recommendations based on the contents or semantic

knowledge, such as keywords, taxonomies and ontologies, of domain items [110,

104, 4]. Specifically, a content-based recommender system analyzes the features

of items preferred by the active user. It then compares the features of those items

11

to the features of other items that have not been observed by the active user in

the system. Finally, it recommends the more relevant items, as defined by some

similarity measures, to the active user.

Content-based techniques are more commonly used in textual application

domains, such as books [110] and research articles [104, 105], in which content

information about domain items is rich and easy-to-obtain. The Quickstep

system proposed by Middleton et al. [104], for example, is a research article

recommender system. It uses an ontology that captures the is-a hierarchy of

research article topics to represent domain knowledge and users’ interest profiles.

Specifically, it monitors the research articles browsed by a certain active user, and

classifies those articles based on the ontology to determine the topics that the

user is interested in. It then recommends to the user other articles whose topics

are related to his/her interests. While Middleton et al. considered Quickstep

to be a hybrid content- and CF-based recommender system, we point out that

the recommendation technique Quickstep employs is actually content-based. It

is a collaborative system in the sense that it allows an active user to provide

feedbacks, which are then made available to other users of the system. Such

feedbacks include the suggestion of new research articles, and the correct topics

of the recommended research articles that the user deemed to be wrong. In

this light, the way that the Quickstep system supports CF is different from the

automated CF process this thesis and most recent studies on CF are concerned

with.

Hybrid content- and CF-based recommender systems

Content-based techniques are commonly combined with CF techniques to build

hybrid recommender systems, because these two kinds of techniques comple-

ment the shortcomings of each other in general. For instance, content-based

techniques are able to generate recommendations for all domain items, including

new or cold-start items, as long as content information about the items are

available. In contrast, CF can generate recommendations for items only if they

have been rated by users.

The Fab system [9], for example, combines both content- and CF-based tech-

niques for web page recommendation. Fab employs content-based techniques

to analyze important keywords of web pages and to build interest profiles of

users. At the same time, it collects users’ ratings on web pages in order to

12

identify users with similar interests, so that collaborative recommendations can

be provided to users. Another example is the naive filterbot algorithm described

in [117], which injects pseudo users, or bots, into a movie recommender system.

The bots augment user ratings for CF based on the attributes of movies, such

as movie genres and cast. Such ratings are then combined with user-specified

ratings to generate collaborative recommendations. The work of Mobasher et

al. [109] exploits semantic similarities, which are content-based, between items

with the aid of an ontology of domain items. Specifically, it computes semantic

similarities between items based on the semantic attributes their share. It then

uses such similarities along with the similarities between user ratings received

by the items for performing CF.

As noted, content- and hybrid content- and CF-based recommender sys-

tems exploit semantic knowledge, such as ontologies or is-a hierarchies, about

domain items for generating recommendations. Empirical studies in the area

of recommender systems, including ours, often make use of existing semantic

knowledge collected from prominent information sources of the domains con-

cerned. For examples, our work and several others on movie recommendation

(e.g. [103, 109, 141]) collect semantic knowledge about movies from MovieLens

and the Internet Movie Database (IMDb)4, while the work of Mooney [110]

on book recommendation extracts information about books from Amazon.com.

We nonetheless point out that there exist studies that employ sophisticated In-

formation Extraction (IE), Natural Language Processing (NLP) and/or machine

learning techniques for the acquisition and learning of such semantic knowledge.

Examples include [96, 160, 22].

2.1.3 Knowledge-based Recommender Systems

Knowledge-based systems are complex systems that make use of functional

knowledge about users and domain items to generate recommendations [18].

They maintain knowledge about how a particular item meets a particular user

need, and based on which they use a reasoning process to generate possible

recommendations that best fit a given user need. Entree [19], for example, is

a knowledge-based restaurant recommender system. It generates recommen-

dations to users by Case-based Reasoning (CBR), a problem solving skill that

4The Internet Movie Database (IMDb): http://www.imdb.com

13

attempts to solve the current problems by adapting solutions for previous, similar

problems [1, 163]. Entree models each restaurant and its attributes, such as its

type of cuisine, as a case. It also maintains similarity relationships between

the cases, for example, whether one case is more expensive than the other,

determined based on users’ perception on the cases. As such, when the active

user suggests that the current recommended case (restaurant) is too expensive,

Entree is able to retrieve less expensive cases from its knowledge base.

While content-based and CF-based techniques are popular in textual do-

mains and taste-based domains respectively, knowledge-based techniques are

commonly used in domains where the decision making process of users is more

complicated and constrained. A typical example of such domains is travel and

tourism, in which most recommender systems are built with extensive knowledge

contributed by domain experts [128, 94, 129]. DieToRecs [33] and NutKing

[130] are examples of knowledge-based travel recommender systems. They

maintain a knowledge base of travel products, including tourist spots, events,

activities, and accommodations. These products are recommended by domain

experts with respect to different travel settings, such as the time of travel and

duration of a trip. Given the travel needs of an active user, both DieToRecs

and NutKing use the CBR technology to match the specified needs with the

knowledge base they maintain to generate recommendations.

A complete review of knowledge-based recommender systems and the CBR

technology is beyond the scope of this thesis. Related discussions and surveys

can be found in [18, 19, 95].

2.1.4 Strengths and Weaknesses of Recommender Systems

Each of the three major types of recommender systems has its strengths and

weaknesses, as summarized below.

CF-based recommender systems

CF-based recommender systems are best known for their ability to make taste-

based, personalized recommendations. They offer three major advantages over

the other two types of recommender systems [42, 127, 97, 144]. Firstly, as

they do not take into account content information about items, they can make

recommendations for items that are not computer-parsable. Secondly, ignoring

14

content information allows CF systems to generate recommendations based on

user tastes rather than the objective properties of domain items themselves. This

means that CF-based systems can recommend items very different (content-

wise) from those that the active users had previously shown a preference for,

thereby overcomes a major shortcoming of content-based recommender systems

[144]. Lastly, CF algorithms are much simpler and easier to implement than

knowledge-based ones. For instance, building knowledge-based recommender

systems requires an extensive domain knowledge engineering process, whereas

CF systems can be fully automated. Consequently, CF can easily be applied to

domains where a database of user preferences is available. For these reasons,

CF has been the most popular and successful type of recommender systems to

date. It has already been successfully applied to various application domains, for

example, electronic documents [42], Usenet articles [127, 75, 137], movies (e.g.

MovieLens), jokes [43], books [90], music [144, 7], and web pages [146].

CF-based recommender systems, however, are not without problems as

described in the Introduction of this thesis (Chapter 1.2). Firstly, user-based CF

suffers from poor scalability due to their memory-based nature. It makes statis-

tical computations over the entire ratings matrix in order to make predictions for

the active user. Specifically, it involves a similarity weighting step that computes

the similarity between the preferences of the active user and those of all other

users in the system. As the numbers of users and items are usually very large and

ever increasing in a system, this similarity weighting step, if done in real-time,

becomes a performance bottleneck of user-based CF.

Secondly, CF suffers from the problem of data sparseness. Data sparseness

arises because in a given database, the set of items rated or observed by a

particular user is usually very small. This implies that a complete set of ratings

across all items in the system may not exist. Making predictions for users and

items having limited ratings data can be difficult. Despite the success of CF and

the considerable amount of CF research in the past years, data sparseness stills

remains as an open and crucial challenge to researchers.

Thirdly, CF suffers from the cold-start problem, also known as the early-rater

problem and the ramp-up problem [137]. The cold-start problem is an extreme

form of data sparseness. It arises when no recommendations can be generated

for items with no or very few ratings data. The cold-start problem applies not

only to items, but also to users with no or limited known preferences.

15

Lastly, pure CF-based techniques cannot derive correlation between two

similar but not identical items if they have never been rated by the same user.

Similarly, such techniques cannot relate two users who have never co-rated the

same item. These are known as the non-transitive association problems [69],

which arise because the similarity and relatedness between users and items are

solely derived from ratings data in CF.

Content-based recommender systems

Content-based recommendation techniques analyze the feature similarity be-

tween domain items, and recommend items that are the most similar to those

that the active user has previously liked. The main advantage of content-based

techniques is that they can generate recommendations for all domain items

as long as content information about them are available. Pure content-based

techniques, however, have three main drawbacks. Firstly, defining meaningful

content descriptors for items in non-textual and taste-based domains, such as

audio and jokes, can be difficult. Utilizing meta-data (item attributes), such as

music genres, about domain items can improve recommendations, but this does

not address the problem of eliciting and analyzing content information about

non-textual items [102].

Secondly, content-based techniques suffer from over-specialization, meaning

that recommendations they make are restricted to items that are similar (in terms

of their contents) to items that the active user has previously seen [9].

Thirdly, content-based techniques cannot analyze the subjective aspects of

domain items. A content-based newspaper recommender system, for example,

cannot distinguish between high-quality and poor-quality articles on the same

topic, but this can be an important issue to consider when generating recommen-

dations for users [23].

Knowledge-based recommender systems

Knowledge-based recommender systems are knowledge-rich. They operate on

knowledge about domain items and users, as well as functional knowledge about

what and how items can meet a specific user requirement. They are therefore able

to generate rather complex recommendations that maximize users’ satisfaction

[19]. While CF- and content-based systems usually deal with one single type of

16

domain items, knowledge-based systems are able to recommend more complex

solutions, such as a travel plan that bundles heterogeneous but related products

in a travel recommender system (e.g. [33, 130]). Further, they do not suffer

from the cold-start problem because their knowledge bases are pre-constructed,

usually with the help of domain experts. These, however, imply that knowledge-

based systems require an extensive domain engineering process for building

knowledge bases. This is the main limitation of knowledge-based systems, as

compared to CF-based systems that can be fully automated. Another drawback

of knowledge-based systems is that the recommendations they generate are

rather static [19]. Further, they require more feedbacks and involvements from

an active user than the other two types of recommender systems in order to arrive

at an appropriate solution for the user.

2.2 Collaborative Filtering (CF)

CF is the core technique related to this thesis. In the following subsections,

we first introduce important terminology and notations related to CF. We then

describe user preferences that are used, or can be used, for performing CF.

Next, we introduce the two common tasks of CF, followed by descriptions of

the classical user- and item-based CF models, as well as evaluation metrics for

measuring the performance of CF algorithms.

2.2.1 Terminology and Notations

We first define the terminology and notations related to CF. In a CF-based

recommender system, there exist a set of users and a set of items. Preferences

data of users in a pure CF-based system are represented as a user-item ratings

matrix, depicted in Figure 2.1. The ratings matrix encodes the relationships

between user and items in the system. The person who seeks a recommendation

is called the active user. The item for which a prediction (e.g. predicted rating)

is to be made is known as the target item.

Formally, in a CF-based recommender system:

• U = {u1, u2, u3...um} is a set of users.

• I = {i1, i2, i3...in} is a set of items.

17

Figure 2.1: A conceptual ratings matrix in CF.

• R = U × I is the user-item ratings matrix.

• a ∈ U is the active user seeking recommendations.

• t ∈ I is the target item for which prediction is to be made.

• Ia is the set of items user a has examined.

• ru,i is the rating of user u for item i, if any.

• pa,t is the predicted rating of item t for user a.

These notations are used throughout this thesis.

2.2.2 User Preferences in CF

A pure CF algorithm operates on a database of user preferences, represented as a

U × I ratings matrix R as aforementioned. Elements in R may represent actual

ratings users have given items. Such ratings are usually collected explicitly by

asking users to give scalar ratings on items they have examined. In MovieLens,

for example, users are asked to rate movies based on a five-point rating scale.

Elements in R may also be users’ binary votes for items. In such case, ru,i =

1 if user u has examined item i, and ru,i = 0 otherwise. Examples of binary votes

include purchase histories and clickstream data, which are captured implicitly

based on users’ interactions with the system. In Amazon.com, for example, when

a user purchases a book, (s)he is considered to be giving a positive vote on the

book.

With the advent of Web 2.0, user-generated reviews are now a popular

means for users to express their comments or preferences on items that they

18

have examined. Review hubs such as Epinions.com5 and IMDb, as well as e-

commerce web sites such as Amazon.com, allow end-users to provide reviews

in free-text format in addition to numerical ratings. Such reviews can also be

considered a type of “ratings”, although they are natural language texts. To the

best of our knowledge, however, no existing CF-based system in the research

community utilizes user-generated reviews for personalization purpose.

2.2.3 Tasks of CF

Generally speaking, CF aims at recommending items that the active user a may

be interested in but has not yet observed. Such a task can be of two forms,

namely prediction and recommendation [136].

The task of prediction is to compute pa,t, which is a predicted rating indi-

cating how much the active user a may like the target item t. Note that t /∈ Ia.

The task of recommendation is to generate a list of N items, Ir, that user a may

like. Note that Ir ∈ I and Ir ∩ Ia = ∅. Ir is usually a ranked list, with more

interesting items ranked higher on the list. This task is commonly referred to as

Top-N recommendation.

2.2.4 User- and Item-based CF

User-based and item-based CF are classical CF techniques that are well-known

for their simplicity and prediction accuracy, which tends to improve as the active

user rates more items in the system [127, 14, 54]. User-based CF first finds the k

most similar users (k-nn) of the active user. It then predicts how much the active

user would like a target item based on his/her ratings data and the preferences

of his/her neighbors. Item-based CF, in contrast, exploits similarities between

items based on the ratings they received from users. It makes predictions for the

active user based on how (s)he has rated items that are similar to the target item.

We first detail the idea of user-based CF. Given an active user a and a target

item t, user-based CF predicts pa,t in three steps, namely similarity weighting,

neighbor selection, and prediction computation. The similarity weighting step

computes the weight of each user in {u|u ∈ U and u 6= a} with respect to

his/her similarity with the active user. Similarities are reflected in the ratings that

users have given items. For two particular users to be comparable, only co-rated

5Epinions.com: http://www.epinions.com/

19

items, which are items that both users have rated, are counted. The most widely

used method for computing the similarity weight between two users a and u, or

simply w(a, u) is the Pearson correlation coefficient. It reflects the correlation

between users a and u, and is defined as follows [127, 14]:

w(a, u) =

∑
j∈Ic

(ra,j − r̄a)(ru,j − r̄u)√∑
j∈Ic

(ra,j − r̄a)2
∑

j∈Ic
(ru,j − r̄j)2

(2.1)

where Ic denotes the set of items co-rated by both users a and u. That is,

Ic = {Ia ∩ Iu}, and j is an item in Ic. r̄a is the average of all ratings user a have

given items in the training set, ra,j is the rating of user a for item j, and similar

for r̄u and ru,j .

The neighbor selection step takes place after computing similarity weights

between the active user and all other users in U . This step simply selects the set

of k users having the highest similarity weights with user a. Such users, who are

the k-nn of user a, are used as predictors for the target item t in the next step, the

prediction computation step.

The prediction computation step estimates pa,t based on ra, and the weighted

sum of the ratings on item t given by the k-nn of user a:

pa,t = ra + α
∑

u∈knn(a)

w(a, u)(ru,t − ru) (2.2)

where u ∈ knn(a) denotes the k-nn of user a determined in the previous

neighbor selection step. α is a normalizing factor such that the absolute values

of similarity weights w(a, u) sum to unity.

The drawback of user-based CF is that it suffers from poor scalability as

aforementioned. This is due to the performance bottleneck of user-based CF in

the similarity weighting step, which computes w(a, u) between user a and all

other users in the system for determining knn(a) in real time.

Sarwar et al. [136] proposed the item-based CF paradigm in view of

the scalability issue of user-based CF. Item-based CF exploits the similarities

between items instead of those between users for making predictions. Sarwar

et al. observed that the item space in a recommender system is relatively static

as compared to the user space. They therefore proposed to compute similarities

between items offline. When user a seeks a prediction for item t, item-based CF

determines the set of k-nn for item t from pre-computed similarity weights. It

20

then estimates pa,t based on how user a has rated the k-nn of t, which are items

that are similar to item t.

The similarity weight between two items t and i can also be computed using

Pearson correlation coefficient as in user-based CF. In item-based CF, however,

this is computed based on the ratings t and i received from users who have rated

both items:

w(t, i) =

∑
u∈Uc

(ru,t − r̄t)(ru,i − r̄i)√∑
u∈Uc

(ru,t − r̄t)2
∑

u∈Uc
(ru,i − r̄i)2

(2.3)

where Uc denotes the set of users who have rated both items t and i, and r̄i is

the mean rating received by item i.

In item-based CF, pa,t is computed as the weighted sum of the ratings user a

has given the k-nn of item t:

pa,t = α
∑

i∈knn(t)

w(t, i)(ra,i) (2.4)

where i ∈ knn(t) denotes the set of k-nn of item t, ra,i denotes the active

user’s rating on item i, and α is a normalizing factor such that the absolute values

of similarity weights w(t, i) sum to unity.

2.2.5 Evaluating CF Algorithms

CF algorithms can be systematically evaluated along three major dimensions:

statistical accuracy, decision support accuracy and coverage. The following

subsections describe the commonly used evaluation metrics under each of these

dimensions.

Statistical accuracy

Statistical accuracy metrics are suitable for evaluating algorithms that generate

numerical predictions given a target item for an active user. They compare the

difference between the predicted ratings generated by an algorithm against the

user-specified ratings. Two commonly adopted statistical accuracy metrics are

Mean Absolute Error (MAE) and Mean Squared Error (MSE) [14, 55].

• Mean Absolute Error (MAE), as its name implies, is the mean of the

absolute errors made by an algorithm, using the actual user-specified

21

ratings as ground truth. MAE is usually computed on a per-user basis,

meaning that one MAE is computed for each active user in the test set.

The resulting MAE scores are then averaged over all the users in the test

set to obtain the final MAE of an algorithm. The MAE of a user u, denoted

by MAEu, is defined as:

MAEu =
1

|Iu|
∑
i∈Iu

|pu,i − ru,i| (2.5)

where Iu is the set of withheld ratings of user u in the test set, pu,i and ru,i

respectively represent the predicted and the actual rating of item i for user

u.

• Mean Squared Error (MSE) emphasizes large errors made by an algo-

rithm. The MSE of user u, denoted by MSEu, is computed as follows:

MSEu =
1

|Iu|
∑
i∈Iu

(pu,i − ru,i)
2 (2.6)

Similar to MAE, the overall MSE produced by an algorithm is given by

the average of the set of per-user MSE scores.

We used MAE and MSE in our experimental studies to evaluate algorithms

that make numerical predictions. The lower the values of MAE and MSE of an

algorithm, the more accurate the predictions are.

Decision support accuracy

Decision support accuracy metrics are mainly used for evaluating Top-N recom-

mendation algorithms [55]. Commonly used decision support accuracy metrics

include precision, recall, F-measure (or F1 measure), classification accuracy

(or simply accuracy), Receiver Operator Characteristics (ROC), and rank score.

Employing these metrics basically requires casting the recommendation task as a

binary classification task. An example is to classify an unseen movie of an active

user as Like or Does Not Like [13, 55, 141].

We first introduce Table 2.1, a 2× 2 confusion matrix for computing some of

aforementioned metrics. Columns and rows in the confusion matrix respectively

describe the actual (Relevant = Y/N) and the predicted (Recommended = Y/N)

22

Table 2.1: A confusion matrix.
Recommended = Y Recommended = N

Relevant = Y TP FN

Relevant = N FP TN

classification of items generated by a Top-N recommendation algorithm. In the

matrix, TP (True Positive) is the number of recommended items (Recommended
= Y) that are relevant to the active users’ interests (Relevant = Y), FP (False

Positive) is the number of recommended items (Recommended = Y) that are in

fact irrelevant (Relevant = N), and similar for FN (False Negative) and TN (True

Negative).

We now define the various aforementioned decision support metrics.

• Precision is the portion of recommended items that are in fact relevant.

Referring to Table 2.1, precision is defined as:

Precision =
TP

TP + FP
(2.7)

The sum of TP and FP in the equation corresponds to the total number of

recommendations provided to the active users.

• Recall is the portion of relevant items (in the withheld test set) that were

recommended to the active users. It is defined as:

Recall =
TP

TP + FN
(2.8)

• F-measure, also known as the F1 measure, combines precision and recall

into a single metric. This metric is desirable because precision and recall

are inversely related, and it is easy to optimize either one separately

[13]. For instance, using a larger value of N , which tends to increase the

chance of recommending relevant items to the active users, would result

in higher recall but lower precision. The most widely-adopted method for

computing the F1 measure is to take the harmonic mean of precision and

recall:

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(2.9)

23

Such a definition gives equal importance to precision and recall, and the

resulting value tends strongly towards the smaller value of the two.

• Classification accuracy, or simply accuracy, is another metric that is

computed based on the confusion matrix in Table 2.1. It is defined as:

Accuracy =
TP + TN

TP + FP + FN + TN
(2.10)

The major difference between accuracy and precision, as well as that

between accuracy and recall is that accuracy takes TN (the number of true

negatives) into account.

• Receiver Operator Characteristics (ROC) plots the true-positive rate

(tpr) against the false-positive rate (fpr) produced by a classifer under

different classification thresholds, for instance, thresholds applied to the

predicted preferences for recommendable items. tpr is equivalent to recall

in Eq. (2.8), while fpr is computed based on Table 2.1 as follows:

fpr =
FP

FP + TN
(2.11)

A ROC curve is usually used with an associated metric, known as the

Area under the ROC curve (AUC). AUC is a single metric that summarizes

the performance of a classifier across all possible thresholds. The larger

the AUC of a classifier, the more successful it can distinguish between

positives and negatives.

Details about ROC analysis, including how ROC curves are plotted, and

the characteristics about the ROC curves of perfect, random, good and bad

classifiers are available in [123, 31, 34]. These are not discussed in this

thesis because, as described in the later part of this subsection, ROC is not

an appropriate metric for evaluating our tasks at hand.

• Customer Receiver Operator Characteristics (CROC) is a variant of

ROC. It was proposed specifically for evaluating recommender systems

that provide the same number of recommendations (N) to each active user

[141]. A CROC curve is plotted by varying the value of N .

Detailed discussions on ROC and CROC in the context of recommender

systems are available in [55, 141].

24

• Rank Score measures the utility of a ranked list of recommendations [14,

63, 82]. The rank score of a user u, denoted as RSu, is computed as

follows:

RSu =

|Ir|∑
j=1

δ(u, ij)

2(j−1)/(h−1)
(2.12)

where Ir denotes the list of items recommended to the user, j is the index

of an item on the recommendation list, and h is the viewing halflife, which

is the rank of an item on the list such that there is a 50% chance that user

u will like that item. δ(u, ij) is a number in the range [0, 1] that indicates

the contribution of a correct recommendation to the overall utility of the

ranked recommendation list [82]. Its value is 0 if ij is not in user u’s

testset.

The aggregated rank score (RS) over the set of test users U is then

computed as follows:

RS = 100 ∗
∑

u∈U RSu∑
u∈U RSmax

u

(2.13)

where RSmax
u is the maximum achievable RSu for user u if all of the items

(s)he liked in the test set had been at the top of the ranked list. A higher

rank score indicates that correct recommendations were ranked higher on

the recommendation lists.

Note that we did not adopt all of the above metrics for evaluating Top-N

recommendation algorithms. As noted, classification accuracy takes the number

of true negatives (TN) into account. TN includes not only items that the users

had rated negatively in the test set, but also items that the users did not observe

at all. In recommender systems, data is normally extremely skewed towards

the TN category as in IR systems (Chapter 8 in [99]). Specifically, most items

are unobserved by a particular user in practice in a given recommender system.

Consider the number of book titles a user could have purchased and the total

number of titles available on Amazon.com as an example. Taking TN into

consideration when evaluating recommender systems might not be meaningful.

We also chose not to adopt ROC and CROC in our studies, partially be-

cause they capture the TN of recommendation algorithms. In fact, both ROC

25

and CROC curves offer the advantage of summarizing the performance of an

algorithm across different numbers of recommendations by means of AUC.

In recommender systems, however, researchers are more concerned about an

algorithm’s performance when only a small number of items are recommended to

users ([13, 63]), because the goal of a recommender system is to help users avoid

information overload. For instance, users would be more interested in the quality

of the top 10 items than the quality of the top 100 items on a recommendation

list. This is the main reason why our studies analyzed the performance of Top-N

recommendation algorithms based on precision and recall at small values of N ,

but not ROC and CROC.

Herlocker et al. [55] noted that precision and recall are biased and shall not

be interpreted as absolute measures. However, they are still useful for comparing

different algorithms and are easy to understand. Further, they do not take into

consideration the value of TN, which is likely to be extremely large in reality in

a recommender system. For these reasons, we adopted precision and recall in

our experimental studies on Top-N recommendation algorithms.

Coverage

Coverage is generally defined as the percentage of items for which recommen-

dations or predictions can be provided. There are two ways to compute the

coverage of an algorithm as noted in [106]. The first way takes into account

the universe of items in a recommender system, and computes coverage as

the percentage of items for which an algorithm can make recommendations or

predictions. The second way only considers percentage of successful predictions

given the withheld user-item pairs in the test set.

We chose the definition of coverage based on the specific purposes of our

experimental studies, as described in corresponding experimental setup sections.

2.3 Association Rule Mining (ARM)

Association Rule Mining (ARM) is one of the most well-studied data mining

tasks since its introduction in the early 90’s [5]. It aims at discovering interesting

relationships among a set of items (I) by finding items that frequently appeared

together in a transactional database (DB). This section describes the idea of

26

ARM and three of its variants that are directly related to our work.

2.3.1 Association Rules and Their Interestingness

An association rule is in the form of “Φ → Ψ”. Φ, where Φ ⊂ I , is called the

antecedent or the body of the rule, while Ψ, where (Ψ ⊂ I) ∧ (Ψ ∩ Φ = ∅), is

called the consequent or the head of the rule [5].

Agrawal et al. [5, 6] proposed an ARM approach and the well-known

Apriori algorithm based on the support-confidence framework. Their approach

decomposes the ARM problem into two sub-problems:

1. Find all combinations of items, known as large itemsets or frequent

itemsets, having support values above the predefined minimum (minSupp).

Note that if a certain itemset Φ is frequent, all subsets of items in Φ are

also frequent. This is known as the downward closure property of support

values.

2. Generate association rules from the frequent itemsets. A rule holds and

is considered interesting if it satisfies the predefined minimum confidence

(minConf). For example, if the itemset {Φ, Ψ} is frequent, we shall check

if the two rules “Φ → Ψ” and “Ψ → Φ” are interesting.

The remainder of this subsection introduces interestingness measures for

evaluating association rules and popular ARM algorithms, followed by brief

discussions on applying ARM to CF.

Interestingness measures of association rules

The most widely-adopted interestingness measures of association rules are the

aforementioned support and confidence. The support of a rule “Φ → Ψ” is the

percentage of transactions in DB containing {Φ ∩ Ψ}, or simply P(Φ∩Ψ). The

confidence of the rule is the percentage of transactions in DB containing Φ that

also contain Ψ. It can be written as P(Φ ∩ Ψ)/P(Φ) or P(Ψ|Φ). For example, the

association rule “milk → butter” [20%, 50%] indicates that 50% of users who

bought milk also bought butter in the same transaction, and that 20% of all users

bought both milk and butter in the same transaction.

Note that the computation of confidence ignores P(Ψ). Brin et al. [16]

pointed out that this is problematic, because the confidence of the rule may still

27

be high enough to satisfy minConf even if the occurrence of Ψ is unrelated to that

of Φ (e.g. when P(Φ ∩ Ψ)/P(Φ) = P(Ψ), meaning that Φ and Ψ are statistically

independent). Various alternative interestingness measures have been proposed

to address the flaw of confidence values (e.g. [16]). A well-known example of

these is the interest measure, also known as lift ratio. It indicates the correlation

between the itemsets in the body and the head of a rule, and is defined as

P(Φ ∩ Ψ)/P(Φ)P(Ψ). Φ and Ψ are positively correlated if the interest value of

“Φ → Ψ” is above 1. In fact, there exist a large variety of interestingness mea-

sures, evaluating association rules from different perspectives. A comparative

study and comprehensive survey of various interesting measures are available in

[152, 40].

Klemettinen et al. [73] provide a non-statistical definition to interesting

association rules. Their work applies rule templates to look for interesting rules

from a collection of already discovered association rules. A rule template defines

the structure of interesting rules in a form similar to regular expressions. For

instance, the rule template “Any item∗→ butter” considers rules containing the

item butter in their consequent part to be interesting. Li et al. [88] later adopted

the idea of rule templates to a recommendation task. Their work first discovered

a set of association rules based on the support-confidence framework, and then

applied rule templates to the discovered rules to look for the rules that are of

interest. They experimented their approach with a subset of the EachMovie

dataset [101]. Results showed that the adoption of rule templates in their work

slightly improved recommendation accuracy.

ARM algorithms

The Apriori algorithm [6] is a classical and the most well-known ARM mining

algorithm in the literature. It consists of the two major steps described earlier,

namely the generation of frequent itemsets and the generation of interesting

association rules from the frequent itemsets.

The most noticeable characteristic of the Apriori algorithm is that it takes

a breath-first approach to frequent itemsets generation. It iteratively joins two

frequent itemsets containing κ-1 items, known as (κ-1)-itemsets, to generate a

candidate κ-itemset. It then makes use of the aforementioned downward closure

property of support values to prune the candidate κ-itemsets. More specifically,

this pruning step removes candidate κ-itemsets containing infrequent item sub-

28

sets, with respect to a given minSupp value, from further consideration. The

remaining frequent κ-itemsets are used in the next iterations for generating larger

candidate itemsets as well as association rules.

The frequent itemsets generation approach of Apriori may become inefficient

when the transactional database (DB) contains a large collection of items.

Further, the algorithm makes multiple passes over DB, which may be a con-

cern for some applications [175]. Some researchers therefore proposed ARM

paradigms that adopt different data structures for efficiently generating frequent

itemsets for ARM. A well-known example is the CLOSET algorithm described

in [119], which proposes the use of the frequent pattern tree (FP-tree) structure

for efficient discovery of frequent patterns from large databases. Other examples

include the DHP (Direct Hashing and Pruning) algorithm [116], which improves

efficiency by approximating the support values of itemsets, and the work of Zaki

et al. [175], which only scans DB once and clusters itemsets to obtain potential

maximal frequent itemsets.

Li and colleagues combined classical ARM with the rough sets theory ([118],

as cited in [86, 85, 87]) and rule templates [73] to mine interesting and important

association rules. To explain their work, we first introduce important concepts

in the rough sets theory following the notations used in [85]. Given is a decision

table T = {U , C,D}, where U is a set of records in the table, C is a set of

condition attributes, and D is a set of decision attributes. A reduct of a decision

table is a set of condition attributes that is sufficient to represent the decision

attributes. In other words, generating reducts essentially means finding important

attributes that can characterize the knowledge in the original data. There can be

multiple reducts for a decision table, and the intersection of reducts forms the

core of the decision table.

Li and Cercone [86] described a knowledge discovery framework that first

generates reducts from a decision table T , and then applied the classical ARM

technique to find a set of interesting association rules for each resulting reduct.

They also proposed a novel Rule Importance Measure (RIM) to evaluate such

rules mined from reducts:

RIM =
no. of rule sets containing the rule

no. of rule sets
(2.14)

where “rule sets” refer to the sets of association rules generated from the reducts

(one rule set per reduct).

29

In another related study [85], Li and Cercone utilized the Apriori algorithm

with the support-confidence framework to mine association rules from a decision

table T . T contains a single decision attribute, and rule templates were used to

mine association rules containing the decision attribute in the consequent part of

the rules. The resulting association rules were then used to create a new decision

table A. The objects represented as rows and the decision attribute in A come

from the original decision table, while each condition attribute in A represents

one association rule. An attribute value Amn in the new table indicates whether

the mth rule is applicable to the nth record in the original table T . Li and Cercone

then generated reducts from the new decision table. A reduct therefore represents

a set of association rules, called a reduct rule set, mined from the original data.

Li and Cercone adopted RIM to rank the importance of rules in the reduct rule

sets. They reported experimental results on a synthetic dataset and a real dataset

to illustrate the intuitions of their work.

Applying ARM to CF

ARM techniques can be applied to CF by finding interesting associations be-

tween items (item-based CF), or those between users (user-based CF). Suppose

in an online supermarket system, a rule “milk → butter” is interesting, and a

certain active user has selected milk in his/her “shopping cart”. The system can

then recommend butter to the user with some confidence.

Both the classical Apriori based and the rough sets based ARM paradigms

can be applied to CF, or recommender systems in general. Recall that the

rough sets theory operates on a decision table T containing some condition

attributes and decision attributes. A reduct of T contains a set of condition

attributes that can represent the decision attributes. For the geriatric dataset used

in [85], for example, the corresponding decision table contains patient records

as rows, symptoms as condition attributes, and the survival status of patients as

the decision attribute. Applying the rough sets based approach to a general item

recommender system is practically feasible by treating a given target item as a

decision attribute, and other items as condition attributes. We illustrate this with

Table 2.2, a sample decision table T . Each row in T represents a user, while

each column represents an item. A value Tmn is 1 if user um has rated item in in

a certain system, and 0 otherwise.

Suppose item i5 in Table 2.2 is the decision attribute, thus the task at hand is

30

Table 2.2: A sample decision table.
i1 i2 i3 i4 i5

u1 1 1 0 0 1

u2 0 0 0 1 0

u3 1 1 1 0 1

u4 1 1 0 0 0

to find the important condition attributes (among items i1 to i4) for representing

i5. The same task can be defined for every item in the item space. Note that the

rough sets theory has the notion of data inconsistency. Consider the items rated

(and not rated) by u1 and u4 as an example. Specifically, both users have rated

items i1 and i2, but have not rated items i3 and i4. In other words, u1 and u4

have exactly the same values for all condition attributes, but their values for the

decision attribute i5 do not agree with each other. The rough sets based approach

considers this data to be inconsistent.

Our work reported in Chapters 3 and 4 in this thesis adopted an Apriori-

like rule mining process. Our work is also closely related to three variants of

the classical ARM task described in the following subsections. They include

Adaptive-Support Association Rule Mining (ASARM), Fuzzy Association Rule

(FAR) mining, and Cross-level Association Rule (CAR) mining. More back-

ground information and in-depth discussions on ARM can be found in [51]

(Chapter 6). Hipp et al. [56] also provide a brief survey of ARM algorithms,

including several variants of the Apriori algorithm.

2.3.2 Adaptive-Support ARM for CF

The traditional ARM problem mines interesting association rules for all items in

I from DB. Lin et al. [89] pointed out that this problem definition of ARM

is inefficient for mining rules for collaboration recommendations due to two

reasons. Firstly, many rules mined from the database would not be relevant

for a given user. Secondly, the support and confidence constraints for mining

rules must be specified in advance. Due to the variations in user tastes and the

popularity of items in the database, this could either lead to too many or too few

rules mined for a particular item. Related to this, rules involving less popular

items may be difficult to discover, meaning that it is difficult to recommend less

31

popular items to users in an ARM-based CF system.

Lin et al. therefore proposed the Adaptive-Support ARM (ASARM) algo-

rithm for CF. ASARM mines rules for one target item (t, where t ∈ I) at a

time. This idea is similar to that of applying rule templates to find interesting

association rules in [73]. Instead of applying rule templates to a collection of

already discovered rules, however, the ASARM algorithm makes use of a rule

template in the form of “Φ → t” in the rule mining process.

ASARM allows users to specify a desired range [minNumRules, maxNum-

Rules] for the number of rules to be mined, and automatically adjusts the value of

minSupp so that the number of resulting rules is in the given range, unless fewer

than minNumRules rules exist. More specifically, it increases (resp. decreases)

the value of minSupp when there exist too many (resp. few) rules that satisfied the

user-specified interestingness constraints. The rule mining process of ASARM

makes multiple passes over the data as it mines rules for one single target item

at a time. This process, however, is done offline and therefore does not affect the

response time of the recommendation process.

2.3.3 Fuzzy Association Rule (FAR) Mining

ARM was designed for mining rules from categorical attributes. Applying it to

quantitative attributes, such as numerical ratings users have given items in the

CF scenario, requires an additional data discretization step. Such discretization

is usually boolean. For instance, given the rating scale of -10 to 10 in the Jester

recommender [43] and a discretization threshold of 5, one may transform ratings

below 5 into Dislike or 0, and those equal to or greater than 5 into Like or

1. Traditional ARM techniques can then be applied to the transformed data.

This boolean discretization process, however, suffers from the sharp boundary

problem, in which a very small difference between two values can cause them

fall into two totally different classes. In the previous example, a rating of 4.9 will

be transformed into Dislike, whereas that of 5 will be transformed into Like.

One solution to address the sharp boundary problem, in the context of ARM,

is the use of Fuzzy Association Rule (FAR) mining. FAR mining is an extension

of ARM that mines rules from quantitative attributes. A FAR is in the form of

“〈Φ,X〉 → 〈Ψ,Y〉”, where X and Y are fuzzy sets that characterize attributes Φ

and Ψ respectively. The main feature of FAR mining is that each attribute can be

32

a member of a fuzzy set to a certain degree in [0,1], assigned by the membership

function (MF) associated with the corresponding fuzzy set. Figure 2.2 shows

three simple examples of fuzzy sets and MFs. In each example, numerical ratings

are fuzzified into three fuzzy sets, Like, Neutral and Dislike, respectively denoted

by L, N and D in the figure and in the subsequent discussions.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Rating

D
eg

re
e

of
 M

em
be

rs
hi

p

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Rating

D
eg

re
e

of
 M

em
be

rs
hi

p

L
N
D

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Rating

D
eg

re
e

of
 M

em
be

rs
hi

p

(a) MF(A) (b) MF(B)

(c) MF(C)

Figure 2.2: Sample fuzzy sets and membership functions.

We use an example to illustrate the use of fuzzy sets for transforming user-

specified ratings. Table 2.3 shows a sample U × I ratings matrix (R), in which

rows and columns represent users and items respectively. Given the sample

ratings in R and MF(A) in Figure 2.2(a), Table 2.4 shows the transformed ratings

of the two items i1 and i2. Each column, which was the identifier (ID) of an item,

is expanded into a 〈Item ID, Fuzzy Set〉 pair, and each element in R, which was

the user rating of a particular item, is transformed into its membership degree

with respect to the specified fuzzy set. Note that the term “attribute” refers to a

33

Table 2.3: A sample user-item (U × I) ratings matrix in CF.

i1 i2 i3 i4 i5

u1 1 4 2

u2 5

u3 5 2 1 5

u4 5 1

Table 2.4: Fuzzified ratings.

〈i1, L〉 〈i1, N〉 〈i1, D〉 〈i2, L〉 〈i2, N〉 〈i2, D〉
u1 0 0 1 0.8 0.5 0.2

u2 0 0 0 0 0 0

u3 1 0 0 0.2 0.5 0.8

u4 1 0 0 0 0 1

〈Item ID, Fuzzy Set〉 pair in this section.

Some items have a larger total fuzzified rating than the others in Table 2.4.

An example is the item i2 in the first transaction with UserID u1. The fuzzified

ratings of 〈i2, L〉, 〈i2, N〉 and 〈i2, D〉 are respectively 0.8, 0.5 and 0.2. In other

words, the item i2 in the transaction of u1 would contribute more than 1, which

is the actual support count it received from u1, to the interestingness measures

of itemsets containing it. To avoid this, fuzzified ratings are normalized so that

their contributions with respect to all fuzzy sets for a given item sum to 1 if rated

[48]. The normalization is done as follows:

mxj
(DBn[φj]) =

m′xj
(DBn[φj])∑

x∈X m′x(DBn[φj])
(2.15)

where φj ∈ Φ is an attribute, and X is the fuzzy set that characterizes Φ as

noted. DBn[φj] represents the value of the attribute φj in the ith record in

DB. mxj
(DBn[φj]) and m′xj

(DBn[φj]) are respectively the normalized and

original membership degrees obtained by the value DBn[φj] with respect to xj .

According to this equation, the fuzzified ratings in Table 2.4 are normalized to

0.8/1.5, 0.5/1.5 and 0.2/1.5 (i.e. 0.53, 0.33 and 0.14) as Table 2.5 shows.

Similar to classical association rules, there exist various measures for indi-

cating the interestingness of FARs. The three most commonly used measures

34

Table 2.5: Fuzzified ratings with normalization.

〈i1, L〉 〈i1, N〉 〈i1, D〉 〈i2, L〉 〈i2, N〉 〈i2, D〉
u1 0 0 1 0.53 0.33 0.14

u2 0 0 0 0 0 0

u3 1 0 0 0.14 0.33 0.53

u4 1 0 0 0 0 1

are fuzzy support, fuzzy confidence and correlation [49]. We illustrate the

computations of these measures with Example 2.1 and the ratings in Table 2.5 in

the rest of this subsection.

Example 2.1 Let 〈Φ,X〉 = 〈i1, L〉, 〈Ψ,Y〉 = 〈i2, D〉. Also, let Γ = Φ ∪ Ψ,

Z = X ∪ Y , and therefore 〈Γ,Z〉 = 〈{i1, i2}, {L,D}〉.
We now describe the computations of fuzzy support. A fuzzy support value

reflects not only the number of transactions supporting an itemset but also their

degree of support. The fuzzy support value of an itemset 〈Φ,X〉, denoted by

FS〈Φ,X〉, is defined as [49]:

FS〈Φ,X〉 =

∑|DB|
n=1

∏
φj∈Φ{mxj

(DBn[φj])}
|DB| (2.16)

where mxj
(DBn[φj]) is computed using Eq. (2.15), and |DB| denotes the

number of records in the transactional database DB.

Example 2.2 Computation of fuzzy support value: FS〈Φ,X〉 = (0 + 0 + 1 + 1) /

4 = 0.5, FS〈Ψ,Y〉 = (0.14 + 0 + 0.53 + 1) / 4 = 0.4175, and FS〈Γ,Z〉 = (0 * 0.14)

+ (0 * 0) + (1 * 0.53) + (1 * 1) / 4 = 0.3825.

The fuzzy confidence of a rule “〈Φ,X〉 → 〈Ψ,Y〉”, denoted by FC〈〈Φ,X〉→〈Ψ,Y〉〉,

is computed as [49]:

FC〈〈Φ,X〉→〈Ψ,Y〉〉 =
FS〈Γ,Z〉
FS〈Φ,X〉

=

∑|DB|
n=1

∏
γj∈Γ{mzj (DBn[γj])}

|DB|
∑|DB|

n=1

∏
φj∈Φ{mxj (DBn[φj])}

|DB|

=

∑|DB|
n=1

∏
γj∈Γ{mzj

(DBn[γj])}
∑|DB|

n=1

∏
φj∈Φ{mxj

(DBn[φj])}
(2.17)

35

where FS〈Φ,X〉 and FS〈Γ,Z〉 are computed using Eq. (2.16).

Example 2.3 Computation of fuzzy confidence value: FC〈〈Φ,X〉→〈Ψ,Y〉〉 = (0.3825

/ 0.5) = 0.765.

The correlation between 〈Φ,X〉 and 〈Ψ,Y〉, denoted by CORR〈〈Φ,X〉,〈Ψ,Y〉〉,

is defined as follows [49]:

CORR〈〈Φ,X〉,〈Ψ,Y〉〉 =
Cov〈〈Φ,X〉,〈Ψ,Y〉〉√

V ar〈Φ,X〉 ∗ V ar〈Ψ,Y〉
(2.18)

where

Cov〈〈Φ,X〉,〈Ψ,Y〉〉 = FS〈Γ,Z〉 − FS〈Φ,X〉 ∗ FS〈Ψ,Y〉 (2.19)

V ar〈Φ,X〉 = FS〈Φ,X〉2 − (FS〈Φ,X〉)
2 (2.20)

FS〈Φ,X〉2 =

∑|DB|
n=1 (

∏
φj∈Φ mxj

(DBn[φj]))
2

|DB| (2.21)

and similar for 〈Ψ,Y〉.
The definitions in Eqs. (2.18)-(2.21) are extensions of the basic formulas of

variance and covariance in statistics [49]. The value of correlation ranges from -1

to 1. Only a positive value tells that the body and the head of a rule are positively

correlated. The closer the value is to 1, the more correlated they are.

Example 2.4 Computation of correlation: Cov〈〈Φ,X〉,〈Ψ,Y〉〉 = 0.3825 - (0.5 *

0.4175) = 0.17375, FS〈Φ,X〉2 = (02 + 02 + 12 + 12) / 4 = 0.5, (FS〈Φ,X〉)2 =

(0.5)2 = 0.25, V ar〈Φ,X〉 = (0.5 - 0.25) = 0.25, FS〈Ψ,Y〉2 = (0.142 + 02 + 0.532

+ 12) / 4 ≈ 0.3251, (FS〈Ψ,Y〉)2 = (0.4175)2 ≈ 0.1743, V ar〈Ψ,Y〉 = (0.3251 -

0.1743) = 0.1508, and therefore CORR〈〈Φ,X〉,〈Ψ,Y〉〉 = 0.17375√
0.25∗0.1508

≈ 0.895.

We adopted the three commonly-used measures described above as indica-

tors of interestingness in Chapters 3 and 4.

36

2.3.4 Cross-level Association Rule (CAR) Mining

Cross-level Association Rule (CAR) mining operates on DB and a concept

hierarchy of the items in DB. It aims at discovering associations among

the concepts from different levels of the hierarchy. Several studies, such as

[71, 21, 111], reported the use of is-a hierarchies or item taxonomy as concept

hierarchies for capturing similarities between items.

Higher-level items in a is-a hierarchy represent more general concepts, and

are likely to have more support than lower-level items [150, 50]. This property

of is-a hierarchies has two implications for mining. The first implication is the

need to apply different minSupp values to items at different levels, and a typical

case of which is to progressively reduce minSupp at lower levels of abstraction.

The second implication is that descendents of infrequent items can be pruned.

Detailed discussions on the two issues are available in [50].

2.4 Text Data Mining Basics

This section briefly introduces the essential processes and tasks in text data

mining, so as to provide background information about our discussions on

sentiment analysis research in the next section.

Text data mining, or simply text mining, is the application of data min-

ing techniques to automated knowledge discovery from unstructured or semi-

structured electronic text documents [32, 53, 51, 126, 30]. Text mining has

received a considerable amount of research attention due to the vast, yet increas-

ing, amount of textual information available on the Web. It also has a business

value in supporting business intelligence because, in reality, unstructured data

in the form of text documents typically account for 85% of an organization’s

knowledge store [134, 39, 77].

Text documents are usually in the form of natural language text. Examples

include e-mails, HTML pages and online newspaper articles, as well as Web

2.0 contents including user-generated reviews and blog (weblog) posts. As

traditional data mining techniques are designed to handle structured data from

databases, a text mining application requires a text analysis process to transform

text documents into structured data, so that standard data mining techniques can

be applied to them. Figure 2.3 depicts the major steps in a typical text mining

37

application.

Figure 2.3: Major steps in the typical text mining process.

As shown in Figure 2.3, the first step in a text mining system is to retrieve

from a document collection the relevant documents to be analyzed [30]. Ex-

amples of sources of document collections include the World Wide Web (e.g.

[110]) and internal file systems as well as application data (e.g. [170]). Some

documents, such as HTML pages, can contain non-textual contents including

multimedia objects, HTML tags, and so on. Our work assumes that a collection

of relevant documents is given, and that the non-textual contents of the docu-

ments are removed. Thus, our discussions focus on the processing and mining

of the textual portions of those documents only.

The second step in a text mining system is a text analysis process that pre-

processes the documents and extracts the relevant pieces of data from them. This

step usually utilizes various techniques borrowed from other related disciplines,

such as NLP and IE, which is a subfield of NLP [47, 64]. The processed text

documents are then transformed into structured models, such as the vector space

model that is commonly used in IR algorithms (pages 428–435 in [51]).

The third step in a text mining system involves the use of different data

mining techniques to perform the various tasks that the system is about to solve,

and produces high-level knowledge that is required by the users of the system.

Common tasks of text mining include text classification, also known as text

categorization [143], clustering [98] and summarization [124].

In the rest of this section, we introduce commonly used tasks for analyzing

text documents, followed by a description of data representation of text docu-

ments. We then describe several weighting schemes for reflecting the importance

of features. Finally, we introduce text classification, a text mining task that is

relevant to our work on sentiment analysis and review-based recommendations.

38

2.4.1 Analyzing Text Documents

As aforementioned, the text analysis process in a text mining system prepro-

cesses text documents and extracts the relevant data from them for mining.

This process usually relies on various techniques borrowed from other related

disciplines, including NLP and IE, for analyzing natural language texts. The

output produced by this process is a structured representation of useful data in

the original text documents. As the focus of this thesis is not on NLP and IE,

we only describe two tasks that have been adopted in our work. They include

stemming and part-of-speech (POS) tagging.

Stemming identifies and reduces syntactic variants of the same word into

their root form [51, 64, 164]. In the stemming process, for example, “do”,

“does”, “doing”, “done” and “did” would be reduced to the stem “do”. This type

of stemming is inflectional. It analyzes variations in word forms that express

grammatical features, such as singular and plural, or past and present tenses.

Another type of stemming is derivational. It analyzes words that are created from

other words. Derivation usually involves changing the grammatical category of

a word and may even modify its meaning. For example, the word “disallow”

comes from the word “allow” but has the opposite meaning.

Stemming results in a smaller number of distinct words in a document while

increasing the frequency counts of some words. In the previous paragraph, for

example, the underlined words “reduces” and “reduced”, both occurred once,

belong to the same stem “reduce”, which will have a total frequency count of 2

after stemming. Stemming can make a difference for algorithms that take word

frequency counts into account [164].

Part-of-speech (POS) tagging assigns POS tags to tokens in a document.

There are two major types of POS taggers: rule-based and stochastic. Rule-based

taggers apply linguistic knowledge to assign POS tags to unknown or ambiguous

words, whereas stochastic taggers rely on training corpora to determine the

probability that a word occurs with a particular tag [64]. POS tagging is the

basis for extracting useful information from documents in various IE and text

mining tasks. For example, Named Entity Recognition (NER) is a typical IE task

that aims at locating and classifying proper names in texts into named entities

classes (e.g. people and places) [12]. Another example is sentiment analysis,

which involves extracting user opinions, which are usually verbs or adjectives

39

[156, 172, 61], from documents.

2.4.2 Representing Text Documents

The previous subsection described two tasks that help identifying in text docu-

ments their major features. These features are then represented in a structured

way for mining. The vector space model is a widely adopted model for rep-

resenting text documents [8]. In this model, a document dj ∈ D, where D

is a document collection, is represented as a n-dimensional vector
−→
dj . Each

dimension of the vector corresponds to a term, or a feature, whose definition

may vary depending on the application. If a term is a single word appeared in

a text document, then the dimension of
−→
dj would be the total number of distinct

terms in the document collection D. Such vectorial representation of documents

is also known as the bag-of-words model, which represents a document as an

unordered bag of terms.

Each value wi,j in the vector
−→
dj corresponds to the weight of the term fi with

respect to dj:

−→
dj = [w1,j, w2,j, ..., wn,j]

T

The value of wi,j would be 0 if fi did not appear in dj . Otherwise, it can

be determined using a variety of term weighting schemes, or feature weighting

schemes, to reflect the importance of fi in dj . We defer the description of feature

weighting schemes to the next subsection.

If the set of terms in a document collection is very large, meaning that the

dimensionality of term vectors is very high, operations on the terms vectors may

become very expensive and inefficient. Dimensionality reduction, by means of

feature selection for example, may be necessary to prune less important terms

[8, 51].

2.4.3 Determining Term Weights

Term weights are not only useful for reflecting the importance of terms in a

document or a document collection, but also for facilitating feature selection.

Feature selection aims at picking only features that are considered important and

relevant in a given application, which is text classification in our subsequent

40

discussions. For instance, we may define a minimum threshold on feature

weights, and discard features whose weights do not meet the threshold from

further consideration. We describe, among others, three feature weighting

schemes in this subsection. They include Term Frequency-Inverse Document

Frequency (TF-IDF), Information Gain (IG) and Chi-square test (χ2). Note

that we used the words “term” and “feature”, as well as “class” and “category”

interchangeably.

Term Frequency-Inverse Document Frequency (TF-IDF) is the most

well-known term weighting scheme in IR. It measures the importance of a given

term fi, both “locally” with respect to a given document dj ∈ D, and “globally”

in the document collection D (pages 29–30 in [8], Chapter 6 in [99]).

The Term Frequency of fi in dj , denoted by tf(fi, dj), indicates the

frequency of fi in dj . tfi is often normalized by the total frequency counts of

all terms in dj . The purpose of doing so is to prevent a bias towards longer

documents, in which terms may have high frequency counts regardless of their

importance in the documents. Formally, tf(fi, dj) is defined as:

tf(fi, dj) =
N(fi, dj)∑|Fj |

k=1 N(fk, dj)
(2.22)

where Fj denotes the set of features in dj , and N(fi, dj) returns the number of

times fi appeared in dj .

The Inverse Document Frequency of fi, denoted by idf(fi), is defined as:

idf(fi) = log
|D|

|{dj|∃dj ∈ D : N(fi, dj) > 0}| (2.23)

where |D| denotes the number of documents in the document collection D, and

|{dj|∃dj ∈ D : N(fi, dj) > 0}| represents the number of documents in which

fi appeared. Logarithms may be to base 10 or base 2, but this does not matter

if one’s purpose is to rank terms rather then measuring the absolute weights of

terms (Chapter 6 in [99]). The IDF of a fi is high if it is a rare term, whereas

that of fi is likely to be very low if it is commonly seen in a large number of

documents.

The TF-IDF of fi with respect to dj is then computed as follows:

tf -idf(fi, dj) = tf(fi, dj)· idf(fi) (2.24)

41

The term fi will receive a high weight under the TF-IDF scheme if it has a

high frequency count in di, but a low document frequency in D.

Information Gain (IG) is an information based weighting scheme that

measures the number of bits of information obtained for category (class label)

prediction by knowing the presence or absence of a term in a document [171,

142]. It has been found to perform well in various studies on text classification

[171, 142, 37]. Given a set of terms and a set of classes C, the IG of term fi with

respect to a certain class cj ∈ C, denoted by IG(fi, cj), is defined as [142]:

IG(fi, cj) =
∑

c∈{cj ,cj}

∑

f∈{fi,f i}
P (f, c)· log P (f, c)

P (t)P (c)
(2.25)

where P (fi, cj) represents the probability that the term fi appears in a certain

document in the class cj , P (fi) and P (cj) represent the probabilities of appear-

ance of the term fi and the class cj respectively. P (f i, cj) is the probability that

fi does not appear in a document in the class cj , and similar for P (fi, cj), P (f i)

and P (cj). These are all prior probabilities calculated from training data.

Note that IG(fi, cj) is “locally” specified with respect to a single class cj .

One possible way to estimate IG(fi) as a global measure is to compute the sum

of IG(fi, cj) over all possible classes [142]:

IG(fi) = IGsum(fi) =

|C|∑
j=1

IG(fi, cj) (2.26)

Other possible methods for determining IG(fi) include taking the weighted

sum IGwsum(fi) =
∑|C|

j=1 P (cj)IG(fi, cj), or the maximum IGmax(fi) =

max
|C|
j=1 IG(fi, cj) of the set of class-specified IG values of fi [142].

Chi-square test (χ2), also chi-squared test, is a statistical test that checks

whether a null hypothesis (H0) follows the χ2 distribution. In the context of text

classification, the H0 is that the occurrence of a term fi is independent of the

class cj of the document in which fi occurs. fi will have a low χ2(fi, cj) value

if its occurrence is independent of cj . Therefore, only terms that have high χ2

weights are useful for classifying texts. χ2(fi, cj) is defined as [142]:

χ2(fi, cj) = |D|·
(
P (fi, cj)P (f i, cj)− P (fi, cj)P (f i, cj)

)2

P (fi)P (f i)P (cj)P (cj)
(2.27)

42

The above computation of χ2 statistic of fi is specific to a given class cj .

Similar to IG(fi), it is possible to compute χ2(fi) based on χ2
sum, χ2

wsum or

χ2
max.

2.4.4 The Text Classification Task

After representing text documents in a structured way, mining knowledge from

text data can actually be performed using traditional data mining and machine

learning techniques, such as those for classification and clustering. We introduce,

among others, a specific task of text mining, namely text classification.

Text classification is also known as text categorization. It is a supervised

learning technique that involves identifying the main themes of documents and

classifying them into a predefined set of categories with different class labels

[143, 30]. Some classifiers assign a single class label to a document, while others

may assign multiple class labels to it, a task known as multi-class or multi-label

classification, with the associated probabilities.

Text classification has a large variety of applications. For instances, it can

be used to classify documents based on their subject categories (topics) (e.g.

[60]), authorship (e.g. [26]), or genres such as Editorial, Advertisement, and

Review [27, 143, 28]. It can also be used for spam detection, with the class

labels being Spam and Not Spam [45]. We call these topic-based classification

in general. Sentiment analysis, sometimes referred to as sentiment classification,

is another application of text classification that deals with the polarity or the

sentimental orientation, referred to as SO hereafter, of the opinions contained

in texts. Class labels in such application represent sentiment classes, such as

Positive or Negative [115, 25].

There exist a variety of methods for performing text classification. The

multinomial Naive Bayes (NB), or Naive Bayesian, model [100], among others,

is a simple model that has been widely used for various text classification tasks.

Given a class cj and a feature fi ∈ F , the NB classifier estimates the conditional

probability that fi appeared in a document in class cj ∈ C, denoted by P(fi|cj),

from training data. P(fi|cj) is often computed with add-one (Laplace) smoothing

to prevent zero probabilities [74]. Formally, P(fi|cj) is defined as:

P(fi|cj) =
N(fi, cj) + 1∑|F |

k=1 N(fk, cj) + |F |
(2.28)

43

where N(fi, cj) is the number of times fi appeared in cj , and |F | denotes the

size of feature set in the training data.

The NB classifier then estimates the probability that a text document d

belongs to a class cj , denoted by P(d|cj), based on the features d contains. Note

that NB assumes that the occurrence of each feature fi is independent of the

occurrences of other features in d. It computes P(d|cj) as follows:

P(d|cj) = P(cj)
∏

fi∈Fd

P(fi|cj) (2.29)

where Fd is the set of features appeared in the document d. P(cj) is the prior

probability of cj in the training data. The NB classifier attempts to assign the

best class label to d after estimating ∀cj ∈ C : P(d|cj). In other words, it

classifies d based on the maximum a posteriori class cmap(d):

cmap(d) = arg max
cj∈C

P(d|cj) (2.30)

The NB classifier has been successfully applied to various classification

problems, including those that are related to the themes of this thesis, namely

collaborative recommendations [110, 141] and sentiment classification [115, 25].

It has been found to perform generally well despite its simplicity.

2.5 Sentiment Analysis of User-Generated Reviews

We now look into sentiment analysis, a specific application of text classification

that classifies texts based on the polarity or the SO (sentimental orientation) of

the opinions they contain.

Sentiment analysis is sometimes referred to as opinion mining, opinion

extraction, and affect analysis in the literature. Further, the terms sentiment
analysis and sentiment classification have been used interchangeably. It is,

however, necessary to distinguish between these two subtly different concepts. In

this thesis, hence, sentiment analysis refers to the complete process of analyzing,

extracting and understanding the sentiments being expressed in text documents,

whereas sentiment classification is the task of assigning class labels to the

documents, or segments of the documents, to indicate their polarity.

In what follows, we first describe what sentiment analysis is and how it is

different from traditional text classification. We then discuss how precedent

44

studies addressed the essential tasks in sentiment analysis.

2.5.1 Sentiment Analysis

Sentiment analysis has been viewed as an application of text classification, but

in fact, it falls at the crossroads of a few disciplines. They include computational

linguistics, information extraction, machine learning and text mining. Sentiment

analysis research therefore covers a broad range of topics. Examples include the

detection of subjectivity in texts, a research topic in computational linguistics

known as subjectivity analysis (e.g. [17, 166, 165]), the classification of the

polarity of opinion-bearing terms, sentences and/or documents (e.g. [52, 156,

157, 72, 61]), as well as extraction of opinions, product features, and the

relationships between them from reviews (e.g. [172, 133, 93, 120, 65]).

From a text classification perspective, sentiment analysis is the classification

of texts into sentiment classes that reflect the SO of the opinions contained in

the texts as noted. Most existing sentiment analysis algorithms perform classi-

fication based on bipolar classes, such as Positive or Negative [156, 115, 25].

More recent work extends binary sentiment classification to classify texts with

respect to multi-point rating scales, such as 1 to 5 “stars” or “points”, to indicate

the overall sentiments expressed in texts. This task is known as rating inference

in the literature [114, 41, 83, 177]. While rating inference aims at determining

one overall rating for a particular review, some researchers try to identify the

different aspects of a product being mentioned in a review, and infer one rating

for each of the identified aspects [149, 176, 145].

Sentiment analysis has been applied to various text genres, including open

answers in questionnaires [170], newsgroup articles [24], user-generated reviews

(e.g. [156, 115, 25, 61, 114]) and weblog posts (e.g. [20, 108]). It can be

applied at various levels as well, including word or phrase level, sentence level,

or document level [79]. Our discussions focus on studies that perform document

level sentiment analysis of user-generated reviews, which have been referred to

as product reviews or user reviews in previous work.

Sentiment analysis versus topic-based text classification

Sentiment analysis is different from topic-based classification in four aspects.

Firstly, some sentiment analysis algorithms are only interested in the following

45

two types of features: evaluative opinion phrases carrying users’ sentiments, and

item features6, which are terms that describe the attributes or characteristics of

the subject matters being reviewed (generally referred to as items regardless of

the domain concerned) [62, 84]. Sentiment analysis may therefore require an

additional feature extraction step in order to identify these from reviews.

Secondly, sentiment analysis involves the determination of opinion strength

[114, 81]. This is different from the determination of feature weights in topic-

based classification. For instance, both opinion words “brilliant” and “good”

carry positive sentiments, but the preference implied by “brilliant” is “more

positive” (i.e. stronger). Consider another pair of opinion words, “best” and

“worst”. Apparently, they have the same strength but represent opposite polarity.

Thirdly, class labels in sentiment analysis are sentiment classes that encode

a specific order, and pairwise preference between a given pair of class labels

may exist [112, 114, 177]. In the rating inference task, for instance, a review

rated as “5 stars” is obviously is more positive than a review rated as “1 star”.

This is a special property of sentiment analysis that does not exist in topic-based

classification.

Lastly, while text classification assigns class labels to documents, the outputs

of sentiment analysis algorithms can be of different forms. Some algorithms

aim at producing the classifications of terms, sentences or documents based on

their polarity, while others produce a summarization of the opinions expressed

in documents (e.g. [61, 91, 38]). There are also studies that focus on building

lexicons to facilitate sentiment analysis, such as those reported in [29, 67].

Key tasks in sentiment analysis

We use an example to illustrate the key tasks in a typical sentiment analysis or

rating inference process. The paragraph below is extracted from a movie review

on IMDb.

“This movie is quite boring I just felt that they had nothing

to tell However, the movie is not all bad the acting is

brilliant, especially Massimo Troisi.”
6In this thesis, “item features” refers to the attributes or characteristics describing the subject

matters being reviewed, while “features” generally refers to terms, including opinions and item

features, that are extracted from the reviews.

46

In this example, the user stated that the movie being reviewed is “quite

boring” but “the acting is brilliant”. Suppose we are addressing the rating

inference task, which aims at determining the overall sentiment implied by the

user given these positive and negative opinions, and mapping such sentiment

onto a fine-grained rating scale. This involves three key tasks. Firstly, interesting

information, especially opinion words, must be extracted from the review, which

is an unstructured, natural language text document. Secondly, the SO of the

expressed opinions must be identified. The strength of the SO of the opinions

should also be determined. For instance, both “brilliant” and “good” represent

positive sentiments, but the preference implied by “brilliant” is obviously much

stronger. Finally, a rating is inferred from a review to represent the overall SO

implied by the user (the user-specified rating of the above review was 5/10).

A complete review of the sentiment analysis literature is beyond the scope

of this thesis due to the very broad coverage of research topics in sentiment

analysis and its multidisciplinary nature. We focus on discussing how precedent

studies addressed the aforementioned key tasks in sentiment analysis in the next

subsections.

2.5.2 Extracting Interesting Features

This task identifies and extracts interesting features from reviews for the subse-

quent analysis as in standard topic-based classification. Interesting features in

sentiment analysis mainly include opinions and item features as noted. In exist-

ing sentiment analysis algorithms, identifying opinions is commonly done and

can be automated with the help of POS information. For examples, Turney [156]

defined a set of POS patterns containing adverbs and adjectives for extracting

opinion phrases, while Hu and Liu’s work [61, 62] considered adjectives to be

opinions. This is supported by subjectivity analysis research which suggests that

adjectives usually have significant correlation with subjectivity [17, 165]. Some

studies utilized human effort to aid opinion extraction. Das and Chen [24], for

example, manually defined a lexicon of opinion-bearing terms for financial news,

while Pang et al. [115] made use of human introspection with corpus statistics

to decide terms that may appear in user reviews.

Item features can also be identified based on POS tags, due to the observation

that item features are generally nouns or noun phrases [172, 83]. While Hu and

47

Liu [62] also made use of POS tags for this task, they adapted the idea of frequent

itemsets discovery in ARM [5] to item feature extraction. They considered each

frequent itemset, which is a set of nouns or noun phrases that appeared together

frequently in a sentence, to be an item feature. They also proposed methods

for pruning redundant item features and for identifying infrequent item features.

Studies with an emphasis on the linguistic perspective of reviews usually employ

more sophisticated extraction techniques. Opinion Observer [91], for example,

applies a language pattern mining technique to the item feature extraction task.

Popescu and Etzioni [120] described the OPINE system that makes use of Web

statistics and linguistic rules for finding explicit item features, including the

properties and parts, of a given product class.

Apart from studies that explicitly look for opinions and item features in

reviews, there are also studies that adopted the simple bag-of-words model for

representing reviews (e.g. [114, 112, 149]). Those studies treated all words or

phrases in reviews simply as features, and did not distinguish between opinion-

bearing terms, product features or other terms that do not express opinions.

2.5.3 Determining SO and Strength of Opinions

Most existing studies addressed the task of SO and/or opinion strength determi-

nation as a binary classification problem, in which opinions are classified into

two classes, such as Positive and Negative. We describe and comment on several

well-known algorithms for accomplishing this task in the following paragraphs.

Hatzivassiloglou and McKeown [52] proposed a supervised learning algo-

rithm for classifying a set of adjectives into two groups. Their algorithm makes

use of conjunctions, such as “and” and “but”, and morphological relationships

between words, such as “adequate” versus “inadequate”, to determine whether

a pair of adjectives has the same or has opposite SO. After partitioning the

adjectives into two groups, their algorithm computes the average frequency of

the adjectives in each group. Based on the observation that positive adjectives

are used more frequently than negative adjectives [52], their algorithm labels

the group of adjectives with higher average frequency as Positive, and the other

group as Negative. Note that their algorithm cannot determine the strength of an

adjective with respect to its estimated SO.

Turney [156] proposed the PMI-IR algorithm for the SO determination task.

48

PMI-IR is an unsupervised algorithm utilizing Pointwise Mutual Information

(PMI) between opinion phrases and IR (more specifically, a search engine). It

computes the SO of a phrase as the PMI between the phrase and the words

“excellent” and “poor”. Such information is determined based on statistics

gathered by a general-purpose search engine. Turney considered that a phrase

is likely to be positive (resp. negative) if it is strongly associated with the word

“excellent” (resp. “poor”) [156]. Taboada et al. [151] recently experimented

with the PMI-IR algorithm using Google as the search engine for computing SO.

They noted that the SO of an opinion word predicted at different times might

vary greatly. For example, the SO of the adjective “solid” ranged from -2.75

(Negative) to 0.75 (Positive). This might suggest that the accuracy of PMI-IR

depends greatly on the reliability, in terms of SO determination, of the index of

the search engine being used.

Dave et al. [25] proposed a method, which they referred to as their baseline

method, that determines the SO and strength of opinion words based on corpus

statistics. Given an opinion word vi and a sentiment class cj , their method first

computes p(vi|cj), the normalized frequency of vi in cj , as follows [25]:

P(vi|cj) =
N(vi, cj) + 1

∑|Vj |
k=1 N(vk, cj) + |Vj|

(2.31)

The above equation is similar to the one that a NB classifier uses to determine

P(fi|cj) (Eq. (2.28) on page 43), with the opinion word vi taking the role of the

feature term fi. In the equation, N(vi, cj) is the number of times vi was observed

in cj , and Vj denotes the set of opinion words in cj . Note that add-one smoothing

is applied to the above computation of normalized frequency, as Dave et al. noted

that doing so produced the best classification results in their experiments. Their

method then assigns a score to vi using the following equation [25]:

score(vi) =
P(vi|cj)− P(vi|cj)

P(vi|cj) + P(vi|cj)
(2.32)

Such a score is a measure of bias ranging from -1 to 1. More specifically,

their work was designed for binary outputs, and the set of sentiment classes C

used for performing classification only contains two members, cj and cj . For

a given word vi, the closer its score is to 1 (resp. -1), the stronger its opinion

strength is with respect to cj (resp. cj). This method is closely related to our

proposed method for SO and opinion strength determination, in the sense that

49

both methods are based on corpus statistics. Our proposed method, however,

does not restrict or makes any assumption about the number of classes in C.

The most commonly-used SO determination approach operates on the as-

sumption that semantic similarity between words implies their sentimental sim-

ilarity. Hu and Liu [61, 62] presented a bootstrapping algorithm that makes

use of a seed set containing opinion-bearing words having known SO, such as

“great” for Positive and “bad” for Negative. Their algorithm then estimates the

SO of a word vi based on the lexical relationships between vi and the words

in the seed set. Specifically, the SO of vi is assumed to be the same as its

synonyms’ and opposite to its antonyms’. Several other algorithms adopted

the same assumption. Kim and Hovy [72] described an algorithm capable of

determining the SO and strength of opinions. Given are a word vi, a sentiment

class cj ∈ C = {Positive, Negative}, and a set of words Vj that are members of

cj . Their algorithm computes P(vi|cj), which is the probability that vi belongs

to cj , based on the occurrence of the synonyms of vi that are in Vj . Kamps et

al. [68] determined the SO of adjectives based on distances between words in

WordNet [107], in which lexically related words are connected to each other. For

instance, the relative distance of vi to the two adjectives, “good” (Positive) and

“bad” (Negative), provides an estimate of how positive or negative vi is. Esuli

and Sebastian [28] also assumed that lexical relationships define a relation of

SO. Their method determines the SO of vi by classifying the glosses of vi, rather

than simply comparing vi to the predefined seed set.

To sum up, SO and opinion strength determination is commonly done by

utilizing the lexical relationships between words. Existing methods assume

that semantic similarity implies sentimental similarity, and we refer to such

methods as semantic-similarity-based methods. As we discuss in Chapter 5.2,

our analysis of a real world movie reviews dataset reveals that this assumption

may not hold in sentiment analysis. Further, the SO of an opinion word may not

agree with its generally understood SO. The word “frightening”, for example,

seems to express a negative feeling. When it appears in the sentence “Movie

X is frightening”, where Movie X is a horror movie, it may be representing a

positive comment towards Movie X. In view of the weaknesses of the existing

methods, we proposed a relative-frequency-based method for determining the

SO and strength of opinion words as described in Chapter 5.2.

50

2.5.4 Classifying Reviews

Various studies on sentiment analysis classify reviews with respect to bipolar

classes (e.g. [156, 115, 25, 61]). More recent studies, including ours, extend

sentiment analysis to classify reviews based on multi-point rating scales, a task

known as rating inference as noted (e.g. [114, 112, 41, 83]). In either group of

studies, there exist two major approaches to classifying reviews. The first ap-

proach works in two steps. It first determines the SO and/or strength of opinions,

for example, using any of the methods described in the previous subsection. It

then classifies a review d by aggregating the SO of the opinions d contains. d is,

for instance, classified as Positive if the dominating SO of its opinions is positive;

and Negative otherwise. Studies taking this approach include [156, 25, 83]. The

second approach is similar to topic-based classification, with the topics being

sentiment classes such as Positive and Negative in binary classification, or scalar

ratings for rating inference. This approach mainly works by representing d as a

document vector based on the bag-of-words model, and then classifying d using

machine learning algorithms [115, 114, 112, 41, 149]. We describe three related

studies ([115, 114, 41]), among others, taking this approach in the following

paragraphs.

Pang et al. [115] investigated whether binary sentiment classification can

be addressed as a topic classification task. They applied three machine learn-

ing algorithms, namely NB, Support Vector Machines (SVMs) and Maximum

Entropy, to movie reviews. They attempted to incorporate various features of

the reviews into the bag-of-words model, including the positions and the POS

of words in the reviews, but the performance of the three algorithms was found

inferior to that reported for topic classification. Pang et al. therefore concluded

that sentiment classification is more difficult than topic classification, and that

discourse analysis of reviews is necessary for more accurate sentiment analysis.

In view of these, we attempted to identify features representing the overall

recommendations of users in reviews as a kind of discourse analysis in our work.

Pang and Lee [114] formulated rating inference as a metric labeling problem.

The main idea of their work is to minimize the difference between the predicted

rating of a test review and the ratings of the reviews that are similar to the test

review. Formally, their metric labeling problem seeks to minimize [114]:

51

∑
i∈Ω


−π(di, r̂i) + α

∑

j∈knn(di)

∆(r̂i, rj)sim(di, dj)


 (2.33)

where Ω denotes the set of unlabeled (test) review indices, di and dj are reviews,

π(di, r̂i) is called an “initial label preference function” that assigned a predicted

rating r̂i to the review di, α is a weight coefficient, knn(di) is the k-nn of di

according to the similarity function sim(di, dj), and ∆(r̂i, rj) is a distance metric

between the predicted rating of di and the actual rating of its neighbor dj .

Pang and Lee experimented with two n-ary classifiers, namely One-Versus-

All (OVA) SVM and linear Support Vector Regression (SVR), as π(di, r̂i), for

determining the predicted rating r̂i for the test review di. Further, they proposed

Positive-Sentence Percentage (PSP) as the similarity function sim(di, dj). PSP is

defined as the number of positive sentences divided by the number of subjective

sentences in a review. Pang and Lee evaluated their work on four author-

specific corpora of movie reviews using a 3-point and a 4-point rating scale.

Results showed that their metric-labeling algorithm based on PSP improved the

performance of OVA SVM and SVR in most experimental settings. In the 4-point

case, however, the performance of their algorithm was not statistically better than

that of SVR.

Pang and Lee noted that formulating rating inference as a metric labeling

problem allows for transductive semi-supervised learning, meaning that the

nearest neighbors of a test review can come from both the training and the

test sets [114]. Based on this idea, Goldberg and Zhu [41] proposed a graph-

based semi-supervised learning algorithm for rating inference. Given are a

set of n reviews d1, d2, ..., dn. Without loss of generality, the first θ < n

reviews are labeled with ratings r1, r2, ..., rθ ∈ C, and the rest are unlabeled.

C = {c1, c2..., c|C|} is the set of numerical sentiment classes, and c1 < c2 <

... < c|C| ∈ R. Goldberg and Zhu’s work aims at finding a rating function

f : di → R that gives a rating f(di) to review di. They addressed this as an

optimization problem that minimizes the following loss function L(f) [41]:

∑
i∈Θ

M(f(di)− ri)
2 +

∑
i∈Ω

(f(di)− r̂i)
2

+
∑
i∈Θ

∑

j∈knnΘ(di)

α ∗ sim(di, dj)(f(di)− f(dj))
2

52

+
∑
i∈Ω

∑

j∈k′nnΩ(di)

β ∗ sim(di, dj)(f(di)− f(dj))
2 (2.34)

where Θ and Ω are labeled and unlabeled review indices respectively, ri is the

observed rating of di, r̂i is the predicted rating assigned to di by a separate

label preference function f(di), which is equivalent to π(di, r̂i) in Eq. (2.33),

knnΘ(di) and k′nnΩ(di) are the nearest k labeled neighbors and k′ unlabeled

neighbors of di respectively, α and β are weight coefficients assigned to labeled

and unlabeled neighbors respectively, sim(di, dj) measures the similarity be-

tween the two reviews di and dj as in Eq. (2.33), andM is a weight representing

the influence of ri. If M→∞, then f(di) = ri becomes a hard constraint.

Eq. (2.34) allows for transductive semi-supervised learning as the neighbors

of a review di can be labeled or unlabeled. A small loss thus implies that the

rating of a test review is close to the ratings of its labeled neighbors as well

as unlabeled neighbors [41]. Goldberg and Zhu described a special case of

L(f) when β = 0 and M → ∞, in which unlabeled neighbors of di does not

contribute to the rating inference process. In such case, for an unlabeled review

di, the optimization problem becomes:

i ∈ Ω : Lβ=0,M→∞(f(di)) = (f(di)−r̂i)
2+

∑

j∈knnΘ(di)

α·sim(di, dj)(f(di)−rj)
2

(2.35)

This equation corresponds exactly to the metric labeling formulation of rating

inference in [114], except that this equation considered the squared difference

between actual and predicted labels, whereas that of Pang and Lee [114] used

the absolute difference.

Goldberg and Zhu tested their work on the four author-specific corpora used

in [114] with respect to a 4-point rating scale, using SVR as the rating func-

tion f(). They reported results based on two similarity measures sim(di, dj),

namely PSP and Word Vector (WV), a measure computed as the cosine between

weighted word vectors of di and dj . They demonstrated that their graph-based

semi-supervised learning algorithm with PSP outperformed Pang and Lee’s work

when the numbers of labeled training reviews were relatively limited, and that

unlabeled reviews can help improve classification accuracy.

53

Chapter 3

Alleviating Data Sparseness by
Fuzzy Association Rule Mining and
Item Taxonomies

3.1 Introduction

Information overload has led to the popularity of recommender systems, which

receive information about users’ needs, and recommend to them items that

may fit their needs. As discussed in Chapter 2.1, there are three types of

recommender systems: content-based, CF-based and knowledge-based. CF is

generally acknowledged to be the most promising and successful technique in

recommender systems, providing personalized recommendations to users based

on their previously expressed preferences and those of other similar users. There

has been considerable research into CF, yet the issue of data sparseness, the

cold-start problem and the non-transitive association problems remain open

challenges.

This chapter presents our work on alleviating data sparseness in CF based

on the ARM (association rule mining) paradigm with the use of item tax-

onomies, and describes the proposed CF framework based on Fuzzy Associ-

ation Rules And Multiple-level Similarity (FARAMS). FARAMS is a model-

based CF framework that exploits the similarities between items and those

between item categories for making personalized recommendations. Given is

a taxonomy, or is-a hierarchy, of domain items, in which items are classified

into different categories. Figure 3.1 depicts an example of an item taxonomy

54

having a multiple-level hierarchical structure, with items appearing at the lowest

level of the hierarchy, and categories appearing at higher-levels represent more

general concepts. Given such a taxonomy, FARAMS mines association rules

between items (hereafter, item-level association rules) and those between their

categories (hereafter, category-level association rules) from users’ preference

data. FARAMS always attempts to recommend items to users based on item-

level association rules. However, when the known preferences of the active user

are insufficient for generating recommendations, FARAMS utilizes category-level

association rules for determining recommendable items for the active user.

Figure 3.1: Example of an item taxonomy.

The use of ARM-based techniques for CF has a number of desirable out-

comes. Firstly, item taxonomies can easily be integrated into the ARM process as

shown in [150, 50]. The fact that relationships between items are already implicit

in their taxonomies may help reduce the non-transitive association problems

[69]. Secondly, multiple- or cross-level ARM applies association between item

categories to address data sparseness, resulting in improved recall rates of Top-

N recommendations as shown in [71]. Thirdly, the use of item taxonomies in

ARM techniques increases the number of recommendable items, which are items

that can be recommended by a recommender system, to users for whom only

limited known preference data is available. Finally, ARM techniques provide the

flexibility to, if necessary, easily discover associations between content-related

attributes and user ratings on items. This is not considered in FARAMS, but is

used for addressing the cold-start problem in CF as discussed in the next chapter.

The rest of this chapter is organized as follows. The next section briefly

describes related work on ARM-based CF. Chapter 3.3 details the design of

FARAMS. Chapter 3.4 discusses evaluation results on FARAMS, and finally

55

Chapter 3.5 summarizes our contributions in this chapter.

3.2 Related work on ARM-based CF

We described in Chapter 2.3.2 that Lin et al. [89] proposed an Adaptive-Support

Association Rule Mining (ASARM) algorithm for CF. ASARM mines rules for

one target item at a time, and automatically adjusts the minimum support value

to mine a user-specified number of rules. Numerical ratings are discretized into

two classes, Like and Dislike, based on some chosen threshold value. This is

done to support the creation of a transactional representation of the U×I ratings

matrix in CF to facilitate the rule mining process.

Kim and Kim described another ARM-based CF algorithm in [71]. Their

algorithm, known as MAR, applied association rules between categories in

multiple-level item taxonomies to address data sparseness. They showed that by

taking advantage of item taxonomies, the MAR algorithm increased the number

of recommendable items for those users whose known preferences are otherwise

so limited that it is not possible to produce recommendations. The rating a user

has given an item is classified as Like if it is above the average rating given on

all items by that user in [71].

In summary, ASARM mines rules for CF based on an adaptive minimum

support strategy, but it does not consider item taxonomies in the mining process.

On the other hand, the MAR algorithm utilizes relationships between categories

in item taxonomies, but it mines rules for all items in the database. Consequently,

recommending less popular items will be more difficult according to Lin et al.

[89]. Note that both ASARM and MAR may suffer from the sharp boundary

problem, which arises due to the boolean discretization of ratings. FARAMS can

be considered an integration of the ASARM and MAR algorithms, enhanced with

fuzzy logic for modeling numerical ratings.

3.3 The FARAMS Framework

The FARAMS framework adopted some existing ARM techniques, including

ASARM [89] and MAR [71], to generate collaborative recommendations. These

techniques, when applied to CF, are integrated with classification techniques

for handling quantitative ratings data. FAR mining, which is a variation of

56

the classical ARM techniques, is used to address the resulting sharp boundary

problem in existing techniques [48].

FARAMS is carried out in four major steps. The first step is data preprocess-

ing, in which data are prepared in a format that is suitable for the subsequent

tasks. The second step mines item-level and category-level association rules

from user preferences given a taxonomy of domain items. Association rules that

satisfied user-specified interestingness constraints, such as minimum support and

confidence values, are stored in the system. They serve as a compact model of

user preferences, and are used when users request recommendations. The third

step is prediction computation, which determines relevant rules for a user and

assigns predicted preferences to items recommended by those relevant rules. The

fourth step generates recommendations. If the number of recommendable items

is smaller than the desired number of recommendations, FARAMS considers

category-level similarities among items to predict user preferences for items that

are not covered by item-level association rules. The following sections provide

further details about the tasks involved in each step.

3.3.1 Data Preprocessing

The data preprocessing step involves four tasks. They include transforming

rating matrixes into transactional databases, computing user preferences for

categories of domain items, fuzzifying user preferences for FAR mining and

transforming transactions into TID-lists to allow for efficient support counting.

Transforming ratings matrixes into transactional databases

CF ratings data are usually represented as a ratings matrix as noted. They have to

be transformed into a transactional database for ARM tasks. We use an example

to illustrate the transformation process based on the sample ratings matrix R in

Table 2.3 (page 34). Table 3.1 (a) shows a transactional representation of R.

In the table, each transaction consists of a transaction identifier (TID), which is

the User ID of the user to which the transaction belongs, as well as the IDs and

ratings of the items that have been rated by that user.

57

Table 3.1: Transforming user preferences for (a) items and (b) item categories

into transactions.
TID Items

u1 i1(1), i2(4), i5(2)

u2 i4(5)

u3 i1(5), i2(2), i3(1), i5(5)

u4 i1(5), i2(1)

TID Categories

u1 [g1](4), [g2](2), [g3](1.5), . . .

u2 [g5](5), [g9](5), . . .

u3 [g1](2), [g2](5), [g3](5), . . .

u4 [g1](1), [g3](5), [g4](5), . . .

(a) (b)

Table 3.2: A relation matrix of items (e.g. movies) and their categories (e.g.

movie genres).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

i1 0 0 1 1 0 1 1 0 0 0

i2 1 0 0 0 1 0 0 0 1 1

i3 0 0 0 0 1 0 0 1 0 1

i4 0 0 0 0 1 0 0 0 1 0

i5 0 1 1 1 0 1 1 1 1 0

Computing user preferences for item categories

FARAMS makes use of multiple-level similarities (hereafter referred to as MS),

which are implicit in item taxonomies, among items to generate recommen-

dations for users whose known preferences are so limited such that sufficient

recommendations cannot be produced. Such MS among items are encoded in

the relationships between items and item categories in a given taxonomy or is-a

hierarchy of domain items. Note that user preferences for item categories are

not readily available in CF datasets as users in general gave ratings on items

rather than item categories. We therefore need to compute user preferences for

categories from the original transactions containing user preferences for items,

so that rules involving categories can be mined.

Suppose items in the sample rating matrix in Table 2.3 are organized into a

set of 10 categories, G = {g1, g2, ..., g10}. Table 3.2 is a sample relation matrix

A of items, such as movies, and their categories, such as movie genres. In the

matrix, rows and columns represent items and categories respectively. A value

Amn in the matrix is 1 if the mth item belongs to the nth category.

58

Table 3.3: Transactions containing 〈Item, Fuzzy Set〉 pairs and normalized

membership degrees.

TID Items

u1 〈i1, D〉(1), 〈i2, L〉(0.5), 〈i2, N〉(0.33), 〈i2, D〉(0.17), 〈i5, L〉(0.17),

〈i5, N〉(0.33), 〈i5, D〉(0.5)

u2 〈i4, L〉(1)

u3 〈i1, L〉(1), 〈i2, L〉(0.17), 〈i2, N〉(0.33), 〈i2, D〉(0.5), 〈i3, D〉(1), 〈i5, L〉(1)

u4 〈i1, L〉(1), 〈i2, D〉(1)

A user may have preferences for multiple categories, and ratings of items

in the same category can be different. A user’s preference for a category is

estimated as the average rating (s)he gave to items in that category. In the sample

transactions shown in Table 3.1(b), a category ID is enclosed in square brackets,

followed by the average rating the user has given the items that belong to it.

Fuzzifying ratings

Ratings are fuzzified in four steps. These steps are the same for both items

and categories. First, the fuzzy sets and membership functions for ratings are

determined. Second, items in transactions are expanded into 〈Item, Fuzzy Set〉
or 〈Category, Fuzzy Set〉 pairs. Third, the degree of membership of each rating

is determined with respect to each fuzzy set. Finally, the fuzzified ratings are

normalized so that each transaction makes the same contribution, which is 1

(Chapter 2.3.3 on page 32).

Table 3.3 extends Table 3.1(a) to show the resulting fuzzified transactions

given the fuzzy sets and membership functions in Figure 2.2(a). The table

does not show 〈Item, Fuzzy Set〉 pairs with membership degrees of 0 for better

readability.

Transforming transactions for efficient support counting

FARAMS obtains the support counts of itemsets by making multiple passes

over the data as in [89]. A major optimization we made in our approach is

that the transactional representation of ratings matrix described in the previous

subsections is further transformed into a vertical TID-list format [174]. In

59

such format, an 〈Item, Fuzzy Set〉 pair takes the role of a user in the original

transactional representation. Each pair is associated with a list of users who

rated the pair, and the corresponding fuzzified ratings it received from the users.

Table 3.4 shows an illustration of the vertical TID-list representation of user

preferences for items. This transformation enables efficient support counting of

itemsets as described in the next subsection.

TID Items

〈i1, L〉 u3(1), u4(1)

〈i1, D〉 u1(1)

〈i2, L〉 u1(0.5), u3(0.17)

〈i2, N〉 u1(0.33), u3(0.33)

〈i2, D〉 u1(0.17), u3(0.5), u4(1)

... ...

Table 3.4: Transformed transactions in the vertical TID-list format for efficient

support counting.

3.3.2 Mining User Preferences

The overall structure and flow of our algorithms for adjusting the minimum

support value and for mining user preferences are similar to those described in

[89]. This section therefore focuses on the adaptations and extensions made

in the association rule miner of FARAMS. We first describe several issues we

considered when designing the mining algorithm, followed by the description of

the mining algorithm of FARAMS.

Association mode used

ARM-based CF frameworks may employ two association modes, namely user

association and item association. The ideas underlying these are equivalent to the

ideas of user- and item-based CF. User association identifies similarities between

users and recommends items preferred by users similar to the active user. Mining

user associations produces rules that are in the form of “〈u, L〉 → 〈a, L〉”(recall

that L represents the fuzzy set Like), where u and a are users. For a target item

60

t that has not been rated by the active user a, this rule fires if t has been liked by

user u [89]. Item t will then be considered a recommendable item for user a.

Item association identifies similarities between items, and is used in [71]

and [90]. It mines rules that are in the form of “〈i, L〉 → 〈t, L〉”, where i

and t are items. This rule fires if the active user a has liked item i but has

not rated t previously. Item t in the head of the rule will then be considered

a recommendable item for user a. This idea can be applied to categories by

treating a category as an item. FARAMS exploits item associations to facilitate

the use of item taxonomies in the recommendation process. As such, FARAMS

is an item-based recommendation algorithm.

Defining candidate 1-itemsets

As FARAMS mines rules for one target item (t) at a time, association rules are

generated using only itemsets containing t. Candidate 1-itemsets can therefore

be limited to the “related items”, defined as the union of all items that appeared in

transactions containing t. FARAMS mines rules in an apriori-like fashion, which

iteratively generates κ-itemsets by joining two (κ-1)-itemsets. Once the related

items are determined in the first iteration, their associated TID-lists serve as a

reduced database for support counting in the subsequent iterations.

It is expected that taking into account only “related items” will not affect

the results of the rule mining process. This is because the downward closure

property of support values states that all subsets of a frequent itemset must be

frequent [6]. If an item did not appear with item t, and as rules are generated

using only itemsets containing item t, any κ-itemset, where κ > 1, containing

that item and item t must be infrequent. The item can therefore be excluded

from consideration in the first place.

Computing fuzzy support values

Traditional support counting methods obtain the fuzzy support count of an

itemset by scanning the entire transactional database. In our work, the vertical

TID-list representation of user preferences allows FARAMS to scan the database

more efficiently. FARAMS only needs to perform simple joining operations and

inspect κ records in the database in order to compute the fuzzy support of a κ-

itemset [174]. We illustrate this with the following examples based on Table 3.5.

61

Example 3.1 Computation of FS〈i1,L〉, the fuzzy support of the 1-itemset 〈i1, L〉:
FS〈i1,L〉 can be found efficiently by inspecting only one record (the first row of

the table), and the result is (1 + 1) = 2.

Example 3.2 Computation of FS{〈i1,L〉〈i2,D〉}, the fuzzy support of the 2-itemset

{〈i1, L〉〈i2, D〉}: before computing FS{〈i1,L〉〈i2,D〉}, FARAMS inspects the trans-

actions of both items and performs a simple join operation. As shown in Table

3.5, u3 and u4 appeared in the transactions of both items. The fuzzy support

count of the 2-itemset can then be determined, and is found to be equal to (1 *

0.5) + (1 * 1) = 1.5.

TID Items

〈i1, L〉 u3(1), u4(1)
〈i2, D〉 u1(0.17), u3(0.5), u4(1)

Table 3.5: TID-lists of 〈i1, L〉 and 〈i2, D〉.

The mining algorithm

Algorithms 3.3.1 and 3.3.2 describe our mining algorithm and one of its subrou-

tines, find frequent 1 itemsets. As noted, our algorithm mines rules for a target

item t at a time. Given t and the TID-list representation of all items (TID),

the algorithm first determines the list of related items that are frequent (I1) and

their associated TID-lists (TIDt) using Algorithm 3.3.2. It then proceeds to

find frequent κ-itemsets (Iκ), where κ ≥ 2, in an iterative manner. In each

iteration, association rules (Rκ) are generated from the frequent κ-itemsets,

and at most maxNumRules association rules having the highest support values

(Rt) are returned. If the total number of rules mined in the κ iterations is

larger than maxNumRules, the aboveMaxNumRulesFlag is raised, which will

then cause the rule mining process to terminate. After all the iterations, the

belowMinRulenumFlag is raised if the total number of rules mined is smaller

than minNumRules.

The subroutines in Algorithm 3.3.1 are outlined as follows:

1. find frequent 1 itemsets(t, T ID): This subroutine, as described in Al-

gorithm 3.3.2, determines the set of frequent 1-itemsets (I1) and their

62

Algorithm 3.3.1 The mining algorithm.

Input: TID, t, minSupp (minimum support), minConf (minimum confidence),

[minNumRules, maxNumRules], maxRuleLength (maximum number of items in a

rule’s body).

Output: Set of association rules (Rt), so that each rule in Rt: (1) has t in its head,

(2) with no more than maxRuleLength items in its body, and (3) satisfies the minSupp

and minConf constraints. The number of rules in Rt is at most maxNumRules. If

the number of rules in Rt is above maxNumRules (resp. below minNumRules), raise

the aboveMaxNumRulesFlag (resp. belowMinNumRulesFlag).

Steps:

1. (I1, TIDt) ← find frequent 1 itemsets (t, TID);

2. κ← 2;

3. for (κ ≤maxRuleLength + 1) and (Iκ−1 6= ∅) and (not

Rt.aboveMaxNumRulesFlag) do

4. candκ = gen candidate (Iκ−1);

5. for each c ∈ candκ do

6. c.fuzzySupport = compute fuzzy support (c, TIDt);

7. if (c.fuzzySupport ≥ minSupp) then

8. add c to Iκ;

9. end if

10. end for

11. Rκ = gen rules (Iκ, t, minConf);

12. if (|Rt|+ |Rκ| >maxNumRules) then

13. set Rt.aboveMaxNumRulesFlag;

14. end if

15. Rt = maxNumRules rules with highest support from Rt.rules ∪Rκ.rules;

16. κ ← κ + 1;

17. end for

18. if (|Rt| <minNumRules) then

19. set Rt.belowMinNumRulesFlag;

20. end if

21. return (Rt);

63

Algorithm 3.3.2 The find frequent 1 itemsets subroutine.

Input: t, TID.

Output: Set of frequent 1-itemsets (I1) that are related to t, and their

associated TID-lists (TIDt).

Steps:

1. TIDt ←= ∅
2. Ut ← {users who had rated t};

3. for each u ∈ Ut do
4. Iu ← {items rated by u};

5. cand1 ← cand1 ∪ Iu;

//cand1 denotes the candidate 1-itemsets that are related to t

6. end for
7. for each c ∈ cand1 do
8. c.fuzzySupport = compute fuzzy support (c, TID);

9. if (c.fuzzySupport ≥ minSupp) then
10. add c to I1;

11. add TID-list of c to TIDt;

12. end if
13. end for
14. return (I1, TIDt);

64

associated TID-lists (TIDt) given the target item t and the TID-list of

all items (TID). TIDt serves as a reduced database for support counting

in the subsequent iterations.

2. gen candidate(Iκ−1): This subroutine generates the candidate κ-itemsets

(candκ) based on Iκ−1 using the Apriori-gen function proposed in [6].

3. compute fuzzy support(c, T IDt): This subroutine determines the fuzzy

support value of the candidate itemset c. An itemset is added to Iκ if its

fuzzy support value is above minSupp.

4. gen rules(Iκ, t, minConf): This subroutine produces association rules

having t as their heads using Iκ. The subroutine returns Rκ, which is

the set of rules having confidence values above the predefined minimum

(minConf).

The subroutine in Algorithm 3.3.2 is outlined as follows:

1. compute fuzzy support(c, T ID): This subroutine determines the fuzzy

support value of the candidate 1-itemset c. It is the same as the com-
pute fuzzy support(c, T IDt) subroutine in Algorithm 3.3.1, except that

the set of all TID-lists (TID) is used for support counting since TIDt is

not yet determined at this stage.

The same procedures are used for mining association rules from both product-

level items and categories. The association rules mined in this step are stored in

the system. They will be used when users request recommendations.

3.3.3 Predicting Scores of Recommendable Items

When the active user a requests recommendations, the system finds the list of

items user a has previously rated, based on which the relevant rules, which are

rules that fire for him or her, are determined. Items in the heads of the relevant

rules are considered recommendable items for user a, and are assigned predicted

scores based on some interestingness measures of the relevant rules [89]. An

item may appear in the heads of more than one rule. After all relevant rules are

determined, the interestingness measures of the rules that recommend the same

item are summed up to obtain the item score predictions.

65

As noted, indicators of the interestingness of a rule, such as support and

confidence values, are used as the basis for item score predictions. Lin et

al. [89], for example, made use of the product of a relevant rule’s support

and confidence, while Kim and Kim [71] only considered a rule’s confidence.

The correlation value (CORR), which measures the correlation between the

body and the head of a rule, may also be used as an interestingness indicator.

The choice of interestingness indicators for predicting scores of recommendable

items is application- and dataset-specific. We therefore decided the appropriate

interestingness indicators to use empirically in Chapter 3.4.3.

3.3.4 Generating Recommendations

After predicted scores are assigned to recommendable items, the recommenda-

tion process proceeds to determine which of the items are actually recommended

to the active user a. This section describes the how FARAMS generates recom-

mendations, as well as when and how MS (multiple-level similarity as noted) is

utilized. Then, it describes the recommendation algorithm used in FARAMS.

Recommendation strategy

There exist two main strategies for generating recommendations. The first

strategy recommends items with predicted scores above a score threshold. The

threshold applied in [89], for example, is a linear function of the number of

rules, but the reason for choosing such a value is unclear. The second strategy

recommends a fixed number of items and is known as Top-N recommendations.

This strategy is used in [71]. Both strategies rank items in descending order of

their predicted scores, so that items with higher scores are recommended first.

There are two reasons why FARAMS uses the Top-N approach to recommend

items. First, the number of recommended items is fixed and therefore control-

lable. Secondly, Top-N helps determine when MS should be used.

Item-level association rules are usually more specific and relevant to a user’s

preferences than the preferences predicted using more general, category-level

association rules [71]. Therefore, when computing the predicted scores of

recommendable items, we assign a weight wl to the interestingness score of the

relevant rules, where l is equal to the level of the association rules used to reflect

the generality of the rules. Specifically, level-0 means the item-level, level-1

66

means the first level categories, and so on (Figure 3.1).

Recommendations using multiple-level similarity (MS)

MS is utilized to produce recommendations when the known preferences of the

active user are very limited and, consequently, the number of recommendable

items may be very limited. This is done as follows:

1. Find the preferred categories Ga of the active user.

2. Determine association rules that fire for Ga (rules containing Ga in their

bodies).

3. Find rules containing items in those associated categories and assign pre-

dicted scores to items in their heads. The predicted scores are weighted by

wl and user a’s preferences for those categories. The predicted preference

for an item that belongs to more than one category is estimated as the

average of the preferences user a has on its categories.

The recommendation algorithm

Algorithm 3.3.3 describes the recommendation algorithm, or recommender, of

FARAMS. Given user a and his/her previously rated items (Ia), the algorithm

determines the set of relevant association rules, which are rules that fire for

user a, from the rule base. The items in the heads of the relevant rules are

assigned predicted scores if they are not in Ia. If the number of recommendable

items is smaller than the predefined Top-N value (N), MS between items are

used for determining more recommendable items for the active user. Finally,

the recommendable items (Ir) are sorted in descending order of their predicted

scores, and the N items having the highest scores are recommended to user a.

The subroutines in the algorithm are outlined as follows:

1. recommend(a, Ia): This subroutine returns a list of recommendable items

(Ir) and their predicted scores for the active user (a). Ia denotes the set of

items rated by user a. A rule in the rule base is considered relevant if Ia

contains all items in the rule’s body but not its head.

2. recommend by MS(a, Ia, Ir): This subroutine determines the preferred

categories of user a and uses them to generate recommendations. The

67

Algorithm 3.3.3 The recommender of FARAMS.

Input: The active user a, the set of items rated by user a (Ia), and the

maximum number of recommendations (N).

Output: The set of recommended items (Ir) for user a.

1 Ir = recommend(a, Ia);

2 if (|Ir| < N) then

3 Ir = recommend by MS(a, Ia, Ir);

4 end if

5 sort(Ir); // in descending order of their scores;

6 return (top N items in Ir);

procedures for determining relevant rules and recommendable items are

similar to those described in (1).

3. sort(Ir): This subroutine ranks the recommendable items in descending

order of their scores.

3.4 Experimental Results

We carried out several experiments to evaluate the performance of FARAMS,

and to compare it with some related work. In this section, we first describe

the datasets used and the settings of the experiments and then provide the

experimental results.

3.4.1 Datasets

We used three CF datasets, or their subsets, as test-beds, depending on the

purposes of our experiments. The datasets include:

1. MovieLens: The MovieLens 100k dataset7 contains 100,000 ratings of

1,682 movies from 943 users. Ratings are discrete values from 1 to

5. Movies in the dataset are categorized into a two-level hierarchical

7MovieLens 100k Ratings Data Set: http://www.grouplens.org/node/73

68

structure, with movies as items and movie genres as categories. This

dataset is used in several experiments as described in the subsequent

subsections.

2. Jester: The Jester dataset contains 4.1 million ratings of 100 jokes from

73,421 users. Ratings are real values ranging from -10 to 10 [43]. A

subset containing 49,502 ratings of 100 jokes from 2,000 users were used

to evaluate the effect of fuzzified ratings on recommendation quality.

3. EachMovie: The EachMovie data set contains 2,811,983 ratings of 1,628

movies entered by 72,916 users [101]. Ratings were recorded on a six-

point numerical scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Movies are categorized

into a two-level hierarchical structure. A small and dense subset of this

dataset, containing ratings from 1,100 users who have rated more than 100

movies, was used for comparison with the ASARM algorithm [89].

Ratings in the above datasets were fuzzified for performing various experi-

ments. It is possible to learn fuzzy sets and membership functions from training

data [36, 59]. Since the focus of this work is not on modeling user preferences,

we used the simple fuzzy sets and membership functions shown in Figure 2.2

(page 33), as described later in the individual results and discussions. In fact, we

performed a set of experiments using different membership functions and found

little sensitivity of results, especially for the MovieLens and EachMovie datasets

which have small rating scales.

3.4.2 Experimental Settings

Parameters

We now describe the values of three parameters we used in the experiments. The

first parameter is the desired range of the number of mining rules [minNumrules,

maxNumrules]. We adopted the range [10,100] as suggested in [89] for mining

item-level association rules. For categories, we adopted the range [1, |G|-1],

where |G| equals to the number of categories in the corresponding dataset. We

did not impose any confidence threshold due to the limited number of desired

rules to be mined. Given the automatically determined minSupp, we considered

the rules having the highest confidence values and positive correlation values to

be interesting.

69

The second parameter is the consideration of positive and negative pref-

erences data. In FARAMS, it is possible to obtain Like, Neutral and Dislike

associations: for example, “〈i1, L〉, 〈i2, N〉 → 〈i3, D〉”. Lin et al. [89] found that

employing both Like and Dislike associations does not outperform employing

Like associations alone. We therefore adopted the same strategy.

The third parameter is the weight assigned to level-l association rules. Items

in the MovieLens and EachMovie datasets are organized into similar 2-level

taxonomies. The weights assigned to level-0 (item-level) and level-1 (category-

level) association rules are 0.9 and 0.1 respectively, as suggested in [71].

Method

We employed the all-but-1 protocol in this study, following the setting in [71].

Specifically, for each active user a in our dataset, all except 1 ratings data given

by a are used as the training set, based on which association rules are mined

for generating recommendations. We created five training-test splits randomly,

repeated all experiments on the five splits, and reported the average results

obtained. In each trial of each experiment, a list of Top-N recommendations

was provided to each active user a. If the hidden item in the test set was on the

recommendation list, it is called a hit. The recall rate of an algorithm is defined

as the number of hits over the number of hidden items in the test set.

3.4.3 Results and Discussions

We now discuss our results, which demonstrate the effects of various factors on

the recommendation quality as measured by the algorithms’ recall rates.

Rule length

Rule length refers to the number of items contained in the body of a rule. In

[89], a rule’s body can contain multiple items, while in [71], it can only contain

a single item. Figure 3.2 shows the recall rates achieved using both approaches

in FARAMS as applied to the MovieLens dataset. SGL represents the recall rates

of the algorithm having a maximum rule length of 1. MUL-8 represents that of

the algorithm having a maximum rule length of 8. Such a setting has been found

to perform well in [89].

70

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Top−N

R
ec

al
l

SGL
MUL−8

Figure 3.2: Recall rates achieved using different maximum rule lengths.

Figure 3.2 shows that the performance of SGL is better than that of MUL-

8 for all values of N . This indicates that rules containing a single body item

produce better recommendations. One reason for this may be that rules are

easier to fire when they are shorter, so that a larger number of applicable rules

as well as recommendable items can be found for the active user, resulted in

a lower demand for the use of MS to produce recommendations. As stated

in Chapter 3.3.4, item-level association rules are usually more relevant to user

preferences, and therefore produce better predictions. Given these results, in the

remaining experiments we use 1 as the maximum rule length.

Scores of recommendable items

Chapter 3.3.3 describes the various interestingness measures of association rules

that can be used for predicting the scores of recommendable items. This

experiment helps us determine the appropriate interestingness measures that

should be adopted. The measures we evaluated include the fuzzy confidence

(C), the product of fuzzy support and fuzzy confidence (SC), and the correlation

(CORR) of association rules. Figure 3.3 shows the results of this experiment.

As shown in Figure 3.3, the best results are produced by computing predicted

scores using fuzzy confidence (C). While support indicates a rule’s statistical

significance in the entire database, confidence indicates the interestingness of

the rule head with respect to the rule body. For an association rule that fired for

71

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Top−N

R
ec

al
l

C
SC
CORR

Figure 3.3: Recall rates achieved using different interestingness measures for

predicting the scores of recommendable items.

a given user, since we already know that the user has liked the items in its body,

it is reasonable to choose to use confidence to measure the probability that the

user will like the head. We adopt C for predicting the scores of recommendable

items in the subsequent experiments.

Effects of multiple-level similarity

Figure 3.4 compares the performance of FAR (that is, without using MS) and

FARAMS. When N is equal to 10 and 50, FAR and FARAMS produce very similar

recall rates. When N is equal to 20, 30 and 40, FARAMS outperforms FAR by

around 5.5%, 3.2% and 3.1% respectively. Such results suggest that the use of

MAR helps alleviate data sparseness in CF dataset by increasing the number of

recommendable items to users, but the improvement is small in the MovieLens

dataset. This demonstrates that category-level association rules are less relevant

to users’ preferences.

Effects of fuzzy association rules

Two sets of experiments were performed to evaluate the effects of fuzzy asso-

ciation rules on recommendation quality using the MovieLens and the Jester

datasets. Recall that a fuzzy association rule is in the form of “〈i1, L〉 → 〈i2, L〉”,

or “〈g1, L〉 → 〈g2, L〉”, where i1 and i2 are items, g1 and g2 are categories, and

L represents the Like fuzzy set in these examples. As the MovieLens dataset

72

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Top−N

R
ec

al
l

FARAMS
FAR

Figure 3.4: Recall rates achieved with and without utilizing multiple-level

similarity between items.

contains discrete ratings in a small rating scale, it is expected that the effect

of the sharp boundary problem would be small and, as a result, using fuzzified

ratings may not improve recommendation results. The Jester dataset, in contrast,

contains continuous ratings in a larger rating scale. The sharp boundary problem

is believed to be more significant than in the MovieLens dataset.

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Top−N

R
ec

al
l

FARAMS
MS

Figure 3.5: Recall rates achieved with and without using fuzzy association rules

on the MovieLens dataset.

For the MovieLens dataset, we used the membership functions in MF(A)

(Figure 2.2(a)). In Figure 3.5, MS indicates the results of the experiments

using MS only, while FARAMS indicates the performance of our framework

73

using fuzzified ratings. As shown in the figure, FARAMS outperforms MS by

7.5% and 2.0% when N is equal to 10 and 20 respectively. This shows that

hits appeared in higher ranks in our approach. As recommendable items are

ranked according to the confidence values of their related rules, the results reveal

that fuzzy confidence provides a better indicator of a rule’s interestingness than

does the classical confidence measure. For larger values of N , however, MS

outperforms FARAMS by 1.3%, 1.8% and 0.1% respectively. This is in line with

our expectation that the sharp boundary problem is small in the discrete ratings

with a small rating scale, which therefore do not have much fuzziness.

The second set of experiments on the Jester dataset used the membership

functions in MF(B) (Figure 2.2(b)). Figure 3.6 shows the results. As items in

this dataset do not have any hierarchical category structure, recommendations

were generated using only item-level association rules, denoted by AR in the

figure. The performance of AR recorded for different Top-N values is compared

to that of FAR, which uses fuzzy association rules without MS.

10 20 30 40 50
0.6

0.65

0.7

0.75

0.8

0.85

Top−N

R
ec

al
l

FAR
AR

Figure 3.6: Recall rates achieved with and without using fuzzy association rules

on the Jester dataset.

As can be seen in Figure 3.6, FAR outperforms AR for all Top-N values.

The improvements in recall rates achieved are approximately 2.0%, 1.8%, 2.4%,

2.5% and 2.1% respectively for the Top-N values. This indicates that the sharp

boundary problem is more obvious in datasets recorded in a finer-grained rating

scale as compared to the previous experiment on the MovieLens dataset, and that

the use of FAR helps address the sharp boundary problem.

74

Comparisons with related work

Lin et al. [89] tested their ASARM algorithm on the EachMovie dataset. As

collaborative users (the training set), they used the first 1,000 users who have

rated more than 100 movies. As target users (the test set), they used the

first 100 users whose user IDs are greater than 70,000 (such that users in

the training set and those in the test set do not overlap) and who have rated

more than 100 movies. Although this experimental setup is small-scale and

neglected the adverse effect of data sparseness on prediction quality, to ensure the

comparability of their work and ours, we nonetheless tested our algorithm under

similar conditions. Ratings in the dataset were fuzzified using the membership

functions in MF(C) (Figure 2.2(c)). Table 3.6 shows the results.

Table 3.6: Performance of ASARM and FARAMS for the EachMovie dataset.
Algorithm Recall Confidence Threshold

ASARM - Item Association 0.226 0.9

FARAMS 0.269 0.65

As shown in Table 3.6, FARAMS produces results similar to those of ASARM,

but with a lower confidence threshold. This is because our approach takes all

transactions into account when computing the support and confidence values

(in percentages) of rules. The ASARM algorithm, in contrast, counts only

transactions containing the target item. This approach underestimates the support

values of some items other than the target item, which in turns over-emphasizes

the confidence values of rules, especially of those of less popular items in the

dataset. In other words, the confidence value assigned to the same association

rule may be much higher in ASARM than in our approach. This difference in the

number of transactions used to determine support and confidence values of rules

is why our approach uses a lower minimum confidence.

The MAR algorithm was tested on the MovieLens dataset as well as on the

KDD dataset in [71]. As the KDD dataset does not contain ratings data, the

comparison uses only the MovieLens dataset. Figure 3.7 shows the experimental

results for the five Top-N values, with FARAMS outperforming MAR by 61.0%,

46.3%, 33.4%, 25.7% and 23.0% respectively. This shows that our approach

is effective. Furthermore, the significant improvement achieved in Top-10

recommendation suggests that fuzzy confidence produces better rankings of

75

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Top−N

R
ec

al
l

FARAMS
MAR

Figure 3.7: Performance of MAR and FARAMS for the Movielens dataset.

recommended items.

3.5 Summary

This section describes the proposed FARAMS framework for CF and its applica-

tion of fuzzy association rule mining to address the sharp boundary problem in

existing techniques. We also approached the problem of data sparseness in CF by

taking advantage of multiple-level similarities that are implicit in the taxonomies

of items. We presented and discussed the results of an evaluation of FARAMS.

Results show that the use of FAR is more effective on datasets containing

continuous ratings, and that FARAMS outperforms existing techniques in similar

experimental settings.

As we mentioned in the Introduction section of this chapter, ARM techniques

provide the flexibility to mine associations between content-related attributes

(i.e. categories information in this work) and user ratings on items. The rule

mining process of FARAMS, however, does not consider this and only mines

rules from the same level of the given item taxonomy. We further explore this

issue in the next chapter.

76

Chapter 4

Cold-start Recommendations by
Cross-level Association Rule Mining

4.1 Introduction

The cold-start problem is a crucial shortcoming of CF, which generates person-

alized recommendations to users solely based on ratings data. Recall that the

cold-start problem is an extreme form of data sparseness. It arises when no

recommendations can be generated for items with no or very few ratings data. It

is also known as the early-rater problem and the new item problem.

This chapter describes our proposed hybrid recommendation approach, de-

veloped based on FARAMS (Chapter 3), for addressing the cold-start problem.

Our approach makes use of Cross-Level Association RulEs (CLARE)8 to flexibly

integrate content features of items and user ratings. CLARE operates on a

preference model comprising both user-item and item-item relationships, and

infers user preferences for items from the attributes they possess. The major

feature of CLARE is the use of associations between a given item’s attributes and

other domain items, when no recommendations for that item can be generated

using CF. We use an example to illustrate our idea. The CAR “Movie A →
Director:Woody Allen” indicates that “users who liked Movie A also liked movies

directed by Woody Allen”. If there exists a new (cold-start) movie, Movie Z,

directed by Woody Allen, we may recommend it to users who had liked Movie A

previously.

8We use the acronym CAR to represent cross-level association rule, and CLARE as the name

of our proposed recommendation approach.

77

The rest of this chapter is organized as follows. Chapter 4.2 describes

related work on addressing the cold-start recommendation problem. Chapter 4.3

introduces our proposed preference model, based on which the motivation of

our work is explained. Chapter 4.4 describes CLARE, the proposed cross-level

association rule mining approach to cold-start recommendations. Chapter 4.5

discusses experimental results on CLARE and on comparisons with related work.

Chapter 4.6 summarizes our contributions and findings, as well as outlines some

limitations of CLARE for future work.

4.2 Existing Approaches to Cold-start Recommen-

dations

We describe in this section existing approaches to cold-start recommendations.

They include the aspect model [57, 58, 121, 140] and the naive filterbot algorithm

[117].

4.2.1 The Aspect Model

Schein et al. [140] described the use of the aspect model for generating cold-start

recommendations. The aspect model is a statistical latent class model, originally

proposed for document indexing by Hofmann [57]. It associates word-document

co-occurrence data with a set of latent variables, and was applied to user-item

co-occurrence data for CF by Hofmann and Puzicha [58]. The overall idea of

the aspect model is as follows. Given a set of users u ∈ U and a set of items

i ∈ I , an observation (u, i) corresponds to the co-occurrence of u and i. A latent

class variable z ∈ Z = {z1, z2, ...zm} is associated with each (u, i) in the aspect

model, which assumes that u and i are independent, conditioned on z [57, 121].

The probability P(u, i) is therefore defined as [58]:

P(u, i) =
∑
z∈Z

P(z)P(u|z)P(i|z) (4.1)

The model parameters are estimated from training data using the Expectation

Maximization (EM) algorithm or its variants [57]. Recommendations to user u

are made according to P(i|u) ∝ P(u, i). The higher the value of P(i|u), the more

likely u will observe i.

78

Popescul et al. [121] proposed two extensions of the aspect model for hybrid

content- and CF-based recommendations. The first extension is known as the

three-way aspect model. It includes three-way co-occurrence data among users,

items and item attributes f ∈ F . An observation in this aspect model, denoted

by (u, i, f), corresponds to the event of user u observing item i with attribute

f . The second extension, known as the user-words aspect model, discards the

concept of items, and an observation (u, f) corresponds to the event of user u

observing attribute f .

Schein et al. [140] applied the user-words aspect model [121] to cold-start

recommendations. Their idea is to regard item attributes (actors of movies) as

surrogates of items (movies). Specifically, they estimate P(u, f) from training

data, and then “fold-in” a new movie, using the folding-in algorithm described

in [57], out of the set of attributes of that movie. This is a hybrid recommen-

dation approach capable of cold-start recommendations, because new items are

recommended to user u based on P(u, f) estimated from training data.

4.2.2 The Naive Filterbot Algorithm

Park et al. [117] described the use of the naive filterbot algorithm for addressing

the cold-start problem. The naive filterbot algorithm injects pseudo users, or

bots, into a recommender system. The bots generate user ratings according to

the attributes of the items or the users in the system. Such ratings were injected

into the original user-item rating matrix in the system along with actual user

ratings, thereby increases the density of the ratings matrix.

Note that the naive filterbot algorithm itself is not a recommendation algo-

rithm. Instead, it injects ratings into the ratings matrix, on which CF algorithms

are applied to generate recommendations. For instance, Park et al. used bots

to augment ratings for the standard user-based and item-based algorithms [117].

They evaluated the effects of the bots on the cold-start item problem when the

number of ratings on relatively new items increased gradually (from 2 to 40

ratings in their experiments). Our work, in contrast, is able to recommend items

with no ratings at all.

79

Figure 4.1: Illustration of the proposed preference model comprising user-item

and item-item relationships.

4.3 Problem Description

This section introduces the proposed preference model comprising both user-

item and item-item relationships for mining CARs, and explains the motivation

of our work and some properties of the proposed model.

Figure 4.1 shows a simple example of the proposed preference model in

a movie recommender system. It consists of three layers, namely the User

layer, the Item layer, and the Item Attribute layer. An edge connecting

a User node and an Item node means that the user has rated the item, and is

labeled with a fuzzified rating in the range [0, 1] to reflect the degree to which

the user had liked the item. An edge connecting an Item node and an Item

Attribute node represents a particular attribute of the item. The label of

such an edge describes the name of the attribute while the value of an Item

Attribute node describes the value of the attribute.

There are two points to note on the preference model. The first point is that

both positive and negative user preferences for items are available in an ARM-

based recommendation framework, but the model only captures membership

degrees obtained by user ratings with respect to the Like fuzzy set. This is

because the goal of CF is to recommend to users items they may like. Besides,

80

Item TID-list Total Support
i1 u1 1

i2 u2, u3 2

i3 u2, u3 2

(a) Support of i1, i2 and i3

Item TID-list Total Support
i3 u2, u3 2

c1 u1, u2, u3 3

(b) Support of c1 and i3

Item TID-list Total Support
{i3, c1} u2, u3 2

(c) Frequent itemset (minSupp = 1)

Association Rule Support Confidence
i3 → c1 2/3 = 66.7% 2/2 = 100%

(d) Association rule

Figure 4.2: A motivating example

precedent work on ARM-based CF suggests that negative preferences are not

useful for generating recommendations [89]. The second point is that in a real

world application, the Item Attribute layer can contain multiple sub-layers

(e.g. in [162]), but we use the model in Figure 4.1 for illustrations in this

article for simplicity. Item Attribute sub-layers are further discussed in

Chapter 4.6.

We now use an example to motivate the use of the proposed preference

model and CARs for generating item recommendations. Figure 4.2(a) shows

a transactional representation of the Item and Item Attribute nodes in

Figure 4.1 in a vertical TID-list format [174]. The membership degrees in the

example are all 1’s and are therefore omitted in the figure for simplicity. Suppose

the target item is i1 and minSupp is 1, no item-level association rule can be mined

because i1 has not appeared with other items in any transaction. i1 is therefore a

cold-start item.

81

Our proposed approach for generating cold-start recommendations assumes

that a transaction that supports an item also supports its attributes. This allows

us to infer preferences for i1 from its Item Attribute nodes. Suppose the

attribute Cast is used for generating recommendations. Referring to Figure 4.1,

both i1 and i2 have the Item Attribute node “Cast:Tom Hanks”, denoted as

c1 in Figure 4.2. We can then obtain the transactions in Figure 4.2(b). The sup-

porting transactions of c1 are the union of the transactions supporting its parents

(i1 and i2). Given the new information, the itemset {i3, c1} satisfies minSupp

(Figure 4.2(c)), and based on which the association rule “i3 → c1” having a

support of 66.7% and a confidence of 100% can be mined (Figure 4.2(d)). Our

work attempts to use such a CAR to recommend the item m1, which was a cold-

start item for which no recommendations could be made in a pure CF setting.

For instance, if a user has liked i3 previously, we may recommend i1 to him/her

given the association rule “i3 → c1”.

Based on the assumption that a transaction that supports an item also supports

its attributes, the support values of Item and Item Attribute nodes in

Figure 4.1 satisfy the following properties:

Property 1 If an Item node is frequent, its Item Attribute nodes are

also considered frequent, despite the different support thresholds that may be

used for pruning items of different levels.

Property 2 For a frequent Item Attribute node, it is possible that none

of its parents is frequent.

This is because the support of an Item Attribute node is obtained from

all of its parents. An example is the node “Cast:Tom Hanks” (c1) in the described

motivating example.

Property 3 Based on Property 2, if an Item node is infrequent, it is still

possible for all or some of its Item Attribute nodes to be frequent.

Examples are the nodes i1 and i2.

Lower-level items (Item Attribute nodes) in the proposed preference

model are likely to have more support than higher-level items (Item nodes) as

opposed to the property of is-a hierarchies. The assumption about is-hierarchies

that only descendents of frequent items are examined does not apply to our

model. Given Property 3 above, it is possible for Item Attribute nodes

of an infrequent Item node to be frequent. We therefore examine Item

Attribute nodes of an Item node when no item-level association rule for

82

it is available. Different support thresholds are still required to prune nodes at

different level of the hierarchy as discussed in the next section.

4.3.1 Data Representation

The proposed preference model consists of User, Item and Item Attribute

nodes as noted. We denote the set of User nodes as u ∈ U = {u1, u2, u3, ..., um},

the set of Item nodes as i ∈ I = {i1, i2, i3, ..., in}, and the set of Item

Attribute nodes (attribute-value pairs) as f ∈ F = {f1, f2, f3, ..., fn}. A di-

rected edge connecting a User u and an Item node i is a triple 〈u, i, mLike(ru,i)〉.
ru,i is the original rating u have given i. It is fuzzified using the function mLike,

the user-specified membership function of the Like fuzzy set as noted. A directed

edge connecting an Item i and an Item Attribute node f is a pair 〈i, f〉,
and the set of {〈i, f〉} forms domain knowledge about the items. We generated

the set {〈u, f,mLike(ru,f)〉} out of {〈u, i,mLike(ru,i)〉} and {〈i, f〉} for mining

CARs. The rating ru,f is the average rating u have given the set of {i} containing

f . Note that we described in this paragraph two sets of preference data. The first

set, {〈u, i, mLike(ru,i)〉}, represents user preferences for items, while the second

set, {〈u, f, mLike(ru,f)〉}, represents those for item attributes.

4.4 CLARE: Cold-start Recommendations by CAR

Mining

CLARE was developed based on the FARAMS CF framework (Chapter 3), which

produces collaborative recommendations using Fuzzy Association Rules And

Multiple-level Similarity between items in their taxonomies (is-a hierarchies).

CLARE works in three major steps, namely data preprocessing, mining user

preferences, and generating recommendations. The steps for data preprocessing

and generating recommendations are similar to those involved in FARAMS. We

therefore describe these steps briefly, and focus on the mining user preferences

step which mines CARs for cold-start items.

83

Table 4.1: Important notations used to represent user preference data in CLARE.

Notation Description

u A User node.

i An Item node.

f An Item Attribute node (attribute-value pair).

{i, f} Domain knowledge (relationships between Item and Item Attribute nodes).

TIDi TID-list representation of user preferences for items.

TIDf TID-list representation of user preferences for item attributes.

4.4.1 Data Preprocessing

This step preprocesses users’ preference data for mining. It involves three key

tasks. The first task is to fuzzify user ratings to reflect the degree to which users

liked the rated items. Note that each item i in FARAMS can be expanded into, for

instance, 〈i, L〉 and 〈i, D〉 pairs for modeling positive and negative preferences

for item i. Since our preference model only captures positive preferences, we

omitted the fuzzy set information when describing the expanded item 〈i, L〉 for

simplicity. In this chapter, hence, a rule “i → t” should be interpreted as “if a

user liked item i, then (s)he also liked item t”.

The second task is to compute {〈u, f, mLike(ru,f)〉}, the set of user prefer-

ences for item attributes, based on {〈u, i, mLike(ru,i)〉} and {〈i, f〉} for mining

CARs. The rating ru,f is the average rating u have given the set of {i} containing

f as aforementioned.

The third task is to generate transactional representations of the preference

data to facilitate the rule mining process. As noted, our proposed model

consists of two sets of preference data, denoted as {〈u, i, mLike(ru,i)〉} and

{〈u, f, mLike(ru,f)〉}. These sets of data are transformed into vertical TID-lists

as described in Chapter 3.3.1. We refer to the vertical TID-list representations of

user preferences for items and those for item attributes as TIDi and TIDf re-

spectively hereafter. Table 4.1 summarizes the important notations we described

in this subsection.

4.4.2 Mining Association Rules

CLARE extended the mining algorithm of FARAMS for mining CARs for cold-

start items. Given a target item t ∈ I , CLARE starts mining item-level association

84

rules for it in the form of “{i} → t”, where t /∈ {i}, using the mining algorithm

described in Chapter 3.3.2. If no item-level association rule can be mined,

meaning that item t is a cold-start item that is not associated with other items

in the system, CLARE attempts to infer preferences for t from its attributes.

The choice of attribute types used for mining is domain dependent and can be

specified by users. In what follows, we briefly revisit the mining algorithm of

FARAMS, and then describe how we extended the algorithm for mining CARs

for cold-start items.

Overview of the mining algorithm

The mining algorithm of FARAMS is an Apriori-like, adaptive-support algorithm

that mines association rules for one target item at a time [5, 89, 80]. We

summarize the key tasks of the mining algorithm as follows:

1. The algorithm iteratively generates frequent κ-itemsets, which are sets of

κ items satisfying the minSupp constraint, using the Apriori-gen function

[5]. As FARAMS aims at mining rules for a given target item t at a time, it

only retains frequent itemsets containing the t for the next task.

2. The algorithm generates association rules from the frequent κ-itemsets in

the form of “{i} → t”. Association rules that satisfy all user-specified

interestingness constraints, such as minimum confidence and minimum

correlation, are considered interesting.

The mining algorithm of FARAMS adopts the adaptive-support strategy pro-

posed in [89] as noted. It automatically adjusts the minSupp used for mining,

so that the number of interesting rules is between minNumRules and maxNum-

Rules, unless fewer than minNumRules rules exist for the given interestingness

constraints.

Mining CARs for cold-start items

CLARE adapted the mining algorithm of FARAMS for mining CARs for cold-

start items by extending the concept of a single target item to a group of attributes

of the given target item. Only {i}, Item nodes, are considered when the rule

mining process begins, and the group of target “attributes” actually contains the

target item t only. If t is found to be a cold-start item, its Item Attribute

85

Algorithm 4.4.1 The minCAR algorithm (overview)

Input: t, TIDi, TIDf

Output: Rt (the set of CARs mined for t)

Steps:

1 {candidateAttr, TIDfc} ← attributes and their associated TID-lists of t;

2 {targetAttr, TIDft} ← frequent itemsets and their TID-lists mined from

{candidateAttr, Tfc};

3 Rft ← interesting CARs containing targetAttr in the rule heads;

4 Rt ← replace the rule head of each rule r ∈ Rft by t;

5 return Rt;

nodes are then used for mining, and the group of attributes becomes the group of

interesting attributes of the target item. Algorithm 4.4.1 describes the steps for

mining CARs for cold-start items in pseudocode.

The five steps of Algorithm 4.4.1 are outlined as follows.

• Step 1 simply retrieves the target item’s list of attributes from {i, f}, and

the TID-lists of the attributes from TIDf . The list of attributes and their

TID-lists are denoted by candidateAttr and TIDfc respectively.

• Step 2 mines frequent itemsets from candidateAttr using the Apriori-gen

function [5]. The maximally frequent itemsets, denoted as targetAttr, and

their TID-lists (TIDft) are retained for mining CARs for cold-start items.

Note that each itemset in targetAttr may contain more than 1 item from

candidateAttr.

The minSupp for mining targetAttr is determined using the attribute-based

specification proposed in [161]. The attribute-based specification adopts

the average support of itemsets containing attribute-value pairs as the

minSupp. For example, if States and Gender are two attributes in a table (in

a transactional database), the minimum support of an itemset containing a

state code and a gender is then |DB|
50

∗ |DB|
2

, where |DB| is the number of

records in the table, and 50 and 2 are the numbers of possible values for

the States and the Gender attributes respectively [161].

We adopted an average support for mining targetAttr because different

attributes can have very different generalities. In the MovieLens 100k

86

dataset, for example, the Director attribute has more than 1,000 distinct

values, whereas Genre only has 19. Each value of Genre should therefore

appear more frequently than that of Director. This means that if the

adaptive-support strategy is used, the set of frequent attributes would likely

be dominated by those having a small number of distinct values.

• Step 3 mines CARs containing targetAttr in the rule heads using the min-

ing algorithm described in the previous subsection. Note that the Apriori-

gen function generates candidate κ-itemsets, where κ is the number of

items in each itemset, by joining two frequent (κ-1)-itemsets [5]. When

mining CARs, however, we do not join 2 itemsets if both of them are

from the targetAttr because this has already been done in the process of

generating targetAttr from candidateAttr.

• Step 4 is a post-processing step that replaces the rule head, which was an

itemset in targetAttr, of each CAR by the target item t. In other words, the

rules mined in the previous step are used as if they were mined for t.

• Step 5 returns the set of interesting rules containing t in the rule heads,

denoted by Rt. The rules are stored in a rule base for generating recom-

mendations.

4.4.3 Generating Recommendations

This step generates recommendations for users based on their known preferences

and the rule base. This consists of three tasks. Firstly, when an active user

a requests recommendations, we determine rules that are relevant to user a’s

known preferences. A rule “i → t” is considered relevant if user a had liked

item i previously, but has not yet rated item t. In such case, item t is considered

a recommendable item for user a.

Secondly, we assign to each recommendable item t a predicted preference

value, determined by interestingness scores of the relevant rules containing item

t in their rule heads. Such interestingness scores are in general indicators of the

quality of the rules, for example, their support, confidence and correlation values

[89, 71]. If a recommendable item t appears in the heads of more than one

relevant rule, we sum up the interestingness scores of such rules to determine

user u’s predicted preference value for item t [71]. The higher the predicted

87

preference value obtained by a recommendable item, the more likely that the

active user will like the item.

Finally, we recommend the N items with the highest predicted preference

values to user a (Top-N recommendation).

4.5 Experimental Results

This section presents experimental results on validating the ability of CLARE to

provide cold-start recommendations. We first describe the experimental settings

and then discuss the results.

4.5.1 Dataset

We evaluated the performance of CLARE using the MovieLens 100k dataset,

which contains 100,000 ratings for 1,682 movies by 943 users. Ratings were

recorded in an integer 5-point scale (1 to 5). We normalized the ratings by a

simple division of 5, the maximum rating in the dataset:

mLike(ru,i) =
ru,i −min (s)

max(s)−min(s)
(4.2)

where s represents the rating scale used in the dataset. We then considered the

normalized ratings to be the membership degrees of the original ratings with

respect to the Like fuzzy set. Note that it is possible to learn such membership

functions from the dataset for modeling user preferences (e.g. [59]). As this is

not the focus of this study, we only adopted a simple membership function in our

experiments.

We used four types of attributes as Item Attribute nodes for mining

CARs. They include Genre, Cast, Director and Plot Keywords (simply referred

to as Plot hereafter). Genres of the movies were available in the original

MovieLens dataset. The cast and directors of the movies were generously

provided by the GroupLens team for our study. Note that the cast of a movie

only includes the first four actors/actresses listed on the MovieLens website. We

collected plot keywords of the movies from the Internet Movie Database (IMDb),

and weighted the keywords by the TF-IDF feature weighting scheme, described

in Eqs. (2.22)-(2.24). Recall that TF-IDF is a statistical measurement indicating

the importance a feature with respect to a document and a document collection.

88

Table 4.2: Averaged statistics about training and test sets.

% of cold-start items (n)

Description 10 20 30

Total no. of ratings - Training set 83,278 67,631 49,358

- Test set 16,722 32,369 50,642

No. of positive ratings - Training set 48,824 42,717 36,352

- Test set 6,551 12,658 19,023

No. of positive ratings per user - Training set 52 45 39

- Test set 7 13 20

In this work, a movie takes the role of a document, while a keyword takes the role

of a feature. We only considered the 15 most important keywords, as determined

by TF-IDF, of each movie in this study to speed up the training process, but this

constraint can be relaxed.

4.5.2 Method and Evaluation Metrics

We consider a rating given by user u on item i to be positive, that is, user u

liked item i, if ru,i ≥ 4 for performance evaluation purpose. We randomly

selected as cold-start items n% (n = {10, 20, 30}) of movies from all movies for

which recommendation could be successful (1,447 movies having at least one

positive rating in the dataset). We created ten random samples for each value of

n. All results reported in this article were averages of the ten samples. In each

experiment, the test set consists of all ratings on the “cold-start” items, while the

training set consists of the ratings on the remaining movies. Table 4.2 reports

averaged statistics about the training sets and test sets.

We generated Top-10 recommendations for active users who had at least one

positive rating in the test set. Recommendation of an item i to an active user a

is considered correct if the tuple 〈a, i〉 exists in the test set and ra,i ≥ 4. It is

considered incorrect if ra,i < 4, or if 〈a, i〉 does not exist in the test set at all.

We evaluated the recommendation accuracy of CLARE based on four commonly

used metrics for evaluating Top-N recommendations. They include precision,

recall, F1 (f-measure) and rank score. Definitions of these metrics are given in

Chapter 2.2.5.

Note that rank score consists of two adjustable parameters, which are h, the

89

viewing halflife, and δ(u, ij), the contribution of a correct recommendation to the

overall utility of the ranked recommendation list. We set h = 10, and δ(u, ij) =

mLike(ru,i). This means correctly recommending an item rated as 5, for example,

in user u’ s testset is considered more desirable than recommending an item rated

as 4.

We also reported the coverage rates of CLARE to demonstrate its ability to

recommend cold-start items, which are not recommendable at all in a pure CF

setting.

4.5.3 Parameters

We now report the values of two parameters we adopted in the experiments.

These parameters can be flexibly configured in CLARE for a specific application.

The first parameter is the desired range [minNumRules, maxNumRules] for the

number of rules mined for a target item. We chose the range [10, 40] based

on a set of preliminary experiments. The second parameter is the maximum rule

length, which is the maximum number of items in a rule’s body [89]. We adopted

a maximum rule length of 1 based on our previous experiments with FARAMS

(Chapter 3.4.3).

4.5.4 Evaluation of CLARE

This subsection discusses experimental results on cold-start recommendations

produced by CLARE. We also implemented a baseline algorithm for benchmark-

ing. A commonly used baseline algorithm in CF is known as popularity (POP),

which recommends to an active user the Top-N most popular unseen items in the

training set [14, 43, 63]. POP, however, cannot be used for this study because we

aim at recommending cold-start items that did not appear in the training set. We

therefore implemented a random recommender, which recommends cold-start

items to the active user randomly, as the baseline.

In what follows, we first detail the results of two experiments. The first exper-

iment aims at determining an appropriate measure for scoring recommendable

items. The second experiment evaluates the recommendation quality and cover-

age produced by CLARE using different item attributes for generating cold-start

recommendations. We further discuss the results of this experiment, focusing

on the effects of the varying percentages of cold-start items in the experiments.

90

When we describe results as significant in the subsequent discussions, we mean

so statistically based on the Wilcoxon signed-rank test (using a 0.05 significance

level), a non-parametric version of the popular paired t-test.

Predicting preferences for recommendable items

This experiment explores various measures for predicting preferences for recom-

mendable items. As described in Chapter 4.4.3, the predicted preference for a

recommendable item i is the sum of the interestingness scores of all relevant rules

containing i in their heads. The score of a relevant rule is given by some of the

rule’s interestingness measures. We experimented with the three most popular

measures, namely fuzzy support (FS), fuzzy confidence (FC) and correlation

(CORR), as well as combinations of them. The computations of FS, FC and

CORR are given in Eq. (2.16)-(2.18). We combined a set of interestingness

measures M by taking the harmonic mean of the values in M . The harmonic

mean of M , denoted as H(M), is defined as:

H(M) =
|M |∑
m∈M

1
m

(4.3)

The harmonic mean of a list of values tends strongly towards the smallest

value in the list. It therefore has the effect of penalizing CARs that are particu-

larly weak in a certain aspect, such as a CAR having a high confidence but a low

correlation.

Figure 4.3 reports the recommendation quality produced using different sets

of M at different values of n, using Plot for mining CARs. In the figure, M

= {FS, FC} means that H(FS, FC) of a rule is used for predicting the active

user’s preference for the recommendable item in the rule’s head. We do not

discuss coverage in this experiment as varying M only affects the ranking of

recommendable items for an active user.

Figure 4.3 shows that CLARE always outperforms the baseline recommender.

This is not surprising because CLARE provides personalized recommendations to

users based on their known preferences in the training set, whereas the baseline

does not. We therefore focus on the behavior of CLARE in the subsequent

discussions.

The setting M = {FC, CORR} always yields the best results. However,

results produced using M = {CORR} alone are not significantly different from

91

10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12 Precision vs. n

10 20 30
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14 Recall vs. n

10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12
F1 vs. n

10 20 30
0
2
4
6
8

10
12
14

Rank Score vs. n

{FS}
{FC}
{CORR}
{FS, FC}
{FS, CORR}
{FC, CORR}
{FS, FC, CORR}
Baseline (Random)

Figure 4.3: Recommendation quality produced using different interestingness

measures (M) for predicting preferences for recommendable items, and Plot as

attribute for mining CARs.

92

the best except for rank scores recorded at n = 20 and 30. These seem to

suggest that correlation is an important interestingness measure in CLARE.

Recall that CLARE infers preferences for cold-start items from the attributes they

possess. Our results therefore suggest that we successfully addressed the cold-

start problem by recommending cold-start items having attributes that are highly

correlated with the items that the active users had liked previously.

Using M = {FS} only outperforms the baseline recommender slightly, and

produces the worst results among all other interestingness measures. Further,

adding {FS} to {CORR} and to {FC} impaired the performance achieved using

the two individual measures greatly. For example, adding {FS} to {CORR}
lowered the values of precision, recall, F1 and rank score by approximately

30% at n = 30. We therefore conclude that the support of a rule does not help

predicting preferences for the recommendable item in the rule’s head. This is

explainable in the context of a CF-based recommender system. The idea of CF

is to recommend to an active user items liked by other, similar users. Such

similarity can be derived even from users whose tastes deviate greatly from those

of the majority of users. Similarly, the support of a rule indicates its statistical

importance with respect to the entire database. A rule with high support means

that a large amount of users had liked all items in the rule’s head and body. A

rule with low support, however, may still produce a good recommendation for a

particular user, given that the user has liked the item in the rule’s body.

Given the results in Figure 4.3, we adopted M = {FC, CORR} in the

subsequent experiments.

Effects of item attributes

This experiment evaluates the performance of CLARE when using different item

attributes for mining CARs. The choice of item attributes used for mining

is domain dependent. We experimented with four types of item attributes,

including Genre, Cast, Director, and Plot, when applying CLARE to the movie

domain. Table 4.3 reports the characteristics of these attribute types in our

dataset. In the table, A denotes a specific attribute type. The function N(f,A)

returns the number of movies possessing the value f of the attribute A. FA,

where FA = {f |N(f, A) > 0}, denotes the set of distinct values of the

attribute A. FN(f,A)>1 contains values in FA that are possessed by more than

one movie. N(f,A) is the average number of appearances of all attribute values

93

Table 4.3: Statistics about the various attributes.
Attribute (A) |FA| |FN(f,A)>1| N(f, A) Movies with FN(f,A)>1

Genre 18 * 18 157 99.94%

Cast 3,765 1,165 1.8 88.74%

Director 1,073 337 1.6 57.26%

Plot 5,521 5,298 7.8 98.17%

*The original MovieLens dataset has 19 genres, including the genre

“unknown”. We, however, did not consider “unknown” to be a

meaningful genre that can characterize movies.

of A. Movies with FN(f,A)>1 denotes the percentage of movies in the dataset that

possess at least one value in FN(f,A)>1.

Table 4.3 shows that the attributes have very different characteristics. For

instance, Genre only has 18 distinct values in the entire dataset, and the average

number of movies that belong to a particular genre is 157. On the contrary, Direc-

tor is the most specific attribute. Our dataset contains a total of 1,073 directors,

but only around 30% of them directed more than one movie. Interesting, the

N(f, A) values of Director and Cast are very close to each other. Each value of

Director appeared 1.6 times in the dataset on average, while each value of Cast

appeared 1.8 times. However, 88.74% of the movies have actors or actresses

who acted in more than one movie, as compared to the 57.26% for directors.

Given the varying characteristics of the attributes, we expected to have the

following findings in this experiment:

1. Using Genre for generating cold-start recommendations should produce

the worst recommendation quality but a high coverage due to its high

generality.

2. Using Director for mining CARs might also produce unsatisfactory re-

sults, in terms of both recommendation quality and coverage. It is because

only around 30% of the directors could be used for mining CARs for cold-

start items.

3. Plot should perform well in general because it seems to have reasonable

coverage of and generalities for characterizing the movies.

We now report the results of this experiment. Figure 4.4 shows the recom-

94

10 20 30
0

0.04

0.08

0.12

0.16

Precision vs. n

10 20 30
0

0.04

0.08

0.12

0.16

Recall vs. n

10 20 30
0

0.04

0.08

0.12

0.16 F1 vs. n

10 20 30
0

4

8

12

16

20 Rank Score vs. n

Genre
Cast
Director
Plot
Director + Plot
Baseline (Random)

Figure 4.4: Recommendation quality produced using different attributes for

mining CARs, and H(FC, CORR) for predicting preferences for recommendable

items.

mendation quality produced by CLARE when using the different attributes for

mining CARs. Figure 4.5 reports the coverage of cold-start items. It shows the

percentages of cold-start items for which CARs could be mined using different

attributes and at different values of n.

Figures 4.4 and 4.5 show that using different attributes for mining CARs

produces varying results, because CLARE infers preferences for cold-start items

from the attribute values they share with other items. In what follows, we

summarize the results of this experiment, and explain the results with respect

to the characteristics of the various attributes in our dataset.

Using Genre in CLARE slightly outperforms the baseline recommender, and

95

10 20 30
0

20

40

60

80

100

Coverage(%) vs. n

Genre

Cast

Director

Plot

Director + Plot

Figure 4.5: Coverage of cold-start items achieved using different item attributes

for mining.

produces the worst recommendation quality as compared to other attribute types

as expected (Figure 4.4). This should be a result of the high generality of the

Genre attribute in the dataset. Genre only has 18 distinct values, and the average

number of movies that belong to a particular genre is 157 as noted. Apparently,

Genre is so general that it fails to capture the characteristics of the movies,

resulting in the poor recommendation quality. The high coverage it produces

is reasonable as almost all cold-start movies have genres that had been positively

rated in the training sets.

Using Director produces mixed results. Interestingly, it gives the best

recommendation quality but the worst coverage among all individual attribute

types (except for the “Director + Plot” setting discussed next). These can also

be explained with respect to the characteristics of Director, which is the most

specific attribute type. Our dataset contains a total of 1,073 directors, but almost

70% of them directed only one movie. Consequently, these directors could not

be used for inferring preferences for cold-start movies, resulting in the poor

coverage rates. The high recommendation quality suggests that the more specific

an attribute type, the more accurate preference prediction it can facilitate for

cold-start items.

The poor coverage resulted from the high specificity of Director can be

remedied by combining multiple attributes for mining CARs. We used Plot,

which gives the second best recommendation quality and slightly-less-than-

perfect coverage, in addition to Director for generating cold-start recommen-

96

dations as an example. The combined setting, denoted by Director + Plot in

Figures 4.4 and 4.5, boosts recommendation quality to the best, and coverage

rates to 100%, 97.9% and 97.7% at n = 10, 20 and 30 respectively. This example

demonstrates that we can achieve good recommendation quality and coverage by

choosing the appropriate attribute types for characterizing domain items.

To conclude, varying the choice of attributes produces quite different re-

sults due to the different characteristics of the attributes. CLARE can achieve

good recommendation quality and high coverage by choosing the appropriate

attributes for characterizing domain items. Given the results of this experiment,

we focus on the behavior of CLARE using Director + Plot as attribute types in

the subsequent discussions unless otherwise stated.

Discussions on results with respect to the percentage of cold-start items (n)

This subsection discusses the results of the previous experiment with respect

to n, the percentage of cold-start items. The following paragraphs detail three

observations we made from Figures 4.4 and 4.5.

The first observation is that recall, F1 and rank score decline consistently as

n increases, meaning that generating recommendations becomes more difficult

when there are more cold-start items in the system. This decline might also be

caused by the decrease in the number of known ratings of users in the training

set (Table 4.2). More specifically, it is generally acknowledged that CF works

better when more known preferences about users are available. We illustrate this

with the help of Figure 4.6. We compared the overall recommendation quality

of CLARE achieved for all users to that achieved for users who had, for example,

at least 20 known ratings in the training set. Figure 4.6 shows that the precision,

recall, F1 and rank score achieved for users having at least 20 known ratings are

well-above those achieved for all test users at all values of n. This might also

suggest that CLARE’s performance would improve over time for an active user

as (s)he rates more items in the system.

The second observation is that CLARE produces better recall than precision

at n = 10, but vice versa at n = 20 and 30. Related to this, as n becomes larger,

precision improves but recall declines in general. These could be explained with

respect to the average numbers of rating per user in the test sets [141]. We gener-

ated Top-10 recommendations for each user in an experiment as aforementioned.

Referring to Table 4.2, each user has on average 7 ratings in the test set when n

97

10 20 30
0

0.04

0.08

0.12

0.16

0.2

0.24
Precision vs. n

10 20 30
0

0.04

0.08

0.12

0.16

F1 vs. n

10 20 30
0

4

8

12

16

20

Rank Score vs. n

All test users

Users with >= 20 known ratings

10 20 30
0

0.04

0.08

0.12

0.16

0.2

0.24
Recall vs. n

Figure 4.6: Comparison between recommendation quality achieved for all test

users, and that for users having at least 20 known ratings in the training set.

CARs were mined using Director + Plot as attributes.

= 10. Recommending 10 movies to a test user with 7 ratings would therefore

produce at least 3 false positives, resulting in lowered precision. When n = 20

and 30, the average numbers of ratings per user in the test sets are 13 and 20

respectively. Similarly, recommending 10 movies to test users having 13 and 20

ratings would respectively produce at least 3 and 10 false negatives, resulting in

lowered recall. A possible solution to address this problem is to recommend to

user a only |Pa| items, where |Pa| is the number of items user a liked in the test

set. However, this is obviously infeasible in practice as |Pa| would not be known

until a rated all items in the system.

The third observation is that the coverage of CLARE does not show any

specific correlation with the value of n. This is because CLARE is able to infer

preferences for cold-start items as long as there exist common attributes between

those items and items in the training set.

Remarks on precision and recall

Herlocker et al. [55] suggested that precision and recall are biased and should

not be interpreted as absolute measures. We also mentioned in the previous

98

subsection that recommending a fixed number of items to test users might

produce false positives and false negatives that could adversely affect precision

and recall. We nonetheless adopted them in our study for three reasons. Firstly,

as discussed in Chapter 2.2.5, they do not take into consideration the value

of TN (false negatives), which is likely to be extremely large in the Top-N

recommendation task. Secondly, they are easy to interpret metrics that can

fully support comparative studies between different algorithms across different

experimental settings. Lastly, they sufficiently support our study, which focuses

on recommending a small number of items to users. For these reasons, we

decided to adopt precision and recall in this study, rather than other decision

support metrics, such as CROC [141] and classification accuracy [99].

4.5.5 Comparisons with Related Work

We described in Chapter 4.2 two existing approaches to cold-start recommenda-

tions, namely the aspect model and the naive filterbot algorithm. The aspect

model proposed by Schein et al. [140] is one of the most noticeable work

focusing on the cold-start problem. However, we were unable to conduct a

systematic comparison between their work and ours because they did not report

evaluation results on the Top-N recommendation task, which is equivalent to the

rating prediction task described in their paper [140].

We were also unable to empirically compare CLARE and the naive filterbot

algorithm by Park et al. [117]. It is because the naive filterbot algorithm itself

is not a recommendation algorithm. Instead, it injects ratings into the ratings

matrix, on which CF algorithms are applied to generate recommendations.

Although we were unable to compare CLARE with the two related ap-

proaches, we identified and implemented two other possible algorithms for

generating cold-start recommendations. The first algorithm, developed based

on FARAMS, makes use of Multiple-level Similarity (MS) between items in item

taxonomies, and is referred to as the MS-based recommendation algorithm in the

subsequent discussions. The second algorithm is a pure content-based algorithm

that recommends cold-start items based on their attributes. We describe in

the following the implementation of the two algorithms, which we compared

empirically against CLARE.

99

MS-based recommendation algorithm

We developed the MS-based recommendation algorithm, which extends the use

of Multiple-level Similarity (MS) between items in the MAR [71] algorithm and

in FARAMS, for generating cold-start recommendations. This was done in three

main steps:

1. Given a taxonomy of items, which is the relationship between movies and

their genres (G) in the movie domain, we mined MARs between genres

from the dataset. We set the desired range of the number of rules to be

mined to [1, |G|-1] following the settings in [80]. The set of MARs mined

in this step is denoted by Rg.

2. We computed the fuzzified average rating each user u has given each genre

g, denoted by u[g], based on his/her known ratings in the training set.

3. Given an active user a, the rules mined in (1), and user a’s preferences for

genres determined in (2), we generated cold-start recommendations for a

using Algorithm. 4.5.1.

Figure 4.7 compares the recommendation quality of the MS-based recom-

mendation algorithm and CLARE. Experiments were performed under identical

settings. The score of a rule r, denoted as r.score in Algorithm 4.5.1 (Step 5),

was determined using H(FC, CORR). The MS-based algorithm mines MARs

from taxonomies, which are relationships between movies and their genres

as noted. Recall that Genre fails to capture the characteristics of movies

and therefore produces the worst performance among all attribute types in

CLARE (Figure 4.4). We nonetheless conducted the comparison based on the

performance of CLARE achieved using Genre as attribute to conform to the

notion of “taxonomy” in MS-based recommendation. This also facilitates a fair

comparison between the two algorithms.

CLARE outperforms the MS-based algorithm at all values of n. This seems

to suggest that CARs between the attributes of cold-start items and other items

in the dataset can better predict preferences for the cold-start items. Further,

we point out that CLARE performs significantly better when using more specific

item attributes, such as Director and Plot of movies, for recommending cold-

start items as noted.

100

Algorithm 4.5.1 The MS-based recommendation algorithm for recommending

cold-start items to an active user a.

Input: The active user a’s preferences for genres (a[g]), N , and the set of

MARs between movie genres (Rg)

Output: Ir, the set of recommended items for user a

Steps:

1. for each cold-start item i do

2. si ← 0;

3. for each genre gn of i do

4. if there exists a rule r = gm → gn in Rg then

5. si ← si + r.score * a[gm];

6. end if

7. end for

8. end for

9. Pa ← N items having the highest si;

10. return Pa;

10 20 30
0

0.02

0.04

0.06

0.08 Precision vs. n

10 20 30
0

0.02

0.04

0.06

0.08 Recall vs. n

10 20 30
0

0.02

0.04

0.06

0.08 F1 vs. n

10 20 30
0

2

4

6

8 Rank Score vs. n

CLARE

MS−based

Figure 4.7: Comparison between CLARE and MS-based recommendation (hy-

brid), using Genre as attribute.

101

Pure content-based recommendation algorithm

The aspect model, the naive filterbot algorithm and the MS-based recommen-

dation algorithm are hybrid algorithms that integrate content information about

items into collaborative filters. Pure content-based recommendation algorithms

are also capable of generating cold-start recommendations. We therefore im-

plemented a content-based recommender, similar to that described in [110, 103,

141], based on the multinomial Naive Bayes (NB) model [100] and compared it

with CLARE. In what follows, we first describe the design of the recommender,

referred to as the NB recommender, and how it is adapted to the Top-N rec-

ommendation task. We then present results on the comparison between the NB

recommender and CLARE.

The NB recommender addresses content-based recommendation as a text

classification problem, in which items are regarded as documents (D), item

attributes are regarded as features (F), and user-specified ratings are class labels

(C) [110, 103]. As the Top-N recommendation task aims at determining items

that active users may like, we used Like (ru,i ≥ 4) and Dislike (ru,i < 4), instead

of the exact ratings, as class labels. In other words, the set class labels used for

building the NB recommender contains two members: C = {Like, Dislike}.

The NB recommender was implemented as follows. Firstly, given a class

cj and an attribute-value pair fi ∈ F , the probability P(fi|cj) is estimated from

the training data with add-one (Laplace) smoothing using Eq. (2.28). Then, the

probability that a movie i belongs to a class cj , denoted as P(i|cj), is computed

using Eq. (2.29) (recall that an item i takes the role of a document d in the

context of movie recommendations). Note that the prior probability P(cj) can

be discarded in practice because its value is constant for all items for the same

active user.

The above steps for building a NB recommender are the same as those

for building a document classifier. We now describe the adaptation of the NB

recommender to the Top-N recommendation task. Previous studies, such as

[110, 141], used the NB recommender to assign a predicted rating (class label)

to i based on the maximum posteriori probability P(i|cj). However, we aim

at ranking the cold-start items for generating Top-N recommendations rather

than the computing the exact predicted ratings of the items. We adapted the

NB recommender to the Top-N recommendation task by first computing the

102

10 20 30
0

0.04

0.08

0.12

0.16

0.2 Precision vs. n

10 20 30
0

0.04

0.08

0.12

0.16

0.2 Recall vs. n

10 20 30
0

0.04

0.08

0.12

0.16 F1 vs. n

10 20 30
0

4

8

12

16

20 Rank Score vs. n

CLARE

NB Recommender

Figure 4.8: Comparison between CLARE and Naive Bayes (NB) recommender

(content-based), using Director + Plot as attributes.

posterior odds of P(i|cj = Like) to P(i|cj = Dislike) for each recommendable

item i for the active user a [110]. We then recommend the 10 items having

the highest posterior odds to a, thereby facilitates comparison between the NB

recommender and CLARE for the Top-N recommendation task.

Figure 4.8 shows the recommendation quality of the NB recommender and

CLARE. We used Director + Plot of movies for training the NB recommender.

Note that one NB recommender is trained for each active user, so that no

collaborative information was used, and that the NB recommender is purely

content-based.

CLARE is more robust than the NB recommender Figure 4.8 shows. Further,

CLARE’s advantage over the NB recommender becomes more significant as n

increases. We conclude that CLARE is more effective than the content-based NB

recommender in addressing the cold-start problem.

4.6 Summary

This chapter discusses our effort on addressing the cold-start problem in CF.

We introduced a preference model comprising user-item relationships and item-

103

item relationships, and described how the proposed algorithm, CLARE, generates

cold-start recommendations by CAR mining. The main feature of CLARE is that

when no association rule for a certain item can be mined from ratings data, it

takes into consideration the attributes the item has in common with other items

to generate recommendations by CAR mining.

We also presented a comprehensive evaluation of CLARE. CLARE achieves

good recommendation quality by making use of highly correlated items and

item attributes for generating cold-start recommendations. It provides high

coverage regardless of the number of cold-start items in the system. Further,

it outperforms related algorithms, including MS-based and pure content-based,

in recommending cold-start items. All these results are very encouraging,

and suggest that our work successfully and effectively addressed the cold-start

problem in CF.

We nonetheless identified two limitations of CLARE. Firstly, we mentioned

in Chapter 4.3 that the Item Attribute layer in the proposed preference

model may contain multiple sub-layers (e.g. in [162]), which are actually

attributes of the Item Attribute nodes, in a real world application. We

point out that such sub-layers are not likely to be useful for inferring preferences

about the Item nodes in the context of recommender systems. Consider IMDb

as an example, where Item nodes are movies, while Item Attribute nodes

are directors, actors/actresses, plot summaries and so on. An example of an

Item Attribute sub-layer is the portfolio of a particular actor, such as his

place of birth, birthday and biography. One might agree that the presence of an

actor in a movie may affect a user’s rating for or interest in watching the movie,

but the portfolio of the actor himself may not. For instance, it is unreasonable

for a movie recommender system to predict that the user would like the movie

because its leading actor was born on a certain date. This is why we do not

consider Item Attribute sub-layers in our current work. It may still be

interesting to study the behavior of CLARE with the presence of such sub-layers

from a data mining perspective.

Secondly, our preference model assumes that a transaction supporting an

item also supports all of the item’s attributes. In other words, it assumes that

a user giving a rating on a movie would also give the same rating on the movie’s

attributes, such as its cast and directors. This assumption can be relaxed with the

current advent of sentiment analysis techniques [83, 79], which aim at extracting

104

and analyzing user opinions from textual reviews. This motivated our work

on sentiment analysis and its possible integration with collaborative filters, as

discussed in the next two chapters.

105

Chapter 5

Augmenting Ratings from Reviews
for CF by Rating Inference

5.1 Introduction

Sentiment analysis deals with the automatic identification, extraction, and clas-

sification of opinions in texts. It can be used to develop applications that assist

decision makers and information analysts in tracking user opinions about topics

that they are interested in [170, 61, 168]. An example of sentiment analysis is

the classification of a movie review as “thumbs up” or “thumbs down” [115].

One interesting application of sentiment analysis that has not yet received

much research attention is the use of sentiment analysis to augment ratings for

performing CF. User preferences in CF are usually collected either implicitly

by capturing users’ interactions with the system (e.g. purchase histories), or

explicitly by asking users to give scalar ratings on items they have examined

as noted. With the advent of Web 2.0 technologies, user-generated reviews are

now popular a means for users to express their comments or preferences. Some

review hubs, such as Amazon.com and the Internet Movie Database (IMDb),

allow end-users to provide reviews in free text format. Such reviews can also be

considered a type of “user ratings”, although they are natural language texts that

are not readily usable by existing CF algorithms. While the PHOAKS system

[153] classifies web sites recommended by users in new group messages, it does

not involve mining user preferences from texts.

We proposed hybrid recommendation algorithms that utilize concept hier-

archies of domain items for addressing the problems of data sparseness and

106

cold-start recommendations in Chapters 3 and 4. In this chapter and the next,

we attempt to address these problems along another dimension by the use of

user-generated reviews. We describe in this chapter our work on utilizing user-

generated reviews for CF by means of rating inference. Our work is motivated

by the fact that while CF suffers from the problem of data sparseness, sentiment

analysis is able to elicit user preferences expressed in textual reviews that are

not readily usable for performing CF. More specifically, we propose to bridge

the gap between sentiment analysis and CF. Our proposal offers two advantages.

Firstly, it addresses the well-known data sparseness problem in CF by enabling

existing CF algorithms to use user-generated reviews as an additional source of

user preferences. Secondly, it helps extending CF to domains where numerical

ratings on products are difficult to collect, or where preferences on domain

items are more natural to be expressed as texts. An example of such domains

is travel and tourism, in which the most successful recommender systems are

built upon content- or knowledge-based techniques [128], although numerous

textual reviews are available as travel journals and reviews. Integrating sentiment

analysis and CF allows for the use of existing reviews for personalization

purpose.

As described in Chapter 2.5.1, rating inference is a sentiment analysis task

that aims at representing the overall polarity of opinions in text documents, which

are user-generated reviews in our work, as numerical ratings. Such ratings can

readily be used by existing CF algorithms, allowing easy and direct integration

of sentiment analysis and CF. We demonstrated this empirically in this chapter

based on our proposed Probabilistic Rating infErence Framework (PREF). PREF

applies existing language processing techniques to extract interesting informa-

tion from reviews. It determines the SO (sentimental orientation) and strength

of opinion words using our proposed relative-frequency-based method, and then

assigns numerical ratings to the reviews based on a probabilistic rating inference

model. We compared PREF to several related studies to validate its robustness,

and demonstrated its successful integration with CF.

The major technical contributions of our work are two-fold. Firstly, we pro-

posed novel, simple yet effective methods for determining the SO and strength of

opinion words, as well as the overall ratings of reviews. Secondly, we empirically

demonstrated that rating inference is a feasible method for enabling review-based

CF by successfully integrated PREF with the classical user-based CF algorithm.

107

To the best of our knowledge, this has not been done in any precedent work, and

we hope our work can compel further research into the integration of sentiment

analysis and CF.

The next section describes the dataset we collected to facilitate the purpose

of this study. It also discusses the observations we made from the dataset.

Chapter 5.3 details the design of PREF, the proposed rating inference framework.

Chapter 5.4 discusses experimental results which validated the effectiveness of

PREF, while Chapter 5.5 demonstrates how rating inference enables review-

based CF. Finally, we summarize our contributions and findings in this work

in Chapter 5.6.

5.2 Analysis of Movie Reviews

We used movie reviews as the domain of this study for two reasons. Firstly,

there exist a large number of movie reviews on the Web that can be used for our

experiments. Many of those reviews are accompanied by user-specified ratings

that can be used as ground truth in our experimental study. Secondly, the movie

domain is the most well-studied domain that has received great success in CF.

We therefore would like to base this work, which represents our initial effort on

integrating sentiment analysis and CF, on such domain.

We collected a set of movie reviews from the IMDb. We then examined

the dataset to determine the linguistic processing tasks that should be included

in our proposed framework. We performed some preliminary experiments on

the processed dataset to analyze the characteristics of the dataset, especially

the use of opinion words in the reviews. Experimental results helped us design

appropriate methods for extracting opinion words and determining their SO and

strength. The following subsections describe our data collection method and the

observations we made from the preliminary experiments.

5.2.1 Data Collection

We first explain the need for collecting a new reviews dataset rather than adopting

existing benchmarking CF and sentiment analysis datasets. Obviously, existing

CF datasets, such as the MovieLens datasets and the book-crossing [178] dataset,

cannot facilitate our study because they only contain ratings data. Existing

108

sentiment analysis datasets, however, do not fit the purpose of our study as

well. One characteristic of CF applications is that the numbers of items and

users, especially in large-scaled e-commerce applications, are large. We were,

however, unable to find any sentiment analysis dataset having a considerable

number of users and items that are comparable to widely used CF datasets (e.g.

MovieLens datasets). In view of these, we collected our own dataset for this

study.

We collected movie reviews from IMDb for the movies in the MovieLens

100k dataset, courtesy of GroupLens Research [75]. The MovieLens dataset

contains ratings on 1,692 movies by 943 users. We removed movies that are

duplicated or unidentifiable (movies without names), and crawled the IMDb,

with a six- to ten-second delay between requests, to download reviews for

the remaining movies. The reviews were downloaded as HTML pages. Each

page contains 0 to 10 reviews. We developed a program to extract all reviews

in each page. The resulting dataset contains approximately 50k reviews on

1,536 movies, provided by 1,805 different users. We then filtered out reviews

without user-specified ratings, which are used for evaluating the proposed rating

inference framework. We also discarded contributions from users who have

provided fewer than 10 reviews to facilitate our future experiments on integrating

rating inference with CF. The final dataset contains approximately 30k reviews

on 1,477 movies, provided by 1,065 different users.

Each complete review in our dataset contains several headers and a text body.

The headers include movie ID, user ID, review date, summary, which is a one-

line summary in natural language text written by the user, and a rating, which is

a user-specified number ranging from 1 (awful) to 10 (excellent). The text body

is the user’s comments on the movie.

5.2.2 Preliminary Experiments and Observations

We performed a set of preliminary experiments on the collected data. The

purpose of the experiments is to examine the use of opinion phrases in reviews.

We are particularly interested in this because the ultimate goal of our work is to

integrate sentiment analysis of CF, due to the observation that reviews contain

detailed preferences information that may be useful for generating collaborative

recommendations. We seek to identify appropriate methods for extracting and

109

understanding user opinions in reviews based on the preliminary experiments.

In what follows, we first describe the method we used for identifying opinion

words in reviews, and then detail the setup and results of our preliminary

experiments.

Identifying opinion words

Previous work on subjectivity analysis suggests that adjectives have a strong

association with subjectivity [17, 165]. We therefore consider adjectives to be

opinions as in several other related studies [156, 61, 62]. In other words, our

preliminary experiments focus on examining the use of adjectives in reviews,

and we need to apply POS tagging to our dataset in order to identify adjectives

from the reviews.

The most well-known POS tagger in the NLP literature is the Brill tagger

[15]. However, we adopted another NLP processor known as MontyLingua [92]

in our work, because MontyLingua was developed based on the Brill tagger, but

produces higher tagging accuracy (around 97%). The sentence below shows an

example of the output produced by the POS tagging function of MontyLingua.

“Good/JJ beginning/NN and/CC end/NN but/CC unpleasant/JJ mid-

dle/NN”

In the above sentence, each token, which is a whitespace-delimited string,

represents a “word/POS tag” pair. The POS tags JJ, NN and CC represent

adjective, noun and coordinating conjunction respectively.

We also paid attention to the use of negation words, including “not”, “never”

and “neither”, in the reviews. Consider the following sentence extracted from a

review in our dataset:

“The first half is a painful experience, while the second half is simply

not good.”

In the above example, the use of the word “not” has a negation effect on the

adjective “good”. We applied a simple negation tagging heuristic to address

the effects of negation words [24, 115]. Specifically, if the negation tagging

process identifies a negation word in a sentence, it adds a special tag to the

adjectives appeared after the negation word in the rest of the sentence. In the

110

above example, the adjective good would be changed to “NOT good”, which is

then treated as a separate opinion word. Negation words may be written in short

forms, such as “don’t”. We therefore applied fuzzy string matching by regular

expressions when detecting negation words in a sentence to allow word variants

such as “do not” and “dont”, which is not uncommon in casual forms of writing

including user-generated reviews.

The use of opinion words in reviews

We performed a set of preliminary experiments to analyze the use of opinion

words in reviews as noted. The purpose of doing so is to investigate appropriate

methods for determining the SO and strengths of opinion words.

We first applied POS tagging and negation tagging to our dataset as afore-

mentioned. We then randomly sampled from the dataset three training sets,

namely T10, T5 and T1, each containing 500 reviews having user-specified

ratings of 10/10, 5/10 and 1/10 respectively. These ratings were chosen as they

seem to be appropriate representative cases for positive, neutral and negative

sentiments.

We used a program to extract the processed adjectives from our dataset, and

compute their frequency counts from each of the training sets. Some frequent

opinion words appeared the training sets were selected for further analysis.

The number of distinct opinion words appeared in the training sets is 4,545,

among which 839 (around 18.5%) appeared in two of the three training sets,

and 738 (around 16.2%) appeared in all three. We further examined opinion

words that appeared in more than one training set. Table 5.1 lists the 15 most

frequent opinion words (Top 15) of this kind in each training set in descending

order of their frequency counts. In the table, the number in brackets following

an opinion word is its relative frequency in the particular training set, computed

as its frequency count in the training set divided by its total frequency count in

all training sets. Boldface is used to highlight words having the highest relative

frequency among the three training sets.

We made the following observations based on the analysis on the occurrence

and relative frequencies of opinion words in the training sets:

1. In general, the relative frequencies of opinion words that are in general

considered to be “Positive” are usually, but not always, the highest in T10

111

Table 5.1: Top 15 opinion words with relative frequencies.

Training set Opinion words with relative frequencies

T10 best (0.68), great (0.66), good (0.33), many (0.47), first (0.38),
classic (0.71), better (0.30), favorite (0.75), perfect (0.75), great-
est (0.85), wonderful (0.83), excellent (0.70), funny (0.36), sad
(1.00), brilliant (0.81)

T5 good (0.39), more (0.54), much (0.51), bad (0.35), better (0.41),
other (0.32), few (0.73), great (0.21), first (0.34), best (0.19), little
(0.47), many (0.29),

funny (0.38), NOT good (0.45), NOT bad (0.55)

T1 bad (0.65), good (0.28), worst (0.89), much (0.49), more (0.46),

other (0.28),

first (0.28), better (0.29), many (0.24), great (0.13), best (0.13),

stupid (0.56), boring (0.56), NOT good (0.36), only (0.48)

Table 5.2: Top 1 opinion words with relative frequencies.

Understood Relative frequency in:
Opinion word SO (strength) T10 T5 T1

best positive (strong) 0.68 0.19 0.13

good positive (mild) 0.33 0.39 0.28

bad negative (strong) 0 0.35 0.65

and the lowest in T1. On the contrary, those of “negative” opinion words

are usually the highest in T1 and the lowest in T10. Table 5.2 lists as

examples the relative frequencies of the most frequent opinion word (Top

1) in each training set. Boldface is used to highlight the highest relative

frequency of each opinion word.

This observation probably suggests that relative frequencies may help

determining the SO and strengths of opinion words. For example, the

word “best” appeared in T10 for 68% of the time. It may therefore be

considered a positive opinion word with a strength of 0.68.

2. Referring to the previous observation, even opinion words having strong

positive (resp. negative) SO in the T10 (resp. T1) training set appeared in

the other two training sets as well. We suggest to allow an opinion word to

112

have multiple SO when performing rating inference. This models the fact

that an opinion word can appear in reviews having different ratings.

Adopting the fuzzy set concept [173], which means that an attribute can be

a member of some fuzzy sets to certain degrees, we allow an opinion word

to have multiple SO and strength. A membership degree is determined by

a membership function, and its value is in the range [0, 1]. In the context

of our work, such “membership degree” with respect to a certain SO can

be determined by the relative frequency of a word in the corresponding

training set. For instance, the word “best” have SO Positive, Neutral and

Negative with the strengths 0.68, 0.19 and 0.13 respectively.

3. Using a relative-frequency-based method to determine the SO and strengths

of opinion words means that opinion words appeared more frequently in

T10 are considered positive sentiments, and vice versa. We found that

the resulting SO of opinion words may not agree with their generally

understood SO. An example is the word “frightening” which seems to

express a negative sentiment. In our movie review dataset, however, its

relative frequency in T1 is only 0.29.

4. We further conclude that synonyms do not necessarily have similar SO

based on the previous observation. For example, the word “terrible”, is a

synonym of the word “frightening”, but its relative frequency in T1 is 0.75

(that of “frightening” is 0.29).

We described in Chapter 2.5.3 a class of existing techniques that makes

use of a set of seed adjectives and the semantic similarities between word

meanings to determine SO of opinion words [61, 62, 72, 68]. These

studies assumed that semantic similarity implies sentimental similarity.

Our analysis, however, indicates that this is not necessarily true. While

such semantic-similarity-based methods may help performing topic-based

classification, it may not be applicable to sentiment analysis. This further

suggests that our relative-frequency-based method overcomes a major

limitation of existing semantic-similarity-based methods, because it allows

similar words to have totally different SO.

5. We noticed that many words appeared in the training sets may not have

clear sentiments, or are not expressing sentiments at all. Examples include

113

“116-minute”, “yellow” and “year-old”. Further, many words with the

strength 1 are typos or meaningless words that appeared only once in

the training sets. Examples include “woodi”, “directer” and “so-good-

i-wanna-see-it-again-and-buy-the-dvd”. We therefore attempted to prune

the extracted opinion words, or the opinion dictionary, with the concern

that these irrelevant words, or noises, may have adverse effects on the

performance of the proposed framework. Chapter 5.4.3 describes the

pruning method and results.

To sum up, our analysis of movie reviews suggests that relative frequencies

of opinion words may be useful indicators of their SO and opinion strength.

To the best of our knowledge, this simple relative-frequency-based method has

not been adopted in related studies, thus its effectiveness has to be evaluated

empirically. Further, we propose to allow opinion words to have both positive

and negative to certain degrees to facilitate rating inference. Although the

algorithm in [68] determined both positive and negative SO of words, it only used

the primary (dominant) SO of words when performing sentiment classification.

The effectiveness of using multiple SO should therefore be studied. We are

also concerned about effects of noises (irrelevant words) that may have on the

performance of the proposed framework. We therefore attempted to prune the

opinion dictionary to minimize their adverse effects, if any.

5.3 PREF: A Probabilistic Rating Inference Frame-

work

PREF is a probabilistic rating inference framework developed to support the

integration of sentiment analysis and CF. It includes four major steps, namely

data preparation, feature extraction, opinion dictionary construction and rating

inference. Figure 5.1 depicts an overview of PREF and how it is related to CF.

5.3.1 Data Preparation

The data preparation step preprocesses user reviews for the subsequent analysis.

Different preprocessing may be required depending on the data sources. For

114

Figure 5.1: Overview of PREF

example, if user reviews are downloaded as HTML pages, the HTML tags and

non-textual contents they contain are removed in this step.

A user review is usually a semistructured document, containing some struc-

tured headers and an unstructured text body (comments). Sentiment analysis

algorithms usually do not require information other than the user-specified

comments and ratings (e.g. for performance evaluation), but PREF extracts also

the identities of users and domain items because they are needed for performing

CF. Note that the term “reviews” hereafter refers to the textual comments given

by users.

5.3.2 Feature Extraction

This step extracts features, including opinion words and item features, from the

reviews. In additional to the aforementioned POS tagging and negation tagging

tasks, we also performed feature generalization on our dataset.

Feature generalization is about generalizing interesting features that may be

overly specific [25], such as product brands and movie names. Such features

are identified with the aid of POS tags by matching proper nouns in reviews

with attributes of domain items. In the movie reviews domain, for example, a

115

sentence “Toy Story is pleasant and fun.”, in which “Toy Story” is the name

of the movie being reviewed, is generalized to “ MOVIE is pleasant and fun.”.

We adopted this task as a kind of discourse analysis to facilitate rating inference

which involves assigning weights to opinions associated with interesting item

features.

After analyzing a review d using the above tasks, this feature extraction step

produces a representation of d as a list of opinion words, Vd = {v1, v2, ..., vn},

and a list of item features, Fd = {f1, f2, ..., fn}. Each vi is an adjective, and fi is

the nearest noun or noun phrase (item feature) in the sentence from which vi is

extracted. If the associated feature of an entry in Vd cannot be identified, then the

corresponding entry in Fd is null. Vd is used in the following opinion dictionary

construction and rating inference steps, while Fd is used in the rating inference

step for assigning weights to opinions.

5.3.3 Opinion Dictionary Construction

An opinion dictionary contains opinion words, their estimated SO and the

strength of their SO. We described in Chapter 5.2 that existing semantic-similarity-

based methods for determining SO assume that similar word meanings imply

similar SO, but such assumption may not hold in sentiment analysis. We

therefore proposed a novel relative-frequency-based method to overcome this.

Our method estimates the strength of an opinion word vi with respect to a

sentiment class cj , denoted as OS(vi, cj), as follows:

OS(vi, cj) =
N(vi, cj) + α∑|C|

k=1
N(Vj)

N(Vk)
∗ [N(vi, ck) + α]

(5.1)

where α is a small number that serves as a smoothing factor to avoid zero

probabilities of unseen opinion words, cj and ck are elements in C, which is the

set of sentiment classes used for determining SO. Note that sentiment classes in

the rating inference task are ratings, for example, C = {1, 2, 3, 4}. N(vi, cj)

and N(vi, ck) denote the frequency counts of vi in cj and ck respectively in the

training corpus. N(Vj)

N(Vk)
is a normalization factor, where N(Vj) and N(Vk) are

the total frequency counts of the opinion words in classes cj and ck respectively.

More specifically, it normalizes the frequency of vi in a given sentiment class by

the frequency of all opinion words in that class.

116

The proposed method offers three advantages. Firstly, it allows an opinion

word to have multiple SO, each with a corresponding strength. This addresses

the facts that opinion words may appear in more than one sentiment class, and

that even a review associated with a high rating could contain negative comments

on the relevant subject, and vice versa. Secondly, the SO and strength of an

opinion word are determined by its relative frequencies of appearance in different

sentiment classes. The SO of an opinion word is therefore not limited to its

generally understood SO or the SO of its semantically related words, thereby

overcomes a major limitation of semantic-similarity-based methods. Thirdly, the

opinion dictionary can be maintained easily because new words can be added

without having to rebuild the entire dictionary. The frequencies of existing

opinion words can also be updated incrementally.

We mentioned in Chapter 5.2.2 that our opinion dictionary contains noises,

because our method identifies opinion words based on POS information. Noises

include words without clear SO or are not expressing sentiments, meaningless

words and typos. Due to the concern that the noises might adversely affect the

performance of PREF, we attempted to prune the opinion dictionary and then

experimentally evaluated the effect of the pruning. Results generally suggest that

the noises do not affect performance adversely, thus pruning is not necessary in

PREF. Chapter 5.4.3 provides details about the pruning method and results.

5.3.4 Rating Inference

Rating inference aims at determining the overall SO of a review based on the

SO of the opinion words it contains. It has been viewed as a multi-category

classification task, in which class labels are scalar ratings, such as 1 to 5 “stars”.

It is, however, different from standard topic-based classification because class

labels in the rating inference task are ordered, and there exist different degrees of

similarity between the class labels. For instance, “5 stars” is intuitively closer to

“4 stars” than to “2 stars”. Previous studies therefore addressed rating inference

as a regression task [112, 114], and it is important to take the intuitive similarities

between class labels into consideration in the rating inference process.

PREF infers a predicted rating from an unseen review d as follows. Firstly, d

goes through the feature extraction step which returns the list of opinion words

in d, Ad = {a1, a2, ..., ai}, and the product features associated with A, Fd =

117

{f1, f2, ..., fi}. Secondly, the weights of F , Wd = {w(f1), w(f2), ..., w(fi)}, are

determined based on some predefined criteria. Note that w(fi) can be defined

with respect to a particular review d, which is written by a single user in the

system. This means that individual users’ preferences for different features can

be catered if such preferences are available. Finally, a rating, which is the overall

SO of d, is estimated for d given the opinion dictionary, Ad and Wd.

Weighting item features

PREF provides the flexibility of weighting different opinion words according

to the estimated importance of their associated product features in reviews, if

any. Adopting weights also allows easy integration with user-specified interest

profiles if necessary. For example, if a certain user of a movie recommender

system specified that he is particularly interested in a certain actor, then the acting

of that actor in a movie may have stronger influence on the his preference for the

movie.

Learning user-specific feature weights is an interesting task in its own right.

It is, however, not within the scope of this study. We therefore only experimented

with features that are intuitively important for rating inference. Specifically, we

hypothesized that opinions towards a product as a whole may be more important

for determining the overall rating of a review, and assigned more weights to such

features in the rating inference process as described in Sect. 5.4.2. We point

out that learning user-specific feature weights can be conducted independent of

PREF, and such weights can flexibly be used in PREF once they are available.

Inferring a rating from a review

An overall rating is inferred from a review d based on the SO of the opinion

words d contains. Our rating inference model, inspired by the NB classifier,

consists of three steps. Firstly, assuming conditional independence of opinion

words, we assign a predicted score, denoted by PS(d, cj), to d with respect to a

sentiment class cj as follows:

PS(d, cj) = P (cj)

|Vd|∏
i=1

OS(vi, cj)
1/w(fi) (5.2)

where P (cj) is the prior probability of cj in the training data, OS(ai, cj) is the

118

strength of ai with respect to cj (Eq (5.1)), and w(fi), where w(fi) > 0, is the

weight assigned to the feature fi in d. Opinion words in Ad that are also in

the opinion dictionary will contribute to the calculation of PS(d, cj). Note that

Eq. (5.2) is not a rigorous probability formulation. It serves as an approximation

of how likely d belongs to the sentiment class cj .

Secondly, after computing PS(d, cj) for every cj ∈ C, the values of the set

of resulting PS(d, cj) are normalized so that their sum equals 1:

PS′(d, cj) =
PS(d, cj)∑|C|

k=1 PS(d, ck)
(5.3)

The normalized value PS′(d, cj) is the estimate of the probability that d

belongs to the sentiment class cj .

Finally, the overall SO of d, denoted as SO(d), is estimated as follows:

SO(d) =

|C|∑
j=1

cj ∗ PS′(d, cj) (5.4)

where cj is the value of the jth class label in C (recall that class labels are

numerical ratings). Considering PS′(d, cj) to be the probability that d has

the rating cj , Eq. (5.4) is equivalent to the calculation of Expected Value in

probability theory. We use an example to explain our design. Suppose we want

to rate d on a 5-point scale. Consider a simplified situation where d describes

a 5-star (excellent) feature and a 1-star (awful) feature, assuming equal weights

of the features. It would then be reasonable to expect a rating of approximately

3 out of 5 although d does not describe any 3-star feature. In this light, we

point out that rating inference shall not be considered a standard classification

problem. Computing SO(d) as an Expected Value takes into consideration the

continuity of class labels in the rating inference task.

A characteristic of our model is that the final rating assigned to d need not

be a member in C. As class labels in C are numerical values, SO(d) can fall

between two adjacent cj values in C. For example, if SO(d) is 2.8 and C =

{1, 2, 3, 4}, it can be rounded off to the nearest value in C which is 3, but it is

also quite natural to say “the predicted rating of this review is 2.8 out of 4”. We

therefore do not conclude how the final rating for d should be calculated from

SO(d) when SO(d) falls between two adjacent cj values as this is a flexible,

application-dependent decision.

119

Figure 5.2: Distribution of ratings in our movie reviews dataset.

5.4 Experimental Results

We conducted extensive experimental studies on PREF to validate its effective-

ness in inferring ratings from reviews. This section first describes the evaluation

method we used, and then discusses the results of two groups of experiments.

The first group of experiments, presented in Chapter 5.4.3, focuses on the

performance and behavior of PREF, whereas the second group of experiments,

presented in Chapter 5.4.4, aims at validating the robustness of PREF against

various related algorithms.

5.4.1 Method

We used the movie reviews dataset described in Chapter 5.2.1 for our experi-

ments. We randomly split the dataset into five non-overlapping, roughly equal-

sized folds, and reported all results based on the averages of the five folds. In

each experiment, one of the five folds was used as the test set, and a certain

number of reviews were randomly sampled from the other four folds as the

training set for building the opinion dictionary. This was designed to facilitate

our experiments on the effects of using different numbers of training reviews for

classifying the same set of test reviews. In the subsequent discussions, the term

“training set” refers to the set of reviews that was actually used for building the

opinion dictionary. Each training set contains 1,500 randomly sampled reviews

with uniform class distribution unless otherwise stated. The effect of skewed

class distribution in the dataset is out of the scope of this work. The same sets of

training and test reviews were used for all comparative evaluations.

120

PREF was evaluated with respect to a 3-point and a 4-point integer rating

scale, following the settings in [114]. The original ratings (r) in the dataset were

recorded on a 10-point scale in the distribution shown in Figure 5.2. They are

transformed into r′ to facilitate our experiments:

r′ =





1, if 1 ≤ r ≤ 3

2, if 4 ≤ r ≤ 7

3, if 8 ≤ r ≤ 10

in the 3-point case, and

r′ =





1, if 1 ≤ r ≤ 3

2, if 4 ≤ r ≤ 5

3, if 6 ≤ r ≤ 7

4, if 8 ≤ r ≤ 10

in the 4-point case. Note that the terms “class” and “class label” refer to r′ in the

subsequent discussions.

We adopted MAE and MSE as evaluation metrics because this work is

concerned with the rating prediction task. We also measured the coverage

rates achieved the various algorithms. Coverage in this work is defined as the

percentage of reviews in the test set for which ratings can be inferred. We

found that the coverage rates produced by the various algorithms in different

experimental settings only varied slightly, with a range from 98.7% to 100%.

We therefore did not include this metric in the subsequent discussions.

Note that classification accuracy (ACC), which is the percentage of reviews

that were classified (rated) correctly, has been commonly used for evaluating

sentiment classification algorithms (e.g. [156, 115, 25, 114, 41]). However, we

point out that ACC is not an appropriate metric for evaluating rating inference

algorithms for two reasons. Firstly, it is necessary to round off SO(d) to the

nearest value in C in order to obtain the ACC of an algorithm. When doing

so, a very small difference in the SO(d) of two reviews can cause them to be

assigned two different ratings, a problem known as the sharp boundary problem.

For instance, a SO(d) value of 2.49 will be rounded off to 2, whereas that of

2.5 will be rounded off to 3 using an integer scale. Secondly, the notion of

“accuracy” reflected by ACC is too coarse-grained for the rating inference task

as ACC treats mis-rating of all intensity equally. Specifically, given a r′d of 4,

121

an algorithm that produces a SO(d) of 3 is obviously more “accurate” than one

that produces a SO(d) of 1 [25]. We therefore adopted MAE and MSE instead

of ACC in our experimental studies.

5.4.2 Parameters

We now report the test-set-optimal values of two adjustable parameters in PREF.

The first parameter is α, which is a small number that serves as a smoothing fac-

tor in Eq. (5.1) when computing the strength of opinion words. We experimented

with the values α ∈ {0.001, 0.01, 0.1, 1}, and set α = 0.01 in the subsequent

experiments as such a setting produced the best results.

The second parameter is the weights assigned to product features for reflect-

ing their estimated importance to the overall sentiments of users (Sect. 5.3.4).

Note that individual users’ preferences for various product features are not

known in our work. We therefore applied the same weights for all users to two

types of features that can be identified from the data and are intuitively important

for rating inference:

1. The MOVIE feature. If a proper noun or noun phrase represents the name

of the movie being reviewed, it was generalized as MOVIE in the feature

generalization step. The words “movie” and “film” were also replaced by

the tag MOVIE.

2. All features appeared in the summary of a review, as we observed that users

tend to state their overall recommendations for the movies concerned in the

one-line summary of the reviews.

We experimented with the weights {1, 2, ..., 10}, and found that assigning

both types of features a weight of 3 produced the best results. This suggests that

users’s opinions on such features are indeed more important for determining the

overall SO of reviews.

5.4.3 Evaluation of PREF

We implemented two baseline algorithms for benchmarking purpose:

1. Majority baseline algorithm: This algorithm always assigns a test review

to the majority class, which is 3 in the 3-point setting and 4 in the 4-point

setting.

122

Table 5.3: Summary of experimental results on PREF and the baseline algo-

rithms. Each training set contained 1500 reviews with uniform class distribution.
3-point 4-point

Algorithm MAE3 MSE3 MAE4 MSE4

1. Majority baseline 0.475 0.625 0.645 1.280

2. Heuristic baseline 0.702 0.870 1.106 1.981

3. PREF 0.339 0.341 0.566 0.799
4. PREF with pruning 0.353 0.340 0.576 0.790

2. Heuristic baseline algorithm: Given a test review d, if the movie m that

d is concerned with appeared in the training set, the heuristic baseline

algorithm assigns the average rating that m received in the training set

to d. Otherwise, it assigns a rating in C to d at random.

Table 5.3 summarizes our experimental results on the baseline algorithms and

PREF. In the subsequent discussions, we use MAEn and MSEn to respectively

represent the MAE and MSE produced using the n-point rating scale. When we

describe results as significant, we mean so statistically based on the Wilcoxon

signed-rank test (using a 95% significance level), a non-parametric version of the

popular paired t-test. We boldfaced the best results and those that are statistically

indistinguishable from the best in all tables presenting the results.

In what follows, we first discuss the results in Table 5.3, followed by an

investigation into the effects of the size of training set on the performance

of PREF. We then compared PREF to several related studies to validate its

effectiveness.

General observations

We made four general observations from the experimental results on the majority

baseline, the heuristic baseline, and PREF (lines 1-3 of Table 5.3). Firstly, all

algorithms perform better in the 3-point setting than in the 4-point setting, a

finding that is qualitatively consistent with that reported in [114]. This suggests

that the task of rating inference becomes more challenging when a finer-grained

rating scale is used.

Secondly, regarding the two baseline algorithms, the majority baseline al-

ways outperforms the heuristic baseline significantly. In fact, it might be

123

reasonable to conclude that the majority baseline performs quite well despite

its simplicity, because on average more than 60% of test reviews fall into the

majority class in our dataset. We therefore only compare the performance of the

various algorithms with that of the majority baseline in the rest of this section.

Finally, PREF always produces significantly better results than the majority

baseline algorithm. We conclude that PREF is capable of learning user prefer-

ences from reviews and performing rating inference effectively.

Pruning the opinion dictionary

We observed that our method for building the opinion dictionary produces noises,

including words without clear SO or are not expressing sentiments, as described

in Chapter 5.3.3. This is because our method identifies opinion words only based

on POS information. We attempted to prune the noises in the opinion dictionary

and evaluated the effect of the pruning.

The pruning method we adopted was inspired by the SO determination

method of Hu and Liu [61]. We first constructed an opinion dictionary, from

which we manually selected a set of 30 seed adjectives (the seed set) having clear

SO. Table 5.4 lists the seed adjectives we used for pruning the opinion dictionary.

The set contains both positive and negative opinions, such as “amazing” for

positive SO, and “awful” for negative SO. We systematically examined the

opinion words in the “noisy” opinion dictionary one by one. We used WordNet

[107] for determining the synonyms and the antonyms of a given word vi. If

the seed set contained any of those words, vi was then added to the seed set as

well. This process repeated until no more words were added to the seed set.

Finally, the words in the opinion dictionary that were not in the seed set were

pruned. The pruned dictionary was then used for performing rating inference.

The performance achieved by this set of experiments is shown in line 4 of

Table 5.3 with the label “PREF with pruning”.

The performance of “PREF with pruning” is not statistically better than that

of “PREF”, meaning that pruning does not improve the performance of PREF.

There are two possible reasons for this. Firstly, meaningless words and typos,

most of which appeared only once in the training reviews, are not likely to appear

in unseen reviews again. They therefore would not hurt performance. Secondly,

opinion words that are not noises might be pruned because they do not have

synonyms or antonyms (either direct or indirect) in the seed set as determined

124

Table 5.4: Seed adjectives used for pruning the opinion dictionary.
SO Seed list
Positive amazing, brilliant, classic, excellent, favorite, first, fun,

interesting, original, perfect, real, special, top, wonder-

ful, young

Negative awful, bad, boring, dull, hard, late, least, little, old, only,

own, poor, stupid, terrible, worst

by WordNet. An example of such words is “unforgettable”. It appeared in the

best rated reviews 72.1% and 60.1% of the time on average in the 3-point and

the 4-point cases respectively but was pruned in any case. This might be rectified

by defining an “optimal” seed set that can retain all meaningful opinion words,

but coming up with such a set is obviously difficult, if not impossible. In view

of these, we conclude that pruning of “noises” is unnecessary in PREF.

Effects of the size of training set

A training set refers to the set of reviews that were actually used for building

the opinion dictionary. We investigated how the sizes of training set affect

the performance of PREF. We started with a training set with 300 randomly

selected reviews. We iteratively incremented the size of the training set by 300,

until it reached 4,800. While the training reviews were selected by random, we

ensured that the training set contained the same number of reviews per sentiment

class. In each iteration, we updated the frequencies of opinion words in the

opinion dictionary and then performed rating inference on the test set based on

the updated dictionary. Figure 5.3 shows the results of this experiment. In the

figure, the notation “A-n” denotes the performance of algorithm A using the n-

point rating scale. Note that the performance of the majority baseline (dashed

lines in Figure 5.3) remains constant because the majority class in the dataset

does not change with the size of the training set.

We first observed from Figure 5.3 that the performance of PREF improves

as more reviews are added to the training set, and the improvements are more

significant when the size of the training set grows from 300 to 1,200. These

suggest that PREF can produce more accurate rating inference over time as more

reviews are available in the system, although diminishing improvements shall be

125

Figure 5.3: Learning curves of PREF and the majority baseline showing how (a)

MAE, and (b) MSE change with respect to the size of training set in the 3-point

and the 4-point settings.

126

expected.

PREF always outperforms the majority baseline significantly in terms of

MSE. It yields lower MAE values than the majority baseline when 300 and

600 training reviews were used in the 3-point and the 4-point settings respec-

tively. We conclude that PREF achieves reasonably good performance when only

limited labeled (rated) reviews are available. For instance, using 300 training

reviews for building the opinion dictionary produced a MAE3 of 0.466 and a

MAE4 of 0.667. These values mean that the SO(d) values predicted by PREF

were within approximately 23% of the true ratings using both rating scales. This

finding is very encouraging as it indicates that it is possible to apply our work

to corpora where labeled (rated) reviews are rather limited. Examples of such

corpora include weblog and newsgroup messages that are not collected from

review hubs so that hand-labeling of the documents may be necessary.

5.4.4 Comparisons with Related Work

We compared our work with four pieces of related work capable of performing

rating inference. They include a standard NB classifier, an extension to the

“baseline method” of Dave et al. [25], SVR, and the graph-based method

proposed by Goldberg and Zhu [41]. Note that comparisons were always

conducted based on the same feature set (opinion words).

Table 5.5 summarizes part of our comparative experiments. We included the

majority baseline in the table to help indicate the effectiveness of the various

algorithms. The following subsections detail the design of the experiments and

discuss the results.

Naive Bayes (NB) classifier

NB has been well-known for its simplicity and its successful applications to

many classification problems. It has also been applied to binary sentiment

analysis, and has been found to perform generally well despite its simplicity

[115, 25]. We implemented a standard NB classifier for rating inference by

regarding rating inference as a multi-category classification problem. We only

used opinion words (V) as features in the NB classifier as in PREF, and members

in C as class labels.

The performance of the NB classifier is reported in line 3 of Table 5.5.

127

Table 5.5: Summary of comparisons between the majority baseline, PREF, NB

classifier, a method based on Dave et al. [25], and SVR. Each training set

contains 1,500 reviews with uniform class distribution.
3-point 4-point

Algorithm MAE3 MSE3 MAE4 MSE4

1. Majority baseline 0.475 0.625 0.645 1.280

2. PREF 0.339 0.341 0.566 0.799
3. NB Classifier 0.411 0.492 0.646 1.080

4. Dave et al. 0.396 0.475 0.578 1.007

5. SVR 0.569 0.479 0.861 1.033

Results show that PREF always outperforms the NB classifier significantly. One

contributing factor to this is that the NB classifier assigns a review d to the

sentiment class having the highest posterior probability. This neglects the fact

that rating inference is about determining the overall SO of a review. PREF,

in contrast, addresses the continuity of class labels (scalar ratings) as every

PS(d, cj) value contributes to the determination of its overall SO.

Baseline Method of Dave et al.

The “baseline” method proposed by Dave et al. [25] was designed for binary

sentiment classification, but can be flexibly adapted to the multi-point rating

inference task. We did this based on the idea of the OVA approach [132] for

extending a binary classifier for n-ary outputs. We first detail the adaptations we

made to their method and then describe the results.

Dave et al. assigned to an opinion word vi the score score(vi) as a measure

of bias ranging from -1 to 1 using Eq. (2.32) (Chapter 2.5.3 on page 49). We

extended Eq. (2.32) based on the idea of OVA classification to compute the score

of vi for every cj ∈ C. Such score, denoted by score(vi, cj), is normalized so

that the set of score(vi, cj) obtained by vi sums to 1. It is used as the estimated

OS of vi with respect to cj . Formally, OSDave(vi, cj) is defined as:

OSDave(vi, cj) =
score(vi, cj)∑
c∈C score(vi, c)

(5.5)

Given an unseen review d and the list of opinion words Vd = {v1, ..., vi}
it contains, Dave et al. [25] summed up the total SO of Vd with respect to

128

each sentiment class, and then assigned d to the class with the dominant SO.

Following their ideas, we first assign a predicted score to d with respect to a

sentiment class cj as follows [25]:

PSDave(d, cj) =

|Vd|∑
i=1

OSDave(vi, cj) (5.6)

After computing PSDave(d, cj) for every cj ∈ C, SODave(d) is estimated to

be the sentiment class cj having the highest PSDave(d, cj) value. That is,

SODave(d) = arg max
cj∈C

PSDave(d, cj) (5.7)

Line 4 of Table 5.5 reports the performance of the above method based on

Dave et al. [25]. Such a method always outperforms the majority baseline

significantly, and performs well in terms of MAE4. However, PREF shows

significantly superior performance in terms of MAE3, MSE3 and MSE4. In other

words, PREF always performs better than the method based on Dave et al. [25]

in the 3-point setting, and it always produces fewer large errors.

Support Vector Regression (SVR)

Support Vector Regression (SVR) [159, 147] has been used for performing

rating inference in [114, 112, 41]. SVR assumes that class labels come from

a discretization of a continuous function. It is therefore able to capture the

order and continuity of class labels in the rating inference task [114, 112]. Its

performance has been found to be comparable to sophisticated machine learning

models and to human performance [114, 112, 41].

We applied SVR to our rating inference task based on the SVMlight package

[66] in three steps. Firstly, we created feature vector representations of our

dataset. We used only opinion words as features for representing each review as a

{0, 1} word-presence vector, and such vector is normalized as in [41]. Secondly,

we applied linear ε-insensitive SVR with all default parameters to our training

sets, following the settings in [41]. The output of this step is a set of learned

regression models, one for each training set. Finally, we applied the learned

models to the corresponding test sets to perform regression. Line 5 of Table 5.5

reports the results of this experiment.

PREF always outperforms SVR significantly in this experiment as shown in

the table. Further, SVR produces mixed results as compared to the majority

129

Table 5.6: Comparison with SVR: Each training set contains 4,800 reviews with

uniform class distribution.
3-point 4-point

Algorithm MAE3 MSE3 MAE4 MSE4

1. Majority baseline 0.475 0.625 0.645 1.280

2. PREF 0.326 0.333 0.480 0.686

3. SVR 0.542 0.438 0.606 0.630

baseline. More specifically, its MAE values are significantly higher than those

of the majority baseline, but it beats the majority baseline in terms of MSE using

both rating scales. This finding is quite surprising because SVR has been found

to perform reasonably well for the rating inference task in related studies as

aforementioned [114, 112, 41].

The unsatisfactory performance of SVR, as compared to the majority base-

line, might be due to our experimental settings in which a small training set

(1,500 reviews) was used for classifying a relatively large test set (5,743 reviews

per test set on average). Another possible reason is that our training sets were

designed to have uniform class distribution, which is quite different from the

original class distribution of our dataset as Table 5.2 reveals. We conducted two

additional experiments on SVR to investigate into these two issues, summarized

as follows.

In the first experiment, we increased the size of training set from 1,500 to

4,800 while maintaining uniform class distribution. We then reran the rating

inference experiments on PREF and SVR. Table 5.6 report the results from which

we made three observations. Firstly, PREF still performs the best in the 3-

point setting, and produces significantly lower MAE4 than SVR. Secondly, SVR

produces better results than the majority baseline except for MAE3. Thirdly,

referring to lines 2 and 5 of Table 5.5, both PREF and SVR perform better using a

larger training set, and improvements are more significant in the 4-point setting.

We conclude from these observations that PREF generally outperforms SVR,

and that the unsatisfactory performance of SVR in the previous experiment is

partially due to the relatively small training sets we used for learning regression

models.

In the second experiment, we examined the effects of class distribution on

PREF and SVR. Each training set in this experiment contains 1,500 randomly

130

Table 5.7: Comparison with SVR: Each training set contains 1,500 reviews, and

retained the original class distribution of the dataset.
3-point 4-point

Algorithm MAE3 MSE3 MAE4 MSE4

1. Majority baseline 0.475 0.625 0.645 1.280

2. PREF 0.342 0.349 0.487 0.691
3. SVR 0.449 0.333 0.599 0.679

sampled reviews and retained the original class distribution of our dataset.

We conducted our rating inference experiments on the new training sets, and

provided the results in Table 5.7. We made two observations from the results.

Firstly, PREF performs the best in all aspects, although its MSE values are

statistically indistinguishable from those of SVR based on Wilcoxon tests (p <

0.05). Secondly, by comparing Tables 5.5 and 5.7, we observed that SVR is

much more sensitive to the class distribution of the training sets than PREF is.

To conclude, PREF generally outperforms SVR with a linear kernel for our

rating inference task under identical experimental settings. Nonetheless, SVR

performs well, especially in terms of MSE, if regression models are learned from

training sets that can reliably reflect the class distribution of the underlying data.

Graph-based method of Goldberg and Zhu

Goldberg and Zhu [41] proposed a graph for modeling the rating inference task,

and a closed-form solution to the optimization problem described in Eq. (2.34)

in Chapter 2.5.4 (page 52). Their method extends the metric labeling approach

of Pang and Lee [114] by supporting transductive learning as aforementioned. It

was found to outperform Pang and Lee’s approach when the number of labeled

training reviews were limited. We implemented the closed-formed solution of

Goldberg and Zhu and applied it to our dataset. Note that our current work only

uses labeled reviews for training, thus we are actually solving the optimization

problem described in Eq. (2.35).

We now describe the implementation of Goldberg and Zhu’s work [41]. We

computed the initial predicted ratings of test reviews ({r̂i}) using SVR as in [41].

Given the experimental results on SVR reported in the previous subsection, we

used training sets that retained the original class distribution of our dataset for

131

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rating

M
ea

n
an

d
S

ta
nd

ar
d

D
ev

ia
tio

n
of

 P
S

P

Figure 5.4: Mean and standard deviation of PSP of reviews having different

ratings in our dataset.

this experiment. We computed sim(di, dj), the similarity between reviews di and

dj , based on PSP [114]. To determine PSP, we first trained a NB classifier based

on the “subjectivity dataset v1.0” in [113] for retaining subjective sentences in

reviews. We then trained another NB classifier based on the “sentence polarity

dataset v1.0” in [114] for identifying positive sentences so that PSP can be

determined. sim(di, dj) is computed as the cosine angle between the two vectors

(PSPi, 1-PSPi) and (PSPj , 1-PSPj), where PSPi denotes the PSP of review xi.

Figure 5.4 shows the relationship between the PSP and user-specified ratings of

the reviews in our dataset.

Previous work found that the user-specified ratings and PSP of reviews

tend to be positively correlated [114, 41]. We observed from Figure 5.4 the

same qualitative result, but apparently with greater standard deviation than those

observed in [114, 41]. This may be attributed to the mixed-author setting of our

dataset (recall that the four corpora used in [114, 41] were author-specific).

We now provide the values of the parameters M, k and α. M is the weight

assigned to labeled training reviews, and we set its value to 108 as in [41]. k is

the size of nearest neighbors of test reviews, while α is the weight assigned to

such neighbors. The test-set-optimal values, which we tuned empirically, of k

and α are respectively 5 and 0.1.

Table 5.8 reports the results of this experiment. The graph-based approach

always produces the lowest MSE values. PREF, however, performs the best in

terms of MAE, and its MSE3 is statistically indistinguishable from that of the

132

Table 5.8: Comparison with the graph-based approach [41] to rating inference:

Each training set contains 1,500 reviews, and retained the original class distribu-

tion of the dataset.
3-point 4-point

Algorithm MAE3 MSE3 MAE4 MSE4

1. Majority baseline 0.475 0.625 0.645 1.280

2. PREF 0.326 0.333 0.480 0.686

3. Graph-based approach 0.390 0.322 0.552 0.647

graph-based approach. These results are very encouraging, as they indicate that

the performance of PREF is comparable to or better than that of the graph-based

model in most cases despite its simplicity.

5.5 Integrating PREF and CF

We pointed out that integrating sentiment analysis and CF offers two advantages.

Firstly, it is possible to perform CF even when user-specified ratings are not

available, and secondly, it addresses data sparseness by using reviews as an addi-

tional source of user preferences for CF. We validated our ideas experimentally in

this section. Note that it is possible to integrate other rating inference algorithms

with CF, or integrate PREF with other CF algorithms. In this section, however,

we only present results based on PREF and the classical user-based CF for two

reasons. Firstly, we have already validated the robustness of PREF against related

algorithms as discussed in the previous section. Secondly, we would like to keep

the focus of this work on rating inference. We therefore decided to integrate

PREF with the classical user-based CF model, which is well-acknowledged to be

a promising CF model in the literature.

The experiments were set up as follows. We first sampled three datasets,

denoted by DS1, DS2 and DS3, from our movie review dataset:

• DS1: contains around 15k reviews given by 480 users on 1,415 movies,

with a sparisty level of 97.7%. All reviews in this dataset have user-

specified ratings. This dataset was used to show the performance of

classical CF.

• DS2: contains the same reviews in DS1, but the ratings of the reviews were

133

predicted using PREF. This dataset was used to evaluate the recommen-

dation quality of predicted ratings. Note that when using this dataset for

performing CF, the actual ratings given by the users in DS1 are the ground

truth for performance evaluation.

• DS3: contains around 4.5k reviews given by users in DS1, but no user-

specified ratings were available in the original reviews. The ratings in

this dataset were therefore predicted using PREF. This dataset was used

to complement DS1 to demonstrate the effect of augmenting ratings for

existing CF by rating inference.

We then used the above datasets for performing CF. We adopted the best

known user-based CF model [127, 14] in the experiments to keep the focus of

this article on rating inference. Recall that user-based CF predicts the rating of a

given item for a given active user in three steps. They are similarity weighting,

neighbor selection and prediction computation. The similarity weighting step

requires all users in the dataset to be weighted according to their similarity with

the active user. Similarities are reflected in the ratings that users have given

items. Pearson correlation coefficient (Eq. (2.1) on page 20), among others, is

the most popular similarity measure studied in the CF literature, and is therefore

adopted in our experiments. The neighbor selection step selects a number of

k-nn, who are users having the highest similarity weights, of the active user as

item predictors. Finally, the prediction computation step computes the item’s

predicted rating based on some partial information of the active user and the

interests of his/her k nearest neighbors.

We adopted the Collaborative Filtering Engine (CoFE)9 for testing as it pro-

vides a well-tested implementation of k-nn with Pearson correlation coefficient.

Specifically, we prepared our datasets in the format required by CoFE and fed the

datasets into it. The default value of k was 50 in CoFE. The choice of such value

is consistent with the empirical findings of Herlocker et al. [55], which suggest

that setting k to 20 to 50 would produce reasonable performance in real-world

applications.

We reported the experimental results based on 5-fold cross validations using

three evaluation metrics. They are MAE, MSE and coverage (COV), which is

the percentage of items in the test sets for which CF predictions can be made.

9CoFE Collaborative Filtering Engine: http://eecs.oregonstate.edu/iis/CoFE

134

Table 5.9: Performance achieved using different datasets for performing CF.
3-point 4-point

Dataset MAE3 MSE3 COV3 MAE4 MSE4 COV4

1. Average baseline 0.513 0.496 100% 0.722 1.098 100%
2. DS1 0.436 0.430 74.3% 0.623 0.949 74.3%

3. DS2 0.477 0.479 87.6% 0.680 1.003 87.9%

4. DS1 + DS3 0.429 0.391 92.3% 0.599 0.836 91.7%

We report MAE and MSE but not decision accuracy metrics such as precision

and recall because the user-based k-nn algorithm generates numerical predicted

ratings as output. Before we describe our results, we point out that the purpose of

this set of experiments on CF is to predict users’ preferences for items they have

not yet observed based on their known preferences. This should not be confused

with the purpose of our rating inference experiments, which is about evaluating

how accurate various algorithms can predict the user-specified ratings of reviews

based on the reviews’ contents.

Table 5.9 reports the performance achieved using the three datasets described

earlier in this section (lines 2-4), and that of the average baseline algorithm

which always assigns the average rating obtained by a given item as its predicted

rating for the active user (line 1)10. As shown in the table, using DS1 produces

better CF predictions than using DS2 in terms of MAE and MSE. This is

reasonable as ratings in DS1 were user-specified. Using only PREF-predicted

ratings for performing CF (DS2) nonetheless produces MAE3, MAE4 and MSE4

that are significantly lower than those of the average baseline. This seems to

suggest that rating inference is a practical enabling technique to CF in case only

reviews, but not user-specified ratings, are available.

Using DS3 to complement DS1 always produces the best results in terms

of MAE and MSE. The improvements it can bring to the performance achieved

using DS1 alone are more significant in the 4-point setting. Further, it raises

COV to approximately 92% using both rating scales, as a result of increasing

the density of the user-item ratings matrix of DS1. These results are very

encouraging as they support our idea that rating inference is a useful technique

10We experimented with three baseline algorithms, including the majority baseline, the

average baseline and the random baseline, in our preliminary experiments. The average baseline

produced the lowest MSE values, and is therefore adopted for benchmarking.

135

for addressing data sparseness by augmenting ratings for CF.

5.6 Summary

This chapter describes our work on integrating sentiment analysis and CF. We

collected and analyzed a movie reviews dataset as part of our study. We made

several observations from the use of opinion words in user-generated reviews.

Based on our observations, we identified the weaknesses of existing semantic-

similarity-based methods for determining the SO of opinion words, and proposed

a relative-frequency-based method for performing such task. In addition, we

proposed and described a probabilistic rating inference framework, known as

PREF, which determines the overall SO of a review based on the SO of the

opinion words it contains. We conducted extensive experimental studies for

validating the effectiveness of PREF, which shows superior performance to

various related algorithms. Further, our results suggest that PREF does not rely

on a large training corpus to function, which can be an important concern when

applying sentiment analysis to new domains where labeled (rated) reviews are

limited.

We also studied the effectiveness of PREF in augmenting ratings for CF.

Rating inference is a task that transforms user preferences expressed as un-

structured, natural language texts into scalar ratings. This enables a direct

integration of sentiment analysis and CF, allowing CF to utilize textual reviews

as a source of user preferences. We demonstrated the advantages of this by

integrating PREF with classical user-based CF algorithm. Specifically, we made

use of the predicted ratings of reviews generated by PREF for performing CF.

Encouraging results were observed: the predicted ratings produced reasonably

good CF predictions, and PREF improved the performance of CF significantly

by augmenting ratings from reviews.

We identified two issues to consider when enhancing our work on generating

personalized recommendations using user-generated reviews. Firstly, PREF was

tested on the movie domain, where plenty of reviews associated with user-

specified ratings are available on the Web and where CF has been widely studied

and adopted. We would like to base our continuing work on other domains, such

as tourist attractions, where numerous user-generated reviews are available but

CF-based recommendations are not common.

136

Secondly, rating inference can be considered a technique for summarizing

the overall sentiments of reviews and then representing the sentiments as scalar

ratings. This enables a straightforward integration of sentiment analysis and CF

at the expense of detailed preference information. For instance, user preferences

for specific item features can be extracted from the reviews, and can potentially

be useful for generating personalized recommendations.

We continue our discussions on these issues in the next chapter.

137

Chapter 6

Towards Review-based
Recommender Systems: A Case
Study on TripAdvisor

6.1 Introduction

In the previous chapter, we proposed a direct and simple method for utilizing

user-generated reviews for CF. Specifically, we proposed a rating inference

framework for determining and representing the overall sentiments expressed

in reviews as numerical ratings. Such ratings can be used by existing CF

algorithms, thereby facilitates a direct integration of sentiment analysis and CF.

This chapter continues to describe our effort on integrating sentiment analysis

and CF. However, instead of simply augmenting ratings from reviews for CF, we

attempt to make use of the detailed user preferences and item features expressed

in reviews for making personalized predictions. Our work is motivated by

our conjecture that such detailed information are more precise and valuable

descriptions of users preferences, and the fact that they have not yet been utilized

for making personalized recommendations or predictions for users. We designed

a set of prediction models along the idea of CF. Those models are designed to

utilize the contents of user-generated reviews for enriching the interest profiles

of users, items and categories to different extents. While the review-based

prediction models make use of review contents for generating recommendations,

our work is different from pure content-based recommender systems, which do

not involve the sentiment analysis of reviews (or textual contents in general).

138

We base our study on a set of tourist attraction reviews. As described in

the previous chapter, we would like to extend our study to a new item domain.

This is motivated by two factors. Firstly, we have already achieved successful

results on the movie reviews domain, which is the most well-studied domain in

both sentiment analysis and CF. Secondly, numerous user-generated reviews are

available for travel-related products, but CF-based recommendations for such

products are not common.

The major contributions of this study are two-fold. Firstly, we explored

the use of review contents for deriving similarities between items and item

categories, and the use of the SO (sentimental orientation) of opinion phrases

extracted from reviews for modeling user preferences. Empirical results suggest

that review contents do contain valuable information that can be used for making

personalized recommendations for users. Secondly, recent user studies have

been conducted on the use and effects of travel reviews in the decision making

progress of travelers when planning their trips [131, 46], but our study is the first

one reporting empirical research on how travel reviews can actually be used for

performing personalization.

We point out that our study is not concerned with the travel decision making

process of customers. Instead, our focus is on making personalized predictions

based on user-generated travel reviews. We further point out that the results of

our work is not limited to travel reviews. We chose this domain for our study

mainly because research on personalized recommendations for travel-related

products is not common, and most travel recommender systems are knowledge-

based with a limited degree of personalization [128, 129]. We hope our work can

shed new light on review-based recommender systems research in general.

The remainder of this chapter is organized as follows. Chapter 6.2 reviews

existing studies that are related to our work. Chapter 6.3 describes user-generated

reviews on TripAdvisor11. It also details our data collection process and the

characteristics of our dataset. Chapter 6.4 describes the tasks involved in

performing review-based personalization. They include the sentiment analysis of

reviews, the construction of user and item profiles based on review contents and

opinion phrases, as well as the prediction models we used for making predictions

users. We discuss experimental results in Chapter 6.5, and summarize our

findings in Chapter 6.6.

11TripAdvisor: http://www.tripadvisor.com

139

6.2 Relation to Other Work

We noticed two studies in the literature that involve the use of user-generated

reviews in recommender systems. The work of Wietsma and Ricci [167] in-

corporates user-generated reviews into a mobile recommender system of tourist

attractions. Their work generates content-based recommendations for tourist

attractions, and displays reviews written by the nearest neighbors of the active

user as a decision making aid. Specifically, their work utilizes reviews to help

explain the recommendations made by their content-based algorithm. It does not

generate item recommendations from review contents as our work does.

The Informed Recommender described in [2, 3] attempts to analyze the

contents of user-generated reviews for generating recommendations. Its focus

is, however, on mapping review contents onto a manually defined ontology of

domain items, which are digital cameras. Such ontology defines the vocabulary

and relationships between words to describe the following information:

• Users’ skill levels in using the digital cameras they reviewed, such as

Beginner or Professional

• Item features that might appear in reviews, such as the Lens and Flash of

cameras.

The Informed Recommender requires the active user to specify the item of

interest (a specific camera model), and select the item features that they are most

interested in when requesting recommendations. It then retrieves the reviews

whose contents are relevant to the specified item or item features with the support

of the ontology, and makes a recommendation based on what other users said

about that item or its features.

Our work is different from the Informed Recommender in two major aspects.

Firstly, the success of the Informed Recommender depends heavily on the

mapping of review contents onto the predefined domain-specific ontology. As

we discuss in Chapter 6.3.3, such a solution that relies on well-defined ontology

or concept hierarchies may not be suitable for review-based recommendations

due to the heterogeneity of domain items. Our work therefore applies sentiment

analysis techniques to automatically identify interesting features from review

contents based on linguistic features, and utilizes such features for making

personalized item predictions. Secondly, the Informed Recommender does not

140

take the past experience of the active user into consideration when generating

recommendations. On the contrary, we designed review-based models that make

predictions for users based on their previously expressed preferences, as well as

on the similarities between items and item categories derived from the contents

of user-generated reviews.

6.3 Travel Reviews on TripAdvisor

We chose to use reviews on TripAdvisor because it is one of the most prominent

providers of user-generated travel reviews and ratings. It provides more than 15

million travel reviews contributed by more than 6 million registered members

as of 2007 [154]. Reviews submitted to TripAdvisor are examined by trained

personnel before they are publicly posted on the site.

TripAdvisor allows users to write reviews on hotels, restaurants, cruises,

cities or towns, as well as tourist attractions (Things to Do). Among these five

types of reviews, attraction reviews offer much richer, but fuzzy, information

because “attraction” itself is a fuzzy domain that is not well-defined and well-

structured. In contrast, restaurants and hotels can be described using more

objective characteristics, such as the price range and type of cuisine of a given

restaurant, and the availability of a swimming pool in a given hotel [131].

We therefore decided to base our study on attraction reviews. We expected

that attraction reviews are more challenging to handle, and may reveal new

research issues for the sentiment analysis of user-generated reviews, as well as

for generating review-based recommendations.

To the best of our knowledge, there is no existing work on generating per-

sonalized recommendations with the support of sentiment analysis of attraction

reviews. The work of Wietsma and Ricci [167], as aforementioned, only displays

a set of reviews written by neighbors of the active user as a decision making

aid. We take a data-centric approach in this study, which is experimental in

nature, due to the lack of precedent literature on the task. Figure 6.3 depicts

an attraction review on TripAdvisor. Each review contains a title, a numerical

rating (in a 5-point integer scale), the name of the user who wrote the review, the

user’s location, the date of the review, the number of users who found the review

useful, and the content of the review. Note that information about the attraction

concerned is not shown in the figure, but is available on the webpage containing

141

Figure 6.1: A user-generated travel review on TripAdvisor.

that review on TripAdvisor.

In what follows, we detail our data collection method, and describe the

major entities and their relationships in our dataset. We then discuss several

characteristics of our dataset, and their implications for our work on generating

review-based recommendations.

6.3.1 Data Collection and Filtering

We collected a set of reviews on attractions in the United States for this study.

Data collection was done in two rounds:

1. We started by crawling all attraction reviews (as of April 22, 2008) on the

20 most popular cities in the USA. This dataset contains a total of 15,696

reviews by 11,355 users on 2,401 attractions. For experimental evaluation

to be possible, active users must have contributed at least two reviews, so

that we can have at least 1 review for training and 1 review for testing.

Only 6,236 reviews written by 1,895 satisfied this constraint.

2. We then collected reviews on other USA attractions that have been re-

viewed by the 1,895 users. After merging this set of reviews with that

collected in the previous round, we got a total of 2,085 users who con-

tributed at least two reviews. The resulting dataset contains 8,637 reviews

on 2,767 attractions.

We performed the following data filtering on the dataset. Firstly, we dis-

carded reviews written by users who contributed only one review as noted to

142

Figure 6.2: Distribution of ratings in our attraction reviews dataset.

facilitate our experimental study. Secondly, we removed reviews on attractions

without a specific attraction type. Specifically, all attractions on TripAdvisor are

classified under a attraction type taxonomy. We removed attractions that belong

only to the attraction type “Other”.

The finalized dataset used in this study contains 8,696 reviews by 2,074 users

on 2,741 attractions, which belong to a set of 148 distinct attraction types. This

yields a sparsity level of 99.85%. Figure 6.2 shows the distribution of user-

specified ratings (associated with the reviews) in our dataset. The distribution is

highly skewed: around 47% (4123/8696) of reviews were assigned the highest

rating of 5, whereas only around 5% were assigned the rating of 1.

6.3.2 Data Model

We now provide a formal data model of our dataset. The data model contains

three major types of entities, namely users, items (attractions) and categories of

items (attraction types), as well as the relationships between them.

Formally, there are three sets of entities, including a set of users U , a set

of items I , and a set of categories G. There exists an active user a ∈ U who

seeks prediction for a target item t ∈ I as in CF. Each item i ∈ I can be

mapped to one or more categories in G, and Gi denotes the set of categories

to which item i belongs. Iu denotes the set of items reviewed by user u. A

review document d ∈ D captures the relationships between a user u and an

item i. Each document d is conceptually a four-tuple: d = 〈u, i, ru,i,
−→
d 〉, where

ru,i denotes the user-specified rating associated with the review,
−→
d represents a

143

Figure 6.3: Distribution of review count by user.

feature vector representation of d. Each dimension of
−→
d corresponds to an item

feature extracted from review. Its value is the user’s vote for the corresponding

item feature. We defer the description of the possible methods for determining

users’ votes for item features to Chapter. 6.4.2.

6.3.3 Data Characteristics and Implications

We observed the following characteristics from our dataset:

Data sparseness

After performing the first round of data collection, we immediately observed

that the dataset was extremely sparse. Data sparseness is a well-known issue

in CF, and has been addressed usually various approaches as noted. Given the

fact that we are already considering the 20 most popular cities in the USA,

one shall expect that most attractions in less popular destinations would have

never been reviewed by any user. We may turn a blind eye to this problem by

performing more data filtering, for instance, by restricting our experiments on

users who have contributed a considerable amount of reviews, and on attractions

that have received a certain number of reviews. However, severe data sparseness

is a realistic issue that must be addressed in a practical solution.

Figures 6.3 and 6.4, both exhibiting a power law distribution, help illustrate

the sparseness of our dataset. Figure 6.3 shows the distribution of review

count by user. Around 47% (974/2074) of users have provided only two

reviews, and approximately 81% of users in total provided not more than five

144

Figure 6.4: Distribution of review count by attraction.

reviews. Figure 6.4 shows the distribution of review count by attraction. Almost

60% (1629/2741) of attractions have only been reviewed once. This has two

implications. Firstly, classical and promising CF methods operating on co-rated

items would not work for most items in our dataset as shown empirically in

Chapter 6.5.4. Secondly, for a solution to be useful, it must be able to generate

predictions or recommendations for cold-start items.

We point out that it is possible to apply FARAMS and CLARE for addressing

data sparseness and the cold-start problem to our tourist attractions dataset by

using attraction types as the concept hierarchy of items. It may also be possible

to augment ratings for performing CF from additional travel journals without

user-specified ratings using PREF. However, we identified the need to propose

new paradigms for review-based recommendations, as discussed in the next

subsection.

Describing heterogeneous domain items

Most studies on recommender systems deal with only one type of domain items,

such as movies, CDs and books. While these items may be classified into

categories, they can still be described using a common set of attributes. Such

attributes are defined by domain experts or information providers rather than by

end-users.

We found that defining a common set of attributes for describing tourist

attractions is very difficult, if not impossible. While one may consider “tourist

attractions” to be a kind of domain items, different types of attractions may pos-

sess very different characteristics. For instance, commonly-described features

145

of a state park include “dam” and “view”, whereas those of a museum include

“exhibit” and “collection”. In other words, the information structure of domain

items is not well-defined.

Note that features mentioned in user-generated reviews and item attributes

defined by domain experts are different in nature. The set of attributes of an item

is “globally the same” for all users in a given system. In contrast, different users

may comment on different features of the same item in user-generated reviews,

as in the case of user-assigned tags [155]. Further, item attributes are usually

concrete, explicit and objective properties of domain items that can be easily

identified. Using the movie domain as an example, attributes for describing

movies on IMDb include their as cast, directors, awards, and genres. A study

on sentiment analysis of movie reviews, however, reveals that features extracted

from movie reviews can be classified into more than 30 different aspects [176],

including those that are not likely to be considered and defined as attributes of

movies. Examples are the “editing” and “social implications”of movies.

The heterogeneity of domain items, as well as the differences between item

attributes and features, have two implications for review-based recommender

systems research. Firstly, instead of looking for a common set of attributes for

describing heterogeneous items (attractions), a more feasible solution would be

to identify interesting features of the attractions directly from the reviews. Sec-

ondly, recommender systems that operate on well-defined concept hierarchies

and ontology may not be suitable for review-based recommendations. While

such systems, including our own work (FARAMS and CLARE) and the Informed

Recommender [3], are interesting contributions in their own right, there is a need

to develop novel recommendation paradigms that can address the characteristics

and fuzziness of information in user-generated reviews.

High-dimensional, evolving feature set

User-generated reviews are free-form texts, and users can comment on any

features about the subject matter concerned in reviews. This, together with

the fact that new user-generated reviews are added to the web everyday, we

shall expect the feature set being mentioned in a reviews dataset to be ever

evolving and expanding. We shall therefore pay attention to the expansion of the

feature set as more reviews are added to the system. Further, feature selection or

dimensional reduction techniques may be essential to help control the complexity

146

of the task at hand.

6.4 Generating Item Predictions from Reviews

We address the task of generating rating predictions for items from user-generated

reviews in this study. The experimental setup of our study emulates a real world

situation when a registered user (active user a) of, for instance, TripAdvisor,

clicks on a hyperlink to web page of a certain attraction (target item t) (s)he has

not reviewed or rated before, and our task is to predict pa,t to indicate how much

user a may like item t.

Generating rating predictions from reviews can be decomposed into three

major tasks, involving two different areas of research. The first task is related to

sentiment analysis. It aims at identifying and analyzing interesting features from

reviews for the subsequent tasks. The second task is the construction of user,

item and category profiles, based on which personalized predictions are made.

The third task is concerned with CF, which makes predictions for users. We now

detail the three tasks in the following subsections.

6.4.1 Sentiment Analysis of Reviews

Figure 6.5 depicts the tasks involved in the sentiment analysis of reviews. The

whole analysis process starts with a collection of reviews, which we collected

from TripAdvisor in this study. It then preprocesses the reviews, such as

removes the HTML tags in the downloaded reviews. The feature extraction

task aims at identifying interesting features, including both features of items and

opinions of users, based on various linguistic processing techniques. This task

represents the contents of each review, which were free-form texts, as a list of

“feature:opinion” pairs. The extracted features and opinions are then analyzed,

and are respectively stored in the feature database (Feature DB in the figure) and

the opinion dictionary of the system. They are used to facilitate the construction

of user, item and category profiles in the next step.

We now describe our methods for extracting interesting features and building

the opinion dictionary in detail.

147

Figure 6.5: Tasks in the sentiment analysis of user-generated reviews.

Extracting features

There are three possibles approaches for extracting interesting features from

reviews. The first approach is an extensive domain engineering approach. It

relies on domain experts to define interesting features of each attraction or

attraction type. This approach can be very expensive due to the heterogeneity of

attractions. It may also be infeasible in practice due to the tremendous number of

attractions available on TripAdvisor, or items in general in other review portals.

The second approach is to perform statistical analysis or data mining based on

training data for identifying interesting features. Hu and Liu [62], for example,

applied the association rule mining technique to item features and opinions

extraction. We did not consider this approach in view of the sparsity of data.

Further, this approach is generally applied to and tested on one single type of

domain items. It might not be suitable for the tourist attraction domain due to

the heterogeneity of domain items. The third approach performs extraction based

on POS information. We adopted this approach as it is a more general approach

that is less dataset-dependent. Note that POS tagging, however, is a language-

dependent task. Our current work deals with reviews written in English.

We reused some of the review analysis techniques used in PREF for this

study. They include POS tagging and feature generalization. Recall that we

148

only considered unigrams (isolated adjectives and nouns) in PREF. In this work,

we slightly modified the feature extraction module of PREF to extract n-grams,

which are n adjacent tokens in a sentence.

We first applied POS tagging to our dataset, and then performed feature

generalization, which aims at generalizing features that may be overly specific.

The feature generalization step identifies and adds a special tag to noun phrases

that represent the names of the attractions being reviewed. We excluded such

generalized features in the feature extraction process, because they are not

features that describe the characteristics of attractions. For instance, while the

proper noun “Museum” refers specifically to the museum being reviewed, it is

obviously not a feature that describes the characteristics of the museum.

After performing POS tagging and feature generalization, we applied a set

of extraction rules to look for noun phrases, which are considered to be item

features, and opinion phrases in the reviews. The extraction rules were defined

based on findings of previous work on sentiment analysis plus some heuristics.

For opinion phrases, we considered not only isolated adjectives, but n-grams

that consist of adjectives, preceded by zero or more adverbs. For instance, the

phrases “good”, “very good” and “not good” are all opinion phrases. We did not

explicitly perform negation tagging as n-grams extraction might be an alternative

way to capture the contextual effects of negation words. For item features, we

extracted n-grams, where n ≤ 3, made up of nouns or proper nouns, but excluded

terms that are generalized features as aforementioned. We stemmed the item

features identified using the well-known Porter Stemmer [122]. For instance, the

word “waterfalls” is reduced to “waterfall” in the stemming process. This helps

identifying common item features among attractions.

This task extracts a list of item features, Fd = {f1, f2, f3, ..., fn}, and a list

of opinion phrases Vd = {v1, v2, v3, ..., vn} for a review d. An opinion phrase

vi is the nearest opinion phrase that is found in the same sentence from which

fi is extracted. If no associated opinion phrase can be identified for fi, then the

corresponding entry vi in Vd is null. The lists Fd and Vd are used in the next tasks

for building user, item and category profiles.

Remarks on computational complexity: This sentiment analysis step has

linear computational complexity. Specifically, the computational complexity of

the POS tagging task is O(|D|), where |D| equals to the number of reviews

and |D| << (|U | ∗ |I|) due to data sparseness. The feature generalization and

149

Figure 6.6: Number of distinct features versus number of reviews.

stemming tasks deal with |D| reviews, each containing |F | item features in the

worst case. The computational complexity of both tasks is therefore O(|D| ×
|F |). Note that in practice, the number of item features that can appear in a

single review d ∈ D is small and limited. The longest review in our dataset

contains only 152 appearances of item features.

We suggested in Chapter 6.3.3 that the feature set extracted from reviews

shall be ever expanding. In practice, however, the size of the feature set should

be large but limited to a certain extent for two reasons. The first reason is the

fact that the usable vocabulary range of human has a practical limit. In fact,

the number of distinct features in our dataset increases only as a linearithmic

function of the number of reviews as Figure 6.6 shows. The second reason is

that feature selection or filtering is commonly done in algorithms that deal with

feature terms extracted from text documents. The size of feature set in the system

is therefore controllable and adjustable. Note that performing feature selection

or filtering not only helps maintain the scalability of the task, but also improves

prediction accuracies. In Chapter 6.5.4, we confirm by experiments that using

only a small proportion (for instance, 1%) of the best features for building user,

item and category profiles produces better prediction accuracies than using the

entire feature set.

Building the opinion dictionary

The opinion dictionary contains the set of opinion phrases extracted from

reviews, and their frequency counts in each rating class cj ∈ C. Figure 6.7

150

Figure 6.7: Illustration of the contents of the opinion dictionary.

is an illustration of the contents of the opinion dictionary built from our dataset.

Rows and columns in the opinion dictionary are respectively opinion phrases and

rating classes, while elements in the opinion dictionary denote frequency counts

of opinion phrases in the various rating classes. The SO of opinion phrases are

computed from the counts. The reason for keeping the frequency counts instead

of the SO of opinions is that when new reviews are added to the system, we can

update the counts of existing opinion phrases incrementally without having to

rebuild the entire dictionary. Further, new opinion phrases can also be added to

the opinion dictionary easily. We now describe the method for computing the

SO of an opinion phrase from its frequency counts.

We proposed a relative-frequency-based approach to SO and opinion strength

determination in Chapter 5.3.3. In our original approach, we allow an opinion

word to have multiple SO, each with a corresponding opinion strength. In other

words, we compute the opinion strength of an opinion word vi with respect

to each sentiment class cj , denoted by OS(vi, cj), as a local measure. This is

designed to facilitate the rating inference task, which aims at assigning an overall

rating to a review in a fine-grained rating scale. The goal of this work is different

from that of rating inference, as we are interested in the overall SO of an opinion

phrase as an indication of a user’s opinion. Therefore, we adapted our proposed

relative-frequency-based method in PREF to compute SO(vi), which is the SO

of vi with respect to the entire training corpus, as follows:

SO(vi) =

∑|C|
j=1 cj ∗N(vi, cj) ∗ w(cj)∑|C|

j=1 N(vi, cj) ∗ w(cj)
(6.1)

Note that cj in rating inference and in this work is a numerical value (in a 1

to 5 scale in our dataset). N(vi, cj) is the frequency count of vi in cj , and w(cj)

151

is a weight used to factor out the effect of uneven class (rating) distribution in

the dataset. Our dataset contains 453 reviews rated as 1 and 4123 reviews rated

as 5 (Figure 6.4). The same opinion phrase is therefore expected to appear more

(resp. less) frequently in reviews rated as 5 (resp. 1), regardless of the importance

of the phrase in those reviews. w(cj) is defined as:

w(cj) = α

∑
k∈C N(Vk)

N(Vj)
(6.2)

where N(Vk) denotes the total frequency count of all opinion phrases in Vk, and

α is a normalizing factor such that the set of w(cj) for all cj ∈ C sums to unity.

6.4.2 Building User, Item and Category Profiles

User, item and category profiles can be built from user preferences data, in terms

of user-specified ratings, item features, as well as SO of opinion phrases. When

utilizing only user-specified ratings, however, the resulting interest profiles of

the three types of entity are simply ratings matrixes used in classical CF. Our

discussions therefore focus on how to build enriched entity profiles based on

review contents in the following.

User profiles

It is possible to build user profiles based on the set of item features extracted

from reviews. In such case, a feature vector representation of the interest profile

of user u, denoted by −→u , is an n-dimensional vector, with each dimension

corresponds to an item feature. The element of the jth dimension is a weight

w(fj, u) that reflects the interestingness of the item feature fj with respect to

user u. There are three methods for determining w(fj, u). The first method

determines w(fj, u) by the frequency count of fj in the reviews contributed by

user u. This mainly reflects the fact that such feature has been mentioned by user

u in reviews. We did not consider this method because it does not capture any

explicit preferences expressed by the user.

The second method weights a feature fj appeared in a review d based on

the user-specified rating (ru,i) associated with that review. In other words, all

features appeared in the same review are given the same weight. We illustrate

this with an example. The following sentence is extracted from a review in our

dataset:

152

“Poor traffic flow when crowded, but interesting stuff.”

Our feature extraction method described in the previous subsection identified

two feature-opinion pairs from the above sentence: “traffic flow-poor” and

“stuff-interesting”. The user-specified rating of the original review is 3. This

method therefore weights both opinion phrases “poor” and “interesting” based

on the rating of 3. If a feature fj is mentioned in different reviews, we take the

average of all ratings it obtained in all reviews written by user u.

The third method weights fj based on the SO of the opinion phrase vi

associated with it. If no associated opinion phrase can be identified for it, then

it is weighted based on ru,i. Different item features in the same review may be

assigned different weights using this method. Referring to the previous example,

the estimated SO of “poor” is 1.8 while that of “interesting” is 3, computed using

our SO determination method described in Eq. (6.1) and Eq. (6.2). Note that the

same item feature may appear in the same review, or different reviews written

by the same user, more than once. In such case, we take the average of the

weights obtained by fj across all of its appearances in user u’s reviews as the

value of w(fj, u). Recall that one motivation of our work is that user-generated

reviews contain detailed preferences information that are seemingly useful, but

have not yet been utilized for performing personalization. We therefore believe,

and demonstrate empirically, that using this method to build interest profiles of

users is indeed useful, and is able to make more accurate predictions than using

the overall user-specified ratings only (Chapter 6.5.4).

Item and category profiles

Item profiles are constructed for deriving item similarities, to be used for making

predictions for items. In classical rating-based CF, the similarity between two

items i and t is determined based on ratings they received from users who

rated both items. In our work, we attempt to derive the similarity between

the two items based on the item features users used to describe the items in

reviews. Such a similarity measure can be considered to be content-based, but

the content information about items comes from user-generated reviews rather

than from item attributes defined by information providers. In other words, users

collaborate to provide items features for constructing item profiles.

The profile of item i is constructed by aggregating item features appeared in

153

reviews on i. Similar to the case of user profiles, a feature vector representation

of an item i, denoted by −→
i , is an n-dimensional vector. Each dimension

corresponds to an item feature. As we are capturing content similarity between

items rather similarity between user preferences, the weight w(fj, i) reflects the

importance of the item feature fj with respect to item i, and it is computed

as the normalized frequency count of fj in all reviews of i. Note that this

representation of item profiles actually simplifies the original multi-dimensional

relationship between an item, an item feature, and a user due to the simplicity

of CF. Specifically, an item profile models an item by the set of features that

have been used to describe an item, but does not consider which user uses which

feature terms to describe it.

Category profiles are constructed in a similar way as item profiles. We

aggregate all feature terms used to describe items belong to g in order to construct

the profile of a category g.

6.4.3 Making Predictions

We experimented with eight prediction models in our study, summarized in

Table 6.1. Each model is assigned a model number Mn for easy reference.

Table 6.1: Brief descriptions of prediction models.

Model Description Preference Data

M1 User-based CF. U× I

M2 Item-based CF. U× I

M3 Makes predictions based on user a’s average

rating on g ∈ Gt (categories of item t).

U× G

M4 Adapted from M2, computes item similarities

based on review contents.

U× I + I× F

M5 Generalized version of M4, computes category

similarities based on review contents.

U× F + U× G + G× F

M6 Makes predictions based on based on user a’s

preferences for features of Gt.

U× F + G× F

M7 Majority baseline, not personalized. U× I

M8 Random baseline, not personalized. –

We describe the design of Models M1 to M8 in the following subsections.

154

We also discuss how the models scale with the numbers of users (|U |) and items

(|I|) in the system. The models can be classified into three types based on the

preference data they used for making predictions: pure rating-based models (M1,

M2, M3), review-based models (M4, M5, M6), and non-personalized models

(M7, M8). Note that M7 and M8 are only baseline models to help indicate the

effectiveness of the other models. All models produce a predicted rating pa,t, a

numerical rating showing how much the active user a may like the target item t,

as output.

Rating-based Models

Rating-based models, as the name implies, are those that make predictions solely

based on ratings users have given items. They operate on user preferences

captured in the U × I ratings matrix.

Model M1 is equivalent to the classical user-based CF algorithm. It first

computes similarity between users based on ratings data. It then selects the set of

k-nn of the active user a as predictors for the target item t. This model depends

heavily on the existence of co-rated items between the active user and his/her

neighbors. Recall that the user-based CF algorithm predicts pa,t as (Eq. (2.2)):

pa,t = ra + α
∑

u∈knn(a)

w(a, u)(ru,t − ru)

where ra is the mean rating user a has given items in the training data, u ∈
knn(a) denotes the k-nn of a determined based on w(a, u), which is the similar-

ity weight between users a and u. α is a normalizing factor such that the absolute

values of similarity weights w(a, u) sum to unity. ru,t denotes the rating user u

has given item t.

We model user, item and categories as feature vectors as described in the

previous subsection. It is therefore natural to compute w(a, u) as the vector

similarity between−→a and−→u , which are the vector representations of the interest

profiles of users a and u respectively. One widely adopted vector similarity

measure is the cosine similarity measure:

w(a, u) = cos(−→a ,−→u) =
−→a · −→u

||−→a ||2 ∗ ||−→u ||2 (6.3)

where the dot (·) indicates the dot-product of the two vectors. Note that in this

model, feature vectors are constructed using user-specified ratings. In other

155

words, the jth element in −→a is user a’s rating on the jth item, and similar for
−→u .

Model M1 needs to compute |U | × (|U | − 1) similarities between users in

U , each potentially requires |I| operations. The upper bound of the computation

complexity of Model M1 is therefore O(|U |2 × |I|). Due to data sparseness,

however, the number of co-rated items between most pairs of users is very

limited, meaning that the actual complexity required is much smaller than the

specified upper bound. The rating prediction step of Model M1 has a complexity

of O(k) because it depends on the number of neighbors considered. Note that

k << |U | in reality. Herlocker et al. suggest that in a neighborhood size of 20 to

50 would produce reasonable performance in real-world situations [54].

As our experimental study is based upon a static dataset, we are able to break

down the operations required by Model M1 into a model construction (similarity

computation) phase and a rating prediction phase. In traditional user-based CF,

however, the so-called model construction phase is done in real-time, which

would add complexity to the rating prediction phase. Making a prediction for

the active user a requires computing the similarity between the user and all other

users, resulting in a computational complexity of O(|U | × k).

Model M2 is the item-based CF algorithm, which exploits the similarity

between items based on the ratings they received from users. It makes a

prediction based on how the active user has rated items that are similar to the

target item t. The success of this model depends on whether the active user has

rated the target item’s neighbors. Recall that the item-based CF model predicts

pa,t as (Eq. (2.4)):

pa,t = α
∑

i∈knn(t)

w(t, i)(ra,i)

where i ∈ knn(t) denotes the set of k-nn of item t, ra,i denotes the active user’s

rating on item i, and α is a normalizing factor such that the absolute values

of similarity weights w(t, i) sum to unity. Similar to Model M1, w(t, i) is the

similarity between items t and i, computed using the cosine similarity measure

described in Eq. (6.3). Feature vectors in this model are also constructed using

user-specified ratings, but with items taking the role of users, and vice versa. The

jth element in the feature vector−→t is the rating item t received from the jth user

in the training set.

156

The computational complexity of Model M2 in the model construction phase

is O(|I|2×|U |) as it needs to compute |I|×(|I|−1) similarities, each requires at

most |U | operations. As aforementioned, the actual complexity is much smaller

due to the lack of co-rated items in user profiles. The complexity of the rating

prediction step of Model M2 is O(k).

Model M3 utilizes higher-level information about domain items, denoted

by categories G, for making predictions. We chose to make use of categories

information for two reasons. Firstly, both Models M1 and M2 depend heavily

on co-rated items, which are not likely to exist for many users and items in a

real-world application due to data sparseness. This also happens in our real-

world dataset collected from TripAdvisor as noted. Precedent work in CF

indicates that the use of item taxonomy, or is-a hierarchies, can lessen the

problem of data sparseness and improve recommendation quality (e.g. [109]).

We therefore considered the categories of items, which are attraction types, in

this work. Secondly, we hope to maintain the applicability of our work to other

domains in the future. Specifically, item categories exist in most application

domains, although the mapping between items and their categories is domain

specific. Note that we did not deal with the construction of item taxonomy in

this work. We used the attraction types taxonomy collected from TripAdvisor

as-is, although it is possible to refine its taxonomy by, for examples, defining

sub-types or combining existing attraction types if necessary.

In Model M3, we first computed users’ mean ratings for each category, given

the rating matrix U × I and the mapping between items and categories. The

prediction pa,t is then computed for user ua as:

pa,t =
1

|Gt|
∑
g∈Gt

ra,g (6.4)

where Gt denotes the set of categories to which t belongs, and ra,g is the mean

rating a has given items that belong to g in the training data.

The model construction phase of Model M3 involves computing |U | average

ratings for |G| categories, each requires at most |I| operations. Note that |G| <<

|I| < |U | in reality. Model M3 has a computational complexity of O(|U | × |I|)
for model construction. Its rating prediction phase depends on the number of

categories to which t belongs, and has a computational complexity of O(|Gt|).
The largest value of |Gt| is 9 in our dataset.

157

Review-based models

We designed three review-based models (M4, M5 and M6) for generating

personalized predictions. These models are mainly adapted from Model M2, the

item-based CF model, but make use of reviews in different ways. They involve an

additional sentiment analysis step, which has a linear computational complexity

as discussed in Chapter 6.4.1. They build user, item and categories profiles based

on item features extracted from reviews. The set of features appeared in reviews

can be potentially large. Its size, however, has a practical limit and is controllable

by means of feature weighting and filtering as aforementioned.

Model M4 is similar to Model M2 which performs item-based CF, but it

computes w(t, i) between items t and i based on review contents rather than

on ratings. Note that in a pure CF setting, similarity between two items t and

i, or w(t, i), can be derived only if they have been rated by the same user.

In Model M4, however, w(t, i) can be derived if the two items share common

item features. This model addresses the problems of data sparseness and non-

transitive association [70], because common features mentioned in the reviews

of different items help linking items that may be related or similar to each

other, but have never been rated by the same user in the system. This model is

expected to improve the coverage rate of Model M2, or the classical item-based

CF algorithm.

The model construction phase of Model M4 mainly scales with |I|, and has a

computational complexity of O(|I|2) for computing item similarities. The rating

prediction phase of the model has a computational complexity of O(k).

Model M5 can be viewed as a generalized version of Model M4. It takes

G into consideration as an effort to address the problems of data sparseness

and cold-start recommendations. We expect that this model can boost coverage

rate because it is capable of generating predictions for cold-start items whose

categories are known, but have not been rated by any user yet.

Note that the process of k-nn selection in this model is slightly different from

that in the previous models. An item can belong to multiple categories, and each

category has its own set of k-nn. It is therefore possible for a certain category gk

to be the nearest neighbor of more than one g ∈ Gt. In this case, we sum up the

weights of gk as it might be more closely related to item t. Algorithm 6.4.1 gives

an overview of the knnG() algorithm for determining the k-nn of Gt.

158

Algorithm 6.4.1 Algorithm knnG() for determining the k-nn of a set of cate-

gories Gt.

Inputs: k (the number of nearest neighbors to return),

Gt (the set of categories to which item t belongs).

Output: k-nn across the set of categories in Gt

Steps:

1. KNN ← ∅;

2. for each g in Gt do

3. for each gk ∈ knn(g) do

4. if KNN contains gk then

5. add w(gk, g) to w(gk) in KNN;

6. else

7. w(gk) ← w(gk, g);

//weights of gk with respect to different g’s are combined

8. add (gk, w(gk)) to KNN;

9. end if

10. end for

11. end for

12. return the k elements in KNN with the highest weights;

After computing the similarities between categories from reviews, Model M5

predicts pa,t as:

pa,t = α
∑

g∈knnG(Gt)

w(g)(ra,g) (6.5)

where w(g) is the weight of g computed across the set of all neighbors of Gt

(lines 5, 7 of Algorithm 6.4.1).

The model construction phase of Model M5 requires computing the similar-

ities between categories based on a controllable number of item features. It also

needs to computes users’ average ratings for G based on I . Its computational

complexity is therefore O(|U |×|I|). Model M5 determines the set of knnG(Gt)

in the rating prediction phase. It has a computational complexity of O(Gt × k),

but k is small (5 in our work), and the maximum value of |Gt| is also small (at

159

most 9 as aforementioned).

Model M6 makes use of opinion phrases and item features extracted from

reviews to build user and category profiles. It makes a prediction for item t

based on the active user a’s preferences for features of Gt. We consider features

of Gt rather than those of target item t in view of severe data sparseness and

the considerable number of cold-start items in reality. This model has a more

direct utilization of review contents, as compared to the other two review-based

models (M4 and M5) which do not make use of detailed review contents for

building user profiles. Further, this model is not neighborhood-based.

Note that if a user has showed preference for a feature fn of item i, it does not

necessarily imply that (s)he would have the preference for the same feature of

another item j. However, if a user tend to express positive sentiments on certain

feature terms, it may imply that the user is interested in those features in general.

We try to make use of such coarse-grained preference information in this model.

In fact, our evaluation results show that this model is the most promising one

among all prediction models.

This model can also make predictions for cold-start items, as long as the

items belong to some categories that possess features on which the active user

has previously expressed opinions. It does not involve the similarity weighting

between pairs of users, items or categories as in Models M2 to M5. It computes

pa,t by reflecting how much user a has liked the features associated with Gt.

Formally, it computes pa,t as:

pa,t =
1

|Gt|
∑
g∈Gt

(
1

|N |
∑
n∈N

w(fn, a)·w(fn, g)

)
(6.6)

where N denotes the set of common features associated with g and the interest

profile of user u. w(fn, a) is the weight of fn in the interest profile of a,

determined based on overall ratings or SO of opinion phrases as described

in Chapter 6.4.2. Similarly, w(fn, g) is the weight of fn with respect to the

category g. It can be estimated by standard feature weighting schemes, such as

information gain and χ2. It reflects the importance of fn to g.

This model maintains both user profiles and category profiles based on

features extracted from reviews. Its model construction phase mainly depends

on the sentiment analysis step, which as a linear computational complexity as

noted. Model M6 is therefore more scalable and efficient than the other quadratic

160

prediction models, including Models M1, M2 and M4. Its rating prediction phase

has a complexity of O(|F |). The actual complexity is again likely to be much

smaller because of data sparseness, and the fact that the value of |F | is limited

and controllable due to feature selection.

Baseline models

Baseline models, including Models M7 and M8, generate non-personalized

predictions, with or without using information about the U × I ratings matrix.

They are included in our study to help indicate the effectiveness of the various

prediction models.

Model M7 is the Majority baseline, which simply predicts pa,t to be the

majority vote in the training data. Almost half (47.93%) of the reviews in our

dataset had the majority vote of 5. We therefore expected this simple baseline

model to produce reasonable prediction accuracy.

Model M7 determines the majority rating in the dataset with a computational

complexity of O(|U |×|I|). It makes a prediction with a constant time complexity

of O(1).

Model M8 is a Random recommender which, as its name implies, assigns a

random rating within the given rating scale (1 to 5 in our dataset) as pa,t. Models

that cannot beat the this Random model would not be desirable.

Model M8 does not require model construction, and makes a prediction with

a constant time complexity of O(1).

6.5 Experimental Study

The main goal of this experimental study is to compare the prediction quality

of rating-based prediction models, which make use of user-specified ratings for

making predictions as in classical CF, and that of review-based models, which

make predictions based on user-generated reviews.

Most models are adapted from item-based CF, which was proposed in view

of the scalability issue of user-based CF. Hence, the actual computational re-

quirements of the various models are not the focus of our study. We aim at

systematically evaluating the usefulness of prediction models that make use of

user-generated reviews for making predictions.

161

We now describe the experimental setup and then discuss the results.

6.5.1 Method

The dataset we used contains attraction reviews we collected from TripAdvisor

as noted. We employed the all-but-1 protocol in this study. Specifically, for each

active user a in our dataset, all except 1 reviews written by a are used as the

training set, based on which predictions for the hidden reviews in the test set are

made. Note that our task at hand is to make prediction for a given user-item pair

(a, t). The contents of the hidden review on t are not available to the prediction

models. This experimental design emulates the situation when a registered user

(a) of, for instance, TripAdvisor, clicks on a hyperlink to web page of a certain

attraction (t) (s)he has not reviewed or rated before, and our task is to compute a

predicted rating pa,t to indicate how much user a may like item t.

We adopted MAE, MSE and coverage for evaluating the performance of the

various models. Coverage in this work is defined as the percentage of withheld

ratings in the test set for which predictions can be made. All reported results are

averaged results obtained from five randomly created training-test splits. In the

subsequent discussions, when we state that results are significant, we mean so

statistically based on the Wilcoxon signed-rank test, which is a non-parametric

alternative to the paired t-test, at a 5% significance level.

6.5.2 Existing Tools Adopted

We adopted two existing tools for performing some tasks in our work. We used

MontyLingua [92] to assign POS tags to reviews. It yields tagging accuracy of

around 97%. Moreover, we adopted RapidMiner12, formerly known as YALE, to

compute feature weights based on IG and χ2. As we discussed in Chapter 2.4.3,

IG(fi, cj) and χ2(fi, cj) of a feature fi are computed locally with respect to a

given class cj . RapidMiner estimates IG(fi) (and similarly, χ2(fi)) as a global

measure by first computing IGsum(fi). It then normalizes all features having

non-zero weights by the maximum IGsum(fi) obtained by the feature set. We

followed the same strategy when computing the TF-IDF of a feature fi as a

global measure.

12RapidMiner: http://www.rapidminer.com

162

6.5.3 Parameters

Four prediction models compute pa,t based on the set of k-nn of the active user

(Model M1) or the target item (Models M2, M4, M5). Herlocker et al. suggested

in [54] that using a neighborhood size of 20 to 50 would be reasonable for a

real-world application. We performed a set of preliminary experiments based on

Models M1 and M5, and varied the value of k within the suggested range. We

observed no significant difference between the results obtained, and we therefore

set the value of k to 50 in the four aforementioned models.

Model M6 predicts pa,t based on the k-nn of categories G. Our dataset

contains a total number of 148 categories (excluding the category “Other”). This

number is much smaller than the numbers of users (2,074) and items (2,741)

in the dataset. We therefore used a smaller neighborhood for Model M6. We

varied the value of k within the range of 3 to 10 in our preliminary experiments.

Once again, the resulting prediction accuracies of the model are not sensitive to

the changing values of k. We picked the value of 5 for k in our experiments on

Model 6.

6.5.4 Results and Discussions

In what follows, we first present results on the effects of using SO, followed by

a set of experiments that help us select an appropriate feature weighting scheme

and feature selection (FS) level for the subsequent experiments. We then discuss

and compare the prediction quality produced by the various prediction models

described in the previous section.

Effects of using SO

This experiment studies the effects of using SO for building user profiles.

Recall that one motivation of our work is that user-generated reviews contain

detailed user preferences that are seemingly useful, but have not yet been utilized

for personalization purpose. Our first experiment therefore aims at validating

whether such user preferences, which are first extracted as opinion phrases and

then quantified as SO, are indeed useful.

We used Model M6 described in Eq. (6.6) in this experiment, because it

makes predictions directly from the active user’s preferences for item features.

We built two sets of user profiles as w(fn, a), one based on SO of opinion

163

phrases, another one based on user-specified ratings associated with the original

reviews. We used the three feature weighting schemes described before, namely

IG, χ2 and TF-IDF, as w(fn, g).

Figure 6.8 summarizes the results of this experiment obtained using the

various feature weighting schemes, at FS levels of 100% and 1%. Note that

χ2 is displayed as “Chi” in all figures presenting results. Detailed FS results

are given in the next subsection. Labels on the x-axes marked with asterisks (*)

indicate that the differences between the results generated using SO and those

generated using user-specified ratings are statistically significant (p < 0.05). As

a complement to Figure 6.8, Table 6.2 lists the percentage of improvement in

MAE and MSE produced using SO, as compared to those produced using user-

specified ratings. The first row of the table, for example, shows that using IG

as the feature weighting scheme and a FS level of 100%, the MAE produced

using SO for building user profiles is 8.2% lower than that produced using user-

specified ratings.

IG* Chi* TF−IDF
0.8

1

1.2

1.4

1.6

1.8

2

(a) MAE at FS level = 100%

M
A

E

IG* Chi* TF−IDF
0.8

1

1.2

1.4

1.6

1.8

2

(b) MAE at FS level = 1%

M
A

E

IG* Chi* TF−IDF
0

1

2

3

4

5

(c) MSE at FS level = 100%

M
S

E

IG* Chi* TF−IDF*
0

1

2

3

4

5

(d) MSE at FS level = 1%

M
S

E

Rating
SO

Figure 6.8: Summary of results achieved using SO and user-specified ratings.

164

Table 6.2: Relative improvements in MAE and MSE achieved using SO.

Improvement in (%)

Feature Weighting FS Level MAE MSE

IG 100% 8.2 25.8

Chi (χ2) 4.4 18.1

TF-IDF 1.3 6.4

IG 1% 10.3 30.7

Chi (χ2) 9.1 28.6

TF-IDF 6.1 21.4

The absolute MAE and MSE values produced under different experimental

settings are not of interest here, but rather the comparison between using SO

and using ratings for building user profiles. Results show that using SO always

makes better predictions than using user-specified ratings. The improvements

it brings are significant in most cases as can be seen from Figure 6.8. Further,

using SO yields great improvements in prediction accuracies in terms of MSE,

especially when only the top 1% important features are used to make predictions

as Table 6.2 shows.

To sum up, results of this experiment suggest that the detailed user prefer-

ences expressed in reviews effectively improve prediction accuracies and help

reduce large prediction errors. These results are very encouraging, and confirm

the value of our work on studying review-based recommendations. In the

subsequent experiments, we report our results generated using SO for building

user profiles in Model M6.

Effects of feature weighting and selection

This experiment evaluates the effects of the three feature weighting schemes,

namely IG, χ2 and TF-IDF. The purpose of this experiment is to help us

determine an appropriate scheme and FS level for the subsequent experiments.

We first calculated feature weights based on the aforementioned feature

weighting schemes. In each experiment, s% of the most important features

(those with the highest weights) are used for building item profiles in Model

M6. The set of values of s tested is {100, 90, ..., 20, 10, 5, 2, 1}. The setting s

= 100 means that features were weighted, but no feature selection was actually

165

performed. Figure 6.9 shows the results.

0 50 100
0

0.5

1

1.5

2

(a) MAE against FS level

M
A

E

0 50 100

1

2

3

4

5

(b) MSE against FS level

M
S

E

0 50 100
70

75

80

85

90

95

100

(c) Coverage against FS level

C
ov

er
ag

e
(%

)

IG
Chi
TF−IDF
No Weighting

Figure 6.9: Summary of results achieved using various feature weighting

schemes and feature selection levels.

We first observed from the results that prediction accuracies produced by

the various feature weighting schemes decline gradually as more features are

considered. This trend is more obvious when s is relatively small (≤ 20).

This suggests that using only more important features produces better prediction

accuracies.

The three feature weighting schemes generate varying prediction accuracies.

Overall speaking, IG is consistently the best performing feature weighting

scheme at all FS levels, followed by χ2, and then TF-IDF. At more rigorous

FS levels (when s ≤ 10), however, the MAE and MSE values produced using IG

and χ2 are statistically indistinguishable. At s = 1, for instance, χ2 outperforms

IG very slightly in terms of MAE (0.993 vs. 1.005, p ≤ 0.310) and MSE (1.756

vs. 1.811, p ≤ 0.056).

166

Using TF-IDF for weighting features yields poor prediction accuracies, even

if only the 1% most important features are retained. It produces a lot of large

errors as reflected by its MSE values, which at least doubled those produced by

IG at s ≥ 10.

All the three weighting schemes yield coverage rates of over 98% when s ≥
20, with IG always performs the best. χ2 is more sensitive than the other two

schemes to the changing values of s. Its coverage rates decline rapidly when s is

small. For example, when s = 5, 2 and 1, the coverage rates of χ2 are respectively

95.2%, 90.1% and 80.2%, whereas those of IG are respectively 98.4%, 97.9%

and 96.5%.

To sum up, using only the more important features as item descriptors makes

better predictions. IG yields the best results in terms of MAE and MSE in

general, but χ2 produces comparable results when s ≤ 5. IG also performs

the best in terms of coverage. Note that there is not a single feature weighting

scheme and FS level setting that can give an optimal performance. On the one

hand, the lowest absolute values of MAE and MSE are achieved by χ2 at n =

1. However, those achieved by IG are statistically indistinguishable from the

best when n ≤ 5. On the other hand, IG always beats χ2 in terms of coverage

significantly at n ≤ 10. Taking all MAE, MSE and coverage into account,

we adopted IG for weighting features with a FS level of 1% in the subsequent

experiments.

Performance analysis of prediction models

We now analyze the performance achieved using the various prediction models,

summarized in Figure 6.10. In the figure, labels on the x-axis of each sub-plot

are model names. Models that produced the best results, or results statistically

indistinguishable from the best, are marked with asterisks (*). We now discuss

our findings from this set of experiments.

The best performing models: We first observed from the first sub-plot of

Figure 6.10 that Model M7, the majority baseline, gives the lowest absolute MAE

value of 0.982. This should not be too surprising because almost half of the

reviews in our dataset were associated with the majority rating, which is 5 as

aforementioned.

Model M6, which makes use of detailed SO extracted from reviews for

making predictions, produces a MAE of 1.005. This value is statistically

167

M1 M2 M3 M4 M5 M6* M7* M8
0

0.5

1

1.5

M
A

E

M1 M2 M3 M4 M5 M6* M7 M8
0

1

2

3

4

M
S

E

M1 M2 M3 M4 M5* M6* M7* M8*
0

20

40

60

80

100

Prediction Models

C
o

ve
ra

g
e

(%
)

Rating−based
Review−based
Baseline

Figure 6.10: Summary of prediction quality and coverage of all prediction

models.

168

indistinguishable from the best (p ≤ 0.015). Model M6 also performs the best

in terms of MSE (1.811), and gives a slightly-less-than-perfect coverage rate of

96.46%. This coverage rate is obtained at a FS level of 1% as noted. Model M6

is able to provide a 98.79% coverage when no feature selection is performed.

Note that the perfect coverage rates given by the two baseline models M7 and

M8 are actually not meaningful. They are only non-personalized models that can

generate “predictions” for any items and any users.

The worst performing models: Model M8 gives the highest MAE (3.123),

which is not surprising. Model M3 gives a MAE of 1.256, a MSE of 3.164, and a

coverage rate of 40.2%. It performs worst among all personalized models based

on all three metrics. This indicates that mean ratings on categories alone are too

general for making predictions, and are not sufficient for addressing the problem

of data sparseness. For instance, if user a has not rated any items in Gt, this

model will not be able to make a prediction for t.

Rating-based models: Model M1, which is the user-based CF model,

always outperforms the other two rating-based models in terms of MAE and

MSE. It is unable to beat the non-personalized Model M7 in terms of MAE, but

its MSE value of 2.3 is significantly lower than the MSE of Model M7. This

means that Model M1 produces fewer large errors than the majority baseline.

Note that all three rating-based model suffers severely from data sparseness, as

can be seen from the poor coverage rates they achieved. This emphasizes the

need to utilize additional preference data along with the user-specified ratings

used in existing CF-based systems for making personalized recommendations.

Review-based models: Model M6, which builds user profiles based on

users’ SO for item features, and derives similarities between categories based on

item features as well, always gives the best performance statistically. The other

two review-based models, Models M4 and M5, produced mixed performance.

Both models show inferior prediction accuracies as compared to the majority

baseline (M7), but Model M5 yields an excellent coverage rate of 99.32% as a

result of utilizing category similarities for making predictions.

The excellent coverage rates achieved by the three review-based models

indicate that we effectively address the problems of data sparseness and cold-

start recommendations by enriching user, item and category profiles using review

contents.

Comparisons between related prediction models: We compared two

169

groups of related prediction models, summarized as follows. The first group

of models we compared consists of Models M2, M4 and M5. Recall that Model

M2 is the item-based CF model. Model M4 is similar to Model M2, but uses item

features extracted from reviews for computing similarities between items. Model

M5 is a generalized version of M4. Instead of computing similarities between

items, it considers similarities between the categories of items. Such similarities

are also derived from item features extracted from reviews. Figure 6.10 shows

that the three models produce indistinguishable MAE and MSE, but Models M4

and M5 yield much better coverage rates than Model M2. In other words, these

two review-based models can greatly increase the number of recommendable

items in the system with no loss of prediction accuracy.

The second group of models we compared consists of Models M5 and M6.

Both models derive similarities between categories based on reviews, but M6

predicts a rating with respect to the active users’ SO on features. We observed

from our first experiment (Chapter 6.5.4) that using SO of opinion phrases

for building user profiles yields better prediction accuracies than using user-

specified ratings in Model M6. The advantage of using SO is even more obvious,

especially in terms of MSE, when we compare the performance of Models M5

and M6 in this experiment. Once again, we conclude that our experimental

results are very encouraging.

6.6 Summary

This chapter presents a closer look at the use of user-generated reviews for

generating personalized recommendations. In view of the success of our work

on rating inference in the movie domain, and the fact that CF-based recom-

mendations are not common in travel-related domains, we based this study on

an attraction reviews dataset collected from TripAdvisor. We identified three

characteristics of user-generated travel reviews from the dataset. The first and the

most noticeable characteristic is severe data sparseness, which is also a crucial

challenge to traditional rating-based CF. This implies that a practical review-

based recommendation algorithm must address data sparseness, and should be

able to generate cold-start recommendations. The second characteristic is the

heterogeneity of domain items. Specifically, “tourist attractions” is not a single

item domain, as different types of attractions can be totally different in nature and

170

possess very different properties. The third characteristic is that the feature set

used to describe domain items in user-generated reviews shall be ever evolving

and expanding as a large volume of reviews (or contents in general) are added to

the Web everyday.

To facilitate our experimental study on review-based recommender systems,

we applied sentiment analysis techniques for identifying item features and

opinion phrases from the user-generated reviews, as well as to determine the

SO of the opinion phrases. We explored the use of the SO of opinion phrases

for building interest profiles of users, and the use of item features extracted

from reviews for deriving similarities between items and those between item

categories. We then designed a variety of prediction models that predict how

much an active user would like a given item (attraction).

Our study is experimental in nature, and is the first study reporting empirical

results on the use of review contents for generating personalized recommen-

dations. Due to the lack of precedent literature, we adopted in our work the

classical user- and item-based CF models, based on which we developed several

variants of the item-based CF models for generating review-based recommenda-

tions. Despite the simplicity of the models, results suggest that user-generated

reviews do contain valuable user preferences that can be utilized for making

personalized recommendations. Further, deriving similarities between items and

those between item categories based on item features extracted from reviews

effectively addresses data sparseness and the cold-start problem. Specifically,

classical user- and item-based CF models operating on the original U × I ratings

matrix can only make predictions for approximately 40% of items in the test set.

Enriching user, item and category profiles by user-generating reviews, however,

produces almost perfect coverage rates.

One limitation of our work is related to the sentiment analysis of user-

generated reviews. We adopted a POS-based approach to feature term and

opinion phrase extraction because such approach is domain-independent, and it

has been adopted in various studies in sentiment analysis. We have not explicitly

evaluated the precision of such approach in this study. However, we point out

that our study is still fair and is able to achieve its goals because we use the same

set of feature terms and opinion phrases for training the various review-based

prediction models.

Another limitation of our experimental study is that it is based on a static

171

dataset, meaning that we have not yet addressed the evolving feature set char-

acteristic of user-generated reviews. In the review-based prediction models,

feature weights with respect to items and categories need to be recalculated

when new reviews are added to the system. A simple method to address this

issue to recalculate feature weights, as well as retrain user, item and category

profiles regularly to capture the effects of the newly-added features. However,

training and retraining based on huge and high-dimensional datasets can be com-

putationally expensive. While research on algorithms that allow for incremental

training is beyond the scope of this thesis, such algorithms would be desirable

for performing review-based recommendations.

172

Chapter 7

Conclusions

We addressed in this thesis the crucial challenges in CF, in particular the

problems of data sparseness and cold-start recommendations, along two different

dimensions. Firstly, we proposed novel methods for integrating content informa-

tion about domain items into the CF process. Secondly, we investigated into the

use of user-generated reviews for generating personalized recommendations. We

summarize our contributions, and reflect on possible future research directions

in the following subsections.

7.1 Summary of Contributions

On hybrid CF- and content-based recommendations

We proposed two ARM-based recommendation techniques, namely FARAMS

and CLARE. ARM allows for the flexibility to integrate concept hierarchies into

the rule mining process. By taking advantage of this, and by utilizing taxonomies

as well as attributes of domain items, we addressed the problems of data sparse-

ness and cold-start recommendations in CF. We showed experimentally that our

proposed techniques outperform related techniques in terms of recommendation

accuracies.

Chapter 3 describes FARAMS, a CF recommendation framework based on

fuzzy association rule mining and multiple-level similarities between items

in item taxonomies. FARAMS extends existing studies on ARM-based CF

algorithms. It addresses the sharp boundary problem, which arises from the

boolean discretization of numerical ratings data, by modeling ratings data using

173

the fuzzy set concept. It also approaches the problem of data sparseness in CF by

taking advantage of multiple-level similarities that are implicit in the taxonomies

of items. Results on FARAMS show that FAR mining is more effective on

datasets containing continuous ratings and that FARAMS outperforms existing

techniques in similar experimental settings.

Chapter 4 presents CLARE, a novel cold-start recommendation algorithm de-

veloped based on FARAMS. CLARE operates on a preference model comprising

both user-item (ratings data) and item-item (item attributes) relationships. It

applies the CAR mining technique to discover interesting associations between

domain items and the attributes posses by a given target item. CLARE is

capable of recommending cold-start items, which are not recommendable in

a pure CF setting. It shows superior recommendation accuracies to related

cold-start recommendation algorithms, including MS-based and pure content-

based algorithms. Furthermore, it achieves high coverage rates regardless of the

number of cold-start items in the system.

On utilizing user-generated reviews for personalized recommendations

Our work in this area bridges the gap between sentiment analysis and CF. On

the one hand, CF can be considered an application that utilizes the outputs of

sentiment analysis for personalization purpose. On the other hand, sentiment

analysis enables CF algorithms to make use of user-generated reviews as a source

of user preferences along with user-specified ratings. Our work marks a starting

point for review-based personalized recommendations from either perspective

by integrating sentiment analysis and CF.

Chapter 5 presents our initial effort on integrating sentiment analysis of CF.

CF is concerned with user preferences, therefore we are particularly interested in

users’ expressed opinions in reviews. We observed that the semantic similarity

between opinion words does not necessarily imply their sentimental similarity.

This, however, has been the underlying assumption of a class of SO determi-

nation techniques, such as those described in [61, 62, 72, 68]. We further

observed that the relative frequencies of opinion words across different sentiment

classes might be useful indicators of the opinion words’ SO and strength.

Based on these observations, we proposed a relative-frequency-based method

for determining the SO and strength of opinion words as part of our rating

inference framework, PREF. PREF aims at understanding the overall sentiments

174

of reviews and mapping such sentiments onto a multi-point rating scale. We

empirically demonstrated the rating inference approach to the integration of

sentiment analysis and CF by using the predicted ratings generated by PREF for

performing CF. We observed the following encouraging results: the predicted

ratings produce reasonably good prediction accuracies, and PREF improves the

performance of CF significantly by augmenting ratings from reviews.

Chapter 6 investigates further into the use of user-generated reviews for

generating personalized recommendations. In CF, user profiles are constructed

from users’ ratings on items, while in hybrid recommendations algorithms, user

and item profiles may be built upon ratings as well as item attributes. Our

work described in Chapter 6 attempts to construct user profiles based on their

preferences for item features extracted from reviews. It also makes use of item

features to derive similarities between items and those between item categories.

We performed an experimental evaluation of eight prediction models, two of

them being non-personalized baseline models. The evaluation has two major

goals. Firstly, it aims to show that sentiments extracted from reviews are more

precise descriptions of user preferences than user-specified ratings. Secondly, it

compares the effectiveness of prediction models that generate predictions based

on user-generated reviews, and those that perform rating-based predictions.

Results suggest that user-generated reviews do contain valuable user preferences

that can be utilized for making personalized recommendations. Further, review-

based models improve the coverage of rating-based models, with comparable or

significantly better prediction accuracies. This indicates that deriving similar-

ities between items and those between item categories based on feature terms

extracted from reviews effectively addresses data sparseness and the cold-start

problem.

7.2 Suggestions for Future Research

Research on CF has been focusing on more scalable and accurate algorithms,

but our work in this thesis represents an important pioneering step towards the

development of a novel review-based CF paradigm. Future research on CF

shall continue to explore the use of user-generated reviews, or other types of

Web 2.0 contents, for CF. Further, we pointed out in Chapter 6.3.3 that user-

generated reviews are characterized by a high-dimensional and evolving feature

175

set. Algorithms that can handle this by, for instance, allowing incremental

training of user, item and category profiles would be desirable for supporting

reviews-based recommendations.

Regarding research on sentiment analysis, we see an emerging trend in

the paradigm shift from binary sentiment classification to multi-point rating

inference. Recent studies, including ours, suggest that rating inference shall

not be tackled as a classical multi-category classification task because the con-

tinuity and ordering of class labels in the rating inference task are essential

[112, 114, 41]. This opens up an interesting direction in ordered multi-category

classification for future research.

Another interesting step to consider is the to recommend reviews for users to

read according to their interest profiles. Several user studies suggest that user-

generated reviews do play an important role in the online purchasing behavior

of users [131, 78, 46]. Specifically, when a user makes a decision about an

online purchase, (s)he tends to consult reviews written by other users who have

purchased or examined the product concerned. Instead of recommending to

users what to buy, it might also be useful to recommend what reviews to read

to facilitate the users’ decision making processes. The work of Wietsma and

Ricci [167] incorporates reviews written by the neighbors of the active user as a

decision making aid, but it does not involve the sentiment analysis of reviews in

the recommendation process. This actually reveals a gap between the state-of-

the-art in review-based recommendations and sentiment analysis.

176

Bibliography

[1] AAMODT, A., AND PLAZA, E. Case-based reasoning: Foundational

issues, methodological variations, and system approaches. Artificial

Intelligence Communications 7, 1 (1994), 39–59.

[2] ACIAR, S., ZHANG, D., SIMOFF, S., AND DEBENHAM, J. Recom-

mender system based on consumer product reviews. In Proceedings of

the 2006 IEEE/WIC/ACM International Conference on Web Intelligence

(2006), pp. 719–723.

[3] ACIAR, S., ZHANG, D., SIMOFF, S., AND DEBENHAM, J. Informed

recommender: Basing recommendations on consumer product reviews.

IEEE Intelligent Systems 22, 3 (2007), 39–47.

[4] ADOMAVICIUS, G., AND TUZHILIN, A. Toward the next generation

of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Transactions on Knowledge Engineering 17, 6 (2005),

734–749.

[5] AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. Mining association

rules between sets of items in large databases. In Proceedings of the

ACM SIGMOD International Conference on Management of Data (1993),

pp. 207–216.

[6] AGRAWAL, R., AND SRIKANT, R. Fast algorithms for mining association

rules. In Proceedings of the 20th International Conference on Very Large

Databases (1994), pp. 487–499.

[7] ANDERSON, M., BALL, M., BOLEY, H., GREENE, S., HOWSE,

N., LEMIRE, D., AND MCGRATH, S. RACOFI: A rule-applying

collaborative filtering system. In Workshop on Collaboration Agents:

177

Autonomous Agents for Collaborative Environments, in conjunction with

the IEEE/WIC International Conference on Web Intelligence/Intelligent

Agent Technology (2003).

[8] BAEZA-YATES, R., AND RIBEIRO-NETO, B. Modern Information

Retrieval. Addison Wesley, 1999.

[9] BALABANOVIC, M., AND SHOHAM, Y. Fab: Content-based, collabora-

tive recommendation. Communications of the ACM 40, 3 (1997), 66–72.

[10] BASU, C., HIRSH, H., AND COHEN, W. Recommendation as classifi-

cation: Using social and content-based information in recommendation.

In Proceedings of the 15th National Conference on Artificial Intelligence

(1998), pp. 714–720.

[11] BELKIN, N. J., AND CROFT, W. B. Information filtering and information

retrieval: two sides of the same coin? Communications of the ACM 35,

12 (December 1992), 29–38.

[12] BIKEL, D. M., SCHWARTZ, R., AND WEISCHEDEL, R. M. An

algorithm that learns what’s in a name. Machine Learning 34, 1-3 (1999),

211–231.

[13] BILLSUS, D., AND PAZZANI, M. Learning collaborative information

filters. In Proceedings of the 15th International Conference on Machine

Learning (1998), pp. 46–54.

[14] BREESE, J. S., HECKERMAN, D., AND KADIE, C. Empirical analysis

of predictive algorithms for collaborative filtering. In Proceedings of the

14th Conference on Uncertainty in Artificial Intelligence (1998), pp. 43–

52.

[15] BRILL, E. A simple rule-based part-of-speech tagger. In Proceedings

of the 3rd Conference on Applied Natural Language Processing (1992),

pp. 152–155.

[16] BRIN, S., MOTWANI, R., ULLMAN, J. D., AND TSUR, S. Dynamic

itemset counting and implication rules for market basket data. In

Proceedings ACM SIGMOD International Conference on Management of

Data (1997), pp. 255–264.

178

[17] BRUCE, R., AND WIEBE, J. Recognizing subjectivity: A case study of

manual tagging. Natural Language Engineering 5, 2 (1999), 187–205.

[18] BURKE, R. Knowledge-based recommender systems. Encyclopedia of

Library and Information Systems 69, 32 (2000).

[19] BURKE, R. Hybrid recommender systems: Survey and experiments. User

Modeling and User-Adapted Interaction 12 (2002), 331–370.

[20] CHESLEY, P., VINCENT, B., XU, L., AND SRIHARI, R. Using verbs

and adjectives to automatically classify blog sentiment. In Proceedings of

AAAI-CAAW-06, the Spring Symposia on Computational Approaches to

Analyzing Weblogs (2006).

[21] CHO, Y. H., AND KIM, J. K. Application of Web usage mining and

product taxonomy to collaborative recommendations in e-commerce.

[22] CIMIANO, P., AND VOLKER, J. Text2onto: A framework for ontology

learning and data-driven change discovery. In Proceedings of the 10th

International Conference on Applications of Natural Language to Infor-

mation Systems (2005), pp. 227–238.

[23] CLAYPOOL, M., GOKHALE, A., MIRANDA, T., MURNIKOV, P.,

NETES, D., AND SARTIN, M. Combining content-based and collab-

orative filters in an online newspaper. In Proceedings of ACM SIGIR

Workshop on Recommender Systems (1999).

[24] DAS, S., AND CHEN, M. Yahoo! for Amazon: Extracting market

sentiment from stock message boards. In Proceedings of the Asia Pacific

Finance Association Annual Conference (2001).

[25] DAVE, K., LAWRENCE, S., AND PENNOCK, D. M. Mining the peanut

gallery: Opinion extraction and semantic classification of product reviews.

In Proceedings of the 12th International World Wide Web Conference

(2003), pp. 519–528.

[26] DIEDERICH, J., KINDERMANN, J., LEOPOLD, E., AND PAA, G.

Authorship attribution with support vector machines. Applied Intelligence

19, 1/2 (2003), 109–123.

179

[27] E., S., KOKKINAKIS, G., AND FAKOTAKIS, N. Automatic text

categorization in terms of genre and author. Computational Linguistics

26, 4 (2000), 471–495.

[28] ESULI, A., AND SEBASTIANI, F. Determining the semantic orientation

of terms through gloss classification. In Proceedings of the ACM

International Conference on Information and Knowledge Management

(CIKM) (2005), pp. 617–624.

[29] ESULI, A., AND SEBASTIANI, F. SentiWordNnet: A publicly avail-

able lexical resource for opinion mining. In Proceedings of the 5th

International Conference on Language Resources and Evaluation (LREC)

(2006).

[30] FAN, W., WALLACE, L., RICH, S., AND ZHANG, Z. Tapping into the

power of text mining. Communications of ACM 49, 9 (2006), 76–82.

[31] FAWCETT, T. An introduction to ROC analysis. Pattern Recognition

Letters 27, 8 (2006), 861–874.

[32] FELDMAN, R., AND DAGAN, I. Knowledge discovery in textual

databases (KDT). In Proceedings of the 1st International Conference

on Knowledge Discovery and Data Mining (Montreal, Canada, 1995),

pp. 112–117.

[33] FESENMAIER, D. R., AND RICCI, F. Dietorecs: Travel advisory for

multiple decision styles. In International Conference on Information and

Communication Technologies in Tourism (ENTER) (2003), pp. 232–241.

[34] FLACH, P. A. ICML’04 Tutorial on the many faces of ROC analysis in

machine learning, 2004.

[35] FOLTZ, P. W., AND DUMAIS, S. T. Personalized information delivery:

An analysis of information filtering methods. Communications of the

ACM 35, 12 (December 1992), 51–60.

[36] FU, A. W. C., WONG, M. H., SZE, S. C., WONG, W. C., WONG,

W. L., AND YU, W. K. Finding fuzzy sets for the mining of fuzzy

association rules for numerical attributes. In Proceedings of the First

180

International Symposium on Intelligent Data Engineering and Learning

(1998), pp. 263–268.

[37] GABRILOVICH, E., AND MARKOVITCH, S. Text categorization with

many redundant features: Using aggressive feature selection to make

SVMs competitive with C4.5. In Proceedings of the 21st International

Conference on Machine Learning (2004), pp. 321–328.

[38] GAMON, M., AUE, A., CORSTON-OLIVER, S., AND RINGGER, E. K.

Pulse: Mining customer opinions from free text. In Proceedings of the 6th

International Symposium on Intelligent Data Analysis (2005), pp. 121–

132.

[39] GAO, L., CHANG, E., AND SONG, H. Powerful tool to expand business

intelligence: Text mining. In Proceedings of World Academy of Science,

Engineering and Techology (Volume 8) (October 2005), pp. 110–115.

[40] GENG, L., AND HAMILTON, H. J. Interestingness measures for data

mining: A survey. ACM Computing Surveys 38, 3 (2006). Article No. 9.

[41] GOLDBERG, A. B., AND ZHU, X. Seeing stars when there aren’t many

stars: Graph-based semi-supervised learning for sentiment categorization.

In Proceedings of the HLT-NAACL Workshop on TextGraphs: Graph-

based Algorithms for Natural Language Processing (2006), pp. 45–52.

[42] GOLDBERG, D., NICHOLS, D., OKI, B., AND TERRY, D. Using

collaborative filtering to weave an information tapestry. Communications

of the ACM 35, 12 (1992), 61–70.

[43] GOLDBERG, K. Y., ROEDER, T., GUPTA, D., AND PERKINS, C.

Eigentaste: A constant time collaborative filtering algorithm. Information

Retrieval 4, 2 (2001), 133–151.

[44] GOOD, N., SCHAFER, J. B., KONSTAN, J., BORCHERS, A., SARWAR,

B., HERLOCKER, J., AND RIEDL, J. Combining collaborative filtering

with personal agents for better recommendations. In Proceedings of

Conference of the American Association of Artifical Intelligence (1999),

pp. 439–446.

181

[45] GRAHAM, P. Better spam filtering. In Proceedings of the

Spam Conference (2003). Retrieved November 19, 2005, from

http://paulgraham.com/better.html.

[46] GRETZEL, U., AND YOO, K. H. Use and impact of online travel

reviews. In International Conference on Information and Communication

Technologies in Tourism (ENTER) (2008), pp. 35–46.

[47] GRISHMAN, R. Information extraction: techniques and challenges. In

Information Extraction (International Summer School SCIE-97) (1997).

[48] GYENESEI, A. A fuzzy approach for mining quantitative association

rules. TUCS Technical Report 336, Turku Centre for Computer Science,

2000.

[49] GYENESEI, A. Interestingness measures for fuzzy association rules.

In Proceedings of the 5th European Conference on Principles of Data

Mining and Knowledge Discovery (2001), pp. 152–164.

[50] HAN, J., AND FU, Y. Mining multiple-level association rules in large

databases. IEEE Transactions on Knowledge and Data Engineering 11, 5

(1999), 798–804.

[51] HAN, J., AND KAMBER, M. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, 2000.

[52] HATZIVASSILOGLOU, V., AND MCKEOWN, K. R. Predicting the

semantic orientation of adjectives. In Proceedings of the 8th Conference

on European Chapter of the Association for Computational Linguistics

(1997), pp. 174–181.

[53] HEARST, M. A. Untangling text data mining. In Proceedings of the 37th

Annual Meeting of the Association for Computational Linguistics (1999),

pp. 3–10. See also: http://mappa.mundi.net/trip-m/hearst/.

[54] HERLOCKER, J., KONSTAN, J., AND RIEDL, J. An empirical analysis of

design choices in neighborhood-based collaborative filtering algorithms.

Information Retrieval 5 (2002), 287–310.

182

[55] HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., AND RIEDL,

J. T. Evaluating collaborative filtering recommender systems. ACM

Transactions on Information Systems (TOIS) 22, 1 (2004), 5–53.

[56] HIPP, J., GUNTZER, U., AND NAKHAEIZADEH, G. Algorithms for

association rule mining – a general survey and comparison. ACM

SIGKDD Explorations Newsletter 2, 1 (2000), 58–64.

[57] HOFMANN, T. Probabilistic latent semantic indexing. In Proceedings

of the 22nd International Conference on Research and Development in

Information Retrieval (1999), pp. 50–57.

[58] HOFMANN, T., AND PUZICHA, J. Latent class models for collaborative

filtering. In Proceedings of the International Joint Conference in Artificial

Intelligence (1999), pp. 688–693.

[59] HONG, T.-P., AND LEE, C.-Y. Learning fuzzy knowledge from training

examples. In Proceedings of the 7th ACM Conference on Information and

Knowledge Management (1998), pp. 161–166.

[60] HSU, W.-L., AND LANG, S.-D. Classification algorithms for NET-

NEWS articles. In Proceedings of the 8th International Conference on

Information and Knowledge Management (Kansas City, MO, USA, 1999),

pp. 114–121.

[61] HU, M., AND LIU, B. Mining and summarizing customer reviews.

In Proceedings of the 10th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (2004), pp. 168–177.

[62] HU, M., AND LIU, B. Mining opinion features in customer reviews.

In Proceedings of the 19th National Conference on Artificial Intelligence

(2004), pp. 755–760.

[63] HUANG, Z., ZENG, D., AND CHEN, H. A comparative study of

recommendation algorithms in e-commerce applications. IEEE Intelligent

Systems 22, 5 (2007), 68–78.

[64] JACKSON, P., AND MOULINIER, I. Natural Language Processing for

Online Applications: Text Retrieval, Extract and Categorization. John

Benjamins Publishing Company.

183

[65] JINDAL, N., AND LIU, B. Identifying comparative sentences in text

documents. In Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval

(2006), pp. 244–251.

[66] JOACHIMS, T. Making large-scale support vector machine learning

practical. In Advances in Kernel Methods - Support Vector Learning

(1999), B. Scholkopf, C. Burges, and A. Smola, Eds., MIT Press, pp. 41–

56.

[67] KAJI, N., AND KITSUREGAWA, M. Building lexicon for sentiment

analysis from massive collection of HTML documents. In Proceedings

of the 2007 Joint Conference on Empirical Methods in Natural Lan-

guage Processing and Computational Natural Language Learning (2007),

pp. 1075–1083.

[68] KAMPS, J., MARX, M., MOKKEN, R., AND DE RIJKE, M. Using Word-

Net to measure semantic orientations of adjectives. In Proceedings of

the 4th International Conference on Language Resources and Evaluation

(LREC) (2004), pp. 1115–1118.

[69] KIM, B. M., LI, Q., KIM, J. W., AND KIM, J. A new collaborative

recommender system addressing three problems. In Proceedings of the

8th Pacific Rim International Conference on Artificial Intelligence (2004),

pp. 495–504.

[70] KIM, B. M., LI, Q., PARK, C. S., KIM, S. G., AND KIM, J. Y. A new

approach for combining content-based and collaborative filters. Journal

of Intelligent Information Systems 27, 1 (2006), 79–91.

[71] KIM, C., AND KIM, J. A recommendation algorithm using multi-

level association rules. In Proceedings of the IEEE/WIC International

Conference on Web Intelligence (2003), pp. 524–527.

[72] KIM, S.-M., AND HOVY, E. Determining the sentiment of opinions.

In Proceedings of Conference on Computational Linguistics (2004),

pp. 1367–1373.

184

[73] KLEMETTINEN, M., MANNILA, H., RONKAINEN, R., H., T., AND

VERKAMO, A. I. Finding interesting rules from large sets of discovered

association rules. In Proceedings of the 3rd International Conference on

Information and Knowledge Management (1994), pp. 401–407.

[74] KOHAVI, R., BECKER, B., AND SOMMERFIELD, D. Improving simple

Bayes. In Proceedings of European Conference on Machine Learning

(1997), pp. 78–87.

[75] KONSTAN, J. A., MILLER, B. N., MALTZ, D., HERLOCKER, J. L.,

GORDON, L. R., AND RIEDL, J. GroupLens: Applying collaborative

filtering to usenet news. Communications of the ACM 40, 3 (1997), 77–

87.

[76] LAM, X. N., VU, T., LE, T. D., AND DUONG, A. D. Addressing cold-

start problem in recommendation systems. In Proceedings of the 2nd

International Conference on Ubiquitous Information Management and

Communication (2008), pp. 208–211.

[77] LAMONT, J. Business intelligence: The text analysis strategy.

KMWorld, October 2006. Retrieved April 18, 2008, from:

http://www.kmworld.com/Articles/Editorial/Feature/Business-

Intelligence-The-text-analysis-strategy-18526.aspx.

[78] LEINO, J., AND RAIHA, K.-J. Case amazon: ratings and reviews as part

of recommendations. In Proceedings of the 2007 ACM Conference on

Recommender Systems (2007), pp. 137–140.

[79] LEUNG, C. W. K., AND CHAN, S. C. F. Sentiment analysis of product

reviews. J. Wang (Eds), Encyclopedia of Data Warehousing and Mining -

Second Edition, Information Science Reference (2008), 1794–1799.

[80] LEUNG, C. W. K., CHAN, S. C. F., AND CHUNG, F. L. A collaborative

filtering framework based on fuzzy association rules and multiple-level

similarity. Knowledge and Information Systems 10, 3 (2006), 357–381.

[81] LEUNG, C. W. K., CHAN, S. C. F., AND CHUNG, F. L. Integrating col-

laborative filtering and sentiment analysis: A rating inference approach.

185

In Proceedings of The ECAI 2006 Workshop on Recommender Systems

(2006), pp. 62–66.

[82] LEUNG, C. W. K., CHAN, S. C. F., AND CHUNG, F. L. Applying cross-

level association rule mining to cold-start recommendations. In Proceed-

ings of the IEEE/WIC/ACM WI-IAT Workshop on Web Personalization

and Recommender Systems (2007), pp. 133–136.

[83] LEUNG, C. W. K., CHAN, S. C. F., AND CHUNG, F. L. Evaluation of

a rating inference approach to utilizing textual reviews for collaborative

recommendation. In Cooperative Internet Computing (2008), World

Scientific Publisher.

[84] LEUNG, C. W. K., CHAN, S. C. F., AND CHUNG, F. L. A probabilistic

rating inference framework for mining user preferences from reviews.

submitted to World Wide Web - Internet and Web Information Systems

(WWWJ) (under revision).

[85] LI, J., AND CERCONE, N. Discovering and ranking important rules. In

Proceedings of IEEE International Conference on Granular Computing

(2005), pp. 506–511.

[86] LI, J., AND CERCONE, N. A rough set based model to rank the impor-

tance of association rules. In Proceedings of International Conference on

Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (2005),

pp. 109–118.

[87] LI, J., PATTARAINTAKORN, P., AND CERCONE, N. Rule evaluations,

attributes, and rough sets: Extension and a case study. Transactions on

Rough Sets (Lecture Notes in Computer Science) 6 (2007), 152–171.

[88] LI, J., TANG, B., AND CERCONE, N. Applying association rules for

interesting recommendations using rule templates. In Proceedings of

the Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD) (2004), pp. 166–170.

[89] LIN, W., ALVAREZ, S. A., AND RUIZ, C. Efficient adaptive-support

association rule mining for recommender systems. Data Mining and

Knowledge Discovery 6, 1 (2002), 83–105.

186

[90] LINDEN, G., SMITH, B., AND YORK, J. Amazon.com recommenda-

tions: Item-to-item collaborative filtering. IEEE Internet Computing 7, 1

(2003), 76–80.

[91] LIU, B., HU, M., AND CHENG, J. Opinion Observer: Analyzing and

comparing opinions on the web. In Proceedings of the 14th International

Conference on World Wide Web (2005), pp. 342–351.

[92] LIU, H. MontyLingua: An end-to-end natural language

processor with common sense, 2004. Available online at

http://web.media.mit.edu/%7Ehugo/montylingua.

[93] LIU, J., YAO, J., AND WU, G. Sentiment classification using information

extraction technique. In Advances in Intelligent Data Analysis VI (2005),

pp. 216–227.

[94] LORENZI, F., AND RICCI, F. Case-based recommender systems: a

unifying view. In IJCAI-05 Workshop on Intelligent Techniques for Web

Personalization (2005), B. Mobasher and S. Anand, Eds., pp. 89–113.

[95] LORENZI, F., AND RICCI, F. Case-based recommender systems: a

unifying view. In Intelligent Techniques for Web Personalization (2005),

B. Mobasher and S. Anand, Eds., pp. 89–113.

[96] MAEDCHE, A., AND STAAB, S. Ontology learning for the semantic web.

IEEE Intelligent Systems 16, 2 (2001), 72–79.

[97] MALTZ, D., AND EHRLICH, K. Pointing the way: Active collaborative

filtering. In Proceedings of ACM CHI’95 Conference on Human Factors

in Computing Systems (1995), pp. 202–209.

[98] MANDREOLI, F., MARTOGLIA, R., AND TIBERIO, P. Text clustering as

a mining task. In Text Mining and Its Application to Intelligence, CRM and

Knowledge Management, A. Zanasi, Ed. Southampton, UK: WIT Press,

2005, pp. 75–108.

[99] MANNING, C. D., RAGHAVAN, P., AND SCHUTZE, H. Introduction to

Information Retrieval. Cambridge University Press, 2008.

187

[100] MCCALLUM, A., AND NIGAM, K. A comparison of event models for

Naive Bayes text classification. In Proceedings of the AAAI-98 Workshop

on Learning for Text Categorization (1998).

[101] MCJONES, P. EachMovie collaborative filtering data set, 1997. retired as

of October, 2004.

[102] MCNEE, S. M. Meeting User Information Needs in Recommender

Systems. PhD thesis, University of Minnesota, 2006.

[103] MELVILLE, P., MOONEY, R. J., AND NAGARAJAN, R. Content-boosted

collaborative filtering for improved recommendations. In Proceedings of

the 18th National Conference on Artificial Intelligence (2002), pp. 187–

192.

[104] MIDDLETON, S. E., ALANI, H., AND DE ROURE, D. C. Exploiting

synergy between ontologies and recommender systems. In Proceedings

of the WWW2002 International Workshop on the Semantic Web (2002).

[105] MIDDLETON, S. E., R., S. N., AND DE ROURE, D. C. Ontological user

profiling in recommender systems. ACM Transactions on Information

Systems 22, 1 (2004), 54–88.

[106] MILLER, B. N. Toward a Personal Recommender System. PhD thesis,

University of Minnesota, 2003.

[107] MILLER, G., BECKWITH, R., FELLBAUM, C., GROSS, D., AND

MILLER, K. Introduction to WordNet: An online lexical database.

International Journal of Lexicography (Special Issue) 3, 4 (1990), 235–

312.

[108] MISHNE, G., AND GLANCE, N. Predicting movie sales from blogger

sentiment. In Proceedings of AAAI-CAAW-06, the Spring Symposia on

Computational Approaches to Analyzing Weblogs (2006).

[109] MOBASHER, B., JIN, X., AND ZHOU, Y. Semantically enhanced

collaborative filtering on the web. In Proceedings of the First European

Web Mining Forum (2003), pp. 57–76.

188

[110] MOONEY, R., AND ROY, L. Content-based book recommending using

learning for text categorization. In Proceedings of the 5th ACM Confer-

ence on Digital Libraries (2000), pp. 195–204.

[111] N., Z. C., LAUSEN, G., AND SCHMIDT-THIEME, L. Taxonomy-driven

computation of product recommendations. In Proceedings of the 2004

ACM CIKM International Conference on Information and Knowledge

Management (2004), pp. 406–415.

[112] OKANOHARA, D., AND TSUJII, J. Assigning polarity scores to reviews

using machine learning techniques. In Proceedings of the Second

International Joint Conference on Natural Language Processing (2005),

pp. 314–325.

[113] PANG, B., AND LEE, L. A sentimental education: Sentiment analysis us-

ing subjectivity summarization based on minimum cuts. In Proceedings of

the 42nd Annual Meeting of the Association for Computation Linguistics

(2004), pp. 271–278.

[114] PANG, B., AND LEE, L. Seeing stars: Exploiting class relationships for

sentiment categorization with respect to rating scales. In Proceedings of

the 43rd Annual Meeting of the Association for Computation Linguistics

(2005), pp. 115–124.

[115] PANG, B., LEE, L., AND VAITHYANATHAN, S. Thumbs up? Sentiment

classification using machine learning techniques. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing

(2002), pp. 79–86.

[116] PARK, J. S., CHEN, M.-S., AND YU, P. S. An effective hash-based

algorithm for mining association rules. In Proceedings of ACM SIGMOD

International Conference on Management of Data (1995), pp. 175–186.

[117] PARK, S. T., PENNOCK, D., MADANI, O., GOOD, N., AND DECOSTE,

D. Naive filterbots for robust cold-start recommendations. In Proceedings

of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (2006), pp. 699–705.

189

[118] PAWLAK, Z. Rough Sets: Theoretical Aspects of Reasoning about Data.

Kluwer Academic Publishers, 1992.

[119] PEI, J., HAN, J., AND MAO, R. CLOSET: An efficient algorithm

for mining frequent closed itemsets. In Proceedings of ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge Discovery

(2000), pp. 21–30.

[120] POPESCU, A., AND ETZIONI, O. Extracting product features and

opinions from reviews. In Proceedings of Human Language Technology

Conference and Conference on Empirical Methods in Natural Language

Processing (2005), pp. 339–346.

[121] POPESCUL, A., UNGAR, L. H., PENNOCK, D. M., AND LAWRENCE,

S. Probabilistic models for unified collaborative and content-based

recommendation in sparse-data environments. In Proceedings of the 17th

Conference on Uncertainty in Artificial Intelligence (2001), pp. 437–444.

[122] PORTER, M. F. An algorithm for suffix stripping. Program 14, 3 (1980),

130–137.

[123] PROVOST, F., AND FAWCETT, T. Robust classification for imprecise

environments. Machine Learning 42, 3 (2001), 203–231.

[124] RADEV, D., FAN, W., AND ZHANG, Z. WebInEssence: A personalized

web-based multi-document summarization and recommendation system.

In Proceedings of the NAACL Workshop on Automatic Summarization

(Pittsburgh, PA, June 2001).

[125] RASHID, A., ALBERT, I., COSLEY, D., LAM, S., MCNEE, S., KON-

STAN, J., AND RIEDL, J. Getting to know you: Learning new user

preferences in recommender systems. In Proceedings of the International

Conference on Intelligent User Interfaces (2002), pp. 127–134.

[126] RENZ, I., AND FRANKE, J. Text mining. In Text Mining: Theoretical

Aspects and Applications. 2003.

[127] RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTORM, P., AND

RIEDL, J. GroupLens: An open architecture for collaborative filtering

190

of Netnews. In Proceedings of ACM 1994 Conference on Computer

Supported Cooperative Work (1994), ACM, pp. 175–186.

[128] RICCI, F. Travel recommender systems. IEEE Intelligent Systems 17, 6

(2002), 55–57.

[129] RICCI, F., CAVADA, D., MIRZADEH, N., AND VENTURINI, A. Case-

Based Travel Recommendations. Travel Destination Recommendation

Systems: Behavioral Foundations and Applications. CAB Publishing,

2006, ch. 6.

[130] RICCI, F., AND DEL MISSIER, F. Supporting travel decision making

through personalized recommendation. In Designing Personalized User

Experiences for eCommerce (2004), C.-M. Karat, J. Blom, and J. Karat,

Eds., Kluwer Academic Publisher, pp. 221–251.

[131] RICCI, F., AND WIETSMA, R. T. A. Product reviews in travel decision

making. In Proceedings of the International Conference on Information

and Communication Technologies in Tourism (ENTER) (2006), pp. 296–

307.

[132] RIFKIN, R., AND KLAUTAU, A. In defense of one-vs-all classification.

Journal of Machine Learning Research 5 (2004), 101–141.

[133] RILOFF, E., AND WIEBE, J. Learning extraction patterns for subjective

expressions. In Proceedings of Conference on Empirical Methods in

Natural Language Processing (2003), pp. 105–112.

[134] ROBB, D. Text mining tools take on unstructured data.

Computer World, 2004. Retrieved November 24, 2005, from:

http://www.computerworld.com/printthis/2004/0,4814,93968,00.html.

[135] SARWAR, B., KARYPIS, G., J., K., AND RIEDL, J. Analysis of

recommendation algorithms for e-commerce. In Proceedings of the 2nd

ACM conference on Electronic Commerce (2000), pp. 158–167.

[136] SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the

10th International World Wide Web Conference (2001), pp. 285–295.

191

[137] SARWAR, B., KONSTAN, J., BORCHERS, A., HERLOCKER, J.,

MILLER, B., AND RIEDL, J. Using filtering agents to improve prediction

quality in the GroupLens research collaborative filtering system. In

Proceedings of the ACM conference on Computer Supported Cooperative

Work (1998), pp. 345–354.

[138] SARWAR, B. M., KARYPIS, G., KONSTAN, J. A., AND RIEDL, J. T.

Application of dimensionality reduction in recommender systems a case

study. In Proceedings of the ACM WebKDD Workshop, in conjunc-

tion with the ACM-SIGKDD Conference on Knowledge Discovery in

Databases (2000).

[139] SCHAFER, J. B., KONSTAN, J. A., AND RIEDL, J. E-commerce

recommendation applications. Data Mining and Knowledge Discovery

5, 1–2 (2001), 115–153.

[140] SCHEIN, A., POPESCUL, A., UNGAR, L. H., AND PENNOCK, D. M.

Methods and metrics for cold-start recommendations. In Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (2002), pp. 253–260.

[141] SCHEIN, A. I., POPESCUL, A., UNGAR, L. H., AND PENNOCK, D. M.

CROC: A new evaluation criterion for recommender systems. M. E. Zurko

and A. Greenwald (Eds.), Electronic Commerce Research, Special Issue

on World Wide Web Electronic Commerce, Security and Privacy 5, 1

(2005), 51–74.

[142] SEBASTIANI, F. Machine learning in automated text categorization. ACM

Computing Surveys 34, 1 (2002), 1–47.

[143] SEBASTIANI, F. Text Categorization. WIT Press, Southampton, UK,

2005, ch. Text Mining and Its Application to Intelligence, CRM and

Knowledge Management. pages 109–129.

[144] SHARDANAND, U., AND MAES, P. Social information filtering: Algo-

rithms for automating ’Word of Mouth’. In Proceedings of ACM CHI’95

Conference on Human Factors in Computing Systems (1995), pp. 210–

217.

192

[145] SHIMADA, K., AND ENDO, T. Seeing several stars: A rating inference

task for a document containing several evaluation criteria. In Proceedings

of the Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD) (2008), pp. 1006–1014.

[146] SILVESTRI, F., BARAGLIA, R., AND PALMERINI, P. Online generation

of suggestions for web users. Journal of Digital Information Management

2, 2 (2004), 104–108.

[147] SMOLA, A. J., AND SCHOLKOPF, B. A tutorial on support vector re-

gression. Tech. Rep. NC2-TR-1998-030, NeuroCOLT2, Royal Holloway

College, University of London, October 1998.

[148] SMYTH, B., AND COTTER, P. A personalized television listings service.

Communications of the ACM 43, 8 (2000), 107–111.

[149] SNYDER, B., AND BARZILAY, R. Multiple aspect ranking using the good

grief algorithm. In Proceedings of Human Language Technologies: The

Annual Conference of the North American Chapter of the Association for

Computational Linguistics (2007), pp. 300–307.

[150] SRIKANT, R., AND AGRAWAL, R. Mining generalized association

rules. In Proceedings of the 21st International Conference on Very Large

Databases (1995), pp. 407–419.

[151] TABOADA, M., ANTHONY, C., AND VOLL, K. Methods for creating

semantic orientation dictionaries. In Proceedings of the 5th International

Conference on Language Resources and Evaluation (LREC) (2006),

pp. 427–432.

[152] TAN, P.-N., KUMAR, V., AND SRIVASTAVA, J. Selecting the right

interestingness measure for association patterns. In Proceedings of the 8th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (2002), pp. 32–41.

[153] TERVEEN, L., HILL, W., AMENTO, B., MCDONALD, D., AND

CRETER, J. PHOAKS: A system for sharing recommendations. Com-

munications of the ACM 40, 3 (1997), 59–62.

193

[154] TRIPADVISOR. Fact sheet. Retrieved April 11, 2009, from

http://www.tripadvisor.com/ PressCenter-c4-Fact%5FSheet.html, 2007.

[155] TSO-SUTTER, K. H. L., MARINHO, L. B., AND SCHMIDT-THIEME,

L. Tag-aware recommender systems by fusion of collaborative filtering

algorithm. In Proceedings of the 2008 ACM Symposium on Applied

Computing (SAC) (2008), pp. 1995–1999.

[156] TURNEY, P. D. Thumbs up or thumbs down? Semantic orientation

applied to unsupervised classification of reviews. In Proceedings of the

40th Annual Meeting of the Association for Computational Linguistics

(2002), pp. 417–424.

[157] TURNEY, P. D., AND LITTMAN, M. L. Measuring praise and criticism:

Inference of semantic orientation from association. ACM Transactions on

Information Systems 21, 4 (2003), 315–346.

[158] UNGAR, L. H., AND FOSTER, D. P. Clustering methods for collaborative

filtering. In Proceedings of the AAAI Workshop on Recommendation

Systems (1998).

[159] VAPNIK, V. N. The Nature of Statistical Learning Theory. Springer,

1995.

[160] VELARDI, P., NAVIGLI, R., AND MISSIKOFF, M. Integrated approach

for web ontology learning and engineering. IEEE Computer 35, 11

(2002), 60–63.

[161] WANG, K., HE, Y., AND HAN, J. Mining frequent itemsets using support

constraints. In Proceedings of the 26th International Conference on Very

Large Databases (2000), pp. 43–52.

[162] WANG, K., AND LIU, H. Q. Mining is-part-of association patterns

from semistructured data. In Proceedings of the 9th IFIP 2.6 Working

Conference on Database Semantics (2000).

[163] WATSON, I. Applying Case-Based Reasoning: Techniques for Enterprise

Systems. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA,

1997.

194

[164] WEISS, S. M., INDURKHYA, N., ZHANG, T., AND DAMERAU, F. Text

Mining: Predictive Methods for Analyzing Unstructured Information.

Springer, New York, USA, 2004.

[165] WIEBE, J., BRUCE, R., BELL, M., MARTIN, M., AND WILSON, T. A

corpus study of evaluative and speculative language. In Proceedings of

the 2nd ACL SIGdial Workshop on Discourse and Dialogue (2001).

[166] WIEBE, J., BRUCE, R., AND O’HARA, T. Development and use of a

gold-standard data set for subjectivity classifications. In Proceedings of

the 37th Annual Meeting of the Association for Computational Linguistics

(1999), pp. 246–253.

[167] WIETSMA, R. T. A., AND RICCI, F. Product reviews in mobile decision

aid systems. In Proceedings of the Conference on Information and

Communication Technologies in Tourism (ENTER) (2005), pp. 15–18.

[168] WILSON, T., WIEBE, J., AND HWA, R. Just how mad are you? Finding

strong and weak opinion clauses. In Proceedings of the 19th National

Conference on Artificial Intelligence (2004), pp. 761–769.

[169] WOLVERTON, T. Despite tough year, amazon’s bezos keeps his chin up.

CNET News.com, November 2000. Retrieved August 18, 2008, from:

http://news.cnet.com/2009-1017%5F3-249204-2.html.

[170] YAMANISHI, K., AND LI, H. Mining open answers in questionnaire data.

IEEE Intelligent Systems 17, 5 (2002), 58–63.

[171] YANG, Y., AND PEDERSEN, J. O. A comparative study on feature

selection in text categorization. In Proceedings of the 14th International

Conference on Machine Learning (ICML-97) (1997), D. H. Fisher, Ed.,

Morgan Kaufmann Publishers, pp. 412–420.

[172] YI, J., NASUKAWA, T., BUNESCU, R., AND NIBLACK, W. Sentiment

Analyzer: Extracting sentiments about a given topic using natural lan-

guage processing techniques. In Proceedings of the 3rd IEEE Interna-

tional Conference on Data Mining (2003), pp. 427–434.

195

[173] ZADEH, L. A. Knowledge representation in fuzzy logic. IEEE

Transactions on Knowledge and Data Engineering 1, 1 (March 1989),

89–100.

[174] ZAKI, M. J. Scalable algorithms for association mining. IEEE Transac-

tions on Knowledge and Data Engineering 12, 3 (2000), 372–390.

[175] ZAKI, M. J., PARTHASARATHY, S., OGIHARA, M., AND LI, W. New

algorithms for fast discovery of association rules. Technical Report 651,

Computer Science Department, The University of Rochester, 1997.

[176] ZHOU, L., AND CHAOVALIT, P. Ontology-supported polarity mining.

Journal of the American Society for Information Science and Technology

59, 1 (2008), 98–110.

[177] ZHU, X., AND GOLDBERG, A. B. Kernel regression with order

preferences. In Proceedings of the 22nd National Conference on Artificial

Intelligence (2007), pp. 681–686.

[178] ZIEGLER, C., MCNEE, S. M., KONSTAN, J. A., AND LAUSEN,

G. Improving recommendation lists through topic diversification. In

Proceedings of the Fourteenth International World Wide Web Conference

(2005), pp. 22–32.

196

	theses_copyright_undertaking
	b23064365

