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Abstract

Abstract of the thesis entitled “Analysis and processing of nonlinear

time series — from speech to neurophysiological signals”

submitted by Mr. Junfeng Sun for the degree of Doctor of Philosophy at

The Hong Kong Polytechnic University in September 2008

Chief supervisor: Dr Michael Small

This thesis presents new methods of nonlinear signal analysis and process-

ing and their applications. In particular, these methods are inspired by multiple

disciplines (nonlinear time series analysis, signal processing, chaos theory, and

circular statistics), and applied to analyze, characterize, and process complicated

observed signals such as speech signals, laser data, EEG data, and those mea-

sured from coupled chaotic systems. Three topics, which are different but related

to each other, have been studied.

The first topic is noise reduction for chaotic time series and its application

in speech enhancement. The local projection (LP) method is powerful in reduc-

ing white noise for chaotic time series. But for the case with coloured noise,

LP is no longer effective. By investigating the energy distributions of coloured

noise and chaotic time series in the local phase space reconstructed by time delay

embedding, a two-step extension of the LP method is proposed. Experimental

results show that this extension can reduce coloured noise for chaotic time series

effectively. Further, this extension is adapted to enhance speech signals which

are contaminated by environmental noise. Comparison shows that this scheme is
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comparable to the state-of-art algorithms of speech enhancement.

The second topic is time-frequency analysis. First, the reference phase point

and its neighbours in the phase space reconstructed by time delay embedding are

shown to cover data segments with similar waveform. To exploit the redundant

information possessed by the neighbors, a neighbourhood-based spectral estima-

tor is proposed for chaotic flow. With this estimator, the theory of time delay

embedding is bridged to the frequency domain. Then time-frequency analysis

with the spectral estimator is performed for chaotic time series. It is shown that

the hidden frequency of chaotic systems can be detected by this method reliably

and noisy chaotic time series can be distinguished from colored noise which has

similar spectra by their different ridge patterns in the time-frequency plane.

The last topic is synchronization analysis. Synchronization is a coopera-

tive behaviour by which coupled systems evolve with the same rhythm. It can

help to understand the underlying mechanism and gain new applications such

as providing clinical evidence. Our contributions include four aspects. First, a

neighbourhood-based method is proposed to estimate instantaneous phase (IP) in

the phase space reconstructed by time delay embedding. Simulations show that

this method is robust to noise and can avoid overestimation of the degree of phase

synchronization (PS). Second, several definitions of IP are revisited and further

unified into a framework which defines IP by combing the Hilbert transform with

specific filter. Third, an analytical study of the effect of noise in IP estimation

and PS detection is performed. The distribution of IP error induced by noise

is shown to be a scale mixture of normal distribution. Fourth, a band-weighted

synchronization index is proposed based on the PS index in each frequency band

specified by a bank of filter. It is tested by toy models and further applied to EEG

signals, yielding positive results
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Chapter 1

Introduction

1.1 Motivation and objectives

Since Edward N. Lorenz reported the Lorenz system in his paper entitled

“Deterministic nonperiodic flow” in 1963 [1], chaos has drawn great attention

for it is ubiquitous in both nature (e.g., species interactions in food webs [2])

and man-made systems (e.g., the Lorenz system), and also has many applications

(e.g., chaos-based communication). A fundamental characteristic of chaotic sys-

tem is that it is sensitive to initial conditions, which means that its phase trajec-

tories with almost the same initial conditions diverge exponentially with respect

to time as they evolve. This characteristic is also referred to as the “butterfly ef-

fect”, and the divergence rate can be quantified by Lyapunov exponents [3]. As

a result of this effect, the chaotic system appears to be random and can only be

predicted for a short time, even though it is well defined and contains no random

parameters. Another important characteristic of chaotic system is state recur-

rence. This concept goes back to Poincaré who stated that the phase trajectory of

certain systems will, after a sufficiently long time, returns arbitrarily close to any

former phase state. State recurrence of chaotic system can be characterized by

recurrence plot [4, 5] and recurrence time statistics [6].

Usually, the chaotic systems are not clearly known in advance, and only

scalar time series observed from them are available. Takens’ embedding theorem

1



2 Chapter 1. Introduction

provides a framework to investigate the underlying dynamics with only the ob-

served time series [7, 8]. State vectors are first appropriately reconstructed with

the scalar time series by time delay embedding. Then this sequence of vectors

can be considered as a sample of a phase trajectory of the underlying dynam-

ics in the reconstructed (artificial) phase space, which is topologically equivalent

to the evolution of the dynamical system, if the observation function are smooth.

Hence, the invariants, such as Lyapunov exponents and correlation dimension [9],

can be calculated in the phase space reconstructed with the scalar time series. A

variety of techniques, such as recurrence plot, recurrence statistics, Poincaré sec-

tion, and nonlinear autoregressive modeling, have been proposed to explore the

underlying dynamics in the reconstructed phase space and can reveal inherent in-

formation beyond traditional statistics [10–12]. In the reconstructed phase space,

the state recurrences of a reference phase point turn out to be its nearest neigh-

bors, which can provide redundant information but recur with no obvious tempo-

ral regularity [13]. The redundant information possessed by state recurrences has

been utilized by techniques such as the local projection method (LP) [14], non-

linear prediction [15, 16], and nonlinear autoregressive modeling [12], resulting

in better performances than the traditional techniques (e.g., linear autoregression)

which are based on linear models and neglect state recurrences.

One difficulty in analyzing chaotic time series is that noise is, more or less,

present in the observed data, especially when they are measured from real sys-

tems 1. Chaotic time series usually have broad spectra, which overlap with those

of noise in a large range in the frequency domain. As a result, it is difficult to

eliminate the noise in contaminated chaotic time series by traditional noise re-

duction methods which are based on linear models. In the early 1990s, the LP

method, which is based on the theory of time delay embedding, has been pro-

posed and further shown to be a promising way to reduce noise for chaotic time

series [14, 18–26]. This method has yielded encouraging results for both noisy

artificial data (e.g., measured from the Lorenz system) and chaotic experimental

data (e.g., NMR-laser data) [22]. Moreover, the LP method also has successful

1The noise may come from other sources (i.e., environmental noise) or be induced by obser-
vation instruments (i.e., measurement noise). These examples are additive noise and treated as
measurement noise in this thesis. Another kind of noise is dynamic noise, which not only affects
observation of the present state but also enters into the system and thus affects the future evolution
of the dynamical system [17].



1.1. Motivation and objectives 3

applications to signals which are not really chaotic but show chaotic-like fea-

tures, for examples, fetal electrocardiograph (ECG) extraction [27] and speech

enhancement [25, 28]. However, these studies almost all assume the noise is

white, and the case of chaotic data with colored noise has not yet been tackled.

Spectral analysis provides another framework for chaotic time series analy-

sis [29–33]. However, the traditional spectral analysis, which is usually based on

the Fourier transform or other linear models, often fails when applied to chaotic

data which have broad spectra. For a chaotic signal with complicated evolution,

the simple frequency domain representation may obscure information related to

timing, and a time-frequency joint analysis is therefore desirable. However, few

studies of time-frequency analysis for chaotic time series have been reported.

Chandre et al. have performed a time-frequency analysis of Hamiltonian sys-

tems [34]. It has been shown that the ridge pattern, extracted from a wavelet

decomposition of the time series observed from the Hamiltonian systems, can

reveal the phase-space structures (resonance transitions, trappings, etc.). What’s

more, the relationship between the theory of time delay embedding and spectral

analysis has not been discussed yet.

Most of the techniques mentioned above are designed for data measured

from a single chaotic system. However, the systems in real life often interact

with each other. Then how can we characterize the dynamics of coupled sys-

tems? Synchronization analysis addresses the problem. Synchronization is a

cooperative behavior which occurs in the coupled systems when they evolve with

the same rhythm [35]. The concept of synchronization goes back to Huygens

who observed the synchronous behavior of two pendulum clocks suspended on

one wooden beam in the 1660s. Research of chaos synchronization starts from

the 1980s [36]. For a chaotic system, phase trajectories that start from nearly the

same initial conditions diverge exponentially. It therefore seems quite surpris-

ing that coupled chaotic systems can become completely synchronized, but this

is indeed the case. Chaos synchronization has been realized in physical systems

and applied in secure communication [37]. In the 1990s, the concept of phase

synchronization (PS), a weak form of synchronization, is proposed to character-

ize the coupled chaotic oscillators whose instantaneous phases (IP) are locked

while their corresponding instantaneous amplitudes are uncorrelated [38, 39]. A
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variety of synchronization measures have been proposed to quantify the degree

of synchronization with observed chaotic time series [35, 38, 40–51]. Several

of them, including nonlinear interdependence, mutual information, and two PS

indexes, have been compared with both real electroencephalographic (EEG) sig-

nals [49] and artificial data measured from typical coupled chaotic systems. The

results show that these measures can give a similar tendency in the degree of

synchronization [49], but can be greatly degraded when the noise level is rela-

tively high [50]. It is difficult to say which measure is the best in general, and

it is not easy to gain reliable detection, especially for the case with only noisy

noncoherent time series.

PS has many applications in both natural (e.g., neuronal oscillations [52,53])

and engineering systems (e.g., chaotic laser array [41]), especially in investigat-

ing biomedical signals, for example, brain oscillations [53–55]. However, there

are still several open problems of PS detection to be addressed. First, how to treat

noncoherent data. For noncoherent data, the IP, defined by the Hilbert transform

directly, is no longer monotonic. This results in negative instantaneous frequency

which is physically meaningless 2. Usually, a narrow bandpass filter is applied

as preprocessing. Then the problem turns out to be what kind of filter should be

used. Second, quantitatively, how the noise will affect the detection of PS from

noisy data. For contaminated data, artificial phase slips, introduced by noise,

will reduce the reliability of the estimated synchronization index (SI). A band-

pass pre-filtering may suppress the effect of noise, but may introduce spurious

overestimation of SI as well [56]. Third, how to quantify the degree of PS on the

whole. With pre-filtering, only PS between inband components are considered

and the components outside the passband are neglected, though these neglected

components may be synchronous and make contribution to the interaction of the

whole systems as well.

In this thesis, we aim to develop robust methods for noisy chaotic or chaotic-

like time series based on two points: 1) combining the theory of time delay em-

bedding with the techniques of signal processing; 2) utilizing the redundant infor-

mation possessed by state recurrences. As far as we know, few studies have been

2Instantaneous frequency is defined as the derivative of IP. If IP does not increase
monotonously with respect to time, instantaneous frequency will be negative when IP turns to
decrease.
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reported from these two viewpoints. In this thesis, we present our solutions to the

problems mentioned above. In particular, three new methods, i.e., an extension of

the LP method for chaotic data contaminated by colored noise, a neighborhood-

based time-frequency analysis for chaotic flow, and a neighborhood-based SI, are

proposed, utilizing the state recurrences. An analytical study on the effect of

noise in IP estimation and PS detection is performed, and a band-weighted SI is

further proposed. All these proposed methods are first tested by toy models (e.g.,

the Lorenz system) and further applied to various real data such as speech and

EEG signals.

1.2 Outline of the thesis

This thesis includes seven chapters, and presents three main topics. The

structure of this thesis and the relationship between each topic are illustrated in

Fig. 1.1. In particular, they are organized as follows.

In Chapter 2, the background, including the theory of time delay embedding,

the state recurrences of chaotic systems, the LP method, the Blackman-Tukey

spectrum estimator, time-frequency analysis, and synchronization analysis, are

introduced.

In Chapter 3, an extension of the LP method is proposed and further applied

to chaotic time series and speech data. The energy of chaotic data and colored

noise is first shown to distribute in a different way in the local phase space. With

this observation, a two-step extension of the LP method is proposed to deal with

the case with colored noise. Further, applications of this extension to both chaotic

data with colored noise and speech contaminated by real environmental noise are

given.

In Chapter 4, a time-frequency analysis is performed for chaotic flow (in-

cluding the Lorenz time series, the Rössler time series, and experimental laser

data) with a neighborhood-based spectrum estimator, which utilizes state recur-

rences. Noisy chaotic flow is distinguished from colored noise according to their

different ridge patterns in the time-frequency plane. Moreover, the relationship

between the theory of time delay embedding and the frequency domain is prop-
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erly explained with the proposed spectrum estimator.

In Chapter 5, a neighborhood-based method is proposed to detect PS, comb-

ing the theory of time delay embedding with the Hilbert transform. Simulations

with toy models show that this method can avoid the overestimation induced by

narrow bandpass filter.

In Chapter 6, PS detection is examined from the viewpoint of signal pro-

cessing. First, several definitions of IP are revisited and further unified into a

framework of IP definition. Second, the effect of noise in IP estimation and PS

detection is study analytically. The distribution of the IP error induced by noise

is shown to be a scale mixture of normal distribution. Under certain assumption,

the estimated PS index is degraded by a factor, which is determined only by the

noise level in the pass band. Third, a band-weighted SI is proposed to quantify

the degree of synchronization on the whole, and further applied to chaotic time

series and EEG signals.

In Chapter 7, contributions of this thesis are summarized and possible di-

rections of future research are given.
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Figure 1.1: Structure of this thesis.
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Chapter 2

The background of nonlinear time

series analysis and processing

This chapter introduces the background of nonlinear time series analysis and

processing. In particular, the theory of time delay embedding, the local projection

method, the Blackman-Tukey spectrum estimator, time-frequency analysis, and

synchronization analysis, are reviewed.

2.1 Nonlinear time series analysis

The theory of time delay embedding may be the most popular framework

for chaotic time series. In this section, this theory is first reviewed, and further

state recurrence, an important feature of chaotic systems, is introduced. Note that

other aspects (e.g., Lyapunov exponents [3]) of chaotic systems are not reviewed

here because they are not relevant to the focus of this thesis.

2.1.1 Time delay embedding

Let {s(n)}L−1
n=0 denote a L-sample time series, which is measured from a

dynamical system with sampling interval ∆t. To disclose the underlying dynam-

9
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ics, one can embed {s(n)} into a d-dimensional phase space by constructing the

so called delay coordinate vectors (also called phase vectors and phase points)

{s(n)}L−1
n=(d−1)κ,

s(n) = [s(n− (d− 1)κ), s(n− (d− 2)κ), . . . , s(n− κ), s(n)]T , (2.1)

where d is embedding dimension, κ is an integer number which indicates the

amount of time delay (i.e., κ∆t in time units), and superscript (·)T denotes vec-

tor transpose. According to the embedding theorem which was first presented by

Takens [7] and further generalized by Sauer et al. [8], the reconstructed attractor

formed by the phase vectors {s(n)} is topologically equivalent to the evolution

of the corresponding dynamical system when d > 2D2, where D2 is the corre-

lation dimension [9] of the system. The correlation dimension is a metric which

quantifies the fractal geometry of the attractor [11]. It can also be considered as

the number of freedom degrees of the dynamical system. A schematic diagram

of phase space reconstructed by time delay embedding is as Fig. 2.1, in which the

phase portrait [Fig. 2.1(b)] of a Lorenz time series [Fig. 2.1(a)] is plotted.

The validity of Takens’ embedding theorem requires, however, that the sys-

tem is autonomous and stationary. For a nonstationary time series, the embed-

ding theorem is not directly applicable. But the non-stationarity could poten-

tially be overcome by the technique of over-embedding, which states that the

dynamics of a D2-dimensional deterministic system driven by Dp slowly varying

parameters can be faithfully reconstructed by embedding the observation into a

d > 2(D2 + Dp) dimensional phase space [57]. Theoretically, if a d-dimensional

embedding makes a faithful representation of the dynamics, the embedding of

a greater dimension does well too [11]. However, a greater embedding dimen-

sion requires additional computation cost. It is therefore necessary to find the

minimum embedding dimension dm, which is less than 2D2 in general. In nonlin-

ear time series analysis, dm is a useful measure to quantify a nonlinear process,

and can be effectively determined by the false-nearest neighbors (FNN) algo-

rithm [58].
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Figure 2.1: Schematic diagram of time delay embedding and state recurrence.
(a) a segment of Lorenz time series; (b) the phase portrait of the data in (a),
reconstructed by time delay embedding; (c) a local blowup of the phase portrait
in (b), the circle with radius ε denotes the ε-neighborhood of the reference phase
point which is located at the center of the circle, other points in this circle denote
the neighbors, i.e., the state recurrences, of the reference phase point; (d) statistics
of the recurrence time of all the phase points.

2.1.2 State recurrence

Besides the sensitivity to initials, state recurrence is another important char-

acteristic of chaotic systems. The concept of state recurrence goes back to Poincaré’s

recurrence theorem which states that certain systems can, after a sufficiently long

time, return arbitrarily close to any former state. Given a time series {s(n)}L−1
n=0 ,

its phase portrait can be obtained by time delay embedding. In the reconstructed

phase space, the state recurrences of reference phase point s(n) turn out to be its

neighbors in the ε-neighborhood, which is defined as

Nn , {s(k) : ‖s(k)− s(n)‖ < ε, (d− 1)κ ≤ k ≤ L− 1}. (2.2)
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The ε-neighborhood can be further arranged as Nn = {s(k1), s(k2), . . . , s(kN)},
k1 < k2 < · · · < kN , where N = |Nn| is the number of neighbors in Nn. A

schematic diagram of ε-neighborhood is shown in Fig. 2.1(c). The ε-neighborhood

is a collection of phase points whose distances to the reference phase point are

smaller than ε. The neighbors, i.e., the state recurrences, of the reference phase

point can provide redundant information for the reference phase point but recur

with no obvious temporal regularity, as will be demonstrated in detail in Chap-

ter 4.

The recurrence time for reference point s(n) is defined as the time intervals

between temporally consecutive neighbors [6], i.e.,

Tn(i) = ki+1 − ki, i = 1, . . . , N − 1. (2.3)

The recurrence time of each neighbor appears to be irregular [see Fig. 2.1(d)];

nonetheless, the mean recurrence time obeys a scaling law [6]. Techniques based

on state recurrence have been proposed [4, 5, 59, 60]. For example, the statistics

of recurrence time has been applied to detect nonstationarity and state transi-

tions [59]. Another technique based on state recurrence is the recurrence plot,

which can visualize the times at which a phase trajectory visits roughly the same

area in the phase space [4, 5]. Moreover, the pattern of the recurrence plot can

be quantified by recurrence quantification analysis based on its small-scale struc-

tures which can reflect the number and duration of recurrences of a dynamical

system [5].

In chaotic signal processing, on the one hand, techniques, such as the LP

method [18, 25] and nonlinear prediction [16], can obtain positive results by uti-

lizing the redundant information possessed by state recurrences; on the other

hand, the conventional techniques, such as linear autoregression and wavelet anal-

ysis, often fail in studying chaotic time series because they neglect the scattered

state recurrences. So techniques, which can utilize the long-term state recurrences

in chaotic time series, are expected to perform better and gain further insights be-

yond those traditional techniques.
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2.2 Noise reduction for chaotic time series

Noise is unavoidable in observed time series. The presence of noise may

obscure or even destroy the fractal structure of a chaotic attractor, and may cor-

rupt the calculation of invariants such as correlation dimension and Lyapunov

exponents [21]. Therefore, it is highly desirable to reduce the noise level. How-

ever, the conventional noise reduction methods are designed for signals that can

be treated by certain linear models and often fail to eliminate noise from a con-

taminated chaotic time series [11]. Noise reduction based on the theory of time

delay embedding has been widely studied, and may be the most promising way

to reduce noise for chaotic time series [14, 18–20, 22–24]. Several methods have

been proposed independently to achieve this in the local phase space [18–20],

and further proved to be special cases of an optimal one [14], which is named

the local projection (LP) method. The LP method has been successfully applied

to both artificial data (e.g., data measured from the Lorenz system) and real data

such as NMR-laser data [22], ECG signals [61], and speech signals [25, 28].

Recently, the local subspace (LSS) method was proposed using weighted

projection in the local phase space, and the LP method [25] is proved to be its

least-square case [26, 62]. The LSS method, actually an extension of the linear

subspace technique [63] to the local phase space, utilizes the redundant infor-

mation of state recurrences appropriately and thus can reduce noise for chaotic

data effectively. Nevertheless, both the LP method and the LSS method assume

the noise is additive white noise. A more general phase space projector has been

further deduced with no assumption of independence between noise and clean

signal [64]. However, this generalization seems impossible to be implemented

numerically, and only a reduced case with an additional independence assump-

tion was implemented.

2.2.1 The locally linear model

Given a d-dimensional vector sequence {s(n)}L−1
n=(d−1)κ, the trajectory formed

by it in the reconstructed phase space represents the evolution of the correspond-
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ing dynamical flow,

s(n + 1) = F [s(n)], (2.4)

however, the mapping function F (·) is usually unknown in advance. Since F (·)
may be highly nonlinear, it is difficult, if not impossible, to estimate its exact

global form directly from the vector sequence {s(n)}. A way to treat this prob-

lem is to approximate the globally nonlinear function F (·) in the local phase

space, i.e., the ε-neighborhood Nn [Eq. (2.2)], by a locally linear function F̂n.

Then, the collection of all these locally linear models, i.e., {F̂n}L−1
n=(d−1)κ, can

approximates the global modeling function F (·) reasonably. Although locally

linear, this approximation is still globally nonlinear. As long as the local map-

ping functions are properly designed, they are expected to give a better modeling

for the underlying dynamics than a globally linear approximation.

2.2.2 The local projection method

Let s(n) = x(n) + w(n) denote the time series contaminated by noise,

where x(n) is the original clean data and w(n) is the additive white noise with

zero mean. By embedding the noisy time series {s(n)}L−1
n=0 in a d-dimensional

phase space, a simple estimation of x(n) can be obtained as x̂(n) = s̄(n), where

s̄(n) , 1

N

∑

s(k)∈Nn

s(k), (2.5)

is the geometric mean of the neighbors in the ε-neighborhood of reference point

s(n) [20].

The LP method assumes that the noise is white and the local phase space,

i.e., the ε-neighborhood Nn, of reference point s(n), can be divided into an M -

dimensional signal subspace and a (d − M)-dimensional noise subspace [14,

25], where M is the minimum embedding dimension of the dynamical system

[58]. The signal subspace contains most of the clean signal plus a certain amount

of the noise components, while the noise subspace contains most of the noise

components and a certain, small, amount of the signal components. The energy

of white noise is almost uniformly distributed on each direction of the local phase

space. For a preset M , the noise subspace can be estimated by minimizing the
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total energy that is distributed in it. The minimization turns out to be the standard

eigenvalue decomposition for the covariance matrix Ĉn of the neighborhoodNn,

i.e.,

Ĉnui − λiui = 0, (2.6)

where matrix Ĉn is defined as

Ĉn =
1

N

∑

s(k)∈Nn

[s(k)− s̄(n)][s(k)− s̄(n)]T . (2.7)

Sorting the eigenvalues Λ = diag(λ1, λ2, . . . , λd) in descending order, the

eigenvectors U1 = [u1, . . . ,uM ], associated with the M largest eigenvalues, span

the signal subspace, and the eigenvectors U2 = [uM+1, . . . ,ud], corresponding

to the (d−M) smallest eigenvalues, span the noise subspace, respectively. Then

the phase vector sn can be decomposed as

s(n) = s̄(n) + U1U
T
1 [s(n)− s̄(n)] + U2U

T
2 [s(n)− s̄(n)] (2.8)

in the local phase space, where U1U
T
1 [s(n)− s̄(n)] and U2U

T
2 [s(n)− s̄(n)] are

the projections of [s(n) − s̄(n)] in the signal subspace and the noise subspace,

respectively. Eliminating U2U
T
2 [s(n)− s̄(n)], we can obtain the enhanced signal

vector,

x̂(n) = s̄(n) + U1U
T
1 [s(n)− s̄(n)]. (2.9)

As each element of the time series {s(n)} appears as an entry of d succes-

sive time delay vectors, s(l), l = n, . . . , n + (d− 1)κ, there are d enhancements

for element s(n) which may be different in value. Then the arithmetic mean over

these values is taken as the final enhancement of element x(n). More details

about the LP method and its generalization can be found in Refs. [25, 26, 62].
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2.3 Spectrum estimation

and time-frequency analysis

Spectral analysis and time-frequency analysis are two popular tools for time

series [29–33]. Spectral analysis has been applied to chaotic time series [29,

31–33, 65]. For example, it has been used to distinguish chaotic sequence from

colored noise [29], However, it is not so easy [33, 65], especially for the case

of chaotic data contaminated by observational noise. This is because the sim-

ple spectral analysis may obscure information related to timing. Time-frequency

joint analysis is therefore desirable to unveil the features of dynamical systems [66].

However, few studies of time-frequency analysis for chaotic time series have been

reported.

There are various methods to estimate spectra from a time series and differ-

ent ways to implement time-frequency analysis. In this section, we only intro-

duce the Blackman-Tukey (BT) spectrum estimator and the basic idea of time-

frequency analysis [67–69], which are relevant to the neighborhood-based time-

frequency analysis to be presented in Chapter 4.

2.3.1 Spectrum estimation

Given a signal s(t), its Fourier transform is,

S(f) =

∫ ∞

−∞
s(t)e−j2πftdt. (2.10)

For a L-sample time series {s(n)}L−1
n=0 which are measured from s(t) with sam-

pling interval ∆t, its discrete-time Fourier transform (DTFT) is defined as,

S(ω) =
L−1∑
n=0

s(n)e−jωn, (2.11)
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in radians per sample. If the DTFT is defined in units of Hz, Eq. (2.11) turns out

to be

S(f) =
L−1∑
n=0

s(n)e−j2πfn/fs , (2.12)

where fs = 1
∆t

is sampling frequency. Note that in Eq. (2.11), ω denotes digital

frequency in units of radians/sample; while in Eq. (2.12), f denotes physical

frequency in units of Hz. The relationship between them are ω = 2πf
fs

. In this

thesis, both denotations ω and f are used for convenience. Denotation ω is often

adopted in the case of discrete time.

If s(n) is wide-sense stationary, its autocorrelation is defined as

rs(k) = lim
L→∞

1

2L + 1

L∑
n=−L

s(n + k)s∗(n), (2.13)

where the superscript (·)∗ denotes the conjugate of (·). Given only a finite point

sequence [s(0), s(1), . . . , s(L − 1)]T , rs(k), defined by Eq. (2.13), can be esti-

mated by

r̂s(k) =
1

L

L−1−k∑
n=0

s(n + k)s∗(n), k = 0, 1, . . . , L− 1, (2.14)

with r̂s(−k) = r̂∗s(k) for −L < k < 0 and r̂s(k) = 0 for |k| ≥ L. Then the

power spectra, known as periodogram, can be obtained by taking the DTFT to

r̂s(k), i.e.,

P̂per(ω) =
L−1∑

k=−L+1

r̂s(k)e−jωk. (2.15)

There are two ways to reduce the variance of periodogram, one is to reduce the

variance of the estimated autocorrelation by averaging, the other is to decrease

the contribution of the unliable estimates by applying a window to them. The BT

spectrum estimator, given by

P̂BT (ω) =
L−1∑

k=−L+1

r̂s(k)w(k)e−jωk, (2.16)

takes the latter strategy, where w(k) is a window that is applied to the autocorre-

lation estimates r̂s(k). If w(k) is a rectangular window between [−Lw Lw] with
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Lw < L − 1, then the estimates of r̂s(k) at (Lw L − 1], which have the largest

variance, are neglected in spectrum estimation. As a results, the estimated power

spectra have a smaller variance, at the price of a reduction in frequency resolu-

tion, since a smaller number of autocorrelation estimates are used in spectrum

estimation.

If w(k) is a Bartlett (triangular) window, i.e.,

w(k) =

{
L−|k|

L
; |k| ≤ L

0 ; |k| > L
, (2.17)

the BT spectrum estimator [Eq. (2.16)]can be written as

P̂BT (ω) =
1

L

L∑

k=−L

(L− |k|)r̂s(k)e−jωk =
1

L
eHR̂se, (2.18)

where e = [1, ejω, ej2ω, . . . , ej(L−1)ω]T , R̂s is the estimate of autocorrelation

matrix, and the superscript (·)H denotes the Hermitian transpose of (·), i.e.,

(·)H = [(·)T ]∗. If s(n) is wide-sense stationary, its L × L autocorrelation ma-

trix is defined as Rs = E{ssH} with s = [s(0), s(1), . . . , s(L− 1)]T . Given only

a finite point sequence, Rs can be estimated by

R̂s =




r̂s(0) r̂∗s(1) r̂∗s(2) . . . r̂∗s(L− 1)

r̂s(1) r̂s(0) r̂∗s(1) . . . r̂∗s(L− 2)

r̂s(2) r̂s(1) r̂s(0) . . . r̂∗s(L− 3)
...

...
... . . . ...

r̂s(L− 1) r̂s(L− 2) r̂s(L− 3) . . . r̂s(0)




, (2.19)

where r̂s(k) is the autocorrelation estimates [Eq. (2.14)] and has property r̂s(k) =

r̂∗s(−k).

With eigenvalue decomposition of the L × L matrix R̂s, the BT spectrum

estimator P̂BT (ω) [Eq. (2.18)] can be expressed as

P̂BT (ω) =
1

L

L∑
i=1

λi|eHui|2, (2.20)

where the eigenvalues of R̂s are arranged in descending order, λ1 ≥ λ2 ≥ · · · ≥
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λL, and ui is the eigenvector associated with λi. A principle component version

of P̂BT (ω) is

P̂PC−BT (ω) =
1

L

K∑
i=1

λi|eHui|2, (2.21)

where K < L.

2.3.2 Time-frequency analysis

The straightforward representation of a signal is s(t), i.e., as a function of

time in the time domain. This representation has the highest time resolution

but does not give any frequency information of the signal. With the Fourier

transform of s(t), the signal can be represented in the frequency domain, i.e.,

S(f) [see Eq. (2.10)]. In contrast, the frequency domain representation has the

highest frequency resolution but shows no time information. A tradeoff between

these two representations is time-frequency representation (TFR) which provides

some temporal information and some spectral information simultaneously. TFRs

are useful in analyzing the signals which contain multiple time-varying frequen-

cies [66, 69]. There are various TFRs, such as the short-time Fourier transform

(STFT) and Wigner distribution. Here only STFT is introduced.

To study the properties of a signal at a particular time t, a small piece of

signal around t is usually extracted by a window g(t). The extracted signal,

st(τ) = s(τ)g(τ − t), is a function of two times, i.e., the fixed time t which we

are interested in, and the running time τ which indicates the temporal distance to

the fixed time. Then the Fourier transform to the short-time signal st(τ) is

St(f) =

∫ ∞

−∞
s(τ)g(τ − t)e−j2πfτdτ. (2.22)

For each time t, a spectra can be obtained, and all the spectra of different time

yield a time-frequency distribution of the energy of s(t), i.e.,

P (t, f) = |St(f)|2. (2.23)

This time-frequency distribution is commonly named spectrogram. Here the

power spectra of the windowed signal is obtained by the Fourier transform. In
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Chapter 4, a neighborhood-based method is proposed to estimate the power spec-

tra of the windowed chaotic time series.

2.4 Synchronization analysis

Synchronization can be considered as an “adjustment of rhythms of oscillat-

ing objects due to their weak interaction” [35]. This cooperative behavior exists

in both natural and engineering systems, for examples, coupled chaotic oscilla-

tors [38, 44], chaotic laser array [41], biomedical signals [39], neuronal oscil-

lations [52–54], electrochemical oscillations [70], and coupled nanomechanical

oscillators [71]. This phenomenon can not only reveal the mechanism and func-

tion of the coupled systems (e.g., communication during cognitive processing

in human brain [54]) but also help to gain new applications such as providing

clinical evidence in Parkinson’s disease treatments [55]. Therefore, it has drawn

increasing attention in recent years.

A variety of methods have been proposed to detect synchronization with ob-

served time series [35, 38, 40–51]. Several synchronization measures, including

nonlinear interdependence [46–48], mutual information, coherence function, and

two PS indexes, have been compared with real EEG signals. We show that these

measures can give a similar tendency in the degree of synchronization [49]. Fur-

ther, these measures are tested with artificial data measured from typical coupled

chaotic systems. Results show that these measures work effectively when the

noise level is low, but can be greatly degraded when the noise level is relatively

high [50]. It is difficult to say which measure is the best in general.

2.4.1 Synchronization definition

Let v1,2 denote the set of dynamical variables which describe the state of

two coupled self-sustained oscillators, Σ1,2, respectively 1. Synchronization has

been found to present a variety of forms:

1For briefness, here v1 and v2 are denoted by v1,2, and system Σ1 and system Σ2 are denoted
by Σ1,2, respectively. In this thesis, this kind of abbreviation is adopted unless stated otherwise.
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• Complete synchronization (CS). For two identical oscillators which are

coupled, CS occurs when their states become to be completely identical

after an enough long time evolution. In other words, for different initials

v1(0) and v2(0), the difference of their states |v1(t) − v2(t)| → 0, as

t →∞.

• Generalized synchronization (GS). GS occurs in coupled oscillators when

there is a function Ψ(·), such that the relation v1(t) = Ψ(v2(t)) holds after

a transitory evolution from appropriate initials. It means that the dynamical

state of one of the oscillators is completely determined by the state of the

other. GS can occur in coupled oscillators which are different (e.g., there is

mismatch between the parameters of the two oscillators). Actually, CS is a

particular case of GS when the relation function is identity, i.e., Ψ(v2) =

v2.

• Lag synchronization (LS). LS occurs when the relation v1(t) = v2(t + τ

holds for two coupled oscillators, where τ is time lag. This means that the

dynamical state of one of the oscillator follows the state of the other.

• Phase synchronization (PS). PS implies that the coupled oscillators are

phase locked. More details will be introduced in the next section.

2.4.2 Phase synchronization

PS is a dynamical behavior of weakly coupled oscillators whose instanta-

neous phase (IP) are locked while their instantaneous amplitudes (IA) may be

uncorrelated. Let φ1,2(t) denote the IPs of the coupled oscillators Σ1,2, respec-

tively. l:m PS occurs when the inequality |lφ1(t) − mφ2(t)| < const. holds,

where const. is a constant, and l and m are positive integers. When l:m = 1, the

l:m PS reduces to be the most straightforward PS, i.e., the 1:1 PS. A schematic

diagram of 1:1 PS is given in Fig. 2.2, in which, the IP difference is smaller than

a constant [Fig. 2.2(b)], while their IAs are uncorrelated [Fig. 2.2(e)].

Various IPs have been defined. One class of them is based on particular

transforms, such as the Hilbert transform [38], the wavelet transform [40], and

a generalized transform with a Gaussian filter [41], to the observable signal.
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Figure 2.2: Schematic diagram of phase synchronization in coupled chaotic sys-
tems. (a) two time sequences which are measured from the variables x1,2 of
coupled Lorenz systems; (b) the IP deference between φ1 and φ2 are smaller than
a constant, which implies that the coupled systems are phase locked; (c) and (d)
illustration of IP definition for x1,2 respectively; (e) the IAs of the coupled sys-
tems are uncorrelated; (f) the distribution of the IP difference which are wrapped
into (−π π], the concentrated distribution implies that the coupled systems are
phase synchronized.

Another class of IP is defined as the angle of evolving trajectory, which is re-

constructed from the two-dimensional projection of the system [35, 42] or the

time derivative of the projection [43, 44], around a fixed point. Among these IP

definitions, the most popular one is based on the Hilbert transform. Given the

observable signal s(t), its analytic signal is defined as s(h)(t) = s(t) + js̃(t) =

A(h)(t)ejφ(h)(t), where A(h)(t) is the IA, φ(h)(t), given by

φ(h)(t) = arg [s(h)(t)] = arctan
s̃(t)

s(t)
, (2.24)

is the IP, and s̃(t) = H[s(t)] = 1
π

P.V.
∫∞
−∞

s(τ)
t−τ

dτ is the Hilbert transform of s(t)

(here P.V. means that the integral is taken in the sense of Cauchy principal value),
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in which H(·) denotes the operator of Hilbert transform. This IP definition is

illustrated in Figs. 2.2(c) and 2.2(d), in which x
(h)
1,2 evolve counterclockwise in the

(x1,2, x̃1,2)-plane, respectively. The IPs are defined as the angles between −→ox1,2

and −→ox(h)
1,2 , i.e., φ1,2 = ∠x1,2ox

(h)
1,2 , respectively, which increase as time going on.

Let ϕ = [lφ1(n) −mφ2(n)]mod(2π) denote the l:m IP deference between

Σ1,2 which are wrapped into (−π π] by reducing its modulo 2π. There are

two popular PS indexes which both quantify how concentrated the distribution of

phase difference is. These two indexes are based on entropy [39, 56] and circular

statistics [72, 73], respectively, and defined as follows:

• The PS index based on entropy is defined as

ρ = (Smax − S)/Smax, (2.25)

where S = −∑K
i=1 pi ln pi is the entropy of the distribution p(ϕ), Smax =

ln K, and K is the number of bins of distribution [39, 56].

• The PS index based on circular statistics is mean phase coherence (MPC),

which is defined as ρ = ‖E[ejϕ]‖ [72, 73]. Given estimates {ϕ̂(n)}L−1
n=0 ,

MPC can be estimated by

ρ̂ =
{[ 1

L

L−1∑
n=0

cos ϕ̂(n)
]2

+
[ 1

L

L−1∑
n=0

sin ϕ̂(n)
]2}1/2

. (2.26)

2.4.3 Physical conditions for instantaneous phase definition

Signal s(t) can be written as s(t) = R[A(t)ejφ(t)], where R(·) denotes the

real part of complex variable (·). Usually, the corresponding imaginary counter-

part I[A(t)ejφ(t)] can not be observed and can only be assumed to relate to s(t)

by a certain operation, i.e., I[A(t)ejφ(t)] = H̃[s(t)]. To define IP, various opera-

tors H̃(·) have been proposed and the Hilbert transform H(·) is the most popular

one. Three physical conditions have been proposed to confine the operator H̃(·):

• Condition I: amplitude continuity and differentiability. This condition guar-

antees that the associated amplitude A(t) is continuous and differentiable.
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• Condition II: phase independence of scaling and homogeneity. This con-

dition means that the IPs of signal s(t) and c · s(t) are the same. In

other worlds, this condition requires the operator possesses the property

H̃[cs(t)] = cH̃[s(t)].

• Condition III: harmonic correspondence. This condition requires that for

any constant amplitude A > 0, frequency ω > 0, and phase ψ, the operator

satisfies H̃[A cos(ωt + ψ)] = A sin(ωt + ψ).

The Hilbert transform H(·) has been proven to be the only one that satisfies

these physical conditions [74]. Considering this, we only investigate the IP def-

inition based on the Hilbert transform in this thesis. More discussions on these

conditions and other IP definitions can be found in Ref. [74].



Chapter 3

Reducing noise

in the local phase space

In this chapter, a two-step extension of the local projection (LP) method

is proposed to reduce colored noise for chaotic time series in the local phase

space. Furthermore, this extension is adapted to enhance speech signals which

are contaminated by environmental noise.

With the observation that the energy of colored noise is mainly distributed

in a particular low dimensional subspace, a noise dominated subspace is first es-

timated by the energy distribution of colored noise. At step one, for the reference

phase point, the components projected into the noise dominated subspace are

deleted and the enhanced phase point is reconstructed with the remaining com-

ponents. The residual error of the output of step one tends to distribute on each

direction uniformly. So at step two, the LP method is further applied to the out-

put of step one, treating the residual error as white noise. Experiments show that

this two-step extension of LP performs well in eliminating colored noise for both

chaotic time series and speech signals.

25
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3.1 Introduction

3.1.1 Noise reduction in the local phase space

As introduced in Sec. 2.2, the presence of noise can greatly affect the anal-

ysis of chaotic time series. However, the conventional techniques based linear

models often fail to eliminate noise from contaminated chaotic time series [11].

The theory of time delay embedding provides a promising framework to reduce

noise for chaotic time series. Methods based time delay embedding reduce noise

in the local phase space by projection, and thus named the local projection (LP)

method [13, 14, 18–20, 22–26, 28, 61, 64]. All these methods decompose the lo-

cal phase space into two orthogonal subspaces, called the signal subspace which

contains most of the pure signal components plus some noise components and the

noise subspace that contains the remaining noise components and a small amount

of signal components. Moreover, these methods almost all assume the noise is

additive white noise. The case of chaotic time series contaminated by colored

noise has not yet been tackled 1. The LP method yields poor results for chaotic

time series contaminated by colored noise, because its estimated signal subspace

may include many large noise components.

To deal with the case with colored noise, a two-step extension of the LP

method is proposed in this chapter. This extension assumes that the colored noise

is stationary, and a segment of the colored noise or its covariance matrix can

be obtained in advance 2. At the first step, a noise dominated subspace can be

estimated (spanned by the eigenvectors associated with the several largest eigen-

values) by performing eigenvalue decomposition to the covariance matrix of the

colored noise. Then in each local phase space, the components of the reference

phase point projected into the noise dominated subspace are deleted and the en-

hanced phase point are reconstructed with the remaining components. After the

first step, most of the colored noise has been eliminated. The energy of residual

1In the frequency domain, a random sequence is called white noise if its spectra are flat,
otherwise it is called colored noise. Correspondingly, in the local phase space, the energy of
white noise distributes uniformly on each direction, while the energy of colored noise mainly
distributes in a particular low dimensional subspace.

2Note that this assumption is widely adopted in signal processing, for example, in speech
enhancement, a segment of pure noise can be obtained during a period of speech absence.
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error tends to distribute “uniformly” on each direction. Thus the residual error

can be treated as white noise and the LP method is further applied to the output

of the first step.

3.1.2 Speech enhancement with the local projection method

In the past several decades, a variety of speech enhancement algorithms

have been proposed, including noise suppression in the frequency domain (e.g.,

spectral subtraction [75], Wiener filtering [75]) and noise elimination in the lin-

ear signal subspace [63,76]. The signal space, properly reconstructed from noisy

speech, can be divided into two orthogonal subspaces: (1) the noise subspace

which contains components from the noise process only, and (2) the signal sub-

space that contains the dominant speech signal, plus a certain amount of noise as

well. The components in the noise subspace are deleted and the enhanced speech

is estimated from the remaining components in the signal subspace.

The conventional linear acoustical model of speech [75] overlooks the in-

herent nonlinearity of speech production. Nonlinear analysis of speech signal

discloses the chaos-like features in most phonemes, especially the voiced ones,

despite the continuous speech possibly being highly non-deterministic and non-

stationary [62, 77–80]. These facts call for nonlinear or linear/nonlinear hybrid

models to characterize the nonlinearity in speech. The theory of time delay em-

bedding seems a possible framework and various techniques based on it have

been applied in speech analysis and processing, for example, synthesis of voiced

sounds [81], classification of isolated phonemes [82], and speech enhancement

with the LP method [25, 62]. However, the LP method is not so effective for

speech contaminated by colored noise. Thus, it is desirable to extend the LP

method to the case of speech corrupted by colored noise, not only providing an

alternative method to speech enhancement, but also demonstrating a more general

application of the technique based on the theory of time delay embedding, and

thus possibly promoting new developments of this framework. In this chapter, the

two-step extension of the LP method, proposed for chaotic time series, is adapted

to enhance speech contaminated by colored noise. This extension assumes that

the colored noise is stationary, and thus the covariance matrix of colored noise
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can be estimated with speech silence frames.

3.2 A two-step extension

of the local projection method

For the LP method, the signal subspace U1 = [u1, . . . ,uM ] is first estimated

by performing eigenvalue decomposition to the covariance matrix of neighbor-

hood, i.e., Ĉn = 1
N

∑
s(k)∈Nn

[s(k)− s̄(n)][s(k)− s̄(n)]T , where ui is the eigen-

vector associated with the ith largest eigenvalue of matrix Ĉn. Then the enhanced

version of the reference phase point is x̂(n) = s̄(n) + U1U
T
1 [s(n) − s̄(n)] (see

Sec. 2.2 for more details). To get good performance, the signal subspace should

be estimated appropriately. As to be demonstrated below, for the case with white

noise, the signal subspace estimated by this way is suitable, but for the case with

colored noise, it is no longer appropriate.

Let Ut = [u1,u2, . . . ,umt ] span a subspace of the local phase space that is

to be investigated, where mt is the dimension of this subspace. For the reference

phase point s(n), s(n) − s̄(n) can be written as the addition of two parts, i.e.,

s(n) − s̄(n) = [x(n) − s̄(n)] + w(n). Then in the local phase space, i.e., the

ε-neighborhood Nn of s(n), ‖ uiu
T
i [x(n)− s̄(n)] ‖2 and ‖ uiu

T
i w(n) ‖2 can be

considered as the energy of signal components and noise components projected

onto direction ui, respectively 3.

Assume the clean signal {x(n)} and the noise {w(n)} are known. Here a

sequence (10 000 points) measured from the x component of the Lorenz system

[1] 



ẋ = σ(y − x),

ẏ = (r − z)x− y,

ż = xy − bz,

(3.1)

is taken as the clean signal {x(n)}, where (σ, r, b) = (10, 28, 8/3) and sampling

interval ∆t = 0.04. The white noise {w(n)} is with zero mean and follows

3Here we just investigate the energy of the components after removing the geometric center
of the ε-neighborhood in the local phase space, so ‖ uiuT

i [x(n) − s̄(n)] ‖2 is not the absolute
energy of the clean signal vector on direction ui.
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the normal distribution. Then for the noisy Lorenz time series {s(n)}, s(n) =

x(n) + w(n), two cases are studied.

Case 1: The subspace Ut is estimated by the energy of clean signal, i.e., the covari-

ance matrix is estimated by Ĉn = 1
N

∑
s(k)∈Nn

[x(k)−x̄(n)][x(k)−x̄(n)]T ,

where x̄(n) = 1
N

∑
s(k)∈Nn

x(k). As Fig. 3.1(a) indicates, the energy of the

projections of the clean signal vector on the first several directions, i.e.,

‖ uiu
T
i [x(n) − s̄(n)] ‖2, is much larger than that of white noise. And the

energy of white noise is almost projected onto each direction uniformly.

Case 2: The subspace Ut is estimated by the energy of noisy signal, i.e., for the

reference phase vector s(n), the covariance matrix is estimated by Ĉn =
1
N

∑
s(k)∈Nn

[s(k)−s̄(n)][s(k)−s̄(n)]T . As Fig. 3.1(b) indicates, the energy

of the projections of clean signal vector on the first several directions is

larger than that of white noise, which is similar to Case 1. This implies

that the LP method can appropriately estimate the signal subspace by the

energy of noisy data in the local phase space, because the energy of white

noise is almost uniformly distributed on each direction. Moreover, it has

been verified by the performance of LP for chaotic data with white noise.

Further, three cases for chaotic time series with colored noise are studied.

The colored noise is generated from a third-order autoregressive process [AR(3)],

w(n) = 0.8w(n−1)−0.5w(n−2)+0.6w(n−3)+ ε(n), where ε(n) ∼ N(0, 1)

follows the normal distribution.

Case 3: The subspace Ut is estimated by the energy of clean signal, just as Case 1

does. As Fig. 3.1(c) indicates, the energy of colored noise vector w(n) is

not uniformly projected onto each direction.

Case 4: The subspace Ut is estimated by the energy of colored noise, i.e., the co-

variance matrix is estimated by Ĉn = 1
N

∑
s(k)∈Nn

[w(k)− w̄(n)][w(k)−
w̄(n)]T , where w̄(n) = 1

N

∑
s(k)∈Nn

w(k). As Fig. 3.1(d) indicates, the

energy of the colored noise vector w(n) is mainly projected onto the first

several directions, and only a certain, relatively small, amount of signal

components are projected onto these directions, respectively. So a noise
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Figure 3.1: Energy of the projection of clean signal vector and noise vector in the
local phase space. For each case, the signal-to-noise ratio (SNR) is 15 dB, the 20
nearest neighbors of each reference phase point are utilized, and only the average
energy of the components projected onto the first 20 directions is plotted. ◦ —
E(‖ uiu

T
i [x(n) − s̄(n)] ‖2); • — E(‖ uiu

T
i w(n) ‖2), here E(‖ uiu

T
i w(n) ‖2)

denotes the mean of ‖ uiu
T
i w(n) ‖2 over n = (d − 1)κ, . . . , L − 1. (a) Case 1,

with white noise; (b) Case 2, with white noise; (c) Case 3, with AR(3) noise; (d)
Case 4, with AR(3) noise; (e) Case 5, with AR(3) noise; (f) Case 6, the output of
step 1.

dominated subspace can be estimated in this way, and most of noise com-

ponents can be reduced by eliminating the components projected into this

subspace at the price of relatively small signal distortion.

Case 5: The subspace Ut is estimated by the energy of noisy signal, as Case 2 does.

As Fig. 3.1(e) indicates, a certain, large, amount of noise components are

projected into the subspace spanned by the first several directions. The LP

method estimates the signal subspace by the energy of the noisy signal,
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and thus cannot reduce colored noise effectively by projection, because a

large amount of noise components are projected into the so estimated signal

subspace.

With the above observations, the first step of the proposed extension follows.

Step 1. First, estimate the noise dominated subspace Und by performing

eigenvalue decomposition to the covariance matrix Ĉnoise of colored noise. Note

that this covariance matrix is estimated from a noise sequence obtained in ad-

vance. With the assumption that the noise process is stationary, this covariance

matrix can be used to substitute the one in Case 4. Then in each local phase

space, i.e., the ε-neighborhood, the components projected into the noise domi-

nated subspace are deleted and the enhanced phase vector is reconstructed with

the remaining components, i.e.,

x̂(n) = s̄(n) + (I−UndU
T
nd)[s(n)− s̄(n)], (3.2)

where I is identity matrix.

After step 1, the noise components projected into the noise dominated sub-

space have been eliminated. The energy of residual error (i.e., the difference

between the clean signal and the output of step 1) tends to distribute “uniformly”

on each direction. This can be confirmed as follows.

Case 6: The subspace Ut is estimated by the energy of the output of step 1, as Case

2 does. As Fig. 3.1(f) indicates, the energy of the projection of clean signal

vector on the first several directions is much larger than that of residual er-

ror. The energy of residual error is more “uniformly” distributed compared

with Case 5, and is similar to Case 2.

With this observation, the second step of the proposed extension follows.

Step 2. Treat the residual error after step 1 as white noise, and apply the LP

method to the output of step 1.
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3.3 Applications to noisy chaotic time series

The two-step extension of LP is applied to the Lorenz time series which are

contaminated by colored noise. It has been argued that the LP method can obtain

better results by over-embedding with time delay κ = 1 and an appropriately

longer embedding window [25, 57, 62]. While the embedding window cannot be

set too long, otherwise there are no enough appropriate neighbors for the refer-

ence phase point 4. Thus a tradeoff of the length of embedding window should

be made. Here, parameters are set as (d, κ) = (80, 1), and the first 20 nearest

neighbors are used for each reference phase point. The covariance matrix Ĉnoise

of colored noise is estimated with 20 nonoverlapped noise sequences. Each se-

quence has (d−1)κ+1 points, which is equal to the length of embedding window.

Note that these noise sequences are not the noise sequences that are added to the

Lorenz time series.

With eigenvalue decomposition to Ĉnoise, the noise dominated subspace

Und = [u1,u2, . . . ,umw ], spanned by the eigenvectors associated with the mw

largest eigenvalues, can be obtained, where mw is the dimension of the noise

dominated subspace and its value is set by numerical study. At the first step, as

mw decreases below 15, the performance becomes worse, because the energy of

the projection of noise on each direction ui (1 ≤ i ≤ 15) is bigger than that of

the clean signal, while as mw increases above 15, the performance varies little,

because the energy of the projection of noise on each direction ui (15 < i ≤ 20)

is almost equal to that of the clean signal. For data with high level noise, mw

should be set a little bigger. For simplicity, we set mw = 20 for all cases.

The LP method is performed for comparison 5. The parameters of LP are set

4Here “appropriate neighbors” mean that the wave forms of the data segments covered by the
neighbors match that of the reference phase point well, see more discussions in Chapter 4.

5Note that the linear subspace techniques have suggested a whitening-dewhitening strategy
for the signal contaminated by colored noise [63]. With this strategy, chaotic time series with
colored noise can be first whitened by multiplying a whitening matrix C−1/2

w , where Cw is the
covariance matrix of the colored noise. Then the whitened data can be processed as the case of
white noise. Finally, a dewhitening procedure is performed. The enhanced signal vector can be
expressed as

x̂(n) = s̄(n) + C1/2
w U1UT

1 C−1/2
w [s(n)− s̄(n)]. (3.3)

However, Eq. (3.3) is difficult to implement, because with 20 segments of noise data and 80
dimensional embedding, the estimated covariance matrix Ĉw will be rank-deficient and matrix
Ĉ−1/2

w cannot be properly obtained.
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as (N, d, κ, M) = (20, 80, 1, 8), where M is set a value relatively bigger than the

minimum embedding dimension so as to control the introduced signal distortion

at a small level. Note that the local subspace method [26] has also been applied

to chaotic time series with colored noise, but the results are not better than that of

the LP method. The method proposed by Luo et al. [64] has been applied as well,

but as they had reported, the performance for chaotic time series with colored

noise is poor. So we do not present the results of these two methods here.

As Fig. 3.2 indicates, most colored noise is deleted after step 2 and the

introduced distortion is much smaller than that induced by the LP method. As

Fig. 3.3 indicates, this is more obvious in the reconstructed phase space. A more

comprehensive comparison is summarized in Table 3.1. The two-step extension

obtains significant SNR gains, outperforming the LP method much for the Lorenz

time series which is contaminated by the AR(3) noise.
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Figure 3.2: Wave forms of (noisy) Lorenz time series. The thin black curves in
panels (a), (b), (c), (d), and (e) are the wave forms of the clean Lorenz time se-
ries, the noisy time series with 10 dB AR(3) noise, the enhanced data by the LP
method, the output of step 1, and the output of step 2 of the extension, respec-
tively. For comparison, the wave form of clean data in panel (a) is plotted with
thick curves in panels (c), (d), and (e), respectively.

The two-step extension is further tested with two other typical colored noise.
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Figure 3.3: The Lorenz attractors reconstructed by time delay embedding with
κ = 4. The data used in panels (a), (b), (c), and (d) are the same data that are
used in Figs. 3.2(a), 3.2(b), 3.2(c), and 3.2(e), respectively.

Table 3.1: Results of noise reduction for the Lorenz time series contaminated
by colored noise generated by AR(3). Ten sequences (each 10 000 points) are
measured from the x components of the Lorenz system with the same parameters
but different initial condition. The four columns from left to right are the SNRs of
the original noisy data, the output of step 1, the output of step 2, and the enhanced
data by the LP method, respectively.

Noisy data (dB) step-1 (dB) step-2 (dB) LP (dB)
15 19.47±0.14 21.91±0.31 16.98±0.46
10 13.86±0.10 16.49±0.57 12.14±0.57
5 7.70±0.10 9.85±0.55 7.15±0.63

One is pink noise, which is generated by a model proposed to explain the physics

of 1/f noise [67, 83]. The surrogate data, generated by shuffling the phase of

the original Lorenz time series [84], is taken as another noise. The surrogate

data has almost the same power spectra of the original time series but do not

possess the corresponding deterministic structure of the original data. Note that

it is difficult to separate the pink noise and the phase shuffled data, as well as the

AR(3) noise, from the Lorenz time series in the frequency domain, because their
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spectra extensively overlap in the low frequency region, as Fig. 3.4 indicates.

However, the two-step extension works well for the Lorenz time series with pink

noise and phase shuffled surrogate data, as Tables 3.2 and 3.3 indicate. For the

case with phase shuffled surrogate data, a good result can be obtained even with

only the fist step of the proposed extension.
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P
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B
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Lorenz

AR(3)

Pink noise
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Figure 3.4: The power spectra of a Lorenz time series, phase shuffled surrogate
data of the Lorenz times series, AR(3) noise, pink noise, and white Gaussian
noise. Each data have 10 000 samples, and their spectra are estimated by the
periodogram averaging method [67], that is, the data are divided into 10 blocks
(each block has 1000 samples), the spectra of each block are estimated by pe-
riodogram, and the average of the spectra of these blocks are taken as the final
spectra. The spectra are offset vertically for clarity, and the scale in the vertical
axis is therefore arbitrary.

Table 3.2: Results of noise reduction for the Lorenz time series (ten sequences,
each 10 000 points) contaminated by pink noise.

Noisy data (dB) step-1 (dB) step-2 (dB) LP (dB)
15 19.40±0.23 20.32±0.30 15.80±0.08
10 13.65±0.18 14.40±0.26 10.85±0.09
5 7.44±0.14 8.03±0.21 5.85±0.97

The proposed extension has also been tested with the contaminated Rössler

time series (measured from the x component of the Rössler system [85] with
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Table 3.3: Results of noise reduction for the Lorenz time series (ten sequences,
each 10 000 points) contaminated by its phase shuffled surrogate data.
3mm

Noisy data (dB) step-1 (dB) step-2 (dB) LP (dB)
15 20.21±0.45 20.24±0.44 15.24±0.04
10 14.97±0.33 14.97±0.33 10.22±0.04
5 8.23±0.23 8.23±0.23 5.09±0.02

sampling interval ∆t = 0.2), and about 3–5 dB SNR gains can be obtained for

different noise levels.

3.4 Applications to noisy speech signals

The two-step extension of LP is first tested with noisy vowels, and further

adapted to continuous speech signals which are contaminated by environmental

noise.

3.4.1 Application to vowels

The energy distribution of speech signals and noise measured in running

car (from AURORA [86]) in the local phase space is first examined. The speech

signal of vowel /a/, recorded with 8 kHz sampling rate, is taken as a example. As

that does in Sec. 3.2, the results of six cases are given in Fig. 3.5, respectively.

Case 1: Speech is contaminated by white Gaussian noise, and direction ui is es-

timated by the clean speech. As Fig. 3.5(a) indicates, the energy of the

projection of clean vowel /a/ on the first several directions is much larger

that that of white noise, and white noise is almost uniformly distributed on

each direction.

Case 2: Speech is contaminated by white Gaussian noise, and direction ui is es-

timated by the noisy speech. As Fig. 3.5(b) indicates, the energy of the
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projection of clean vowel /a/ on the first several directions is much larger

that that of white noise, which is similar to Case 1.

Case 3: Speech is contaminated by car noise, and direction ui is estimated by the

clean speech. As Fig. 3.5(c) indicates, both the clean vowel /a/ and car

noise are mainly projected on the first several directions.

Case 4: Speech is contaminated by car noise, and direction ui is estimated by the

car noise. As Fig. 3.5(d) indicates, the car noise is mainly projected onto

the first several directions, and a certain, relatively small, amount of speech

components are projected onto these directions as well. If the components

in the noise dominated subspace are deleted, then most of the noise compo-

nents can be reduced at the expense of a relatively small speech distortion.

Case 5: Speech is contaminated by car noise, and direction ui is estimated by the

noisy speech. As Fig. 3.5(e) indicates, a large amount of noise components

are projected on the first several directions. The LP method adopts the first

several directions, estimated in this way, as the signal subspace, and thus

can not reduce the noise effectively.

Case 6: Speech is contaminated by car noise, and direction ui is estimated by the

the output of step 1. That is, the output of step 1, {ŝ(1)
n }, is taken as the

input of step 2, and direction ui is estimated as Case 2 does. As Fig. 3.5(f)

indicates, the energy of clean speech on the first several directions is much

larger than that of residual error. The energy of residual error is more “uni-

formly” distributed compared with Case 5.

With the above observations, the two-step extension, proposed in Sec. 3.2,

is expect to be applicable to speech signals which are contaminated by colored

noise. This is verified by applying the extension to ten speech sequences added

with environmental noise measured in a running car. Five vowels, /a/, /e/, /i/,

/o/, and /u/, are articulated at normal speed by one male speaker and one female

speaker respectively, and the clean speech sequences are recorded with 8 kHz

sampling rate and 16 bits quantization. As the results summarized in Table 3.4,

the two-step extension yields better enhancements than the LP method.

Ideally, speech only resides in a low dimensional subspace. However, in

practical application, the estimated direction is not a perfect estimate, but just
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Figure 3.5: Energy distribution of vowel /a/ and car noise (10 dB) in the local
phase space. 20 neighbors are utilized, and thus only the energy distribution on
the first 20 directions is plotted. ◦ — E(‖ uiu

T
i [x(n) − z̄(n)] ‖2), denotes the

mean of ‖ uiu
T
i [x(n) − z̄(n)] ‖2 over n = (d − 1)κ, . . . , L − 1; • — E(‖

uiu
T
i w(n) ‖2). (a) Case 1, speech with white noise; (b) Case 2, speech with

white noise; (c) Case 3, speech with car noise; (d) Case 4, speech with car noise;
(e) Case 5, speech with car noise; and (f) Case 6, the output of step 1 (for this
case, the residual error [x̂(1)(n)− x(n)] is considered as noise).

an approximation to the desired direction. Speech components will extend to

all the estimated directions, and thus speech distortion will be introduced both

at step 1 and step 2. At step 1, speech distortion is introduced when all the

components in the noise dominated subspace, which includes some speech com-

ponents [Fig. 3.5(d)], are removed; and at step 2, speech distortion is introduced

when all those in the noise subspace, which also have some speech components

[Fig. 3.5(f)], are eliminated. The proposed method, as well as other methods, is
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Table 3.4: Results of noise reduction for the speech corrupted by environmental
noise measured in running car.

Noisy data (dB) step-1 (dB) step-2 (dB) LP (dB)
15 18.72±0.80 19.51±1.28 17.92±0.66
10 13.73±0.60 15.80±0.75 13.20±0.58
5 8.10±0.54 10.68±0.97 8.21±0.61

a tradeoff between speech distortion and noise reduction, and is expected to ob-

tain much larger noise reduction than the introduced distortion with appropriate

parameter settings.

3.4.2 Enhancement of continuous speech

3.4.2.1 The speech database

To investigate the effectiveness of the proposed extension in more general

application, it is tested with speech data from the NOIZEUS database [87] 6,

which is designed for comparison of speech enhancement. NOIZEUS includes

30 IEEE sentences [88] articulated by three male and three female speaker (5

sentences/speaker), respectively. The articulation of each sentence is recorded at

25 kHz and further downsampled to 8 kHz. Eight different noise signals [86],

recorded in real environments, are added to the clean speech signals to generated

noisy speech signals. Ten speech sentences are selected from NOIZEUS for ex-

periment. Three male and three female speakers are involved, and at most two

sentences articulated by each speaker are adopted.

3.4.2.2 Implementation

As discussed in Ref. [62], for phase point s(n), the most useful informa-

tion is contained by the phonemes or syllables that s(n) belongs to, i.e., only

intra-phoneme neighbors are needed. In general, the duration of an individual

phoneme is less than 100 ms. So an overlap-add strategy is utilized, and speech
6Available at: http://www.utdallas.edu/∼loizou/speech/noizeus/.
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is divided into frames of 100 ms with 3/4 overlapping, as Fig. 3.6 indicates. For

data recorded with 8 kHz sampling rate, each frame has 800 samples 7. For each

frame, the reference phase points at the beginning and end sections will miss

some intra-phoneme neighbors that locate outside of this frame, while the ref-

erence phase points at the middle sections can include almost all intra-phoneme

neighbors. Each frame can be enhanced separately 8, and the whole speech can

be reconstructed by overlap-adding of the middle section (from 201 to 600) of

each enhanced frame with triangular window.

Figure 3.6: Overlap-adding reconstruction of enhanced speech. F1, F2, and F3

denote the first three frames, respectively; W1, W2, and W3 are the windows
corresponding to frames F1, F2, and F3, respectively. For each Lf -sample frame,
only the middle section, [1

4
Lf + 1, 3

4
Lf ], is used to reconstruct the continuous

speech by overlap-adding with triangular window.

The beginning segment (600 samples) of each sentence is speech silence,

and is thus taken as noise {w(n)}. The covariance matrix of noise can be esti-

mated as Ĉnoise = 1
N

∑N
k=1 w[(k − 1)dκ + 1]w[(k − 1)dκ + 1]T , where w(n) =

[w(n), w(n + κ), . . . , w(n + (d − 1)κ)]T , w(n) = w(n) − w̄, and w̄ is the av-

erage of {w(n)}. Here, Ĉnoise is estimated in an analogous way with the es-

timation of Ĉn in Case 4. Then the noise dominated subspace is spanned by

Und = [u1,u2, . . . ,uK ], where ui is the eigenvector associated with the ith

largest eigenvalue of Ĉnoise, and K is the dimension of the noise dominated sub-

space.

7Frame length of 1200 and 1600 samples have also been tried, and the results vary little.
8By dividing the continuous speech into frames, neighbors searching can be implemented via

an efficient box-assisted approach [11].
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For each frame, the data are embedded first. At step 1, the reference point

s(n) is enhanced via Eq. (3.2), i.e., x̂(1)(n) = s̄(n) + (I − UndU
T
nd)[s(n) −

s̄(n)], where s̄(n) = 1
N

∑
s(k)∈Nn

s(k). As s(n) occurs as an entry of s(i), i =

n, . . . , n + (d − 1)κ, there are d enhancements for s(n). Let x̂(1)(i; j) denote

the jth entry of vector x̂(1)(i), and define set Xn = {x̂(1)(i; j)|i − (j − 1)κ =

n, 1 6 j 6 d}, which collects those enhancements of x(n). Then the average

of the elements in set Xn is taken as the final enhancement x̂(1)(n). The the

enhancements of frames are overlap-added into continuous speech {x̂(1)(n)}. At

step 2, the output of step 1, {x̂(1)(n)}, is taken as the input, and one iteration of

the LP method is applied to it via Eq. (2.9).

3.4.2.3 Results

The proposed extension is tested with speech corrupted by different types

of environmental noise [86]. The parameters are set as: N = 20, d = 30, κ = 1,

K = 6, and M = 5. Parameter d is empirically set as d = 30, which is smaller

than that in Ref. [62], because the speech data are recorded with 8 kHz sam-

pling rate, which is smaller than the sampling rate (24 kHz) in Ref. [62]. A

typical linear subspace method (linSS) [76] which is designed for colored noise,

and a minimum mean-square error method with log-spectral amplitude estima-

tor (logMMSE) [89] are performed for comparison. Signal-to-noise ratio (SNR),

segmental SNR (segSNR) [90], and four other objective measures are utilized to

evaluate the proposed extension. Recently, several popular objective measures

for speech enhancement are evaluated by the correlations between the results of

objective measures and the results of subjective tests [91]. The measure PESQ

of ITU-T recommendation [92] is shown to be one of the best of the evaluated

measures. Further, Ref. [91] analyzes all the results of objective measures by

multiple linear regression and proposes three composite measures: (1) the mea-

sure Csig for signal distortion, (2) the measure Cbak for noise distortion, and (3)

the measure Covl for overall quality. These composite measures have been used

to evaluate 13 different speech enhancement algorithms [87]. The results show

that linSS is the better of the two evaluated subspace methods, and logMMSE is

the best of all the 13 methods.

The results of speech with two typical noise realizations, i.e., noise recorded
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in running car and in street, are summarized in Tables 3.5 and 3.6, respectively.

The proposed extension can obtain larger SNR gains than the LP method. Com-

paring with linSS and logMMSE, the proposed extension obtains larger SNR

gains for speech with street noise, but smaller SNR gains for speech with car

noise. The wave forms and segSNRs of each case are illustrated in Figs. 3.7

and 3.8, respectively. For speech science and some consonant frames, linSS al-

most removes all components and thus obtains higher SNR, while for sounds with

deterministic structure, such as vowels and semivowels, the proposed extension

gets better results than both linSS and logMMSE. Fig. 3.9 illustrates the results of

four objective measures. In the sense of these measures, the proposed extension

is better than logMMSE for the case of street noise, and is inferior to logMMSE

for the case of car noise, while it is superior to linSS for the cases of both car

noise and street noise. It is surprising that linSS even degrades the quality of

speech in the sense of these measures, which may be due to its over-reduction at

some frames [Fig. 3.7(d)]. For noisy speech of 10 dB input SNR, the proposed

extension is not as effective as the case with high noise level, because the amount

of introduced speech distortion is almost comparable to that of the reduced noise

when the noise level is low. Note that the proposed extension has also been tested

with other noise from AURORA [86], and the results are positive. For noisy

speech of 0 dB input SNR, different SNR gains, ranging from 2.4 dB to 5.0 dB,

are obtained; for noisy speech of 5 dB input SNR, about 2.1 – 4.3 dB SNR gains

are obtained.

Table 3.5: Results of speech enhancement for ten speech sentences corrupted by
car noise. The six columns from left to right are the SNRs (mean ± standard
deviation) (dB) of the original noisy speech, the output of step 1, the output of
step 2, the result by LP, by linSS, and by logMMSE, respectively.

noisy speech step-1 step-2 LP linSS logMMSE
10.0 10.7 ± 0.4 11.3 ± 1.1 11.2 ± 0.9 12.4 ± 0.9 12.4 ± 0.4
5.0 6.4 ± 0.2 8.6 ± 0.7 7.1 ± 0.6 9.3 ± 0.6 9.4 ± 0.5
0.0 1.5 ± 0.3 4.4 ± 0.6 2.3 ± 0.7 5.1 ± 1.3 5.8 ± 0.8
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Table 3.6: Results of speech enhancement for ten speech sentences corrupted by
street noise. The results are evaluated with SNR (dB).

noisy speech step-1 step-2 LP linSS logMMSE
10.0 10.4 ± 0.3 11.2 ± 0.7 11.6 ± 0.9 10.7 ± 1.6 10.8 ± 0.9
5.0 6.0 ± 0.2 8.2 ± 1.1 7.6 ± 1.1 6.7 ± 0.8 7.1 ± 0.5
0.0 1.0 ± 0.3 3.9 ± 1.2 2.9 ± 1.2 2.8 ± 1.8 3.2 ± 1.8
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Figure 3.7: The wave forms of clean speech (a), noisy speech with 5 dB car noise
(b), the output of step 2 (c), the result of linSS (d), and the result of logMMSE
(e). The continuous speech is divided into segments of 80 samples and the SNR
of each frame is plotted for the case of speech with 5 dB car noise (f), and the
case of speech with 5 dB street noise (g), respectively.
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Figure 3.8: The segSNRs (means and standard deviations) of different classes of
sounds for speech with 5 dB car noise (a), and with 5 dB street noise (b). The label
“speech” denotes the segSNR of the speech present frames. The NOIZEUS [87]
database contains phonetic transcription files which indicate the segmentation of
six classes of sounds for every speech sentences.

3.5 Discussion and conclusion

The energy distribution of Lorenz time series and AR(3) noise in the local

phase space is first examined. For chaotic time series contaminated by white

noise, it is appropriate to estimate the signal subspace by the energy distribution

of noisy data, while for the case with colored noise, the signal subspace estimated

by the energy of noisy data may include considerable noise projection, because

the energy of colored noise is mainly distributed in a low dimensional subspace.

With this observation, a two-step extension of the LP method is devised to reduce

colored noise for chaotic time series. At step 1, a noise dominated subspace

which contains most of noise components and a certain, small, amount of signal

components is estimated by the energy distribution of colored noise. Then for

each reference phase point, the components projected into the noise dominated

subspace are eliminated and the enhanced phase point is reconstructed with the

remaining components. After step 1, the energy of the residual error tends to
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Figure 3.9: Evaluation of speech enhancement with four objective measures, i.e.,
PESQ, Csig, Cbak, and Covl, for speech with car noise and with street noise, re-
spectively.

distribute uniformly on each direction. So at step 2, the residual error is treated

as white noise and the LP method is applied to the output of step 1.

This two-step extension of LP is applied to the noisy Lorenz time series,

and the noisy Rössler time series, which are contaminated by noise generated by

an AR(3) process, pink noise, and a phase shuffled surrogate data, respectively.

Numerical results show that the proposed extension can reduce colored noise

significantly, and is superior to the LP method in reducing colored noise for noisy

chaotic time series.

Further, the energy distribution of speech signal and noise recorded in run-

ning car in the local phase space is examined. Their energy distribution patterns

are similar to that of chaotic Lorenz time series and AR(3) noise in a certain way.

This implies that the two-step extension is also applicable to noisy speech sig-
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nals. Then the extension is adapted to continuous speech which are contaminated

by different environmental noise. Experimental results show that the proposed

extension is more effective than the LP method, and is comparable to two typi-

cal speech enhancement methods. Adaption of this two-step extension to speech

enhancement is of considerable significance in providing real application for the

framework of time delay embedding, and thus possibly promoting its develop-

ment.

Except application to speech signals, the LP method has also been applied

to real data observed from other systems. For examples, the LP method can

reduce the noise (about 5%) in the data measured from a Taylor-Couette flow

experiment to be 1
4

of the original noise level [22]. For data observed from a

NMR-laser experiment, the LP method can reduce the noise level from 1
64

to 1
210

of the attractor size [22]. The ECG signals show dynamical behavior which is

neither periodic nor chaotic. It has been reported that the LP method can not only

reduce the measurement noise in ECG signals [61] but also extract fetal ECG

signals from maternal ECG signals with two round projections [27]. At the first

round of LP, both the fetal ECG signals and the measurement noise are considered

as noise and thus separated from the maternal ECG signals; after that, one more

iteration of LP is applied to separate the fetal ECG signals from the measurement

noise. These examples show that the LP method is applicable to data observed

from real systems. For all these cases, the LP method assumes the measurement

noise is white random noise. The two-step extension is proposed for the case

with colored noise. It requires that a segment of noise data can be obtained in

advance. However, for some cases (e.g., the extraction of fetal ECG signals), this

requirement may be not satisfied, and thus the extension is not applicable.

Generally, time delay embedding can be considered as a transform from

time domain to phase space. If the colored noise is mainly distributed in a certain

noise subspace, and the signal is mainly distributed in a signal subspace which

is orthogonal to the noise subspace, the noise can be reduced by eliminating the

components in the noise subspace, just as the frequency domain methods filter the

out-band spectra of noise. Some noise components are also, possibly, distributed

in the same subspace of signal, and cannot be reduced, just as the frequency do-

main methods can not eliminate in-band noise effectively. So to say whether the



3.5. Discussion and conclusion 47

proposed extension is applicable to a certain contaminated signal, the analysis of

energy distribution in the local phase space should be performed first. But the

representation of signal in the local phase space is not so obvious as the represen-

tation in the frequency domain.
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Chapter 4

Neighborhood-based

time-frequency analysis

In this chapter, time-frequency analysis is performed for chaotic flow with

a neighborhood-based spectrum estimator. The relation between the reference

phase point and its nearest neighbors is demonstrated. The nearest neighbors,

representing the state recurrences in the phase space reconstructed by time delay

embedding, actually cover data segments with similar wave forms, but recur with

no obvious temporal regularity. To utilize this redundant information presents

in state recurrences, a neighborhood-based spectrum estimator is devised. Then

time-frequency analysis with this estimator is performed for the Lorenz time se-

ries, the Rössler time series, experimental laser data, and colored noise. Features

revealed by the spectrogram can be used to distinguish noisy chaotic flow from

colored noise.

4.1 Introduction

In order to obtain the inherent properties of a dynamical system from the

observed time series, a variety of methods have been proposed, such as surrogate

tests [84, 93], wavelets [34], Fourier transforms [32, 33], and approaches based

on time delay embedding [11]. Among them, the methods based on time delay

49
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embedding may be the most popular and effective tools for chaotic time series.

Based on Takens’ embedding theory [7, 8], the measures such as Lyapunov ex-

ponents [3] and correlation dimension [9] have been proposed to characterize the

global features of dynamical systems. However, few studies of the local time

pattern of chaotic time series have been reported.

Spectral analysis provides an alternative framework for chaotic time series

analysis [29–33]. With methods based on the Fourier transform, the relation be-

tween the spectra and the topology as the corresponding dynamical system bi-

furcates to chaos has been studied. Spectrum bands of some period-doubling

bifurcation sequences (e.g., the Rössler time series) merge as the dynamical sys-

tem bifurcates to chaos [31, 32]. Another typical spectrum of chaotic data (e.g.,

the Lorenz time series) is broadband and falls off via an exponential law. This

spectrum falloff pattern has been utilized to distinguish chaotic sequences from

colored noise with power-law spectra [29]. However, other researchers have ar-

gued that a chaotic sequence cannot be well distinguished from either colored

noise [65] or quasi-periodic motion (with singular power spectra) by its finite-

time power spectra [33], especially when the chaotic data are contaminated by

noise.

For a chaotic signal with complicated evolution (e.g., for the Lorenz time

series, the time interval between peaks and the amplitudes of the sequence both

vary with no obvious regularity), the simple frequency domain representation

may obscure information related to timing. Spectral analysis usually only adopts

the spectral amplitude, while neglects the phase information. Consequently, con-

fusion will occur between any two signals with the same spectral amplitudes. A

time-frequency joint analysis is therefore desirable to unveil these features [66].

However, few studies of time-frequency analysis for chaotic time series have been

reported. Chandre et al. [34] performed a time-frequency analysis of Hamiltonian

systems. The ridges 1, extracted from a wavelet decomposition of a time series

measured from the Hamiltonian systems, can reveal the phase-space structures

(resonance transitions, trappings, etc.) and give a characterization of weak or

strong chaos.

1For a time-frequency representation P (t, f), the time-frequency points (t, f), at which the
spectrogram P (t, f) is maximum for each time t, are called ridges.
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State recurrence is one important feature of chaotic systems. In the phase

space reconstructed by time delay embedding, the state recurrences of a reference

phase point turn out to be its nearest neighbors, which can provide redundant in-

formation but recur with no temporal regularity, as we will demonstrate later.

Conventional time-frequency analysis methods (e.g., the wavelet transform), uti-

lize only one segment of consecutive data and neglect temporally isolated state

recurrences, resulting in poor performance. So a time-frequency analysis which

can utilize all state recurrences is desirable.

This chapter focuses on: (i) demonstrating that the nearest neighbors cover

segments of data with similar wave forms to that of the reference phase point

and thus can provide redundant information for chaotic signal analysis and pro-

cessing, (ii) proposing a spectrum estimator which can utilize all the neighbors,

and (iii) performing a time-frequency analysis to (noisy) chaotic flow with the

proposed spectrum estimator and extracting some features that can be used to

distinguish the (noisy) chaotic data from colored noise. In order to utilize state

recurrences, the nearest neighbors must be grouped according to their Euclidean

distances to the reference point in phase space. As presented in Chapter 3, the

LP method and its extension utilize state recurrences and obtain positive results.

Analogously, a neighborhood-based spectrum estimator (NSE) is proposed to es-

timate the power spectra of the reference phase point. NSE first performs eigen-

value decomposition to the covariance matrix of the neighbors, and then estimates

the power spectra of the reference phase point by applying the Blackman-Tukey

(BT) estimator [68]. Thus, NSE utilizes the long-term state recurrence of chaotic

systems, and bridges the theory of time delay embedding to the frequency do-

main.

4.2 Neighborhood-based spectrum estimation

4.2.1 State recurrences and nearest neighbors

As introduced in Sec. 2.1, the ε-neighborhood of reference phase point s(n)

is defined as Nn , {s(k) : ‖s(k) − s(n)‖ < ε} [see Eq. (2.2)] and further

arranged as Nn = {s(k1), s(k2), . . . , s(kN)}, k1 < k2 < · · · < kN . For refer-
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ence phase point s(n), its recurrence time is defined as Tn(i) = ki+1 − ki, i =

1, · · · , N − 1.
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Figure 4.1: The Lorenz time series and the first ten nearest neighbors of the refer-
ence phase point s(2963). • — the sample s(2963); ◦ — the sample s(k), where
s(k) is one of the first ten nearest neighbors of s(2963). The bottom panels are en-
largements of short segments. Each segment marked with small dots corresponds
to one neighbor in phase space.

Take a chaotic time series measured from the Lorenz system [Eq. (3.1)] as

example. Note that all the Lorenz time series used in this chapter are 10 000

points sampled from the x component of the Lorenz time series with sampling

interval ∆t = 0.04, unless stated otherwise. Fig. 4.1 demonstrates the relation-

ship between the reference phase point s(2963) (randomly selected) and its first

ten nearest neighbors with index k = 192, 2659, 3485, 4387, 4388, 5376, 5415,

6763, 6764, 7235. The reference phase point s(n) covers a segment of time series

[s(n− (d−1)κ), s(n− (d−1)κ+1), . . . , s(n−1), s(n)]T with the length of em-

bedding window Lw = (d−1)κ+1. For clarity, let s(n) denote this sequence 2. It

can be observed that the wave forms covered by the neighbors are similar to that

of the reference phase point, but these neighbors recur with no obvious regularity.
2Note that s(n) = [s(n− (d− 1)κ), s(n− (d− 2)κ), . . . , s(n− κ), s(n)]T denotes a phase

point which is a d× 1 vector [see Eq. (2.1)], while s(n) = [s(n− (d− 1)κ), s(n− (d− 1)κ +
1), . . . , s(n − 1), s(n)]T is a [(d − 1)κ + 1] × 1 vector which is associated with s(n). If κ = 1,
s(n) is the same as s(n).
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From the viewpoint of signal processing, these similar wave-form segments con-

tain much redundant information relative to the reference one. There are some

neighbors that are adjacent in time, for example s(4387) and s(4388). The ad-

jacent neighbors that lie on the same recurrence trajectory provide only one new

sample; primarily they serve to increase the weight of the corresponding state

recurrence within the neighborhood.

εs(n)

Figure 4.2: Schematic diagram of the neighborhood of type-II. For reference
phase point s(n), the points, denoted by both • and ◦, in the circle of radius ε
are all its neighbors in the ε-neighborhood Nn. Some trajectories has more than
one point that belongs to the ε-neighborhood Nn. Only the nearest one (•) of the
neighbors on each trajectory is selected to form the neighborhood of type-II. The
points marked by ◦ are not included by the neighborhood of type-II.

To investigate the recurrence time of state recurrence trajectory, a neigh-

borhood of type-II is defined by selecting only one point from each recurrence

trajectory. As Fig. 4.2 illustrates, only the nearest one among the neighbors on

each recurrence trajectory is selected to form the neighborhood of type-II. A his-

togram of the recurrence times of the neighbors in all neighborhoods of type-II

is shown in Fig. 4.3. It indicates that: (i) the recurrence time varies over a large

range; and, (ii) the state recurrence seems to appear more frequently after some

constant time periods that correspond to the peaks of the histogram. Note that

a similar neighborhood of type-II has been defined by excluding the so-called
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“sojourn points” and the statistics of recurrence time for chaotic time series was

found to obey a scaling law [6] 3. Moreover, the recurrence time statistics has

been applied to detect nonstationarity and state transitions [59].

The conventional linear techniques (e.g., classical Fourier transform) ne-

glect some scattered state recurrences and just utilize one segment of consec-

utive data. As a result, these techniques usually fail in analyzing chaotic time

series. In contrast, the methods based on time delay embedding, such as the LP

method, utilize the redundant information possessed by neighbors and thus fre-

quently achieve better results for chaotic time series.
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Figure 4.3: Histogram of the recurrence times of the first ten nearest neighbors
of type-II. The small panel is an local enlargement of the main figure.

4.2.2 A neighborhood-based spectrum estimator

For the ε-neighborhood Nn, an Lw ×N neighborhood matrix is defined as

Dn = [s(k1) s(k2) · · · s(kN)],

where s(ki) = s(ki)− s̄(n) and s̄(n) = 1
N

∑
s(ki)∈Nn

s(ki). First, eigenvalue de-

composition to the covariance matrix, i.e., Ĉn = 1
N
DnD

T
n , of the ε-neighborhood

3Note that the recurrence time statistics in Ref. [6] is related to the radius of neighborhood,
while the histogram in Fig. 4.3 is related to the first 10 nearest neighbors of type-II. Due to this
difference in statistics, Fig. 4.3 does not show the scaling law revealed in Ref. [6].
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Nn is performed,

Ĉnui − λiui = 0, (4.2)

where ui = [ui(1), ui(2), · · · , ui(Lw)]T is the eigenvector associated with the ith

largest eigenvalue λi. Then with the discrete-time Fourier transform of eigenvec-

tor ui,

Vi(ω) =
Lw∑

l=1

ui(l)e
−jwl, (4.3)

a neighborhood-based spectrum estimator (NSE) is devised as

PNSE(ω) =
1

Lw

Lw∑
i=1

λi|Vi(ω)|2. (4.4)

NSE is derived from the BT spectrum estimator [68], which has been reviewed

in Sec. 2.3.1. For the BT estimator, the covariance matrix is estimated from only

one segment of consecutive data [see Eqs. (2.14) and (2.19)]; while for NSE,

the covariance matrix is estimated from the data segments covered by the tem-

porally scattered neighbors. By this means, NSE can capture the long-time state

recurrence of chaotic time series. If the neighborhood contains only the reference

phase point, NSE reduces to the BT estimator.

For noisy chaotic time series, the local phase space can be divided into a

signal subspace and a noise subspace which are orthogonal to each other. The

signal subspace, constructed with [u1, . . . ,uM ], contains most of the clean signal

and a certain, small, amount of noise [25]; while the noise subspace, spanned by

[uM+1, . . . ,uLw ], contains most of the components of noise and a small amount

of signal components, where M is the minimum embedding dimension of the

dynamical system [58]. With those components in the signal subspace, a principal

component version of NSE is devised as

PPC−NSE(ω) =
1

Lw

M∑
i=1

λi|Vi(ω)|2. (4.5)

Obviously, the principal component version of NSE has the ability to suppress

the effect of measurement noise for spectrum estimation of contaminated chaotic

time series.



56 Chapter 4. Neighborhood-based time-frequency analysis

Furthermore, for each reference phase point, the main frequency ωm is de-

fined as

P (ωm) = max P (ωl), ωm ∈ {ωl}, (4.6)

where ωl is the frequencies with local maximum power amplitude, i.e.

dP (ω)

dω

∣∣∣
ω=ωl

= 0,
d2P (ω)

dω2

∣∣∣
ω=ωl

< 0. (4.7)

For each reference phase point, a power spectra can be estimated by NSE. A

time-frequency distribution (also called spectrogram) can then be obtained as the

reference phase point evolves along the phase trajectory. At the same time, the

main frequency will form a main ridge. As to be shown below, this main ridge

shows different characteristic patterns for data of different types.

4.3 Applications to chaotic time series

In this section, time-frequency analysis with NSE is presented for the Lorenz

time series, the Rössler time series, and experimental laser data.

The Lorenz system is a typical chaotic system with two scrolls. As Fig. 4.4

indicates, the periodogram spectra [94] of the x and y components of the Lorenz

system are broadband and similar to each other, while the periodogram spectra of

the z component of the Lorenz systems have a peak. This spectral peak, which

is marked by ↓ F1 in Fig. 4.4(c) and named the hidden frequency in Refs. [95,

96], can reveal the frequency related to the principal oscillation of the Lorenz

system. Note that this frequency is not a particular case of this sequence. The

spectral peak universally exists with small deviation (1.305∼1.330 Hz with 95%

confidence), as Fig. 4.5(a) indicates. Though this oscillation exists in the x and

y components simultaneously as the dynamical system evolves, the periodogram

spectra of x and y fail to reveal it. The time interval between peaks and the

amplitudes of the x and y sequences both vary with the phase state switching

between the two scrolls with no obvious regularity, and thus can be considered as

frequency modulation and amplitude modulation, respectively. The periodogram

spectra cannot capture this complicated modulation and therefore fail to reveal
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the principal oscillation.
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Figure 4.4: (a), (b), and (c) are the periodogram spectra of the time series mea-
sured from the x, y, and z components of the Lorenz system, respectively; (d)
the strange attractor of the Lorenz system. The y-axis label P denotes the power
spectra.

In contrast, time-frequency analysis with NSE can reveal the principal os-

cillation. The Lorenz time series of the x component is over-embedded with time

delay κ = 4 4 and embedding dimension d = 20, and the first 20 nearest neigh-

bors are used in NSE. The spectrograms of the clean Lorenz time series and its

noisy version are illustrated in Fig. 4.6, respectively. It can be observed that (i) the

spectra are broadband and the energy is primarily distributed in the low frequency

region, and (ii) the main ridge is formed by many short disjointed curves (even

for the Lorenz time series contaminated by 5 dB white noise), which vary slowly

around a frequency related to the principal oscillation. The bottom panel is the

average of the spectrogram over time, which can be considered as the energy dis-

tribution versus frequency. The frequency corresponding to the maximum peak

of this curve, labeled by ↑ F2, is approximately equal to the hidden frequency in-

dicated by ↓ F1 in Fig 4.4(c). Histograms of the main frequencies in Fig. 4.6 are

shown in Figs. 4.5(b) and 4.5(c), respectively. The hidden frequency is located at

the center of the main frequencies. This implies that the main frequencies contain

4Determined by the first minimum of mutual information [97].



58 Chapter 4. Neighborhood-based time-frequency analysis

1.25 1.3 1.35 1.4
0

0.05

0.1

0.15

0 1 2
0

0.05

0.1

0.15

0 1 2
0

0.05

0.1

0.15

0 1 2
0

0.2

0.4

0.6

0.8

(a) (b) 

(c) (d) 

f (Hz) f (Hz)

pe
rc

en
ta

ge
pe

rc
en

ta
ge

Figure 4.5: (a) The histogram of the spectral peaks [as ↓ F1 in Fig. 4.4(c)]
of 200 Lorenz sequences (10 000 points each sequence) measured from the z
component with different initials; (b) the gray bars denote the histogram of the
main frequencies in Fig. 4.6(a), and the black bars are the histogram in (a),
which is plotted here for comparison; (c) the gray bars denote the histogram of
the main frequencies in Fig. 4.6(b), and the black bars are the histogram in (a);
(d) the histogram of the spectral peaks of 200 Lorenz sequences (500 points each
sequence) estimated by periodogram; the gray and the black bars, respectively,
denote the histograms of the spectral peaks of sequences measured from the x
and z components simultaneously.

information related to the principal oscillation of chaotic system. Similar results

can also be obtained with data measured from the y component of the Lorenz

system.

The similar wave forms, covered by the neighbors, can enhance their com-

mon structure, i.e., the principal oscillation, while they may simultaneously “av-

erage” out the sub-structures and noise as well. Thus, even for the noisy Lorenz

time series with 5 dB white noise, the principal oscillation can be extracted.

Time-frequency analysis with the short-time periodogram [66] has also been per-

formed of sequences simultaneously measured from the x and z components. As

Fig. 4.5(d) indicates, the spectral peaks of sequences measured from the z com-

ponent are located at the center region of the histogram in Figs. 4.5(b) and 4.5(c),

while the spectral peaks of sequences measured from the x component are close

to zero frequency. Note that a different window length has been adopted for the
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short-time periodogram, but the pattern of the main frequencies is similar to that

shown in Fig. 4.5(d).
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Figure 4.6: Spectrogram of a clean Lorenz time series measured from the x com-
ponent with parameter r = 28 (a), and its noisy version with 5 dB additive white
noise (b) by NSE, respectively. For each case, only a 1000-sample segment of
the spectrogram is plotted. For each sub-figure, the left panel is the time series,
the big panel is the corresponding spectrogram estimated by NSE, and the bottom
panel is the average of the spectrogram over time. The black points indicate the
main frequencies. This layout is followed in all following spectrogram figures,
unless otherwise stated.

The Lorenz system with different values of the parameter r has been widely

studied and rich dynamics has been revealed [98]. We further apply NSE to

(noisy) Lorenz time series generated with different values of the parameter r

while fixing the other two parameters (σ, b) = (10, 8/3). When the Lorenz sys-

tem is chaotic (e.g., r = 33 and 38), the main ridge is formed with unconnected

short curves, which is similar to the case of r = 28 (see Fig. 4.6). While when

the Lorenz system is non-chaotic (e.g., r = 18 and 148), the system is almost

periodic and the main frequencies are approximately constant. As Fig. 4.7 indi-

cates, the hidden frequencies can be detected by NSE even when the Lorenz time

series is contaminated by 5 dB additive white noise (only one mismatch for the
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case of noisy data with 5 dB noise). For the cases of r = 28, 33, 38, 43, 48, 53, d

is set as d = 20, and for the cases of r = 58, 63, 68, 73, d is set as d = 10. This

is because as the hidden frequency increases with r, the period of oscillation be-

comes smaller and thus the reference phase point will cover more cycles, which

leads to fewer well-matched neighbors. With only few appropriate neighbors, the

reliability of NSE will reduce.

The length of the embedding window, Lw = (d − 1)κ + 1, is a tradeoff

between the reliability and the frequency resolution. On the one hand, to get a

better reliability, Lw should be set relatively shorter to ensure more appropriate

neighbors. On the other hand, to obtain a spectra with higher frequency resolu-

tion, Lw should be set relatively longer. With sampling time interval ∆t = 0.04

and Lw = 77 (d = 20, κ = 4), the physical resolution of the spectra estimated

by periodogram is 1
∆tLw

≈ 0.32 Hz. This resolution can not provide an accu-

rate detection of the hidden frequency (about 1.32 Hz when r = 28). Padding

zeros at the end of data is a common strategy adopted in implementation of the
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Figure 4.7: Hidden frequency of the Lorenz time series. ◦ — by periodogram
with a clean Lorenz time series measured from the z component, • — by NSE
with a clean series measured from the x component, ¦ — by NSE with a noisy
version of the clean time series of the x component (10 dB additive white noise),
+ — by NSE with a noisy version of the clean time series of the x component
(5 dB additive white noise).



4.3. Applications to chaotic time series 61

discrete Fourier transform, so as to obtain a higher computational resolution, i.e.,

smaller frequency interval between the calculated bins. In this chapter, (512−Lw)

zeros are padded to the end of ui and Eq. (4.3) is implemented by 512-point

fast Fourier transform (FFT). With this strategy, the computational resolution is
1

0.04×512
≈ 0.05 Hz, which can be considered as an appropriate result of interpo-

lation. But padding zeros to individual realization does not increase the physical

resolution of the estimated spectra, and the location of the spectral peak may

depart from the hiddern frequency [67, 68].
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Figure 4.8: Energy distribution versus frequency of the Lorenz time series mea-
sured from the x component. The maximum Lyapunov exponents corresponding
to (a) – (f) are -0.23, -0.05, 0.90, 1.24, 1.53, and 0.00, respectively. In each panel,
the three curves correspond to the normalized average of the spectrogram by the
short-time periodogram, NSE, and the BT estimator from up to down. Each curve
is offset vertically for clarity, and the scale in the vertical axis is therefore arbi-
trary.

Figure 4.8 shows the energy distribution versus frequency for the Lorenz
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time series. When the system has non-positive maximum Lyapunov exponent

[Figs. 4.8(a), 4.8(b), and 4.8(f)], the time series seems pseudo-periodic. NSE can

detect a fundamental frequency as well as the short-time periodogram and the BT

estimator, though some harmonics are different, while for the Lorenz system with

positive maximum Lyapunov exponent [Figs. 4.8(c), 4.8(d), and 4.8(e)], only

NSE can reveal the frequency (i.e., the hidden frequency) related to the principal

oscillation, which has been verified in Fig. 4.7.
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Figure 4.9: Spectrogram of a clean Rössler time series (a) measured from the
x component and its noisy version (b) with 5 dB additive white noise by NSE,
respectively. τ = 7, d = 12, and the sampling interval is ∆t = 0.2.

The Rössler system,





ẋ = −(y + z),

ẏ = x + 0.2y,

ż = 0.2 + xz − Cz,

(4.8)

is another typical chaotic system with periodic motion superimposed on chaotic

behavior [85]. When C = 4.6, the Rössler system is chaotic [32]. Its power spec-

tra contain almost periodic δ-function peaks and broad background components.
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The sharp peaks are due to periodic motion, and the broad components are the

result of amplitude modulation.

As Fig. 4.9(a) indicates, the Rössler time series is something like a pseudo-

periodic one with amplitude fluctuation and the main frequency varies very little

with time. The peak of the curve of the energy distribution corresponds to the

fundamental frequency of the Rössler system. For the noisy Rössler time series

[Fig. 4.9(b)], the main ridge is obvious and “stationary” with only a few scattered

points.

NSE is further applied to an experimental laser time series [99], which can

be obtained from the Santa Fe time series competition data 5. To better match the

neighbors, the ε-neighborhood is formed with κ = 1, and d = 80. As Fig. 4.10

indicates, the main frequency decreases little during the pulse boosting and jumps

back as the oscillation collapses.
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Figure 4.10: Spectrogram of a laser time series (10 000 samples) by NSE. (a)
10 000-point data and their spectrogram; (b) an enlargement of (a) from point
2921 to point 3320.

5http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html
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For one more example, NSE is applied to data measured from Chua’s cir-

cuit [100]. Results show that the principal oscillation of Chua’s circuit can be

revealed clearly by its main ridge pattern even when the data are corrupted by

additive noise. For high dimensional chaotic flow such as Mackey-Glass sys-

tem [101], NSE may also be applicable. For this case, the recurrence of state

may be less frequent. Then a longer duration of data are required so as to provide

enough well-matched neighbors for NSE.

For comparison, time-frequency analysis with the short-time periodogram

and the BT estimator are performed for the (noisy) Rössler time series, laser data,

and Chua’s circuit data. For Rössler time series and laser data, it is shown that

both methods get similar main ridge patterns, respectively. While for Chua’s cir-

cuit data, time-frequency analysis with the short-time periodogram fails to reveal

the intrinsic oscillation.

4.4 Distinguishing noisy chaotic flow

from colored noise

It has been reported that (noisy) chaotic data is difficult to be distinguished

from colored noise by their spectral falloff patterns [65]. Chaotic flow has scat-

tered state recurrences, while colored noise does not possess this deterministic

feature. From this point, time-frequency analysis with NSE is expected to reveal

this difference and thus provides an alternative method to distinguish them.

A pink noise and a surrogate sequence are taken as examples. The pink

noise (10 000 points) is generated by a first-order autoregressive process [AR(1)],

w(n + 1) = βw(n) + (1 − β)ε(n), where β = 0.69 and ε(n) ∼ N(0, 1) is

a Gaussian process [102, 103]. As Fig. 4.11 indicates, the spectra of the clean

Lorenz time series measured from the x component have a long exponential-

law scaling region (marked by A). As the Lorenz time series is contaminated by

additive noise, the exponential-law region (as that labeled by B and C for the

cases with 10 dB and 5 dB white noise, respectively) becomes less obvious and

difficult to be distinguished from that of pink noise (marked by E), while the

time-frequency analysis with NSE is sensitive to this difference. As Fig. 4.12(a)
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indicates, the main frequency of pink noise varies along time with no regularity,

while the main ridge pattern of the chaotic Lorenz time series with 5 dB white

noise [Fig. 4.6(b)] exhibits obvious temporal structures.
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Figure 4.11: Power spectra estimated by periodogram. From the top down, the
spectra, marked by A, B, C, D, and E, correspond to the clean Lorenz time se-
ries [the one used in Fig. 4.6(a)], the noisy Lorenz time series with 10 dB wihte
noise, the noisy Lorenz time series with 5 dB white noise [i.e., the one used in
Fig. 4.6(b)], the phase shuffled surrogate data of the noisy Lorenz time series,
and the pink noise generated by AR(1), respectively. Each time series has 10 000
points. The three black lines indicate the exponential-law scaling regions of the
corresponding spectra. Here, the calculated frequency bins are not scaled to the
real frequency with units of Hz.

Surrogate tests are often used to detect nonlinearity in time series [93].

Here, the surrogate data are generated by shuffling the phase of the original noisy

Lorenz time series [the one used in Fig. 4.6(b)] [84]. The power spectra of the

surrogate data (marked by D in Fig. 4.11) are similar to those of the original

data (marked by C). However, due to the phase shuffling, the surrogate data do

not possess the deterministic features of the original noisy Lorenz time series,

and their main ridge patterns are therefore clearly distinct [Fig. 4.12(b) vs. Fig.

4.6(b)]. As discussed in Sec. 4.1, time-frequency joint analysis can reveal some
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Figure 4.12: The spectrogram of pink noise (a) and the surrogate data (b) by
NSE, respectively. The frequency bins calculated by FFT are not scaled to the
real frequency with units of Hz.

information that is obscured by just a single finite-time frequency representation.

The histograms of the main frequencies related to Fig. 4.12 are illustrated in

Fig. 4.13. Comparing with Fig. 4.5, the main frequencies of both the pink noise

and the surrogate data are mainly distributed in a region near zero frequency,

while the main frequencies of (noisy) chaotic time series are located in a region

relatively far from zero frequency.

In summary, for the chaotic Lorenz time series, the main ridge has many

short unconnected curves, which vary around the hidden frequency. We believe

that this main ridge pattern is a characteristic of chaotic flow. For the chaotic

Rössler time series, the wave-form is pseudo-periodic, yielding a main ridge that

varies smoothly and slowly. In the time domain, the wave-form variation of the

Lorenz time series (switching between two scrolls) seems more “complex” than

that of the Rössler time series (evolving around one focus). Therefore, the main

ridge of the Rössler time series is more “regular”. For noisy chaotic flow, the
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Figure 4.13: (a) Histogram of the main frequencies in Fig. 4.12(a). (b) The
gray bars denote the histogram of the main frequencies in Fig. 4.12(b), and for
comparison, the histogram in Fig. 4.5(a) is plotted by black bars.

principal oscillation can be detected by NSE, and the main ridge reserves some

characteristics of the corresponding clean data, while for the pink noise and sur-

rogate data, there is no deterministic feature, and thus the main ridge is irregular,

which is distinct from that of (noisy) chaotic flow. This difference in main ridge

pattern can be used to distinguish them. NSE is designed to investigate (noisy)

chaotic flow based on its state recurrence. Note that various methods from other

viewpoints, such as the 0-1 test [104, 105] and method based on scale-dependent

Lyapunov exponent [106], have been developed to investigate whether a nonlin-

ear time series is deterministically chaotic or stochastic. Nevertheless, these are

beyond the focus of this thesis.

4.5 Conclusion

In this chapter, time-frequency analysis for chaotic flow is performed. First,

chaotic data are over-embedded, and the relation between the reference phase

point and its nearest neighbors is demonstrated. Neighbors represent the state

recurrences of the reference phase point and cover data segments with similar

wave forms to each other, but recur with no obvious temporal regularity. To

apply these state recurrences, a neighborhood-based spectrum estimator (NSE)

is devised for chaotic flow, bridging the theory of time delay embedding and

the frequency domain. Then time-frequency analysis with NSE is performed

for (noisy) Lorenz time series. It is found that NSE can reveal the frequency
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related to the principal oscillation of the Lorenz system, which, however, cannot

be detected by the periodogram method. Further, time-frequency analysis with

NSE is applied to the Rössler time series and experimental laser data. It is shown

that their main frequencies have similar characteristics: they vary slowly around

a frequency related to the principal oscillation of the dynamical system. After

that, NSE is applied to pink noise and phase shuffled surrogate data. The results

show that their main ridge patterns are distinct from that of (noisy) chaotic flow,

thus providing an alternative method to distinguish them, though for some real or

more chaotic systems, a distinction may not be that easy.

On the one hand, NSE can reveal some meaningful features that classical

methods fail to uncover; on the other hand, NSE also may “average” out some

sub-structures. So NSE can be adopted together with other methods to make a

comprehensive understanding of the dynamical system.



Chapter 5

Neighborhood-based

phase synchronization detection

Two schemes are proposed to detect phase synchronization from noisy chaotic

data. The first is a neighborhood-based method which links time delay embed-

ding with instantaneous phase (IP) estimation. The second adopts the local pro-

jection (LP) method as a preprocessing filter to noisy data. Both schemes are

based on the theory of time delay embedding and utilize the state recurrences

of chaotic data. The proposed schemes are applied to data measured from two

typical chaotic systems, i.e., the coupled Rössler systems and the coupled Lorenz

systems, respectively. Simulation results show that phase synchronization (PS),

which may be buried by noise, is detected even when the noise level is high.

Moreover, the proposed schemes can avoid the overestimation of the degree of

PS, which may be introduced by the Hilbert transform combined with a tradi-

tional linear bandpass filter to noisy data.

5.1 Introduction

As introduced in Chapters 1 and 2, synchronization exists ubiquitously in

both natural and engineering systems, and has been studied extensively for its

numerous applications (for a review, cf. [35]). PS, as a weak form of synchro-

69
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nization, has been observed in various systems, such as coupled chaotic oscilla-

tors [38,44], chaotic laser array [41], biomedical signals [39], and neuronal oscil-

lations [52, 53]. Various IP definitions have been introduced. One class of them

is based on particular transforms, such as the Hilbert transform [38], the wavelet

transform [40], and a generalized transform with a Gaussian filter [41], to the

observed data. Another class of IPs is defined as the angle of evolving trajectory,

which is reconstructed from the two-dimensional projection of the system [35,42]

or the time derivative of the projection [43, 44], around a fixed point.

For particular data (e.g., data from coherent Rössler systems), IP can be di-

rectly estimated with the Hilbert transform [38]. If the data are contaminated by

measurement noise, the IP so estimated will involve artificial phase slips, i.e., the

discontinuous “jumps” of the unwrapped phase, which do not imply any intrinsic

oscillation but are due to noise. For this case, a linear filter with narrow band-

width is usually first applied to the noisy data, and then IP is estimated from the

output of the filter. However, on the one hand, the linear filter with narrow band-

width may lead to a spurious overestimation of the actual degree of PS [56]; on

the other hand, the linear filter with broad bandwidth will leave a certain amount

of intraband noise, and thus can not suppress the effect of noise effectively. Re-

cently, a data-driven filter has been proposed [107]. It is argued that this filter can

reduce the noise-induced susceptibility of the estimated IP.

Some other methods have also been proposed to detect (phase) synchro-

nization in noisy data. For example, surrogate methods are applied to provide

significance tests of PS in noisy data [45], where both the noisy data and their

surrogate data are passed through a linear filter first. However, it is reported that

weak synchronization may be artificially detected even from two independent

and identically distributed (i.i.d.) Gaussian noise series after narrow bandwidth

filtering [56]. Nonlinear interdependence is proposed to characterize general-

ized synchronization, utilizing the mutual neighbors and the feature that similar

initials lead to similar successors in the evolving chaotic system [46–48]. The

performances of various synchronization measures, including nonlinear interde-

pendence, mutual information, and PS indexes based on both the Hilbert trans-

form and wavelet transform, are compared with real EEG data. It shows that these

measures can indicate a similar tendency in the degree of synchronization [49].
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Further, these measures are tested with data (from typical coupled chaotic sys-

tems) which are contaminated by measurement noise. Results show that these

measures work effectively when the noise level is low, but can be greatly de-

graded when the noise level is relatively high [50]. It is difficult to say which

measure is the best in general. Recently, a statistical measure of recurrences is

proposed to detect PS, and is robust for noise [44]. After that, a general frame-

work is proposed to detect PS through localized sets rather than by defining IP

directly [51]. This framework can be applied to oscillators with multiple time

scales (e.g., spiking and/or bursting neurons). However, whether it is robust to

noise or not is (as far as we are aware) not reported yet. Moreover, these two

methods can only quantify the degree of synchronization in the mean.

To overcome the limitations discussed above, two schemes are proposed to

estimate IP for noisy chaotic data from the viewpoint of time delay embedding.

In phase space reconstructed by time delay embedding [7], the state recurrences

of a reference vector 1 turn out to be its nearest neighbors. As demonstrated in

Sec. 4.2.1, these neighbors can provide redundant information [13]. This fea-

ture has been successfully utilized in chaotic time series analysis and process-

ing, such as nonlinear prediction [15], time-frequency analysis [13], detection

of state transitions [6], and noise reduction (the LP method presented in Chap-

ter 3) [11, 18, 22, 62, 108, 109].

The first scheme is a method of neighborhood-based phase estimation (NPE).

The reference vector and its nearest neighbors (i.e., state recurrences) cover seg-

ments of data with a similar wave form [13]. This implies that the analytical

trajectories (constructed with the Hilbert transform [38]) corresponding to the

reference vector and its neighbors are close to each other in the Hilbert plane, as

will be illustrated later. With this observation, the IP of noisy data is estimated

by a certain averaging of the corresponding IPs of the neighbors. The second

scheme uses the local LP method, instead of the traditional linear bandpass filter,

as a preprocessing filter to noisy data. After noise reduction, the IP can be esti-

mated with the Hilbert transform. Simulation results show that the IP estimated

by the proposed schemes suffers much less from the artificial phase slips, and

thus PS (both in local time and in whole time), which may otherwise be buried

1In this chapter, the reference phase point is called reference vector, so as to avoid confusion
of the word “phase” in both phase point and instantaneous phase.
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by measurement noise, is reliably detected.

5.2 Neighborhood-based phase estimation

The most popular definition of IP is based on the Hilbert transform. Given

a signal s(t), its analytic signal is defined as

s(a)(t) = s(t) + js̃(t) = A(t)ejφ(t), (5.1)

where

s̃(t) = H[s(t)] =
1

π
P.V.

∫ ∞

−∞

s(τ)

t− τ
dτ (5.2)

is the Hilbert transform of s(t). Then the IP of signal s(t) is

φ(t) = arctan
s̃(t)

s(t)
. (5.3)

To illustrate the method of neighborhood-based phase estimation (NPE), the

coupled Rössler systems Σ1,2 [39]

ẋ1,2 = −$1,2y1,2 − z1,2 + ζ1,2 + ξ(x2,1 − x1,2),

ẏ1,2 = $1,2x1,2 + αy1,2, (5.4)

ż1,2 = β + z1,2(x1,2 − γ),

are taken as an example, where $1,2 = 1 ± 0.015, ξ is the coupling strength,

ζ1,2 ∼ N(0, σ2
ζ ), and σζ is the standard deviation of the dynamical noise. Data

are integrated from variables x1,2 using the fourth-order Runge-Kutta method

(Matlab function ode45) with sampling interval ∆t = 0.2. The initials are set

randomly, and 10 000 samples are adopted after the transient state. The measured

time series is denoted as s1,2(n∆t) = x1,2(n∆t) + w1,2(n∆t), where w1,2 is

measurement noise, and assumed to be Gaussian white noise w1,2 ∼ N(0, σ2
w1,2

).

To simplify notation, ∆t is omitted and s1,2(n∆t) is written as s1,2(n) from now

on.

Given the time series {s(n)}L−1
n=0 with L = 10 000 samples, the time delay
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vectors can be reconstructed by time delay embedding [7], i.e., {s(n)}L−1
n=(d−1)κ,

s(n) = [s(n− (d− 1)κ), s(n− (d− 2)κ), . . . , s(n− κ), s(n)]T .

The ε-neighborhood of the reference vector s(n) is defined as

Nn , {s(k) : ‖s(k)− s(n)‖ < ε}.

Let {s̃(n)} denote the Hilbert transform of the observed time series {s(n)}. Cor-

responding to time delay vector s(n), the time delay vector of {s̃(n)} is

s̃(n) = [s̃(n− (d− 1)κ), s̃(n− (d− 2)κ), . . . , s̃(n− κ), s̃(n)]T , (5.5)

and the analytical trajectory associated with s(n) is defined as

s(a)(n) = s(n) + js̃(n). (5.6)

Note that s̃(n) is not calculated from s(n), but is formed from {s̃(n)} by time

delay embedding, and {s̃(n)} is integrated in the whole time domain [Eq. (5.2)],

while s̃(n) is mainly contributed by the vicinity of s(n) in time.

Figure 5.1 illustrates the relation between the reference vector and its neigh-

bors in the time domain and in the (s, s̃)-plane. It shows that the reference vector

and its neighbors cover segments of data with similar wave-form [Fig. 5.1(a)], and

their associated analytical trajectories of clean data are thus close to each other

[Fig. 5.1(b)]. However, the related trajectories of noisy data appear irregularly

[Fig. 5.1(c)], which will yield artificial phase slips. To deal with this problem,

NPE is proposed as follows.

For reference vector s(n), the average of its neighbors is

s̄(n) =
1

N

∑

s(k)∈Nn

s(k), (5.7)

and the average of the related neighbors of s̃(n) is

¯̃s(n) =
1

N

∑

s̃(k): s(k)∈Nn

s̃(k), (5.8)
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Figure 5.1: The relation between the reference vector and its neighbors in the
time domain (a) and in the (s, s̃)-plane [(b), (c), and (d)]. In this figure, the data
are measured from variable x1 of the coherent Rössler systems [Eq. (6.24)], with
parameters ξ = 0.035, α = 0.15, β = 0.2, γ = 10, σζ1,2 = 0, σw1,2 = 0.3σx1,2 ,
κ = 1, and d = 80. Curve c1 is the segment covered by the reference vector
s(n), and curves c2 and c3 are the segments covered by two neighbors [s(k1) and
s(k2)] of the reference vector, respectively. Note that the neighbors are searched
from noisy data, and the smooth curves [i.e., x(n), x(k1), and x(k2)] are the
clean versions of the coarse curves, respectively. The analytical trajectories [i.e.,
x(a)(n), x(a)(k1), and x(a)(k2)] constructed from clean data are very close to each
other (b), while the corresponding trajectories [s(a)(n), s(a)(k1), and s(a)(k2)]
of the noisy version seem pell-mell (c). The blue (dark gray) trajectory in (c),
estimated by NPE, is close to the corresponding trajectory [black, in (b)] of clean
data. For clarity, only the trajectories corresponding to the mid-half segments
of the curves in (a) are plotted in (b) and (c), respectively. A particular entry
s(a)(n; i) (¦) of s(a)(n), its clean version x(a)(n; i) [◦ in (b) and (d)], its first 20
noisy neighbors s(a)(k; i) (×), and the average s̄(a)(n; i) of these 20 neighbors (•)
are illustrated in (d).

where N = |Nn| is the number of neighbors. Let s̄(a)(n) = s̄(n) + j¯̃s(n) denote

the estimate of the analytical trajectory of x(n), and s(n; i) denote the ith entry

of s(n). Then s̄(a)(n; i) is an estimate of the analytical signal at instant [n −
(d− i)κ]∆t. As s(n) appears as an entry of s(l), l = n, . . . , n + (d− 1)κ, there

are d estimates of s̄(a)(n) at instant n∆t. It is difficult to say which estimate is



5.3. Phase synchronization of coupled Rössler systems 75

the best, so the average of the estimates at the same instant is taken as the final

estimate of the analytical signal at this instant, yielding the estimated analytical

signal {s̄(a)(n)}, where s̄(a)(n) = s̄(n) + ¯̃s(n). Then IP is estimated as

φ̂(n) = arctan
¯̃s(n)

s̄(n)
. (5.9)

As that presented in Sec. 2.2 and Chapter 3, the LP method has been studied

extensively [11,18,22,62,108,109]. The second scheme just uses the LP method,

instead of the traditional linear bandpass filter, as a preprocessing filter to noisy

data. After noise reduction, IP can be obtained from {x̂(n)} with the Hilbert

transform. In this chapter, this scheme is denoted by P-LP. It has been reported

that the LP method is more powerful than the linear bandpass method in reducing

noise for chaotic data [11, 18, 22].

5.3 Phase synchronization

of coupled Rössler systems

First, the proposed schemes are applied to data measured from coupled co-

herent Rössler systems Σ1,2 [Eq. (6.24)] with no dynamical noise. The parameters

are set as α = 0.15, β = 0.2, γ = 10, σζ1,2 = 0, and σw1,2 = ησx1,2 , where η is

the level of measurement noise.

Figure 5.2 illustrates the detection of PS by the proposed schemes. Let

P-HT denote the method that IP is obtained by applying the Hilbert transform

directly to (noisy) data. When there is measurement noise, the IP difference

(φ1 − φ2) of the coupled systems Σ1,2 [Eq. (6.24)], estimated by P-HT, fluctu-

ates irregularly [Fig. 5.2(a), “P-HT, η = 0.5” and “P-HT, η = 0.7”], and the

wrapped phase difference ϕ = (φ1 − φ2)mod(2π) exhibits a much broader

distribution compared with that of the corresponding clean data [Figs. 5.2(c)

and 5.2(d) vs Fig. 5.2(b)]. It may appear that the coupled oscillators are non-

synchronous or weakly synchronous, though the intrinsic oscillations are syn-

chronous [Fig. 5.2(a), “P-HT, η = 0”]. This misclassification can be avoided by

NPE and P-LP. The unwrapped phase difference [Fig. 5.2(a), “NPE, η = 0.7”]
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Figure 5.2: Phase synchronization of synchronous Rössler systems (ξ = 0.035).
(a) The unwrapped phase difference of the coupled systems. (b) – (d) are the
distributions p(ϕ) of the wrapped phase difference of the cases η = 0 (i.e., clean),
η = 0.5, and η = 0.7 by P-HT, respectively. (e) and (f) are the results of noisy
data (η = 0.7) by NPE and P-LP (κ = 1, d = 80, N = 20, and M = 5),
respectively. (g) – (i) are the power spectra of the clean data, noisy data (η = 0.7),
and the real part {s̄(n)} of the estimated analytical signal {s̄(a)(n)} by NPE,
respectively. Note that only the low frequency region of the power spectra is
plotted. The power spectra of the data after noise reduction by LP are similar to
that in (i), and are not plotted.

estimated by the proposed schemes is bounded around a constant which implies

PS occurs in the coupled systems Σ1,2, and the corresponding distribution p(ϕ)

of the wrapped phase difference is almost as sharp as that of the clean data

[Figs. 5.2(e) and 5.2(f) vs Fig. 5.2(b)]. The power spectra are also plotted for

comparison. It shows that the subharmonics and subtle structures are buried by

measurement noise [Fig. 5.2(g) vs Fig. 5.2(h)], while NPE and LP can recover

most of them [Fig. 5.2(g) vs Fig. 5.2(i)]. If the narrow bandpass filter is applied

to noisy data, all the out-band structures will be removed.

In this chapter, the synchronization index (SI) based on entropy [39,56] (see
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Figure 5.3: The estimated synchronization index ρ with respect to embedding
dimension [(a), N = 20] and the number of neighbors [(b), d = 80] for syn-
chronous Rössler systems (ξ = 0.035). Ten realizations of each case are cal-
culated, and their means and standard deviations are plotted. Note that similar
simulations to the nonsynchronous Rössler systems (ξ = 0.01) show that ρ in-
creases very slowly with the increase of the value of parameters d and N (these
results are not included in this thesis for briefness).

introduction of this index in Sec. 2.4.2) is used to quantify the degree of PS. It

is reported that overembedding (i.e., an embedding of excessively high dimen-

sion) [57] may yield better result of noise reduction by LP [62]. For NPE and

P-LP, an embedding of relatively higher dimension leads to a closer estimate of

SI to that calculated from clean data [Fig. 5.3(a)], and relatively more neighbors

also yield a higher estimate of SI [Fig. 5.3(b)]. For data with higher noise level,

a few more neighbors may yield a little better results. For P-LP, simulation re-

sults also show that the SI decreases slowly (less than 6.2% for M from 3 to 10,

when η = 0.7) with respect to the increase of dimension M of the signal sub-

space space. Considering that the performances of the proposed schemes are not

very sensitive to the values of parameters after they reach particular values, the

parameters are simply set as follows: κ = 1, d = 80, N = 20, and M = 5,

unless stated otherwise. More discussions on these parameters can be found in

Refs. [11, 13, 62, 108].

Figure 5.4 shows the results of the proposed schemes to data with different

noise levels. For both the synchronous [Fig. 5.4(a), ξ = 0.035] and the nearly
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Figure 5.4: The estimated synchronization index ρ with respect to the level of
measurement noise for the cases of synchronous [(a), ξ = 0.035], nearly syn-
chronous [(b), ξ = 0.027], and nonsynchronous [(c), ξ = 0.01] states, which are
with only measurement noise, and the case that is also with dynamical noise [(d),
ξ = 0.2, σζ1,2 = 0.1]. Ten realizations of each case are calculated.

synchronous [Fig. 5.4(b), ξ = 0.027] Rössler systems, the SIs estimated by P-

HT descend quickly as the noise level increases, which may mislead that the

coupled systems are nonsynchronous or weakly synchronous even though they

are actually synchronous. The SIs estimated with the proposed schemes are more

robust to noise, and are very close to those estimated from clean data (η = 0),

when the noise level is not so high [Fig. 5.4(a), η < 0.5]. For the nonsynchronous

systems [Fig. 5.4(c), ξ = 0.01], the SIs estimated by the proposed schemes are

also close to that calculated from clean data. For these three cases, the proposed

schemes do not yield overestimation of the degree of synchronization, and thus

overcome the problem of overestimation that may arise from the linear bandpass

filter [56]. Note that the coupling strength of these three cases are adopted from

that used in Ref. [39].
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Furthermore, the proposed schemes are applied to data measured from cou-

pled Rössler systems with dynamical noise. As Fig. 5.4(d) indicates, the SIs

estimated by P-HT decrease quickly as the level of measurement noise increases.

Moreover, when the level of measurement noise is not so high (η ≤ 0.6), the

indexes are overestimated by NPE and P-LP, compared with the result of the case

with no measurement noise (η = 0) by P-HT. This is because the integrated data

from systems with dynamical noise are not smooth, and appear to be noisy even

with no measurement noise. Both NPE and P-LP can reduce the effect of coarse-

ness in data, and thus overestimate the degree of PS. The overestimation tends

to fade off as the level of dynamical noise decreases. One way to deal with data

with dynamical noise is the method of shadowing [17], which yields a smooth

shadowing trajectory that is close to the coarse trajectory. We conjecture that

the SI estimated by P-HT from the shadowing trajectory may be close to the in-

dexes estimated by NPE or P-LP from the coarse data with only dynamical noise

(η = 0). Here, we do not discuss shadowing in detail because it is not the focus

of this thesis.

For the data measured from noncoherent systems (e.g., the funnel Rössler

systems), the IP definition with the Hilbert transform is not immediately appli-

cable, because the so estimated IP does not increase monotonicly. One way to

deal with this problem is to define the IP based on the concept of curvature of

an arbitrary curve [43, 44]. For any two-dimensional curve C1 = (x, y) whose

curvature is positive, the curve C2 = (ẋ, ẏ) cycles monotonically around a fixed

point, and the IP can be always defined as

φ = arctan
ẏ

ẋ
. (5.10)

The coupled funnel Rössler systems [Eq. (6.24), α = 0.25, β = 0.2,

γ = 10, and σζ1,2 = 0] are studied with this IP definition. A smaller sam-

pling interval ∆t = 0.05 is used, so that more smooth derivatives [Eq. (5.10)] can

be obtained, and 40 000 samples are measured after the transient state. Data

measured from variables x1,2 and y1,2 are all added with measurement noise,

i.e., s1,2 = x1,2 + w1,2 and s3,4 = y1,2 + w3,4, where w1,2 ∼ N(0, η2σ2
x1,2

),

w3,4 ∼ N(0, η2σ2
y3,4

), and η is the relative level of measurement noise. The LP
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method 2 is applied to all the noisy data {s1,2,3,4} separately, yielding the esti-

mation of {x1,2} and {y1,2}, i.e., {x̂1,2} and {ŷ1,2}, respectively. Then the IPs

of systems Σ1,2 are estimated via Eq. (5.10) with {x̂1,2} and {ŷ1,2}, respectively.

Simulation results show that some degree of PS can be detected from data (actu-

ally synchronous) when the level of measurement noise is small (η < 0.1). This is

because the derivative [Eq. (5.10)] is very sensitive to noise. So Eq. (5.10) seems

not a robust IP definition in detecting PS of noisy data. One possible method is

statistical measure of recurrences introduced recently [44]; but this method can

not indicate the degree of synchronization in local time. To address this problem,

PS of noncoherent coupled chaotic systems is further studied from the viewpoint

of signal processing, as is presented in Chapter 6.

5.4 Phase synchronization

of coupled Lorenz systems

In this section, the LP method is applied as a preprocessing tool in detecting

PS of the data from the coupled Lorenz systems,

ẋ1,2 = 10(y1,2 − x1,2) + ξ(x2,1 − x1,2),

ẏ1,2 = (r1,2 − z1,2)x1,2 − y1,2, (5.11)

ż1,2 = x1,2y1,2 − 8

3
z1,2,

where r1 = 28, r2 = 28.02, and ξ = 3.8 is the coupling strength. Ten-thousand

samples are measured with sampling interval ∆t = 0.04. In the (x, y)-plane,

the Lorenz attractor has two centers of rotation [Fig. 5.5(a)], and the definition of

IP with the Hilbert transform is not applicable. Considering the symmetry of the

Lorenz attractor, the IP of the Lorenz oscillator can be defined with its projection

on the (u, z)-plane,

φ = arctan
z − z0

u− u0

, (5.12)

where u =
√

x2 + y2, u0 = 12, and z0 = 27 [42].

2The parameters are set as N = 20, M = 5, κ = 4, and d = 80, so that the length of the
embedding window (d − 1)κ∆t is almost equal to that used for the case of coherent Rössler
systems.
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û1

ẑ
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Figure 5.5: Attractors of the Lorenz system reconstructed with (a) clean Lorenz
time series in the (x, y)-plane, (b) clean Lorenz time series (η = 0) in the (u, z)-
plane, (c) noisy Lorenz time series (η = 0.3) in the (u, z)-plane, and (d) the
corresponding enhanced Lorenz time series in the (u, z)-plane, respectively.

In the (u, z)-plane, the attractor constructed with clean data [Fig. 5.5(b)]

rotates around one center (u0, z0). Measurement noise, w1,2 ∼ N(0, η2σ2
u1,2

),

w3,4 ∼ N(0, η2σ2
z1,2

), are added to u1,2 and z1,2, respectively. It can be observed

that the attractor, distorted by noise [Fig. 5.5(c)], is almost recovered [Fig. 5.5(d)]

after noise reduction by the LP method (N = 20, M = 5, κ = 1, and d = 80).

Note that the unwrapped phase difference fluctuates intensely [Fig. 5.6(a), “P-PP,

η = 0.5” and “P-PP, η = 0.7”] due to measurement noise, though the coupled

systems are intrinsically synchronous [Fig. 5.6(a), “P-PP, η = 0”]. These fluctua-

tions can be greatly reduced by applying the LP method, resulting in long epoches

of phase locking [Fig. 5.6(a), “P-LP, η = 0.5” and “P-LP, η = 0.7”]. Thus PS

can be detected reliably from noisy data, which is more clearly demonstrated as

the results summarized in Fig. 5.6(b).

In comparison with the LP method, the effect of the bandpass filter in detect-

ing PS is studied. The Gaussian envelop filter, introduced in Ref. [110], is applied

to noisy data u1,2 and z1,2, respectively, and the IPs are computed via Eq. (5.12)

with the outputs of the filter. As Fig. 5.7 illustrates, this scheme, denoted as P-BP,
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Figure 5.6: (a) The unwrapped phase difference of coupled Lorenz systems, and
(b) their synchronization index ρ (ten realizations of each case) with respect to
the level of measurement noise. P-PP denotes the results that the IP is defined in
the projection plane [Eq. (5.12)] with no filtering to noisy data.

is sensitive to the band-width (∆f ) of the filter, and may overestimate the degree

of synchronization even when the data is clean (P-PP, η = 0).

5.5 Discussion and conclusion

Two schemes are proposed to detect phase synchronization (PS) from noisy

chaotic data. One is the method of neighborhood-based phase estimation (NPE),

the other adopts the local projection (LP) method as a preprocessing filter for

noisy data. They are applied to data measured from two typical chaotic systems,

i.e., the coupled Rössler systems and the coupled Lorenz systems. Simulation

results show that the estimated instantaneous phase (IP) suffers much less from

artificial phase slips caused by noise, and thus the degree of PS can be reliably

detected even when the noise level is relatively high, avoiding the overestima-

tion that may be introduced by the traditional linear bandpass filter. For the data
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Figure 5.7: The synchronization index ρ (ten realizations of each case) with re-
spect to the band width ∆f of the linear bandpass filter. The center frequency of
the filter is set as 1.321 Hz, where the most energetic spectra of the Lorenz time
series are located around. Other details about the filter can be found in Ref. [110].

with dynamical noise as well, overestimation may be introduced when the mea-

surement noise level is not so high because the data measured from systems with

dynamical noise are coarse even when there is no measurement noise. This over-

estimation tends to decrease as the level of dynamical noise decreases.

State recurrence is one important feature of chaotic systems. As discussed

in previous chapters, it has been utilized in analyzing and processing various the-

oretical and experimental systems. Actually, nonlinear interdependence [46–48]

and the statistical measure of recurrences [44] both utilize the idea of state re-

currence. For the framework of PS detection via localized sets [51], the typical

events defined in localized sets can also be considered as generalized “recur-

rences”. The difference is that these “recurrences” are defined in a more generic

way (e.g., by the intersection of the trajectory with a local plane) rather than by

the spatial nearness of vectors in the phase space reconstructed by time delay

embedding.

Both schemes proposed in this chapter utilize the redundant information of

state recurrences of chaotic data. The difference is that NPE estimates IP directly
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by averaging the analytical trajectories of neighbors, bridging time delay embed-

ding to IP estimation; while the scheme incorporating LP estimates IP from data

after noise reduction. In the proposed schemes, state recurrences (i.e., neighbors)

are defined in the over-embedded phase space. Thus, on the one hand, the re-

currences collected from noisy data are more likely to be true recurrences (the

recurrences collected form clean data are considered as true recurrences here);

on the other hand, the proposed schemes may not be suitable for spiking and/or

bursting neurons, because spikes will dominate in collecting recurrences. It is

difficult to design a method which is both robust to noise and applicable to vari-

ous data. Usually, methods focus on just one point, the proposed schemes in this

chapter focus on robustness.



Chapter 6

On phase synchronization detection

In this chapter, we examine the definition of instantaneous phase (IP) and

the effect of noise in IP estimation and phase synchronization (PS) detection from

the viewpoint of signal processing and circular statistics. Several definitions of IP

are first revisited and further unified into a framework which defines the analytic

signal via a specific bandpass filter. The effect of noise in IP estimation is studied,

and the IP error, which is due to noise, is shown to obey a scale mixture of normal

distributions (SMN). Further, with the assumption that the SMN of IP error can

be approximated by a particular normal distribution, the estimate of mean phase

coherence (MPC) is shown to be degraded by a factor which is determined only

by the level of in-band noise. After that, a band-weighted synchronization index

is proposed for noncoherent time series. At last, simulations are performed to test

the theoretical results and the proposed index.

6.1 Introduction

As has been discussed in Sec. 2.4 and Chapter 5, synchronization is a co-

operative behavior which means that the coupled systems evolve with the same

rhythm. It ubiquitously exists in both natural and engineering systems. Exam-

ples include coupled chaotic oscillators [38], human brain activities and muscle

activities [39], neuronal oscillations [53, 54], chaotic laser array [41], electro-

85
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chemical oscillations [70], and coupled nanomechanical oscillators [71]. This

phenomenon can not only reveal the mechanism and function of the coupled sys-

tems (e.g., communication during cognitive processing in human brain [54]) but

also help to gain new applications such as providing clinical evidence in Parkin-

son’s disease treatments [55]. Therefore, it has drawn increasing attention in

recent years (for a review, cf. Ref. [35, 52]). To detect synchronization, various

methods have been introduced [49,51,111]. However, to gain a reliable detection

is not so easy, especially for the case when one has only the observed time series

which are noncoherent and unavoidably contaminated by noise [49, 50, 112]. As

introduced in Sec. 2.4.1, there are several different type of synchronization, such

as complete synchronization (CS), generalized synchronization (GS), and phase

synchronization (PS). Note that CS and GS is difficult to be applied to analyze

bivariate time series observed from experimental systems. Nevertheless, PS, a

weak form of synchronization, is a suitable tool for observed time series and has

been extensively applied.

To detect PS from observed time series, an appropriate definition and es-

timation of instantaneous phase (IP) is very import. As mentioned in Sec. 5.1,

various definitions of IP have been introduced. Most of them are based on partic-

ular transforms, such as the Hilbert transform [38], the derivative of the Hilbert

transform [70], a generalized transform with Gaussian filter [41], and the wavelet

transform [40], to the observed data. To the best of our knowledge, although

various definitions have been proposed, there are still several key points left to be

addressed. The first is how to treat noncoherent data [113]. For noncoherent data,

negative instantaneous frequency (IF, defined as the derivative of the IP with re-

spect to time), which is physically meaningless, may be introduced by the Hilbert

transform [114, 115]. Usually a narrow bandpass filter is applied as preprocess-

ing. Then the problem becomes what type of filter should be used. The second

is how, quantitatively, the noise will affect the detection of PS. For contaminated

data, artificial phase slips, introduced by noise, will reduce the reliability of the

estimated synchronization index (SI). A bandpass pre-filtering may suppress the

effect of noise, but may introduce spurious overestimation of SI as well [56].

Thus, an analytical study on the effect of noise is greatly desired. The third is

that how to quantify the degree of PS on the whole. With pre-filtering, only the

SI between inband components are considered and the components outside the
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passband are neglected, though these neglected components may interplay and

make a contribution to the interaction of the systems as a whole.

In Chapter 5, overestimation of the degree of PS has been examined in the

phase space reconstructed by time delay embedding. In this chapter, the above

problems are treated from the viewpoints of signal processing and circular statis-

tics. Several definitions of IP are unified into a framework which defines IP as the

argument of the signal with a specific bandpass filter applied. The role of band-

pass filter is examined based on the theory of signal processing. Furthermore,

an analytical study of the effect of noise after pre-filtering is given. After that, a

band-weighted PS measure is proposed to quantify the degree of PS on the whole.

Finally, simulations are performed to verify the analytical study of the effect of

noise, and the band-weighted index is robust to noise for the cases studied.

6.2 Revisit the definition of instantaneous phase

The most popular definition of IP is based on the Hilbert transform. Given

an observable signal s(t), its analytic signal is defined as

s(h)(t) = s(t) + js̃(t) = A(h)(t)ejφ(h)(t), (6.1)

where A(h)(t) is the instantaneous amplitude (IA), φ(h)(t), which is given by

φ(h)(t) = arg [s(h)(t)] = arctan
s̃(t)

s(t)
, (6.2)

is the IP, and s̃(t) = H[s(t)] = 1
π

P.V.
∫∞
−∞

s(τ)
t−τ

dτ is the Hilbert transform of

s(t), in which H(·) denotes the operator of the Hilbert transform. The analytic

signal s(h)(t) can be written as the convolution of s(t) with a complex filter, i.e.,

s(h)(t) = s(t) ∗ b(h)(t), where b(h)(t) = δ(t) + j 1
πt

. In the frequency domain,

s(h)(t) is S(h)(f) = S(f)B(h)(f), where S(f) and B(h)(f) are the Fourier trans-

form of s(t) and b(h)(t), respectively. By definition, the analytic signal can be

obtained in the frequency domain by setting the negative frequency components

of the signal s(t) to be zero and doubling the amplitude of the positive frequency
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components, that is, the filter B(h)(f) should be

B(h)(f) =





2, if f > 0

1, if f = 0

0, if f < 0.

(6.3)

For coherent data (i.e., with one dominated frequency component), the so defined

IP increases monotonously; while for noncoherent data, the so defined IP may de-

crease at some instants and thus the corresponding IF may be negative, which is

physically meaningless [114, 115]. For this case, IP is not a one-to-one transfor-

mation to the analytic trajectory and ambiguity occurs in PS detection [44, 113].

To deal with noncoherent data, some other methods have been proposed.

One is based on the derivative of the analytic signal s(h)(t) [70]. This method

defines IP as φ(d)(t) = arg [s(d)(t)], where s(d)(t) = ds(t)
dt

+ j ds̃(t)
dt

. We can write

s(d)(t) as s(d)(t) = ds(h)(t)
dt

= d
dt

[s(t) ∗ (δ(t) + j 1
πt

)] = s(t) ∗ d
dt

[δ(t) + j 1
πt

] =

s(t) ∗ b(d)(t), where b(d)(t) = δ′(t) − j 1
πt2

. In the frequency domain, s(d)(t) is

S(d)(f) = S(f)B(d)(f), where

B(d)(f) =





j4πf, if f > 0

j2πf, if f = 0

0, if f < 0

(6.4)

is the Fourier transform of b(d)(t). Obviously, this filter amplifies the high fre-

quency components. Note that this IP definition is based on the idea of the curva-

ture of an arbitrary curve [116]. If the curvature of curve C1 = [s(t), s̃(t)], which

is defined in the [s(t), s̃(t)] plane, is positive, the curve C2 = [ds(t)
dt

, ds̃(t)
dt

] will cy-

cle monotonically around a fixed point, and thus the IP φ(d)(t) = arg [s(d)(t)] will

increase monotonically. However, for noncoherent data, the curvature of cure

C1 is not always positive. For the instants the curvature turns from positive to

negative, the corresponding IP will decrease. Thus this definition is not always

applicable to arbitrary noncoherent data.

As discussed above, the analytic signal is obtained by apply a specific filter

to the real signal s(t). With this fact, a generalized definition of IP is proposed by

applying a Gaussian filter (its envelope is a Gaussian function and thus named)
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b(g)(t) = 1√
2πT

e−t2/(2T 2)ej2πfnt to s(t), i.e., s(g)(t) = s(t) ∗ b(g)(t) 1 [41]. In

the frequency domain, s(g)(t) turns out to be S(g)(f) = S(f)B(g)(f), where

B(g)(f) = e−2π2T 2(f−fn)2 . Actually, b(g)(t) is a narrow-band Gaussian filter (i.e.,
1√
2πT

e−t2/(2T 2)) which is shifted by the nominal frequency 2 fn in the frequency

domain. Then the IP is defined as φ(g)(t) = arg [s(g)(t)]. This definition has been

applied successfully in detecting PS of the coupled laser array, which the method

based on the Hilbert transform straightforward has failed to reveal [41]. This is

because PS only exists between the components in particular frequency band of

the laser data. If the components are not extracted by the filter, then PS between

them will be submerged by noise and the components in other bands, and thus

cannot be detected.

Let us further give some comments on two variations of the generalized IP

discussed in Ref. [41].

• The first one is with filter B(e)(f) = 1 − jej2πfτ . In the time domain, this

filter is b(e)(t) = δ(t)−jδ(t+τ), and s(e)(t) = s(t)∗b(e)(t) = s(t)−js(t+

τ). We can get s(e)(t) = s(t) + js(t + τ) if changing the filter a little to be

b(e)(t) = δ(t)+ jδ(t+ τ). Now the so defined IP φ(e)(t) = arg [s(e)(t)] can

be interpreted as the angle of the reconstructed phase trajectory in the two-

dimensional surface of time delay embedding, i.e., [s(t), s(t + τ)], where

τ is time delay [11]. For some cases, e.g., the coherent Rössler system

which has only one scroll, this definition works. But for signals which have

broad spectra, this definition can not work according to the three physical

conditions for the definition of IP (see Sec. 2.4.3). The filter b(e)(t) does not

null all negative frequency components, and thus s(e)(t) is not guaranteed

to be an analytic signal.

• The second one is with filter B(v)(f) = 1 +2µπf . In the time domain, this

filter is b(v)(t) = δ(t)− jµδ′. With s(v)(t) = s(t) ∗ b(v)(t) = s(t)− jµds(t)
dt

,

the IP is defined as φ(v)(t) = arg [s(v)(t)]. This definition is similar with

the one defined by the Mandelstam’s method which is widely used in non-

1We note that there are some typographical errors in Ref. [70] on defining the Guassian filter.
The formulas given there are modified slightly to be consistent with other formulas in this chapter.

2The nominal frequency denotes the midpoint in the pass band, or the arithmetic mean be-
tween high and low cut off frequencies of the filter. It also denotes the desired center frequency
of a crystal or oscillator.
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linear oscillation theory [74]. The Mandelstam’s method defines IP in the

plane [s(t),− 1
2πfn

ds(t)
dt

], where fn is the nominal frequency of the oscilla-

tion. When µ = 1
2πfn

, these two definitions are the same. Further more, if

µ = 1, φ(v)(t) can be interpreted as the angle of the state of displacement

versus velocity. However, the negative frequency components of B(v)(f)

does not vanish and s(v)(t) is thus not guaranteed to be an analytic signal.

One more IP definition is based on the wavelet transform [40]. With the

Gabor wavelet ψ(t) = g(t)ej2πνt, the wavelet transform of s(t) is s(w)(u, a) =∫∞
−∞ s(t) 1√

a
ψ∗( t−u

a
)dt, where g(t) = (T 2π)−1/4e−t2/(2T 2) is the envelope. Let

b
(w)
a (t) = 1√

a
ψ∗(−t

a
), then

s(w)(u, a) =

∫ ∞

−∞
s(t)b(w)

a (u− t)dt = s(u) ∗ b(w)
a (u).

Further,

b(w)
a (u) =

1√
a
g(
−u

a
)ej2πνu/a =

1√
a
g(

u

a
)ej2πνu/a,

because g(t) is symmetrical. Let fn = ν
a

and ν = 1 . Then s(w)(u, a) =

s(u) ∗ b(w)(u), where b(w)(u) = f
1/2
n g(fnu)ej2πfnu. The difference between

b(w)(t) = f
1/2
n (T 2π)−1/4e−t2f2

n/(2T 2)ej2πfnt and b(g)(t) = 1√
2πT

e−t2/(2T 2)ej2πfnt

is the amplitude and the width of the Gaussian window, that is, b(w)(t) is scaled

by fn. In the frequency domain, g(t) is G(f) = (4πT 2)1/4e−2π2f2T 2 , and b(w)(t)

is B(w)(f) = f
−1/2
n G( f

fn
− 1). Therefore, this method obtains the analytic signal

by applying a scaled bandpass filter to the real signal.

6.3 A framework for

instantaneous phase definition

We can unify the IP definitions discussed above into one common frame-

work: applying a particular filter to the observable signal s(t) and further defin-

ing the IP as the argument of the output of the filter. In this section, we study the

role of the filter in defining IP and discuss the relation between IP and the Fourier

transform from the viewpoint of signal processing.
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In the field of signal processing, IF, which is commonly defined as the

derivative of IP, is an important concept and has been widely studied [69, 74,

117, 118]. The filter b(t) = g(t)ej2πfnt, which has complex response, has been

introduced to estimate IP [110], where g(t) = 1√
2πT

e−t2/(2T 2) is the envelope of

the filter and T is response duration. In the frequency domain, b(t) is

B(f) =

∫ ∞

−∞
b(t)e−j2πftdt

=

∫ ∞

−∞
g(t)e−j2π(f−fn)tdt (6.5)

= G(f − fn),

where G(f) = e−2π2f2T 2 is the Fourier transform of g(t). When the signal s(t)

is passed through this filter, the output of the filter, i.e., s(b)(t) = s(t) ∗ b(t), is

analytic if the band-width of the filter is smaller than 2fn [110], since its spectra at

negative frequencies are eliminated by the bandpass filter 3. Then IP is defined as

φ(b)(t) = arg[s(b)(t)]. If the envelope g(t) is a Gaussian function, this method is

exactly the one based on Gaussian filter which has been introduced in the previous

section [41]. Of course, some other windows, such as the Hamming window, can

be used as the envelope as well. No matter what filter is used, it is applied to

constrain the output of the filter to be coherent, i.e., narrow-band with with only

one prominent spectral.

The analytic signal s(b)(t) = s(t) ∗ b(t) can be interpreted as a combina-

tion of the Hilbert transform and a real bandpass filter. Let s(r)(t) = s(t) ∗
g(t) cos(2πfnt), where g(t) cos(2πfnt) is the real part of b(t). In the frequency

domain, it is

S(r)(f) = S(f)[
1

2
G(f + fn) +

1

2
G(f − fn)].

As Eq. (6.3) indicates, the analytic signal of s(r)(t) can be obtained in the fre-

quency domain by eliminating the negative frequency components of s(r)(t) but

doubling the amplitudes of the positive frequency components. Therefore, the

analytic signal of s(r)(t) can be obtained by the inverse Fourier transform of

3Note that here we consider the frequency components outside the passband are completely
eliminated. In real implementation of filter, the frequency components outside the passband may
not be eliminated completely, but suppressed to a very low level. So precisely speaking, s(b)(t)
only approximates to be analytic signal. The approximation error has been discussed in Refs.
[119, 120].
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S(r)(f)B(h)(f), i.e.,

F−1[S(r)(f)B(h)(f)] = F−1{S(f)[
1

2
G(f + fn) +

1

2
G(f − fn)]B(h)(f)}

= F−1[S(f)G(f − fn)]

= s(t) ∗ F−1[G(f − fn)] (6.6)

= s(t) ∗ [g(t)ej2πfnt]

= s(b)(t),

where F−1(·) denotes the operator of inverse Fourier transform.

As discussed in Sec. 2.4.3, the imaginary counterpart of s(t) is not obvi-

ously available. The Hilbert transform is proven to be a reasonable operator to

generate the imaginary counterpart of s(t) in the sense of three physical condi-

tions proposed for IP definition in Ref. [74]. For coherent signals, the Hilbert

transform works well and the so defined IP [Eq. (6.2)] increases monotonically.

But for noncoherent signals, the corresponding IP no longer increases monoton-

ically, resulting in negative IF, which is physically meaningless. The problem

can be addressed with the Bedrosian theorem [119, 120]. This theorem states

that for a low-frequency term l(t) and a high-frequency term h(t) which have no

spectra overlapping, the relationH[l(t)h(t)] = l(t)H[h(t)] holds, that is, the low-

frequency term can be taken out of the Hilbert transform. For a signal of form

s(t) = A(t) cos φ(t), A(t) and cos φ(t) are corresponding to the low-frequency

term l(t) and the high-frequency term h(t), respectively. Straightforwardly, a

complex form of signal s(t) is defined as sq(t) = A(t)ejφ(t), which is named the

quadrature model of s(t). This model is used before the introduction of the con-

cept of analytic signal. It seems natural to take φ(t) as IP. However, this model

does not tell how to estimate A(t) and φ(t) from only the observable signal s(t)

and thus is difficult to be applied to observed time series. There is a difference

between sq(t) and the analytic signal s(h)(t) [Eq. (6.1)] which is estimated with

the Hilbert transform. The energy of the difference is twice the energy of the neg-

ative frequency components of the quadrature model [120]. This difference tends

to vanish as A(t) and cos φ(t) fulfill the Bedrosian theorem. In the other words,

the more noncoherent the signal (i.e., the broader of the spectra of the signal), the

bigger the difference. With this consideration, we apply bandpass filter b(t) to
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the noncoherent signal, i.e., s(b) = s(t) ∗ b(t), so that the filtered signal satisfies

the Bedrosian theorem. For the filtered signal, A(b)(t) varies much more slowly

than cos φ(b)(t), which means that the effective frequency band of A(b)(t) is much

lower than that of cos φ(b)(t) [120].

The bandpass filter is used to restrict the signal so that the output of the

filter satisfies the Bedrosian theorem. The effective band-width of the filter b(t)

is ∆f = 1/(2
√

2πT ) [110]. To fulfill the Bedrosian theorem, ∆f
2

should be less

than fn, i.e., ∆f
2

< fn, which turns out to be T > 1/(4
√

2πfn). On the other

hand, for the observable signal s(t) of time duration Td, its physical frequency

resolution of the spectra estimated by the Fourier transform is no less than 1
Td

[67].

Therefore, the band width ∆f must satisfy ∆f > 1
Td

, which turns out to be

T < Td

2
√

2π
. The IF 1

2π
dφ(b)(t)

dt
of the components in the pass band approaches the

nominal frequency fn in an asymptotic sense as the pass band of b(t) becomes

narrower to be a delta function, i.e., δ(f − fn), in the frequency domain [69].

Note that for the method based on the wavelet transform, a similar theorem gives

the condition on estimating the analytic signal s(w)(t) ( [121], p.91–93).

With the assumption that g(t) is symmetric, the analytic signal s(b)(t) =

s(t) ∗ b(t) can be written as

s(b)(t) =

∫ ∞

−∞
s(u)b(t− u)du

=

∫ ∞

−∞
s(u)g(t− u)ej2πfn(t−u)du (6.7)

= ej2πfnt

∫ ∞

−∞
s(u)g(u− t)e−j2πfnudu

= ej2πfntSt(f)|f=fn ,

where St(f) =
∫∞
−∞ s(u)g(u − t)e−j2πfnudu is the short-time Fourier transform

(STFT) of real signal s(t) with symmetrical Gaussian window g(t). Note that

St(f)|f=fn is dependent on both time t and the nominal frequency fn. If the band

width of St(f) is much smaller than the nominal frequency fn, the amplitude of

St(f)|f=fn can be considered as the amplitude of the band-limited analytic signal

s(b)(t). In other words, s(b)(t) can be considered as an amplitude modulated signal
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with carrier frequency fn. Then the IP can be written as

φ(b)(t) = arg[s(b)]

= 2πfnt + arg[St(f)|f=fn ]. (6.8)

Let us further examine two extreme cases of the bandpass filter b(t). The

first one is that the filter b(t) is an all-pass filter, i.e., g(t) = δ(t). For this case,

we have b(t) = δ(t)ej2πfnt = δ(t) and s(b)(t) = s(t) ∗ b(t) = s(t). As s(t) is a

real signal, arg[s(b)(t)] = 0, which gives no meaningful information of s(t). The

second extreme case is that the filter is b(t) = g(t)ej2πfnt with envelope g(t) = 1.

In the frequency domain g(t) turns out to be G(f) = δ(f), which means that

the filter (i.e., b(t) = e2πfnt) is extremely narrow and let only the component of

frequency fn pass. Then we have

St(f)|f=fn =

∫ ∞

−∞
s(u)g(u− t)e−j2πfnudu

=

∫ ∞

−∞
s(u)e−j2πfnudu (6.9)

= F [s(u)](f)|f=fn ,

whereF [s(u)](f) denotes the Fourier transform of s(u). From Eqs. (6.7) and (6.8),

we get s(b)(t) = ej2πfntF [s(u)](f)|f=fn and φ(b)(t) = 2πfnt+arg{F [s(u)](f)|f=fn}.

For this case, arg{F [s(u)](f)|f=fn} is dependent on fn but not dependent on time

t. The IF of the component in the pass band is fb(t) = 1
2π

d arg[s(b)]
dt

= fn, which is

actually the nominal frequency of the filter. This is obvious because

s(b)(t) = s(t) ∗ b(t) =

∫ ∞

−∞
S(f)δ(f − fn)ej2πftdf

is the component of frequency fn, which is extracted from s(t) by filter b(t). As

g(t) → 1, the filter b(t) → ej2πfnt, then the analytic signal s(b)(t) approaches to

be
∫∞
−∞ S(f)δ(f − fn)ej2πftdf in an asymptotic sense.

Note that the relationship of techniques based on the Hilbert transform, the

wavelet transform, and the Fourier transform has also been discussed from other

angles [49,122]. In Ref. [122], it is demonstrated that the spectral analysis based

on the Hilbert transform, the wavelet transform, and the Fourier transform are “in
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fact formally (i.e., mathematically) equivalent when using the class of wavelets

that is typically applied in spectral analysis”. This is true when the parameters of

these three transforms are set in a particular way, and the SIs and spectral analysis

based on them turn out to be equivalent to each other. But for other cases, these

three transforms have their own features and advantages for specific applications.

It is not appropriate to claim that they are arbitrarily equivalent. More details on

the relationship between these transforms can be found in Refs. [69, 118, 122].

6.4 The effect of noise

in phase synchronization detection

In real application, the observable signal is contaminated more or less by

noise. It has been reported that the performance of various synchronization in-

dexes, including PS indexes, can be greatly degraded when the noise level is rel-

atively high [50]. Usually, the noisy data is pre-filtered with a bandpass filter. A

data-driven optimal filter has been designed for noisy data in IP estimation [107]

and some other algorithms have also been proposed to provide robust detection

of PS in noisy data [44, 111]. In this section, we perform an analytical study of

the effect of noise on IP estimation and PS detection.

Let s(t) = x(t)+w(t) denote the noisy signal, where x(t) is the clean signal

and w(t) is the noise term. A bandpass filter b(t) is first applied to noisy signal

s(t), and the output can be written as

s(b)(t) = s(t) ∗ b(t)

= x(t) ∗ b(t) + w(t) ∗ b(t) (6.10)

= Ax(t)e
jφ

(b)
x (t) + w(b)(t),

where w(b)(t) = w(t) ∗ b(t). Let φ̂
(b)
x (t) denote the estimate of φ

(b)
x (t) from the

noisy signal s(t) and θ(t) = φ̂
(b)
x (t) − φ

(b)
x (t) denote the error of IP estimate due

to the noise term w(t). It has been proved that the distribution of θ(t) is

p(θ) =
exp [−A2

x/(2σ
2
w(b))]

2π
+

Ax cos θ√
2πσw(b)

erf[
Ax cos θ

σw(b)

] exp[
−A2

x sin2 θ

2σ2
w(b)

], (6.11)
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where the error function is defined by erf(x) = 1√
2π

∫ x

−∞ e−y2/2dy and σw(b)

denotes the root-mean-square (rms) of the real part of w(b)(t) [123]. When the

instantaneous signal-to-noise ratio (iSNR) r(b)(t) = A2
x(t)/[2σ

2
w(b) ] in the pass-

band is large [r(b)(t) ≥ 5], the term exp[−A2
x/(2σ

2
w(b))]/(2π) in Eq. (6.11) is very

small and can be neglected, the error function approximates unity and sin θ ≈ θ,

cos θ ≈ 1, because |θ| ¿ 1. Then Eq. (6.11) is reduced to be a normal distribu-

tion, i.e., θ ∼ N(0, σ2
θ),

p(θ) = (
√

2πσθ)
−1e−θ2/(2σ2

θ), (6.12)

where σθ = σw(b)/Ax(t). Since θ(t) is an angle, its distribution can be wrapped

into (−π π] and turns out to be the wrapped normal (WN) distribution Θ ∼
Ñ(0, σ2

θ),

p(Θ) =
1√

2πσθ

∞∑

k=−∞
e−(Θ+2kπ)2/(2σ2

θ), (6.13)

where Θ stands for the wrapped θ, i.e., Θ = θ (mod 2π) [73, 124].

The WN distribution possesses the reproductive property [73]. Specifically,

if Θ1 ∼ Ñ(µ1, σ
2
θ1

) and Θ2 ∼ Ñ(µ2, σ
2
θ2

) are independent, the relation (Θ1 −
Θ2) ∼ Ñ(µ1−µ2, σ

2
θ1

+σ2
θ2

) holds. Here, µ1 = 0, µ2 = 0, and thus (Θ1−Θ2) ∼
Ñ(0, σ2

θ1
+ σ2

θ2
). For the variables x1,2(t) of the coupled systems [Eq. (6.24)],

their IPs, i.e., φ̂
(b)
x1,2(t), can be obtained. Let ϕ = φ

(b)
x1 − φ

(b)
x2 , ϕ̂ = φ̂

(b)
x1 − φ̂

(b)
x2 ,

θ1 = φ̂
(b)
x1 − φ

(b)
x1 , and θ2 = φ̂

(b)
x2 − φ

(b)
x2 [for briefness, the variable t in formulae

such as φ
(b)
x1 (t) is omitted]. Then

ϕ̂− ϕ = [φ̂(b)
x1
− φ̂(b)

x2
]− [φ(b)

x1
− φ(b)

x2
]

= [φ̂(b)
x1
− φ(b)

x1
]− [φ̂(b)

x2
− φ(b)

x2
] (6.14)

= θ1 − θ2.

It is obvious that (ϕ̂ − ϕ) turns out to be (Θ1 − Θ2) when it is wrapped into

(−π π], and thus obeys the WN distribution Ñ(0, σ2
θ1

+ σ2
θ2

).

Various PS indices have been proposed [49]. Two popular indices are based

on entropy [39, 56] and circular statistics [72, 73], respectively (see Sec. 2.4.2).

They both quantify how concentrated the distribution of phase difference is. In
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this chapter, we adopt the later one 4, which is called mean phase coherence

(MPC) and defined as ρ = ‖E[ejϕ]‖. When the observed signal is contaminated

by measurement noise, the estimate of MPC is

ρ̂ = ‖E[ejϕ̂]‖
= ‖E[ej[(ϕ̂−ϕ)+ϕ]]‖ (6.15)

= ‖E[ej(ϕ̂−ϕ)]‖ · ‖E[ejϕ]‖.

In statistics, the characteristic function (ch.f.) of a variable x is defined as Cx(k) =∫∞
−∞ p(x)ejxkdx, where p(x) is the probability density function (pdf) of variable

x. Actually, ch.f. is the average value of ejxk, i.e., Cx(k) = E[ejxk]. If x obeys

the WN distribution x ∼ Ñ(µ, σ2), its ch.f. is Cx(k) = ejµk−σ2k2/2, where k is

an integer [73,125]. As (ϕ̂−ϕ) obeys the WN distribution Ñ(0, σ2
θ1

+σ2
θ2

) when

it is wrapped into (−π π], we can get C(ϕ̂−ϕ)(k) = e−(σ2
θ1

+σ2
θ2

)k2/2. Then

ρ̂ = ‖C(ϕ̂−ϕ)(1)‖ · ‖E[ejϕ]‖
= e−(σ2

θ1
+σ2

θ2
)/2ρ, (6.16)

which implies that the noise introduces a degrading factor, i.e. e−(σ2
θ1

+σ2
θ2

)/2, to

the true index ρ, and this factor is determined by only the level of in-band noise.

Note that in Eqs. (6.11) and (6.12), Ax (as well as σθ = σw(b)/Ax) is a

variable of time t, i.e., Ax(t), if the amplitude of signal s(b)(t) is not a constant.

So θ actually obeys a conditional distribution and Eq. (6.12) turns out to be

p(θ|σθ) = (
√

2πσθ)
−1e−θ2/(2σ2

θ), σθ > 0. (6.17)

For the time series {s(n)} sampled from signal s(t), θ(n) obeys a normal dis-

tribution with variance that varies from one sample to the next. Therefore, the

distribution of IP error of the observed time series {s(n)} is a scale mixture of

normal distributions (SMN) with different variances [126]. If the pdf of {σθ(n)}
is known, the empirical distribution of IP error {θ(n)} for the observed time se-

4In Chapter 5, we adopted the index based on entropy. While in this chapter, we adopt the
index based on circular statistics because it will be convenient for us to deduce the effect of noise
analytically. For the index based on entropy, it is difficult, if not impossible, to deduce a analytical
result on the effect of noise.
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ries {s(n)} can be approximated as

pm(θ) =
K∑

k=1

p(θ|σk)πk, (6.18)

where {πk}K
k=1 is the respective empirical probabilities which are estimated from

{Ax(n)} on a finite number of values {σk}K
k=1 [126]. This means that the dis-

tribution of {σθ(n)} depends on the distribution of {Ax(n)}. Note that Ax(n)

is the instantaneous amplitude (IA) of clean signal. Thus for observed time se-

ries {s(n)} which is contaminated by noise, the distribution of {Ax(n)} is dif-

ficult, if not impossible, to be obtained analytically. In this chapter, we do not

try to find the SMN of the phase error of {s(n)}, but perform simulation by

considering σθ as σθ = σw(b)/ max{Ax(n)}. In other words, the SMN of the

phase error is approximated by a normal distribution with constant standard de-

viation σw(b)/ max{Ax(n)}. Simulations with this assumption will be performed

in Sec. 6.6.1 to verify Eq. (6.16).

With the estimated {ϕ̂(n)}L−1
n=0 , the MPC is estimated as

ρ̂ =
{[ 1

L

L−1∑
n=0

cos ϕ̂(n)
]2

+
[ 1

L

L−1∑
n=0

sin ϕ̂(n)
]2}1/2

, (6.19)

where L is the number of samples in {s(n)}L−1
n=0 .

Note that distribution tests of PS have been investigated from other view-

points [72, 127]. Empirical distributions of IP difference of coupled Rössler sys-

tems have been tested under the assumption that IP obeys specific distributions.

But this is applicable only for special cases of PS, because the assumption of

the distribution of IP is not generally valid for different systems [127]. More-

over, the IPs of different samples are assumed to be independent, which is not the

case for dynamical systems. The statistical properties of MPC are investigated in

Ref. [72]. The distribution of the estimated MPC is approximated by a specific

distribution which is valid only for time series of a large number of samples. This

distribution is dependent on two parameters, i.e., the mean angular velocity and

the diffusion constant. As long as the assumptions are fulfilled and the two de-

pendent parameters are reliably estimated, a reasonable significance level can be

obtained by this model, providing a test for a non-zero synchronization index.
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6.5 A band-weighted synchronization index

To examine the components in different frequency bands, we form a bank

of bandpass filters with the same band-width ∆f but different nominal frequency

of the each filter.

Let s
(b)
1,i(t) = s1(t) ∗ bi(t) denote the component of signal s1(t) in the ith

band, where bi(t) is the ith filter with nominal frequency fni
= i

2
∆f . For s

(b)
1,i(t)

and s
(b)
2,i(t), their MPC is denoted as ρi.

A measure relevant to ρi is the coherency function, which is defined as

Γ(f) , Ss1s2(f)

[Ss1s1(f)Ss2s2(f)]1/2
, (6.20)

where Ss1s2(f) is the cross spectral density function

Ss1s2(f) =

∫ ∞

−∞
Rs1s2(τ)e−j2πfτdτ, (6.21)

in which Rs1s2 , E[s1(t)s
∗
2(t− τ)] is the cross-correlation function of s1(t) and

s2(t) [128]. Let s1,i(t) = R[s
(b)
1,i(t)] and s2,i(t) = R[s

(b)
2,i(t)] denote the real part

of the components of s1(t) and s2(t) in the ith frequency band, respectively, and

Rs1s2,i , E[s1,i(t)s
∗
2,i(t − τ)] denote the cross-correlation of s1,i(t) and s2,i(t).

It has been demonstrated that lim∆f→0
1

∆f
Rs1s2,i = Ss1s2(fni

) 5. From this rela-

tion and Eq. (6.20), it can be inferred that the coherency function Γ(f) actually

measures the normalized cross-correlation of the components of s1 and s2 in nar-

row frequency band [128]. The coherency function Γ(f) has been adopted as SI

and is shown to be useful when synchronization occurs in particular frequency

band [49].

The MPC ρi quantifies the degree of PS in the ith frequency band. The

difference between measures Γ(f) and ρi is that the later one quantifies the coop-

erative behavior by only the IP difference of variables, but neglecting the effect

of their IA. This is important because for the weakly coupled systems, the IAs of

variables may be uncorrelated, though their corresponding IPs can be completely

5This relation is deduced with the assumption that the filter is an ideal rectangular bandpass
filter.
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phase-locked [38]. Actually, the main advantage of PS analysis is to characterize

the interplay of the coupled systems of this case. With bandpass filter of different

nominal frequency, the degree of PS in any frequency band can be estimated, just

as the coherency function can quantify the cross-correlation between the compo-

nents at any frequency bins.

With bandpass filter, the degree of PS of the components in the pass band

can be detected. But sometimes, we may want to know how the whole coupled

systems (especially when the systems are noncoherent), but not only the compo-

nents in one particular frequency band, interact with each other from the view-

point of PS. With this consideration, a band-weighted index of synchronization

is defined as,

ρ̃ =

∑
i ‖E1,iE2,i‖1/2ρi∑
i ‖E1,iE2,i‖1/2

, (6.22)

where E1,i and E2,i denote the energy of the components of s1(t) and s2(t) in the

ith pass band, respectively. In the ith band, its MPC ρi contributes to ρ̃ with the

energy of the components in this band as weight.

6.6 Numerical results

6.6.1 Effect of noise in phase synchronization detection

In Sec. 6.4, the effect of noise in IP estimation and PS detection has been

studied analytically. To validate these deduced results, we perform simulations to

two typical examples: sine waves and the coupled Rössler systems.

6.6.1.1 Test with sine waves

We define a simple sine wave and amplitude-modulated sine wave as

x1(t) = 10 cos(2πf1t),

x2(t) = (10 + 4 sin 2πfat) cos(2πf2t +
π

2
), (6.23)
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where f1 = 2 Hz, f2 = 2 Hz, fa = 0.2 Hz. Two 40 000-sample time series are

measured from x1(t) and x2(t) respectively with sampling interval ∆t = 0.05.

The measured time series are denoted by x1,2(n∆t) and their noisy versions are

denoted by s1,2(n∆t) = x1,2(n∆t) + w1,2(n∆t), where w1,2(n∆t) are the noise

term and assumed to be Gaussian white noise w1,2 ∼ N(0, σ2
w1,2

). The noise level

η is defined as σx1,2 = ησw1,2 , where σx1,2 are the the variances of x1,2, and σw1,2

are the variances of w1,2, respectively. To simplify notation, ∆t is omitted and

s1,2(n∆t) is written as s1,2(n) from now on.
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Figure 6.1: The pdf’s of phase error for a sine wave and an amplitude-modulated
sine wave, respectively. The red curves are the normal distribution fits of the cor-
responding empirical distributions. These pdf’s are calculated from the clean time
series {x1,2(n)} and their corresponding noisy versions with noise level η = 0.2.
The values of µ and σ marked in each panel are the means and the standard de-
viations of the corresponding normal fits. The filters are with nominal frequency
fn = 2 Hz and band-width: (a) and (e) ∆f1 = 0.016 Hz, (b) and (f) ∆f2 = 0.064
Hz, (c) and (g) ∆f3 = 0.256 Hz, (d) and (h) ∆f4 = 1.024 Hz. Details about the
filter with Gaussian envelope can be found in Ref. [110].

The distributions of IP error {θ(n)} due to the added noise are illustrated in

Figs. 6.1 and 6.2. For x1(t), its IA is constant, and thus the distribution of IP error

{θ1(n)} should be a normal distribution according to Eq. (6.13) when noise level

is not high. This is verified as the results shown in Figs. 6.1(c), 6.1(d), 6.2(c),
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Figure 6.2: The pdf’s of phase error for a sine wave and an amplitude-modulated
sine wave, respectively. fn = 2 Hz, ∆f1 = 0.016 Hz, ∆f2 = 0.064 Hz, ∆f3 =
0.256 Hz, ∆f4 = 1.024 Hz, η = 1.

and 6.2(d). For x2(t), its amplitude is modulated by a sine wave, and thus its IA

is not constant. Then the distribution of IP error {θ2(n)} is a SMN [Eq. (6.17)].

This leads that the corresponding empirical distributions cannot be so well fitted

by particular normal distributions, as Figs. 6.1(g), 6.1(h), 6.2(g), and 6.2(h). Note

that in Figs. 6.1(a), 6.1(e), 6.2(a), and 6.2(e), the empirical distributions of IP

error are not a normal distribution when the band-width is very narrow. This may

be due to the numerical error in simulations.

6.6.1.2 Test with coupled Rössler systems

To illustrate the effect of noise in PS detection and the band-weighted index,

the coupled Rössler systems [39]

ẋ1,2 = −$1,2y1,2 − z1,2 + ξ(x2,1 − x1,2),

ẏ1,2 = $1,2x1,2 + αy1,2, (6.24)

ż1,2 = β + z1,2(x1,2 − γ),
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are taken as an example, where ξ is the coupling strength. Data are integrated

from variables x1,2, using the fourth-order Runge-Kutta method with sampling

interval ∆t = 0.05. The initial values are set randomly, and 40 000 samples are

adopted after the transient state. Noise is added to the measured time series to

generate their noisy version as that does in Sec. 6.6.1.1. Two cases of the coupled

Rössler systems are studied: 1) the coherent systems with parameters α = 0.15,

β = 0.2, γ = 10, $1 = 1.015, and $2 = 0.985; and 2) the noncoherent systems

with parameters α = 0.25, β = 0.2, γ = 10, $1 = 1.015, and $2 = 0.985.
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Figure 6.3: The pdf’s of phase error and phase error difference for the coherent
Rössler time series with bandpass filter. fn = 0.1645 Hz, ∆f1 = 0.016 Hz,
∆f2 = 0.064 Hz, ∆f3 = 0.256 Hz. These pdf’s are calculated form the clean
Rössler time series and their corresponding noisy versions with noise level η =
0.2. With coupling strength ξ = 0.035, the coupled systems are synchronous.

With the coupling strength ξ = 0.035, the coherent systems are synchro-

nized [38]. The spectral peak of the measured data is located around frequency

0.1645 Hz. So the bandpass filter of nominal frequency fn = 0.1645 Hz is uti-

lized. Figs. 6.3 and 6.4 illustrate the distributions of phase error for different

cases. We can see that in Figs. 6.3(e) and 6.3(f), the empirical distributions can be

fitted appropriately by particular normal distributions; while for other figures, the

empirical distributions cannot be fitted well by normal distributions. As we have
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Figure 6.4: The pdf’s of phase error and phase error difference for the coherent
Rössler time series with bandpass filter. fn = 0.1645, ∆f1 = 0.016 Hz, ∆f2 =
0.064 Hz, ∆f3 = 0.256 Hz, η = 1, ξ = 0.035.

discussed in Sec. 6.4, the distribution of phase error is actually a scale mixture

of normal distributions (SMN) which is affected by the distribution of IA Ax(n).

Generally, the distribution of phase error p(θ) and the distribution of phase error

difference p(θ1 − θ2) will not be exact normal distributions.

Figures 6.5 and 6.6 show a segment of IA and instantaneous SNR (iSNR)

for different cases. We can observe that for the case with a filter of narrower

band-width ∆f1, the fluctuation of Ax(n) is relatively smaller and slower, and

the iSNR r(b)(n) is bigger, correspondingly. As mentioned in Sec. 6.4, it is diffi-

cult to get a analytical form of the SMN of phase error with only a observed time

series. So in studying the effect of noise in PS detection, we perform simulations

under the assumption that the IA of the time series is a constant, and the SMN

of the phase error can be approximated by a nominal distribution. Figs. 6.7,

6.8, 6.9, and 6.10 are the SIs of numerical estimates [i.e., estimated from the

IP estimates {ϕ̂(n)}] and their corresponding theoretical predictions [i.e., via

Eq. (6.16)] for the synchronous systems, the weakly synchronous systems, the

non-synchronous systems, and the systems with no coupling, respectively. For



6.6. Numerical results 105

these coupled Rössler systems, it is shown that the theoretical predictions con-

sist with the trends of numerical simulations. However, for coupled noncoherent

Rössler systems, simulations show that the theoretical predictions are bigger than

the numerical estimates, as Fig. 6.11 indicates. This is because the IAs of the

case of noncoherent Rössler system are far from a constant, and thus the SMN of

the phase error cannot be approximated by a normal distribution.
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Figure 6.5: The IA Ax(n) and iSNR r(b)(n) of the coherent Rössler time series
with bandpass filter. The filters are with nominal frequency fn = 0.1645 Hz and
band-width: (a) ∆f1 = 0.016 Hz, (b) ∆f2 = 0.064 Hz, and (c) ∆f3 = 0.256 Hz.
In each panel, the solid blue curve is the IA estimated from clean data, and the
curve of blue dash is the IA estimated from the noisy version of the clean data,
respectively. The thick black curve is the corresponding iSNR. The coupling
strength is ξ = 0.035 and the noise level is η = 0.2.

Moreover, Figs. 6.7, 6.8, 6.9, and 6.10 show that with narrower bandpass

filter (i.e., ∆f1 and ∆f2), the estimated SIs, as well as the theoretical predications,

are degraded not so much even when the noise level is high. This implies that the

bandpass filter is necessary and effective in dealing with data contaminated by

additive noise. On the other hand, the narrower the bandpass filter, the larger the

estimated SI. This overestimation of synchronization degree is introduced by the

filter and has been discussed in Ref. [56]. This can be explained with the second

extreme case discussed in Sec. 6.3. When the filter b(t) becomes extremely nar-
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Figure 6.6: The IA Ax(n) and iSNR r(b)(n) of the coherent Rössler time series
with bandpass filter. The filters are with nominal frequency fn = 0.1645 Hz and
band-width: (a) ∆f1 = 0.016 Hz, (b) ∆f2 = 0.064 Hz, and (c) ∆f3 = 0.256 Hz.
The coupling strength is ξ = 0.035 and the noise level is η = 1.

row, i.e., a delta filter in the frequency domain, the components extracted by the

filter from signals s1(t) and s2(t) are just the spectral components of their Fourier

transform at the nominal frequency. Then the IP difference between these two

components is a constant and the corresponding SI will be unity. Generally, SI is

a relative measure to compare the degree of synchronization of coupled systems

under different conditions (e.g., with different coupling strength). For these cou-

pled systems, if the same bandpass filter is applied to them, the estimated SIs can

indicate which coupled pairs have a higher level of synchronization than others,

because the overestimation induced by the same filter is likely to be the same.
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Figure 6.7: The PS index and its corresponding theoretical prediction for the
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the results of numerical estimates, and TP denotes their corresponding theoretical
predictions. Symbol♦ denotes the results obtained by the Hilbert transform with
no bandpass filter. ∆f1 = 0.016 Hz, ∆f2 = 0.064 Hz, ∆f3 = 0.256 Hz. The
coupled systems are synchronous with coupling strength ξ = 0.035.
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Figure 6.8: The PS index and its corresponding theoretical prediction for the
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Figure 6.11: The PS index of numerical estimate and its corresponding theoretical
prediction for noncoherent Rössler systems (α=0.25) with respect to the noise
level η. The coupled systems are synchronous with coupling strength ξ = 0.2.
The denotation of each curve is as that in Fig. 6.7.

6.6.2 Detecting synchronization

with the band-weighted index

In previous sections, we use the filter b(t) = g(t)ej2πfnt which is with the

Gaussian envelope g(t) = 1√
2πT

e−t2/(2T 2) [74]. The Bedrosian theorem [119,120]

requires that there should be no overlapping spectra between the nominal fre-

quency fn and the spectra of St(f)|f=fn in estimating the analytic signal s(b)(t)

(see discussions in Secs. 6.3 and 6.5). The Gaussian filter can reduce the spectra

that are outside the pass band to a very low magnitude but not to zero. Therefore,

a certain, small, degree of error may be introduced by the filter when fn is not

much larger than 1
2
∆f [120]. To avoid this error and also for simplicity in nu-

merical implementation, we use the rectangular bandpass filter in the following

simulations. That is, in the frequency domain, the pass band of the ith filter bi(t)

is

Bi(f) =

{
1, if f ∈ [fni

− 1
2
∆f fni

+ 1
2
∆f ]

0, if f 6∈ [fni
− 1

2
∆f fni

+ 1
2
∆f ],

(6.25)

where ∆f is the band-width and fni
is the corresponding nominal frequency

which fulfills fni
≥ 1

2
∆f . Recall the discussions in Sec. 6.5, the rectangular
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window is used in deducing the relation between cross-correlation and the co-

herency function. From this point, it is straightforward for us to use rectangular

bandpass filter in detecting PS of the components in each frequency band. Then

the analytic signal of the component in the ith frequency band is

s(bi)(t) =

∫ ∞

−∞
S(f)Bi(f)ej2πftdf

=

∫ fni+
1
2
∆f

fni− 1
2
∆f

S(f)ej2πftdf. (6.26)

With the rectangular filter Bi(f), s(bi)(t) fulfills the Bedrosian theorem. In nu-

merical implementation of Eq. (6.26), the discrete Fourier transform (DFT) is first

performed to {s(n)}, then the analytic signal s(bi)(n) is obtained by performing

inverse DFT to the frequency bins of {s(n)} in the ith band.

Figures 6.12 and 6.13 show the band-weighted index estimated from coher-

ent and noncoherent Rössler systems, respectively. As Figs. 6.12(a) and 6.13(a)

indicate, for the same coupling strength, the band-weighted indexes estimated

with different band-width are almost the same, which implies that this index is

insensitive to the value of band-width. But for noisy data, the band-weighted

index is sensitive to the value of band-width. Fig. 6.12(b) and 6.13(b) give the re-

spective differences of the band-weighted indexes estimated from clean data and

their noisy version for coherent and noncoherent Rössler systems, respectively.

We can see that the band-weighted index is affected much less by noise when

the band-width is small. This implies that the band-weighted index, using small

band-width, is robust to noise in detecting synchronization. In Fig. 6.13(a), the

indexes, denoted by symbol ◦, are estimated directly with the Hilbert transform

from the noncoherent Rössler time series. They are almost equal to the values of

the corresponding band-weighted indexes. But we note that though these indexes

do not show significant difference, there are ambiguity in defining IP with the

Hilbert transform directly for noncoherent time series, as mentioned in previous

sections.

For white noise, its energy distributes uniformly in each frequency band,

while for signals x1(t) and x2(t), their energy mainly distributes in particular

frequency bands. Then in the bands containing most of the signal, the signal-to-

noise ratio (SNR) r(bi) = (mean square of A
(bi)
x )/[2σ2

w(bi)
] will be much larger
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Figure 6.12: (a) The band-weighted synchronization index for coupled coherent
Rössler systems (α=0.15) with respect to the coupling strength ξ and the band-
width ∆f of filter; (b) the respective differences between the indexes estimated
form the clean data [i.e., the data used in panel (a)] and their noisy version (η =
0.2). Symbol ◦ denotes the index estimated by the Hilbert transform without
bandpass filter.
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Figure 6.13: (a) The band-weighted synchronization indexes for coupled nonco-
herent Rössler systems (α=0.25) with respect to the coupling strength ξ and the
band-width ∆f of filter; (b) the respective differences between the indexes esti-
mated form the clean data and their noisy version (η = 0.2). Symbol ◦ denotes
the index estimated by the Hilbert transform without bandpass filter.

than the SNR r1,2 = (mean square of x1,2)/σ
2
w1,2

in the full frequency range. In

these bands, the noise is reduced to a low level and thus the estimated SIs ρ̂i’s

approximate ρi’s better. This is illustrated by Fig. 6.14. At the bands (around

0.1645 Hz) where the spectral peak locates, the estimated MPCs are affected

little by the low level of in-band noise, while in other bands, the index ρi is

greatly degraded and almost approaches zero [Fig. 6.14(b)] because of the low

SNR in those bands. The bands where spectral peak locates give big weights to

the corresponding MPCs which are affected by the in-band noise much less than
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the MPCs of other bands in estimating the band-weighted index. As a result, the

band-weighted index is robust to noise.
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Figure 6.14: The synchronization index ρi for components of clean data (a) and
the noisy version of the clean data (b) in each frequency band with band-width
∆f = 0.128 Hz. The coupled Rössler systems are coherent and the noise level is
η = 0.2.

6.7 Synchronization in EEG signals

In Ref. [49], several synchronization measures, including linear cross-correlation,

coherency function, measures of nonlinear interdependence, mutual information,

indexes of PS based on the Hilbert transform and the wavelet transform, have

been compared with electroencephalographic (EEG) signals recorded from rats.

It is concluded that “all these measures gave a similar tendency in the synchro-

nization levels”. To compare the band-weighted index with these measures, we

apply it to the same EEG signals used in Ref. [49]. Their waveforms are plotted

in Fig. 6.15. Obviously, these signals are noncoherent and may be noisy as well.

These EEG signals recorded from electrodes placed on the left and right frontal

cortex of rats with sampling frequency 200 Hz. The duration of each EEG pairs

is 5 sec (i.e., 1000 samples).

Figure 6.16 gives the MPCs of the three pairs of EEG signals in difference

frequency bands. As Fig. 6.16(a) indicates, with a larger band-width ∆f = 12.8

Hz, the degree of PS is in the order B > A > C in the frequency region below

40 Hz. With a smaller band-width ∆f = 3.2 Hz, the estimated MPCs fluctuate

intensively at different frequency bands, as indicates in Fig. 6.16(b). The order
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of the synchronization degree (in the frequency region below 30 Hz) indicated by

MPC is consistent with that obtained by the coherency function [49].
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Figure 6.15: Three pairs of rat EEG signals measured from the electrodes placed
on the right (R) and the left (L) cortex of rats. Data are from Ref. [49].
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Figure 6.16: Synchronization analysis for EEG signals. (a) and (b) are the syn-
chronization index ρi for components in each frequency band with band-width
∆f = 12.8 Hz and 3.2 Hz, respectively.
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Further, the band-weighted index is applied to the EEG signals. Surrogate

method has been applied extensively to provide significance test of the estimated

synchronization index [45, 52]. In this chapter, we applied the phase shuffled

surrogate method which generates surrogate data by shuffling the phase of the

original data but keeping the amplitude unchanged [84]. The surrogate data have

similar power spectra with that of the original data. As Figs. 6.17(a), 6.17(b),

and 6.17(c) indicate, the band-weighted indexes of the three EEG pairs are much

larger than that of their surrogate data. Fig. 6.17(d) gives a comparison of the

degree of synchronization of the three EEG pairs which is in order B > A > C.

This order, consists with that reported by other synchronization measures in

Ref. [49], is clearly revealed by the band-weighted index even for the case the

EEG signals are contaminated by white noise (η = 0.2). The differences of the

band-weighted indexes estimated from the clean signals and their correspond-

ing noisy version are plotted in Fig. 6.17(e). We can see that as the band-width

becomes narrow, the index difference shows a decreasing trend. This implies

that the band-weighted index is more robust with narrow band-width. Further,

a comparison of the surrogates generated from the three EEG pairs are given

in Fig. 6.17(f). The band-weighted indexes of them show similar trend and the

difference is small for the same band-width. In the sense of statistics, the band-

weighted indexes of the surrogates show the order B > A > C, which is consis-

tent with the order of synchronization degree of their original EEG pairs.

6.8 Discussion and conclusion

In this chapter, we study the definition of instantaneous phase (IP) and the

effect of noise in phase synchronization (PS) detection from the viewpoint of

signal processing and circular statistics. We show that several definitions of IP

can be unified into one framework: applying a specific filter to the time series

and defining IP as the argument of the output of the filter. With this framework,

the error of the estimated IP, which is due to noise, is shown to obey a scale

mixture of normal distributions (SMN). The estimate of mean phase coherence

(MPC) is shown to be degraded by a factor which is determined by only the

level of in-band noise, under the assumption that the instantaneous amplitude
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Figure 6.17: Synchronization analysis for EEG signals with the band-weighted
index. (a), (b), and (c) are the band-weighted indexes for data A, data B, and data
C, respectively. (d) is a comparison of synchronization degree for these three
EEG pairs and (e) is the difference of the band-weighted indexes estimated from
the original EEG signals and their noisy version (η = 0.2). (f) is a comparison of
the phase shuffled surrogates of the original EEG signals.

(IA) of the observed signal is a constant and thus the SMN of the IP error can

be approximated by a normal distribution. These results are further verified by

numerical simulations. But for general cases, the SMN of the IP error cannot be

approximated by a normal distribution. The empirical distribution is difficult, if
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not impossible, to be deduced theoretically. So for real applications, it is difficult

to get a good theoretical prediction of synchronization degree. Nevertheless, the

deduced analytic results can give an implication (theoretically) on how and by

how much the noise affects PS detection.

Furthermore, a band-weighted synchronization index is proposed to quan-

tify the degree of synchronization of noncoherent systems in full frequency scope

from the viewpoint of PS. This index is applied to the coupled Rössler systems.

Results show that this index is robust for both coherent and noncoherent Rössler

time series when they are contaminated by additive white noise. Finally, this in-

dex is applied to EEG signals measured from rats. It is shown that this index can

detect the degree of PS reliably.

For biomedical signals such as local field potential (LFP), their interplay and

the underlying mechanism are often specific to a particular frequency band (e.g.,

the gamma band [129, 130]). For this case, we expect that the band-weighted

index can also be adapted to the specific band and quantify the degree of syn-

chronization of the components in it. In human brain, oscillations play an impor-

tant role. Certain interaction between oscillations may be related to functional

disorder. For example, excessive synchrony appears in patients with Parkinson’s

disease. One possible treatment for Parkinson’s disease is to suppress the syn-

chrony by a high-frequency deep-brain stimulation at both both basal ganglia

and cortical levels [55]. It has been shown that PS may be a powerful tool in

studying the interaction between the oscillations of brain. We expect that the

band-weighted synchronization index may provide new insights in examining

brain signals (EEG, LFP, etc.). What’s more, after the synchronization index

is estimated from observed time series, the significance of the index should be

tested [52, 72, 127]. In this chapter, we only use a simple surrogate method to

test the significance of the estimated index. We note that there are other meth-

ods for significance test, and novel surrogate methods are desired to be designed

specifically for significance test of synchronization.



Chapter 7

Conclusion and future work

In this thesis, we have developed several novel methods for nonlinear time

series analysis and processing from the viewpoint of signal processing. State

recurrence, an important feature of chaotic systems, is exploited in designing

these methods. The effect of noise in PS detection is examined analytically from

the viewpoint of signal processing and circular statistics. The proposed methods

are first tested with toy models and further applied to various real data, including

speech signals and EEG signals. In this chapter, we will summarize the original

contributions of this thesis and further discuss future directions of research.

7.1 Contributions of the thesis

Our contributions mainly include two parts: 1) development of novel meth-

ods based on recurrences for chaotic time series and their applications for real

data such as speech; and 2) analytical study on the effect of noise in instantaneous

phase (IP) estimation and PS detection from the view point of signal processing.

In particular, they are:

• A two-step extension of the local projection (LP) method is proposed for

chaotic data which are contaminated by colored noise, exploiting the dif-

ferent pattern of energy distribution of colored noise and clean chaotic data

117
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in local phase space. Further, this extension is successfully adapted to re-

duce noise for speech corrupted by real environment noise, giving a good

example for the application of the theory of time delay embedding to real

data (see Chapter 3).

• The reference phase point and its neighbors in the phase space recon-

structed by time delay embedding are shown to cover data segments with

similar wave form. To exploit the redundant information presents in the

neighbors, a novel neighborhood-based spectral estimator is proposed for

(noisy) chaotic flow. With this estimator, the relation between the theory

of time delay embedding and the frequency domain is established. Time-

frequency analysis with this estimator provide an alternative to distinguish

noisy chaotic flow from colored noise which has similar spectra (see Chap-

ter 4).

• A neighborhood-based method is proposed to estimate IP for data from

coupled chaotic systems. Results show that this method can avoid overes-

timation of PS degree (see Chapter 5).

• Several definitions of IP are revisited from the viewpoint of signals pro-

cessing, and further unified into one framework which generates analytic

signals by applying a specific bandpass filter to the observed signal. (see

Secs. 6.2 and 6.3).

• The effect of noise in estimating IP is examined analytically. The distribu-

tion of the noise induced IP error is proven to be a scale mixture of normal

distribution (SMN). Under the assumption that the SMN of IP error can

be approximated by a normal distribution, the estimate of the mean phase

coherence is shown to be degraded by a factor which is determined by only

the level of in-band noise (see Secs. 6.4 and 6.6.1).

• A band-weighted synchronization index is proposed from the viewpoint of

PS in full frequency scope. It is tested on toy models and further applied to

EEG signals, yielding positive results (see Sec. 6.5, 6.6.2, and 6.7).
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7.2 Future work

Following those presented in previous chapters, some related works can be

further extended. Here we give some possible directions we are interested in:

• Quantitative analysis of the ridge pattern. In Chapter 4, we have demon-

strated that noisy chaotic flow can be distinguished from colored noise by

their ridge pattern. If the ridge pattern can be quantified appropriately by

a certain measure, time-frequency analysis with the neighborhood-based

spectrum estimator will give more straightforward results in analyzing dif-

ferent data.

• Significance test for synchronization. It is important to know the degree of

synchronization that the estimated index can indicate. Some works on sig-

nificance test for synchronization have been reported [45, 52, 72, 127, 131].

Most of them are based on surrogate test [45, 52, 131]. However, few sur-

rogate methods are designed for testing synchronization [131]. So compar-

ison of the existing surrogate methods in detecting synchronization will be

valuable. Novel surrogate methods designed specifically for synchroniza-

tion test are in great desire. In Chapter 6, we only apply a simple surrogate

test to the estimated band-weighted index. Following that, more works can

be done.

• Causality detection. There are two aspects in examining the cooperative

behavior of dynamical systems. One is that whether coupling is present,

and if so, how strong it is. This question can be answered by synchro-

nization analysis. The other is about coupling direction and its correspond-

ing strength. This question is the target of causality detection, which have

been a very hot topic recently for its abundant application (e.g., in study-

ing EEG signals and neuronal oscillations). Various methods, including

Granger causality [132, 133], a neighborhood-based extension of Granger

causality [134], partial phase synchronization [135], partial mutual infor-

mation [136], approach based on permutation information [137], and the

phase-slope index [138], have been proposed to detect causality. Further
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works, such as performing analysis on the effect of noise in causality de-

tection and designing robust methods, are needed.

• Cluster analysis for multivariate time series. In Chapter 6, we mainly focus

on synchronization of bivariate time series. But the methods for bivariate

time series appear weak in studying multivariate time series (e.g., multi-

channel EEG signals). For multivariate time series or a large populations

of oscillators, they may all synchronize with each other or group to be inde-

pendent clusters with only intra-cluster synchronization. Techniques based

on entropy [139] and random matrix theory (RMT) [140] have been ap-

plied to quantify the collective behavior of EEG and neuronal populations.

Different brain regions are connected in large scale and can be considered

as a network [141], then the theory of complex networks can be applied

to characterize the dynamics of brain activity [142]. Applications of RMT

and complex networks to multivariate time series, especially biomedical

signals, seems very interesting and are expected to reveal more inherent

information of the underlying dynamics.
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Index

ε-neighborhood, 11

covariance matrix, 15

neighbors, 11

AR(3), 29

AURORA, 42

autocorrelation matrix, 18

autocorrelation, 17

Bedrosian theorem, 90

BT, Blackman-Tukey spectrum estima-

tor, 16–18

principle component BT estimator,

18

butterfly effect, 1

ch.f., characteristic function, 95

coherency function, 97

correlation dimension, 2, 10

delay coordinate vectors, see phase vec-

tors

DTFT, discrete-time Fourier transform,

16

embedding dimension, 10

minimum embedding dimension, 10,

14

evaluated measure, 41

false-nearest neighbors, 10

FFT, fast Fourier transform, 59

Fourier transform, 16

hidden frequency, 54

Hilbert transform, 22

IA, instantaneous amplitude, 21

instantaneous amplitude, 3

instantaneous frequency, 4

IP, instantaneous phase, 3

iSNR, instantaneous signal-to-noise ra-

tio, 94

linSS, linear subspace method, 41

local projection, 13

local subspace, 13

locally linear model, 14

logMMSE, log-spectral amplitude min-

imum mean square error esti-

mator, 41

Lorenz system, 1

LP, the local projection method, 2, 26

Lyapunov exponents, 1

main frequency, 54

MPC, mean phase coherence, 23, 95

noise dominate subspace, 30

noise subspace, 14, 26

NSE, neighborhood-based phase estima-

tion, 69, 70
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NSE, neighborhood-based spectrum es-

timator, 53

P-BP, 79

P-HT, 73

P-LP, 73

P-PP, 80

pdf, probability density function, 95

periodogram, 17, 54

PESQ, 41

phase points, see phase vectors

phase portrait, 10, 11

phase slip, 4, 68

phase vectors, 10

recurrence plot, 12

recurrence quantification analysis,

12

resolution:computational resolution, 59

resolution:physical resolution, 58

ridge pattern, 3

rms, root-mean-square, 94

segSNR, segmental SNR, 41

SI, synchronization index, 74

signal subspace, 14, 26

SMN, scale mixture of normal distribu-

tions, 95

SNR, signal-to-noise ratio, 30

spectral analysis, 3

spectrogram, 19, 54

state recurrence, 1, 11

Poincaré’s recurrence theorem, 11

recurrence time, 12

STFT, short-time Fourier transform, 19

synchronization

chaos synchronization, 3

CS, complete synchronization, 20

GS, generalized synchronization, 21

LS, lag synchronization, 21

PS, phase synchronization, 3, 21

l:m phase synchronization, 21

SI, synchronization index, 4

synchronization measure, see SI

synchronization analysis, 3

Takens’ embedding theorem, 10

time delay, 10

time delay embedding, 2

over-embedding, 10

Takens’ embedding theorem, 1

time-frequency analysis, 3

WN, wrapped normal distribution, 94
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