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Abstract 

The aim of this research is to investigate efficient schemes for facial 

image analysis in video retrieval and indexing. Statistics have shown that over 

95% of the primary camera’s subjects in videos are humans, therefore face 

analysis in videos can greatly benefit on video retrieval and indexing. Our 

research focuses on three areas: face detection, face recognition, and indexing. 

Some popular techniques and recent developments of the methods for both face 

detection and recognition are also reviewed. 

In this project, we have proposed an effective template, namely Spatially 

Maximum Occurrence Template (SMOT), for face detection. This template is 

combined with a mixture of Gaussian models to verify whether an image region 

is a face or not. SMOT has a high representative power for faces, and can detect 

faces under various conditions. 

We have also proposed an efficient method for face recognition. A 

simplified version of the Gabor wavelets (SGWs) has been devised for feature 

extraction. Gabor wavelets (GWs) have commonly been used for extracting local 

features which are insensitive to environmental factors, but extracting these 

features is computationally intensive. Simplified Gabor wavelets (SGWs) are 

therefore devised, and an efficient algorithm for extracting the features based on 

an integral image is proposed. These SGW features are then applied to face 

recognition. Experiments show that using SGWs can achieve a performance level 

similar to that using GWs, and the runtime for feature extraction using SGWs is 

4.39 times faster than that of GWs implemented by using the fast Fourier 

transform. 
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An efficient indexing structure for searching face images in a large 

database has also been investigated and proposed. This indexing structure is 

formed by a number of vantage objects, which are constructed using the 

discriminative features extracted from Gabor wavelets. The training faces in a 

large database are ranked in order with reference to each of the vantage objects, 

so a ranked list is constructed for each vantage object. A query face image will 

also be ranked with respect to each vantage object, and those neighboring 

training faces to the query face in the respective ranked lists are selected to form 

a much smaller database, called a condensed database. Experiments show that a 

condensed database whose size is 25% of the original large database can be 

formed with a probability of 99.3% that the matched face to the query input 

exists in the condensed database. Then, a more computational and accurate 

recognition algorithm can be adopted in the condensed database without any 

degradation of the recognition accuracy. 
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Chapter 1: Introduction 

The objective of this chapter is to introduce the different existing 

techniques for facial image analysis. Some face-based techniques and their 

applications will be introduced. The originality and organization of this thesis 

will be addressed at the end of this chapter. 

1.1 Motivation 

In this information and multimedia era, it is absolutely crucial that an 

efficient tool is available for managing and retrieving video files. This type of 

effective tool, called content-based video retrieval, aims at assisting a human to 

retrieve a required video sequence within a database [168]. There are three major 

types in video search. In the first, the user knows that the targeted video 

sequence is in the database, and the user is able to describe the targeted sequence 

precisely during the retrieval process. A system indexing the video sequence by 

keywords or title should be sufficient in this case. In the second type, the user 

does not know whether the targeted video sequence is in the database. A precise 

search tool should be provided so that the user can find out if the target is in the 

database or not. In the final type, the user simply searches for a video related to 

some topics or events. The hierarchical search tool should be provided to guide 

the user. The user is also allowed to filter the responses of the search system, too. 

Traditional video retrieval techniques usually apply low-level features or 

information for video shot partitioning, representation, classification and 

retrieval. Due to the use of low-level information, their performances and 

capabilities are limited. Actually, most of the primary camera’s subjects in 

videos are humans. Therefore, significant amounts of effort have been spent on 
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recognizing human activities. The identification of humans and their activities 

has huge economic potential, but also poses many technological and scientific 

challenges. As the human face is always the most important object in videos, 

adopting an object-based approach based on the human face should greatly 

enhance the performance of video retrieval. 

Recently, in fact, many governments and businesses are paying more and 

more attention to face-based techniques, which play an important role for many 

applications in different areas (Zhao et al., 2003) [7] such as information security, 

law enforcement and surveillance, video retrieval and management, etc. 

Because of the uniqueness of the face of a person, it can be considered a 

form of personal identity for a log-in system for information security. Although 

there are other reliable methods of biometric personal identification – such as 

retinal or iris scan, hand geometry scan, and fingerprint analysis – all of these 

methods rely on a participant’s cooperation. However, with the use of facial 

images, the participants need not be concerned with a log-in system, or even they 

are being surveyed under CCTV for law enforcement and surveillance. Therefore, 

security issues based on facial image analysis may become more user-friendly 

and non-intrusive for users. 

The increasing attention given to face-based techniques has attracted 

researchers from different disciplines, such as image processing, pattern 

recognition, neural networks, computer vision, computer graphics and 

psychology [7]. They have investigated and proposed many different face-based 

techniques, such as face detection [1-2], face recognition [6-11], facial 

expression recognition [154], face tracking [155-159], 3D face analysis, etc. 
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In this thesis, we mainly consider the enabling techniques for video 

retrieval and indexing with facial image analysis. Face detection techniques will 

first be investigated to locate human faces in a video. Face recognition 

techniques will also be researched, for the key-frame extraction based on the 

targeted human faces. Further, a new indexing structure for face recognition in a 

large face database has also been developed. 

1.2 Statements of Originality 

The following contributions reported in this thesis are claimed to be original. 

1. An effective template, namely Spatially Maximum Occurrence Template 

(SMOT), is proposed for human face detection. SMOT, which has a high 

representative power for faces, is combined with a mixture of Gaussian 

models to verify whether an image is a face or not. This method is able to 

detect faces under various conditions. 

2. A simplified version of Gabor wavelets (SGWs) and an efficient algorithm 

for extracting the features based on an integral image are proposed for face 

recognition. The runtime for feature extraction using SGWs is, at most, 4.39 

times faster than that with Gabor wavelets (GWs) implemented by using the 

fast Fourier transform (FFT). In addition, the performance of face recognition 

using SGWs is similar to that using GWs. 

3. An efficient indexing structure, which is formed by a number of vantage 

objects, is proposed for searching in a huge database for face recognition. A 

much smaller database, called a condensed database, will be formed for each 

query input with this indexing structure. A more computational and accurate 

recognition algorithm can then be adopted in the condensed database. 

Without any degradation of the recognition accuracy, the time for face 
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recognition can be reduced, since the condensed database is much smaller 

than the original database.  

1.3 Outline of the Thesis 

This thesis is organized into six chapters, and each chapter is outlined as 

follows. 

Chapter 2 describes the principles of face detection and face recognition. 

Some well-known techniques for face detection and recognition are reviewed, 

including Gabor Feature Extraction, Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), Neural Network, and Adaboost. 

In Chapter 3, we introduce an effective template, namely Spatially 

Maximum Occurrence Template (SMOT), for human face detection. With a high 

representative power for faces, SMOT is combined with a mixture of Gaussian 

models to verify whether an image is a face or not. This method is able to detect 

faces under various conditions, such as different facial expressions, poses, and 

illuminations in complex backgrounds. 

Chapter 4 presents a simplified version of Gabor wavelets (SGWs) and an 

efficient algorithm for extracting the features based on an integral image for face 

recognition. Gabor wavelets (GWs) can effectively extract local and 

discriminating features for face recognition. However, due to the intensive 

computational requirement for extracting features using the traditional Gabor 

functions, it is impractical for real-time applications. Therefore, SGWs are 

proposed. The runtime required for feature extraction using SGWs is, at most, 

4.39 times faster than that with GWs implemented by using the fast Fourier 

transform (FFT). Further, the performance of face recognition using SGWs is 

similar to that using GWs. 
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In Chapter 5, we propose an efficient indexing structure, which is formed 

by a number of vantage objects, for searching in a huge database for face 

recognition. The training faces in the database are ranked either in ascending or 

descending order with reference to each of the vantage objects, and hence each 

vantage object forms one ranked list or several ranked lists. A query face is 

ranked with reference to each vantage object, and is positioned in each of the 

ranked lists accordingly. Then the neighboring training faces to the query face in 

the ranked lists are selected to form a much smaller database, which is called a 

condensed database. Since the condensed database is much smaller than the 

original database, the time required to search for similar faces from a very large 

database can be greatly reduced without any degradation of recognition accuracy. 

Finally, we conclude our work in Chapter 6, and some suggestions are 

provided there for further development. 
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Chapter 2: Literature Review 

In this chapter, we will first introduce the basic concepts of face detection 

and face recognition, and then briefly describe the steps for face detection. 

Finally, we will review some recent well-known techniques for face detection 

and face recognition. 

2.1 Review on Face Detection 

2.1.1 Problem Statement 

A lot of research on face detection has been conducted, since human face 

detection is the first important step in any face processing system, such as face 

recognition and face tracking. Most current face recognition techniques assume 

the availability of frontal faces of similar sizes [1]. Similarly, the initial face 

location is often assumed to be known in many face-tracking algorithms [155]. 

The detection schemes may be classified according to a cluttered or an 

uncluttered background in digital images [2]. For instance, crowd surveillance is 

associated with a cluttered or complex background, while passport identification 

has an uncluttered background. Finding human faces automatically in a cluttered 

background is a difficult and significant problem. Different approaches have 

been devised for the detection of human faces in gray-level images. These 

include approaches that are template-based [59-63], feature-based [51-58], neural 

network-based [134-136], example-based [60], and most often, a combination of 

all of these. The computational complexity of these methods is usually too great 

for real-time applications. 
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The goal of face detection is to determine whether or not there are any 

faces in an image [2]. If present, the image location and extent of each face 

should be returned. However, there are several factors that can make face 

detection become difficult. These include the pose of the faces, facial expression, 

orientation, imaging conditions, and the presence or absence of facial features 

such as beards or glasses. The factors are described as follows: 

1. Pose. The images of a face vary due to the relative camera-face pose, e.g. 

frontal, 45 degree, profile and upside down. Some facial features, such as the 

eyes or the nose, may become partially or wholly occluded. 

2. Presence or absence of structural components. Facial features such as 

beards, mustaches and glasses may or may not be present. There is a great deal of 

variability among the shape, color and size of these components. 

3. Facial expression. The appearance of faces is affected directly by 

different facial expressions, such as laughing, sad, and crying. 

4. Occlusion. A face may be partially occluded by other persons or objects, 

especially in a group of people. 

5. Image orientation. Face images vary with different rotations about the 

camera’s optical axis. 

6. Imaging conditions. The appearance of the face is affected by different 

imaging conditions, such as lighting and camera characteristics. 

Many problems are closely related to face detection [2]. Face localization, 

a simplified detection problem, is used to determine the image position of a 

single face. The assumption is that an input image contains only one face. Facial 

feature detection is used to detect the presence and location of features, such as 

eyes, eyebrows, mouth, lips, nose, ears, etc. Face recognition or face 
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identification is used to recognize the identity of a query face image in a stored 

face database. Facial expression recognition is used to identify the affective 

states (happy, sad, disgusted, etc.) of humans. Face authentication is used to 

verify the claim of the identity of an individual in an input image. Face tracking 

continuously estimates the location and possibly the orientation of a face in an 

image sequence or a video in real time. Many of these face processing techniques 

require frontal faces of similar size as the input. Therefore, face detection is the 

first step in any automated system. 

One of the most important problems is how to evaluate the performance 

of the proposed detection methods [2]. Most of the researchers compare their 

proposed methods with the detection rate and false alarm rate. There are also 

many other metrics used to evaluate face detection methods, such as the learning 

time, the execution time, the number of samples required in training, and the 

ratio between detection rates and false alarms. However, it becomes confusing if 

there are different definitions for detection rates and false alarms. In this thesis, 

the detection rate is defined as the ratio between the number of faces correctly 

detected and the number of faces determined by a human. An image region is 

identified as a face by a classifier if the image region covers more than a certain 

percentage of a face in the image. Often, the image region identified as a face 

must contain all the visible parts of the eyes and mouth. If an image region is 

declared to be a face, but it is not, this is called a false positive or a false alarm. If 

an image region is a face but the classifier fails to detect it, this is a false negative, 

which results in a lower detection rate. 

There have been more than 150 approaches reported for face detection [2], 

and there are even more now. Most research treats face detection as a computer 
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vision research task of object recognition, especially a two-class recognition 

problem. An image region will be classified as being a “face” or a “nonface”. 

However, the “face” class contains large within-class variability, so some of the 

detection techniques need a large set of training images. 

Face detection is also a pattern recognition problem. A raw or filtered 

image will be the input of a pattern classifier. A large number of pixels in 

training images will cause an extremely high dimension of the feature space. To 

deal with these high-dimensional training samples, multimodal distribution 

functions can be used to characterize the face and nonface classes. The decision 

boundaries are nonlinear, and the classifiers should also be able to extrapolate 

from a modest number of training samples. 

2.1.2 Steps of Face Detection 

There are several steps in a face detection system using supervised 

learning [66], as shown in Figure 2.1. They are: pre-processing, feature 

extraction, feature selection (optional), classification and post-processing. 

Pre-
processing

Feature
Extraction

Feature
Selection
(optional)

Classification Post-
processing

Query
input

ResultPre-
processing

Feature
Extraction

Feature
Selection
(optional)

Classification Post-
processing

Query
input

Result
 

Figure 2.1 Main step involved in building a face detection system. 

Pre-processing is the first step, which aims to improve the input image or 

standardize the image condition so that the chances for successful detection 

increase. For example, in order to obtain the face candidates in a query image, 

some detectors scan across the query image at multiple scales, orientations and 

locations. The scanning window is often a square. The step sizes of the scale 

factor, orientation factor and shift factor of the scanning window are determined 

by the researchers. A large step size can speed up the detection process but also 
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lower the accuracy level. A small step size will be more time consuming, but 

may result in greater accuracy. After the face candidates have been obtained, 

some normalization processes will be performed on them. For example, the face 

candidates will be normalized with respect to size and orientation. Histogram 

equalization will then be done to compensate for light variations. Noise reduction 

may also be applied. 

The second step is feature extraction, where some features extracted from 

a face image are able to represent the main characteristics of the face, so that the 

classifier in the step that follows can work faster and more accurately. Some 

researchers use visual features, such as face color [13-19] or shape [20-21] to 

locate possible face candidates. Some others consider the local characteristics of 

faces and use receptive fields [25-26], Haar wavelets [27], Gabor wavelets [28-

46] or wavelets [47-50] to extract the local features. Others treat a face as a 

template [59-63], or as a pattern or a vector, and transform it into another feature 

space [64-113], in which only a few dimensions are required to represent a face. 

The third step is feature selection, where the detector will select the most 

representative features and neglect all the useless features. Recently, research has 

put more and more emphasis on feature selection methods, although not many 

detection methods contain the feature selection process. There have also been 

many approaches published for feature selection. One of the simplest ways to 

select the most representative features is to choose the features with a high level 

of mutual information [126-133]. Another effective approach is to use learning-

based methods, e.g. Adaboost [144-148], to determine the highly representative 

features. 
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The next step is classification, where the classifier assigns the face 

candidates to its correct category, i.e. either faces or non-faces. The classifier 

needs to be trained before performing classification. One of the simplest ways to 

classify is to compute the similarity between the face candidates and the training 

samples, and then make a decision by thresholding. There are different distance 

measures available to compute the similarity, e.g. Euclidean distance, correlation 

or Mahalanobis distance, etc. Other more advanced methods for classification 

include the nearest-neighbor rule (NNR), the Bayesian approach [119-121], and 

neural networks [134-136]. 

The last step is post-processing, where algorithms to reduce the number 

of false positives and manage the overlapping regions are applied. Sometimes, 

two or more overlapped candidates in the same image are classified as a face. 

This means that they may be the same face. The algorithm to manage the 

overlapped regions is applied to avoid duplicating results [134] [136]. 

2.1.3 Recent Techniques for Face Detection 

Former researchers have classified face detection methods into different 

categories. According to Hjelmas and Low [1], face detection methods can be 

classified into two categories: a feature-based approach and an image-based 

approach. Yang, Kriegman and Ahuja [2] classify face detection methods into 

four categories: knowledge-based methods, feature invariant approaches, 

template matching methods, and appearance-based methods. In this thesis, the 

face detection methods to be reviewed are classified into two categories: feature-

based methods and appearance-based (or image-based) methods. 
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2.1.3.1 Feature-based methods 

These methods are the combination of knowledge-based methods, feature 

invariant approaches and template matching methods in Yang et al. Since these 

three methods aim to make use of some facial features that are invariant in terms 

of pose, viewpoint and lighting conditions, the feature-based methods often put 

great emphasis on how to extract the invariant features, such as skin color, face 

contour, edges, texture and shape. However, some models or classifiers have to 

be applied with these methods before making a final judgment. The problem with 

these methods is that the features can be corrupted due to illumination, noise, and 

occlusion [2]. In this thesis, we will review some of the recent and most 

important feature-based methods. 

2.1.3.1.1 Color 

Color is a powerful fundamental feature for extracting the skin regions 

efficiently [13]. It is invariant to pose, viewpoint, scale and orientation of faces, 

and robust to cluttered backgrounds. Therefore, color-image segmentation is 

often the first step in the process of face detection in complex scenes. Once skin 

regions are extracted, other features and techniques can be applied in the skin 

regions to locate the face candidates.  

Although skin color varies under different lighting conditions, some 

research has found that, under different illuminations, the chrominance 

components (Cb and Cr) of the facial skin are distributed with a certain range 

[19]. A color compensation scheme can also be applied to compensate for 

extreme lighting conditions [18]. Greenspan, Goldberger and Eshet [13] applied 

a mixture of Gaussian models to represent the face color in the normalized r-g 
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color model. Hsu, Abdel-Mottaleb and Jain [14] proposed a detection algorithm 

based on a transformed color space. A cluster of skin colors in the color space is 

formed, and is used to locate possible face candidates, which are then verified as 

true faces or not by the detection of facial features such as eyes, mouth, face 

boundary and the triangular relationship between the eyes and mouth. 

2.1.3.1.2 Facial Features 

To locate the different facial features, various methods rely on the fact 

that almost every face has bilateral symmetry, with the two eyebrows, two eyes, 

one nose and one mouth having a very similar layout. Some methods that have 

relied on these facial features are reviewed, as follows. 

Yang and Huang [51] proposed a hierarchical knowledge-based method 

to construct the face detection system, which consists of three levels of rules. At 

levels 1 and 2, mosaic images are used to find the possible face candidates with 

all possible sizes and locations. At level 3, the rules based on details of facial 

features are applied to the possible face candidates to make a final decision. 

Kotropoulos and Pitas [52] extended the work of Yang and Huang [51] by using 

mosaic images to find the face candidates, and then located the positions of the 

eyes and mouth by using horizontal and vertical profiles. Lin and Fan [53] 

proposed a triangle-based approach for face detection. They found that the facial 

features such as eyes, ear holes and mouth form a triangle. Then they used a 

weighting-mask function for verifying a face. 

Lam and Yan [55] proposed methods for locating the respective facial 

features, and new models for their representation. The corners of the respective 

facial features are detected, and are used to represent the respective features. The 
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positions and shapes of the features can be estimated accurately based on the 

locations of the different corners. 

One method for face detection [15] [57] is to detect possible positions of 

the eyes, which exhibit as valleys in the image space. Instead of searching the 

whole image space for human faces, only those valley positions satisfying some 

features of the eyes are considered. Two possible eye candidates with similar 

features are grouped to form a possible face candidate, which is then further 

verified as a human face by measuring its corresponding symmetry and its 

similarity to a human face template. Wong and Lam [15] [19] applied face color 

detection before valley detection, in order to restrict the search space for possible 

eye candidates to skin color regions. This can speed up the face detection process. 

2.1.3.2 Appearance-based methods 

Face detection is treated as a general recognition problem. The methods 

often put great emphasis on feature selection and the classifier. After feature 

extraction on face candidates, or even just considering all the spatial pixels of 

face candidates as features, the features are treated as vectors or arrays. Using 

pattern recognition theory, the models or templates are learned from a set of 

training vectors, which carry the most representative variability of a face. These 

learned models are then used for detection. Appearance-based methods include 

subspace methods, statistical approaches and neural network-based methods. 

2.1.3.2.1 Subspace Methods 

Subspace methods consider a feature space as a linear combination of a 

sub-set of bases. Training or input images are projected into the subspace, where 

the new space removes the useless information and produces image features 
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which are more representative or discriminative. Subspace methods are effective 

and computationally efficient, and very easy to implement. The most popular 

subspace methods include principal component analysis (PCA) [64-66], linear 

discriminant analysis (LDA) [67-75], independent component analysis (ICA) 

[108-113], locally linear embedding (LLE) [99-100], and locality preserving 

projection (LPP) [101-104]. LDA, ICA, LLE and LPP are often employed for 

face recognition; while PCA has been used for both face detection and 

recognition. We will review PCA in the following section, while the other 

subspace methods will be reviewed in Section 2.2. 

Principal Component Analysis (PCA) 

PCA [64-66], also known as Karhunen-Loeve transform, has been widely 

used for both face detection and recognition because of its low computational 

complexity and high representation ability. PCA is also a good orthogonal linear 

transformation for dimensionality reduction and data compression. It aims to 

search a set of projection axes that best represent the data. The projection axes, 

which are orthogonal to each other, are treated as the principal components of the 

data. Each data sample can be decomposed as a linear combination of these 

principal components. The first projection axis lies in the direction such that the 

data projected onto this projection axis have the greatest variance. The first 

projection axis is considered as the most representative axis to the data. The 

second projection axis lies in the direction such that the data projected onto this 

projection axis have the second greatest variance, and so on. Those projection 

axes near the end are considered as the least representative, so they will often be 

discarded for the purpose of dimensionality reduction or data compression. If the 

training vectors are faces, the projection axes are then called eigenfaces. If a face 
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image is projected onto the face space spanned by the eigenfaces and is then 

reconstructed, the reconstructed image will be similar to the original face image. 

However, if the image is not a face, the reconstructed image will appear as very 

different from the original image. Therefore, the distance of an image from the 

face space can be computed to determine whether the image is a face or not. 

Suppose there are N H×W gray-scale training images, where H and W are 

the height and width of the images. Each 2D pixel array is represented as a 1D 

face vector by concatenating the pixel values row by row in sequence from top to 

bottom. The face vectors are denoted as xi, where i = 1, 2, …, N, and the 

dimension of each face vector xi is D = H×W. The average vector µ, the 

demeaned vector ai, and the covariance matrix C are defined respectively as 

follows: 

 
∑
=

=
N

n
ix

N 1

1µ
, µ−= ii xa  and 

TAAC =              (2.1), (2.2), (2.3) 

where A = [a1, …, aN]. The eigenvectors of the covariance matrix C are then 

computed; these represent the principal components of the training vectors. 

These eigenvectors are ranked in a descending order according to their 

corresponding eigenvalues. However, the dimension of C is D×D; determining 

the corresponding eigenvectors and eigenvalues from this huge matrix is an 

intractable task (Turk and Pentland, 1991) [64]. Turk and Pentland (1991) [64] 

have proposed a computationally feasible method to solve this problem. Since 

the number of training samples is often much smaller than the dimension of the 

training samples (i.e. N << D) and there are only N–1 meaningful eigenvectors, 

so the eigenvectors of the matrix ATA are solved. Hence, the dimension of the 
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matrix to be considered is N×N rather than D×D. Consider vi to be the 

eigenvectors of ATA, i.e. 

 iii
T vAvA λ= ,                                                                           (2.4) 

where λi is the eigenvalue of the eigenvector vi. Pre-multiplying both sides by A, 

we have 

 iii
T AvAvAA λ= .                                                                     (2.5) 

It can be observed that Avi are the eigenvectors of C = AAT, which are the 

eigenfaces and denoted as wi, i.e. 

 ii Avw = .                                                                                 (2.6) 

The first M (M < N) eigenfaces are selected to represent the training images. A 

new face image q is transformed into its eigenspace by a simple transformation, 

as follows: 

 ( )µ−= qWy T ,                                                                       (2.7) 

where W = [w1, …, wM] and y is a weight vector that describes the contribution 

of each eigenface in representing the input face image. 

This trick is not only used in PCA, but is also widely used for computing 

the eigenvectors of the between-class scatter matrix in Direct LDA, the null-

spaced eigenvectors of the within-class scatter matrix in Discriminant Common 

Vectors (DCV), and the Neighborhood Discriminant Projection (NDP). This 

trick can reduce the computation time significantly, thereby making the 

algorithm more efficient. 

PCA extracts the most representative features of face images and can 

alleviate the variations caused by local components, such as facial expressions, 

occlusion, and presence or absence of beards and glasses. However, the 
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performance of PCA will be degraded greatly by the variations caused by global 

components, such as lighting, face orientations, etc. 

2.1.3.2.2 Statistical Approaches 

Face detection systems using statistical approaches are based on the 

Bayes’ decision rule [119-121], a mixture of Gaussian models, probabilistic 

models [114-118], and information theory [126-133], etc. For the probabilistic 

models, an image or a feature vector derived from an image is viewed as a 

random variable x [2], and this random variable is characterized as a face or a 

non-face by the class-conditional density functions p(x|face) and p(x|non-face). 

However, the dimensionality of the random variable x is often too high to 

implement classification directly. Therefore, the dimension of the input vectors is 

reduced at the beginning. 

Schneiderman and Kanade [114-116] have developed two face detectors 

based on the Bayes’ decision rule. An image is classified as a face if the 

likelihood ratio of P(image|object) to P(image|non-object) is greater than the 

likelihood ratio of P(non-object) to P(object). Moghaddam and Pentland [119] 

proposed an object representation system using a probabilistic framework. The 

representative features of faces are first extracted by PCA. With the assumption 

that a face space has a uniform density, maximum likelihood detectors for face 

detection and facial feature detection were developed. Sung and Poggio [60] 

proposed a distribution-based system for face detection, which uses a mixture of 

Gaussian models to describe the distribution of faces and non-faces. Then the 

normalized Mahalanobis distances between a face candidate and each cluster 

centroid, and the Euclidean distance between the face candidate and its 

projection onto each cluster, are calculated. Finally, a multilayer perceptron net 
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classifier, based on 12 pairs of distances, is used to verify the face candidates. 

Liu [121] has also presented a Bayesian Discriminating Features (BDF) method 

for multiple frontal face detection. The feature vectors of face candidates are a 

combination of the input candidate’s image, its 1D Haar wavelet representation, 

and its amplitude projections. Then, statistical modeling is used to estimate the 

conditional probability density functions (PDFs) of the face and nonface classes. 

Finally, the Bayes classifier is applied for face detection. 

2.1.3.2.3 Neural Network-based Approaches 

Neural networks are a popular technique for pattern recognition. It is very 

feasible to train a system to capture the complex class conditional density of face 

patterns [2]. However, the network architecture must be extensively tuned so as 

to achieve an excellent performance. Neural network-based approaches include 

the multilayer perceptron (MLP) [60] [36], the probabilistic decision-based 

neural networks (PDBNN), the support vector machine (SVM) [137], the sparse 

network of winnows (SNoW) [138-140], and Adaboost [145-148]. 

Rowley et al. [134] presented a neural network-based upright frontal face 

detection system. After pre-processing through lighting correction and histogram 

equalization, face candidates with 20 × 20 pixels, which are the network input, 

will be divided into 26 receptive fields of different sizes. These 26 receptive 

fields represent the hidden units of the network. A single output of the network 

indicates whether or not the candidate is a face. The second part of this method is 

to eliminate the overlapped results. An arbitration strategy, such as logic 

operators, is used to improve the performance. 

Viola and Jones [145] have proposed a popular and fast face detection 

method. It is a machine-learning approach for visual object detection, which is 
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capable of processing images extremely rapidly and can achieve high detection 

rates. In this approach, the “Integral Image” is first introduced, which allows the 

features used by the detector to be computed efficiently. The features used are a 

simplified form of the Haar basis functions. Even for a small image, the number 

of Haar-like features can be very large. A machine-learning algorithm, namely 

Adaboost [143-144], is used to train the classifier. It selects a small number of 

critical visual features from a large set of the features to form extremely efficient 

but weak classifiers. Finally, these weak classifiers are cascaded to form a 

complex and strong classifier, which allows the background regions of an image 

to be discarded quickly while spending more computation time on promising, 

object-like regions. The final classifier only uses a few hundred Haar-like 

features. The MIT+CMU test set is used, which contains 130 images with 507 

faces. The detection rate is 93.9% when the number of false alarms is 167. In 

real-time applications, the detector runs at 15 frames per second, without 

resorting to image differencing or skin-color detection. Further extensions of this 

technique have been proposed by Lienhart and Maydt [146], and by Ma and 

Ding [147]. 

2.2 Review of Face Recognition 

2.2.1 Problem Statement 

Many face recognition approaches have been proposed during the past half 

decade. It is not difficult for humans to recognize a person, and in fact we 

perform face recognition many times every day. However, it is a challenging and 

interesting task to “tell” computers to perform face recognition. Face recognition 

has attracted many researchers from the fields of psychology, pattern recognition, 



 

 21 

neural networks, computer vision, and computer graphics [7]. Moreover, due to a 

wide range of commercial and law-enforcement applications, such as logon 

systems and CCTV control, a fully automatic face recognition system is in great 

demand. 

An automatic face recognition system comprises three main parts: face 

detection, feature extraction, and face recognition [7]. Face detection is 

performed first on the query image or video to obtain the locations and 

information about faces. The features used in face detection can be also used in 

face recognition, or other, more suitable features may also be considered. Finally, 

the target faces will be identified. In a complete face recognition system, 

inaccurate performance in face detection or facial-feature detection will degrade 

the performance of face recognition. Therefore, both face and facial-feature 

detection are very important in a face recognition system. In general, most 

researchers simply assume the availability of frontal faces of similar sizes for 

face recognition [1]. Actually, faces are often required to be rotated and scaled to 

align the centers of the eyes. 

Face recognition is used to identify or verify one or more persons in a 

given image or video using a stored database of faces [7]. Similar to face 

detection, the performance of face recognition is affected by several factors, such 

as the pose, facial orientation, facial expression, lighting conditions, the presence 

or absence of beards or glasses, and occlusion. A practical face recognition 

technique needs to be robust to these variations. 

A face recognition algorithm usually comprises the following four steps: 

pre-processing, feature extraction, feature selection, and classification. Different 

to face detection, post-processing is not required in face recognition, since face 
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detection needs to perform overlap elimination, but face recognition does not. 

The other steps are the same as the steps for face detection, as described in 

Chapter 2.1.2. Although the basic visual features, such as the edges and shapes, 

and the facial features, such as the eyes and nose, can be used in feature 

extraction, researchers have tended to mostly utilize the local characteristics, 

such as receptive fields, Haar wavelets [27], Gabor wavelets [28-46] and 

wavelets [47-50], over the last few years. However, the dimensionality of these 

features can be extremely high. Particular techniques are required to select the 

most discriminative features and to remove the useless features. The subspace 

approach may be a solution, since it can be a process combining both feature 

extraction and feature selection. Examples of subspace methods include PCA, 

LDA, ICA, LLE and LPP. Based on these methods, some advanced subspace 

methods have also been developed, including kernel subspace methods, matrix-

based subspace methods (2DPCA, 2DLDA) [92-98], and some combined 

subspace methods (such as neighborhood discriminant projection, which 

combines LDA and LPP [91]). With the most discriminative features, even using 

a simple classifier, such as the nearest-neighbor classifier, can still achieve a 

satisfactory performance in classification. Therefore, researchers in face 

recognition have concentrated mainly on the techniques for feature extraction 

and feature selection in the last few years. 

The level of accuracy and the computational complexity become 

challenging when the face recognition algorithms are applied to a very large 

database. In the training-based algorithms, the performance is greatly affected by 

two training parameters, which are the number of individuals and the number of 

training samples per individual. The intrinsic difference, which discriminates the 
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identity of different faces, is not obvious to the face recognition algorithm when 

the number of training samples per individual is small. It results in a poor 

performance level. This poor performance will be magnified if the number of 

distinct individuals is large. Moreover, more runtime is required for face 

recognition in a large database. Therefore, an efficient way to search for a face is 

essential. 

2.2.2 Recent Techniques for Face Recognition 

Face recognition methods can be classified into two categories: feature-based 

methods and appearance-based methods [7] [11]. Feature-based methods extract 

the local facial features such as the eyes, nose, and mouth, whose locations and 

local statistics are fed into a structural classifier. One very popular feature-based 

method is elastic bunch graph matching [31]. Appearance-based methods treat 

the whole face as the raw input to a recognition system. Appearance-based 

methods contain linear and non-linear subspace methods, as well as methods 

using probabilistic models and neural network. Recently, many researchers 

working on face recognition have been attracted by linear subspace methods and 

by methods using probabilistic models, especially the Bayesian method. This 

may be due to the easy implementation and good performance of these methods. 

To obtain more information on the local characteristics of faces, many 

researchers extract the local features of faces, such as the receptive fields, Haar 

wavelets, or Gabor wavelets, as training inputs for a recognition system [2] [133]. 

In this chapter, we will review the techniques of Gabor feature extraction, linear 

subspace methods, the Bayesian method, and face recognition in a large database. 

We will also briefly introduce LDA and its modified versions in the section on 

linear subspace methods. 
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2.2.2.1 Gabor Feature Extraction 

Gabor wavelets are similar to the 2D receptive field profiles of the 

mammalian cortical simple cells. They exhibit the desirable characteristics of 

spatial localization and orientation selectivity, as well as spatial frequency 

characteristics [28]. The Gabor features are invariant to translation, scale and 

rotation [80]. Therefore, they have been widely used for feature extraction in 

face recognition. 

In the spatial domain, a Gabor wavelet is a Gaussian function modulated 

by a complex exponential, which can be defined as follows: 
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(x, y) denotes the pixel position in the spatial domain, ω is the radial centre 

frequency of the complex exponential, θ is the orientation of the Gabor wavelets, 

and σ is the standard deviation of the Gaussian function. The image features 

Yω,θ(x,y) are extracted by convolving the image I(x, y) with the filters ψω,θ, as 

shown below. 

 ( ) ( ) ( )yxyxIyxY ,,, ,, θωθω ψ⊗= .                                                (2.9) 

The convolution can be implemented efficiently by the fast Fourier transform 

(FFT) to reduce the computation required for feature extraction, but the 

computation is still intensive. Many researchers consider only the magnitude 

Gω,θ(x,y) of the output as Gabor representations, i.e. Gω,θ(x,y) = |Yω,θ(x,y)|. A 

high-dimensional vector for face recognition G is formed by concatenating the 

magnitudes of the Gabor representations.  
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Figure 2.3 shows the magnitudes of the Gabor representations of the 

human face in Figure 2.2. Five different scales and eight different orientations 

are selected for the Gabor wavelets, i.e. 

 ( ) 4...., ,0 and ,7,,0  where,
22

 and  
8

==== qpp q 
πωπθ        (2.10) 

 [ ]TTT GGGG
741000 ,,, ,,, θωθωθω = .                                                       (2.11) 

Hence, at each pixel position, the magnitudes of the Gabor representations are 

concatenated to form a high-dimensional vector of dimension 40 for face 

recognition. In addition, we set σ = π/ω. 

 

Figure 2.2 A human face image of size 64×64. 

 

Figure 2.3 The magnitudes of the Gabor representations with 5 center frequencies and 8 

orientations. The frequencies are π/2, 2 π/4, π/4, 2 π/8 and π/8 from the top to bottom 

row, respectively. The orientations are from 0 to 7π/8 in a step size of π/8, from the left to 

right column, respectively. 
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2.2.2.2 Linear subspace methods 

Linear subspace methods include principal component analysis (PCA) [64-66], 

linear discriminat analysis (LDA) [67-75], independent component analysis (ICA) 

[108-113], locally linear embedding (LLE) [99-100], locality preserving 

projections (LPP) [101-104], etc. Nearly all the linear subspace methods, except 

ICA, assume that samples in each class are distributed in a Gaussian model. 

PCA aims to search the projection axes to best represent the training 

samples. It is effective for dimensionality reduction and data compression, but 

not good for recognition, since PCA, also called eigenfaces, does not utilize the 

class information. Therefore, some researchers consider that PCA is just a 

technique for dimensionality reduction before applying some other subspace 

methods. 

LDA utilizes the class information in training to search the projection 

axes to best discriminate the classes; therefore a high recognition rate can be 

achieved. This has been proven by many experimental results based on LDA. 

However, a sufficient number of samples per class is needed in training for LDA; 

otherwise the performance of LDA may be even worse than that of PCA [72]. 

Fisherfaces [70], which applies LDA in the PCA space, is an extension of LDA. 

Both PCA and LDA estimate the global statistics, but fail to discover the 

underlying local structure. 

LLE [99-100] and LPP [101-104] are able to preserve the local 

information by incorporating the neighborhood information of a data set. A face 

subspace can be obtained that best detects the essential face manifold structure. 

Laplacianface [103], which applies LPP in the PCA space, is an extension of 

LPP. However, both LEE and LPP are not able to separate different classes well, 
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since they do not use the class information. Also, both are unsupervised methods, 

which are not quite efficient enough for recognition tasks. 

ICA [108-113], which is considered a generalization of PCA, learns 

higher-order dependencies in the training data in addition to second-order 

correlations. This linear non-orthogonal transform makes unknown linear 

mixtures of multi-dimensional random variables as statistically independent as 

possible [109]. The distribution of the components is designed to be non-

Gaussian. Two architectures – statistically independent basis images and a 

factorial code representation – have been proposed based on ICA for face 

recognition tasks [110]. Independent subspace analysis (ISA) and topographic 

ICA (TICA) are extensions of ICA. However, Yang et al. [112] have pointed out 

that the pure ICA projection seems to have little effect on the performance of 

face recognition. The superior performance may be due to the data centering and 

whitening steps, which are not included in pure ICA. 

2.2.2.2.1 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis [70-75] is a popular and effective face recognition 

technique, which derives a projection basis that separates different classes as 

much as possible, and compresses the same classes as compactly as possible. 

Suppose there are C distinct persons and each person has Ni face images in the 

training database, where i = 1, …, C. All face images are represented in 1D face 

column vectors xi
j with dimension D, where i = 1, …, C, and j = 1, …, Ni. A face 

vector i
jx  represents the jth face vector in the ith class. The within-class scatter 

matrix SW and the between-class scatter matrix SB are defined as follows: 
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where µ is the mean of all samples, and µi is the mean of samples in the ith class. 

The optimal discriminant vector v is computed by maximizing the following 

criterion: 

 ( )
vSv
vSvvF

W
T

B
T

= .                                                                      (2.14) 

The set of generalized eigenvectors vk of SB and SW corresponds to the M largest 

eigenvalues λk, where k = 1, …, M, i.e. 

 MkvSvS kWikB ,...,2,1    , == λ .                                            (2.15) 

If SW is non-singular, the optimal discriminant vectors can be solved with the 

following equation. 

 ( ) MkvvSS kikBW ,...,2,1    ,1 ==− λ                                           (2.16) 

There are, at most, C – 1 non-zero eigenvalues, and so the upper bound of M is C 

– 1. Solving the above equation is equal to performing simultaneous 

diagonalization on SW and SB [69], which performs whitening on SW and applies 

PCA on SB using the transformed data. The whitening step aims to make SW have 

equal eigenvalues for uniform gain control. 

The small sample size (sss) problem occurs whenever the number of 

samples is smaller than the dimensionality of the samples. SW becomes singular, 

and the computation of Sw
–1 becomes complex and difficult. Simultaneous 

diagonalization can be used to solve this problem since it avoids computing Sw
–1, 

but the computation for whitening SW is still so large, which it is unacceptable. 

Many methods have been proposed to solve the sss problem. Some researchers 

have proposed to modify the Fisher’s criterion function as follows: 



 

 29 

 ( )
vSvvSv

vSvvF
B

T
W

T
B

T

+
= .                                                       (2.17) 

The solution for maximizing this modified function is to have the eigenvectors 

corresponding to the set of the largest eigenvalues of the matrix (SB + SW)–1SB. 

However, the eigenvectors of (SB + SW)–1SB are still very difficult to compute due 

to the singularity problem [82]. 

Zhao et al. [78] have proposed a subspace-based LDA, which performs 

LDA in the PCA space. Since the dimension of the training samples in the PCA 

space decreases, the matrix Sw
–1 is no longer singular, hence the sss problem 

seems to be solved. Liu and Wechsler [80] have extended this work and 

proposed the enhanced FLD models (EFM), which perform simultaneous 

diagonalization in the PCA space. Some researchers suspect that some important 

discriminative information may be lost in the PCA process, while others have 

disagreed [81]. 

Chen et al. [82] have proposed a novel method to solve the sss problem, 

which is known as the “null space method”. This method utilizes the 

eigenvectors in the null space of SW, and ensures that the Fisher criterion function 

can be maximized. However, computing the null-space eigenvectors of SW also 

requires a large computation. Cevikalp et al. [89] have proposed the 

discriminative common vectors (DCV), which can solve the problem of large 

computation for the null-space eigenvectors. The trick by Turk and Pentland [64] 

for computing eigenfaces is used to compute the eigenvectors of SW in the non-

null space, and then the discriminative common vectors of different classes are 

obtained by computing the residual error between the original sample and its 

reconstruction. This is equivalent to projecting the samples into the null space of 
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SW. Experimental results show that DCV can achieve greater accuracy and 

requires a shorter training and testing time, with lower storage requirements, than 

both the eigenfaces and Fisherfaces. 

Direct LDA has been proposed by Yu and Yang [86] to solve the sss 

problem. They first considered diagonalizing SB, rather than SW. With Turk and 

Pentland’s trick [64], the process of direct LDA is extremely fast. However, Gao 

and Davis [87] have shown that the direct LDA is not equivalent to the 

traditional subspace-based LDA when dealing with the sss problem. They 

pointed out that direct LDA completely ignores the common covariance SW and 

purely depends on the class means for classification, which is a special case of 

LDA. Experiments have shown that direct LDA cannot achieve a better 

performance than subspace-based LDA [87] [89]. 

Another method to solve the sss problem is the matrix-based LDA, such 

as 2DLDA and 2DFLD, which constructs the within-class scatter matrix and 

between-class scatter matrix by just using the original image samples represented 

in the matrix form. The within-class scatter matrix is often non-singular, and thus 

avoids the sss problem. However, Zheng et al. [75] have shown that matrix-based 

LDA actually loses the covariance information between different local geometric 

structures, while the traditional vector-based LDA could preserve. Experiments 

also showed that the performance of matrix-based LDA is not always superior to 

that of vector-based LDA. 

2.2.2.3 Bayesian Method 

The Bayesian method converts a multi-class problem into a two-class problem in 

face recognition. One class is the intrapersonal variation ΩI between multiple 
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images of the same individual, and the other is the extrapersonal variation ΩE for 

different individuals. Both classes are assumed to be Gaussian distributed. 

Likelihood functions P(∆|ΩI) and P(∆|ΩE) were estimated for a given intensity 

difference ∆. Two faces are considered as belonging to the same class if 

P(∆|ΩI) > P(∆|ΩE). With the aid of PCA [119], the image-difference space is 

decomposed into intrapersonal principal subspace F and its orthogonal 

complementary subspace F, where the Mahalanobis distance in F, which is the 

distance-in-feature-space (DIFS), and the PCA residual error in F, which is the 

distance-from-feature-space (DFFS), can both be easily computed for recognition. 

Yang et al. [148] and Shen et al. [133] have extended this idea. The 

image features are extracted using Gabor wavelets, and the intrapersonal and 

extrapersonal features are constructed by the two Gabor feature differences. 

These two features are fitted into Adaboost by Yang et al. [148], and are used to 

assist the computation of the conditional mutual information by Shen et al. [133]. 

Finally, a set of the most discriminative features can be computed.  

Although the Bayesian method uses the class information by computing 

the intrapersonal and extrapersonal variations, the intrinsic difference, which 

discriminates different face identities, is not compacted, and spreads over F and 

F [73]. This causes a high computational cost for computing the DFFS. In fact, 

it is also obvious that the computation can be extremely high when computing 

the extrapersonal differences between the samples from different classes. 

2.2.2.4 Face Recognition in Large Databases 

Recently, there has been little research into face recognition in large databases, 

especially for a large number of individuals with a small number of training 
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samples per individual. In a database with a small number of training samples 

per individual, it is difficult to extract the intrinsic features for face recognition 

from the training samples to discriminate the different individuals. A large 

number of distinct individuals in the database will make the performance even 

worse. Moreover, the time required for searching in a large database is also 

greater. Therefore, the challenge is to develop an efficient face recognition 

system with a high accuracy level for a small number of training samples per 

individual and a large number of individuals. 

Yang et al. (2004) [148], Yang et al. (2005) [112] and Gao et al. (2006) 

[74] have applied their algorithms to the large FERET database, which contains 

1196 individuals in the gallery set (fa set) and 1195 individuals in the probe set 

(fb set). There is only one image per individual in both sets. Yang et al. (2004) 

have extracted intrapersonal and extrapersonal Gabor features, and obtained a 

strong classifier using Adaboost [148]. The FERET database is used for testing, 

and a recognition rate of 95.2% can be achieved with 700 features selected. Yang 

et al. (2005) have performed comparisons between PCA and ICA using the 

FERET database [112]. The PCA baseline algorithm II can achieve a recognition 

rate of 81.66%. Gao et al. (2006) [74] have learned the most discriminative local 

features (MDLF) classifier by applying Adaboost to the intrapersonal and 

extrapersonal Gabor features, and learned the most discriminative global features 

(MDGF) classifier by using LDA on Gabor features. The method can achieve a 

99% recognition rate based on the FERET database. Therefore, it seems that a 

high recognition rate can be achieved by using algorithms that extract the 

intrapersonal and extrapersonal features. However, the computational time for 

testing has not been provided by these papers, and is believed to be very lengthy. 
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Some researchers have combined several small databases to form a large 

database. Liu et al. (2003) [150] have proposed an improved line-based face 

recognition algorithm, which is evaluated using a large database by combining 

the FERET, ORL and Jilin University Computation Intelligence Laboratory 

(JLCI) face databases. There are 843 individuals and 4500 images in these 

training databases. Although this improved version is faster than the original one, 

the recognition performance is worse than for PCA. Lin et al. (2003) [151] have 

proposed an efficient human face indexing scheme using eigenfaces. Each face 

in the database is ranked according to its projection onto each of the eigenfaces. 

In testing, the corresponding faces which are located near the query in the 

respective ranked lists will be selected to form a small database, namely a 

condensed database. Since the processing time required to generate the 

condensed database is very small, and the condensed database is much smaller 

than the original one, therefore a more advanced algorithm can be applied to 

those selected face images in the condensed database for recognition. There are 

523 distinct subjects, with one image per distinct subject in the database, which 

comprises the ORL, Yale, MIT, AR, BioID, UMIST, Bern and self-captured face 

databases. The experiments show that the size of the condensed database is only 

25% of the original database, and the average runtime for producing this 

condensed database is less than 1 second. 

There are many other face recognition algorithms, but the databases used 

are not large, i.e. the number of individuals is less than 500. The databases used 

in some papers are large simply because the number of images per individual is 

large. Table 2.1 shows the different numbers of individuals, the different 

numbers of images per individual, and the different numbers of all images in the 
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training database as well as the algorithms used, which are arranged according to 

decreasing numbers of training individuals. The number of training individuals 

used in those methods listed in Table 2.1 is more than 100. 

Table 2.1 Different numbers of individuals, different numbers of images per individuals, 

and the numbers of all images in the training databases with different methods. 

Methods Number of 
individuals in 
the training 
database 

Number of images 
per individuals in 
the training 
database 

Number of images 
in training 
database 

Yang et al. (2004), FERET [148] 1196 1 1196 
Yang et al. (2005), FERET [112] 1196 1 1196 
Gao et al. (2006), FERET [74] 1196 1 1196 
Liu et al. (2003), combined 
database with FERET, ORL, 
JLCI [150] 

843 - 4500 

Lin et al. (2003), combined 
database with ORL, MIT, AR, 
BioID, UMIST, Bern and self-
captured [151] 

523 1 523 

Bartlett et al. (2002), FERET 
[110] 

425 1 425 

Liu et al. (2000), FERET [79] 369 2 738 
Zheng et al. (2007), FERET [75] 255 2 or 3 510 or 765 
Lu et al. (2002), combined 
databased with ORL, Bern, Yale, 
Harvard, UMIST and Caucasians 
[152] 

157 2 to 8 704 

Chen et al. (2000) [82] 128 2, 3 or 6 256, 384 or 768 
 

2.3 Conclusions 

This chapter has described the principles of face detection and face recognition. 

We have also reviewed some recent techniques for face detection. In the feature-

based approaches, the color and facial features are introduced. In the appearance-

based methods, we have described the subspace-based approaches, especially the 

PCA, statistical approaches, and neural network-based approaches. For face 

recognition, we have reviewed Gabor feature extraction and linear subspace 

methods, especially the LDA and the Bayesian method. At the end of this chapter, 

we have also addressed the issues of face recognition in large databases. In the 
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following chapters, our proposed algorithms for face detection, facial feature 

extraction, and face recognition in a large database will be presented. 
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Chapter 3: Face Detection Using a Novel Template 

with Gaussian Mixture Model 

3.1 Introduction 

Detecting human faces in an image or a video scene is the first and an 

important step in facial image analysis. The detection schemes may be classified 

according to a cluttered or an uncluttered background in the digital images. For 

instance, crowd surveillance is associated with a cluttered or complex 

background, while passport identification has an uncluttered background. 

Finding human faces automatically in a cluttered background is a difficult and 

significant problem. 

The goal of face detection is to determine whether or not there are any 

faces in an image. If faces are present, the face detection system should return 

the location and size of each face. However, faces are non-rigid, complex and 

multi-dimensional, and they may appear in arbitrary poses, different facial 

expressions and different imaging conditions, and with the presence or absence 

of facial features such as beards or glasses. To deal with these difficulties in face 

detection, many different approaches have been proposed for the detection of 

human faces. These include template-based, feature-based, neural network-based, 

example-based approaches and, more often, a combination of all of these. The 

computational complexity of these methods is usually too high for real-time 

applications. 

In the feature-based approach, Wong and Lam (1999) [57] and Wong, 

Lam and Siu (2001) [58] employed eye detection to find the possible face 
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candidates. Then, the Genetic algorithm was applied to verify the possible face 

candidates with the eigenface to form the fitness function. Lin and Fan (2001) 

[53] proposed a triangle-based approach for face detection, which uses a 

weighting mask function for verifying a face. 

Kuo, Husang and Lin (2002) [61] proposed a multi-resolution template-

based method. Sung and Poggio (1998) [60] presented an example-based 

learning method for view-based face detection, which uses a mixture of Gaussian 

models to describe the distribution of faces and non-faces. Then the normalized 

Mahalanobis distances between the face candidate and each cluster centroid, and 

the Euclidean distance between the face candidate and its projection onto each 

cluster were calculated. A multilayer perceptron net classifier based on 12 pairs 

of distances was used to verify the faces. 

Skin color has been applied to detect human faces. Greenspan, 

Goldberger and Eshet (2001) [13] applied a mixture of Gaussian models to 

represent the face color. Hsu, Abdel-Mottaleb and Jain (2002) [14] proposed a 

detection algorithm based on a transformed color space. A cluster of skin colors 

in the color space is formed and used to locate possible face candidates, which 

are then verified as true faces or not by detection of facial features such as eyes, 

mouth, face boundary and the triangular relationship between the eyes and mouth. 

3.2 Our Face Detection Algorithm 

Our face detection algorithm is a template-based approach, which uses a 

novel template to represent human faces. This template, namely Spatially 

Maximum Occurrence Template (SMOT), has more than one value at each pixel 

position. The values of the template are extracted from the same pixel position of 

a set of training images. Then, a possible face candidate is projected onto the 
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space formed by the SMOT, and the projection is compared to a Gaussian 

mixture model of human faces to determine whether it is a true face or not. 

Projecting an image to the SMOT space refers to representing the image using 

the corresponding nearest values of the SMOT. Before the abovementioned 

procedure, a possible face candidate must first be normalized to a specified size 

and processed by means of histogram equalization to reduce the effect of lighting. 

To speed up the face detection process, skin color detection (Greenspan, 

Goldberger and Eshet 2001) [13] will first be applied to identify possible face 

regions. Eye detection (Wong, Lam and Siu 2001) [58] is then applied to find the 

possible eye candidates within the face regions. If the query is of a gray-level 

image, eye detection will be applied directly to the image. Figure 1 shows the 

structure of our face detection algorithm. 

Skin Color Detection

Eye Detection

Projection onto the
SMOT space

Normalization &
Histogram equalization

Query image

Face candidates

Gaussian mixture model

Classifier

Skin Color Detection

Eye Detection

Projection onto the
SMOT space

Normalization &
Histogram equalization

Query image

Face candidates

Gaussian mixture model

Classifier  

Figure 3.1 Structure of our face detection algorithm 

The organization of this section is as follows. Sections 3.2.1 and 3.2.2 

will describe the construction and structure of the SMOT based on a set of 

training face images. Section 3.2.3 will combine our proposed template with a 
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Gaussian mixture model for face detection. Section 3.3 will give the 

experimental results, and a conclusion will be drawn in Section 3.4. 

3.2.1 Spatially Maximum Occurrence Template (SMOT) 

It is desirable that the features to be used for face detection are simple 

and representative of faces so that the query images can be classified as faces or 

non-faces efficiently and accurately. In this section, we propose the Spatially 

Maximum Occurrence Template (SMOT) for representing human faces. 

Template matching methods have been widely used in facial image analysis 

because of their simplicity in terms of computational complexity. 

The SMOT is generated based on a set of training faces, which is similar 

to the method in Sze, Lam and Qiu (2005) [160] for video shot representation. 

This template can form a face space such that an image can be projected onto the 

space to form a corresponding representation (called a SMOT representation). A 

distance measure is then applied to measure the difference between the candidate 

and its corresponding representation. 

Figure 3.2 shows the construction of the SMOT based on a number of 

images. Suppose there are N training face images fx,y(n), where n = 1, …, N, and 

(x, y) represent the pixel coordinates, and the image size is W×H. The pixel 

values at the same position in the N training images can form a histogram. In 

every pixel position, k pixel values will be selected based on the peaks in the 

histogram. When compared to a query input in the testing process, the minimum 

distance measure is used at each pixel position. The distance measure is given as 

follows: 
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where q(x, y) represents the pixel intensity of the query input at the position (x, y), 

R(x, y, u) represents the pixel intensity of the uth value at (x, y) in SMOT. SMOT 

is a very powerful representation of a series of images, because the number of 

different images that can be represented is kWH. In addition, k special templates 

can be formed from the SMOT. The first peak values of all the positions can be 

grouped together to form the first peak template. The other k–1 peak templates 

are generated in the same manner. 
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Figure 3.2 The construction of the SMOT based on a number of images 

 

Figure 3.3 Some of the training face images 

 

Figure 3.4 The four peak images from the SMOT 

  

(a)    (b) 

Figure 3.5 (a) Query images and (b) the SMOT representations. 
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In Figure 3.2, a set of training face images is used to construct the SMOT, 

and some of these images are shown in Figure 3.3. Figure 3.4 illustrates the first 

four peak template represented by the SMOT. Figure 3.5(a) shows four examples 

of query images; two face images and two non-face images. Each pixel in a 

query image is represented by the nearest peak value at the same position in the 

SMOT. This process is called the projection of an image to the space represented 

by SMOT. Figure 3.5(b) shows the corresponding representations of the query 

images after projecting onto the SMOT, which are then compared to the 

corresponding query inputs.  

Face SMOT

Regenerating process by
measuring the

minimum distance
Query
Input

Corresponding
Representation

(Generated image or 
SMOT representation)–

Euclidean Distance

Face SMOT

Regenerating process by
measuring the

minimum distance
Query
Input

Corresponding
Representation

(Generated image or 
SMOT representation)–

Euclidean Distance  

Figure 3.6 Comparison of an input image to the SMOT representation for face detection 

In our algorithm, the Euclidean distance between the query image and the 

SMOT representation is used to verify if the input is a possible face candidate. 

Figure 3.6 depicts how to generate the SMOT representation and compute the 

difference between the input and the SMOT representation. In general, if the 

image is a face image, the distance between this image and the SMOT 

representation is small. Otherwise, the distance is large. The Euclidean distance 

of the query image is then compared to a threshold to determine whether the 

query image is a face or not. Since this verification involves pixel comparison 

only, its computational complexity is low. 
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3.2.2 The Use of Face and Non-face SMOTs 
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Figure 3.7 The construction of a combined face and non-face SMOT. 

To improve the detection accuracy, in addition to the SMOT for face, a non-face 

SMOT is also constructed. The face SMOT is employed for face detection, and 

any false detection is collected and used to construct the non-face SMOT. These 

two SMOTs are then combined to form a combined SMOT for face detection. 

The idea behind this method is that a face candidate will be represented by those 

peak values from the face SMOT of the combined SMOT more faithfully, while 

a non-face query image will be better represented by the peaks from the non-face 

SMOT. Therefore, the SMOT representation, i.e. the generated image obtained 

by projecting onto the SMOT, of the query image will be similar to itself. Figure 

3.7 illustrates the construction of the combined SMOT. 

 

Figure 3.8 Some of the training images. 
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Figure 3.9 The combined SMOT with the first two images formed from the peaks of the 

face SMOT and the remaining five from the non-face SMOT. 

  

(a)    (b) 

Figure 3.10 (a) Query images and (b) the corresponding SMOT representations. 

Figure 3.8 shows some of the training face images and training non-face 

images. We select two peak values for the face templates and five for the non-

face templates to construct a combined SMOT. The corresponding seven peak 

templates are shown in Figure 3.9. Four query images are shown in Figure 

3.10(a); two faces and two non-faces. The query images are projected onto the 

SMOT, and the corresponding SMOT representations are generated and shown 

in Figure 3.10(b).  

The Euclidean distance between the query input and the corresponding 

combined SMOT representation is always small irrespective of the input being 

face or non-face. In our algorithm, we consider the distance between the first 

peak template from the face SMOT and the combined SMOT representation. The 

reason is that the first peak template is constructed by the pixel values of the 

most frequently occurring faces. This face template has the most representative 

power to all the faces, so we use this template as a reference in measuring the 

distance. Figure 3.11 shows the measurement of the similarity of the query input 

to a true face based on the combined SMOT and the first peak template. If the 

input is a face, the generated image will be similar to itself, and the distance 

between the first face template in SMOT and the generated image is small. If the 
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input is a non-face, which will be mainly represented by the non-face SMOT, the 

generated image will be similar to a non-face and the distance between the first 

peak face template and the generated image will be large. 
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Figure 3.11 Measuring the similarity of the query input based on the combined SMOT. 

3.2.3 Combined SMOT with Gaussian Mixture Model 

Face detection using SMOT only considers the individual pixel positions, 

without including the relationship between the different pixels. This means that 

the global appearance of the faces is not considered in this pixel-wise method. To 

cope with this deficit, a probability model is employed to represent the global 

features of faces so as to supplement the pixel-wise operations in SMOT. We 

assume that the generated images of the training images using the SMOT are 

distributed as a mixture of Gaussian models. Therefore, the expectation 

maximization (EM) algorithm (Dempster, Laird, and Rubin 1997) [125] is used 

to generate a Gaussian Mixture Model (GMM), as described in Greenspan, 

Goldberger and Eshet (2001) [13], Sung and Poggio (1994) [60] and 

Moghaddam and Pentland (1997) [119], to represent the face and non-face 

clusters. In the detection, we use both the Euclidean distance based on the SMOT 

and the probability from the Gaussian mixture model to verify a face region. 
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Figure 3.12 Training of the Gaussian mixture model. 

Figure 3.12 shows the training process for the Gaussian mixture model, 

which consists of four steps. The first step is to construct the combined SMOT. 

The second step is to use the combined SMOT to construct the corresponding 

generated images for both faces and non-faces. The dimension of the generated 

images may be very large. To reduce the dimension of the generated images, 

principal component analysis (PCA), referred to Turk and Pentland (1991) [64], 

is applied in the third step. Therefore, a set of generated face images of low-

dimension is produced. In the last step, the distribution of these low-dimensional 

face representations and non-face representations are described using a given 

number of Gaussian models (or clusters), which are constructed by the EM 

algorithm. In other words, a mixture of Gaussian models for faces and non-faces 

are produced. The prior probability α, mean µ and covariance C of each cluster 

can be obtained. 

In the classification, a query image is projected onto the combined SMOT 

to generate the corresponding generated image. Then the Euclidean distance, E, 

between the generated image and the first peak face template of the combined 

SMOT is calculated. Next, the dimension of this generated image is reduced by 

means of PCA. This low-dimensional representation is used to calculate the 

maximum posterior probabilities of the face clusters, PF, and that of the non-face 
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clusters, PN, based on the Gaussian mixture model. A region is determined to be 

a face or non-face based on the following decision function: 
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The input will be classified as a face if PN is lower than the threshold TN, 

and λ1(1 – E/256) + λ2PF is larger than the threshold TF, where λ1 and λ2 are the 

weights. The term (1 – E/256) is normalized to a range between 0 and 1. 

Therefore, if the input is a face, this term should be large and the posterior 

probability for non-face clusters PN should be small. 

3.3 Experimental Results 

We selected 4,000 frontal faces and 8,000 non-faces of size 50×50 to 

train the combined face and non-face SMOT. The training faces were selected 

from different databases including AR, FERET and ORL. Some faces are under 

uneven lighting, some have different facial expressions, and some have beards 

and glasses. We used 12 clusters to model the mixture of Gaussian distributions 

of faces, and 12 clusters for the non-faces. 

To detect faces in an image, skin color detection is applied to the whole 

image to segment skin-color regions. Then eye detection is employed to identify 

possible eye candidates in the segmented regions, and possible face candidates 

are formed. Histogram equalization and size normalization are applied to these 

face candidates. 

The testing databases used include the BERN, face95, face96, FERET, 

JAFFE, and Yale databases, and some images produced by our group. There are 

a total of 18,010 faces selected in these databases with different scales, 

illuminations, and facial expressions, and with complex background. Some of the 
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testing faces have a slight pose angle. Table 3.1 shows the characteristics of these 

databases. 

Table 3.1 The characteristics of the different databases. 

Database Characteristics 
AR Varying luminance, different expressions 
BERN Different expressions, small pose angle 
Cohn-kanade Different expressions 
Face95 Normal conditions, some varying luminance 
Face96 Complex background 
FERET Different expressions, small pose angle 
JAFFE Different expressions 
MIT Normal conditions 
ORL Different expressions 
Yale Varying luminance, different expressions 
Our database Different expressions, small pose angle, complex background 
 

Table 3.2 tabulates the detection rate and number of false detection rate 

based on different databases. The detection rate based on the respective 

databases is higher than 92.53% and the overall detection rate is 97.15%. The 

total number of false detection is 2189. 

Our algorithm can detect the faces under different scales, facial 

expressions, and lighting conditions. The detected faces in the first and second 

rows (BERN, Cohn-kanade, JAFFE, Yale, Face95, Face96 and FERET databases) 

of Figure 3.13 show that our detector can detect faces with a small pose angle 

under different facial expressions, uneven illumination and complex backgrounds. 

Our system can also detect multiple faces with as shown in the third rows (our 

database). Figure 3.14 shows some examples of the missed faces, which are 

caused due to the strong reflected light from glasses. The disadvantage of this 

face detection method is that it is unable to detect small face images because our 

method is based on eye detection. If an image is very small, the eye positions 

may not be detected and so the face will be missed. 



 

 48 

Table 3.2 Detection rate and number of false detections based on the different databases. 

Dataset No. of faces No of detected 
faces 

False 
detection 

Detection rate 
(%) 

BERN 300 283 4 94.33% 
Cohn-kanade 8795 8707 691 99.00% 
Face95 1432 1325 370 92.53% 
Face96 3013 2826 650 93.79% 
FERET 2466 2363 437 95.82% 
JAFFE 213 213 0 100% 
Yale 165 163 1 98.79% 
Our database 1626 1616 36 99.38% 
Total 18010 17422 2189 97.15% 
 

The runtime required depends on the complexity of the query image. If the image 

is complex, many eye candidates will be detected and so many possible face 

candidates will be formed. On average, about one second is needed to process an 

image of size 176×144. 

 

Figure 3.13 Detected faces from different databases: The first to the second rows are faces 

from the BERN, Cohn-kanade, JAFFE, Yale, Face95, Face96 and FERET databases, 

respectively. The others come from our database or other databases. 
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Figure 3.14 Missed faces due to the reflected light from glasses. 

3.4 Conclusions 

In this chapter, we have proposed an efficient face detection method 

using a novel template, namely Spatially Maximum Occurrence Template 

(SMOT), with the Gaussian Mixture Model. Our algorithm first uses skin-color 

detection and eye detection to find the possible face candidates. Then, the face 

candidates are normalized, histogram equalized and projected onto the SMOT 

space. The Euclidean distances between the images generated from SMOT and 

the SMOT first peak template are calculated. The dimension of the SMOT 

representation is subject to PCA to reduce its dimension. Finally, the low-

dimensional SMOT projection is used to calculate the probabilities of the face 

clusters and non-face clusters based on a Gaussian mixture model. This face 

detection method can detect faces with different expressions and only a small 

pose angle, under varying illuminations and with complex backgrounds. 

The advantage of this system is that it can detect faces under various 

conditions. The reason is that the SMOT has a very high representative power of 

face images and each cluster in the Gaussian mixture model can represent one 

condition of the faces, e.g. normal faces, faces with glasses, faces with open 

mouth, etc. However, it is impossible to collect all the conditions of the faces in 

the training dataset. Thus, in the detection, we use the SMOT to “normalize” the 
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query input, i.e. representing the query image by the corresponding nearest peak 

values from the SMOT, before computing the posterior probability. This 

classifies the faces under different conditions even though there are in sufficient 

face examples for training the Gaussian mixture model. 
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Chapter 4: Simplified Gabor Wavelets for Human 

Face Recognition 

4.1 Introduction 

The Gabor wavelet (GW) [29, 38] is well known for its effectiveness as a 

feature for image processing and pattern recognition. Its kernels are similar to the 

response of the two-dimensional receptive field profiles of the mammalian 

simple cortical cell [47], and exhibit the desirable characteristics of capturing 

salient visual properties such as spatial localization, orientation selectivity, and 

spatial frequency selectivity [111]. In the spatial domain, a GWis a complex 

exponential modulated by a Gaussian function, which is defined as follows [34]: 
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where x, y denote the pixel position in the spatial domain, ω is the radial center 

frequency of the complex exponential, θ is the orientation of the GW, and σ is 

the standard deviation of the Gaussian function. By selecting different center 

frequencies and orientations, we can obtain a family of Gabor kernels from 

Equation (4.1), which can then be used to extract features from an image. 

GWs can effectively abstract local and discriminating features. In textural 

analysis [22, 23] and image segmentation [24], GW features have achieved 

outstanding results, while in machine vision, they are found to be effective in 

object detection [40, 41], recognition [23, 41, 80] and tracking [157–159]. The 

most successful application of the GWs is for face recognition. In [31, 35, 42–

44], GWs are employed for face recognition, and achieve very high performance 



 

 52 

levels. As the dimension of the feature vectors using GWs is very large, linear 

subspace methods such as PCA and LDA are used to reduce the dimension. To 

further improve the performance, kernel methods are also used with the Gabor 

features. The improvement of both the linear methods and the kernel methods is 

due to the fact that the GW features are robust to illumination, rotation, and scale 

[38]. 

In spite of its superior performance, extracting GW features is highly 

computational. Given an image f(x, y), GW features are extracted by convolving 

f(x, y) with Ψω,θ(x, y) as follows: 

 ( ) ( ) ( )yxyxfyxY ,,, ,, θωθω ψ∗=                                            (4.2) 

where * denotes the convolution operator. Usually, convolution is implemented 

by the fast Fourier transform (FFT) to reduce the computation required for 

feature extraction. However, the computation required is still very intensive; this, 

in turn, creates a bottleneck for real-time processing. Hence, an efficient method 

for extracting Gabor features is important for many practical applications. 

The main contribution of this section is to propose a simplified version of 

Gabor wavelets, whose features can be computed efficiently and can achieve a 

similar performance level for face recognition. These simplified Gabor wavelets 

(SGWs) can be viewed as an approximation of the original Gabor wavelets 

(GWs). An SGW is generated by quantizing a corresponding GW into a certain 

number of levels. With SGWs, features can be computed efficiently using an 

integral image. Our proposed SGWs can replace the GWs for the purpose of real-

time processing and applications. The rest of this section will describe the 

structure and the properties of SGWs. Fast algorithms for extracting features by 

using SGWs will be described, and their corresponding computational 
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complexity will be analyzed. Finally, we will compare the performances of the 

SGW features and the GW features for face recognition, and discuss the 

discriminative power of these features. 

4.2 Simplified Gabor wavelets 

In this section, we will describe the structure of our proposed SGW. This 

includes the shape of the SGW, the number of quantization levels, and the 

methods which determine the respective quantization values. 

4.2.1 Shape of an SGW 

To simplify our discussion, a one-dimensional GW is first considered, 

whose equation is shown as follows: 
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where the term exp(–ωσ2/2) in Equation (4.1) is ignored. Figure 4.1(a) shows the 

real part of this GW, whose values are continuous. To simplify the GW, its 

values are quantized to a certain number of levels. Figure 4.1(b) illustrates a 

quantized SGW with 2 quantization levels for the positive values and 1 

quantization level for the negative values. Including a level of zero value, the 

wavelet is said to be quantized into 4 levels. Figure 4.1(c) and Figure 4.1(d) 

illustrate the corresponding imaginary part of the GW and its simplified version, 

respectively. The same number of quantization levels is used for the positive and 

the negative values of the wavelet, because their magnitudes are the same. In 

Figure 4.1(d), the total number of quantization levels used is 5. For two-

dimensional cases, Figure 4.2(a) and Figure 4.2(d) show the real and imaginary 

parts of the original two-dimensional GWs with the gray-level intensities 
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representing the magnitudes of the wavelet. The contours of Ψω,θ(x, y) whose 

values equal those quantization levels in Figure 4.1(b) and Figure 4.1(d) are 

illustrated in Figure 4.2(b) and Figure 4.2(e), respectively. In SGWs, the 

contours are approximated by rectangles. We have derived two approximation 

methods for forming the rectangles, as shown in Figure 4.3(a) and Figure 4.3(b), 

respectively. The first method is to use a rectangle of a size just large enough to 

contain the corresponding contour of the quantized GW. The second method is to 

choose a rectangle such that the squared error between the elliptical contour of 

the GW and the corresponding rectangle is a minimum. To simplify the 

approximation, we adopt the first method in our algorithm. Figure 4.2(c) and 

Figure 4.2(f) illustrate the corresponding quantized GWs in Figure 4.2(b) and 

Figure 4.2(e), respectively, approximated by rectangles. 
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Figure 4.1 (a) The real part of a one-dimensional GW; (b) the simplified version of (a); (c) 

the imaginary part of the wavelet; and (d) the simplified version of (c). 

 

Figure 4.2 (a) The real part of a two-dimensional GW; (b) the contours of the quantized 

GW of (a); (c) the approximation of the contours in (b) by rectangles; (d) the imaginary 

part of the two-dimensional GW; (e) the contours of the quantized GW of (d); and (f) the 

approximation of the contours in (e) by rectangles. 

                        

Figure 4.3 (a) Approximation of an elliptical contour using a rectangle just large enough to 

enclose it; and (b) approximation of the elliptical contour using a rectangle such that the 

squared error between the rectangle and the contour is a minimum. 

 

4.2.2 Number of quantization levels 

The number of rectangles in an SGW depends on the number of 

quantization levels used to quantize the GW. If more quantization levels are 

employed, the SGWs will be more similar to the original GW, but more 
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computation will then be involved for feature extraction. In other words, there is 

a trade-off between computation and approximation accuracy. In Section 4.4, the 

computational analysis of using SGWs and GWs for feature extraction will be 

performed, and the experiments to evaluate the relative performances of SGWs 

and GWs with different numbers of quantization levels for face recognition will 

be conducted in Section 4.5. 

4.2.3 Determination of quantization levels 

In this section, we describe two methods for determining the quantization 

levels to be used in constructing the SGWs. One of the quantization levels of the 

SGW is set to zero. Assume that the number of quantization levels for the 

positive and negative values are np and nn, respectively. Then, the total number 

of quantization levels is np + nn + 1. 

Uniform quantization: In this method, the positive and negative parts of a GW 

are quantized uniformly according to the corresponding number of levels, as 

shown in Figure 4.4(a) and Figure 4.4(b). Suppose the most positive and negative 

values of a GW are A+ and A−, respectively, the corresponding quantization 

levels for positive levels q+(k) and negative levels q−(k) are as follows: 
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k-means clustering: As the GWs are not evenly distributed, so the k-means 

algorithm is used to determine the respective optimal quantization levels. The 

positive values and the negative values are sampled, and are then partitioned into 

np + 1 and nn +1 clusters, respectively. However, after each iteration, the cluster 

whose centroid is the closest to zero will be set at zero. 
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Figure 4.5 illustrates the real part and the imaginary part of a GW and 

their corresponding simplified versions. These SGWs are then convolved with an 

image to extract the SGW features at different center frequencies and 

orientations, which then form a simplified Gabor jet. 

 

Figure 4.4 (a) The quantization levels for the real part of a GW based on uniform 

quantization with np = 2 and nn = 1, (b) the quantization levels for the imaginary part of the 

GW based on uniform quantization with np = 2 and nn = 2, (c) the quantization levels for the 

real part of the GW based on k-means clustering with np = 2 and nn = 1, and (d) the 

quantization levels for the imaginary part of the GW based on k-means clustering with np = 

2 and nn = 2. 
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Figure 4.5 The three-dimensional structures of (a) the real part and (b) the imaginary part 

of a two-dimensional GW, and (c) the real part and (d) the imaginary part of the 

corresponding SGW. 

4.2.4 Demeaned SGW (DMSGW) 

The term 2

2ωσ
−

e  in Equation (4.1) makes the GW have a zero mean. An 

SGW formed by quantizing a GW has a non-zero mean; this makes the SGW 

features sensitive to the lighting conditions of an image. Hence, each of the 

SGWs has to be demeaned. The mean of an SGW is computed by summing all of 

its values, and then dividing this sum by the size of the filter. A demeaned 

simplified Gabor wavelet (DMSGW) is obtained by subtracting the SGW from 

its mean value. In the rest of this section, we will use SGW to refer to a 

demeaned SGW, and the mean of an SGW is denoted as qm. The next section 

will describe an efficient algorithm for computing the SGW features using our 

proposed SGWs. 
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4.3 Fast algorithm for feature extraction 

The feature extraction process with an SGW is far more efficient than 

that with a GW. This section will, firstly, describe the extraction of GW features 

using the FFT, and then devise the fast algorithms for extracting features using 

the SGWs. The computational complexities of using the GW and the proposed 

SGW for different orientations will be analyzed in Section 4.4, and their 

respective runtimes will be measured in Section 4.5. In addition to requiring less 

computation, the SGW features for any pixel position can be extracted. This is 

particularly an advantage if the SGW features are used for object tracking. To 

use the FFT, the size of the image must be a power of 2. 

4.3.1 Feature extraction using the original GWs 

By selecting different center frequencies and orientations, we can obtain a 

family of GW kernels from Equation (4.1), which can be used for extracting 

features from images. Given a gray-level image f(x, y), the convolution of f(x, y) 

and Ψω,θ(x, y)  is given by Equation (4.2). The convolution can be computed 

efficiently by performing the FFT, then point-by-point multiplications, and 

finally the inverse FFT (IFFT). By concatenating the convolution output, we can 

obtain a GW feature vector Yω,θ of dimension Nw · NH: 
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where T represents the transpose operation, and NW and NH are the width and 

height of the image, respectively. In this section, we consider only the magnitude 

of the GW representations, which can provide a measure of the local properties 

of an image [28] and is less sensitive to the lighting conditions [32] (for 
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convenience, we denote it as Yω,θ). Yω,θ  is normalized to have zero mean and unit 

variance distribution; and then the Gabor representations with different ω and θ 

are concatenated to form a high-dimensional vector, as shown in Equation (4.6), 

and are used for face recognition, 

 [ ] ,,11,2,12,11,1
TT

n
TT

n
TT YYYYYY θωθωθωθωθω =                                        (4.6) 

where l and n are the number of center frequencies and the number of 

orientations used, respectively. Although the FFT is employed so as to reduce the 

computational complexity, it is still very computationally intensive because a 

total of l × n GWs are involved. In addition, the size of the image must be a 

power of 2, so that the FFT can be used to implement the convolution for saving 

the computation. 

4.3.2 Fast algorithms for feature extraction based on SGWs 

In this section, we will present fast algorithms for feature extraction with 

the SGW at different orientations. Consider an SGW that is convolved with an 

image f(x, y), and the SGW is shifted to the pixel position (xc, yc), as shown in 

Figure 4.6. The convolution output at this point is given as follows: 
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where S+(k), S−(k) and SF are the sum of the gray-level intensities of those pixels 

covered by the rectangles with quantization values q+(k), q−(k), and the 

rectangular region of the filter, respectively. NRp and NRn are the numbers of 

rectangles with positive quantization values and negative quantization values, 

respectively. As an example in Figure 4.2(c), np = 2 and nn = 1, then NRp = 2 and 

NRn = 2. 
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Figure 4.6 Image f(x, y) is convolved with an SGW whose center is shifted to the pixel 

position (xc, yc). 

 

Figure 4.7 Rotated integral image rii(x, y), which is equal to the sum of pixel intensities 

inside the shaded and rotated rectangle. 

S+(k), S−(k) and SF are computed based on the idea of an integral image 

[146], which can calculate the sum of pixel values within a rectangle efficiently. 

In addition, a fast algorithm for rectangles rotated by 45° or 135° is also 

available [146]. Consequently, our SGW considers four orientations only, which 

are 0°, 45°, 90°, and 135°. Denote ii(x, y) as the integral image, and then its value 

at location (x, y) is the sum of the pixel values above and to the left of (x, y) 

inclusive, i.e. 
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The following pair of recursive equations is used to compute the integral image 

in one pass over the image: 

(x1,y1) 

y 
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where s(x, –1) = ii(–1, y) = 0. Let us denote (xk
1, yk

1), (xk
2, yk

2), (xk
3, yk

3), and (xk
4, 

yk
4) as the respective coordinates of the four corners of the rectangle for the kth 

quantization level. Figure 4.6 shows the four corners for k = np. Hence, we have 
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For a rectangle at an orientation of 45°, the rotated integral image, rii(x, y) 

at location (x, y) contains the sum of the pixel values of the rectangle rotated by 

45°, with the rightmost corner at (x, y) and extended to the boundaries of the 

image, as shown in Figure 4.7, i.e. 
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Two passes over an image are required to compute the rotated integral image. 

The first pass is performed from left to right and top to bottom as follows: 

 ( ) ( ) ( ) ( ) ( ),1,2,,11,1, −−−+−+−−= yxriiyxfyxriiyxriiyxrii  (4.13) 

where rii(x, −1) = rii(−1, y) = rii(−2, y) = 0. The second pass is performed from 

right to left and bottom to top as follows: 

 ( ) ( ) ( ) ( ).,21,1,, yxriiyxriiyxriiyxrii −−+−+=                       (4.14) 
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Figure 4.8 The computation scheme for a rotated rectangle. 

Let us denote (xk, yk, wk, hk) as the x-coordinate, y-coordinate, width, and height, 

respectively, of the rotated rectangle in Figure 4.8. Then, we have 
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Similar formulation can be derived for the computation of S−(k), as well as for 

the case when a rectangle is at an orientation of 135°. 

To further speed up feature extraction, let us denote RS(k) as the sum of pixel 

intensities inside a rectangle with the coordinates of its four corners being (xk
1, 

yk
1), (xk

2, yk
2), (xk

3, yk
3), and (xk

4, yk
4), respectively. Thus 

 ( ) ( ) ( ) ( ) ( ).,11,1,1, 33221144
kkkkkkkk yxiiyxiiyxiiyxiikRS −−−−−−+=    (4.16) 

Let RS+(k), RS−(k) and RSF be the sum of the gray-level intensities of those pixels 

inside the rectangles with quantization values q+(k), q−(k) and the rectangular 

region covered by the SGW, respectively. Figure 4.9 shows the real part of an 

wk hk 

wk 

hk 

(xk,yk) (xk−1−hk,yk+1+hk) (xk−1,yk−1) 

(xk+wk−1,yk+wk−1) (xk+wk−1−hk,yk+wk−1+hk) 



 

 64 

SGW with nn = np =2 or NRn = 4 and NRp = 2. Then, the convolution output at 

the pixel position (xc, yc) is: 
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Hence, instead of using q(k) directly, the m(k)s are employed in the computation. 
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Figure 4.9 The rectangles in an SGW. 

 

Figure 4.10 Definition of the (x, y)-coordinates, width and height of a rectangle in an SGW 

at an orientation of (a) 0°, and (b) 45°. 

For implementation, a number of parameters are required to describe a 

rectangle, which govern the computation of RS+(k), RS−(k) and RSF. These 

parameters include the orientation, m+(k), m−(k), mF, (x, y) coordinates, and the 

width and height of each rectangle. Figure 4.10 defines the (x, y) coordinates, and 

the width and height of an upright rectangle and a rotated rectangle, which is 

similar to that in Ref. [22] and [23]. Figure 4.11(a) shows an SGW, while Figure 

4.11(b) describes the parameters of this SGW. 

y 

RS+(3) 
RS+(2) 
RS+(1) 

RS−(1) RS−(1) 

RSBG 
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Figure 4.11 (a) An SGW and (b) the corresponding parameters of this wavelet 

4.4 Computational analysis for feature extraction 

In this section, we will analyze and compare the computations required 

for extracting features using GW and SGW, respectively. Within our context, 

computations refer to the number of real additions and real multiplications 

required for extracting the GW features of an image using a GW. In our analysis, 

we assume that the image size is a power of 2 so that the FFT can be applied 

when using GWs for faster feature extraction. Actually, for the use of SGW, the 

image may be of any size and the features at any individual pixel position can be 

computed efficiently. 

4.4.1 Feature extraction with GW 

Given an N × N image, f, and a GW, g, with an arbitrary scale and 

orientation, GW features can be extracted by convolution, i.e. f *g. The 

convolution is implemented by using the FFT, then point-by-point 

multiplications, and finally the IFFT. In our analysis, we assume that the FFTs of 

the GWs are pre-computed. 
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The FFT of an N × N image requires N2log2N2 complex additions and 

0.5N2log2N2 complex multiplications. The IFFT requires the same amount of 

computation as the FFT. 

The point-by-point multiplications involve N2 complex multiplications. 

Performing one complex addition requires 2 real additions, while one complex 

multiplication requires 2 real additions and 4 real multiplications. Therefore, 

feature extraction based on a GW requires a total of 2N2log2N2 complex 

additions and N2log2N2 + N2 complex multiplications; this is equivalent to a total 

of 6N2log2N2 + 2N2 real additions and 4N2log2N2 + 4N2 real multiplications. 

4.4.2 Feature extraction with SGW 

As described in Section 4.3, fast algorithms are available for extracting 

SGW features using SGWs at 4 different orientations. These fast algorithms are 

based on the use of integral images and rotated integral images, such that 

features at any position in an image can be computed efficiently. Our algorithm 

will first perform a table look-up operation to compute the sum of pixel values 

for the respective rectangles of the SGW. Then, each of the pixel sums is 

multiplied by the quantization value of the corresponding rectangle. The sum of 

these products is the SGW feature at a given pixel position. 

The computation for extracting features using an SGW at orientation 0° 

or 90° (a non-rotated SGW) is different from that when using an SGW at 

orientation 45° or 135° (a rotated SGW). This is because, for feature extraction, 

the non-rotated SGW uses the integral image, while the rotated SGW uses the 

rotated integral image. The computations involved are different for different 
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orientations. Consequently, we separate our analysis into two parts: the non-

rotated SGW (NR-SGW) and the rotated SGW (R-SGW). 

4.4.2.1 The non-rotated SGW (NR-SGW) 

Before extracting features using an NR-SGW, the integral image must be 

computed. From Equation (4.9), 4 real additions are required to compute an entry 

of the integral image. For an image of size N × N, 4N2 real additions are required 

for the whole integral image. Suppose that the SGW contains a total of Nrect
t 

rectangles. From Equation (4.16) and Equation (4.17), 3Nrect
t real additions are 

required to compute all the rectangular pixel sums, and Nrect
t real multiplications 

and (Nrect
t − 1) real additions are required to compute the SGW feature for a 

given pixel position. The coordinates of the four corners in Equation (4.16) can 

be generated by a table look-up operation. Consequently, a total of 4N2Nrect
t + 

3N2 real additions and N2Nrect
t real multiplications are required to extract the 

SGW feature. 

4.4.2.2 The rotated SGW (R-SGW) 

The rotated integral image is computed for extracting feature with a 

rotated SGW. From Equation (4.13) and Equation (4.14), 9 real additions are 

required to compute an entry in the rotated integral image. For an image of size 

N × N, 9N2 real additions are required to compute the whole rotated integral 

image. 

Feature extraction with an R-SGW is computed in a similar way to that 

with the NR-SGW. The rotated pixel sums covered by the rotated rectangles of 

the R-SGW are computed. Suppose that the R-SGW contains Nrect
t rectangles, 

then from Equation (4.16) and Equation (4.17), 3Nrect
t real additions are required 
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to compute all the rotated rectangular pixel sums, and Nrect
t real multiplications 

and (Nrect
t − 1) real additions are required to compute the R-SGW feature at a 

pixel position. Therefore, a total of 4N2Nrect
t + 8N2 real additions and N2Nrect

t real 

multiplications is required to extract the feature from the whole image. Table 4.1 

shows the summarization of the computational complexities of feature extraction 

using GW and SGW. 

To illustrate the computational advantage of using SGWs over GWs, 

Table 4.2 tabulates the respective numbers of arithmetic operations required for 

extracting GW features and SGW features, and Table 4.3 shows the respective 

numbers of rectangles used to represent the different level quantized SGWs. It is 

found that about 2.85 times and 2.44 times the arithmetic operations are saved if 

a 3-level quantized NR-SGW and R-SGW, respectively, are used. Moreover, the 

number of multiplications required for SGW feature extraction is reduced 

significantly when compared to that for GW. In general, the runtime required for 

multiplication is longer than that for addition. Furthermore, the runtime 

consumed by a floating point arithmetic operation is longer than that for an 

integer arithmetic operation. Feature extraction with SGW involves fewer 

floating point operations than does GW, therefore, the runtime for SGW feature 

extraction should in practice have a speed-up rate higher than 2.85 times. 

 



 

 70 

Table 4.1 Computational complexities of feature extraction using GW and SGW 

  + × 
GW A: Compute FFT of image (floating point 

operations) 
3N2 log2 N2 2N2 log2 N2 

 B: Compute feature by multiplying FFT 
image and FFT 

2N2 4N2 

 GW (floating point operations)   
 C: Compute IFFT of feature (floating point 

operations) 
3N2 log2 N2 2N2 log2 N2 

 Total 6N2 log2 N2 + 2N2 4N2 log2 N2 + 
4N2 

NR-
SGW 

D: Compute SAT (integer additions) 4N2 0 

 E: Compute rectangular pixel sums (integer 
additions) 

3N2 Nrect
t 0 

 F: Compute feature by multiplying 
rectangular pixel sums and quantization 
value of rectangles (floating point 
multiplications) 

0 N2 Nrect
t 

 G: Add all products in F (floating point 
additions) 

N2(Nrect
t – 1) 0 

 Total 4N2 Nrect
t + 3N2 N2 Nrect

t 
R-SGW H: Compute RSAT (integer additions) 9N2 0 
 I: Compute rotated rectangular pixel sums 

(integer additions) 
3N2(Nrect

t – 1) 0 

 J: Compute SGW background pixel sums 
(integer additions) 

3N2 0 

 K: Compute feature by multiplying 
rectangular pixel sums and quantization 
value of rectangles (floating point 
multiplications) 

0 N2 Nrect
t 

 L: Add all products in K (floating point 
additions) 

N2 (Nrect
t – 1) 0 

 Total 4N2 Nrect
t + 8N2 N2 Nrect

t 
a Image dimension =N × N, where N must be to the power of 2 in order to speed 

up the GW feature extraction process. b Nrect
t is the total number of rectangles in 

an SGW, which is listed in Table 4.3. 

Table 4.2 Number of arithmetic operations required for extracting GW features from a 64 

× 64 pixel image using a GW and an SGW with different numbers of quantization levels 

 GW  + × Total 
   303,104 212,992 516,096 
NR-
SGW 

No. of quantization levels 
used 

3 levels 147,844 32,768 180,612 

  5 levels 229,764 53,248 283,012 
  7 levels 344,452 81,920 426,372 
R-SGW No. of quantization levels 

used 
3 levels 179,049 32,768 211,817 

  5 levels 260,969 53,248 314,217 
  7 levels 375,657 81,920 457,577 
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Table 4.3 The number of rectangles of an SGW with different numbers of quantization 

levels, where nn and np are the number of negative quantization levels and the number of 

positive quantization levels in an SGW 

Number of 
quantization 
levels (nn + np + 
1) 

Number of rectangles 
in the real part of an 
SGW (Nrect

r) 

Number of rectangles in 
the imaginary part of an 
SGW (Nrect

i) 

Total number of 
rectangles in an SGW, 
including the 
background of SGW 
(Nrect

t) = (Nrect
r) + (Nrect

i) 
+1 

3 (nn = 1, np = 1) (Nrect
r) = (nn × 2+ np) 

= 3 
(Nrect

i) = ((nn + 1)+ (np + 
1)) = 4 

8 

5 (nn = 2, np = 2) (Nrect
r) = (nn × 2+ np) 

= 6 
(Nrect

i) = ((nn + 1)+ (np + 
1)) = 6 

13 

7 (nn = 3, np = 3) (Nrect
r) = (nn × 2+ (np 

+ 2)) = 11 
(Nrect

i) = ((nn + 1)+ (np + 
1)) = 8 

20 

 

Table 4.4 The number of distinct subjects, the number of images and the characteristics of 

the face databases 

Databases Characteristics Number of 
distinct subjects 

Number of 
images 

Number of images 
per subject 

Yale Variations in facial 
expression 

15 150 10 

YaleB Large variations in lighting 10 640 64 
AR Variations in facial 

expression 
121 605 5 

 Overall 146 1395  
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Table 4.5 Face recognition performances of SGW1, SGW2 and GW with different scales, 

orientations, and quantization levels (SGW1: uniformly quantized SGWs, SGW2: k-means 

quantized SGWs, GW: Gabor wavelets) 

 Different combinations of scales-orientations-
quantization levels 

Recognition rate 

  Yale(%) YaleB(%) AR(%) 
SGW1 5 scales 4 orientations 3 quantization levels 82.00 90.16 92.40 
 5 scales 4 orientations 5 quantization levels 84.67 92.19 92.40 
 5 scales 4 orientations 7 quantization levels 82.67 92.66 92.89 
 4 scales 4 orientations 3 quantization levels 82.67 93.13 92.07 
 4 scales 4 orientations 5 quantization levels 82.00 94.69 91.74 
 4 scales 4 orientations 7 quantization levels 82.67 94.84 92.07 
 3 scales 4 orientations 3 quantization levels 82.67 92.97 92.23 
 3 scales 4 orientations 5 quantization levels 82.67 93.91 92.23 
 3 scales 4 orientations 7 quantization levels 83.33 94.69 92.23 
SGW2 5 scales 4 orientations 3 quantization levels 82.67 91.09 91.90 
 5 scales 4 orientations 5 quantization levels 82.67 92.50 92.23 
 5 scales 4 orientations 7 quantization levels 82.67 92.50 92.56 
 4 scales 4 orientations 3 quantization levels 82.67 93.91 91.74 
 4 scales 4 orientations 5 quantization levels 82.67 95.00 91.74 
 4 scales 4 orientations 7 quantization levels 83.33 95.47 91.90 
 3 scales 4 orientations 3 quantization levels 82.00 93.59 92.40 
 3 scales 4 orientations 5 quantization levels 82.67 95.00 91.90 
 3 scales 4 orientations 7 quantization levels 83.33 94.53 92.23 
GW 5 scales 4 orientation 80.00 94.69 92.73 
 4 scales 4 orientation 78.00 97.50 92.23 
 3 scales 4 orientation 74.00 99.22 89.92 
 

4.5 Experimental results 

In this section, we will evaluate the respective performances of the 

proposed SGWs with different numbers of quantization levels. The two different 

methods for determining the quantization values of an SGW will also be 

evaluated. Then, we will compare the performances of the SGW features and the 

GW features for face recognition. Finally, we will compare the runtimes for 

extracting the SGW features and the GW features. 
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4.5.1 Face databases and experimental set-up 

The standard face databases used include the Yale database, YaleB 

database and AR database. The number of distinct subjects, the number of testing 

images and the characteristics of the databases are tabulated in Table 4.4. 

For face recognition, a frontal-view image of each subject in the 

databases is selected as a training image, and the remaining faces are used for 

testing. Each face image is normalized to a size of 64×64, and is aligned based 

on the position of the two eyes for matching. In order to enhance the global 

contrast of the images and reduce the effect of uneven illuminations, histogram 

equalization is applied to all images. As described in Section 4.2.3, we have two 

different ways to determine the quantization levels of SGWs. The SGWs derived 

based on uniform quantization and on k-means clustering are denoted as SGW1 

and SGW2, respectively. The GW and SGW adopt 3–5 center frequencies with 4 

orientations. In other words, 12–20 GWs and SGWs are used for feature 

extraction. The extracted features with each Gabor filter are concatenated to form 

a feature vector, which is then normalized to have zero mean and unit variance. 

These Gabor jets are then used directly to compute the distance between two 

images, pixel position by pixel position. 

4.5.2 Relative performances of SGW1 and SGW2 

Table 4.5 shows the recognition rates based on SGW1 and SGW2 with 

different numbers of quantization levels for the different databases. For the real 

part of a GW, the dynamic range of the positive values is usually larger than that 

of the negative values. Hence, np should be set larger than nn. However, for the 

imaginary part of the GW, the dynamic ranges of the positive values and 
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negative values are the same, so np should be equal to nn. To simplify the 

experiment, we set np equal to nn for both the real and imaginary parts. 

Consequently, including the level for zero, the numbers of quantization levels 

considered in the experiments are 3, 5, and 7. 

From Table 4.5, the relative performances of SGW1 and SGW2 are very 

similar. The face recognition rate increases slightly with an increase in the 

number of quantization levels. If more quantization levels are used, the SGW can 

better approximate the GW, and its performance will then be closer to that of the 

GW. However, using the SGW with more quantization levels will involve more 

computations. 

We have also investigated the effect of using more scales of the SGW 

with a fixed number of quantization levels. Experimental results show that using 

4 scales of SGW results in the best recognition rate. Theoretically, using 5 scales 

should produce a better performance than using 4 scales only. However, the error 

in representing a GW is large when its scale is large. As discussed in Sections 

4.2.1 and 4.3, in order to utilize fast algorithms to extract the features, the SGWs 

must be approximated with rectangles after quantizing the GWs. This constraint 

will alter the effective regions of the SGWs. Figure 4.12 shows a GW, a GW 

after quantization, and an SGW approximated by rectangles. We can observe that 

part of the effective regions of the quantized GW is removed or extended in 

order to form a rectangular shape, which will therefore introduce quantization 

errors. As the size of an SGW is 16 × 16 pixels only, large rectangles cannot be 

formed. As a result, the quantization errors in forming the rectangles are 

significant for those large-scale SGWs. On the contrary, for small-scale SGWs, 

small rectangles will be formed without requiring much of the original shape of 
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the quantized GW to be changed. This will introduce fewer quantization errors. 

For SGWs with 5 scales, the approximation of some of the large-scale GWs is 

not accurate. This, in turn, will degrade the overall recognition performance. 

 

Figure 4.12 The first column is the GW, the second column is the quantized form of GW, 

and the third column is the SGW with a rectangular shape. The top row is the small-scale 

(ω = π/2) GW being quantized and formed into a rectangular-shaped SGW. The bottom 

row is the large-scale (ω = π/8) GW being quantized and formed into a rectangular-shaped 

SGW. 

4.5.3 Performances of the SGW and the GW 

The use of the SGW can save a lot of computation when compared to the 

GW, while maintaining a comparable performance to the GW. Table 4.5 

tabulates the performances using SGW1, SGW2 and GW for face recognition 

with different numbers of center frequencies and orientations. The face 

recognition results show that, with the same number of center frequencies and 

orientations, the relative performances of the SGW and the GW are very similar; 

and in some cases, the SGW outperforms the GW. Actually, the center frequency 
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of an SGW should be very similar to its original GW. An SGW is a quantized 

version of its GW; their rates of variation should be maintained. Hence, in the 

frequency domain, the center frequencies of the SGW and the GW should be 

very close, while the shape of their spectra will differ. The features extracted by 

a GW and the corresponding SGW should be similar. Figure 4.13 shows the 

magnitudes of the GW features and the SGW features at 3 scales and 4 

orientations. We can observe that the general shapes of SGW features and GW 

features are similar; however, SGWs introduce a directional pattern on the 

features, which is a drawback with quantizing GWs coefficients to a certain 

number of levels. 

From Table 4.5, the performance of the SGW is slightly worse than that 

of the GW with the YaleB database, while the SGW has a very similar 

performance to the GW with the other databases. The reason for this is that the 

images in the YaleB database have a wide variation in lighting conditions. As we 

discussed in Section 4.2.4, an SGW is the quantized version of a GW, so the 

values of the SGWs are changed in step. Therefore, when two images of the 

same person have a significant difference in lighting conditions, the features 

extracted by GWs and SGWs will also differ greatly. Hence, the performance of 

the SGW will be degraded in this circumstance. 
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Figure 4.13 The magnitudes of SGW features and GW features at 3 scales and 4 

orientations. 

 

Table 4.6 The average runtimes for feature extraction using GW and SGW with different 

scales, orientations, and numbers of quantization levels 

SGW 5 scales, 4 orientations 4 scales, 4 orientations 3 scales, 4 orientations 
 3-Lv 5-Lv 7-Lv 3-Lv 5-Lv 7-Lv 3-Lv 5-Lv 7-Lv 
 16.09ms 27.50ms 37.97ms 12.81ms 22.50ms 30.94ms 9.37ms 17.50ms 23.44ms 
GW  70.64ms   56.73ms   42.67ms  
Speed-
up rate 

4.39 2.57 1.86 4.43 2.52 1.83 4.55 2.44 1.82 
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4.5.4 Runtimes for feature extraction with the SGW and the GW 

In our experiments, we also measure the runtimes required for feature 

extraction using the SGW and the GW. One of the images from the Yale 

database was used, and the size of each face region is 64×64 pixels. Feature 

extractions using the SGW and the GW at 5 scales and 4 orientations were 

performed for 100 times, and the respective total runtimes were measured. Table 

4.6 tabulates the runtimes for extracting features using the SGW and the GW. 

With a 3-level quantized SGW, the speedup rate for feature extraction is 4.39 

times that of a GW. The reduction in runtime will decrease if the SGW uses 

more quantization levels. For SGWs with 5 and 7 quantization levels, the 

runtimes for feature extraction are 27.5 and 37.97 ms, respectively, and the 

corresponding speed-up rates are 2.57 and 1.86, respectively. 

To conclude our experiment results, the performance of the SGW is 

comparable to that of the GW, while the computation required by the SGW is 

significantly less than that for the GW. GWs can extract features which are 

discriminative and useful for many applications, but they are impractical for real-

time applications due to their high complexity in feature extraction. 

Consequently, SGWs can be propelled to replace GWs for real-time applications 

and processing. 

4.6 Conclusion 

In this chapter, we have proposed a simplified version of GWs, which can 

achieve a performance level similar to the original GWs for face recognition. We 

have also described fast algorithms for feature extraction based on SGWs at 

different orientations. In addition, we have presented how to construct these 
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SGWs and their performance with different numbers of quantization levels, 

center frequencies and orientations. When 5 center frequencies and 4 orientations 

are employed, the relative performances of the SGWs and the GWs are very 

similar, while, at most, a speed-up rate of 4.39 times can be achieved if 3-level 

quantized SGWs are used. The runtimes required for feature extraction in a 64 × 

64 image, based on an SGW with 3 quantization levels and a GW, are 16.09 and 

70.64 ms, respectively. These results can propel SGWs to replace GWs for 

realizing real-time applications and processing. However, the simplified Gabor 

features are slightly more sensitive to lighting variations than the original Gabor 

features are. 
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Chapter 5: Face Recognition with a Large Database 

Using Vantage Objects 

5.1 Introduction 

Research in face recognition [6-8] has been conducted for several 

decades, and most of the face recognition algorithms can achieve a high accuracy 

level with a database of moderate size. However, when these face recognition 

algorithms are applied to a very large database, a more efficient way to search for 

a face is indispensable. Therefore, in this section, we propose an efficient 

structure for searching faces in a very large database. In our approach, based on a 

query image, a small subset of the large database, called a condensed database, is 

constructed [153]. The criterion used in extracting training faces to form the 

condensed database is that the selected faces should be relatively close to the 

query input according to a certain measurement. Since the condensed database is 

much smaller than the original database, the time required to search for similar 

faces from a very large database can be greatly reduced without any degradation 

of recognition accuracy. 

We employ an indexing structure for image retrieval, namely vantage 

objects [153], as an efficient way to form a condensed database. The vantage 

objects can be simply some samples selected from the large database under 

consideration. The similarity or difference of the training samples to each 

vantage object is measured to form a ranked list. Similar images should be 

located close to each other on the ranked lists, as illustrated in Figure 5.1. For a 

query image, its corresponding positions in the respective ranked lists should be 
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close to those training images similar to it. Hence, those neighboring training 

samples to the query input can be selected to form a smaller condensed database. 

 

Figure 5.1 Ranked lists for different vantage objects 

The vantage objects used should be able to measure different ‘properties’ 

of the objects under consideration [153]. In [151], eigenfaces were used as the 

vantage objects. However, for face recognition, the best performance will be 

achieved if those face images belonging to the same class are placed as close 

together as possible in the respective ranked list, while images of different 

classes are positioned as far apart as possible. Therefore, in our algorithm, 

discriminative features based on Gabor wavelets are used to extract the different 

‘properties’ of faces [28, 29, 34, 38, 80]. It is not necessary to use all the Gabor 

features to form the vantage objects, but only those Gabor jets which have the 

greatest discriminative power. A set of Gabor jets will have the greatest 

discriminative power if the ratio of the between-class scatter to the within-class 

scatter is a maximum [68, 70, 80]. The higher this ratio is, the greater the 

discriminative power of the set of Gabor jets is. Then, those sets of Gabor jets 

Ranked list of 
vantage object 1 

Ranked list of 
vantage object 2 

Ranked list of 
vantage object N 

• 
• 
• 

• 
• 
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with the greatest discriminative power will be used for constructing the vantage 

objects. 

The organization of this chapter is as follows. The basic techniques 

related to the proposed algorithm are described in Section 5.2. Section 5.3 will 

present the selection of Gabor jets to form vantage objects, and the construction 

of a condensed database. Experimental results for different ways of constructing 

the vantage objects, the use of different numbers of Gabor jets for each vantage 

object, and the number of vantage objects to be used will be described in Section 

5.4. Section 5.5 will present the performance of our proposed index scheme with 

the use of linear discriminant analysis (LDA) for face recognition. Then, we will 

conclude this chapter in the last section. 

5.2 Techniques Related to Our Proposed Scheme 

Our fast searching algorithm for face databases is based on the use of 

vantage objects, which are constructed using the most discriminative Gabor 

features. Therefore, in this section, we will first describe the Gabor features used 

for face recognition, and then LDA will be presented. 

5.2.1 Gabor Feature Extraction 

Gabor features have been commonly used for face recognition [28, 29, 34, 

38, 80]. The kernels of the Gabor wavelets have a similar shape to that of the 2-D 

receptive field profiles of the mammalian cortical simple cells [80]. The Gabor-

wavelet representation can capture salient visual properties such as spatial 

localization, orientation selectivity, and spatial frequency characteristics [28]. In 

the spatial domain, a Gabor wavelet is a Gaussian function modulated by a 

complex exponential, which can be defined as follows: 
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where θθ sincos1 yxx +=  and .cossin1 θθ yxy +−=  (x, y) denotes the pixel 

position in the spatial domain, ω is the radial centre frequency of the complex 

exponential, θ is the orientation of the Gabor wavelets, and σ is the standard 

deviation of the Gaussian function. 

The image features are extracted by convolving the image I(x, y) with the 

filters ψω,θ below. The magnitudes of the output are used as features of the image. 

 
( ) ( ) ( )yxyxIyxG ,,, ,, θωθω ψ⊗=

.                                             (5.2) 

In our algorithm, 5 different scales and 8 different orientations are selected for 

the Gabor wavelets, i.e. ( ) ,
22

 and  
8 qp πωπθ == , where p = 0, …, 7, and q = 

0, …, 4. Hence, at each pixel position, the Gabor feature or Gabor jet contains 40 

coefficients. In addition, we set σ = π/ω. 

5.2.2 Fisher Linear Discriminant 

Similar to Principal Component Analysis (PCA) [64], Fisher Linear 

Discriminant (FLD) or Linear Discriminant Analysis (LDA) is an efficient 

method for dimensionality reduction. PCA is optimal for the representation of 

training samples, so its performance with recognition is limited. For LDA, the 

projection vectors or discriminant vectors were selected in such a way that the 

ratio of the between-class scatter and the within-class scatter is maximized. 

Hence, samples of different classes can be discriminated as much as possible, 

and LDA has been one of the most popular projection techniques for feature 

extraction [82]. 
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To compute the most discriminant projection vectors, the following 

Fisher’s criterion is maximized: 

 ( )
vSv
vSvvF

w
T

b
T

= ,                                                                           (5.3) 

where v is the transform matrix, Sb is the between-class scatter matrix, and Sw is 

the within-class scatter matrix. If the number of distinct subjects in the training 

set is Nc, and the number of samples in class i is ni, then Sb and Sw are defined as 

follows: 

 ( )( )∑∑ −−=
c iN

i

n

j

T
i

i
ji

i
jw xxS µµ  and                                            (5.4) 

 ( )( )∑ −−=
cN

i

T
iicb NS µµµµ ,                                                     (5.5) 

where µ is the mean of all the training samples, µi is the mean of the training 

samples of class i, and xi
j represents the jth sample in class i. 

F(v) is a ratio indicating the discriminative power of the projection 

vectors, which are the columns of v. The larger this ratio is, the higher the 

discriminative power of the projection vector is. The transform matrix that can 

maximize F(v) can be obtained by computing the eigenvectors of the matrix    

Sw
–1Sb [70]. This is equivalent to the simultaneous diagonalization of Sw and Sb 

[69, 73]. The latter can also cope with the small-sample-size (sss) problem. This 

sss problem can also be solved by the enhanced FLD models (EFM) proposed by 

Liu et al. in 2000 [79]. The dimension of the samples is first reduced by means 

of PCA, and then the simultaneous diagonalization of Sw and Sb is performed. 

Another effective method, proposed by Chen et al. [82], chooses the projection 

vectors in the null space of Sw. These null-space vectors can make the within-
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class scattering become zero, and hence F(v) becomes infinity if the 

corresponding between-class scattering is not zero. 

5.2.3 Indexing Structure Using Vantage Objects 

Using vantage objects is an indexing structure that relies on the similarity 

between training samples [153]. The idea is to compute the similarity of each 

object from some fixed objects, which are called vantage objects. For each 

vantage object, those samples similar to the objects are sorted to form a ranked 

list, as shown in Figure 5.2. It is expected that all of the similar objects should 

have the same type of similarity to the vantage objects, so they should be close to 

each other on the respective ranked lists. With a query object, its positions in the 

respective ranked lists are thus determined. As objects with similar features are 

located close together in the ranked lists, those nearest neighbors of the query 

object on the ranked lists should have similar features to the query, and they are 

therefore selected to form a condensed database for a more detailed and accurate 

search. 

 

Figure 5.2 The ranked list of a vantage object with the training samples sorted according to 

their respective similarities to the vantage object. 

The idea of using vantage objects to form an efficient indexing structure 

has been employed to construct condensed databases for speeding up the 

recognition process [151]. Eigenfaces are used as the vantage objects, and the 

corresponding ranked lists are constructed. The corresponding positions of a 

vantage 
object 

query input 

training 
samples 

Ranked 
list 
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query input on the respective ranked lists will be determined, and the 

corresponding nearest training faces in the different ranked lists are selected from 

the original large database to form a small condensed database for face 

recognition, instead of considering the original large database. 

5.3 Construction of Vantage Objects Using Training 

Samples 

In this section, we will present the construction of effective vantage 

objects, which includes feature extraction, feature selection to form the most 

discriminative vantage objects, and the construction of the ranked lists for 

different vantage objects. As described in Section 5.2.1, Gabor wavelets of 5 

different scales and 8 different orientations are employed to extract facial 

features. The Gabor jets at different pixel positions are then combined to form 

different vantage objects. The vantage objects are constructed in such a way that 

the maximum discriminative power can be achieved, i.e. training samples of the 

same class will be as close together as possible on the ranked list, while training 

samples of different classes are placed as far apart as possible. 

5.3.1 Feature Extraction 

The Gabor filters can be used to extract information about local image 

regions effectively, and these extracted features can be invariant to translation, 

scale and rotation [80]. However, if a filter bank with filters of 5 different scales 

and 8 different orientations is applied to an image of size 64×64, a total of 

163,840 complex Gabor coefficients, and hence magnitudes, will be generated. 

This large dimension makes the computation time required in the searching 

process very lengthy. 
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For database indexing, it is not necessary to use all the Gabor coefficients; 

only those with discriminative power will be chosen. The Gabor coefficients at a 

pixel position form a Gabor jet, and the Gabor jets can be combined to construct 

discriminative features for forming a vantage object. The following symbols are 

used throughout this section:  

NVO: number of vantage objects used; 

NJ: number of Gabor jets selected for a vantage object; 

NV: number of projection vectors selected for a vantage object; 

VOn: the nth vantage object; 

J(n,m): the mth Gabor jet of the nth vantage object; and  

Ji: the ith Gabor jet of an image, where an image of size 64×64 should have 

4,096 Gabor jets and i = 1, …, 4096. 

The number of vantage objects, and hence the number of ranked lists, is 

NVO, and the number of Gabor jets selected from each training sample for a 

vantage object is NJ. Then, the nth vantage object VOn will be constructed based 

on NJ Gabor jets from each training sample, which will make the vantage object 

have the highest discriminative power. The set of Gabor jets used is denoted as 

follows: 

 { } ,...,,2,1,...,,, ),()2,()1,( VONnnnn NnJJJVO
J

==                   (5.6) 

where J(n,m) represents the mth Gabor jet selected for the nth vantage object. Hence, 

each training sample will contribute a feature vector that is a concatenation of NJ 

Gabor jets and has a dimension of 40NJ. The NJ Gabor jets are selected such that 

the Fisher’s criterion function F(v) is maximized. The corresponding projection 

vectors then form a vantage object, which will be used to construct a ranked list 

for indexing. The number of Gabor jets selected, NJ, and the number of vantage 

objects used, NVO, have to be pre-determined. The optimum values for these 

variables will be determined empirically by experiments in Section 5.4. In the 
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following sections, we will describe how to select the Gabor jets based on FLD, 

and how the ranked lists are constructed. In order to keep the computation 

requirement low, only a few Gabor jets from each image will be considered. 

5.3.2 Selection of Gabor Jets 

In order to construct effective ranked lists, the Gabor jets selected to form the 

vantage objects should have the highest discriminative power. As described in 

Section 5.2.2, a set of projection vectors is derived by applying FLD to a set of 

Gabor jets at specific pixel positions extracted from each training sample, such 

that the criterion function (5.3) is maximized. The set of projection vectors 

comprises the columns of the transform matrix V. The projection vector in V with 

the largest eigenvalue is considered to possess the highest discriminative power, 

and so on. The Gabor jets are chosen such that the corresponding eigenvalues are 

a maximum. 

5.3.3 Schemes for Selecting the Most Discriminative Sets of 

Gabor Jets 

To select the n Gabor jets from the training samples which have the 

highest discriminative power, a brute-force approach can be employed by 

considering all the possible combinations. However, this approach is too 

computationally intensive to obtain the n most discriminative Gabor jets. For 

example, for a 64×64 image, there are 4,096 Gabor jets in the image, and the 

number of possible ways to select 3 Gabor jets is 4096C3 ≅ more than 10G. 

Therefore, in this section, we will describe two efficient methods to select Gabor 

jets such that their discriminative powers are as high as possible. The first 

scheme will balance the discriminative power of every vantage object as much as 
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possible, while the second scheme will generate vantage objects with the highest 

discriminative power first. 

In the selection of the Gabor jets, we will also consider the spatial 

redundancy among them. The closer two Gabor jets are, the greater the spatial 

redundancy between them. Therefore, to minimize the spatial redundancy 

between the Gabor jets for a vantage object, those Gabor jets within the 

neighborhood of a selected Gabor jet will no longer be chosen. Figure 5.3 

illustrates a Gabor jet selected for a vantage object; then, the Gabor jets inside 

the square with the selected Gabor jet at the centre and a size of R = 2r+1 will 

not be selected. In our experiments, we will determine the optimal value of r to 

be used so as to achieve the best performance in terms of both the computational 

complexity for Gabor jet selection and the efficiency of the condensed database. 

 

Figure 5.3 A window is set to prevent the spatial redundancy between the selected Gabor 

jets. 

5.3.3.1 Scheme 1: Vantage Objects with Balanced Discriminative 

Power 

In this scheme, the selection of the Gabor jets for each of the vantage objects 

is carried out together, and hence the discriminative power of the respective 

vantage objects will be similar. To reduce the required computation, we adopt a 

greedy algorithm in selecting the Gabor jets. We first consider feature vectors 

composed of one Gabor jet only. At each pixel position, the Gabor jets of the 

training samples are used, and their corresponding discriminative powers are 

measured by using (5.3). The first NVO Gabor jets with the highest discriminative 

R 

r 
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powers are selected, and are assigned as the first Gabor jet J(n,1) of the NVO 

vantage objects. Having selected the first Gabor jet for each vantage object, the 

second Gabor jets will be identified. Those Gabor jets that have already been 

selected will no longer be considered. In addition, as described previously, those 

Gabor jets within the neighborhoods of the selected Gabor jets will not be chosen. 

Now, each feature vector is composed of two Gabor jets: one is the first selected 

Gabor jet, and the other is the Gabor jet at a remaining possible pixel position. 

Then, (5.3) is applied again, and the combinations that result in the highest 

discriminative power will be selected for each of the vantage objects. This 

process is continued until NJ Gabor jets have been selected for each vantage 

object. 

When selecting one more Gabor jet for a vantage object, all the 

previously selected Gabor jets will be considered, and those Gabor jets within 

their neighborhoods will not be selected. Therefore, if the window size R is set at 

a large value, the pre-set number of Gabor jets for a vantage object, NJ, may not 

be reached. When this situation occurs, NJ will be adjusted to the actual number 

of Gabor jets being assigned to the vantage objects. 

5.3.3.2 Scheme 2: Vantage Objects with the Highest 

Discriminative Power First 

In this scheme, the vantage objects are constructed one by one, with the 

first one having the highest discriminative power, and the last one having the 

least discriminative power. Similarly to Scheme 1, the feature vectors of one 

Gabor jet are considered, and the Gabor jet with the highest discriminative power 

is selected as the first Gabor jet J(1,1) for the first vantage object VO1. Then the 

second Gabor jet will be selected in such a way that this Gabor jet is outside the 

neighborhood of the previous selected Gabor jet and, when combined with the 

first Gabor jet, its discriminative power is the highest. Having selected NJ Gabor 
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jets for the first vantage object, the construction of the second vantage object 

VO2 will be started, and so on until the required number of vantage objects NVO is 

produced. 

5.3.4 Construction of Vantage Objects and the Corresponding 

Ranked Lists  

Using the selection scheme described in Section 3.3, we can determine 

sets of Gabor jets at specific pixel positions that produce projection vectors 

having the highest discriminative powers. The dimension of the training samples 

is 40NJ. Fisher linear discriminant (FLD) is applied to the training samples; NV 

eigenvectors or projection vectors of dimension 40NJ and with the largest 

eigenvalues are used for each vantage object. When the corresponding feature 

vectors from the training samples are projected onto the NV projection vectors of 

a vantage object, the dimension of the training samples is reduced from 40NJ to 

NV, with the ratio of the between-class scatter and within-class scatter being 

maximized. Based on the coefficients obtained by projecting the face images in 

the database onto the projection vectors, these images can be ranked either in 

ascending or descending order to form ranked lists. Since there are NVO vantage 

objects, and each vantage object has NV projection vectors, so NVO ranked lists 

can be constructed. Each of the ranked lists has a dimension of NV. In other 

words, we will construct NVO NV-dimensional ranked lists. Figure 5.4 illustrates 

how the projection vectors are derived for the vantage objects, and the ranked 

lists used for the construction of condensed databases. 
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Figure 5.4 Construction of the projection vectors for the vantage objects and the ranked 

lists. 

The length of – i.e. the number of samples in – each ranked list is equal to 

the number of face images, N, in the database. Each element in the ranked list 

contains two values; one is the projection coefficient used for sorting in the 

ranked list, and the other is the label of a sample in the database. For a query 

sample, its corresponding projection coefficients are computed, and their 

positions in the respective ranked lists can be searched using a binary search. For 

NVO vantage objects and NV projection projects for each vantage object, the 

computation required is about NVONVlog2N, where x represents the smallest 

integer larger than x. Hence, the computations required to locate the positions of 

a query input in the respective ranked lists are proportional to NVO and NV, and to 

the logarithm of N. Consequently, NVO and NV should be kept at a value as small 

as possible so as to reduce the computations required, while the size of the 

condensed database, which guarantees the face image in the database of the same 

class as the query input to be included, can be as small as possible. 
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5.3.5 Searching of Ranked lists to Construct a Condensed 

Database 

For each query image, a corresponding small-sized condensed database 

will be generated by selecting similar samples to the query image from the 

original large database. In our algorithm, this condensed database is formed by 

selecting the MVO nearest neighboring samples of the query image in each ranked 

list. With the NVO ranked lists formed from the NVO vantage objects, NVO×MVO 

training samples will then be extracted for the condensed database with respect 

to the query sample. However, some of the selected samples from the different 

ranked lists may be identical. For example, in Figure 5.5, where each ranked list 

is one-dimensional (i.e. NV = 1), some samples, such as C and D, are close to the 

query sample in all three lists. Therefore, the samples C and D will be selected 

once only to form a condensed database for the query sample. Hence, the exact 

number of training samples in the condensed database, denoted as Mcon, is 

smaller than or equal to NVO×MVO. 

1st Ranked list

2nd Ranked list

3rd Ranked list

x Training sample
∆ Testing sample
e.g. MVO = 5

A     B    C   D  E   F    G      H   I

E F      G      H       I   B   A   C  D

I    C       F   D         E    A B G H

1st Ranked list

2nd Ranked list

3rd Ranked list

x Training sample
∆ Testing sample
e.g. MVO = 5

A     B    C   D  E   F    G      H   I

E F      G      H       I   B   A   C  D

I    C       F   D         E    A B G H  

Figure 5.5 The selection of MVO neighboring training samples from the ranked lists of a 

number of vantage objects. 

When more than one projection vector is used for each vantage object, i.e. 

NV > 1, the ranked list for each vantage object will become multi-dimensional. In 

other words, MVO neighboring training samples will be selected from a NV-d 

space, as shown in Figure 5.6, where MVO is set at 6. Searching nearest samples 
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in the NV-d space is time-consuming. However, an efficient search of the nearest 

samples can be achieved by considering each projection coefficient to form one 

ranked list, and these NV ranked lists are searched simultaneously. In other words, 

a NV-d ranked list can be viewed as NV 1-d ranked lists. A neighboring sample of 

a query input should also be located in the vicinity of the query on all the 1-d 

ranked lists of a vantage object. In our scheme, each sample on the ranked lists of 

a vantage object is associated with a counter. Then, the nearest samples to the 

query on each of the 1-d ranked lists are checked one by one, and have their 

counters incremented by one. When the count of a sample is equal to NV, this 

means that it is close to the query image, to a certain degree, in all the NV 1-d 

ranked lists. This sample is then selected and placed in the condensed database. 

The next neighboring samples are checked in the same manner until MVO training 

samples have been selected. 

x Training sample
∆ Testing sample

Search space of 
1st vantage object

Search space of 
2nd vantage object

Search space of 
3rd vantage object

MVO training samples 
extracted from each space

x Training sample
∆ Testing sample

Search space of 
1st vantage object

Search space of 
2nd vantage object

Search space of 
3rd vantage object

MVO training samples 
extracted from each space  

Figure 5.6 The extraction of MVO neighboring training samples in the search spaces of a 

number of vantage objects. 

5.4 Evaluation and Experiments 

In this section, we will first describe the pre-processing of the face 

images for face recognition, and then the database used in the experiments. This 

will be followed by an evaluation of the performances of the different 

approaches for our indexing schemes, using different parameter settings. 
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5.4.1 Pre-processing of Training Samples 

All the face images are first aligned and normalized based on the position 

of the two eyes [58], and are cropped to a size of 64×64. Histogram equalization 

is then performed on the cropped face images. Figure 5.7 shows some of the pre-

processed face images. Finally, each image is normalized to zero mean and unit 

variance. 

 

Figure 5.7 Some pre-processed face images. 

To employ FLD, at least 2 samples are needed for each class or distinct 

person. If only one sample is available for a class, an additional sample is 

produced by flipping the available sample about the vertical axis passing through 

the mid-point of the two eyes. However, these mirror images will affect, to a 

certain extent, the positions of the most discriminative Gabor jets, even though 

the left and right sides of the face are similar to each other. To minimize this 

effect, the importance of the original sample is increased by summing up the 

original image with a larger weight, and the mirror image with a smaller weight, 

as shown in the following equation: 

 ( ) ( ) ( )
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⋅+⋅
=                       (5.7) 

where w1 and w2 (w1 > w2)are the weights of the original image and the mirror 

image, respectively. Some samples generated by using (5.7) are illustrated in Fig. 

5.8. 
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Figure 5.8 The corresponding samples generated from Figure 5.7 using (5.7). 

5.4.2 Face Database 

We use a subset of the FERET database [167] to analyze the performance 

of our algorithm. There are 1,762 samples corresponding to 1,010 distinct 

subjects in the “fa” set, and 1,518 samples corresponding to 1,009 distinct 

subjects in the “fb” set. All the samples in the “fa” set were used as training 

samples, while those in the “fb” set were for testing. However, a few of the “fb” 

samples do not have any corresponding “fa” samples; these samples are excluded 

from the experiments. Moreover, in order to use FLD, at least two samples are 

required for each distinct subject. Some subjects in the “fa” set have one sample 

only, so an additional sample is generated by flipping. Consequently, 2,344 and 

1,357 images are available for training and testing, respectively, corresponding to 

1,003 distinct subjects. 

5.4.3 Selection of Gabor Jets for Vantage Objects 

First of all, we investigate the distribution of the discriminative powers of the 

Gabor jets in face images. We set NVO = 4096, NJ = 1 and r = 0 in this 

experiment. With this setting, Scheme I and Scheme II for Gabor jet selection 

will produce the same results. Figure 5.9 shows the distribution of the 

discriminative power of the Gabor jets, whose pixel intensities represent the 

discriminative power of the Gabor jets at the corresponding pixel positions. It 

can be observed that most of the discriminative Gabor jets are located around the 

noses, mouths, chins and eyebrows. As the eyes are used for alignment, so the 
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appearances of the images at the eyes are similar, and the discriminative power 

there is therefore less. 

 

Figure 5.9 Distribution of the discriminative power of the Gabor jets. 

We will first determine the optimum values of the four parameters: r, NVO, 

NJ and NV, so as to construct the most discriminative set of vantage objects. 

However, the possible combinations of these parameters are too numerous to be 

tested exhaustively. Therefore, in our experiments, we will first set the window 

parameter r at 0, 2, 4, and 6, and set the number of vantage objects used, NVO, at 

4, 6, 8, and 10. Note that the computation required to construct a condensed 

database depends on NVO; the larger the NVO is, the greater the computation 

required. Hence, the maximum number of vantage objects used in our 

experiment is set at 10. The maximum value of the window parameter r is set at 

6. If r is set at a larger value, the number of Gabor jets available will not be 

sufficient to generate the number of vantage objects required. For the different 

settings of r and NVO, we evaluate the corresponding performances of our 

algorithm when the number of Gabor jets NJ and the number of projection 

vectors NV used for each vantage object are {4, 6, 8} and {4, 8, 12}, respectively. 

Then, the combination of r and NVO that produces the best performance will be 

used in the rest of our experiments. In the next stage, we will determine the 

optimal values for the parameters NJ and NV. 

In our experiments, we will evaluate the performance of our schemes 

with different values of MVO. These performances are measured based on the 
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probability of the matched training samples available to the condensed database 

at different Mcon or different percentages of the original database size. 

5.4.3.1 Optimal Values of r and NVO in Scheme I 

In this section, we will measure the relative performances of our 

proposed scheme using different values of r and NVO. The optimal value for r is 

first determined by setting the number of vantage objects NVO = {4, 6}, the 

number of Gabor jets NJ = {6, 8}, and the number of projection vectors used for 

each vantage object NV = {8, 12}. Having determined the optimal value of r, we 

will determine the optimal value for NVO when NJ = {4, 6} and NV {4, 8, 12}. 

Figures 9 and 10 show the respective performances with the different settings of 

r and NVO, which illustrate the probability of a query or testing sample being 

selected into a condensed database whose size is a particular percentage of the 

original large database. The higher the probability at a particular size of the 

condensed database, the better the performance of the corresponding parameter 

setting will be. 

From the results, we can observe that the best performance can be 

achieved when r is set at 6, when NVO is equal to 4 and 6. We also find that the 

performances are similar when NVO is set at 8 and 10. Using more vantage 

objects, more discriminant information will be extracted to form the ranked lists. 

However, the computation required for constructing the condensed databases 

will also increase. Hence, in our subsequent experiments, we set NVO at 8. 
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(a) NVO = 4, NJ = 6, NV = 8   (b) NVO = 4, NJ = 6, NV = 12 

 
(c) NVO = 4, NJ =8, NV = 8   (d) NVO = 4, NJ = 8, NV = 12 

 
(e) NVO = 6, NJ = 6, NV = 8   (f) NVO = 6, NJ = 6, NV = 12 

 
(e) NVO = 6, NJ = 8, NV = 8   (f) NVO = 6, NJ = 8, NV = 12 
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Figure 5.10 Performances for different settings under various r using Scheme I 

 
(a) r = 6, NJ = 4, NV = 4   (b) r = 6, NJ = 4, NV = 8 

 
(c) r = 6, NJ = 4, NV = 12   (d) r = 6, NJ = 6, NV = 4 

 
(e) r = 6, NJ = 6, NV = 8   (f) r = 6, NJ = 6, NV = 12 

Figure 5.11 Performance for different settings of NVO using Scheme I 

5.4.3.2 Optimal Values of NJ and NV in Scheme I 

In this section, the relative performances of our proposed scheme using 

different values of NJ (the number of Gabor jets for a vantage object) and NV 
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(number of project vectors for a vantage object) will be measured. Since we set r 

and NVO at 6 and 8 in the previous section, respectively, the number of Gabor jets 

allowed to be selected for the vantage objects are fewer. NJ is limited to be equal 

to or smaller than 7. The number of optimal projection vectors used for each 

vantage objects is set at 4, 8, and 12. Figure 5.12 and Figure 5.13 show the 

respective performances for the different settings for different values of NJ and 

NV, respectively. 

 
(a) r = 6, NVO = 8, NV = 4   (b) r = 6, NVO = 8, NV = 8 

Figure 5.12 Performance for different settings of NJ using Scheme I 
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Figure 5.13 Performance for different settings of NV using Scheme I 

From the results, we can observe that the best performance can be 

achieved when NJ is set at the maximum value, i.e. 7, while NV is equal to 4, 8, 

and 12. Selecting more Gabor jets for each vantage object will mean more 

information contained in the vantage objects. Although it is very computationally 

intensive to train up the vantage objects and determine the corresponding 

discriminant feature vectors for each vantage object, this can be done off-line. 

For testing, the computation required is dependent on NV and NVO only. If more 

projection vectors are used, more information about the samples is available at 

the expense of more computation required for constructing the condensed 

database. From the experimental results, it can be observed that the improvement 

decreases when the number of projection vectors continues to increase. Since the 

performance will be steady to a certain performance, we therefore set NV to 10. 

Now, for our proposed scheme, we set r, NVO, NJ and NV to 6, 8, 7 and 10, 

respectively. From Table 5.1, our approach can ensure that the probabilities of a 
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query face being selected to a condensed database of of a size 35%, 25%, 10%, 

and 5% of the original database are 99%, 98%, 95%, and 90%, respectively. The 

time for constructing the condensed database is around 95 milliseconds. The 

experimental results were conducted on a Pentium 4 3.2GHz computer system. 

Table 5.1 The probabilities of matched training samples available in the condensed 

database and the corresponding size of the condensed database in term of the original 

database, as well as the corresponding runtimes in milliseconds required. 

Probability of the matched 
training samples available 
in the condensed database 

Percentage of size of 
condensed database in 
original training database 

Time (milliseconds) 

1 93.3% 101 
0.99 36.1% 96 
0.98 26.3% 95 
0.97 19.5% 95 
0.96 12.9% 95 
0.95 11.4% 95 
0.94 9.76% 95 
0.93 9.76% 95 
0.92 6.95% 95 
0.91 6.95% 95 
0.90 5.78% 95 
 

5.4.3.3 Optimal Values of r and NVO in Scheme II 

Similar to the process outlined in Section 5.4.3.1, we will measure the 

relative performance of Scheme II using different values of r and NVO. The 

corresponding optimal settings of these two parameters are determined when the 

number of Gabor jets used for each vantage object is 6, and 8, respectively, while 

the number of optimal projection vectors used for each vantage object is 8, and 

12, respectively. Figures 5.14 and 5.15 show the respective performances with 

the different setting of r and NVO. 

From the results, we observe that the best performance can be achieved 

when r is set at 4, while NVO is equal to 6 or 8. The experiments also show that 
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we can achieve the best performance when NVO is set at 10. Therefore, we will 

set r = 4 and NVO = 10 in the rest of our experiments when using Scheme II. 
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(a) NVO = 6, NJ = 6, NV = 8   (b) NVO = 6, NJ = 6, NV = 12 

 
(c) NVO = 6, NJ = 8, NV = 8   (d) NVO = 6, NJ = 8, NV = 12 

 
(e) NVO = 8, NJ = 6, NV = 8   (f) NVO = 8, NJ = 6, NV = 12 
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(g) NVO = 8, NJ = 8, NV = 8   (h) NVO = 8, NJ = 8, NV = 12 

Figure 5.14 Performances for different settings of r using Scheme II 

 
(a) r = 4, NJ = 4, NV = 8   (b) r = 4, NJ = 4, NV = 12 

 
(c) r = 4, NJ = 6, NV = 8   (d) r = 4, NJ = 6, NV = 12 
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(e) r = 4, NJ = 8, NV = 8   (f) r = 4, NJ = 8, NV = 12 

 
(g) r = 4, NJ = 10, NV = 8   (h) r = 4, NJ = 10, NV = 12 

Figure 5.15 Performances for different settings of NVO using Scheme II 

5.4.3.4 Optimal Values of NJ and NV in Scheme II 

In this section, the relative performances of Scheme II using different 

values of NJ and NV will be measured. We set r and NVO at 4 and 10, respectively, 

as determined in the previous section. NJ will be set to 1, 2, 4, 6, 8, and 10. The 

number of optimal projection vectors used for each vantage objects is set at 8 and 

12. Figures 5.16 and 5.17 show the respective performances for the different 

settings for different values of NJ and NV, respectively. 

 
(a) r = 4, NVO = 10, NV = 8   (b) r = 4, NVO = 10, NV = 12 

Figure 5.16 Performance for different settings of NJ using Scheme II 
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Figure 5.17 Performances for different settings of NV using Scheme II 

From the results, we observe that the best performance can be achieved 

when NJ is set at the maximum value, i.e. 10, while NV is equal to 8 and 12. It can 

also be observed that the improvement decreases when the number of projection 

vectors continues to increase. Since the performance will be steady to a certain 

level, we therefore set NV to 8. 

In summary, for Scheme II, we set r, NVO, NJ, and NV to 4, 10, 10, and 8, 

respectively. From Table 5.2, our approach can ensure that the probabilities of a 

query face being placed to a condensed database of size 40%, 15%, 10%, and 5% 

of the original database are 99%, 97%, 95%, and 90%, respectively. The time 

required for constructing the condensed database is around 133 milliseconds. The 

experimental results were conducted on a Pentium 4 3.2GHz computer system. 

It can be observed that the time required for scheme II is larger than that 

for scheme I, and the performance of scheme II is not much better than the 
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performance of scheme I. Therefore, we choose to use scheme I in the following 

section. 

 

Table 5.2 The probabilities of matched training samples being selected to condensed 

databases of different sizes, and the corresponding runtimes required, in milliseconds. 

Probability of the matched 
training samples available 
in the condensed database 

Sizes of the condensed 
databases in terms of  
percentages (%) of the 
original training database 

Runtime 
(milliseconds) 

1 99.30% 149 
0.99 39.64% 139 
0.98 22.13% 133 
0.97 15.40% 133 
0.96 13.26% 133 
0.95 11.43% 133 
0.94 8.23% 133 
0.93 6.90% 132 
0.92 6.90% 132 
0.91 5.52% 132 
0.90 5.52% 132 
 

5.4.4 Performance using more projection vectors (NV) for 

recognition 

Having constructed the condensed database, face recognition can then be 

performed based on this smaller database. The projection of the query image 

onto the projection vectors of the respective vantage objects will form a feature 

vector, which can be used to represent the query image. The dimension of this 

feature vector is NVNVO. The optimal values for these two parameters are NV = 10 

and NVO = 8, respectively, so the dimension of the feature vector used for face 

recognition in the condensed database is 80. Since the database is now of a small 

size, more projection vectors can also be used so as to further increase the 

recognition rate. Table 5.3 shows the recognition rates with different-sized 
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condensed databases (as percentages of the full database). The Euclidean 

distance is used for the distance measure. It can be observed that the performance 

does not improve when more NV is used for recognition. Hence, in the next 

section, we will use all the selected Gabor jets to form a single feature vector for 

face recognition. 

Table 5.3 The recognition performance using Scheme I under different-sized condensed 

databases. 

Sizes of condensed databases as 
percentage of the full database 

Recognition rate 
NV = 10 NV = 20 NV = 40 

0.05 0.8047 0.8224 0.8003 
0.10 0.8282 0.8298 0.8187 
0.15 0.8349 0.8335 0.8305 
0.25 0.8379 0.8364 0.8335 
 

5.4.5 Performance for face recognition using LDA 

Since the size of the condensed database is small, more features can be 

chosen for face recognition. To improve the performance, we will consider all 

the selected Gabor jets of the query image as a feature vector. The dimension of 

this feature vector is 40NVONJ. The optimal values for these two parameters are 

NVO = 8 and NJ = 7, respectively, so the dimension of the feature vectors is 2,240. 

LDA is then applied to these feature vectors for face recognition. The 

eigenvectors corresponding to the first NV2 largest eigenvalues will be used to 

transform the feature vector of the query image. In addition to the 56 Gabor jets 

selected, other Gabor jets with a high discriminative power can also be selected 

and added to form the final feature vector. Hence, in this experiment, we will 

evaluate the performance with the final feature vectors constructed using 56, 70, 

75, 80, and 90 Gabor jets. Table 3 shows the recognition rates for different 

numbers of Gabor jets. The second column in the table shows the optimal 
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number of eigenvectors for the different numbers of Gabor jets used, such that 

the recognition rate is a maximum. It can be observed that the recognition rate 

using LDA is higher than that without LDA (refer to Table 5.3). Moreover, the 

recognition rate is highest when 75 Gabor jets are used for recognition. 

Tables 5.5 and 5.6 tabulate the recognition rates and runtimes, 

respectively, required for searching over the large database for different sized 

condensed databases. The Euclidean distance and the cosine distance are used for 

the distance measure. The runtimes required for 1,357 queries are measured in 

milliseconds. It can be observed that the runtimes required for searching over the 

large database are 25,081 ms and 64,952 ms when the Euclidean distance and the 

cosine distance, respectively, are used. The Euclidean distance measure is 

relatively simple, so there is no advantage in using of the proposed indexing 

scheme in this case. Nevertheless, a significant improvement can be achieved 

when a more accurate but more complicated distance measure, such as the cosine 

distance, is used. With the cosine distance measure, when the size of the 

condensed database is 10% of the full database, the runtime required by our 

proposed method is only 28,796 ms, with a recognition rate of 91%. The runtime 

required by the proposed method is much smaller than that required for searching 

over the large full database. When the size of the condensed database is 50% of 

the full database, the recognition rate is 94.25%, which is even a little bit higher 

than that achieved by searching over the large database. 

If the size of the database increases, more savings in terms of the runtime 

can be achieved. The reason is that, without using any indexing scheme, the 

required computation will increase linearly. However, with our indexing scheme 

(and with reference to Section 5.3.4), the rate of increase is proportional to log2N, 
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where N is the size of the database. In addition, when the database size is very 

large, a more accurate distance measure will be indispensable. 

 
Table 5.4 The recognition rates using Scheme I under different numbers of Gabor jets and 

the corresponding optimal number of eigenvectors. 

No. of Gabor jets No. of eigenvectors used (optimal) Recognition rate 
56 310 0.8828 
70 398 0.8791 
75 379 0.8850 
80 395 0.8843 
90 410 0.8762 
 

Table 5.5 The recognition rates and runtimes required for searching over the large full 

database. 

 Recog. rate 
(L2 dist.) 

Time (ms) Recog. rate 
(cosine dist.) 

Time (ms) 

Normal method 0.8850 25081 0.9418 64952 
 

Table 5.6 The recognition rates and runtimes required by Scheme I with different sizes of 

the condensed database. 

Percentage of 
condensed DB to full 
DB 

Recog. rate 
(L2 dist.) 

Time (ms) Recog. rate 
(cosine dist.) 

Time (ms) 

0.052 0.8386 21996 0.8732 23713 
0.103 0.8666 23463 0.9138 28796 
0.150 0.8777 24787 0.9256 31673 
0.204 0.8814 25079 0.9322 32227 
0.252 0.8836 25225 0.9359 34889 
0.292 0.8850 25306 0.9374 38290 
0.302 0.8850 26777 0.9374 39193 
0.352 0.8843 27171 0.9388 42209 
0.403 0.8843 28575 0.9410 45537 
0.450 0.8843 28717 0.9410 47059 
0.504 0.8850 28705 0.9425 47492 
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5.5 Conclusions 

In this chapter, we have proposed an efficient indexing scheme for face 

recognition, which constructs a small-sized condensed database for a query 

image from a large database. Our approach performs feature extraction by 

selecting the most discriminant Gabor jets to form vantage objects, and then FLD 

is applied to these Gabor jets to determine the NV most discriminant projection 

vectors. The projection vectors of a vantage object will form a multi-dimensional 

ranked list, which is then used to select similar samples to the query input to 

form a condensed database. Experimental results show that the probabilities of a 

query face being selected in a condensed database of 35%, 25%, 10%, and 5% of 

the original database size are 99%, 98%, 95%, and 90%, respectively. The time 

taken to construct the condensed database is around 95 milliseconds for a 

database of 2,344 samples. This runtime is much lower, and the recognition rate 

can be maintained, as compared to searching over the entire database. It is 

important to note that the computation required by our indexing scheme is 

proportional to the logarithm of the database size. Hence, a more significant 

saving in runtime can be achieved when a larger database is used. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusion on our current work 

In this thesis, we have first introduced the basic concepts and steps for face 

detection and face recognition. Some popular techniques and the recent 

development of the technology for both face detection and recognition have been 

briefly reviewed. We have made three contributions in this thesis: an effective 

template-based face detection approach, an efficient feature extraction algorithm 

for face recognition, and an indexing structure for face recognition in a large 

database.  

For efficient face detection, we have proposed a novel template-based 

method, namely Spatially Maximum Occurrence Template (SMOT), with the 

Gaussian mixture model. It is difficult to collect training faces under all possible 

conditions. With the proposed template, projecting face candidates onto the 

SMOT space will result in a procedure of “standardizing” the face candidates. 

With a limited number of face examples for training, our method can still detect 

faces under different conditions. 

We have also proposed two methods for face recognition. One method is 

the use of a simplified version of Gabor wavelets (SGWs) as features for face 

recognition. Using these simplified features can achieve a performance level 

similar to that with the original Gabor wavelets (GWs). Fast algorithms for 

feature extraction based on SGWs at different orientations have also been 

described. Experimental results show that the runtime for feature extraction using 

SGWs is 4.39 times faster than that with GWs implemented by using the fast 
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Fourier transform. Therefore, SGWs can replace GWs for realizing real-time 

applications and processing. 

The other proposed method concerns face recognition in a large database, 

therefore an efficient indexing scheme is devised. In our method, a condensed 

database, whose size is much smaller than the original large database, is 

constructed for a query image from a large database. Feature extraction is 

performed by selecting the most discriminant Gabor jets, and FLD is then 

applied to these Gabor jets to determine a specific number of most discriminant 

projection vectors. These projection vectors will form ranked lists, which are 

then used to select similar samples to the query input to form the condensed 

database. The runtime for constructing a condensed database is much lower than 

that required to search the complete database, therefore a more computational 

and accurate recognition algorithm can be adopted in the condensed database 

without any degradation of recognition accuracy. 

6.2 Future Work 

Our proposed indexing scheme for a large database can be further enhanced for 

face recognition. One direction is to adopt a more computational but accurate 

recognition algorithm to recognize those images in the condensed database. 

Another direction is to develop a cascade of indexing steps with different 

features, similar to (Viola and Jones, 2001) [145] for face detection, to form a 

complete face recognition system. Different indexing stages use different 

features to select a number of similar samples to the input query. The selected 

samples will form the condensed database, which will be considered at the next 

indexing stage. This structure of a face recognition system is suitable for a huge 

database, since only a small number of features will be considered at each stage, 
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and the size of the condensed database will become smaller after each indexing 

stage. Hence, the runtime for face recognition is lessened. 

In our proposed indexing scheme for a large database, we treat the Gabor 

jets as a basic unit to form a vantage object. However, some Gabor coefficients 

in a Gabor jet may be redundant or irrelevant for face recognition. Therefore, to 

further improve the performance, we can select the Gabor coefficients as a basic 

unit to form a vantage object. A better performance should be achieved, since 

there is no redundant information in the vantage objects. Moreover, the 

discriminative power of the Gabor features is measured by means of the ratio of 

the between-class scatter matrix and the within-class scatter matrix. It is also 

possible to use other methods to compute the discriminative power of the 

features, such as mutual information (Shen and Bai, 2006) [133]. Mutual 

information can be applied to obtain a set of informative and non-redundant 

Gabor features. Two classes − the intrapersonal difference class and the 

extrapersonal difference class − can be introduced to convert the N-classes 

problem into a binary class problem, since mutual information is used in the 

binary class problem. However, the samples in the extrapersonal difference class 

are much more numerous than the samples in the interpersonal difference class. 

To achieve a balance between the numbers of training samples from these two 

classes, we can randomly produce a subset of extrapersonal samples. But this 

will involve the challenge of making the subset as representative as possible of 

the whole set. 

We can apply the techniques proposed in this thesis, i.e. face detection, 

feature extraction, and indexing method, for a complete video-retrieval system 
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based on facial image analysis. The related topics include key-frame 

representation, face tracking, video-shot partitioning, etc. 



 

 117 

References 

[1] E. Hjelmas and B.K. Low, "Face Detection: A Survey," Computer Vision 
and Image Understanding, vol. 3, no. 3, pp. 236-274, Sept. 2001. 

[2] M.H. Yang, D.J. Kriegman, and N. Ahuja, "Detecting faces in images: a 
survey," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, 
no. 1, pp. 34-58, 2002. 

[3] R.C. Gonzalez and R.E. Woods, "Digital image processing," Second 
Edition, Prentice Hall, 2002. 

[4] K.M. Lam, "Multimedia information retrieval and management: 
technological fundamentals and applications," Springer, Chapter 19, 
"Search of human faces from a face database", pp. 405-431, 2003. 

[5] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern classification," 2nd 
Edition, Wiley-Interscience, 2000. 

[6] R. Chellappa, C.L. Wilson, and S. Sirohey, "Human and machine 
recognition of faces: a survey," Proc. IEEE, vol. 83, no. 5, pp. 705-741, 
May 1995. 

[7] W. Zhao, R. Chellappa, and P.J. Phillips, "Face Recognition: A Literature 
Survey," ACM Computing Surveys, vol. 35, no. 4, pp. 399-458, Dec. 
2003. 

[8] D. Voth, "Face recognition technology," IEEE Intelligent Systems, vol. 
18, no. 3, pp. 4-7, 2003. 

[9] P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, Jin Chang, K. 
Hoffman, J. Marques, Jaesik Min, and W. Worek, "Overview of the face 
recognition grand challenge," IEEE Conf. Computer Vision and Pattern 
Recognition, vol. 1, pp. 947-954, June 2005. 

[10] T. Heseltine, N. Pears, J. Austin, and Z. Chen, "Face recognition: A 
comparison of appearance-based approaches," Proc. VIIth Digital Image 
Computing: Techniques and Applications, vol. 1, pp. 59-68, 2003. 

[11] X. Lu, "Image analysis for face recognition," personal notes, 36 pages, 
May 2003. 

[12] http://www.face-rec.org/ 
[13] H. Greenspan, J. Goldberger, and I. Eshet, "Mixture model for face-color 

modeling and segmentation," Pattern Recognition Letters, vol. 22, pp. 
1525-1536, 2001. 

[14] R.L. Hsu, M. Abdel-Mottaleb, and A.K. Jain, "Face detection in color 
images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, 
no. 5, pp. 696-706, 2002. 

[15] K.W. Wong, K.M. Lam, and W.C. Siu, "A robust scheme for live 
detection of human faces in color images," Signal Processing: Image 
Communication, vol. 18, pp. 103-114, 2003. 

[16] K.W. Wong, K.M. Lam, and W.C. Siu, "An efficient color compensation 
scheme for skin color segmentation," Proc. Int'l Symposium Circuits and 
Systems, vol. 2, pp. II-676 - II-679, May 2003. 

[17] Z. Liu, J. Yang, and N.S. Peng, "An efficient face segmentation algorithm 
based on binary partition tree," Signal Processing: Image Communication, 
vol. 20, pp. 295-314, 2005. 



 

 118 

[18] T.Y. Chow, K.M. Lam, and K.W. Wong, "An efficient color face 
detection algorithm under different lighting conditions," Journal of 
Electronic Imaging, vol. 15, pp. 013015-1-10, 2006. 

[19] K.M. Lam, "Multimedia Information Retrieval and Management: 
Technological Fundamentals and Applications," Springer, Chapter 19, 
"Search of human faces from a face database", pp. 405-431, 2003. 

[20] B. van Ginneken, A.F. Frangi, J.J. Staal, B.M. ter Haar Romeny, and 
M.A. Viergever, "Active shape model segmentation with optimal 
features," IEEE Trans. Medical Imaging, vol. 21, no. 8, pp. 924-933, 
2002. 

[21] B. Erol, F. Kossentini, "Shape-based retrieval of video objects," IEEE 
Trans. multimedia, vol. 7, no. 1, pp. 179-182, Feb. 2005. 

[22] A.C. Bovik, M. Clark, and W.S. Geisler, "Multichannel texture analysis 
using localized spatial filters," IEEE Trans. Pattern Anal. Mach. Intell. 
vol. 12, no. 1, pp. 55-73, 1990. 

[23] B.S. Manjunath and W.Y. Ma, "Texture feature for browsing and 
retrieval of image data," IEEE Trans. Pattern Anal. Mach. Intell. vol. 18, 
no. 8, pp. 837-842, 1996. 

[24] Y. Chen and R.S. Wang, "Texture segmentation using independent 
component analysis of Gabor features," 18th Int'l Conf. Pattern 
Recognition, vol. 2, pp. 20-24, August 2006. 

[25] S.C. Zhang and Z.Q. Liu, "A real-time face detector," IEEE Int'l Conf. 
Systems, Man and Cybernetics, vol. 3, pp. 2197-2202, Oct. 2004. 

[26] B. Balas and P. Sinha, "Receptive field structures for recognition," 
Neural Computation, vol. 18, no. 3, pp. 497-520, 2006. 

[27] C.P. Papageorgiou, M. Oren, and T. Poggio, "A general framework for 
object detection," Proc. Sixth Int'l Conf. Computer Vision, pp. 555-562, 
1998. 

[28] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, 
R. P. Wrutz, and W. Konen, "Distortion invariant object recognition in 
the dymanic link architecture," IEEE Trans. Comput., vol. 42, pp. 300-
311, 1993. 

[29] T.S. Lee, "Image Representation Using 2D Gabor Wavelets," IEEE Trans. 
Pattern Anal. Mach. Intell. vol. 18, no. 10, pp. 959-971, 1996. 

[30] R. Porter and N. Canagarajah, "Robust rotation-invariant texture 
classification: wavelet, Gabor filter and GMRF based schemes," IEE 
Proceedings - Vision, Image and Signal Processing, vol. 144, no. 3, pp. 
180-188, June 1997. 

[31] L. Wiskott, J.M. Fellous, N. Kruger, and C. von der Malsburg, "Face 
recognition by elastic bunch graph matching," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775-779, July 1997. 

[32] L. Shams, and C. Malsburg, "The role of complex cells in object 
recognition," Vision Res. vol. 42, no. 22, pp. 2547-2554, 2002. 

[33] D.H. Liu, K.M. Lam, and L.S. Shen, "Sampling Gabor features for face 
recognition," Proc. Int'l Conf. Neural Networks and Signal Processing, 
vol. 2, pp. 924-927, Dec. 2003. 

[34] D.H. Liu, K.M. Lam, and L.S. Shen, "Optimal sampling of Gabor 
features for face recognition," Pattern Recognition Letters, vol. 25, no. 2, 
pp. 267-276, Jan. 2004. 



 

 119 

[35] C. Liu, "Gabor-based kernel PCA with fractional power polynomial 
models for face recognition," IEEE Trans. Pattern Anal. Mach. Intell. vol. 
26, no. 5, pp. 572-781, 2004. 

[36] L.L. Huang, A. Shimizu, and H. Kobatake, "Robust face detection using 
Gabor filter features," Pattern Recognition Letters, vol. 26, pp. 1641-1649, 
2005. 

[37] X. Xie and K.M. Lam, "An efficient method for facial expression 
recognition," Proc. Visual Communications and Image Processing, 
Beijing, China, pp. 786-793, 2005. 

[38] J.K. Kamarainen, V. Kyrki, H. Kalviainen, "Invariance properties of 
Gabor filter-based features - overview and applications," IEEE Trans. on 
Image Process. vol. 15, no. 5, pp. 1088-1099, 2006. 

[39] L. Qing, S. Shan, X. Chen, and W. Gao, "Face recognition under varying 
lighting based on the probabilistic model of gabor phase," Proc. 18th Int'l 
Conf. Pattern Recognition, vol. 3, pp. 1139-1142, 2006. 

[40] H. Cheng, N. Zheng, and C. Sun, "Boosted Gabor features applied to 
vehicle detection," 18th Int'l Conf. Pattern Recognition, vol. 1, pp. 662-
666, 2006. 

[41] M. Valstar and M. Pantic, "Fully automatic facial action unit detection 
and temporal analysis," IEEE Conf. CVPRW, p. 149, June 2006. 

[42] C. Liu, "Capitalize on dimensionality increasing techniques for 
improving face recognition grand challenge performance," IEEE Trans. 
Pattern Anal. Mach. Intell. vol. 28, no. 5, pp. 725-727, 2006. 

[43] X. Xie and K.M. Lam, "Gabor-based kernel PCA with doubly nonlinear 
mapping for face recognition with a single face image," IEEE Trans. 
Image Process. vol. 15, no. 9, pp. 2481-2492, 2006. 

[44] L. Shen, L. Bai, and M. Fairhurst, "Gabor wavelets and general 
discriminant analysis for face identification and verification," Image 
Vision Comput. vol. 25, no. 5, pp. 553-563, 2007. 

[45] C. Caleanu, D.S. Huang, V. Gui, V. Tiponut, and V. Maranescu, "Interest 
operator versus Gabor filtering for facial imagery classification," Pattern 
Recognition Letters, vol. 28, 950-956, 2007. 

[46] W.P. Choi, S.H. Tse, K.W. Wong, and K.M. Lam, "Simplified Gabor 
wavelets for human face recognition," Pattern Recognition, vol. 41, no. 3, 
pp. 1186-1199, March 2008. 

[47] C.K. Chui, "An Introduction to Wavelets," Academic Press, Boston, 1992. 
[48] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, 

"Pedestrian detection using wavelet templates," Proc. IEEE Conf. 
Computer Vision and Pattern Recognition, pp. 193-199, 1997. 

[49] Y. Zhu, S. Schwartz, and M. Orchard, "Fast face detection using 
subspace discriminant wavelet features," Proc. IEEE Conf. Computer 
Vision and Pattern Recognition, 2000, vol. 1, pp. 636-642, June 2000. 

[50] M. Vidal-Naquet and S. Ullman, "Object recognition with informative 
features and linear classification," Proc. Ninth IEEE Int'l Conf. Computer 
Vision, vol.1, pp. 281-288, 2003. 

[51] G. Yang and T.S. Huang, "Human Face Detection in Complex 
Background," Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994. 

[52] C. Kotropoulos and I. Pitas, "Rule-Based Face Detection in Frontal 
Views," Proc. Int’l Conf. Acoustics, Speech and Signal Processing, vol. 4, 
pp. 2537-2540, 1997. 



 

 120 

[53] C. Lin and K.C. Fan, "Triangle-based approach to the detection of human 
face," Pattern Recognition, vol. 34, no. 6, pp. 1271-1284, 2001. 

[54] P. Maragos, "Tutorial on advances in morphological image processing 
and analysis," Optical Engineering, vol. 26, no. 7, pp. 623-632, 1987. 

[55] K.M. Lam and H. Yan, "Locating and extracting the eye in human face 
images," Pattern Recognition, vol. 29, no. 5, pp. 771-779, 1996. 

[56] K.M. Lam and H. Yan, "An improved method for locating and extracting 
the eye in human face images," In Proc. IEEE ICPR'96, pp. C411-C415, 
August 1996. 

[57] K.W. Wong and K.M. Lam, "A reliable approach for human face 
detection using genetic algorithm," Proc. IEEE Int'l Symposium Circuits 
and Systems, vol. 4, pp. 499-502, 1999. 

[58] K.W. Wong, K.M. Lam, W.C. Siu, "An efficient algorithm for human 
face detection and facial feature extraction under different conditions," 
Pattern Recognition, vol. 34, pp. 1993-2004, 2001. 

[59] A.K. Jain, Y. Zhong, and S. Lakshmanan, "Object matching using 
deformable templates," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 18, no. 3, pp. 267-278, 1996. 

[60] K.K. Sung and T. Poggio, "Example-based learning for view-based 
human face detection," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 20, no. 1, pp. 39-51, 1998. 

[61] J. Kuo, R.S. Huang, and T.G. Lin, "3-D facial model estimation from 
single front-view facial image," IEEE Trans. Circuits and Systems for 
Video Technology, vol. 12, no. 3, pp. 183-192, 2002. 

[62] R. Brunelli and T. Poggio, "Face recognition: features versus templates," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 10, 
pp. 1042-1052, 1993. 

[63] H. Schweitzer, J.W. Bell, and F. Wu, "Very fast template matching," 
ECCV 2002, LNCS 2353, pp. 358-372, 2002. 

[64] M. Turk and A. Pentland, "Eigenfaces for recognition," J. Cognitive 
Neurosci. vol. 13, no. 1, pp. 71-86, 1991. 

[65] A. Pentland, B. Moghaddam, and T. Starner, "View-based and modular 
eigenspaces for face recognition," IEEE Conf. Computer Vision and 
Pattern Recognition, pp. 84-91, June 1994. 

[66] Z. Sun, G. Bebis, and R. Miller, "Object detection using feature subset 
selection," Pattern Recognition, vol. 37, no. 11, pp. 2165-2176, 2004. 

[67] D.H. Foley and J.W. Sammon, "An optimal set of discriminant vectors," 
IEEE Trans. Computers, vol. c-24, no. 3, pp. 281-289, March 1975. 

[68] D.L. Swets and J.J. Weng, "Using discriminant eigenfeatures for image 
retrieval," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 
18, no. 8, pp. 831-836, Aug. 1996. 

[69] K. Fukunaga, "Introduction to statistical pattern recognition," 2nd Edition, 
Academic Press, New York, 1990. 

[70] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, "Eigenfaces vs. 
fisherface: recognition using class specific linear projection," IEEE Trans. 
Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 
1997. 

[71] W.S. Yambor, "Analysis of PCA-based and Fisher discriminant-based 
image recognition algorithms," Technical Report CS-00-103, Computer 
Science Department, Colorado State University, July 2000. 



 

 121 

[72] A.M. Martinez and A.C. Kak, "PCA versus LDA," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233, 2001. 

[73] X. Wang and X. Tang, "A unified framework for subspace face 
recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 
26, pp. 1222-1228, Sep. 2004. 

[74] Y. Gao, Y. Wang, X. Feng, and X. Zhou, "Face recognition using most 
discriminative local and global features," 18th Int'l Conf. Pattern 
Recognition, vol. 1, pp. 351-354, 2006. 

[75] W.S. Zheng, J.H. Lai, and S.Z. Li, "1D-LDA vs. 2D-LDA: When is 
vector-based linear discriminant analysis better than matrix-based?" 
Pattern Recognition, vol. 41, pp. 2156-2172, 2008. 

[76] J.H. Friedman, "Regularized discriminant analysis," J. American 
Statistical Association, vol. 84, no. 405, pp. 165-175, 1989. 

[77] D.Q. Dai, and P.C. Yuen, "Regularized discriminant analysis and its 
application to face recognition," Pattern Recognition, vol. 36, pp. 845-
847, 2003. 

[78] W. Zhao, R. Chellappa, P.J. Phillips, "Subspace linear discriminant 
analysis for face recognition," Center for Automation Research, 
University of Maryland, College Park, Technical Report CAR-TR-914, 
1999. 

[79] C. Liu and H. Wechsler, "Robust coding schemes for indexing and 
retrieval from large face databases," IEEE Trans. Image Processing, vol. 
9, no. 1, pp. 132-137, 2000. 

[80] C. Liu and H. Wechsler, "Gabor feature based classification using the 
enhanced Fisher linear discriminant model for face recognition," IEEE 
Trans. Image Processing, vol. 11, no. 4, pp. 467-476, April 2002. 

[81] J. Yang and J.Y. Yang, "Why can LDA be performed in PCA 
transformed space?" Pattern Recognition, vol. 36, pp. 563-566, 2003. 

[82] L.F. Chen, H.Y.M. Liao, M.T. Ko, J.C. Lin, and G.J. Yu, "A new LDA-
based face recognition system which can solve the small sample size 
problem," Pattern Recognition, vol. 33, no. 10, pp. 1713-1726, 2000. 

[83] J. Yang, D. Zhang, and J.Y. Yang, "A generalized K-L expansion method 
which can deal with small sample size and high-dimensional problems," 
Pattern Analysis and Applications, vol. 6, pp. 47-54, 2003. 

[84] R. Huang, Q. Liu, H. Lu, and S. Ma, "Solving the small sample size 
problem of LDA," Proc. 16th Int'l Conf. Pattern Recognition, vol. 3, pp. 
29-32, Aug. 2002. 

[85] X.S. Zhuang and D.Q. Dai, "Improved discriminate analysis for high-
dimensional data and its application to face recognition," Pattern 
Recognition, vol. 40, pp. 1570-1578, 2007. 

[86] H. Yu and J. Yang, "A direct LDA algorithm for high-dimensional data – 
with application to face recognition," Pattern Recognition, vol. 34, pp. 
2067-2070, 2001. 

[87] H. Gao and J.W. Davis, "Why direct LDA is not equivalent to LDA," 
Pattern Recognition, vol. 39, pp. 1002-1006, 2006. 

[88] D.U. Cho, U.D. Chang, B.H. Kim, S.H. Lee, Y.L. J.Bae, and S.C. Ha, 
"2D direct LDA algorithm for face recognition," Fourth Int'l Conf. 
Software Engineering Research, Management and Applications, pp. 245-
248, Aug. 2006. 



 

 122 

[89] H. Cevikalp, M. Neamtu, M. Wilkes, and A. Barkana, "Discriminative 
common vectors for face recognition," IEEE. Trans. Pattern Analysis and 
Machine Intelligence, vol. 27, no. 1, pp. 4-13, January 2005. 

[90] J. Liu and S. Chen, "Discriminant common vectors versus neighbourhood 
components analysis and Laplacianfaces: A comparative study in small 
sample size problem," Image and Vision Computing, vol. 24, pp. 249-262, 
2006. 

[91] L. Yang, W. Gong, X. Gu, W. Li, and Y. Liang, "Null space discriminant 
locality preserving projections for face recognition," Neurocomputing, 
2008. 

[92] J. Yang, D. Zhang, A.F. Frangi, and J.Y. Yang, "Two-dimensional PCA: 
a new approach to appearance-based face representation and 
recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 
26, no. 1, pp. 131-137, Jan. 2004. 

[93] Y. Xu, D. Zhang, J. Yang, and J.Y. Yang, "An approach for directly 
extracting features from matrix data and its application in face 
recognition," Neurocomputing, 2008. 

[94] J. Yang and C. Liu, "Horizontal and Vertical 2DPCA-based discriminant 
analysis for face verification on a large-scale database," IEEE Trans. 
Information Forensics and Security, vol. 2, no. 4, pp. 781-792, Dec. 2007. 

[95] H. Xiong, M.N.S. Swamy, and M.O. Ahmad, "Two-dimensional FLD for 
face recognition," Pattern Recognition, vol. 38, pp. 1121-1124, 2005. 

[96] J. Yang, D. Zhang, X. Yong, and J.Y. Yang, "Two-dimensional 
discriminant transform for face recognition," Pattern Recognition, vol. 38, 
pp. 1125-1129, 2005. 

[97] X.Y. Jing, H.S. Wong, and D. Zhang, "Face recognition based on 2D 
Fisherface approach," Pattern Recognition, vol. 39, pp. 707-710, 2006. 

[98] S. Noushath, G. Hemantha Kumar, and P. Shivakumara, "(2D) LDA: An 
efficient approach for face recognition," Pattern Recognition, vol. 39, pp. 
1396-1400, 2006. 

[99] S.T. Roweis and L.K. Saul, "Nonlinear dimensionality reduction by 
locally linear embedding," Science, vol. 290, pp. 2323-2326, Dec. 2000. 

[100] L.K. Saul and S. Roweis. "Think globally, fit locally: Unsupervised 
learning of low dimensional manifolds," J. Machine Learning Research, 4: 
119-155, 2003. 

[101] X. He and P. Niyogi, "Locality preserving projections," Technical Report 
TR-2002-09, University of Chicago Computer Science, October 2002. 

[102] X. He, S. Yan, Y. Hu, and H.J. Zhang, "Learning a locality preserving 
subspace for visual recognition," Proc. Ninth IEEE Int'l Conf. Computer 
Vision, vol. 1, pp. 385-392, 2003. 

[103] X. He, S. Yan, Y. Hu, P. Niyogi, and H.J. Zhang, "Face recognition using 
Laplacianfaces," IEEE. Trans. Pattern Analysis and Machine Intelligence, 
vol. 27, no. 3, March 2005. 

[104] B. Niu and Q. Yang, "Two-dimensional Laplacianfaces method for face 
recognition," Pattern Recognition, 2008. 

[105] Q. You, N. Zheng, S. Du, and Y. Wu, "Neighborhood discriminant 
projection for face recognition," 18th Int'l Conf. Pattern Recognition, vol. 
2, pp. 532-535, 2006. 



 

 123 

[106] Q. You, N. Zheng, S. Du, and Y. Wu, "Neighborhood discriminant 
projection for face recognition," Pattern Recognition Letters, vol. 28, pp. 
1156-1163, 2007. 

[107] H. Hu, "Orithogonal neighborhood preserving discriminant analysis for 
face recognition," Pattern Recognition, vol. 41, pp. 2045-2054, 2008. 

[108] A. Hyvarinen and E. Oja, "Independent component analysis: algorithm 
and applications," Neural Networks, vol. 13, pp. 411-430, 2000. 

[109] S.Z. Li, X. Lv, and H.J. Zhang, "View-subspace analysis of multi-view 
face patterns," Proc. IEEE ICCV Workshop Recognition, Analysis, and 
Tracking of Faces and Gestures in Real-Time Systems, pp. 125-132, 2001. 

[110] M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, "Face recognition by 
independent component analysis," IEEE. Trans. Neural Networks, vol. 13, 
no. 6, pp. 1450-1464, Nov. 2002. 

[111] C. Liu and H. Wechsler, "Independent component analysis of Gabor 
features for face recognition," IEEE Trans. Neural Networks, vol. 14, no. 
4, pp. 919-928, 2003. 

[112] J. Yang, D. Zhang, and Y.Y. Yang, "Is ICA significantly better than PCA 
for face recognition?" Tenth IEEE Int'l Conf. Computer Vision, vol. 1, pp. 
198-203, 2005. 

[113] http://www.cis.hut.fi/projects/ica/fastica/ 
[114] H. Schneiderman and T. Kanade, "Probabilistic modeling of local 

appearance and spatial relationships for object recognition," Proc. IEEE 
Conf. Computer Vision and Pattern Recognition, pp. 45-51, 1998. 

[115] H. Schneiderman and T. Kanade, "A histogram-based method for 
detection of faces and cars," Proc. Int'l Conf. Image Processing, vol. 3, pp. 
504-507, 2000. 

[116] H. Schneiderman and T. Kanade, "A statistical method for 3D object 
detection applied to faces and cars," Proc. IEEE Conf. Computer Vision 
and Pattern Recognition, vol. 1, pp. 746-751, 2000. 

[117] Z. Liu, J. Yang, and N.S. Peng, "An efficient face segmentation algorithm 
based on binary partition tree," Signal Processing: Image Communication, 
vol. 20, pp. 295-314, 2005. 

[118] L. Qing, S. Shan, X. Chen, and W. Gao, "Face recognition under varying 
lighting based on the probabilistic model of Gabor phase," 18th Int'l Conf. 
Pattern Recognition, vol. 3, pp. 1139-1142, 2006. 

[119] B. Moghaddam and A. Pentland, "Probabilistic visual learning for object 
representation," IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 19, no. 7, pp. 696-710, 1997. 

[120] B. Moghaddam, W. Wahid, and A. Pentland, "Beyond eigenfaces: 
probabilistic matching for face recognition," Proc. Third IEEE Int'l Conf. 
Automatic Face and Gesture Recognition, pp. 30-35, 1998. 

[121] C. Liu, "A Bayesian discriminating features method for face detection," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, pp. 725-
740, 2003. 

[122] H. Demirel, T.J. Clarke, and P.Y.K. Cheung, "Adaptive automatic facial 
feature segmentation," Proc. Second Int'l Conf. Automatic Face and 
Gesture Recognition, pp. 277-282, 1996. 

[123] M. Segal and E. Weinstein, "The cascade EM algorithm," Proc. IEEE, vol. 
76, no. 10, pp. 1388-1390, Oct. 1988. 



 

 124 

[124] T.K. Moon, "The expectation-maximization algorithm," IEEE Signal 
Processing Magazine, vol. 13, no. 6, pp. 47-60, Nov. 1996. 

[125] A. Dempster, N. Laird, D. Rubin, "Maximum likelihood from incomplete 
data via the EM algorithm," J. Roy. Statist. Soc. series B, vol. 39, no. 1, 
pp. 1-38, 1997. 

[126] F. Fleuret, "Binary feature selection with conditional mutual 
information," Rapport de recherche n4941, ISSN 0249-6399, 2003. 

[127] Z.R. Yang and M. Zwolinski, "Mutual information theory for adaptive 
mixture models," IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 23, no. 4, April 2001. 

[128] L.B. Shams, M.J. Brady, and S. Schaal, "Graph matching vs mutual 
information maximization for object detection," Neural Networks, vol. 14, 
pp. 345-354, 2001. 

[129] M. Vidal-Naquet and S. Ullman, "Object recognition with informative 
features and linear classification," Proc. Ninth IEEE Int'l Conf. Computer 
Vision, vol.1, pp. 281-288, 2003. 

[130] H.T. Su, D.D. Feng, X.Y. Wang, and R.C. Zhao, "Face recognition using 
hybrid feature," Int'l Conf. Machine Learning and Cybernetics, vol. 5, pp. 
3045-3049, Nov. 2003. 

[131] H.T. Su, D.D. Feng, R.C. Zhao, and X.Y. Wang, "Face recognition 
method using mutual information and hybrid feature," Proc. Fifth Int'l 
Conf. Computational Intelligence and Multimedia Applications, pp. 436-
440, 2003. 

[132] D. Grossman and P. Domingos, "Learning bayesian network classifiers 
by maximizing conditional likelihood," Proc. 21 Int'l Conf. Machine 
Learning, 2004. 

[133] L. Shen and L. Bai, "Information theory for Gabor feature selection for 
face recognition," EURASIP Journal on Applied Signal Processing, vol. 
2006, Article ID 30274, doi:10.1155/ASP/2006/30274, 2006. 

[134] H. Rowley, S. Baluja, and T. Kanade, "Neural network-based face 
detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 
20, no. 1, pp. 23-38, Jan. 1998. 

[135] Q. Gu and S.Z. Li, "Combining feature optimization into neural network 
based face detection," Proc. 15th Int'l Conf. Pattern Recognition, vol. 2, 
pp. 814-817, 2000. 

[136] C. Garcia and M. Delakis, "Convolutional face finder: a neural 
architecture for fast and robust face detection," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1408-1423, Nov. 
2004. 

[137] Y. Li, S. Gong, J. Sherrah, and H. Liddell, "Support vector machine 
based multi-view face detection and recognition," Image and Vision 
Computing, vol. 22, pp. 413-427, 2004. 

[138] M.H. Yang, D. Roth, and N. Ahuja, "A SNoW-based face detector," Proc. 
Neural Information Processing Systems, pp. 885-861, 2000. 

[139] E.C. Smith, "A SNoW-based automatic facial feature detector," MPLab 
Technical Report TR 2001.06, 2001. 

[140] Jie Chen, Xilin Chen, and Wen Gao, "Expand training set for face 
detection by GA re-sampling," Proc. Sixth IEEE Int'l Conf. Automatic 
Face and Gesture Recognition, pp. 73-78, May 2004. 



 

 125 

[141] M. Alvira and R. Rifkin, "An empirical comparison of SNoW and SVMs 
for face detection," CBCL, MIT, A.I. Memo:2001-004, 
http://www.ai.mit.edu/projects/cbcl/software-datasets/FaceData2.html 

[142] Fabrice Leroy, "Clementine's RBFN technical overview," October 1998, 
http://www.cs.bris.ac.uk/~cgc/METAL/ 
Consortium/secure/RBFN_Intranet.doc 

[143] Y. Freund and R.E. Schapire, "Experiments with a new boosting 
algorithm," Int'l Conf. on Machine Learning, pp. 148-156, 1996. 

[144] Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-
line learning and an application to boosting," Computer and System 
Sciences, vol. 55, no. 1, pp. 119-139, 1997. 

[145] P. Viola and M. Jones, "Rapid object detection using a boosted cascade 
of simple features," Proc. Conf. Computer Vision and Pattern 
Recognition, pp. 511-518, 2001. 

[146] R. Lienhart and J. Maydt, "An extended set of Haar-like features for rapid 
object detection," Proc. Int'l Conf. Image Processing, vol. 1, pp. I-900 - I-
903, Sept. 2002. 

[147] Y. Ma and X. Ding, "Robust real-time face detection based on cost-
sensitive AdaBoost method," Proc. Int'l Conf. Multimedia and Expo, vol. 
2, pp. II - 465-8, July 2003. 

[148] P. Yang, S. Shan, W. Gao, S.Z. Li, and D. Zhang, "Face recognition 
using Ada-Boosted Gabor features," Proc. Sixth IEEE Int'l Conf. 
Automatic Face and Gesture Recognition, pp. 356-361, 2004. 

[149] S.Z. Li and Z. Zhang, "FloatBoost learning and statistical face detection," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 
1112-1123, 2004. 

[150] M. Liu, J. Duan, X.H. Liu, Y.C. Liang, and C.G. Zhou, "An improved 
line-based face recognition and indexing algorithm," Int'l Conf. Machine 
Learning and Cybernetics, vol. 5, pp. 3100-3103, Nov. 2003. 

[151] K.H. Lin, K.M. Lam, X. Xie, and W.C. Siu, "An efficient human face 
indexing scheme using eigenfaces," Proc. IEEE Int'l Conf. Neural 
Networks & Signal Processing, vol. 2, pp. 920-923, December 2003. 

[152] J. Lu and K.N. Plataniotis, "Boosting face recognition on a large-scale 
database," Pcoc. Int'l Conf. Image Processing, vol. 2, 2002. 

[153] J. Vleugels and R.C. Veltkamp, "Efficient image retrieval through 
vantage objects," Pattern Recognition, vol. 35, pp. 69-80, 2002. 

[154] X. Xie and K.M. Lam, "An efficient method for facial expression 
recognition," Proc. Visual Communications and Image Processing, pp. 
786-793, 2005, Beijing, China. 

[155] D. DeCarlo and D. Metaxas, "Optical Flow Constraints on Deformable 
Models with Applications to Face Tracking," Int'l J. Computer Vision, 
vol. 38, no. 2, pp. 99-127, July 2000. 

[156] R.C. Verma, C. Schmid, K. Mikolajczyk, "Face detection and tracking in 
a video by propagating detection probabilities," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1215-1228, Oct. 
2003. 

[157] E. Painkras and C. Charoensak, "A framework for the design and 
implementation of a dynamic face tracking system," IEEE Region 10 
TENCON, pp. 1-6, November 2005. 



 

 126 

[158] S. Dubuisson, "An adaptive clustering for multiple object tracking in 
sequences in and beyond the visible spectrum," IEEE Conf. CVPRW, p. 
142, June 2006. 

[159] D. Tao, X. Li, S.J. Maybank, and X. Wu, "Human carrying status in 
visual surveillance," IEEE Computer Society Conf. CVPR, vol. 2, pp. 
1670-1677, 2006. 

[160] K.W. Sze, K.M. Lam, and G.P. Qiu, "A new key frame representation for 
video segment retrieval," IEEE Trans. Circuits and Systems for Video 
Technology, vol. 15, no. 9, pp. 1148-1155, Sep. 2005. 

[161] AR Face Database. 
http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html 

[162] Yale University Face Database. 
http://cvc.yale.edu/projects/yalefaces/yalefaces.html 

[163] http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html 
[164] Olivetti & Oracle Research Laboratory. The Olivetti & Oracle Research 

Laboratory Face Database of Faces, 
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 

[165] UMIST Face Database. http://images.ee.umist.ac.uk/danny/database.html 
[166] FERET database http://www.itl.nist.gov/iad/humanid/feret/ 
[167] P.J. Phillips, H. Moon, P.J. Rauss, and S. Rizvi, "The FERET evaluation 

methodology for face recognition algorithms," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 22, no. 10, October 2000. 

[168] http://viper.unige.ch/~marchand/CBVR/ 
 

 


	theses_copyright_undertaking
	b23064432



