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Abstract 

So far in most context-aware systems, the decisions of when and how to adapt an 

application are made a priori by developers during the compile time. While such 

approaches empower developers with sufficient flexibility to specify what they want 

in terms of adaptation rules, they inevitably place an immense load on developers, 

especially in an extremely dynamic environment like pervasive computing, to 

anticipate and formulate all potential run-time situations during development time. In 

addition, making adaptation decisions in design-time or compile-time makes it 

difficult for the system to consistently deliver services of an optimal quality. These 

challenges motivated us to explore an approach to automating context-aware 

adaptation decisions by a middleware layer at run-time.  

 

The resulting middleware CAMPUS, short for Context-Aware Middleware for 

Pervasive and Ubiquitous Service, achieves the objective with the confluence of 

three key technologies: compositional adaptation, ontology, and DL/FOL reasoning. 

More specially, we have proposed and designed a new programming model called 

ATM (short for Adaptable Task Model) to completely separate context-aware 

adaptation from the functional concerns of applications. A comprehensive 

ontological model has been developed to capture important knowledge about 

context-aware applications built on the basis of the ATM model. Importantly, the 

middleware layer can perform DL and FOL reasoning on these ontologies to derive 

the important decisions at run-time. We designed and implemented a middleware 

prototype that served as a platform for us to evaluate the effectiveness of the system 

in enabling automated context-aware adaptation decisions and to validate the 

principles underpinning the design. The CAMPUS implementation has been 

evaluated with a number of case studies to validate the operation of the system on a 

realistic environment and to provide us with opportunity to obtain experimental 
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results for further analysis. In particular, we have selected and implemented a 

context-aware instance messenger application to run over the CAMPUS. We 

systematically traced the application development cycle and validate the 

effectiveness of the semantic-based approach to capturing contextual, service and 

adaptation requirements. In capturing the system’s performance, we evaluated the 

potential overheads introduced by deferring the adaptation decision to run-time in 

the middleware level. The results are significant in that they show that CAMPUS can 

be adapted to run on resource-constraint portable devices without significant 

degradation in its performance. 
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CChhaapptteerr  11    IInnttrroodduuccttiioonn  

1.1  Background 

Context-aware adaptation refers to the ability of computing systems to adapt their 

behaviors or structures to highly dynamic environments without explicit intervention 

from users, with the ultimate aim of improving the user experience of these 

computing systems. In recent years, we have witnessed a proliferation of context-

aware computing platforms that have adapted themselves using situation information. 

The Active Badge location system, proposed in the early 1990s, was one of the first 

context-aware systems. Want et al. [Want92] developed a phone call redirection 

application that employed periodic pulse-width modulated infrared signals to 

determine a user’s current location. A couple of location-aware tour guides 

[Abowd97, Cheverst00] emerged in the middle of the 1990s. They used knowledge 

of the users’ current and past location information to provide services that are 

expected from a real tour guide; for example, offering information relating to objects 

and people of interest in the physical world. Location information is by far the most 

frequently used attribute of context. However, in recent years, other context 

information is increasingly being employed. For example, a notepad application in 

the TEA [Schmidt99] project can adapt its display font size to a user’s activity so 

that it changes depending on whether the user is walking or stationary, or adapts to 

the available light level. SenSay [Siewiorek03] is a context-aware mobile phone that 

modifies its behavior based on what the user is doing and where he is. For instance, 

when the user is involved in a conversation or has an important event scheduled in 

the electronic calendar, all incoming calls are automatically answered with an SMS 

message. 
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The need for such context-aware systems has grown because of the emerging 

paradigm of pervasive computing, or ubiquitous computing. Many computing 

devices, such as PDAs, cellular smart phones and notebooks, exhibit a high degree 

of mobility; their computational systems therefore need to adapt to the 

heterogeneous and dynamic surrounding environments in which they are operating. 

For example, taking into account the quality of network connectivity, which varies in 

terms of bandwidth fluctuations and error rates, streaming applications may use 

different transcoding protocols to guarantee the video quality. Everyday devices, 

such as digital cameras and watches, are now equipped with computing capabilities. 

It has thus become necessary for computational systems to consider the contextual 

attributes of neighboring devices and local resources to optimize the users’ 

experience. For instance, it would be undesirable for a desktop application to present 

output that is unreadable on a small screen when the application migrates to a 

handheld computing device [Satyanarayanan04]. Moreover, as sensor technology 

continues to progress and advance with respect to issues such as size, power 

consumption, computing capability and cost, existing and evolving classes of 

contextual information will be made available for software platforms to further 

improve the experience of users. For example, biosensors, which measure 

physiological data such as pulse, skin temperature, and galvanic resistance to capture 

data about the physical states of users, can be employed to recognize the users’ 

emotional information. Applications might then be able to adapt to human emotions, 

for example, by soothing a user that it perceives to be angry. 

1.2  Motivation and Problem Statement 

Previous works have demonstrated the potential of context-aware applications, but 

have also uncovered many challenges in designing, developing, and maintaining 

such systems. Instead of focusing on coding the actual service logics, developers are 

often distracted by context-related issues such as how to capture and represent the 

contextual information concerned, and when and how to adapt to the contextual 

changes in the operating environment. The emerging paradigm of pervasive 
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computing, which envisions a world in which users can manage their information 

anywhere, at anytime, and on any device, is further complicating the development of 

such context-aware applications. The inherent heterogeneity of a pervasive 

computing environment requires applications to consider many more varieties of 

contextual information than ever before. Context-aware adaptation will also occur 

much more frequently than before, due to the high mobility of portable computing 

systems across a pervasive computing environment. Facilities must be provided to 

conceal the complexity of these issues from developers of context-aware 

applications and to ease the development process. However, thus far in most context-

aware systems, such as [Dowling01, Yau02, Davis04, Zheng06], the decisions of 

when and how to adapt an application are made a priori by developers during the 

compile time. In general, developers are provided with a set of declarative scripts 

and/or programming APIs to dictate which aspects of contexts are relevant to the 

execution of the applications, and when and how the applications should adapt to 

relevant changes in context. 

 

While such approaches empower developers with sufficient flexibility to specify 

what they want in terms of adaptation rules, they inevitably place an immense load 

on developers, especially in an extremely dynamic environment like pervasive 

computing, to anticipate and formulate all potential run-time situations during 

development time. For example, assume a computationally intensive mobile 

application that can adapt its behavior to various contexts, including CPU usage, 

memory availability, network speed, and battery level. Assuming that each context 

can equate to one of the four values of worst, bad, good, or best, the adaptation rule 

pattern of this application may take the following form: IF (CPU_Usage is ai) AND 

(Memory_Availability is bi) AND (Network_Speed is ci) AND (Battery_Level is di) 

THEN (Action ei). In the worst situation, the adaptation policy may have as many as 

256 rules. Maintaining such a large base of rules is not an easy task, and will distract 

the focus of development from actual application logic. 
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In addition, making adaptation decisions in design-time or compile-time makes it 

difficult for the system to consistently deliver services of an optimal quality, which is 

one of the most important motivations for context-aware adaptation. Consider the 

following scenario: a particular action ej in the above example is expected to be 

triggered under the context combination of CPU usage aj, memory availability bj, 

network speed cj, and battery level dj. However, due to unstable network connectivity, 

the action ej fails to execute. If developers did not take such an exception into 

account in advance, then no rule will be predefined to respond to such a context 

situation. As a result, the application will simply have to throw a notification error at 

best, resulting in an unsatisfactory user experience. Even supposing that developers 

have considered such a situation, with an appropriate established rule in place as an 

alternative action to be taken in order to deal with this exceptional case, the 

alternative action may also fail for other unconsidered factors caused by the fluctuant 

situation of a mobile environment. At the root of such conflict is the fact that, with 

adaptation decisions made at the development time, all adaptation strategies have 

been predetermined by developers based on the approach of looking ahead when 

formulating rules. Yet, except for a restricted number of contexts and constrained 

operating environments, it is impractical to consider all possible run-time situations, 

especially in an extremely dynamic environment such as pervasive computing. At 

best, developers will tend to cater to common cases rather than consider optimal 

solutions. 

 

These challenges have motivated us to explore an approach to automating context-

aware adaptation decisions by a middleware layer at run-time. The middleware has 

three main functions: 

� Reasoning about context changes. 

� Making decisions about what adaptation to perform. 

� Implementing the adaptation choices. 
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Through automated decisions at run-time, developers will be freed from the need to 

predict, formulate, and maintain adaptation rules, thereby greatly reducing the efforts 

required to develop context-aware applications. It will also be possible to deliver 

services of an optimal quality by deferring the adaptation decisions until run-time to 

account for up-to-date contextual conditions. 

1.3  Approach and Contributions 

The main objective of this study is to design, implement and evaluate a middleware 

layer that can be used to automate context-aware adaptation decisions at run-time, 

based on an analysis of the problems posed by the above-mentioned challenges. 

Importantly, it aims to provide a balanced level of programming abstractions that 

will make it easy to develop context-aware adaptation for pervasive applications, 

while facilitating automated adaptation decisions at run-time. The resulting 

middleware CAMPUS, short for Context-Aware Middleware for Pervasive and 

Ubiquitous Service, achieves the objective with the confluence of three key 

technologies: compositional adaptation, ontology, and DL/FOL reasoning. In 

particular, CAMPUS proposes a new programming model based on compositional 

adaptation to construct context-aware applications and facilitate adaptation decisions. 

CAMPUS also formulates a comprehensive ontology-based model to capture the 

important concepts and relationships of entities in the programming model, which 

are necessary for automated context-aware adaptation decisions. Based on these 

ontologies, CAMPUS makes use of description logic and first-order logic to infer 

and make context-aware adaptation decisions automatically. The following is an 

overview of the main research contributions. 

� Proposed and designed a new programming model to completely separate 

context-aware adaptation from the functional concerns of applications. Context-

aware adaptation and the functional concerns of applications are often tightly 

coupled and intertwined. Dealing with adaptation and the basic functional 

concerns of applications at the same time and at the same level pushes 
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developers into an awkward position mentioned previously. In this study, we 

investigated the principle of separation-of-concerns to support context-aware 

applications. This has led to the development of a novel programming model that 

makes it possible for the middleware layer to automate the decision process of 

context-aware adaptation. 

� Defined a set of ontologies for supporting automated context-aware adaptation 

decisions. These ontologies are expressed using the OWL-DL language, which 

captures the knowledge that represents the important concepts and relationships 

involved in the development of context-aware applications. Based on these 

ontologies, a middleware layer can make use of description logics (DL) and first-

order logics (FOL) to infer and make context-aware adaptation decisions. In 

particular, this study showed that not only can the OWL be used to express the 

semantics of information on the web, but that it can be used to express the 

semantics of entities in the domain of software development, including 

applications and contextual information. 

� Designed and implemented a middleware, CAMPUS, which served as a platform 

for us to evaluate how effective the system is at enabling automated context-

aware adaptation decisions and to validate the principles underpinning the design. 

We evaluated the CAMPUS implementation by using a number of case studies to 

validate the operation of the system in a realistic environment and to obtain 

experimental results for further analysis. In particular, we selected and 

implemented a context-aware instance messenger application to run over the 

CAMPUS. We systematically traced the application development cycle and 

validate the effectiveness of the semantic-based approach to capturing contextual, 

service, and adaptation requirements. The experiments also presented us with the 

opportunity to study the interactions between the core modules of the system and 

their adaptation response to changing contexts. In capturing the system’s 

performance, we evaluated the potential overheads introduced by deferring the 

adaptation decision to run-time in the middleware level. The results are 
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significant: we found that CAMPUS can be adapted to run on resource-constraint 

portable devices without significant degradation in its performance. 

1.4  Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 describes the work related to 

this study. Past studies on context-aware middleware are surveyed and compared 

with the CAMPUS middleware. The aim is to highlight the core contributions of 

these works and how they are benchmarked against the CAMPUS middleware. 

Some well-known works on context ontologies are also introduced and compared 

with the CAMPUS ontologies. The specific characteristics of the CAMPUS 

middleware and its advantages over other similar works are highlighted. 

 

Chapters 3 to Chapter 7 form the core of this thesis. Chapter 3 is devoted to the 

architecture of the CAMPUS middleware. Chapter 4 focuses on the programming 

model. The model effectively separates adaptation from the functional concerns of 

context-aware applications and makes it possible for the middleware layer to 

automate context-aware adaptation decisions at run-time. Presented in Chapter 5 is 

the comprehensive set of ontologies that can be used to describe the necessary 

semantic information for the middleware to make context-aware adaptation decisions. 

In Chapter 6, details are given of the mechanisms used in CAMPUS to dynamically 

derive adaptation decisions. Chapter 7 contains a discussion of the implementation 

of CAMPUS middleware. 

 

In Chapter 8, a sample application is presented that demonstrates the feasibility and 

validates the benefits of CAMPUS in providing context-aware adaptation. The 

performance and evaluation of the system are discussed in Chapter 9. Three 

operations that show the most promise of bringing about overheads to the system are 
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measured independently. A complete end-to-end application that fully exercises the 

system components of CAMPUS is set up to evaluate the system performance. 

Finally, Chapter 10 presents the conclusions of this study. It also points out some 

directions for future research on this topic. Such work is necessary to make the 

CAMPUS more complete, secure, and robust for deployment over a wide-scale 

wireless and mobile environment. 
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As presented in Chapter 1, one of the important contributions of our study is to 

leverage and apply the concept of semantic ontologies to facilitate automated 

context-aware adaptation decisions. The aim of this chapter is to provide a general 

review of recent developments on middlewares that provide applications with the 

support of context-aware adaptation, as well as on some well-known context 

ontologies that represent, structure, and organize contextual data and relationships 

between them. Importantly, this chapter serves to provide a comprehensive 

background of related works that have greatly motivated the design of CAMPUS, 

while significantly setting it apart from previous systems. 

2.1  Middlewares for Context-aware Adaptation 

The need for a middleware layer to facilitate context-aware adaptation for 

applications has been widely reported and acknowledged in the research community 

[Chan03, Capra03]. Introduced in this section are several typical middleware 

systems that provide applications with facilities to ease context-aware adaptation. 

They are compared with CAMPUS in terms of the underlying mechanisms that they 

use to make adaptation decisions. 

2.1.1  Odyssey 

Odyssey [Noble97] provides an application-aware approach to adaptation. The 

essence of this model is a collaborative partnership between the system and 

individual applications. The system monitors resource levels, notifies applications of 

relevant changes, and enforces resources-allocation decisions. Each application 

independently decides how best to adapt when notified. For example, Odyssey itself 

does not decide that color video frames should be converted to black-and-white, but 
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rather instructs the application that some action is required. The application itself 

decides how adaptation should occur, and typically instructs the server to make the 

adjustment. 

 

As shown in Figure 2-1, the Odyssey system consists of a viceroy, an operating 

system entity in charge of managing the limited resources for multiple processes, a 

set of data type-specific wardens that handle the intercommunications between 

clients and servers, and applications that negotiate with Odyssey to receive the best 

level of services available. Applications request from Odyssey the resources that 

they need, specifying the window of tolerance required for the desired operation. If 

resources within that window are currently available, the request is granted and the 

client application is connected to its server through the appropriate warden for the 

data type to be transmitted. Wardens can handle issues like caching or pre-fetching in 

manners specific to their data types, in order to make the best use of the available 

resources. If resources within the requested window are not available, the application 

is notified and can subsequently request a lower window of tolerance and 

corresponding level of service. As conditions change and requests that had 

 

Figure 2-1 The Odyssey Client Architecture. [Noble97] 
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previously been satisfied can no longer be met (or, conversely, conditions improve 

dramatically), the viceroy uses upcalls that had previously been registered by the 

applications to send notifications, in the form of events, to these applications. These 

notifications indicate that the applications must operate in a different window of 

tolerance, which may subsequently potentially alter their behaviors. 

2.1.2  MobiPADS 

MobiPADS [Chan03] is designed to support context-aware processing by providing 

an executing platform to enable active service deployment and the reconfiguration of 

service compositions in response to varying contexts in the operating environment. It 

supports dynamic adaptation at both the middleware and application layers to 

provide a flexible configuration of resources to optimize the operations of the mobile 

applications. 

 

Within the MobiPADS system, a series of mobilets is linked together to form a 

processing chain called the service chain, which reacts and adapts to the varying 

characteristics of a wireless environment. In the MobiPADS service space, mobilets 

exist in pairs: a master mobilet resides at the MobiPADS client and a slave mobilet 

resides at the MobiPADS server. Mobilets access the services of the system 

components through the mobilet API, which also provides interfaces to allow the 

system components to communicate and configure the mobilets. At the top level of 

the service space, there is a set of meta-objects that reflects the configuration for the 

composite events and service chain, as well as the adaptation policies.  

 

The MobiPADS achieves context-awareness by using an event notification model, 

which monitors the status of all contexts of interest and reports the event to the 

subscribed entities. These include all of the entities within the platform such as the 

system components, the mobilets, and the mobile application. On detecting changes 
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in the environment, the MobiPADS system can respond either by reconfiguring the 

current service chain or by communicating the changes to each of the mobilets. An 

abstraction of service object interactions and configurations is expressed in a high-

level declarative language written in XML format. Based on these profiles, the 

MobiPADS system can respond to changes of context by adding and removing 

mobilets within the service chain to select an optimum set of mobilets. Simply 

adding or removing mobilets within the service chain may not be enough to adapt to 

contextual changes. To allow a finer-grained adaptation, the MobiPADS system 

allows the mobilets to subscribe to an event and react to the event message by 

adjusting its internal parameters to best adapt to the changes. 

2.1.3  RCSM 

Yau et al. [Yau02] proposed a Reconfigurable Context-Sensitive Middleware 

(RCSM) to facilitate the development and run-time operation of context-aware 

applications. RCSM models context-aware applications as context-sensitive objects, 

which consist of two parts: a context-sensitive interface and a context-independent 

implementation. The interface encapsulates the description of the application’s 

context awareness. More specifically, this interface lists the types of contexts or 

situations that are relevant to the application, the actions to be triggered, and the 

timing of these actions. The second part is the actual implementation of the actions 

that the application must provide. 

 

RCSM provides application developers with a Context-Aware Interface Definition 

Language (CA-IDL) that can be used to specify the context-sensitive object 

interfaces. Figure 2-2 shows such a context-sensitive interface using CA-IDL. The 

CA-IDL interfaces are compiled into custom-made Adaptive Object Containers 

(ADCs) that communicate with the underlying system to acquire contexts, and then 

perform periodic context analysis as specified in the context-sensitive interfaces. 

These ADCs are also responsible for activating different actions whenever they 
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detect suitable contexts as a result of the context analysis. RCSM also provides 

RCSM Object Request Brokers (R-ORBs) that perform a proactive device discovery 

during the execution of the application, and use their R-GIOP (RCSM General Inter-

ORB Protocol) to establish and maintain a CTC (Context-Triggered Communication 

channel) with a remote device, in order to collect the data from sensors and the 

operating system. 

2.1.4  Rocks 

Zandy et al. [Zandy02] at the University of Wisconsin developed reliable sockets (as 

known as Rocks) to protect socket-based applications from poor network conditions, 

such as unexpected modem disconnections and IP address changes as a result of 

mobile device movements or a DHCP lease expiration. 

 // context source 

RCSMContext dc { 

 char[] string location; 

 boolean light; 

} 

 

// beginning of context-sensitive interface 

interface instructor_object { 

 // context variables 

 RCSMContext_var dc C1 

  where location=“screen”; 

RCSMContext_var dc C2 

  where light=true; 

RCSMContext_var dc C3 

  where light=false; 

 

 // context-sensitive method 

 [outgoing] 

 [activate when C1^(C2->C3)] 

 void distribute (string lectures); 

}; 

// end of context-sensitive interface 
 

Figure 2-2 A Context-sensitive Interface Using CA-IDL. [Yau02] 
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Rocks resume sessions automatically after recovering from a period of disconnection. 

Using the preloading feature of the Linux loader, the Rocks library is interposed 

between the application code and the kernel TCP socket, as shown in Figure 2-3. 

Rocks monitor the send and receive buffers of TCP socket, and maintain a copy of 

in-flight packets to prevent data loss in the event of a connection failure. After 

reconnection, Rocks will initially resend those packets that are cached in the in-flight 

buffers, and then resume the normal TCP socket operation. The Rocks library 

exports the socket API, which is the same as the kernel socket API, to be used 

transparently by the application. This middleware interception approach means that 

the Rocks reconfiguration is transparent to the application code, as well as to any 

distribution middleware or virtual machine. The reliability provided in Rocks is 

independent of specific applications; hence, Rocks is also transparent to the adaptive 

code. 

 

Figure 2-3 The Rocks Architecture. [Zandy02] 
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2.1.5  MUSIC 

The MUSIC middleware [Rouvoy08] is an autonomous platform for supporting self-

adaptive mobile applications. It allows an appropriate application configuration to be 

automatically selected among all possible application configurations. The process of 

adapting applications in respond to changes of context includes a planning procedure 

and a reconfiguration process. The former decides appropriate application 

configurations, and the latter deploys them. We introduce these two processes in this 

section. 

 

The planning procedure is supported by the Adaptation Reasoner, which makes 

adaptation decisions based on configuration plans and utility functions. A 

configuration plan in MUSIC defines how the components are connected to each 

other in order to provide the functionality required by the applications. For any 

particular application, there may be multiple configuration plans that can achieve its 

functionality. The Adaptation Reasoner decides an appropriate configuration plan 

based on the utility it offers to the system. During the planning procedure, the 

reasoner asks the plan repository for plans that are compatible with a given service 

type. After that, the reasoner recursively resolves the dependencies of the plans to 

build a service configuration, and discards configurations whose explicit or implicit 

dependencies remain unresolved. Finally, the service configurations are ranked by 

evaluating their utilities. MUSIC uses utility functions to map the user preferences 

for QoS to a function that defines how a selected plan satisfies the user preference. 

The input of a utility function includes the user preferences considering the current 

context and the available resources, while its output is the degree to which a 

configuration plan satisfies the user goals. 

 

The reconfiguration process is handled by the Configuration Executor, which takes 

the set of plans selected by the Adaptation Reasoner and reconfigures the application. 



 

16 

During the reconfiguration process, the Configuration Executor set the current 

service into a quiescence state and deploys the service configuration selected by the 

Adaptation Reasoner. If the configuration indicates a service instance, the 

configurator connects this instance to other services; if the configuration describes a 

composite or an atomic service, the service should be created and deployed using the 

blueprint descriptions enclosed within the configuration. 

2.1.6  Summary 

Odyssey represents an early effort to facilitate dynamic adaptation. Odyssey and 

other similar works, such as [Friday96, Blair00], use an application-aware approach 

to adaptation. That is, the bulk of the adaptation in this model is, in fact, done by the 

underlying applications. The middleware monitors context, notifies applications of 

relevant changes, and enforces adaptation decisions made by the applications 

independently when notified. Such an application-aware approach presents the 

opportunity for operating applications to potentially adapt their internal logics in 

response to contextual changes. With utmost flexibility comes rigidity, such that 

application developers are required to intricately capture all possible contextual 

changes of interest and, if necessary, to enforce adaptation policies for the 

applications. In addition, applications have to be modified and re-compiled for any 

changes in adaptation strategies or to cater to new and evolving contexts. 

 

MobiPADS is another kind of middleware to support context-aware adaptation. It 

supports dynamic adaptation at both the middleware and application layers. Similar 

to Odyssey, MobiPADS monitors the status of contexts of interest and reports any 

changes of events directly to the applications. The underlying applications are 

responsible for interpreting the contexts and for deciding how to best adapt to 

changes of context. To enable more flexible adaptation, MobiPADS employs the 

reflective mechanism to dynamically reconfigure the service chain based on 

descriptive adaptation policies regulated externally by XML. Importantly, these 
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policies can be changed after the deployment of applications. Using declarative 

adaptation policies can be seen as semi-application-transparent, since the adaptation 

process is transparent to the application, while the decision is handled by the 

application. 

 

RCSM is another semi-application-transparent example. The adaptation policies are 

specified using CA-IDL and compiled into an application skeleton. To change the 

policies, the application developers merely need to change the interface and re-

compile it to generate a new adaptive object container (ADC). In comparison with 

application-aware approaches, semi-application-transparent architectures are much 

more flexible in that the adaptation process is transparent to developers, and may be 

modified even after the deployment of applications. However, the challenges of 

formulating adaptation decisions to operate under an extremely dynamic 

environment have yet to be addressed.  

 

Unlike MobiPADS and RCSM, the Rocks project uses a completely application-

transparent approach to context-aware adaptation. This is achieved by constructing a 

layer of adaptable common services within the middleware, while applications are 

required to make explicit calls to these adaptive services. Using such an approach, 

applications are oblivious of the need to consider how to adapt and when to adapt, 

and can completely focus on their functional logic. However, such an approach of 

adaptive services amalgamates adaptation concerns with functional concerns in the 

middleware layer, so that only programs that are written for these specific services 

can be supported. Importantly, regardless of the point at which adaptation decisions 

being made in all of the surveyed middleware, the decisions are inherently static and 

predefined. At best, these decisions are formulated based on looking ahead and 

predicting what contexts will be available to drive the adaptation decisions.  
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CAMPUS goes one step further than previous approaches in advocating automated 

run-time adaptation decisions instead of predefined adaptation policies that capture 

limited contextual changes operating in a potentially dynamic environment. The core 

aim of CAMPUS is to provide a software engineering solution that seamlessly 

integrates contextual awareness to application development, while providing a high-

level semantic-based expression of adaptation policies. Importantly, CAMPUS aims 

to avoid the formulation of rigid adaptation rule languages, and to make use of the 

semantic nature of contexts and applications to automatically reason about when and 

how to adapt applications in response to changes of context. Furthermore, the 

CAMPUS middleware supports a more general approach to adaptation by 

completely separating adaptation from computational concerns, while not limiting 

itself to particular types of applications. 

 

MUSIC and several other middlewares, such as [Ma06, Rouvoy08], share similar 

objectives with our CAMPUS middleware. They also aim to avoid formulation of 

complex adaptation rules and advocate automated adaptation decisions. To the best 

of our knowledge, all of them make adaptation decisions simply based on utility 

functions. The major differences between these middlewares and CAMPUS, which 

uses semantic based DL/FOL reasoning to achieve automated adaptation decisions, 

are manifold. First, unlike CAMPUS, they do not provide a common terminology 

and shared set of concepts that agents can use when they interact with each other. 

This problem is especially acute in the realm of pervasive computing environments 

since different agents could have different understandings of the current context. 

They might use different terms to describe context, and even if they use the same 

terms, they might attach different semantics to these terms. In addition, although 

utility functions are the natural way to represent value, it is often difficult to apply 

appropriate calculations of expected utilities for various components of a large, 

complex system [Walsh04, Chang05, Alia07]. Finally, utility function represents a 

single-phase decision model that may involve the unnecessary processing of a large 
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volume of information, and does not allow for multiple strategies to be utilized 

within a single decision process [Shao06].  

 

Table 2-1 is a summarized comparison of the CAMPUS system with the  

middlewares introduced above. The notable points are shown below: 

� Decision Maker in these middleware systems can be application or middleware, 

depending on whether the decision of when and how to adapt to changes of 

contexts are made in the application layer by developers, or the middleware 

attempts to completely shield the application from such decisions. 

� Decision Range is the collection of applications supported by these middleware. 

Some middleware provide general machinery to support collection of unrelated 

applications, while others probably only support a specific application or 

narrowly-defned class of applications. 

� Decision Type describe whether the context decisions are predefined or not. Some 

middlewares decided the adaptation strategies during the design-time or compile-

time. Such decisions are deemed as static. Rather, others make the decisions 

dynamically during the time to account for the up-to-date contexts. 

� Decision Mechanism is the primary technology used for the decision maker to 

determine the adapation decisions. As far as CAMPUS system is concerned, 

semantic-based DL/FOL reasoning is the major technology used to make 

decisions. 

Table 2-1 Summary of Middlewares for Context-aware Adaptation Decisions. 

 
Decision 

Maker 

Decision 

Range 

Decision 

Type 

Decision 

Mechanism 

Odyssey Application 
Application-

specific 
Static API 
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MobiPADS Application General Static 
API 

Scripts 

RCSM Application General Static Scripts 

Rocks Middleware 
Application-

specific 
Static API 

MUSIC Middleware General Dynamic Utility functions 

CAMPUS Middleware General Dynamic 
Semantic-based 

DL/FOL reasoning 

 

2.2 Ontologies for Context-aware Adaptation 

Using ontologies to facilitate context-awareness is not a new idea. Some forms of 

ontology-based models have also been applied to capture concepts and relationships 

in the domain of context-aware applications. This section reviews several 

representative context ontologies and points out how the CAMPUS ontologies differ 

from them. 

2.2.1  CONON 

CONON [Wang04] is an OWL encoded context ontology for modeling context in 

pervasive computing environments, and for supporting logic-based context reasoning. 

It provides an upper context ontology that captures general concepts about basic 

contexts, and also provides extensibility for adding domain-specific ontology in a 

hierarchical manner. Figure 2-4 shows the upper context ontology. The context 

model is structured around a set of abstract entities, each describing a physical or 

conceptual object, namely Person, Activity, Computational Entity and Location, as 
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well as a set of abstract sub-classes. Each entity is associated with its attributes and 

relations with other entities. The built-in OWL property owl:subClassOf allows for a 

hierarchical structuring of sub-class entities, thus providing extensions to add new 

concepts that are required in a specific domain. Besides general classes defined in 

the CONON upper ontology, a number of concrete sub-classes are defined to model 

specific contexts in a given environment. For example, the abstract class 

IndoorSpace of the home domain is classified into the four sub-classes: Building, 

Room, Corridor, and Entry. 

2.2.2  COBRA-ONT 

Chen et al. [Chen04] used RDF and OWL to define ontologies of context, which 

provide an explicit semantic representation of context that is suitable for reasoning 

and for the sharing of knowledge. The COBRA-ONT was designed to support smart 

U
p
p
er

 

O
n
to

lo
g
y

D
o
m

ai
n
-S

p
ec

if
ic

 

O
n
to

lo
g
ie

s

 

Figure 2-4 The CONON Upper Ontology. [Wang04] 



 

22 

meeting room applications for eBiquity group meeting at UMBC. It covers typical 

concepts associated with information on the geography of the UMBC campus, 

eBiquity group meetings, and actions performed by the smart meeting applications. 

 

The eBiquity Geo-Spatial Ontology defines vocabularies for modeling certain 

physical places located on the UMBC campus and their spatial relations and 

constraints. In particular, it defines ontology classes for symbolic representations of 

rooms, buildings, campus, states, and countries. It also defines instances of these 

geo-spatial classes and the associated relations. The eBiquity Meeting Ontology 

covers key concepts including the modeling of eBiquity group membership, the 

friends of the eBiquity group members, and the meeting contexts such as 

descriptions about the speaker of the presentation, the organizer of the meeting, the 

attendees at the meeting, the presentation video file, event photos, and voice 

recordings of the discussions. Finally, the aim of the eBiquity Action Ontology is to 

support the protection of privacy in a context broker. It defines the communication 

vocabularies between a context broker and other agents. 

2.2.3  CoOL 

The CoOL (Context Ontology Language) [Strang03] is not a single, monolithic 

language but a collection of several fragments that are grouped into two subsets. The 

first subset, CoOL Core, is a projection of the Aspect-Scale-Context (ASC) model 

into two different common ontology languages: OWL/DAML+OIL and F-logic. The 

second subset, CoOL Integration, is a collection of schema and protocol extensions 

as well as common sub-concepts of the ASC model, enabling CoOL Core to be used 

in several service frameworks, particularly Web Services. 

 

Figure 2-5 shows the ASC model that is named after the core concepts of the model, 

which are aspect, scale, and context information. An aspect is a classification 
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(symbol- or value-range) whose subsets are a superset of all reachable states, 

grouped in one or more related dimensions called scale. Context information is any 

information that can be used to characterize the state of an entity concerning a 

specific aspect. In other words, valid context information with respect to an aspect is 

one of the elements of the aspects’ scales. For example, the aspect 

“GeographicCoordinateAspect” may have two scales, “WGS84Scale” and 

“GaussKruegerScale,” and valid context information may be an object instance 

created in an object-oriented programming language such as Java with a new 

GaussKruegerCoordination(“367032,” “533074”). 

2.2.4  SeCom  

Neto et al. [Neto05] used OWL to present a domain-independent ontological context 

model from contextual dimensions: identity (who), location (where), time (when), 

activity (what), and device profile (how). 
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Figure 2-5 The Aspect-Scale-Context (ASC) Model. [Strang03] 
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The core of the Who-based ontologies is the Actor ontology. It models the profile of 

all entities that can perform actions in a pervasive computing environment such as 

people, groups, and organization, as shown in Figure 2-6. The Actor ontology 

imports other ontologies, including the role ontology that describes the actors’ social 

role in the real world, the contact ontology that represents the contact information of 

the different types of actors, the expertise ontology that models areas of knowledge, 

the relationship ontology that models social relationships between people, the project 

ontology that describes meta-information associated with projects and the links with 

actors, and the document ontology that models documents made by actors. 

 

The where-based ontology aims to describe the whereabouts of real world entities. 

Location information is not only related to such usual information as street, city, and 

room, but also to geographic coordinates, combined with direction information. 

Absolute and relative location information is also modeled in this ontology. 

 

 

Figure 2-6 An Overview of the SeCom Context Ontologies. [Neto05] 
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The when-based ontology represents temporal information in terms of temporal 

instants and intervals. A temporal instant is a point on the universal timeline, whereas 

a temporal interval is delimited by two distinct and convex time instants. 

Additionally, the when-based ontology models calendar and clock information to 

represent time in multiple granularities. 

 

The how-based ontology describes computational devices by means of profiles, 

which includes a set of descriptions that model the features of devices with regard to 

three platforms: hardware, software, and user agent. The hardware platform 

describes a device in terms of its input, output, and network features; the software 

platform represents the application environment, operating system, and installed 

software; and the user agent platform describes the software browser running on a 

device. 

 

The what-based ontology describes actions that people do or cause to happen. An 

activity in this ontology is modeled as of two disjointed types: impromptu and 

scheduled. The former represents activities that occur in an informal manner, while 

the latter represents activities planned in terms of time and place. 

2.2.5  Summary  

To the best of our knowledge, all of the existing ontologies for context-awareness 

focus on context models that provide abstraction to context entities, and do not aim 

to provide direct support for adaptation decision. CAMPUS advocates the use of 

ontology to capture knowledge not only in the context domain, but also the 

application domain, in order to facilitate adaptation. It has been discovered that the 

semantics of contextual information and applications in CAMPUS help the 

middleware understand all of these interacting entities and make important decisions 

related to adaptation. Table 2-2 offers a comparison of the CAMPUS ontologies and 
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the context ontologies introduced above along three dimensions: Structure describes 

how these ontologies are constructed. This dimension is further divided into two sub-

dimensions: Range and Domain. Goal in these ontologies can be general or 

application-specific, depending on whether they are desinged for specific 

application-domains or can be used in a general purpose. Finally, Use refer to how 

these ontologies can be use. 

Table 2-2 A Comparison of Context Ontologies. 

Structure 
 Dimension of 

Range Dimension of Domain 
Goal Use 

CONON 

Upper ontology 

Domain-specific 
ontology 

N/A General 

Context 
modeling 

Context 
reasoning 

COBRA-
ONT N/A 

Geo-Spatial Ontology 

Meeting Ontology 

Action Ontology 

Application-
specific 

Context 
modeling 

Context 
reasoning 

CoOL 

CoOL Core 

CoOL Integration N/A General 

Context 
modeling 

Context 
reasoning 

SeCom N/A 

Who-based ontologies 

Where-based ontology 

When-based ontology 

What-based ontology 

How-based ontology 

General 

Context 
modeling 

CAMPUS 

Foundation 
ontologies 

Domain-specific 
ontologies 

Context ontologies 

Tasklet ontologies 

Service ontologies General 

Context 
modeling 

Context 
reasoning 

Adaptation 
decision-
making 
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CChhaapptteerr  33    TThhee  CCAAMMPPUUSS  AArrcchhiitteeccttuurree  

As highlighted previously, the main objective of the CAMPUS middleware is to 

automate context-aware adaptation decisions at run-time for pervasive computing. In 

order to achieve this objective, the following three important issues need to be 

considered: 

� Programming model. This issue refers to the mechanism used to construct 

context-aware applications and perform context-aware adaptation. The aim of 

context-aware adaptation decision-making is to choose one or a limited number 

of application configurations that can be applied in a given context among 

possibly many alternatives [Alia07]. It is obvious that the challenge of how to 

make such decisions greatly depends on how the applications are constructed and 

how they can be reconfigured; thus a suitable programming model directly 

impacts the automated context-aware adaptation decisions. 

� Knowledge model. This issue is concerned with the kinds of knowledge that 

need to be captured and how to represent them. Decisions are made based on the 

decision maker’s knowledge, including knowledge of the characteristics or 

requirements that each alternative possesses and the effects of each alternative. 

Therefore, a substantial amount of information needs to be understood by the 

middleware layer before it can make appropriate decisions. A suitable knowledge 

model is fundamental to facilitate automated machine understanding. 

� Decision model. This issue is concerned with the progressive steps in the process 

of decision-making, how to rate the alternatives, and how to decide on the final 

one. A suitable decision model that formalizes the process of decision-making in 

the context of context-aware adaptation will finally determine the quality of the 

decisions made by the middleware layer. 
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As illustrated in the Figure 3-1, CAMPUS provides solutions to the above issues in a 

layered architecture. Logically, CAMPUS is divided into a programming layer, a 

knowledge layer and a decision layer: 

� In the programming layer, CAMPUS constructs context-aware applications via a 

new programming model called ATM (short for Adaptable Task Model). It relies 

on two main concepts: services and tasks. A service is an abstract of a business or 

a technical process, which is comprised of a series of tasks. Tasks are execution 

units that perform certain actions to deliver a result to other tasks or the end user. 

A task is further divided into two parts: a tasklet and a task base. The former part 

concentrates on the computational concerns of the task, i.e. how to process data; 

Service 

Ontologies

Context 

Ontologies

Tasklet 

Ontologies

Preprocessing

Screening

Choice

Decision Maker

Decision 

Executor

Knowledge Layer

Decision Layer

Programming Layer

Service Directory Tasklet Directory

 

Figure 3-1 The Layered Architecture of the CAMPUS System. 
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and the latter part handles issues involved in coordination and adaptation, such as 

how to communicate with other modules of the service and how to transfer the 

states of tasks during adaptation. A service can adapt to contextual information 

by adding, removing, or replacing the tasklet parts of its tasks. 

� In the knowledge layer, CAMPUS captures a comprehensive set of ontologies to 

describe related entities that are involved in context-aware adaptation, including 

services, tasklets, and contexts. These ontologies are used by the programming 

layer to initialize service and tasklet instances, and also used by the decision 

layer to perform semantic reasoning and to make adaptation decisions. 

� In the decision layer, CAMPUS uses description logics and first-order logics to 

reason about the ontologies in order to make context-aware adaptation decisions. 

The goal of these decisions is to select the best tasklet alternatives for given tasks. 

The whole decision-making procedure is divided into three phases: preprocessing, 

screening, and choice. The preprocessing phase performs several preprocessing 

tasks to ensure that the ontologies are semantically consistent and to prepare 

fine-grained information for the subsequent phases. The screening phase filters 

off tasklet alternatives that are not satisfied by up-to-date contextual information. 

The remaining filtered tasklets are compared in the choice phase, using the utility 

function in order to select the best tasklets for given tasks. 

A detailed design of CAMPUS is presented in the remaining chapters, while the aim 

of this chapter is to analyze and justify our major design decisions and approaches. 

3.1  The Programming Model 

The programming layer of CAMPUS is responsible for constructing and 

reconfiguring context-aware applications according to the instructions from the 

decision layer. This is achieved by the ATM programming model that is based on 

compositional adaptation and separation-of-concerns. 
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In general, approaches to realize context-aware adaptation can be classified into 

transformational adaptation and compositional adaptation [Tekinerdogan96, 

Edwin07]. In transformational adaptation, applications directly modify related 

specifications and/or implementations to respond to changing contexts. 

Compositional adaptation, in contrast, responds to contexts through adding, 

removing, replacing, or even changing the interconnections of the algorithmic or 

structural parts of applications. For example, to adapt web contents to be rendered on 

a display constrained mobile device, it is necessary to transcode the image, with the 

ultimate aim of reducing the amount of data to be transferred. In transformation 

adaptation, the contents are directly transcoded. The transcoding codes are often 

deeply embedded within the application. In contrast, in compositional adaptation, the 

aim is to discover and select the most suitable transcoding component that can be 

composed into the flow of processed data. 

 

Compositional adaptation is more suitable than transformational adaptation for 

automated context-aware adaptation decisions. Transformational adaptation statically 

defines variables to describe context-aware aspects of applications and, if necessary, 

to tune them to adapt to contextual information. This approach is easier to implement 

than compositional adaptation; nevertheless, in transformational adaptation, it is 

necessary for adaptation rules and decisions to be planned and coded before they are 

deployed. On the other hand, compositional adaptation can be amended for 

automated context-aware adaptation decisions. First, the decomposition of 

applications to a set of functional components enables compositional adaptation to 

exercise greater extensibility, and to effectively respond to changing contexts and 

react to the operational challenges encountered in dynamic computing. New 

behavioral or structural parts to address evolving challenges can be non-invasively 

deployed into applications without affecting the operations of existing units. 

Moreover, compositional adaptation can effectively separate adaptation-related 

concerns from the functional behaviors of context-aware applications, and make it 

possible for adaptation-related issues to be handled in the middleware layer. Through 
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compositional adaptation, application functions are organized and encapsulated in 

various components, and context-aware adaptation is achieved by the composition of 

these functional components. Importantly, application developers can focus on 

programming various components to implement various functions of the application, 

and leave it to the middleware to handle adaptation-related concerns. Specifically, 

the middleware will be responsible for deciding how and when to compose different 

components to adapt to the surrounding and changing contexts. 

 

While there have been many projects that advocate using compositional adaptation 

to ease the development of context-aware applications [McKinley04], they are 

insufficient for CAMPUS that requires a fine-grained separation of adaptation 

concerns from functionalities to enable automated context-aware adaptation 

decisions. As we argued, dealing with adaptation concerns and the basic functional 

concerns of applications at the same time and at the same level pushes developers 

into an awkward position. Adaptation concerns should be studied and tuned 

independent of the basic requirements of applications. In particular, CAMPUS 

requires its programming model to separate adaptation concerns at both the 

application level and component level. In addition, CAMPUS requires its 

programming model to provide primitives that enable the middleware to 

automatically make adaptation decisions. However, to the best of our knowledge, 

previous composition-based programming models do not satisfy the requirements of 

CAMPUS. Most of them only consider the separation of application functionalities 

and the definition of adaptive behaviors. For example, MobiGATE [Zheng06] 

delineates a separation of interdependent parts from the service-specific 

computational codes by using a separate coordination language, called MobiGATE 

Coordination Language (MCL), to describe the composition and reconfiguration of 

the MobiGATE components, referred to as streamlet. While such separation is 

desirable in developing component-based context-aware systems, in these systems, 

the part of a component that provides the desired functionalities and the part that is 

involved only during adaptation are amalgamated together, so that developers can 
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not focus on providing functionalities indeed. There also exist a few systems that 

consider the separation of adaptation and functionality at the component level. For 

instance, Biyani and Kulkarni propose a design to separate adaptation concerns from 

component functionality [Biyani05]. Each component in their system is designed to 

consist of two parts: a functional part and an adapt-active part. The latter part is 

involved in actions that are only required when adaptation. Nevertheless, these 

systems do not provide direct supports for a middleware layer to make adaptation 

decisions. That is, using these systems, developers are still required to handle 

concerns of adaptation decisions, while considering application functionalities. 

 

To facilitate automated context-aware adaptation decisions, CAMPUS proposes a 

new composition-based programming model that fully supports the separation of 

adaptation concerns from functionality. The ATM programming model distinguishes 

itself from previous composition-based programming models in two important 

features. First, it separates adaptation concerns from functionality both at the 

application level and component level. In addition, it provides primitives that enable 

a middleware layer to make adaptation decisions. A detailed design of the ATM 

programming model is presented in Chapter 4. 

3.2  The Knowledge Model 

The programming layer adapts a service by adding, removing, or replacing the 

tasklet parts of its tasks. Consequently, context-aware adaptation decisions converge 

to the decision of how to select appropriate tasklets according to up-to-date 

contextual information. Therefore, the following information is required by 

CAMPUS in order to make adaptation decisions: 

� The requirements desired by the target service: they capture the functional and 

non-functional requirements imposed by the target service, such as functionality, 

performance, structure, security, and reliability, among others. 
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� The properties of the available tasklets: they specify the functional and non-

functional properties of the available individual tasklets, for example, the 

provided functionality and QoS, and the dependencies on other components. 

� The context requirements imposed by tasklets: they capture any assumption 

made about the environment in which the specified tasklet is expected to execute 

and the resources required by the tasklet to perform its functionality. 

� The properties of run-time contexts: they capture the actual conditions of the 

execution environment and resources. 

 

It is necessary for CAMPUS to define a new knowledge model that captures and 

represents the above knowledge that is required to make adaptation decisions. To the 

best of our knowledge, thus far there is no work that aims to provide an integrated 

scheme to represent all of the necessary information. Existing description schemes 

have been developed to capture and represent different aspects of software. For 

example, architecture description languages [Garlan94, Binns96, Medvidovic99] can 

be used to describe application properties, especially in the aspect of software 

architecture. Alternatively, interface and component description languages  

[Warmer98, Gordon00, Sora07] can be used to describe syntactic interfaces and type 

systems of software components, while context description languages [Strang03, 

Neto05] can be used to describe contextual information. These representations are 

designed to separately capture specific characteristics of aspects of software, with 

little or no provision to enable integrated sharing of knowledge to facilitate context-

aware decision-making. On the other hand, it is not practical to integrate existing 

languages from various domains in order to provide support for automated 

adaptation decisions, since these languages lack the intrinsic properties to enable 

seamless integration across standards. 
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CAMPUS uses an ontological model to capture and expose the internal semantics of 

the knowledge required during the process of making context-aware adaptation 

decisions. The term ontology has its origin in philosophy. In computer science, 

ontology is a description of the concepts and relationships that can exist for an agent 

or a community of agents, and is generally written as a set of definitions of formal 

vocabulary [Gruber93]. Ontologies are commonly used in the fields of artificial 

intelligence [Lenat90], the semantic web [Berners-Lee01], and software engineering 

[Kitchenham99] as a form of representing knowledge about the world or some parts 

of it in order to clarify the structure of knowledge and enable knowledge to be shared. 

 

An ontology consists of a vocabulary used to describe a particular view of some 

domain, an explicit specification of the intended meaning of the vocabulary, and the 

constraints on capturing additional knowledge about the domain [Horrocks02]. 

Contemporary ontologies share many structural similarities, regardless of the 

languages in which they are expressed. Most ontologies describe individuals, classes, 

attributes, and relations. Individuals are the basic, “ground level” component of 

ontology. In an ontology, individuals may include concrete objects such as people 

and automobiles, as well as abstract individuals such as numbers and words. Strictly 

speaking, an ontology does not need to include any individuals, but one of the 

general purposes of ontology is to provide a means of classifying individuals, even if 

those individuals are not explicitly part of the ontology. Classes are abstract groups, 

sets, or collections of objects. Objects in the ontology can be described by assigning 

attributes to them. Each attribute has at least a name and a value, and is used to store 

information that is specific to the object to which it is attached. An important use of 

attributes is to describe the relationships between objects in the ontology. Typically, a 

relation is an attribute whose value is another object in the ontology. 

 

The CAMPUS ontologies are a set of ontologies that capture concepts and 

relationships in various domains of interest, in order to expose to CAMPUS the 
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semantics of the knowledge required during the process of adaptation decision-

making, as discussed previously. In general, these ontologies can be classified into 

context ontologies, tasklet ontologies, and service ontologies. 

� Context ontologies model various context entities to share contextual information 

in a dynamic environment. 

� Tasklet ontologies describe the properties of individual tasklets and their 

requirements for contextual conditions. Examples include the functionalities 

provided by a tasklet, the types of data that a tasklet can process and produce, 

and the computing resources required by a tasklet. 

� Service ontologies describe the properties of context-aware services and their 

requirements for tasklets. Some examples of the requirements include the 

composition of services, the desired functionality of tasks, and their required 

input and output data types. 

There are several reasons to develop ontologies as the underlying description scheme 

for CAMPUS:  

� First, formal ontologies are an efficient solution for managing the inherent 

heterogeneity present in knowledge from different sources [Ciocoiu00]. 

Ontologies can be used to explicitly represent the meaning and semantics of 

contextual and computational entities, and to thereby enable entities to have a 

common set of concepts while interacting with one another. This is especially 

important for CAMPUS, since different agents could have different 

understandings of the current contexts. They might use different terms to 

describe contexts, and even if they use a set of the same terms, they might attach 

different semantics to these terms. Similar requirements also exist with 

heterogeneous tasklets that have been developed independently by different 

development teams.  

� Second, ontologies will greatly simplify the tasks of semantic-based automated 

reasoning and decision-making. Ontologies include machine interpretable 
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definitions of concepts in the domain and the relationships among them. They are 

expressed in a logic-based formal language, so that consistent and meaningful 

distinctions can be made among the classes, properties, and relations. Importantly, 

a considerable number of existing reasoning mechanisms can be employed to 

perform automated reasoning and decision-making on the ontologies. DL and 

FOL reasoning have been used to reason about the CAMPUS ontologies. In 

particular, CAMPUS uses DL reasoning to check knowledge consistency, i.e., to 

ensure that the CAMPUS ontologies do not contain any contradictory knowledge. 

In addition, CAMPUS uses FOL reasoning to make more complex inferences, 

such as reasoning about whether a tasklet alternative satisfies a certain task or not. 

� Finally, many graphical ontology editors, such as Protégé OWL [Knublauch04], 

are available to facilitate the development of ontologies. Large-scale context 

ontologies can also be composed without the need to start from scratch by 

reusing the well-defined ontologies of different domains. 

3.3  The Decision Model 

CAMPUS achieves context-aware adaptation by adapting the tasklet parts of tasks, 

and the decision layer uses a multi-stage normative decision model to choose the 

best tasklet alternatives for given tasks. In general, most decision theories can be 

classified into two groups: normative and descriptive. A normative decision theory is 

a theory about how decisions should be made. It is concerned with identifying the 

best decision to take, while assuming an ideal decision maker who is fully informed, 

able to compute with perfect accuracy, and fully rational. A descriptive theory, on the 

other hand, is a theory about how decisions are actually made. It attempts to describe 

what people will actually do. It is fairly obvious that a normative decision theory is 

more suitable for CAMPUS because it aims to choose the best tasklets for given 

tasks. However, all existing normative decision theories assume a linear 

compensatory model that suggests a single-stage choice process where the decision 
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makers are to choose from all of the available alternatives. Fischhoff etc. 

[Fischhoff83] described the normative decision rule as: 

“List all feasible courses of action. For each action, enumerate all possible 

consequences. For each consequence, assess the attractiveness or aversiveness of its 

occurrence, as well as the probability that it will be incurred should the action be 

taken. Compute the expected worth of each consequence by multiplying its worth by 

its probability of occurrence. The expected worth of an action is the sum of the 

expected worth of all possible consequences. Once the calculations are completed, 

choose the action with the greatest expected worth” (p. 183). 

 

A single-stage decision model does not satisfy CAMPUS. The major weakness of a 

single-stage model is that it may involve the unnecessary processing of a large 

volume of information. CAMPUS is designed to operate in a pervasive computing 

environment where adaptation may occur frequently and many contexts need to be 

considered, so that the decision-making process will involve a great deal of 

information. At the same time, a pervasive computing environment requires short 

break time when performing an adaptation, in order to achieve satisfactory user 

experience. Therefore, unnecessary processing of information in the single-stage 

model may result in a performance bottleneck for CAMPUS. In addition, a single-

stage decision model does not allow a decision to be omitted, i.e. it always 

recommends a final alternative, whereas CAMPUS allows the tasklet part of a task 

to be empty if no suitable tasklet alternative is found for the task. Finally, a single-

stage decision model does not allow for multiple strategies to be utilized within a 

single decision process. In contrast, CAMPUS requires multiple decision strategies 

in order to decide a final tasklet. For example, a tasklet is rated not only on the basis 

of its functionality, but also on its contextual requirements. 

 

CAMPUS uses a multi-stage model that is common in descriptive decision theories 

such as image theory [Beach90]. A multi-stage decision process incorporates 
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multiple qualitatively separable stages, i.e., multiple heuristic-based phases followed 

by a choice phase. In a multi-stage model, the decision maker first uses less 

cognitively demanding decision strategies to eliminate unacceptable alternatives, 

thereby reducing the number of alternatives remaining in the choice decision. In the 

choice phase, the decision maker may use more cognitively demanding decision 

strategies to choose between the remaining alternatives. The whole decision-making 

procedure of CAMPUS is divided into three phases: preprocessing, screening, and 

choice. In the preprocess phase, several preprocessing tasks are performed to ensure 

that the ontologies are semantically consistent and to prepare fine-grained 

information for the following phases. For example, qualified tasklets are registered 

as alternatives for each task. In the second screening stage, tasklets alternatives that 

were registered in the first phase are screened out if they are not satisfied by the up-

to-date contextual information. If more than one acceptable tasklet alternative 

survives the screening phase, the choice phase selects the best alternative from 

among the survivors, using the expected utility function. Expected utility theory is 

the dominant normative approach to decision-making. The theory proposes that for 

each option, there are objective payoffs (x), and for each level of payoff, there is a 

corresponding value called the utility of the payoff (u). Associated with each level of 

payoff, there is an objective probability of occurrence (p). The expected utility of an 

option can be expressed by the following mathematical formula: 
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=  --- Equation 3-1 

Where p = objective probability of outcome i; u = utility of outcome i; and x = 

payoff (gain or loss) associated with outcome i. The expected utility of each decision 

alternative is the sum of the utilities of the potential payoffs, each weighted by its 

objective probability of occurrence. The decision maker then chooses the option with 

the highest expected utility. 
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CChhaapptteerr  44    TThhee  AATTMM  PPrrooggrraammmmiinngg  MMooddeell  

CAMPUS proposes an adaptable task model (ATM) to enable context-aware 

adaptation. CAMPUS tasks are system elements that offer predefined functionalities 

and that can be independently developed under given specifications, deployed, and 

composed through well-defined interfaces by third parties. Such a design supports 

the large-scale reusing of software by enabling the assembly of “commodity-off-the-

shelf” (COTS) tasks from a variety of vendors. This chapter focuses on the design of 

the ATM programming model, including its conceptual model and semantic model. 

4.1  Conceptual Model 

The ATM programming model relies on two main concepts: service and task. A 

service is an abstract of a business or a technical process. For example, in 

CyberGuide [Abowd97], a mobile context-aware tour guide, four context-aware 

services are provided including Cartographer, which provides maps of the physical 

environments that the tourist is visiting; Librarian, which provides information 

relating to objects and people of interest in the physical world; Navigator, which 

delivers accurate information on tourist locations and orientations; and Messenger, 

which conveys messages to related tourists. Since such services provided by a 

context-aware application are loosely coupled, it is necessary to introduce a separate 

concept of service to organize context-aware applications. 

 

Internally, each service is comprised of a series of tasks. Tasks are execution units 

that perform certain actions to deliver a result to other tasks or the end user. For 

example, a streaming media service may be composed of tasks such as the codec, 

transceiver, jitter buffer, and renderer. A task in CAMPUS transforms or filters data 

of specified types, and communicates with others solely through the exchange of 



 

40 

data instead of by direct method calls. Thus a task has two basic concerns: how to 

transform or filter data, and how to exchange data. CAMPUS separates these two 

concerns by dividing a task into two parts: a tasklet and a task base. The former part 

concentrates on the computational concerns of the task, i.e. how to process data; and 

the latter part handles issues involved in coordination and adaptation, such as how to 

communicate with other modules of the service and how to transfer the states of 

tasks during adaptation. 

 

The tasklet part of a task can specify the contextual requirements that should be 

satisfied for it to operate normally and optimally. For example, a tasklet that 

processes image data may require the terminal to be equipped to display graphics. 

Such contextual requirements are described using the CAMPUS ontologies that are 

described in Chapter 5. Importantly, this feature of the tasklet part enables a task to 

be context-aware. When the surrounding contexts change, the behavior of a task can 

be adapted by using a different version of its tasklet part. Tasks are further classified 

into essential tasks and expansion tasks, according to whether or not the tasklet part 

of a task can be empty. An essential task always requires a tasklet. If no tasklet is 

found for an essential task, an exception will be reported. An expansion task, on the 

other hand, is allowed to have an empty tasklet part. Such classifications reflect the 

fact that in the composition of a service, some of its tasks are core, and some are 

non-core. For instance, the codec, transceiver, and renderer are essential to a service 

of streaming media, while the jitter buffer is not always required, especially when 

the network condition is satisfactory. 

 

The task base part of a task serves three purposes. First, the base part is responsible 

for communicating with other tasks to exchange operating data. A task base receives 

and sends the operating data through its input and output ports, respectively. A task 

base can own an arbitrary number of input or output ports. In addition to the port 

type, i.e. input and output, each port has a data type, and only data of the specified 
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type can pass the port. Secondly, the task base part acts as a proxy to its 

corresponding tasklet. Any data that need to be processed by the tasklet will be sent 

to the base, and the base will cache the incoming data and forward them when the 

tasklet is ready. Similarly, after processing the input data, the tasklet is required to 

return the output data immediately to the base, where interested parties can fetch 

these output data. Finally, the task base part, on behalf of the task, defines the 

requirements for the tasklet part. In order to perform the provided functionalities, a 

tasklet has to be inserted into a compatible base, where it receives the desired input 

data and publishes the output data after processing. To be compatible with a task 

base, a tasklet must implement the desired functionality of the task, and must be able 

to process the data of all input data types and produce the data of all output data 

types of the task base. 

 

Tasks are assembled by setting up channel connections between their compatible 

ports as illustrated in Figure 4-1. A channel is used to connect an output port of a 

task to an input port of another task. It is necessary for the connected tasks to have 

ports of a compatible type that will enable data to be seamlessly transferred. A 

channel represents a reliable, directed flow of information in time. Reliable means 
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Figure 4-1 The ATM Programming Model. 
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that all of the data that have been placed into a channel are guaranteed to flow 

through without loss, error, or duplication, while preserving their order. Directed 

means that a channel always has two identifiable ends: a source port and a sink port.  

 

The ATM programming model offers three salient features. First, it greatly simplifies 

the work of maintaining the consistency of the data and migrating states when 

adaptation occurs. In CAMPUS, tasklets are required to retrieve data from their 

bases when necessary, and to return the data immediately after it has been processed, 

i.e., the operating data are stored in bases instead of tasklets. Therefore, when 

tasklets are unplugged from their bases, the effort to enforce tasklet state consistency 

is greatly reduced. Moreover, the issue of how to cooperate with other parts of the 

target application in order to receive and publish data is handled by the task bases, 

while the tasklet is only responsible for providing the desired functionalities and is 

treated as a black box that uses predefined interfaces to communicate with its host 

task. Such a separation greatly facilitates the development and reusing of tasklets. 

Finally, this separation simplifies verification of the adaptation. To verify that the 

adaptation of a task is correct, the task needs to continue to correctly perform its 

functionality after adaptation, and specification during adaptation needs to be 

satisfied [Biyani05]. The separation of the part related to adaptation from task 

functionality simplifies the task of specifying and verifying adaptation. 

4.2  Semantic Model 

This section describes the mathematical model of the ATM programming model 

using the specification language Z. The Z schemas, which can be regarded as 

definitions of a generalized type, are used to represent the basic constructs. These 

schemas provide semantics that permit formal verification of properties of the model. 

Additional details on Z can be found in [Spivey89]. 
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It is assumed that sets [ENTITY, DTYPE] exist. The ENTITY identifiers represent 

global names. Name clashes between distinct entities are disallowed. The set DTYPE 

includes different types of data and are introduced as a given set in the model. 

 

Service. A service is identified with a unique id. It can be modeled as a non-empty 

finite set of tasks connected by channels. As shown in Figure 4-2, the following 

properties are required to ensure a consistent context-aware service: 

� For all channels in the service, the source port of a channel must connect to an 

output port of a task, and the sink port of this channel must connect to an input 

port of another distinct task. 

� For all tasks, all ports must connect to channels. 

� If there is more than one task in the service, then they must be connected by 

channels. 

 Service  
serviceId : ENTITY 

channels : � Channel 

tasks : �1 Task 

 

∀ c : channels ⦁ ∃ t1, t2 : tasks ⦁ 

 c.source ∈ t1.base.outputs ∧ c.sink ∈ t2.base.inputs 

∀ t : tasks ⦁  

 (∀input : t.base.inputs | input.state = used ⦁ 

    ∃ c : channels ⦁ c.sink = input) 

     ∧ (∀output : t.base.outputs | output.state = used ⦁ 

    ∃ c : channels ⦁ c.source = output) 

#channel ≥ #task-1 
 

Figure 4-2 The Service Schema. 
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Task. A task provides desired functionality and consists of a task base part of a 

tasklet part. The base part of a task owns a number of input and output ports that 

receive and send data. Each port has a data type, and only data of the specified type 

can pass the port. The tasklet part of a task provides an implementation of the 

 Task  
taskId : ENTITY 

function : ENTITY 

base : TaskBase 

tasklet : Tasklet 

 

base.taskId = taskId 

tasklet.function = function 

 

 TaskBase  
baseId : ENTITY 

taskId : ENTITY 

inputs, outputs : � Port 

 

inputs ∩ outputs = ∅ 

inputs ∪ outputs ≠ ∅ 

∀ i1, i2 : inputs | i1 ≠ i2 ⦁ i1.dtype ≠ i2.dtype 

∀ o1, o2 : outputs | o1 ≠o2 ⦁ o1.dtype ≠o2.dtype 

 

 Tasklet  
taskletId : ENTITY 

function : ENTITY 

inputTypes, outputTypes : � DTYPE 

 

inputTypes ∪ outputTypes ≠ ∅ 

 

Figure 4-3 The Task-Related Schemas. 
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desired functionality of the task, i.e., transforming or filtering data of specific types. 

As shown in Figure 4-3, some enforced constraints on tasks and their parts are: 

� The tasklet part must provide the desired functionality of the task. 

� The task base part must own at least one input port or one output port, and all 

ports are distinct. Two ports are distinct if and only if both their port types and 

data types are distinct. 

 

Channel. A channel connects two distinct tasks to pass data of a specific type. 

Figure 4-4 shows the formal definition of a channel. Importantly, the following 

constraints are enforced on channels: 

� The source port and the sink port are distinct, and their data types are identical. 

� The type of the source port is output and the type of the sink port is input. 

� The source port and the sink port belong to distinct tasks. 

 Channel  
channelId : ENTITY 

dateType : DTYPE 

source, sink : Port 

 

source ≠ sink 

source.type = output 

sink.type = input 

source.dtype = sink.dtype 

source.baseId ≠ sink.baseId 

 

Figure 4-4 The Channel Schema. 
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CChhaapptteerr  55    TThhee  CCAAMMPPUUSS  OOnnttoollooggiieess  

CAMPUS makes use of ontologies to capture the most important concepts and 

relationships in the process of developing and deploying context-aware applications. 

These ontologies represent knowledge that enables CAMPUS to reason the 

underlying semantics of involved entities and help it to decide how to compose 

target services and select suitable tasklets. The CAMPUS ontologies are split into 

two dimensions. This makes them more extensible and scalable, and also helps to 

improve the performance of the system. The first dimension is that of domain. Here, 

the ontologies are divided into context ontologies, tasklet ontologies, and service 

ontologies: 

� Context ontologies model various context entities to share contextual information 

in a dynamic environment. 

� Tasklet ontologies describe the properties of individual tasklets and their 

requirements for contextual conditions. Examples include the functionalities 

provided by a tasklet, the types of data that a tasklet can process and produce, 

and the computing resources required by a tasklet. 

� Service ontologies describe the properties of context-aware services and their 

requirements for tasklets. Some examples of the requirements include the 

composition of services, the desired functionality of tasks, and their required 

input and output data types. 

 

Additionally, from the dimension of range, the CAMPUS ontologies are separated 

into foundation ontologies and domain-specific ontologies. The foundation 

ontologies model common objects that are generally applicable across a wide range 

of domain-specific ontologies. A domain-specific ontology models a particular 

domain and represents the particular meanings of terms as they apply to that domain. 
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The separation encourages the reusing of general concepts and provides a flexible 

interface for defining domain-specific knowledge. On the one hand, all applications 

belonging to a specific domain can share the ontologies in this domain, and all 

domain-specific ontologies can reuse the foundation ontologies; on the other hand, 

new domain-specific ontologies can be flexibly plugged and unplugged to support 

new domain knowledge. 

5.1 Context Foundation Ontology 

CAMPUS models a context as a set of descriptions of one particular context entity. It 

does this by providing a set of properties to describe various aspects of this entity. 

For example, a RAM context entity may use the properties of hasCapacity and 

hasFreeSpace to describe its total capacity and current free space. Formally, a 

context is a set of triples (entity, property, value), with each component defined as 

follows: 

� entity  E∈ : the set of individuals of context entities, such as a computing terminal, 

a person, or a noise level. 

� property  P∈ : the set of properties used to describe various aspects of a context 

entity. For example, hasCapacity, to describe the total capacity of a RAM instance. 

� value  V∈ : the set of all values of the property. For example, 10 MB for the 

property hasCapacity of a RAM instance. 

 

CAMPUS defines a ContextEntity class as the base class for all contextual entities, 

and uses a well-accepted context category [Schilit94, Dey00], i.e. 

ComputationalEntity, PhysicalEntity and UserEntity, to extend the ContextEntity 

base class, as shown in Figure 5-1. ComputationalEntity refers to an application’s 

execution conditions, including its software, network, and hardware conditions. 

PhysicalEntity refers to the circumstances by which applications are surrounded, 
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such as noise level, temperature and lighting level. Finally, UserEntity pertains to 

characteristics of users, such as user presence, status, activities, and abilities. The 

context foundation ontology has defined most of the common context entities and 

their properties for domain-specific ontologies to extend. In particular, the value of a 

context property can be a physical quantity, a context entity, or a data value of a 

built-in OWL datatype, as listed in Table 5-1. 

Table 5-1 Legal Types of the Value of Context Properties. 

Type Description 

context:PhysicalQuantity Represents physical quantities. 

context:ContextEntity Represents context entities. 

rdfs:Literal Represents literal values. 

rdf:string Represents character strings. 

rdf:boolean Has the value space required to support the mathematical 

 

Figure 5-1 The Hierarchy of Context Entities. 
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concept of binary-valued logic: {true, false}. 

rdf:base64Binary Represents Base64-encoded arbitrary binary data. 

rdf:hexBinary Represents arbitrary hex-encoded binary data. 

rdf:decimal Represents arbitrary precision decimal numbers. 

rdf:float Corresponds to the IEEE single-precision 32-bit floating 

point type. 

rdf:double Correspond to the IEEE double-precision 64-bit floating 

point type. 

rdf:anyURI Represents a Uniform Resource Identifier Reference 

(URI). 

rdf:dateTime Represents a specific instant of time. 

rdf:time Represents an instant of time that recurs every day. 

rdf:date Represents a calendar date. 

rdf:gYearMonth Represents a specific gregorian month in a specific 

gregorian year. 

rdf:gYear Represents a gregorian calendar year. 

rdf:gMonthDay Represents a gregorian date that recurs, specifically a day 

of the year. 

rdf:gDay Represents a gregorian day that recurs, specifically a day 

of the month. 

rdf:gMonth Represents a gregorian month that recurs every year. 
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Importantly, the context foundation ontology captures the concept of physical 

quantity. Physical quantity is a very important concept in most practical scenarios of 

context reasoning and context-aware adaptation decision-making. For example, the 

current availability of a CPU may be inferred from its clock rate and current loading 

as illustrated using a first-order logic predicate: (cpu, hasClockRate, <=400MHz)  ∧

(cpu, hasLoading, >=80%) → (cpu, hasAvailability, LOW). To achieve this, the 

reasoner needs to understand exactly what 400 MHz and 80% represent, so that these 

measurements can be compared and inferred. As shown in Figure 5-2, the context 

foundation ontology defines a class PhysicalQuantity that has two properties: 

hasValue and hasUnit. The context foundation ontology also defines a 

comprehensive unit hierarchy that is basically derived according to the International 

System of Units (SI). In this unit hierarchy, the Unit class is the base class, and has 

two concrete sub-classes: BaseUnit and DerivedUnit. We define nine base units, 

 

Figure 5-2 PhysicalQuantity and Units. 
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namely seven SI base units and two information storage units, bit and byte. Derived 

units are further divided into UnitDerivedByMultiplying, UnitDerivedByShifting, 

UnitDerivedByScaling, UnitDerivedByRaising, and UnitDerivedByPrefixing. 

UnitDerivedByMultiplying refers to units that are derived from multiple units by 

multiplication. For example, coulomb is an individual of the class 

UnitDerivedByMultiplying, which is the product of second and ampere. 

UnitDerivedByShifting abstracts units that are derived from base units or other 

derived units by shifting. DegreeC is such an example, derived as it is from Kelvin 

by subtracting 273. UnitDerivedByScaling is used to capture units that are derived by 

scaling other units. For instance, hour is derived from second by scaling 3600. Units 

that are classified into UnitDerivedByRaising are derived by raising other units to an 

n-th power, such as area being a squared meter. Finally, individuals of 

UnitDerivedByPrefixing are decimal multiples and submultiples of other units. For 

example, mebi-bit is derived from bit by adding a prefix mebi. Moreover, we 

distinguish two kinds of prefixes: SIPrefix and BinaryPrefix. The former refers to 

prefixes adopted by SI, which represent powers of 10; and the latter refers to prefixes 

adopted by the International Electrotechnical Commission (IEC), which represent 

powers of 2. 

5.2 Tasklet Foundation Ontology 

The tasklet foundation ontology defines the underlying concepts of the CAMPUS 

tasklets. Tasklet vendors are required to extend the foundation ontology to provide 

concrete information about their own tasklets, in order to make available meta-data 

for the middleware to make appropriate adaptation decisions. 

 

As shown in Figure 5-3, the Tasklet class uses the implementedBy property to 

indicate the path of the tasklet implementation that is used by CAMPUS to locate the 

tasklet codes. The functionalities provided by the tasklet are indicated by the 

provides property, and the types of data available for the tasklet to process and 
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generate are specified by the hasInputDataType and hasOutputDataType properties. 

Similar to Tasklet, instances of the Function and DataType classes can use the 

implementedBy property to specify their code paths. In addition, the extends property 

can be used to indicate the inheritance relationship between two functions or two 

datatypes. 

 

The tasklet foundation ontology introduces a ContextCondition class to model the 

contextual requirements imposed by a tasklet. A context condition statement, for 

example “the available RAM capacity needs to be larger than 100 MB,” can be 

logically separated into four parts: a part on the context entity, which is “RAM,” a 

part on the property of the entity, which is “capacity,” a part on the comparison 

operator, which is “larger than,” and a part on the reference value, which is “100 

MB.” In particular, the part on the reference value can be either a literal value or a 

comparable individual. These four parts are represented in the tasklet foundation 

ontology by four properties, respectively: hasEntity, hasProperty, hasOperator and 

hasReferenceValue (or hasReferenceObject when the reference value is an individual 

 

Figure 5-3 The Tasklet Foundation Ontology. 
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instead of a literal value). Figure 5-4 illustrates an example condition statement using 

the CAMPUS ontology. 

 

Context-aware services undergoing dynamic compositional adaptation often require 

synchronization to ensure that related tasklets are added and removed consistently. 

For example, in the case of a streaming service with the deployment options of 

various codecs based on various network situations, the matching encoder and 

decoder should always be replaced synchronously, otherwise the content may be 

decoded incorrectly. Thus, the tasklet foundation ontology uses an object property 

groupedWith to capture the synchronization requirements of the tasklets. When two 

tasklets are related by the groupedWith property, they should be added or removed 

synchronously. Another relationship between tasklets is concerned with dependency. 

That a tasklet A depends on another tasklet B means that when the tasklet A is about 

to be deployed, the tasklet B should be deployed first. The tasklet foundation 

ontology uses an object property dependsOn to represent such a relationship of 

dependency. 

5.3 Service Foundation Ontology 

The defined service foundation ontology formally describes the common concepts of 

services on CAMPUS. Service developers are required to provide their own domain-

specific service ontologies by extending this foundation ontology, in order to 

 

Figure 5-4 A Sample Context Condition. 
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describe the concrete properties related to the service. As shown in Figure 5-5, a 

service consists of a series of tasks, including essential tasks and expansion tasks. A 

task specifies its functional requirement for its tasklet by an object property requires, 

whose value is a functionality that has been detailed in the section on tasklet 

foundation ontology. A task owns a set of ports, including input ports and output 

ports. Each port accepts only one data type, and is connected to a channel. A channel 

receives data from an output port of a task, and sends data to a compatible input port 

of another task. 

 

Figure 5-5 The Service Foundation Ontology. 
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CChhaapptteerr  66    AAuuttoommaatteedd  CCoonntteexxtt--aawwaarree  

AAddaappttaattiioonn  DDeecciissiioonnss  

CAMPUS achieves context-aware adaptation by adapting the tasklet parts of tasks. 

The primary objective of adaptation decisions is to choose an appropriate set of 

tasklet alternatives for given tasks. This chapter details the decision-making 

mechanism of CAMPUS, which offers two salient features:  

� Decisions are made based on the semantics of the involved entities. CAMPUS 

makes use of description logics and first-order logics to perform semantic 

reasoning on the ontologies that describe the CAMPUS entities; and tasklets 

alternatives are compared based on their semantics in order to select the best 

ones. For example, assume that a particular task T requires a function FuncA, and 

a tasklet Tl provides another function FuncB. Commonly, Tl is not a qualified 

tasklet for the task T because it does not provide the desired function of T. 

However, if the function FuncB is extended from FuncA, or if it has been 

indicated that it is semantically identical with FuncA, then Tl will be regarded as 

being able to satisfy the functional requirement of T. Of course, this example is 

somewhat contrived. A more likely use would be in a case where different 

vendors develop tasklets independently, and use different terms to refer to the 

same concepts. With this semantic approach, it is possible to reuse these 

heterogeneous tasklets. 

� Decisions are made through a multi-staged process as illustrated in Figure 6-1. 

CAMPUS makes adaptation decisions based on the semantic ontologies. Before 

the decision-making process is launched, these ontologies are preprocessed. The 

preprocessing stage ensures that the ontologies are consistent in semantics. It 

also serves to prepare fine-grained information for the decision-making process, 

which indicates a heuristic-based screening phase followed by a choice phase of 
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comprehensive tasklet comparisons. The screening phase addresses the pre-

choice process of eliminating unacceptable tasklets, that is, the mechanism that 

governs which tasklet alternative is rejected and which tasklet enters into the 

final choice set. Eventually, in the final phase, the tasklet that maximizes the 

expected utility is chosen. 

6.1  Semantic Reasoning 

This section presents the technologies used by CAMPUS to perform semantic 

reasoning on the ontologies. CAMPUS makes use of DL and FOL reasoning to 

facilitate context-aware adaptation decisions. The CAMPUS ontologies are 

described using the OWL DL language. The equivalence of description logic and 

OWL DL allows various DL reasoning tasks to be performed on the CAMPUS 

ontologies [Wang04]. For example, assume that there are an inverse-functional 

 

Figure 6-1 The Complete Process of Making Adaptation Decisions. 
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property P, and two individuals x1and x2 such that both pairs (x1, y) and (x2, y) are 

instances of P. According to the semantics of the inverse-functional property axiom, 

we can infer that x1 and x2 actually refer to the same thing, i.e., x1 owl:sameAs x2. 

Table 6-1 lists the most common OWL DL axioms that can be used for DL reasoning. 

Table 6-1 OWL DL Axioms for DL Reasoning. 

OWL DL Axiom Semantics 

rdfs:subClassOf (A rdfs:subClassOf B) ^ (B rdfs:subClassOf C) -> 

(A rdfs:subClassOf C) 

owl:equivalentClass (A owl:equivalentClass B) ^ (C rdf:type A) -> (C 

rdf:type B) 

owl:disjointWith (A owl:disjointWith B) ^ (C rdf:type A) ^ (D 

rdf:type B) -> (C owl:differentFrom D) 

rdfs:subPropertyOf (A rdfs:subPropertyOf B) ^ (B rdfs: subPropertyOf 

C) -> (A rdfs: subPropertyOf C) 

owl:InverseFunctionalProperty (P rdf:type owl:InverseFunctionalProperty) ^ (A P 

B) ^ (A' P B)  -> (A owl:sameAs A') 

owl:SymmetricProperty (P rdf:type owl:SymmetricProperty) ^ (A P B) -> 

(B P A) 

owl:TransitiveProperty (P rdf:type owl:TransitiveProperty) ^ (A P B) ^ (B 

P C)  -> (A P C) 

owl:equivalentProperty (P equivalentProperty P') ^ (A P B) -> (A P' B) 

owl:inverseOf (P owl:inverseOf P') ^ (A P B) -> (B P' A) 

owl:sameAs (A owl:sameAs B) ^ (A P C) -> (B P C) 

(A owl:sameAs B) ^ (C P A) -> (C P B) 
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Furthermore, CAMPUS defines a set of application-independent meta-rules to 

further semantically reason the ontologies. The CAMPUS meta-rules define the 

general guidelines to instruct the middleware on how to process ontologies and make 

adaptation decisions. Compared with adaptation rules in existing context-aware 

systems like [Chan03, Yau02, Zheng06], which describe concrete adaptation 

decisions, such general meta-rules do not change frequently and their scale is far 

smaller. Consequently, it is easier to manage and maintain the CAMPUS meta-rules. 

Table 6-2 lists the defined CAMPUS meta-rules and their details will be discussed in 

the following sections. 

Table 6-2 CAMPUS Meta-Rules. 

Meta-Rule Description 

Compatibility Checks whether a CAMPUS services is composed 

correctly. It reflects the semantic restrictions and 

constraints on a service imposed by the ATM 

programming model. 

Registration Sets up a relation between each task and its 

qualified alternatives in the knowledge base. 

Normalization Converts the original unit of a physical quantity to 

a base unit with the same quantity, based on the 

semantics defined in the context foundation 

ontology. 

Screening Filters away tasklet alternatives that are not 

satisfied by the up-to-date contexts. 

Choice Selects the best tasklet from the final tasklet set that 

passes the screening phase. It computes the fitness 

utility of each tasklet and selects the tasklet with 

the maximum fitness utility. 
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The CAMPUS meta-rules can be defined using the Semantic Web Rule Language 

(SWRL). SWRL combines sublanguages of the OWL language (OWL DL and OWL 

Lite) with those of the RuleML (Unary/Binary Datalog). It extends the set of OWL 

axioms to include Horn-like rules, and thus enables Horn-like rules to be combined 

with an OWL knowledge base [Horrocks04]. SWRL provides a formally sound way 

of inferring information in OWL ontologies. Its inherent integration with OWL 

makes it easy to use when reasoning OWL ontologies. On the other hand, SWRL 

supports monotonic inferences only. Consequently, negation-as-failure and 

disjunction are not supported in SWRL. It is also unable to directly model changing 

information and to update property values. If a property has an existing value and a 

SWRL rule asserts a new different value, then the property will have two values. If 

the property is functional, an inconsistency exception will be generated. 

 

The monotonic feature of SWRL is not sufficient for CAMPUS to perform complex 

reasoning and make adaptation decisions. Therefore, CAMPUS also supports Jess 

rules [Friedman-Hill03]. The Jess rule language is a superset of CLIPS and supports 

sufficient expressiveness for CAMPUS to perform more complicated reasoning tasks. 

The defined Jess rules are processed by the Jess rule engine, which uses the Rete 

algorithm [Forgy82], a very efficient mechanism for solving the many-to-many 

matching problem. The entire Jess system consists of a rule base, a fact base, and an 

execution engine. The execution engine matches facts in the fact base with rules in 

the rule base. These rules can assert new facts and put them in the fact base. In order 

to use Jess to reason about OWL ontologies, the relevant knowledge about OWL 

individuals are represented as Jess facts. After performing an inference using the 

defined meta-rules, the results of that inference will be reflected in the OWL 

knowledge base. 
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6.2  Preprocessing 

Before making adaptation decisions, CAMPUS preprocesses the received ontologies 

in order to facilitate the decision-making process. It first checks the consistency of 

the received ontologies using the OWL semantics standard, as detailed in Section 6.1. 

The purpose of this is to ensure that the ontologies do not contain any contradictory 

facts. If any inconsistency is found, the affected ontologies will not be deployed in 

the CAMPUS system and an error will be reported. After checking for consistency, 

the consistent ontologies will be further preprocessed according to their types, i.e., 

service ontologies, tasklet ontologies, and context ontologies. 

 

If a service ontology passes the check for consistency, its compatibility will be 

checked. The task of checking for compatibility is carried out to ensure that all 

services are composed correctly. When an incompatible service is found, it will be 

marked and removed from the knowledge base. This task checks for service 

compatibility via the compatibility meta-rule, which reflects the semantic restrictions 

and constraints on a service imposed by the ATM programming model. These 

restrictions and constraints were detailed in Chapter 4 and are restated below: 

� Each task in a service must own at least a port. Furthermore, all of the ports of a 

task are distinct. Two ports of a task are distinct if both their port type, i.e. input 

and output, and data type are distinct.  

� The source port of each channel in the service must connect to an output port of a 

task. In addition, the sink port of this channel must connect to an input port of 

another distinct task. Furthermore, the data type of the sink port must be equal to, 

or be a supertype of, the data type of the source port. 

� If there is more than one task in the service, then these tasks must be connected 

by channels. 
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If a tasklet ontology passes the check for consistency, it will be further used to 

register tasklet alternatives for tasks defined in the compatible service ontologies. A 

tasklet can be registered as an alternative for a task if and only if it satisfies the 

following criteria: 

� The tasklet provides the required functionality of that task. 

� The tasklet is able to process data of certain types that are specified by the input 

ports of that task. 

� The tasklet is able to generate data of certain types that are specified by the 

output ports of that task. 

The task of registering alternatives is done by the registering meta-rule that sets up a 

relation between each task and its qualified alternatives in the knowledge base. 

 

Context ontologies that pass the check for consistency will be further preprocessed. 

For example, all of the physical quantities will be normalized using the 

normalization meta-rule, which converts the original unit of a physical quantity to a 

base unit with the same quantity, based on the semantics defined in the context 

foundation ontology. Such normalization is critical to the comparison of physical 

quantities, which are required when making context-aware adaptation decisions. 

Importantly, this task provides a chance for developers and end users to specify their 

own strategies to deduce high level and implicit contexts from low level and explicit 

contexts. Such context deduction strategies are application-dependent. As they are 

outside the scope of CAMPUS, they will not be detailed here. 

6.3  Decision-Making 

The decision-making process of CAMPUS involves selecting the best tasklet for a 

given task under the effect of changing contexts that may compromise the quality of 

service. The process consists of two phases: a screening phase and a choice phase. 
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The screening phase uses the screening meta-rule to filter away tasklet alternatives 

that are not satisfied by the up-to-date contexts, while the choice phase uses the 

choice meta-rule to select the best tasklet from the final tasklet set that passes the 

screening phase. The decision-making process is triggered upon request by 

CAMPUS under three kinds of situations. First, when activating a task, CAMPUS 

will use the process to decide an initial tasklet for that task. Second, during run-time, 

if a task reports an error to the effect that its tasklet part is operating under abnormal 

conditions, CAMPUS will use the process to select another tasklet for this task. 

Finally, when CAMPUS receives an updated context, all interested tasks that 

subscribe to this context will be notified. When such a task subscriber is notified, it 

will use the process to infer whether adaptation is necessary and which tasklet is the 

best alternative. 

 

In the screening phase, tasklet alternatives whose context requirements are not 

satisfied by the up-to-date contexts will be filtered away. Recall that a tasklet can 

assert a number of context conditions, each of which is composed of four parts: a 

part on the context entity, a part on the property of the entity, a part on the 

comparison operator, and a part on the reference value. A tasklet alternative is 

satisfied if and only if each of its asserted context conditions is satisfied. A context 

condition is satisfied if the up-to-date context instance of its specified context class 

semantically matches the condition statement. For example, assume that a context 

condition states, “The available RAM capacity needs to be larger than 100 MB.” 

That is, the entity part of the condition is RAM, the property part is available 

capacity, the operator part is larger than, and the reference value part is 100 MB. 

The condition is satisfied if and only if the value of the property available capacity 

of the up-to-date RAM instance is semantically larger than 100 MB. Here 

semantically refers to the fact that the property values are compared based not only 

on the numerical value but also on the physical unit. That is, 200 MB and 0.2 GB 

both satisfy the condition, “larger than 100 MB.” 
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If multiple alternatives for the given task pass the screening phase, they will be 

compared in the choice phase, in order to determine the most suitable tasklet. This is 

done by the choice meta-rule. Importantly, developers can specify their own choice 

strategies to overwrite the default choice meta-rule that selects a tasklet that best fits 

the current context. The default choice meta-rule computes the fitness utility of each 

tasklet and selects the tasklet with the maximum fitness utility. The overall fitness 

utility of a tasklet is computed as the arithmetic mean of the fitness utilities of its 

context conditions, as shown in Equation 6-1 where the fitness function over a 

context condition i is expressed as Ui.  
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The fitness utility over a specific context condition can be computed in terms of a 

fitness function expressed in a mixed form of mathematical notations and pseudo 

code as below: 
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Where operator refers to the operator part of the condition, Cr refers to the reference 

value part, and Cu refers to the up-to-date value of the corresponding context. When 

the operator is equal to or not equal to, the function simply sets the utility as 1. Such 

functions measure the fitness of up-to-date contextual information for specific 

context conditions of tasklets. For example, consider two context conditions “the 

bandwidth is to be larger than or equal to 256 Kbps” and “the bandwidth is to be 

larger than or equal to 128 Kbps,” and the fact that the up-to-date bandwidth is 512 

Kbps. In this example, the up-to-date bandwidth is considered as more fit for the first 

condition, i.e., the fitness utility of the first condition is higher than that of the 

second one. 
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CChhaapptteerr  77    IImmpplleemmeennttaattiioonn  

To demonstrate the working principle of CAMPUS in a real-world setting and 

provide a basis for assessing practical issues, we have implemented the system using 

Java SE 1.6. The reasons for this choice are manifold: Java is a portable language, it 

has embedded support for logical mobility and reflection, and more and more mobile 

devices being released are enabled with J2ME technology. The many libraries 

available, as well as run-time support for Java have further motivated our choice. 

The CAMPUS system uses Pellet 1.5.1 [Sirin07] to execute DL reasoning tasks on 

the CAMPUS ontologies detailed in Chapter 5. Pellet is an open-source Java based 

OWL DL reasoner that is based on the tableaux algorithms developed for expressive 

description logics. In addition, the Jess 7.1p2 [Friedman-Hill03] is used to perform 

FOL reasoning on the ontologies. Jess is a Java rule engine that uses an enhanced 

version of the Rete algorithm to process the CAMPUS meta-rules that are presented 

in Chapter 6. 

 

This chapter presents the implementation of the CAMPUS system that focuses on 

providing flexible adaptation support for context-aware applications. The low-level 

details of the implementation codes are not discussed here. Rather, this chapter 

introduces the overall architecture of the prototype and highlights the API that 

facilitates the development of adaptable tasks and their composition.  

7.1  The Implementation Architecture of CAMPUS 

Figure 7-1 illustrates the implementation architecture of the CAMPUS middleware. 

The components of the CAMPUS middleware are briefly described as follows: 
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� Tasklet Manager provides the basic service for managing a set of CAMPUS 

tasklets. As part of its initialization, the tasklet manager will attempt to load all 

available tasklet ontologies in the predefined directories, delegate them to the 

inference engine for preprocessing, and instantiate corresponding tasklet 

instances according to consistent tasklet ontologies. These tasklet instances are 

maintained in its Tasklet Directory, which provides mechanisms for querying and 

accessing tasklets via various conditions. 

� Service Manager is responsible for managing the lifecycles of services deployed 

in CAMPUS. At its initialization, it will load and check all service ontologies. In 

particular, after checking the consistency of the service ontologies, the service 

loader will also check their compatibility. The compatibility checking process 

ensures that all services are composed correctly based on the semantic 

restrictions and constraints imposed by the CAMPUS programming model that is 

detailed in Chapter 4. Similar to the tasklet manager, it maintains a Service 

Directory that stores the detailed information of all of the services in CAMPUS. 

� Context Manager is responsible for communicating with external context 

providers to obtain fine-grained contexts that will be translated into fragments of 
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Figure 7-1 The Architecture of the CAMPUS Prototype. 
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context ontologies. It also provides facilities for registering the context listeners, 

so that when new contexts are received, interested listeners such as the Inference 

Engine can be notified. 

� Inference Engine handles issues related to adaptation decision-making. The 

major components of the inference engine include a Meta-rule Base, which 

stores all of the meta-rules that are defined for the decision maker to perform 

FOL reasoning; a Knowledge Base, which stores the ontological knowledge; a 

Preprocessor, which preprocesses raw ontologies; and a Decision Maker, which 

uses the two-phase process, as discussed in  Chapter 6, to make adaptation 

decisions. 

� Executor constructs and reconfigures context-aware applications according to 

instructions from the decision maker. 

7.2  The CAMPUS API 

CAMPUS provides a comprehensive set of APIs that provides a default 

implementation of the ATM programming model detailed in Chapter 4. The APIs 

comply with the principle of programming to interfaces, i.e., classes rely on 

collaborators’ interfaces instead of on their coding [Flatt98]. The interfaces and 

classes defined by the CAMPUS APIs are in the campus.model, campus.model.impl 

and campus.model.impl.desc packages. The model package contains classes and 

interfaces that reflect the specification of the ATM model. As illustrated in Figure 7-

2, each entity involved in the ATM model is represented by a Java interface that 

extends the super interface IEntity and defines the basic operations of this entity. The 

impl package provides a default implementation to these interfaces, in order to 

minimize the effort required to implement them. Figure 7-3 shows the greatly 

simplified but representative UML class diagram of the impl package. In particular, 

an entity in the impl package is instantiated using a descriptor design pattern [Lott05], 

and the related descriptors are included in the desc package. In the following sub-

sections, we introduce the most important classes in the CAMPUS API. 
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7.2.1  Worker 

The CAMPUS API is based on the multi-threaded technique. For example, a channel 

uses a scheduled thread to periodically transfer data from its source port to its sink 

port, and task bases use threads to feed and fetch data to and from tasklets. The 

Worker class is designed to more flexibly enable this feature. It implements the 

Runnable interface and can be seen as a Java thread in run-time. Importantly, a 

worker instance can be scheduled for one-time execution, or for repeated execution 

at regular intervals. When a worker is created, the execution interval can be specified 

in milliseconds. If the specified interval is not larger than 0, the worker will be 

executed only once. In order to be scheduled for execution, a worker needs to be 

activated via the activate() method. If a worker has been scheduled for repeated 

 

Figure 7-2 An Overview of the model Package. 
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execution, it may be paused, resumed, or deactivated. When it is paused, it will not 

run again until it is resumed. When it is deactivated, it will never run again. A worker 

may be assigned a number of actions via the method addAction(IAction), and when it 

is executed, it will perform these actions in order. 

 

 

Figure 7-3 An Overview of the impl Package. 
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7.2.2  Descriptors 

Our implementation uses the descriptor design pattern [Lott05] to instantiate entities. 

Each entity class has a corresponding descriptor class that provides the detailed 

information to construct entity instances, as shown in Figure 7-4. Importantly, these 

descriptor classes provide a means for our programming framework to incorporate 

various description schemes without changing the codes. For example, on supplying 

an ontology adapter, entities can be instantiated from ontology files. Moreover, the 

descriptors check the semantic compatibility of the parameters when they are 

constructed, so that they can be directly used by their corresponding entities without 

worrying about whether the parameters are legal. For example, in the constructor of 

the ChannelDescriptor class, the descriptor will test whether the source and sink port 

parameters are compatible according to the semantic constraints presented in 

+PortDescriptor(String, String, int, Class)

+getDataType() : Class

+getHost() : String

+getType() : int

PortDescriptor

+TaskDescriptor(String, Class, PortDescriptor, PortDescriptor, boolean)

+getFunctionality() : Class

+getInputs() : Set<PortDescriptor>

+getOutputs() : Set<PortDescriptor>

+isEssential() : boolean

TaskDescriptor

+ConditionDescriptor(String, String, String, String, String)

+getEntity() : String

+getOperator() : String

+getProperty() : String

+getReferenceValue() : String

ConditionDescriptor

+ChannelDescriptor(PortDescriptor, PortDescriptor)

+getSink() : PortDescriptor

+getSrc() : PortDescriptor

ChannelDescriptor

+ServiceDescriptor(String, Set<TaskDescriptor>, Set<ChannelDescriptor>)

+getChannelDescs() : Set<ChannelDescriptor>

+getInputs() : Set<PortDescriptor>

+getOutputs() : Set<PortDescriptor>

+getSinkTasks() : Set<TaskDescriptor>

+getSrcTasks() : Set<TaskDescriptor>

+getTaskDescs() : Set<TaskDescriptor>

ServiceDescriptor

+TaskletDescriptor(String, Class<?>, Set<Class>, Set<Class>, Set<ConditionDescriptor>)

+getConditions() : Set<ConditionDescriptor>

+getInputDataTypes() : Set<Class>

+getMainClass() : Class

+getOutputDataTypes() : Set<Class>

TaskletDescriptor

+getId() : String

<<interface>>

IEntityDescriptor

+equals() : boolean

+getId() : String

+toString() : String

+setId() : void

AbstractEntityDescriptor

 

Figure 7-4 The Entity Descriptors. 
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Chapter 4. Figure 7-5 shows the source code of the ChannelDescriptor class, which 

tests the port constraints of the channel as follows: 

� The type of the source port is output and the type of the sink port is input. 

� The source port and the sink port belong to distinct tasks.  

� The data types of the source port and sink port are identical. 

 public class ChannelDescriptor extends AbstractEntityDescriptor{ 
  
 private PortDescriptor src; 
 private PortDescriptor sink; 
  
 public ChannelDescriptor(PortDescriptor src, PortDescriptor sink) { 
   
  setSrc(src); 
  setSink(sink); 
  if (src.equals(sink) ||  
    src.getHost().equals(sink.getHost()) || 
    !sink.getDataType().isAssignableFrom(src.getDataType())) { 
   throw new IllegalArgumentException( 
     "the data types of src and sink are incompatible"); 
  } 
  setId(src.getId()+"-->"+sink.getId()); 
 } 
  
 public PortDescriptor getSrc() { 
   
  return src; 
 } 
 
 public PortDescriptor getSink() { 
   
  return sink; 
 } 
 
 private void setSrc(PortDescriptor src) { 
  if (src == null || src.getType()!=IPort.OUTPUT) { 
   throw new IllegalArgumentException( 
     "src should not be null and it should be an output port"); 
  } 
  this.src = src; 
 } 
 
 
 private void setSink(PortDescriptor sink) { 
  if (sink == null || sink.getType()!=IPort.INPUT) { 
   throw new IllegalArgumentException( 
     "sink should not be null and it should be an input port"); 
  } 
  this.sink = sink; 
 } 
}  

Figure 7-5 An Except of the Class ChannelDescriptor. 
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7.2.3  AbstractEntity 

AbstractEntity provides a skeleton implementation of the super interface IEntity, and 

all concrete entity classes may directly extend it to minimize the development efforts. 

AbstractEntity captures the characteristics common to all ATM entities: 

� Entities are located and retrieved by their unique identifiers. AbstractEntity 

provides two related methods: getId():String and setId(String). 

� The behavior of an entity is composed of a number of states: initialized, 

activated, deactivated, and finalized as shown in Figure 7-6. An entity is first 

instantiated by a constructor method. If the initialization process fails, the 

constructor method is required to throw an exception (InitializationException). If 

it succeeds, the entity state is set to initialized. Under this state, only accessor 

methods of the entity can be invoked, which access the contents of the entity 

object but do not modify the object. Once a client tries to invoke mutator 

methods that can modify the entity instance under the initialized state, an 

IllegalStateException should be thrown. An exception is the activate() method, 

which activates the entity and changes its state to activated, in which state an 

entity can be accessed fully. Similarly, when an entity fails to be activated, an 

ActivationException should be raised to indicate possible reasons for the failure. 

When the deactivated() method is called, the state of the entity will change to 

 

Figure 7-6 The Entity State Diagram. 
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deactivated, which means the mutator methods should no longer be called. 

Finally, when the finalize() method is invoked, the entity enters the finalized state, 

meaning that the entity instance has been disposed of. 

7.2.4  AbstractTasklet 

All interfaces defined in the model package, except for the ITasklet, have 

corresponding concrete class implementations in the impl package. We provided 

only a skeletal implementation of the ITasklet interface, which is called 

AbstractTasklet and cannot be instantiated. The reason we did not provide concrete 

implementation of ITasklet was simply because it is impossible to provide a general 

solution for all tasklets to process received data. Tasklet vendors need to extend the 

AbstractTasklet and provide their own solutions. 

 

The AbstractTasklet has implemented all methods defined in the interface ITasklet. 

For example, methods like getCondition, getInuptDataTypes, getOutputDataTypes, 

and getHostTask can be used to determine whether the tasklet is suitable for a given 

task. When it is decided that a tasklet will be used for a particular task, the method 

setHostTask may be used to maintain a relationship between the tasklet and the task. 

In addition, if it is necessary for information on the state of the replaced tasklet to be 

kept and migrated to the replacement tasklet, the getState and setState methods can 

be used, Methods that include isReady4NewData, read, and write are used to 

exchange operating data between a tasklet and its task base. 

 

In particular, AbstractTasklet maintains an input cache for incoming data and an 

output cache for outgoing data. In each cache, data are classified by their type and 

sorted according the order in which they are put into the cache. When the read 

method is called, AbstractTasklet will return the first data element, if any, of the 

specified type in the output cache; when the write method is called, AbstractTasklet 
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checks the legality of the incoming data and then simply puts it into the input cache 

without any further processing. The task of processing incoming data is done by 

concrete tasklets that extend the AbstractTasklet class. A concrete tasklet class is 

required to implement the abstract method IAction[] getActions(). The returned 

actions indicate how the data in the input cache are to be handled and how output 

data for the output cache may be generated. Recall that the CAMPUS API provides a 

Worker class whose instances can be assigned a number of actions and scheduled for 

repeated execution at regular intervals. The AbstractTasklet class creates such a 

worker when it is activated, assigns the actions that are returned by the getActions 

method to the created worker, and then activates the worker. Through such a 

scheduled worker, a concrete tasklet periodically processes incoming data in the 

input cache and generates output data for the output cache. Finally, in order to keep 

its state consistent, when a tasklet is deactivated, it will first wait for the input cache 

to be emptied; in other words, when there is no more data that needs to be processed 

by the tasklet. After that, the tasklet deactivates its worker, and waits for the output 

cache to be emptied; that is, for all output data to have been fetched by the task base. 

7.2.5  DefaultTask 

DefaultTask implements the ITask interface and exposes the basic operations of a 

task of the ATM model. In particular, getInputPorts and getOutputPorts return the 

input and output ports of the task. Recall that each port only accepts data of one 

particular type; therefore these defined ports, together with the functionality returned 

by getFunctionality, consist of the requirements of the task. The operation 

isCompatible is used to test whether a given tasklet is compatible with the task, i.e., 

whether it can be used for the task, while updateTasklet is used to replace the 

existing tasklet with the given one. The given tasklet can be null, which means 

removing the existing tasklet. The operation getSuccessors returns tasks that are 

connected to the input ports of the task and getPredecessors return tasks that are 

connected to the output ports of the task. In this section, we detail two important 

sequences of a task: the activation sequence and the adaptation sequence. 
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As shown in Figure 7-7, when a DefaultTask is activated, it will ask the 

TaskletProviderFactory to return an available tasklet provider that implements the 

interface ITaskletProvider. A tasklet provider acts as a decision maker that is 

responsible for choosing a suitable tasklet for a given task upon request. The 

CAMPUS API does not provide any concrete implementation of the interface 

ItaskletProvider. Instead, it provides a TaskletProviderFactory that implements the 

Factory design pattern [Gamma95]. Importantly, the design choice makes the API 

independent of particular decision-making mechanisms, while providing a chance 

for various decision-making technologies to be adopted without modifying the 

existing codes. For example, in the current implementation of the CAMPUS 

middleware, the Inference Engine can to some extent be seen as a tasklet provider. 

On obtaining a tasklet provider from the tasklet provider factory, the DefaultTask 

will ask the provider for a suitable tasklet and activate it. Subsequently, the task will 

begin to activate the task base part. The latter will then activate the input and output 

ports of the task and start a worker that is assigned with two actions: Feeder and 

Fetcher. The feeder will periodically ask the tasklet if it is ready to accept new data 

 

Figure 7-7 The Activation Process of DefaultTask. 
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via the method isReady4NewData() of ITasklet. If the tasklet’s response is positive, 

the feeder will use the method write() of ITasklet to forward the operating data to the 

tasklet, which it has received from the input ports. Similarly, the fetcher of the task 

base will periodically fetch processed data from the tasklet via the method read(). 

 

Another sequence of the DefaultTask presented here is the adaptation process, i.e., 

the process of updating the tasklet. The DefaultTask will first check whether the 

given tasklet is compatible, using the following criteria: 

� The tasklet is not null and has not been used for any other task. 

� The tasklet can provide the required functionality of the task. 

� The tasklet declares that it can process all of the input data that the task has 

received. 

� The tasklet declares that it can generate all of the output data that the task 

requires. 

If the given tasklet is compatible with the task, the task will deactivate its existing 

tasklet and suspend its task base. Recall that when a task base is paused, its worker 

will not be executed until it is resumed, i.e., the task base will temporarily not feed 

and fetch data to and from the tasklet. After that, the existing tasklet is unplugged 

from the task and its state is migrated to the new tasklet. Next, the new tasklet will 

be activated and plugged into the task. Finally, the task base is resumed, i.e., it will 

begin to write and read data to and from the new tasklet. The sequencing of events is 

necessary to ensure consistency and that no data will be lost during adaptation. 
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CChhaapptteerr  88    CCaassee  SSttuuddyy  

The best demonstration of the middleware’s ability to ease the development of 

context-aware applications is made by example. This section presents a pragmatic 

example to demonstrate how CAMPUS can be leveraged for the development of 

context-aware applications. Importantly, it provides us with a platform to understand 

the complete operational flow of the middleware and to study the complex 

interactions among the core components in the system. To demonstrate the ease of 

integrating CAMPUS to existing applications, we have chosen an open-source 

instant messenger application called Spark1 to which to add a context-aware service 

for users to initiate or respond to one-to-one, peer-to-peer voice, and video chats. 

During the chat, the service can automatically adapt to various situations. For 

example, when the network bandwidth is low, the service will automatically reduce 

the quality of the video to ensure that the transfer of data is smooth, or use voice 

only to further improve the quality of the transfer. The chat service uses 

XMPP/Jingle2 as the negotiation protocol, and RTP/UDP as the media transportation 

protocol. In addition, it uses JMF3 to capture, transmit, and receive streaming data. 

8.1  Developing CAMPUS Services and Tasklets 

Developing a CAMPUS service means developing a service ontology that describes 

the semantics of the service, and collecting tasklet implementations that may satisfy 

the requirements presented by the tasks of the services. We used Protégé OWL, a 

popular graphical ontology editor, to develop the required ontology for the chat 

service. Figure 8-1 shows an excerpt of the service ontology. 

                                                        
1 http://www.igniterealtime.org/projects/spark/index.jsp 
2 http://xmpp.org/extensions/xep-0166.html 
3 http://java.sun.com/javase/technologies/desktop/media/jmf/ 
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In particular, the service ontology declares a context-aware chat service that consists 

of eight essential tasks and one expansion task, each of which describes the specific 

 <rdf:RDF 
    … 
    <service:Service rdf:ID="sim"> 
        <service:consistsOf rdf:resource="#T_AudioDS"/> 
        <service:consistsOf rdf:resource="#T_Transcoder"/> 
        <service:consistsOf rdf:resource="#T_VideoDS"/> 
        <service:consistsOf rdf:resource="#T_Renderer"/> 
        <service:consistsOf rdf:resource="#T_JSessionCtor"/> 
        <service:consistsOf rdf:resource="#T_Transmitter"/> 
        <service:consistsOf rdf:resource="#T_Receiver"/> 
        <service:consistsOf rdf:resource="#T_TxSessionCtor"/> 
        <service:consistsOf rdf:resource="#T_RxSesseionCtor"/> 
    </service:Service> 
    <service:EssentialTask rdf:ID="T_AudioDS"> 
        <service:owns rdf:resource="#out0_AudioDS"/> 
        <service:requires rdf:resource="#F_AudioDS"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_JSessionCtor"> 
        <service:owns rdf:resource="#in0_JSessionCtor"/> 
        <service:owns rdf:resource="#out0_JSessionCtor"/> 
        <service:owns rdf:resource="#out1_JSessionCtor"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_Receiver"> 
        <service:owns rdf:resource="#in0_Receiver"/> 
        <service:owns rdf:resource="#out0_Receiver"/> 
        <service:requires rdf:resource="#F_Receiver"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_Renderer"> 
        <service:owns rdf:resource="#in0_Renderer"/> 
        <service:requires rdf:resource="#F_Renderer"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_RxSesseionCtor"> 
        <service:owns rdf:resource="#in0_RxSessionCtor"/> 
        <service:owns rdf:resource="#out0_RxSessionCtor"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_Transcoder"> 
        <service:owns rdf:resource="#in0_Transcoder"/> 
        <service:owns rdf:resource="#out0_Transcoder"/> 
        <service:owns rdf:resource="#in1_Transcoder"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_Transmitter"> 
        <service:owns rdf:resource="#in0_Transmitter"/> 
        <service:owns rdf:resource="#in1_Sender"/> 
        <service:requires rdf:resource="#F_Transmitter"/> 
    </service:EssentialTask> 
    <service:EssentialTask rdf:ID="T_TxSessionCtor"> 
        <service:owns rdf:resource="#in0_TxSessionCtor"/> 
        <service:owns rdf:resource="#out0_TxSessionCtor"/> 
        <service:requires rdf:resource="#F_RxSessionCtor"/> 
    </service:EssentialTask> 
    <service:ExpansionTask rdf:ID="T_VideoDS"> 
        <service:owns rdf:resource="#out0_VideoDS"/> 
        <service:requires rdf:resource="#F_VideoDS"/> 
    </service:ExpansionTask> 
</rdf:RDF>  

Figure 8-1 An Excerpt of the Chat Service Ontology. 
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requirements for its tasklet. Figure 8-2 illustrates the composition of these tasks and 

Table 8-1 lists their requirments. 

Table 8-1 Summary of the Tasks Defined in the Chat Service Ontology. 

Task Requirement Description 

AudioDS 
Functionality:  F_AudioDS  

Output Type:   AudioData 
Captures raw audio data. 

VideoDS 
Functionality:  F_VideoDS 

Output Type:   VideoData 

Captures raw video data. It is an 

expansion task. 

Transcoder 

Functionality:  F_Transcoder 

Input Type:      AudioData 

VideoData 

Output Type:   MediaData 

Transcodes captured raw media 

data. 

JSession 

Ctor 

Functionality:  F_JSessionCtor 

Input Type:      JSessionReq  

Output Type:   RxJingleSession 

TxJingleSession 

Creates jingle sessions. 

RxSession Functionality:  F_RxSessionCtor Creates a media transportation 

 
RxSession 

Ctor 

TxSession 

Ctor 

Receiver Renderer 

AudioDS 

VideoDS 

 

 

 

 

Transcoder 

JSession 

Ctor 

Transmiter 

 

Figure 8-2 The Structure of the Chat Service. 
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Ctor Input Type:      RxJingleSession  

Output Type:   RxSession 

session for the receiver. 

TxSession 

Ctor 

Functionality:  F_TxSessionCtor 

Input Type:      TxJingleSession  

Output Type:   TxSession 

Creates a media transportation 

session for the transmitter. 

Receiver 

Functionality:  F_Receiver 

Input Type:      RxSession  

Output Type:   MediaData 

Receives media data over the 

network. 

Renderer 
Functionality:  F_Renderer 

Input Type:      MediaData  
Renders the received media data. 

Transmitter 

Functionality:  F_Transmitter 

Input Type:      TxSession  

MediaData 

Sends media data over the network. 

 

For demonstration purposes, we have developed one or more compatible tasklets for 

each task of the chat service. Table 8-2 summarizes the tasklets developed for the 

chat service. Importantly, these tasklets are reusable since they are only responsible 

for providing the desired functionalities and are treated as a black box that uses 

predefined interfaces to communicate with others. 

Table 8-2 Summary of the Tasklets Developed for the Chat Service. 

Tasklet Property Requirement Description 

MicDS 

Functionality:   
F_AudioDS  

Output Type:  
AudioData 

MIC.isAailable 
=  “true” 

Captures raw audio data from the 

microphone. 

WebcamDS 

Functionality:   
F_VideoDS 

Output Type:    
VideoData 

Camera.isAvailable 
=  “true” 

Captures raw video data from the 

web camera. 

TC4HighBW 

Functionality:   
F_Transcoder 

Input Type:       
AudioData 
VideoData 

Output Type:    
MediaData 

Network.isAvailable 
=  “true” 

Network.bandwidth 
>=  “1.5 Mbps” 

Transcodes raw audio and video 

data using the MPEG-1 audio and 

MJPEG compression algorithm, 

respectively. 

TC4MedBW 
Functionality:   

F_Transcoder 
Network.isAvailable 

=  “true” Transcodes raw audio and video 
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Input Type:       
AudioData 
VideoData 

Output Type:    
MediaData 

Network.bandwidth 
>=  “512 Kbps” 

data using the G723.1 and H.263 

compression algorithm, 

respectively. 

TC4LowBW 

Functionality:   
F_Transcoder 

Input Type:       
AudioData 
VideoData 

Output Type:    
MediaData 

Network.isAvailable 
=  “true” 

Network.bandwidth 
>=  “64 Kbps” 

Transcodes raw audio data using 

G723.1, and filters off the 

captured video data. 

Jingle 

SessionCtor 

Functionality:   
F_JSessionCtor 

Input Type:       
JSessionReq  

Output Type:    
RxJingleSession 
TxJingleSession 

Network.isAvailable 
=  “true” 

Creates a jingle session over the 

RTP protocol. 

RTP 

SessionCtor 

Functionality:   
F_RcvrSessionCtor 
F_SndrSessionCtor 

Input Type:       
JingleSession  

Output Type:    
RTPSession 

Network.isAvailable 
=  “true” 

Creates a media transportation 

session over RTP protocol that 

can be used to transmit or receive 

streaming data. 

RTP 

Receiver 

Functionality:   
F_Receiver 

Input Type:       
RxSession  

Output Type:    
MediaData 

Network.isAvailable 
=  “true” 

Receives media data over the 

network using an RTP session. 

Player 

Functionality:   
F_Renderer 

Input Type:       
MediaData  

Speaker.isAvailable 
=  “true” 

Screen.isAvailable 
=  “true” 

Processes received media data in 

a track and delivers it to the 

screen and the speaker. 

RTP 

Transmitter 

Functionality:   
F_Transmitter 

Input Type:       
TxSession  
MediaData 

Network.isAvailable 
=  “true” 

Sends media data over the 

network using an RTP session. 

 

In order to develop CAMPUS tasklets, tasklet vendors need to provide a compatible 

implementation by extending the AbstractTasklet base class and implementing the 

abstract method getActions that has been discussed in Chapter 7. The returned 

actions indicate how to handle input data and how to generate output data. Figure 8-3 

shows an excerpt from such a tasklet implementation. In addition, a tasklet requires a 
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corresponding ontology that extends the tasklet foundation ontology to describe the 

properties and contextual requirements of the tasklet. The tasklet ontologies will be 

further discussed in Section 8.2. 

8.2  Preprocessing Ontologies  

Recall that when CAMPUS launches, the service manager will load the service 

ontologies and use them to construct service instances if they pass the consistency 

and compatibility checking stage, and the tasklet manager will load the tasklet 

ontologies and use them to construct tasklet instances. Furthermore, the consistent 

service and tasklet ontologies will be used by the registering meta-rule, detailed in 

 public class MicDS extends AbstractTasklet implements IAudioDS { 
 
 private IAction[] actions = new IAction[] { new IAction() { 
  public boolean perform() { 
   Vector devices = CaptureDeviceManager 
     .getDeviceList( 
      new AudioFormat("linear", 44100, 16, 2)); 
   if (devices.size() > 0) { 
    try { 
     CaptureDeviceInfo cdi  
      = (CaptureDeviceInfo) devices.firstElement(); 
     getOutputCache().get(AudioData.class).add( 
      new AudioData( 
       Manager.createCloneableDataSource( 
        Manager.createDataSource( 
         cdi.getLocator())))); 
    } catch (Exception ex) { 
     ex.printStackTrace(); 
    } 
    return true; 
   } 
   return false; 
  } 
 } }; 
 
 protected IAction[] getActions() { 
 
  return actions; 
 } 
} 

 

Figure 8-3 An Excerpt of the MicDS Implementation. 
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Chapter 6, to construct a task registry where tasklets that are compatible with a 

particular task are registered as its alternatives. A tasklet is compatible with a task if 

and only if: 

� It can provide the desired functionality of the task. 

� It can process data from the input ports of the task, each of which accepts one 

particular data type. 

� It can generate data for the output ports of the task, each of which requires one 

particular data type. 

According to the above criteria, the task registry of the chat service is listed in Table 

8-3. Importantly, when a tasklet is registered as an alternative for a particular task, 

the contextual aspects that are involved in the conditions of the tasklet will be 

registered as the contexts of interest for the task. For example, the tasklet 

TC4HighBW is registered as an alternative of the task Transcoder, and the contextual 

conditions of TC4HighBW contain two aspects, isAvailable and bandwidth, of the 

context class Network. Thus, Transcoder will subscribe to an update of these two 

aspects of Network. Once these aspects of Network (i.e., isAvailable and bandwidth) 

are updated, Transcoder will be notified. 

Table 8-3 The Task Registry of the Chat Service. 

Task Tasklet 

AudioDS MicDS 

VideoDs WebcamDS 

Transcoder 

TC4HighBW 

TC4MedBW 

TC4LowBW 

JsessionCtor JingleSessionCtor 

RxSessionCtor RTPSessionCtor 

TxSessionCtor RTPSessionCtor 

Receiver RTPReceiver 

Renderer Player 

Transmitter RTPTransmitter 
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Table 8-4 Comparison of RTPSessionCtor, RxSessionCtor, and TxSessionCtor. 

Task Tasklet  
RxSessionCtor TxSessionCtor RTPSessionCtor 

Functionality F_RxSessionCtor F_TxSessionCtor F_RcvrSessionCtor 
F_SndrSessionCtor 

Input Type RxJingleSession TxJingleSession JingleSession 
Output Type RxSession TxSession RTPSession 

 

In particular, the registration of the tasklet RTPSessionCtor demonstrates the 

semantic feature of CAMPUS, i.e., its reasoning about the ontologies is based on the 

semantics of concepts. RTPSessionCtor is registered as a tasklet alternative to the 

tasks RxSessionCtor and TxSessionCtor. Although the functionalities and I/O data 

types of RTPSessionCtor, as listed in Table 8-4, are not an exact match as required 

by the two tasks, they are semantically compatible. RTPSessionCtor semantically 

satisfies the requirements presented by RxSessionCtor and TxSessionCtor in the 

following ways: 

� It can provide the desired functionality of RxSessionCtor and TxSessionCtor. As 

shown in Figure 8-4, the functions F_RcvrSessionCtor and F_SndrSessionCtor 

provided by RTPSessionCtor are declared, via the owl:sameAs axiom, to be 

semantically the same as the F_RxSessionCtor and F_TxSessionCtor that are 

required respectively by RxSessionCtor and TxSessionCtor. The declaration 

means that the tasklet RTPSessionCtor is able to provide functionalities similar 

to those required by RxSessionCtor and TxSessionCtor. 

� It can process data from the input ports of RxSessionCtor and TxSessionCtor. 

RxSessionCtor has one input port, whose data type is RxJingleSession; and 

TxSessionCtor has one input port, whose data type is TxJingleSession. On the 

other hand, it has been declared that RTPSessionCtor is able to process data with 

the type JingleSession, which is the super class of RxJingleSession and 

TxJingleSession. This means that RTPSessionCtor is able to process data of the 

types RxJingleSession or TxJingleSession. 
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� It can generate data for the output ports of RxSessionCtor and TxSessionCtor. 

RxSessionCtor has one output port, whose data type is RxSession, and 

TxSessionCtor has one output port, whose data type is TxSession. On the other 

hand, the output type of RTPSessionCtor is RTPSession, which has been declared 

to extend RxSession and TxSession. This means that the data generated by 

RTPSessionCtor can be seen as data of the types RxSession or TxSession. 

 <rdf:RDF 
… 
<tasklet:Function rdf:ID="F_RcvrSessionCtor"> 

<owl:sameAs rdf:resource="&sim;F_RxSessionCtor"/> 
<tasklet:implementedBy rdf:datatype="&xsd;string"> 

             sim.service.phone.RTPSessionCtor</tasklet:implementedBy> 
</tasklet:Function> 

    <tasklet:Function rdf:ID="F_SndrSessionCtor"> 
        <owl:sameAs rdf:resource="&sim;F_TxSessionCtor"/> 
        <tasklet:implementedBy rdf:datatype="&xsd;string"> 
            sim.service.phone.RTPSessionCtor</tasklet:implementedBy> 
    </tasklet:Function> 
    <tasklet:DataTypeCondition rdf:ID="Network.isAvailable_equals_to_true"> 
        <tasklet:hasReferenceValue rdf:datatype="&xsd;boolean"> 

true</tasklet:hasReferenceValue> 
        <tasklet:hasEntity rdf:resource="&context;Network"/> 
        <tasklet:hasOperator rdf:resource="&tasklet;equal"/> 
        <tasklet:hasProperty rdf:resource="&context;isAvailable"/> 
    </tasklet:DataTypeCondition> 
    <tasklet:DataType rdf:ID="RTPSession"> 
        <tasklet:implementedBy rdf:datatype="&xsd;string"> 
            sim.service.phone.data.RTPSession</tasklet:implementedBy> 
        <tasklet:extends rdf:resource="&sim;RxSession"/> 
        <tasklet:extends rdf:resource="&sim;TxSession"/> 
    </tasklet:DataType> 
    <tasklet:Tasklet rdf:ID="RTPSessionCtor"> 
        <tasklet:implementedBy rdf:datatype="&xsd;string"> 
            sim.service.phone.impl.RTPSessionCtor</tasklet:implementedBy> 
        <tasklet:asserts rdf:resource="#Network.isAvailable_equals_to_true"/> 
        <tasklet:hasInputDataTyppe rdf:resource="&sim;JingleSession"/> 
        <tasklet:hasOutputDataType rdf:resource="#RTPSession"/> 
        <tasklet:provides rdf:resource="#F_RcvrSessionCtor"/> 
        <tasklet:provides rdf:resource="#F_SndrSessionCtor"/> 
    </tasklet:Tasklet> 
</rdf:RDF> 

 

Figure 8-4 An Excerpt of the RTPSessionCtor ontology. 
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8.3  Making Decisions at Run-time 

In this section, we explain the decision-making process using the chat service. Recall 

that the decision-making process is a two-phased process that is triggered upon 

request by a task under three kinds of situations: when a task is activated, when its 

running tasklet reports an error, and when it is notified of an updated context of 

interest. We use three scenarios to illustrate these cases. 

 

When the chat service is activated, each of its tasks will ask the Tasklet Manager for 

a suitable tasklet. Upon request, the Tasklet Manager will query the Inference Engine 

for a suitable tasklet id. The decision-making process then starts. Here we use the 

task Transcoder as an example to explain the process step by step: 

1. The inference engine searches the task registry to get the registered tasklet 

alternatives. In the case of Transcoder, there exist three tasklet alternatives, as 

explained previously. Table 8-5 lists these alternatives. 

Table 8-5 Tasklet Alternatives for Transcoder. 

Task Tasklet  
Transcoder TC4HighBW TC4MedBW TC4LowBW 

Functionality F_Transcoder F_Transcoder F_Transcoder F_Transcoder 

Input Type 
AudioData 
VideoData 

AudioData 
VideoData 

AudioData 
VideoData 

AudioData 
VideoData 

Output Type MediaData MediaData MediaData MediaData 

Contextual 
Requirement 

 

Network.isAvailable 
=  “true” 

Network.bandwidth 

>=  “1.5 Mbps” 

Network.isAvailable 
=  “true” 

Network.bandwidth 

>=  “512 Kbps” 

Network.isAvailable 
=  “true” 

Network.bandwidth 

>=  “64 Kbps” 

2. The contextual requirements of each alternative will be tested in the screening 

phase. If the contextual requirements of an alternative are not satisfied, the 

alternative will be screened out in this phase. In the case of Transcoder, 

assuming that the network is available and the available bandwidth is 512 Kbps, 

the tasklet TC4HighBW will be filtered off in the screening phase. 
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3. The fitness utility of each alternative that passes the screening phase is 

computed in the choice phase, and the alternative with the maximum fitness 

utility is chosen. In our example, TC4MedBW and TC4LowBW pass the 

screening phase, and their fitness utilities are computed using Equations 6-1 and 

6-2, which are defined by the default choice meta-rule. The results of the 

calculation are that the overall fitness utility of TC4MedBW is 1.0, and that 

TC4LowBW is 0.5. That is, the tasklet TC4MedBW will be chosen since its 

fitness utility is higher than that of TC4LowBW. 

4. Using the tasklet id returned by the inference engine, the tasklet manager locates 

a corresponding tasklet instance in its tasklet directory and returns it to the 

requesting task. Finally, the task uses the tasklet to continue its activation 

process, which has been detailed in Chapter 7. 

 

Suppose that the chat service has been successfully activated and the user begins to 

chat with his friend. Subsequently, let us assume that the tasklet WebcamDS 

encounters a problem and fails to work normally (due, for example, to an 

interruption of communications involving the web camera). As a result, it reports an 

error to its host task, i.e. VideoDS, and the latter will ask the tasklet manager for 

another appropriate tasklet. Again, the decision-making process starts. This time, 

since the task VideoDS has only one tasklet alternative, WebcamDS, the inference 

engine will still choose WebcamDS as the best alternative for VideoDS. Since 

WebcamDS has been marked as an abnormal tasklet in the tasklet manager, the latter 

returns a NULL reference to the task, which means that no suitable tasklet has been 

found. Note that VideoDS is an expansion task that allows an empty tasklet part, 

therefore the task VideoDS will directly remove its abnormal tasklet, i.e. WebcamDS, 

without any problem. 

 

In the last scenario, we assume that the network goes down during the chat and the 

context manager receives an updated context from one of its context receivers, which 
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indicates that the available bandwidth of the network is 256 Kbps. In that case, the 

task Transcoder will be notified since it has subscribed for an update of the context 

Network. Once informed, Transcoder will again ask the tasklet manager to return the 

potentially best tasklet according to the updated context. This time, only the tasklet 

TC4LowBW passes the screening phase. It is returned to Transcoder as the 

recommended tasklet, which will be used to replace the original tasklet part of 

VideoDS, as detailed in Chapter 7. 

8.4  Discussion 

This simple, but representative, example demonstrates several important features of 

CAMPUS. First, CAMPUS frees developers from the need to predict, formulate, and 

maintain adaptation rules, thereby greatly reducing the efforts required to develop 

context-aware applications. For example, the chat service in the case study consists 

of 9 tasks. Suppose that each task has 2 tasklet alternatives. As a result, the service 

configuration will have as many as 29=512 variants. When using the previous rule-

based systems, developers need to formulate 512 adaptation rules in order to reflect 

all these variants. Obviously, this is not an easy task. Instead, when using CAMPUS, 

developers need to prepare only 2×9=18 tasklet-specific ontologies, each of which 

describes the required semantics of one tasklet, as detailed previously. That is to say, 

previous rule-based systems indicate an exponential increase in the size of adaptation 

rules when the variants increase, and CAMPUS indicates a linear increase in the size 

of ontologies when the variants increase. Furthermore, assume that we now change 

the composition of the chat service and add a new task Jitter between the task 

Receiver and Renderer. In order to reflect the change, rule-based systems need to 

revise all the 512 adaptation rules defined, while CAMPUS only needs to simply 

modify the service ontology, as shown in Figure 8-1, to add a new task instance. 

Admittedly, while being freed from formulating adaptation rules, developers are 

required to construct domain-specific ontologies when using CAMPUS. However, 

the efforts of building and maintaining domain-specific ontologies can be greatly 
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reduced by using a graphical editor like Protégé OWL and extending the CAMPUS 

foundation ontology. In our experience in the case study, building and maintaining 

domain-specific ontologies is very easy. 

 

Secondly, CAMPUS effectively separates the concerns of adaptation and 

coordination from the computational concerns of a task. The issues of how to 

connect tasks and how to transfer operating data are handled by the middleware layer. 

Importantly, a tasklet based on CAMPUS is solely responsible for realizing its own 

functional logic. This feature not only further reduces development efforts, but also 

promotes the reuse of tasklets.  

 

Finally, CAMPUS places few structural or functional limitations on existing 

applications that want to make use of CAMPUS’s facilities for context-aware 

adaptation. This feature makes it easy to enhance existing applications to become 

context-aware. In the case study, an existing instant messenger, Spark, was enhanced 

by CAMPUS to provide a context-aware service of voice and video chats, without 

affecting its existing codes. 

 

The aim of this chapter was to present a case application of how CAMPUS can be 

used to develop or extend applications to become context-aware. Importantly, the 

chapter explained how the concepts discussed in earlier chapters have been 

systematically mapped out and implemented in a real and practical application. In 

the next chapter, we will present and analyze some empirical performance results 

that were collected from the application setup. 
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CChhaapptteerr  99    PPeerrffoorrmmaannccee  EEvvaalluuaattiioonn  

A central goal of CAMPUS is to simplify the development of context-aware 

applications. While the programming interface and its use, described in the previous 

chapters, are important to this goal, the performance of the middleware must also be 

of paramount concern to ensure that the overheads associated with using the 

middleware are not detrimental to the application’s operations. A set of experiments 

was conducted to measure the potential computational overheads that could be 

incurred by using the CAMPUS system under different situations. The goal of the 

evaluation is to provide developers with a better understanding of the performance of 

CAMPUS under different operating conditions. Importantly, by analyzing and 

comparing the results, we hope to gain further insights into the characteristics of 

CAMPUS. 

 

Based on our past experience, semantic reasoning is a computationally intensive task, 

so that it may act as a possible performance bottleneck for CAMPUS. The first 

experiment presented in this section was designed to test the overhead incurred by 

the middleware when reasoning the ontology to make adaptation decisions. Another 

possible performance bottleneck could come from the additional work involved in 

transmitting data to and from tasks. The second experiment presented in this section 

measured the overhead incurred by transferring data between tasks. The third 

experiment was to measure the overhead incurred by updating a task to adapt to 

contextual changes, and the last experiment presented in this section measured the 

overall system performance of CAMPUS from an end-to-end perspective. All of the 

experiments were conducted on an HP Compaq NC6400 laptop equipped with 1G 

MB of RAM and an Intel Core Duo T2300E processor rated at 1.66G Hz. The 

operating system used was Microsoft’s WinXP and the Java Virtual Machine version 

was 1.6.0. 
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9.1  Semantic Reasoning Overhead 

The CAMPUS middleware performs DL reasoning and FOL reasoning on the 

ontologies to make adaptation decisions. Consequently, the size of the knowledge 

base, i.e. the loaded ontologies, and the complexity of the defined meta-rules will 

greatly affect the processing overheads of ontology reasoning. This set of 

experiments evaluates the impact of the size of loaded ontologies and the complexity 

of meta-rules on the processing overheads of ontology reasoning. The size of the 

knowledge base was measured in terms of the number of RDF statements, and the 

complexity of the meta-rules was measured in terms of the number of rule atoms. 

The experimental results are shown in Figure 9-1. As expected, the results clearly 

indicate an increase in the time overheads of ontology reasoning, with a progressive 

increase in the size of the ontologies and the complexity of the meta-rules. The rate 

of increase is nearly linear. The experimental results also show that semantic 

reasoning is a computationally intensive task. However, the time overhead (in the 

range of a couple of seconds) under current CPU speeds is reasonable for non-time-

critical applications, considering the fact that the size of the knowledge base of most 

0

500

1000

1500

2000

2500

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Fact Stmts

P
ro

ce
ss

in
g

 T
im

e 
(m

s)

33 Rule Atoms 66 Rule Atoms 132 Rule Atoms

 

Figure 9-1 The Processing Overheads of Semantic Reasoning. 
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applications is unlikely to exceed five thousand, and the size of rules is generally less 

than two hundred. 

9.2  Data Transfer Overhead 

This set of experiments was designed to measure the processing overheads incurred 

by a complete CAMPUS service in processing a given chunk of data. Ignoring the 

function processing time, for a specific service the overheads incurred come 

primarily from the additional work involved in transmitting data to and from tasks. 

In this set of experiments, a special service has been configured to be composed of a 

set of tasks with the same functional requirement. The primary logic of the tasklet 

instances that are involved is to receive data from their host tasks, and to directly 

deliver the data back to their host tasks without any processing. Delay time can 

easily be captured by measuring the time needed for a specific amount of data to 

pass through a configured number of tasks. Considering the fact that the primary 

overheads incurred by these tasks are inherent in any task for processing incoming 
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Figure 9-2 The Data Transfer Overhead. 
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data, it is argued that the setup of the experiment is reasonable and realistic. The 

results of the experiment are shown in Figure 9-2. They show that the delay 

overhead increases linearly with the increase in the number of tasks through which 

the data passes. On average, the overhead is about 15 ms per task. It is believed that 

the overhead can be further reduced with improved hardware configuration. 

Furthermore, in the realistic deployment of a service, it is unlikely that more than ten 

task will be used. That is to say, the overhead brought by these tasks can safely be 

bound to about 150 ms, which is acceptable compared with the potentially long 

delays incurred in network transmissions. 

9.3  Adaptation Time 

This set of experiments was designed to measure the processing overheads incurred 

by updating a task to adapt to contextual changes. The adaptation process of a task 

brings a certain number of performance penalties that are unavoidable. Adaptation 

time is the time taken for the CAMPUS system to update the tasklet part of a task in 

order to adapt to contextual changes. In other words, adaptation time is the amount 

of time during which a user will find the CAMPUS system inactive due to adaptation. 

Before going into the details of the experiment, the steps of the adaptation process 

are restated below: 

1. The existing tasklet part of the task is deactivated. 

2. The task base part of the task is suspended. 

3. The existing tasklet part of the task is unplugged and its state is migrated to the 

new tasklet, if necessary. 

4. The new tasklet is activated. 

5. The new tasklet is plugged into the task. 

6. The task base of the task is resumed and the adaptation is finished! 



 

93 

The experiment reused the service designed in section 9.2, although in this 

experiment the service was configured to repeatedly update a particular task. The 

time Ts is recorded once at the beginning of the adaptation process. Immediately 

after the adaptation process as detailed previously, the time Te is recorded as the 

ending time of the adaptation process. By varying the number of times that the 

adaptation is repeated, referred to as N here, different numbers of adaptation 

processes can be measured and N×(Te-Ts) will be the resultant time cost. Figure 9-3 

shows the result of the experiment. Notice that when the number of adaptation times 

is less than 100, the adaptation time is less than 70ms. Even when the number of 

adaptation times reaches 1,000, the adaptation overhead is still less than 300ms. This 

is a noteworthy and promising result considering that the adaptation rate is likely to 

be comparatively low (typically ranging from tens of seconds to minutes, depending 

on the contextual changes of the environment) and the adaptation time is 

insignificant. A good adaptation performance is the result of extensive use of multi-

threading and of the separation of adaptation from computational concerns to 

accelerate and support ease of adaptation. 
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9.4  CAMPUS End-to-End Performance 

After evaluating the overheads of key CAMPUS mechanisms, this section describes 

the overall system performance of CAMPUS from an end-to-end perspective. In 

particular, we aim to verify the benefits of the CAMPUS system by asserting that the 

operation overhead is small compared to the improvement in performance that 

comes from using this system. 

 

For this purpose, we reused the video chat service presented in Chapter 8, which 

reacts to changes in bandwidth to maintain a smoother performance for the video 

chat service, in terms of frame rates. In the experiment, we measured the frame rates 

on the receiver side under different bandwidths. Figure 9-4 contrasts the frame rate 

on the receiver side using CAMPUS with the frame rate when not using CAMPUS. 

By not using CAMPUS, we mean that the highest video rate is sent according to its 

transmission plan throughout the duration of the chat session, regardless of network 

conditions. From the experimental results, we can see that without using CAMPUS, 
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Figure 9-4 The Effectiveness of the CAMPUS System. 
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when the bandwidth decreases from 2 Mbps (which represents a good network 

condition for video chat) to 100 Kbps (which represents a bad network condition for 

video chat), the frame rate drops sharply from an average of 28.8 fps to an average 

of 1.5 fps. In contrast, with CAMPUS, a significant decrease in frame rate is avoided 

and the frame rate is always in the range of 19.5 to 28.8 fps. This is because when 

using CAMPUS, the chat service can automatically adapt to the changes of 

bandwidth conditions and use appropriate transcoders to reduce the data size of each 

frame at the sender side, and subsequently reduce the total amount of information 

transmitted over the network. While compromising the video quality of the receiver 

side, the chat service maintains a highly smooth performance, which is most 

important in a scenario of real-time video chatting. In contrast, without using 

CAMPUS, the chat service did not consider the actual network condition, always 

using a high video rate to transcode the data. This means that a large amount of 

information needs to be sent over the network. Therefore, when the bandwidth 

decreases, the frame rate drops sharply. The experiments clearly suggest the 

advantages of the CAMPUS system and its ability to offset the processing overheads 

that may be incurred in deploying applications in dynamic environments. 
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CChhaapptteerr  1100    CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkk  

10.1  Conclusions 

As pervasive computing continues to evolve, the need to embed context awareness to 

future mobile applications becomes more apparent. In contrast to virtual reality, 

which places physical objects in the virtual world, context-aware computing aims to 

place computing to work in the physical world. An important goal of the work 

presented in this thesis has been the development of a context-aware programming 

abstractions and a paradigm that make it easier to develop and execute context-aware 

applications in pervasive computing environments. Our work has resulted in 

CAMPUS, a comprehensive semantic-based context-aware middleware for 

pervasive computing that can automatically derive context-aware adaptation 

decisions at run-time. Through automated decisions at run-time, developers will be 

freed from the need to predict, formulate, and maintain adaptation rules, so that the 

effort involved in developing context-aware applications will be greatly reduced. It 

will also be possible to deliver services of an optimal quality by deferring the 

adaptation decisions until run-time to account for up-to-date contextual conditions. 

 

More notably, we have developed CAMPUS based on a layered architecture that 

promotes a structured design, with each layer providing a well-defined level of 

abstraction and role. Importantly, each layer represents an abstraction boundary that 

provides software engineering solutions that contribute to the overall integration of 

context-awareness to the system.  

� In the programming layer, we have proposed and designed a new programming 

model called ATM to facilitate the construction of context-aware applications. 

The ATM model relies on two main concepts: services and tasks. A service is an 
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abstract of a business or a technical process, which is comprised of a series of 

tasks. Tasks are execution units that perform certain actions to deliver a result to 

other tasks or the end user. A task is further divided into two parts: a tasklet and a 

task base. The former part concentrates on the computational concerns of the 

task, i.e. how to process data; and the latter part handles issues involved in 

coordination and adaptation, such as how to communicate with other modules of 

the service and how to transfer the states of tasks during adaptation. The ATM 

model greatly separates context-aware adaptation from the functional concerns of 

applications, simplifies the work of maintaining the consistency of the data and 

migrating states when adaptation occurs, and eases the tasks of specifying and 

verifying adaptation. 

� In the knowledge layer, a comprehensive ontological model has been developed 

to capture important knowledge about context-aware applications that have been 

built on the basis of the ATM model. The proposed ontological model has been 

split into two dimensions, in order to make the model more extensible and 

scalable, and also to help improve the performance of the system. The first 

dimension is the dimension of domain. Here, the ontologies are divided into 

context ontologies, tasklet ontologies, and service ontologies. Additionally, from 

the dimension of range, the CAMPUS ontologies are separated into foundation 

ontologies and domain-specific ontologies. The foundation ontologies model 

common objects that are generally applicable across a wide range of domain-

specific ontologies. A domain-specific ontology models a particular domain and 

represents the particular meanings of terms as they apply to that domain. 

� In the decision layer, we then investigated the technologies of semantic reasoning 

to automatically derive context-aware adaptation decisions at run-time. In 

particular, the decision layer performs DL reasoning and FOL reasoning on the 

proposed ontologies to derive the important decisions at run-time. The whole 

decision-making procedure of CAMPUS is divided into three phases: 

preprocessing, screening, and choice. In the preprocessing phase, several 

preprocessing tasks are performed to ensure that the ontologies are semantically 
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consistent and to prepare fine-grained information for the following phases. For 

example, qualified tasklets are registered as alternatives for each task. In the 

second stage, tasklet alternatives registered in the first phase that are not satisfied 

by the up-to-date contextual information are screened out. If more than one 

acceptable tasklet alternative survives the screening phases, in the choice phase, 

the best alternative from among the survivors is selected using the expected 

utility function. 

The CAMPUS implementation was evaluated with a number of case studies to 

validate the operation of the system on a realistic environment and to provide us with 

the opportunity to obtain experimental results for further analysis. In particular, we 

selected and implemented a context-aware instance messenger application to run 

over the CAMPUS. In capturing the system’s performance, we evaluated the 

potential overheads introduced by deferring the adaptation decision to run-time in 

the middleware level. The results are significant in that CAMPUS can be adapted to 

run on resource-constraint portable devices, without significant degradation in its 

performance. 

 

In short, we can conclude that the main contributions of this thesis are as follows: 

� A new programming model was proposed and designed that can facilitate the 

development of context-aware applications in order to automate context-aware 

adaptation decisions. 

� A comprehensive ontological model was defined to capture the knowledge and 

semantics of the entities involved during the process of making context-aware 

adaptation decisions. This ontological model effectively supports automated 

context-aware adaptation decisions. 

� A middleware, CAMPUS, which provides an integrated solution to automate 

context-aware adaptation decisions at run-time, was designed and implemented. 
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CAMPUS was evaluated using a number of case studies to validate the operation 

of the system on a realistic environment. 

10.2  Future Work 

The work presented in this thesis establishes a theoretical foundation of middleware 

primitives for enhancing the development and execution of context-aware 

applications in a pervasive computing environment. As in most research work, the 

progress made in this study undoubtedly has not covered all interesting directions, 

but suggestions for future work to further improve CAMPUS are given below. 

10.2.1  Collaborative Decision-Making 

One important direction to make CAMPUS more complete and powerful is to enable 

collaborative decision-making among multiple CAMPUS middleware instances over 

the network. That is, when a task asks a CAMPUS middleware for a suitable tasklet, 

the CAMPUS system can cooperate with other CAMPUS systems to collaboratively 

make the final decision on which tasklet is the most suitable for the task. 

Collaborative decision-making is a natural extension of CAMPUS, which aims to 

integrate the capabilities of multiple CAMPUS instances to find potentially better 

alternatives than local alternatives and consequently to improve the decision 

outcome. In addition, collaborative decision-making among multiple CAMPUS 

instances greatly improves the reusability of tasklets. In order to enable collaborative 

decision-making, a collaboration protocol between CAMPUS systems is necessary. 

The protocol needs to consider such issues as the discovery of a potential 

collaborator CAMPUS, and communication and negotiation between them. In 

addition, mobile code techniques can be used to download remote tasklets from 

collaborator CAMPUS systems. 
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10.2.2  Semantic-based Service Composition 

Another direction to improve CAMPUS is to enable the composition of CAMPUS 

services. Unlike tasks, a service is not composable in the current CAMPUS system. 

The current implementation of CAMPUS assumes that the services provided by a 

context-aware application are always in a loose relationship, so that direct primitives 

have not been offered to enable the composition of CAMPUS services. In the future, 

it will be possible to extend services by making them composable. Composable 

services make it possible to reuse existing services to develop more complex 

services, and therefore further facilitate the development of context-aware 

applications. Web service composition is a very active area of research and 

development [Benatallah02, Zeng04], and the composition of CAMPUS services 

will benefit from these existing works. In order to make CAMPUS services 

composable, CAMPUS needs to be extended in all three layers: 

� In the programming layer, the spare input and output ports of the tasks that 

compose a service can be utilized as the input and output ports of the service in 

order to connect to other services. 

� In the knowledge layer, the service foundation ontology needs to capture more 

knowledge related to the composition of services; for example, the overall 

functionality and cost of a service. 

� In the decision layer, the inference engine needs to consider how to decide 

whether two services are compatible and to choose among a set of alternatives. 

The concrete decision strategies will depend on the knowledge captured by the 

knowledge layer. However, a general approach is to compare the overall 

functionalities of a service and its potential cost. 
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10.2.3  User Preference Model 

Another possible extension of CAMPUS is to introduce a comprehensive user 

preference model. Although CAMPUS advocates automated decision-making by the 

middleware layer, a suitable user preference model helps to improve the quality of 

the decision. There are two general approaches to designing a user preference model: 

filtering and rating. Filtering models like [Mooney00] allow users to choose 

keywords that describe their preference, and decisions are made based on the 

matching of these keywords. Rating models like [Candillier07] allow users to rate 

the alternatives and decisions are made based on the ranking of these ratings. 

10.2.4  Security and Power Saving Issues 

Security has not been our focus in the current CAMPUS system. There are several 

issues that must be addressed in this area. First, authentication of the tasklets must be 

guaranteed. One approach is to digitally sign the tasklets to assure their authenticity. 

Second, the CAMPUS system should exploit the Java security features [Garms01], 

so that the CAMPUS platform presents a protected environment for a tasklet. 

 

For small portable devices, one of the major concerns is power consumption. 

However, as the current version of CAMPUS system runs only on the Java2 standard 

Edition (J2SE), which runs only on standard PCs and workstation machines, we have 

been unable to obtain any data on power consumption from the current experimental 

setup. It is desirable to migrate the CAMPUS system to the Java2 Micro Edition 

(J2ME), which allows the CAMPUS system to run on PDAs and Java-enabled smart 

phones. In the future, experiments can be carried out to measure the factors that 

affect the power consumption of these mobile devices. 
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Appendix A The Context Foundation Ontology 

 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/context-foundation.owl#" 
     xml:base="http://campus.comp.polyu.edu.hk/context-foundation.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <owl:Ontology rdf:about=""/> 
    <owl:Class rdf:ID="Activity"> 
        <rdfs:subClassOf rdf:resource="#UserEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Agent"> 
        <rdfs:subClassOf rdf:resource="#UserEntity"/> 
    </owl:Class> 
    <BaseUnit rdf:ID="ampere"/> 
    <owl:ObjectProperty rdf:ID="availableBandwidth"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Network"/> 
        <rdfs:range rdf:resource="#PhysicalQuantity"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="BaseUnit"> 
        <rdfs:subClassOf rdf:resource="#Unit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="BinaryPrefix"> 
        <rdfs:subClassOf rdf:resource="#Prefix"/> 
    </owl:Class> 
    <BaseUnit rdf:ID="bit"/> 
    <BaseUnit rdf:ID="byte"/> 
    <BaseUnit rdf:ID="candela"/> 
    <SIPrefix rdf:ID="centi"> 
        <hasExponent rdf:datatype="&xsd;int">-2</hasExponent> 
    </SIPrefix> 
    <owl:Class rdf:ID="ComputingEntity"> 
        <rdfs:subClassOf rdf:resource="#ContextEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ContextEntity"/> 
    <owl:Class rdf:ID="CPU"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <SIPrefix rdf:ID="deci"> 
        <hasExponent rdf:datatype="&xsd;int">-1</hasExponent> 
    </SIPrefix> 
    <SIPrefix rdf:ID="deka"> 
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<hasExponent rdf:datatype="&xsd;int">1</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">10</hasValue> 
    </SIPrefix> 
    <owl:ObjectProperty rdf:ID="derivedFrom"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#UnitDerivedByPrefixing"/> 
                    <owl:Class rdf:about="#UnitDerivedByRaising"/> 
                    <owl:Class rdf:about="#UnitDerivedByScaling"/> 
                    <owl:Class rdf:about="#UnitDerivedByShifting"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range rdf:resource="#Unit"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="DerivedUnit"> 
        <rdfs:subClassOf rdf:resource="#Unit"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="exbi"> 
        <hasExponent rdf:datatype="&xsd;int">60</hasExponent> 
    </BinaryPrefix> 
    <owl:Class rdf:ID="ExternalStorage"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <owl:Class rdf:ID="FlashDrive"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <owl:Class rdf:ID="FlashMemory"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <owl:Class rdf:ID="FloppyDisk"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="gibi"> 
        <hasExponent rdf:datatype="&xsd;int">30</hasExponent> 
    </BinaryPrefix> 
    <SIPrefix rdf:ID="giga"> 
        <hasExponent rdf:datatype="&xsd;int">9</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">1000000000</hasValue> 
    </SIPrefix> 
    <owl:Class rdf:ID="HardDisk"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Hardward"> 
        <rdfs:subClassOf rdf:resource="#ComputingEntity"/> 
    </owl:Class> 
    <owl:ObjectProperty rdf:ID="hasCapacity"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#ExternalStorage"/> 
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                    <owl:Class rdf:about="#RAM"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range rdf:resource="#PhysicalQuantity"/> 
    </owl:ObjectProperty> 
    <owl:DatatypeProperty rdf:ID="hasExponent"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Prefix"/> 
                    <owl:Class rdf:about="#UnitDerivedByRaising"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range rdf:resource="&xsd;int"/> 
    </owl:DatatypeProperty> 
    <owl:ObjectProperty rdf:ID="hasPrefix"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#UnitDerivedByPrefixing"/> 
        <rdfs:range rdf:resource="#Prefix"/> 
    </owl:ObjectProperty> 
    <owl:DatatypeProperty rdf:ID="hasScalingNumber"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#UnitDerivedByScaling"/> 
        <rdfs:range rdf:resource="&xsd;double"/> 
    </owl:DatatypeProperty> 
    <owl:DatatypeProperty rdf:ID="hasShiftingNumber"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#UnitDerivedByShifting"/> 
        <rdfs:range rdf:resource="&xsd;double"/> 
    </owl:DatatypeProperty> 
    <owl:ObjectProperty rdf:ID="hasUnit"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#PhysicalQuantity"/> 
        <rdfs:range rdf:resource="#Unit"/> 
    </owl:ObjectProperty> 
    <owl:DatatypeProperty rdf:ID="hasValue"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#PhysicalQuantity"/> 
        <rdfs:range rdf:resource="&xsd;double"/> 
    </owl:DatatypeProperty> 
    <SIPrefix rdf:ID="hecto"> 
        <hasExponent rdf:datatype="&xsd;int">2</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">100</hasValue> 
    </SIPrefix> 
    <owl:DatatypeProperty rdf:ID="isAvailable"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#Hardward"/> 
                    <owl:Class rdf:about="#Network"/> 
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                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range rdf:resource="&xsd;boolean"/> 
    </owl:DatatypeProperty> 
    <BaseUnit rdf:ID="kelvin"/> 
    <owl:Class rdf:ID="Keyboard"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="kibi"> 
        <hasExponent rdf:datatype="&xsd;int">10</hasExponent> 
    </BinaryPrefix> 
    <SIPrefix rdf:ID="kilo"> 
        <hasExponent rdf:datatype="&xsd;int">3</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">1000</hasValue> 
    </SIPrefix> 
    <BaseUnit rdf:ID="kilogram"/> 
    <owl:Class rdf:ID="Light"> 
        <rdfs:subClassOf rdf:resource="#PhysicalEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Location"> 
        <rdfs:subClassOf rdf:resource="#UserEntity"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="mebi"> 
        <hasExponent rdf:datatype="&xsd;int">20</hasExponent> 
    </BinaryPrefix> 
    <SIPrefix rdf:ID="mega"> 
        <hasExponent rdf:datatype="&xsd;int">6</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">1000000</hasValue> 
    </SIPrefix> 
    <owl:Class rdf:ID="MemoryCard"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <BaseUnit rdf:ID="meter"/> 
    <SIPrefix rdf:ID="micro"> 
        <hasExponent rdf:datatype="&xsd;int">-6</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">0.000001</hasValue> 
    </SIPrefix> 
    <owl:Class rdf:ID="Microphone"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <SIPrefix rdf:ID="milli"> 
        <hasExponent rdf:datatype="&xsd;int">-3</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">0.001</hasValue> 
    </SIPrefix> 
    <BaseUnit rdf:ID="mole"/> 
    <owl:Class rdf:ID="Mouse"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <SIPrefix rdf:ID="nano"> 
        <hasExponent rdf:datatype="&xsd;int">-9</hasExponent> 
        <hasValue rdf:datatype="&xsd;double">0.000000001</hasValue> 
    </SIPrefix> 
    <owl:Class rdf:ID="Network"> 
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<rdfs:subClassOf rdf:resource="#ComputingEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Noise"> 
        <rdfs:subClassOf rdf:resource="#PhysicalEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="OS"> 
        <rdfs:subClassOf rdf:resource="#Software"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="pebi"> 
        <hasExponent rdf:datatype="&xsd;int">50</hasExponent> 
    </BinaryPrefix> 
    <owl:Class rdf:ID="Person"> 
        <rdfs:subClassOf rdf:resource="#UserEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="PhysicalEntity"> 
        <rdfs:subClassOf rdf:resource="#ContextEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="PhysicalQuantity"/> 
    <owl:Class rdf:ID="Power"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Prefix"/> 
    <owl:ObjectProperty rdf:ID="productOf"> 
        <rdfs:domain rdf:resource="#UnitDerivedByMultiplying"/> 
        <rdfs:range rdf:resource="#Unit"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="RAM"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ROM"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Screen"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <BaseUnit rdf:ID="second"/> 
    <owl:Class rdf:ID="SIPrefix"> 
        <rdfs:subClassOf rdf:resource="#Prefix"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Software"> 
        <rdfs:subClassOf rdf:resource="#ComputingEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Speaker"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Tape"> 
        <rdfs:subClassOf rdf:resource="#ExternalStorage"/> 
    </owl:Class> 
    <BinaryPrefix rdf:ID="tebi"> 
        <hasExponent rdf:datatype="&xsd;int">40</hasExponent> 
    </BinaryPrefix> 
    <owl:Class rdf:ID="Temperature"> 
        <rdfs:subClassOf rdf:resource="#PhysicalEntity"/> 
    </owl:Class> 
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<owl:Class rdf:ID="Time"> 
        <rdfs:subClassOf rdf:resource="#PhysicalEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Unit"/> 
    <owl:Class rdf:ID="UnitDerivedByMultiplying"> 
        <rdfs:subClassOf rdf:resource="#DerivedUnit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="UnitDerivedByPrefixing"> 
        <rdfs:subClassOf rdf:resource="#DerivedUnit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="UnitDerivedByRaising"> 
        <rdfs:subClassOf rdf:resource="#DerivedUnit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="UnitDerivedByScaling"> 
        <rdfs:subClassOf rdf:resource="#DerivedUnit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="UnitDerivedByShifting"> 
        <rdfs:subClassOf rdf:resource="#DerivedUnit"/> 
    </owl:Class> 
    <owl:Class rdf:ID="UserEntity"> 
        <rdfs:subClassOf rdf:resource="#ContextEntity"/> 
    </owl:Class> 
    <owl:Class rdf:ID="WritingPad"> 
        <rdfs:subClassOf rdf:resource="#Hardward"/> 
    </owl:Class> 
</rdf:RDF> 
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Appendix B The Tasklet Foundation Ontology 

 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#" 
     xml:base="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
     xmlns:p1="http://www.owl-ontologies.com/assert.owl#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <owl:Ontology rdf:about=""/> 
    <owl:ObjectProperty rdf:ID="asserts"> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
        <rdfs:range rdf:resource="#ContextCondition"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="ContextCondition"> 
        <owl:disjointWith rdf:resource="#DataType"/> 
        <owl:disjointWith rdf:resource="#Function"/> 
        <owl:disjointWith rdf:resource="#Tasklet"/> 
        <owl:disjointWith rdf:resource="#Operator"/> 
    </owl:Class> 
    <owl:Class rdf:ID="DataType"> 
        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#extends"/> 
                <owl:allValuesFrom rdf:resource="#DataType"/> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#ContextCondition"/> 
        <owl:disjointWith rdf:resource="#Function"/> 
        <owl:disjointWith rdf:resource="#Tasklet"/> 
        <owl:disjointWith rdf:resource="#Operator"/> 
    </owl:Class> 
    <owl:Class rdf:ID="DataTypeCondition"> 
        <rdfs:subClassOf rdf:resource="#ContextCondition"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasProperty"/> 
                <owl:allValuesFrom rdf:resource="&owl;DatatypeProperty"/> 
            </owl:Restriction> 
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</rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#ObjectCondition"/> 
    </owl:Class> 
    <owl:ObjectProperty rdf:ID="dependsOn"> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
        <rdfs:range rdf:resource="#Tasklet"/> 
    </owl:ObjectProperty> 
    <Operator rdf:ID="equalTo"/> 
    <owl:ObjectProperty rdf:ID="extends"> 
        <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#DataType"/> 
                    <owl:Class rdf:about="#Function"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#DataType"/> 
                    <owl:Class rdf:about="#Function"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:range> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="Function"> 
        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#extends"/> 
                <owl:allValuesFrom rdf:resource="#Function"/> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#ContextCondition"/> 
        <owl:disjointWith rdf:resource="#DataType"/> 
        <owl:disjointWith rdf:resource="#Tasklet"/> 
        <owl:disjointWith rdf:resource="#Operator"/> 
    </owl:Class> 
    <Operator rdf:ID="greaterThan"/> 
    <Operator rdf:ID="greaterThanOrEqualTo"/> 
    <owl:ObjectProperty rdf:ID="groupedWith"> 
        <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
        <rdfs:range rdf:resource="#Tasklet"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasEntity"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#ContextCondition"/> 
        <rdfs:range rdf:resource="&owl;Class"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasInputDataTyppe"> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
        <rdfs:range rdf:resource="#DataType"/> 
    </owl:ObjectProperty> 
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<owl:ObjectProperty rdf:ID="hasOperator"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#ContextCondition"/> 
        <rdfs:range rdf:resource="#Operator"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasOutputDataType"> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
        <rdfs:range rdf:resource="#DataType"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasProperty"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#ContextCondition"/> 
        <rdfs:range rdf:resource="&rdf;Property"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasReferenceObject"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#ObjectCondition"/> 
        <rdfs:range rdf:resource="&owl;Thing"/> 
    </owl:ObjectProperty> 
    <owl:DatatypeProperty rdf:ID="hasReferenceValue"> 
        <rdfs:domain rdf:resource="#DataTypeCondition"/> 
    </owl:DatatypeProperty> 
    <owl:DatatypeProperty rdf:ID="implementedBy"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain> 
            <owl:Class> 
                <owl:unionOf rdf:parseType="Collection"> 
                    <owl:Class rdf:about="#DataType"/> 
                    <owl:Class rdf:about="#Function"/> 
                    <owl:Class rdf:about="#Tasklet"/> 
                </owl:unionOf> 
            </owl:Class> 
        </rdfs:domain> 
        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 
    <Operator rdf:ID="lessThan"/> 
    <Operator rdf:ID="lessThanOrEqualTo"/> 
    <Operator rdf:ID="notEqualTo"/> 
    <owl:Class rdf:ID="ObjectCondition"> 
        <rdfs:subClassOf rdf:resource="#ContextCondition"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#hasProperty"/> 
                <owl:allValuesFrom rdf:resource="&owl;ObjectProperty"/> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="#DataTypeCondition"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Operator"> 
        <owl:disjointWith rdf:resource="#ContextCondition"/> 
        <owl:disjointWith rdf:resource="#DataType"/> 
        <owl:disjointWith rdf:resource="#Function"/> 
        <owl:disjointWith rdf:resource="#Tasklet"/> 
    </owl:Class> 
    <owl:ObjectProperty rdf:ID="provides"> 
        <rdfs:domain rdf:resource="#Tasklet"/> 
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<rdfs:range rdf:resource="#Function"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="Tasklet"> 
        <owl:disjointWith rdf:resource="#ContextCondition"/> 
        <owl:disjointWith rdf:resource="#DataType"/> 
        <owl:disjointWith rdf:resource="#Function"/> 
        <owl:disjointWith rdf:resource="#Operator"/> 
    </owl:Class> 
</rdf:RDF> 
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Appendix C The Service Foundation Ontology 

 

<?xml version="1.0"?> 
<!DOCTYPE rdf:RDF [ 
    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
    <!ENTITY tasklet "http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#" > 
]> 
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/service-foundation.owl#" 
     xml:base="http://campus.comp.polyu.edu.hk/service-foundation.owl" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     xmlns:p1="http://www.owl-ontologies.com/assert.owl#" 
     xmlns:tasklet="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <owl:Ontology rdf:about=""> 
        <owl:imports rdf:resource="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl"/> 
    </owl:Ontology> 
    <owl:ObjectProperty rdf:ID="accepts"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Port"/> 
        <rdfs:range rdf:resource="&tasklet;DataType"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="belongsTo"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Port"/> 
        <rdfs:range rdf:resource="#Task"/> 
        <owl:inverseOf rdf:resource="#owns"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="Channel"/> 
    <owl:ObjectProperty rdf:ID="connectsTo"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Port"/> 
        <rdfs:range rdf:resource="#Channel"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="consistsOf"> 
        <rdfs:domain rdf:resource="#Service"/> 
        <rdfs:range rdf:resource="#Task"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="EssentialTask"> 
        <rdfs:subClassOf rdf:resource="#Task"/> 
        <owl:disjointWith rdf:resource="#ExpansionTask"/> 
    </owl:Class> 
    <owl:Class rdf:ID="ExpansionTask"> 
        <rdfs:subClassOf rdf:resource="#Task"/> 
        <owl:disjointWith rdf:resource="#EssentialTask"/> 
    </owl:Class> 
<owl:ObjectProperty rdf:ID="hasSink"> 
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        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Channel"/> 
        <rdfs:range rdf:resource="#InputPort"/> 
    </owl:ObjectProperty> 
    <owl:ObjectProperty rdf:ID="hasSrc"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Channel"/> 
        <rdfs:range rdf:resource="#OutputPort"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="InputPort"> 
        <rdfs:subClassOf rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#OutputPort"/> 
    </owl:Class> 
    <owl:Class rdf:ID="OutputPort"> 
        <rdfs:subClassOf rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#InputPort"/> 
    </owl:Class> 
    <owl:ObjectProperty rdf:ID="owns"> 
        <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Task"/> 
        <rdfs:range rdf:resource="#Port"/> 
        <owl:inverseOf rdf:resource="#belongsTo"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="Port"> 
        <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/> 
        <owl:disjointWith rdf:resource="&tasklet;DataType"/> 
        <owl:disjointWith rdf:resource="&tasklet;Function"/> 
        <owl:disjointWith rdf:resource="&tasklet;Operator"/> 
        <owl:disjointWith rdf:resource="&tasklet;Tasklet"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </owl:Class> 
    <owl:ObjectProperty rdf:ID="requires"> 
        <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
        <rdfs:domain rdf:resource="#Task"/> 
        <rdfs:range rdf:resource="&tasklet;Function"/> 
    </owl:ObjectProperty> 
    <owl:Class rdf:ID="Service"> 
        <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/> 
        <owl:disjointWith rdf:resource="&tasklet;DataType"/> 
        <owl:disjointWith rdf:resource="&tasklet;Function"/> 
        <owl:disjointWith rdf:resource="&tasklet;Operator"/> 
        <owl:disjointWith rdf:resource="&tasklet;Tasklet"/> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </owl:Class> 
    <owl:Class rdf:ID="Task"> 
        <rdfs:subClassOf rdf:resource="&owl;Thing"/> 
        <rdfs:subClassOf> 
            <owl:Restriction> 
                <owl:onProperty rdf:resource="#owns"/> 
                <owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality> 
            </owl:Restriction> 
        </rdfs:subClassOf> 
        <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/> 
<owl:disjointWith rdf:resource="&tasklet;DataType"/> 
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        <owl:disjointWith rdf:resource="&tasklet;Function"/> 
        <owl:disjointWith rdf:resource="&tasklet;Operator"/> 
        <owl:disjointWith rdf:resource="&tasklet;Tasklet"/> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
    </owl:Class> 
    <rdf:Description rdf:about="&tasklet;ContextCondition"> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="&tasklet;DataType"> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="&tasklet;Function"> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="&tasklet;Operator"> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="&tasklet;Tasklet"> 
        <owl:disjointWith rdf:resource="#Port"/> 
        <owl:disjointWith rdf:resource="#Service"/> 
        <owl:disjointWith rdf:resource="#Task"/> 
    </rdf:Description> 
</rdf:RDF> 
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