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Abstract

ABSTRACT

Accurate colour measurement is a very important factor to determine the quality of
finished products in the colour-related industries, such as paint, printing or textiles. In
the past, visual colour assessment was used to match colours and physical samples
played an important role. The drawback of the visual colour assessment is that, even in
the case of well trained colourists, performance is influenced by a number of
parameters including psychological, medical and environmental factors. In addition,
during the transportation and assessment of the physical samples, there is the risk of
soiling. These factors may account for mistakes in colour identification. even in the

case of well trained and experienced colourists.

The objective colour communication method is an alternative method to enhance both
colour matching and colour assessment. Because of advances in spectrophotometry and
information technology, colour quality may be expressed in a digital format and
communicated to other parties by electronic means. This format of colour
communication represents the trend in view of the regionalisation and globalisation of

the textile and apparel industries.




Abstract

The spectrophotometer is one of the important instruments for colour matching and
colour measurement. It performs at a finite level of accuracy but, as an
electro-mechanical-optical device, it exhibits measurement errors relative to a
theoretically error-free instrument that users must accept. Most of the modern
spectrophotometers have satisfactory repeatability and the suppliers of these
instruments claim that the repeatability of the measurement on the same instrument is
lower than 0.01 CIELAB AE units. In this research project, it was found that the
repeatability of the advanced spectrophotometers ranged from 0.044 t0 0.112 CIELAB
AE units for the dual beam spectrophotometers while, for the single beam

spectrophotometer, the repeatability ranged from 0.115 to 0.377 CIELAB AE units.

When considering the inter-instrumental agreement of different makes of
spectrophotometers, the manufacturers also claim that the inter-instrumental agreement
of those of similar design is lower than 0.15 CIELAB AE units. However, in this
rescarch, it was found that the inter-instrumental agreement between the
spectrophotometers manufactured by the same manufacturer ranged from 0.526 1o
0.611 CIELAB AE units. The inter-instrumental agreement between the
spectrophotometers manufactured by different manufacturers ranged from 0.575 to

0.854 CIELAB AE units.




Abstract

Since the inter-instrumental agreement of the spectrophotometers is very low, various
mathematical models have been developed in order to improve the inter-instrumental
agreement between spectrophotometers. In past research, those mathematical models
were developed using calibration data from the GLOSSY Ceramic Tiles which may not

be suitable for application to textile and paper samples.

For the above-stated reasons, in this project a new mathematical model. named the
R-Model, was developed using both GLOSSY and MATT Ceramic Tiles. Spectral data
from 400 - 700 nm was analysed using the concept of bandpass correction as well as
the multilinear regression method. The performance of R-Model was found to be better
than that of the previous models. The improvement of the inter-instrumental agreement
was up to 90% for the ceramic tiles. Moreover, the inter-instrumental agreement for the
other coloured samples such as textile and paper samples also improved accordingly,
from 26.1% to 57.6% and 13.7% to 61.1% respectively. Using this model, the global
colour communication between designers. coloration companies and buyers can be
further enhanced. and also the non-physical sample communication method through the

use of digital reflectance data can become feasible.
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Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

1.1Research Background

1.20bjectives

1.3Scope Of Study

1.1 Research Background

It is often difficult to achieve accurate colour communication because the perception of
colour is subject to the influence of at least three different elements: the light source, the
object and the visual system. The variation in either the radiant quantity or the spectral
distribution of the source can alter the observed colour. For this reason, the objective
quantitative tools and communication method are highly significant when evaluating
colour. Using advanced computer systems and electronic devices, colour measurement
has become increasingly more accurate, especially in the case of spectrophotometric

measurement.
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Chapter | Introduction

Traditionally, physical samples played an important role in colour matching and
communication. Unfortunately, sample soiling and notoriously unreliable visual
assessments account for 17% of “wrong decisions” made by both trained and
experienced colourists'**. In addition, the performance of the trained colourist can be
influenced by a number of parameters such as psychological, medical and environment
factors. There are also factors such as the variability between visual observers and
within observers, the variability between light cabinets and light sources™". All these

influences make colour matching and communication more difficult.

An alternative method for achieving colour quality assessment is using a colour
measuring system. Because of advances in spectrophotometry and information
technology, colour quality may be expressed in digital format and communicated to the
opposite parties by electronic means. This form of colour communication or “colour by
number” represents the trend in view of the regionalisation and globalisation of the
textile and apparel industry, as well as other colour related industries. A clear message
from the leading retailer Marks & Spencer pic to the suppliers in this region is that

instrumental results and digital data exchange are a necessity.
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Chapter 1 Introduction

In general, spectrophotometers for colour measurement perform at a finite level of
accuracy but, being electro-mechanical-optical devices, they exhibit measurement
errors relative to a theoretical error-free instrument that users must accept. Most modern
spectrophotometers have satisfactory repeatability, but the measurements are not
necessarily accurate. In a research study carried out by the Spectrophotometry and
Colorimetry Club of the National Physical Laboratory (NPL) of the UK!%7!
twenty-four participants were asked t0 measure the colour of a set of NPL ceramic
colour standards using their in-house spectrophotometers. Even the state-of-art
instruments showed variance from the standard in the region of 0.7 to 1.6 CIELAB units.
Larger differences in excess of 3 CIELAB units were also obtained for some instruments.
However. the human eye can identify differences in colour of between 0.5 and 1.0
CIELAB units, depending on the colour. This result strongly suggests that the accuracy
of the instrument and the inter-instrumental agreement between spectrophotometers
present problems where meeting the requirements for industrial digital colour

communication is concerned.

If measurement errors can be quantified and corrected, then the accuracy of the
measurement task can be improved. In the design of the spectrophotometer, there are

inherent problems which lead to both systematic and random error, affecting the
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Chapter 1 Introduction

accuracy of results. As a consequence, such errors must be analysed and quantified
mathematicaily in order to improve the accuracy and to promote globalised digital
colour communication for a variety of commercial and industrial applications. The
colour measurement spectrophotometers have performed satisfactorily and provided
useful colour information for over 10 years. However they exhibit several deficiencies,
primarily due to age, poor inter-instrumental agreement and limited software flexibility

and capabilities.

Earlier researchers have shown the effectiveness of the improvement of the
inter-instrumental agreement’>***! However, systematic studies which focus on the
requirement of digital colour communication have not yet been conducted. The research
project described served to develop a methodology and an algorithm aiming at
improving the accuracy of the colour communication based on spectrophotometric
measurement so that commerce and industry may gain immediate benefits from the

results obtained.

In surface colour measurement related industries, colour measurement systems are

widely used to both measure colour and evaluate colour quality. Reflectance
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spectrophotometers are one of the popular instruments used in colour measurement
related industries in order to measure the surface colour accurately. Spectral reflectance
data of a colour can be measured using reflectance spectrophotometers. In addition, the
spectrophotometer can provide higher accuracy with its high precision sensor and

measure colour for a variety of illuminant conditions.

In the textile or other colour related industries, for example textile coloration and
printing er al., objective colour difference evaluation is now far more important than
ever before. Colour quality control is one of the most important parameters to determine
whether the finished goods are acceptable or not in textile or other colour related
industries. In addition, objective colour difference specification for quantitative colour
comparison is also very important to promote quick response to the market place and is
an efficient means of in-house colour quality control. Reflectance spectrophotometers

are one of the most important devices for checking the colour quality of textile products.

With the development in electronic devices and machine design, the repeatability of
spectrophotometric measurements has become more and more accurate in practice. For

this reason, different manufacturers claim that the repeatability of measurement on the
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same instrument is lower than 0.01 CIELAB AE units”®>’®”"!. The manufacturers also
claim that the inter-instrumental agreement of the spectrophotometers of similar design
is lower than 0.15S CIELAB AE units™*”". However, in the investigation under
discussion, it was found that even the reflectance spectrophotometers produced by the
same manufacturers had an inter-instrumental agreement range from 0.526 to 0.611
CIELAB AE units. In the case of instruments produced by different manufacturers. the
inter-instrumental agreement ranged from 0.575 to 0.854 CIELAB AE units. For this
reason, the first objective of this research project was to study the inter-instrumental
agreement of the commercial reflectance spectrophotometers using Ceramic Colour
Standards — Series II tiles (CCS-II Tiles). Both the GLOSSY and MATT types of the
CCS-II tiles were chosen for use in the experimental work. The results of this study
illustrate that improvement in the communication between instruments should be

achieved in order to enhance inter-instrumental agreement.

In previous studies, the development and the tests for the mathematical models were
based on GLOSSY type ceramic tiles. For this reason, both GLOSSY and MATT types
of ceramic tiles were used to develop the mathematical models separately in this project.
In addition to ceramic tiles, textile samples and also paper samples were used to test the

newly developed mathematical models.
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1.2 Objectives

The objectives of this research study are summarized as follows:

I.  To study the repeatability and inter-instrumental agreement of spectrophotometers.

Il. To analyse the causes of the poor inter-instrumental agreement between

spectrophotometers.

lll. To develop a mathematical model in order to improve inter-instrumental agreement

between spectrophotometers.

IV. To test the new developed mathematical models using different types of samples.

Page 7



Chapter | Introduction

1.3Scope Of Study

This research project focused on the study of the measurement results of
spectrophotometers and the development of new mathematical models 10 improve
inter-instrumental agreement. Experiments were carried out to develop the appropriate
mathematical models. A comparison between the newly developed mathematical
models and the previously reported mathematical models was also carried out in this
research project. The emphasis of the research was to develop a new mathematical
model in order to improve the inter-instrumental agreement of the reflectance
spectrophotometers. In addition, the performance of the newly developed models was of
major importance, thus the testing of the previously reported and newly developed

mathematical models are also summarised in this thesis.

Page 8



Chapter 2 Literature Review

2.1

2.2

2.3

24

2.5

2.6

2.7

28

CHAPTER 2

LITERATURE REVIEW

Introduction

Historical Development Of Colour Measurement Instruments

Classification Of Colour Measurement Instruments

Commonly Used Types Of Spectrophotometers

Colour Difference Formulae Used In Textile Industry

Colouring By Numbers

Inter-Instrumental Agreement

Band-Pass Correction

Page 9



Chapter 2 Literature Review

2.1 Introduction

185931 is the science of measuring or evaluating colour and colour is defined

Colorimetry
as the sensation experienced or caused by light reflected from or transmitted through
objects. The appearance of colour is subject to the influence of three different
phenomena: the light source, the object and the visual system. If the above three factors
can be quantified, the sensation of colour can be measured and finally calculated even
though the perceived colour cannot be directly measured. In the textile industries,

especially in textile coloration, it would be very beneficial if the colour properties of

textile materials could be quantified.

Colour measurement is achieved using instruments such as the tristimulus colorimeter
and spectrophotometer. Video cameras™'™' have also been employed in the field of
colour measurement and control. The tristimulus colorimeter measures the CIE
tristimulus data directly''®); the spectrophotometer measures the spectral reflectance
factors or transmittance factors, and the video camera is mainly used for on-line colour

monitoring.

In general, the tristimulus colorimeter''”! is easy to use and cheaper than the
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spectrophotometer. Although it is less accurate in practical application than the modern
spectrophotometer, the tristimulus colorimeter can also express colours numerically
according to international standards, for example as seen in the CIE system!”"'"®!. For this

reason, the tristimulus colorimeter is primarily used for colour quality monitoring.

In order 10 measure colour accurately, the modem spectrophotometer'” is widely used
in colour science related industries. Using spectrophotometers, not only the numerical
data obtained from the tristimulus colorimeters, but also the spectral reflectance graph
for the colour can be obtained. The spectrophotometer also offers greater accuracy with

its high precision sensor and the inclusion of data for a variety of illuminant conditions.

2.2 Historical Development Of Colour Measurement Instruments

Colour quality control has become far more important recently, since colour is the first
parameter in evaluating the quality of coloured, finished goods. Visual assessment is the
traditional method to evaluate the colour quality, but this method has many drawbacks.
For instance, sample soiling and notoriously unreliable visual assessment account for
17% of “wrong decisions” made by colour experts'™'!. In addition, visual assessments

are qualitative, debatable, vary according to viewing conditions and are
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observer-dependent.

In 1931 CIE"™ defined the standard observer and illuminants, which became the basis
for instrumental colour measurement. The first generation instrument for this task
measured point-to-point reflectance, and the results were calculated using conventional
techniques available at the time. Between 1936 and 1946, Prof A.C. Hardy introduced
automatic mechanical calculators, and these became known as the second-generation
instruments. The commercialisation of the analog computer led to the third generation of
the instruments. With the development of personal computers, the measurement speed
and calculation time became progressively faster and the fourth generation of colour

measurement instruments arrived.

2.3 Classification Of Colour Measurement Instruments

Colorimetric instruments can be divided into three basic types, these being the
colorimeter, spectroradiometer and spectrophotometer. The classification of those three

types of machines are summarised in the table below:
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Table 2.1 General Classification Of Colour Measurement Instruments (Source: Modern

Concepts Of Color And Appearance)
Instruments
Geometric attributes Colour attributes
like gloss, matt I
texture et al. * ‘
Physical analysis Psychophysical analysis
o }
Spectroradiometer Spectrophotometer Colorimeter
L ‘ ]
Object mode
Reflectance Transmittance
On-line Off-line

2.3.1 Colorimeter

Colorimeters''”' were the first colour measurement instruments to be used in the colour
related industries. Colorimeters were also known as “Three-filter Colour Measurement
Instruments”. The three-filters simulated the human eye’s cone cell, red, green and blue

photo-detectors, measuring the tristimulus values. The light source for these
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colorimeters was a quartz halogen bulb, which illuminated the sample at 45° to the

norm.

The colorimeter is primarily used for measuring CIE tristimulus values (CIE
colorimetric coordinates) for a stimulus. In general, there are two different types of
colorimeter, one being visual and the other photoelectric!®!. Visual colorimeters were
traditionally of two types, the carliest ones being visual absorptionmeters or colour
comparators. Such instruments are mainly used to measure liquid colour and they are
employed for chemical analysis, concentration determination or grading on the basis of
colour. The other type of colorimeter was a true colorimeter that emphasised visual
equivalence or psychophysical estimation. This type of visual colorimeter compared the
colour of the samples with the colour of the standard and matched the two. The other
type was a true colorimeter that emphasised visual equivalent or psychophysical

estimation.

True colorimeters define colours in terms of their own primaries. A number of
colorimeters were specially developed for colour vision research. These were very

complex, costly and highly specialised to serve one or a limited number of purposes.
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The earliest true colorimeter was Clerk Maxwell’s colour box, which consisted of a
prism unit with adjustable slits in the appropriate parts of a light path to independently
control the amount of red, green and blue light beams viewed as a homogeneous colour
in an optical viewing unit to match the colour of the sample shown in the other half of
the optical unit. The relative aperture areas x, y and z were recorded as the amount of the

three primaries, x, y and z.

The earliest tristimulus colorimeters, such as those developed by Guild"*”!, Wright!'®!,
Donaldson'*'*!, MacAdam™® and Wyszecki"'™'"", were used mainly for research
purposes where more than two visual fields were necessary to examine colour difference
matching, colour matching ellipses, hue matching etc. The Burnham colorimeter''*! was
relatively simple in construction and utilized additive mixing of primary stimuli made
up of coloured filters and a light source. Figure 2.1 shows the arrangement of the three
filters and aperture plate. The lower two adjacent filters are red and green, while the
upper filter is blue. The horizontal and vertical movements of the filter control the
proportion of red-green and yellow-blue components respectively. The scales actuated
by the two movements gave the proportion of the three primary colours. A shutter on the

test field allowed the luminosity of the two fields to be equalised.
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Figure 2.1 Burnham Colorimeter With Red, Green And Blue Filters And Aperture Plate

The Lovibond colorimeter''*®! was a popular commercial visual colorimeter even 100
years after its use and development. This colorimeter was based on the subtractive
colour mixing of coloured glass filters. For each of the three primaries, magenta, yellow
and cyan, there were 250 Lovibond glass filters. The filters are graduated in the way that
two “1.0" glasses match a “2.0" glass plus a colorless glass. An equal value of all three
together gave a grey series down to the black. There are around nine million colours of
varying brightness which can be matched by putting suitable Lovibond filters in the light

filters in the light path for whole visible colour or saturation.

Modern colorimeters directly measure colorimetric quantities, and the detector system
of the colorimeters consists of a glass filter and a photodetector, usually a silicon

photodiode.
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In common practise, the measurement results of the tristimulus colorimeter are less
accurate when compared with the modem reflectance spectrophotometer. The
tristimulus colorimeter expresses colours numerically according to CIE standards'™ and

it is mainly used in colour quality monitoring.

232 Spectroradiometer

The spectroradiometer is mainly used to measure self-illuminant objects such as
television and video displays. Inside the spectroradiometer, the light source is integral
and shielded from extemal light sources whereas a spectroradiometer can accept light
from external sources. Spectroradiometers measure radiometric quantities of light
sources as a function of wavelength. The measurement involves the comparison of the
test source with a suitable reference source of known spectral power distribution.
Standardised tungsten filament lamps are the most often-used reference source. In the
case of a tungsten or tungsten-halogen lamp, the bandwidth can be large (AA=50r 10
nm) for light sources with continuous spectra, but for discontinuous line spectra, such as
fluorescent lamps, the interval should not be more than 2 nm. However if the
wavelength of emission lines is known, separate measurements can be made at those

wavelengths and then the data combined with those taken at 10 nm bandwidth. An
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elaborate spectroradiometer and sophisticated illumination standards can provide
accurate colorimetric information for coloured samples. However some good estimates
of chromaticity values can be obtained from a broad band device such as a colour video
camera, provided it is properly calibrated by measuring R, G and B values of suitably

chosen colour standards and by reconstructing reflectance accordingly'®!.

233  Spectrophotometer

The spectrophotometer''”! mainly measures reflectance, transmittance, or absorbance at
different wavelengths in the spectrum. The quantity of reflectance measured is referred
to as the reflectance factor (RF) and is defined as the reflectance of the sample at a
specific wavelength range compared to the reflectance of the perfect diffuse white

measured under the exact same conditions. The mathematical expression is as follows:

RF(A) = R(A-)(samplc) / R(A)(smndurd) I EQ 2.1

In common practice, the reflectance factors are expressed as a percentage, %R.

Some important principle components of the spectrophotometer are discussed in the
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following paragraphs.

2.33.1  Spectral Range"'33' 996971

According to the Sandoz Colorimetry Manual, the reflectance factor is the ratio of the
reflected to the incident light at a given wavelength. Based on the CIE

recommendations''**"!

, it is preferable that the measurement data of spectrophotometer
should have a spectral range from 380 to 780 nm available at 5-nm intervals. In general

practice, the spectral range from 400 to 700 nm with minimum data available at 10-nm

intervals is sufficient.

15.13.51.59.89.96,97.98}

2.3.3.2  Nluminating System

The primary considerations for the illuminating system, also the light sources, for
spectrophotometers are stability, life, directibility and spectral energy distribution,

Incandescent lamps are mostly preferred because of the following features:

i. Low cost

ii. Continuous SPD as sunlight
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iii. Steady output of light

iv. Output controllable by changing electrical input

v. Small compact size allowing concentrated light beam that can be directed by

mirror etc.

No specifications are made for the light source used in the spectrophotometer because
they measure the ratio of incident to reflected light due to the size as well as the absence

of a concentrated light beam.

Quartz halogen lamps are used only for illuminant A. Such lamps emit very limited UV
hence they do not excite a fluorescent brightening agent to the same extent as daylight.
On the other hand, these lamps produce too much energy in the IR region but many
colorants are sensitive to light (known as photochromic) or to heat (known as
thermochromic). Thus the samples are heated by the emitted energy, potentially leading
to errors in the measurements of thermochromic samples. In addition, colour fading may

occur after prolonged exposure to the strong light beam.
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In order to overcome these problems, pulsed xenon light sources are employed in
modern spectrophotometers, since the physical characteristics of the pulsed xenon light
are almost ideal and have a spectral power distribution (SPD) close to daylight. The
pulsed xenon lights are easily filtered to approximate illuminant Dgs from the UV to the
IR end of the spectrum. Pulsed xenon light releases a flash of light of a few nanoseconds
duration during each measurement instead of supplying a constantly illuminating light
source. This kind of light is used for electrical discharge lamps that emit a large quantity
of radiant power for a very short duration of time. The drawback is that the pulsed xenon
light provides a line spectrum of discontinuous nature and the output stability is poor.
Fluorescent samples can also be measured by such sources and the samples may not be
heated by such sources. In addition, pulsed xenon light is suitable for the measurement

of dark colours.

2.3.3.3  Monochromator®'33' 499697

The monochromator, or so-called spectral analyser, is a device that splits light into its
spectral components so that it can be measured. It is a key component of the

spectrophotometer, setting most of the performance characteristics.
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In the earliest spectrophotometer, a photomultiplier tube was commonly used as a
monochromator. It used mechanical techniques to scan the spectrum over a single light
detector. Thus the measurements were made sequentially, and it could take several

minutes to scan from 400 to 700 nm.

Prisms, the classic devices for splitting white light into its component colours, were the
most popular monochromator used in many early spectrophotometers. They consisted
of an entrance slit, a collimator lens for producing parallel beam, a prism for dispersion
of light and a second telescopic lens for focusing in the plane of the exit slit. As the exit
slitis in a fixed position, monochromatic radiation can be selected by moving a narrow

exit slit or by rotating the prism.

Both the entrance and the exit slit should be extremely narrow, but a compromise can be
made by allowing a minimum amount of monochromatic light to pass into the detector.
In addition the exit slit should be of adjustable width because the separation of equal
wavelength intervals is inconstant. Most importantly the bandwidth of radiation depends
on the construction of the monochromator and varies between different

spectrophotometers. In most of the modern spectrophotometers, the manufacturers will
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not use prism monochromators because of the limited supply of natural materials

required to make them.

Diffraction grating is one substitute for the prism. A grating is a film or surface
containing close equidistant and parallel lines used for producing spectra by diffraction.
The price for diffraction grating monochromators is lower than that for prism
monochromators and their dispersion power is independent of wavelength, therefore the

wavelength selection is much simpler than in the case of the prism.

2.3.3.4 Equipment Mode'S- 13518996971

There are two equipment modes for colour measurement, one being polychromatic and

the other monochromatic.

In the polychromatic mode, the light source is directed onto the sample first and the
reflected light is then monochromated. In monochromatic mode, the light source is

monochromated first and the selected monochromatic light is then directed onto the
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sample. In principle, the monochromatic mode is suitable for the measurement of the

nonfluorescent sample but not for the fluorescent sample and vice versa.

integrating
tphers (152 mm) Ostactor amey

Fig. 2.2 Simplified Optical Diagram Of The Dual-Beam Spectrophotometer (Source: Colour
Physics For Industry, 2™ Edition)

2.3.3.5 Hlumination and Viewing Geometries'>'3>'#%9697|

The term geometry refers to the placement of a sample relative to the light source and
measuring lens in a spectrophotometer. There are four geometries defining the direction
of the incident light and the direction of detecting the reflected light based on the
recommendation of CIE. In general, the four geometries can be further divided into two

groups, these being the bi-diection type and sphere type.
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The bi-direction type is suitable for the measurement of a sample with a smooth surface.
In this type of geometry, the light beam at one angle illuminates the sample and the
reflected beam is detected at an angle of 45/0 or 0/45 geometries. If the samples used in
the measurement process do not have a smooth surface, circumferential 45/0 or

O/circumferential 45 are preferred.

The geometry of the sphere type is designated as Diffuse/0 (D/0) or O/Diffuse (/D)
according to CIE recommendation. These two geometries are suitable for the
measurement of textile samples since they generally have matt surface. The Diffuse/8
(D/8) or 8/Diffuse (8/D) sphere type provides the option to include or exclude the

specular port measurement of the flat samples.

Detactor Light source
© Light Detecror
ourcs
‘“ —— P m—
m“ Light source
AN
= ...u. ] o =

Figure 2.3 CIE Illluminating And Viewing Geometries (Source: Colour Ph ysics For Industry,
2* Edition)
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2.33.6 Detector System'>'>=15999T)

The spectral analyser is a device that splits light into its spectral components so that they

can be measured.

The photomultiplier is a traditional type of light-detecting device updated using the tiny
solid-state silicon diode photodetector array. An array of silicon diodes ensures that
measurements can be made in a few seconds and, since there are no moving parts, the

reliability is greater.

MC90 is a dual-channel, holographic grating based spectrometer which uses two custom

photodiode linear arrays for the reference and sample beams.

In order to enhance the measurement accuracy, the hardware has been progressively
modified" ™. The first modification was the addition of a motorised adjustable UV
control. The UV content should be automatically adjusted once the UV calibration has

been achieved and the UV filter adjustment made accordingly.
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In order to measure dark or highly saturated colours, a high intensity pulsed xenon light

was adopted for the purpose of improving the accuracy of readings. In addition, a

removable thin film sample holder was added to the instrument for the measurement of

diffusion or transmission of the liquid or solution. It is advantageous for the

spectrophotometer to adjust the lens automatically once the aperture is changed, and to

measure the reflectance of the surface coloured objects with greater accuracy. Recently,

video cameras have also used for colour measurement, mainly in the course of on-line

colour monitoring.

The performance of an instrument is important when obtaining measurement data which

is consistent, repeatable or error free. Regular checks can help to ensure the accuracy of

the measurement results. Documentation also assists the user to compare

experimentally-derived data with the standard data provided by the manufacturer, or

data obtained at an early stage after purchase of the apparatus.
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2.4 Commonly Used Types Of Spectrophotometers

There are four different types of spectrophotometers commonly in use, these being the
Single-Beam Spectrophotometer ™!, Dual-Beam  Spectrophotometer'®?”,
Double-Beam Spectrophotometer!”®”"! and Portable Hand-Held

Spectrophotometer'>%7%0%!1

24.1  Single-Beam Spectrophotometer'**””!

In the case of the single-beam spectrophotometer, two measurements must be made in
sequence. For this reason, time is required between the two measurements in order to
keep the measurement system stable. The time requirement is mainly for the
stabilisation of the light sources and conversion of the small electrical signals coming
from various detectors into large signals which may be collected by the amplifiers.
Although the single-beam spectrophotometer is simpler in its construction. it is harder to
calibrate. The long-term repeatability is inferior to that of the dual-beam and also the
double-beam spectrophotometers if calibration is not done carefully and on a regular

basis.
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24.2  Dual-Beam Spectrophotometer'*”"!

The reference beam of the dual-beam spectrophotometer measures light that is reflected
from the integrating sphere wall. This gives a measurement of light in the sphere that is
incident on the sample. The measurement is generally more accurate because both the
incident and reflected light from the sample is measured. The measurement stability of
instrument is increased with the use of a reference beam so that any drift of the
electronics or light source intensity is cancelled out as both beams will be equally
affected. A dual-beam spectrophotometer is less sensitive to the dis-colouring of barium
sulphate in the integrating sphere with age. Ermors caused by the drift of the
measurement electronics or variation in the light source is eliminated because
dual-beam measurement mainly involves the measurement of a ratio rather than an

absolute value.

243  Double-Beam Spectrophotometer'*®-””’

There are two types of double-beam spectrophotometers. The main difference between
the two instruments is that one uses two detectors while the other uses one only. The
light beam from the monochromator is split to follow two paths in the former type of

spectrophotometer. The sample is placed in one, whilst the other contains all the
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components except the sample. The light intensity/response curves of the two detectors
must be accurately matched and two signals are obtained by electrical switching
between the two detectors or by using a chopping device to interrupt the light beam
alternately in the two beams. The requirement to match the two detectors is obviously in
the single detector systems. In these, a chopper is used to allow the light to traverse the

samplie and solvent paths alternately. There should be identical components in each path.

244  Portable Hand-Held Colour Measuring Instruments'**"**'!

As a consequence of advances in integrated electronics and smaller optical components,
portable, hand-held colour measuring instruments'®®"! have been introduced into the
market in recent years. Assisting in the matter of of quality control, portable hand-held
colour measuring instruments become increasingly more popular for simple colour
measurement and communication. The advantages of the portable hand-held colour
measuring instrument are that the computer is not required as the communication
interface. The built-in microprocessors can calculate colour differences, pass/fail, shade
sorting, whiteness, grades of fastness, and many other indices of colour and appearance.
Besides, the prices for the portable models are lower than those for the laboratory.

According to D. Scott Reininger'*5?"), there are four requirements for portable hand-held
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colour measuring instruments; these being accuracy, precision, durability and lastly

functionality.

Of the four different spectrophotometers, portable hand-held machines are the most
commonly used in quality control because of their light weight (two to four pounds) and
ease of use. Bench top models have better functions than portable ones, but because of
their size and the requirement of a computer as the communication interface, they are

more commonly used in laboratories or factories.

2.5 Colour Difference Formulae Used In Textile Industry

In this project, colour difference was used to evaluate both the colour measurement and
inter-instrumental agreement results. There are many colour difference formulae and
those most commonly used in the textile industry are CIELAB Color Space!",

CMC(l:c)''™!""*7! and CIE 1994(AL* AC*., AH*,;) colour-difference formula”#.
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25.1  CIELAB Color Space'"

CIELAB is the modification of the Adams-Nickerson formula (ANLAB)"*%*!, and it was
recommended by CIE in 1976. This color space included three attributes L*, a* and b*
which are calculated based on the CIE tristimulus values, CIE X, Y and Z. L* represents
the lightness, a* represents the redness and greenness and b* represents the yellowness

and blueness.

The general CIELAB colour difference formula is as follows:

AE*; = [(AL*)” + (Aa*)” + (Ab*)*)'? - EQ 2.2

or

AE*; = [(AL*)® + (AC*,,)* + (AH*))]'? - EQ. 2.3

Where

L* = 116(Y/Y.a)'" 16 if Y/Y, > 0.008856

a* =500 [(X/X.)'? - (Y/Y.)'P] if X/X,, > 0.008856

Page 32



Chapter 2 Literature Review

b* =0.4 x 500 [(Y/Y.)'"” - (Z1Z,)""] if Z/Z, > 0.008856

OR

L* =903.3(Y/ Y,) if Y/ Y, <0.008856

a* =500 x [7.787 x (X/Xa - Y/Y,) + 16/116] if X/X,, < 0.008856

b* =500 x [7.787 x (Y/Y, - Z/Z,) + 16/116] if Z/Z,, < 0.008856

C*s = [(a*)* + (b*)))'?

hy = tan™! (b*/a*)

AL* = L*samplc - L*sundan:l

Aa* = a*samplc - a*andard

Ab* = b*samplc - b*standand

AC*3p = C* b, sample — C*1b, standard

AH* = [(AE*,p)* — (AL*)? - (AC*.)Y]'?

OR

AH* = 2(C*; x C*3)'? x sin (Ah/2) 71021
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2.5.2 CMC(Q:c) Colour-Difference Formula

The CMC(l:c) colour-difference formula was derived from the JPC79 colour-difference

formula, developed by J & P Coats''®\. The general formula of CMC(l:¢) is as follows:

AEcucae = [(AL*AS1)? + (AC*/cSc)* HAH*,/Sw)’]'? —- EQ. 2.4

Where

St = 0.040975L*sundard/ (1 + 0.01765L*standare) if L* 2 16

S =0511ifL*<16

Sc =0.638 + 0.0638C* 1. standard/ (1+0.0131C* 35 1andard)

Su=Sc(TF+1-F

F= {(C*ab. sumdard).‘ / [(C*ab. slandani)4 + lgm] ’

T = I When C*ab' standard < 0.638 or

T =0.56 + 0.2 cos (8 +168°)| or

T =0.56 + |0.4 cos (8 + 35°)| when 164° < 0 < 345°
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253 CIE 1994(AL* AC*,, AH*,,) Colour-Difference Formula

In 1995, the CIE Technical Committee (TCI-29) recominended a new colour difference
formula CIE94'™, which was a modification of CMC(l:c) formula and CIE Color Space.
In this new colour-difference formula, there was a new term (AV) for the visually

perceived magnitude of a colour difference.

AV = ke AE*gq -—--- EQ. 2.5

Where kg is an overall visual sensitivity factor, set to unity under the conditions usually

applying in industrial assessment.

The basic conditions are as follows:
i. The specimens are homogeneous in colour
ii. The colour difference between them is such that AE*,, < 5
iii. They are placed in direct edge contact

iv. Each subtends an angle greater than 4° to the assessor
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V. The assessor’s colour vision is normal

vi. They are illuminated at 1000 lux and viewed in object mode, against a
uniform neutral grey bakground of L* = 50, under illumination simulating

D65

The general formula of CIE94 colour-difference formula is as follows:

AE*gs = [(AL* ki S1)” + (AC*w/kcSc)’ +(AH ./ kyy Su)*1'"? - EQ. 2.6

Where

AL*, AC*,, and AH*;;, are the compoments of the CIELAB formula,

ki, ke and ky are parameters factors - under usual condition, ki = k¢ = ky = 1, while in

textile assessment k. =2 and kc = ky = 1

Si, Sc and Sy are the weighting functions, where

SL=1

Sc=1+ 0.045(:*;.[,,)(
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Su=1+0.014C*,, x
Where

C*ib.x = C*b.sundard if there is a clear difference distinguished between the sample and

standard, and

C*a.x = (C*ab.standart X C*apsampic)’”” When there is no difference distinguished between

the standard and sample.

In general, CMC(l:c) seems similar to CIE94, which is to define ellipsoids in CIELAB
space, but the ways in which the two formula are expressed are different™!. The

differences are:

i. In the CMC(l:c) formula, Sy increases with the L* ., but this is not

recommended in the case of the CIE94 formula.

ii. CMC(I:c) formula shows non-linear expansion of Sc and Sy with C*,, but in

the case of CIE94 formula the relationship is linear.

iii. In CMC(l:c) formula, Sy shows systematic variation with h,,. but in the case

of CIE%4, it is independent.
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There are still many different colour difference formulae, such as ANLAB Color
Space™!, CIELUV Color Space''!, M&S colour-difference formula and BFD(l:c)

[66.67]

Color-difference Formula » and all of these are specially designed to fit a particular

set of data, which may result in poor correlation between AE and other visual data.

In this project CIELAB Color Space was selected to evaluate the colour difference of the
measured data and also the inter-instrumental agreement. This is because CIELAB is
one of the colour difference formulae that approximate uniform colour spaces and

colour-difference calculations.

2.6 Colouring By Numbers

Traditionally, physical samples played an important role in colour matching and

communication, but even experienced colourists make errors in their visual

44

assessment Their performance is affected by medical, psychological and

environmental factors such as the light booth, lighting and so forth.
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As a result of advances in the development of personal computers and networked
systems, as well as spectrophotometry and information technology, objective colour
judgement! #2431 has become more useful and important in monitoring the colour
acceptability of a product by customers and sellers during the various stages of the
production cycle. In addition, colour quality may be assessed in digital format, i.e.,
spectral reflectance factors, and sent to another party by electronic means rather than
physical samples. This communication format is commonly known as “Colouring by

Numbers™.

Although “Colouring by Numbers™ has become popular in colour measuring and colour
matching, there are still many difficulties to be overcome. One problem is that a
spectrophotometer performs at a finite level of accuracy but it exhibit measurement
errors relative to a theoretically error free instrument that the user must accept
(94052616821 The other problem is the repeatability'™**"%*! and inter-instrumental

2447,
agreement' 37.861

of the spectrophotometer. Repeatability and inter-instrumental
agreement can be checked using the Ceramic Colour Standards (CCS)''***! developed
by the National Physical Laboratory (NPL) in the UK™*'"'""|, Besides repeatability and

inter-instrumental agreement, CCS can also be used to diagnose the spectrophotometer

and improve inter-instrumental agreement.
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2.7 Inter-Instrumental Agreement''"”

Inter-instrumental agreement is the agreement between two or more spectrophotometers

achieved using the same measuring and operation system.

In a study conducted by the NPL in 1995%*!%-1971 it was found that colour measurement
results ranged from 0.1 to 3.0 CIELAB units among twenty participants. In another
research project conducted by NPL, it was discovered that only 50% of measurements

made by four national laboratories agreed to within a range of 0.5 CIELAB units.

According to James Rodgers, Kaye Wolf, Norm Willis, Don Hamilton, Ralph Ledbetter
and Curtis Stewart””*!, the major studies of inter-instrumental agreement were the
development of inter-instrumental agreement, software development and computer
interface. The inter-instrumental systems were compared with an instrument matrix, a

decision matrix, and a product matrix.

In 1987, A. R. Robertson'’! proposed a mathematical model for inter-instrumental

agreement. He divided the errors into the categories of Photometric Zero Error,
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Photometric Scale Error, Wavelength Shift Error, Bandwidth Error and lastly other

Error.

According to Robertson’s definition, the errors can be summarised as follows:

Photometric Zero Error:

R(A) -R@A)=e, -—- EQ. 2.7

Photometric Scale Error:

R(A) - R(A) =esR(A) - EQ. 2.8

Wavelength Shift Error:

R(A) -R(A) =e3R’(A) -—- EQ. 2.9

Bandwidth Error:

R(A)-R(A) =eR"(R) - EQ. 2.10

Other Error:

R(}) - R(A) = ¢jF;-—- EQ. 2.11
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Symbols:

R(A)
R(R)
R*(A}

R™(X)

Wavelength
True or standard value of spectral reflectance factor at wavelength. A
Spectral reflectance factor measured in the instrument to be tested

First derivative of R(A) with respect to A. This is the slope of the reflectance factor
curve

Second derivative of R(A) with respect 10 A. This is a measure of the curvature of the
reflectance factor curve

A measure of the magnitude of a particular type of error. Photometric zero error are
indicated by j=1. photometric scale error by j=2. wavclength shift error by j=3 er al

Any functionof A.R.R".R™

Where R'(A) and R" () can be estimated by 1). Matrix Method or 2). Selection Method.

Based on their research results, both the matrix method and the selection method

performed well, and the matrix was preferable if it could be inverted accurately.

In 1988, Roy S. Bemns and Kelvin H. Peterson® modified Robertson’s equation adding

more detail to describe the errors of inter-instrumental agreement. Besides the

above-mentioned errors, Photometric Nonlinear Scale Error and Wavelength Nonlinear

Scale Error were included, and each of the errors was represented by one equation.

Photometric Nonlinear Scale Error:

R(A) - R(A) = es[100 - RA)IR(A) -——-- EQ. 2.12
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Wavelength Nonlinear Scale Error:

R(A) - R(A) = esWi(A)R"(A) —-- EQ. 2.13

WiA) = [ - Afsd/Miast - Asics){ 1 - [A - A/ (Aast - Adirs)]} - EQ. 2.14

R(A) - R(A) = e;wo(A)R’(A) —-- EQ. 2.15

wa(A) = sin 21t (A / 200) - EQ. 2.16

Where e and e, are non-linear wavelength scale errors. Weighting function w(A) is
identical to the quadratic function described in EQ. 2.9, except scaled to wavelength.
Weighting function w2(A) is a one-and one-half-cycle sine wave. This would represent

an instrument with both positive and negative wavelength errors.

In 1994, Lisa Reniff®! successfully applied the equations to transfer the 45/0
reflectance factor and the average AE*,, was about 0.2 units. The average reflectance
factor eror consistently found between the corrected measurement of the National
Institute of Standards and Technology (NIST) standards and their certificate values was

0.0006.
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In 1997, further studies by Roy S. Bemns and Lisa Reniff™” resulted in the integration of

all the equations, and the Abridged Technique to Diagnose Spectrophotometric Errors

was developed. The integrated equation is as follows:

Symbols:

R,A)
R()
Bo
B

Rs(;‘-) = R(A) - Bo - BIR(A) - Bl’d RO-)/dA o EQ 2.17

Simulated error

True or standard value of spectral reflectance factor at wavelength, A
Black photometric error

White photometric ermor

Wavelength error

For reference white error (B,) affects the upper portion of photometric scale more and

for reference black error (B,) affects the photometric scale equally. EQ. 2.17 defining a

straight line, reference white affects the slope while reference black affects the intercept.

Wavelength errors (8,) affect the portion of the reflectance factor curve where there is

the greatest rate of change d R(A)/dA..
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Based on EQ. 2.17, if a flat curve occurs there is no error, if a slight curve occurs there is

a small error and, once a steep curve occurs, a large error is evident.

There was the limitation for EQ. 2.17 and once applied, there was an assumption: three
errors equally throughout the spectrum ----- f.. Bi, B2 assumed to be wavelength
independent, but the assumption failed when the white calibration plaque was

wavelength dependent because of soiling, yellowing and abrasion

184]

Morovic and et. al"™, proposed three modifications to the Berns and Petersen's model to

calculate the inter-instrumental agreement. According to their model, the errors could be

summarised as follows:

Zero-offset

eo(A) =1 -—- EQ. 2.18

Linearity

ei(A) = Rm(A) ----- EQ. 2.19
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Non-linearity

Ex(A) = (100 - Rp(A))R(A) —---- EQ. 2.20

For correcting wavelength scale, equations 2.21 - 2.23 were used

Linearity

e3(A) =dRn(A) / dA - EQ. 2.21

Non-linearity (Quadratic)

es(A) = wi(A)dRy(A) / dA —--- EQ.2.22

Where w,(A) is a quadratic weighting function

Non-linearity (Sine Wave)

ES(A) = wa(A)XR(A) / dA ----- EQ.2.23
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Where wa(A) is a sine wave weighting function

Bandwidth Error

es(A) = d°Rp(A) /A’ ---- EQ. 2.24

In order to solve the coefficients, they proposed three different methods:

Method I: The same seven coefficients for all wavelengths (7 x 1)

7 coefficients were obtained by the use of EQ. 2.18 to EQ. 2.24, and those

coefficients were used to correct the reflectance for all wavelengths.

Method II: Seven coefficients for each wavelength (7 x 31 or 16)

A different set of seven coefficients was obtained to correct the reflectance for each

wavelength by the use of EQ. 2.18 to EQ. 2.24.

Page 47



Chapter 2 Literature Review

Method III: Three coefficients for each wavelength (3 x 31 or 16)

A different set of three coefficients was obtained to correct the photometric scale by
the use of EQ. 2.18 to EQ. 2.20. This set of coefficients was used to correct

reflectance at each wavelength.

The performance of Model II was expected to be the best because of the higher number
of degree of freedom than that found in the case of the other models. Model I assumed
the same degree of discrepancy across all wavelengths. Model IIl assumed that a
majority of discrepancies occurred as a result of photometric error. According to their
reported data, their method and their model resulted in approximately forty percent

improvement in the inter-instrumental agreement.

In 1998, the neural networks method was developed to calibrate the spectrophotometer.
According to H. P. Lee, G. Qiu and M. R. Luo™!, the experimental result for two
different spectrophotometers are presented which show good improvement in
inter-instrumental agreement for both the training and testing samples. Using this neural
networks method, the systemic errors proposed by Berns and Petersen were included in

the study and the results showed a significant improvement in the inter-instrumental
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agreement. The results show that after the eight hidden training process, the average

colour difference was lowered from 0.65 to 0.24 CIELAB units.

2.8 Band-Pass Correction!®> *-3!

In 1981'*, Steamns proposed the influence of spectrophotometer slits on the tristimulus
calculations. The slit function is defined as photoreceptor response as a function of
wavelength during a single radiance-factor measurement. In 1987 and 1988, Stearns' !
proposed another factor affecting the accuracy of tristimulus data ----- Band-pass. Based
on Stearns' report, there was a significance of the difference in tristimulus values with
CIELAB colour difference formula. In this project, the concept of the mathematical

models was based on Band-Pass Correction.

Stearns’ equation is shown as follows:

ZR, = 1.2MR, - 0.IMR,, - 0.IMR,, -—- EQ. 2.25
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The method of application of EQ. 2.25 is to take 1.2 times the measured radiance at any
wavelength and subtract from it a tenth of radiance at the adjoining wavelengths. This

gives an estimate of the zero bandwidth radiance at the central wavelength.

Page 50



Chapter 3 Experimental Design And Methodology

CHAPTER 3

EXPERIMENTAL DESIGN AND METHODOLOGY

3.1 Introduction

3.2 Physical Standards

3.3 Colour Measuring Instruments

3.4 Methodology

3.5 Mathematical Model Development

3.1 Introduction

In this chapter, the physical standards used for colour measurement and colour
measuring instruments are discussed. The method of selection of experimental

standard™”, experimental sample?®®'

» and also the selection of the spectrophotometers
are also outlined™*'. The concept of the mathematical models used to predict the

colour measurement results are also described.
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3.2 Physical Standards

The first Ceramic Colour Standard was produced in 1968™**!. It was mainly used to
meet the demand for permanent reflectance standards. To date, the British Ceramic
Research Association - National Physical Laboratory (BCRA-NPL) Ceramic Colour
Standard Series Il (CCS-II) is one of the most common and popularly used standards for
the colour-related industries'".. British Ceramic Research Lid and the National Physical
Laboratory developed a collaborative project for this set of standards, with the
supporting work on colour difference pairs from the Society of Dyers and Colourists'™'.
CCS-I1 tiles are mainly used to check the consistency of operation and accuracy of the
colour-measuring instruments over a long period of time. The tiles are commonly

divided into two types, “GLOSSY" and “MATT"".

“GLOSSY" tiles are the ceramic tiles that have the whole smooth surface on the whole
area, while “MATT" tiles are the ceramic tiles that have the smooth surface on the edge

of the tiles but have the non-smooth surface in the center position of the tile.
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3.2.1  Production of Ceramic Measurement Standards''*'>'°!/

These two sets of CCS-II Tiles contain three neutral grey standards that are used to test
the linearity of response, and seven chromatic standards for checking the spectral
response of the instruments. All of these standards are sealed into black protective trays.
Two colour difference standards, one grey and one green completes the sets and which
are sealed into white protective trays. They are used to compare with the middle grey
standard and the green standard to provide the two colour difference pairs respectively.
All the tiles of the same colour should be produced in the same batch in order to
minimize the variation in the spectral properties of the standard. When subsequent
batches are needed, they must be clearly labeled, and treated as separate colours for

calibration purposes.

During production, careful control is applied to preserve a smooth, slightly convex

surface profile, to ensure that the standard fits the aperture of an instrument precisely.

3.2.2  Care of Standards!**'%

The standards should be held by the edges in order to avoid touching the face with the

fingers as this may leave marks on the surface. If the standard becomes soiled, it should
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be cleaned by breathing on the surface and wiping it gently with a clean cloth or tissue. If
it becomes badly finger-marked or soiled, the glazed surface may be wiped with a pad of
tissue moistened with mild detergent solution or a solution of laboratory grade detergent
that contains no additives such as bleaching agents, thickeners or colouring agents. After
cleaning, the standard can be wiped with a pad moistened with clean water and given a
final wipe dry. If this is not sufficient, a pad of tissue lightly moistened with Propanol
can be applied and then dried offt'*'*!. Most importantly, the standard should not be
immersed in water. Care should be taken in handling and cleaning the standard to avoid
scratching the glazed surface. At all times, care should be taken not to apply undue
pressure when cleaning, to avoid a polishing action or the deposition of lint from the

tissue onto the surface.

3.23  Use of Standards'™'

In order to obtain the most reproducible results, measurements should be restricted to the
central 60mm region of the standard. Ideally a jig should be used to locate the standard
centrally over the measuring aperture of instrument. However, the back pattern on each

standard is designed to help in locating it in the same position for each measurement.
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A strongly coloured standard shows the effect of thermochromism or

136651, therefore the standard should always be allowed to stabilise at

photochromism
room temperature before measurement, and care should be taken to avoid undue heating
during measurement. Thermochromism is a reversible change of transmittance,
reflectance or absorptance caused by a change of temperature, and photochromism is the
corresponding effect induced by optical radiation. Such effects can occur when the
reflectance standard is used, because they may undergo a considerable temperature rise
when subjected to the polychromatic irradiation used by many measuring instruments. A
neutral standard does not exhibit thermochromism'*6%!, According to past research'>*%?
the red and orange tiles show significant colour change when the temperature changes,

and the colour difference is in the range of 1.18 CIELAB AE units when the temperature

increases from 25°C to 35°C.

The effects of thermochromism and photochromism can occur in the use of reflectance
standards, as they may undergo a considerable temperature rise when subjected to the

polychromatic irradiation used by many measuring instruments.

After the measurement of standards, the reflectance curves of the standards were plotted
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as follows:

The Spectral Reflectance Curve Of The GLOSSY CCS-1i Tiles Measured Under The
Specular Component Included Mode

Reflectance (%)

Wavelength (am)

Boaght Yellow Cuan ——Drep Bl ——DeepGrey  ~——Drep Pk —— Dl Geen
DM Gevy  ——Cheen M. Geey Orange Pale Grey  —— Rex

Figure 3.1 The Standard Calibrated Reflectance Curve Of The GLOSSY Type Standard Tiles
Measured Using Specular Component Included Mode By CE-7000A

The Spectral Reflectance Curve Of The MATT CCS-1I Tiles Measured Under The
Specular Component Included Mode

L e — - S

Rellectance (%)

O 1
400 500 600 700
Wavuelenght (nm)
Bagh Yellow Cyan —_— [kt;Bth — Drep Geev —_ l'k-cn;ml; h Vr M[- (’;cn 7
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Figure 3.2 The Standard Calibrated Reflectance Curve Of The MATT Type Standard Tiles
Measured Using Specular Component Included Mode By CE-7000A
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324  Other Testing Samples

In this project, BCRA-NPL CCS-II tiles were the main calibrating standards and the data
input for building up the mathematical models. After the development of mathematical
models, two different types of samples were selected to test the performance of the
mathematical models. One was a textile sample and the other was a selected ColorCurve

sample.

The distribution of the textile samples and ColorCurve samples are plotted as follows:

The a* vs b*Distnbution of the Tiles and Tesumg Duta The L* vs 2* Distribution of the Tiles und Testing Duta
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Figure 3.3 The CIE L*, a* And b* Space Distribution Of The Textile Samples
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Figure 3.4 The CIE L*, a* And b* Space Distribution Of The ColorCurve Samples

3.3 Colour Measuring Instruments'>*'%*!

The objective of this project was to determine the inter-instrumental agreement between
different reflectance spectrophotometers, thus the colour measurement instruments were

the most important control during the whole study period.

The historical development and the intemnal parts and designs of spectrophotometers

were discussed in the previous chapter.
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In this project, three different spectrophotometers were used to study inter-instrumental

agreement. They were:

-Spectraflash 600 PLUS (SF-600) from Datacolor International>®'

-COLOR-EYE 7000A (CE-7000A) from GretagMacbeth!”"!

-COLOR-EYE 2180 (CE-2180) from GretagMacbeth™!

All of three different reflectance spectrophotometers work on the principles of sphere
type measuring geometry. Both SF-600 and CE-7000A are dual-beam type
spectrophotometers, while CE-2180 is a single-beam type spectrophotometer. Table 3.1
describes the major features of these three instruments in terms of their optical design,
illumination, optical geometry configuration, spectral range, aperture size, wavelength

interval, dynamic range, baud rate and working environment.
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Table 3.1: Comparison Of the Three Different Types Of Spectrophotometer Used In This

Research
CE-2180 CE-7000A SF-600

Optical Design Single-beam Dual-beam Dual-beam

Hlumination Pulsed Xenon Flashlamp | Pulsed Xenon Flashlamp | Pulsed Xenon Flashlamp

Optical D/8 (diffuse) D/8 (diffuse) D/8 (diffuse)

Geometry

Configuration

Spectral Range 360 - 750 nm 360 - 750 nm 360 - 700 nm

Aperture Size LAV - 14 mm LAV -25.4 mm LAV - 26 mm

SAV 5 mm MAV - 15 mm SAV -5mm

SAV - 10 mm USAV 2.5 mm
USAV -3 mm

Wavelength 10 nm 10 nm 10 nm

Interval

Photometric 0% - 150% 0% - 200% 0% - 200%

Range /

Dynamic

Range

Baud Rate 9600 9600 9600 / 19200

Measurement — I second <=4 sec

Cycle Time

Operating 151032°C,0- 151032°C, 25 - 51040°C, 20 -

Environment  |80%Relative Humidity. 80%Relative Humidity, 85%Relative Humidity,

non-condensing non-condensing non-condensing
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Figure 3.5 Optical Block Diagram For Dual Beam Spectrophotometer (Source: Datacolor
International, Spectraflash® 600 PLUS Operators Manual, April 1997)

3.4 Methodology

34.1 Instrument Setting

All the colour measuring instruments were set according to the following:

- large area of view;

- wavelength range: 400nm to 700nm at 10Onm intervals.
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Since all spectrophotometers are of sphere type, the specular component excluded (SCE)
or specular component included (SCI) should be specified in advance of the

measurement process.

34.2  Sample Conditioning

All the CCS II tiles, textile sample, Color Curve sample and reflectance
spectrophotometers were conditioned according to standard temperature and humidity
levels in the laboratory (20£1°C and 68% relative humidity) 24 hours before the
measurements took place to eliminate variables caused by temperature and humidity

change.

34.3  Instrument Calibration'®”

Before measuring the tiles. all colour measuring instruments were warmed up for a
period of 30 to 60 minutes, according to the recommendation provided by the
instrumental suppliers. In the research under discussion, all the colour measurement
instruments were left to warm up for 30 minutes before measurement and then
calibrated according to the manufacturer's guide using both the black and the white

standard.

Page 62



Chapter 3 Experimental Desi_gn And Methodology

344 Measurement Procedure

Each tile, textile sample and Color Curve sample was measured once at the centre
position for spectral reflectance factor from 400nm to 700nm at 10nm intervals using the

advanced colour control software, SCOPE.

345 Evaluation of the Performance of the Models

After the measurement of tiles, textile samples and Color Curve samples, the average
AE*;, units were reported in order to evaluate the performance of the colour measuring

instruments. (All the colorimetric data!'®

used in this project was calculated by use of
the CIELAB colour difference formula under Dgs and CIE 1964 standard observer

conditions).

3.5 Mathematical Model Development'™

In order to enhance the inter-instrumental agreement among spectrophotometers, many
different mathematical models have been developed in the past years but, to date, no
reliable mathematical models have been proposed for inter-instrumental agreement. In

Bem's and Petersen’s mathematical models, cyan tiles were used as the calibrating

Page 63



Chapter 3 Experimental Dwgl And Methodology

standards and the other eleven tiles were used for the tested samples. Their model did
not cover other physical samples. In this project, a new mathematical model was
developed based on the concept of band-pass correction'®**>**5! and using the computer
programme SPSS’#%#!l  The (welve ceramic tiles were used as the calibration
standards and the textile samples and the paper samples were used as the tested samples

in this newly developed model.

The reflectance data for the twelve tiles at specific wavelength measured by CE-7000A
were fitted as the dependent valuable for the purpose of SPSS application. The
reflectance data for the twelve tiles at specific wavelength, and the reflectance data for
the twelve tiles at 10nm before and after specific wavelength for the twelve tiles for
SF-600 or CE-2180 were fitted as the independent valuable. Using the “Stepwise™
method, a set of the coefficients was calculated, and the regression coefficient was used

to evaluate the goodness of fit.
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Figure 3.6 The Regression Method Used To Develop The Mathematical Model
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CHAPTER 4

SPECTROPHOTOMETRIC MEASUREMENT RESULTS

4.1 Introduction

4.2 Repeatability

4.3 Wavelength Shift

4.4 Inter-Instrumental Agreement

4.5 Differences In The Summation Of The Relative Spectral Reflectance
Difference Of CCS-II Tiles For Visual Spectrum Measured Using Different

Spectrophotometers
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4.1 Introduction

This chapter provides preliminary findings on the different spectral reflectance results
for Ceramic Tiles within the visual spectrum measured using different
spectrophotometers. The repeatability and the inter-instrumental agreement of the

spectrophotometers are also reported here.

4.2 Repeatability

Repeatability is the closeness of agreement between the results of successive
measurements of the same test specimen, or of test specimens taken at random from a
homogeneous supply, carried out using a single instrument, the same method of
measurement, operator, and measurement method, with repetition over a specified

period of time.

CCS-II tiles were used to evaluate the repeatability and inter-instrumental agreement
of the reflectance spectrophotometers. In this research project, long-term repeatabitity
was studied for a period of three years. Repeatability and inter-instrumental agreement

were quantified by evaluating their lightness difference (AL*), a* difference (Aa*), b*
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difference (Ab*), chroma difference (AC*), Hue difference (AH*) and also colour

difference values AE*,, The results are summarized below.

The lightness difference, a* difference, b* difference, chroma difference and hue
difference and colour difference of the repeatability is the difference between the
average of the measurement data and measurement results taken at weekly intervals.
The average of the lightness difference, a* difference, b* difference, chroma difference,
hue difference and colour difference for the last 60 weeks was calculated using the

following equation and the results were reported in Appendix II:

Sample avge = £ Ap / 60 where p = L*, a*, b*, C*, H* or E* ,, -— EQ. 4.1

AP = P Mecasurement = PAvcragc Measurement === EQ. 4.2

The average AE*,; is the average of the summation of average colour difference values

for the twelve tiles.
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Average AE*,, = 2 AE*,, /12 -— EQ. 4.3

Those values and standard derivation are summarized as follows:
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Table 4.1: Summary Of The Repeatability Of The CCS-II Tiles Measured Using Gretag

Macbeth CE-7000A

Tile GE' sD’ GF SD ME'  sD mr SD

Pale Grey

Sample avge 0.024 0.010 0018 0.011 0024 0018 0030 0.017

Mid Grey

Sample avge 0.020 0.009 0018 0007 0023 0009 0019 0010

Diff Grey

Sample avge 0.020 0.008 0021 0009 0031 0013 0025 0010

Deep Grey

Sample avge 0.083 0.015 0038 0012 0045 001S 0035 0013

Deep Pink

Sample avge 0.046 0.016 0030 0012 0047 0012 0037 0011

Red

Sample avge 0.332 0.081 0.045 0020 00S6 0019 0068 0020

Orange

Sample avge 0.120 0.032 0080 0022 0.109 0039 0067 0024
Bright Yellow

Sample avge 0.155 0.041 0.102 0033 0052 0.024 0055 0019

Green

Sample avge 0.047 0019 0033 0020 0047 0016 0054 0016

Diff Green

Sample avge 0.054 0.015 0035 0019 0036 0016 0037 0013
Cvan

Sample avge 0.054 0.015 0043 0013 0050 0021 0.047 0017

Deep Blue

Sample avge 0.389 0.109 0.100 0.021 0068 0017 0.057 0017

Average AE*,, 0.112 0.047 0.049 0.044

I = GLOSSY Tiles Measured using Specular Component Excluded Mode
2 = GLOSSY Tiles Measured using Specular Component Included Mode
3 = MATT Tiles Measured using Specular Component Excluded Mode

4 = MATT Tiles Measured using Specular Component Included Mode

5 = Standard Deviation
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Table 4.1 shows that the repeatability of the CCS-II tiles measured using Gretag
Macbeth CE-7000A, except in the case of GLOSSY tiles measured under specular
component excluded mode, was satisfactory for the measurement combinations. In the
case of GLOSSY tiles measured using the specular component excluded mode, the
repeatability for the red, orange, bright yellow and deep blue was larger than 0.1
CIELAB AE units. In those cases, the poor repeatability may have been caused by the
high reflection inside the integrated sphere, in addition to which some of the reflected
beam may have been lost through the opening of the specular component port. The
repeatability for deep blue was also poor as a result of the low signal-to-noise ratio,

which reduced the repeatability.
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Table 4.2: Summary Of The Repeatability Of The CCS-Il Tiles Measured Using Gretag

Macbeth CE-2180

Tile GE' sD’ GF SD ME’ SD Mr SD

Pale Grey

Sample avge 0.118 0.042 0124 0032 0120 0039 0123 0034

Mid Grey

Sample avge 0.133 0.088 0057 0077 0.173 0048 0093 0.023

Diff Grey

Sample avge 0.071 0.087 0073 0074 0237 0055 0.106 0024

Deep Grey

Sample avge 0.342 0.333 0.140 0217 0363 0085 0073 0063

Deep Pink

Sample avge 0.272 0.247 0097 0.195 0336 0076 0083 0050

Red

Sample avge 0.802 1.494 0.197 0357 0364 0.085 0.104 0070

Orange

Sample avge 0.269 0.498 0272 0315 0236 0.119 0228 0.086
Bright Yellow

Sample avge 0.187 0.467 0.156 0320 0.101 0084 0.116 0.080

Green

Sample avge 0.190 0.245 0146 0.195 0.186 0062 009 0052

Diff Green

Sample avge 0.250 0.271 0.136 0.198  0.151 0059 0141 0061

Cyan

Sample avge 0.127 0.153 0.110 0.150 0.271 0.061 0175  0.045

Deep Blue

Sample avge 0.806 1.822 0.150 0388 0582 0.114 0081 0.120

Average AE*,, 0.297 0.140 0.260 0.118

I = GLOSSY Tiles Measured using Specular Component Excluded Mode
2 = GLOSSY Tiles Measured using Specular Component Included Mode
3 = MATT Tiles Measured using Specular Component Excluded Mode

4 = MATT Tiles Measured using Specular Component Included Mode

5 = Standard Deviation
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Table 4.2 shows the repeatability of the CCS-II tiles measured using Gretag Macbeth
CE-2180, and the repeatability of the four measurement combinations ranged from
0.118 to 0.297 CIELAB AE units. The repeatability results show that the stability of
the CE-2180 was inferior. The results were affected by either the drift of the

measurement electronics or variation in the light sources.

When the GLOSSY tiles were measured using the specular component excluded mode,
the repeatability for the red and deep blue was larger than | CIELAB AE unit. In the
case of red, the repeatability result may have been caused by the high reflection inside
the integrated sphere, and some of the reflected beam may have been lost through the
opening of the specular component port. The deep blue result was also disappointing

because of the low signal to noise ratio, thus the repeatability was unsatisfactory.
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Table 4.3: Summary Of The Repeatability Of The CCS-1I Tiles Measured Using Datacolor

SF-600

Tile GE' sD’ GF sD ME’ SD mr sD

Pale Grey

Sample avge 0.038 0.023 0035 0012 0039 0022 0024 0017

Mid Grey

Sample avge 0.047 0.024 0035 0020 0.039 0022 0028 0016

Diff Grey

Sample avge 0.053 0.025 0044 0019 0035 0020 0039 0.02

Deep Grey

Sample avge 0.099 0.055 0043 0015 0050 0036 0041 0021
Deep Pink

Sample avge 0.083 0.033 0041 0019 0063 0033 0054 0.020
Red

Sample avge 0.254 0.190 0052 0024 0057 0029 0051 0019

Orange

Sample avge 0.116 0.055 0060 0023 0.081 0.045 0067 0.028
Bright Yellow

Sample avge 0.125 0.071 0075 0036 0060 0.040 0066 0.036

Green

Sample avge 0.050 0.031 0048 0020 0.057 0.028 0053 0025

Diff Green

Sample avge 0.059 0.033 0048 0019 0042 0029 0049 0017

Cvan

Sample avge 0.042 0.013 0033 0010 0045 0010 0032 0013

Deep Bilue

Sample avge 0.250 0.099 0048 0019 0052 0033 0050 0020

Average AE*,, 0.101 0.047 0.052 0.046

1 = GLOSSY Tiles Measured using Specular Component Excluded Mode
2 = GLOSSY Tiles Measured using Specular Component Included Mode
3 = MATT Tiles Measured using Specular Component Excluded Mode

4 = MATT Tiles Measured using Specular Component Included Mode

§ = Standard Deviation
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Table 4.3 shows that the repeatability of the CCS-II tiles measured using Datacolor
International SF-600, except in the case of GLOSSY tiles measured using specular
component excluded mode, was satisfactory for the measurements combination. The
repeatability for the red, orange, bright yeliow, deep grey and deep blue of the
GLOSSY tiles measured using specular excluded mode was larger than 0.1 CIELAB
AE units. In the case of red, orange and bright yellow, the poor repeatability may have
been caused by the high reflection inside the integrated sphere and some of the
reflected beam may have been lost through the opening of the specular component port.
The repeatability for deep blue and deep grey was also very poor because of the low

signal-to-noise ratio.

According to the results shown in Table 4.2, it may be concluded that the stability of
the CE-2180 was poor because the average AE*,;, values ranged from 0.115 to 0.377
units. The other two measurement results, shown in Tables 4.1 and 4.3, show that the
stability was good because the average AE*,;, values for SF-600 ranged from 0.046 to
0.101 units and the average AE*., values for CE-7000A ranged from 0.044 to 0.112
units. The good repeatability of the SF-600 and CE-7000A was due to the presence
of a second beam, the reference beam, in these two dual-beam spectrophotometers.
The second beam was used to allow direct measurement of the reflectance between the

ratio of reflected and incident light. Dual-beam measurements are preferred for use in

Page 75



Chapter 4 Spectrophotometric Measurement Results

industry as a result of their inherent stability, as the measurement is of a ratio rather

than an absolute value.

Of the three spectrophotometers, red, orange and bright yellow, had the higher AE*,,

values (>0.1 AE*;;) even though the measurements were carried out inside a room with

controlled temperature and humidity. This was because of the different size of the

integrated sphere and the position of the specular component port. During the

measurement of the tiles, some of the reflected beam was emitted through the opening

of the specular component port. In addition, the random reflectance resulted in poor

measurement results for sensitive colours.

Based on the average AE*,;, values of the three spectrophotometers, it was concluded
£ pectrop

that the repeatability of the CE-2180 needed further improvement using better

calibration procedures. The repeatability of the other two spectrophotometers was

satisfactory and the colorimetric values were further used to evaluate the

inter-instrumental agreement. According to the results shown in Table 4.1, the

repeatability for CE-7000A was the best of all the three spectrophotometers;
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CE-7000A was used as the reference instrument to evaluate the inter-instrumental

agreement of three spectrophotometers.

In addition to the above repeatability results, long term repeatability was important in

this study. The results of the long term repeatability are plotted in the following

figures.

The Repeatability of the CCS-I Tres Measured By CE-2180 Over 60 Wecks
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Figure 4.1 The Repeatability Of The CCS-II Tiles Measured Using CE-2180 Over A Period
of 60 Weeks
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The Repeatability of CCS-H Tiles Mcasured By CE-T000A Over 60 Weeks

o]
a
€ B Tt
£, -
] ME:
E !
A «® "‘ - Lo - = "

- .“.‘.x;ir .‘.’.M‘.A_ Tragtead \'-".." v :‘.ﬁ.’ .';.".\-l- b-»’?-.-,f' ‘~."

a

0 10 20 30 40 S0 60

Weceks

Figure 4.2 The Repeatability Of The CCS-II Tiles Measured Using CE-7000A Over A Period
of 60 Weeks

The Repeatability of CCS-11 Teiles By Measurcd SF-600 Over 60 Weeks
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Figure 4.3 The Repeatability Of The CCS-II Tiles Measured Using SF600 Over A Period of
60 Weeks
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The three figures above, which show results for the repeatability of the CCS-II tiles
measured using different spectrophotometers, indicate that long-term repeatability was
satisfactory over a long period of time. The results imply that the three

spectrophotometers were stable for the duration of the whole study period.

4.3 Wavelength Shift

In addition to the colour difference of the spectrophotometer, wavelength shift is
another parameter to determine repeatability. The equations used for wavelength

calculation are shown as follows:

Wavelength shift = dRydA -—— EQ. 4.4

Difference of Wavelength Shift between spectrophotometric measurement =

(dR(A)’d}‘-)Ins( meassement — (dR(l/d}V)inilial measurement ~TT=" EQ. 4.5
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Where,

initial measurement is the measurement results measured at the beginning of the

repeatability study,

while,

last measurement is the measurement results at the end of the repeatability study.

The wavelength shift for the visual spectrum was obtained using equations 4.4 and 4.5.
The wavelength shift results of the three different spectrophotometers were plotted as

follows:

.
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Figure 4.4 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular
Component Excluded Mode Of CE-2180
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Figure 4.5 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular
Component Included Mode Of CE-2180

Figure 4.6 The Wavelength Shift Of The MATT Tiles Measured Using The Specular
Component Excluded Mode Of CE-2180
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Figure 4.7 The Wavelength Shift Of The MATT Tiles Measured Using The Specular
Component Included Mode Of CE-2180
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From Figures 4.3 — 4.7, showing the wavelength shift of the CCS-II tiles, it may be
seen that the difference in wavelength between the initial and the last measurement of
CE-2180 did not exceed 0.09 units. This indicates that the repeatability along the
whole experience period was within an acceptable range. In addition to Table 4.2,
those results imply the repeatability was poor when results are compared with the other

two spectrophotometers.
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Figure 4.8 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular
Component Excluded Mode Of CE-7000A
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Figure 4.9 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular

Component Included Mode Of CE-7000A
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Figure 4.10 The Wavelength Shift Of The MATT Tiles Measured Using The Specular
Component Excluded Mode Of CE-7000A

Figure 4.11 The Wavelength Shift Of The MATT Tiles Measured Using Specular
Component Included Mode Of CE-7000A

Figures 4.8 — 4.11, showing the wavelength shift of the CCS-II tiles, demonstrate that
the different wavelength between the initial measurement of CE-7000A and the last
measurement of CE-7000A did not exceed 0.02 units. The repeatability for the whole
experience period was considered to be satisfactory. In addition to results shown in
Table 4.1, those results imply that the repeatability was good when compared with the

other CE-2180.
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Figure 4.12 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular
Component Excluded Mode Of SF-600
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Figure 4.13 The Wavelength Shift Of The GLOSSY Tiles Measured Using The Specular
Component Included Mode Of SF-600
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Figure 4.14 The Wavelength Shift Of The MATT Tiles Measured Using Specular
Component Excluded Mode Of SF-600
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Figure 4.15 The Wavelength Shift Of The MATT Tiles Measured Using Specular
Component Included Mode Of SF-600

Figures 4.12 - 4.15, which show the wavelength shift of the CCS-II tiles, demonstrate
that the difference in wavelength between the initial measurement of SF-600 and the
last measurement of SF-600 did not exceed 0.014 units. The repeatability for the whole
experience period is seen to be satisfactory. In addition to Table 4.3, the results imply
that the repeatability was good compared with those for CE-2180 but similar to those

of CE-7000A.

Tables 4.1 — 4.3 and Figures 4.4 - 4.15 shows that the colour difference and the
wavelength shift were satisfactory for CE-7000A. CE-7000A was selected as the
reference spectrophotometer to evaluate the inter-instrumental agreement by

comparing the measurement results with CE-2180 and SF-600.
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4.4 Inter-Instrumental Agreement

Inter-instrumental agreement is the closeness of agreement between the results of
successive measurements of the same test specimen, or of test specimens between two

or more spectrophotometers achieved using the same measuring and operation system.

As discussed, the repeatability for CE7000A was found to be satisfactory, therefore
CE-7000A was selected as a reference spectrophotometer to evaluate the
inter-instrumental agreement of CE-7000A and SF-600 as well as CE-7000A and

CE-2180.

The lightness difference, a* difference, b* difference, chroma difference and hue
difference and colour difference of the inter-instrumental agreement was the difference
between average of the measurement data measured against each week's measurement
results. The average of the lightness difference, a* difference, b* difference, chroma
difference, hue difference and colour difference across the last 60 weeks of the
experimental work was calculated using the equation below and the results were

reported in Appendix III.
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Sample avge = £ Ap / 60 where p = L*, a*, b*, C*. H* or E*,, —— EQ. 4.6

AP = Proc Measurement from SF-600 or 2180 = PAvmge Mcasurement from CE7000A ———~ EQ 4.7

Average AE*; is the average of the summation of average colour difference values for

the twelve tiles.

Average AE*,, =T AE*,,, /12 ----- EQ. 4.8
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44.1 The Inter-Instrumental Agreement of SF-600 compared to CE-7000A

Table 4.4: Summary Of The Inter-Instrumental Agreement Of SF-600 And CE-7000A Using
CCS-1I Tiles

Tile GE' GF ME’ mr
Pale Grey

Sample avge 0.690 0428 0.590 0.361
Mid Grey

Sample avge 0.459 0.269 0.422 0.182
Diff Grey

Sample avge 0.495 0.293 0.395 0.166
Deep Grey

Sample avge 0.196 0217 0.183 0.074
Deep Pink

Sample avge 0.756 0.737 0.633 0.603
Red

Sample avge 0.650 1.263 0.713 0.890
Orange

Sample avge 1.050 1.084 0.874 0.968
Bright Yellow

Sample avge 1.437 0.930 0.749 0.768
Green

Sample avge 1.120 0.775 0.867 0.762
Diff Green

Sample avge 1.095 0.749 0.788 0.652
Cyan

Sample avge 1.232 1.004 0.903 0.824
Deep Bliue

Sample avge 1.028 0.849 0.890 0.677
Average AE*,, 0.851 0.717 0.667 0.577

1 = GLOSSY Tiles Measured using Specular Component Excluded Mode
2=GLOSSY Tiles Measured using Specular Component Included Mode
3 = MATT Tiles Measured using Specular Component Excluded Mode

4 = MATT Tiles Measured using Specular Component Included Mode
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As may be seen in Table 4.4, which shows the inter-instrumental agreement between
SF-600 and CE-7000A of the CCS-II tiles, the average AE*,, values ranged from 0.577
to 0.851 units. The results were poor because, in past research, the AE*y, value of
different spectrophotometers was found to range from 0.1 t0 3 units™™”. The main
reason for the poor inter-instrumental agreement was that instrumental design of

spectrophotometers varied according to different manufacturers.

The optical design for both CE-7000A and SF-600 is the same: both are dual-beam in
nature, but the size of integrated sphere differs. In addition, the position of the specular
component port and the detector is also different. For these reasons, the difference
between the measurement results for each tile also varies and the inter-instrumental

agreement between these two machines is disappointing.
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44.2 The Inter-Instrumental Agreement of CE-2180 compared with CE-7000A

Table 4.5: Summary Of The Inter-Instrumental Agreement Of CE-2180 And CE-7000A

Using CCS-1I Tiles

Tile GE' GF ME’ Mmr

Pule Grey

Sample avge 0.666 0.795 0.928 0.952

Mid Grey

Sample avge 0.707 0.758 0.535 0.576

Diff Grey

Sample avge 0.453 0.280 0.760 0.361

Deep Grey

Sample avge 0.239 0.100 0.446 0.352

Deep Pink

Sample avge 0.700 0.723 0.713 0.718

Red

Sample avge 0.719 0.634 0.680 0.755

Orange

Sample avge 0.119 0.114 0414 0436
Bright Yellow

Sample avge 0.689 0.628 0.516 0.552

Green

Sample avge 0.130 0.143 0444 0.500

Diff Green

Sample avge 0.790 1.023 0.852 0.997

Cvan

Sample avge 0.140 0.195 0.454 0.428

Deep Blue

Sample avge 1.134 1.285 0.679 0.968

Average AE*,, 0.541 0.557 0618 0.633

1 = GLOSSY Tites Measured using Specular Component Excluded Mode
2 =GLOSSY Tiles Measured using Specular Component Included Mode
3 = MATT Tiles Measured using Specular Component Excluded Mode
4 = MATT Tiles Measured using Specular Component Included Mode
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With reference to Table 4.5, showing the inter-instrumental agreement for CE-2180
and CE-7000A using CCS-II tiles, it was found that the average AE*,, values ranged
from 0.541 to 0.633 units. The results were better than those for SF-600 and CE-7000A
because the same manufacturer manufactures both the CE-2180 and CE-7000A.
Although the optical design is different, the overall design principles are similar, thus
their inter-instrumental agreement between CE-2180 and CE-7000A is better than in

the case of CE-7000A and SF-600.

Different spectrophotometers have their own systemic errors, therefore a series of new
regression models were developed in this study in order to improve the

inter-instrumental measurement agreement.
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4.5 Differences In The Summation Of The Relative Spectral Reflectance
Difference Of CCS-1I Tiles For Visual Spectrum Measured Using Different
Spectrophotometers

Irrespective of the inter-instrumental agreement of CE-2180 or SF-600 and CE-7000A,
the worst results were obtained when the GLOSSY tiles were measured using the
specular component excluded mode. Beside the CIELAB colour difference values
(AE*;;), the summation of the relative spectral reflectance difference is an alternative

method to evaluate the inter-instrumental agreement of different spectrophotometers.

Summation of Relative Spectral Reflectance Difference:

Z |[RacE-2180 or SF-600a - Rice-7000a )/ Race-7000a]-—-- EQ. 4.9

The plot of the summation of the relative spectral reflectance difference values against

the tiles is shown as follows:
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Figure 4.16 The Distribution Of The Summation Of The Relative Spectral Reflectance
Difference For The CCS-il Tiles Comparing SF-600 And CE-7000A
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Figure 4.17 The Distribution Of The Summation Of The Relative Spectral Reflectance
Difference For The CCS-Il Tiles Comparing CE-2180 And CE-7000A

*Note:

1. Pale Grey 2. Middie Grey 3. Diff: Grey 4. Deep Grey

5. Deep Pink 6. Red 7. Orange 8. Brigiu Yellow
9. Green 10. Diff Green 1. Cyan 12. Deep Blue
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From Figure 4.16, it may be seen that GLOSSY tiles measured according to the

specular component excluded mode showed the greater summation of the relative

spectral reflectance difference. With reference to Table 4.4, which provides a summary

of the inter-instrumental agreement when comparing SF-600 and CE-7000A using

CCS-11 tiles, a similar trend may be observed: that the higher the summation of the

relative spectral reflectance difference, the higher the CIELAB colour difference,

AE*ab-

From Figure 4.17, it may be seen that MATT tiles measured under specular component

included mode show the greater summation of the relative spectral reflectance

difference. With reference to Table 4.5, which shows the summary for the

inter-instrumental agreement between CE-2180 and CE-7000A of the CCS-II tiles, a

similar trend may be observed, that being that the higher the summation of the relative

spectral reflectance difference, the higher the CIELAB colour difference, AE*,.
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Based on the results shown in Tables 4.4 and 4.5 and results in Figures 4.13 and 4.14,
it may be concluded that the summation of the relative spectral reflectance difference
is a good indication of colour difference. The higher the summation of the summation

of the relative spectral reflectance, the higher the colour difference.
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CHAPTER 5

DEVELOPMENT OF THE FIRST MATHEMATICAL MODEL

(L-Model)

§.1 Introduction

5.2 Development Of The First Mathematical Model (L-Model)

5.3 The Improvement Of The Inter-Instrumental Agreement After

Applying L-Model

5.1 Introduction

In this chapter, the development of the first mathematical model (L-Model) is outlined.
L-Model was developed based on the colorimetric data, L*, a* and b*. The
inter-instrumental agreement showed improvement after applying the mathematical

model.
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5.2 Development Of The First Mathematical Model (L-Model)

As the inter-instrumental agreement was poor for the three different models of
spectrophotometers, SF-600 vs CE-7000A and CE-2180 vs CE-7000A, a series of new
mathematical models was developed in order to improve the inter-instrumental
agreement. The simplest way to develop the mathematical models was the correction
of the colorimetric data, CIE L*, a* and b* values for the spectrophotometers. SPSS
was used to analyse the data for the L*, a* and b* values and a series of mathematical

models were developed using linear regression.

For GLOSSY samples, two different series of mathematical models were developed.
One series was for specular component included measurement, while the other series
was for specular component excluded measurement. In addition, another two series of
models were developed for “MATT" samples. As the spectral reflectance is different
for “GLOSSY" and “MATT" samples, different models were developed for each in
order 10 meet the requirements for different types of materials. As a result, the
inter-instrumental agreement of the different samples became more concise and

accurate.
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5.2.1  SF-600 vs CE-7000

For GLOSSY samples measured using the specular component excluded mode, three

different equations were formulated:

Predicted L* g9 value (PL*sq0) = 1.008L* g0 - 0.0082* 500 - 0.006b* 59 + 0.061 -—-- EQ.5.1

Predicted a*s00 value (Pa*sgp) = 1.008a* 00 + 0.006b* 4 - 0.074 —— EQ. 5.2

Predicted b*g9 value (Pb*sgq) = -0.005L% g0 - 0.024a%400 + 1.014b*ee0 + 0.17 -—- EQ. 5.3

Where

PL*s00, Pa*s00 and Pb*eoo are the predicted value which is calculated by substituting

the original data measured by the SF-600, L*sg, a*so and b*¢yq into the above

equations.

Page 98



Chapter 5 Development of the First Mathematical Mode! (L-Model)

For GLOSSY samples measured using the specular component included mode, a

further three different equations were formulated:

Predicted L*s00 value (PL*600) = 1.006L* 5o - 0.0052% g - 0.003b* g0 - 0.086 -—-- EQ. 5.4

Predicted a*s00 value (Pa*s0) = -0.007L%s0 + 1.0012% 0 + 0.008b* g - 0.252 ——- EQ. 5.5

Predicted b*qq value (Pb*e) = - 0.016a% 400 + 1.012b% gy - 0.086 —-- EQ. 5.6

For MATT samples measured using the specular component excluded mode, three

different equations were formulated:

Predicted L* 4 value (PL*0) = 1.009L %y - 0.0092% 500 - 0.006b*coq - 0.219 ——— EQ. 5.7

Predicted a*qq value (Pa*egq) = -0.004L*%50 + 1.005a% g + 0.009b*, + 0.161 ——— EQ. 5.8

Predicted b*s0 value (Pb*s0) = - 0.024a%500 + 1.011b*s5q - 0.175 -—- EQ. 5.9
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For MATT samples measured using the specular component included mode, another

three different equations were formulated:

Predicted L*s00 value (PL*s00) = 1.007L*4g0 - 0.008a%500 - 0.005b* 00 - 0.257 ----- EQ. 5.10

Predicted a*go value (Pa*ego) = -0.005L%4 + 1.0012%4 - 0.011b*g0g + 0.180 —- EQ. 5.11

Predicted b*so value (Pb*s0) = 0.002L % - 0.0232%¢g0 + 1.018b%g4q - 0.203 ----- EQ. 5.12

5.2.2 CE-2180 vs CE-7000

For GLOSSY samples measured using the specular component excluded mode, three

different equations were formulated:

Predicted L*3,50 value (PL*3,59) = 1.010L* 349 - 0.007a% 3,45 - 0.01b*3;5 + 0.059 —-- EQ.5.13

Predicted El‘zm) value (Pa‘ny)) = l.009a*;.m + 0.057[)*2";0 - 0.085 ----- EQ 5.14

Predicted b*; 59 value (Pb*; 59) = -0.068L*,, 4, - 0.0352%1459 + 1.007b*3,49 + 0.098 -——- EQ. 5.15
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Where

PL*3180, Pa*2130 and Pb*z159 are the predicted value which is calculated by substituting
the original data measured by the CE-2180, L*1130, a*2180 and b*11y into the above

equations.

For GLOSSY samples measured using the specular component included mode, a

further three different equations were formulated:

Predicted L*; 59 value (PL*2;50) = 1.015L*;59 - 0.0582%1,59 - 0.001b*+,4, - 0.096 ----- EQ. 5.16

Predicted %150 value (Pa*1;50) = -0.011L*5,49 + 1.045a%3150 + 0.007b* 159 - 0.053 —-- EQ. 5.17

Predicted b*:no value (Pb‘zmo) =- 0.0278‘1130 + l.048b‘1|y) -0.075 ----- EQ 5.18

For MATT samples measured using the specular component excluded mode, three

different equations were formulated:
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Predicted L‘luo value (PL‘;]w) = |.0|4L‘1|w - 0.0'83'3.) - O.mlb‘um -0.157 —-- EQ 5.19

Predicted a"um value (Pil'glw) = -O.WL‘:uo + l.0272|‘3|m + O.G)Sb‘z,w +0.297 «---- EQ 5.20

Predicted b*1,50 value (Pb*y50) = - 0.009a* 3,59 + 1.027b*, 5 - 0.398 - EQ.5.21

For MATT samples measured using the specular component included mode, another

three different equations were formulated:

Predicted L'zlgo value (PL‘nm) = |.024Lt3|w - 0.0[43*3;30 - O.(mb*um -0.168 - EQ. 5.22

Predicted a*1,g0 value (Pa*s50) = -0.(!)5L‘1.m + 1.008a*; 5 - 0.001b*y 5 + 0.098 -—-- EQ 5.23

Predicted b*'_qgo value (Pb‘:[go) = -0.0363‘:150 + l.058b‘mo -0.169 - EQ 5.24

Based on equations 5.1 — 5.24, a series of predicted L*gn, a*sn and b* values (i.e.
PL*600. Pa*e00 and Pb*sa0) and a series of predicted L*3,40, a%2150 and b*a 0 values (i.e.

PL*3130, Pa*2180 and Pb*;j39) was calculated. Those values were then compared with
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the actual measured values of CE-7000A by calculating the CIE colour difference

value AE*,; (EQ. 5.25).

AE* 4 = (L* ampic-L® uamiart) ™ H2* cmpte-* ameant) HD* camptcb* wantart) ) * —--- EQ. 5.25

i.e. AE*,, = ((PL*, -L*ce.7000a) +(P2* -2* c&. 70004 ) H(b* -b* et 7004) ) - EQ. 5.26

where x= 600 or 2180

5.3 The Improvement Of The Inter-Instrumental Agreement After

Applying L-Model

After the mathematical models had been developed. the measurement data of the
CCS-II tiles from SF-600 and CE-2180 were then substituted into the equations and
the corrected AE*,, were calculated. In addition, comparisons between the original
AE*;, and the corrected AE*,;, were also calculated and expressed as the percentage
improvement of the inter-instrumental agreement. All the results are summarised in the

tables below:
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Table S.1: Summary Of The Inter-Instrumental Agreement For The CCS-11 GLOSSY Tiles
Using Specular Component Excluded Mode Between SF-600 And CE-7000A

Original AE*,, Corrected AE*,, % Improvement
Pale Grey 0.690 0.387 43.913
Middle Grey 0.459 0.26 43.355
Diff. Grey 0.495 0.286 42222
Deep Grey 0.196 0.228 -16.327
Deep Pink 0.650 0.508 21.846
Red 0.650 0.892 -37.231
Orange 1.046 0.599 42.734
Bright Yellow 1.437 0.649 54.836
Green 1.120 0.312 72.143
Diff. Green 1.095 0.329 69.954
Cyan 1.232 0.552 55.195
Deep Blue 1.028 0.649 36.868
Average* 0.842 0471 44.038

Table 5.2: Summary Of The Inter-Instrumental Agreement For The CCS-1I GLOSSY Tiles
Using Specular Component Included Mode Between SF-600 And CE-7000A

Original AE*,, Corrected AE*,;, % Improvement
Pale Grey 0.428 0.274 35.981
Middle Grey 0.269 0.158 41.264
Diff. Grey 0.293 0.288 1.706
Deep Grey 0.217 0.158 27.189
Deep Pink 0.737 0.356 51.696
Red 1.263 0.497 60.649
Orange 1.084 0.311 71.310
Bright Yellow 0.930 0.277 70.215
Green 0.775 0.203 73.806
Diff. Green 0.749 0.153 79.573
Cyan 1.004 0.630 37.251
Deep Blue 0.849 0.583 31.331
Average* 0.717 0.324 54.780
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Table 5.3: Summary Of The Inter-Instrumental Agreement For The CCS-II MATT Tiles
Using Specular Component Excluded Mode Between SF-600 And CE-7000A

Original AE*,, Corrected AE*,, % Improvement
Pale Grey 0.590 0.227 61.525
Middle Grey 0.422 0.153 63.744
Diff: Grey 0.395 0.113 71.392
Deep Grey 0.183 0.100 45.355
Deep Pink 0.633 0.109 82.780
Red 0.713 0.695 2.525
Orange 0.874 0.248 71.625
Bright Yellow 0.749 0.088 88.251
Green 0.867 0.206 76.240
Diff: Green 0.788 0.106 86.548
Cyan 0.903 0.394 56.368
Deep Blue 0.890 0.610 31.461
Average* 0.667 0.254 61.921

Table 5.4: Summary Of The Inter-Instrumental Agreement For The CCS-1I MATT Tiles
Using Specular Component Included Mode Between SF-600 And CE-7000A

Original AE*,; Corrected AE*,;, % Improvement
Pale Grey 0.361 0.225 37.673
Middle Grey 0.182 0.154 15.385
Diff. Grey 0.166 0.109 34.337
Deep Grey 0.074 0.101 -36.486
Deep Pink 0.603 0.103 82919
Red 0.890 0.701 21.236
Orange 0.968 0.286 70.455
Bright Yellow 0.768 0.066 91.406
Green 0.762 0.192 74.803
Diff. Green 0.652 0.111 82.975
Cyan 0.824 0.373 54.733
Deep Blue 0.677 0.553 18.316
Average* 0.577 0.248 57.067
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Table 5.5: Summary Of The Inter-Instrumental Agreement For The CCS-1I GLOSSY Tiles
Using Specular Component Excluded Mode Between CE-2180 And CE-7000A

Original AE*,; Corrected AE*,, % Improvement
Pale Grey 0.666 0.723 -8.559
Middle Grey 0.707 0.625 11.598
Diff: Grey 0.453 0.667 -47.241
Deep Grey 0.239 0.444 -85.774
Deep Pink 0.700 0.302 56.857
Red 0.719 0.457 36.439
Orange 0.119 0416 -249.580
Bright Yellow 0.689 0.397 42.380
Green 0.130 0.39%4 -203.077
Diff. Green 0.790 0.265 66.456
Cyan 0.140 0.497 -255.000
Deep Blue 1.134 0.425 62.522
Average* 0.541 0.468 13.475

Table 5.6: Summary Of The Inter-Instrumental Agreement For The CCS-1l GLOSSY Tiles
Using Specular Component Included Mode Between CE-2180 And CE-7000A

Original AE*,, Corrected AE*,;, % Improvement

Pale Grey 0.795 0.057 92.830
Middle Grey 0.758 0414 45.383
Diff. Grey 0.280 0.066 76.429
Deep Grey 0.100 0.091 9.000
Deep Pink 0.723 0.407 43.707
Red 0.634 0.631 0.473

Orange 0.114 0.387 -239.474
Bright Yellow 0.628 0.623 0.796

Green 0.143 0.320 -123.776
Diff: Green 1.023 0.349 65.885

Cyan 0.195 0.545 -179.487
Deep Blue 1.285 1.078 16.109
Average* 0.557 0414 25.606
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Table 5.7: Summary Of The Inter-Instrumental Agreement For The CCS-II MATT Tiles
Using Specular Component Excluded Mode Between CE-2180 And CE-7000A

Original AE*,;, Corrected AE*y, % Improvement
Pale Grey 0.928 0.220 76.293
Middle Grey 0.535 0.282 47.290
Diff. Grey 0.760 0.503 33.816
Deep Grey 0.446 0.165 63.004
Deep Pink 0.713 0.421 40.954
Red 0.680 0.372 45.294
Orange 0414 0.093 77.536
Bright Yellow 0.516 0.362 29.845
Green 0.444 0.055 87.613
Diff. Green 0.852 0.215 74.765
Cyan 0.454 0.155 65.859
Deep Blue 0.679 0.354 47.865
Average* 0.618 0.266 56.920

Table 5.8: Summary Of The Inter-Instrumental Agreement For The CCS-II MATT Tiles
Using Specular Component Included Mode Between CE-2180 And CE-7000A

Original AE*,, Corrected AE*, % Improvement
Pale Grey 0.952 0.156 83.613
Middle Grey 0.576 0.225 60.938
Diff. Grey 0.361 0.324 10.249
Deep Grey 0.352 0.140 60.227
Deep Pink 0.718 0.256 64.345
Red 0.755 0.236 68.742
Orange 0.436 0.079 81.881
Bright Yellow 0.552 0.231 58.152
Green 0.500 0.077 84.600
Diff. Green 0.997 0.093 90.672
Cyan 0.428 0.127 70.327
Deep Blue 0.968 0.310 67.975
Average* 0.633 0.188 70.323

Note * = (Average Original AE*,, - Average Corrected AE*,,)/ Average Original AE*,, <100
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Tables 5.1 — 5.4, which show the summary of the inter-instrumental agreement for the
CCS-1I Tiles when comparing SF-600 and CE-7000A indicate that after application of
the mathematical models to calculate the predicted L*, a* and b* values, the colour
difference improved. The average percentage improvement of the colour difference

ranged from 44.0 -61.9%.

Tables 5.5 — 5.8, summarizing the inter-instrumental agreement for the CCS-II Tiles
for CE-2180 and CE-7000A show that, after applying the mathematical models to
calculate the predicted L*, a* and b* values, the colour difference also improved
accordingly. The average percentage of the colour difference improved in the range

from 13. 5 - 70.3%.

Regardless of whether “GLOSSY™ tiles were measured using the specular component
excluded mode or not, the percentage improvement for the inter-instrumental
agreement between CE-2180 and CE-7000A was less than that for SF-600 and
CE-7000A. This was due to the fact that measurements of the spectral reflectance of
the “GLOSSY" tiles are depended more on the optical system of the spectrophotoeter,

especially when using a single-beam spectrophotometer, if the calibration procedure is
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not good. For “MATT" Tiles, the inter-instrumental agreements between CE-2180 and
CE-7000A and between SF-600 and CE-7000A were satisfactory because the

measurements were easier to obtain compared to the "GLOSSY™ tiles.

The poor measurement results for the GLOSSY tiles were due to the high reflection

inside the integrated sphere. Besides the size of the integrated sphere, the position of

the specular component port and the signal receiver are factors which may have

affected the measurement results.

Comparison of DE between the original DE and L-Model DE
(GLOSSY Tiles Measured under Specular Compenent Excluded Mode)
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Gy Gey Gy  Gey Pk Velbow Cazen Blue

Figure 5.1 The Comparison Of The DE Between The Original DE and L-Model For SF-600
And CE-7000A (GLOSSY Tiles Measured Using Specular Component Excluded Mode)
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Comparison of DE between the original DE and L-Model DE
(GLOSSY Tiles Measured under Specular Component [ncluded Mode)
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Figure 5.2 The Comparison Of The DE Between The Original DE and L-Model For SF-600
And CE-7000A (GLOSSY Tiles Measured Using Specular Component Included Mode)

Companson of DE between the onginal DE and L-Model DE
(MATT Tiles Measured under Specular Component Excluded Mode)
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Figure 5.3 The Comparison Of The DE Between The Original DE and L-Model For SF-600
And CE-7000A (MATT Tiles Measured Using Specular Component Excluded Mode)
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Comparison of DE between the original DE and L-Model DE
(MATT Tiles Measured under Specular Component Included Mode)
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DT Deep  Decp
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Figure 5.4 The Comparison Of The DE Between The Original DE and L-Model For SF-600
And CE-7000A (MATT Tiles Measured Using Specular Component Included Mode)

Figure 5.1 shows the comparison between the colour difference and [.-Model for
SF-600 and CE-7000A (GLOSSY tiles measured in specular component excluded
mode), and it was found that the colour difference of red after modeling was higher
than that of the original measurement. Red is considered to be one of the most
sensitive colours compare with the others, thus the modeling result was unsatisfactory
and also worse than the original result. Sensitive colour means that the colour is easily
affected by the change of temperature and humidity even the change of the above

factors are not significant®®%®!,
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Figure 5.2 shows the comparison of the colour difference between the original colour
difference and L-Model for SF-600 and CE-7000A (GLOSSY tiles measured using
specular component included mode), and in Figure 5.3, which shows the comparison
of the colour difference between the original colour difference and L-Model for
SF-600 and CE-7000A (MATT tiles measured under specular component excluded
mode), it may be seen that the entire colour difference improves after modeling. This

implies that L-Model functioned well in these two combinations.

For Figure 5.4, the comparison of the colour difference between the original colour
difference and L-Model for SF-600 and CE-7000A (MATT tiles measured under
specular component included mode), it was found that the colour difference of deep
grey after modeling was higher than that of the original measurement. This is because
the signal measured by the spectrophotometer was low, thus the modeling result was

unsatisfactory and also worse than the original result.
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Comparison of DE between the onginal DE and L-Model DE
(GLOSSY Tiles Measured under Specular Component Excluded Mode)
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Figure 5.5 The Comparison Of The DE Between The Original DE and I-Model For
CE-2180And CE-7000A (GLOSSY Tiles Measured Using Specular Component Excluded
Mode)

Companison of DE between the onginal DE and L-Model DE
(GLOSSY Tiles Measured under Specular Component Included Mode)
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Figure 5.6 The Comparison Of The DE Between The Original DE and L-Model For
CE-2180And CE-7000A (GLOSSY Tiles Measured Using Specular Component Included
Mode)
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Companson of DE between the onginal DE and L-Model DE
(MATT Tiles Measured under Specular Component Excluded Mode

DE
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Circy Giey Giey Gy Fink Tallow Gieen Blue

Figure 5.7 The Comparison Of The DE Between The Original DE and [-Model For
CE-2180And CE-7000A (MATT Tiles Measured Using Specular Component Excluded
Mode)

Comparison of DE between the original DE and L-Model DE
(MATT Tiles Measured under Specular Component Included Mode)
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Figure 5.8 The Comparison Of The DE Between The Original DE and L-Model For
CE-2180And CE-7000A (MATT Tiles Measured Using Specular Component Included

Mode)
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Figure 5.5, showing the comparison of the colour difference between the original
colour difference and L-Model for CE-2180 and CE-7000A (GLOSSY tiles measured
under specular component excluded mode), demonstrates that the colour difference of
pale grey, different grey, deep grey, orange, green and cyan after modeling was higher
than that of the original measurement. This indicated that the L-Model was not suitable
for the GLOSSY tiles measured under specular component excluded conditions and

further improvement is required in order to enhance the inter-instrumental agreement.

In Figure 5.6, which shows the comparison of the colour difference between the
original colour difference and L-Model for CE-2180 and CE-7000A (GLOSSY tiles
measured under specular component excluded mode), it may be seen that the colour
difference of orange, green and cyan after modeling was higher than that of the
original measurement. This shows that the L-Model was also unsuitable for the
GLOSSY tiles measured under specular component included conditions especially for
the sensitive colours and further improvement was required in order to enhance the

inter-instrumental agreement.
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For Figure 5.7, the comparison of the colour difference between the original colour
difference and L-Model for CE-2180 and CE-7000A (MATT tiles measured under
specular component excluded mode), all the colour differences improved after

modeling. This implies that L-Model functioned well in this combination.

Figure 5.8, which show the comparison of the colour difference between the original

colour difference and L-Model for SF-600 and CE-7000A (MATT tiles measured

under specular component included mode), indicates that the colour difference of deep

grey after modeling was higher than that of the original measurement. Since the signal

for the deep colour measured by the spectrophotometer was low, the modeling result

was unsatisfactory and also worse than the original result.
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CHAPTER 6

DEVELOPMENT OF THE SECOND MATHEMATICAL MODEL

(R-Model)

6.1 Introduction

6.2 Development Of The Second Mathematical Model (R-Model)

6.3 The Improvement Of The Inter-Instrumental Agreement After

Applying R-Model

6.1 Introduction

The application of L-Model was found to be limited, since it was not a robust
mathematical model for inter-instrumental agreement. For this reason, a powerful and
robust model was developed in order to further enhance the inter-instrumental

agreement between spectrophotometers.
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6.2 Development Of The Second Mathematical Model (R-Model)

As indicated in the inter-instrumental agreement table, the colour differences among the
spectrophotometers are very high (up to 1.554 CIELAB units), implying that further
correction is necessary to further enhance the inter-instrumental agreement among the
spectrophotometers. Although the “L-Modei” was well developed, it was not a robust
mathematical model and the overall improvement of inter-instrumental agreement was
insignificant. The “L-Model” was therefore ineffective in the correction of the

inter-instrumental agreement.

The “R-Model”, another mathematical model, was developed to improve the
inter-instrumental agreement. It was based on the correction of the reflectance value
across the visual spectrum. According to the preliminary findings, the tendency of the
relative reflectance difference for twelve ceramic tiles was similar. Therefore bandpass
correction was deemed one of the methods for the correction of the inter-instrumental

agreement!®* 331 The equations used in the R-Model are summarised as follows:
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At 400nm

Corrected R(Ml)) =nx R“m) +0oX R(,"()] +q-——- EQ.6.|

At 410nm - 690nm where A = 410, 420, ..., 690,700

Corrected Rz = m x R 100 + n X Ry, + 0 X Rioioy + q -— EQ.6.2

At 700nm

Corrected R0 = M X Rygog, + N X Ry700) + @ - EQ.6.3

Where m, n, o and q are wavelength dependent constant.

For the coefficients m, n, 0 and p, please refer to Appendix I for details.
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6.3 The Improvement Of The Inter-Instrumental Agreement After Applying

R-Model

The spectral reflectance factors of SF-600 and CE-2180 were substituted into the above
equations (EQ. 6.1 to EQ. 6.3) 1o calculate the predicted spectral reflectance factors. The
colour difference between predicted and measured reflectance values was then

calculated. The inter-instrumental agreement of the CCS-II tiles is summarized in Tables

6.1 -6.8.

Table 6.1: Summary Of The Inter-Instrumental Agreement For The CCS-1I GLOSSY Tiles
Using Specular Component Excluded Mode Between SF-600 And CE-7000A Afier Applying
The R-Model

Original AE*,, Corrected AE*,; % Improvement
Pale Grey 0.690 0.110 84.058
Middle Grey 0.459 0.095 79.303
Diff. Grey 0.495 0.175 64.646
Deep Grey 0.196 0.232 -18.367
Deep Pink 0.650 0.243 62.615
Red 0.650 0.773 -18.923
Orange 1.046 0.418 60.038
Bright Yellow 1.437 0.269 81.280
Green 1.120 0.089 92.054
Diff. Green 1.095 0.101 90.776
Cvan 1.232 0.601 51.218
Deep Blue 1.028 0.598 41.829
Average* 0.842 0.309 63.341
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Table 6.2: Summary Of The Inter-Instrumental Agreement For The CCS-11 GLOSSY Tiles

Using Specular Component Included Mode Between SF-600 And CE-7000A After Applying
The R-Model

Original AE *ab Corrected AE* ., % Improvement
Pale Grey 0.428 0.108 74.766
Middle Grey 0.269 0.051 81.041
Diff. Grey 0.293 0.057 80.546
Deep Grey 0.217 0.113 47.926
Deep Pink 0.737 0.115 84.396
Red 1.263 0.216 82.898
Orange 1.084 0.036 96.679
Bright Yellow 0.930 0.347 62.688
Green 0.775 0.232 70.065
Diff. Green 0.749 0.232 69.025
Cyan 1.004 0.187 81.375
Deep Blue 0.849 0.127 85.041
Average* 0.717 0.152 78.821

Table 6.3: Summary Of The Inter-Instrumental Agreement For The CCS-II MATT Tiles
Using Specular Component Excluded Mode Between SF-600 And CE-7000A After Applying
The R-Model

Original AE*, Corrected AE*s, % Improvement
Pale Grey 0.590 0.096 77.570
Middle Grey 0.422 0.067 75.093
Diff. Grey 0.395 0.068 76.792
Deep Grey 0.183 0.071 67.281
Deep Pink 0.633 0.058 92.130
Red 0.713 0.084 93.349
Orange 0.874 0.033 96.956
Bright Yellow 0.749 0.055 94.086
Green 0.867 0.032 95.871
Diff. Green 0.788 0.062 91.722
Cyan 0.903 0.148 85.259
Deep Blue 0.890 0.055 93.522
Average* 0.667 0.069 90.358
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Table 6.4: Summary Of The Inter-Instrumental Agreement For The CCS-1I MATT Tiles

Using Specular Component Included Mode Between SF-600 And CE-7000A After Applying
The R-Model

Original AE* Corrected AE*,, % Improvement
Pale Grey 0.361 0.066 81.717
Middle Grey 0.182 0.046 74.725
Diff. Grey 0.166 0.05 69.880
Deep Grey 0.074 0.061 17.568
Deep Pink 0.603 0.280 53.566
Red 0.890 0.636 28.539
Orange 0.968 0.069 92.872
Bright Yellow 0.768 0.267 65.234
Green 0.762 0.139 81.759
Diff. Green 0.652 0.031 95.245
Cyan 0.824 0.169 79.490
Deep Blue 0.677 0.208 69.276
Average* 0.577 0.169 70.810

Table 6.5: Summary Of The Inter-Instrumental Agreement For The CCS-1I GLOSSY Tiles
Using Specular Component Excluded Mode Between CE-2180 And CE-7000A After Applying
The R-Model

Original AE*,;, Corrected AE*,, % Improvement

Pale Grey 0.140 0.220 -57.143
Middle Grey 0.130 0.111 14.615
Diff. Grey 0.119 0.112 5.882
Deep Grey 0.239 0.152 36.402
Deep Pink 0.700 0.459 34.429
Red 1.134 0.362 68.078
Orange 0.790 0.290 63.291
Bright Yellow 0.666 0.267 59.910
Green 0.689 0.474 31.205
Diff. Green 0.719 0.481 33.102
Cyan 0.707 0.325 54.031

Deep Blue 0.453 0.965 -113.024
Average* 0.541 0.352 34.968
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Table 6.6: Summary Of The Inter-Iinstrumental Agreement For The CCS-1l GLOSSY Tiles

Using Specular Component Included Mode Between CE-2180 And CE-7000A After Applying
The R-Model

Original AE*,, Corrected AE*,, % Improvement

Pale Grey 0.195 0.478 -145.128
Middle Grey 0.143 0.281 -96.503

Diff. Grey 0.114 0.332 -191.228
Deep Grey 0.100 0.091 9.000
Deep Pink 0.723 0.369 48.963
Red 1.285 0.729 43.268
Orange 1.023 0.205 79.961
Bright Yellow 0.795 0.377 52.579
Green 0.628 0.461 26.592
Diff. Green 0.634 0.454 28.391
Cyan 0.758 0.383 49.472
Deep Blue 0.280 0.154 45.000
Average* 0.557 0.360 35.400

Table 6.7: Summary Of The Inter-Instrumental Agreement For The CCS-1I1 MATT Tiles
Using Specular Component Excluded Mode Between CE-2180 And CE-7000A Afier Applying
The R-Model

Original AE* Coarrected AE*,; % Improvement
Pale Grey 0.454 0.129 71.586
Middle Grey 0.444 0.102 77.027
Diff. Grey 0.414 0.098 76.329
Deep Grey 0.446 0.116 73.991
Deep Pink 0.713 0.124 82.609
Red 0.679 0.042 93.814
Orange 0.852 0.081 90.493
Bright Yellow 0.928 0.039 95.797
Green 0.516 0.120 76.744
Diff. Green 0.680 0.210 69.118
Cyan 0.535 0.146 72.710
Deep Blue 0.760 0.139 81.711
Average* 0.618 0.112 81.862
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Table 6.8: Summary Of The Inter-Instrumental Agreement For The CCS-1I MATT Tiles

Using Specular Component Included Mode Between CE-2180 And CE-7000A After Applying
The R-Model

Original AE*,; Corrected AE*,; % Improvement
Pale Grey 0.428 0.123 71.262
Middle Grey 0.500 0.099 80.200
Diff. Grey 0.436 0.091 79.128
Deep Grey 0.352 0.095 73.011
Deep Pink 0.718 0.095 86.769
Red 0.968 0.094 90.289
Orange 0.997 0.053 94.684
Bright Yellow 0.952 0.072 92.437
Green 0.552 0.170 69.203
Diff. Green 0.755 0.219 70.993
Cyan 0.576 0.182 68.403
Deep Blue 0.361 0.091 74.792
Average* 0.633 0.115 81.777

Note * = (Average Original AE*,, — Average Corrected AE* )/ Average Original AE*,, x100

Tables 6.1 to 6.4 show the significant improvements in the inter-instrumental agreement

between spectrophotometers, especially in the case of the MATT tiles measured using

the specular component excluded mode. The average percentage improvement of the

colour difference was up to 90 percent. For the other sets of data and results, the colour

differences between spectrophotometers ranged from 63 to 78 percent. The results imply

that the R-Model showed a good improvement of the inter-instrumental agreement

between SF-600 and CE-7000A when compared with the L-Model. From tables 6.5 ~

6.8, it may be seen that the percentage improvement of the inter-instrumental agreement

for the “GLOSSY" tiles measured under both the specular component excluded mode

and the specular component included mode was disappointing when compared with the
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“MATT" tiles. This is because CE-2180 is a single-beam spectrophotometer and lacks

the reference beam to overcome the glossy effect during the measurement process.

The comparison of the colour difference (AE*,) between the two different newly

developed models for SF600 vs CE-7000A is summarised in the figures below:

Comparison of DE among the original DE, L-Model DE and R-Model DE
(GLOSSY Tiles Measured under Specular Component Excluded Model)

i |8 Original DE
! | @ L. Model DE
O R-Mudel DE

09k

s

I; iij-lu.:I

} l o l | :
Pale  Middle Dif. Decp Deep Red Omnge Bright Groen D, Cyan  Deep
Geey Grey Grey  Grey  Pink Yellow Given Bluc

Figure 6.1 The Comparison Of The DE Between The Two Different Developed Models (GE)
For SF-600 And CE-7000A
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Comparison of DE among the original DE, L-Model DE and R-Model DE
(GLOSSY Tiles Measured under Specular Component Included Mode)

O Ongiral DE
B L-Model DE
{0 R-Mode! DE

DE

I..

u = s s il 4 . = d - ) ! s
Pale Middle Diff. Deep Deep Red Orange Bright Green Diff. Cyan  Decp
Grey Grey Gry Grey Pnk Yellow Gireen Blue

Figure 6.2 The Comparison Of The DE Between The Two Different Developed Models (GI)
For SF-600 And CE-7000A

Comparison of DE among the original DE, L-Model DE and R-Model DE
(MATT Tiles Measured under Specular Component Excluded Mode)

EUT_Ingmal T;E_
B -Model DE

O R-Model DE

ﬁ, .“‘.Z! | Ih-' IL'E"_ "" | ] . ot I d® |h[ l :
Pale  Middle Dif. Deep Deep Red Omnge Brght Green Dill. Cyan  Decp
Gy Grey Grey Gry Pak Yellow Gireen Blue

Figure 6.3 The Comparison Of The DE Between The Two Different Developed Models (ME)
For SF-600 And CE-7000A
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| Comparison of DE among the original DE, L-Model De and R-Model DE
(MATT Tiles Measured under Specular Compenent Included Mode)

IEI Cﬂzm.l] DE
|8 L Model DE

; |0 R Mode! DE
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Figure 6.4 The Comparison of the DE Between The Two Different Developed Models (MI)
For SF-600 And CE-7000A

Figure 6.1, which shows results for the GLOSSY tiles measured using the specular
component mode, indicates that the overall performance of “R-Model” was better than
that of the “L.-Model”. The average improvement of “R-Model” for the twelve tiles was
63%, while the average improvement of “L-Model” for the twelve tiles was 44%. In this
figure, irrespective of whether the L-Model or R-Model is used, the inter-instrumental
agreement for deep grey and red may be seen to be unsatisfactory. Red, as previously
discussed, is a sensitive colour and easily affected by changes in temperature. Deep grey
is also difficult to measure because the signal for the measurement is insignificant and

the result for inter-instrumental agreement is poor.
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Figure 6.2, which shows results for the GLOSSY tiles measured using specular
component included mode, indicates that the overall performance of R-Model” is also
better than that of the *L-Model™ and all the colours showed improvement after applying
the R-Model and L-Model. The average improvement of *“R-Model” for the twelve tiles

was 79%, while the average improvement of “L-Model” for the twelve tiles was 55%.

In Figure 6.3, which shows the results for the MATT tiles measured using the specular
component excluded mode, it may be seen that the overall performance for the
“R-Model” was better than that of the “L-Model” and all the colours showed
improvement after applying both the R-Model and L-Model. The average improvement
for the “R-Model” for the twelve tiles was 90%, whereas the average improvement for

the “L-Model” for the twelve tiles was 62%.

In Figure 6.4, which shows the results for the MATT tiles measured using the specular
component included mode, it may be seen that the overall performance for the R-Model”
was also better than that of the “L-Model™. The average improvement of “R-Model™ for
the twelve tiles was 71%, whereas the average improvement of “L-Model” for the

twelve tiles was 57%.
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Comparison of DE among the original DE, L-Model DE and R-Model DE
(GLOSSY Tiles Measured Under Specular Component Excluded Mode)

Original DE.
8 L-Model DE
O R-Model DE
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Figure 6.5 The Comparison Of The DE Between The Two Different Developed Models (GE)
For CE-2180 And CE-7000A

Companson of DE among the original DE, L-Model DE and R-Model DE
(GLOSSY Tiles Measured Under Specular Component Included Mode)
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Figure 6.6 The Comparison Of The DE Between The Two Different Developed Models (GI)
For CE-2180 And CE-7000A
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Comparison of DE among the original DE, L-Model DE and R-Model DE
(MATT Tiles Measured Under Specular Component Excluded Mode)
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Figure 6.7 The Comparison Of The DE Between The Two Different Developed Models (ME)
For CE-2180 And CE-7000A

Comparison of DE among the original DE, L-Model DE and R-Model DE
(MATT Tiles Measured Under Specular Component Included Mode)
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Figure 6.8 The Comparison Of The DE Between The Two Different Developed Models (MI)
For CE-2180 And CE-7000A
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In Figure 6.5, which shows the results for the GLOSSY tiles measured using the
specular component excluded mode, it may be seen that the overall performance of
“R-Model” was better than that of the “L-Model”. The average improvement of
“R-Model” for the twelve tiles was 35%, while the average improvement of the
“L-Model” for the twelve tiles was 13%. The inter-instrumental agreement for different
grey and cyan was worse than the original results after applying the R-Model because

the optical design for CE-2180 and CE-7000A is different.

Figure 6.6 shows the results for the GLOSSY tiles measured using the specular
component included mode, and it may be seen that the overall performance for the
R-Model” was also better than that of the “L-Model”. The average improvement of the
“R-Model"” for the twelve tiles was 36%. whereas the average improvement of the
“L-Model” for the twelve tiles was 26%. After modeling it was found that the colour
difference in the case of orange. green and cyan was higher than that of the original
measurement, indicating that the R-Model was not suitable for application in the case of

gloss-finish colours.
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Figure 6.7, which shows the results for the MATT tiles measured under specular
component excluded mode, indicates that the overall performance for “R-Model” was
better than that of the “L-Model”. The average improvement of “R-Model” for the
twelve tiles was 82%, while the average improvement of “L-Model” for the twelve tiles
was 57%. All the tiles showed improvement in the inter-instrumental agreement

regardless of whether they were applied to the L-Model or R-Model.

In Figure 6.8, showing the results for the MATT tiles measured under specular
component included mode, it may be seen that the overall performance of the R-Model”
was better than that of the “L-Model”. The average improvement of “R-Model"” for the
twelve tiles was 82%, while the average improvement of “L-Model” for the twelve tiles
was 70%. All the tiles also showed improvement in the inter-instrumental agreement

regardless of whether results were applied to the L-Model or R-Model.

Results shown in Figures 6.1 - 6.8 indicate that the “R-Model” resulted in greater
improvement in the inter-instrumental agreement. Basically, the “R-Model” was

developed in line with the concept of the bandpass correction and using multi linear
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regression. However, the “L-Model” involved the use of linear regression only and its

main purpose was to correct the colorimetric data (L*, a* and b*).

From the above, it may be seen that the “R-Model” was a powerful, flexible and robust
model when compared with the “*L-Model™ in the improvement of the inter-instrumental
agreement. The fundamental data for this model were from the spectral reflectance
factors and, once the spectral reflectance factors were corrected, the relative spectral

reflectance difference errors were eliminated.

Figures 6.1 to 6.8 show that the performance of the “R-Model” was better than that of
the “L-Model”. Of all the data sets, the MATT tiles measured under the specular
component excluded mode showed the best improvement in inter-instrumental
agreement. In addition, the MATT tiles measured under the specular component

included mode also showed satisfactory improvement in inter-instrumental agreement.

The results obtained for the GLOSSY tiles, either in specular component excluded mode

or in specular component included mode, were not as good as those for the MATT tiles.
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In addition to the above results, the spectral reflectance factor for SF-600 and CE-2180
was calculated after applying the R-Model. The comparison of the colour difference
between SF-600 and CE-2180 before and after applying the model is another important
indication to test whether the newly developed mathematical models were successful or

not. The comparison results are listed below:

Table 6.9: Summary Of The Inter-Instrumental Agreement For The CCS-1l GLOSSY Tiles
Ussing Specular Component Excluded Mode Between CE-2180 And SF-600 Before And
After Applying The R-Model

Before Modelling AE*,, _ After Modelling AE*,, % Improvement

Pale Grey 0.771 0.024 96.887
Middle Grey 0.561 0.117 79.144
Diff. Grey 0.500 0.125 75.000
Deep Grey 0.367 0.159 56.676
Deep Pink 0.445 0.325 26.966
Red 1.152 0.628 45.486
Orange 1.058 0.880 16.824
Bright Yellow 1.554 0.432 72.201
Green 1.134 0.380 66.490
Diff. Green 1.156 0.390 66.263
Cyan 0.887 0.234 73.619
Deep Blue 0.598 0.562 6.020
Average* 0.849 0.355 58.205
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Table 6.10: Summary Of The Inter-Instrumental Agreement For The CCS-1I GLOSSY Tiles

Using Specular Component Included Mode Between CE-2180 And SF-600 Before And After
Applying The R-Model

Before Modelling AE*., _ Afier Modelling AE*,;, % Improvement

Pale Grey 0.582 0.260 55.326
Middle Grey 0414 0.352 14.976
Diff. Grey 0.368 0.128 65.217
Deep Grey 0.261 0.079 69.732
Deep Pink 0915 0.476 47.978
Red 0.504 0.168 66.667
Orange 0.904 0.142 84.292
Bright Yellow 1.168 0.121 89.640
Green 0.883 0.448 49.264
Diff. Green 0.846 0.464 45.154
Cyan 1.627 0.721 55.685
Deep Blue 1.718 0.814 52.619
Average* 0.849 0.348 58.046

Table 6.11: Summary Of The Inter-Instrumental Agreement For The CCS-l1l MATT Tiles
Using Specular Component Excluded Mode Between CE-2180 And SF-600 Before And After
Applying The R-Model

Before Modelling AE*,,  After Modelling AE*,, % Improvement

Pale Grey 0.724 0.064 91.160
Middle Grey 0.646 0.072 88.854
Diff. Grey 0.600 0.011 98.167
Deep Grey 0.374 0.057 84.759
Deep Pink 0.434 0.105 75.806
Red 0.297 0.125 57.912
Orange 0.793 0.089 88.777
Bright Yellow 1.106 0.239 78.391
Green 0.857 0.116 86.464
Diff. Green 1.045 0.237 77.321
Cyan 0.791 0.192 75.727
Deep Blue 0.529 0.132 75.047
Average* 0.683 0.120 82.443
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Table 6.12: Summary Of The Inter-Instrumental Agreement For The CCS-I1I MATT Tiles
Using Specular Component Included Mode Between CE-2180 And SF-600 Before And After
Applying The R-Model

Before Modelling AE*,,  After Modelling AE*,, % [mprovement

Pale Grey 0.970 0.462 52.371
Middle Grey 0.830 0.416 49.880
Diff. Grey 0.817 0.361 55.814
Deep Grey 0.583 0.288 50.600
Deep Pink 0.598 0.317 46.990
Red 0.412 0.265 35.680
Orange 0.891 0.264 70.370
Bright Yellow 1.167 0.050 95.716
Green 1.077 0.156 85.515
Diff. Green 1.248 0.183 85.337
Cyan 0.961 0.522 45.682
Deep Blue 0.632 0.470 25.633
Average* 0.849 0.313 63.145

Note * = (Average Original AE*,, — Average Corrected AE* )/ Average Original AE*, x100

The Comperison Of DE Bewteen 5600 and CE-2180 Before And After Applying R-Modd
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Figure 6.9 The Comparison Of The DE Between SF-600 And CE-2180 Before After Applying
R-Model (GE)
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o
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Figure 6.10 The Comparison Of The DE Between SF-600 And CE-2180 Before After
Applying R-Model (GI)
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Figure 6.11 The Comparison Of The DE Between SF-600 And CE-2180 Before After
Applying R-Model (ME)
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The Companson of DE Between SF-600 and CE-21580 Before And Alter Applying R-Model
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Figure 6.12 The Comparison Of The DE Between SF-600 And CE-2180 Before After
Applying R-Model (MI)

Tables 6.9 to 6.12 and Figures 6.9 to 6.12 show the improvement of the average colour
difference between SF-600 and CE-2180 before and after application of the R-Model in
arange from 58.1% to 82.4%. These results indicate that the application of the R-Model
to the correction of the inter-instrumental agreement was successful. This also implies
that the profile between CE-7000A and SF-600 and also the profile between CE-7000A

and CE-2180 were successfully developed.
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Lastly, the ultimate aim of this project was to develop a corrective inter-instrumental
agreement model which could be applied to other colour-related products such as
textiles and paper samples. Most textile products have a matt surface therefore,
following on from the above results, textile samples were selected to test the “R-Model”

in order to investigate the actual performance in the textile industry.
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CHAPTER 7

TESTING OF DEVELOPED MODELS

7.1 Introduction

7.2 Testing Of The R-Model Using Textile Samples

7.3 Testing Of The R-Model Using Paper Samples

7.1 Introduction

In this chapter, results for the performance of the R-Model using textile and paper

samples are summarised.

7.2 Testing Of The R-Model Using Textile Samples

As described in Chapter 3, textile samples were selected to test the performance of the
newly developed mathematical model - the “R-Model”. Textile samples are generally
matt in nature, and to date no results of any inter-instrumental agreement models for

textile samples have been published.
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129 textile samples were selected to test the performance of the “R-Model” and the

results are summarised as follows:

Table 7.1, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Excluded Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 2.450 2.072
Mininuum 0.277 0.159
Stum 134.031 78.432 41.500
Average 1.039 0.608 41.500

Table 7.2, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Included Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 1.901 1.402
Minimum 0.269 0.152
Sum 130.677 96.921 26.061
Average 1.013 0.749 26.061
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Table 7.3, Inter-Instrumental Agreement In Terms Of 4E Using MATT Tiles Measured Using
Specular Component Excluded Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 2.450 2.506
Minimum 0.277 0.067
Sum 134.031 56.889 57.555
Average 1.039 0.441 57.555

Table 7.4, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured Using
Specular Component Included Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 1.901 1.212
Minimum 0.269 0.129
Sum 130.677 76.626 41.400
Average 1.013 0.594 41.400

Tables 7.1 to 7.4, which show the inter-instrumental agreement of the textile samples
when the R-Model was applied, indicate that the colour differences between the two
spectrophotometers SF-600 and CE-7000A were corrected and lowered when compared
with the original values. This implies that all the four models can be applied to textile
samples for inter-instrumental agreement. In the case of the MATT tiles measured using

specular component included mode, the R-Model showed the best performance in the
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inter-instrumental agreement. This was due to the fact that textile samples are matt in

nature, thus the percentage improvement was higher and the results were better when

compared with those for the other three models.

Table 7.5, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Excluded Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 2.680 2317
Minimum 0.308 0.089
Sum 111.585 98.427 11.792
Average 0.865 0.763 11.792

Table 7.6, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Included Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 1.448 1.003
Minimum 0.538 0.152
Sum 112.746 96.621 14.302
Average 0.874 0.749 14.302
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Table 7.7, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured Using
Specular Componemt Excluded Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 2.680 2216
Minimum 0.308 0.143
Sum 111.585 69.271 37.919
Average 0.865 0.537 37.919

Table 7.8, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured Under
Specular Component Included Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected Textile Samples

Original AE Corrected AE % Improvement
Maximum 1448 1.024
Minimum 0.538 0277
Sum 112.746 82.173 27.117
Average 0.874 0.637 27.117

From the above four tables (Tables 7.5 to 7.8), showing results for the inter-instrumental
agreement of the textile samples when the R-Model was applied, the colour differerices
between the two spectrophotometers CE-2180 and CE-7000A were also corrected and
lowered when compared with the original values. This implies that all four models could
be applied to the textile samples for the inter-instrumental agreement. And of the four

models, the R-Model showed the best performance in the inter-instrumental agreement
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for the MATT tiles measured using specular component excluded mode. Since textile
samples are matt in nature, the percentage improvement was higher and the results were

better when compared with the other three models.

1.3 Testing Of The R-Model Using Paper Samples

As described in Chapter 3, besides textile samples, ColorCurve paper samples were also
selected to test the performance of the newly developed mathematical model — the
“R-Model’. ColorCurve paper samples are mainly matt in nature and, to date: no results
related to inter-instrumental agreement model for correction of the measurement results

of the paper samples have been published.

400 ColorCurve paper samples were selected to test the performance of the “R-Model”

and the results are summarized below:
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Table 7.9, Inter-Instrumenial Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Excluded Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 2.026 2.2H1
Minimum 0.290 0.041
Sum 81.200 52.400 35.516
Average 0.203 0.131 35.516

Table 7.10, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured

Using Specular Component included Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 1.579 1.183
Minimum 0.565 0.500
Sum 385.200 332.400 13.707
Average 0.963 0.831 13.707

Table 7.11, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured
Using Specular Component Excluded Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 2.026 1.866
Minimum 0.290 0.013
Sum 81.200 31.600 61.084
Average 0.203 0.079 61.084
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Table 7.12, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured
Using Specular Component Included Mode R-Model SF-600 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 1.579 0.986
Minimum 0.565 0.201
Sum 385.200 238.400 38.103
Average 0.963 0.596 38.103

From the above four tables (Table 7.9 to Table 7.12), which show the results for the

inter-instrumental agreement of the paper samples when applied to the R-Model, it may

be seen that the colour differences between the two spectrophotometers SF-600 and

CE-7000A were corrected and lowered when compared with the original values. This

implies that all the four models could be applied to the ColorCurve paper samples for the

inter-instrumental agreement. Of the four models, the R-Model shows the best

performance in the inter-instrumental agreement for the MATT tiles measured using the

specular component excluded mode. This was because the ColorCurve paper samples

are matt in nature, thus the percentage improvement was better when compared with the

other three models.
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Table 7.13, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Excluded Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 5.326 4.957
Minimum 0.290 0.275
Sum 239.200 173.600 27.419
Average 0.598 0434 27.419

Table 7.14, Inter-Instrumental Agreement In Terms Of AE Using GLOSSY Tiles Measured
Using Specular Component Included Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 4.115 3.724
Minimum 0.520 0.500
Sum 272.800 180.400 33.871
Average 0.682 0.451 33.871

Table 7.15, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured
Using Specular Component Excluded Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 5.326 4.627
Minimum 0.290 0.276
Sum 239.200 152.400 36.358
Average 0.598 0.381 36.358
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Table 7.16, Inter-Instrumental Agreement In Terms Of AE Using MATT Tiles Measured
Using Specular Component Included Mode R-Model CE-2180 Vs CE-7000A To Test The
Performance Of Selected ColorCurve Paper Samples

Original AE Corrected AE % Improvement
Maximum 4.115 3.724
Minimum 0.520 0.500
Sum 272.800 179.600 34.229
Average 0.682 0.449 34.229

From the above four tables (Table 7.13 to Table 7.16), which show the results for the

inter-instrumental agreement of the paper samples when the R-Model was applied, it

may be seen that the colour differences between the two spectrophotometers CE-2180

and CE-7000A were also corrected and lowered when compared with the original values.

This implies that all the four models could be applied to the ColorCurve paper samples

for the inter-instrumental agreement. Of the four models, the R-Model showed best

performance in the inter-instrumental agreement when the MATT tiles were measured

using specular component excluded mode. Since the ColorCurve paper samples are matt

in nature, the percentage improvement was correspondingly better when compared with

the other three models.
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From the results of the textile samples and ColorCurve paper samples tested, it is evident
that the MATT tiles measured using specular component included mode gave the best

performance in the inter-instrumental agreement.
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CHAPTER 8

COMPARISON OF THE R-MODEL WITH OTHER

INTER-INSTRUMENTAL AGREEMENT MODELS

8.1 Introduction

8.2 Comparison Of The R-Model With Other Inter-instrumental

Agreement Models Using Tiles

83 Comparison Of The R-Model With Other Inter-instrumental

Agreement Models Using Textile Samples And Paper Samples

8.4 Conclusion

8.1 Introduction

In this chapter, the comparisons are drawn between the various mathematical models.
The comparisons include MATT tiles, textile and paper samples which measured using

specular component excluded mode.
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8.2 Comparison Of The R-Model With Other Inter-instrumental

Agreement Models Using Tiles

As discuss in Section 2.7, past research has yielded few inter-instrumental agreement

models, and only two are commonly known, these being:

i). Berns and Petersen’s Model

ii) Morovic's Model — Method 11

The results in Chapter 6 showed that the MATT tiles measured using specular
component excluded model demonstrate the best performance among the different
models. The general comparison using MATT Tiles measured under specular
component excluded Model among R-Model., Berns and Petersen’s Model and

Morovic's Model ~ Method H are shown as follows:
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Table 8.1: Inter-instrument Agreement In Terms Of AE Using 12 MATT BCRA-NPL Series
I Tiles Using Specular Component Excluded Mode (SF-600 vs CE-70004 )

Luo’s Model — Method 11 Berns and Petersen’s Model R Model
Tiles Un-comrected  Corrected AE % Improvement  Corrected AE % Improvement  Corrected AE % Improvement
AE

Pale Grey 0.577 0478 17.226 1.005 -40.311 0.094 83.709
Middle Grey 0.433 0.393 9.450 0. 299 31.1582 0.066 84.793
Diff. Grey 0.419 0.375 10.564 0.243 41.934 0.069 83.532
Decep Grey 0.209 0.173 17.048 0.209 0.027 0.092 55.981
Deep Pink 0.649 0.056 91.373 0.068 89.510 0.086 86.749
Red 0.711 0.115 85.251 0.138 82.288 0.067 90.577
Orange 0.909 0.022 94.669 0.049 88.262 0.076 91.639
Bright Yellow 0.716 0.092 89.185 0.111 86.988 0.242 66.201
Green 0.854 0.110 74.561 0.166 61.753 0.159 81.382
Diff. Green 0.78 0.374 58.906 0.492 45919 0.234 70.000
Cyan 0.923 0.201 65.126 0.286 50.413 0.169 81.690
Deep Blue 0.871 0.421 40.840 0499 29.824 0.241 72.331
Average AE 0.671 0.314 54517 0347 47.313 0.133 79.049
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The Comparison of DE of The MATT Tiles Measured under SCE Mode
By Applying Different Models

1.2¢
o Original DE

® B & A Modal |
O Luo's Model |
|0 RNModel |

0.8

0E 0.6 12
0.4

0.2

PaleGrey Midde DIf.Grey Deep DoepPick Red  Orage Bdgh  Green DIt c
Gaey Grey Yallow Green

Tiles

Figure 8.2 The Comparison Of The DE For MATT Tiles Measured Using Specular
Component Excluded Mode

Based on the results in Table 8.1 and Figure 8.1, it may be concluded that after
applying the different mathematical models to the MATT tiles, the colour difference is
lowered than that of the original colour difference. R-Model shows the best
performance among the three models. The overall improvement of R-Model is about

80% which is better than the rest two models.
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8.3 Comparison Of The R-Model With Other Inter-Instrumental

Agreement Models Using Textile Samples And Paper Samples

As discussed in section 7.2 and 7.3, the R-Model showed the best corrective
performance in inter-instrumental agreement in terms of AE for both the textile
samples and ColorCurve paper samples for the MATT tiles measured using specular

component excluded mode.

The Distribution of DE of the Textile Samples by Applying Different Models

| @ Dnginl DE

| @ BaP Modal DE
aMoravie. madal DE

jafA-Modet DE

=3

No. of Samples

is;.m m_,‘.!;"_"i e s ""‘.T!: Ls ——-:h-—

DE Range

Figure 8.2 The Distribution Of The DE For The Textile Samples By Applying To Different
Models Using Matt Tiles Measured Using Specular Component Excluded Mode
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Table 8.2 The Distribution Of The DE For The Textile Samples By Applying To Different
Models Using Matt Tiles Measured Using Specular Component Excluded Mode

AE Range Original AE | B&P Model AE | Morovic's model AE | R-Model AE

. 0l 0 il 2 2 |

0.1-0.2 9 13 15 26 |

0203 12 16 16 25 |
0.3-0.4 23 15 14 24
0.4-0.5 5 17 16 3
0.5-0.6 16 10 13 13
0.6-0.7 20 16 13 5
0.7-0.8 9 15 12 8
0.8-0.9 5 8 10 2
0.9-1.0 4 6 3
1.0 or above 13 8 5

70 -

®BAP Mode DE
O Morovicl. modd OE
O R:-Model DE

[n’ Origina DE |

60 4

50 1

40

e S R

No. of Samples

30 11

20 B

1071

TR OIS S

0-0.1 0402 0203 0304 0405 0508 08.07 0708 0809 08-10 L0 or
above

DE Range

Figure 8.3 The Distribution Of The DE For The Paper Samples By Applying To Different
Models Using Matt Tiles Measured Using Specular Component Excluded Mode
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Table 8.3 The Distribution Of The DE For The Paper Samples By Applying To Different
Models Using Matt Tiles Measured Using Specular Component Excluded Mode

AE Range Original AE | B&P Model AE | Morovic's model AE | R-Model AE
0-0.1 o 3 4 4
0.1-0.2 15 18 19 22
0.2-0.3 22 32 35 30
0.3-04 34 45 42 40
0.4-0.5 45 48 50 51
0.5-0.6 48 45 50 48
0.6-0.7 55 61 51 59
0.7-0.8 45 40 54 56
0.8-09 42 66 50 48
09-1.0 50 32 36 32
1.0 or above 44 10 9 10

From Figure 8.2 and Table 8.2, it may be seen that the colour difference value AE
shifted to the left hand side, ie. the lower colour difference range, when the
mathematical models were applied. When the performance of the three models was
compared, it was found that the “R-Model” was better than the other two

inter-instrumental mathematical models.

Figure 8.3 and Table 8.3 also indicates that the colour difference value AE shifted to
the left hand side, i.c.. the lower colour difference range, when the mathematical
models were applied. Of the three models. the “R-Model” showed the best

performance in this case.
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8.4 Conclusion

In this chapter, the test results and the performance of the “R-Model” were described.

Basically, the *R-Model” was demonstrated to be effective in the experimental work

on inter-instrumental agreement across a range of samples including tiles, textile

samples and Colorcurve paper samples correlations. The concept of the “R-Model™

was based on bandpass error correction. In 1987, E.I. Stearns proposed the influence of

spectral bandpass on the accuracy of tristimulus values. The fundamental premise of

the “R-Model” is based on Stearns’ concept but the coefficients of Stearns' correction

model were fixed whereas the “R-Model” has flexible coefficients in order to fit

different materials calculation. For this reason, the performance of the “R-Model” was

better than that of the other, earlier models.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Introduction

9.2 Conclusions Of The Research Issue

9.3 Recommendations

9.1 Introduction

In this chapter conclusions are drawn about the significance of the research project and

suggestions are made for future research and development activities.

9.2 Conclusions Of The Research Issue.

In general, spectrophotometers perform at a finite level of accuracy but as
electron-mechanical-optical devices, they exhibit measurement errors relative to a
theoretically error-free instrument that users must accept. If such measurement errors
can be quantified and corrected, the accuracy of measurement and the inter-instrumental

agreement can be further enhanced. Thus colouring by numbers can be successfully
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used in digital colour communication.

At the outset of the research, it was found that the inter-instrumental agreement of the
three selected spectrophotometers was unsatisfactory because the average colour
difference was larger than 0.5 AE*,;, units. The results imply that the origin of the errors
and also the options for improement should be investigated: hence the mathematical
models for the inter-instrumental agreement, which should be applied in order to
improve the inter-instrumental agreement. Once the inter-instrumental agreement of the
spectrophotometers has been improved, the inter-instrumental agreement and

non-physical sample colour communication can be further enchanced.

After the application of the “L-Model”, the colour measurement results improved but
the results were not significant. Nevertheless this mathematical model gave a very good
indication that mathematical correction was a good method to control the colour

measurement results.

The L-Model represented a first stage in the development of the successful model for the

inter-instrumental agrecment. According to the concept of bandpass correction and
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using the multi linear regression method, a powerful and robust mathematical model,

this being termed the R-Model, was developed.

The R-Model was based on the concept of the correction of the bandpass error. When
applied to the experimental results. it performed well in the inter-instrumental
agreement case, the average percentage improvement having been approximately 90%,

which is better than the other well developed models when tested with the CCS-II tiles.

In general, when the R-Model was used to test textile samples, the colour measurements
also showed an improvement when compared with the other well known mathematical
models. Such an improvement of the colour measurement in the spectral data will lead to
improvements in the global colour communication between designers, coloration

companies and buyers.

In the study of the inter-instrumental agreement, the variation of the colour
measurements was very high, from 0.575 to 0.854 CIELAB AE units when using
different spectrophotometers. Because of this poor inter-instrumental agreement,

different mathematical models were developed to improve the results. An empirical
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model, named the “L-Model” was developed to improve the inter-instrumental
agreement between spectrophotometers up to 62% based on the ceramic tile results. In
addition. the “R-Model” was also devcloped, based on the analysis of spectral data from
400 — 700 nm and the concept of bandpass correction using the multi linear regression
method. The performance of the “R-Model” was better than that of the “L-Model” and
also some of the previously developed mathematical models. The improvement of the
inter-instrumental agreement was found to be as high as 90% for the ceramic tiles. When
the models are applied to the measurement of the coloured samples, the
inter-instrumental agreement can be improved accordingly. The inter-instrumental
agreement in spectral data should benefit the global colour communication between
designers, coloration companies and buyers, and also improve non-physical sample

communication.
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9.3 Recommendations

The following recommendations are made for further study.

9.3.1 Calibration Sample

Besides the CCS-II tiles, other standard materials. such as paper samples or textile
samples, can be used for calibration purposes, thus the coverage of the colour range will

be more than only twelve tiles.

9.3.2 Quantifying Measurement Error for Hardware

The accuracy of the measurements achieved using spectrophotometers was affected by
many different factors, such as sample preparation. bandpass error, photometric error,
photometric zero error etc. In this project, the instrument profile was quantified, but for
other errors, further quantification is required as they are very important in colour
measurement. The design of the spectrophotometers was also one of the important
parameters affecting the colour measurement result. It also requires quantification in

order to find out the causes of the measurement errors.
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9.3.3 Other Mathematical Models

In addition to the multi-linear regression method. there are many other different
mathematical methods, such as simple and multi non-linear regression methods which
can be used to develop new mathematical models. If a simple yet powerful mathematical
method can be used., the inter-instrumental agreement for colour communication will be
further enhanced in addition to the global colour communication among the designers,

merchandisers and buyers.

Page 164



Reference

13.
14.
15.
16.

17.

18.

19.

REFERENCE

A. R. Robertson, The CIE 1976 Color Difference Formulae, Color Research and
Application, Vol. 2, P. 7 - 1], Spring 1977

A.R. Robertson, Diagnostic Performance Evaluation of Spectrophotometers,
Advances in Standaeds and Methodology in Spectrophotometry, P.277-286, 1987
Absolute Measurement of Reflectance, A New Precise Technique, Color
Engineering, P. 38-39

Adams, E.Q. X-Z Planes in the 193] ICI system of Colorimetery, J. of Opt. Soc.
Am. 32: P. 168-178, 1942

Anni Berger-Schunn, Practical Color Measurement, John Wiley & Sons, Inc,
1994

ASTM E 925 - 83 (Reapproved 1994), Standard Practice for the Periodic
Calibration of Narrow Band-Pass spectrophotometers.

ASTM Standards on Color and Appearance, 1996

Berns R et al, An Abridged Technique to Diagnose Spectrophotometric Errors,
Color Research and Application, Vol. 22, No. 1, P.51-60, Feb. 1997

Berns R et al, Empirical Modelling of Systematic Spectrophotometric Errors,
Color Research and Application, Vol. 13, No. 4, P.243-256, Aug. 1988

Brill, M.H. Suggested Modification of CMC Formula for Acceptability, Col. Res.
Appl. 17: P. 402-404, 1992

. British standard method for calculation of small color difference, BS 6923: 1988.

Burmham, R.W. A colorimeter for research in color vision, Am.J. Physiol. 65: P,
603, 1952

C. Burgess and K. D. Mielenz, Advances in Standards and Methodology in
Speclrophotomctry, Analytical Spectroscopy Library, 1987

Ceramic Colour Stadnards, British Ceramic Research Associatin Ltd.

Ceramic Colour Standards Series I1, British Ceramic Research Associatin Ltd.
Chamberlin, GJ. and Chamberlin, GJ Color, its measurement, computation and
application, Heyen, London, 1980

Chong T.F, Instrumental Measurement and Control of Colour, Review of
Progress of Coloration, Vol. 18, P. 47-55, 1988

CIE Publishion No 15,2 (TC-1.3), Colorimetry, Offical Recommendation,
Intemational Commission on Numination, Wien 3. Bezirk, Kegelgass 27/1,
Austria, 1986, 2™ ed.

Clarke, FJ.J., MacDonald, R. and Rigg, B. (1984). Modification to the JPC79
Formula, J. Soc. Dyers Col. 100: P 128-132, 1978




Reference

20.
21

22.

27.

28.

29.
30.

31.

33.

34.

35.

36.

37.

Colour at the Centre of Everything, International Dyer, P. 9-14, Jan 1997
Connolly C et al, Colour Measurement by Video Camera, Journal of the Society
of Dyers and Colourists, Vol. 111, P. 373-375, Dec. 1995

Connolly C et al, The Use of Video Camera for Remote Colour Measurement,
Journal of the Society of Dyers and Colourists, Vol. 112, P. 40-43, Feb. 1996

- D. C. Rich et al, Evaluation of the Long -Term Repeatability of Reflectance

Spectrophotometers, Spectrophotometry, Luminesence and Colour, P.137-153,
1995

. D. C. Rich, Colorimetric Repeatability and Reproducibility of

CHROMA-SENSOR Spectrocolorimeters, Die Farbe 37, P.247-261, 1990

. D. C. Rich, The Chroma Sensor CS-5: A Tradition of Improved Performance,

Color Research and Application, Vol. 16, No. 5, P.322-336, Oct 1991

D. Scott Reininger, Recent Developments in Portable Color Measurement
Instruments and Applications in the Textile Industry, AATCC 1994 International
Conference and Exhibition Book of Papers, P. 273 - 280

D. Scott Reininger, Textile Application for Hand-Held Color Measuring
Instruments, Textile Chemists and Colorists, Vol. 29, No. 2, P. 13 - 17, February
1997

Dan Randall, Instruments for the Measurement of Color, Textile Chemist and
Colorist, Vol. 30, No. 2, P. 20 - 26, February 1998

Datacolor International, Spectraflash® 600 PLUS Operators Manual, April 1997
Development of Standards for Inter-instrument Calibration of spectrophotometer
in Computer Colour Systems, Colourage, P. 29 - 34, December 1995

Donaldson, R. A colorimeter with six matching stimuli, Proc. Phys. Soc.
(London) 59: P. 554, 1947

Donaldson, R. A trichromatic colorimeter, Proc. Phys. Soc. (London) 47: P.1068,
1927

E. I Stearns and R. E. Stearns, An Example of a Method for Correcting Radiance
Data for Bandpass Error, Vol. 13, No. 4, P. 257 - 259, August 1988

E. L. Steams, Influence of spectrophotometer Slits on Tristimulus Calculation,
Color Research and Application, Vol. 6, No. 2, P. 78 — 84, Summer 1981

E. I. Steamns, The Influence of Spectral Bandpass on Accuracy of Tristimulus
Data, Color Research and Application, Vol. 12, No. 5, P 282 - 284, October,
1997

Ellen C. Carter et al, Material Standards and Their Use in Color Measurement,
Color Research and Application, Vol. 4, No. 2, P.97-100, Summer 1979

F. J. J. Clarke and PS. Samways, The Spectrophotometric Properties of a
Selection of Ceramic Tiles, National Physical Laboratory Report MC2, August




Reference

38.

39.

45.

47.

48.

49.

50.

51.

52.

53.

1968

F. J. J. Clarke et al, Development of a New Series of Ceramic Colour Standards,
Journal of the Society of Dyers and Colourists, Vol. 97, P.503-504, Dec. 1981

E. J. J. Clarke, Problem of Spectrofluorimetric Standards for Reflection and
Colorimetric Use, National Physical Laboratory Report MOM 12, August 1968
F. W. Billmeyer, Jr et al, Assessment of Color-Measuring Instruments, Color
Research and Application, Vol. 6, No. 4, Winter 1981

. F. W. Billmeyer, Jr et al. Instrumentation for Colour Measurement and its

Performance, Golden Jubilee of Colour in the CIE, The Society of Dyers and
Colourists, Bradford, England, 1981, P98-112

. E W. Billmeyer, Jr. and H. Hemmendinger, Instrumentation for Color

Measurement and its Performance, Golden Jubillee of Colour in the CIE, P. 98 —
112, 1981

. Fairchild, M.D. and Pirrota, E. Predicting the Lightness of Chromatic Object

Colors using CIELAB, Col. Res. Appl. 16: P. 385-392, 1991

Fenn R et al, The Use of Non-physical Standards in Colour Communication and
Matching, Journal of the Society of Dyers and Colourists, Vol. 113, P.56-58, Feb.
1997

Fred W. Billmeyer, Jr. and Assessment of Color-Measuring Instruments, Colour
Research and application, Vol. 6, No. 4, P. 195 - 202, Winter 1981

Fred W. Billmeyer, Jr., An Objective Approach to Coloring, Color Engineering, P.
10 - 13, September, 1963

Fred W. Billmeyer, Jr., The Precision of Spectrophotometry As Practiced in
Industry, Color Engineering, Vol. 3 No. 4, P. 16 — 20, July — august, 1965

Fred W. Billmeyer, Jr., The Present and Future of Industrial Color Measurement,
Color Engineering, Vol. 4, No. 4,P. 14 — 18, July — August 1996

Guild J. A trichromatic colorimeter suitable for standardization work, Trans. Opt.
Soc. (London) 27: P. 106, 1925

H. P. Lee et al, Calibrating Spectrophotometers Using Neural Networks, SPIE
Vol. 3300, P. 274-282, 1998

H. S. Shan and R. S. Gandhi, Instrumental Colour Measurement and Computer
Aided Colour Matching for Textiles, Mahajan BookDistributors, 1990

Henry Hemmendinger, Colorimetric Information and Colorimetric Errors, Color
Technology in the Textile Industry. P. 2 - 23

Hugh R. Davidson and Henry Hemmendinger, Specification and Control of
Color, Color Engineering, P. 15 - 28, April, 1963

. Hugh S. Fairman and Henry Hemmendinger, Stability of Ceramic Color

Reflectance standards, Color Research and Application, Vol. 23, No. 6, P. 408 -

e t—
[}



Reference

55.

56.

57.

58.

59.

61.

62.

63.

65.

67.

68.

69.

70.

71.

72.

415, December 1998

Isadore Nimeroff, The Variability of Color Measurement, Color Engineering, P.
24 —44, March - April, 1967

J. Anne Compton, The Thermochromic Properties of the Ceramic Colour
Standards, Color Research and Application, Vol. 9, No. 1, P. 15-22, Spring 1984
James R. Vasconcellos, Supply Chain Management of Color and appearance:
Evolution vs. Revolution, AATCC Review P. 14 - 37, June, 2001

James Rodgers et al, A Comparative Study of Color Measurement
Intstrumentation, Color Research and Application, Vol. 19, No. 5, Oct 1994
James T. DeGroff, Developments In Color Instrument Design Utilizing LED
Technology For Textile Applications, AATCC 1995 International Conference and
Exhibition Book of Papers, P. 477 — 481

Joanne C. Zwinkels, Colour-measuring Instruments and Their Calibration,
Display, Vol, 16, No. 4, P. 163 - 171, 1996

Joanne C. Zwinkels, Errors in Colorimetry Caused by the Measuring Instrument,
Textile chemist and Colorist, Vol. 21, No. 2, P. 23 - 29, February 1989

Konrad Hoffmann, Chromatic Integrating-Sphere Error In  Tristimulus
Colorimeters, Journal of Color & Appearance, Vol. I, No.2, P. 16 - 41,
September/ October 1971

L. Reniff, Transferring the 45/0 Spectral Reflectance Factor Scale, Color
Research and Application, Vol. 19, No. 5, P.332-340, Oct 1994

Lee, R.L. Jr,, Col. Res. Appl., 13: P. 180-186, 1988

Lovibond, J.W. The tintometer, a new instrument ...measurement of color, J. Soc.
Dyers Col. III (2) 26 Dec, 1887

Lueo, M.R. and Rigg, B. Uniform color space based on the CMC (Ixc)
color-difference formula, J. Soc. Dyers Col. 102: 164-171, 1996

Luo, M.R. and Rigg, B. BFD (l:c) Color Difference Formula, Part 1.J.Soc. Dyer
Col., 103: P. 86-94, 1987

M. D. Fairchild et al, Thermochromism of Ceramic Reference Tiles, Applied
Optics, Vol. 24, No. 21, P.3432-3433, Nov. 1985

MacAdam, D.L. Loci of constant hue and brightness determined with various
surrounding colors, J. Opt. Soc. Am. 40: P. 589, 1950

Macbeth® COLOR-EYE® 2180 Spectrophotometer Operation Manual, February
1996

Macbeth® COLOR-EYE® 7000A Spectrophotometer Operation Manual, October
1996 ‘ '
MacDonal, R. Industrial pass/fail Color Matching Part I1, J. Soc. Dyers. Col. 96:
P. 418-433, 1980

1Y



Reference

73.

74.

75.

76.

77.
78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

9l1.

MacDonald, R. and Smith, K.J. CIE94-a new color difference formula, J. Soc.
Dyer Col., 111: P. 376-379, 1995

MacDonald, R. Industrial Pass/ Fail Color Matching Part [, J. Soc. Dyers. Col.
96: P. 372-376, 1980

Malkin F. et al, The BCRA-NPL Ceramic Colour Standards, Series IT — Master
Spectral Reflectance and Thermochromism Data, Journal of the Society of Dyers
and Colourists, Vol. 113, P.84-94, Mar. 1997

McDonald, R. Industrial pass/fail color matching, part III. Development of a
pass/fail formula for use with instrumental measurement of color difference,
J.Soc.Dyers.Col., 96: P. 486-46, 1980

McLaren, K. In: “AIC Color 77, Bristol: Adam-Hilger, 503 pp.

Nayatani, Y., Umemura, Y., Sobagachi, H., Takahama, K. and Hashimoto, K.
Lightness Perception of Chromatic Object Colors, Col. Res. Appl. 16: P. 16-25,
1991

Norusis M. I., SPSS Advanced Statistics™ 6.1, SPSS Inc. - Chicago, 1994
Norusis M. J., SPSS® for Windows™ Base system User's Guide Release 6.0,
SPSS Inc. - Chicago, 1993

Norusis M. J., The SPSS Guide to Data Analysis for SPSS / PC+TM, Second
Edition, SPSS Inc. - Chicago, 1991

NPL (National Physical Laboratory), Optical Radiation Measurement Newsletter,
issue 1. Spring, 1996

Oglesby, S. The effectiveness of CIE94- compared with CMC equation, J. Soc.
Dyer Col., 111: P. 380-382, 1995

P. Morovic, H. Xu and M. R. Luo, Inter-Comparison of Colour Measuring

- Instruments

Patrick T. F Chong, Colorimetry for Textile Applications, Modern Textile
Characterisation Methods, P. 355 391, 1996

Patrick T. F. Chong, Reproducibility of Color Difference Measurements On
Textile Samples, AATCC 1993 International Conference and Exhibition Book of
Papers, P. 323 - 332

Proceedings of the Eighth Session (Cambridge, English, 1931), International
Commission on lllumination, Wien 3. Bezirk, Kegelgass 27/1, Austria

R. Seve, New Formula for the computation of CIE 1976 Hue Difference, Colour
Research and Application, Vol. 16, P. 217 - 218, June, 1991

R. W. G. Hunt, Measuring Colour (2" Edition), Ellis Horwood Limited, 1991
Randall D, Instruments for the Measuring of Color, Textile Chemist and Colorist,
Vol. 30, No. 2, P.20-26, Feb. 1998

Reining D.S., Textile Applicatins fr Hand-Held Colour Measuring Instruments,




Reference

92.

93.

9s.

96.

97.

98.

100.

101.

102.

103.

Textile Chemist and Colorist, Vol. 29, No.2, P. 13-17, Feb. 1997

Robert T. Marcus and Fred W. Billmeyer, Jr, Statistical Study of
Color-Measurement Instrucmentation, Applied Optics, Vol. 13, No.6, P. 1519 -
1531, June 1974

Robert T. Marcus, Long-Term Repeatability of Color-Measuring Instrumentation:
Storing Numerical Standards, Color Research and Application, Vol. 3, No. 1,
spring 1978

Robert Willis, Instrumentation for Color Measurement, AATCC Workshop,
Color Measurement Principles and the Textile Industry, 1988

Roderick McDonald, Color Communication in the 90s, AATCC 1991
International Conference and Exhibition Book of Papers, P. 148 - 152

Roderick McDonald, Colour Physics for Industry (2* Edition), Society of Dyers
and Colourists, 1997

Roderick McDonald, Colour Physics for Industry, Society of Dyers and
Colourists, 1987

Roland Derby, Studies of Muminating and Viewing Conditions in Colorimetry of
Reflecting Materials, Color Engineering, P. 14 - 23

Ruth Johnston, Analysis and Description of Color With Spectrophotometry,
Color Engineering, Vol. 3, No. 3, P. 1218, May - June 1965

Ruth M. Johnston and Robert P. Ericson, Control of Color Standards, Color
Engineering, Vol. 2, No. 11 - 12, P. 10 - 23, November — December 1964

Ruth M. Johnston, and et. al., Preparation and Use of Stable Secondary Standards
for Colorimetry, Color Engineering, Vol. 6 No. 2, P. 34 — 38, March - April, 1968
Ruth M. Johnston, Color Measuring Instruments: A Guide To Their Selection,
Journal of Color and Appearance, Vol. 1 No. 2, P. 27 — 38, September/ October,
1971 ‘

Seve, R. New Formula for Computation of CIE 1976 Hue Difference, Col. Res.
Appl. 16: P. 217-218, 1991

104. Stroke, M. and Brill, M.H. Col. Res. Appl. 17: P. 410-411, 1992

105.

Verill, JF and et al., New Methods of Disgonsing Errors in Colour Measuring
Instruments, Die Fabre, Vol. 39, P. 285 - 295, 1993

106. Verrill F. J. et al, European Project on Intercomparison of Colour Measurement,

107.

108.

EUR14982EN, 1993

Verill F. J. et al, Intercomparison of Colour Measurements, NPL
Spectrophotometry and Colorimetry Club, NPL Report QU 113, 1995

Wi, K. Col. Res. Appl., 19: (1994), P. 273, 1994

109. Wright, W.D. A trichromatic colorimeter with spectral stimuli, Trans. Opt. Soc.

(London) 29: P. 225, 1927

vi



Reference

110. Wyszecki, G Matching color differences, J. Opt. Soc. Am. 55: P. 1319-1324,
1965

I11. Wyszecki, G Reanalysis of the NRC field trial of color-matching functions, J.
Opt. Soc. Am. 54: P. 710-714, 1964




Appendix |

APPENDIX I:

The Coefficient m, n, 0 and q used in R-Model.

viii



Appendix |
Table 1: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-II GLOSSY Tiles
under the condition of Specular Component Excluded SF-600 vs CE-7000A

Wavelength m n o q
400 0.000 1.117 -0.951 -0.097
410 -0.058 1.198 -0.111 -0.064
420 0.000 1.125 -0.095 -0.098
430 0.000 1.164 -0.136 -0.046
440 0.000 1.145 -0.118 -0.041
450 0.000 1.131 -0.106 -0.033
460 0.000 1.121 -0.097 -0.023
470 0.000 1.127 -0.105 -0.008
480 0.000 0.944 0.080 -0.040
490 0.086 1.017 -0.079 -0.041
500 0.089 1.000 -0.065 0.035
510 0.052 1.043 -0.070 -0.043
520 0.067 1.008 -0.053 -0.029
530 0.068 0.990 -0.037 -0.027
540 0.097 0.954 -0.033 -0.016
550 0.106 0.951 -0.040 -0.011
560 0.000 0913 0.106 -0.034
570 0.000 0.937 0.081 -0.018
580 0.000 1.141 -0.126 0.057
590 0.047 1.044 -0.075 0.030
600 0.000 1.187 -0.017 0.069
610 0.198 0.819 0.000 0.036
620 0.146 0.872 0.000 0.028
630 0014 0.877 0.000 0.013
640 0.136 0.880 0.000 0.006
650 0.116 0.910 0.000 0.022
660 0.093 0.925 0.000 -0.001
670 0.000 1.016 0.000 -0.047
680 0.000 1.014 0.000 -0.046
690 0.263 0.747 0.000 0.046

700 0.483 0.000 0.520 0.244
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Table 2: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-11 GLOSSY Tiles
under the condition of Specular Component Included SF-600 vs CE-7000A

Wavelength m n o q
400 0.000 1.072 -0.060 -0.028
410 -0.081 1.224 -0.125 -0.040
420 0.569 0.000 0.453 -0.039
430 0.575 0.000 0.448 -0.075
440 0.576 0.000 0.445 -0.142
450 0.598 0.000 0.424 -0.221
460 -0.016 1.143 -0.112 -0.030
470 0.000 1.122 -0.107 -0.031
480 -0.060 1.076 0.000 -0.060
490 0.086 1.013 -0.083 -0.074
500 0.092 0.993 -0.068 -0.096
510 0.049 1.043 -0.077 -0.078
520 0.069 1.001 -0.055 -0.071
530 0.064 0.994 -0.046 -0.074
540 0.090 0.960 -0.038 -0.064
550 0.106 0.949 -0.043 -0.067
560 0.000 0.111 0.901 -0.071
570 0.055 1.006 -0.051 -0.052
580 0.058 1.023 -0.069 -0.040
590 0.067 0.999 -0.057 -0.014
600 0.000 1.176 -0.167 -0.029
610 0.201 0.810 0.000 -0.032
620 0.149 0.862 0.000 -0.024
630 0.143 0.867 0.000 -0.024
640 0.143 0.866 0.000 -0.035
650 0.119 0.891 0.000 -0.024
660 0.091 0.919 0.000 -0.041
670 0.000 1.009 0.000 -0.067
680 0.000 1.007 0.000 -0.073
690 0.241 0.763 0.000 0.009

700 0.050 0.500 0.000 0.249
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Table 3: The coefficient m, n, 0, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-11 MATT Tiles
under the condition of Specular Component Excluded SF-600 vs CE-7000A

Wavelength m n o q
400 0.000 1.132 -0.111 -0.210
410 0.000 1.108 -0.080 -0.207
420 0.000 1.124 -0.097 -0.195
430 0.157 0.870 0.000 -0.164
440 0.142 0.883 0.000 -0.146
450 0.140 0.883 0.000 -0.161
460 0.124 0.899 0.000 -0.155
470 0.144 0.878 0.000 -0.154
480 0.071 0.095 0.000 -0.158
490 0.065 1.046 -0.091 -0.119
500 0.069 1.037 -0.085 -0.141
510 0.041 1.064 -0.085 -0.129
520 0.070 1.010 -0.060 -0.126
530 0.076 0.987 -0.044 -0.124
540 0.092 0.970 -0.046 -0.088
550 0.168 0.847 0.000 -0.124
560 0.113 0.902 0.000 -0.084
570 0.107 0.907 0.000 -0.069
580 0.125 0.888 0.000 -0.060
590 0.140 0.874 0.000 -0.053
600 0.188 0.825 0.000 -0.028
610 0.143 0.869 0.000 0.018
620 0.130 0.882 0.000 0.017
630 0.109 0.903 0.000 -0.006
640 0.094 0917 0.000 -0.009
650 0.091 0.920 0.000 -0.004
660 0.000 1.095 -0.083 -0.004
670 0.000 1.011 0.000 -0.045
680 0.000 1.009 0.000 -0.009
690 0.000 1.007 0.000 -0.183

700 0.510 0.499 0.000 0.340
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Table 4: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-11 MATT Tiles
under the condition of Specular Component Included SF-600 vs CE-7000A

Wavelength m n o q
400 0.000 1.116 -0.105 -0.136
410 0.000 1.090 -0.073 -0.164
420 0.000 1.124 -0.106 -0.183
430 0.159 0.858 0.000 -0.162
440 0.145 0.871 0.000 -0.160
450 0.136 0.877 0.000 -0.161
460 0.116 0.896 0.000 -0.136
470 0.151 0.863 0.000 -0.167
480 0.085 0.931 0.000 -0.167
490 0.100 0.975 -0.063 -0.145
500 0.093 0.984 -0.063 -0.151
510 0.057 1.206 -0.071 -0.129
520 0.000 0.895 0.119 -0.125
530 0.107 0.904 0.000 -0.164
540 0.072 0.991 -0.054 -0.126
550 0.063 1.028 -0.083 -0.097
560 0.000 1.126 0.118 -0.078
570 0.104 0.905 0.000 -0.122
580 0.083 0.983 -0.056 -0.100
590 0.075 0.990 0.057 -0.058
600 0.139 0911 -0.043 -0.049
610 0.016 0.850 0.000 -0.041
620 0.000 0.864 0.145 -0.060
630 0.000 0.885 0.121 -0.037
640 0.121 0.884 0.000 -0.046
650 0.107 0.899 0.000 -0.036
660 0.085 0.920 0.000 -0.040
670 0.060 0.940 0.000 -0.057
680 0.000 1.004 0.000 -0.044
690 0.241 0.760 0.000 0.040

700 0.482 0.512 0.000 0.304
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Table 5: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-1I GLOSSY Tiles
under the condition of Specular Component Excluded CE-2180 vs CE-7000A

Wavelength m n o q
400 0.000 0.907 0.0862 -0.0108
410 0.000 0.920 0.07505 -0.104
420 0.000 0.913 0.0886 -0.0614
430 0.000 0.906 0.09773 -0.120
440 -0.102 1.104 0.000 -0.0825
450 -0.0918 1.094 0.000 -0.0601
460 -0.100 1.104 0.000 -0.0422
470 -0.117 1.122 0.000 -0.0418
480 -0.0968 1.102 0.000 -0.0488
490 -0.127 1.135 0.000 -0.0293
500 -0.110 1.111 0.000 -0.0374
510 -0.0979 1.101 0.000 -0.0214
520 -0.087 1.090 0.000 -0.0822
530 -0.0486 1.057 0.000 -0.0651
540 -0.0557 1.064 0.000 -0.0952
550 -0.0695 1.075 0.000 -0.0809
560 0.000 0.997 0.02991 -0.136
570 0.000 0.973 0.03471 -0.105
580 0.000 0.945 0.06327 -0.167
590 -0.074 1.081 0.000 -0.155
600 -0.116 1.122 0.000 -0.0733
610 -0.0723 1.080 0.000 -0.146
620 -0.0685 1.077 0.000 -0.134
630 -0.107 1.114 0.000 -0.118
640 -0.131 1.140 0.000 -0.246
650 -0.144 1.155 0.000 -0.0609
660 -0.128 i.140 0.000 -0.279
670 0.000 0.786 0.227 -0.268
680 0.000 0.769 0.247 -0.335
690 -0.359 1.380 0.000 -0.410

700 0.000 1.023 0.000 -0.321
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Table 6: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-II GLOSSY Tiles
under the condition of Specular Component Included CE-2180 vs CE-7000A

Wavelength m n o q
400 0.000 0.957 0.0484 -0.111
410 -0.0558 1.065 0.000 -0.116
420 -0.0779 1.078 0.000 -0.0527
430 -0.0988 1.107 0.000 -0.0833
440 -0.101 1.107 0.000 -0.0922
450 -0.0828 1.091 0.000 -0.0684
460 -0.104 1.107 0.000 -0.0441
470 0.000 0917 0.08891 -0.133
480 -0.105 1.109 0.000 -0.0408
490 -0.144 1.147 0.000 -0.0133
500 -0.131 1.143 0.000 -0.135
510 -0.116 1.126 0.000 -0.160
520 -0.0981 1.107 0.000 -0.155
530 -0.0546 1.059 0.000 -0.0285
540 -0.0675 1.075 0.000 -0.121
550 -0.0987 1.109 0.000 -0.058
560 -0.0566 1.069 0.000 -0.221
570 0.000 0.933 0.07939 -0.234
580 -0.0707 1.083 0.000 -0.209
590 -0.102 1.112 0.000 -0.165
600 -0.139 1.151 0.000 -0.195
610 0.000 0.901 0.111 -0.205
620 -0.102 1.112 0.000 -0.173
630 -0.135 1.143 0.000 -0.121
640 0.000 0.828 0.186 -0.245
650 -0.165 1.175 0.000 -0.179
660 -0.161 1.176 0.000 -0.303
670 -0.225 1.240 0.000 -0.286
680 -0.221 1.237 0.000 -0.304
690 -0.274 1.283 0.000 -0.337

700 0.000 1.021 0.000 -0.141
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Table 7: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-11 MATT Tiles
under the condition of Specular Component Excluded CE-2180 vs CE-7000A

Wavelength m n o q
400 0.000 0.933 0.07099 0.187
410 -0.0913 1.095 0.000 0.01656
420 -0.0855 1.093 0.000 0.104
430 -0.104 L.115 0.000 0.03505
440 -0.112 1.122 0.000 0.04694
450 -0.109 I.116 0.000 0.169
460 -0.118 1.128 0.000 0.137
470 -0.120 1.131 0.000 0.128
480 -0.0888 1.102 0.000 0.134
490 -0.130 1.144 0.000 0.138
500 -0.119 1.129 0.000 0.141
510 -0.104 [.115 0.000 0.199
520 -0.0849 1.096 0.000 0.118
530 -0.0583 1.075 0.000 0.140
540 -0.0654 1.082 0.000 0.09268
550 -0.0678 1.082 0.000 0.03527
560 -0.0488 1.063 0.000 0.04185
570 -0.043 1.058 0.000 0.0393
580 -0.0604 1.075 0.000 0.009935
590 -0.0691 1.084 0.000 0.002368
600 -0.112 1.127 0.000 0.0972
610 -0.0556 1.069 0.000 0.159
620 0.000 0.975 0.04183 0.05131
630 0.000 0.947 0.06727 0.101
640 0.000 0910 0.107 0.01904
650 0.000 0.882 0.134 0.131
660 0.000 1.020 0.000 -0.0042
670 0.000 1.020 0.000 -0.0565
680 0.000 1.022 0.000 -0.00453
690 0.000 0.828 0.197 -0.217

700 -0.311 1.341 0.000 -0.437
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Table 8: The coefficient m, n, o, and q for the EQ. 6.1, 6.2 and 6.3 of the CCS-Il1 MATT Tiles
under the condition of Specular Component Included CE-2180 vs CE-7000A

Wavelength m n o q
400 0.000 0.943 0.06714 0.0027
410 -0.0898 1.101 0.000 0.05033
420 -0.0801 1.084 0.000 0.133
430 -0.089 1.102 0.000 0.04999
440 -0.0989 1.109 0.000 0.05568
450 -0.0902 1.104 0.000 0.09046
460 -0.0997 1.110 0.000 0.09568
470 -0.132 1.144 0.000 0.105
480 -0.104 L.111 0.000 0.187
490 -0.130 1.136 0.000 0.194
500 -0.123 1.141 0.000 0.07708
510 -0.112 1.130 0.000 0.04547
520 -0.0992 1.114 0.000 0.05354
530 -0.0596 1.068 0.000 0.115
540 -0.0625 1.075 0.000 0.110
550 0.000 0.953 0.06575 0.02639
560 -0.0647 1.081 0.000 -0.0126
570 -0.0573 1.073 0.000 0.01328
580 -0.0733 1.091 0.000 0.0145
590 -0.101 1.116 0.000 0.02241
600 -0.148 1.163 0.000 -0.0459
610 -0.101 L.117 0.000 -0.0445
620 0.000 0.917 0.0992 -0.0332
630 0.000 0.878 0.137 0.002278
640 -0.109 1.128 0.000 -0.0624
650 -0.147 1.163 0.000 -0.0142
660 -0.118 1.138 0.000 -0.154
670 0.000 0.864 0.158 -0.241
680 0.000 1.023 0.000 -0.128
690 0.000 0.811 0.211 -0.362

700 -0.273 1.300 0.000 -0.420
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APPENDIX II:
Summary For The Repeatability in terms of AL*, Aa*, Ab*, AC*, AH* and

AE*,; of the CCS-11 Tiles Measured By Different Spectrophotometers
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Table 1: Summary For The Repeatability Of The CCS-II GLOSSY Tiles Measured By Gretag
Macbeth CE-2180 With Specular Component Excluded Mode

Tile AL* da* ab* AC* AH* AE*,
Pale Grey

Sample avge -0.020 0.032 0.i12 0.063 0.098 0.118
Mid Grey

Sample avge 0.022 -0.053 0.120 0.099 0.086 0.133
Diff Grey

Sample avge -0.002 -0.027 0.066 0.066 0.027 0.071
Deep Grey

Sample avge -0.028 -0.159 0.301 0.322 0.110 0.342
Deep Pink

Sample avge 0.017 -0.006 0.271 0.036 0.269 0.272
Red

Sample avge 0.103 0.141 0.783 0.374 0.702 0.802
Orange

Sample avge 0014 0.071 0.259 0.174 0.205 0.269
Bright Yellow

Sample avge 0.001 -0.018 0.186 0.186 0.018 0.187
Green

Sample avge -0.013 -0.156 0.108 0.188 0.026 0.190
Diff Green

Sample avge -0.019 -0.222 0.113 0.249 0.007 0.250
Cvan

Sample avge 0.016 -0019 0.125 -0.095 0.083 0.127
Deep Blue

Sample avge 0.140 -0.678 0412 -0.709 0.356 0.806

Average A E*,, 0.297
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Table 2: Summary For The Repeatability Of The CCS-1l GLOSSY Tiles Measured By Gretag
Macbeth CE-2180 With Specular Component Included Mode

Tile AL* Aa* Ab* AC* AH* AE*,
Pale Grey

Sample avge 0.073 -0.076 0.065 0.100 0.001 0.124
Mid Grey

Sample avge 0.015 -0.047 -0.028 0.033 0.044 0.057
Diff Grev

Sample avge 0.048 -0.047 -0.029 0.010 0.054 0.073
Deep Grey

Sample avge -0.037 -0.017 -0.134 -0.133 0.024 0.140
Deep Pink

Sample avge 0.015 0.091 0.029 0.095 0.010 0.097
Red

Sample avge 0.033 0.192 0.026 0.181 0.069 0.197
Orange

Sample avge 0.105 -0.016 0.250 0.188 0.166 0.272
Bright Yellow

Sample avge 0.096 -0.098 0.074 0.072 0.099 0.156
Green

Sample avge 0.064 -0.123 0.045 0.129 0.023 0.146
Diff Green

Sample avge 0.074 -0.102 -0.051 0.061 0.096 0.136
Cvan

Sample avge 0.036 -0.095 -0.041 0.084 0.060 0.110
Deep Blue

Sample avge -0.025 0.060 -0.135 0.148 0.000 0.150

Average AE*,, 0.140
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Table 3: Summary For The Repeatability Of The CCS-lIl MATT Tiles Measured By Gretag
Macbeth CE-2180 With Specular Component Excluded Mode

Tile aL* da* 4b* AC* 4aH* AE*,,
Pale Grey

Sample avge 0.042 0.054 0.099 0.063 0.094 0.120
Mid Grey

Sample avge 0.094 0.016 0.144 0019 0.144 0.173
Diff Grey

Sample avge 0.135 0.040 0.191 0.100 0.168 0.237
Deep Grey

Sample avge 0.257 0.047 0.252 -0.256 0013 0.363
Deep Pink

Sample avge 0.219 -0.081 0.241 -0.057 0.248 0.336
Red

Sample avge 0.256 -0.107 0.235 0.000 0.258 0.364
Orange

Sample avge 0.140 0.114 0.152 0.040 0.186 0.236
Bright Yellow

Sample avge 0.079 -0.063 -0.005 -0.006 0.063 0.101
Green

Sample avge 0.133 0.101 0.081 -0.058 0.116 0.186
Diff Green

Sample avge 0.114 -0.005 0.099 0.055 0.082 0.151
Cvan

Sample avge 0.156 0.103 0.196 -0.221 0.014 0.271
Deep Blue

Sample avge 0.332 -0.099 0.468 0.474 0.064 0.582

Average AE*,, 0.260
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Table 4: Summary For The Repeatability Of The CCS-II MATT Tiles Measured By Gretag
Macbeth CE-2180 With Specular Component Included Mode

Tile AL* da* 4b* aC* AH* AE*,
Pale Grey

Sample avge 0.047 -0.087 0.073 0.113 0.011 0.123
Mid Grey

Sample avge 0.072 -0.052 0.028 0.047 0.036 0.093
Diff Grey

Sample avge 0.069 -0.053 0.061 0.079 0.017 0.106
Deep Grey

Sample avge -0.008 -0.069 0.022 -0.014 0.071 0.073
Deep Pink

Sample avge 0.020 -0.039 0.070 -0.032 0.073 0.083
Red

Sample avge 0.068 0.071 0.035 0.080 0.000 0.104
Orange

Sample avge 0.125 -0.024 0.189 0.126 0.143 0.228
Bright Yellow

Sample avge 0.052 -0.104 -0.007 -0.010 0.104 0.116
Green

Sample avge 0.057 -0.070 0.004 0.065 0.026 0.090
Diff Green

Sample avge 0.040 -0.134 0019 0.105 0.085 0.141
Cvan

Sample avge 0.058 -0.151 0.068 0.019 0.165 0.175
Deep Blue

Sample avge 0.003 -0.080 -0.015 -0.015 0.080 0.081

Average AE*,; 0.118
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Table S: Summary For The Repeatability Of The CCS-II GLOSSY Tiles Measured By
DataColor SF-600 With Specular Component Excluded Mode

Tile AL* da* Ab* ac* AH* AE*,,
Pale Grey

Sample avge 0.011 0.009 -0.029 0019 0.031 0.038
Mid Grey

Sample avge 0.022 0.013 -0.037 0018 0.037 0.047
Diff Grey

Sample avge 0.012 0.018 -0.047 -0.045 0.025 0.053
Deep Grey

Sample avge 0.055 0.018 -0.071 -0.073 0.041 0.100
Deep Pink

Sample avge 0.030 -0.008 -0.072 -0.017 0.075 0.083
Red

Sample avge 0.050 -0.030 -0.239 -0.170 0.182 0.254
Orange

Sample avge 0015 -0.016 -0.104 -0.095 0.065 0.116
Briglu Yellow

Sample avge 0.010 -0014 0.118 -0.118 0.040 0.125
Green

Sample avge 0.017 0.009 -0.029 -0.021 0.042 0.050
Diff Green

Sample avge 0.028 0.00t -0.029 0.016 0.049 0.059
Cvan

Sample avge 0.026 0.020 -0.014 0.001 0.033 0.042
Deep Blue

Sample avge 0.188 -0.116 0.095 -0.142 0.084 0.250

Average AE*, 0.101
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Table 6: Summary For The Repeatability Of The CCS-1l GLOSSY Tiles Measured By
DataColor SF-600 With Specular Component Included Mode

Tile AL* Aa* Ab* AC* AH* AE*,,
Pale Grey

Sample avge 0.012 0.003 -0.027 -0.012 0.031 0.035
Mid Grey

Sample avge 0.011 0.005 -0.029 -0.005 0.033 0.035
Diff Grey

Sample avge 0.012 0.000 -0.039 -0.028 0.032 0.044
Deep Grey

Sample avge 0.027 -0.006 -0.027 -0.027 0.020 0.043
Deep Pink

Sample avge 0.005 0.018 -0.027 0014 0.038 0.041
Red

Sample avge 0.031 0.022 0.005 0.022 0.035 0.052
Orange

Sample avge 0.019 -0.034 -0.018 -0.035 0.045 0.060
Bright Yellow

Sample avge 0.011 0.029 -0.062 -0.062 0.041 0.075
Green

Sample avge 0.022 -0.023 -0.020 0.012 0.041 0.048
Diff Green

Sample avge 0.027 -0.013 -0.023 0.000 0.040 0.048
Cvan

Sample avge 0.021 -0.002 -0.013 0.012 0.022 0.033
Deep Blue

Sample avge 0.021 0.013 -0.033 0.035 0.025 0.048

Average AE*,, 0.047
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Table 7: Summary For The Repeatability Of The CCS-II MATT Tiles Measured By DataColor
SF-600 With Specular Component Excluded Mode

Tile AL* da* Ab* AC* AH* 4E*,
Pale Grey

Sample avge -0.006 0.019 -0.032 -0.034 0.018 0.039
Mid Grey

Sample avge 0010 0.006 -0.035 0014 0.035 0.039
Diff Grey

Sample avge 0.007 0.014 -0.029 -0.029 0.018 0.035
Deep Grey

Sample avge 0.025 0.009 -0.033 0.031 0.030 0.050
Deep Pink

Sample avge 0.033 0.001 -0.050 -0.004 0.054 0.063
Red

Sample avge 0.018 -0.001 -0.041 -0.017 0.051 0.057
Orange

Sample avge 0.010 -0.034 -0.058 -0.066 0.046 0.081
Brigit Yellow

Sample avge 0.005 -0.019 -0.019 -0.020 0.056 0.060
Green

Sample avge 0.023 0.009 -0.042 -0.026 0.045 0.057
Diff Green

Sample avge 0.002 0.002 -0.030 -0.017 0.038 0.042
Cvan

Sample avge 0.038 0012 0.010 0015 0.019 0.045
Deep Blue

Sample avge 0.025 0.018 -0.033 0.038 0.025 0.052

Average AE*,, 0.052
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Table 8: Summary For The Repeatability Of The CCS-11 MATT Tiles Measured By DataColor
SF-600 With Specular Component Included Mode

Tile AL* Aa* 4b* AC* AH* AE*,,
Pale Grev

Sample avge -0.005 0.002 0014 -0.010 0.021 0.024
Mid Grey

Sample avge 0.005 0.001 -0.024 0.009 0.026 0.028
Diff Grey

Sample avge 0.003 0.013 -0.035 -0.032 0.022 0.039
Deep Grey

Sample avge 0.012 0018 -0.032 0.029 0.026 0.041
Deep Pink

Sample avge 0.022 0.021 -0.041 0.017 0.046 0.054
Red

Sample avge 0.021 0.035 -0.003 0.031 0.035 0.051
Orange

Sample avge 0.028 -0.034 -0.018 -0.035 0.040 0.060
Bright Yellow

Sample avge -0.007 -0.040 -0.034 -0.035 0.056 0.066
Green

Sample avge 0.024 -0.001 -0.038 -0.015 0.045 0.053
Diff Green

Sample avge 0.013 -0.031 -0.004 0.025 0.040 0.049
Cvan

Sample avge 0.021 -0.006 0.007 -0.002 0.024 0.032
Deep Blue

Sample avge 0012 0.031 -0.035 0.044 0.020 0.050

Average AE*,, 0.046
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Table 9: Summary For The Repeatability Of The CCS-1I GLOSSY Tiles Measured By Gretag
Macbeth CE-7000A With Specular Component Excluded Mode

Tile AL* da* Ab* AC* AH* AE*,,
Pale Grey

Sample avge -0.015 -0.002 0.000 0.001 0.019 0.024
Mid Grev

Sample avge 0.004 0.007 -0.006 -0.009 0.017 0.020
Diff Greyv

Sample avge 0.000 0.003 -0.003 -0.005 0.019 0.020
Deep Grey

Sample avge 0.062 0.025 -0.029 -0.035 0.043 0.083
Deep Pink

Sample avge 0.020 -0012 -0.029 -0.017 0.038 0.046
Red

Sample avge 0.050 -0.061 -0.320 -0.246 0.217 0.332
Orange

Sample avge 0.002 -0.054 -0.096 -0.110 0.048 0.120
Bright Yellow

Sample avge -0.031 -0.025 -0.144 0.144 0.048 0.155
Green

Sample avge 0.006 0.021 -0.008 -0.023 0.041 0.047
Diff Green

Sample avge -0.005 0.019 -0.027 -0.030 0.045 0.054
Cvan

Sample avge -0.002 0.022 0.027 -0.035 0.041 0.054
Deep Blue

Sample avge 0.181 -0.254 0.228 -0.328 0.105 0.389

Average AE*,, 0.098
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Appendix 1l
Table 10: Summary For The Repeatability Of The CCS-1I GLOSSY Tiles Measured By Gretag
Macbeth CE-7000A With Specular Component Included Mode

Tile AL* da* A4b* AC* AH* AE*,
Puale Grev

Sample avge -0.008 -0.003 0.004 0.005 0.015 0018
Mid Grev

Sample avge 0.006 -0.002 -0.004 0.000 0.017 0018
Diff Grev

Sample avge 0.002 -0.001 -0.006 -0.004 0.021 0.021
Deep Grev

Sample avge 0.027 -0010 -0.010 -0.005 0.026 0.038
Deep Pink

Sample avge 0.000 -0.005 -0.005 -0.005 0.030 0.030
Red

Sample avge 0.018 -0.018 0014 -0.023 0.034 0.045
Orange

Sample avge -0.001 -0.054 -0.043 -0.067 0.044 0.080
Bright Yellow

Sample avge -0.021 -0.G20 -0.091 -0.091 0.041 0.102
Green

Sample avge 0.014 0.002 -0.011 -0.007 0.029 0.033
Diff Green

Sample avge 0.018 -0.004 -0.004 0.002 0.030 0.035
Cvyan

Sample avge 0.019 -0.001 0.021 0018 0.034 0.043
Deep Blue

Sample avge 0.067 -0.036 0.059 -0.068 0.030 0.100

Average AE*, 0.047
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Appendix [1
Table 11: Summary For The Repeatability Of The CCS-11 MATT Tiles Measured By Gretag
Macbeth CE-7000A With Specular Component Excluded Mode

Tile aL* da* ab* AC* AH* AE*,,
Pale Grey

Sample avge 0.015 -0.002 0.000 0.001 0.019 0.024
Mid Grey

Sample avge 0.011 -0.002 -0.006 0.001 0.020 0.023
Diff Grey

Sample avge 0.024 -0.006 -0.005 0.002 0.020 0.031
Deep Grey

Sample avge 0.039 -0.002 0.003 -0.002 0.022 0.045
Deep Pink

Sample avge 0.035 -0.020 -0.013 -0.021 0.023 0.047
Red

Sample avge 0.045 -0.002 -0.012 -0.007 0.033 0.056
Orange

Sample avge -0.006 -0.033 -0.098 -0.096 0.051 0.109
Bright Yellow

Sample avge 0.008 -0.023 -0.026 -0.027 0.044 0.052
Green

Sample avge 0.019 0.025 -0.020 -0.031 0.030 0.047
Diff Green

Sample avge 0.003 -0.015 -0.016 0.005 0.036 0.036
Cvan

Sample avge 0.018 -0.006 0.031 -0.024 0.040 0.050
Deep Blue

Sample avge 0.057 -0.015 0.021 -0.025 0.027 0.068

Average AE*,, 0.049
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Table 12: Summary For The Repeatability Of The CCS-II MATT Tiles Measured By Gretag
Macbeth CE-7000A With Specular Component Included Mode

Tile AL* da* ab* ac* AH* AE*,
Pale Grey

Sample avg* -0.020 -0.004 0.018 0.017 0.015 0.030
Mid Grey

Sample avge -0.007 -0.006 0.003 0.007 0.016 0.019
Diff Grey

Sample avge -0.002 0.002 0.020 0.011 0.022 0.025
Deep Grey

Sample avge 0.030 0.006 -0.005 0.004 0018 0.035
Deep Pink

Sample avge 0.025 -0.006 -0.016 -0.008 0.026 0.037
Red

Sample avge 0.038 -0.023 -0.039 -0.037 0.043 0.068
Orange

Sample avge 0.037 -0.025 -0.013 -0.026 0.049 0.067
Bright Yellow

Sample avge 0.031 -0.017 -0.009 -0.009 0.045 0.055
Green

Sample avge 0.030 0.021 -0.023 -0.029 0.034 0.054
Diff Green

Sample avge 0.017 -0.002 -0.010 -0.004 0.033 0.037
Cyvan

Sample avge 0.026 0.003 0016 -0.015 0.036 0.047
Deep Blue

Sample avge 0.050 -0.001 0.016 -0.015 0.023 0.057

Average AE*,, 0.044
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APPENDIX III:

Summary For The Inter-Instrumental Agreement in terms of AL*, da*,

ab*, AC*, AH* and AE*,; of the CCS-1I Tiles Measured By Different
Spectrophotometers
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Appendix Il1

Table 1: Summary For The Inter-Instrumental Agreement Of The CCS-II GLOSSY Tiles
Measured Under The Condition Of Specular Component Excluded Mode Between SF-600 And
CE-7000A

Tile aL* da* ab* aAC* AH* AE*,
Pale Grey

Sample avge -0.641 0.009 0.253 0.134 0.217 0.690
Mid Grey

Sample avge -0.448 0.012 0.099 0014 0.099 0.459
Diff Grey

Sample avge -0.483 -0.031 0.101 0.094 0.054 0.495
Deep Grey

Sample avge 0.177 -0.037 0.067 0.075 0.038 0.196
Deep Pink

Sample avge -0.065 -0.027 0.752 0.087 0.748 0.756
Red

Sample avge 0.622 0.088 0.144 0.158 0.103 0.650
Orange

Sample avge 0.049 -0.991 0.327 -0.288 1.009 1.050
Bright Yellow

Sample avge -0.342 -0.551 -1.282 -1.289 0.535 1.437
Green

Sample avge -0.581 0.277 0916 -0.655 0.698 1.120
Diff Green

Sample avge 0.535 -0.226 -0.928 -0.666 0.685 1.095
Cvan

Sample avge 0.782 0922 -0.233 -0.288 0.907 1.232
Deep Blue

Sample avge -0.196 -0.531 0.853 -1.005 0.091 1.028

Average AE*,, 0.851
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Table 2: Summary For The Inter-Instrumental Agreement Of The CCS-Il GLOSSY Tiles
Measured Under The Condition Of Specular Component Included Mode Between SF-600 And
CE-7000A

Tile AL* da* Ab* ac* AH* AE*,,
Pale Grey

Sample avge -0.389 0.052 0.171 0.040 0.174 0.428
Mid Grev

Sample avge 0.242 -0.004 0.117 0.025 0.115 0.269
Diff Grey

Sample avge -0.263 -0.049 0.119 0.119 0.050 0.293
Deep Grey

Sample avge 0.051 -0.102 0.183 0.192 0.087 0.217
Deep Pink

Sample avge 0.060 0.072 0.730 0.175 0.713 0.737
Red

Sample avge 0.387 0.671 0.998 1.059 0.569 1.263
Orange

Sample avge 0.223 -0.865 0.612 -0.045 1.060 1.084
Bright Yellow

Sample avge -0.108 -0.579 -0.719 -0.727 0.570 0.930
Green

Sample avge 40.362 0.162 -0.666 -0.437 0.528 0.775
Diff Green

Sample avge 0.330 0.119 -0.661 -0.434 0514 0.749
Cvan

Sample avge 0.547 0.806 -0.243 -0.199 0.818 1.004
Deep Blue

Sample avge -0.068 -0.374 0.759 -0.845 0.046 0.849

Average AE*, 0.717
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Table 3: Summary For The Inter-Instrumental Agreement Of The CCS-II MATT Tiles
Measured Under The Condition Of Specular Component Excluded Mode Between SF-600 And
CE-7000A

Tile AL* da* 4b* ac* AH* AE*,,
Pale Grey

Sample avge -0.534 0.019 0.251 0.176 0.179 0.590
Mid Grey

Sample avge -0.382 -0.031 0.175 0.018 0.178 0422
Diff Grey

Sample avge -0.383 0.005 0.093 0.057 0.078 0.395
Deep Grey

Sample avge -0.129 -0.058 0.114 -0.099 0.084 0.183
Deep Pink

Sample avge -0.036 0.009 0.632 0.073 0.628 0.633
Red

Sample avge 0.204 0422 0.536 0.605 0.317 0.713
Orange

Sample avge 0.149 -0.703 0.496 -0.087 0.857 0.874
Bright Yellow

Sample avge 0.151 -0.498 -0.538 -0.547 0.489 0.749
Green

Sample avge 0.476 0.303 -0.658 -0.551 0.471 0.867
Diff Green

Sample avge -0.452 0.169 -0.623 -0.458 0.455 0.788
Cvyan

Sample avge -0.551 0.705 -0.118 -0.259 0.667 0.903
Deep Blue

Sample avge 0.074 -0.410 0.786 -0.880 0.111 0.890

Average AE*, 0.667
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Table 4: Summary For The Inter-Instrumental Agreemenmt Of The CCS-II MATT Tiles
Measured Under The Condition Of Specular Component Included Mode Between SF-600 And
CE-7000A

Tile AL* da* ab* aC* AH* AE*,,
Pale Grey

Sample avge -0.326 0.057 0.145 0.069 0.139 0.361

Mid Grey

Sample avge -0.157 -0.015 0.090 0.002 0.092 0.182
Diff Grey

Sample avge 0.164 0.024 0.008 -0.013 0.022 0.166
Deep Grey

Sample avge -0.019 -0.046 0.052 -0.042 0.058 0.074
Deep Pink

Sample avge 0.134 0.119 0.575 0.176 0.561 0.603
Red

Sample avge 0.353 0.578 0.577 0.763 0.292 0.890
Orange

Sample avge 0.353 -0.676 0.595 0.005 0.901 0.968
Bright Yellow

Sample avge 0.045 -0.566 0.516 -0.527 0.557 0.768
Green

Sample avge -0.258 0.201 -0.687 -0.470 0.541 0.762
Diff Green

Sample avge -0.228 0.049 -0.609 -0.346 0.503 0.652
Cvan

Sample avge -0.359 0.685 -0.283 -0.105 0734 0.824
Deep Biue

Sample avge -0.021 -0.329 0.592 -0.669 0.102 0.677

Average AE*,; 0.577
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Table 5: Summary For The Inter-Instrumental Agreement Of The CCS-ll GLOSSY Tiles
Measured Under The Condition Of Specular Component Excluded Mode Between CE-2180
And CE-7000A

Tile AL* da* ab* ac* AH* AE*,,
Pale Grev

Sample avge -0.399 0475 -0.243 -0.236 -0.478 0.665
Mid Grey

Sample avge 0.224 -0.299 0.6 -0.355 -0.569 0.707
Diff Grey

Sample avge 0.436 0.051 0.114 0.124 -0.018 0.453
Deep Grey

Sample avge 0.126 0.173 -0.106 -0.139 -0.148 0.239
Deep Pink

Sample avge -0.105 -0.345 -0.600 0.434 -0.539 0.700
Red

Sample avge -0.035 0.631 0.341 -0.371 -0.614 0.719
Orange

Sample avge 0.011 0.104 -0.058 -0.114 -0.034 0.119
Bright Yellow

Sample avge -0.038 0.550 0412 -0.311 -0.613 0.689
Green

Sample avge -0.101 0.073 -0.038 -0.082 0.010 0.130
Diff Green

Sample avge -0.267 -0.048 -0.742 -0.642 -0.376 0.790
Cyan

Sample avge -0.110 0.067 -0.056 -0.087 -0.006 0.140
Deep Blue

Sample avge -0.374 -0.496 -0.949 -0.976 -0.440 1.134

Average AE*, 0.541
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Table 6: Summary For The Inter-Instrumental Agreement Of The CCS-1I GLOSSY Tiles
Measured Under The Condition Of Specular Component Included Mode Between CE-2180
And CE-7000A

Tile AL* Aa* ab* ac* AH* AE*,;
Pale Grey

Sample avge 0492 0.493 -0.384 0.377 -0.498 0.795
Mid Grey

Sample avge 0.190 -0.331 0.655 -0.399 -0.615 0.758
Diff Grey

Sample avge 0.277 0.023 0.037 -0.024 0.036 0.280
Deep Grey

Sample avge 0.051 0.054 0.066 0.060 -0.061 0.100
Deep Pink

Sample avge -0.187 0477 -0.511 -0.547 -0.434 0.723
Red

Sample avge -0.086 0.529 0.339 -0.288 -0.558 0.634
Orange

Sample avge -0.075 0.085 0.010 -0.051 -0.069 0.114
Bright Yellow

Sample avge -0.085 0.523 0.336 -0.323 -0.531 0.628
Green

Sample avge -0.138 0.027 0.026 -0.016 -0.034 0.143
Diff Green

Sample avge -0.448 -0.023 0919 -0.744 -0.541 1.023
Cyan

Sample avge -0.188 -0.005 -0.052 -0.027 0.045 0.195
Deep Blue

Sample avge 0.244 -1.057 -0.689 -1.257 -0.110 1.285

Average AE*,, 0.557
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Table 7: Summary For The Inter-Instrumental Agreement Of The CCS-II MATT Tiles
Measured Under The Condition Of Specular Component Excluded Mode Between CE-2180
And CE-7000A

Tile AL* da* ab* ac* AH* AE*,,
Pale Grev

Sample avge 0.719 0.528 -0.257 -0.246 -0.533 0.928
Mid Grey

Sample avge -0.237 -0.255 0.407 -0.222 -0.426 0.535
Diff Grev

Sample avge -0.449 0.260 -0.555 0.611 0.049 0.760
Deep Grey

Sample avge 0410 0.022 -0.174 0.164 0.061 0.446
Deep Pink

Sample avge -0.486 -0.181 -0.490 -0.231 -0.468 0.713
Red

Sample avge -0.543 0.389 0.125 -0.275 -0.302 0.680
Orange

Sample avge -0.407 0.048 -0.062 -0.077 0.015 0414
Bright Yellow

Sample avge -0.355 0.266 0.263 -0.132 -0.350 0.516
Green

Sample avge -0.433 0.011 -0.101 -0.024 0.099 0.444
Diff Green

Sample avge -0.695 -0.032 -0.492 -0.393 -0.296 0.852
Cvan

Sample avge -0.437 0.056 -0.110 -0.122 0.013 0.454
Deep Blue

Sample avge -0.494 -0.331 -0.327 -0.437 -0.162 0.679

Average AE*,, 0.618
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Table 8: Summary For The Inter-Instrumental Agreement Of The CCS-II MATT Tiles
Measured Under The Condition Of Specular Component Included Mode Between CE-2180
And CE-7000A

Tile AaL* da* Ab* aC* AH* AE*,,
Pale Grey

Sample avge 0.717 0.522 -0.347 -0.336 -0.529 0.952
Mid Grey

Sample avge 0.199 -0.190 0.506 -0.341 0419 0.576
Diff Grey

Sample avge 0.234 0.225 -0.157 0.226 0.156 0.361
Deep Grey

Sample avge 0.316 0.132 -0.083 0.061 0.144 0.352
Deep Pink

Sample avge -0479 -0.300 -0.443 -0.344 -0.409 0.718
Red

Sample avge -0.523 0.516 0.173 -0.362 -0.407 0.755
Orange

Sample avge 0428 0.086 -0.006 -0.069 -0.052 0.436
Bright Yellow

Sample avge -0.303 0.336 0.317 0.173 -0.428 0.552
Green

Sample avge 0.494 0.062 -0.053 -0.057 0.059 0.500
Diff Green

Sample avge -0.739 0.016 -0.668 0.516 -0.424 0.997
Cvan

Sample avge 0417 0014 -0.095 -0.065 0.071 0.428
Deep Blue

Sample avge -0.542 -0.671 -0.439 -0.792 -0.124 0.968

Average AE*,, 0.633
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