

The Hong Kong Polytechnic University

Department of Computing

CAMPUS: A Middleware for Automated Context-aware

Adaptation Decisions at Run-time

by WEI Jing Yuan

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Philosophy

March 2009

I

Abstract

So far in most context-aware systems, the decisions of when and how to adapt an

application are made a priori by developers during the compile time. While such

approaches empower developers with sufficient flexibility to specify what they want

in terms of adaptation rules, they inevitably place an immense load on developers,

especially in an extremely dynamic environment like pervasive computing, to

anticipate and formulate all potential run-time situations during development time. In

addition, making adaptation decisions in design-time or compile-time makes it

difficult for the system to consistently deliver services of an optimal quality. These

challenges motivated us to explore an approach to automating context-aware

adaptation decisions by a middleware layer at run-time.

The resulting middleware CAMPUS, short for Context-Aware Middleware for

Pervasive and Ubiquitous Service, achieves the objective with the confluence of

three key technologies: compositional adaptation, ontology, and DL/FOL reasoning.

More specially, we have proposed and designed a new programming model called

ATM (short for Adaptable Task Model) to completely separate context-aware

adaptation from the functional concerns of applications. A comprehensive

ontological model has been developed to capture important knowledge about

context-aware applications built on the basis of the ATM model. Importantly, the

middleware layer can perform DL and FOL reasoning on these ontologies to derive

the important decisions at run-time. We designed and implemented a middleware

prototype that served as a platform for us to evaluate the effectiveness of the system

in enabling automated context-aware adaptation decisions and to validate the

principles underpinning the design. The CAMPUS implementation has been

evaluated with a number of case studies to validate the operation of the system on a

realistic environment and to provide us with opportunity to obtain experimental

II

results for further analysis. In particular, we have selected and implemented a

context-aware instance messenger application to run over the CAMPUS. We

systematically traced the application development cycle and validate the

effectiveness of the semantic-based approach to capturing contextual, service and

adaptation requirements. In capturing the system’s performance, we evaluated the

potential overheads introduced by deferring the adaptation decision to run-time in

the middleware level. The results are significant in that they show that CAMPUS can

be adapted to run on resource-constraint portable devices without significant

degradation in its performance.

III

Acknowledgements

There are many people I would like to thank for influencing me and helping me to

complete this thesis, which has been a difficult yet rewarding process.

First and foremost, I would like to thank my supervisor, Dr. Alvin Chan, for his

valuable guidance and support. He taught me about research and writing, and gave

me enough freedom and trust to choose the direction in which I wanted to work. He

has shown great patience with me and provided valuable comments on my papers

and thesis. I would like to thank Alvin even more for his friendship, and for having

been so supportive. It has been my great pleasure to work under his supervision in

the past three years.

I would also like to thank Dr. Jiannong Cao and Dr. Henry Chan, for their valuable

advice on my study and for graciously agreeing to serve as my referees. Special

thanks also go to Mrs. May Chu from the Research Office, for her patience and

understanding during my frequent consultations with her. I would further like to

express my appreciation for Dr. Richard Moore from the English Learning Center. I

learned a great deal in his classes and had fun. Others I would like to thank include

Mrs. Miu Tai, and the departmental tech team. All of them extended much help to

me during these past three years of study.

Last, but not least, I am indebted to my family, for their love and unconditional

support, and for more than I will ever be able to express. Thank you!

IV

List of Publications

Edwin J. Y. Wei, and Alvin T. S. Chan, “Towards Context-Awareness in Ubiquitous

Computing,” Proceedings of the International Conference on Embedded and

Ubiquitous Computing (EUC 2007), LNCS 4808, pp. 706-717, Taipei, Taiwan, Dec.

2007

Edwin J. Y. Wei, and Alvin T. S. Chan, “Semantic Approach to Middleware-driven

Run-time Context-aware Adaptation Decision,” Proceedings of the IEEE

International Conference on Semantic Computing (IEEE-ICSC 2008), pages 440-

447, Santa Clara, CA, USA, Aug. 2008.

Edwin J. Y. Wei, and Alvin T. S. Chan, “CAMPUS: A Middleware for Automated

Context-aware Adaptation Decisions at Run-time,” submitted to IEEE Transactions

on Software Engineering.

V

Table of Contents

Abstract ... I

Acknowledgements...III

List of Publications ...IV

Table of Contents ...V

List of Figures ..VIII

List of Tables..X

Chapter 1 Introduction ...1

1.1 Background ..1

1.2 Motivation and Problem Statement..2

1.3 Approach and Contributions ..5

1.4 Organization of the Thesis ...7

Chapter 2 Related Work ...9

2.1 Middlewares for Context-aware Adaptation ..9

2.1.1 Odyssey..9

2.1.2 MobiPADS...11

2.1.3 RCSM...12

2.1.4 Rocks..13

2.1.5 MUSIC ...15

2.1.6 Summary ..16

2.2 Ontologies for Context-aware Adaptation..20

2.2.1 CONON ...20

2.2.2 COBRA-ONT ..21

2.2.3 CoOL..22

VI

2.2.4 SeCom..23

2.2.5 Summary ..25

Chapter 3 The CAMPUS Architecture...27

3.1 The Programming Model ...29

3.2 The Knowledge Model...32

3.3 The Decision Model ...36

Chapter 4 The ATM Programming Model ...39

4.1 Conceptual Model ..39

4.2 Semantic Model ...42

Chapter 5 The CAMPUS Ontologies...46

5.1 Context Foundation Ontology...47

5.2 Tasklet Foundation Ontology..51

5.3 Service Foundation Ontology ...53

Chapter 6 Automated Context-aware Adaptation Decisions55

6.1 Semantic Reasoning...56

6.2 Preprocessing ...60

6.3 Decision-Making..61

Chapter 7 Implementation..64

7.1 The Implementation Architecture of CAMPUS...64

7.2 The CAMPUS API...66

7.2.1 Worker..67

7.2.2 Descriptors ...69

7.2.3 AbstractEntity...71

7.2.4 AbstractTasklet ...72

7.2.5 DefaultTask ..73

Chapter 8 Case Study ...76

VII

8.1 Developing CAMPUS Services and Tasklets ..76

8.2 Preprocessing Ontologies...81

8.3 Making Decisions at Run-time ..85

8.4 Discussion ..87

Chapter 9 Performance Evaluation ..89

9.1 Semantic Reasoning Overhead ..90

9.2 Data Transfer Overhead ...91

9.3 Adaptation Time...92

9.4 CAMPUS End-to-End Performance ..94

Chapter 10 Conclusions and Future Work ...96

10.1 Conclusions..96

10.2 Future Work..99

10.2.1 Collaborative Decision-Making...99

10.2.2 Semantic-based Service Composition..100

10.2.3 User Preference Model...101

10.2.4 Security and Power Saving Issues ...101

References ...102

Appendix A The Context Foundation Ontology109

Appendix B The Tasklet Foundation Ontology115

Appendix C The Service Foundation Ontology....................................119

VIII

List of Figures

Figure 2-1 The Odyssey Client Architecture. ..10

Figure 2-2 A Context-sensitive Interface Using CA-IDL. ...13

Figure 2-3 The Rocks Architecture. ...14

Figure 2-4 The CONON Upper Ontology..21

Figure 2-5 The Aspect-Scale-Context (ASC) Model. ..23

Figure 2-6 An Overview of the SeCom Context Ontologies.24

Figure 3-1 The Layered Architecture of the CAMPUS System.28

Figure 4-1 The ATM Programming Model. ...41

Figure 4-2 The Service Schema. ..43

Figure 4-3 The Task-Related Schemas...44

Figure 4-4 The Channel Schema..45

Figure 5-1 The Hierarchy of Context Entities..48

Figure 5-2 PhysicalQuantity and Units..50

Figure 5-3 The Tasklet Foundation Ontology. ...52

Figure 5-4 A Sample Context Condition..53

Figure 5-5 The Service Foundation Ontology..54

Figure 6-1 The Complete Process of Making Adaptation Decisions.56

Figure 7-1 The Architecture of the CAMPUS Prototype...65

Figure 7-2 An Overview of the model Package. ..67

Figure 7-3 An Overview of the impl Package..68

Figure 7-4 The Entity Descriptors..69

Figure 7-5 An Except of the Class ChannelDescriptor. ..70

Figure 7-6 The Entity State Diagram. ..71

Figure 7-7 The Activation Process of DefaultTask. ...74

IX

Figure 8-1 An Excerpt of the Chat Service Ontology. ...77

Figure 8-2 The Structure of the Chat Service. ...78

Figure 8-3 An Excerpt of the MicDS Implementation. ..81

Figure 8-4 An Excerpt of the RTPSessionCtor ontology. ..84

Figure 9-1 The Processing Overheads of Semantic Reasoning.90

Figure 9-2 The Data Transfer Overhead. ...91

Figure 9-3 The Adaptation Time. ...93

Figure 9-4 The Effectiveness of the CAMPUS System...94

X

List of Tables

Table 2-1 Summary of Middlewares for Context-aware Adaptation Decisions.19

Table 2-2 A Comparison of Context Ontologies. ...26

Table 5-1 Legal Types of the Value of Context Properties...48

Table 6-1 OWL DL Axioms for DL Reasoning. ..57

Table 6-2 CAMPUS Meta-Rules. ..58

Table 8-1 Summary of the Tasks Defined in the Chat Service Ontology...................78

Table 8-2 Summary of the Tasklets Developed for the Chat Service.79

Table 8-3 The Task Registry of the Chat Service...82

Table 8-4 Comparison of RTPSessionCtor, RxSessionCtor, and TxSessionCtor.......83

Table 8-5 Tasklet Alternatives for Transcoder...85

1

CChhaapptteerr 11 IInnttrroodduuccttiioonn

1.1 Background

Context-aware adaptation refers to the ability of computing systems to adapt their

behaviors or structures to highly dynamic environments without explicit intervention

from users, with the ultimate aim of improving the user experience of these

computing systems. In recent years, we have witnessed a proliferation of context-

aware computing platforms that have adapted themselves using situation information.

The Active Badge location system, proposed in the early 1990s, was one of the first

context-aware systems. Want et al. [Want92] developed a phone call redirection

application that employed periodic pulse-width modulated infrared signals to

determine a user’s current location. A couple of location-aware tour guides

[Abowd97, Cheverst00] emerged in the middle of the 1990s. They used knowledge

of the users’ current and past location information to provide services that are

expected from a real tour guide; for example, offering information relating to objects

and people of interest in the physical world. Location information is by far the most

frequently used attribute of context. However, in recent years, other context

information is increasingly being employed. For example, a notepad application in

the TEA [Schmidt99] project can adapt its display font size to a user’s activity so

that it changes depending on whether the user is walking or stationary, or adapts to

the available light level. SenSay [Siewiorek03] is a context-aware mobile phone that

modifies its behavior based on what the user is doing and where he is. For instance,

when the user is involved in a conversation or has an important event scheduled in

the electronic calendar, all incoming calls are automatically answered with an SMS

message.

2

The need for such context-aware systems has grown because of the emerging

paradigm of pervasive computing, or ubiquitous computing. Many computing

devices, such as PDAs, cellular smart phones and notebooks, exhibit a high degree

of mobility; their computational systems therefore need to adapt to the

heterogeneous and dynamic surrounding environments in which they are operating.

For example, taking into account the quality of network connectivity, which varies in

terms of bandwidth fluctuations and error rates, streaming applications may use

different transcoding protocols to guarantee the video quality. Everyday devices,

such as digital cameras and watches, are now equipped with computing capabilities.

It has thus become necessary for computational systems to consider the contextual

attributes of neighboring devices and local resources to optimize the users’

experience. For instance, it would be undesirable for a desktop application to present

output that is unreadable on a small screen when the application migrates to a

handheld computing device [Satyanarayanan04]. Moreover, as sensor technology

continues to progress and advance with respect to issues such as size, power

consumption, computing capability and cost, existing and evolving classes of

contextual information will be made available for software platforms to further

improve the experience of users. For example, biosensors, which measure

physiological data such as pulse, skin temperature, and galvanic resistance to capture

data about the physical states of users, can be employed to recognize the users’

emotional information. Applications might then be able to adapt to human emotions,

for example, by soothing a user that it perceives to be angry.

1.2 Motivation and Problem Statement

Previous works have demonstrated the potential of context-aware applications, but

have also uncovered many challenges in designing, developing, and maintaining

such systems. Instead of focusing on coding the actual service logics, developers are

often distracted by context-related issues such as how to capture and represent the

contextual information concerned, and when and how to adapt to the contextual

changes in the operating environment. The emerging paradigm of pervasive

3

computing, which envisions a world in which users can manage their information

anywhere, at anytime, and on any device, is further complicating the development of

such context-aware applications. The inherent heterogeneity of a pervasive

computing environment requires applications to consider many more varieties of

contextual information than ever before. Context-aware adaptation will also occur

much more frequently than before, due to the high mobility of portable computing

systems across a pervasive computing environment. Facilities must be provided to

conceal the complexity of these issues from developers of context-aware

applications and to ease the development process. However, thus far in most context-

aware systems, such as [Dowling01, Yau02, Davis04, Zheng06], the decisions of

when and how to adapt an application are made a priori by developers during the

compile time. In general, developers are provided with a set of declarative scripts

and/or programming APIs to dictate which aspects of contexts are relevant to the

execution of the applications, and when and how the applications should adapt to

relevant changes in context.

While such approaches empower developers with sufficient flexibility to specify

what they want in terms of adaptation rules, they inevitably place an immense load

on developers, especially in an extremely dynamic environment like pervasive

computing, to anticipate and formulate all potential run-time situations during

development time. For example, assume a computationally intensive mobile

application that can adapt its behavior to various contexts, including CPU usage,

memory availability, network speed, and battery level. Assuming that each context

can equate to one of the four values of worst, bad, good, or best, the adaptation rule

pattern of this application may take the following form: IF (CPU_Usage is ai) AND

(Memory_Availability is bi) AND (Network_Speed is ci) AND (Battery_Level is di)

THEN (Action ei). In the worst situation, the adaptation policy may have as many as

256 rules. Maintaining such a large base of rules is not an easy task, and will distract

the focus of development from actual application logic.

4

In addition, making adaptation decisions in design-time or compile-time makes it

difficult for the system to consistently deliver services of an optimal quality, which is

one of the most important motivations for context-aware adaptation. Consider the

following scenario: a particular action ej in the above example is expected to be

triggered under the context combination of CPU usage aj, memory availability bj,

network speed cj, and battery level dj. However, due to unstable network connectivity,

the action ej fails to execute. If developers did not take such an exception into

account in advance, then no rule will be predefined to respond to such a context

situation. As a result, the application will simply have to throw a notification error at

best, resulting in an unsatisfactory user experience. Even supposing that developers

have considered such a situation, with an appropriate established rule in place as an

alternative action to be taken in order to deal with this exceptional case, the

alternative action may also fail for other unconsidered factors caused by the fluctuant

situation of a mobile environment. At the root of such conflict is the fact that, with

adaptation decisions made at the development time, all adaptation strategies have

been predetermined by developers based on the approach of looking ahead when

formulating rules. Yet, except for a restricted number of contexts and constrained

operating environments, it is impractical to consider all possible run-time situations,

especially in an extremely dynamic environment such as pervasive computing. At

best, developers will tend to cater to common cases rather than consider optimal

solutions.

These challenges have motivated us to explore an approach to automating context-

aware adaptation decisions by a middleware layer at run-time. The middleware has

three main functions:

� Reasoning about context changes.

� Making decisions about what adaptation to perform.

� Implementing the adaptation choices.

5

Through automated decisions at run-time, developers will be freed from the need to

predict, formulate, and maintain adaptation rules, thereby greatly reducing the efforts

required to develop context-aware applications. It will also be possible to deliver

services of an optimal quality by deferring the adaptation decisions until run-time to

account for up-to-date contextual conditions.

1.3 Approach and Contributions

The main objective of this study is to design, implement and evaluate a middleware

layer that can be used to automate context-aware adaptation decisions at run-time,

based on an analysis of the problems posed by the above-mentioned challenges.

Importantly, it aims to provide a balanced level of programming abstractions that

will make it easy to develop context-aware adaptation for pervasive applications,

while facilitating automated adaptation decisions at run-time. The resulting

middleware CAMPUS, short for Context-Aware Middleware for Pervasive and

Ubiquitous Service, achieves the objective with the confluence of three key

technologies: compositional adaptation, ontology, and DL/FOL reasoning. In

particular, CAMPUS proposes a new programming model based on compositional

adaptation to construct context-aware applications and facilitate adaptation decisions.

CAMPUS also formulates a comprehensive ontology-based model to capture the

important concepts and relationships of entities in the programming model, which

are necessary for automated context-aware adaptation decisions. Based on these

ontologies, CAMPUS makes use of description logic and first-order logic to infer

and make context-aware adaptation decisions automatically. The following is an

overview of the main research contributions.

� Proposed and designed a new programming model to completely separate

context-aware adaptation from the functional concerns of applications. Context-

aware adaptation and the functional concerns of applications are often tightly

coupled and intertwined. Dealing with adaptation and the basic functional

concerns of applications at the same time and at the same level pushes

6

developers into an awkward position mentioned previously. In this study, we

investigated the principle of separation-of-concerns to support context-aware

applications. This has led to the development of a novel programming model that

makes it possible for the middleware layer to automate the decision process of

context-aware adaptation.

� Defined a set of ontologies for supporting automated context-aware adaptation

decisions. These ontologies are expressed using the OWL-DL language, which

captures the knowledge that represents the important concepts and relationships

involved in the development of context-aware applications. Based on these

ontologies, a middleware layer can make use of description logics (DL) and first-

order logics (FOL) to infer and make context-aware adaptation decisions. In

particular, this study showed that not only can the OWL be used to express the

semantics of information on the web, but that it can be used to express the

semantics of entities in the domain of software development, including

applications and contextual information.

� Designed and implemented a middleware, CAMPUS, which served as a platform

for us to evaluate how effective the system is at enabling automated context-

aware adaptation decisions and to validate the principles underpinning the design.

We evaluated the CAMPUS implementation by using a number of case studies to

validate the operation of the system in a realistic environment and to obtain

experimental results for further analysis. In particular, we selected and

implemented a context-aware instance messenger application to run over the

CAMPUS. We systematically traced the application development cycle and

validate the effectiveness of the semantic-based approach to capturing contextual,

service, and adaptation requirements. The experiments also presented us with the

opportunity to study the interactions between the core modules of the system and

their adaptation response to changing contexts. In capturing the system’s

performance, we evaluated the potential overheads introduced by deferring the

adaptation decision to run-time in the middleware level. The results are

7

significant: we found that CAMPUS can be adapted to run on resource-constraint

portable devices without significant degradation in its performance.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the work related to

this study. Past studies on context-aware middleware are surveyed and compared

with the CAMPUS middleware. The aim is to highlight the core contributions of

these works and how they are benchmarked against the CAMPUS middleware.

Some well-known works on context ontologies are also introduced and compared

with the CAMPUS ontologies. The specific characteristics of the CAMPUS

middleware and its advantages over other similar works are highlighted.

Chapters 3 to Chapter 7 form the core of this thesis. Chapter 3 is devoted to the

architecture of the CAMPUS middleware. Chapter 4 focuses on the programming

model. The model effectively separates adaptation from the functional concerns of

context-aware applications and makes it possible for the middleware layer to

automate context-aware adaptation decisions at run-time. Presented in Chapter 5 is

the comprehensive set of ontologies that can be used to describe the necessary

semantic information for the middleware to make context-aware adaptation decisions.

In Chapter 6, details are given of the mechanisms used in CAMPUS to dynamically

derive adaptation decisions. Chapter 7 contains a discussion of the implementation

of CAMPUS middleware.

In Chapter 8, a sample application is presented that demonstrates the feasibility and

validates the benefits of CAMPUS in providing context-aware adaptation. The

performance and evaluation of the system are discussed in Chapter 9. Three

operations that show the most promise of bringing about overheads to the system are

8

measured independently. A complete end-to-end application that fully exercises the

system components of CAMPUS is set up to evaluate the system performance.

Finally, Chapter 10 presents the conclusions of this study. It also points out some

directions for future research on this topic. Such work is necessary to make the

CAMPUS more complete, secure, and robust for deployment over a wide-scale

wireless and mobile environment.

9

CChhaapptteerr 22 RReellaatteedd WWoorrkk

As presented in Chapter 1, one of the important contributions of our study is to

leverage and apply the concept of semantic ontologies to facilitate automated

context-aware adaptation decisions. The aim of this chapter is to provide a general

review of recent developments on middlewares that provide applications with the

support of context-aware adaptation, as well as on some well-known context

ontologies that represent, structure, and organize contextual data and relationships

between them. Importantly, this chapter serves to provide a comprehensive

background of related works that have greatly motivated the design of CAMPUS,

while significantly setting it apart from previous systems.

2.1 Middlewares for Context-aware Adaptation

The need for a middleware layer to facilitate context-aware adaptation for

applications has been widely reported and acknowledged in the research community

[Chan03, Capra03]. Introduced in this section are several typical middleware

systems that provide applications with facilities to ease context-aware adaptation.

They are compared with CAMPUS in terms of the underlying mechanisms that they

use to make adaptation decisions.

2.1.1 Odyssey

Odyssey [Noble97] provides an application-aware approach to adaptation. The

essence of this model is a collaborative partnership between the system and

individual applications. The system monitors resource levels, notifies applications of

relevant changes, and enforces resources-allocation decisions. Each application

independently decides how best to adapt when notified. For example, Odyssey itself

does not decide that color video frames should be converted to black-and-white, but

10

rather instructs the application that some action is required. The application itself

decides how adaptation should occur, and typically instructs the server to make the

adjustment.

As shown in Figure 2-1, the Odyssey system consists of a viceroy, an operating

system entity in charge of managing the limited resources for multiple processes, a

set of data type-specific wardens that handle the intercommunications between

clients and servers, and applications that negotiate with Odyssey to receive the best

level of services available. Applications request from Odyssey the resources that

they need, specifying the window of tolerance required for the desired operation. If

resources within that window are currently available, the request is granted and the

client application is connected to its server through the appropriate warden for the

data type to be transmitted. Wardens can handle issues like caching or pre-fetching in

manners specific to their data types, in order to make the best use of the available

resources. If resources within the requested window are not available, the application

is notified and can subsequently request a lower window of tolerance and

corresponding level of service. As conditions change and requests that had

Figure 2-1 The Odyssey Client Architecture. [Noble97]

11

previously been satisfied can no longer be met (or, conversely, conditions improve

dramatically), the viceroy uses upcalls that had previously been registered by the

applications to send notifications, in the form of events, to these applications. These

notifications indicate that the applications must operate in a different window of

tolerance, which may subsequently potentially alter their behaviors.

2.1.2 MobiPADS

MobiPADS [Chan03] is designed to support context-aware processing by providing

an executing platform to enable active service deployment and the reconfiguration of

service compositions in response to varying contexts in the operating environment. It

supports dynamic adaptation at both the middleware and application layers to

provide a flexible configuration of resources to optimize the operations of the mobile

applications.

Within the MobiPADS system, a series of mobilets is linked together to form a

processing chain called the service chain, which reacts and adapts to the varying

characteristics of a wireless environment. In the MobiPADS service space, mobilets

exist in pairs: a master mobilet resides at the MobiPADS client and a slave mobilet

resides at the MobiPADS server. Mobilets access the services of the system

components through the mobilet API, which also provides interfaces to allow the

system components to communicate and configure the mobilets. At the top level of

the service space, there is a set of meta-objects that reflects the configuration for the

composite events and service chain, as well as the adaptation policies.

The MobiPADS achieves context-awareness by using an event notification model,

which monitors the status of all contexts of interest and reports the event to the

subscribed entities. These include all of the entities within the platform such as the

system components, the mobilets, and the mobile application. On detecting changes

12

in the environment, the MobiPADS system can respond either by reconfiguring the

current service chain or by communicating the changes to each of the mobilets. An

abstraction of service object interactions and configurations is expressed in a high-

level declarative language written in XML format. Based on these profiles, the

MobiPADS system can respond to changes of context by adding and removing

mobilets within the service chain to select an optimum set of mobilets. Simply

adding or removing mobilets within the service chain may not be enough to adapt to

contextual changes. To allow a finer-grained adaptation, the MobiPADS system

allows the mobilets to subscribe to an event and react to the event message by

adjusting its internal parameters to best adapt to the changes.

2.1.3 RCSM

Yau et al. [Yau02] proposed a Reconfigurable Context-Sensitive Middleware

(RCSM) to facilitate the development and run-time operation of context-aware

applications. RCSM models context-aware applications as context-sensitive objects,

which consist of two parts: a context-sensitive interface and a context-independent

implementation. The interface encapsulates the description of the application’s

context awareness. More specifically, this interface lists the types of contexts or

situations that are relevant to the application, the actions to be triggered, and the

timing of these actions. The second part is the actual implementation of the actions

that the application must provide.

RCSM provides application developers with a Context-Aware Interface Definition

Language (CA-IDL) that can be used to specify the context-sensitive object

interfaces. Figure 2-2 shows such a context-sensitive interface using CA-IDL. The

CA-IDL interfaces are compiled into custom-made Adaptive Object Containers

(ADCs) that communicate with the underlying system to acquire contexts, and then

perform periodic context analysis as specified in the context-sensitive interfaces.

These ADCs are also responsible for activating different actions whenever they

13

detect suitable contexts as a result of the context analysis. RCSM also provides

RCSM Object Request Brokers (R-ORBs) that perform a proactive device discovery

during the execution of the application, and use their R-GIOP (RCSM General Inter-

ORB Protocol) to establish and maintain a CTC (Context-Triggered Communication

channel) with a remote device, in order to collect the data from sensors and the

operating system.

2.1.4 Rocks

Zandy et al. [Zandy02] at the University of Wisconsin developed reliable sockets (as

known as Rocks) to protect socket-based applications from poor network conditions,

such as unexpected modem disconnections and IP address changes as a result of

mobile device movements or a DHCP lease expiration.

 // context source

RCSMContext dc {

 char[] string location;

 boolean light;

}

// beginning of context-sensitive interface

interface instructor_object {

 // context variables

 RCSMContext_var dc C1

 where location=“screen”;

RCSMContext_var dc C2

 where light=true;

RCSMContext_var dc C3

 where light=false;

 // context-sensitive method

 [outgoing]

 [activate when C1^(C2->C3)]

 void distribute (string lectures);

};

// end of context-sensitive interface

Figure 2-2 A Context-sensitive Interface Using CA-IDL. [Yau02]

14

Rocks resume sessions automatically after recovering from a period of disconnection.

Using the preloading feature of the Linux loader, the Rocks library is interposed

between the application code and the kernel TCP socket, as shown in Figure 2-3.

Rocks monitor the send and receive buffers of TCP socket, and maintain a copy of

in-flight packets to prevent data loss in the event of a connection failure. After

reconnection, Rocks will initially resend those packets that are cached in the in-flight

buffers, and then resume the normal TCP socket operation. The Rocks library

exports the socket API, which is the same as the kernel socket API, to be used

transparently by the application. This middleware interception approach means that

the Rocks reconfiguration is transparent to the application code, as well as to any

distribution middleware or virtual machine. The reliability provided in Rocks is

independent of specific applications; hence, Rocks is also transparent to the adaptive

code.

Figure 2-3 The Rocks Architecture. [Zandy02]

15

2.1.5 MUSIC

The MUSIC middleware [Rouvoy08] is an autonomous platform for supporting self-

adaptive mobile applications. It allows an appropriate application configuration to be

automatically selected among all possible application configurations. The process of

adapting applications in respond to changes of context includes a planning procedure

and a reconfiguration process. The former decides appropriate application

configurations, and the latter deploys them. We introduce these two processes in this

section.

The planning procedure is supported by the Adaptation Reasoner, which makes

adaptation decisions based on configuration plans and utility functions. A

configuration plan in MUSIC defines how the components are connected to each

other in order to provide the functionality required by the applications. For any

particular application, there may be multiple configuration plans that can achieve its

functionality. The Adaptation Reasoner decides an appropriate configuration plan

based on the utility it offers to the system. During the planning procedure, the

reasoner asks the plan repository for plans that are compatible with a given service

type. After that, the reasoner recursively resolves the dependencies of the plans to

build a service configuration, and discards configurations whose explicit or implicit

dependencies remain unresolved. Finally, the service configurations are ranked by

evaluating their utilities. MUSIC uses utility functions to map the user preferences

for QoS to a function that defines how a selected plan satisfies the user preference.

The input of a utility function includes the user preferences considering the current

context and the available resources, while its output is the degree to which a

configuration plan satisfies the user goals.

The reconfiguration process is handled by the Configuration Executor, which takes

the set of plans selected by the Adaptation Reasoner and reconfigures the application.

16

During the reconfiguration process, the Configuration Executor set the current

service into a quiescence state and deploys the service configuration selected by the

Adaptation Reasoner. If the configuration indicates a service instance, the

configurator connects this instance to other services; if the configuration describes a

composite or an atomic service, the service should be created and deployed using the

blueprint descriptions enclosed within the configuration.

2.1.6 Summary

Odyssey represents an early effort to facilitate dynamic adaptation. Odyssey and

other similar works, such as [Friday96, Blair00], use an application-aware approach

to adaptation. That is, the bulk of the adaptation in this model is, in fact, done by the

underlying applications. The middleware monitors context, notifies applications of

relevant changes, and enforces adaptation decisions made by the applications

independently when notified. Such an application-aware approach presents the

opportunity for operating applications to potentially adapt their internal logics in

response to contextual changes. With utmost flexibility comes rigidity, such that

application developers are required to intricately capture all possible contextual

changes of interest and, if necessary, to enforce adaptation policies for the

applications. In addition, applications have to be modified and re-compiled for any

changes in adaptation strategies or to cater to new and evolving contexts.

MobiPADS is another kind of middleware to support context-aware adaptation. It

supports dynamic adaptation at both the middleware and application layers. Similar

to Odyssey, MobiPADS monitors the status of contexts of interest and reports any

changes of events directly to the applications. The underlying applications are

responsible for interpreting the contexts and for deciding how to best adapt to

changes of context. To enable more flexible adaptation, MobiPADS employs the

reflective mechanism to dynamically reconfigure the service chain based on

descriptive adaptation policies regulated externally by XML. Importantly, these

17

policies can be changed after the deployment of applications. Using declarative

adaptation policies can be seen as semi-application-transparent, since the adaptation

process is transparent to the application, while the decision is handled by the

application.

RCSM is another semi-application-transparent example. The adaptation policies are

specified using CA-IDL and compiled into an application skeleton. To change the

policies, the application developers merely need to change the interface and re-

compile it to generate a new adaptive object container (ADC). In comparison with

application-aware approaches, semi-application-transparent architectures are much

more flexible in that the adaptation process is transparent to developers, and may be

modified even after the deployment of applications. However, the challenges of

formulating adaptation decisions to operate under an extremely dynamic

environment have yet to be addressed.

Unlike MobiPADS and RCSM, the Rocks project uses a completely application-

transparent approach to context-aware adaptation. This is achieved by constructing a

layer of adaptable common services within the middleware, while applications are

required to make explicit calls to these adaptive services. Using such an approach,

applications are oblivious of the need to consider how to adapt and when to adapt,

and can completely focus on their functional logic. However, such an approach of

adaptive services amalgamates adaptation concerns with functional concerns in the

middleware layer, so that only programs that are written for these specific services

can be supported. Importantly, regardless of the point at which adaptation decisions

being made in all of the surveyed middleware, the decisions are inherently static and

predefined. At best, these decisions are formulated based on looking ahead and

predicting what contexts will be available to drive the adaptation decisions.

18

CAMPUS goes one step further than previous approaches in advocating automated

run-time adaptation decisions instead of predefined adaptation policies that capture

limited contextual changes operating in a potentially dynamic environment. The core

aim of CAMPUS is to provide a software engineering solution that seamlessly

integrates contextual awareness to application development, while providing a high-

level semantic-based expression of adaptation policies. Importantly, CAMPUS aims

to avoid the formulation of rigid adaptation rule languages, and to make use of the

semantic nature of contexts and applications to automatically reason about when and

how to adapt applications in response to changes of context. Furthermore, the

CAMPUS middleware supports a more general approach to adaptation by

completely separating adaptation from computational concerns, while not limiting

itself to particular types of applications.

MUSIC and several other middlewares, such as [Ma06, Rouvoy08], share similar

objectives with our CAMPUS middleware. They also aim to avoid formulation of

complex adaptation rules and advocate automated adaptation decisions. To the best

of our knowledge, all of them make adaptation decisions simply based on utility

functions. The major differences between these middlewares and CAMPUS, which

uses semantic based DL/FOL reasoning to achieve automated adaptation decisions,

are manifold. First, unlike CAMPUS, they do not provide a common terminology

and shared set of concepts that agents can use when they interact with each other.

This problem is especially acute in the realm of pervasive computing environments

since different agents could have different understandings of the current context.

They might use different terms to describe context, and even if they use the same

terms, they might attach different semantics to these terms. In addition, although

utility functions are the natural way to represent value, it is often difficult to apply

appropriate calculations of expected utilities for various components of a large,

complex system [Walsh04, Chang05, Alia07]. Finally, utility function represents a

single-phase decision model that may involve the unnecessary processing of a large

19

volume of information, and does not allow for multiple strategies to be utilized

within a single decision process [Shao06].

Table 2-1 is a summarized comparison of the CAMPUS system with the

middlewares introduced above. The notable points are shown below:

� Decision Maker in these middleware systems can be application or middleware,

depending on whether the decision of when and how to adapt to changes of

contexts are made in the application layer by developers, or the middleware

attempts to completely shield the application from such decisions.

� Decision Range is the collection of applications supported by these middleware.

Some middleware provide general machinery to support collection of unrelated

applications, while others probably only support a specific application or

narrowly-defned class of applications.

� Decision Type describe whether the context decisions are predefined or not. Some

middlewares decided the adaptation strategies during the design-time or compile-

time. Such decisions are deemed as static. Rather, others make the decisions

dynamically during the time to account for the up-to-date contexts.

� Decision Mechanism is the primary technology used for the decision maker to

determine the adapation decisions. As far as CAMPUS system is concerned,

semantic-based DL/FOL reasoning is the major technology used to make

decisions.

Table 2-1 Summary of Middlewares for Context-aware Adaptation Decisions.

Decision

Maker

Decision

Range

Decision

Type

Decision

Mechanism

Odyssey Application
Application-

specific
Static API

20

MobiPADS Application General Static
API

Scripts

RCSM Application General Static Scripts

Rocks Middleware
Application-

specific
Static API

MUSIC Middleware General Dynamic Utility functions

CAMPUS Middleware General Dynamic
Semantic-based

DL/FOL reasoning

2.2 Ontologies for Context-aware Adaptation

Using ontologies to facilitate context-awareness is not a new idea. Some forms of

ontology-based models have also been applied to capture concepts and relationships

in the domain of context-aware applications. This section reviews several

representative context ontologies and points out how the CAMPUS ontologies differ

from them.

2.2.1 CONON

CONON [Wang04] is an OWL encoded context ontology for modeling context in

pervasive computing environments, and for supporting logic-based context reasoning.

It provides an upper context ontology that captures general concepts about basic

contexts, and also provides extensibility for adding domain-specific ontology in a

hierarchical manner. Figure 2-4 shows the upper context ontology. The context

model is structured around a set of abstract entities, each describing a physical or

conceptual object, namely Person, Activity, Computational Entity and Location, as

21

well as a set of abstract sub-classes. Each entity is associated with its attributes and

relations with other entities. The built-in OWL property owl:subClassOf allows for a

hierarchical structuring of sub-class entities, thus providing extensions to add new

concepts that are required in a specific domain. Besides general classes defined in

the CONON upper ontology, a number of concrete sub-classes are defined to model

specific contexts in a given environment. For example, the abstract class

IndoorSpace of the home domain is classified into the four sub-classes: Building,

Room, Corridor, and Entry.

2.2.2 COBRA-ONT

Chen et al. [Chen04] used RDF and OWL to define ontologies of context, which

provide an explicit semantic representation of context that is suitable for reasoning

and for the sharing of knowledge. The COBRA-ONT was designed to support smart

U
p
p
er

O
n
to

lo
g
y

D
o
m

ai
n
-S

p
ec

if
ic

O
n
to

lo
g
ie

s

Figure 2-4 The CONON Upper Ontology. [Wang04]

22

meeting room applications for eBiquity group meeting at UMBC. It covers typical

concepts associated with information on the geography of the UMBC campus,

eBiquity group meetings, and actions performed by the smart meeting applications.

The eBiquity Geo-Spatial Ontology defines vocabularies for modeling certain

physical places located on the UMBC campus and their spatial relations and

constraints. In particular, it defines ontology classes for symbolic representations of

rooms, buildings, campus, states, and countries. It also defines instances of these

geo-spatial classes and the associated relations. The eBiquity Meeting Ontology

covers key concepts including the modeling of eBiquity group membership, the

friends of the eBiquity group members, and the meeting contexts such as

descriptions about the speaker of the presentation, the organizer of the meeting, the

attendees at the meeting, the presentation video file, event photos, and voice

recordings of the discussions. Finally, the aim of the eBiquity Action Ontology is to

support the protection of privacy in a context broker. It defines the communication

vocabularies between a context broker and other agents.

2.2.3 CoOL

The CoOL (Context Ontology Language) [Strang03] is not a single, monolithic

language but a collection of several fragments that are grouped into two subsets. The

first subset, CoOL Core, is a projection of the Aspect-Scale-Context (ASC) model

into two different common ontology languages: OWL/DAML+OIL and F-logic. The

second subset, CoOL Integration, is a collection of schema and protocol extensions

as well as common sub-concepts of the ASC model, enabling CoOL Core to be used

in several service frameworks, particularly Web Services.

Figure 2-5 shows the ASC model that is named after the core concepts of the model,

which are aspect, scale, and context information. An aspect is a classification

23

(symbol- or value-range) whose subsets are a superset of all reachable states,

grouped in one or more related dimensions called scale. Context information is any

information that can be used to characterize the state of an entity concerning a

specific aspect. In other words, valid context information with respect to an aspect is

one of the elements of the aspects’ scales. For example, the aspect

“GeographicCoordinateAspect” may have two scales, “WGS84Scale” and

“GaussKruegerScale,” and valid context information may be an object instance

created in an object-oriented programming language such as Java with a new

GaussKruegerCoordination(“367032,” “533074”).

2.2.4 SeCom

Neto et al. [Neto05] used OWL to present a domain-independent ontological context

model from contextual dimensions: identity (who), location (where), time (when),

activity (what), and device profile (how).

Aspect

ObjectProp. ≥0

ObjectProp. =1
hasDefaultScale:

hasScale:

Scale

Scale

ContextInformation

ObjectProp. ≥1

ObjectProp. =1
characterizes:

hasScale:

Entity

Scale

ObjectProp. ≥0

ObjectProp. ≥0

ObjectProp. =1

ObjectProp. ≥0

minError:

meanError:

timestamp:

hasQuality:

ContextInformation

ContextInformation

ContextInformation

ContextInformation

Scale

ObjectProp. ≥1

ObjectProp. ≥1
hasAspect:

constructedBy:

Aspect

<ContextInformation>

ObjectProp. ≥1

ObjectProp. ≥0

ObjectProp. ≥0

ObjectProp. =1

hasUnit:

memberCheck:

hasIntraOperation:

hasInterOperation:

Unit

Operation

IntraOperation

InterOperation

type cardinality
predicate

Concept

Figure 2-5 The Aspect-Scale-Context (ASC) Model. [Strang03]

24

The core of the Who-based ontologies is the Actor ontology. It models the profile of

all entities that can perform actions in a pervasive computing environment such as

people, groups, and organization, as shown in Figure 2-6. The Actor ontology

imports other ontologies, including the role ontology that describes the actors’ social

role in the real world, the contact ontology that represents the contact information of

the different types of actors, the expertise ontology that models areas of knowledge,

the relationship ontology that models social relationships between people, the project

ontology that describes meta-information associated with projects and the links with

actors, and the document ontology that models documents made by actors.

The where-based ontology aims to describe the whereabouts of real world entities.

Location information is not only related to such usual information as street, city, and

room, but also to geographic coordinates, combined with direction information.

Absolute and relative location information is also modeled in this ontology.

Figure 2-6 An Overview of the SeCom Context Ontologies. [Neto05]

25

The when-based ontology represents temporal information in terms of temporal

instants and intervals. A temporal instant is a point on the universal timeline, whereas

a temporal interval is delimited by two distinct and convex time instants.

Additionally, the when-based ontology models calendar and clock information to

represent time in multiple granularities.

The how-based ontology describes computational devices by means of profiles,

which includes a set of descriptions that model the features of devices with regard to

three platforms: hardware, software, and user agent. The hardware platform

describes a device in terms of its input, output, and network features; the software

platform represents the application environment, operating system, and installed

software; and the user agent platform describes the software browser running on a

device.

The what-based ontology describes actions that people do or cause to happen. An

activity in this ontology is modeled as of two disjointed types: impromptu and

scheduled. The former represents activities that occur in an informal manner, while

the latter represents activities planned in terms of time and place.

2.2.5 Summary

To the best of our knowledge, all of the existing ontologies for context-awareness

focus on context models that provide abstraction to context entities, and do not aim

to provide direct support for adaptation decision. CAMPUS advocates the use of

ontology to capture knowledge not only in the context domain, but also the

application domain, in order to facilitate adaptation. It has been discovered that the

semantics of contextual information and applications in CAMPUS help the

middleware understand all of these interacting entities and make important decisions

related to adaptation. Table 2-2 offers a comparison of the CAMPUS ontologies and

26

the context ontologies introduced above along three dimensions: Structure describes

how these ontologies are constructed. This dimension is further divided into two sub-

dimensions: Range and Domain. Goal in these ontologies can be general or

application-specific, depending on whether they are desinged for specific

application-domains or can be used in a general purpose. Finally, Use refer to how

these ontologies can be use.

Table 2-2 A Comparison of Context Ontologies.

Structure
 Dimension of

Range Dimension of Domain
Goal Use

CONON

Upper ontology

Domain-specific
ontology

N/A General

Context
modeling

Context
reasoning

COBRA-
ONT N/A

Geo-Spatial Ontology

Meeting Ontology

Action Ontology

Application-
specific

Context
modeling

Context
reasoning

CoOL

CoOL Core

CoOL Integration N/A General

Context
modeling

Context
reasoning

SeCom N/A

Who-based ontologies

Where-based ontology

When-based ontology

What-based ontology

How-based ontology

General

Context
modeling

CAMPUS

Foundation
ontologies

Domain-specific
ontologies

Context ontologies

Tasklet ontologies

Service ontologies General

Context
modeling

Context
reasoning

Adaptation
decision-
making

27

CChhaapptteerr 33 TThhee CCAAMMPPUUSS AArrcchhiitteeccttuurree

As highlighted previously, the main objective of the CAMPUS middleware is to

automate context-aware adaptation decisions at run-time for pervasive computing. In

order to achieve this objective, the following three important issues need to be

considered:

� Programming model. This issue refers to the mechanism used to construct

context-aware applications and perform context-aware adaptation. The aim of

context-aware adaptation decision-making is to choose one or a limited number

of application configurations that can be applied in a given context among

possibly many alternatives [Alia07]. It is obvious that the challenge of how to

make such decisions greatly depends on how the applications are constructed and

how they can be reconfigured; thus a suitable programming model directly

impacts the automated context-aware adaptation decisions.

� Knowledge model. This issue is concerned with the kinds of knowledge that

need to be captured and how to represent them. Decisions are made based on the

decision maker’s knowledge, including knowledge of the characteristics or

requirements that each alternative possesses and the effects of each alternative.

Therefore, a substantial amount of information needs to be understood by the

middleware layer before it can make appropriate decisions. A suitable knowledge

model is fundamental to facilitate automated machine understanding.

� Decision model. This issue is concerned with the progressive steps in the process

of decision-making, how to rate the alternatives, and how to decide on the final

one. A suitable decision model that formalizes the process of decision-making in

the context of context-aware adaptation will finally determine the quality of the

decisions made by the middleware layer.

28

As illustrated in the Figure 3-1, CAMPUS provides solutions to the above issues in a

layered architecture. Logically, CAMPUS is divided into a programming layer, a

knowledge layer and a decision layer:

� In the programming layer, CAMPUS constructs context-aware applications via a

new programming model called ATM (short for Adaptable Task Model). It relies

on two main concepts: services and tasks. A service is an abstract of a business or

a technical process, which is comprised of a series of tasks. Tasks are execution

units that perform certain actions to deliver a result to other tasks or the end user.

A task is further divided into two parts: a tasklet and a task base. The former part

concentrates on the computational concerns of the task, i.e. how to process data;

Service

Ontologies

Context

Ontologies

Tasklet

Ontologies

Preprocessing

Screening

Choice

Decision Maker

Decision

Executor

Knowledge Layer

Decision Layer

Programming Layer

Service Directory Tasklet Directory

Figure 3-1 The Layered Architecture of the CAMPUS System.

29

and the latter part handles issues involved in coordination and adaptation, such as

how to communicate with other modules of the service and how to transfer the

states of tasks during adaptation. A service can adapt to contextual information

by adding, removing, or replacing the tasklet parts of its tasks.

� In the knowledge layer, CAMPUS captures a comprehensive set of ontologies to

describe related entities that are involved in context-aware adaptation, including

services, tasklets, and contexts. These ontologies are used by the programming

layer to initialize service and tasklet instances, and also used by the decision

layer to perform semantic reasoning and to make adaptation decisions.

� In the decision layer, CAMPUS uses description logics and first-order logics to

reason about the ontologies in order to make context-aware adaptation decisions.

The goal of these decisions is to select the best tasklet alternatives for given tasks.

The whole decision-making procedure is divided into three phases: preprocessing,

screening, and choice. The preprocessing phase performs several preprocessing

tasks to ensure that the ontologies are semantically consistent and to prepare

fine-grained information for the subsequent phases. The screening phase filters

off tasklet alternatives that are not satisfied by up-to-date contextual information.

The remaining filtered tasklets are compared in the choice phase, using the utility

function in order to select the best tasklets for given tasks.

A detailed design of CAMPUS is presented in the remaining chapters, while the aim

of this chapter is to analyze and justify our major design decisions and approaches.

3.1 The Programming Model

The programming layer of CAMPUS is responsible for constructing and

reconfiguring context-aware applications according to the instructions from the

decision layer. This is achieved by the ATM programming model that is based on

compositional adaptation and separation-of-concerns.

30

In general, approaches to realize context-aware adaptation can be classified into

transformational adaptation and compositional adaptation [Tekinerdogan96,

Edwin07]. In transformational adaptation, applications directly modify related

specifications and/or implementations to respond to changing contexts.

Compositional adaptation, in contrast, responds to contexts through adding,

removing, replacing, or even changing the interconnections of the algorithmic or

structural parts of applications. For example, to adapt web contents to be rendered on

a display constrained mobile device, it is necessary to transcode the image, with the

ultimate aim of reducing the amount of data to be transferred. In transformation

adaptation, the contents are directly transcoded. The transcoding codes are often

deeply embedded within the application. In contrast, in compositional adaptation, the

aim is to discover and select the most suitable transcoding component that can be

composed into the flow of processed data.

Compositional adaptation is more suitable than transformational adaptation for

automated context-aware adaptation decisions. Transformational adaptation statically

defines variables to describe context-aware aspects of applications and, if necessary,

to tune them to adapt to contextual information. This approach is easier to implement

than compositional adaptation; nevertheless, in transformational adaptation, it is

necessary for adaptation rules and decisions to be planned and coded before they are

deployed. On the other hand, compositional adaptation can be amended for

automated context-aware adaptation decisions. First, the decomposition of

applications to a set of functional components enables compositional adaptation to

exercise greater extensibility, and to effectively respond to changing contexts and

react to the operational challenges encountered in dynamic computing. New

behavioral or structural parts to address evolving challenges can be non-invasively

deployed into applications without affecting the operations of existing units.

Moreover, compositional adaptation can effectively separate adaptation-related

concerns from the functional behaviors of context-aware applications, and make it

possible for adaptation-related issues to be handled in the middleware layer. Through

31

compositional adaptation, application functions are organized and encapsulated in

various components, and context-aware adaptation is achieved by the composition of

these functional components. Importantly, application developers can focus on

programming various components to implement various functions of the application,

and leave it to the middleware to handle adaptation-related concerns. Specifically,

the middleware will be responsible for deciding how and when to compose different

components to adapt to the surrounding and changing contexts.

While there have been many projects that advocate using compositional adaptation

to ease the development of context-aware applications [McKinley04], they are

insufficient for CAMPUS that requires a fine-grained separation of adaptation

concerns from functionalities to enable automated context-aware adaptation

decisions. As we argued, dealing with adaptation concerns and the basic functional

concerns of applications at the same time and at the same level pushes developers

into an awkward position. Adaptation concerns should be studied and tuned

independent of the basic requirements of applications. In particular, CAMPUS

requires its programming model to separate adaptation concerns at both the

application level and component level. In addition, CAMPUS requires its

programming model to provide primitives that enable the middleware to

automatically make adaptation decisions. However, to the best of our knowledge,

previous composition-based programming models do not satisfy the requirements of

CAMPUS. Most of them only consider the separation of application functionalities

and the definition of adaptive behaviors. For example, MobiGATE [Zheng06]

delineates a separation of interdependent parts from the service-specific

computational codes by using a separate coordination language, called MobiGATE

Coordination Language (MCL), to describe the composition and reconfiguration of

the MobiGATE components, referred to as streamlet. While such separation is

desirable in developing component-based context-aware systems, in these systems,

the part of a component that provides the desired functionalities and the part that is

involved only during adaptation are amalgamated together, so that developers can

32

not focus on providing functionalities indeed. There also exist a few systems that

consider the separation of adaptation and functionality at the component level. For

instance, Biyani and Kulkarni propose a design to separate adaptation concerns from

component functionality [Biyani05]. Each component in their system is designed to

consist of two parts: a functional part and an adapt-active part. The latter part is

involved in actions that are only required when adaptation. Nevertheless, these

systems do not provide direct supports for a middleware layer to make adaptation

decisions. That is, using these systems, developers are still required to handle

concerns of adaptation decisions, while considering application functionalities.

To facilitate automated context-aware adaptation decisions, CAMPUS proposes a

new composition-based programming model that fully supports the separation of

adaptation concerns from functionality. The ATM programming model distinguishes

itself from previous composition-based programming models in two important

features. First, it separates adaptation concerns from functionality both at the

application level and component level. In addition, it provides primitives that enable

a middleware layer to make adaptation decisions. A detailed design of the ATM

programming model is presented in Chapter 4.

3.2 The Knowledge Model

The programming layer adapts a service by adding, removing, or replacing the

tasklet parts of its tasks. Consequently, context-aware adaptation decisions converge

to the decision of how to select appropriate tasklets according to up-to-date

contextual information. Therefore, the following information is required by

CAMPUS in order to make adaptation decisions:

� The requirements desired by the target service: they capture the functional and

non-functional requirements imposed by the target service, such as functionality,

performance, structure, security, and reliability, among others.

33

� The properties of the available tasklets: they specify the functional and non-

functional properties of the available individual tasklets, for example, the

provided functionality and QoS, and the dependencies on other components.

� The context requirements imposed by tasklets: they capture any assumption

made about the environment in which the specified tasklet is expected to execute

and the resources required by the tasklet to perform its functionality.

� The properties of run-time contexts: they capture the actual conditions of the

execution environment and resources.

It is necessary for CAMPUS to define a new knowledge model that captures and

represents the above knowledge that is required to make adaptation decisions. To the

best of our knowledge, thus far there is no work that aims to provide an integrated

scheme to represent all of the necessary information. Existing description schemes

have been developed to capture and represent different aspects of software. For

example, architecture description languages [Garlan94, Binns96, Medvidovic99] can

be used to describe application properties, especially in the aspect of software

architecture. Alternatively, interface and component description languages

[Warmer98, Gordon00, Sora07] can be used to describe syntactic interfaces and type

systems of software components, while context description languages [Strang03,

Neto05] can be used to describe contextual information. These representations are

designed to separately capture specific characteristics of aspects of software, with

little or no provision to enable integrated sharing of knowledge to facilitate context-

aware decision-making. On the other hand, it is not practical to integrate existing

languages from various domains in order to provide support for automated

adaptation decisions, since these languages lack the intrinsic properties to enable

seamless integration across standards.

34

CAMPUS uses an ontological model to capture and expose the internal semantics of

the knowledge required during the process of making context-aware adaptation

decisions. The term ontology has its origin in philosophy. In computer science,

ontology is a description of the concepts and relationships that can exist for an agent

or a community of agents, and is generally written as a set of definitions of formal

vocabulary [Gruber93]. Ontologies are commonly used in the fields of artificial

intelligence [Lenat90], the semantic web [Berners-Lee01], and software engineering

[Kitchenham99] as a form of representing knowledge about the world or some parts

of it in order to clarify the structure of knowledge and enable knowledge to be shared.

An ontology consists of a vocabulary used to describe a particular view of some

domain, an explicit specification of the intended meaning of the vocabulary, and the

constraints on capturing additional knowledge about the domain [Horrocks02].

Contemporary ontologies share many structural similarities, regardless of the

languages in which they are expressed. Most ontologies describe individuals, classes,

attributes, and relations. Individuals are the basic, “ground level” component of

ontology. In an ontology, individuals may include concrete objects such as people

and automobiles, as well as abstract individuals such as numbers and words. Strictly

speaking, an ontology does not need to include any individuals, but one of the

general purposes of ontology is to provide a means of classifying individuals, even if

those individuals are not explicitly part of the ontology. Classes are abstract groups,

sets, or collections of objects. Objects in the ontology can be described by assigning

attributes to them. Each attribute has at least a name and a value, and is used to store

information that is specific to the object to which it is attached. An important use of

attributes is to describe the relationships between objects in the ontology. Typically, a

relation is an attribute whose value is another object in the ontology.

The CAMPUS ontologies are a set of ontologies that capture concepts and

relationships in various domains of interest, in order to expose to CAMPUS the

35

semantics of the knowledge required during the process of adaptation decision-

making, as discussed previously. In general, these ontologies can be classified into

context ontologies, tasklet ontologies, and service ontologies.

� Context ontologies model various context entities to share contextual information

in a dynamic environment.

� Tasklet ontologies describe the properties of individual tasklets and their

requirements for contextual conditions. Examples include the functionalities

provided by a tasklet, the types of data that a tasklet can process and produce,

and the computing resources required by a tasklet.

� Service ontologies describe the properties of context-aware services and their

requirements for tasklets. Some examples of the requirements include the

composition of services, the desired functionality of tasks, and their required

input and output data types.

There are several reasons to develop ontologies as the underlying description scheme

for CAMPUS:

� First, formal ontologies are an efficient solution for managing the inherent

heterogeneity present in knowledge from different sources [Ciocoiu00].

Ontologies can be used to explicitly represent the meaning and semantics of

contextual and computational entities, and to thereby enable entities to have a

common set of concepts while interacting with one another. This is especially

important for CAMPUS, since different agents could have different

understandings of the current contexts. They might use different terms to

describe contexts, and even if they use a set of the same terms, they might attach

different semantics to these terms. Similar requirements also exist with

heterogeneous tasklets that have been developed independently by different

development teams.

� Second, ontologies will greatly simplify the tasks of semantic-based automated

reasoning and decision-making. Ontologies include machine interpretable

36

definitions of concepts in the domain and the relationships among them. They are

expressed in a logic-based formal language, so that consistent and meaningful

distinctions can be made among the classes, properties, and relations. Importantly,

a considerable number of existing reasoning mechanisms can be employed to

perform automated reasoning and decision-making on the ontologies. DL and

FOL reasoning have been used to reason about the CAMPUS ontologies. In

particular, CAMPUS uses DL reasoning to check knowledge consistency, i.e., to

ensure that the CAMPUS ontologies do not contain any contradictory knowledge.

In addition, CAMPUS uses FOL reasoning to make more complex inferences,

such as reasoning about whether a tasklet alternative satisfies a certain task or not.

� Finally, many graphical ontology editors, such as Protégé OWL [Knublauch04],

are available to facilitate the development of ontologies. Large-scale context

ontologies can also be composed without the need to start from scratch by

reusing the well-defined ontologies of different domains.

3.3 The Decision Model

CAMPUS achieves context-aware adaptation by adapting the tasklet parts of tasks,

and the decision layer uses a multi-stage normative decision model to choose the

best tasklet alternatives for given tasks. In general, most decision theories can be

classified into two groups: normative and descriptive. A normative decision theory is

a theory about how decisions should be made. It is concerned with identifying the

best decision to take, while assuming an ideal decision maker who is fully informed,

able to compute with perfect accuracy, and fully rational. A descriptive theory, on the

other hand, is a theory about how decisions are actually made. It attempts to describe

what people will actually do. It is fairly obvious that a normative decision theory is

more suitable for CAMPUS because it aims to choose the best tasklets for given

tasks. However, all existing normative decision theories assume a linear

compensatory model that suggests a single-stage choice process where the decision

37

makers are to choose from all of the available alternatives. Fischhoff etc.

[Fischhoff83] described the normative decision rule as:

“List all feasible courses of action. For each action, enumerate all possible

consequences. For each consequence, assess the attractiveness or aversiveness of its

occurrence, as well as the probability that it will be incurred should the action be

taken. Compute the expected worth of each consequence by multiplying its worth by

its probability of occurrence. The expected worth of an action is the sum of the

expected worth of all possible consequences. Once the calculations are completed,

choose the action with the greatest expected worth” (p. 183).

A single-stage decision model does not satisfy CAMPUS. The major weakness of a

single-stage model is that it may involve the unnecessary processing of a large

volume of information. CAMPUS is designed to operate in a pervasive computing

environment where adaptation may occur frequently and many contexts need to be

considered, so that the decision-making process will involve a great deal of

information. At the same time, a pervasive computing environment requires short

break time when performing an adaptation, in order to achieve satisfactory user

experience. Therefore, unnecessary processing of information in the single-stage

model may result in a performance bottleneck for CAMPUS. In addition, a single-

stage decision model does not allow a decision to be omitted, i.e. it always

recommends a final alternative, whereas CAMPUS allows the tasklet part of a task

to be empty if no suitable tasklet alternative is found for the task. Finally, a single-

stage decision model does not allow for multiple strategies to be utilized within a

single decision process. In contrast, CAMPUS requires multiple decision strategies

in order to decide a final tasklet. For example, a tasklet is rated not only on the basis

of its functionality, but also on its contextual requirements.

CAMPUS uses a multi-stage model that is common in descriptive decision theories

such as image theory [Beach90]. A multi-stage decision process incorporates

38

multiple qualitatively separable stages, i.e., multiple heuristic-based phases followed

by a choice phase. In a multi-stage model, the decision maker first uses less

cognitively demanding decision strategies to eliminate unacceptable alternatives,

thereby reducing the number of alternatives remaining in the choice decision. In the

choice phase, the decision maker may use more cognitively demanding decision

strategies to choose between the remaining alternatives. The whole decision-making

procedure of CAMPUS is divided into three phases: preprocessing, screening, and

choice. In the preprocess phase, several preprocessing tasks are performed to ensure

that the ontologies are semantically consistent and to prepare fine-grained

information for the following phases. For example, qualified tasklets are registered

as alternatives for each task. In the second screening stage, tasklets alternatives that

were registered in the first phase are screened out if they are not satisfied by the up-

to-date contextual information. If more than one acceptable tasklet alternative

survives the screening phase, the choice phase selects the best alternative from

among the survivors, using the expected utility function. Expected utility theory is

the dominant normative approach to decision-making. The theory proposes that for

each option, there are objective payoffs (x), and for each level of payoff, there is a

corresponding value called the utility of the payoff (u). Associated with each level of

payoff, there is an objective probability of occurrence (p). The expected utility of an

option can be expressed by the following mathematical formula:

)]([][EU
n

1i

ii xup∑
=

= --- Equation 3-1

Where p = objective probability of outcome i; u = utility of outcome i; and x =

payoff (gain or loss) associated with outcome i. The expected utility of each decision

alternative is the sum of the utilities of the potential payoffs, each weighted by its

objective probability of occurrence. The decision maker then chooses the option with

the highest expected utility.

39

CChhaapptteerr 44 TThhee AATTMM PPrrooggrraammmmiinngg MMooddeell

CAMPUS proposes an adaptable task model (ATM) to enable context-aware

adaptation. CAMPUS tasks are system elements that offer predefined functionalities

and that can be independently developed under given specifications, deployed, and

composed through well-defined interfaces by third parties. Such a design supports

the large-scale reusing of software by enabling the assembly of “commodity-off-the-

shelf” (COTS) tasks from a variety of vendors. This chapter focuses on the design of

the ATM programming model, including its conceptual model and semantic model.

4.1 Conceptual Model

The ATM programming model relies on two main concepts: service and task. A

service is an abstract of a business or a technical process. For example, in

CyberGuide [Abowd97], a mobile context-aware tour guide, four context-aware

services are provided including Cartographer, which provides maps of the physical

environments that the tourist is visiting; Librarian, which provides information

relating to objects and people of interest in the physical world; Navigator, which

delivers accurate information on tourist locations and orientations; and Messenger,

which conveys messages to related tourists. Since such services provided by a

context-aware application are loosely coupled, it is necessary to introduce a separate

concept of service to organize context-aware applications.

Internally, each service is comprised of a series of tasks. Tasks are execution units

that perform certain actions to deliver a result to other tasks or the end user. For

example, a streaming media service may be composed of tasks such as the codec,

transceiver, jitter buffer, and renderer. A task in CAMPUS transforms or filters data

of specified types, and communicates with others solely through the exchange of

40

data instead of by direct method calls. Thus a task has two basic concerns: how to

transform or filter data, and how to exchange data. CAMPUS separates these two

concerns by dividing a task into two parts: a tasklet and a task base. The former part

concentrates on the computational concerns of the task, i.e. how to process data; and

the latter part handles issues involved in coordination and adaptation, such as how to

communicate with other modules of the service and how to transfer the states of

tasks during adaptation.

The tasklet part of a task can specify the contextual requirements that should be

satisfied for it to operate normally and optimally. For example, a tasklet that

processes image data may require the terminal to be equipped to display graphics.

Such contextual requirements are described using the CAMPUS ontologies that are

described in Chapter 5. Importantly, this feature of the tasklet part enables a task to

be context-aware. When the surrounding contexts change, the behavior of a task can

be adapted by using a different version of its tasklet part. Tasks are further classified

into essential tasks and expansion tasks, according to whether or not the tasklet part

of a task can be empty. An essential task always requires a tasklet. If no tasklet is

found for an essential task, an exception will be reported. An expansion task, on the

other hand, is allowed to have an empty tasklet part. Such classifications reflect the

fact that in the composition of a service, some of its tasks are core, and some are

non-core. For instance, the codec, transceiver, and renderer are essential to a service

of streaming media, while the jitter buffer is not always required, especially when

the network condition is satisfactory.

The task base part of a task serves three purposes. First, the base part is responsible

for communicating with other tasks to exchange operating data. A task base receives

and sends the operating data through its input and output ports, respectively. A task

base can own an arbitrary number of input or output ports. In addition to the port

type, i.e. input and output, each port has a data type, and only data of the specified

41

type can pass the port. Secondly, the task base part acts as a proxy to its

corresponding tasklet. Any data that need to be processed by the tasklet will be sent

to the base, and the base will cache the incoming data and forward them when the

tasklet is ready. Similarly, after processing the input data, the tasklet is required to

return the output data immediately to the base, where interested parties can fetch

these output data. Finally, the task base part, on behalf of the task, defines the

requirements for the tasklet part. In order to perform the provided functionalities, a

tasklet has to be inserted into a compatible base, where it receives the desired input

data and publishes the output data after processing. To be compatible with a task

base, a tasklet must implement the desired functionality of the task, and must be able

to process the data of all input data types and produce the data of all output data

types of the task base.

Tasks are assembled by setting up channel connections between their compatible

ports as illustrated in Figure 4-1. A channel is used to connect an output port of a

task to an input port of another task. It is necessary for the connected tasks to have

ports of a compatible type that will enable data to be seamlessly transferred. A

channel represents a reliable, directed flow of information in time. Reliable means

replace

remove

add

essential task

expansion task

tasklet

channel

Figure 4-1 The ATM Programming Model.

42

that all of the data that have been placed into a channel are guaranteed to flow

through without loss, error, or duplication, while preserving their order. Directed

means that a channel always has two identifiable ends: a source port and a sink port.

The ATM programming model offers three salient features. First, it greatly simplifies

the work of maintaining the consistency of the data and migrating states when

adaptation occurs. In CAMPUS, tasklets are required to retrieve data from their

bases when necessary, and to return the data immediately after it has been processed,

i.e., the operating data are stored in bases instead of tasklets. Therefore, when

tasklets are unplugged from their bases, the effort to enforce tasklet state consistency

is greatly reduced. Moreover, the issue of how to cooperate with other parts of the

target application in order to receive and publish data is handled by the task bases,

while the tasklet is only responsible for providing the desired functionalities and is

treated as a black box that uses predefined interfaces to communicate with its host

task. Such a separation greatly facilitates the development and reusing of tasklets.

Finally, this separation simplifies verification of the adaptation. To verify that the

adaptation of a task is correct, the task needs to continue to correctly perform its

functionality after adaptation, and specification during adaptation needs to be

satisfied [Biyani05]. The separation of the part related to adaptation from task

functionality simplifies the task of specifying and verifying adaptation.

4.2 Semantic Model

This section describes the mathematical model of the ATM programming model

using the specification language Z. The Z schemas, which can be regarded as

definitions of a generalized type, are used to represent the basic constructs. These

schemas provide semantics that permit formal verification of properties of the model.

Additional details on Z can be found in [Spivey89].

43

It is assumed that sets [ENTITY, DTYPE] exist. The ENTITY identifiers represent

global names. Name clashes between distinct entities are disallowed. The set DTYPE

includes different types of data and are introduced as a given set in the model.

Service. A service is identified with a unique id. It can be modeled as a non-empty

finite set of tasks connected by channels. As shown in Figure 4-2, the following

properties are required to ensure a consistent context-aware service:

� For all channels in the service, the source port of a channel must connect to an

output port of a task, and the sink port of this channel must connect to an input

port of another distinct task.

� For all tasks, all ports must connect to channels.

� If there is more than one task in the service, then they must be connected by

channels.

 Service
serviceId : ENTITY

channels : � Channel

tasks : �1 Task

∀ c : channels ⦁ ∃ t1, t2 : tasks ⦁

 c.source ∈ t1.base.outputs ∧ c.sink ∈ t2.base.inputs

∀ t : tasks ⦁

 (∀input : t.base.inputs | input.state = used ⦁

 ∃ c : channels ⦁ c.sink = input)

 ∧ (∀output : t.base.outputs | output.state = used ⦁

 ∃ c : channels ⦁ c.source = output)

#channel ≥ #task-1

Figure 4-2 The Service Schema.

44

Task. A task provides desired functionality and consists of a task base part of a

tasklet part. The base part of a task owns a number of input and output ports that

receive and send data. Each port has a data type, and only data of the specified type

can pass the port. The tasklet part of a task provides an implementation of the

 Task
taskId : ENTITY

function : ENTITY

base : TaskBase

tasklet : Tasklet

base.taskId = taskId

tasklet.function = function

 TaskBase
baseId : ENTITY

taskId : ENTITY

inputs, outputs : � Port

inputs ∩ outputs = ∅

inputs ∪ outputs ≠ ∅

∀ i1, i2 : inputs | i1 ≠ i2 ⦁ i1.dtype ≠ i2.dtype

∀ o1, o2 : outputs | o1 ≠o2 ⦁ o1.dtype ≠o2.dtype

 Tasklet
taskletId : ENTITY

function : ENTITY

inputTypes, outputTypes : � DTYPE

inputTypes ∪ outputTypes ≠ ∅

Figure 4-3 The Task-Related Schemas.

45

desired functionality of the task, i.e., transforming or filtering data of specific types.

As shown in Figure 4-3, some enforced constraints on tasks and their parts are:

� The tasklet part must provide the desired functionality of the task.

� The task base part must own at least one input port or one output port, and all

ports are distinct. Two ports are distinct if and only if both their port types and

data types are distinct.

Channel. A channel connects two distinct tasks to pass data of a specific type.

Figure 4-4 shows the formal definition of a channel. Importantly, the following

constraints are enforced on channels:

� The source port and the sink port are distinct, and their data types are identical.

� The type of the source port is output and the type of the sink port is input.

� The source port and the sink port belong to distinct tasks.

 Channel
channelId : ENTITY

dateType : DTYPE

source, sink : Port

source ≠ sink

source.type = output

sink.type = input

source.dtype = sink.dtype

source.baseId ≠ sink.baseId

Figure 4-4 The Channel Schema.

46

CChhaapptteerr 55 TThhee CCAAMMPPUUSS OOnnttoollooggiieess

CAMPUS makes use of ontologies to capture the most important concepts and

relationships in the process of developing and deploying context-aware applications.

These ontologies represent knowledge that enables CAMPUS to reason the

underlying semantics of involved entities and help it to decide how to compose

target services and select suitable tasklets. The CAMPUS ontologies are split into

two dimensions. This makes them more extensible and scalable, and also helps to

improve the performance of the system. The first dimension is that of domain. Here,

the ontologies are divided into context ontologies, tasklet ontologies, and service

ontologies:

� Context ontologies model various context entities to share contextual information

in a dynamic environment.

� Tasklet ontologies describe the properties of individual tasklets and their

requirements for contextual conditions. Examples include the functionalities

provided by a tasklet, the types of data that a tasklet can process and produce,

and the computing resources required by a tasklet.

� Service ontologies describe the properties of context-aware services and their

requirements for tasklets. Some examples of the requirements include the

composition of services, the desired functionality of tasks, and their required

input and output data types.

Additionally, from the dimension of range, the CAMPUS ontologies are separated

into foundation ontologies and domain-specific ontologies. The foundation

ontologies model common objects that are generally applicable across a wide range

of domain-specific ontologies. A domain-specific ontology models a particular

domain and represents the particular meanings of terms as they apply to that domain.

47

The separation encourages the reusing of general concepts and provides a flexible

interface for defining domain-specific knowledge. On the one hand, all applications

belonging to a specific domain can share the ontologies in this domain, and all

domain-specific ontologies can reuse the foundation ontologies; on the other hand,

new domain-specific ontologies can be flexibly plugged and unplugged to support

new domain knowledge.

5.1 Context Foundation Ontology

CAMPUS models a context as a set of descriptions of one particular context entity. It

does this by providing a set of properties to describe various aspects of this entity.

For example, a RAM context entity may use the properties of hasCapacity and

hasFreeSpace to describe its total capacity and current free space. Formally, a

context is a set of triples (entity, property, value), with each component defined as

follows:

� entity E∈ : the set of individuals of context entities, such as a computing terminal,

a person, or a noise level.

� property P∈ : the set of properties used to describe various aspects of a context

entity. For example, hasCapacity, to describe the total capacity of a RAM instance.

� value V∈ : the set of all values of the property. For example, 10 MB for the

property hasCapacity of a RAM instance.

CAMPUS defines a ContextEntity class as the base class for all contextual entities,

and uses a well-accepted context category [Schilit94, Dey00], i.e.

ComputationalEntity, PhysicalEntity and UserEntity, to extend the ContextEntity

base class, as shown in Figure 5-1. ComputationalEntity refers to an application’s

execution conditions, including its software, network, and hardware conditions.

PhysicalEntity refers to the circumstances by which applications are surrounded,

48

such as noise level, temperature and lighting level. Finally, UserEntity pertains to

characteristics of users, such as user presence, status, activities, and abilities. The

context foundation ontology has defined most of the common context entities and

their properties for domain-specific ontologies to extend. In particular, the value of a

context property can be a physical quantity, a context entity, or a data value of a

built-in OWL datatype, as listed in Table 5-1.

Table 5-1 Legal Types of the Value of Context Properties.

Type Description

context:PhysicalQuantity Represents physical quantities.

context:ContextEntity Represents context entities.

rdfs:Literal Represents literal values.

rdf:string Represents character strings.

rdf:boolean Has the value space required to support the mathematical

Figure 5-1 The Hierarchy of Context Entities.

49

concept of binary-valued logic: {true, false}.

rdf:base64Binary Represents Base64-encoded arbitrary binary data.

rdf:hexBinary Represents arbitrary hex-encoded binary data.

rdf:decimal Represents arbitrary precision decimal numbers.

rdf:float Corresponds to the IEEE single-precision 32-bit floating

point type.

rdf:double Correspond to the IEEE double-precision 64-bit floating

point type.

rdf:anyURI Represents a Uniform Resource Identifier Reference

(URI).

rdf:dateTime Represents a specific instant of time.

rdf:time Represents an instant of time that recurs every day.

rdf:date Represents a calendar date.

rdf:gYearMonth Represents a specific gregorian month in a specific

gregorian year.

rdf:gYear Represents a gregorian calendar year.

rdf:gMonthDay Represents a gregorian date that recurs, specifically a day

of the year.

rdf:gDay Represents a gregorian day that recurs, specifically a day

of the month.

rdf:gMonth Represents a gregorian month that recurs every year.

50

Importantly, the context foundation ontology captures the concept of physical

quantity. Physical quantity is a very important concept in most practical scenarios of

context reasoning and context-aware adaptation decision-making. For example, the

current availability of a CPU may be inferred from its clock rate and current loading

as illustrated using a first-order logic predicate: (cpu, hasClockRate, <=400MHz) ∧

(cpu, hasLoading, >=80%) → (cpu, hasAvailability, LOW). To achieve this, the

reasoner needs to understand exactly what 400 MHz and 80% represent, so that these

measurements can be compared and inferred. As shown in Figure 5-2, the context

foundation ontology defines a class PhysicalQuantity that has two properties:

hasValue and hasUnit. The context foundation ontology also defines a

comprehensive unit hierarchy that is basically derived according to the International

System of Units (SI). In this unit hierarchy, the Unit class is the base class, and has

two concrete sub-classes: BaseUnit and DerivedUnit. We define nine base units,

Figure 5-2 PhysicalQuantity and Units.

51

namely seven SI base units and two information storage units, bit and byte. Derived

units are further divided into UnitDerivedByMultiplying, UnitDerivedByShifting,

UnitDerivedByScaling, UnitDerivedByRaising, and UnitDerivedByPrefixing.

UnitDerivedByMultiplying refers to units that are derived from multiple units by

multiplication. For example, coulomb is an individual of the class

UnitDerivedByMultiplying, which is the product of second and ampere.

UnitDerivedByShifting abstracts units that are derived from base units or other

derived units by shifting. DegreeC is such an example, derived as it is from Kelvin

by subtracting 273. UnitDerivedByScaling is used to capture units that are derived by

scaling other units. For instance, hour is derived from second by scaling 3600. Units

that are classified into UnitDerivedByRaising are derived by raising other units to an

n-th power, such as area being a squared meter. Finally, individuals of

UnitDerivedByPrefixing are decimal multiples and submultiples of other units. For

example, mebi-bit is derived from bit by adding a prefix mebi. Moreover, we

distinguish two kinds of prefixes: SIPrefix and BinaryPrefix. The former refers to

prefixes adopted by SI, which represent powers of 10; and the latter refers to prefixes

adopted by the International Electrotechnical Commission (IEC), which represent

powers of 2.

5.2 Tasklet Foundation Ontology

The tasklet foundation ontology defines the underlying concepts of the CAMPUS

tasklets. Tasklet vendors are required to extend the foundation ontology to provide

concrete information about their own tasklets, in order to make available meta-data

for the middleware to make appropriate adaptation decisions.

As shown in Figure 5-3, the Tasklet class uses the implementedBy property to

indicate the path of the tasklet implementation that is used by CAMPUS to locate the

tasklet codes. The functionalities provided by the tasklet are indicated by the

provides property, and the types of data available for the tasklet to process and

52

generate are specified by the hasInputDataType and hasOutputDataType properties.

Similar to Tasklet, instances of the Function and DataType classes can use the

implementedBy property to specify their code paths. In addition, the extends property

can be used to indicate the inheritance relationship between two functions or two

datatypes.

The tasklet foundation ontology introduces a ContextCondition class to model the

contextual requirements imposed by a tasklet. A context condition statement, for

example “the available RAM capacity needs to be larger than 100 MB,” can be

logically separated into four parts: a part on the context entity, which is “RAM,” a

part on the property of the entity, which is “capacity,” a part on the comparison

operator, which is “larger than,” and a part on the reference value, which is “100

MB.” In particular, the part on the reference value can be either a literal value or a

comparable individual. These four parts are represented in the tasklet foundation

ontology by four properties, respectively: hasEntity, hasProperty, hasOperator and

hasReferenceValue (or hasReferenceObject when the reference value is an individual

Figure 5-3 The Tasklet Foundation Ontology.

53

instead of a literal value). Figure 5-4 illustrates an example condition statement using

the CAMPUS ontology.

Context-aware services undergoing dynamic compositional adaptation often require

synchronization to ensure that related tasklets are added and removed consistently.

For example, in the case of a streaming service with the deployment options of

various codecs based on various network situations, the matching encoder and

decoder should always be replaced synchronously, otherwise the content may be

decoded incorrectly. Thus, the tasklet foundation ontology uses an object property

groupedWith to capture the synchronization requirements of the tasklets. When two

tasklets are related by the groupedWith property, they should be added or removed

synchronously. Another relationship between tasklets is concerned with dependency.

That a tasklet A depends on another tasklet B means that when the tasklet A is about

to be deployed, the tasklet B should be deployed first. The tasklet foundation

ontology uses an object property dependsOn to represent such a relationship of

dependency.

5.3 Service Foundation Ontology

The defined service foundation ontology formally describes the common concepts of

services on CAMPUS. Service developers are required to provide their own domain-

specific service ontologies by extending this foundation ontology, in order to

Figure 5-4 A Sample Context Condition.

54

describe the concrete properties related to the service. As shown in Figure 5-5, a

service consists of a series of tasks, including essential tasks and expansion tasks. A

task specifies its functional requirement for its tasklet by an object property requires,

whose value is a functionality that has been detailed in the section on tasklet

foundation ontology. A task owns a set of ports, including input ports and output

ports. Each port accepts only one data type, and is connected to a channel. A channel

receives data from an output port of a task, and sends data to a compatible input port

of another task.

Figure 5-5 The Service Foundation Ontology.

55

CChhaapptteerr 66 AAuuttoommaatteedd CCoonntteexxtt--aawwaarree

AAddaappttaattiioonn DDeecciissiioonnss

CAMPUS achieves context-aware adaptation by adapting the tasklet parts of tasks.

The primary objective of adaptation decisions is to choose an appropriate set of

tasklet alternatives for given tasks. This chapter details the decision-making

mechanism of CAMPUS, which offers two salient features:

� Decisions are made based on the semantics of the involved entities. CAMPUS

makes use of description logics and first-order logics to perform semantic

reasoning on the ontologies that describe the CAMPUS entities; and tasklets

alternatives are compared based on their semantics in order to select the best

ones. For example, assume that a particular task T requires a function FuncA, and

a tasklet Tl provides another function FuncB. Commonly, Tl is not a qualified

tasklet for the task T because it does not provide the desired function of T.

However, if the function FuncB is extended from FuncA, or if it has been

indicated that it is semantically identical with FuncA, then Tl will be regarded as

being able to satisfy the functional requirement of T. Of course, this example is

somewhat contrived. A more likely use would be in a case where different

vendors develop tasklets independently, and use different terms to refer to the

same concepts. With this semantic approach, it is possible to reuse these

heterogeneous tasklets.

� Decisions are made through a multi-staged process as illustrated in Figure 6-1.

CAMPUS makes adaptation decisions based on the semantic ontologies. Before

the decision-making process is launched, these ontologies are preprocessed. The

preprocessing stage ensures that the ontologies are consistent in semantics. It

also serves to prepare fine-grained information for the decision-making process,

which indicates a heuristic-based screening phase followed by a choice phase of

56

comprehensive tasklet comparisons. The screening phase addresses the pre-

choice process of eliminating unacceptable tasklets, that is, the mechanism that

governs which tasklet alternative is rejected and which tasklet enters into the

final choice set. Eventually, in the final phase, the tasklet that maximizes the

expected utility is chosen.

6.1 Semantic Reasoning

This section presents the technologies used by CAMPUS to perform semantic

reasoning on the ontologies. CAMPUS makes use of DL and FOL reasoning to

facilitate context-aware adaptation decisions. The CAMPUS ontologies are

described using the OWL DL language. The equivalence of description logic and

OWL DL allows various DL reasoning tasks to be performed on the CAMPUS

ontologies [Wang04]. For example, assume that there are an inverse-functional

Figure 6-1 The Complete Process of Making Adaptation Decisions.

57

property P, and two individuals x1and x2 such that both pairs (x1, y) and (x2, y) are

instances of P. According to the semantics of the inverse-functional property axiom,

we can infer that x1 and x2 actually refer to the same thing, i.e., x1 owl:sameAs x2.

Table 6-1 lists the most common OWL DL axioms that can be used for DL reasoning.

Table 6-1 OWL DL Axioms for DL Reasoning.

OWL DL Axiom Semantics

rdfs:subClassOf (A rdfs:subClassOf B) ^ (B rdfs:subClassOf C) ->

(A rdfs:subClassOf C)

owl:equivalentClass (A owl:equivalentClass B) ^ (C rdf:type A) -> (C

rdf:type B)

owl:disjointWith (A owl:disjointWith B) ^ (C rdf:type A) ^ (D

rdf:type B) -> (C owl:differentFrom D)

rdfs:subPropertyOf (A rdfs:subPropertyOf B) ^ (B rdfs: subPropertyOf

C) -> (A rdfs: subPropertyOf C)

owl:InverseFunctionalProperty (P rdf:type owl:InverseFunctionalProperty) ^ (A P

B) ^ (A' P B) -> (A owl:sameAs A')

owl:SymmetricProperty (P rdf:type owl:SymmetricProperty) ^ (A P B) ->

(B P A)

owl:TransitiveProperty (P rdf:type owl:TransitiveProperty) ^ (A P B) ^ (B

P C) -> (A P C)

owl:equivalentProperty (P equivalentProperty P') ^ (A P B) -> (A P' B)

owl:inverseOf (P owl:inverseOf P') ^ (A P B) -> (B P' A)

owl:sameAs (A owl:sameAs B) ^ (A P C) -> (B P C)

(A owl:sameAs B) ^ (C P A) -> (C P B)

58

Furthermore, CAMPUS defines a set of application-independent meta-rules to

further semantically reason the ontologies. The CAMPUS meta-rules define the

general guidelines to instruct the middleware on how to process ontologies and make

adaptation decisions. Compared with adaptation rules in existing context-aware

systems like [Chan03, Yau02, Zheng06], which describe concrete adaptation

decisions, such general meta-rules do not change frequently and their scale is far

smaller. Consequently, it is easier to manage and maintain the CAMPUS meta-rules.

Table 6-2 lists the defined CAMPUS meta-rules and their details will be discussed in

the following sections.

Table 6-2 CAMPUS Meta-Rules.

Meta-Rule Description

Compatibility Checks whether a CAMPUS services is composed

correctly. It reflects the semantic restrictions and

constraints on a service imposed by the ATM

programming model.

Registration Sets up a relation between each task and its

qualified alternatives in the knowledge base.

Normalization Converts the original unit of a physical quantity to

a base unit with the same quantity, based on the

semantics defined in the context foundation

ontology.

Screening Filters away tasklet alternatives that are not

satisfied by the up-to-date contexts.

Choice Selects the best tasklet from the final tasklet set that

passes the screening phase. It computes the fitness

utility of each tasklet and selects the tasklet with

the maximum fitness utility.

59

The CAMPUS meta-rules can be defined using the Semantic Web Rule Language

(SWRL). SWRL combines sublanguages of the OWL language (OWL DL and OWL

Lite) with those of the RuleML (Unary/Binary Datalog). It extends the set of OWL

axioms to include Horn-like rules, and thus enables Horn-like rules to be combined

with an OWL knowledge base [Horrocks04]. SWRL provides a formally sound way

of inferring information in OWL ontologies. Its inherent integration with OWL

makes it easy to use when reasoning OWL ontologies. On the other hand, SWRL

supports monotonic inferences only. Consequently, negation-as-failure and

disjunction are not supported in SWRL. It is also unable to directly model changing

information and to update property values. If a property has an existing value and a

SWRL rule asserts a new different value, then the property will have two values. If

the property is functional, an inconsistency exception will be generated.

The monotonic feature of SWRL is not sufficient for CAMPUS to perform complex

reasoning and make adaptation decisions. Therefore, CAMPUS also supports Jess

rules [Friedman-Hill03]. The Jess rule language is a superset of CLIPS and supports

sufficient expressiveness for CAMPUS to perform more complicated reasoning tasks.

The defined Jess rules are processed by the Jess rule engine, which uses the Rete

algorithm [Forgy82], a very efficient mechanism for solving the many-to-many

matching problem. The entire Jess system consists of a rule base, a fact base, and an

execution engine. The execution engine matches facts in the fact base with rules in

the rule base. These rules can assert new facts and put them in the fact base. In order

to use Jess to reason about OWL ontologies, the relevant knowledge about OWL

individuals are represented as Jess facts. After performing an inference using the

defined meta-rules, the results of that inference will be reflected in the OWL

knowledge base.

60

6.2 Preprocessing

Before making adaptation decisions, CAMPUS preprocesses the received ontologies

in order to facilitate the decision-making process. It first checks the consistency of

the received ontologies using the OWL semantics standard, as detailed in Section 6.1.

The purpose of this is to ensure that the ontologies do not contain any contradictory

facts. If any inconsistency is found, the affected ontologies will not be deployed in

the CAMPUS system and an error will be reported. After checking for consistency,

the consistent ontologies will be further preprocessed according to their types, i.e.,

service ontologies, tasklet ontologies, and context ontologies.

If a service ontology passes the check for consistency, its compatibility will be

checked. The task of checking for compatibility is carried out to ensure that all

services are composed correctly. When an incompatible service is found, it will be

marked and removed from the knowledge base. This task checks for service

compatibility via the compatibility meta-rule, which reflects the semantic restrictions

and constraints on a service imposed by the ATM programming model. These

restrictions and constraints were detailed in Chapter 4 and are restated below:

� Each task in a service must own at least a port. Furthermore, all of the ports of a

task are distinct. Two ports of a task are distinct if both their port type, i.e. input

and output, and data type are distinct.

� The source port of each channel in the service must connect to an output port of a

task. In addition, the sink port of this channel must connect to an input port of

another distinct task. Furthermore, the data type of the sink port must be equal to,

or be a supertype of, the data type of the source port.

� If there is more than one task in the service, then these tasks must be connected

by channels.

61

If a tasklet ontology passes the check for consistency, it will be further used to

register tasklet alternatives for tasks defined in the compatible service ontologies. A

tasklet can be registered as an alternative for a task if and only if it satisfies the

following criteria:

� The tasklet provides the required functionality of that task.

� The tasklet is able to process data of certain types that are specified by the input

ports of that task.

� The tasklet is able to generate data of certain types that are specified by the

output ports of that task.

The task of registering alternatives is done by the registering meta-rule that sets up a

relation between each task and its qualified alternatives in the knowledge base.

Context ontologies that pass the check for consistency will be further preprocessed.

For example, all of the physical quantities will be normalized using the

normalization meta-rule, which converts the original unit of a physical quantity to a

base unit with the same quantity, based on the semantics defined in the context

foundation ontology. Such normalization is critical to the comparison of physical

quantities, which are required when making context-aware adaptation decisions.

Importantly, this task provides a chance for developers and end users to specify their

own strategies to deduce high level and implicit contexts from low level and explicit

contexts. Such context deduction strategies are application-dependent. As they are

outside the scope of CAMPUS, they will not be detailed here.

6.3 Decision-Making

The decision-making process of CAMPUS involves selecting the best tasklet for a

given task under the effect of changing contexts that may compromise the quality of

service. The process consists of two phases: a screening phase and a choice phase.

62

The screening phase uses the screening meta-rule to filter away tasklet alternatives

that are not satisfied by the up-to-date contexts, while the choice phase uses the

choice meta-rule to select the best tasklet from the final tasklet set that passes the

screening phase. The decision-making process is triggered upon request by

CAMPUS under three kinds of situations. First, when activating a task, CAMPUS

will use the process to decide an initial tasklet for that task. Second, during run-time,

if a task reports an error to the effect that its tasklet part is operating under abnormal

conditions, CAMPUS will use the process to select another tasklet for this task.

Finally, when CAMPUS receives an updated context, all interested tasks that

subscribe to this context will be notified. When such a task subscriber is notified, it

will use the process to infer whether adaptation is necessary and which tasklet is the

best alternative.

In the screening phase, tasklet alternatives whose context requirements are not

satisfied by the up-to-date contexts will be filtered away. Recall that a tasklet can

assert a number of context conditions, each of which is composed of four parts: a

part on the context entity, a part on the property of the entity, a part on the

comparison operator, and a part on the reference value. A tasklet alternative is

satisfied if and only if each of its asserted context conditions is satisfied. A context

condition is satisfied if the up-to-date context instance of its specified context class

semantically matches the condition statement. For example, assume that a context

condition states, “The available RAM capacity needs to be larger than 100 MB.”

That is, the entity part of the condition is RAM, the property part is available

capacity, the operator part is larger than, and the reference value part is 100 MB.

The condition is satisfied if and only if the value of the property available capacity

of the up-to-date RAM instance is semantically larger than 100 MB. Here

semantically refers to the fact that the property values are compared based not only

on the numerical value but also on the physical unit. That is, 200 MB and 0.2 GB

both satisfy the condition, “larger than 100 MB.”

63

If multiple alternatives for the given task pass the screening phase, they will be

compared in the choice phase, in order to determine the most suitable tasklet. This is

done by the choice meta-rule. Importantly, developers can specify their own choice

strategies to overwrite the default choice meta-rule that selects a tasklet that best fits

the current context. The default choice meta-rule computes the fitness utility of each

tasklet and selects the tasklet with the maximum fitness utility. The overall fitness

utility of a tasklet is computed as the arithmetic mean of the fitness utilities of its

context conditions, as shown in Equation 6-1 where the fitness function over a

context condition i is expressed as Ui.

k

)tasklet(U
)(taskletU

x

1

fitness
i

xfitness

∑
=≡

k

i
--- Equation 6-1

The fitness utility over a specific context condition can be computed in terms of a

fitness function expressed in a mixed form of mathematical notations and pseudo

code as below:

e

tonot equal equal tooperator

2

Cr

CrCu

fitness

1

) (

 Utility













 −−

=

else

thenorisif

 --- Equation 6-2

Where operator refers to the operator part of the condition, Cr refers to the reference

value part, and Cu refers to the up-to-date value of the corresponding context. When

the operator is equal to or not equal to, the function simply sets the utility as 1. Such

functions measure the fitness of up-to-date contextual information for specific

context conditions of tasklets. For example, consider two context conditions “the

bandwidth is to be larger than or equal to 256 Kbps” and “the bandwidth is to be

larger than or equal to 128 Kbps,” and the fact that the up-to-date bandwidth is 512

Kbps. In this example, the up-to-date bandwidth is considered as more fit for the first

condition, i.e., the fitness utility of the first condition is higher than that of the

second one.

64

CChhaapptteerr 77 IImmpplleemmeennttaattiioonn

To demonstrate the working principle of CAMPUS in a real-world setting and

provide a basis for assessing practical issues, we have implemented the system using

Java SE 1.6. The reasons for this choice are manifold: Java is a portable language, it

has embedded support for logical mobility and reflection, and more and more mobile

devices being released are enabled with J2ME technology. The many libraries

available, as well as run-time support for Java have further motivated our choice.

The CAMPUS system uses Pellet 1.5.1 [Sirin07] to execute DL reasoning tasks on

the CAMPUS ontologies detailed in Chapter 5. Pellet is an open-source Java based

OWL DL reasoner that is based on the tableaux algorithms developed for expressive

description logics. In addition, the Jess 7.1p2 [Friedman-Hill03] is used to perform

FOL reasoning on the ontologies. Jess is a Java rule engine that uses an enhanced

version of the Rete algorithm to process the CAMPUS meta-rules that are presented

in Chapter 6.

This chapter presents the implementation of the CAMPUS system that focuses on

providing flexible adaptation support for context-aware applications. The low-level

details of the implementation codes are not discussed here. Rather, this chapter

introduces the overall architecture of the prototype and highlights the API that

facilitates the development of adaptable tasks and their composition.

7.1 The Implementation Architecture of CAMPUS

Figure 7-1 illustrates the implementation architecture of the CAMPUS middleware.

The components of the CAMPUS middleware are briefly described as follows:

65

� Tasklet Manager provides the basic service for managing a set of CAMPUS

tasklets. As part of its initialization, the tasklet manager will attempt to load all

available tasklet ontologies in the predefined directories, delegate them to the

inference engine for preprocessing, and instantiate corresponding tasklet

instances according to consistent tasklet ontologies. These tasklet instances are

maintained in its Tasklet Directory, which provides mechanisms for querying and

accessing tasklets via various conditions.

� Service Manager is responsible for managing the lifecycles of services deployed

in CAMPUS. At its initialization, it will load and check all service ontologies. In

particular, after checking the consistency of the service ontologies, the service

loader will also check their compatibility. The compatibility checking process

ensures that all services are composed correctly based on the semantic

restrictions and constraints imposed by the CAMPUS programming model that is

detailed in Chapter 4. Similar to the tasklet manager, it maintains a Service

Directory that stores the detailed information of all of the services in CAMPUS.

� Context Manager is responsible for communicating with external context

providers to obtain fine-grained contexts that will be translated into fragments of

S
er

v
ic

e
M

an
ag

er

T
ask

let M
an

ag
er

Figure 7-1 The Architecture of the CAMPUS Prototype.

66

context ontologies. It also provides facilities for registering the context listeners,

so that when new contexts are received, interested listeners such as the Inference

Engine can be notified.

� Inference Engine handles issues related to adaptation decision-making. The

major components of the inference engine include a Meta-rule Base, which

stores all of the meta-rules that are defined for the decision maker to perform

FOL reasoning; a Knowledge Base, which stores the ontological knowledge; a

Preprocessor, which preprocesses raw ontologies; and a Decision Maker, which

uses the two-phase process, as discussed in Chapter 6, to make adaptation

decisions.

� Executor constructs and reconfigures context-aware applications according to

instructions from the decision maker.

7.2 The CAMPUS API

CAMPUS provides a comprehensive set of APIs that provides a default

implementation of the ATM programming model detailed in Chapter 4. The APIs

comply with the principle of programming to interfaces, i.e., classes rely on

collaborators’ interfaces instead of on their coding [Flatt98]. The interfaces and

classes defined by the CAMPUS APIs are in the campus.model, campus.model.impl

and campus.model.impl.desc packages. The model package contains classes and

interfaces that reflect the specification of the ATM model. As illustrated in Figure 7-

2, each entity involved in the ATM model is represented by a Java interface that

extends the super interface IEntity and defines the basic operations of this entity. The

impl package provides a default implementation to these interfaces, in order to

minimize the effort required to implement them. Figure 7-3 shows the greatly

simplified but representative UML class diagram of the impl package. In particular,

an entity in the impl package is instantiated using a descriptor design pattern [Lott05],

and the related descriptors are included in the desc package. In the following sub-

sections, we introduce the most important classes in the CAMPUS API.

67

7.2.1 Worker

The CAMPUS API is based on the multi-threaded technique. For example, a channel

uses a scheduled thread to periodically transfer data from its source port to its sink

port, and task bases use threads to feed and fetch data to and from tasklets. The

Worker class is designed to more flexibly enable this feature. It implements the

Runnable interface and can be seen as a Java thread in run-time. Importantly, a

worker instance can be scheduled for one-time execution, or for repeated execution

at regular intervals. When a worker is created, the execution interval can be specified

in milliseconds. If the specified interval is not larger than 0, the worker will be

executed only once. In order to be scheduled for execution, a worker needs to be

activated via the activate() method. If a worker has been scheduled for repeated

Figure 7-2 An Overview of the model Package.

68

execution, it may be paused, resumed, or deactivated. When it is paused, it will not

run again until it is resumed. When it is deactivated, it will never run again. A worker

may be assigned a number of actions via the method addAction(IAction), and when it

is executed, it will perform these actions in order.

Figure 7-3 An Overview of the impl Package.

69

7.2.2 Descriptors

Our implementation uses the descriptor design pattern [Lott05] to instantiate entities.

Each entity class has a corresponding descriptor class that provides the detailed

information to construct entity instances, as shown in Figure 7-4. Importantly, these

descriptor classes provide a means for our programming framework to incorporate

various description schemes without changing the codes. For example, on supplying

an ontology adapter, entities can be instantiated from ontology files. Moreover, the

descriptors check the semantic compatibility of the parameters when they are

constructed, so that they can be directly used by their corresponding entities without

worrying about whether the parameters are legal. For example, in the constructor of

the ChannelDescriptor class, the descriptor will test whether the source and sink port

parameters are compatible according to the semantic constraints presented in

+PortDescriptor(String, String, int, Class)

+getDataType() : Class

+getHost() : String

+getType() : int

PortDescriptor

+TaskDescriptor(String, Class, PortDescriptor, PortDescriptor, boolean)

+getFunctionality() : Class

+getInputs() : Set<PortDescriptor>

+getOutputs() : Set<PortDescriptor>

+isEssential() : boolean

TaskDescriptor

+ConditionDescriptor(String, String, String, String, String)

+getEntity() : String

+getOperator() : String

+getProperty() : String

+getReferenceValue() : String

ConditionDescriptor

+ChannelDescriptor(PortDescriptor, PortDescriptor)

+getSink() : PortDescriptor

+getSrc() : PortDescriptor

ChannelDescriptor

+ServiceDescriptor(String, Set<TaskDescriptor>, Set<ChannelDescriptor>)

+getChannelDescs() : Set<ChannelDescriptor>

+getInputs() : Set<PortDescriptor>

+getOutputs() : Set<PortDescriptor>

+getSinkTasks() : Set<TaskDescriptor>

+getSrcTasks() : Set<TaskDescriptor>

+getTaskDescs() : Set<TaskDescriptor>

ServiceDescriptor

+TaskletDescriptor(String, Class<?>, Set<Class>, Set<Class>, Set<ConditionDescriptor>)

+getConditions() : Set<ConditionDescriptor>

+getInputDataTypes() : Set<Class>

+getMainClass() : Class

+getOutputDataTypes() : Set<Class>

TaskletDescriptor

+getId() : String

<<interface>>

IEntityDescriptor

+equals() : boolean

+getId() : String

+toString() : String

+setId() : void

AbstractEntityDescriptor

Figure 7-4 The Entity Descriptors.

70

Chapter 4. Figure 7-5 shows the source code of the ChannelDescriptor class, which

tests the port constraints of the channel as follows:

� The type of the source port is output and the type of the sink port is input.

� The source port and the sink port belong to distinct tasks.

� The data types of the source port and sink port are identical.

 public class ChannelDescriptor extends AbstractEntityDescriptor{

 private PortDescriptor src;
 private PortDescriptor sink;

 public ChannelDescriptor(PortDescriptor src, PortDescriptor sink) {

 setSrc(src);
 setSink(sink);
 if (src.equals(sink) ||
 src.getHost().equals(sink.getHost()) ||
 !sink.getDataType().isAssignableFrom(src.getDataType())) {
 throw new IllegalArgumentException(
 "the data types of src and sink are incompatible");
 }
 setId(src.getId()+"-->"+sink.getId());
 }

 public PortDescriptor getSrc() {

 return src;
 }

 public PortDescriptor getSink() {

 return sink;
 }

 private void setSrc(PortDescriptor src) {
 if (src == null || src.getType()!=IPort.OUTPUT) {
 throw new IllegalArgumentException(
 "src should not be null and it should be an output port");
 }
 this.src = src;
 }

 private void setSink(PortDescriptor sink) {
 if (sink == null || sink.getType()!=IPort.INPUT) {
 throw new IllegalArgumentException(
 "sink should not be null and it should be an input port");
 }
 this.sink = sink;
 }
}

Figure 7-5 An Except of the Class ChannelDescriptor.

71

7.2.3 AbstractEntity

AbstractEntity provides a skeleton implementation of the super interface IEntity, and

all concrete entity classes may directly extend it to minimize the development efforts.

AbstractEntity captures the characteristics common to all ATM entities:

� Entities are located and retrieved by their unique identifiers. AbstractEntity

provides two related methods: getId():String and setId(String).

� The behavior of an entity is composed of a number of states: initialized,

activated, deactivated, and finalized as shown in Figure 7-6. An entity is first

instantiated by a constructor method. If the initialization process fails, the

constructor method is required to throw an exception (InitializationException). If

it succeeds, the entity state is set to initialized. Under this state, only accessor

methods of the entity can be invoked, which access the contents of the entity

object but do not modify the object. Once a client tries to invoke mutator

methods that can modify the entity instance under the initialized state, an

IllegalStateException should be thrown. An exception is the activate() method,

which activates the entity and changes its state to activated, in which state an

entity can be accessed fully. Similarly, when an entity fails to be activated, an

ActivationException should be raised to indicate possible reasons for the failure.

When the deactivated() method is called, the state of the entity will change to

Figure 7-6 The Entity State Diagram.

72

deactivated, which means the mutator methods should no longer be called.

Finally, when the finalize() method is invoked, the entity enters the finalized state,

meaning that the entity instance has been disposed of.

7.2.4 AbstractTasklet

All interfaces defined in the model package, except for the ITasklet, have

corresponding concrete class implementations in the impl package. We provided

only a skeletal implementation of the ITasklet interface, which is called

AbstractTasklet and cannot be instantiated. The reason we did not provide concrete

implementation of ITasklet was simply because it is impossible to provide a general

solution for all tasklets to process received data. Tasklet vendors need to extend the

AbstractTasklet and provide their own solutions.

The AbstractTasklet has implemented all methods defined in the interface ITasklet.

For example, methods like getCondition, getInuptDataTypes, getOutputDataTypes,

and getHostTask can be used to determine whether the tasklet is suitable for a given

task. When it is decided that a tasklet will be used for a particular task, the method

setHostTask may be used to maintain a relationship between the tasklet and the task.

In addition, if it is necessary for information on the state of the replaced tasklet to be

kept and migrated to the replacement tasklet, the getState and setState methods can

be used, Methods that include isReady4NewData, read, and write are used to

exchange operating data between a tasklet and its task base.

In particular, AbstractTasklet maintains an input cache for incoming data and an

output cache for outgoing data. In each cache, data are classified by their type and

sorted according the order in which they are put into the cache. When the read

method is called, AbstractTasklet will return the first data element, if any, of the

specified type in the output cache; when the write method is called, AbstractTasklet

73

checks the legality of the incoming data and then simply puts it into the input cache

without any further processing. The task of processing incoming data is done by

concrete tasklets that extend the AbstractTasklet class. A concrete tasklet class is

required to implement the abstract method IAction[] getActions(). The returned

actions indicate how the data in the input cache are to be handled and how output

data for the output cache may be generated. Recall that the CAMPUS API provides a

Worker class whose instances can be assigned a number of actions and scheduled for

repeated execution at regular intervals. The AbstractTasklet class creates such a

worker when it is activated, assigns the actions that are returned by the getActions

method to the created worker, and then activates the worker. Through such a

scheduled worker, a concrete tasklet periodically processes incoming data in the

input cache and generates output data for the output cache. Finally, in order to keep

its state consistent, when a tasklet is deactivated, it will first wait for the input cache

to be emptied; in other words, when there is no more data that needs to be processed

by the tasklet. After that, the tasklet deactivates its worker, and waits for the output

cache to be emptied; that is, for all output data to have been fetched by the task base.

7.2.5 DefaultTask

DefaultTask implements the ITask interface and exposes the basic operations of a

task of the ATM model. In particular, getInputPorts and getOutputPorts return the

input and output ports of the task. Recall that each port only accepts data of one

particular type; therefore these defined ports, together with the functionality returned

by getFunctionality, consist of the requirements of the task. The operation

isCompatible is used to test whether a given tasklet is compatible with the task, i.e.,

whether it can be used for the task, while updateTasklet is used to replace the

existing tasklet with the given one. The given tasklet can be null, which means

removing the existing tasklet. The operation getSuccessors returns tasks that are

connected to the input ports of the task and getPredecessors return tasks that are

connected to the output ports of the task. In this section, we detail two important

sequences of a task: the activation sequence and the adaptation sequence.

74

As shown in Figure 7-7, when a DefaultTask is activated, it will ask the

TaskletProviderFactory to return an available tasklet provider that implements the

interface ITaskletProvider. A tasklet provider acts as a decision maker that is

responsible for choosing a suitable tasklet for a given task upon request. The

CAMPUS API does not provide any concrete implementation of the interface

ItaskletProvider. Instead, it provides a TaskletProviderFactory that implements the

Factory design pattern [Gamma95]. Importantly, the design choice makes the API

independent of particular decision-making mechanisms, while providing a chance

for various decision-making technologies to be adopted without modifying the

existing codes. For example, in the current implementation of the CAMPUS

middleware, the Inference Engine can to some extent be seen as a tasklet provider.

On obtaining a tasklet provider from the tasklet provider factory, the DefaultTask

will ask the provider for a suitable tasklet and activate it. Subsequently, the task will

begin to activate the task base part. The latter will then activate the input and output

ports of the task and start a worker that is assigned with two actions: Feeder and

Fetcher. The feeder will periodically ask the tasklet if it is ready to accept new data

Figure 7-7 The Activation Process of DefaultTask.

75

via the method isReady4NewData() of ITasklet. If the tasklet’s response is positive,

the feeder will use the method write() of ITasklet to forward the operating data to the

tasklet, which it has received from the input ports. Similarly, the fetcher of the task

base will periodically fetch processed data from the tasklet via the method read().

Another sequence of the DefaultTask presented here is the adaptation process, i.e.,

the process of updating the tasklet. The DefaultTask will first check whether the

given tasklet is compatible, using the following criteria:

� The tasklet is not null and has not been used for any other task.

� The tasklet can provide the required functionality of the task.

� The tasklet declares that it can process all of the input data that the task has

received.

� The tasklet declares that it can generate all of the output data that the task

requires.

If the given tasklet is compatible with the task, the task will deactivate its existing

tasklet and suspend its task base. Recall that when a task base is paused, its worker

will not be executed until it is resumed, i.e., the task base will temporarily not feed

and fetch data to and from the tasklet. After that, the existing tasklet is unplugged

from the task and its state is migrated to the new tasklet. Next, the new tasklet will

be activated and plugged into the task. Finally, the task base is resumed, i.e., it will

begin to write and read data to and from the new tasklet. The sequencing of events is

necessary to ensure consistency and that no data will be lost during adaptation.

76

CChhaapptteerr 88 CCaassee SSttuuddyy

The best demonstration of the middleware’s ability to ease the development of

context-aware applications is made by example. This section presents a pragmatic

example to demonstrate how CAMPUS can be leveraged for the development of

context-aware applications. Importantly, it provides us with a platform to understand

the complete operational flow of the middleware and to study the complex

interactions among the core components in the system. To demonstrate the ease of

integrating CAMPUS to existing applications, we have chosen an open-source

instant messenger application called Spark1 to which to add a context-aware service

for users to initiate or respond to one-to-one, peer-to-peer voice, and video chats.

During the chat, the service can automatically adapt to various situations. For

example, when the network bandwidth is low, the service will automatically reduce

the quality of the video to ensure that the transfer of data is smooth, or use voice

only to further improve the quality of the transfer. The chat service uses

XMPP/Jingle2 as the negotiation protocol, and RTP/UDP as the media transportation

protocol. In addition, it uses JMF3 to capture, transmit, and receive streaming data.

8.1 Developing CAMPUS Services and Tasklets

Developing a CAMPUS service means developing a service ontology that describes

the semantics of the service, and collecting tasklet implementations that may satisfy

the requirements presented by the tasks of the services. We used Protégé OWL, a

popular graphical ontology editor, to develop the required ontology for the chat

service. Figure 8-1 shows an excerpt of the service ontology.

1 http://www.igniterealtime.org/projects/spark/index.jsp
2 http://xmpp.org/extensions/xep-0166.html
3 http://java.sun.com/javase/technologies/desktop/media/jmf/

77

In particular, the service ontology declares a context-aware chat service that consists

of eight essential tasks and one expansion task, each of which describes the specific

 <rdf:RDF
 …
 <service:Service rdf:ID="sim">
 <service:consistsOf rdf:resource="#T_AudioDS"/>
 <service:consistsOf rdf:resource="#T_Transcoder"/>
 <service:consistsOf rdf:resource="#T_VideoDS"/>
 <service:consistsOf rdf:resource="#T_Renderer"/>
 <service:consistsOf rdf:resource="#T_JSessionCtor"/>
 <service:consistsOf rdf:resource="#T_Transmitter"/>
 <service:consistsOf rdf:resource="#T_Receiver"/>
 <service:consistsOf rdf:resource="#T_TxSessionCtor"/>
 <service:consistsOf rdf:resource="#T_RxSesseionCtor"/>
 </service:Service>
 <service:EssentialTask rdf:ID="T_AudioDS">
 <service:owns rdf:resource="#out0_AudioDS"/>
 <service:requires rdf:resource="#F_AudioDS"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_JSessionCtor">
 <service:owns rdf:resource="#in0_JSessionCtor"/>
 <service:owns rdf:resource="#out0_JSessionCtor"/>
 <service:owns rdf:resource="#out1_JSessionCtor"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_Receiver">
 <service:owns rdf:resource="#in0_Receiver"/>
 <service:owns rdf:resource="#out0_Receiver"/>
 <service:requires rdf:resource="#F_Receiver"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_Renderer">
 <service:owns rdf:resource="#in0_Renderer"/>
 <service:requires rdf:resource="#F_Renderer"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_RxSesseionCtor">
 <service:owns rdf:resource="#in0_RxSessionCtor"/>
 <service:owns rdf:resource="#out0_RxSessionCtor"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_Transcoder">
 <service:owns rdf:resource="#in0_Transcoder"/>
 <service:owns rdf:resource="#out0_Transcoder"/>
 <service:owns rdf:resource="#in1_Transcoder"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_Transmitter">
 <service:owns rdf:resource="#in0_Transmitter"/>
 <service:owns rdf:resource="#in1_Sender"/>
 <service:requires rdf:resource="#F_Transmitter"/>
 </service:EssentialTask>
 <service:EssentialTask rdf:ID="T_TxSessionCtor">
 <service:owns rdf:resource="#in0_TxSessionCtor"/>
 <service:owns rdf:resource="#out0_TxSessionCtor"/>
 <service:requires rdf:resource="#F_RxSessionCtor"/>
 </service:EssentialTask>
 <service:ExpansionTask rdf:ID="T_VideoDS">
 <service:owns rdf:resource="#out0_VideoDS"/>
 <service:requires rdf:resource="#F_VideoDS"/>
 </service:ExpansionTask>
</rdf:RDF>

Figure 8-1 An Excerpt of the Chat Service Ontology.

78

requirements for its tasklet. Figure 8-2 illustrates the composition of these tasks and

Table 8-1 lists their requirments.

Table 8-1 Summary of the Tasks Defined in the Chat Service Ontology.

Task Requirement Description

AudioDS
Functionality: F_AudioDS

Output Type: AudioData
Captures raw audio data.

VideoDS
Functionality: F_VideoDS

Output Type: VideoData

Captures raw video data. It is an

expansion task.

Transcoder

Functionality: F_Transcoder

Input Type: AudioData

VideoData

Output Type: MediaData

Transcodes captured raw media

data.

JSession

Ctor

Functionality: F_JSessionCtor

Input Type: JSessionReq

Output Type: RxJingleSession

TxJingleSession

Creates jingle sessions.

RxSession Functionality: F_RxSessionCtor Creates a media transportation

RxSession

Ctor

TxSession

Ctor

Receiver Renderer

AudioDS

VideoDS

Transcoder

JSession

Ctor

Transmiter

Figure 8-2 The Structure of the Chat Service.

79

Ctor Input Type: RxJingleSession

Output Type: RxSession

session for the receiver.

TxSession

Ctor

Functionality: F_TxSessionCtor

Input Type: TxJingleSession

Output Type: TxSession

Creates a media transportation

session for the transmitter.

Receiver

Functionality: F_Receiver

Input Type: RxSession

Output Type: MediaData

Receives media data over the

network.

Renderer
Functionality: F_Renderer

Input Type: MediaData
Renders the received media data.

Transmitter

Functionality: F_Transmitter

Input Type: TxSession

MediaData

Sends media data over the network.

For demonstration purposes, we have developed one or more compatible tasklets for

each task of the chat service. Table 8-2 summarizes the tasklets developed for the

chat service. Importantly, these tasklets are reusable since they are only responsible

for providing the desired functionalities and are treated as a black box that uses

predefined interfaces to communicate with others.

Table 8-2 Summary of the Tasklets Developed for the Chat Service.

Tasklet Property Requirement Description

MicDS

Functionality:
F_AudioDS

Output Type:
AudioData

MIC.isAailable
= “true”

Captures raw audio data from the

microphone.

WebcamDS

Functionality:
F_VideoDS

Output Type:
VideoData

Camera.isAvailable
= “true”

Captures raw video data from the

web camera.

TC4HighBW

Functionality:
F_Transcoder

Input Type:
AudioData
VideoData

Output Type:
MediaData

Network.isAvailable
= “true”

Network.bandwidth
>= “1.5 Mbps”

Transcodes raw audio and video

data using the MPEG-1 audio and

MJPEG compression algorithm,

respectively.

TC4MedBW
Functionality:

F_Transcoder
Network.isAvailable

= “true” Transcodes raw audio and video

80

Input Type:
AudioData
VideoData

Output Type:
MediaData

Network.bandwidth
>= “512 Kbps”

data using the G723.1 and H.263

compression algorithm,

respectively.

TC4LowBW

Functionality:
F_Transcoder

Input Type:
AudioData
VideoData

Output Type:
MediaData

Network.isAvailable
= “true”

Network.bandwidth
>= “64 Kbps”

Transcodes raw audio data using

G723.1, and filters off the

captured video data.

Jingle

SessionCtor

Functionality:
F_JSessionCtor

Input Type:
JSessionReq

Output Type:
RxJingleSession
TxJingleSession

Network.isAvailable
= “true”

Creates a jingle session over the

RTP protocol.

RTP

SessionCtor

Functionality:
F_RcvrSessionCtor
F_SndrSessionCtor

Input Type:
JingleSession

Output Type:
RTPSession

Network.isAvailable
= “true”

Creates a media transportation

session over RTP protocol that

can be used to transmit or receive

streaming data.

RTP

Receiver

Functionality:
F_Receiver

Input Type:
RxSession

Output Type:
MediaData

Network.isAvailable
= “true”

Receives media data over the

network using an RTP session.

Player

Functionality:
F_Renderer

Input Type:
MediaData

Speaker.isAvailable
= “true”

Screen.isAvailable
= “true”

Processes received media data in

a track and delivers it to the

screen and the speaker.

RTP

Transmitter

Functionality:
F_Transmitter

Input Type:
TxSession
MediaData

Network.isAvailable
= “true”

Sends media data over the

network using an RTP session.

In order to develop CAMPUS tasklets, tasklet vendors need to provide a compatible

implementation by extending the AbstractTasklet base class and implementing the

abstract method getActions that has been discussed in Chapter 7. The returned

actions indicate how to handle input data and how to generate output data. Figure 8-3

shows an excerpt from such a tasklet implementation. In addition, a tasklet requires a

81

corresponding ontology that extends the tasklet foundation ontology to describe the

properties and contextual requirements of the tasklet. The tasklet ontologies will be

further discussed in Section 8.2.

8.2 Preprocessing Ontologies

Recall that when CAMPUS launches, the service manager will load the service

ontologies and use them to construct service instances if they pass the consistency

and compatibility checking stage, and the tasklet manager will load the tasklet

ontologies and use them to construct tasklet instances. Furthermore, the consistent

service and tasklet ontologies will be used by the registering meta-rule, detailed in

 public class MicDS extends AbstractTasklet implements IAudioDS {

 private IAction[] actions = new IAction[] { new IAction() {
 public boolean perform() {
 Vector devices = CaptureDeviceManager
 .getDeviceList(
 new AudioFormat("linear", 44100, 16, 2));
 if (devices.size() > 0) {
 try {
 CaptureDeviceInfo cdi
 = (CaptureDeviceInfo) devices.firstElement();
 getOutputCache().get(AudioData.class).add(
 new AudioData(
 Manager.createCloneableDataSource(
 Manager.createDataSource(
 cdi.getLocator()))));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return true;
 }
 return false;
 }
 } };

 protected IAction[] getActions() {

 return actions;
 }
}

Figure 8-3 An Excerpt of the MicDS Implementation.

82

Chapter 6, to construct a task registry where tasklets that are compatible with a

particular task are registered as its alternatives. A tasklet is compatible with a task if

and only if:

� It can provide the desired functionality of the task.

� It can process data from the input ports of the task, each of which accepts one

particular data type.

� It can generate data for the output ports of the task, each of which requires one

particular data type.

According to the above criteria, the task registry of the chat service is listed in Table

8-3. Importantly, when a tasklet is registered as an alternative for a particular task,

the contextual aspects that are involved in the conditions of the tasklet will be

registered as the contexts of interest for the task. For example, the tasklet

TC4HighBW is registered as an alternative of the task Transcoder, and the contextual

conditions of TC4HighBW contain two aspects, isAvailable and bandwidth, of the

context class Network. Thus, Transcoder will subscribe to an update of these two

aspects of Network. Once these aspects of Network (i.e., isAvailable and bandwidth)

are updated, Transcoder will be notified.

Table 8-3 The Task Registry of the Chat Service.

Task Tasklet

AudioDS MicDS

VideoDs WebcamDS

Transcoder

TC4HighBW

TC4MedBW

TC4LowBW

JsessionCtor JingleSessionCtor

RxSessionCtor RTPSessionCtor

TxSessionCtor RTPSessionCtor

Receiver RTPReceiver

Renderer Player

Transmitter RTPTransmitter

83

Table 8-4 Comparison of RTPSessionCtor, RxSessionCtor, and TxSessionCtor.

Task Tasklet
RxSessionCtor TxSessionCtor RTPSessionCtor

Functionality F_RxSessionCtor F_TxSessionCtor F_RcvrSessionCtor
F_SndrSessionCtor

Input Type RxJingleSession TxJingleSession JingleSession
Output Type RxSession TxSession RTPSession

In particular, the registration of the tasklet RTPSessionCtor demonstrates the

semantic feature of CAMPUS, i.e., its reasoning about the ontologies is based on the

semantics of concepts. RTPSessionCtor is registered as a tasklet alternative to the

tasks RxSessionCtor and TxSessionCtor. Although the functionalities and I/O data

types of RTPSessionCtor, as listed in Table 8-4, are not an exact match as required

by the two tasks, they are semantically compatible. RTPSessionCtor semantically

satisfies the requirements presented by RxSessionCtor and TxSessionCtor in the

following ways:

� It can provide the desired functionality of RxSessionCtor and TxSessionCtor. As

shown in Figure 8-4, the functions F_RcvrSessionCtor and F_SndrSessionCtor

provided by RTPSessionCtor are declared, via the owl:sameAs axiom, to be

semantically the same as the F_RxSessionCtor and F_TxSessionCtor that are

required respectively by RxSessionCtor and TxSessionCtor. The declaration

means that the tasklet RTPSessionCtor is able to provide functionalities similar

to those required by RxSessionCtor and TxSessionCtor.

� It can process data from the input ports of RxSessionCtor and TxSessionCtor.

RxSessionCtor has one input port, whose data type is RxJingleSession; and

TxSessionCtor has one input port, whose data type is TxJingleSession. On the

other hand, it has been declared that RTPSessionCtor is able to process data with

the type JingleSession, which is the super class of RxJingleSession and

TxJingleSession. This means that RTPSessionCtor is able to process data of the

types RxJingleSession or TxJingleSession.

84

� It can generate data for the output ports of RxSessionCtor and TxSessionCtor.

RxSessionCtor has one output port, whose data type is RxSession, and

TxSessionCtor has one output port, whose data type is TxSession. On the other

hand, the output type of RTPSessionCtor is RTPSession, which has been declared

to extend RxSession and TxSession. This means that the data generated by

RTPSessionCtor can be seen as data of the types RxSession or TxSession.

 <rdf:RDF
…
<tasklet:Function rdf:ID="F_RcvrSessionCtor">

<owl:sameAs rdf:resource="∼F_RxSessionCtor"/>
<tasklet:implementedBy rdf:datatype="&xsd;string">

 sim.service.phone.RTPSessionCtor</tasklet:implementedBy>
</tasklet:Function>

 <tasklet:Function rdf:ID="F_SndrSessionCtor">
 <owl:sameAs rdf:resource="∼F_TxSessionCtor"/>
 <tasklet:implementedBy rdf:datatype="&xsd;string">
 sim.service.phone.RTPSessionCtor</tasklet:implementedBy>
 </tasklet:Function>
 <tasklet:DataTypeCondition rdf:ID="Network.isAvailable_equals_to_true">
 <tasklet:hasReferenceValue rdf:datatype="&xsd;boolean">

true</tasklet:hasReferenceValue>
 <tasklet:hasEntity rdf:resource="&context;Network"/>
 <tasklet:hasOperator rdf:resource="&tasklet;equal"/>
 <tasklet:hasProperty rdf:resource="&context;isAvailable"/>
 </tasklet:DataTypeCondition>
 <tasklet:DataType rdf:ID="RTPSession">
 <tasklet:implementedBy rdf:datatype="&xsd;string">
 sim.service.phone.data.RTPSession</tasklet:implementedBy>
 <tasklet:extends rdf:resource="∼RxSession"/>
 <tasklet:extends rdf:resource="∼TxSession"/>
 </tasklet:DataType>
 <tasklet:Tasklet rdf:ID="RTPSessionCtor">
 <tasklet:implementedBy rdf:datatype="&xsd;string">
 sim.service.phone.impl.RTPSessionCtor</tasklet:implementedBy>
 <tasklet:asserts rdf:resource="#Network.isAvailable_equals_to_true"/>
 <tasklet:hasInputDataTyppe rdf:resource="∼JingleSession"/>
 <tasklet:hasOutputDataType rdf:resource="#RTPSession"/>
 <tasklet:provides rdf:resource="#F_RcvrSessionCtor"/>
 <tasklet:provides rdf:resource="#F_SndrSessionCtor"/>
 </tasklet:Tasklet>
</rdf:RDF>

Figure 8-4 An Excerpt of the RTPSessionCtor ontology.

85

8.3 Making Decisions at Run-time

In this section, we explain the decision-making process using the chat service. Recall

that the decision-making process is a two-phased process that is triggered upon

request by a task under three kinds of situations: when a task is activated, when its

running tasklet reports an error, and when it is notified of an updated context of

interest. We use three scenarios to illustrate these cases.

When the chat service is activated, each of its tasks will ask the Tasklet Manager for

a suitable tasklet. Upon request, the Tasklet Manager will query the Inference Engine

for a suitable tasklet id. The decision-making process then starts. Here we use the

task Transcoder as an example to explain the process step by step:

1. The inference engine searches the task registry to get the registered tasklet

alternatives. In the case of Transcoder, there exist three tasklet alternatives, as

explained previously. Table 8-5 lists these alternatives.

Table 8-5 Tasklet Alternatives for Transcoder.

Task Tasklet
Transcoder TC4HighBW TC4MedBW TC4LowBW

Functionality F_Transcoder F_Transcoder F_Transcoder F_Transcoder

Input Type
AudioData
VideoData

AudioData
VideoData

AudioData
VideoData

AudioData
VideoData

Output Type MediaData MediaData MediaData MediaData

Contextual
Requirement

Network.isAvailable
= “true”

Network.bandwidth

>= “1.5 Mbps”

Network.isAvailable
= “true”

Network.bandwidth

>= “512 Kbps”

Network.isAvailable
= “true”

Network.bandwidth

>= “64 Kbps”

2. The contextual requirements of each alternative will be tested in the screening

phase. If the contextual requirements of an alternative are not satisfied, the

alternative will be screened out in this phase. In the case of Transcoder,

assuming that the network is available and the available bandwidth is 512 Kbps,

the tasklet TC4HighBW will be filtered off in the screening phase.

86

3. The fitness utility of each alternative that passes the screening phase is

computed in the choice phase, and the alternative with the maximum fitness

utility is chosen. In our example, TC4MedBW and TC4LowBW pass the

screening phase, and their fitness utilities are computed using Equations 6-1 and

6-2, which are defined by the default choice meta-rule. The results of the

calculation are that the overall fitness utility of TC4MedBW is 1.0, and that

TC4LowBW is 0.5. That is, the tasklet TC4MedBW will be chosen since its

fitness utility is higher than that of TC4LowBW.

4. Using the tasklet id returned by the inference engine, the tasklet manager locates

a corresponding tasklet instance in its tasklet directory and returns it to the

requesting task. Finally, the task uses the tasklet to continue its activation

process, which has been detailed in Chapter 7.

Suppose that the chat service has been successfully activated and the user begins to

chat with his friend. Subsequently, let us assume that the tasklet WebcamDS

encounters a problem and fails to work normally (due, for example, to an

interruption of communications involving the web camera). As a result, it reports an

error to its host task, i.e. VideoDS, and the latter will ask the tasklet manager for

another appropriate tasklet. Again, the decision-making process starts. This time,

since the task VideoDS has only one tasklet alternative, WebcamDS, the inference

engine will still choose WebcamDS as the best alternative for VideoDS. Since

WebcamDS has been marked as an abnormal tasklet in the tasklet manager, the latter

returns a NULL reference to the task, which means that no suitable tasklet has been

found. Note that VideoDS is an expansion task that allows an empty tasklet part,

therefore the task VideoDS will directly remove its abnormal tasklet, i.e. WebcamDS,

without any problem.

In the last scenario, we assume that the network goes down during the chat and the

context manager receives an updated context from one of its context receivers, which

87

indicates that the available bandwidth of the network is 256 Kbps. In that case, the

task Transcoder will be notified since it has subscribed for an update of the context

Network. Once informed, Transcoder will again ask the tasklet manager to return the

potentially best tasklet according to the updated context. This time, only the tasklet

TC4LowBW passes the screening phase. It is returned to Transcoder as the

recommended tasklet, which will be used to replace the original tasklet part of

VideoDS, as detailed in Chapter 7.

8.4 Discussion

This simple, but representative, example demonstrates several important features of

CAMPUS. First, CAMPUS frees developers from the need to predict, formulate, and

maintain adaptation rules, thereby greatly reducing the efforts required to develop

context-aware applications. For example, the chat service in the case study consists

of 9 tasks. Suppose that each task has 2 tasklet alternatives. As a result, the service

configuration will have as many as 29=512 variants. When using the previous rule-

based systems, developers need to formulate 512 adaptation rules in order to reflect

all these variants. Obviously, this is not an easy task. Instead, when using CAMPUS,

developers need to prepare only 2×9=18 tasklet-specific ontologies, each of which

describes the required semantics of one tasklet, as detailed previously. That is to say,

previous rule-based systems indicate an exponential increase in the size of adaptation

rules when the variants increase, and CAMPUS indicates a linear increase in the size

of ontologies when the variants increase. Furthermore, assume that we now change

the composition of the chat service and add a new task Jitter between the task

Receiver and Renderer. In order to reflect the change, rule-based systems need to

revise all the 512 adaptation rules defined, while CAMPUS only needs to simply

modify the service ontology, as shown in Figure 8-1, to add a new task instance.

Admittedly, while being freed from formulating adaptation rules, developers are

required to construct domain-specific ontologies when using CAMPUS. However,

the efforts of building and maintaining domain-specific ontologies can be greatly

88

reduced by using a graphical editor like Protégé OWL and extending the CAMPUS

foundation ontology. In our experience in the case study, building and maintaining

domain-specific ontologies is very easy.

Secondly, CAMPUS effectively separates the concerns of adaptation and

coordination from the computational concerns of a task. The issues of how to

connect tasks and how to transfer operating data are handled by the middleware layer.

Importantly, a tasklet based on CAMPUS is solely responsible for realizing its own

functional logic. This feature not only further reduces development efforts, but also

promotes the reuse of tasklets.

Finally, CAMPUS places few structural or functional limitations on existing

applications that want to make use of CAMPUS’s facilities for context-aware

adaptation. This feature makes it easy to enhance existing applications to become

context-aware. In the case study, an existing instant messenger, Spark, was enhanced

by CAMPUS to provide a context-aware service of voice and video chats, without

affecting its existing codes.

The aim of this chapter was to present a case application of how CAMPUS can be

used to develop or extend applications to become context-aware. Importantly, the

chapter explained how the concepts discussed in earlier chapters have been

systematically mapped out and implemented in a real and practical application. In

the next chapter, we will present and analyze some empirical performance results

that were collected from the application setup.

89

CChhaapptteerr 99 PPeerrffoorrmmaannccee EEvvaalluuaattiioonn

A central goal of CAMPUS is to simplify the development of context-aware

applications. While the programming interface and its use, described in the previous

chapters, are important to this goal, the performance of the middleware must also be

of paramount concern to ensure that the overheads associated with using the

middleware are not detrimental to the application’s operations. A set of experiments

was conducted to measure the potential computational overheads that could be

incurred by using the CAMPUS system under different situations. The goal of the

evaluation is to provide developers with a better understanding of the performance of

CAMPUS under different operating conditions. Importantly, by analyzing and

comparing the results, we hope to gain further insights into the characteristics of

CAMPUS.

Based on our past experience, semantic reasoning is a computationally intensive task,

so that it may act as a possible performance bottleneck for CAMPUS. The first

experiment presented in this section was designed to test the overhead incurred by

the middleware when reasoning the ontology to make adaptation decisions. Another

possible performance bottleneck could come from the additional work involved in

transmitting data to and from tasks. The second experiment presented in this section

measured the overhead incurred by transferring data between tasks. The third

experiment was to measure the overhead incurred by updating a task to adapt to

contextual changes, and the last experiment presented in this section measured the

overall system performance of CAMPUS from an end-to-end perspective. All of the

experiments were conducted on an HP Compaq NC6400 laptop equipped with 1G

MB of RAM and an Intel Core Duo T2300E processor rated at 1.66G Hz. The

operating system used was Microsoft’s WinXP and the Java Virtual Machine version

was 1.6.0.

90

9.1 Semantic Reasoning Overhead

The CAMPUS middleware performs DL reasoning and FOL reasoning on the

ontologies to make adaptation decisions. Consequently, the size of the knowledge

base, i.e. the loaded ontologies, and the complexity of the defined meta-rules will

greatly affect the processing overheads of ontology reasoning. This set of

experiments evaluates the impact of the size of loaded ontologies and the complexity

of meta-rules on the processing overheads of ontology reasoning. The size of the

knowledge base was measured in terms of the number of RDF statements, and the

complexity of the meta-rules was measured in terms of the number of rule atoms.

The experimental results are shown in Figure 9-1. As expected, the results clearly

indicate an increase in the time overheads of ontology reasoning, with a progressive

increase in the size of the ontologies and the complexity of the meta-rules. The rate

of increase is nearly linear. The experimental results also show that semantic

reasoning is a computationally intensive task. However, the time overhead (in the

range of a couple of seconds) under current CPU speeds is reasonable for non-time-

critical applications, considering the fact that the size of the knowledge base of most

0

500

1000

1500

2000

2500

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Fact Stmts

P
ro

ce
ss

in
g

 T
im

e
(m

s)

33 Rule Atoms 66 Rule Atoms 132 Rule Atoms

Figure 9-1 The Processing Overheads of Semantic Reasoning.

91

applications is unlikely to exceed five thousand, and the size of rules is generally less

than two hundred.

9.2 Data Transfer Overhead

This set of experiments was designed to measure the processing overheads incurred

by a complete CAMPUS service in processing a given chunk of data. Ignoring the

function processing time, for a specific service the overheads incurred come

primarily from the additional work involved in transmitting data to and from tasks.

In this set of experiments, a special service has been configured to be composed of a

set of tasks with the same functional requirement. The primary logic of the tasklet

instances that are involved is to receive data from their host tasks, and to directly

deliver the data back to their host tasks without any processing. Delay time can

easily be captured by measuring the time needed for a specific amount of data to

pass through a configured number of tasks. Considering the fact that the primary

overheads incurred by these tasks are inherent in any task for processing incoming

0

200

400

600

800

1000

1200

5 10 20 40 80

Number of Tasks

P
ro

ce
ss

in
g

T
im

e
(m

s)

Figure 9-2 The Data Transfer Overhead.

92

data, it is argued that the setup of the experiment is reasonable and realistic. The

results of the experiment are shown in Figure 9-2. They show that the delay

overhead increases linearly with the increase in the number of tasks through which

the data passes. On average, the overhead is about 15 ms per task. It is believed that

the overhead can be further reduced with improved hardware configuration.

Furthermore, in the realistic deployment of a service, it is unlikely that more than ten

task will be used. That is to say, the overhead brought by these tasks can safely be

bound to about 150 ms, which is acceptable compared with the potentially long

delays incurred in network transmissions.

9.3 Adaptation Time

This set of experiments was designed to measure the processing overheads incurred

by updating a task to adapt to contextual changes. The adaptation process of a task

brings a certain number of performance penalties that are unavoidable. Adaptation

time is the time taken for the CAMPUS system to update the tasklet part of a task in

order to adapt to contextual changes. In other words, adaptation time is the amount

of time during which a user will find the CAMPUS system inactive due to adaptation.

Before going into the details of the experiment, the steps of the adaptation process

are restated below:

1. The existing tasklet part of the task is deactivated.

2. The task base part of the task is suspended.

3. The existing tasklet part of the task is unplugged and its state is migrated to the

new tasklet, if necessary.

4. The new tasklet is activated.

5. The new tasklet is plugged into the task.

6. The task base of the task is resumed and the adaptation is finished!

93

The experiment reused the service designed in section 9.2, although in this

experiment the service was configured to repeatedly update a particular task. The

time Ts is recorded once at the beginning of the adaptation process. Immediately

after the adaptation process as detailed previously, the time Te is recorded as the

ending time of the adaptation process. By varying the number of times that the

adaptation is repeated, referred to as N here, different numbers of adaptation

processes can be measured and N×(Te-Ts) will be the resultant time cost. Figure 9-3

shows the result of the experiment. Notice that when the number of adaptation times

is less than 100, the adaptation time is less than 70ms. Even when the number of

adaptation times reaches 1,000, the adaptation overhead is still less than 300ms. This

is a noteworthy and promising result considering that the adaptation rate is likely to

be comparatively low (typically ranging from tens of seconds to minutes, depending

on the contextual changes of the environment) and the adaptation time is

insignificant. A good adaptation performance is the result of extensive use of multi-

threading and of the separation of adaptation from computational concerns to

accelerate and support ease of adaptation.

0

50

100

150

200

250

300

100 200 300 400 500 600 700 800 900 1000

Adaptation Times

T
im

e
O

ve
rh

ea
d

(m
s)

Figure 9-3 The Adaptation Time.

94

9.4 CAMPUS End-to-End Performance

After evaluating the overheads of key CAMPUS mechanisms, this section describes

the overall system performance of CAMPUS from an end-to-end perspective. In

particular, we aim to verify the benefits of the CAMPUS system by asserting that the

operation overhead is small compared to the improvement in performance that

comes from using this system.

For this purpose, we reused the video chat service presented in Chapter 8, which

reacts to changes in bandwidth to maintain a smoother performance for the video

chat service, in terms of frame rates. In the experiment, we measured the frame rates

on the receiver side under different bandwidths. Figure 9-4 contrasts the frame rate

on the receiver side using CAMPUS with the frame rate when not using CAMPUS.

By not using CAMPUS, we mean that the highest video rate is sent according to its

transmission plan throughout the duration of the chat session, regardless of network

conditions. From the experimental results, we can see that without using CAMPUS,

0

5

10

15

20

25

30

35

2000 1500 1000 500 250 150 100

Bandwidth (Kbps)

F
ra

m
e

s
pe

r
S

e
co

nd

Using CAMPUS Not Using CAMPUS

Figure 9-4 The Effectiveness of the CAMPUS System.

95

when the bandwidth decreases from 2 Mbps (which represents a good network

condition for video chat) to 100 Kbps (which represents a bad network condition for

video chat), the frame rate drops sharply from an average of 28.8 fps to an average

of 1.5 fps. In contrast, with CAMPUS, a significant decrease in frame rate is avoided

and the frame rate is always in the range of 19.5 to 28.8 fps. This is because when

using CAMPUS, the chat service can automatically adapt to the changes of

bandwidth conditions and use appropriate transcoders to reduce the data size of each

frame at the sender side, and subsequently reduce the total amount of information

transmitted over the network. While compromising the video quality of the receiver

side, the chat service maintains a highly smooth performance, which is most

important in a scenario of real-time video chatting. In contrast, without using

CAMPUS, the chat service did not consider the actual network condition, always

using a high video rate to transcode the data. This means that a large amount of

information needs to be sent over the network. Therefore, when the bandwidth

decreases, the frame rate drops sharply. The experiments clearly suggest the

advantages of the CAMPUS system and its ability to offset the processing overheads

that may be incurred in deploying applications in dynamic environments.

96

CChhaapptteerr 1100 CCoonncclluussiioonnss aanndd FFuuttuurree WWoorrkk

10.1 Conclusions

As pervasive computing continues to evolve, the need to embed context awareness to

future mobile applications becomes more apparent. In contrast to virtual reality,

which places physical objects in the virtual world, context-aware computing aims to

place computing to work in the physical world. An important goal of the work

presented in this thesis has been the development of a context-aware programming

abstractions and a paradigm that make it easier to develop and execute context-aware

applications in pervasive computing environments. Our work has resulted in

CAMPUS, a comprehensive semantic-based context-aware middleware for

pervasive computing that can automatically derive context-aware adaptation

decisions at run-time. Through automated decisions at run-time, developers will be

freed from the need to predict, formulate, and maintain adaptation rules, so that the

effort involved in developing context-aware applications will be greatly reduced. It

will also be possible to deliver services of an optimal quality by deferring the

adaptation decisions until run-time to account for up-to-date contextual conditions.

More notably, we have developed CAMPUS based on a layered architecture that

promotes a structured design, with each layer providing a well-defined level of

abstraction and role. Importantly, each layer represents an abstraction boundary that

provides software engineering solutions that contribute to the overall integration of

context-awareness to the system.

� In the programming layer, we have proposed and designed a new programming

model called ATM to facilitate the construction of context-aware applications.

The ATM model relies on two main concepts: services and tasks. A service is an

97

abstract of a business or a technical process, which is comprised of a series of

tasks. Tasks are execution units that perform certain actions to deliver a result to

other tasks or the end user. A task is further divided into two parts: a tasklet and a

task base. The former part concentrates on the computational concerns of the

task, i.e. how to process data; and the latter part handles issues involved in

coordination and adaptation, such as how to communicate with other modules of

the service and how to transfer the states of tasks during adaptation. The ATM

model greatly separates context-aware adaptation from the functional concerns of

applications, simplifies the work of maintaining the consistency of the data and

migrating states when adaptation occurs, and eases the tasks of specifying and

verifying adaptation.

� In the knowledge layer, a comprehensive ontological model has been developed

to capture important knowledge about context-aware applications that have been

built on the basis of the ATM model. The proposed ontological model has been

split into two dimensions, in order to make the model more extensible and

scalable, and also to help improve the performance of the system. The first

dimension is the dimension of domain. Here, the ontologies are divided into

context ontologies, tasklet ontologies, and service ontologies. Additionally, from

the dimension of range, the CAMPUS ontologies are separated into foundation

ontologies and domain-specific ontologies. The foundation ontologies model

common objects that are generally applicable across a wide range of domain-

specific ontologies. A domain-specific ontology models a particular domain and

represents the particular meanings of terms as they apply to that domain.

� In the decision layer, we then investigated the technologies of semantic reasoning

to automatically derive context-aware adaptation decisions at run-time. In

particular, the decision layer performs DL reasoning and FOL reasoning on the

proposed ontologies to derive the important decisions at run-time. The whole

decision-making procedure of CAMPUS is divided into three phases:

preprocessing, screening, and choice. In the preprocessing phase, several

preprocessing tasks are performed to ensure that the ontologies are semantically

98

consistent and to prepare fine-grained information for the following phases. For

example, qualified tasklets are registered as alternatives for each task. In the

second stage, tasklet alternatives registered in the first phase that are not satisfied

by the up-to-date contextual information are screened out. If more than one

acceptable tasklet alternative survives the screening phases, in the choice phase,

the best alternative from among the survivors is selected using the expected

utility function.

The CAMPUS implementation was evaluated with a number of case studies to

validate the operation of the system on a realistic environment and to provide us with

the opportunity to obtain experimental results for further analysis. In particular, we

selected and implemented a context-aware instance messenger application to run

over the CAMPUS. In capturing the system’s performance, we evaluated the

potential overheads introduced by deferring the adaptation decision to run-time in

the middleware level. The results are significant in that CAMPUS can be adapted to

run on resource-constraint portable devices, without significant degradation in its

performance.

In short, we can conclude that the main contributions of this thesis are as follows:

� A new programming model was proposed and designed that can facilitate the

development of context-aware applications in order to automate context-aware

adaptation decisions.

� A comprehensive ontological model was defined to capture the knowledge and

semantics of the entities involved during the process of making context-aware

adaptation decisions. This ontological model effectively supports automated

context-aware adaptation decisions.

� A middleware, CAMPUS, which provides an integrated solution to automate

context-aware adaptation decisions at run-time, was designed and implemented.

99

CAMPUS was evaluated using a number of case studies to validate the operation

of the system on a realistic environment.

10.2 Future Work

The work presented in this thesis establishes a theoretical foundation of middleware

primitives for enhancing the development and execution of context-aware

applications in a pervasive computing environment. As in most research work, the

progress made in this study undoubtedly has not covered all interesting directions,

but suggestions for future work to further improve CAMPUS are given below.

10.2.1 Collaborative Decision-Making

One important direction to make CAMPUS more complete and powerful is to enable

collaborative decision-making among multiple CAMPUS middleware instances over

the network. That is, when a task asks a CAMPUS middleware for a suitable tasklet,

the CAMPUS system can cooperate with other CAMPUS systems to collaboratively

make the final decision on which tasklet is the most suitable for the task.

Collaborative decision-making is a natural extension of CAMPUS, which aims to

integrate the capabilities of multiple CAMPUS instances to find potentially better

alternatives than local alternatives and consequently to improve the decision

outcome. In addition, collaborative decision-making among multiple CAMPUS

instances greatly improves the reusability of tasklets. In order to enable collaborative

decision-making, a collaboration protocol between CAMPUS systems is necessary.

The protocol needs to consider such issues as the discovery of a potential

collaborator CAMPUS, and communication and negotiation between them. In

addition, mobile code techniques can be used to download remote tasklets from

collaborator CAMPUS systems.

100

10.2.2 Semantic-based Service Composition

Another direction to improve CAMPUS is to enable the composition of CAMPUS

services. Unlike tasks, a service is not composable in the current CAMPUS system.

The current implementation of CAMPUS assumes that the services provided by a

context-aware application are always in a loose relationship, so that direct primitives

have not been offered to enable the composition of CAMPUS services. In the future,

it will be possible to extend services by making them composable. Composable

services make it possible to reuse existing services to develop more complex

services, and therefore further facilitate the development of context-aware

applications. Web service composition is a very active area of research and

development [Benatallah02, Zeng04], and the composition of CAMPUS services

will benefit from these existing works. In order to make CAMPUS services

composable, CAMPUS needs to be extended in all three layers:

� In the programming layer, the spare input and output ports of the tasks that

compose a service can be utilized as the input and output ports of the service in

order to connect to other services.

� In the knowledge layer, the service foundation ontology needs to capture more

knowledge related to the composition of services; for example, the overall

functionality and cost of a service.

� In the decision layer, the inference engine needs to consider how to decide

whether two services are compatible and to choose among a set of alternatives.

The concrete decision strategies will depend on the knowledge captured by the

knowledge layer. However, a general approach is to compare the overall

functionalities of a service and its potential cost.

101

10.2.3 User Preference Model

Another possible extension of CAMPUS is to introduce a comprehensive user

preference model. Although CAMPUS advocates automated decision-making by the

middleware layer, a suitable user preference model helps to improve the quality of

the decision. There are two general approaches to designing a user preference model:

filtering and rating. Filtering models like [Mooney00] allow users to choose

keywords that describe their preference, and decisions are made based on the

matching of these keywords. Rating models like [Candillier07] allow users to rate

the alternatives and decisions are made based on the ranking of these ratings.

10.2.4 Security and Power Saving Issues

Security has not been our focus in the current CAMPUS system. There are several

issues that must be addressed in this area. First, authentication of the tasklets must be

guaranteed. One approach is to digitally sign the tasklets to assure their authenticity.

Second, the CAMPUS system should exploit the Java security features [Garms01],

so that the CAMPUS platform presents a protected environment for a tasklet.

For small portable devices, one of the major concerns is power consumption.

However, as the current version of CAMPUS system runs only on the Java2 standard

Edition (J2SE), which runs only on standard PCs and workstation machines, we have

been unable to obtain any data on power consumption from the current experimental

setup. It is desirable to migrate the CAMPUS system to the Java2 Micro Edition

(J2ME), which allows the CAMPUS system to run on PDAs and Java-enabled smart

phones. In the future, experiments can be carried out to measure the factors that

affect the power consumption of these mobile devices.

102

References

[Abowd97] G. D. Abowd, C. G. Atkerson, J. Hong, S. Long, R. Kooper, and M.

Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide,” Wireless Networks,

vol. 3, no. 5, pp. 421-433, Oct. 1997.

[Alia07] M. Alia, V. S. W. Eide, N. Paspallis, F. Eliassen, S. O. Hallsteinsen, and G.

A. Papadopoulos, "A Utility-based Adaptivity Model for Mobile Applications,"

Proceedings of 21st International Conference on Advanced Information Networking

and Applications Workshops 2007 (AINAW'07), vol. 2, pp. 556-563, May 2007.

[Beach90] L. R. Beach, and T. R. Mitchell, "Image Theory: A Behavioral Theory of

Decision Making in Organizations," B. M. Staw & L. L. Cummings (Eds.), Research

in Organizational Behavior, Vol. 12, pp. 1-41, Greenwich: JAI Press, 1990.

[Benatallah02] B. Benatallah, and F. Casati, Distributed and Parallel Database,

Sepcial issue on Web Services, Kluwer Academic Publishers, 2002.

[Berners-Lee01] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web,”

Scientific American Magazine, vol. 284, no. 5, pp. 34-43, 2001.

[Binns96] P. Binns, M. Engelhart, M. Jackson, and S. Vestal, “Domain-Specific

Software Architecture for Guidance, Navigation, and Control,” International Journal

on Software Engineering and Knowledge Engineering, vol. 6, no. 2, 1996.

[Biyani05] K. N. Biyani, and S. S. Kulkarni, “Building Component Families to

Support Adaptation,” Proceedings of the 2005 workshop on Design and evolution of

autonomic application software (DEAS 2005), St. Louis, Missouri, USA, May 2005.

[Blair00] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M. Costa, H. A.

Duran, N. Parlavantzas, and K. B. Saikoski, "A Principled Approached to Supporting

Adaptation in Distributed Mobile Environments," Proceedings of International

103

Symposium on Software Engineering for Parallel and Distributed Systems (PDSE

2000), pp. 3-12, IEEE Computer Society, Limerick, Ireland. 2000.

[Candillier07] L. Candillier, F. Meyer, and M. Boulle, "Comparing State-of-the-Art

Collaborative Filtering Systems," Journal of Maching Learning and Data Mining in

Pattern Recognition, Springer Berlin, vol. 4571, pp. 548-562, 2007.

[Capra03] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-Aware

Reflective mIddleware System for Mobile Applications,” IEEE Transactions on

Software Engineering, vol. 29, no. 10, pp. 929-944, Oct. 2003.

[Chan03] A. T. S. Chan, and S. N. Chuang, “MobiPADS: A Reflective Middleware

for Context-Aware Mobile Computing,” IEEE Transactions on Software Engineering,

vol. 29, no. 12, pp. 1072-1085, Dec. 2003.

[Chang05] S. F. Chang, and A. Vetro, “Video Adaptation: Concepts, Technologies,

and Open Issues,” Proceedings of the IEEE, vol. 93, no. 1, pp. 148-158, Jan. 2005.

[Chen04] H. Chen, T. Finin, A. Joshi, F. Perich, D. Chakraborty, and L. Kagal,

“Intellegient Agents Meets the Semantic Web in Smart Spaces,” IEEE Internet

Computing, vol. 8, no. 6, pp. 69-79, 2004.

[Cheverst00] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou,

“Developing A Context-Aware Electronic Tourist Guide: Some Issues and

Experiences,” Proceedings of the SIGCHI conference on Human Factors in

Computing Systems, pp. 17-24, Apr. 2000.

[Ciocoiu00] M. Ciocoiu, and D. S. Nau, "Ontology-Based Semantics," Proceedings

of the 7th International Conference on the Principles of Knowledge Representation

and Reasoning, pp. 539-548, 2000.

[Davis04] J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B. Bershad, G.

Borriello, S. Gribble, and D. Wetherall, “System Support for Pervasive

Applications,” ACM Transactions on Computer Systems, vol. 22, no. 4, pp. 421-486,

Nov. 2004.

104

[Dey00] A. K. Dey, and G. D. Abowd, “Towards a Better Understanding of Context

and Context-Awareness,” Proceedings of the CHI 2000 Workshop on the What, Who,

Where, When, and How of Context-Awareness, 2000.

[Dowling01] J. Dowling, and V. Cahill, “The K-Component Architecture Meta-

Model for Self-Adaptive Software,” Proceedings of the 3rd International Conference

on Metalevel Architectures and Separation of Crosscutting Concerns, Sep. 2001.

[Edwin07] Edwin J. Y. Wei, and Alvin T. S. Chan, “Towards Context-Awareness in

Ubiquitous Computing,” Proceedings of the International Conference on Embedded

and Ubiquitous Computing (EUC 2007), LNCS 4808, pp. 706-717, Taipei, Taiwan,

Dec. 2007.

[Flatt98] M. Flatt, S. Krishnamurthi, and M. Felleisen, "Classes and Mixins," ACM

Symposium on Principles of Programming Languages (PoPL 98), 1998.

[Floch06] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjorven, “Using

Architecure Models for Runtime Adaptability,” IEEE Software, 23(2):62-70, 2006.

[Fischhoff83] B. Fischhoff, B. Goitein, and Z. Shapira, "Subjective Expected Utility:

A Model of Decision-Making," R. W. Scholz (Ed.) Decision Making Under

Unvertainty: Cognitive Decision Research, Social Interaction, Development and

Epistemology, vol. 16, pp. 183-207, Amsterdam, Elsevier, 1983.

[Forgy82] C. Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem," Artificial Intelligence, vol. 19, pp. 17-37, 1982.

 [Friday96] A. Friday, N. Davies, G. Blair, and K. Cheverst, "Developing Adaptive

Applications: The MOST Experience," Jounal of Integrated Computer-Aided

Engineering, vol. 6, no. 2, pp. 143-157, 1996.

[Friedman-Hill03] E. Friedman-Hill, Jess in Action: Java Rule-based Systems,

Manning Publications Company, June 2003, ISBN 1930110898,

http://www.jessrules.com/.

105

 [Gamma95] E. Gamma, R. Helm, R. Johnson, and J. Vissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, ISBN 0-201-

63361-2, 1995.

[Garms01] J. Garms, "Professional Java Security," Birmingham, Wrox Press, 2001.

[Garlan94] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style in

Architectural Design Environments,” Proceedings of SIGSOFT ’94: Foundations of

Software Engineering, PP. 175-188, Dec. 1994.

[Gordon00] A. Gordon, The COM and COM+ Programming Primer, Microsoft

Technology Series, Prentice Hall PTR, New-Jersey, 2000.

[Gruber93] T. R. Gruber, “A translation approach to portable ontologies,” Knowledge

Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

[Horrocks02] I. Horrocks, and J. Hendler, "The Semantic Web," Proceedings of the

First International Semantic Web Conference (ISWC 2002), Sardinia, Italy, 2002.

[Horrocks04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean, "SWRL: A Semantic Web Rule Language Combining OWL and RuleML,"

Available from http://www.w3.org/Submission/SWRL/, May 2004.

[Kitchenham99] B. A. Kitchenham, G. H. Travassos, A. VonMayrhauser, F. Niessink,

N. F. Schniedewind, J. Singer, S. Takado, R. Vehvilainen, and H. Yang, “Towards an

Ontology of Software Maintenance,” Journal of Software Maintenance: Research

and Practice, vol. 11, no. 6, pp. 365-389, 1999.

[Knublauch04] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, "The

Protege OWL Plugin: An Open Development Environment for Semantic Web

Applications," Proceedings of the 3rd International Semantic Web Conference 2004

(ISWC'04), LNCS 3298, pp. 229-243, Nov. 2004.

[Lenat90] D. B. Lenat, and R. V. Guha, Building Large Knowledge-Based Systems:

Representation and Inference in the CYC Project, Addison-Wesley, Reading, Mass.,

1990.

106

 [Lott05] S. F. Lott, Building Skills in Python - A Programmer's Introduction to

Python, Available in

http://www.linuxtopia.org/online_books/programming_books/python_programming/

index.html, 2005.

[Ma06] H. Ma, I. L. Yen, J. Zhou, and K. Cooper, “Qos Analysis for Component-

based Embedded Software: Model and Methodology,” The Journal of System and

Software, 79(6):859-870, 2006.

[McKinley04] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng,

“Composing Adaptive Software,” IEEE Computer, vol. 37, no. 7, pp. 56-64, Jul.

2004.

[Medvidovic99] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A Language

and Environment for Architecture-Based Software Development and Evolution,”

Proceedings of the 21st International Conference on Software Engineering (ICSE

99), pp. 44-53, May 1999.

[Mooney00] R. J. Mooney, and L. Roy, "Content-based Book Recommending Using

Learning for Text Categorization," Proceedings of the 5th ACM Conference on

Digital Libraries, pp. 195-204, ACM New York, 2000.

[Neto05] R. F. B. Neto, and M. G. C. Pimentel, “Toward a Domain-Independent

Semantic Model for Context-Aware Computing,” Proceedings of the 3rd Latin

American Web Congress (LA-WEB’05), 2005.

[Noble97] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and

K. R. Walker, “Agile Application-Aware Adaptation for Mobility,” Proceedings of

the 6th ACM Symposium on Operating Systems Principles, pp. 276-287, 1997.

[Rouvoy08] R. Rouvoy, M. Beauvois, L. Lozano, J. Lorenzo, and F. Eliassen,

“MUSIC: an Autonomous Platform Supporting Self-Adaptive Mobile Applications,”

Proceedings of the 1st Workshop on Mobile Middleware: Embracing the Personal

Communication Device, Dec. 2008, Leuven, Belgium.

107

[Satyanarayanan04] M. Satyanarayanan, “The Many Faces of Adaptation,” IEEE

Pervasive Computing, vol. 3, no. 3, pp. 4-5, 2004.

[Schilit94] B.N. Schilit, N. Adams, and R. Want, “Context-Aware Computing

Applications,” Mobile Computing Systems and Applications, pp. 85-90, Dec. 1994.

[Schmidt99] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven,

and W. V. de Velde, “Advanced Interaction in Context,” Proceedings of the 1st

International Symposium on Handheld and Ubiquitous Computing, pp. 89-101, 1999.

[Shao06] W. Shao, A. Lye, S. Rundle-Thiele, and C. Fausnaugh, “Decision Theory:

Poised for the New Millennium,” Proceedings of the Australian and New Zealand

Marketing Academy Annual Conference 2003 (ANZMAC 2003), Dec. 2003.

[Siewiorek03] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K.

Reiger, J. Shaffer, and F. L. Wong, “SenSay: A Context-Aware Mobile Phone,”

Proceedings of the 7th IEEE International Symposium on Wearable Computers

(ISWC’03), 2003.

[Sirin07] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A

Practical OWL-DL Reason," Journal of Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 5, issue 2, pp. 51-53, June 2007.

[Sora07] I. Sora, P. Verbaeten, and Y. Berbers, “CCDL: the Composal Components

Description Language,” Interntional Jornal on Software Tools for Technology

Transfer, vol. 9, no. 2, pp. 155-168, 2007.

[Spivey89] J. M. Spivey, The Z Notation, A Reference Manual, Englewood Cliffs,

NJ : Prentice-Hall, 1989.

[Strang03] T. Strang, C. Linnhoff-Popien, and K. Frank, “CoOL: A Context

Ontology Language to Enable Contextual Interoperability,” Proceedings of the 2003

IFIP International Federation for Information Processing, 2003.

[Tekinerdogan96] B. Tekinerdogan, and M. Aksit, “Adaptability in Object-Oriented

Software Development Workshop Report,” Proceedings of the 10th Annual

108

European Conference on Object-Oriented Programming (ECOOP), Linz, Austria,

Jul. 1996.

[Walsh04] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility Functions in

Autonomic Systems,” Proceedings of the International Conference on Autonomic

Computing (ICAC’04), pp. 70-77, May 2004.

[Wang04] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology Based

Context Modeling and Reasoning using OWL,” Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and Communications Workshops

(PERCOMW’04), 2004.

[Warmer98] J. B. Warmer, and A. G. Kleppe, The Object Constraint Language –

Precise Modeling with UML, Addison-Wesley Publishing Company, 1998.

[Want92] R. Want, A. Hopper, V. Falcao, J. Gibbons, “The Active Badge Location

System,” ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91-102,

1992.

[Yau02] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Reconfigurable

Context-Sensitive Middleware for Pervasive Computing,” IEEE Pervasive

Computing, vol. 1, no. 3, pp. 33-40, 2002.

[Zandy02] V. C. Zandy, and B. P. Miller, "Reliable Network Connections,"

Proceedings of the 8th Annual International Conference on Mobile Computing and

Networking (MobiCom'02), pp. 95-106, Atlanta, Georgia, USA, 2002.

[Zeng04] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H.

Chang, “QoS-aware Middleware for Web Services Composition,” IEEE Transactions

on Software Engineering, vol. 30, no. 5, pp.311-327, May 2004.

[Zheng06] Y. J. Zheng, and A. T. S. Chan, “MobiGATE: A Mobile Computing

Middleware for the Active Deployment of Transport Services,” IEEE Transactions

on Software Engineering, vol. 32, no. 1, pp. 35-50, Jan. 2006.

109

Appendix A The Context Foundation Ontology

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/context-foundation.owl#"
 xml:base="http://campus.comp.polyu.edu.hk/context-foundation.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Activity">
 <rdfs:subClassOf rdf:resource="#UserEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="Agent">
 <rdfs:subClassOf rdf:resource="#UserEntity"/>
 </owl:Class>
 <BaseUnit rdf:ID="ampere"/>
 <owl:ObjectProperty rdf:ID="availableBandwidth">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Network"/>
 <rdfs:range rdf:resource="#PhysicalQuantity"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="BaseUnit">
 <rdfs:subClassOf rdf:resource="#Unit"/>
 </owl:Class>
 <owl:Class rdf:ID="BinaryPrefix">
 <rdfs:subClassOf rdf:resource="#Prefix"/>
 </owl:Class>
 <BaseUnit rdf:ID="bit"/>
 <BaseUnit rdf:ID="byte"/>
 <BaseUnit rdf:ID="candela"/>
 <SIPrefix rdf:ID="centi">
 <hasExponent rdf:datatype="&xsd;int">-2</hasExponent>
 </SIPrefix>
 <owl:Class rdf:ID="ComputingEntity">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="ContextEntity"/>
 <owl:Class rdf:ID="CPU">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <SIPrefix rdf:ID="deci">
 <hasExponent rdf:datatype="&xsd;int">-1</hasExponent>
 </SIPrefix>
 <SIPrefix rdf:ID="deka">

110

<hasExponent rdf:datatype="&xsd;int">1</hasExponent>
 <hasValue rdf:datatype="&xsd;double">10</hasValue>
 </SIPrefix>
 <owl:ObjectProperty rdf:ID="derivedFrom">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#UnitDerivedByPrefixing"/>
 <owl:Class rdf:about="#UnitDerivedByRaising"/>
 <owl:Class rdf:about="#UnitDerivedByScaling"/>
 <owl:Class rdf:about="#UnitDerivedByShifting"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Unit"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="DerivedUnit">
 <rdfs:subClassOf rdf:resource="#Unit"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="exbi">
 <hasExponent rdf:datatype="&xsd;int">60</hasExponent>
 </BinaryPrefix>
 <owl:Class rdf:ID="ExternalStorage">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <owl:Class rdf:ID="FlashDrive">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <owl:Class rdf:ID="FlashMemory">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <owl:Class rdf:ID="FloppyDisk">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="gibi">
 <hasExponent rdf:datatype="&xsd;int">30</hasExponent>
 </BinaryPrefix>
 <SIPrefix rdf:ID="giga">
 <hasExponent rdf:datatype="&xsd;int">9</hasExponent>
 <hasValue rdf:datatype="&xsd;double">1000000000</hasValue>
 </SIPrefix>
 <owl:Class rdf:ID="HardDisk">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <owl:Class rdf:ID="Hardward">
 <rdfs:subClassOf rdf:resource="#ComputingEntity"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="hasCapacity">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ExternalStorage"/>

111

 <owl:Class rdf:about="#RAM"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#PhysicalQuantity"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="hasExponent">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Prefix"/>
 <owl:Class rdf:about="#UnitDerivedByRaising"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="&xsd;int"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="hasPrefix">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#UnitDerivedByPrefixing"/>
 <rdfs:range rdf:resource="#Prefix"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="hasScalingNumber">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#UnitDerivedByScaling"/>
 <rdfs:range rdf:resource="&xsd;double"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="hasShiftingNumber">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#UnitDerivedByShifting"/>
 <rdfs:range rdf:resource="&xsd;double"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="hasUnit">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#PhysicalQuantity"/>
 <rdfs:range rdf:resource="#Unit"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="hasValue">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#PhysicalQuantity"/>
 <rdfs:range rdf:resource="&xsd;double"/>
 </owl:DatatypeProperty>
 <SIPrefix rdf:ID="hecto">
 <hasExponent rdf:datatype="&xsd;int">2</hasExponent>
 <hasValue rdf:datatype="&xsd;double">100</hasValue>
 </SIPrefix>
 <owl:DatatypeProperty rdf:ID="isAvailable">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Hardward"/>
 <owl:Class rdf:about="#Network"/>

112

 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="&xsd;boolean"/>
 </owl:DatatypeProperty>
 <BaseUnit rdf:ID="kelvin"/>
 <owl:Class rdf:ID="Keyboard">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="kibi">
 <hasExponent rdf:datatype="&xsd;int">10</hasExponent>
 </BinaryPrefix>
 <SIPrefix rdf:ID="kilo">
 <hasExponent rdf:datatype="&xsd;int">3</hasExponent>
 <hasValue rdf:datatype="&xsd;double">1000</hasValue>
 </SIPrefix>
 <BaseUnit rdf:ID="kilogram"/>
 <owl:Class rdf:ID="Light">
 <rdfs:subClassOf rdf:resource="#PhysicalEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf rdf:resource="#UserEntity"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="mebi">
 <hasExponent rdf:datatype="&xsd;int">20</hasExponent>
 </BinaryPrefix>
 <SIPrefix rdf:ID="mega">
 <hasExponent rdf:datatype="&xsd;int">6</hasExponent>
 <hasValue rdf:datatype="&xsd;double">1000000</hasValue>
 </SIPrefix>
 <owl:Class rdf:ID="MemoryCard">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <BaseUnit rdf:ID="meter"/>
 <SIPrefix rdf:ID="micro">
 <hasExponent rdf:datatype="&xsd;int">-6</hasExponent>
 <hasValue rdf:datatype="&xsd;double">0.000001</hasValue>
 </SIPrefix>
 <owl:Class rdf:ID="Microphone">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <SIPrefix rdf:ID="milli">
 <hasExponent rdf:datatype="&xsd;int">-3</hasExponent>
 <hasValue rdf:datatype="&xsd;double">0.001</hasValue>
 </SIPrefix>
 <BaseUnit rdf:ID="mole"/>
 <owl:Class rdf:ID="Mouse">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <SIPrefix rdf:ID="nano">
 <hasExponent rdf:datatype="&xsd;int">-9</hasExponent>
 <hasValue rdf:datatype="&xsd;double">0.000000001</hasValue>
 </SIPrefix>
 <owl:Class rdf:ID="Network">

113

<rdfs:subClassOf rdf:resource="#ComputingEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="Noise">
 <rdfs:subClassOf rdf:resource="#PhysicalEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="OS">
 <rdfs:subClassOf rdf:resource="#Software"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="pebi">
 <hasExponent rdf:datatype="&xsd;int">50</hasExponent>
 </BinaryPrefix>
 <owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#UserEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="PhysicalEntity">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="PhysicalQuantity"/>
 <owl:Class rdf:ID="Power">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <owl:Class rdf:ID="Prefix"/>
 <owl:ObjectProperty rdf:ID="productOf">
 <rdfs:domain rdf:resource="#UnitDerivedByMultiplying"/>
 <rdfs:range rdf:resource="#Unit"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="RAM">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <owl:Class rdf:ID="ROM">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <owl:Class rdf:ID="Screen">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <BaseUnit rdf:ID="second"/>
 <owl:Class rdf:ID="SIPrefix">
 <rdfs:subClassOf rdf:resource="#Prefix"/>
 </owl:Class>
 <owl:Class rdf:ID="Software">
 <rdfs:subClassOf rdf:resource="#ComputingEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="Speaker">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
 <owl:Class rdf:ID="Tape">
 <rdfs:subClassOf rdf:resource="#ExternalStorage"/>
 </owl:Class>
 <BinaryPrefix rdf:ID="tebi">
 <hasExponent rdf:datatype="&xsd;int">40</hasExponent>
 </BinaryPrefix>
 <owl:Class rdf:ID="Temperature">
 <rdfs:subClassOf rdf:resource="#PhysicalEntity"/>
 </owl:Class>

114

<owl:Class rdf:ID="Time">
 <rdfs:subClassOf rdf:resource="#PhysicalEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="Unit"/>
 <owl:Class rdf:ID="UnitDerivedByMultiplying">
 <rdfs:subClassOf rdf:resource="#DerivedUnit"/>
 </owl:Class>
 <owl:Class rdf:ID="UnitDerivedByPrefixing">
 <rdfs:subClassOf rdf:resource="#DerivedUnit"/>
 </owl:Class>
 <owl:Class rdf:ID="UnitDerivedByRaising">
 <rdfs:subClassOf rdf:resource="#DerivedUnit"/>
 </owl:Class>
 <owl:Class rdf:ID="UnitDerivedByScaling">
 <rdfs:subClassOf rdf:resource="#DerivedUnit"/>
 </owl:Class>
 <owl:Class rdf:ID="UnitDerivedByShifting">
 <rdfs:subClassOf rdf:resource="#DerivedUnit"/>
 </owl:Class>
 <owl:Class rdf:ID="UserEntity">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>
 <owl:Class rdf:ID="WritingPad">
 <rdfs:subClassOf rdf:resource="#Hardward"/>
 </owl:Class>
</rdf:RDF>

115

Appendix B The Tasklet Foundation Ontology

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#"
 xml:base="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:p1="http://www.owl-ontologies.com/assert.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about=""/>
 <owl:ObjectProperty rdf:ID="asserts">
 <rdfs:domain rdf:resource="#Tasklet"/>
 <rdfs:range rdf:resource="#ContextCondition"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="ContextCondition">
 <owl:disjointWith rdf:resource="#DataType"/>
 <owl:disjointWith rdf:resource="#Function"/>
 <owl:disjointWith rdf:resource="#Tasklet"/>
 <owl:disjointWith rdf:resource="#Operator"/>
 </owl:Class>
 <owl:Class rdf:ID="DataType">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#extends"/>
 <owl:allValuesFrom rdf:resource="#DataType"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#ContextCondition"/>
 <owl:disjointWith rdf:resource="#Function"/>
 <owl:disjointWith rdf:resource="#Tasklet"/>
 <owl:disjointWith rdf:resource="#Operator"/>
 </owl:Class>
 <owl:Class rdf:ID="DataTypeCondition">
 <rdfs:subClassOf rdf:resource="#ContextCondition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasProperty"/>
 <owl:allValuesFrom rdf:resource="&owl;DatatypeProperty"/>
 </owl:Restriction>

116

</rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#ObjectCondition"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="dependsOn">
 <rdfs:domain rdf:resource="#Tasklet"/>
 <rdfs:range rdf:resource="#Tasklet"/>
 </owl:ObjectProperty>
 <Operator rdf:ID="equalTo"/>
 <owl:ObjectProperty rdf:ID="extends">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#DataType"/>
 <owl:Class rdf:about="#Function"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#DataType"/>
 <owl:Class rdf:about="#Function"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Function">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#extends"/>
 <owl:allValuesFrom rdf:resource="#Function"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#ContextCondition"/>
 <owl:disjointWith rdf:resource="#DataType"/>
 <owl:disjointWith rdf:resource="#Tasklet"/>
 <owl:disjointWith rdf:resource="#Operator"/>
 </owl:Class>
 <Operator rdf:ID="greaterThan"/>
 <Operator rdf:ID="greaterThanOrEqualTo"/>
 <owl:ObjectProperty rdf:ID="groupedWith">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:domain rdf:resource="#Tasklet"/>
 <rdfs:range rdf:resource="#Tasklet"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasEntity">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#ContextCondition"/>
 <rdfs:range rdf:resource="&owl;Class"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasInputDataTyppe">
 <rdfs:domain rdf:resource="#Tasklet"/>
 <rdfs:range rdf:resource="#DataType"/>
 </owl:ObjectProperty>

117

<owl:ObjectProperty rdf:ID="hasOperator">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#ContextCondition"/>
 <rdfs:range rdf:resource="#Operator"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasOutputDataType">
 <rdfs:domain rdf:resource="#Tasklet"/>
 <rdfs:range rdf:resource="#DataType"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasProperty">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#ContextCondition"/>
 <rdfs:range rdf:resource="&rdf;Property"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasReferenceObject">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#ObjectCondition"/>
 <rdfs:range rdf:resource="&owl;Thing"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="hasReferenceValue">
 <rdfs:domain rdf:resource="#DataTypeCondition"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="implementedBy">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#DataType"/>
 <owl:Class rdf:about="#Function"/>
 <owl:Class rdf:about="#Tasklet"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>
 <Operator rdf:ID="lessThan"/>
 <Operator rdf:ID="lessThanOrEqualTo"/>
 <Operator rdf:ID="notEqualTo"/>
 <owl:Class rdf:ID="ObjectCondition">
 <rdfs:subClassOf rdf:resource="#ContextCondition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasProperty"/>
 <owl:allValuesFrom rdf:resource="&owl;ObjectProperty"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#DataTypeCondition"/>
 </owl:Class>
 <owl:Class rdf:ID="Operator">
 <owl:disjointWith rdf:resource="#ContextCondition"/>
 <owl:disjointWith rdf:resource="#DataType"/>
 <owl:disjointWith rdf:resource="#Function"/>
 <owl:disjointWith rdf:resource="#Tasklet"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="provides">
 <rdfs:domain rdf:resource="#Tasklet"/>

118

<rdfs:range rdf:resource="#Function"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Tasklet">
 <owl:disjointWith rdf:resource="#ContextCondition"/>
 <owl:disjointWith rdf:resource="#DataType"/>
 <owl:disjointWith rdf:resource="#Function"/>
 <owl:disjointWith rdf:resource="#Operator"/>
 </owl:Class>
</rdf:RDF>

119

Appendix C The Service Foundation Ontology

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY tasklet "http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#" >
]>
<rdf:RDF xmlns="http://campus.comp.polyu.edu.hk/service-foundation.owl#"
 xml:base="http://campus.comp.polyu.edu.hk/service-foundation.owl"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:p1="http://www.owl-ontologies.com/assert.owl#"
 xmlns:tasklet="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://campus.comp.polyu.edu.hk/tasklet-foundation.owl"/>
 </owl:Ontology>
 <owl:ObjectProperty rdf:ID="accepts">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Port"/>
 <rdfs:range rdf:resource="&tasklet;DataType"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="belongsTo">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Port"/>
 <rdfs:range rdf:resource="#Task"/>
 <owl:inverseOf rdf:resource="#owns"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Channel"/>
 <owl:ObjectProperty rdf:ID="connectsTo">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Port"/>
 <rdfs:range rdf:resource="#Channel"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="consistsOf">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Task"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="EssentialTask">
 <rdfs:subClassOf rdf:resource="#Task"/>
 <owl:disjointWith rdf:resource="#ExpansionTask"/>
 </owl:Class>
 <owl:Class rdf:ID="ExpansionTask">
 <rdfs:subClassOf rdf:resource="#Task"/>
 <owl:disjointWith rdf:resource="#EssentialTask"/>
 </owl:Class>
<owl:ObjectProperty rdf:ID="hasSink">

120

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Channel"/>
 <rdfs:range rdf:resource="#InputPort"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasSrc">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Channel"/>
 <rdfs:range rdf:resource="#OutputPort"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="InputPort">
 <rdfs:subClassOf rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#OutputPort"/>
 </owl:Class>
 <owl:Class rdf:ID="OutputPort">
 <rdfs:subClassOf rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#InputPort"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="owns">
 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="#Port"/>
 <owl:inverseOf rdf:resource="#belongsTo"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Port">
 <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/>
 <owl:disjointWith rdf:resource="&tasklet;DataType"/>
 <owl:disjointWith rdf:resource="&tasklet;Function"/>
 <owl:disjointWith rdf:resource="&tasklet;Operator"/>
 <owl:disjointWith rdf:resource="&tasklet;Tasklet"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="requires">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="&tasklet;Function"/>
 </owl:ObjectProperty>
 <owl:Class rdf:ID="Service">
 <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/>
 <owl:disjointWith rdf:resource="&tasklet;DataType"/>
 <owl:disjointWith rdf:resource="&tasklet;Function"/>
 <owl:disjointWith rdf:resource="&tasklet;Operator"/>
 <owl:disjointWith rdf:resource="&tasklet;Tasklet"/>
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </owl:Class>
 <owl:Class rdf:ID="Task">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#owns"/>
 <owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="&tasklet;ContextCondition"/>
<owl:disjointWith rdf:resource="&tasklet;DataType"/>

121

 <owl:disjointWith rdf:resource="&tasklet;Function"/>
 <owl:disjointWith rdf:resource="&tasklet;Operator"/>
 <owl:disjointWith rdf:resource="&tasklet;Tasklet"/>
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 </owl:Class>
 <rdf:Description rdf:about="&tasklet;ContextCondition">
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </rdf:Description>
 <rdf:Description rdf:about="&tasklet;DataType">
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </rdf:Description>
 <rdf:Description rdf:about="&tasklet;Function">
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </rdf:Description>
 <rdf:Description rdf:about="&tasklet;Operator">
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </rdf:Description>
 <rdf:Description rdf:about="&tasklet;Tasklet">
 <owl:disjointWith rdf:resource="#Port"/>
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Task"/>
 </rdf:Description>
</rdf:RDF>

	theses_copyright_undertaking
	b23214326

