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Abstract

A theoretic model of layer-by-layer growth for heteroepitaxial films is in-

troduced in this thesis, in order to explain the morphological evolution of strained

heteroepitaxial films. The energetics related to island formation are analyzed.

There are two main energy terms which contribute to the total free energy for the

whole system: strain energy and island step free energy. We have investigated

two-dimensional (2D) circular single layer islands and stacked three-dimensional

(3D) circular islands with n layers (n ^ 2). The island strain energy is calcu-

lated by using a small-slop approximation, and the step free energy is calculated

by using a ball and spring model. Moreover, we have considered the entropic

repulsion between two adjacent steps.

This model can explain the following observations from simulation results

using kinetic Monte Carlo method under slow deposition conditions. At the early

stage of a deposition process, only 2D islands exist. Next, 3D island formation

follows a layer-by-layer growth mode. Only if an n-layer island grows later-

ally larger can a new layer of atoms nucleate on top. There is an equilibrium

shape for an n-layer island: the separation between the steps at adjacent layer

decreases when the number of layers of the island increases accompanying de-

position. Good agreement is found between the model and the Kinetic Monte

Carlo simulation results.
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Chapter 1

Introduction

Nature is beautiful and amazing, for it provides us with various patterns and

shapes, varying from star galaxies in large scales, to objects in micro scales such

as shapes of plant leaves, ridges of our fingerprints which can be seen with our

naked eyes and shapes of the little snowflakes in the cold winter captured by opti-

cal microscope. It is human being's interest to explore the mysteries of how these

patterns are formed. Since 1960s, fast development of microscope techniques,

such as scanning tunneling microscopy (STM), atomic force microscopy (AFM)

and transmission electron microscopy (TEM), allow us to "see" the details of the

atomic world which are also very fantastic. The reliable and highly accurate mi-

croscopes can provide us the profile of the crystal surface in nanoscales, which

can be very useful, for example, to characterize surface roughness, observe sur-

face defects, etc. From the observations of the atomic structure of crystal sur-

faces by STM, coherently strained islands in heteroepitaxial growth attract much

interest [1,2]. Under appropriate growth condition, self-assembled islands are

observed in heteroepitaxial system including Ge/Si, InAs/GaAs, InAs/InP, etc,

and they are considered to be of potential use in manufacturing nanoelectronic

devices. It is also an important and interesting topic to understand the mechanism

of how these islands form.
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1.1 Overview

Epitaxy is a kind of crystal growth which refers to the method of depositing

monocrystalline film on a monocrystalline substrate. It can be divided into two

categories: homoepitaxy growth and heteroepitaxy. Homoepitaxy is a kind of

epitaxy in which the materials of the substrates and films are the same, while

heteroepitaxial growth refers to growth in which the materials of substrates and

films are different from each other. Heteroepitaxy has attracted much research
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Figure 1.1: Heteroepitaxy of lattice-mismatched materials. Top shows the
lattice difference between the film material and the substrate material; bot-
tom shows that the film materials are strained on the surface of the substrate.

interest recently because the mechanism is much more complex than that of ho-

moepitaxy. In a heteroepitaxial system, the lattice constants between the two

different materials are in general different, hence the film in a heterogrowth sys-

tem is intrinsically stressed. The lattice misfit is defined as

(1.1)

where a/ is the lattice constant of the film and as is the lattice constant of the

substrate (as shown in Fig. 1.1). Strain and stain relaxation play a very important
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role in heteroepitaxy.

2D layer-by-layer growth
(FM growth)

SK growth

3D-island growth
(VW growth)

Figure 1.2: Schematic diagram of the three growth modes: Frank-Van der
Merwe (FM), Volmer-Weber (VW), Stranski-Krastanov (SK).

There are basically three modes for crystal growth as shown in Fig. 1.2:

Volmer-Weber (VW) [3], Frank-Van der Merwe (FM) [4], and Stranski-Krastanov

(SK) [5]. In Volmer-Weber growth, small nuclei form and grow into three di-

mensional islands with out a wetting layer. In Frank-van der Merwe growth, the

film processes a two-dimensional (2D) layer-by-layer growth mode. Stranski-

Krastanov growth is an intermediary process which starts initially with layer to

layer growth, and then follows by 3D island formation.

One of the most widely studied systems is the Ge/Si heteroepitaxial sys-

tem, in which pure Ge islands or Gei_xSix alloy islands form following the SK

growth mode. Ge wets Si surface and performs a layer-by-layer growth first up

to a critical film thickness first. The mismatch in lattice constant between Ge and

Si is about 4%. In a low temperature regime (T < 550°C), when Ge is deposited

on Si surface, it is believed that only pure Ge islands are observed, and Ge al-

loying with Si does not take place. Rectangular hut Ge islands on Si substrate in

ridge and pyramid geometries were reported [6-9]. These islands are bonded by

(105) facets and they are the smallest observed islands which are best suited for
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nanometer sized application. If the substrate temperature is high (T > 550°C),

Gei_xSix alloy islands would be observed due to the interdiffusion at Ge/Si inter-

face. In 2003, P. Sutler and his coworkers have reported the continuous formation

o
0 10 20 30 40 50

Distance (nm)

Figure 1.3: STM images in Ref. [10]. (a) STM image of 40 ML Ge0.75Sio.25
grown on Si (100). (b) Shallow mound marked in (a), (c) A tall mound
marked in (a), (d) Surface profiles along the [001]/[011] lines in (c).

and faceting of GeSi alloy islands [10]. The STM images of their experiment on

Ge0.75Sio.25/Si at 40 monolayers nominal alloy coverage show the islands at a

very early stage. Shallow mounds occur and the angles of the side wall are about

l°-3° at first. The mounds which are in a wedding-cake-like shape consist of

(100) terraces separated by atomic steps. As the deposition process continues,

the angles of the side wall of the shallow mounds start to increase until about 11°,

and shallow mounds turn into hut islands with the characterizing (105) facets.

1.2 Motivation and objectives

To better understand the surface roughening process in heteroepitaxy, Lung

and Lam have proposed a Kinetic Monte Carlo (KMC) model in three dimen-

sions [11]. The KMC simulation model will be presented in section 2.4 of Chap-
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ter 2. In Ref. [11], they have reported a sequential layer-by-layer mechanism for

a growing island or pit. However, the theoretical analysis is lacking. To further

study the mechanism, by using the same model, 11 independent runs under low

rate deposition condition below roughening temperature have been perform. The

primary objective of this thesis is, based on the analysis of energetics for islands

under strain, to set up a model for the initial stage of crystal growth to better un-

derstand about the mechanism related to the evolution of the surface morphology

in heteroepitaxy, especially the sequential layer-by-layer growth mechanism.



Chapter 2

Theoretical models

This chapter will first introduce the energetics related to heteroepitaxial

growth in section 2.1. Then, three research methodologies which are intensively

used are introduced. The first one is the continuum model and will be introduced

in section 2.2. The second one is the a ball and spring model and will be pre-

sented in section 2.3. The last one is the Kinetic Monte Carlo simulation which

is based on the ball and spring model, and will be introduced in section 2.4.

2.1 Energetics of strained heteroepitaxial islands

We start this chapter by introducing the competing energies for a single

coherent island. For a dilute system, the interaction between islands can be ne-

glected. Hence we need only calculate the energy of a single island. The compet-

ing energies include the elastic energy and the surface energy. Hence, the total

free energy Etotai for a single island is given by:

Etotal = Eelastic + Esurf (2.1)

The first term Eeiastic in Eq. (2.1) refers to the energy due to the elastic
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compression. Figure 2.1 shows schematic diagrams for the substrate and the

— *l
ht-

\

Unrelated state Relaxed state

Figure 2.1: Schematic diagrams of strain relaxation during heteroepitaxial
growth. White areas in the two graphs denote the substrate, and grey areas
denote the film. The diagram on the left represents an unrelaxed state and
the right diagram represents a relaxed state.

film in two states. The diagram on the left in Fig. 2.1 shows that the film is

uniformly strained on the substrate, with unphysical external stresses which keep

the system in the unrelaxed state. Without these external stresses, the system will

be in a relaxed state, as shown in the right diagram of Fig. 2.1. We have

^elastic f-'homo relax (2.2)

where, Ehomo is the bulk homogeneous strain energy, referring to the strain en-

ergy when the substrate and film are in the unrelaxed state. It is proportional to

the number of the atoms in the film. The bulk homogeneous strain energy per

film atom E° will be calculated in section 3.4. The next term AErelax is the

change of the strain energy due to the elastic relaxation, i. e. the strain energy

difference between system in the unrelaxed state and in the relaxed state.

The second term Esurf in Eq. (2.1) is the change of the surface energy due

to changes in surface area and orientation during formation of the island. In this

thesis, we consider that an inclined surface consists of steps. Hence, Esurf is

proportional to the length of the steps and the step free energy per edge length.
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We define Estrain to be A.Ereiax for the elastic energy relaxation for an

island, as it is commonly used in many literature.

2.2 Continuum elasticity model

To evaluate the strain relaxation energy for island formation, we use a con-

tinuum elastic model. In the continuum model, we treat the system as a contin-

uum elastic solid. The substrate and the deposited material are assumed to have

the same elastic constants for simplicity. Tangential elastic forces at the steps are

assumed to be applied on the flat surface of the substrate. We use a small-slope

approximation. It is a good assumption when surface roughness is small.

The displacement in response to the surface elastic force fj(r) can be writ-

ten by [12]

Ui(r) = dr'Gl3(r - r'}f3(r') (2.3)

where Ui(r) is the displacement of the film in i\h direction on the surface, and

Gij is the half-space elastic Green's function, which depends only on the material

properties. By using elastic Green's Function, the strain energy relaxation Estrain

can be written as

(2.4)strmn

2.3 Ball and spring lattice model

In a Ball and spring model, atoms of the film and the substrate are repre-

sented by balls on a cubic lattice and they are connected by springs, which repre-

sent the bonds between the atoms. We consider only the nearest neighbor (NN)

and the next nearest neighbor (NNN) interactions. There are 6 nearest bonds

and 12 next nearest bonds for each bulk atom. The Kinetic Monte Carlo (KMC)

simulations discussed in section 2.4 are based on the ball and spring model. The
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step energy of the island presented in Chapter 3 is also based on this model.

2.4 Kinetic Monte Carlo simulations

In this section, we introduce the Kinetic Monte Carlo simulation model

proposed by Lung and Lam [11]. The model is based on a ball and spring model

of cubic lattice. Efficient algorithms are used which allow to simulate the mor-

phologies under a much wider range of conditions. The morphological evolution

is achieved by considering adatom hopping. Surface diffusion is simulated by

hoppings of the topmost atoms in the film, and hoped atom will be deposited at

a random site nearby.

The hopping rate Fm of a topmost atom m is given by

F p / m,NN mtNNN m1 m = rio exp( -- — — - J (2.5)

where RQ is the rate constant related to the diffusion coefficient. The term

nm,NN^NN + nmtNNN^NNN is the energy needed to break the chemical bonds

around the mth atom. The term AEm is the the difference in elastic energy of

the whole lattice when the site m is occupied versus unoccupied. The last term

EQ is an energy barrier offset.

Next, we present the Kinetic Monte Carlo simulations carried out by Lung,

Xiang and Lam [13], which we will analyze with the same algorithms. The

lattice constant for the substrate is assumed to be as = 2.715A, which gives

the right atomic volume in crystalline silicon. The bond strength for atoms to

connect to its nearest neighbors ^NN and to its next nearest neighbors ^NNN are

chosen to be

77V7V = 0.085 eV (2.6)

TAW ,0 ~
1NNN = —^— (2.7)
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The force constants of the elastic springs are taken as k^N = 2eV/a^ and

kNNN = kffN respectively. The surface for our system is a (100) surface which

contains 32 x 32 atoms. Depositions of films with 8% lattice mismatch have been

simulated at 600K at low deposition rates. It is believed that 600K is below the

roughening temperature, and no alloying process exists in a Ge/Si heteroepitax-

ial system. We will analyze 11 independent simulations with different deposition

rates, including 1ML s"1, 3ML s"1 and 10ML s"1. The simulation results will be

presented in section 6.1 of Chapter 6.



Chapter 3

Energetics for strained heteroepitaxy

In this chapter, we will first explain the calculation for surface step en-

ergy in section 3.1 and entropic step repulsion in section 3.2. Then, some basic

strain-related calculations are given, including elastic force in section 3.3, homo-

geneous bulk strain energy per atom E° in section 3.4 and the half-space Green's

function in section 3.5.

3.1 Step free energy

To obtain the step free energy of a monolayer step, we start from consid-

ering a step in the [100] direction on the (001) surface [14]. By counting the

''/ / / ' A
/ / / Ay

Figure 3.1: Schematic diagrams for a [100] step (left) and a [110] step
(right) on (100) surface.

number of broken bonds per step-edge atom based on the ball and spring model,

we can get the step formation energy in the [100] direction. For each atom on

11
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the edge, one nearest neighboring bond and two next nearest neighboring bonds

need to be broken, so the step energy in the [100] directions EJIOO] is given by

(3.1)E[wo] — — h 77V7V7V

Let ) be the formation energy for a kink in which an otherwise straight

X S / / ~S

/ / / s ̂X4f iife^r i /^ / /

Figure 3.2: Schematic diagrams for a kink with transverse displacement as

at [100] step on (100) surface.

surface step is displaced transversely by nas. For such a kink in a [100] step,

n more nearest neighboring bonds and (n — 1) more next nearest neighboring

bonds need to be broken. Hence Ekink (n) and is given by

(3.2)

The partition function of a [100] step Z[WO-\ is then

£[100] =

oo

1 + 2 J^ e"
n=i

The step free energy F[i0o] is given by

(3.3)

^[100] = -kBTln(Z[WO])

— kpT In

(3.4)

— e-(
J^TL+~1NNN)/kBT

where the second term in Eq. 3.4 is related to the entropy for the step. In the

simulation, ^NN = 0.085eV = 2^^^^. So the step free energy per length
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equals

= — F,[100] (3.5)

Fig. 3.3 shows the temperature dependence of a in [100] direction. The step

0.030

0.025

so
I 0.020
•a
£ 0.015a,

0.010

0.005
at
35

0.000
0 200 400 600 800 1000 1200

Temperature, T (K)

Figure 3.3: Step free energy per unit length a versus temperature T.

energy vanishes at Tr=1175.34K.

For a surface step in [110] direction, there are two nearest neighboring

bonds and two next nearest neighboring bonds which needs to be broken. The

step length per atomic unit equals A/2as, so

A/277V7V A/27.'NNN (3.6)

We should point out that the difference between E[WO] and E^no] is only

6%. Hence, for simplicity, we only use the result for step in [100] direction.

The value of the step free energy per unit length we use in this thesis is cr =

0.0192592eV/atom, which is the step free energy for [100] step at T = GOOK.
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3.2 Entropic step repulsion

Besides the free energy for a single step, we also consider the entropic step

repulsion for two adjacent steps. The origin of entropic step repulsion is that

when two steps get too close, the entropy of each step is reduced [15]. The en-

tropy related to step repulsion was first calculated by Gruber and Mullins [16].

They showed theoretically that the configurational entropy of a step trapped be-

tween two walls of separation 2w is given by

,w) = S0(T)-g'(T)/w2 (3.7)

where S0 is the entropy of a free step without walls and g' is a width-independent

constant. In our case, when w = as, the entropy S = 0. So g'(T) equals

g'(T] = S0a
2

s (3.8)

Using also Eq. 3.4, S0 is given by

S0 = kB In

Therefore, with step repulsion, the step energy per edge-atom becomes

(3.9)

<?step = & + CT (3.10)

where <r is given by

cr = Tg'(T)/as/w
2

= kBT\n 1 + as/w
2 (3.11)
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Figure 3.4: Step energy per unit length astep which consider the entropic re-
pulsion versus step separation w at T=600K (solid line). The dashed line is the
step free energy without repulsion a.

Fig. 3.4 shows the step energy with repulsion <jstep versus the step sepa-

ration w. In particular, when w = as, <jstep = 0.03125eV/A. When w —>• oo,

astep = 0.0192592eV/A.

3.3 Elastic force

The distribution of surface elastic force in Eq. (2.4), which is induced at the

surface where the surface stress varies, can be calculated by [17]

(3.12)

Here, Uij is a stress tensor given by

(3.13)

(3.14)



CHAPTER 3. ENERGETICS FOR STRAINED HETEROEPITAXY 16

where 8ij is the Kronecker delta, and h(r)is the height (thickness) of the island at

position r. The term at, is the xx or yy component bulk stress of island uniformly

strained to the substrate x and y lattice constants. It is given by

(3.15)

where Efilm and v are two elastic constant refering to the Young's modulus and

the poisson's ratio respectively, and e is the lattice mismatch between the film

and the substrate. The elastic force f i ( r ) is simplified by using

f i ( r ) = <rbdih(r) (3.16)

For a flat surface with h(r) = 0, it is free of net surface elastic force. For

an island facet with an inclination angle 0, the force per unit area /„ equals

(3.17)
— v

For a 2D island, the force per unit length on the island edge // equals

// = f^ea. (3.18)
1 — v

From the ball and spring model, it can be shown that the elastic constant Efilm

and v can be calculated by

k2 4- ^k k 4- 4-k2
fun -|- O^n^nn -|- <±hnn

fllm = a (k + tt } ( }
U's\""n i <J""nn)

k""fin

k +3k"'71 ~t~ 'Jf\,n
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3.4 Homogeneous strain energy per atom

The general expression for the free energy of a deformed isotropic body

is [18]

F = F0 + ±\u}i + fJlU
2

ik (3.21)

Hence, the homogeneous strain energy per atom E° can be calculated by

E°s = \^(exx + £yy + £,,)2 + M<4 + 4 + £L)
\z

(3.22)

where

(3.23)

£yy = £ (3.24)

2 (3.25)

and

exy = exz = eyz = 0 (3.26)

Here, A and fj, are called Lame coefficients. They are given by

(3.27)

^JiLm f~ ~ox
p — — — \j.^o)

Therefore,

1 - v
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3.5 The half-space Green's function

The Green's function for an elastic media, which plays an important role in

the application of linear elasticity, is defined to be the relationship between force

and the responsive displacement. It can be obtained by finding the fundamental

point force solutions, for example, the point force solutions for a full space by

Kelvin, solutions for point force on the surface of a half space by Boussinesq and

Cerruti and the solutions for a point force buried in a half space by Mindlin, etc.

The displacement field for a given force distribution is then the integration of a

point force solution around the region of the applied force.

To obtain the half-space Green's function, we start from the displacement

for point force on the bounded surface of a half-space. Considering an isotropic

half space z < 0, the displacement field due to a point force F applied at

(x, y, z) = (0,0, 0) on the surface of the medium is given by [18]

-(xFx + yFv)\ (3.32)
r v • v\

where u = (uxj uyjuz) is the displacement vector.

For a tangential point force, Fz = 0. The displacement u(r) on the surface

(z = 0) can be written in a compact form [19]

u ( r ] (3.33)

Generalizing to a tangential force distribution f ( r ) on the surface, using
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Eq. (3.33) and Eq. (2.4), we get

E.strain

+-

- ^2 /(r) • /'(r')

I /« /v»' \ ~f( v* i • i T* f* 1

/« _ /v»/
drdr'

(3.34)



Chapter 4

Energetics for axisymmetric islands

In this chapter, we will present strain energy calculations for 2D island in

section 4.1, cylindrical n-layer island in section 4.2 and general circular n-layer

island in section 4.4. Then, the calculation for total energy change when forming

an island and the chemical potential are described in section 4.5, and section 4.6

respectively.

4.1 2D circular island

Consider a circular island of radius r, the strain relaxation energy Eltrain(r)

can be calculated by integrating Eq. (3.34) around its circular boundary [19], as

shown in Fig. 4.1. Then Eltrain(r) is given by

i
—Jl •i -r2\

fi • (ri -r2)/2- (ri -r2)
dsids-2 (4.1)

20
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Figure 4.1: Schematic diagram of a 2D circular island of radius r with tangen-
tial force applied on its boundary.

where,

/i = (/cos0i,/sin0i)

/2 = (/cos02 ,/sin02)

and 0j is the angle between fc and the x axis.

Using the polar coordinate system, we have

— rz = 2r
. 02 — 01

sin

/2 = /2cos(02 - 0!) = f(l - 2 sin2

/.
/i •

\ o _f •- r2) = -2/r s ~~ 01 . / x o _c •
, /2 • (n - r2) = 2/r s

~ 01

(4.2)

(4.3)

(4.4)

(4.5)
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Finally, we get the equations for the strain energy Eltrain(r) of a 2D island,

which are

c2
2TC 2i7-6

71. . (r) = -•strain \ /
02-01

. -2
sin

n n
. U2 — Ui

— v sin

-(27rr)ln —
Ciy

= -27rarln— (4.6)

The variable 00 in Eq. (4.6) is an angular cutoff, and is given by

ar = -Ae9(v)ae (4.7)
4

where

9(v) = \^ (4-8)

e0 = a- (4.9)

Here, ae is a cutoff in real space of the order of lattice constant as. It is necessary

for us to add the cutoff to our formula, in order to regularize a singular term. This

is because the continuum elastic theory is not applicable to our lattice model at

length sales comparable to as. In Eq. (4.6), a is defined by

(4.10)

4.2 3D n-layer cylindrical island

For a 3D island in cylindrical shape, the separation between two adjacent

steps of the island is zero. As shown in Fig. 4.2, there is a general 2-layer island
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Figure 4.2: Schematic diagrams of a general 2-layer island (left) and a 2-layer
cylindrical island (right).

and a 2-layer cylindrical island. We now generalize Eq. (4.6) to a 3D n-layer

cylindrical island. From simple scaling theory based on continuum elasticity,

the strain energy is increased by n2 times when the length scale of a structure

is increased by n times. Hence we obtain the following functional form for the

elastic strain relaxation energy E™train(r) for a 3D n-layer cylindrical island:

En
stram(r] = -2WV1I1

nar
(4.11)

4.3 The strain energy cross term

For a 3D island which is not in cylindrical shape, there are interactions

between two strain fields due to different layers, which can further relax the

strain energy of the island. In this section, we will calculate this strain energy

cross term. Figure 4.3 shows the circular tangential load of force per unit length

/ applied radially on the circular boundary with radius r\. The circular tangential

load generate a displacement field. At r = r2, this displacement field interacts

with another circular tangential load.
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Figure 4.3: Circular tangential load applied on the circular boundary with ra-
dius r\. The generated displacement field interacts with another circular tan-
gential load with radius r2.

By using Eq. (3.34), we can get the strain cross term E^°^n(ri,r2) as

( l - I / )
-r2\

-v
- r2)r2 • (ri - r2: - -
r - i - r -2 3 (4.12)

where in the polar coordinate system, we have

r2 = rir-2 cos(9i — 92)

ri -r2\ = cos(6»i - 02)

, ds2 = r2d02

(4.13)

(4.14)

(4.15)

Then, we get the expression for (ri^ r2), which is

(4.16)
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where a is given in Eq. (4.6). The first term A(r\, r2) is

(4.17)

Here, K(x) and -E(x) are the complete elliptic integrals of the first kind and the

second kind which are defined as

K(x) =

E(x) =

d9

Jo \/\-x sin2 6

-x sin2 9 d9

The second term B(r\, r2) in Eq. (4.16) is given by

0,

= ?"2,

^ r-2

which is non-zero only if r\ = r2.

(4.18)

(4.19)

(4.20)

4.4 Strain energy of n-layer circular island

We consider n-layer island with axisymmetric geometry, as shown in Fig.4.4.

The radius of the i\h layer is denoted by T\, r^ > r^+i. So that r\ is the radius

of the bottom layer while rn is radius of the top layer. If r\ = r2 = • • • = rn, a

general n-layer circular island reduces to an n-layer cylindrical island discussed

in section 4.2.

Here, considering the step interactions, the strain energy for the n-layer

circular island E™train(r\, • • • ,rn) can be expressed as

li
ar

ss / \
-ain\l t-i '31

(4.21)
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Figure 4.4: Schematic graph for an n-layer circular island

where the strain cross term E^°^fn(r^ r,-) is given by Eq. (4.16).

4.5 Total island energy

By adding a step energy term 2-n-ra into Eq. (4.6), total energy El(r) for

circular 2D island is given by

/ r\
El(r) = 2vrr ( j-aln —

V arj
(4.22)

Similarly, the total energy change for the formation of an n-layer circular is-

land En(ri,--- , rn) consists of the elastic term E™train(ri, • • • , rn) in Eq. (4.21)
n

and the step energy term which contains the entropic repulsion
i

Therefore

r ) = V,'n) 2.^ (T step
1- am — \ ^ jricross

~ / , ^strain

(4.23)
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4.6 Chemical potential

For a 2D island at local equilibrium, the chemical potential //(r) at a local

region can be derived from (4.22):

Q pi

Mr) = (4.24)

(4.25)
\

here, v = a2
s is the surface area per atom of the island.

Similar, for an n-layer island, if it subjects to certain constraint, for example

the radial separation of two adjacent layer Ar is fixed, the chemical potential of

the island can be obtained. The calculation of the chemical potential is much

more complicated. A special case for calculating the chemical potential for n-

layer island is given in section 5.4.



Chapter 5

Surface free energies

In this chapter, we will first introduce basic equations for the population of

2D islands at equilibrium in section 5.1. Then, we will study three distinct sur-

face states which occur in island growth in slow deposition conditions, including

states with respectively only subcritical islands in section 5.2, a stable 2D island

and multiple subcritical islands in section 5.3 and a stable n-layer island and

multiple subcritical islands in section 5.4. Finally, the equations for calculating

the island nucleation rate and nucleation time are given in section 5.5.

5.1 Population of 2D islands at equilibrium

The equilibrium probability P(N) that surface site is occupied by a 2D

island consisting of TV atoms at low island density follows from the Boltzmann's

distribution. We get

C-iVU

E(N)-fjLN
pvn I -—-———exP I kBT

N

28
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where E(N) is total energy change in forming an island consisting of TV atoms,

and fj, is the chemical potential of the system. For low island density situation

that we are interested at

Therefore,

(5.2)

The total coverage of the film materials equals

9 = NP(N) (5.3)

5.2 Surface with multiple subcritical islands

At the beginning of a deposition process, only adatoms and other subcritical

island can be found in the system because it takes time to overcome the energy

barrier to form stable islands. In this thesis, we use (5.2) and (5.4) to determine

the relationship between system's chemical potential /j, and its coverage 9 when

only subcritical islands exist.

Here is how we define the chemical potential. Consider a system including

only a kink site surrounded by a big reservoir. We define fj, in such a way that,

when a kink site and the reservoir are in equilibrium, p, = 0.

The energy change in adding an adatom from the reservoir to the surface of

the substrate for the ball and spring model explained in section 2.3 is exactly

Ead = 1^NN + 1^NNN - E°s (5.5)

where E° is given by Eq. (3.22). For a subcritical island consisting of TV atoms,
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we use an effective radius r(N) defined by

r(N) = (5.6)

Substituting the effective radius into Eq. (4.6), we can calculate the energy change

for forming a 2D island Ei(N) by

El(r(N))

(27rr(AO U- (5.7)

Figure 5.1: Free energy versus island size, n* is the critical size for island
nucleation.

Consider only subcritical islands and neglect the stable ones at this moment,

we apply a cutoff for the upper limit n* in the sum in Eq. (5.4). Here, as we see

in Fig. 5.1, n* is defined to be the critical size of a 2D island, and is given by

solving
d(E(N) -

dN
(5.8)

N=T.

Here, n* depends on the system's chemical potential p,. When p, is well

below zero, n* tends to infinity. For p, ^ 0, n* decreases as p increases. In

summary, given the chemical potential of the system, the critical size n* can

be obtained numerically from Eq. (5.8). Therefore we can get the relationship

between the coverage 9 and the chemical potential p of the system by using
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Eq. (5.4), as follows

From thermodynamics theory, chemical potential equals

dF0 I dF0(9)
dN L2 d9

(5.10)

Then the free energy for system with only adatoms and subcritical islands on the

surface is given by
. re

d9' (5.11)

5.3 Surface with a stable 2D island and multiple

subcritical islands

After sufficient time of deposition, a stable 2D island will be observed. If

the deposition rate is low enough, the system can be assumed to be in equilib-

rium. Then the chemical potential /j, of the system is determined by the size of

the 2D island using Eq. (4.25) in section 4.6. With the calculated /j,, we can de-

termine the coverage 9 due to the subcritical islands using (5.9). Finally, total

coverage of the surface is obtained by summing up the coverage due to subcriti-

cal islands and that due to a stable 2D island.

(5.12)

where NI is the number of atoms in the 2D island. The free energy for the system

with a single stable 2D island is similarly given by

Fi(9) = F0(9 - Ni/L2) + E^NJ - kbTlnL2 (5.13)
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5.4 Surface with a stable n-layer island and mul-

tiple subcritical islands

Similarly, the total coverage for a system with a single stable n-layer island

and multiple subcritical islands On is then given by

On = 90 (5.14)

where Nn is the number of atoms of the n-layer island.

The free energy for system with a stable n-layer island and multiple sub-

critical islands Fn is given by

Fn(9) = F0(9 - Nn/L
2) + En(Nn) - (5.15)

Figure 5.2: Schematic diagram of a general stacked 2-layer circular island. r\
is the radius of the bottom layer; r2 is the radius of the top layer. The constraint
for two-layer island is r\ = r2 + Ari2.

Here, assuming equilibrium, the chemical potential /j, is determined from

the size and the geometry of the stable n-layer island. Take 2-layer island as

shown in Fig. 5.2 as an example, we calculate the chemical potential fj, for this

particular system. In Fig. 5.2, n is the radius of the bottom layer while r2 is the

radius of the top layer. Assuming a constant difference Ari2 between TI and r2,
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i.e. 7"i = r2 + Ari2 , the chemical potential /j, is obtained by

dE2(N)
dN

N=N2

Here, E2(N) can be derived using Eq. (4.23) and we obtain

r2

E2(N) = E2(ri,r2)

( n\ (
= 2vrri [ a — a In — + 2vrr2 [ a — a In —

\ arj \
n, r2) + ES^(n, r2))

where, r\ and r2 follow

(5.16)

r2)<7

(5.17)

(5.18)

(5.19)

Furthermore, cr is the correction of step energy due to entropic repulsion consid-

ered step repulsion in Eq. (3.11) in section 3.2.

In the same way, we can obtain the chemical potential fj, for a n-layer cir-

cular island if certain appropriate constraint is given.

5.5 Island nucleation rate and nucleation time

The island nucleation rate per atomic site rate Js is the rate at which a new

stable island or a new top layer nucleates in the system. We calculate Js by [20]

Js = zfc* (5.20)

The first term z in Eq. (5.20) is called the Zeldovich factor and is given by

d2W(N)
2-rrkBT dn2

N=N*

(5.21)
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where W(N) is the free energy for a system with an island consisting of TV

atoms. The second term /* in Eq. (5.20) is called the adatom attachment rate

and is calculated by

f" = 45* V"- (5'22)

in which

At = J- (5.23)

D = D0e
 kBT (5.24)

where At is the adatom hopping time, D is the adatom diffusion coefficient, and

pa is the adatom density. The values for Ea and D0 used are given by

Ea = 0.67eV (5.25)

DO = 3.83 x 1013A2 s-1 (5.26)

The third term c* in Eq. (5.20) refers to the critical nucleus concentration and is

given by
_ w*

c* = c0e
 ksT (5.27)

where W* is the work of formation. For our case, c* is given by

c* = -e~^r (5.28)

F* is the total free energy of the system, and Z is given by

(5.29)

The nucleation time tc equals

tc = -Ar (5.30)
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where Nc here is the number of nucleation sites where an island can be formed.



Chapter 6

Applications to Kinetic Monte Carlo

simulation results

6.1 Simulation results

In this section, we discuss the simulation results calculated from 11 inde-

pendent runs for the deposition of a heteroepitaxial films at T = 600K, with low

deposition rates IMLs"1, SMLs"1 and lOMLs"1 [13]. The nominal misfit for

the system is 8%.

6.1.1 Surface morphology

Under the low rate deposition condition, we can observe the layer-by-layer

island growth mechanism from the surface morphological evolution results of the

simulation. Figure 6.1 is an example, which shows the surface morphology from

a typical run for deposition rate = SMLs"1. Initially, there are only adatoms

and subcritical 2D islands on the surface without any wetting layer as shown in

Fig. 6.1(a). Next, a small 2D stable island emerges as shown in Fig. 6.1(b). We

can see more than one 2D island on the surface as more atoms are deposited on

36
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the surface as shown in Fig. 6.1(c). Then, as the surface coverage 9 increases,

2D to 3D island transition occurs. A new layer of atoms nucleates on top of

one of the 2D islands, leading to the formation of a 2-layer island. Other 2D

islands are dissolved as the 2-layer island grows laterally [Fig. 6.1(d)]. When the

2-layer island is large enough, a new top layer forms again and the 2-layer island

becomes a 3-layer island [Fig. 6.1(e)]. Repeatedly, the island formation follows a

layer-by-layer growth mode, from 3-layer to 4-layer [Fig. 6.1(f)], then to 5-layer

[Fig. 6.1(g)]. Moreover, steps separation decrease as island grows vertically. We

can see that the steps in the 5-layer island in Fig. 6.1(g) are closer than those in

the 2-layer island in Fig. 6.1(d).
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Figure 6.1: Surface from simulation of deposition at T = 600K, for deposition
rate = 3ML s"1 at deposit time t = 0.0052(a), 0.022 l(b), 0.07902(c), 0.1 l(d),
0.126(e), 0.202(1), 0.284s(g). The surface coverage 9 is 0.0156(a), 0.0663(b),
0.23706(c) 0.33(d), 0.378(e), 0.606(1) and 0.852(g).
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6.1.3 Chemical potential measurement

Based on the ball and spring model, we now try to calculate the adatom

occupation probability r. The probability for a system consisting of TV film atoms

to have one more adatom on its surface PN+I is given by

(6.1)

where the adatom energy Ead can be calculated using Eq. (5.5), and P/v is the

probability of the defined system to occur. Hence, r is given by

r = (6.2)

_

= e kBT (6.3)

The adatom density is calculated by

Pod = ̂ — (6.4)
1 + r

Hence, the chemical potential can be obtained by counting the adatom density

on the surface.

Figure 6.3 is the result of chemical potential measurement. From this fig-

ure, we can see an initial rise of the chemical potential, because the number of

adatoms is increasing before 2D stable islands occur. Next, island lateral growth

results in a small increase of the chemical potential. Then, when a layer of atoms

nucleate on top of the island, there will be a decrease in the chemical potential

of the system.
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6.2 Regularization for the strain cross term

We have derived the equations for the strain energy cross term in sec-

tion 4.3.

-3.0

0 10

rl(A)

15 20

Figure 6.4: The strain cross term E^°^n(ri,r2) versus r\ with (r2 = IDA)

when assuming a line force per unit step length / = O.leV/A . There is a
singularity at r\ = r2

Figure 6.4 shows the strain cross term E^™?n(ri, r2) versus r\ with a fixed

r-2 (r-2 = 10A), when assuming the radial tangential force per unit length / =

O.leV/A , calculated using Eq. (4.16). Here, the elastic constants we use are

Efum=40 x 109Nm-2 and ^=0.25, which are calculated by Eq. (3.19) and Eq. (3.20).

The figure shows that -Eg™^ (ri; r2) ~^ 0, when r\ —>• 0 or oo. There is a singu-

larity in the radial displacement at r\ = r2, i. e. lim Ec^fn(ri^ r2) = oo, due
ri—>r2

to K(x) in Eq. (4.17) at x = 1.

In order to suppress the singularity, we add an angular cutoff Qc into Eq. (4.18)
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Figure 6.5: The regularized strain cross term E^™fn(ri,r2) versus r\ with
r2 = IDA. The value for #^4(ri,r2) with cutoff 0C given in Eq. (6.7)
equals Eltrain(ri] (Dashed curve) at r\ = r<2 = 10A.

and Eq. (4.19). The modified expressions for Kc(x) and -Ec(x) are given by

Kc(x) =

Ec(x] =

lo \/\ - x sin2 9

\/\-x sin2 9 d9

(6.5)

(6.6)

If the angular cutoff 9C vanishes, K(x) and E(x) reduces to the complete elliptic

integrals of the first and the second kind respectively. In our calculation, a finite

(x) at x = 1.

r2 to avoid the

9C of the order — or — is needed to suppress the singularity in K(x) at x = 1.

Also, £(T"I, r2) is assumed to be zero for both TI = r2 and

discontinuity which is not physical. Specifically, we put

2ar (6.7)

so that elastic energy given by Eq. (4.21) for an n-layer island reduces properly

to that for a single layer island in Eq. (4.6) for n = 1. Furthermore, this choice
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the number of the atoms in the island is

= L29 = (6.8)

where r = as is the radius of the cylindrical n-layer island.

We rewrite Eq. (4.11) as

En(r)
In •

nar

In c2
n

(6.9)

(6.10)

where c\ = 2-rra and c2 = 2fra In ar. To check Eq. (6.10) against our simulation,

Table 6.1: Fitting parameters by applying formula for cylindrical n-layer island.

number of layer n

2
3
4
5

£

0.111268
0.100547
0.0953564
0.0930275

nar

1.48029as

1.83178as

2.14549as

2.52215as

En(r) r
we plot — against — and the result is shown in Fig. 6.6. Most data points

rn2 n
forn > 2 lie close to the same straight line, implying that Eq. (6.10) which is

for cylindrical island describes the system quite well. This is not true for points

from the 2D islands (n = 2). The discrepancy is due to the fact that the system

has more than one 2D island on the substrate, and hence our assumptions do

not stand. Fitting the data to Eq. (6.10) independently for n = 2, 3, 4, and 5,

we obtain e and ar, listed in Table 6.1. The fitted curves are shown in Fig. 6.7

and Fig. 6.8. Effective values for the misfit are introduced here. We believe that

the difference between the effective misfit and the nominal misfit is mostly due

to inaccuracy in the small-slop approximation used. The fitted effective misfits

decrease while number of layer of the island increases. The cutoffs differ too.
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Figure 6.7: Fitting result for (a)n=2; (b)n=3; (c)n=4; (d)n=5;
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Figure 6.8: Strain energy per atom fitting result by applying formula for cylin-
drical n-layer island



CHAPTER 6. APPLICATIONS TO KMC SIMULATION RESULTS 47

6.3.2 n-layer truncated cone islands with Ar = as

We similarly take the same assumption that the dominant island holds all

the film atoms. But rather than assuming cylindrical islands, we now suppose

that the separation of the edges of the adjacent layers is as, as it is about 1 ~ 2as

for the islands we observed in the simulations. Therefore, the radii of the adjacent

layers differs by Ar = as. Then, given a coverage 9, the shape of an n-layer

island can be determined. We have repeated the fitting by applying Eq. (4.23)

for general circular island. Table 6.2 shows the results.

Table 6.2: Fitted parameters for n-layer islands following Ar = as.

number of layer n

2
3
4
5

£

0.113065
0.102726
0.097557
0.095246

ar/n

1.35732 a.
1.56854 a.
1.71215 a.
1.93232 a.

Compared with Table 6.1, the effective values for the misfit are similar.

Increasing the number of island layers results in a decrease in the effective misfit.

The trend for the cutoff change as the number of layer n increases is the same. ar

is more or less proportional to n. But the values are somewhat different, because

the cutoff is more sensitive to the change of island shapes.
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6.4 Deposition

0.14

0.09 L
3 4

number of layers n

Figure 6.9: Plot of effective misfit against number of layer n of an island. The
effective curve is e(n) = 0.0802764 + 0.0616312/n, which extrapolates to
e l = 0.141908

a
5H 0.8
S

0.6
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Figure 6.10: Plot of effective cutoff against number of layer n of an island.
The effective curve is ar(ri) = 0.342478 + 0.796072/n, which extrapolates to
ar(l) = 1.13855as

In the previous two sections, we neglect subcritical islands. In this section,

we will consider the impact of the subcritical islands under deposition conditions,

by using the equations presented in Chapter 5. Here we use the layer-dependent
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effective values for misfit and cutoff shown in Table 6.1. For n ^ 2, the effective

misfit and cutoff in section 6.3.1 can be well approximated by the phenomeno-

logical formulas

e(n) = 0.0802764 + 0.0616312/n (6.11)

Or(n) = 0.342478 + 0.796072/n (6.12)

as shown in Fig. 6.9 and Fig. 6.10. Expolating to n = 1, we have e(l) =

0.141908 and ar(l) = 1.12305as.

When we use Eq. (5.9) to determine the relationship between the coverage

$o and the chemical potential /j, for a system with only subcritical islands, we

consider only adatoms. We have check that in our KMC simulation, subcritical

islands are dominated by adatoms, so we believe that considering only adatoms

is a good assumption in our case. Moreover, when substituting the effective

values for misfit and cutoff to Eq. (5.8), the critical size for 2D island n* is only

several atoms, implying that the size of subcritical islands is small. However,

the energy change for forming a subcritical 2D island consisting of N atoms

Ei(N) (N > 1) can not be accurately obtained for small islands, when applying

Eq. (5.7) which assumes the continuum approximation. Also, for simplicity,

we assume that there is at most one stable island with multiple adatoms in the

system, as discussed in section 5.3 and section 5.4.

Figure 6.11 shows the chemical potential versus coverage for a system with

only adatoms (solid curve) and a system with a single stable 2D island and mul-

tiple adatoms (dashed curve) which are calculated numerically using Eq. (5.2),

(5.9), and (5.12). For a system with adatoms only, there is an initial rise in

the chemical potential at the beginning of the deposition, because the number

of adatoms increases as more atoms deposit onto the substrate. From the solid

curve, we can see that no stable 2D island can occur until 9 = 0.021. There

is a minimum chemical potential fj, &i —0.017812eV which occurs at coverage

9 = 0.040988. The size of the dominating 2D island related to the minimum is
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Figure 6.11: Chemical potential versus coverage for system with only adatoms
(dashed curve) and system with a single stable 2D island and multiple adatoms
(solid curve).

about 29 atoms. The chemical potential tends to 0 when coverage is very large,

i.e. lim p, —> 0 .
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Figure 6.12: Free energy FI versus island size NI at 9 = 0.03. Point A is a
minimum of the free energy and point B is the free energy for a system with
only adatoms
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Figure 6.12 shows the free energy for a system with a single 2D island

and adatoms versus the 2D island size calculated using Eq. (5.13). From this

figure, we can see that the free energy has a minimum at NI = 19 (point A). The

2D island and the adatoms have the same chemical potential at point A which

represents a stable equilibrium state. Point B is the energy for a system with only

adatoms. The free energy difference between A and B corresponds to the energy

barrier for the formation of a stable 2D island at a fixed coverage. There is no

energy barrier for 2D island formation in Fig. 6.12.

*
ff

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Coverage, 0

Figure 6.13: Free energy versus coverage 9 for system with only adatoms
(dashed curve) and system with a single stable 2D island and adatoms (solid
curve) at equilibrium.

Figure 6.13 shows the free energy versus coverage for a system with only

adatoms (dashed curve) and a system with a single island and adatoms (solid

curve) at equilibrium. From the dashed curve, we can see that there is a minimum

at $o = 0.018, which corresponds to chemical potential for adatoms /j, = 0. From

the solid curve, we can see that stable 2D island cannot occur at the early stage

of deposition until a critical coverage (0 = 0.021). However, once a 2D island

forms, the free energy for the system decreases suddenly.
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Similarly, we can find the stable equilibrium state for a system with a single

stable n-layer island and adatoms. Similar to Eq. (5.14) and (5.12), the total

coverage for a system with subcritical islands and a single stable n-layer island

On is then given by

en = e0 + Nn/L
2 (6.13)

The free energy for a system with a stable n-layer island and multiple subcritical

islands is given by

Fn(6) = F0(9 - Nn/L
2) + En(Nn) - kbTlnL2 (6.14)

Actually, we need not find the minimum to obtain the stable equilibrium

state every time when the film coverage is large. This is because the stable island

dominates the system when the coverage is very large. The chemical potential

for a stable island is always negative. When a stable island and adatoms are in

equilibrium, fj, < 0. According to the relationship between chemical potential

and the film coverage due to adaoms calculated using Eq. (5.9), the film coverage

due to adaoms follows 9o < 0.018. Therefore, it is still a good assumption that

all of the atoms are incorporated to the island, as we assume in section 6.3.1 and

6.3.2. Then the approximate equations are given by

en = 90 + Nn/L
2^Nn/L

2 (6.15)

and

Fn(9) = F0(60) + En(Nn) - kbTlnL2 (6.16)

where 00 is determined by the chemical potential of the island by using Eq. (5.9).
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6.5 Equilibrium shape for n-layer truncated cone

island

We adopt the assumption that when a 3D island is at local equilibrium, the

difference between the radii of every adjacent layer Ar is the same, i. e., the

island keeps the shape of an n-layer truncated cone. Considering step repulsion

in section 3.2, the free energy for an n-layer island En(ri, • • • , rn) in Eq. (4.23)

have a minimum with respect to the step distance Ar, when the volume of the
Ar

island is fixed. Figure 6.14 shows the free energy versus —, when substituting
as

£=0.1, ar = as into Eq. (4.23) at 9 = 0.2. The minimum which occurs at

Ar=1.65975as represents the equilibrium shape for the 3D island by using the

set of effective values for misfit and cutoff.

Figure 6.14: Free energy versus step distance for 2-layer island. Here, we use,
e:=0.1, ar = as. The minimum of the free energy occurs at Ar=1.65975as

In our case, the effective values for misfit and cutoff are unknown. Hence in

order to get the equilibrium shape for a 3D island, we introduce a self consistent

approach in this section. On the one hand, if step separation Ar is given, we

can use the general formula in Eq. (4.23) to fit the simulation result of the strain
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energy per atom as shown in Fig. 6.2 in section 6.1.2. On the other hand, once we

get the effective values for misfit and cutoff, Ar corresponding to the equilibrium

shape is determined. After several iterations, we can get the equilibrium shape

for a 3D island and the fitted effective values for misfit and cutoff. The results are

listed in Table 6.3. From the table, Ar specifies the equilibrium shape for n-layer

Table 6.3: Fitting parameters by applying general formula.

number of layer

1
2
3
4
5

p

0.148052
0.112507
0.102173
0.097125
0.094978

ar

0.97659 as

1.07384 a.
1.25807 as

1.43969 as

1.73001 as

Ar

—
1.70588 as

1.38807 as

1.22908 as

1.12894 a.

circular islands. The separation Ar between the steps at adjacent layer decreases

when the number of layers of the island increases accompanying deposition. It

means that the surface inclination of the truncated cone increases as it grows

vertically, which match the simulation observations introduced in section 6.1.1.
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Figure 6.15: Strain energy per atom fitting result using the self consistent ap-
proach.

6.6 Upper layer nucleation

6.6.1 Surface free energy

Once we get Ar, the effective values of misfit and cutoff, we can substitute

they in to Eq. (5.11) and Eq. (5.15) to calculate the free energies of the deposition

system in different stages. Figure 6.16 shows the free energy Fn versus coverage

9 for an n-layer island with the equilibrium shape. In Fig. 6.16, the free energy

Fn for n = 2 at 9 ~ 0.45 is the lowest compared to the free energy Fn for

n > 2. As the coverage 0 increases, both F2 and F3 decreases. But F3 decreases

even faster. Then, there is an intersection between F2 and F3 at 0 ~ 0.58. This

indicates that as the coverage becomes larger, an island with 3 layers is more

stable than an island with 2 layers. Similar intersections happens for F3 and F4

at 0 ~ 0.73, and for F4 and F5 at 9 ~ 1.13 (See the first column in Table 6.4). It

is clear that if the deposition is slower than the upper layer nucleation dynamics,

the island will follow a layer-by-layer growth mode.
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Figure 6.16: Free energy for n-layer island taking into account step repulsion.
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Figure 6.17: Chemical potential versus 9 taking into account step repulsion.
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Figure 6.17 is the chemical potential for an n-layer island for section 6.5

as 0 increases compared with the simulation result. The solid curve in Fig. 6.17

is the calculated chemical potential, and the point is the simulation result. The

trend for the chemical potential is that, at small 0, there is an initial rise of the

chemical potential. The lateral growth of island results in a small increase in

the chemical potential while the top layer nucleation results in a decrease of the

chemical potential. The trend is similar to the simulation result. However, the

values do not match very well. A possible reason for the vertical shift of the

values can be approximations taken in calculating surface step free energies and

so on.

6.6.2 Energy barrier and nucleation rate

To check our model, we also calculate the nucleation rate and time for the

upper layer nucleation process.

-7.8
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-8.0

jje -8.1
at

at

2

-8.4
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.18: Energy barrier for 2 to 3 layer island transition for 9 = 0.575572.

In order to obtain the energy barrier for the transition from the initial state

of an n-layer island to the final state of an (n+l)-layer island, we introduce a
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Figure 6.19: Radius for each layer for 2 to 3 transition for 9 = 0.575572.

reactive parameter 0 in the way that 0 = 0 represents the initial state, and 0 = 1

refers to the final state. Parameters including the misfit e, the cutoff ar and the

number of atoms of the top layer n change linearly between 0 = 0 and 0=1.

We calculate the free energy F(0) versus 0. Figure 6.18 shows the free energy

versus 0 for a 2-layer to 3-layer island transition at 0 = 0.575572 which is the

transition point for F2 and F3 in Fig. 6.16 using the parameters listed in Table 6.3.

Figure 6.19 shows the radius change for each layer correspond to 0. We get a

transition barrier Eb = 0.505517eV at 0 = 0.150074.

Table 6.4: Nucleation barrier, rate and time for upper layer nucleation.

number of layer

2 to 3
3 to 4
4 to 5

e
0.575572
0.733908
1.125860

Eb (eV)

0.505517
0.551847
0.645815

Js (s-1)

2.2745
1.1392
0.1870

tc(s)

0.003683
0.010908
0.067884

Using using Eq. (5.20) and Eq. (5.30), we obtain the upper layer nucleation

rate Js = 2.2745s"1 and the transition time tc = 0.003683s. It means that it

is easy for the island to overcome the energy barrier and transit from a 2-layer
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island to a 3-layer island at 9 = 0.575572.

The calculated nucleation rate and time for n to (n+1) layer transition at the

free energy crossing points found in Fig. 6.16 are listed in Table 6.4. From the

table, we can see that the nucleation time for 3 to 4 layer transition and 4 to 5

layer transition at the crossing points is in the order of 0.01s. We can see that

the upper layer nucleation dynamics is fast relative to the deposition. Thus our

theory verifies that the formation of island follows a layer-by-layer growth mode.



Chapter 7

Conclusions

In conclusion, we have introduced a layer-by-layer growth model to study

the morphological evolution of strained heteroepitaxy under slow deposition

condition. Using continuum elastic theory, we have investigated the strain en-

ergy for 2D circular islands, cylindrical n-layer circular islands, and stacked n-

layer circular islands. Using the result of a Kinetic Monte Carlo simulation, we

introduce correction to the small-slope approximation by using effective values

of misfits and elastic cutoff. The step free energy with an entropic step repulsion

term for a ball and spring model in a simple cubic lattice is calculated.

We have obtained the equilibrium shape of a 3D island by applying a self

consistent approach. The separation between two adjacent steps Ar of an n-layer

island decreases when the number of layers of the island increases accompany-

ing deposition. The free energies for a system with a single n-layer island and

subcritical islands have been presented and analyzed. Energy barriers for island

transition and new layer nucleation time have been estimated. These results ver-

ify that island nucleation follows a layer-by-layer growth mode. A new layer

of atoms can nucleate on top of an n-layer island only after the island grows

laterally larger. There is an initial rise for the chemical potential of the system

before forming stable 2D island. The process of island growing laterally results

60
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in a small increase in the chemical potential of the system, while a new layer

of atoms nucleated on top of the island causes a sharp decrease of the system's

chemical potential.

We expect that the similar analysis using this model can be applied to re-

lated heteroepitaxial systems as well. For example, it can be applied to systems

with different values of misfit, lattice constant and elastic constant and so on. It

can also be applied to structures with different geometries, such as pit, which

was also observed in the KMC simulations under certain conditions.

This thesis focuses mainly on static thermodynamic analyses and the stabil-

ity of the system. For future study, more efforts are needed to study the dynamics

of island growth. Moreover, our study is limited to systems with only one sta-

ble island on the surface of the substrate. For future study, it is of interest to

study systems with more than one stable island, by considering island interac-

tions which are related to the shapes of the islands and their locations.

For the KMC simulations, the following problems are suggested. First,

facets are commonly obtained in the growth of strained islands. In the exper-

imental studies of Ge/Si and GexSii_x/Si heteroepitaxial systems, hut islands

with (105) facets were obtained. The rebonded step reconstruction in faceted

surface can further reduce the surface energy of an island. The question is, how

the inclined surface consists of steps as described in this thesis becomes a faceted

one? Second, to obtain an array of regularly-located self-assembled islands in

the experiments, the use of patterned substrate were reported. How does the sub-

strate affect the surface evolution of the heteroepitaxial systems? We can attempt

to answer the above questions using our KMC simulation model in the coming

future.
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